Sample records for agriculture water resources

  1. Handling Uncertain Gross Margin and Water Demand in Agricultural Water Resources Management using Robust Optimization

    NASA Astrophysics Data System (ADS)

    Chaerani, D.; Lesmana, E.; Tressiana, N.

    2018-03-01

    In this paper, an application of Robust Optimization in agricultural water resource management problem under gross margin and water demand uncertainty is presented. Water resource management is a series of activities that includes planning, developing, distributing and managing the use of water resource optimally. Water resource management for agriculture can be one of the efforts to optimize the benefits of agricultural output. The objective function of agricultural water resource management problem is to maximizing total benefits by water allocation to agricultural areas covered by the irrigation network in planning horizon. Due to gross margin and water demand uncertainty, we assume that the uncertain data lies within ellipsoidal uncertainty set. We employ robust counterpart methodology to get the robust optimal solution.

  2. Investigation on Reservoir Operation of Agricultural Water Resources Management for Drought Mitigation

    NASA Astrophysics Data System (ADS)

    Cheng, C. L.

    2015-12-01

    Investigation on Reservoir Operation of Agricultural Water Resources Management for Drought Mitigation Chung-Lien Cheng, Wen-Ping Tsai, Fi-John Chang* Department of Bioenvironmental Systems Engineering, National Taiwan University, Da-An District, Taipei 10617, Taiwan, ROC.Corresponding author: Fi-John Chang (changfj@ntu.edu.tw) AbstractIn Taiwan, the population growth and economic development has led to considerable and increasing demands for natural water resources in the last decades. Under such condition, water shortage problems have frequently occurred in northern Taiwan in recent years such that water is usually transferred from irrigation sectors to public sectors during drought periods. Facing the uneven spatial and temporal distribution of water resources and the problems of increasing water shortages, it is a primary and critical issue to simultaneously satisfy multiple water uses through adequate reservoir operations for sustainable water resources management. Therefore, we intend to build an intelligent reservoir operation system for the assessment of agricultural water resources management strategy in response to food security during drought periods. This study first uses the grey system to forecast the agricultural water demand during February and April for assessing future agricultural water demands. In the second part, we build an intelligent water resources system by using the non-dominated sorting genetic algorithm-II (NSGA-II), an optimization tool, for searching the water allocation series based on different water demand scenarios created from the first part to optimize the water supply operation for different water sectors. The results can be a reference guide for adequate agricultural water resources management during drought periods. Keywords: Non-dominated sorting genetic algorithm-II (NSGA-II); Grey System; Optimization; Agricultural Water Resources Management.

  3. Water Market-scale Agricultural Planning: Promoting Competing Water Resource Use Efficiency Through Agro-Economics

    NASA Astrophysics Data System (ADS)

    Delorit, J. D.; Block, P. J.

    2017-12-01

    Where strong water rights law and corresponding markets exist as a coupled econo-legal mechanism, water rights holders are permitted to trade allocations to promote economic water resource use efficiency. In locations where hydrologic uncertainty drives the assignment of annual per-water right allocation values by water resource managers, collaborative water resource decision making by water rights holders, specifically those involved in agricultural production, can result in both resource and economic Pareto efficiency. Such is the case in semi-arid North Chile, where interactions between representative farmer groups, treated as competitive bilateral monopolies, and modeled at water market-scale, can provide both price and water right allocation distribution signals for unregulated, temporary water right leasing markets. For the range of feasible per-water right allocation values, a coupled agricultural-economic model is developed to describe the equilibrium distribution of water, the corresponding market price of water rights and the net surplus generated by collaboration between competing agricultural uses. Further, this research describes a per-water right inflection point for allocations where economic efficiency is not possible, and where price negotiation among competing agricultural uses is required. An investigation of the effects of water right supply and demand inequality at the market-scale is completed to characterize optimal market performance under existing water rights law. The broader insights of this research suggest that water rights holders engaged in agriculture can achieve economic benefits from forming crop-type cooperatives and by accurately assessing the economic value of allocation.

  4. Effects of meteorological droughts on agricultural water resources in southern China

    NASA Astrophysics Data System (ADS)

    Lu, Houquan; Wu, Yihua; Li, Yijun; Liu, Yongqiang

    2017-05-01

    With the global warming, frequencies of drought are rising in the humid area of southern China. In this study, the effects of meteorological drought on the agricultural water resource based on the agricultural water resource carrying capacity (AWRCC) in southern China were investigated. The entire study area was divided into three regions based on the distributions of climate and agriculture. The concept of the maximum available water resources for crops was used to calculate AWRCC. Meanwhile, an agricultural drought intensity index (ADI), which was suitable for rice planting areas, was proposed based on the difference between crop water requirements and precipitation. The actual drought area and crop yield in drought years from 1961 to 2010 were analyzed. The results showed that ADI and AWRCC were significantly correlated with the actual drought occurrence area and food yield in the study area, which indicated ADI and AWRCC could be used in drought-related studies. The effects of seasonal droughts on AWRCC strongly depended on both the crop growth season and planting structure. The influence of meteorological drought on agricultural water resources was pronounced in regions with abundant water resources, especially in Southwest China, which was the most vulnerable to droughts. In Southwest China, which has dry and wet seasons, reducing the planting area of dry season crops and rice could improve AWRCC during drought years. Likewise, reducing the planting area of double-season rice could improve AWRCC during drought years in regions with a double-season rice cropping system. Our findings highlight the importance of adjusting the proportions of crop planting to improve the utilization efficiency of agricultural water resources and alleviate drought hazards in some humid areas.

  5. An Index-Based Assessment of Agricultural Water Scarcity for Sustainable Water Resource Management

    NASA Astrophysics Data System (ADS)

    Kim, S. E.; Lee, D. K.; Kim, K. S.; Hyun, S.; Kim, Y.

    2017-12-01

    Global precipitation pattern is changing due to climate change, causing drought and water scarcity all around the world. As water is mandatory to all lives, water availability is becoming essential and so is sustainable water resource management. Especially in agriculture, water resource management is crucial, as it is directly connected to the production. However, many studies about water scarcity show limits by focusing on current situation and overlooking future possibilities of water availability. Also, most of the studies about water scarcity use single index or model. To overcome these shortcomings, we assessed agricultural water scarcity considering future climate, using water scarcity indices. We assessed present and future water scarcity using several indices and compared the results derived from each index. The study area of this research is South Korea, as drought is a prominent problem in agricultural sector. Precipitation in Korea is concentrated in summer, causing severe drought in spring and fall. Rainfall density in Korea is increasing with climate change, and sustainable water resource management is inevitable. In this research, we used irrigational demand along with current and future crop production of 2030 and 2050 as water demand. We projected the future (2020-2100) runoff of dams located in Korea as water demand under future scenarios, RCP 4.5 and 8.5. The result showed severe water scarcity in Southern area of Korea both in the present and the future. It was due to increase of water demand and decrease of precipitation. It indicates that the water scarcity gets more intense in the future, and emphasizes the importance of water resource management of the southern part. This research will be valuable in establishing water resource management in agricultural sector for sustainable water availability in the future.

  6. Effects of meteorological droughts on agricultural water resources in southern China

    Treesearch

    Houquan Lu; Yihua Wu; Yijun Li; Yongqiang Liu

    2017-01-01

    With the global warming, frequencies of drought are rising in the humid area of southern China. In this study, the effects of meteorological drought on the agricultural water resource based on the agricultural water resource carrying capacity (AWRCC) in southern China were investigated. The entire study area was divided into three regions based on the...

  7. Assessing water scarcity in agricultural production system based on the generalized water resources and water footprint framework.

    PubMed

    Xinchun, Cao; Mengyang, Wu; Xiangping, Guo; Yalian, Zheng; Yan, Gong; Nan, Wu; Weiguang, Wang

    2017-12-31

    An indicator, agricultural water stress index (AWSI), was established based blue-green water resources and water footprint framework for regional water scarcity in agricultural production industry evaluation. AWSI is defined as the ratio of the total agricultural water footprint (AWF) to water resources availability (AWR) in a single year. Then, the temporal and spatial patterns of AWSI in China during 1999-2014 were analyzed based on the provincial AWR and AWF quantification. The results show that the annual AWR in China has been maintained at approximately 2540Gm 3 , of which blue water accounted for >70%. The national annual AWF was approximately 1040Gm 3 during the study period and comprised 65.6% green, 12.7% blue and 21.7% grey WFs The space difference in both the AWF for per unit arable land (AWFI) and its composition was significant. National AWSI was calculated as 0.413 and showed an increasing trend in the observed period. This index increased from 0.320 (mid-water stress level) in 2000 to 0.490 (high water stress level) in the present due to the expansion of the agricultural production scale. The Northern provinces, autonomous regions and municipalities (PAMs) have been facing high water stress, particularly the Huang-Huai-Hai Plain, which was at a very high water stress level (AWSI>0.800). Humid South China faces increasingly severe water scarcity, and most of the PAMs in the region have converted from low water stress level (AWSI=0.100-0.200) to mid water stress level (AWSI=0.200-0.400). The AWSI is more appropriate for reflecting the regional water scarcity than the existing water stress index (WSI) or the blue water scarcity (BWS) indicator, particularly for the arid agricultural production regions due to the revealed environmental impacts of agricultural production. China should guarantee the sustainable use of agricultural water resources by reducing its crop water footprint. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Deficit irrigation and sustainable water-resource strategies in agriculture for China's food security.

    PubMed

    Du, Taisheng; Kang, Shaozhong; Zhang, Jianhua; Davies, William J

    2015-04-01

    More than 70% of fresh water is used in agriculture in many parts of the world, but competition for domestic and industrial water use is intense. For future global food security, water use in agriculture must become sustainable. Agricultural water-use efficiency and water productivity can be improved at different points from the stomatal to the regional scale. A promising approach is the use of deficit irrigation, which can both save water and induce plant physiological regulations such as stomatal opening and reproductive and vegetative growth. At the scales of the irrigation district, the catchment, and the region, there can be many other components to a sustainable water-resources strategy. There is much interest in whether crop water use can be regulated as a function of understanding of physiological responses. If this is the case, then agricultural water resources can be reallocated to the benefit of the broader community. We summarize the extent of use and impact of deficit irrigation within China. A sustainable strategy for allocation of agricultural water resources for food security is proposed. Our intention is to build an integrative system to control crop water use during different cropping stages and actively regulate the plant's growth, productivity, and development based on physiological responses. This is done with a view to improving the allocation of limited agricultural water resources. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  9. Deficit irrigation and sustainable water-resource strategies in agriculture for China’s food security

    PubMed Central

    Du, Taisheng; Kang, Shaozhong; Zhang, Jianhua; Davies, William J.

    2015-01-01

    More than 70% of fresh water is used in agriculture in many parts of the world, but competition for domestic and industrial water use is intense. For future global food security, water use in agriculture must become sustainable. Agricultural water-use efficiency and water productivity can be improved at different points from the stomatal to the regional scale. A promising approach is the use of deficit irrigation, which can both save water and induce plant physiological regulations such as stomatal opening and reproductive and vegetative growth. At the scales of the irrigation district, the catchment, and the region, there can be many other components to a sustainable water-resources strategy. There is much interest in whether crop water use can be regulated as a function of understanding of physiological responses. If this is the case, then agricultural water resources can be reallocated to the benefit of the broader community. We summarize the extent of use and impact of deficit irrigation within China. A sustainable strategy for allocation of agricultural water resources for food security is proposed. Our intention is to build an integrative system to control crop water use during different cropping stages and actively regulate the plant’s growth, productivity, and development based on physiological responses. This is done with a view to improving the allocation of limited agricultural water resources. PMID:25873664

  10. Optimization of Water Resources and Agricultural Activities for Economic Benefit in Colorado

    NASA Astrophysics Data System (ADS)

    LIM, J.; Lall, U.

    2017-12-01

    The limited water resources available for irrigation are a key constraint for the important agricultural sector of Colorado's economy. As climate change and groundwater depletion reshape these resources, it is essential to understand the economic potential of water resources under different agricultural production practices. This study uses a linear programming optimization at the county spatial scale and annual temporal scales to study the optimal allocation of water withdrawal and crop choices. The model, AWASH, reflects streamflow constraints between different extraction points, six field crops, and a distinct irrigation decision for maize and wheat. The optimized decision variables, under different environmental, social, economic, and physical constraints, provide long-term solutions for ground and surface water distribution and for land use decisions so that the state can generate the maximum net revenue. Colorado, one of the largest agricultural producers, is tested as a case study and the sensitivity on water price and on climate variability is explored.

  11. Improving Agricultural Water Resources Management Using Ground-based Infrared Thermometry

    NASA Astrophysics Data System (ADS)

    Taghvaeian, S.

    2014-12-01

    Irrigated agriculture is the largest user of freshwater resources in arid/semi-arid parts of the world. Meeting rapidly growing demands in food, feed, fiber, and fuel while minimizing environmental pollution under a changing climate requires significant improvements in agricultural water management and irrigation scheduling. Although recent advances in remote sensing techniques and hydrological modeling has provided valuable information on agricultural water resources and their management, real improvements will only occur if farmers, the decision makers on the ground, are provided with simple, affordable, and practical tools to schedule irrigation events. This presentation reviews efforts in developing methods based on ground-based infrared thermometry and thermography for day-to-day management of irrigation systems. The results of research studies conducted in Colorado and Oklahoma show that ground-based remote sensing methods can be used effectively in quantifying water stress and consequently triggering irrigation events. Crop water use estimates based on stress indices have also showed to be in good agreement with estimates based on other methods (e.g. surface energy balance, root zone soil water balance, etc.). Major challenges toward the adoption of this approach by agricultural producers include the reduced accuracy under cloudy and humid conditions and its inability to forecast irrigation date, which is a critical knowledge since many irrigators need to decide about irrigations a few days in advance.

  12. Agricultural Impacts on Water Resources: Recommendations for Successful Applied Research

    NASA Astrophysics Data System (ADS)

    Harmel, D.

    2014-12-01

    We, as water resource professionals, are faced with a truly monumental challenge - that is feeding the world's growing population and ensuring it has an adequate supply of clean water. As researchers and educators it is good for us to regularly remember that our research and outreach efforts are critical to people around the world, many of whom are desperate for solutions to water quality and supply problems and their impacts on food supply, land management, and ecosystem protection. In this presentation, recommendations for successful applied research on agricultural impacts on water resources will be provided. The benefits of building multidisciplinary teams will be illustrated with examples related to the development and world-wide application of the ALMANAC, SWAT, and EPIC/APEX models. The value of non-traditional partnerships will be shown by the Soil Health Partnership, a coalition of agricultural producers, chemical and seed companies, and environmental advocacy groups. The results of empowering decision-makers with useful data will be illustrated with examples related to bacteria source and transport data and the MANAGE database, which contains runoff nitrogen and phosphorus data for cultivated, pasture, and forest land uses. The benefits of focusing on sustainable solutions will be shown through examples of soil testing, fertilizers application, on-farm profit analysis, and soil health assessment. And the value of welcoming criticism will be illustrated by the development of a framework to estimate and publish uncertainty in measured discharge and water quality data. The good news for researchers is that the agricultural industry is faced with profitability concerns and the need to wisely utilize soil and water resources, and simultaneously state and federal agencies crave sound-science to improve decision making, policy, and regulation. Thus, the audience for and beneficiaries of agricultural research are ready and hungry for applied research results.

  13. Water Resources and Sustainable Agriculture in 21st Century: Challenges and Opportunities

    NASA Astrophysics Data System (ADS)

    Asrar, G.

    2008-05-01

    Global agriculture faces some unique challenges and opportunities for the rest of this century. The need for food, feed and fiber will continues to grow as the world population continue to increase in the future. Agricultural ecosystems are also expected to be the source of a significant portion of renewable energy and fuels around the world, without further compromising the integrity of the natural resources base. How can agriculture continue to provide these services to meet the growing needs of world population while sustaining the integrity of agricultural ecosystems and natural resources, the very foundation it depends on? In the last century, scientific discoveries and technological innovations in agriculture resulted in significant increase in food, feed and fiber production globally, while the total amount of water, energy, fertilizers and other input used to achieve this growth remained the same or even decreased significantly in some parts of the world. Scientific and technical advances in understanding global and regional water and energy cycles, water resources management, soil and water conservation practices, weather prediction, plant breeding and biotechnology, and information and communication technologies contributed to this tremendous achievement. The projected increase in global population, urbanization, and changing lifestyles will continue the pressure on both agriculture and other managed and natural ecosystems to provide necessary goods and services for the rest of this century. To meet these challenges, we must obtain the requisite scientific and technical advances in the functioning of Earth's water, energy, carbon and biogeochemical cycles. We also need to apply the knowledge we gain and technologies we develop in assessing Earth's ecosystems' conditions, and their management and stewardship. In agricultural ecosystems, management of soil and water quality and quantity together with development of new varieties of plants based on advances

  14. The effects of climate change on agriculture, land resources, water resources, and biodiversity in the United States

    DOT National Transportation Integrated Search

    2008-06-01

    This report provides an assessment of the effects of climate change on U.S. agriculture, land resources, water resources, and biodiversity. It is one of a series of 21 Synthesis and Assessment Products (SAP) that are being produced under the auspices...

  15. An integrated model for assessing both crop productivity and agricultural water resources at a large scale

    NASA Astrophysics Data System (ADS)

    Okada, M.; Sakurai, G.; Iizumi, T.; Yokozawa, M.

    2012-12-01

    Agricultural production utilizes regional resources (e.g. river water and ground water) as well as local resources (e.g. temperature, rainfall, solar energy). Future climate changes and increasing demand due to population increases and economic developments would intensively affect the availability of water resources for agricultural production. While many studies assessed the impacts of climate change on agriculture, there are few studies that dynamically account for changes in water resources and crop production. This study proposes an integrated model for assessing both crop productivity and agricultural water resources at a large scale. Also, the irrigation management to subseasonal variability in weather and crop response varies for each region and each crop. To deal with such variations, we used the Markov Chain Monte Carlo technique to quantify regional-specific parameters associated with crop growth and irrigation water estimations. We coupled a large-scale crop model (Sakurai et al. 2012), with a global water resources model, H08 (Hanasaki et al. 2008). The integrated model was consisting of five sub-models for the following processes: land surface, crop growth, river routing, reservoir operation, and anthropogenic water withdrawal. The land surface sub-model was based on a watershed hydrology model, SWAT (Neitsch et al. 2009). Surface and subsurface runoffs simulated by the land surface sub-model were input to the river routing sub-model of the H08 model. A part of regional water resources available for agriculture, simulated by the H08 model, was input as irrigation water to the land surface sub-model. The timing and amount of irrigation water was simulated at a daily step. The integrated model reproduced the observed streamflow in an individual watershed. Additionally, the model accurately reproduced the trends and interannual variations of crop yields. To demonstrate the usefulness of the integrated model, we compared two types of impact assessment of

  16. Reanalysis of Water, Land Use, and Production Data for Assessing China's Agricultural Resources

    NASA Astrophysics Data System (ADS)

    Smith, T.; Pan, J.; McLaughlin, D.

    2016-12-01

    Quantitative data about water availability, crop evapotranspiration (ET), agricultural land use, and production are needed at high temporal and spatial resolutions to develop sustainable water and agricultural plan and policies. However, large-scale high-resolution measured data can be susceptible to errors, physically inconsistent, or incomplete. Reanalysis provides a way to develop improved physically consistent estimates of both measured and hidden variables. The reanalysis approach described here uses a least-squares technique constrained by water balances and crop water requirements to assimilate many possibly redundant data sources to yield estimates of water, land use, and food production variables that are physically consistent while minimizing differences from measured data. As an example, this methodology is applied in China, where food demand is expected to increase but land and water resources could constrain further increases in food production. Hydrologic fluxes, crop ET, agricultural land use, yields, and food production are characterized at 0.5o by 0.5o resolution for a nominal year around the year 2000 for 22 different crop groups. The reanalysis approach provides useful information for resource management and policy, both in China and around the world.

  17. The effects of climate change on agriculture, land resources, water resources, and biodiversity in the United States

    Treesearch

    Peter Backlund; Anthony Janetos; David Schimel

    2008-01-01

    This report provides an assessment of the effects of climate change on U.S. agriculture, land resources, water resources, and biodiversity. It is one of a series of 21 Synthesis and Assessment Products (SAP) that are being produced under the auspices of the U.S. Climate Change Science Program (CCSP).

  18. Water resources conservation and nitrogen pollution reduction under global food trade and agricultural intensification.

    PubMed

    Liu, Wenfeng; Yang, Hong; Liu, Yu; Kummu, Matti; Hoekstra, Arjen Y; Liu, Junguo; Schulin, Rainer

    2018-08-15

    Global food trade entails virtual flows of agricultural resources and pollution across countries. Here we performed a global-scale assessment of impacts of international food trade on blue water use, total water use, and nitrogen (N) inputs and on N losses in maize, rice, and wheat production. We simulated baseline conditions for the year 2000 and explored the impacts of an agricultural intensification scenario, in which low-input countries increase N and irrigation inputs to a greater extent than high-input countries. We combined a crop model with the Global Trade Analysis Project model. Results show that food exports generally occurred from regions with lower water and N use intensities, defined here as water and N uses in relation to crop yields, to regions with higher resources use intensities. Globally, food trade thus conserved a large amount of water resources and N applications, and also substantially reduced N losses. The trade-related conservation in blue water use reached 85km 3 y -1 , accounting for more than half of total blue water use for producing the three crops. Food exported from the USA contributed the largest proportion of global water and N conservation as well as N loss reduction, but also led to substantial export-associated N losses in the country itself. Under the intensification scenario, the converging water and N use intensities across countries result in a more balanced world; crop trade will generally decrease, and global water resources conservation and N pollution reduction associated with the trade will reduce accordingly. The study provides useful information to understand the implications of agricultural intensification for international crop trade, crop water use and N pollution patterns in the world. Copyright © 2018 Elsevier B.V. All rights reserved.

  19. Development of a resource protection and waste strategy for water use by the agricultural sector.

    PubMed

    Ligthelm, M E; Ranwedzi, R; Morokane, M; Senne, M

    2007-01-01

    The South African Department of Water Affairs and Forestry (DWAF) has started developing a strategy to regulate activities and water uses by the agricultural sector that could impact on the water resource quality. The aim would not be to over-regulate the sector, but to protect the water resource where necessary. Most of these activities constitute diffuse sources of potential pollution. The strategic process will start with investigative discussions with major stakeholders and determining the strategic context and current situation. The latter will consist of a detailed literature and stakeholder survey, and an evaluation of existing agricultural activities. The next steps of determining a vision and the setting of strategic objectives will be done with active participation by the major players. An action plan will be developed to achieve the set objectives. Important components of the strategy will be to: classify activities according to their risk to the water resource, taking into account the sensitivity of the water resource; set regulatory measures in accordance with the risk posed by the activity (measures could include the promulgation of regulations, general authorisations and/or issuing of licenses); harmonise and link the process with existing relevant processes and guidelines within DWAF and other government departments; review existing guidelines; sign agreements with relevant government departments and the agricultural sector; and provide training, built capacity and raise awareness during and after the process.

  20. Global impacts of conversions from natural to agricultural ecosystems on water resources: Quantity versus quality

    NASA Astrophysics Data System (ADS)

    Scanlon, Bridget R.; Jolly, Ian; Sophocleous, Marios; Zhang, Lu

    2007-03-01

    Past land use changes have greatly impacted global water resources, with often opposing effects on water quantity and quality. Increases in rain-fed cropland (460%) and pastureland (560%) during the past 300 years from forest and grasslands decreased evapotranspiration and increased recharge (two orders of magnitude) and streamflow (one order of magnitude). However, increased water quantity degraded water quality by mobilization of salts, salinization caused by shallow water tables, and fertilizer leaching into underlying aquifers that discharge to streams. Since the 1950s, irrigated agriculture has expanded globally by 174%, accounting for ˜90% of global freshwater consumption. Irrigation based on surface water reduced streamflow and raised water tables resulting in waterlogging in many areas (China, India, and United States). Marked increases in groundwater-fed irrigation in the last few decades in these areas has lowered water tables (≤1 m/yr) and reduced streamflow. Degradation of water quality in irrigated areas has resulted from processes similar to those in rain-fed agriculture: salt mobilization, salinization in waterlogged areas, and fertilizer leaching. Strategies for remediating water resource problems related to agriculture often have opposing effects on water quantity and quality. Long time lags (decades to centuries) between land use changes and system response (e.g., recharge, streamflow, and water quality), particularly in semiarid regions, mean that the full impact of land use changes has not been realized in many areas and remediation to reverse impacts will also take a long time. Future land use changes should consider potential impacts on water resources, particularly trade-offs between water, salt, and nutrient balances, to develop sustainable water resources to meet human and ecosystem needs.

  1. Global impacts of conversions from natural to agricultural ecosystems on water resources: Quantity versus quality

    USGS Publications Warehouse

    Scanlon, Bridget R.; Jolly, Ian; Sophocleous, Marios; Zhang, Lu

    2007-01-01

    Past land use changes have greatly impacted global water resources, with often opposing effects on water quantity and quality. Increases in rain‐fed cropland (460%) and pastureland (560%) during the past 300 years from forest and grasslands decreased evapotranspiration and increased recharge (two orders of magnitude) and streamflow (one order of magnitude). However, increased water quantity degraded water quality by mobilization of salts, salinization caused by shallow water tables, and fertilizer leaching into underlying aquifers that discharge to streams. Since the 1950s, irrigated agriculture has expanded globally by 174%, accounting for ∼90% of global freshwater consumption. Irrigation based on surface water reduced streamflow and raised water tables resulting in waterlogging in many areas (China, India, and United States). Marked increases in groundwater‐fed irrigation in the last few decades in these areas has lowered water tables (≤1 m/yr) and reduced streamflow. Degradation of water quality in irrigated areas has resulted from processes similar to those in rain‐fed agriculture: salt mobilization, salinization in waterlogged areas, and fertilizer leaching. Strategies for remediating water resource problems related to agriculture often have opposing effects on water quantity and quality. Long time lags (decades to centuries) between land use changes and system response (e.g., recharge, streamflow, and water quality), particularly in semiarid regions, mean that the full impact of land use changes has not been realized in many areas and remediation to reverse impacts will also take a long time. Future land use changes should consider potential impacts on water resources, particularly trade‐offs between water, salt, and nutrient balances, to develop sustainable water resources to meet human and ecosystem needs.

  2. A review of green- and blue-water resources and their trade-offs for future agricultural production in the Amazon Basin: what could irrigated agriculture mean for Amazonia?

    NASA Astrophysics Data System (ADS)

    Lathuillière, Michael J.; Coe, Michael T.; Johnson, Mark S.

    2016-06-01

    The Amazon Basin is a region of global importance for the carbon and hydrological cycles, a biodiversity hotspot, and a potential centre for future economic development. The region is also a major source of water vapour recycled into continental precipitation through evapotranspiration processes. This review applies an ecohydrological approach to Amazonia's water cycle by looking at contributions of water resources in the context of future agricultural production. At present, agriculture in the region is primarily rain-fed and relies almost exclusively on green-water resources (soil moisture regenerated by precipitation). Future agricultural development, however, will likely follow pathways that include irrigation from blue-water sources (surface water and groundwater) as insurance from variability in precipitation. In this review, we first provide an updated summary of the green-blue ecohydrological framework before describing past trends in Amazonia's water resources within the context of land use and land cover change. We then describe green- and blue-water trade-offs in light of future agricultural production and potential irrigation to assess costs and benefits to terrestrial ecosystems, particularly land and biodiversity protection, and regional precipitation recycling. Management of green water is needed, particularly at the agricultural frontier located in the headwaters of major tributaries to the Amazon River, and home to key downstream blue-water users and ecosystem services, including domestic and industrial users, as well as aquatic ecosystems.

  3. Modelling analysis of water and land effects on agricultural development in the Heihe Agricultural Production Area, China

    NASA Astrophysics Data System (ADS)

    Wang, G.

    2017-12-01

    Water and land resources play vital roles in agricultural growth. They not only remarkably support overall economic growth, but may also restrict agricultural development. To document the influence of water and land on agriculture, we examined the "drag effects" of these two resources in limiting agricultural production. In this study, data from eight counties collected during 2000-2012 from the Heihe Agricultural Production Area in Gansu Province were used to analyze the drag effects of water and land resources on agricultural growth. These effects varied largely among the eight counties, which was consistent with the availability of these resources. This study will give scientific support to coordinating development with the availability of water and land resources in agricultural areas of China

  4. Water in agriculture

    USDA-ARS?s Scientific Manuscript database

    Agricultural water is a precious and limited resource. Increasingly more water types and sources are being explored for use in irrigation within the United States and across the globe. As outlined in this chapter relatively new regulations in the Food Safety and Modernization Act (FSMA) provide irri...

  5. Sustainable agricultural water management across climates

    NASA Astrophysics Data System (ADS)

    DeVincentis, A.

    2016-12-01

    Fresh water scarcity is a global problem with local solutions. Agriculture is one of many human systems threatened by water deficits, and faces unique supply, demand, quality, and management challenges as the global climate changes and population grows. Sustainable agricultural water management is paramount to protecting global economies and ecosystems, but requires different approaches based on environmental conditions, social structures, and resource availability. This research compares water used by conservation agriculture in temperate and tropical agroecosystems through data collected from operations growing strawberries, grapes, tomatoes, and pistachios in California and corn and soybeans in Colombia. The highly manipulated hydrologic regime in California has depleted water resources and incited various adaptive management strategies, varying based on crop type and location throughout the state. Operations have to use less water more efficiently, and sometimes that means fallowing land in select groundwater basins. At the opposite end of the spectrum, the largely untouched landscape in the eastern plains of Colombia are rapidly being converted into commercial agricultural operations, with a unique opportunity to manage and plan for agricultural development with sustainability in mind. Although influenced by entirely different climates and economies, there are some similarities in agricultural water management strategies that could be applicable worldwide. Cover crops are a successful management strategy for both agricultural regimes, and moving forward it appears that farmers who work in coordination with their neighbors to plan for optimal production will be most successful in both locations. This research points to the required coordination of agricultural extension services as a critical component to sustainable water use, successful economies, and protected environments.

  6. A Satellite Data-Driven, Client-Server Decision Support Application for Agricultural Water Resources Management

    NASA Technical Reports Server (NTRS)

    Johnson, Lee F.; Maneta, Marco P.; Kimball, John S.

    2016-01-01

    Water cycle extremes such as droughts and floods present a challenge for water managers and for policy makers responsible for the administration of water supplies in agricultural regions. In addition to the inherent uncertainties associated with forecasting extreme weather events, water planners need to anticipate water demands and water user behavior in a typical circumstances. This requires the use decision support systems capable of simulating agricultural water demand with the latest available data. Unfortunately, managers from local and regional agencies often use different datasets of variable quality, which complicates coordinated action. In previous work we have demonstrated novel methodologies to use satellite-based observational technologies, in conjunction with hydro-economic models and state of the art data assimilation methods, to enable robust regional assessment and prediction of drought impacts on agricultural production, water resources, and land allocation. These methods create an opportunity for new, cost-effective analysis tools to support policy and decision-making over large spatial extents. The methods can be driven with information from existing satellite-derived operational products, such as the Satellite Irrigation Management Support system (SIMS) operational over California, the Cropland Data Layer (CDL), and using a modified light-use efficiency algorithm to retrieve crop yield from the synergistic use of MODIS and Landsat imagery. Here we present an integration of this modeling framework in a client-server architecture based on the Hydra platform. Assimilation and processing of resource intensive remote sensing data, as well as hydrologic and other ancillary information occur on the server side. This information is processed and summarized as attributes in water demand nodes that are part of a vector description of the water distribution network. With this architecture, our decision support system becomes a light weight 'app' that

  7. A satellite data-driven, client-server decision support application for agricultural water resources management

    NASA Astrophysics Data System (ADS)

    Maneta, M. P.; Johnson, L.; Kimball, J. S.

    2016-12-01

    Water cycle extremes such as droughts and floods present a challenge for water managers and for policy makers responsible for the administration of water supplies in agricultural regions. In addition to the inherent uncertainties associated with forecasting extreme weather events, water planners need to anticipate water demands and water user behavior in atypical circumstances. This requires the use decision support systems capable of simulating agricultural water demand with the latest available data. Unfortunately, managers from local and regional agencies often use different datasets of variable quality, which complicates coordinated action. In previous work we have demonstrated novel methodologies to use satellite-based observational technologies, in conjunction with hydro-economic models and state of the art data assimilation methods, to enable robust regional assessment and prediction of drought impacts on agricultural production, water resources, and land allocation. These methods create an opportunity for new, cost-effective analysis tools to support policy and decision-making over large spatial extents. The methods can be driven with information from existing satellite-derived operational products, such as the Satellite Irrigation Management Support system (SIMS) operational over California, the Cropland Data Layer (CDL), and using a modified light-use efficiency algorithm to retrieve crop yield from the synergistic use of MODIS and Landsat imagery. Here we present an integration of this modeling framework in a client-server architecture based on the Hydra platform. Assimilation and processing of resource intensive remote sensing data, as well as hydrologic and other ancillary information occur on the server side. This information is processed and summarized as attributes in water demand nodes that are part of a vector description of the water distribution network. With this architecture, our decision support system becomes a light weight `app` that

  8. Sustainability of agricultural water use worldwide

    NASA Astrophysics Data System (ADS)

    Tuninetti, M.; Tamea, S.; Dalin, C.

    2017-12-01

    Water is a renewable but limited resource. Most human use of freshwater resources is for agriculture, and global water demand for agriculture is increasing because of the growth in food demand, driven by increasing population and changing diets. Hence, measuring the pressure exerted by agriculture on freshwater sources is a key issue. The sustainability of water use depends on the water source renewability rate: the water use is not sustainable (depleting the water storage) where/when it exceeds the renewable freshwater availability. In this study, we explore the sustainability of rain and irrigation water use for the production of nine major crops, globally at a 5'x5' spatial resolution. We split the crop water use into soil moisture (from rainfall) and irrigation, with, for the first time, separating ground- and surface-water sources, which is a key distinction because the renewability of these two water sources can be very different. In order to physically quantify the extent to which crop water use is sustainable, we measure the severity of the source depletion as the number of years required for the hydrological cycle to replenish the water resource used by the annual crop production, namely the Water Debt. This newly developed indicator allows one to compare the depletion level of the three water sources at a certain location for a specific crop. Hence, we mapped, for each crop, the number of years required to replenish the water withdrawn from soil-, surface- and ground-water resources. Each map identifies the hotspots for each water source, highlighting regions and crops that threaten most the water resource. We found that the water debt with soil moisture is heterogeneous in space but always lower than one year indicating a non-surprising sustainability of rain-fed agriculture. Rice and sugarcane make the largest contribution to global soil moisture depletion. Water debt in surface water is particularly high in areas of intense wheat and cotton production

  9. Projecting water resources changes in potential large-scale agricultural investment areas of the Kafue River Basin in Zambia

    NASA Astrophysics Data System (ADS)

    Kim, Y.; Trainor, A. M.; Baker, T. J.

    2017-12-01

    Climate change impacts regional water availability through the spatial and temporal redistribution of available water resources. This study focuses on understanding possible response of water resources to climate change in regions where potentials for large-scale agricultural investments are planned in the upper and middle Kafue River Basin in Zambia. We used historical and projected precipitation and temperature to assess changes in water yield, using the Soil and Water Assessment Tool (SWAT) hydrological model. Some of the Coupled Model Intercomparison Project Phase 5 (CMIP5) climate model outputs for the Representative Concentration Pathway (RCP) 4.5 and 8.5 scenarios project a temperature warming range from 1.8 - 5.7 °C over the region from 2020 to 2095. Precipitation projection patterns vary monthly but tend toward drier dry seasons with a slight increase in precipitation during the rainy season as compared to the historical time series. The best five calibrated parameter sets generated for the historical record (1965 - 2005) were applied for two future periods, 2020 - 2060 and 2055 - 2095, to project water yield change. Simulations projected that the 90th percentile water yield would be exceeded across most of the study area by up to 800% under the medium-low (RCP4.5) CO2 emission scenario, whereas the high (RCP8.5) CO2 emission scenario resulted in a more spatially varied pattern mixed with increasing (up to 500%) and decreasing (up to -54%) trends. The 10th percentile water yield indicated spatially varied pattern across the basin, increasing by as much as 500% though decreasing in some areas by 66%, with the greatest decreases during the dry season under RCP8.5. Overall, available water resources in the study area are projected to trend toward increased floods (i.e. water yields far exceeding 90th percentile) as well as increasing drought (i.e. water yield far below 10th percentile) vulnerability. Because surface water is a primary source for agriculture

  10. Perceived agricultural runoff impact on drinking water.

    PubMed

    Crampton, Andrea; Ragusa, Angela T

    2014-09-01

    Agricultural runoff into surface water is a problem in Australia, as it is in arguably all agriculturally active countries. While farm practices and resource management measures are employed to reduce downstream effects, they are often either technically insufficient or practically unsustainable. Therefore, consumers may still be exposed to agrichemicals whenever they turn on the tap. For rural residents surrounded by agriculture, the link between agriculture and water quality is easy to make and thus informed decisions about water consumption are possible. Urban residents, however, are removed from agricultural activity and indeed drinking water sources. Urban and rural residents were interviewed to identify perceptions of agriculture's impact on drinking water. Rural residents thought agriculture could impact their water quality and, in many cases, actively avoided it, often preferring tank to surface water sources. Urban residents generally did not perceive agriculture to pose health risks to their drinking water. Although there are more agricultural contaminants recognised in the latest Australian Drinking Water Guidelines than previously, we argue this is insufficient to enhance consumer protection. Health authorities may better serve the public by improving their proactivity and providing communities and water utilities with the capacity to effectively monitor and address agricultural runoff.

  11. Agricultural hydrology and water quality II: Introduction to the featured collection

    USDA-ARS?s Scientific Manuscript database

    Agricultural hydrology and water quality is a multidisciplinary field devoted to understanding the interrelationship between modern agriculture and water resources. This paper summarizes a featured collection of 10 manuscripts emanating from the 2013 American Water Resources Association Specialty Co...

  12. 25 CFR 166.311 - Is an Indian agricultural resource management plan required?

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... WATER GRAZING PERMITS Land and Operations Management Management Plans and Environmental Compliance § 166.311 Is an Indian agricultural resource management plan required? (a) Indian agricultural land under... 25 Indians 1 2010-04-01 2010-04-01 false Is an Indian agricultural resource management plan...

  13. The Role of Windbreaks in Reducing Water Resources Use in Irrigated Agriculture

    NASA Astrophysics Data System (ADS)

    Cochrane, T. A.; de Vries, T. T.

    2014-12-01

    Windbreaks are common features in flat agricultural landscapes around the world. The reduction in wind speed afforded by windbreaks is dictated by their porosity, location, height, and distance from the windbreak. The reduction in wind speeds not only reduces potential wind erosion; it also reduces crop evapotranspiration (ET) and provides shelter for livestock and crops. In the Canterbury plains of New Zealand there are over 300,000 km of windbreaks which were first implemented as a soil conservation strategy to reduce wind erosion of prime agricultural land. Agriculture in the region has since changed to irrigated pasture cultivation for dairy production and windbreaks are being cut down or reduced to heights of 2 m to allow for large scale centre-pivot irrigation schemes. Although soil erosion is no longer a major concern due to permanent pasture cover, irrigation water is sourced from limited supplies of ground and surface water and thus the effects of wind on irrigation losses due to spray drift and increased ET are of significant concern. The impact of reducing windbreaks needs to be understood in terms of water resources use. Experimental and theoretical work was conducted to quantify the reduction in wind speeds by windbreaks and in spray evaporation losses. A temporal and spatial model was also developed and validated to quantify the impact of single and multiple windbreaks on irrigation water losses. Initial modelling results show that for hot windy dry conditions in Canterbury, ET can increase by up to 1.4 mm/day when windbreaks are reduced to 2 m in height and on average wind days ET can increase by up to 0.5 mm/day. ET can be reduced by up to 30% in the windbreak leeward zone relative to ET in areas not protected by windbreaks. Wind speed, air temperature and relative humidity all had a considerable impact on spray evaporation losses, but the extent is determined by the droplet size. Estimated losses range from only 0.07% to 67% for 5 and 0.2 mm

  14. Representing Water Scarcity in Future Agricultural Assessments

    NASA Technical Reports Server (NTRS)

    Winter, Jonathan M.; Lopez, Jose R.; Ruane, Alexander C.; Young, Charles A.; Scanlon, Bridget R.; Rosenzweig, Cynthia

    2017-01-01

    Globally, irrigated agriculture is both essential for food production and the largest user of water. A major challenge for hydrologic and agricultural research communities is assessing the sustainability of irrigated croplands under climate variability and change. Simulations of irrigated croplands generally lack key interactions between water supply, water distribution, and agricultural water demand. In this article, we explore the critical interface between water resources and agriculture by motivating, developing, and illustrating the application of an integrated modeling framework to advance simulations of irrigated croplands. We motivate the framework by examining historical dynamics of irrigation water withdrawals in the United States and quantitatively reviewing previous modeling studies of irrigated croplands with a focus on representations of water supply, agricultural water demand, and impacts on crop yields when water demand exceeds water supply. We then describe the integrated modeling framework for simulating irrigated croplands, which links trends and scenarios with water supply, water allocation, and agricultural water demand. Finally, we provide examples of efforts that leverage the framework to improve simulations of irrigated croplands as well as identify opportunities for interventions that increase agricultural productivity, resiliency, and sustainability.

  15. Research on evaluating water resource resilience based on projection pursuit classification model

    NASA Astrophysics Data System (ADS)

    Liu, Dong; Zhao, Dan; Liang, Xu; Wu, Qiuchen

    2016-03-01

    Water is a fundamental natural resource while agriculture water guarantees the grain output, which shows that the utilization and management of water resource have a significant practical meaning. Regional agricultural water resource system features with unpredictable, self-organization, and non-linear which lays a certain difficulty on the evaluation of regional agriculture water resource resilience. The current research on water resource resilience remains to focus on qualitative analysis and the quantitative analysis is still in the primary stage, thus, according to the above issues, projection pursuit classification model is brought forward. With the help of artificial fish-swarm algorithm (AFSA), it optimizes the projection index function, seeks for the optimal projection direction, and improves AFSA with the application of self-adaptive artificial fish step and crowding factor. Taking Hongxinglong Administration of Heilongjiang as the research base and on the basis of improving AFSA, it established the evaluation of projection pursuit classification model to agriculture water resource system resilience besides the proceeding analysis of projection pursuit classification model on accelerating genetic algorithm. The research shows that the water resource resilience of Hongxinglong is the best than Raohe Farm, and the last 597 Farm. And the further analysis shows that the key driving factors influencing agricultural water resource resilience are precipitation and agriculture water consumption. The research result reveals the restoring situation of the local water resource system, providing foundation for agriculture water resource management.

  16. Linking water resources to food security through virtual water

    NASA Astrophysics Data System (ADS)

    Tamea, Stefania

    2014-05-01

    The largest use of global freshwater resources is related to food production. While each day we drink about 2 liters of water, we consume (eating) about 4000 liters of ''virtual water'', which represents the freshwater used to produce crop-based and livestock-based food. Considering human water consumption as a whole, most part originates from agriculture (85.8%), and only minor parts come from industry (9.6%) or households (4.6%). These numbers shed light on the great pressure of humanity on global freshwater resources and justify the increasing interest towards this form of environmental impact, usually known as ''water footprint''. Virtual water is a key variable in establishing the nexus between water and food. In fact, water resources used for agricultural production determine local food availability, and impact the international trade of agricultural goods. Trade, in turn, makes food commodities available to nations which are not otherwise self-sufficient, in terms of water resources or food, and it establishes an equilibrium between food demand and production at the global scale. Therefore, food security strongly relies on international food trade, but also on the use of distant and foreign water resources, which need to be acknowledged and investigated. Virtual water embedded in production and international trade follows the fate of food on the trade network, generating virtual flows of great magnitude (e.g., 2800 km3 in 2010) and defining local and global virtual water balances worldwide. The resulting water-food nexus is critical for the societal and economic development, and it has several implications ranging from population dynamics to the competing use of freshwater resources, from dietary guidelines to globalization of trade, from externalization of pollution to policy making and to socio-economic wealth. All these implications represent a great challenge for future research, not only in hydrology but in the many fields related to this

  17. [Research progress on water footprint in agricultural products].

    PubMed

    Lu, Yang; Liu, Xiu-wei; Zhang, Xi-ying

    2015-10-01

    Water is one of the important resources in human activities. Scientifically and rationally evaluating the effects of human activities on water resources is important for sustainable water resource management. The innovative concepts of water footprint (WF) distinguished the human water consumption into green water, blue water and grey water which extended the evaluation methods in sustainable utilization of water resources. Concepts of WF based on virtual water (VW) and based on life cycle assessment (LCA) both combined water quality and water quantity are now the focuses in agricultural water management researches. Theory of WF based on VW includes the calculation of green, blue and grey WF as well as the evaluation of the sustainability of water environment. Theory of WF based on LCA reflects the overall impact of consumptive and degradative water use on the environment. The purpose of this article was to elaborate the research progresses in theoretical calculation methods and environmental sustainability assessment of the two water footprint theories and then to analyze the differentiation of these two methodologies in describing the consumptive water use in agriculture and its effects on environment. Finally, some future research aspects on water footprint were provided.

  18. Irrigated Agriculture and Water Resources in the Western U.S. (Invited)

    NASA Astrophysics Data System (ADS)

    Trout, T. J.

    2013-12-01

    Agriculture in semi-arid areas such as the western U.S. was created by diverting and pumping water from rivers and groundwater. With that water, highly productive irrigated agriculture produces 40% of the crop value and the large majority of the fruits, vegetables, and nuts in the U.S. Irrigation water use and area is declining in the West, due both to overexploitation and increasing competing needs, although productivity continues to increase. The challenges for irrigated agriculture are to maximize productivity per unit of water consumed, minimize negative environmental impacts, and make water available to other needs while sustaining food production and rural economies. Meeting these challenges require both technical and policy advances.

  19. A system dynamics simulation model for sustainable water resources management and agricultural development in the Volta River Basin, Ghana.

    PubMed

    Kotir, Julius H; Smith, Carl; Brown, Greg; Marshall, Nadine; Johnstone, Ron

    2016-12-15

    In a rapidly changing water resources system, dynamic models based on the notion of systems thinking can serve as useful analytical tools for scientists and policy-makers to study changes in key system variables over time. In this paper, an integrated system dynamics simulation model was developed using a system dynamics modelling approach to examine the feedback processes and interaction between the population, the water resource, and the agricultural production sub-sectors of the Volta River Basin in West Africa. The objective of the model is to provide a learning tool for policy-makers to improve their understanding of the long-term dynamic behaviour of the basin, and as a decision support tool for exploring plausible policy scenarios necessary for sustainable water resource management and agricultural development. Structural and behavioural pattern tests, and statistical test were used to evaluate and validate the performance of the model. The results showed that the simulated outputs agreed well with the observed reality of the system. A sensitivity analysis also indicated that the model is reliable and robust to uncertainties in the major parameters. Results of the business as usual scenario showed that total population, agricultural, domestic, and industrial water demands will continue to increase over the simulated period. Besides business as usual, three additional policy scenarios were simulated to assess their impact on water demands, crop yield, and net-farm income. These were the development of the water infrastructure (scenario 1), cropland expansion (scenario 2) and dry conditions (scenario 3). The results showed that scenario 1 would provide the maximum benefit to people living in the basin. Overall, the model results could help inform planning and investment decisions within the basin to enhance food security, livelihoods development, socio-economic growth, and sustainable management of natural resources. Copyright © 2016 Elsevier B.V. All

  20. Agriculture and natural resources in a changing world - the role of irrigation

    NASA Astrophysics Data System (ADS)

    Sauer, T.; Havlík, P.; Schneider, U. A.; Kindermann, G.; Obersteiner, M.

    2009-04-01

    Fertile land and fresh water constitute two of the most fundamental resources for food production. These resources are affected by environmental, political, economic, and technical developments. Regional impacts may transmit to the world through increased trade. With a global forest and agricultural sector model, we quantify the impacts of increased demand for food due to population growth and economic development on potential land and water use. In particular, we investigate producer adaptation regarding crop and irrigation choice, agricultural market adjustments, and changes in the values of land and water. Against the background of resource sustainability and food security topics, this study integrates the spatial and operational heterogeneity of irrigation management into a global land use model. It represents a first large scale assessment of agricultural water use under explicit consideration of alternative irrigation options in their particular biophysical, economic, and technical context, accounting for international trade, motivation-based farming, and quantified aggregated impacts on land scarcity, water scarcity, and food supply. The inclusion of technical and economic aspects of irrigation choice into an integrated land use modeling framework provides new insights into the interdisciplinary trade-offs between determinants of global land use change. Agricultural responses to population and economic growth include considerable increases in irrigated area and agricultural water use, but reductions in the average water intensity. Different irrigation systems are preferred under different exogenous biophysical and socioeconomic conditions. Negligence of these adaptations would bias the burden of development on land and water scarcity. Without technical progress in agriculture, predicted population and income levels for 2030 would require substantial price adjustments for land, water, and food to equilibrate supply and demand.

  1. Virtual water exported from Californian agriculture

    NASA Astrophysics Data System (ADS)

    Nicholas, K. A.; Johansson, E. L.

    2015-12-01

    In an increasingly teleconnected world, international trade drives the exchange of virtual land and water as crops produced in one region are consumed in another. In theory, this can be an optimal use of scarce resources if crops are grown where they can most efficiently be produced. Several recent analyses examine the export of land and water from food production in developing countries where these resources may be more abundant. Here we focus on a developed region and examine the virtual export of land and water from California, the leading agricultural state in the US and the leading global producer of a wide range of fruit, nut, and other specialty crops. As the region faces a serious, ongoing drought, water use is being questioned, and water policy governance re-examined, particularly in the agricultural sector which uses over three-quarters of water appropriations in the state. We look at the blue water embodied in the most widely grown crops in California and use network analysis to examine the trading patterns for flows of virtual land and water. We identify the main crops and export partners representing the majority of water exports. Considered in the context of tradeoffs for land and water resources, we highlight the challenges and opportunities for food production systems to play a sustainable role in meeting human needs while protecting the life-support systems of the planet.

  2. A Multiple-player-game Approach to Agricultural Water Use in Regions of Seasonal Drought

    NASA Astrophysics Data System (ADS)

    Lu, Z.

    2013-12-01

    In the wide distributed regions of seasonal drought, conflicts of water allocation between multiple stakeholders (which means water consumers and policy makers) are frequent and severe problems. These conflicts become extremely serious in the dry seasons, and are ultimately caused by an intensive disparity between the lack of natural resource and the great demand of social development. Meanwhile, these stakeholders are often both competitors and cooperators in water saving problems, because water is a type of public resource. Conflicts often occur due to lack of appropriate water allocation scheme. Among the many uses of water, the need of agricultural irrigation water is highly elastic, but this factor has not yet been made full use to free up water from agriculture use. The primary goal of this work is to design an optimal distribution scheme of water resource for dry seasons to maximize benefits from precious water resources, considering the high elasticity of agriculture water demand due to the dynamic of soil moisture affected by the uncertainty of precipitation and other factors like canopy interception. A dynamic programming model will be used to figure out an appropriate allocation of water resources among agricultural irrigation and other purposes like drinking water, industry, and hydropower, etc. In this dynamic programming model, we analytically quantify the dynamic of soil moisture in the agricultural fields by describing the interception with marked Poisson process and describing the rainfall depth with exponential distribution. Then, we figure out a water-saving irrigation scheme, which regulates the timetable and volumes of water in irrigation, in order to minimize irrigation water requirement under the premise of necessary crop yield (as a constraint condition). And then, in turn, we provide a scheme of water resource distribution/allocation among agriculture and other purposes, taking aim at maximizing benefits from precious water resources, or in

  3. NASA Water Resources Program

    NASA Technical Reports Server (NTRS)

    Toll, David L.

    2011-01-01

    With increasing population pressure and water usage coupled with climate variability and change, water issues are being reported by numerous groups as the most critical environmental problems facing us in the 21st century. Competitive uses and the prevalence of river basins and aquifers that extend across boundaries engender political tensions between communities, stakeholders and countries. In addition to the numerous water availability issues, water quality related problems are seriously affecting human health and our environment. The potential crises and conflicts especially arise when water is competed among multiple uses. For example, urban areas, environmental and recreational uses, agriculture, and energy production compete for scarce resources, not only in the Western U.S. but throughout much of the U.S. and also in numerous parts of the world. Mitigating these conflicts and meeting water demands and needs requires using existing water resources more efficiently. The NASA Water Resources Program Element works to use NASA products and technology to address these critical water issues. The primary goal of the Water Resources is to facilitate application of NASA Earth science products as a routine use in integrated water resources management for the sustainable use of water. This also includes the extreme events of drought and floods and the adaptation to the impacts from climate change. NASA satellite and Earth system observations of water and related data provide a huge volume of valuable data in both near-real-time and extended back nearly 50 years about the Earth's land surface conditions such as precipitation, snow, soil moisture, water levels, land cover type, vegetation type, and health. NASA Water Resources Program works closely to use NASA and Earth science data with other U.S. government agencies, universities, and non-profit and private sector organizations both domestically and internationally. The NASA Water Resources Program organizes its

  4. AquaCrop-OS: A tool for resilient management of land and water resources in agriculture

    NASA Astrophysics Data System (ADS)

    Foster, Timothy; Brozovic, Nicholas; Butler, Adrian P.; Neale, Christopher M. U.; Raes, Dirk; Steduto, Pasquale; Fereres, Elias; Hsiao, Theodore C.

    2017-04-01

    Water managers, researchers, and other decision makers worldwide are faced with the challenge of increasing food production under population growth, drought, and rising water scarcity. Crop simulation models are valuable tools in this effort, and, importantly, provide a means of quantifying rapidly crop yield response to water, climate, and field management practices. Here, we introduce a new open-source crop modelling tool called AquaCrop-OS (Foster et al., 2017), which extends the functionality of the globally used FAO AquaCrop model. Through case studies focused on groundwater-fed irrigation in the High Plains and Central Valley of California in the United States, we demonstrate how AquaCrop-OS can be used to understand the local biophysical, behavioural, and institutional drivers of water risks in agricultural production. Furthermore, we also illustrate how AquaCrop-OS can be combined effectively with hydrologic and economic models to support drought risk mitigation and decision-making around water resource management at a range of spatial and temporal scales, and highlight future plans for model development and training. T. Foster, et al. (2017) AquaCrop-OS: An open source version of FAO's crop water productivity model. Agricultural Water Management. 181: 18-22. http://dx.doi.org/10.1016/j.agwat.2016.11.015.

  5. Career Preparation in Agricultural Resources: A Curriculum Guide for High School Vocational Agriculture. Test Edition.

    ERIC Educational Resources Information Center

    Householder, Larry

    This curriculum guide in agricultural resources is one of 10 guides developed as part of a vocational project stressing agribusiness, natural resources, and environmental protection. The scope of this guide includes eight occupational subgroups: fish, forestry, mining area restoration, outdoor recreation, soil, range, water, and wildlife. It is…

  6. Agriculture and Community Development Interface. Joint Meeting of the Southern Region State Leaders for Agriculture and Natural Resources and Community Resource Development Proceedings (October 8-11, 1989, Williamsburg, Virginia).

    ERIC Educational Resources Information Center

    Warner, Paul D., Ed.; Campbell, Raymond, Ed.

    This document is a summary of remarks presented at a joint meeting of Agriculture and Natural Resources and Community Resource Development state leaders in 1989. The focus of the meeting was economic viability, rural extension and education, water quality, waste management, biotechnology, low-input sustainable agriculture (LISA), and rural…

  7. Protecting Our Water Resources.

    ERIC Educational Resources Information Center

    Jewett, Jon

    1996-01-01

    Describes the watershed management approach for preserving water resources. Considers pollution sources ranging from industrial discharge to agricultural leachate and runoff and evaluates its impact on the total watershed environment. (JRH)

  8. Integration of hydrogeology and soil science for sustainable water resources-focus on water quantity

    USDA-ARS?s Scientific Manuscript database

    Increased biofuel production has heightened awareness of the strong linkages between crop water use and depletion of water resources. Irrigated agriculture consumed 90% of global fresh water resources during the past century. Addressing crop water use and depletion of groundwater resources requires ...

  9. Generalization of Water Pricing Model in Agriculture and Domestic Groundwater for Water Sustainability and Conservation

    NASA Astrophysics Data System (ADS)

    Hek, Tan Kim; Fadzli Ramli, Mohammad; Iryanto; Rohana Goh, Siti; Zaki, Mohd Faiz M.

    2018-03-01

    The water requirement greatly increased due to population growth, increased agricultural areas and industrial development, thus causing high water demand. The complex problems facing by country is water pricing is not designed optimally as a staple of human needs and on the other hand also cannot guarantee the maintenance and distribution of water effectively. The cheap water pricing caused increase of water use and unmanageable water resource. Therefore, the more optimal water pricing as an effective control of water policy is needed for the sake of ensuring water resources conservation and sustainability. This paper presents the review on problems, issues and mathematical modelling of water pricing based on agriculture and domestic groundwater for water sustainability and conservation.

  10. Agricultural Water Use under Global Change

    NASA Astrophysics Data System (ADS)

    Zhu, T.; Ringler, C.; Rosegrant, M. W.

    2008-12-01

    Irrigation is by far the single largest user of water in the world and is projected to remain so in the foreseeable future. Globally, irrigated agricultural land comprises less than twenty percent of total cropland but produces about forty percent of the world's food. Increasing world population will require more food and this will lead to more irrigation in many areas. As demands increase and water becomes an increasingly scarce resource, agriculture's competition for water with other economic sectors will be intensified. This water picture is expected to become even more complex as climate change will impose substantial impacts on water availability and demand, in particular for agriculture. To better understand future water demand and supply under global change, including changes in demographic, economic and technological dimensions, the water simulation module of IMPACT, a global water and food projection model developed at the International Food Policy Research Institute, is used to analyze future water demand and supply in agricultural and several non-agricultural sectors using downscaled GCM scenarios, based on water availability simulation done with a recently developed semi-distributed global hydrological model. Risk analysis is conducted to identify countries and regions where future water supply reliability for irrigation is low, and food security may be threatened in the presence of climate change. Gridded shadow values of irrigation water are derived for global cropland based on an optimization framework, and they are used to illustrate potential irrigation development by incorporating gridded water availability and existing global map of irrigation areas.

  11. Projections of Virtual Water Trade Under Agricultural Policy Scenarios in China

    NASA Astrophysics Data System (ADS)

    Dalin, C.; Hanasaki, N.; Qiu, H.; Mauzerall, D. L.; Rodriguez-Iturbe, I.

    2014-12-01

    China's economic growth is expected to continue into the next decades, accompanied by a sustained urbanization and industrialization. The associated increase in demand for land, water resources and rich foods will deepen the challenge to sustainably feed the population and balance environmental and agricultural policies. In previous work, Inner Mongolia was identified as a target province for trade or agricultural policies aimed at water-use efficiency improvements, due to its large production relying on particularly significant irrigation water use. In addition, water scarcity issues may arises in the greater Beijing area, which represents the largest urban area of arid Northern China. Increasing residential and industrial water demand in this region may lead to fewer available water for irrigation. For these reasons, it is important to estimate the impacts of specific policies aiming at reducing excessive water use for crop production in Inner Mongolia, as well as exploring ways to mitigate pressure on water resources in dry urban areas. In this study, we use socio-economic projections to assess the future state of China's virtual water trade (VWT) network. We then quantify the effects of agricultural policies on the national VWT system and on the efficiency of food trade in terms of water resources. This study addresses the following questions: (1) How future socio-economic changes will affect China's food trade and associated water transfers? (2) To which extent localized reductions of irrigated area can decrease agricultural water use while maintaining national food security? (3) How would these policies affect China's domestic and international VWT network and induced water resources savings (losses)?

  12. Microcomputers in Agriculture. A Resource Guide for California Community College Faculty in Agriculture & Natural Resources. Update.

    ERIC Educational Resources Information Center

    California Community Colleges, Sacramento. Office of the Chancellor.

    This resource guide contains descriptions of microcomputer programs that are suitable for use in community college courses in agriculture and natural resources. Product descriptions are organized according to the following subject areas: agricultural business, animal production, farm mechanics, farm management, forestry and natural resources,…

  13. Measuring environmental efficiency of agricultural water use: a Luenberger environmental indicator.

    PubMed

    Azad, Md A S; Ancev, Tihomir

    2014-12-01

    Irrigated agriculture creates substantial environmental pressures by withdrawing large quantities of water, leaving rivers and wetlands empty and unable to support the valuable ecosystems that depend on the water resource. The key challenge facing society is that of balancing water extractions for agricultural production and other uses with provision of appropriate environmental flow to maintain healthy rivers and wetlands. Measuring tradeoffs between economic gain of water use in agriculture and its environmental pressures can contribute to constructing policy instruments for improved water resource management. The aim of this paper is to develop a modelling framework to measure these tradeoffs. Using a new approach - Luenberger environmental indicator - the study derives environmental efficiency scores for various types of irrigation enterprises across seventeen natural resource management regions within the Murray-Darling Basin, Australia. Findings show that there is a substantial variation in environmental performance of irrigation enterprises across the regions. Some enterprises were found to be relatively environmentally efficient in some regions, but they were not efficient in others. The environmental efficiency scores could be used as a guideline for formulating regional policy and strategy to achieve sustainable water use in the agricultural sector. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Optimization model for the allocation of water resources based on the maximization of employment in the agriculture and industry sectors

    NASA Astrophysics Data System (ADS)

    Habibi Davijani, M.; Banihabib, M. E.; Nadjafzadeh Anvar, A.; Hashemi, S. R.

    2016-02-01

    In many discussions, work force is mentioned as the most important factor of production. Principally, work force is a factor which can compensate for the physical and material limitations and shortcomings of other factors to a large extent which can help increase the production level. On the other hand, employment is considered as an effective factor in social issues. The goal of the present research is the allocation of water resources so as to maximize the number of jobs created in the industry and agriculture sectors. An objective that has attracted the attention of policy makers involved in water supply and distribution is the maximization of the interests of beneficiaries and consumers in case of certain policies adopted. The present model applies the particle swarm optimization (PSO) algorithm in order to determine the optimum amount of water allocated to each water-demanding sector, area under cultivation, agricultural production, employment in the agriculture sector, industrial production and employment in the industry sector. Based on the results obtained from this research, by optimally allocating water resources in the central desert region of Iran, 1096 jobs can be created in the industry and agriculture sectors, which constitutes an improvement of about 13% relative to the previous situation (non-optimal water utilization). It is also worth mentioning that by optimizing the employment factor as a social parameter, the other areas such as the economic sector are influenced as well. For example, in this investigation, the resulting economic benefits (incomes) have improved from 73 billion Rials at baseline employment figures to 112 billion Rials in the case of optimized employment condition. Therefore, it is necessary to change the inter-sector and intra-sector water allocation models in this region, because this change not only leads to more jobs in this area, but also causes an improvement in the region's economic conditions.

  15. Optimal allocation of physical water resources integrated with virtual water trade in water scarce regions: A case study for Beijing, China.

    PubMed

    Ye, Quanliang; Li, Yi; Zhuo, La; Zhang, Wenlong; Xiong, Wei; Wang, Chao; Wang, Peifang

    2018-02-01

    This study provides an innovative application of virtual water trade in the traditional allocation of physical water resources in water scarce regions. A multi-objective optimization model was developed to optimize the allocation of physical water and virtual water resources to different water users in Beijing, China, considering the trade-offs between economic benefit and environmental impacts of water consumption. Surface water, groundwater, transferred water and reclaimed water constituted the physical resource of water supply side, while virtual water flow associated with the trade of five major crops (barley, corn, rice, soy and wheat) and three livestock products (beef, pork and poultry) in agricultural sector (calculated by the trade quantities of products and their virtual water contents). Urban (daily activities and public facilities), industry, environment and agriculture (products growing) were considered in water demand side. As for the traditional allocation of physical water resources, the results showed that agriculture and urban were the two predominant water users (accounting 54% and 28%, respectively), while groundwater and surface water satisfied around 70% water demands of different users (accounting 36% and 34%, respectively). When considered the virtual water trade of eight agricultural products in water allocation procedure, the proportion of agricultural consumption decreased to 45% in total water demand, while the groundwater consumption decreased to 24% in total water supply. Virtual water trade overturned the traditional components of water supplied from different sources for agricultural consumption, and became the largest water source in Beijing. Additionally, it was also found that environmental demand took a similar percentage of water consumption in each water source. Reclaimed water was the main water source for industrial and environmental users. The results suggest that physical water resources would mainly satisfy the consumption

  16. Water for the Nation: An overview of the USGS Water Resources Division

    USGS Publications Warehouse

    ,

    1998-01-01

    The Water Resources Division (WRD) of the U.S. Geological Survey (USGS) provides reliable, impartial, timely information needed to understand the Nation's water resources. WRD actively promotes the use of this information by decisionmakers to: * Minimize the loss of life and property as a result of water-related hazards such as floods, droughts, and land movement. * Effectively manage ground-water and surface-water resources for domestic, agricultural, commercial, industrial, recreational, and ecological uses. * Protect and enhance water resources for human health, aquatic health, and environmental quality. * Contribute to wise physical and economic development of the Nation's resources for the benefit of present and future generations.

  17. Geo-spatial analysis of land-water resource degradation in two economically contrasting agricultural regions adjoining national capital territory (Delhi).

    PubMed

    Kaur, Ravinder; Minhas, P S; Jain, P C; Singh, P; Dubey, D S

    2009-07-01

    The present study was aimed at characterizing the soil-water resource degradation in the rural areas of Gurgaon and Mewat districts, the two economically contrasting areas in policy zones-II and III of the National Capital Region (NCR), and assessing the impact of the study area's local conditions on the type and extent of resource degradation. This involved generation of detailed spatial information on the land use, cropping pattern, farming practices, soils and surface/ground waters of Gurgaon and Mewat districts through actual resource surveys, standard laboratory methods and GIS/remote sensing techniques. The study showed that in contrast to just 2.54% (in rabi season) to 4.87% (in kharif season) of agricultural lands in Gurgaon district, about 11.77% (in rabi season) to 24.23% (in kharif season) of agricultural lands in Mewat district were irrigated with saline to marginally saline canal water. Further, about 10.69% of agricultural lands in the Gurgaon district and 42.15% of agricultural lands in the Mewat district were drain water irrigated. A large part of this surface water irrigated area, particularly in Nuh (48.7%), Nagina (33.5%), and Punhana (24.1%) blocks of Mewat district, was either waterlogged (7.4% area with water depth) or at risk of being waterlogged (17.1% area with 2-3 m ground water depth). Local resource inventory showed prevalence of several illegal private channels in Mewat district. These private channels divert degraded canal waters into the nearby intersecting drains and thereby increase extent of surface irrigated agricultural lands in the Mewat district. Geo-spatial analysis showed that due to seepage of these degraded waters from unlined drains and canals, ground waters of about 39.6% of Mewat district were salt affected (EC(m)ean = 7.05 dS/m and SAR(m)ean = 7.71). Besides, sub-surface drinking waters of almost the entire Mewat district were contaminated with undesirable concentrations of chromium (Cr 2.0-3.23 ppm

  18. Climate change and water availability for vulnerable agriculture

    NASA Astrophysics Data System (ADS)

    Dalezios, Nicolas; Tarquis, Ana Maria

    2017-04-01

    Climatic projections for the Mediterranean basin indicate that the area will suffer a decrease in water resources due to climate change. The key climatic trends identified for the Mediterranean region are continuous temperature increase, further drying with precipitation decrease and the accentuation of climate extremes, such as droughts, heat waves and/or forest fires, which are expected to have a profound effect on agriculture. Indeed, the impact of climate variability on agricultural production is important at local, regional, national, as well as global scales. Agriculture of any kind is strongly influenced by the availability of water. Climate change will modify rainfall, evaporation, runoff, and soil moisture storage patterns. Changes in total seasonal precipitation or in its pattern of variability are both important. Similarly, with higher temperatures, the water-holding capacity of the atmosphere and evaporation into the atmosphere increase, and this favors increased climate variability, with more intense precipitation and more droughts. As a result, crop yields are affected by variations in climatic factors, such as air temperature and precipitation, and the frequency and severity of the above mentioned extreme events. The aim of this work is to briefly present the main effects of climate change and variability on water resources with respect to water availability for vulnerable agriculture, namely in the Mediterranean region. Results of undertaken studies in Greece on precipitation patterns and drought assessment using historical data records are presented. Based on precipitation frequency analysis, evidence of precipitation reductions is shown. Drought is assessed through an agricultural drought index, namely the Vegetation Health Index (VHI), in Thessaly, a drought-prone region in central Greece. The results justify the importance of water availability for vulnerable agriculture and the need for drought monitoring in the Mediterranean basin as part of

  19. Agriculture and Energy: Implications for Food Security, Water, and Land Use

    NASA Astrophysics Data System (ADS)

    Tokgoz, S.; Zhang, W.; Msangi, S.; Bhandary, P.

    2011-12-01

    Sustainable production of agricultural commodities and growth of international trade in these goods are challenged as never before by supply-side constraints (such as climate change, water and land scarcity, and environmental degradation) and by demand-side dynamics (volatility in food and energy markets, the strengthening food-energy linkage, population growth, and income growth). On the one hand, the rapidly expanding demand can potentially create new market opportunities for agriculture. On the other hand, there are many threats to a sufficient response by the supply side to meet this growing and changing demand. Agricultural production systems in many countries are neither resource-efficient, nor producing according to their full potential. The stock of natural resources such as land, water, nutrients, energy, and genetic diversity is shrinking relative to demand, and their use must become increasingly efficient in order to reduce environmental impacts and preserve the planet's productive capacity. World energy prices have increased rapidly in recent years. At the same time, agriculture has become more energy-intensive. Higher energy costs have pushed up the cost of producing, transporting and processing agricultural commodities, driving up commodity prices. Higher energy costs have also affected water use and availability through increased costs of water extraction, conveyance and desalinization, higher demand for hydroelectric power, and increased cost of subsidizing water services. In the meantime, the development of biofuels has diverted increasing amounts of agricultural land and water resources to the production of biomass-based renewable energy. This more "intensified" linkage between agriculture and energy comes at a time when there are other pressures on the world's limited resources. The related high food prices, especially those in the developing countries, have led to setbacks in the poverty alleviation effort among the global community with more

  20. Estimates of sustainable agricultural water use in northern China based on the equilibrium of groundwater

    NASA Astrophysics Data System (ADS)

    Yali, Y.; Yu, C.

    2015-12-01

    The northern plain is the important food production region in China. However, due to the lack of surface water resources, it needs overmuch exploitation of groundwater to maintain water use in agriculture, which leads to serious environmental problems. Based on the assumption that the reserves of groundwater matches the statistics and keeps on stable, the author explores the reasonable agricultural water and its spatial distribution based on the principle of sustainable utilization of water resources. According to the priorities of water resources allocation (domestic water and ecological water>industrial water>agricultural water), it is proposed to reduce agricultural water use to balance the groundwater reserves on condition that the total water supply is constant. Method: Firstly, we calculate annual average of northern groundwater reserves changes from 2004 to 2010, which is regarded as the reduction of agricultural water; Then, we estimate the food production changes using variables of typical crop water requirements and unit yields assuming that the efficiency of water use keeps the same during the entire study period; Finally, we evaluate the usage of sustainable agricultural water. The results reveal that there is a significant reduction of groundwater reserves in Haihe river basin and Xinjiang oasis regions; And the annual loss of the corn and wheat production is about 1.86 billion kg and 700 million kg respectively due to the reduction of agricultural water; What's more, in order to ensure China's food security and sustainable agricultural water use, in addition to great efforts to develop water-saving agriculture, an important adjustment in the distribution of food production is in need. This study provided a basis to the availability of agricultural water and a new perspective was put forth for an estimation of agricultural water.

  1. Using Perceived Differences in Views of Agricultural Water Use to Inform Practice

    ERIC Educational Resources Information Center

    Lamm, Alexa J.; Taylor, Melissa R.; Lamm, Kevan W.

    2016-01-01

    Water use has become increasingly contentious as the population grows and water resources become scarcer. Recent media coverage of agricultural water use has brought negative attention potentially influencing public and decision makers' attitudes towards agriculture. Negative perceptions could result in uninformed decisions being made that impact…

  2. Water Resources Availability in Kabul, Afghanistan

    NASA Astrophysics Data System (ADS)

    Akbari, A. M.; Chornack, M. P.; Coplen, T. B.; Emerson, D. G.; Litke, D. W.; Mack, T. J.; Plummer, N.; Verdin, J. P.; Verstraeten, I. M.

    2008-12-01

    The availability of water resources is vital to the rebuilding of Kabul, Afghanistan. In recent years, droughts and increased water use for drinking water and agriculture have resulted in widespread drying of wells. Increasing numbers of returning refugees, rapid population growth, and potential climate change have led to heightened concerns for future water availability. The U.S. Geological Survey, with support from the U.S. Agency for International Development, began collaboration with the Afghanistan Geological Survey and Ministry of Energy and Water on water-resource investigations in the Kabul Basin in 2004. This has led to the compilation of historic and recent water- resources data, creation of monitoring networks, analyses of geologic, geophysical, and remotely sensed data. The study presented herein provides an assessment of ground-water availability through the use of multidisciplinary hydrogeologic data analysis. Data elements include population density, climate, snowpack, geology, mineralogy, surface water, ground water, water quality, isotopic information, and water use. Data were integrated through the use of conceptual ground-water-flow model analysis and provide information necessary to make improved water-resource planning and management decisions in the Kabul Basin. Ground water is currently obtained from a shallow, less than 100-m thick, highly productive aquifer. CFC, tritium, and stable hydrogen and oxygen isotopic analyses indicate that most water in the shallow aquifer appears to be recharged post 1970 by snowmelt-supplied river leakage and secondarily by late winter precipitation. Analyses indicate that increasing withdrawals are likely to result in declining water levels and may cause more than 50 percent of shallow supply wells to become dry or inoperative particularly in urbanized areas. The water quality in the shallow aquifer is deteriorated in urban areas by poor sanitation and water availability concerns may be compounded by poor well

  3. Balancing water resource conservation and food security in China

    PubMed Central

    Dalin, Carole; Qiu, Huanguang; Hanasaki, Naota; Mauzerall, Denise L.; Rodriguez-Iturbe, Ignacio

    2015-01-01

    China’s economic growth is expected to continue into the next decades, accompanied by sustained urbanization and industrialization. The associated increase in demand for land, water resources, and rich foods will deepen the challenge of sustainably feeding the population and balancing agricultural and environmental policies. We combine a hydrologic model with an economic model to project China’s future food trade patterns and embedded water resources by 2030 and to analyze the effects of targeted irrigation reductions on this system, notably on national agricultural water consumption and food self-sufficiency. We simulate interprovincial and international food trade with a general equilibrium welfare model and a linear programming optimization, and we obtain province-level estimates of commodities’ virtual water content with a hydrologic model. We find that reducing irrigated land in regions highly dependent on scarce river flow and nonrenewable groundwater resources, such as Inner Mongolia and the greater Beijing area, can improve the efficiency of agriculture and trade regarding water resources. It can also avoid significant consumption of irrigation water across China (up to 14.8 km3/y, reduction by 14%), while incurring relatively small decreases in national food self-sufficiency (e.g., by 3% for wheat). Other researchers found that a national, rather than local, water policy would have similar effects on food production but would only reduce irrigation water consumption by 5%. PMID:25825748

  4. Balancing water resource conservation and food security in China.

    PubMed

    Dalin, Carole; Qiu, Huanguang; Hanasaki, Naota; Mauzerall, Denise L; Rodriguez-Iturbe, Ignacio

    2015-04-14

    China's economic growth is expected to continue into the next decades, accompanied by sustained urbanization and industrialization. The associated increase in demand for land, water resources, and rich foods will deepen the challenge of sustainably feeding the population and balancing agricultural and environmental policies. We combine a hydrologic model with an economic model to project China's future food trade patterns and embedded water resources by 2030 and to analyze the effects of targeted irrigation reductions on this system, notably on national agricultural water consumption and food self-sufficiency. We simulate interprovincial and international food trade with a general equilibrium welfare model and a linear programming optimization, and we obtain province-level estimates of commodities' virtual water content with a hydrologic model. We find that reducing irrigated land in regions highly dependent on scarce river flow and nonrenewable groundwater resources, such as Inner Mongolia and the greater Beijing area, can improve the efficiency of agriculture and trade regarding water resources. It can also avoid significant consumption of irrigation water across China (up to 14.8 km(3)/y, reduction by 14%), while incurring relatively small decreases in national food self-sufficiency (e.g., by 3% for wheat). Other researchers found that a national, rather than local, water policy would have similar effects on food production but would only reduce irrigation water consumption by 5%.

  5. Education Highlights: Non-Traditional Water Resources

    ScienceCinema

    Maldonado, Nicole; MacDonell, Margaret

    2018-06-25

    Argonne intern Nicole Virella Maldonado from the University of Puerto Rico-San Juan, Río Piedras campus, worked with Argonne mentor Margaret MacDonell in studying the use of nontraditional waters for energy and agriculture, including impaired and reclaimed waters. This research will help communities preserve their limited fresh water resources for other uses.

  6. Education Highlights: Non-Traditional Water Resources

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maldonado, Nicole; MacDonell, Margaret

    Argonne intern Nicole Virella Maldonado from the University of Puerto Rico-San Juan, Río Piedras campus, worked with Argonne mentor Margaret MacDonell in studying the use of nontraditional waters for energy and agriculture, including impaired and reclaimed waters. This research will help communities preserve their limited fresh water resources for other uses.

  7. Studies on water resources carrying capacity in Tuhai river basin based on ecological footprint

    NASA Astrophysics Data System (ADS)

    Wang, Chengshuai; Xu, Lirong; Fu, Xin

    2017-05-01

    In this paper, the method of the water ecological footprint (WEF) was used to evaluate water resources carrying capacity and water resources sustainability of Tuhai River Basin in Shandong Province. The results show that: (1) The WEF had a downward trend in overall volatility in Tuhai River Basin from 2003 to 2011. Agricultural water occupies high proportion, which was a major contributor to the WEF, and about 86.9% of agricultural WEF was used for farmland irrigation; (2) The water resources carrying capacity had a downward trend in general, which was mostly affected by some natural factors in this basin such as hydrology and meteorology in Tuhai River Basin; (3) Based on analysis of water resources ecological deficit, it can be concluded that the water resources utilization mode was in an unhealthy pattern and it was necessary to improve the utilization efficiency of water resources in Tuhai River Basin; (4) In view of water resources utilization problems in the studied area, well irrigation should be greatly developed at the head of Yellow River Irrigation Area(YRIA), however, water from Yellow River should be utilized for irrigation as much as possible, combined with agricultural water-saving measures and controlled exploiting groundwater at the tail of YRIA. Therefore, the combined usage of surface water and ground water of YRIA is an important way to realize agricultural water saving and sustainable utilization of water resources in Tuhai River Basin.

  8. Policy and Ethics In Agricultural and Ecological Water Uses.

    NASA Astrophysics Data System (ADS)

    Appelgren, Bo

    Agricultural water use accounts for about 70 percent of abstracted waters reaching 92 percent of the collective uses of all water resources when rain water is included. Agriculture is the traditional first sector and linked to a wide range of social, economic and cultural issues at local and global level that reach beyond the production of cheap food and industrial fibres. With the dominance in agricultural water uses and linkages with land use and soil conservation the sector is critical to the protection of global and local environmental values especially in sensitive dryland systems. Ethical principles related to development and nature conservation have traditionally been focused on sustainability imperatives building on precaution and preventive action or on indisputable natural systems values, but are by necessity turning more and more towards solidarity-based risk management approaches. Policy and management have in general failed to consider social dimensions with solidarity, consistency and realism for societal acceptance and practical application. As a consequence agriculture and water related land degradation is resulting in accelerated losses in land productivity and biodiversity in dryland and in humid eco- systems. Increasingly faced with the deer social consequences in the form of large man-made hydrological disasters and with pragmatic requirements driven by drastic increases in the related social cost the preferences are moving to short-term risk management approaches with civil protection objectives. Water scarcity assessment combined with crisis diagnoses and overriding statements on demographic growth, poverty and natural resources scarcity and deteriorating food security in developing countries have become common in the last decades. Such studies are increasingly questioned for purpose, ethical integrity and methodology and lack of consideration of interdependencies between society, economy and environment and of society's capacity to adapt to

  9. Manatee County government's commitment to Florida's water resources

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hunsicker, C.

    1998-07-01

    With ever increasing development demands in coastal areas and subsequent declines in natural resources, especially water, coastal communities must identify creative options for sustaining remaining water resources and an accepted standard of living. The Manatee County agricultural reuse project, using reclaimed wastewater is part of a water resource program, is designed to meet these challenges. The reuse system works in concert with consumer conservation practices and efficiency of use measures which are being implemented by all public and private sector water users in this southwest Florida community.

  10. Game Theory in water resources management

    NASA Astrophysics Data System (ADS)

    Katsanevaki, Styliani Maria; Varouchakis, Emmanouil; Karatzas, George

    2015-04-01

    Rural water management is a basic requirement for the development of the primary sector and involves the exploitation of surface/ground-water resources. Rational management requires the study of parameters that determine their exploitation mainly environmental, economic and social. These parameters reflect the influence of irrigation on the aquifer behaviour and on the level-streamflow of nearby rivers as well as on the profit from the farming activity for the farmers' welfare. The question of rural water management belongs to the socio-political problems, since the factors involved are closely related to user behaviour and state position. By applying Game Theory one seeks to simulate the behaviour of the system 'surface/ground-water resources to water-users' with a model based on a well-known game, "The Prisoner's Dilemma" for economic development of the farmers without overexploitation of the water resources. This is a game of two players that have been extensively studied in Game Theory, economy and politics because it can describe real-world cases. The present proposal aims to investigate the rural water management issue that is referred to two competitive small partnerships organised to manage their agricultural production and to achieve a better profit. For the farmers' activities water is required and ground-water is generally preferable because consists a more stable recourse than river-water which in most of the cases in Greece are of intermittent flow. If the two farmer groups cooperate and exploit the agreed water quantities they will gain equal profits and benefit from the sustainable availability of the water recourses (p). If both groups overexploitate the resource to maximize profit, then in the medium-term they will incur a loss (g), due to the water resources reduction and the increase of the pumping costs. If one overexploit the resource while the other use the necessary required, then the first will gain great benefit (P), and the second will

  11. Water balance analysis for efficient water allocation in agriculture. A case study: Balta Brailei, Romania

    NASA Astrophysics Data System (ADS)

    Chitu, Zenaida; Villani, Giulia; Tomei, Fausto; Minciuna, Marian; Aldea, Adrian; Dumitrescu, Alexandru; Trifu, Cristina; Neagu, Dumitru

    2017-04-01

    Balta Brailei is one of the largest agriculture area in the Danube floodplain, located in SE of Romania. An impressive irrigation system, that covered about 53.500 ha and transferred water from the Danube River, was carried out in the period 1960-1980. Even if the water resources for agriculture in this area cover in most of the cases the volumes required by irrigation water users, the irrigation infrastructure issues as the position of the pumping stations against the river levels hinder the use of the water during low flows periods. An efficient optimization of water allocation in agriculture could avoid periods with water deficit in the irrigation systems. Hydrological processes are essentials in describing the mass and energy exchanges in the atmosphere-plant-soil system. Furthermore, the hydrological regime in this area is very dynamic with many feedback mechanisms between the various parts of the surface and subsurface water regimes. Agricultural crops depend on capillary rise from the shallow groundwater table and irrigation. For an effective optimization of irrigation water in Balta Brailei, we propose to analyse the water balance taking into consideration the water movement into the root zone and the influence of the Danube river, irrigation channel system and the shallow aquifer by combining the soil water balance model CRITERIA and GMS hydrogeological model. CRITERIA model is used for simulating water movement into the soil, while GMS model is used for simulating the shallow groundwater level variation. The understanding of the complex feedbacks between atmosphere, crops and the various parts of the surface and subsurface water regimes in the Balta Brailei will bring more insights for predicting crop water need and water resources for irrigation and it will represent the basis for implementing Moses Platform in this specific area. Moses Platform is a GIS based system devoted to water procurement and management agencies to facilitate planning of

  12. Evaluation of Crop-Water Consumption Simulation to Support Agricultural Water Resource Management using Satellite-based Water Cycle Observations

    NASA Astrophysics Data System (ADS)

    Gupta, M.; Bolten, J. D.; Lakshmi, V.

    2016-12-01

    Water scarcity is one of the main factors limiting agricultural development. Numerical models integrated with remote sensing datasets are increasingly being used operationally as inputs for crop water balance models and agricultural forecasting due to increasing availability of high temporal and spatial resolution datasets. However, the model accuracy in simulating soil water content is affected by the accuracy of the soil hydraulic parameters used in the model, which are used in the governing equations. However, soil databases are known to have a high uncertainty across scales. Also, for agricultural sites, the in-situ measurements of soil moisture are currently limited to discrete measurements at specific locations, and such point-based measurements do not represent the spatial distribution at a larger scale accurately, as soil moisture is highly variable both spatially and temporally. The present study utilizes effective soil hydraulic parameters obtained using a 1-km downscaled microwave remote sensing soil moisture product based on the NASA Advanced Microwave Scanning Radiometer (AMSR-E) using the genetic algorithm inverse method within the Catchment Land Surface Model (CLSM). Secondly, to provide realistic irrigation estimates for agricultural sites, an irrigation scheme within the land surface model is triggered when the root-zone soil moisture deficit reaches the threshold, 50% with respect to the maximum available water capacity obtained from the effective soil hydraulic parameters. An additional important criterion utilized is the estimation of crop water consumption based on dynamic root growth and uptake in root zone layer. Model performance is evaluated using MODIS land surface temperature (LST) product. The soil moisture estimates for the root zone are also validated with the in situ field data, for three sites (2- irrigated and 1- rainfed) located at the University of Nebraska Agricultural Research and Development Center near Mead, NE and monitored

  13. Are sustainable water resources possible in northwestern India?

    NASA Astrophysics Data System (ADS)

    Troy, T. J.; Devineni, N.; Perveen, S.; Robertson, A. W.; Lall, U.

    2012-12-01

    Sustainable water resources can have many definitions with the simplest as a supply-demand problem, with climate dictating the supply of water and human water use the demand. One sign of a system that is not sustainable would be falling groundwater tables, as is the case in northwest India. This region serves as the country's breadbasket, and irrigated agriculture is ubiquitous. The state of Punjab alone produces 22% of the country's wheat and 13% of all the country's grains while only accounting for 1.5% of the country's area. Although the region receives an average precipitation of 600mm per year, it is dominated by monsoonal rainfall with streamflow augmented by upstream snowmelt and glacial melt in spring and summer that is released from a large dam into canals. Large agricultural water demands occur both during the rainy season as well as during the drier winter season. Water and food security are inextricably linked here, and when considering how to manage water sustainably, the consequences on agriculture must also be considered. In this study, we evaluate what a sustainable water resources system would look like in this region, accounting for current climate, crop water demands, and available reservoir storage. The effects of multiple water-saving scenarios are considered, such as crop choice, cropped area, and the use of forecasts in irrigation scheduling. We find that the current system is untenable and hard decisions will have to be made by policymakers in order to halt the depletion of groundwater and manage the region's water resources in a sustainable, effective manner. This work serves as a prototype for evaluating water resources in other regions with high seasonal variability in rainfall and streamflow and large irrigation demands.

  14. The central role of agricultural water-use productivity in sustainable water management (Invited)

    NASA Astrophysics Data System (ADS)

    Gleick, P. H.

    2013-12-01

    As global and regional populations continue to rise for the next several decades, the need to grow more food will worsen old -- and produce new -- challenges for water resources. Expansion of irrigated agriculture is slowing due to constraints on land and water, and as a result, some have argued that future new food demands will only be met through improvements in agricultural productivity on existing irrigated and rainfed cropland, reductions in field losses and food waste, and social changes such as dietary preferences. This talk will address the central role that improvements in water-use productivity can play in the food/water/population nexus. In particular, the ability to grow more food with less water will have a great influence on whether future food demands will be met successfully. Such improvements can come about through changes in technology, regulatory systems, economic incentives and disincentives, and education of water users. Example of potential savings from three different strategies to improve agricultural water productivity in California. (From Pacific Institute).

  15. Water resources transfers through Chinese interprovincial and foreign food trade.

    PubMed

    Dalin, Carole; Hanasaki, Naota; Qiu, Huanguang; Mauzerall, Denise L; Rodriguez-Iturbe, Ignacio

    2014-07-08

    China's water resources are under increasing pressure from socioeconomic development, diet shifts, and climate change. Agriculture still concentrates most of the national water withdrawal. Moreover, a spatial mismatch in water and arable land availability--with abundant agricultural land and little water resources in the north--increases water scarcity and results in virtual water transfers from drier to wetter regions through agricultural trade. We use a general equilibrium welfare model and linear programming optimization to model interprovincial food trade in China. We combine these trade flows with province-level estimates of commodities' virtual water content to build China's domestic and foreign virtual water trade network. We observe large variations in agricultural water-use efficiency among provinces. In addition, some provinces particularly rely on irrigation vs. rainwater. We analyze the virtual water flow patterns and the corresponding water savings. We find that this interprovincial network is highly connected and the flow distribution is relatively homogeneous. A significant share of water flows is from international imports (20%), which are dominated by soy (93%). We find that China's domestic food trade is efficient in terms of rainwater but inefficient regarding irrigation, meaning that dry, irrigation-intensive provinces tend to export to wetter, less irrigation-intensive ones. Importantly, when incorporating foreign imports, China's soy trade switches from an inefficient system to a particularly efficient one for saving water resources (20 km(3)/y irrigation water savings, 41 km(3)/y total). Finally, we identify specific provinces (e.g., Inner Mongolia) and products (e.g., corn) that show high potential for irrigation productivity improvements.

  16. The New Jersey Water Resources Research Institute at Rutgers NJAES

    Science.gov Websites

    Rutgers New Jersey Agricultural Experiment Station [The New Jersey Water Resources Research wetland Program Areas The New Jersey Water Resources Research Institute (NJWRRI) is a federally-funded water in the state. Its mission is to: sponsor research on all aspects of water quality, water quantity

  17. NASA Earth Resources Survey Symposium. Volume 1-A: Agriculture, environment

    NASA Technical Reports Server (NTRS)

    1975-01-01

    A number of papers dealing with the practical application of imagery obtained from remote sensors on LANDSAT satellites, the Skylab Earth resources experiment package, and aircraft to problems in agriculture and the environment were presented. Some of the more important topics that were covered included: range management and resources, environmental monitoring and management, crop growth and inventory, land management, multispectral band scanners, forest management, mapping, marshlands, strip mining, water quality and pollution, ecology.

  18. The Sophia-Antipolis Conference: General presentation and basic documents. [remote sensing for agriculture, forestry, water resources, and environment management in France

    NASA Technical Reports Server (NTRS)

    1980-01-01

    The procedures and techniques used in NASA's aerospace technology transfer program are reviewed for consideration in establishing priorities and bases for joint action by technicians and users of remotely sensed data in France. Particular emphasis is given to remote sensing in agriculture, forestry, water resources, environment management, and urban research.

  19. The impacts of climate change on water resources and agriculture in China.

    PubMed

    Piao, Shilong; Ciais, Philippe; Huang, Yao; Shen, Zehao; Peng, Shushi; Li, Junsheng; Zhou, Liping; Liu, Hongyan; Ma, Yuecun; Ding, Yihui; Friedlingstein, Pierre; Liu, Chunzhen; Tan, Kun; Yu, Yongqiang; Zhang, Tianyi; Fang, Jingyun

    2010-09-02

    China is the world's most populous country and a major emitter of greenhouse gases. Consequently, much research has focused on China's influence on climate change but somewhat less has been written about the impact of climate change on China. China experienced explosive economic growth in recent decades, but with only 7% of the world's arable land available to feed 22% of the world's population, China's economy may be vulnerable to climate change itself. We find, however, that notwithstanding the clear warming that has occurred in China in recent decades, current understanding does not allow a clear assessment of the impact of anthropogenic climate change on China's water resources and agriculture and therefore China's ability to feed its people. To reach a more definitive conclusion, future work must improve regional climate simulations-especially of precipitation-and develop a better understanding of the managed and unmanaged responses of crops to changes in climate, diseases, pests and atmospheric constituents.

  20. Water resources transfers through Chinese interprovincial and foreign food trade

    PubMed Central

    Dalin, Carole; Hanasaki, Naota; Qiu, Huanguang; Mauzerall, Denise L.; Rodriguez-Iturbe, Ignacio

    2014-01-01

    China’s water resources are under increasing pressure from socioeconomic development, diet shifts, and climate change. Agriculture still concentrates most of the national water withdrawal. Moreover, a spatial mismatch in water and arable land availability—with abundant agricultural land and little water resources in the north—increases water scarcity and results in virtual water transfers from drier to wetter regions through agricultural trade. We use a general equilibrium welfare model and linear programming optimization to model interprovincial food trade in China. We combine these trade flows with province-level estimates of commodities’ virtual water content to build China’s domestic and foreign virtual water trade network. We observe large variations in agricultural water-use efficiency among provinces. In addition, some provinces particularly rely on irrigation vs. rainwater. We analyze the virtual water flow patterns and the corresponding water savings. We find that this interprovincial network is highly connected and the flow distribution is relatively homogeneous. A significant share of water flows is from international imports (20%), which are dominated by soy (93%). We find that China’s domestic food trade is efficient in terms of rainwater but inefficient regarding irrigation, meaning that dry, irrigation-intensive provinces tend to export to wetter, less irrigation-intensive ones. Importantly, when incorporating foreign imports, China’s soy trade switches from an inefficient system to a particularly efficient one for saving water resources (20 km3/y irrigation water savings, 41 km3/y total). Finally, we identify specific provinces (e.g., Inner Mongolia) and products (e.g., corn) that show high potential for irrigation productivity improvements. PMID:24958864

  1. Water management, agriculture, and ground-water supplies

    USGS Publications Warehouse

    Nace, Raymond L.

    1960-01-01

    Encyclopedic data on world geography strikingly illustrate the drastic inequity in the distribution of the world's water supply. About 97 percent of the total volume of water is in the world's oceans. The area of continents and islands not under icecaps, glaciers, lakes, and inland seas is about 57.5 million square miles, of which 18 million (36 percent) is arid to semiarid. The total world supply of water is about 326.5 million cubic miles, of which about 317 million is in the oceans and about 9.4 million is in the land areas. Atmospheric moisture is equivalent to only about 3,100 cubic miles of water. The available and accessible supply of ground water in the United States is somewhat more than 53,000 cubic miles (about 180 billion acre ft). The amount of fresh water on the land areas of the world at any one time is roughly 30,300 cubic miles and more than a fourth of this is in large fresh-water lakes on the North American Continent. Annual recharge of ground water in the United States may average somewhat more than 1 billion acre-feet yearly, but the total volume of ground water in storage is equivalent to all the recharge in about the last 160 years. This accumulation of ground water is the nation's only reserve water resource, but already it is being withdrawn or mined on a large scale in a few areas. The principal withdrawals of water in the United States are for agriculture and industry. Only 7.4 percent of agricultural land is irrigated, however; so natural soil moisture is the principal source of agricultural water, and on that basis agriculture is incomparably the largest water user. In view of current forecasts of population and industrial expansion, new commitments of water for agriculture should be scrutinized very closely, and thorough justification should be required. The 17 Western States no longer contain all the large irrigation developments. Nearly 10 percent of the irrigated area is in States east of the western bloc, chiefly in several

  2. Water resource management: an Indian perspective.

    PubMed

    Khadse, G K; Labhasetwar, P K; Wate, S R

    2012-10-01

    Water is precious natural resource for sustaining life and environment. Effective and sustainable management of water resources is vital for ensuring sustainable development. In view of the vital importance of water for human and animal life, for maintaining ecological balance and for economic and developmental activities of all kinds, and considering its increasing scarcity, the planning and management of water resource and its optimal, economical and equitable use has become a matter of the utmost urgency. Management of water resources in India is of paramount importance to sustain one billion plus population. Water management is a composite area with linkage to various sectors of Indian economy including the agricultural, industrial, domestic and household, power, environment, fisheries and transportation sector. The water resources management practices should be based on increasing the water supply and managing the water demand under the stressed water availability conditions. For maintaining the quality of freshwater, water quality management strategies are required to be evolved and implemented. Decision support systems are required to be developed for planning and management of the water resources project. There is interplay of various factors that govern access and utilization of water resources and in light of the increasing demand for water it becomes important to look for holistic and people-centered approaches for water management. Clearly, drinking water is too fundamental and serious an issue to be left to one institution alone. It needs the combined initiative and action of all, if at all we are serious in socioeconomic development. Safe drinking water can be assured, provided we set our mind to address it. The present article deals with the review of various options for sustainable water resource management in India.

  3. Characterization of dissolved solids in water resources of agricultural lands near Manila, Utah, 2004-05

    USGS Publications Warehouse

    Gerner, Steven J.; Spangler, L.E.; Kimball, B.A.; Naftz, D.L.

    2006-01-01

    Agricultural lands near Manila, Utah, have been identified as contributing dissolved solids to Flaming Gorge Reservoir. Concentrations of dissolved solids in water resources of agricultural lands near Manila, Utah, ranged from 35 to 7,410 milligrams per liter. The dissolved-solids load in seeps and drains in the study area that discharge to Flaming Gorge Reservoir ranged from less than 0.1 to 113 tons per day. The most substantial source of dissolved solids discharging from the study area to the reservoir was Birch Spring Draw. The mean daily dissolved-solids load near the mouth of Birch Spring Draw was 65 tons per day.The estimated annual dissolved-solids load imported to the study area by Sheep Creek and Peoples Canals is 1,330 and 13,200 tons, respectively. Daily dissolved-solid loads discharging to the reservoir from the study area, less the amount of dissolved solids imported by canals, for the period July 1, 2004, to June 30, 2005, ranged from 72 to 241 tons per day with a mean of 110 tons per day. The estimated annual dissolved-solids load discharging to the reservoir from the study area, less the amount of dissolved solids imported by canals, for the same period was 40,200 tons. Of this 40,200 tons of dissolved solids, about 9,000 tons may be from a regional source that is not associated with agricultural activities. The salt-loading factor is 3,670 milligrams per liter or about 5.0 tons of dissolved solids per acre-foot of deep percolation in Lucerne Valley and 1,620 milligrams per liter or 2.2 tons per acre-foot in South Valley.The variation of δ87Sr with strontium concentration indicates some general patterns that help to define a conceptual model of the processes affecting the concentration of strontium and the δ87Sr isotopic ratio in area waters. As excess irrigation water percolates through soils derived from Mancos Shale, the δ87Sr isotopic ratio (0.21 to 0.69 permil) approaches one that is typical of deep percolation from irrigation on Mancos

  4. Agricultural Green And Blue Water Uses And Their Impact on the Water System in China

    NASA Astrophysics Data System (ADS)

    Mu, M.; Tang, Q.; Cai, X.

    2016-12-01

    Both agricultural green and blue water uses in China were estimated using the H08 global hydrological model. The blue water use here refers to the water withdrawn for irrigation in irrigated croplands from rivers, reservoirs and aquifers. The green water use refers to precipitation directly supplied to croplands and natural ecosystems. The H08 model was used to trace water sources of crop water use. Total evapotranspiration of varied crops, namely barley, corn, rice, soy, and wheat, was divided into blue and green water resources based on their origins. Model results indicated that in southern China, green water, representing 78% of crop water use, was found to be a dominant component in the total crop water use, whereas in northern China, blue water occupied about half (52%) of total crop water use. The Mann-Kendall test was utilized to analyze the trends of water uses. At the national level, green water use experienced a significant decrease during 1981-2000 and then a significant increase in 2001-2010, while blue water use experienced a slight increase during 1981-2000 and then a significant decrease in 2001-2010. Monthly mean green and blue water uses at the national level showed that the demand for blue water reached peak during May, although the peak came earlier or later in some individual basins. Some variables including green and blue water uses were mapped to observe nonnegligible spatial heterogeneity. Impact analysis showed that almost one third of runoff volumes was withdrawn as agricultural blue water in most arid and semi-arid river basins during crop growing season (generally from March to August in China), suggesting that water demand for food production has imposed great pressure on blue water resources in these regions. The situation got worse if the study period was narrowed to one certain month, when river channels in some basins, e.g. Hai River basin, would run dry if the demand for irrigation was fully satisfied. Our research provides insight

  5. Modelling adaptation to climate change of Ecuadorian agriculture and associated water resources: uncertainties in coastal and highland cropping systems

    NASA Astrophysics Data System (ADS)

    Ruiz-Ramos, Margarita; Bastidas, Wellington; Cóndor, Amparo; Villacís, Marcos; Calderón, Marco; Herrera, Mario; Zambrano, José Luis; Lizaso, Jon; Hernández, Carlos; Rodríguez, Alfredo; Capa-Morocho, Mirian

    2016-04-01

    Climate change threatens sustainability of farms and associated water resources in Ecuador. Although the last IPCC report (AR5) provides a general framework for adaptation, , impact assessment and especially adaptation analysis should be site-specific, taking into account both biophysical and social aspects. The objective of this study is to analyse the climate change impacts and to sustainable adaptations to optimize the crop yield. Furthermore is also aimed to weave agronomical and hydrometeorological aspects, to improve the modelling of the coastal ("costa") and highland ("sierra") cropping systems in Ecuador, from the agricultural production and water resources points of view. The final aim is to support decision makers, at national and local institutions, for technological implementation of structural adaptation strategies, and to support farmers for their autonomous adaptation actions to cope with the climate change impacts and that allow equal access to resources and appropriate technologies. . A diagnosis of the current situation in terms of data availability and reliability was previously done, and the main sources of uncertainty for agricultural projections have been identified: weather data, especially precipitation projections, soil data below the upper 30 cm, and equivalent experimental protocol for ecophysiological crop field measurements. For reducing these uncertainties, several methodologies are being discussed. This study was funded by PROMETEO program from Ecuador through SENESCYT (M. Ruiz-Ramos contract), and by the project COOP-XV-25 funded by Universidad Politécnica de Madrid.

  6. Spatial and temporal dynamics of agricultural residue resources in the last 30 years in China.

    PubMed

    Yang, Yanli; Zhang, Peidong; Yang, Xutong; Xu, Xiaoning

    2016-12-01

    The availability and distribution of biomass resources are important for the development of the bioenergy industry in a region. Biomass resources are abundant in China; however, the raw material is severely deficient, which makes the Chinese bioenergy industry an embarrassment and a contradiction. Unclear reserves and distribution and changing trends of biomass resources are the reason for this situation. A collection coefficient model of Chinese agricultural residue resources was established and the spatial and temporal pattern dynamics of agricultural residue resources in the last 30 years were analyzed. The results show that agricultural residue resources increased in stages from 1978 to 2011, including a rapid increase from 1978 to 1999, a significant fall from 2000 to 2004, and a slow increase from 2004 to 2011. Crops straw and livestock manure are the main ingredients of agricultural residue resources with proportions of 53-59% and 31-38%, respectively. However, the former has gradually decreased, while the latter is increasing. This mainly resulted from the strategic reorganization of the Chinese agriculture structure and the rapid development of large-scale livestock breeding and agricultural mechanization. Large regional differences existed in Chinese agricultural residue resources, and three distribution types formed, including resource-rich areas in North China, Northeast and Inner Mongolia, resource-limited areas in Central and Southwest China, and resource-poor areas along Northwest and Southeast coasts. This pattern is a reverse of the distributions of climatic conditions, water resources, economic development, human resources, and technological levels. Finally, it can be predicted that livestock manure and biomass conversion technology at low temperature will play increasingly significant roles in bioenergy industry development. © The Author(s) 2016.

  7. Global land-water nexus: Agricultural land and freshwater use embodied in worldwide supply chains.

    PubMed

    Chen, B; Han, M Y; Peng, K; Zhou, S L; Shao, L; Wu, X F; Wei, W D; Liu, S Y; Li, Z; Li, J S; Chen, G Q

    2018-02-01

    As agricultural land and freshwater inextricably interrelate and interact with each other, the conventional water and land policy in "silos" should give way to nexus thinking when formulating the land and water management strategies. This study constructs a systems multi-regional input-output (MRIO) model to expound global land-water nexus by simultaneously tracking agricultural land and freshwater use flows along the global supply chains. Furthermore, land productivity and irrigation water requirements of 160 crops in different regions are investigated to reflect the land-water linkage. Results show that developed economies (e.g., USA and Japan) and major large developing economies (e.g., mainland China and India) are the overriding drivers of agricultural land and freshwater use globally. In general, significant net transfers of these two resources are identified from resource-rich and less-developed economies to resource-poor and more-developed economies. For some crops, blue water productivity is inversely related to land productivity, indicating that irrigation water consumption is sometimes at odds with land use. The results could stimulus international cooperation for sustainable land and freshwater management targeting on original suppliers and final consumers along the global supply chains. Moreover, crop-specific land-water linkage could provide insights for trade-off decisions on minimizing the environmental impacts on local land and water resources. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Estimating Hydrologic Fluxes, Crop Water Use, and Agricultural Land Area in China using Data Assimilation

    NASA Astrophysics Data System (ADS)

    Smith, Tiziana; McLaughlin, Dennis B.; Hoisungwan, Piyatida

    2016-04-01

    Crop production has significantly altered the terrestrial environment by changing land use and by altering the water cycle through both co-opted rainfall and surface water withdrawals. As the world's population continues to grow and individual diets become more resource-intensive, the demand for food - and the land and water necessary to produce it - will continue to increase. High-resolution quantitative data about water availability, water use, and agricultural land use are needed to develop sustainable water and agricultural planning and policies. However, existing data covering large areas with high resolution are susceptible to errors and can be physically inconsistent. China is an example of a large area where food demand is expected to increase and a lack of data clouds the resource management dialogue. Some assert that China will have insufficient land and water resources to feed itself, posing a threat to global food security if they seek to increase food imports. Others believe resources are plentiful. Without quantitative data, it is difficult to discern if these concerns are realistic or overly dramatized. This research presents a quantitative approach using data assimilation techniques to characterize hydrologic fluxes, crop water use (defined as crop evapotranspiration), and agricultural land use at 0.5 by 0.5 degree resolution and applies the methodology in China using data from around the year 2000. The approach uses the principles of water balance and of crop water requirements to assimilate existing data with a least-squares estimation technique, producing new estimates of water and land use variables that are physically consistent while minimizing differences from measured data. We argue that this technique for estimating water fluxes and agricultural land use can provide a useful basis for resource management modeling and policy, both in China and around the world.

  9. Agricultural water policy reforms in China: a representative look at Zhangye City, Gansu Province, China.

    PubMed

    Akiyama, Tomohiro; Kharrazi, Ali; Li, Jia; Avtar, Ram

    2017-12-07

    Water resources are essential for agricultural production in the grain-producing region of China, and water shortage could significantly affect the production and international trade of agricultural products. China is placing effort in new policies to effectively respond to changes in water resources due to changes in land use/land cover as well as climatic variations. This research investigates the changes in land, water, and the awareness of farmer vis-à-vis the implementation of water-saving policies in Zhangye City, an experimental site for pilot programs of water resources management in China. This research indicates that the water saved through water-saving programs and changes in cropping structure (2.2 × 10 8  m 3  a -1 ) is perhaps lower than the newly increased water withdrawal through corporate-led land reclamation (3.7 × 10 8  m 3  a -1 ). Most critically, the groundwater withdrawal has increased. In addition, our survey suggests that local government is facing a dilemma of water conservation and agricultural development. Therefore, the enforcement of the ban on farmland reclamation and irrigation water quotas in our study area is revealed to be relatively loose. In this vein, the engagement of local stakeholders in water governance is essential for the future sustainable management of water resources.

  10. Estimation of crop water requirements using remote sensing for operational water resources management

    NASA Astrophysics Data System (ADS)

    Vasiliades, Lampros; Spiliotopoulos, Marios; Tzabiras, John; Loukas, Athanasios; Mylopoulos, Nikitas

    2015-06-01

    An integrated modeling system, developed in the framework of "Hydromentor" research project, is applied to evaluate crop water requirements for operational water resources management at Lake Karla watershed, Greece. The framework includes coupled components for operation of hydrotechnical projects (reservoir operation and irrigation works) and estimation of agricultural water demands at several spatial scales using remote sensing. The study area was sub-divided into irrigation zones based on land use maps derived from Landsat 5 TM images for the year 2007. Satellite-based energy balance for mapping evapotranspiration with internalized calibration (METRIC) was used to derive actual evapotranspiration (ET) and crop coefficient (ETrF) values from Landsat TM imagery. Agricultural water needs were estimated using the FAO method for each zone and each control node of the system for a number of water resources management strategies. Two operational strategies of hydro-technical project development (present situation without operation of the reservoir and future situation with the operation of the reservoir) are coupled with three water demand strategies. In total, eight (8) water management strategies are evaluated and compared. The results show that, under the existing operational water resources management strategies, the crop water requirements are quite large. However, the operation of the proposed hydro-technical projects in Lake Karla watershed coupled with water demand management measures, like improvement of existing water distribution systems, change of irrigation methods, and changes of crop cultivation could alleviate the problem and lead to sustainable and ecological use of water resources in the study area.

  11. Hydrological problems of water resources in irrigated agriculture: A management perspective

    NASA Astrophysics Data System (ADS)

    Singh, Ajay

    2016-10-01

    The development of irrigated agriculture is necessary for fulfilling the rising food requirements of the burgeoning global population. However, the intensification of irrigated agriculture causes the twin menace of waterlogging and soil salinization in arid and semiarid regions where more than 75% of the world's population lives. These problems can be managed by either adopting preventive measures which decrease the inflow of water and salt or by employing remedial measures which increase the outflow. This paper presents an overview of various measures used for the management of waterlogging and salinity problems. The background, processes involved, and severity of waterlogging and salinity problems are provided. The role of drainage systems, conjunctive use of different water sources, use of computer-based mathematical models, and the use of remote sensing and GIS techniques in managing the problems are discussed. Conclusions are provided which could be useful for all the stakeholders.

  12. Land use effects on green water fluxes from agricultural production in Mato Grosso, Brazil

    NASA Astrophysics Data System (ADS)

    Lathuilliere, M. J.; Johnson, M. S.; Donner, S. D.

    2010-12-01

    The blue water/green water paradigm is increasingly used to differentiate between subsequent routing of precipitation once it reaches the soil. “Blue” water is that which infiltrates deep in the soil to become streams and aquifers, while “green” water is that which remains in the soil and is either evaporated (non-productive green water) or transpired by plants (productive green water). This differentiation in the fate of precipitation has provided a new way of thinking about water resources, especially in agriculture for which better use of productive green water may help to relieve stresses from irrigation (blue water). The state of Mato Grosso, Brazil, presents a unique case for the study of green water fluxes due to an expanding agricultural land base planted primarily to soybean, maize, sugar cane, and cotton. These products are highly dependent on green water resources in Mato Grosso where crops are almost entirely rain-fed. We estimate the change in green water fluxes from agricultural expansion for the 2000-2008 period in the state of Mato Grosso based on agricultural production data from the Instituto Brasileiro de Geografia e Estatísticas and a modified Penman-Monteith equation. Initial results for seven municipalities suggest an increase in agricultural green water fluxes, ranging from 1-10% per year, due primarily to increases in cropped areas. Further research is underway to elucidate the role of green water flux variations from land use practices on the regional water cycle.

  13. Water, Society and the future of water resources research (Invited)

    NASA Astrophysics Data System (ADS)

    Brown, C. M.

    2013-12-01

    The subject of water and society is broad, but at heart is the study of water as a resource, essential to human activities, a vital input to food and energy production, the sustaining medium for ecosystems and yet also a destructive hazard. Society demands, withdraws, competes, uses and wastes the resource in dynamic counterpart. The science of water management emerges from this interface, a field at the nexus of engineering and geoscience, with substantial influence from economics and other social sciences. Within this purview are some of the most pressing environmental questions of our time, such as adaptation to climate change, direct and indirect connections between water and energy policy, the continuing dependence of agriculture on depletion of the world's aquifers, the conservation or preservation of ecosystems within increasingly human-influenced river systems, and food security and poverty reduction for the earth's poorest inhabitants. This presentation will present and support the hypothesis that water resources research is a scientific enterprise separate from, yet closely interrelated to, hydrologic science. We will explore the scientific basis of water resources research, review pressing research questions and opportunities, and propose an action plan for the advancement of the science of water management. Finally, the presentation will propose a Chapman Conference on Water and Society: The Future of Water Resources Research in the spring of 2015.

  14. Assessing future risks to agricultural productivity, water resources and food security: How can remote sensing help?

    USGS Publications Warehouse

    Thenkabail, Prasad S.; Knox, Jerry W.; Ozdogan, Mutlu; Gumma, Murali Krishna; Congalton, Russell G.; Wu, Zhuoting; Milesi, Cristina; Finkral, Alex; Marshall, Mike; Mariotto, Isabella; You, Songcai; Giri, Chandra; Nagler, Pamela

    2012-01-01

    of changing dietary consumption patterns, a changing climate and the growing scarcity of water and land (Beddington, 2010). The impact from these changes wi ll affect the viability of both dryland subsistence and irrigated commodity food production (Knox, et al., 2010a). Since climate is a primary determinant of agricultural productivity, any changes will influence not only crop yields, but also the hydrologic balances, and supplies of inputs to managed farming systems as well as potentially shifting the geographic location for specific crops . Unless concerted and collective action is taken, society risks worldwide food shortages, scarcity of water resources and insufficient energy. This has the potential to unleash public unrest, cross-border conflicts and migration as people flee the worst-affected regions to seck refuge in "safe havens", a situation that Beddington described as the "perfect storm" (2010).

  15. The future of evapotranspiration: Global requirements for ecosystem functioning, carbon and climate feedbacks, agricultural management, and water resources

    NASA Astrophysics Data System (ADS)

    Fisher, Joshua B.; Melton, Forrest; Middleton, Elizabeth; Hain, Christopher; Anderson, Martha; Allen, Richard; McCabe, Matthew F.; Hook, Simon; Baldocchi, Dennis; Townsend, Philip A.; Kilic, Ayse; Tu, Kevin; Miralles, Diego D.; Perret, Johan; Lagouarde, Jean-Pierre; Waliser, Duane; Purdy, Adam J.; French, Andrew; Schimel, David; Famiglietti, James S.; Stephens, Graeme; Wood, Eric F.

    2017-04-01

    The fate of the terrestrial biosphere is highly uncertain given recent and projected changes in climate. This is especially acute for impacts associated with changes in drought frequency and intensity on the distribution and timing of water availability. The development of effective adaptation strategies for these emerging threats to food and water security are compromised by limitations in our understanding of how natural and managed ecosystems are responding to changing hydrological and climatological regimes. This information gap is exacerbated by insufficient monitoring capabilities from local to global scales. Here, we describe how evapotranspiration (ET) represents the key variable in linking ecosystem functioning, carbon and climate feedbacks, agricultural management, and water resources, and highlight both the outstanding science and applications questions and the actions, especially from a space-based perspective, necessary to advance them.

  16. The Future of Evapotranspiration: Global Requirements for Ecosystem Functioning, Carbon and Climate Feedbacks, Agricultural Management, and Water Resources

    NASA Technical Reports Server (NTRS)

    Fisher, Joshua B.; Melton, Forrest; Middleton, Elizabeth; Hain, Christopher; Anderson, Martha; Allen, Richard; McCabe, Matthew F.; Hook, Simon; Baldocchi, Dennis; Townsend, Philip A.; hide

    2017-01-01

    The fate of the terrestrial biosphere is highly uncertain given recent and projected changes in climate. This is especially acute for impacts associated with changes in drought frequency and intensity on the distribution and timing of water availability. The development of effective adaptation strategies for these emerging threats to food and water security are compromised by limitations in our understanding of how natural and managed ecosystems are responding to changing hydrological and climatological regimes. This information gap is exacerbated by insufficient monitoring capabilities from local to global scales. Here, we describe how evapotranspiration (ET) represents the key variable in linking ecosystem functioning, carbon and climate feedbacks, agricultural management, and water resources, and highlight both the outstanding science and applications questions and the actions, especially from a space-based perspective, necessary to advance them.

  17. Development of an Integrated Wastewater Treatment System/water reuse/agriculture model

    NASA Astrophysics Data System (ADS)

    Fox, C. H.; Schuler, A.

    2017-12-01

    Factors like increasing population, urbanization, and climate change have made the management of water resources a challenge for municipalities. By understanding wastewater recycling for agriculture in arid regions, we can expand the supply of water to agriculture and reduce energy use at wastewater treatment plants (WWTPs). This can improve management decisions between WWTPs and water managers. The objective of this research is to develop a prototype integrated model of the wastewater treatment system and nearby agricultural areas linked by water and nutrients, using the Albuquerque Southeast Eastern Reclamation Facility (SWRF) and downstream agricultural system as a case study. Little work has been done to understand how such treatment technology decisions affect the potential for water ruse, nutrient recovery in agriculture, overall energy consumption and agriculture production and water quality. A holistic approach to understanding synergies and tradeoffs between treatment, reuse, and agriculture is needed. For example, critical wastewater treatment process decisions include options to nitrify (oxidize ammonia), which requires large amounts of energy, to operate at low dissolved oxygen concentrations, which requires much less energy, whether to recover nitrogen and phosphorus, chemically in biosolids, or in reuse water for agriculture, whether to generate energy from anaerobic digestion, and whether to develop infrastructure for agricultural reuse. The research first includes quantifying existing and feasible agricultural sites suitable for irrigation by reuse wastewater as well as existing infrastructure such as irrigation canals and piping by using GIS databases. Second, a nutrient and water requirement for common New Mexico crop is being determined. Third, a wastewater treatment model will be utilized to quantify energy usage and nutrient removal under various scenarios. Different agricultural reuse sensors and treatment technologies will be explored. The

  18. Modules in Agricultural Education for Agricultural Resources.

    ERIC Educational Resources Information Center

    New York State Education Dept., Albany. Bureau of Occupational and Career Curriculum Development.

    Each of the 31 curriculum modules in this packet for agricultural resources instruction contains a brief description of the module content, a list of the major division or units, the overall objective, objectives by units, content outline and suggested teaching methods, student application activities, and evaluation procedures. A list of resource…

  19. Quantitative water quality with ERTS-1. [Kansas water resources

    NASA Technical Reports Server (NTRS)

    Yarger, H. L.; Mccauley, J. R.; James, G. W.; Magnuson, L. M.; Marzolf, G. R.

    1974-01-01

    Analyses of ERTS-1 MSS computer compatible tapes of reservoir scenes in Kansas along with ground truth show that MSS bands and band ratios can be used for reliable prediction of suspended loads up to at least 900 ppm. The major reservoirs in Kansas, as well as in other Great Plains states, are playing increasingly important roles in flood control, recreation, agriculture, and urban water supply. Satellite imagery is proving useful for acquiring timely low cost water quality data required for optimum management of these fresh water resources.

  20. Water for Agriculture: the Convergence of Sustainability and Safety.

    PubMed

    Markland, Sarah M; Ingram, David; Kniel, Kalmia E; Sharma, Manan

    2017-05-01

    Agricultural water is a precious and limited resource. Increasingly more water types and sources are being explored for use in irrigation within the United States and across the globe. As outlined in this chapter, the Produce Safety Rule (PSR) in the Food Safety and Modernization Act (FSMA) provide irrigation water standards for application of water to fruits and vegetables consumed raw. These rules for production and use of water will continue to develop and be required as the world experiences aspects of a changing climate including flooding as well as drought conditions. Research continues to assess the use of agricultural water types. The increased use of reclaimed water in the United States as well as for selected irrigation water needs for specific crops may provide increased water availability. The use of surface water can be used in irrigation as well, but several studies have shown the presence of some enteric bacterial pathogens (enterohemorrhagic E. coli , Salmonella spp. and Listeria monocytogenes ) in these waters that may contaminate fruits and vegetables. There have been outbreaks of foodborne illness in the U.S., South America, Europe, and Australia related to the use of contaminated water in fruit and vegetable irrigation or washing. Unreliable water supplies, more stringent microbial water standards, mitigation technologies and expanded uses of reclaimed waters have all increased interest in agricultural water.

  1. Optimal allocation of land and water resources to achieve Water, Energy and Food Security in the upper Blue Nile basin

    NASA Astrophysics Data System (ADS)

    Allam, M.; Eltahir, E. A. B.

    2017-12-01

    Rapid population growth, hunger problems, increasing energy demands, persistent conflicts between the Nile basin riparian countries and the potential impacts of climate change highlight the urgent need for the conscious stewardship of the upper Blue Nile (UBN) basin resources. This study develops a framework for the optimal allocation of land and water resources to agriculture and hydropower production in the UBN basin. The framework consists of three optimization models that aim to: (a) provide accurate estimates of the basin water budget, (b) allocate land and water resources optimally to agriculture, and (c) allocate water to agriculture and hydropower production, and investigate trade-offs between them. First, a data assimilation procedure for data-scarce basins is proposed to deal with data limitations and produce estimates of the hydrologic components that are consistent with the principles of mass and energy conservation. Second, the most representative topography and soil properties datasets are objectively identified and used to delineate the agricultural potential in the basin. The agricultural potential is incorporated into a land-water allocation model that maximizes the net economic benefits from rain-fed agriculture while allowing for enhancing the soils from one suitability class to another to increase agricultural productivity in return for an investment in soil inputs. The optimal agricultural expansion is expected to reduce the basin flow by 7.6 cubic kilometres, impacting downstream countries. The optimization framework is expanded to include hydropower production. This study finds that allocating water to grow rain-fed teff in the basin is more profitable than allocating water for hydropower production. Optimal operation rules for the Grand Ethiopian Renaissance dam (GERD) are identified to maximize annual hydropower generation while achieving a relatively uniform monthly production rate. Trade-offs between agricultural expansion and hydropower

  2. Water - Essential Resource of the Southern Flint River Basin, Georgia

    USGS Publications Warehouse

    Warner, Debbie; Norton, Virgil

    2004-01-01

    Introduction Abundant water resources of the Flint River Basin have played a major role in the history and development of southwestern Georgia. The Flint River-along with its tributaries, wetlands, and swamps-and the productive aquifers of the river basin are essential components of the area's diverse ecosystems. These resources also are necessary for sustained agricultural, industrial, and municipal activities. Increasing, and in some cases conflicting, demand for water makes careful monitoring and wise planning and management of southwestern Georgia's water resources critical to the ecological and economic future of the area. This poster presents the major issues associated with increasing competition for water resources in the southern Flint River Basin.

  3. Current perspectives in contaminant hydrology and water resources sustainability

    USGS Publications Warehouse

    Bradley, Paul M.

    2013-01-01

    Human society depends on liquid freshwater resources to meet drinking, sanitation and hygiene, agriculture, and industry needs. Improved resource monitoring and better understanding of the anthropogenic threats to freshwater environments are critical to efficient management of freshwater resources and ultimately to the survival and quality of life of the global human population. This book helps address the need for improved freshwater resource monitoring and threat assessment by presenting current reviews and case studies focused on the fate and transport of contaminants in the environment and on the sustainability of groundwater and surface-water resources around the world. It is intended for students and professionals working in hydrology and water resources management.

  4. Improving soil moisture simulation to support Agricultural Water Resource Management using Satellite-based water cycle observations

    NASA Astrophysics Data System (ADS)

    Gupta, Manika; Bolten, John; Lakshmi, Venkat

    2016-04-01

    Efficient and sustainable irrigation systems require optimization of operational parameters such as irrigation amount which are dependent on the soil hydraulic parameters that affect the model's accuracy in simulating soil water content. However, it is a scientific challenge to provide reliable estimates of soil hydraulic parameters and irrigation estimates, given the absence of continuously operating soil moisture and rain gauge network. For agricultural water resource management, the in-situ measurements of soil moisture are currently limited to discrete measurements at specific locations, and such point-based measurements do not represent the spatial distribution at a larger scale accurately, as soil moisture is highly variable both spatially and temporally (Wang and Qu 2009). In the current study, flood irrigation scheme within the land surface model is triggered when the root-zone soil moisture deficit reaches below a threshold of 25%, 50% and 75% with respect to the maximum available water capacity (difference between field capacity and wilting point) and applied until the top layer is saturated. An additional important criterion needed to activate the irrigation scheme is to ensure that it is irrigation season by assuming that the greenness vegetation fraction (GVF) of the pixel exceed 0.40 of the climatological annual range of GVF (Ozdogan et al. 2010). The main hypothesis used in this study is that near-surface remote sensing soil moisture data contain useful information that can describe the effective hydrological conditions of the basin such that when appropriately inverted, it would provide field capacity and wilting point soil moisture, which may be representative of that basin. Thus, genetic algorithm inverse method is employed to derive the effective parameters and derive the soil moisture deficit for the root zone by coupling of AMSR-E soil moisture with the physically based hydrological model. Model performance is evaluated using MODIS

  5. Optimal integrated management of groundwater resources and irrigated agriculture in arid coastal regions

    NASA Astrophysics Data System (ADS)

    Grundmann, J.; Schütze, N.; Heck, V.

    2014-09-01

    Groundwater systems in arid coastal regions are particularly at risk due to limited potential for groundwater replenishment and increasing water demand, caused by a continuously growing population. For ensuring a sustainable management of those regions, we developed a new simulation-based integrated water management system. The management system unites process modelling with artificial intelligence tools and evolutionary optimisation techniques for managing both water quality and water quantity of a strongly coupled groundwater-agriculture system. Due to the large number of decision variables, a decomposition approach is applied to separate the original large optimisation problem into smaller, independent optimisation problems which finally allow for faster and more reliable solutions. It consists of an analytical inner optimisation loop to achieve a most profitable agricultural production for a given amount of water and an outer simulation-based optimisation loop to find the optimal groundwater abstraction pattern. Thereby, the behaviour of farms is described by crop-water-production functions and the aquifer response, including the seawater interface, is simulated by an artificial neural network. The methodology is applied exemplarily for the south Batinah re-gion/Oman, which is affected by saltwater intrusion into a coastal aquifer system due to excessive groundwater withdrawal for irrigated agriculture. Due to contradicting objectives like profit-oriented agriculture vs aquifer sustainability, a multi-objective optimisation is performed which can provide sustainable solutions for water and agricultural management over long-term periods at farm and regional scales in respect of water resources, environment, and socio-economic development.

  6. Overview of advances in water management in agricultural production:Sensor based irrigation management

    USDA-ARS?s Scientific Manuscript database

    Technological advances in irrigated agriculture are crucial to meeting the challenge of increasing demand for agricultural products given limited quality and quantity of water resources for irrigation, impacts of climate variability, and the need to reduce environmental impacts. Multidisciplinary ap...

  7. Concept of an innovative water management system with decentralized water reclamation and cascading material-cycle for agricultural areas.

    PubMed

    Fujiwara, T

    2012-01-01

    Unlike in urban areas where intensive water reclamation systems are available, development of decentralized technologies and systems is required for water use to be sustainable in agricultural areas. To overcome various water quality issues in those areas, a research project entitled 'Development of an innovative water management system with decentralized water reclamation and cascading material-cycle for agricultural areas under the consideration of climate change' was launched in 2009. This paper introduces the concept of this research and provides detailed information on each of its research areas: (1) development of a diffuse agricultural pollution control technology using catch crops; (2) development of a decentralized differentiable treatment system for livestock and human excreta; and (3) development of a cascading material-cycle system for water pollution control and value-added production. The author also emphasizes that the innovative water management system for agricultural areas should incorporate a strategy for the voluntary collection of bio-resources.

  8. Impact of future energy policy on water resources in Kazakhstan

    NASA Astrophysics Data System (ADS)

    Rivotti, Pedro; Karatayev, Marat; Sobral Mourão, Zenaida; Shah, Nilay; Clarke, Michèle; Konadu, D. Dennis

    2017-04-01

    As part of its commitment to become one of the top-30 developed countries in the world, Kazakhstan set out an ambitious target of increasing the share of renewables and alternative sources of energy in its power generation mix to 50% by 2050. This vision greatly contrasts with the current situation, with coal and natural gas power plants producing around 90% of total electricity in 2016. While this transition provides a unique opportunity to improve the sustainability of the national energy system, major natural resources challenges currently faced in the country should be taken into account. Particularly in the case of water resources management, the current system is characterised by significant losses, heavy reliance on irrigation for the agricultural sector, unevenly distributed surface water, vulnerability to climate change and variations in transboundary inflows, amongst other issues. In this context, this study aims to investigate the future availability of water resources to support food production and the transition to a new energy system. Given the challenges mentioned above, tackling this question requires an integrated analysis of the water-energy-food systems in Kazakhstan. This is done in three stages: (1) characterising the water supply and demand in the country; (2) establishing the linkages between water resources and activities in the power production and agricultural sectors; and (3) identifying potential conflicts at the nexus between water, energy and food, taking into account future energy policy scenarios, trends for food production and water resource use.

  9. Agricultural practices and irrigation water demand in Uttar Pradesh

    NASA Astrophysics Data System (ADS)

    O'Keeffe, J.; Buytaert, W.; Brozovic, N.; Mijic, A.

    2013-12-01

    Changes in farming practices within Uttar Pradesh, particularly advances in irrigation technology, have led to a significant drop in water tables across the region. While the acquisition of monitoring data in India is a challenge, current water use practices point towards water overdraught. This is exacerbated by government and state policies and practices, including the subsidising of electricity, seeds and fertilizer, and an agreement to buy all crops grown, promoting the over use of water resources. Taking India's predicted population growth, increases in industrialisation and climate change into account, both farmland and the water resources it depends upon will be subject to increased pressures in the future. This research is centred around irrigation demands on water resources within Uttar Pradesh, and in particular, quantifying those demands both spatially and temporally. Two aspects of this will be presented; the quantification of irrigation water applied and the characterisation of the spatial heterogeneity of water use practices. Calculating the volumes of applied irrigation water in the absence of observed data presents a major challenge and is achieved here through the use of crop models. Regional crop yields provided by statistical yearbooks are replicated by the crop models AquaCrop and InfoCrop, and by doing so the amount of irrigation water needed to produce the published yields is quantified. In addition, proxy information, for example electrical consumption for agricultural use, is used to verify the likely volumes of water abstracted from tubewells. Statistical analyses of borehole distribution and the characterisation of the spatial heterogeneity of water use practices, particularly farmer decision making, collected during a field trip are also presented. The evolution of agricultural practices, technological advancement and water use for irrigation is reconstructed through the use of multiple regression and principle component analysis

  10. Socio-hydrology and integrated water resources management in northern Australia

    NASA Astrophysics Data System (ADS)

    Douglas, Michael; Jackson, Sue

    2017-04-01

    Australia's tropical rivers account for more than half of the nation's freshwater resources. Nearly all of these rivers flow freely to the sea, with less than 0. 01% of river flows diverted for human use, but there is increasing interest in developing the region's water resources for irrigated agriculture. Interdisciplinary research conducted over the past decade has demonstrated the reliance of biodiversity on free-flowing rivers and has also identified a broad range of benefits that people derive from these river systems including irrigated agriculture, tourism, commercial and recreational fishing and Indigenous subsistence harvesting. This has revealed the highly coupled nature of the socio-hydrological system in northern Australia's catchments and the trade-offs among different water users. This paper provides an overview of past and current research with a focus on how socio-hydrology may assist in undertaking integrated water resource management in this region.

  11. Virtual water flows in the international trade of agricultural products of China.

    PubMed

    Zhang, Yu; Zhang, Jinhe; Tang, Guorong; Chen, Min; Wang, Lachun

    2016-07-01

    With the rapid development of the economy and population, water scarcity and poor water quality caused by water pollution have become increasingly severe in China. Virtual water trade is a useful tool to alleviate water shortage. This paper focuses on a comprehensive study of China's international virtual water flows from agricultural products trade and completes a diachronic analysis from 2001 to 2013. The results show that China was in trade surplus in relation to the virtual water trade of agricultural products. The exported virtual water amounted to 29.94billionm(3)/yr. while 155.55billionm(3)/yr. was embedded in imported products. The trend that China exported virtual water per year was on the decline while the imported was on a rising trend. Virtual water trade of China was highly concentrated. Not all of the exported products had comparative advantages in virtual water content. Imported products were excessively concentrated on water intensive agricultural products such as soya beans, cotton, and palm oil. The exported virtual water mainly flowed to the Republic of Korea, Hong Kong of China and Japan, while the imported mainly flowed from the United States of America, Brazil and Argentina. From the ethical point of view, the trade partners were classified into four types in terms of "net import" and "water abundance": mutual benefit countries, such as Australia and Canada; unilateral benefit countries, such as Mongolia and Norway; supported countries, such as Egypt and Singapore; and double pressure countries, such as India and Pakistan. Virtual water strategy refers to water resources, agricultural products and human beings. The findings are beneficial for innovating water resources management system, adjusting trade structure, ensuring food security in China, and promoting the construction of national ecological security system. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Modelling the water-agricultural sector in Rosetta, Egypt: exploring the interaction between water and food

    NASA Astrophysics Data System (ADS)

    Sušnik, Janez; Vamvakeridou-Lyroudia, Lydia; Savic, Dragan; Kapelan, Zoran

    2014-05-01

    An integrated System Dynamics Model for the Rosetta region, Egypt, assessing local water balance and agricultural yield to 2050, is presented. Fifty-seven simulations are analysed to better understand potential impacts on water and food security resulting from climate and social change and local/regional policy decisions related to the agricultural sector. Water limitation is a national issue: Egypt relies on the Nile for >95% of supply, and the flow of which is regulated by the Aswan High Dam. Egypt's share water of Aswan water is limited to 55 x 19 m3 yr-1. Any reduction in supply to the reservoir or increase in demand (e.g. from an expanding agricultural sector), has the potential to lead to a serious food and water supply situation. Results show current water resource over-exploitation. The remaining suite of 56 simulations, divided into seven scenarios, also mostly show resource overexploitation. Only under significant increases to Nile flow volumes was the trend reversed. Despite this, by threading together multiple local policies to reduce demand and improve/maintain supply, water resource exploitation can be mitigated while allowing for agricultural development. By changing cropping patterns, it is possible to improve yield and revenue, while using up to 21% less water in 2050 when compared with today. The results are useful in highlighting pathways to improving future water resource availability. Many policies should be considered in parallel, introducing redundancy into the policy framework. We do not suggest actual policy measures; this was beyond the scope of the work. This work highlights the utility of systems modelling of complex systems such as the water-food nexus, with the potential to extend the methodology to other studies and scales. In particular, the benefit of being able to easily modify and extend existing models in light of results from initial modelling efforts is cited. Analysis of initial results led to the hypothesis that by producing

  13. Scenario-based Water Resources Management Using the Water Value Concept

    NASA Astrophysics Data System (ADS)

    Hassanzadeh, Elmira; Elshorbagy, Amin; Wheater, Howard

    2013-04-01

    The Saskatchewan River is the key water resource for the 3 prairie provinces of Alberta, Saskatchewan and Manitoba in Western Canada, and thus it is necessary to pursue long-term regional and watershed-based planning for the river basin. The water resources system is complex because it includes multiple components, representing various demand sectors, including the environment, which impose conflicting objectives, and multiple jurisdictions. The biophysical complexity is exacerbated by the socioeconomic dimensions associated for example with impacts of land and water management, value systems including environmental flows, and policy and governance dimensions.. We focus on the South Saskatchewan River Basin (SSRB) in Alberta and Saskatchewan, which is already fully allocated in southern Alberta and is subject to increasing demand due to rapid economic development and a growing population. Multiple sectors and water uses include agricultural, municipal, industrial, mining, hydropower, and environmental flow requirements. The significant spatial variability in the level of development and future needs for water places different values on water across the basin. Water resources planning and decision making must take these complexities into consideration, yet also deal with a new dimension—climate change and its possible future impacts on water resources systems. There is a pressing need to deal with water in terms of its value, rather than a mere commodity subject to traditional quantitative optimization. In this research, a value-based water resources system (VWRS) model is proposed to couple the hydrological and the societal aspects of water resources in one integrated modeling tool for the SSRB. The objective of this work is to develop the VWRS model as a negotiation, planning, and management tool that allows for the assessment of the availability, as well as the allocation scenarios, of water resources for competing users under varying conditions. The proposed

  14. Assessment of future crop yield and agricultural sustainable water use in north china plain using multiple crop models

    NASA Astrophysics Data System (ADS)

    Huang, G.

    2016-12-01

    Currently, studying crop-water response mechanism has become an important part in the development of new irrigation technology and optimal water allocation in water-scarce regions, which is of great significance to crop growth guidance, sustainable utilization of agricultural water, as well as the sustainable development of regional agriculture. Using multiple crop models(AquaCrop,SWAP,DNDC), this paper presents the results of simulating crop growth and agricultural water consumption of the winter-wheat and maize cropping system in north china plain. These areas are short of water resources, but generates about 23% of grain production for China. By analyzing the crop yields and the water consumption of the traditional flooding irrigation, the paper demonstrates quantitative evaluation of the potential amount of water use that can be reduced by using high-efficient irrigation approaches, such as drip irrigation. To maintain food supply and conserve water resources, the research concludes sustainable irrigation methods for the three provinces for sustainable utilization of agricultural water.

  15. Future Visions of the Brahmaputra - Establishing Hydrologic Baseline and Water Resources Context

    NASA Astrophysics Data System (ADS)

    Ray, P. A.; Yang, Y. E.; Wi, S.; Brown, C. M.

    2013-12-01

    The Brahmaputra River Basin (China-India-Bhutan-Bangladesh) is on the verge of a transition from a largely free flowing and highly variable river to a basin of rapid investment and infrastructure development. This work demonstrates a knowledge platform for the basin that compiles available data, and develops hydrologic and water resources system models of the basin. A Variable Infiltration Capacity (VIC) model of the Brahmaputra basin supplies hydrologic information of major tributaries to a water resources system model, which routes runoff generated via the VIC model through water infrastructure, and accounts for water withdrawals for agriculture, hydropower generation, municipal demand, return flows and others human activities. The system model also simulates agricultural production and the economic value of water in its various uses, including municipal, agricultural, and hydropower. Furthermore, the modeling framework incorporates plausible climate change scenarios based on the latest projections of changes to contributing glaciers (upstream), as well as changes to monsoon behavior (downstream). Water resources projects proposed in the Brahmaputra basin are evaluated based on their distribution of benefits and costs in the absence of well-defined water entitlements, and relative to a complex regional water-energy-food nexus. Results of this project will provide a basis for water sharing negotiation among the four countries and inform trans-national water-energy policy making.

  16. Water Budgets: Foundations for Effective Water-Resources and Environmental Management

    USGS Publications Warehouse

    Healy, Richard W.; Winter, Thomas C.; LaBaugh, James W.; Franke, O. Lehn

    2007-01-01

    INTRODUCTION Water budgets provide a means for evaluating availability and sustainability of a water supply. A water budget simply states that the rate of change in water stored in an area, such as a watershed, is balanced by the rate at which water flows into and out of the area. An understanding of water budgets and underlying hydrologic processes provides a foundation for effective water-resource and environmental planning and management. Observed changes in water budgets of an area over time can be used to assess the effects of climate variability and human activities on water resources. Comparison of water budgets from different areas allows the effects of factors such as geology, soils, vegetation, and land use on the hydrologic cycle to be quantified. Human activities affect the natural hydrologic cycle in many ways. Modifications of the land to accommodate agriculture, such as installation of drainage and irrigation systems, alter infiltration, runoff, evaporation, and plant transpiration rates. Buildings, roads, and parking lots in urban areas tend to increase runoff and decrease infiltration. Dams reduce flooding in many areas. Water budgets provide a basis for assessing how a natural or human-induced change in one part of the hydrologic cycle may affect other aspects of the cycle. This report provides an overview and qualitative description of water budgets as foundations for effective water-resources and environmental management of freshwater hydrologic systems. Perhaps of most interest to the hydrologic community, the concepts presented are also relevant to the fields of agriculture, atmospheric studies, meteorology, climatology, ecology, limnology, mining, water supply, flood control, reservoir management, wetland studies, pollution control, and other areas of science, society, and industry. The first part of the report describes water storage and movement in the atmosphere, on land surface, and in the subsurface, as well as water exchange among these

  17. Transboundary water resources management and livelihoods: interactions in the Senegal river

    NASA Astrophysics Data System (ADS)

    Bruckmann, Laurent; Beltrando, Gérard

    2016-04-01

    In Sub-Saharan Africa, 90 % of wetlands provide ecosystem services to societies, especially for agriculture and fishing. However, tropical rivers are increasingly regulated to provide hydroelectricity and irrigated agriculture. Modifications of flows create new hydrological conditions that affect floodplains ecology and peoples' livelihoods. In the Senegal river valley, large dams were built during the 1980's to secure water resources after a decade of water scarcity in the 1970's: Manantali in the upper basin with a reservoir of 12km3 and Diama close to estuary to avoid saltwater intrusion during dry season. Senegal river water resources are known under the supervision of Senegal River Basin Development Organization (OMVS), which defines water allocation between different goals (electricity, irrigation, traditional activities). This study, based on the concept of socio-hydrology, analyses socio-ecological changes following thirty years of dam management. The work enlightens adaptation mechanisms of livelihoods from people living along the river floodplain and feedback on water ressources. The study uses a mixed method approach, combining hydrological analyses, literature review and data collection from surveys on stakeholders and key informants level in the middle Senegal valley. Our results suggest that in all the Senegal river valley, socio-ecological changes are driven by new hydrological conditions. If dam management benefit for peoples with electrification and development of an irrigated agriculture, it has also emphasized the floodplain degradation. Flooded area has decline and are more irregular, causing an erosion of floodplain supporting services (traditional activities as fishing, grazing and flood-recession agriculture). These conditions reduce peoples' livelihood possibilities and irrigation is the only regular activity. As a feedback, irrigated agriculture increases withdrawals in the river and, recently, in aquifers posing a new uncertainty on water

  18. Linking energy-sanitation-agriculture: Intersectional resource management in smallholder households in Tanzania.

    PubMed

    Krause, Ariane; Rotter, Vera Susanne

    2017-07-15

    In order to create sustainable systems for resource management, residues from cooking and ecological sanitation (EcoSan) can be employed in recycling-driven soil fertility management. However, the link between energy, sanitation, and agricultural productivity is often neglected. Hence, the potential self-sufficient nature of many smallholdings in sub-Saharan Africa is underexploited. To compare those cooking and sanitation technologies most commonly used in north-western Tanzania with locally developed alternatives, with respect to (i) resource consumption, (ii) potential to recover resources, and (iii) environmental emissions. This study examines technologies at the household level, and was carried out using material flow analysis (MFA). The specific bioenergy technologies analysed include: three-stone fires; charcoal burners; improved cooking stoves (ICS), such as rocket and microgasifier stoves; and biogas systems. The specific sanitation alternatives studied comprise: pit latrines; two approaches to EcoSan; and septic systems. The use of ICS reduces total resource consumption; using charcoal or biogas does not. The residues from microgasifiers were analysed as having a substantial recovery potential for carbon (C) and phosphorus (P). The fact that input substrates for biogas digesters are post-agricultural in nature means that biogas slurry is not considered an 'untapped resource' despite its ample nutrient content. Exchanging pit latrines for water-based sanitation systems places heavy pressure on already scarce water resources for local smallholders. In contrast, the implementation of waterless EcoSan facilities significantly promotes nutrient recovery and reduces environmental emissions, particularly through greenhouse gas emission and nutrient leaching. Recycled outputs from the triple energy-sanitation-agriculture nexus display complementary benefits: residues from cooking can be used to restore organic matter in soils, while sanitation residues contribute

  19. The spatiotemporal variation analysis of virtual water for agriculture and livestock husbandry: A study for Jilin Province in China.

    PubMed

    Ma, Xiaolei; Ma, Yanji

    2017-05-15

    With the rapid development of economic, water crisis is becoming more and more serious and would be an important obstacle to the sustainable development of society. Virtual water theory and its applications in agriculture can provide important strategies for realizing the reasonable utilization and sustainable development of water resources. Using the Penman-Monteith model and Theil index combining the CROPWAT software, this work takes Jilin Province as study area quantifying the virtual water content of agriculture and livestock husbandry and giving a comprehensive evaluation of their spatiotemporal structure evolution. This study aims to help make clear the water consumption of agriculture and livestock husbandry, and offer advice on rational water utilization and agricultural structure adjustment. The results show that the total virtual water (TVW) proportion of agriculture presents a gradual growth trend while that of livestock husbandry reduces during the study period. In space, central Jilin shows the highest virtual water content of agriculture as well as livestock husbandry, the TVW in central Jilin is about 35.8billionm 3 . The TVW of maize is highest among six studied crops, and the cattle shows the highest TVW in the four kinds of animals. The distribution of TVW calculated by us and the distribution of actual water resources have remarkable difference, which leads to the increase of water consumption and cost of agricultural production. Finally, we discuss the driving force of the spatiotemporal variation of the TVW for agriculture and livestock husbandry, and also give some advises for the planting structural adjustment. This work is helpful for the sustainable development of agricultural and livestock husbandry and realizing efficient utilization of water resources. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Agricultural Applications for Remotely Sensed Evapotranspiration Data in Monitoring Water Use, Water Quality, and Water Security

    NASA Astrophysics Data System (ADS)

    Anderson, M. C.; Hain, C.; Gao, F.; Yang, Y.; Sun, L.; Dulaney, W.; Sharifi, A.; Holmes, T. R.; Kustas, W. P.

    2016-12-01

    Across the U.S. and globally there are ever increasing and competing demands for freshwater resources in support of food production, ecosystems services and human/industrial consumption. Recent studies using the GRACE satellite have identified severely stressed aquifers globally, which are being unsustainably depleted due to over-extraction primarily in support of irrigated agriculture. In addition, historic droughts and ongoing political conflicts threaten food and water security in many parts of the world. To facilitate wise water management, and to develop sustainable agricultural systems that will feed the Earth's growing population into the future, there is a critical need for robust assessments of daily water use, or evapotranspiration (ET), over a wide range in spatial scales - from field to globe. While Earth Observing (EO) satellites can play a significant role in this endeavor, no single satellite provides the combined spatial, spectral and temporal characteristics required for actionable ET monitoring world-wide. In this presentation we discuss new methods for combining information from the current suite of EO satellites to address issues of water use, water quality and water security, particularly as they pertain to agricultural production. These methods fuse multi-scale diagnostic ET retrievals generated using shortwave, thermal infrared and microwave datasets from multiple EO platforms to generate ET datacubes with both high spatial and temporal resolution. We highlight several case studies where such ET datacubes are being mined to investigate changes in water use patterns over agricultural landscapes in response to changing land use, land management, and climate forcings.

  1. Agricultural production and water use scenarios in Cyprus under global change

    NASA Astrophysics Data System (ADS)

    Bruggeman, Adriana; Zoumides, Christos; Camera, Corrado; Pashiardis, Stelios; Zomeni, Zomenia

    2014-05-01

    In many countries of the world, food demand exceeds the total agricultural production. In semi-arid countries, agricultural water demand often also exceeds the sustainable supply of water resources. These water-stressed countries are expected to become even drier, as a result of global climate change. This will have a significant impact on the future of the agricultural sector and on food security. The aim of the AGWATER project consortium is to provide recommendations for climate change adaptation for the agricultural sector in Cyprus and the wider Mediterranean region. Gridded climate data sets, with 1-km horizontal resolution were prepared for Cyprus for 1980-2010. Regional Climate Model results were statistically downscaled, with the help of spatial weather generators. A new soil map was prepared using a predictive modelling and mapping technique and a large spatial database with soil and environmental parameters. Stakeholder meetings with agriculture and water stakeholders were held to develop future water prices, based on energy scenarios and to identify climate resilient production systems. Green houses, including also hydroponic systems, grapes, potatoes, cactus pears and carob trees were the more frequently identified production systems. The green-blue-water model, based on the FAO-56 dual crop coefficient approach, has been set up to compute agricultural water demand and yields for all crop fields in Cyprus under selected future scenarios. A set of agricultural production and water use performance indicators are computed by the model, including green and blue water use, crop yield, crop water productivity, net value of crop production and economic water productivity. This work is part of the AGWATER project - AEIFORIA/GEOGRO/0311(BIE)/06 - co-financed by the European Regional Development Fund and the Republic of Cyprus through the Research Promotion Foundation.

  2. Water footprint as an indicator of agricultural productivity in African countries

    NASA Astrophysics Data System (ADS)

    Chico Zamanillo, Daniel; Zhang, Guoping; Mathews, Ruth

    2017-04-01

    water security should be considered. Agricultural practices that have improved yields and reduced water footprints should be identified and evaluated for their relative contribution to higher water productivity and to guide investments in agricultural extension and technology. Crops should be selected based on their comparative advantage relative to the water footprint and yields as well as their contribution to livelihoods and economic growth. Water resource management and planning needs to meet water demands for economic development while protecting and enhancing ecosystem services. Trade-offs between water resources allocation to grow food crops versus export crops and resulting reliance on internal versus external water resources for food security should be assessed and used to guide decisions. Achievement of the Sustainable Development Goals will require a multi-pronged approach to improving agricultural practices, strengthening farmers' livelihoods, increasing food security and protecting water security. The water footprint as it has been used in this study can support sustainable development by building an understanding of the water consumed and polluted in producing goods and identifying the opportunities for improving water efficiency and land productivity.

  3. Sewage disinfection towards protection of drinking water resources.

    PubMed

    Kolch, A

    2000-01-01

    Wastewater applied in agriculture for irrigation could replace the use of natural drinking-water resources. With respect to high concentrations of human pathogens wastewater has to be disinfected prior to use. This paper introduces disinfection methods with emphasis on UV irradiation.

  4. Water footprint concept for a sustainable water resources management in Urmia Lake basin, Iran

    NASA Astrophysics Data System (ADS)

    Jabbari, Anahita; Jarihani, Ben; Rezaie, Hossein; Aligholiniya, Tohid; Rasouli, Negar

    2015-04-01

    The fast shrinkage of Urmia Lake in West Azerbaijan, Iran is one of the most important environmental change hotspots. The dramatic water level reduction (up to 6 meters) has influential environmental, socio-economic and health impacts on Urmia plain and its habitants. The decline is generally blamed on a combination of drought, increased water diversion for irrigated agriculture within the lake's watershed and land use mismanagement. The Urmia Lake sub basins are the agricultural cores of the region and the agricultural activities are the major water consuming sections of the basin. Land use changes and mismanagement in the land use decisions and policies is one of the most important factors in lake shrinkage in recent decades. Fresh water is the main source of water for agricultural usages in the basin. So defining a more low water consuming land use pattern will put less pressure on limited water resources. The above mentioned fact in this study has been assessed through water footprint concept. The water footprint concept (as a quantitative measure showing the appropriation of natural resources) is a comprehensive indicator that can have a crucial role in efficient land use management. In order to evaluate the water use patterns, the water footprint of wheat (as a traditional crop) and apple (recently most popular) have been compared and the results have been discussed in the aspect of the impacts on Lake Urmia demands and its dramatic drying process. Results showed that, higher blue water consumption in such a regions that have severe blue water scarcity, is a major issue and the water consuming pattern must be modified to meet the lake demands. Lower blue water consumption through regionalizing crops for each area is an efficient solution to meet lake demands and consume lower amounts of blue water. So the proper land use practices can be an appropriate method to rescue the lake in a long time period.

  5. Assessment of Land and Water Resource Implications of the UK 2050 Carbon Plan

    NASA Astrophysics Data System (ADS)

    Konadu, D. D.; Sobral Mourao, Z.; Skelton, S.; Lupton, R.

    2015-12-01

    The UK Carbon Plan presents four low-carbon energy system pathways that achieves 80% GHG emission targets by 2050, stipulated in the UK Climate Change Act (2008). However, some of the energy technologies prescribed under these pathways are land and water intensive; but would the increase demand for land and water under these pathways lead to increased competition and stress on agricultural land, and water resources in the UK? To answer the above question, this study uses an integrated modelling approach, ForeseerTM, which characterises the interdependencies and evaluates the land and water requirement for the pathways, based on scenarios of power plant location, and the energy crop yield projections. The outcome is compared with sustainable limits of resource appropriation to assess potential stresses and competition for water and land by other sectors of the economy. The results show the Carbon Plan pathways have low overall impacts on UK water resources, but agricultural land use and food production could be significantly impacted. The impact on agricultural land use is shown to be mainly driven by projections for transport decarbonisation via indigenously sourced biofuels. On the other hand, the impact on water resources is mainly associated with increased inland thermal electricity generation capacity, which would compete with other industrial and public water demands. The results highlight the need for a critical appraisal of UK's long term low-carbon energy system planning, in particular bioenergy sourcing strategy, and the siting of thermal power generation in order to avert potential resource stress and competition.

  6. Embedding an evolving agricultural system within a water resources planning model

    NASA Astrophysics Data System (ADS)

    Young, C.; Joyce, B.; Purkey, D.; Dale, L.; Mehta, V.

    2008-12-01

    The Water Evaluation and Planning (WEAP) system is a comprehensive, fully integrated water basin analysis tool. It is a simulation model that includes a robust and flexible representation of water demands from all sectors and flexible, programmable operating rules for infrastructure elements such as reservoirs, canals, and hydropower projects. Additionally, it has watershed rainfall-runoff modeling capabilities that allow all portions of the water infrastructure and demand to be dynamically nested within the underlying hydrological processes. WEAP also allows for linking with other models to provide feedback mechanisms whereby the management regime can be altered to respond to changing water supply conditions. This study presents an application wherein the year-to-year cropping decisions of farmers in California's Central Valley are reactive to changes in water supply conditions. To capture this dynamic, we have included in WEAP a link to an agricultural economics model (the Central Valley Production Model) that relates cropping decisions to water supply conditions (surface water allocations and depth to groundwater) and economic considerations (cost of electricity) at the time of planting. This linked model was used to evaluate changes in water supply and demand in the context of projected climate change over the next century.

  7. Assessing the impacts of climate change on agricultural production in the Columbia River basin: incorporating water management

    NASA Astrophysics Data System (ADS)

    Adam, J. C.; Rajagopalan, K.; Stockle, C. O.; Yorgey, G.; Kruger, C. E.; Chinnayakanahalli, K.; Nelson, R.

    2014-12-01

    Changes in global population, food consumption and climate lead to a food security challenge for the future. Water resources, agricultural productivity and the relationships between them will to a large extent dictate how we address this challenge. Although food security is a global issue, impacts of climate change on water resources and agricultural productivity, as well as viability of adaptation strategies, are location specific; e.g., it is important to consider the regional regulatory environment. Our work focuses on the Columbia River basin (CRB) of the Pacific Northwest US. The water resources of the CRB are heavily managed to meet competing demands. There also exists a legal system for individuals/groups to obtain rights to use the publicly owned water resources, and the possibility of curtailing (i.e., restricting) some of these water rights in times of shortage. It is important to include an approximation of this water resource regulation and water rights curtailment process in modeling water availability and impacts of water shortages on agricultural production. The overarching objective of this work is to apply an integrated hydrologic-crop-water management modeling framework over the CRB to characterize the impacts of climate change on irrigation water demands, irrigation water availability, water shortages, and associated impacts in the 2030s. Results indicate that climate change has both positive and negative effects on agricultural production in the CRB and this varies by region and crop type. Certain watersheds that are already water stressed are projected to experience increasing stress in the future. Although, climate change results in increased water shortages and water rights curtailment in the region, this does not necessarily translate into an increased negative effect on yields; some crops are projected to increase in yield despite curtailment. This could be attributed to higher water use efficiency under elevated CO2 levels as well crops

  8. Agriculture and Water Quality. Issues in Agricultural Policy. Agriculture Information Bulletin Number 548.

    ERIC Educational Resources Information Center

    Crowder, Bradley M.; And Others

    Agriculture generates byproducts that may contribute to the contamination of the United States' water supply. Any effective regulations to ban or restrict agricultural chemical or land use practices in order to improve water quality will affect the farm economy. Some farmers will benefit; some will not. Most agricultural pollutants reach surface…

  9. 75 FR 16719 - Agricultural Water Enhancement Program

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-02

    ... DEPARTMENT OF AGRICULTURE Commodity Credit Corporation Agricultural Water Enhancement Program... Energy Act of 2008 (2008 Act) established the Agricultural Water Enhancement Program (AWEP) by amending... to implement agricultural water enhancement activities on agricultural land for the purposes of...

  10. Water resources of Sedgwick County, Kansas

    USGS Publications Warehouse

    Bevans, H.E.

    1989-01-01

    Hydrologic data from streams, impoundments, and wells are interpreted to: (1) document water resources characteristics; (2) describe causes and extent of changes in water resources characteristics; and (3) evaluate water resources as sources of supply. During 1985, about 134,200 acre-ft of water (84% groundwater) were used for public (42%), irrigation, (40%), industrial (14%), and domestic (4%) supplies. Streamflow and groundwater levels are related directly to precipitation, and major rivers are sustained by groundwater inflow. Significant groundwater level declines have occurred only in the Wichita well field. The Arkansas and Ninnescah Rivers have sodium chloride type water; the Little Arkansas River, calcium bicarbonate type water. Water quality characteristics of water in small streams and wells depend primarily on local geology. The Wellington Formation commonly yields calcium sulfate type water; Ninnescah Shale and unconsolidated deposits generally yield calcium bicarbonate type water. Sodium chloride and calcium sulfate type water in the area often have dissolved-solids concentrations exceeding 1,000 mg/L. Water contamination by treated sewage effluent was detected inparts of the Arkansas River, Little Arkansas River, and Cowskin Creek. Nitrite plus nitrate as nitrogen contamination was detected in 11 of 101 wells; oilfield brine was detected in the Wichita-Valley Center Floodway, Prairie Creek, Whitewater Creek, and 16 of 101 wells; and agricultural pesticides were detected in 8 of 14 impoundments and 5 of 19 wells. Generally, the water is acceptable for most uses. (USGS)

  11. Less water: How will agriculture in Southern Mountain states adapt?

    NASA Astrophysics Data System (ADS)

    Frisvold, George B.; Konyar, Kazim

    2012-05-01

    This study examined how agriculture in six southwestern states might adapt to large reductions in water supplies, using the U.S. Agricultural Resource Model (USARM), a multiregion, multicommodity agricultural sector model. In the simulation, irrigation water supplies were reduced 25% in five Southern Mountain (SM) states and by 5% in California. USARM results were compared to those from a "rationing" model, which assumes no input substitution or changes in water use intensity, relying on land fallowing as the only means of adapting to water scarcity. The rationing model also ignores changes in output prices. Results quantify the importance of economic adjustment mechanisms and changes in output prices. Under the rationing model, SM irrigators lose 65 in net income. Compared to this price exogenous, "land-fallowing only" response, allowing irrigators to change cropping patterns, practice deficit irrigation, and adjust use of other inputs reduced irrigator costs of water shortages to 22 million. Allowing irrigators to pass on price increases to purchasers reduced income losses further, to 15 million. Higher crop prices from reduced production imposed direct losses of 130 million on first purchasers of crops, which include livestock and dairy producers, and cotton gins. SM agriculture, as a whole, was resilient to the water supply shock, with production of high value specialty crops along the Lower Colorado River little affected. Particular crops were vulnerable however. Cotton production and net returns fell substantially, while reductions in water devoted to alfalfa accounted for 57% of regional water reduction.

  12. 25 CFR 162.201 - Must agricultural land be managed in accordance with a tribe's agricultural resource management...

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... identify holistic management objectives; and (5) Identify actions to be taken to reach established... tribe's agricultural resource management plan? 162.201 Section 162.201 Indians BUREAU OF INDIAN AFFAIRS... Must agricultural land be managed in accordance with a tribe's agricultural resource management plan...

  13. Integrated management of water resources demand and supply in irrigated agriculture from plot to regional scale

    NASA Astrophysics Data System (ADS)

    Schütze, Niels; Wagner, Michael

    2016-05-01

    Growing water scarcity in agriculture is an increasing problem in future in many regions of the world. Recent trends of weather extremes in Saxony, Germany also enhance drought risks for agricultural production. In addition, signals of longer and more intense drought conditions during the vegetation period can be found in future regional climate scenarios for Saxony. However, those climate predictions are associated with high uncertainty and therefore, e.g. stochastic methods are required to analyze the impact of changing climate patterns on future crop water requirements and water availability. For assessing irrigation as a measure to increase agricultural water security a generalized stochastic approach for a spatial distributed estimation of future irrigation water demand is proposed, which ensures safe yields and a high water productivity at the same time. The developed concept of stochastic crop water production functions (SCWPF) can serve as a central decision support tool for both, (i) a cost benefit analysis of farm irrigation modernization on a local scale and (ii) a regional water demand management using a multi-scale approach for modeling and implementation. The new approach is applied using the example of a case study in Saxony, which is dealing with the sustainable management of future irrigation water demands and its implementation.

  14. The nexus between integrated natural resources management and integrated water resources management in southern Africa

    NASA Astrophysics Data System (ADS)

    Twomlow, Stephen; Love, David; Walker, Sue

    The low productivity of smallholder farming systems and enterprises in the drier areas of the developing world can be attributed mainly to the limited resources of farming households and the application of inappropriate skills and practices that can lead to the degradation of the natural resource base. This lack of development, particularly in southern Africa, is of growing concern from both an agricultural and environmental perspective. To address this lack of progress, two development paradigms that improve land and water productivity have evolved, somewhat independently, from different scientific constituencies. One championed by the International Agricultural Research constituency is Integrated Natural Resource Management (INRM), whilst the second championed predominantly by Environmental and Civil Engineering constituencies is Integrated Water Resources Management (IWRM). As a result of similar objectives of working towards the millennium development goals of improved food security and environmental sustainability, there exists a nexus between the constituencies of the two paradigms, particularly in terms of appreciating the lessons learned. In this paper lessons are drawn from past INRM research that may have particular relevance to IWRM scientists as they re-direct their focus from blue water issues to green water issues, and vice-versa. Case studies are drawn from the management of water quality for irrigation, green water productivity and a convergence of INRM and IWRM in the management of gold panning in southern Zimbabwe. One point that is abundantly clear from both constituencies is that ‘one-size-fits-all’ or silver bullet solutions that are generally applicable for the enhancement of blue water management/formal irrigation simply do not exist for the smallholder rainfed systems.

  15. Integrated water resources modelling for assessing sustainable water governance

    NASA Astrophysics Data System (ADS)

    Skoulikaris, Charalampos; Ganoulis, Jacques; Tsoukalas, Ioannis; Makropoulos, Christos; Gkatzogianni, Eleni; Michas, Spyros

    2015-04-01

    Climatic variations and resulting future uncertainties, increasing anthropogenic pressures, changes in political boundaries, ineffective or dysfunctional governance of natural resources and environmental degradation are some of the most fundamental challenges with which worldwide initiatives fostering the "think globally, act locally" concept are concerned. Different initiatives target the protection of the environment through sustainable development; Integrated Water Resources Management (IWRM) and Transboundary Water Resources Management (TWRM) in the case of internationally shared waters are frameworks that have gained wide political acceptance at international level and form part of water resources management planning and implementation on a global scale. Both concepts contribute in promoting economic efficiency, social equity and environmental sustainability. Inspired by these holistic management approaches, the present work describes an effort that uses integrated water resources modelling for the development of an integrated, coherent and flexible water governance tool. This work in which a sequence of computer based models and tools are linked together, aims at the evaluation of the sustainable operation of projects generating renewable energy from water as well as the sustainability of agricultural demands and environmental security in terms of environmental flow under various climatic and operational conditions. More specifically, catchment hydrological modelling is coupled with dams' simulation models and thereafter with models dedicated to water resources management and planning,while the bridging of models is conducted through geographic information systems and custom programming tools. For the case of Mesta/Nestos river basin different priority rules in the dams' operational schedule (e.g. priority given to power production as opposed to irrigation needs and vice versa), as well as different irrigation demands, e.g. current water demands as opposed to

  16. An inexact risk management model for agricultural land-use planning under water shortage

    NASA Astrophysics Data System (ADS)

    Li, Wei; Feng, Changchun; Dai, Chao; Li, Yongping; Li, Chunhui; Liu, Ming

    2016-09-01

    Water resources availability has a significant impact on agricultural land-use planning, especially in a water shortage area such as North China. The random nature of available water resources and other uncertainties in an agricultural system present risk for land-use planning and may lead to undesirable decisions or potential economic loss. In this study, an inexact risk management model (IRM) was developed for supporting agricultural land-use planning and risk analysis under water shortage. The IRM model was formulated through incorporating a conditional value-at-risk (CVaR) constraint into an inexact two-stage stochastic programming (ITSP) framework, and could be used to control uncertainties expressed as not only probability distributions but also as discrete intervals. The measure of risk about the second-stage penalty cost was incorporated into the model so that the trade-off between system benefit and extreme expected loss could be analyzed. The developed model was applied to a case study in the Zhangweinan River Basin, a typical agricultural region facing serious water shortage in North China. Solutions of the IRM model showed that the obtained first-stage land-use target values could be used to reflect decision-makers' opinions on the long-term development plan. The confidence level α and maximum acceptable risk loss β could be used to reflect decisionmakers' preference towards system benefit and risk control. The results indicated that the IRM model was useful for reflecting the decision-makers' attitudes toward risk aversion and could help seek cost-effective agricultural land-use planning strategies under complex uncertainties.

  17. Water resources planning in a strategic context: Linking the water sector to the national economy

    NASA Astrophysics Data System (ADS)

    Rogers, Peter; Hurst, Christopher; Harshadeep, Nagaraja

    1993-07-01

    In many parts of the developing world investment in water resources takes a large proportion of the available public investment funds. As the conflicts for funds between the water and other sectors become more severe, the traditional ways of analyzing and planning water investments has to move away from project-by-project (or even a river basin-by-river basin) approaches to include the relationships of water investments to other sectors and to overall national development policies. Current approaches to water resources investments are too narrow. There is a need for ways to expand the strategic thinking of water sector managers. This paper develops a water resources planning methodology with the primary objective of giving insights into the linking of water sector investments and macroeconomic policies. The model optimizes the present value of investments for water resources development, while embedding a macroeconomic model into the framework to allow for an examination of the interactions between water investments, the growth in the agricultural sector, and the performance of the overall economy. A case study of Bangladesh is presented which shows how strategic thinking could lead to widely differing implications for water investments than would conventional water resources systems planning models.

  18. Guide to Louisiana's ground-water resources

    USGS Publications Warehouse

    Stuart, C.G.; Knochenmus, D.D.; McGee, B.D.

    1994-01-01

    Ground water is one of the most valuable and abundant natural resources of Louisiana. Of the 4-.4 million people who live in the State, 61 percent use ground water as a source for drinking water. Most industrial and rural users and half of the irrigation users in the State rely on ground water. Quantity, however, is not the only aspect that makes ground water so valuable; quality also is important for its use. In most areas, little or no water treatment is required for drinking water and industrial purposes. Knowledge of Louisiana's ground-water resources is needed to ensure proper development and protection of this valuable resource. This report is designed to inform citizens about the availability and quality of ground water in Louisiana. It is not intended as a technical reference; rather, it is a guide to ground water and the significant role this resource plays in the state. Most of the ground water that is used in the State is withdrawn from 13 aquifers and aquifer systems: the Cockfield, Sparta, and Carrizo-Wilcox aquifersin northern Louisiana; Chicot aquifer system, Evangeline aquifer, Jasper aquifer system, and Catahoula aquifer in central and southwestern Louisiana; the Chicot equivalent, Evangeline equivalent, and Jasper equivalent aquifer systems in southeastern Louisiana; and the MississippiRiver alluvial, Red River alluvial, and upland terrace aquifers that are statewide. Ground water is affected by man's activities on the land surface, and the major ground-water concerns in Louisiana are: (1) contamination from surface disposal of hazardous waste, agricultural chemicals, and petroleum products; (2) contamination from surface wastes and saltwater through abandoned wells; (3) saltwater encroachment; and (4) local overdevelopment. Information about ground water in Louisiana is extensive and available to the public. Several State and Federal agencies provide published and unpublished material upon request.

  19. Agricultural Resources: Program Planning Guide: Volume 6.

    ERIC Educational Resources Information Center

    German, Carl; And Others

    The program planning guide for agricultural resources was written to assist Applied Biological and Agricultural Occupations (ABAO) teachers in enriching existing programs and/or to provide the basis for expansion of offerings to include additional materials for the cluster areas of forests, recreation, soil, wildlife, and other agricultural…

  20. The economic impact of more sustainable water use in agriculture: A computable general equilibrium analysis

    NASA Astrophysics Data System (ADS)

    Calzadilla, Alvaro; Rehdanz, Katrin; Tol, Richard S. J.

    2010-04-01

    SummaryAgriculture is the largest consumer of freshwater resources - around 70 percent of all freshwater withdrawals are used for food production. These agricultural products are traded internationally. A full understanding of water use is, therefore, impossible without understanding the international market for food and related products, such as textiles. Based on the global general equilibrium model GTAP-W, we offer a method for investigating the role of green (rain) and blue (irrigation) water resources in agriculture and within the context of international trade. We use future projections of allowable water withdrawals for surface water and groundwater to define two alternative water management scenarios. The first scenario explores a deterioration of current trends and policies in the water sector (water crisis scenario). The second scenario assumes an improvement in policies and trends in the water sector and eliminates groundwater overdraft world-wide, increasing water allocation for the environment (sustainable water use scenario). In both scenarios, welfare gains or losses are not only associated with changes in agricultural water consumption. Under the water crisis scenario, welfare not only rises for regions where water consumption increases (China, South East Asia and the USA). Welfare gains are considerable for Japan and South Korea, Southeast Asia and Western Europe as well. These regions benefit from higher levels of irrigated production and lower food prices. Alternatively, under the sustainable water use scenario, welfare losses not only affect regions where overdrafting is occurring. Welfare decreases in other regions as well. These results indicate that, for water use, there is a clear trade-off between economic welfare and environmental sustainability.

  1. Water resource sensitivity from a Mediterranean perspective

    NASA Astrophysics Data System (ADS)

    Lyon, S. W.; Klein, J.; Archibald, J. A.; Walter, T.

    2012-12-01

    The water cycle in semiarid environments is intimately connected to plant-water interactions making these regions sensitive to both future climatic changes and landuse alterations. This study explores the sensitivity of water resource availability from a Mediterranean perspective using the Navarino Environmental Observatory (NEO) in Costa Navarino, Greece as a large-scale laboratory for developing and testing the potential resource impacts of various landuse/climatic trajectories. Direct measurements of evapotranspiration were combined with Penman-Monteith estimates to compare water vapor flux variability across the gradient of current management conditions found within the NEO landscape. These range from native, non-managed vegetation to historic, traditionally managed agriculture to modern, actively managed recreational lands. These management conditions greatly impact the vertical flux of water vapor in this semiarid landscape. Our evapotranspiration estimates were placed into a process-based modeling framework to characterize the current state of regional water resource availability and simulate future trajectories (and the associated uncertainties) in response to landuse/climatic changes. This region is quite sensitive with regards to water cycle modifications due to the anthropogenic redistribution of water within and across the landscape. Such sensitivity typifies that expected for much of the Mediterranean region, highlighting the NEO as a potential key location for future observation and investigation.

  2. America's water: Agricultural water demands and the response of groundwater

    NASA Astrophysics Data System (ADS)

    Ho, M.; Parthasarathy, V.; Etienne, E.; Russo, T. A.; Devineni, N.; Lall, U.

    2016-07-01

    Agricultural, industrial, and urban water use in the conterminous United States (CONUS) is highly dependent on groundwater that is largely drawn from nonsurficial wells (>30 m). We use a Demand-Sensitive Drought Index to examine the impacts of agricultural water needs, driven by low precipitation, high agricultural water demand, or a combination of both, on the temporal variability of depth to groundwater across the CONUS. We characterize the relationship between changes in groundwater levels, agricultural water deficits relative to precipitation during the growing season, and winter precipitation. We find that declines in groundwater levels in the High Plains aquifer and around the Mississippi River Valley are driven by groundwater withdrawals used to supplement agricultural water demands. Reductions in agricultural water demands for crops do not, however, lead to immediate recovery of groundwater levels due to the demand for groundwater in other sectors in regions such as Utah, Maryland, and Texas.

  3. Participatory Water Resources Modeling in a Water-Scarce Basin (Rio Sonora, Mexico) Reveals Uncertainty in Decision-Making

    NASA Astrophysics Data System (ADS)

    Mayer, A. S.; Vivoni, E. R.; Halvorsen, K. E.; Kossak, D.

    2014-12-01

    The Rio Sonora Basin (RSB) in northwest Mexico has a semi-arid and highly variable climate along with urban and agricultural pressures on water resources. Three participatory modeling workshops were held in the RSB in spring 2013. A model of the water resources system, consisting of a watershed hydrology model, a model of the water infrastructure, and groundwater models, was developed deliberatively in the workshops, along with scenarios of future climate and development. Participants were asked to design water resources management strategies by choosing from a range of supply augmentation and demand reduction measures associated with water conservation. Participants assessed water supply reliability, measured as the average daily supply divided by daily demand for historical and future periods, by probing with the climate and development scenarios. Pre- and post-workshop-surveys were developed and administered, based on conceptual models of workshop participants' beliefs regarding modeling and local water resources. The survey results indicate that participants believed their modeling abilities increased and beliefs in the utility of models increased as a result of the workshops. The selected water resources strategies varied widely among participants. Wastewater reuse for industry and aquifer recharge were popular options, but significant numbers of participants thought that inter-basin transfers and desalination were viable. The majority of participants indicated that substantial increases in agricultural water efficiency could be achieved. On average, participants chose strategies that produce reliabilities over the historical and future periods of 95%, but more than 20% of participants were apparently satisfied with reliabilities lower than 80%. The wide range of strategies chosen and associated reliabilities indicate that there is a substantial degree of uncertainty in how future water resources decisions could be made in the region.

  4. Balancing water scarcity and quality for sustainable irrigated agriculture

    NASA Astrophysics Data System (ADS)

    Assouline, Shmuel; Russo, David; Silber, Avner; Or, Dani

    2015-05-01

    The challenge of meeting the projected doubling of global demand for food by 2050 is monumental. It is further exacerbated by the limited prospects for land expansion and rapidly dwindling water resources. A promising strategy for increasing crop yields per unit land requires the expansion of irrigated agriculture and the harnessing of water sources previously considered "marginal" (saline, treated effluent, and desalinated water). Such an expansion, however, must carefully consider potential long-term risks on soil hydroecological functioning. The study provides critical analyses of use of marginal water and management approaches to map out potential risks. Long-term application of treated effluent (TE) for irrigation has shown adverse impacts on soil transport properties, and introduces certain health risks due to the persistent exposure of soil biota to anthropogenic compounds (e.g., promoting antibiotic resistance). The availability of desalinated water (DS) for irrigation expands management options and improves yields while reducing irrigation amounts and salt loading into the soil. Quantitative models are used to delineate trends associated with long-term use of TE and DS considering agricultural, hydrological, and environmental aspects. The primary challenges to the sustainability of agroecosystems lies with the hazards of saline and sodic conditions, and the unintended consequences on soil hydroecological functioning. Multidisciplinary approaches that combine new scientific knowhow with legislative, economic, and societal tools are required to ensure safe and sustainable use of water resources of different qualities. The new scientific knowhow should provide quantitative models for integrating key biophysical processes with ecological interactions at appropriate spatial and temporal scales.

  5. Integrated water resources management : A case study in the Hehei river basin, China

    NASA Astrophysics Data System (ADS)

    Jia, Siqi; Deng, Xiangzheng

    2017-04-01

    The lack of water resources experienced in different parts of the world has now been recognized and analyzed by different international organizations such as WHO, the World Bank, etc. Add to this the growing urbanization and the fast socio-economic development, the water supply of many urban areas is already or will be severely threatened. Recently published documents from the UN Environmental Program confirms that severe water shortage affects 400 million people today and will affect 4 billion people by 2050. Water nowadays is getting scarce, and access to clean drinking water and water for agricultural usage is unequally distributed. The biggest opportunity and challenge for future water management is how to achieve water sustainability to reduce water consumption. Integrated Water Resources Management (IWRM) is a process which promotes the coordinated development and management of water, land and related resources in order to maximize economic and social welfare in an equitable manner without compromising the sustainability of vital ecosystems. We take the Heibe river basin where agriculture water there accounted for 90% of total water consumption as an example to study the impacts of IWRM on regional water resources. We calculated the elasticity of substitution values between labor and land, water by each irrigation areas to find the variable elastic value among irrigation areas, and the water-use efficiency based on NPP estimation with the C-fix model and WUE estimation with NPP and ET. The empirical analysis indicated that the moderate scale of farmland is 0.27-0.53hm2 under the condition of technical efficiency of irrigation water and production. Agricultural water use accounted for 94% of the social and economic water consumption in 2012, but water efficiency and water productivity were both at a low stage. In conclusion, land use forms at present in Heihe river basin have a detrimental impact on the availability of ecological water use. promoting water

  6. Ultrasonic Sensing of Plant Water Needs for Agriculture

    PubMed Central

    Gómez Álvarez-Arenas, Tomas; Gil-Pelegrin, Eustaquio; Ealo Cuello, Joao; Fariñas, Maria Dolores; Sancho-Knapik, Domingo; Collazos Burbano, David Alejandro; Peguero-Pina, Jose Javier

    2016-01-01

    Fresh water is a key natural resource for food production, sanitation and industrial uses and has a high environmental value. The largest water use worldwide (~70%) corresponds to irrigation in agriculture, where use of water is becoming essential to maintain productivity. Efficient irrigation control largely depends on having access to reliable information about the actual plant water needs. Therefore, fast, portable and non-invasive sensing techniques able to measure water requirements directly on the plant are essential to face the huge challenge posed by the extensive water use in agriculture, the increasing water shortage and the impact of climate change. Non-contact resonant ultrasonic spectroscopy (NC-RUS) in the frequency range 0.1–1.2 MHz has revealed as an efficient and powerful non-destructive, non-invasive and in vivo sensing technique for leaves of different plant species. In particular, NC-RUS allows determining surface mass, thickness and elastic modulus of the leaves. Hence, valuable information can be obtained about water content and turgor pressure. This work analyzes and reviews the main requirements for sensors, electronics, signal processing and data analysis in order to develop a fast, portable, robust and non-invasive NC-RUS system to monitor variations in leaves water content or turgor pressure. A sensing prototype is proposed, described and, as application example, used to study two different species: Vitis vinifera and Coffea arabica, whose leaves present thickness resonances in two different frequency bands (400–900 kHz and 200–400 kHz, respectively), These species are representative of two different climates and are related to two high-added value agricultural products where efficient irrigation management can be critical. Moreover, the technique can also be applied to other species and similar results can be obtained. PMID:27428968

  7. Ultrasonic Sensing of Plant Water Needs for Agriculture.

    PubMed

    Gómez Álvarez-Arenas, Tomas; Gil-Pelegrin, Eustaquio; Ealo Cuello, Joao; Fariñas, Maria Dolores; Sancho-Knapik, Domingo; Collazos Burbano, David Alejandro; Peguero-Pina, Jose Javier

    2016-07-14

    Fresh water is a key natural resource for food production, sanitation and industrial uses and has a high environmental value. The largest water use worldwide (~70%) corresponds to irrigation in agriculture, where use of water is becoming essential to maintain productivity. Efficient irrigation control largely depends on having access to reliable information about the actual plant water needs. Therefore, fast, portable and non-invasive sensing techniques able to measure water requirements directly on the plant are essential to face the huge challenge posed by the extensive water use in agriculture, the increasing water shortage and the impact of climate change. Non-contact resonant ultrasonic spectroscopy (NC-RUS) in the frequency range 0.1-1.2 MHz has revealed as an efficient and powerful non-destructive, non-invasive and in vivo sensing technique for leaves of different plant species. In particular, NC-RUS allows determining surface mass, thickness and elastic modulus of the leaves. Hence, valuable information can be obtained about water content and turgor pressure. This work analyzes and reviews the main requirements for sensors, electronics, signal processing and data analysis in order to develop a fast, portable, robust and non-invasive NC-RUS system to monitor variations in leaves water content or turgor pressure. A sensing prototype is proposed, described and, as application example, used to study two different species: Vitis vinifera and Coffea arabica, whose leaves present thickness resonances in two different frequency bands (400-900 kHz and 200-400 kHz, respectively), These species are representative of two different climates and are related to two high-added value agricultural products where efficient irrigation management can be critical. Moreover, the technique can also be applied to other species and similar results can be obtained.

  8. Driving force analysis of the agricultural water footprint in China based on the LMDI method.

    PubMed

    Zhao, Chunfu; Chen, Bin

    2014-11-04

    China's water scarcity problems have become more severe because of the unprecedented economic development and population explosion. Considering agriculture's large share of water consumption, obtaining a clear understanding of Chinese agricultural consumptive water use plays a key role in addressing China's water resource stress and providing appropriate water mitigation policies. We account for the Chinese agricultural water footprint from 1990 to 2009 based on bottom up approach. Then, the underlying driving forces are decomposed into diet structure effect, efficiency effect, economic activity effect, and population effect, and analyzed by applying a log-mean Divisia index (LMDI) model. The results reveal that the Chinese agricultural water footprint has risen from the 94.1 Gm3 in 1990 to 141 Gm3 in 2009. The economic activity effect is the largest positive contributor to promoting the water footprint growth, followed by the population effect and diet structure effect. Although water efficiency improvement as a significant negative effect has reduced overall water footprint, the water footprint decline from water efficiency improvement cannot compensate for the huge increase from the three positive driving factors. The combination of water efficiency improvement and dietary structure adjustment is the most effective approach for controlling the Chinese agricultural water footprint's further growth.

  9. Climate change, water, and agriculture: a study of two contrasting regions

    NASA Astrophysics Data System (ADS)

    Kirilenko, A.; Dronin, N.; Zhang, X.

    2009-12-01

    We present a study of potential impacts of climate change on water resources and agriculture in two contrasting regions, the Aral Sea basin in Central Asia and the Northern Great Plains in the United States. The Aral Sea basin is one of the most anthropogenically modified areas of the world; it is also a zone of a water-related ecological crisis. We concentrate on studying water security of five countries in the region, which inherit their water regulation from the planned economy of USSR. Water management was targeted at maximizing agricultural output through diverting the river flow into an extensive and largely ineffective network of irrigation canals. The current water crisis is largely due to human activity; however the region is also strongly impacted by the climate. Climate change will contribute to water problems, escalating irrigation demand during the drought period, and increasing water loss with evaporation. The future of the countries of the Aral Sea basin then depends on both the regional scenario of water management policy and a global scenario of climate change, and is integrated with global socioeconomic scenarios. We formulate a set of regional policy scenarios (“Business as Usual”, “Falling Behind” and “Closing the Gap”) and demonstrate how each of them corresponds to IPCC SRES scenarios, the latter used as an input to the General Circulation Models (GCMs). Then we discuss the relative effectiveness of the introduced scenarios for mitigating water problems in the region, taking into account the adaptation through changing water demand for agriculture. Finally, we introduce the results of multimodel analysis of GCM climate projections, especially in relation to the change in precipitation and frequency of droughts, and discuss the impact of climate change on future development of the region. In the same way as the Aral Sea basin, the Northern Great Plains is expected to be a region heavily impacted by climate change. We concentrate on

  10. Identifying Hotspots in Land and Water Resource Uses on the Way towards Achieving the Sustainable Development Goals

    NASA Astrophysics Data System (ADS)

    Palazzo, A.; Havlik, P.; Van Dijk, M.; Leclere, D.

    2017-12-01

    Agriculture plays a key role in achieving adequate food, water, and energy security (as summarized in the Sustainable Development Goals SDGs) as populations grow and incomes rise. Yet, agriculture is confronted with an enormous challenge to produce more using less. Land and water resources are projected to be strongly affected by climate change demand and agriculture faces growing competition in the demand for these resources. To formulate policies that contribute to achieving the SDGs, policy makers need assessments that can anticipate and navigate the trade-offs within the water/land/energy domain. Assessments that identify locations or hotspots where trade-offs between the multiple, competing users of resources may exist must consider both the local scale impacts of resource use as well as regional scale socioeconomic trends, policies, and international markets that further contribute to or mitigate the impacts of resource trade-offs. In this study, we quantify impacts of increased pressure on the land system to provide agricultural and bioenergy products under increasingly scarce water resources using a global economic and land use model, GLOBIOM. We model the supply and demand of agricultural products at a high spatial resolution in an integrated approach that considers the impacts of global change (socioeconomic and climatic) on the biophysical availability and the growing competition of land and water. We also developed a biodiversity module that relates changes in land uses to changes in local species richness and global species extinction risk. We find that water available for agriculture and freshwater ecosystems decreases due to climate change and growing demand from other sectors (domestic, energy and industry) (Fig 1). Climate change impacts will limit areas suitable for irrigation and may lead to an expansion of rainfed areas in biodiverse areas. Impacts on food security from climate change are significant in some regions (SSA and SA) and policies

  11. Sustainability assessment of regional water resources under the DPSIR framework

    NASA Astrophysics Data System (ADS)

    Sun, Shikun; Wang, Yubao; Liu, Jing; Cai, Huanjie; Wu, Pute; Geng, Qingling; Xu, Lijun

    2016-01-01

    Fresh water is a scarce and critical resource in both natural and socioeconomic systems. Increasing populations combined with an increasing demand for water resources have led to water shortages worldwide. Current water management strategies may not be sustainable, and comprehensive action should be taken to minimize the water budget deficit. Sustainable water resources management is essential because it ensures the integration of social, economic, and environmental issues into all stages of water resources management. This paper establishes the indicators to evaluate the sustainability of water utilization based on the Drive-Pressure-Status-Impact-Response (DPSIR) model. Based on the analytic hierarchy process (AHP) method, a comprehensive assessment of changes to the sustainability of the water resource system in the city of Bayannur was conducted using these indicators. The results indicate that there is an increase in the driving force of local water consumption due to changes in society, economic development, and the consumption structure of residents. The pressure on the water system increased, whereas the status of the water resources continued to decrease over the study period due to the increasing drive indicators. The local government adopted a series of response measures to relieve the decreasing water resources and alleviate the negative effects of the increasing driver in demand. The response measures improved the efficiency of water usage to a large extent, but the large-scale expansion in demands brought a rebounding effect, known as ;Jevons paradox; At the same time, the increasing emissions of industrial and agriculture pollutants brought huge pressures to the regional water resources environment, which caused a decrease in the sustainability of regional water resources. Changing medium and short-term factors, such as regional economic pattern, technological levels, and water utilization practices, can contribute to the sustainable utilization of

  12. Co-Adapting Water Demand and Supply to Changing Climate in Agricultural Water Systems, A Case Study in Northern Italy

    NASA Astrophysics Data System (ADS)

    Giuliani, M.; Li, Y.; Mainardi, M.; Arias Munoz, C.; Castelletti, A.; Gandolfi, C.

    2013-12-01

    Exponentially growing water demands and increasing uncertainties in the hydrologic cycle due to changes in climate and land use will challenge water resources planning and management in the next decade. Improving agricultural productivity is particularly critical, being this sector the one characterized by the highest water demand. Moreover, to meet projected growth in human population and per-capita food demand, agricultural production will have to significantly increase in the next decades, even though water availability is expected to decrease due to climate change impacts. Agricultural systems are called to adapt their strategies (e.g., changing crop patterns and the corresponding water demand, or maximizing the efficiency in the water supply modifying irrigation scheduling and adopting high efficiency irrigation techniques) in order to re-optimize the use of limited water resources. Although many studies have assessed climate change impacts on agricultural practices and water management, most of them assume few scenarios of water demand or water supply separately, while an analysis of their reciprocal feedbacks is still missing. Moreover, current practices are generally established according to historical agreements and normative constraints and, in the absence of dramatic failures, the shift toward more efficient water management is not easily achievable. In this work, we propose to activate an information loop between farmers and water managers to improve the effectiveness of agricultural water management practices by matching the needs of the farmers with the design of water supply strategies. The proposed approach is tested on a real-world case study, namely the Lake Como serving the Muzza-Bassa Lodigiana irrigation district (Italy). A distributed-parameter, dynamic model of the system allows to simulate crop growth and the final yield over a range of hydro-climatic conditions, irrigation strategies and water-related stresses. The spatial component of the

  13. Policy Sciences in Water Resources Research

    NASA Astrophysics Data System (ADS)

    Cummings, Ronald G.

    1984-07-01

    As the newly appointed Policy Sciences Editor for this journal, I would like to take this opportunity to introduce myself to WRR's readership as well as to offer a few comments concerning my views of policy sciences in water resources research. I am an economist working in the area of natural resources and environmental management. As such, I've spent a good part of my research career working with noneconomists. During 1969-1972, I worked in Mexico with hydrologists and engineers from Mexico's Water Resources Ministry in efforts to assess management/investment programs for reservoir systems and systems for interbasin water transfers. Between 1972 and 1975, while serving as Chairman of the Department of Resource Economics at the University of Rhode Island, my research involved collaborative efforts with biologists and soil scientists in studies concerning the conjunctive management of reservoirs for agricultural and lagoon systems and the control of salinity levels in soils and aquifers. Since 1975, at which time I joined the faculty at the University of New Mexico, I have worked with engineers at the Los Alamos National Laboratory in developing operation/management models for hot, dry rock geothermal systems and, more recently, with legal scholars and hydrologists in analyses of water rights issues. Thus I am comfortable with and appreciative of research conducted by my colleagues in systems engineering, operations research, and hydrology, as well as those in economics, law, and other social sciences.

  14. Alleviating Pressure on Water Resources: A new approach could be attempted

    NASA Astrophysics Data System (ADS)

    Sun, Shikun; Wang, Yubao; Wang, Feifei; Liu, Jing; Luan, Xiaobo; Li, Xiaolei; Zhou, Tianwa; Wu, Pute

    2015-09-01

    Water and food safety are two major challenges which the world faces today. Traditional water management focuses on the reduction of water use through improvements in water saving technologies. However, quantitative research is needed to evaluate the effects of changing food consumption patterns on water resources. Here we report the water saving effects of changing diet pattern of the major crops and animal products in mainland China. By using the concepts of water footprint (WF) per weight unit and per calorie unit, provided by 13 primary crop and animal products, the WFs of the 13 agricultural products in each province are compared, and their water/energy conversion efficiencies are analyzed. Then, impacts of different scenarios of changing diet pattern on water consumption were explored. Results show that there are obvious differences between the WF per weight and calorie unit provided by crop and animal products due to the nutritional properties of the agricultural products. Promoting water savings from the food consumption side could give a positive feedback on water consumption. Scenario analysis of adjustments to the diet pattern proves that it is potentially feasible to reach the objective of alleviating stress on water resources while guaranteeing nutritional value of the residents.

  15. Alleviating Pressure on Water Resources: A new approach could be attempted.

    PubMed

    Sun, Shikun; Wang, Yubao; Wang, Feifei; Liu, Jing; Luan, Xiaobo; Li, Xiaolei; Zhou, Tianwa; Wu, Pute

    2015-09-14

    Water and food safety are two major challenges which the world faces today. Traditional water management focuses on the reduction of water use through improvements in water saving technologies. However, quantitative research is needed to evaluate the effects of changing food consumption patterns on water resources. Here we report the water saving effects of changing diet pattern of the major crops and animal products in mainland China. By using the concepts of water footprint (WF) per weight unit and per calorie unit, provided by 13 primary crop and animal products, the WFs of the 13 agricultural products in each province are compared, and their water/energy conversion efficiencies are analyzed. Then, impacts of different scenarios of changing diet pattern on water consumption were explored. Results show that there are obvious differences between the WF per weight and calorie unit provided by crop and animal products due to the nutritional properties of the agricultural products. Promoting water savings from the food consumption side could give a positive feedback on water consumption. Scenario analysis of adjustments to the diet pattern proves that it is potentially feasible to reach the objective of alleviating stress on water resources while guaranteeing nutritional value of the residents.

  16. Alleviating Pressure on Water Resources: A new approach could be attempted

    PubMed Central

    Sun, Shikun; Wang, Yubao; Wang, Feifei; Liu, Jing; Luan, Xiaobo; Li, Xiaolei; Zhou, Tianwa; Wu, Pute

    2015-01-01

    Water and food safety are two major challenges which the world faces today. Traditional water management focuses on the reduction of water use through improvements in water saving technologies. However, quantitative research is needed to evaluate the effects of changing food consumption patterns on water resources. Here we report the water saving effects of changing diet pattern of the major crops and animal products in mainland China. By using the concepts of water footprint (WF) per weight unit and per calorie unit, provided by 13 primary crop and animal products, the WFs of the 13 agricultural products in each province are compared, and their water/energy conversion efficiencies are analyzed. Then, impacts of different scenarios of changing diet pattern on water consumption were explored. Results show that there are obvious differences between the WF per weight and calorie unit provided by crop and animal products due to the nutritional properties of the agricultural products. Promoting water savings from the food consumption side could give a positive feedback on water consumption. Scenario analysis of adjustments to the diet pattern proves that it is potentially feasible to reach the objective of alleviating stress on water resources while guaranteeing nutritional value of the residents. PMID:26364756

  17. Seasonal water demand in Benin's agriculture.

    PubMed

    Gruber, Ina; Kloos, Julia; Schopp, Marion

    2009-01-01

    This paper describes and analyzes agricultural water demands for Benin, West Africa. Official statistical data regarding water quantities as well as knowledge on factors influencing the demand for water are extremely rare and often reveal national trends without considering regional or local differences. Thus policy makers usually work with this estimated and aggregated data, which make it very difficult to adequately address regional and local development goals. In the framework of an interdisciplinary analysis the following paper provides insight into water quantification and detects water problems under seasonal aspects for agriculture according to regional differences. Following the definition of the Food and Agriculture Organization [FAO, 1995. Water Report 7. Irrigation in Africa in Figures. Rome] agriculture is divided into irrigation and livestock watering, which were analyzed using different field methods. The study reveals that although water supply in absolute terms seems to be sufficient in Benin, seasonal water problems occur both in irrigation and in livestock management. Thus arising seasonal water problems are not the consequence of general water scarcity but more linked to three major problems. These problems emerge from difficulties in technical equipment and financial means of farmers, from the specific local conditions influencing the access to water sources and the extraction of groundwater, and third from the overall low organizational structure of water management. Therefore regional differences as well as a general improvement of knowledge on better management structures, technical know how, and access to credits for farmers need to be considered in national strategies in order to improve the agricultural water usage in Benin.

  18. A soil water based index as a suitable agricultural drought indicator

    NASA Astrophysics Data System (ADS)

    Martínez-Fernández, J.; González-Zamora, A.; Sánchez, N.; Gumuzzio, A.

    2015-03-01

    Currently, the availability of soil water databases is increasing worldwide. The presence of a growing number of long-term soil moisture networks around the world and the impressive progress of remote sensing in recent years has allowed the scientific community and, in the very next future, a diverse group of users to obtain precise and frequent soil water measurements. Therefore, it is reasonable to consider soil water observations as a potential approach for monitoring agricultural drought. In the present work, a new approach to define the soil water deficit index (SWDI) is analyzed to use a soil water series for drought monitoring. In addition, simple and accurate methods using a soil moisture series solely to obtain soil water parameters (field capacity and wilting point) needed for calculating the index are evaluated. The application of the SWDI in an agricultural area of Spain presented good results at both daily and weekly time scales when compared to two climatic water deficit indicators (average correlation coefficient, R, 0.6) and to agricultural production. The long-term minimum, the growing season minimum and the 5th percentile of the soil moisture series are good estimators (coefficient of determination, R2, 0.81) for the wilting point. The minimum of the maximum value of the growing season is the best estimator (R2, 0.91) for field capacity. The use of these types of tools for drought monitoring can aid the better management of agricultural lands and water resources, mainly under the current scenario of climate uncertainty.

  19. A conceptual framework for effectively anticipating water-quality changes resulting from changes in agricultural activities

    USGS Publications Warehouse

    Capel, Paul D.; Wolock, David M.; Coupe, Richard H.; Roth, Jason L.

    2018-01-10

    Agricultural activities can affect water quality and the health of aquatic ecosystems; many water-quality issues originate with the movement of water, agricultural chemicals, and eroded soil from agricultural areas to streams and groundwater. Most agricultural activities are designed to sustain or increase crop production, while some are designed to protect soil and water resources. Numerous soil- and water-protection practices are designed to reduce the volume and velocity of runoff and increase infiltration. This report presents a conceptual framework that combines generalized concepts on the movement of water, the environmental behavior of chemicals and eroded soil, and the designed functions of various agricultural activities, as they relate to hydrology, to create attainable expectations for the protection of—with the goal of improving—water quality through changes in an agricultural activity.The framework presented uses two types of decision trees to guide decision making toward attainable expectations regarding the effectiveness of changing agricultural activities to protect and improve water quality in streams. One decision tree organizes decision making by considering the hydrologic setting and chemical behaviors, largely at the field scale. This decision tree can help determine which agricultural activities could effectively protect and improve water quality in a stream from the movement of chemicals, or sediment, from a field. The second decision tree is a chemical fate accounting tree. This decision tree helps set attainable expectations for the permanent removal of sediment, elements, and organic chemicals—such as herbicides and insecticides—through trapping or conservation tillage practices. Collectively, this conceptual framework consolidates diverse hydrologic settings, chemicals, and agricultural activities into a single, broad context that can be used to set attainable expectations for agricultural activities. This framework also enables

  20. Using NASA Products of the Water Cycle for Improved Water Resources Management

    NASA Astrophysics Data System (ADS)

    Toll, D. L.; Doorn, B.; Engman, E. T.; Lawford, R. G.

    2010-12-01

    NASA Water Resources works within the Earth sciences and GEO community to leverage investments of space-based observation and modeling results including components of the hydrologic cycle into water resources management decision support tools for the goal towards the sustainable use of water. These Earth science hydrologic related observations and modeling products provide a huge volume of valuable data in both near-real-time and extended back nearly 50 years. Observations of this type enable assessment of numerous water resources management issues including water scarcity, extreme events of drought and floods, and water quality. Examples of water cycle estimates make towards the contributions to the water management community include snow cover and snowpack, soil moisture, evapotranspiration, precipitation, streamflow and ground water. The availability of water is also contingent on the quality of water and hence water quality is an important part of NASA Water Resources. Water quality activities include both nonpoint source (agriculture land use, ecosystem disturbances, impervious surfaces, etc.) and direct remote sensing ( i.e., turbidity, algae, aquatic vegetation, temperature, etc.). . The NASA Water Resources Program organizes its projects under five functional themes: 1) stream-flow and flood forecasting; 2) water consumptive use and irrigation (includes evapotranspiration); 3) drought; 4) water quality; and 5) climate impacts on water resources. Currently NASA Water Resources is supporting 21 funded projects with 11 additional projects being concluded. To maximize the use of NASA water cycle measurements end to projects are supported with strong links with decision support systems. The NASA Water Resources Program works closely with other government agencies NOAA, USDA-FAS, USGS, AFWA, USAID, universities, and non-profit, international, and private sector organizations. International water cycle applications include: 1) Famine Early Warning System Network

  1. Renewable Natural Resources/Agriculture Curriculum. Secondary and Postsecondary Articulated Curriculum.

    ERIC Educational Resources Information Center

    Alaska State Dept. of Education, Juneau. Div. of Adult and Vocational Education.

    This competency-based curriculum is designed to be a handbook for courses in renewable natural resources/agriculture in Alaska. It details the competencies, developed through a survey of renewable natural resources/agriculture employers in Alaska, that such occupations require. The handbook is organized in six sections. Section I introduces the…

  2. A framework for unravelling the complexities of unsustainable water resource use

    NASA Astrophysics Data System (ADS)

    Dermody, Brian; Bierkens, Marc; Wassen, Martin; Dekker, Stefan

    2016-04-01

    The majority of unsustainable water resource use is associated with food production, with the agricultural sector accounting for up to 70% of total freshwater use by humans. Water resource use in food production emerges as a result of dynamic interactions between humans and their environment in importing and exporting regions as well as the physical and socioeconomic trade infrastructure linking the two. Thus in order to understand unsustainable water resource use, it is essential to understand the complex socioecological food production and trade system. We present a modelling framework of the food production and trade system that facilitates an understanding of complex socioenvironmental processes that lead to unsustainable water resource use. Our framework is based on a coupling of the global hydrological model PC Raster Global Water Balance (PCR-GLOBWB) with a multi-agent socioeconomic food production and trade network. In our framework, agents perceive environmental conditions. They make food supply decisions based upon those perceptions and the heterogeneous socioeconomic conditions in which they exist. Agent decisions modify land and water resources. Those environmental changes feedback to influence decision making further. The framework presented has the potential to go beyond a diagnosis of the causes of unsustainable water resource and provide pathways towards a sustainable food system in terms of water resources.

  3. Water supply, demand, and quality indicators for assessing the spatial distribution of water resource vulnerability in the Columbia River Basin

    USGS Publications Warehouse

    Chang, Heejun; Jung, Il-Won; Strecker, Angela L.; Wise, Daniel; Lafrenz, Martin; Shandas, Vivek; ,; Yeakley, Alan; Pan, Yangdong; Johnson, Gunnar; Psaris, Mike

    2013-01-01

    We investigated water resource vulnerability in the US portion of the Columbia River basin (CRB) using multiple indicators representing water supply, water demand, and water quality. Based on the US county scale, spatial analysis was conducted using various biophysical and socio-economic indicators that control water vulnerability. Water supply vulnerability and water demand vulnerability exhibited a similar spatial clustering of hotspots in areas where agricultural lands and variability of precipitation were high but dam storage capacity was low. The hotspots of water quality vulnerability were clustered around the main stem of the Columbia River where major population and agricultural centres are located. This multiple equal weight indicator approach confirmed that different drivers were associated with different vulnerability maps in the sub-basins of the CRB. Water quality variables are more important than water supply and water demand variables in the Willamette River basin, whereas water supply and demand variables are more important than water quality variables in the Upper Snake and Upper Columbia River basins. This result suggests that current water resources management and practices drive much of the vulnerability within the study area. The analysis suggests the need for increased coordination of water management across multiple levels of water governance to reduce water resource vulnerability in the CRB and a potentially different weighting scheme that explicitly takes into account the input of various water stakeholders.

  4. USDA's national institute of food and agriculture (NIFA): engaging knowledge and technology, incentives and policies to promote appropriate decision making in the management of water and watersheds

    Treesearch

    James Dobrowolski

    2016-01-01

    Agriculture, across the value chain, is the greatest consumptive user of water resources in the United States and around the world. Perhaps the greatest challenge facing agricultural producers will be increased agricultural production to meet rising demand in the face of limited water resources.

  5. Sustainability of Italian Agriculture: A Methodological Approach for Assessing Crop Water Footprint at Local Scale

    NASA Astrophysics Data System (ADS)

    Altobelli, F.; Dalla Marta, A.; Cimino, O.; Orlandini, S.; Natali, F.

    2014-12-01

    In a world where population is rapidly growing and where several planetary boundaries (i.e. climate change, biodiversity loss and nitrogen cycle) have already been crossed, agriculture is called to respond to the needs of food security through a sustainable use of natural resources. In particular, water is one of the main elements of fertility so the agricultural activity, and the whole agro-food chain, is one of the productive sectors more dependent on water resource and it is able to affect, at regional level, its availability for all the other sectors. In this study, we proposed a methodology for assessing the green and blue water footprint of the main Italian crops typical of the different geographical areas (northwest, northeast, center, and south) based on data extracted from Italian Farm Accountancy Data Network (FADN). FADN is an instrument for evaluating the income of agricultural holdings and the impacts of the Common Agricultural Policy. Crops were selected based on incidence of cultivated area on the total arable land of FADN farms net. Among others, the database contains data on irrigation management (irrigated surface, length of irrigation season, volumes of water, etc.), and crop production. Meteorological data series were obtained by a combination of local weather stations and ECAD E-obs spatialized database. Crop water footprints were evaluated against water availability and risk of desertification maps of Italy. Further, we compared the crop water footprints obtained with our methodology with already existing data from similar studies in order to highlight the effects of spatial scale and level of detail of available data.

  6. Effect on water resources from upstream water diversion in the Ganges basin.

    PubMed

    Adel, M M

    2001-01-01

    Bangladesh faces at least 30 upstream water diversion constructions of which Farakka Barrage is the major one. The effects of Farakka Barrage on water resources, socioeconomy, and culture have been investigated downstream in the basins of the Ganges and its distributaries. A diversion of up to 60% of the Ganges water over 25 yr has caused (i) reduction of water in surface water resources, (ii) increased dependence on ground water, (iii) destruction of the breeding and raising grounds for 109 species of Gangetic fishes and other aquatic species and amphibians, (iv) increased malnutrition, (v) deficiency in soil organic matter content, (vi) change in the agricultural practices, (vii) eradication of inland navigable routes, (viii) outbreak of waterborne diseases, (ix) loss of professions, and (x) obstruction to religious observances and pastimes. Further, arsenopyrites buried in the prebarrage water table have come in contact with air and formed water-soluble compounds of arsenic. Inadequate recharging of ground water hinders the natural cleansing of arsenic, and threatens about 75,000,000 lives who are likely to use water contaminated with up to 2 mg/L of arsenic. Furthermore, the depletion of surface water resources has caused environmental heating and cooling effects. Apart from these effects, sudden releases of water by the barrage during the flood season cause devestating floods. In consideration of such a heavy toll for the areas downstream, strict international rules have to be laid down to preserve the riparian ecosystems.

  7. Blue water scarcity and the economic impacts of future agricultural trade and demand

    NASA Astrophysics Data System (ADS)

    Schmitz, Christoph; Lotze-Campen, Hermann; Gerten, Dieter; Dietrich, Jan Philipp; Bodirsky, Benjamin; Biewald, Anne; Popp, Alexander

    2013-06-01

    An increasing demand for agricultural goods affects the pressure on global water resources over the coming decades. In order to quantify these effects, we have developed a new agroeconomic water scarcity indicator, considering explicitly economic processes in the agricultural system. The indicator is based on the water shadow price generated by an economic land use model linked to a global vegetation-hydrology model. Irrigation efficiency is implemented as a dynamic input depending on the level of economic development. We are able to simulate the heterogeneous distribution of water supply and agricultural water demand for irrigation through the spatially explicit representation of agricultural production. This allows in identifying regional hot spots of blue water scarcity and explicit shadow prices for water. We generate scenarios based on moderate policies regarding future trade liberalization and the control of livestock-based consumption, dependent on different population and gross domestic product (GDP) projections. Results indicate increased water scarcity in the future, especially in South Asia, the Middle East, and north Africa. In general, water shadow prices decrease with increasing liberalization, foremost in South Asia, Southeast Asia, and the Middle East. Policies to reduce livestock consumption in developed countries not only lower the domestic pressure on water but also alleviate water scarcity to a large extent in developing countries. It is shown that one of the two policy options would be insufficient for most regions to retain water scarcity in 2045 on levels comparable to 2005.

  8. Introducing perennial biomass crops into agricultural landscapes to address water quality challenges and provide other environmental services: Integrating perennial bioenergy crops into agricultural landscapes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cacho, J. F.; Negri, M. C.; Zumpf, C. R.

    The world is faced with a difficult multiple challenge of meeting nutritional, energy, and other basic needs, under a limited land and water budget, of between 9 and 10 billion people in the next three decades, mitigating impacts of climate change, and making agricultural production resilient. More productivity is expected from agricultural lands, but intensification of production could further impact the integrity of our finite surface water and groundwater resources. Integrating perennial bioenergy crops in agricultural lands could provide biomass for biofuel and potential improvements on the sustainability of commodity crop production. This article provides an overview of ways inmore » which research has shown that perennial bioenergy grasses and short rotation woody crops can be incorporated into agricultural production systems with reduced indirect land use change, while increasing water quality benefits. Current challenges and opportunities as well as future directions are also highlighted.« less

  9. A socio-hydrologic model of coupled water-agriculture dynamics with emphasis on farm size.

    NASA Astrophysics Data System (ADS)

    Brugger, D. R.; Maneta, M. P.

    2015-12-01

    Agricultural land cover dynamics in the U.S. are dominated by two trends: 1) total agricultural land is decreasing and 2) average farm size is increasing. These trends have important implications for the future of water resources because 1) growing more food on less land is due in large part to increased groundwater withdrawal and 2) larger farms can better afford both more efficient irrigation and more groundwater access. However, these large-scale trends are due to individual farm operators responding to many factors including climate, economics, and policy. It is therefore difficult to incorporate the trends into watershed-scale hydrologic models. Traditional scenario-based approaches are valuable for many applications, but there is typically no feedback between the hydrologic model and the agricultural dynamics and so limited insight is gained into the how agriculture co-evolves with water resources. We present a socio-hydrologic model that couples simplified hydrologic and agricultural economic dynamics, accounting for many factors that depend on farm size such as irrigation efficiency and returns to scale. We introduce an "economic memory" (EM) state variable that is driven by agricultural revenue and affects whether farms are sold when land market values exceed expected returns from agriculture. The model uses a Generalized Mixture Model of Gaussians to approximate the distribution of farm sizes in a study area, effectively lumping farms into "small," "medium," and "large" groups that have independent parameterizations. We apply the model in a semi-arid watershed in the upper Columbia River Basin, calibrating to data on streamflow, total agricultural land cover, and farm size distribution. The model is used to investigate the sensitivity of the coupled system to various hydrologic and economic scenarios such as increasing market value of land, reduced surface water availability, and increased irrigation efficiency in small farms.

  10. Study on characteristics of water resources in Beijing in recent 15 years

    NASA Astrophysics Data System (ADS)

    Chuan, L. M.; Zheng, H. G.; Zhao, J. J.; Wang, A. L.; Zhang, X. J.

    2018-02-01

    In order to understand the characteristics of water supply and water usage in Beijing in recent 15 years, a variety of statistical datasets were collected and field investigations were carried out, to analyze the total water resource, the characteristics and trends of water resource supply, utilization and distribution during 2000-2014. The results showed that the total amount of water resources in Beijing is maintained at 1.61~3.95 billion m3, and the surface water accounts for about 1/3, and the groundwater accounts for 2/3. Agricultural water and living water were the dominated consumption in the past 15 years in Beijing, accounted for 35.3% and 38.9% of the total amount, followed by industrial water, which accounting for 17.9% of total water consumption, and water used in environment is relatively small, only accounting for 7.8% of the total amount. This study can provide theoretical support for the establishment and management of water conservation policies and the rational utilization of water resources in Beijing.

  11. A water resource assessment of the playa lakes of the Texas High Plains

    USDA-ARS?s Scientific Manuscript database

    Texas Water Development Board (TWDB) staff are studying the water-resource potential of playa lakes in the Texas High Plains in partnership with the U. S. Department of Agriculture— Agricultural Research Service and Texas Tech University. Phase 1 of the research seeks to measure the volume of water ...

  12. Optimizing Land and Water Resources for Agriculture in the Krishna River Basin, India

    NASA Astrophysics Data System (ADS)

    Jain Figueroa, A.; McLaughlin, D.

    2017-12-01

    Many estimates suggest that the world needs a 50% increase in food production to meet the demands of the 2050 global population. Cropland expansion and yield improvements are unlikely to be sufficient and could have adverse environmental impacts. This work focuses on reallocating limited land and water resources to improve efficiency and increase benefits. We accomplish this by combining optimization methods, global data sources, and hydrologic modeling to identify opportunities for increasing crop production of subsistence and/or cash crops, subject to sustainability contraints. Our approach identifies the tradeoffs between the population that can be fed with local resources, revenue from crop exports, and environmental benefit from riparian flows. We focus our case study on India's Krishna river basin, a semi-arid region with a high proportion of subsistence farmers, a diverse crop mix, and increasing stress on water resources.

  13. Assessment of Agricultural Water Management in Punjab, India using Bayesian Methods

    NASA Astrophysics Data System (ADS)

    Russo, T. A.; Devineni, N.; Lall, U.; Sidhu, R.

    2013-12-01

    The success of the Green Revolution in Punjab, India is threatened by the declining water table (approx. 1 m/yr). Punjab, a major agricultural supplier for the rest of India, supports irrigation with a canal system and groundwater, which is vastly over-exploited. Groundwater development in many districts is greater than 200% the annual recharge rate. The hydrologic data required to complete a mass-balance model are not available for this region, therefore we use Bayesian methods to estimate hydrologic properties and irrigation requirements. Using the known values of precipitation, total canal water delivery, crop yield, and water table elevation, we solve for each unknown parameter (often a coefficient) using a Markov chain Monte Carlo (MCMC) algorithm. Results provide regional estimates of irrigation requirements and groundwater recharge rates under observed climate conditions (1972 to 2002). Model results are used to estimate future water availability and demand to help inform agriculture management decisions under projected climate conditions. We find that changing cropping patterns for the region can maintain food production while balancing groundwater pumping with natural recharge. This computational method can be applied in data-scarce regions across the world, where agricultural water management is required to resolve competition between food security and changing resource availability.

  14. Development of a risk-based index for source water protection planning, which supports the reduction of pathogens from agricultural activity entering water resources.

    PubMed

    Goss, Michael; Richards, Charlene

    2008-06-01

    Source water protection planning (SWPP) is an approach to prevent contamination of ground and surface water in watersheds where these resources may be abstracted for drinking or used for recreation. For SWPP the hazards within a watershed that could contribute to water contamination are identified together with the pathways that link them to the water resource. In rural areas, farms are significant potential sources of pathogens. A risk-based index can be used to support the assessment of the potential for contamination following guidelines on safety and operational efficacy of processes and practices developed as beneficial approaches to agricultural land management. Evaluation of the health risk for a target population requires knowledge of the strength of the hazard with respect to the pathogen load (massxconcentration). Manure handling and on-site wastewater treatment systems form the most important hazards, and both can comprise confined and unconfined source elements. There is also a need to understand the modification of pathogen numbers (attenuation) together with characteristics of the established pathways (surface or subsurface), which allow the movement of the contaminant species from a source to a receptor (water source). Many practices for manure management have not been fully evaluated for their impact on pathogen survival and transport in the environment. A key component is the identification of potential pathways of contaminant transport. This requires the development of a suitable digital elevation model of the watershed for surface movement and information on local groundwater aquifer systems for subsurface flows. Both require detailed soils and geological information. The pathways to surface and groundwater resources can then be identified. Details of land management, farm management practices (including animal and manure management) and agronomic practices have to be obtained, possibly from questionnaires completed by each producer within the

  15. Evaluating Impacts of Land Use/Land Cover Change on Water Resources in Semiarid Regions

    NASA Astrophysics Data System (ADS)

    Scanlon, B. R.; Faunt, C. C.; Pool, D. R.; Reedy, R. C.

    2017-12-01

    Land use/land cover (LU/LC) changes play an integral role in water resources by controlling the partitioning of water at the land surface. Here we evaluate impacts of changing LU/LC on water resources in response to climate variation and change and land use change related to agriculture using data from semiarid regions in the southwestern U.S. Land cover changes in response to climate can amplify or dampen climate impacts on water resources. Changes from wet Pleistocene to much drier Holocene climate resulted in expansion of perennial vegetation, amplifying climate change impacts on water resources by reducing groundwater recharge as shown in soil profiles in the southwestern U.S.. In contrast, vegetation response to climate extremes, including droughts and floods, dampen impacts of these extremes on water resources, as shown by water budget monitoring in the Mojave Desert. Agriculture often involves changes from native perennial vegetation to annual crops increasing groundwater recharge in many semiarid regions. Irrigation based on conjunctive use of surface water and groundwater increases water resource availability, as shown in the Central Valley of California and in southern Arizona. Surface water irrigation in these regions is enhanced by water transported from more humid settings through extensive pipelines. These projects have reversed long-term declining groundwater trends in some regions. While irrigation design has often focused on increased efficiency, "more crop per drop", optimal water resource management may benefit more from inefficient (e.g. flood irrigation) surface-water irrigation combined with efficient (e.g. subsurface drip) irrigation to maximize groundwater recharge, as seen in parts of the Central Valley. Flood irrigation of perennial crops, such as almonds and vineyards, during winter is being considered in the Central Valley to enhance groundwater recharge. Managed aquifer recharge can be considered a special case of conjunctive use of

  16. Imagined Communities, Contested Watersheds: Challenges to Integrated Water Resources Management in Agricultural Areas

    ERIC Educational Resources Information Center

    Ferreyra, Cecilia; de Loe, Rob C.; Kreutzwiser, Reid D.

    2008-01-01

    Integrated water resources management is one of the major bottom-up alternatives that emerged during the 1980s in North America as part of the trend towards more holistic and participatory styles of environmental governance. It aims to protect surface and groundwater resources by focusing on the integrated and collaborative management of land and…

  17. Resource Guide to Educational Materials about Agriculture. A Project of Agriculture in the Classroom.

    ERIC Educational Resources Information Center

    Department of Agriculture, Washington, DC. Office of the Secretary.

    Designed to help teachers bring more information about agriculture into their classrooms, this resource guide provides a listing of materials relating to agriculture available from private and public sources. It describes materials available from more than 300 organizations and publishers who responded to a request regarding materials they were…

  18. Effects of Water-Management Strategies on Water Resources in the Pawcatuck River Basin, Southwestern Rhode Island and Southeastern Connecticut

    USGS Publications Warehouse

    Breault, Robert F.; Zarriello, Phillip J.; Bent, Gardner C.; Masterson, John P.; Granato, Gregory E.; Scherer, J. Eric; Crawley, Kathleen M.

    2009-01-01

    The Pawcatuck River Basin in southwestern Rhode Island and southeastern Connecticut is an important high-quality water resource for domestic and public supplies, irrigation, recreation, and the aquatic ecosystem. Concerns about the effects of water withdrawals on aquatic habitat in the basin have prompted local, State, and Federal agencies to explore water-management strategies that minimize the effects of withdrawals on the aquatic habitat. As part of this process, the U.S. Geological Survey in cooperation with the U.S. Department of Agriculture Natural Resources Conservation Service and the Rhode Island Water Resources Board completed a study to assess the effects of current (2000-04) and potential water withdrawals on streamflows and groundwater levels using hydrologic simulation models developed for the basin. The major findings of the model simulations are: *Moving highly variable seasonal irrigation withdrawals from streams to groundwater wells away from streams reduces short-term fluctuations in streamflow and increases streamflow in the summer when flows are lowest. This occurs because of the inherent time lag between when water is withdrawn from the aquifer and when it affects streamflow. *A pumped well in the vicinity of small streams indicates that if withdrawals exceed available streamflow, groundwater levels drop substantially as a consequence of water lost from aquifer storage, which may reduce the time wetlands and vernal pools are saturated, affecting the animal and plant life that depend on these habitats. *The effects of pumping on water resources such as ponds, streams, and wetlands can be minimized by relocating pumping wells, implementing seasonal pumping schemes that utilize different wells and pumping rates, or both. *The effects of projected land-use change, mostly from forest to low- and medium density housing, indicate only minor changes in streamflow at the subbasin scale examined; however, at a local scale, high flows could increase, and

  19. Agriculture in the Mississippi River Basin; effects on water quality, aquatic biota, and watershed conservation.

    USDA-ARS?s Scientific Manuscript database

    Agriculture has been identified as a potential leading source of nutrients (nitrogen and phosphorus) and sediment enrichment of water bodies within the Mississippi River basin (MRB) and contributes to impaired water quality and biological resources in the MRB and the northern Gulf of Mexico (GOM). T...

  20. More Water Resources but Less for Irrigation: Adaptation Strategy of the Yellow River in a Changing Environment

    NASA Astrophysics Data System (ADS)

    Tang, Q.; Yin, Y. Y.

    2015-12-01

    The Yellow River is the primary source of freshwater to the northern China. Increasing population and socio-economic development have put great pressure on water resources of the river basin. The anticipated climate and socio-economic changes may further increase water stress. Development of adaptation strategies would have significant implications for water and food security of this region. In this study, the outputs of multiple hydrological models forced with the bias-corrected climatic variables from multiple global climate models were used to assess the change in renewable water resources of the river basin in the 21st century. The outputs of multiple crop models were used to assess the change in agricultural water demand. The domestic and industrial water demands were estimated based on the future socio-economic conditions under the Shared Socio-economic Pathways (SSPs). Besides basic ecosystem needs for water which must be met, the water use in domestic and industrial sectors is considered to have a higher priority than the agricultural water use when water is insufficient. The results show that the renewable water resources of the basin would increase as global mean temperature increases while the water demand would grow much more rapidly, largely due to water demand increase in domestic and industrial sectors. In most of the sub-basins of the Yellow River basin, the available water resources can not sustain all the water use sectors starting from the next a few decades. As more water resources would be appropriated by domestic and industrial sectors, a part of irrigated area had to be converted to rainfed agriculture which led to a large reduction in food production. This study highlights the linked water and food security in a changing environment and suggests that the trade-off should be considered when developing regional adaptation strategies.

  1. An Assessment of Regional Water Resources and Agricultural Sustainability in the Mississippi River Alluvial Aquifer System of Mississippi and Arkansas Under Current and Future Climate

    NASA Astrophysics Data System (ADS)

    Rigby, J.; Reba, M.

    2011-12-01

    The Lower Mississippi River Alluvial Plain is a highly productive agricultural region for rice, soy beans, and cotton that depends heavily on irrigation. Development of the Mississippi River Alluvial Aquifer (MRAA), one of the more prolific agricultural aquifers in the country, has traditionally been the primary source for irrigation in the region yielding over 1,100 Mgal/day to irrigation wells. Increasingly, the realities of changing climate and rapidly declining water tables have highlighted the necessity for new water management practices. Tail-water recovery and reuse is a rapidly expanding practice due in part to the efforts and cost-sharing of the NRCS, but regional studies of the potential for such practices to alleviate groundwater mining under current and future climate are lacking. While regional studies of aquifer geology have long been available, including assessments of regional groundwater flow, much about the aquifer is still not well understood including controls on recharge rates, a crucial component of water management design. We review the trends in regional availability of surface and groundwater resources, their current status, and the effects of recent changes in management practices on groundwater decline in Mississippi and Arkansas. Global and regional climate projections are used to assess scenarios of sustainable aquifer use under current land use and management along with the potential for more widely practiced surface water capture and reuse to alleviate groundwater decline. Finally, we highlight crucial knowledge gaps and challenges associated with the development of water management practices for sustainable agricultural use in the region.

  2. Augmentation of Water Resources Potential and Cropping Intensification Through Watershed Programs.

    PubMed

    Mondal, Biswajit; Singh, Alka; Singh, S D; Kalra, B S; Samal, P; Sinha, M K; Ramajayam, D; Kumar, Suresh

    2018-02-01

      This paper presents the biophysical impact of various interventions made under watershed development programs, in terms of the creation of additional water resources, and resultant changes in land use and cropping patterns in the Bundelkhand region of Madhya Pradesh State, India. Both primary and secondary data gathered from randomly selected watersheds and their corresponding control villages were used in this study. Analysis revealed that emphasis was given primarily to the creation of water resources potential during implementation of the programs, which led to augmentation of surface and groundwater availability for both irrigation and non-agricultural purposes. In addition, other land based interventions for soil and moisture conservation, plantation activities, and so forth, were taken up on both arable and nonarable land, which helped to improve land slope and land use, cropping pattern, agricultural productivity, and vegetation cover.

  3. Higher Resolution for Water Resources Studies

    NASA Astrophysics Data System (ADS)

    Dumenil-Gates, L.

    2009-12-01

    The Earth system science community is providing an increasing range of science results for the benefit of achieving the Millennium Development Goals. In addressing questions such as reducing poverty and hunger, achieving sustainable global development, or by defining adaptation strategies for climate change, one of the key issues will be the quantitative description and understanding of the global water cycle, which will allow useful projections of available future water resources for several decades ahead. The quantities of global water cycle elements that we observe today - and deal with in hydrologic and atmospheric modeling - are already very different from the natural flows as human influence on the water cycle by storage, consumption and edifice has been going on for millennia, and climate change is expected to add more uncertainty. In this case Tony Blair’s comment that perhaps the most worrying problem is climate change does not cover the full story. We shall also have to quantify how the human demand for water resources and alterations of the various elements of the water cycle may proceed in the future: will there be enough of the precious water resource to sustain current and future demands by the various sectors involved? The topics that stakeholders and decision makers concerned with managing water resources are interested in cover a variety of human uses such as agriculture, energy production, ecological flow requirements to sustain biodiversity and ecosystem services, or human cultural aspects, recreation and human well-being - all typically most relevant at the regional or local scales, this being quite different from the relatively large-scale that the IPCC assessment addresses. Halfway through the Millennium process, the knowledge base of the global water cycle is still limited. The sustainability of regional water resources is best assessed through a research program that combines high-resolution climate and hydrologic models for expected

  4. 25 CFR 161.200 - Is an Indian agricultural resource management plan required?

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 25 Indians 1 2010-04-01 2010-04-01 false Is an Indian agricultural resource management plan... resource management plan required? (a) Yes, Navajo Partitioned Lands must be managed in accordance with the goals and objectives in the agricultural resource management plan developed by the Navajo Nation, or by...

  5. Water limited agriculture in Africa: Climate change sensitivity of large scale land investments

    NASA Astrophysics Data System (ADS)

    Rulli, M. C.; D'Odorico, P.; Chiarelli, D. D.; Davis, K. F.

    2015-12-01

    The past few decades have seen unprecedented changes in the global agricultural system with a dramatic increase in the rates of food production fueled by an escalating demand for food calories, as a result of demographic growth, dietary changes, and - more recently - new bioenergy policies. Food prices have become consistently higher and increasingly volatile with dramatic spikes in 2007-08 and 2010-11. The confluence of these factors has heightened demand for land and brought a wave of land investment to the developing world: some of the more affluent countries are trying to secure land rights in areas suitable for agriculture. According to some estimates, to date, roughly 38 million hectares have been acquired worldwide by large scale investors, 16 million of which in Africa. More than 85% of large scale land acquisitions in Africa are by foreign investors. Many land deals are motivated not only by the need for fertile land but for the water resources required for crop production. Despite some recent assessments of the water appropriation associated with large scale land investments, their impact on the water resources of the target countries under present conditions and climate change scenarios remains poorly understood. Here we investigate irrigation water requirements by various crops planted in the acquired land as an indicator of the pressure likely placed by land investors on ("blue") water resources of target regions in Africa and evaluate the sensitivity to climate changes scenarios.

  6. Evaluation of Water Resources Carrying Capacity in Shandong Province Based on Fuzzy Comprehensive Evaluation

    NASA Astrophysics Data System (ADS)

    Zhao, Qiang; Gao, Qian; Zhu, Mingyue; Li, Xiumei

    2018-06-01

    Water resources carrying capacity is the maximum available water resources supporting by the social and economic development. Based on investigating and statisticing on the current situation of water resources in Shandong Province, this paper selects 13 factors including per capita water resources, water resources utilization, water supply modulus, rainfall, per capita GDP, population density, per capita water consumption, water consumption per million yuan, The water consumption of industrial output value, the agricultural output value of farmland, the irrigation rate of cultivated land, the water consumption rate of ecological environment and the forest coverage rate were used as the evaluation factors. Then,the fuzzy comprehensive evaluation model was used to analyze the water resources carrying capacity Force status evaluation. The results showed : The comprehensive evaluation results of water resources in Shandong Province were lower than 0.6 in 2001-2009 and higher than 0.6 in 2010-2015, which indicating that the water resources carrying capacity of Shandong Province has been improved.; In addition, most of the years a value of less than 0.6, individual years below 0.4, the interannual changes are relatively large, from that we can see the level of water resources is generally weak, the greater the interannual changes in Shandong Province.

  7. Water intensity assessment of shale gas resources in the Wattenberg field in northeastern Colorado.

    PubMed

    Goodwin, Stephen; Carlson, Ken; Knox, Ken; Douglas, Caleb; Rein, Luke

    2014-05-20

    Efficient use of water, particularly in the western U.S., is an increasingly important aspect of many activities including agriculture, urban, and industry. As the population increases and agriculture and energy needs continue to rise, the pressure on water and other natural resources is expected to intensify. Recent advances in technology have stimulated growth in oil and gas development, as well as increasing the industry's need for water resources. This study provides an analysis of how efficiently water resources are used for unconventional shale development in Northeastern Colorado. The study is focused on the Wattenberg Field in the Denver-Julesberg Basin. The 2000 square mile field located in a semiarid climate with competing agriculture, municipal, and industrial water demands was one of the first fields where widespread use of hydraulic fracturing was implemented. The consumptive water intensity is measured using a ratio of the net water consumption and the net energy recovery and is used to measure how efficiently water is used for energy extraction. The water and energy use as well as energy recovery data were collected from 200 Noble Energy Inc. wells to estimate the consumptive water intensity. The consumptive water intensity of unconventional shale in the Wattenberg is compared with the consumptive water intensity for extraction of other fuels for other energy sources including coal, natural gas, oil, nuclear, and renewables. 1.4 to 7.5 million gallons is required to drill and hydraulically fracture horizontal wells before energy is extracted in the Wattenberg Field. However, when the large short-term total freshwater-water use is normalized to the amount of energy produced over the lifespan of a well, the consumptive water intensity is estimated to be between 1.8 and 2.7 gal/MMBtu and is similar to surface coal mining.

  8. Interpretation of Thermal Infrared Imagery for Irrigation Water Resource Management.

    ERIC Educational Resources Information Center

    Nellis, M. Duane

    1985-01-01

    Water resources play a major role in the character of agricultural development in the arid western United States. This case study shows how thermal infrared imagery, which is sensitive to radiant or heat energy, can be used to interpret crop moisture content and associated stress in irrigated areas. (RM)

  9. Impact of intensive agricultural practices on drinking water quality in the Evros region (NE Greece) by GIS analysis.

    PubMed

    Nikolaidis, C; Mandalos, P; Vantarakis, A

    2008-08-01

    Chemical fertilizers are used extensively in modern agriculture, in order to improve yield and productivity of agricultural products. However, nutrient leaching from agricultural soil into groundwater resources poses a major environmental and public health concern. The Evros region is one of the largest agricultural areas in Northern Greece, extending over 1.5 million acres of cultivated land. Many of its drinking water resources are of groundwater origin and lie within agricultural areas. In order to assess the impact of agricultural fertilizers on drinking water quality in this region, tap-water samples from 64 different locations were collected and analyzed for the presence of nitrates (NO(3)(-)), nitrites (NO(2)(-)), ammonium (NH(4)(+)), sulfate (SO(4)(-2)) and phosphate (PO(4)(-3)). These chemicals were selected based on the information that ammonium nitrate, ammonium sulfate and inorganic phosphate were the primary fertilizers used in local crop production. NO(3)(-), SO(4)(-2) and PO(4)(-3) levels exceeding accepted values were recorded in 6.25, 4.70 and 9.38% of all sampling points, respectively. NO(2)(-) and NH(4)(+) concentrations, on the other hand, were inside the permitted range. The data generated were introduced into a geographic information system (GIS) program for computer analysis and projection maps representing afflicted areas were created. Our results indicate a profound geographic correlation in the surface distribution of primary contaminants in areas of intensified agricultural production. Thus, drinking water pollution in these areas can be attributed to excessive fertilizer use from agricultural sources.

  10. Optimizing the integrated efficiency for water resource utilization:based on Economic perspective

    NASA Astrophysics Data System (ADS)

    Gao, L.; Yoshikawa, S.; Kanae, S.

    2014-12-01

    At present, total global water withdrawal is increasing and water shortage will become a crucial issue around the world. In the 2050, the water withdrawal will exceed the water which we can get it from the river and underground. One of the ways of alleviating water scarcity is increasing the efficiency of water use without development of additional water supplies. In previous literatures about water use efficiency, there are less discussion about the temporal efficiency change with corresponding characteristics of water resource. The main aim of this paper is to estimate the temporal efficiency of water use during 2011-2020 for proposing how to use efficiently the limited water. This paper used dynamic Data Envelope Analysis to estimate the efficiency which is the ratio of the sum of weighted outputs to the sum of weighted inputs. Our model uses cost of agricultural production as input indices and production value of the agriculture as output index,water withdrawal as temporal linkage. We mainly work on the two problems: Firstly, finding out the evident how much the value of water use efficiencies are in each target country; Secondly, adjusting the output value to make those countries which water use inefficiency reach to DEA efficient. The results provide a scientific reference to make rational allocation and the sustainable use of water resources would be realized.

  11. Combining integrated models and participatory methods to quantify water and agricultural trade-offs linked to different rural development scenarios

    NASA Astrophysics Data System (ADS)

    Rivas, David; Willaarts, Barbara; García, Ángel de Miguel; Tarquis, Ana Maria

    2017-04-01

    This study explores the water and agricultural tradeoffs linked to three different rural development scenarios in the Cega-Eresma-Adaja basin (CEA) in Central Spain. Agriculture is a key socioeconomic activity in CEA, and nearly 44% of the basin is devoted to croplands and pastures. Irrigated agriculture accounts for 12% of the cropland area and is currently using over 84% of available water resources. To define the three scenarios for CEA, we conducted a workshop with local stakeholders to infer how contrasting evolutions of EU agricultural, water and environmental policies could affect the local land use and agricultural management using participatory mapping techniques. The three scenarios reflect 1) a business as usual (BAU) rural development; 2) a land sharing strategy (LSH); and 3) a land sparing (LSP) situation. The integrated Soil Water Assessment Tool (SWAT) was used to model the changes in water use (hm^3/year) and agricultural productivity (ton/year) under each scenario. To account for changes in agricultural land use and management, the model integrates a large set of agricultural patterns obtained from combining high resolution remote sensing images (20m x 20m) for the years 2011-2015, agricultural productivity from survey by municipality and land use information obtained from the national map SIOSE2011 (1:50.000). Model calibration and sensitivity analysis were performed using SWAT-CUP/SUFI2 The period of the years 2005 to 2008 were used for parameter calibration and validation period extending between 2009 and 2014. The predicted daily streamflow presents a correlation coefficient of 0.76 and a NS coefficient of 0.81. The preliminary results reveal that under a BAU and a LSP scenario agricultural production and water demand will increase significantly (>25%) despite the improvements in water use efficiency and agricultural productivity. Under these scenarios, allocated water is likely to exceed the natural renewable water resources compromising the

  12. Effects of agriculture and urbanization on quality of shallow ground water in the arid to semiarid western United States, 1993-2004

    USGS Publications Warehouse

    Paul, Angela P.; Seiler, Ralph L.; Rowe, Timothy G.; Rosen, Michael R.

    2007-01-01

    Within the Western United States, agricultural and rural lands are being developed into commercial and residential areas. With changes in land use and increasing population, greater demands are placed on water resources for agricultural, industrial, and domestic supplies. Many areas in the Western United States rely exclusively on ground water as their source of drinking water. Areas that use surface-water resources often need to supplement this supply with ground water.Generally, shallow ground water is susceptible to fluctuating water quality within relatively short time scales and therefore can be used as an indicator of land-use stresses that may, in time, affect deep aquifer systems. This regional study examines data on shallow ground-water quality collected from 1993 to 2004 from 273 agricultural and 181 urban wells from 7 U.S. Geological Survey National Water-Quality Assessment study units in Arizona, California, Nevada, New Mexico, south-central Colorado, and Utah. This report determines important influences that land-use practices may have on the quality of recently recharged ground water, which may ultimately affect deep water supplies within the region.

  13. Water resources of Manatee County, Florida. Water-resources investigations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, D.P.

    1983-03-01

    Rapid development of Manatee County in southwest Florida is creating water-resource problems. The report presents an evaluation of the water resources and potential effects of water-resource developments. Most streams in the county have small drainage basins and low yields. The principal aquifers are the surficial, minor artesian, and the Floridan. The Floridan aquifer is the major source of irrigation water in the county. The minor artesian aquifer is a highly developed source of water for small rural supplies. Withdrawals of 20 to 50 million gallons per day from the Floridan aquifer since the 1950's have caused declines in the potentiometricmore » surface of about 20 to 50 feet. The quality of ground water is good except in the coastal and southern parts of the county.« less

  14. Exploring Northwest China's agricultural water-saving strategy: analysis of water use efficiency based on an SE-DEA model conducted in Xi'an, Shaanxi Province.

    PubMed

    Mu, L; Fang, L; Wang, H; Chen, L; Yang, Y; Qu, X J; Wang, C Y; Yuan, Y; Wang, S B; Wang, Y N

    Worldwide, water scarcity threatens delivery of water to urban centers. Increasing water use efficiency (WUE) is often recommended to reduce water demand, especially in water-scarce areas. In this paper, agricultural water use efficiency (AWUE) is examined using the super-efficient data envelopment analysis (DEA) approach in Xi'an in Northwest China at a temporal and spatial level. The grey systems analysis technique was then adopted to identify the factors that influenced the efficiency differentials under the shortage of water resources. From the perspective of temporal scales, the AWUE increased year by year during 2004-2012, and the highest (2.05) was obtained in 2009. Additionally, the AWUE was the best in the urban area at the spatial scale. Moreover, the key influencing factors of the AWUE are the financial situations and agricultural water-saving technology. Finally, we identified several knowledge gaps and proposed water-saving strategies for increasing AWUE and reducing its water demand by: (1) improving irrigation practices (timing and amounts) based on compatible water-saving techniques; (2) maximizing regional WUE by managing water resources and allocation at regional scales as well as enhancing coordination among Chinese water governance institutes.

  15. Water resources management. World Bank policy study; Ordenacion de los recursos hidricos

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1994-12-31

    This study examines new World Bank policies that deal with scarce water resources in developing countries. The study describes key policy goals that each country program should adopt. Practical ways to modernize irrigation techniques and hydropower systems, to protect ecosystems, minimize resettlement, and maintain biodiversity are outlined. Low-cost methods of providing drinking water for the rural poor and water for industry and agriculture are recommended.

  16. A site-specific agricultural water requirement and footprint estimator (SPARE:WATER 1.0) for irrigation agriculture

    NASA Astrophysics Data System (ADS)

    Multsch, S.; Al-Rumaikhani, Y. A.; Frede, H.-G.; Breuer, L.

    2013-01-01

    The water footprint accounting method addresses the quantification of water consumption in agriculture, whereby three types of water to grow crops are considered, namely green water (consumed rainfall), blue water (irrigation from surface or groundwater) and grey water (water needed to dilute pollutants). Most of current water footprint assessments focus on global to continental scale. We therefore developed the spatial decision support system SPARE:WATER that allows to quantify green, blue and grey water footprints on regional scale. SPARE:WATER is programmed in VB.NET, with geographic information system functionality implemented by the MapWinGIS library. Water requirement and water footprints are assessed on a grid-basis and can then be aggregated for spatial entities such as political boundaries, catchments or irrigation districts. We assume in-efficient irrigation methods rather than optimal conditions to account for irrigation methods with efficiencies other than 100%. Furthermore, grey water can be defined as the water to leach out salt from the rooting zone in order to maintain soil quality, an important management task in irrigation agriculture. Apart from a thorough representation of the modelling concept we provide a proof of concept where we assess the agricultural water footprint of Saudi Arabia. The entire water footprint is 17.0 km3 yr-1 for 2008 with a blue water dominance of 86%. Using SPARE:WATER we are able to delineate regional hot spots as well as crop types with large water footprints, e.g. sesame or dates. Results differ from previous studies of national-scale resolution, underlining the need for regional water footprint assessments.

  17. Clean Water Act Section 404 and Agriculture

    EPA Pesticide Factsheets

    The U.S. Department of Agriculture (USDA) and EPA have longstanding programs to promote water quality and broader environmental goals identified in both the Agriculture Act of 2014 and the Clean Water Act.

  18. Water resources of Catahoula Parish, Louisiana

    USGS Publications Warehouse

    White, Vincent E.

    2017-02-24

    IntroductionInformation concerning the availability, use, and quality of water in Catahoula Parish, Louisiana, is critical for proper water-supply management. The purpose of this fact sheet is to present information that can be used by water managers, parish residents, and others for stewardship of this vital resource. Information on the availability, past and current use, use trends, and water quality from groundwater and surface-water sources in the parish is presented. Previously published reports and data stored in the U.S. Geological Survey’s National Water Information System are the primary sources of the information presented here.In 2010, 30.01 million gallons per day (Mgal/d) of water were withdrawn in Catahoula Parish, Louisiana, including about 22.63 Mgal/d from groundwater sources and 7.38 Mgal/d from surface-water sources. Withdrawals for agricultural use, composed of aquaculture, general irrigation, livestock, and rice irrigation, accounted for about 93 percent (28.05 Mgal/d) of the total water withdrawn. Other categories of use included public supply and rural domestic. Water-use data collected at 5-year intervals from 1960 to 2010 indicated that water withdrawals peaked in 2000 at 30.99 Mgal/d.

  19. Water resources of Concordia Parish, Louisiana

    USGS Publications Warehouse

    White, Vincent E.

    2017-02-24

    IntroductionInformation concerning the availability, use, and quality of water in Concordia Parish, Louisiana, is critical for proper water-supply management. The purpose of this fact sheet is to present information that can be used by water managers, parish residents, and others for stewardship of this vital resource. Information on the availability, past and current use, use trends, and water quality from groundwater and surface-water sources in the parish is presented. Previously published reports and data stored in the U.S. Geological Survey’s National Water Information System are the primary sources of the information presented here.In 2010, over 50 million gallons per day (Mgal/d) of water were withdrawn in Concordia Parish, including about 28.7 Mgal/d from groundwater sources and 22.3 Mgal/d from surface-water sources. Withdrawals for agricultural use, composed of livestock, rice irrigation, general irrigation, and aquaculture accounted for about 77 percent (39.2 Mgal/d) of the total water withdrawn. Other categories of use included public supply, power generation, and rural domestic. Water-use data collected at 5-year intervals from 1960 to 2010 indicated that water withdrawals peaked in 2010.

  20. Water Resources by 2100 in Mountains with Declining Glaciers

    NASA Astrophysics Data System (ADS)

    Beniston, M.

    2015-12-01

    Future shifts in temperature and precipitation patterns, and changes in the behavior of snow and ice - and possibly the quasi-disappearance of glaciers - in many mountain regions will change the quantity, seasonality, and possibly also the quality of water originating in mountains and uplands. As a result, changing water availability will affect both upland and populated lowland areas. Economic sectors such as agriculture, tourism or hydropower may enter into rivalries if water is no longer available in sufficient quantities or at the right time of the year. The challenge is thus to estimate as accurately as possible future changes in order to prepare the way for appropriate adaptation strategies and improved water governance. The European ACQWA project, coordinated by the author, aimed to assess the vulnerability of water resources in mountain regions such as the European Alps, the Central Chilean Andes, and the mountains of Central Asia (Kyrgyzstan) where declining snow and ice are likely to strongly affect hydrological regimes in a warmer climate. Based on RCM (Regional Climate Model) simulations, a suite of cryosphere, biosphere and economic models were then used to quantify the environmental, economic and social impacts of changing water resources in order to assess how robust current water governance strategies are and what adaptations may be needed to alleviate the most negative impacts of climate change on water resources and water use. Hydrological systems will respond in quantity and seasonality to changing precipitation patterns and to the timing of snow-melt in the studied mountain regions, with a greater risk of flooding during the spring and droughts in summer and fall. The direct and indirect impacts of a warming climate will affect key economic sectors such as tourism, hydropower, agriculture and the insurance industry that will be confronted to more frequent natural disasters. The results from the ACQWA project suggest that there is a need for a

  1. Risk assessment of agricultural water requirement based on a multi-model ensemble framework, southwest of Iran

    NASA Astrophysics Data System (ADS)

    Zamani, Reza; Akhond-Ali, Ali-Mohammad; Roozbahani, Abbas; Fattahi, Rouhollah

    2017-08-01

    Water shortage and climate change are the most important issues of sustainable agricultural and water resources development. Given the importance of water availability in crop production, the present study focused on risk assessment of climate change impact on agricultural water requirement in southwest of Iran, under two emission scenarios (A2 and B1) for the future period (2025-2054). A multi-model ensemble framework based on mean observed temperature-precipitation (MOTP) method and a combined probabilistic approach Long Ashton Research Station-Weather Generator (LARS-WG) and change factor (CF) have been used for downscaling to manage the uncertainty of outputs of 14 general circulation models (GCMs). The results showed an increasing temperature in all months and irregular changes of precipitation (either increasing or decreasing) in the future period. In addition, the results of the calculated annual net water requirement for all crops affected by climate change indicated an increase between 4 and 10 %. Furthermore, an increasing process is also expected regarding to the required water demand volume. The most and the least expected increase in the water demand volume is about 13 and 5 % for A2 and B1 scenarios, respectively. Considering the results and the limited water resources in the study area, it is crucial to provide water resources planning in order to reduce the negative effects of climate change. Therefore, the adaptation scenarios with the climate change related to crop pattern and water consumption should be taken into account.

  2. Analyses of impacts of China's international trade on its water resources and uses

    NASA Astrophysics Data System (ADS)

    Zhang, Z. Y.; Yang, H.; Shi, M. J.; Zehnder, A. J. B.; Abbaspour, K. C.

    2011-04-01

    This study provides an insight into the impact of China's international trade of goods and services on its water resources and uses. Virtual water flows associated with China's international trade are quantified in an input-output framework. The analysis is scaled down to the sectoral and provincial levels to trace the origins and destinations of virtual water flows associated with the international trade. The results reveal that China is a net virtual water exporter of 4.7 × 1010 m3 year-1, accounting for 2.1% of its total water resources and 8.9% of the total water use. Water scarce regions tend to have higher percentages of virtual water export relative to their water resources and water uses. In the water scarce Huang-Huai-Hai region, the net virtual water export accounts for 7.9% of the region's water resources and 11.2% of its water uses. For individual sectors, major net virtual water exporters are those where agriculture provides raw materials in the initial process of the production chain and/or pollution intensity is high. The results suggest that China's economic gains from being a world "manufacture factory" have come at a high cost to its water resources and through pollution to its environment.

  3. - Oklahoma Water Resources Center

    Science.gov Websites

    INTERDISCIPLINARY PROGRAMS Environmental Sciences Master of International Agriculture Degree Program OSU Home Professional Development Training (Baton Rouge, LA; 8/5-10) Global Water Security for Agriculture and Natural Oklahoma City Center for Health Sciences Division of Agriculture Institute of Technology Veterinary

  4. Agricultural Compounds in Water and Birth Defects.

    PubMed

    Brender, Jean D; Weyer, Peter J

    2016-06-01

    Agricultural compounds have been detected in drinking water, some of which are teratogens in animal models. The most commonly detected agricultural compounds in drinking water include nitrate, atrazine, and desethylatrazine. Arsenic can also be an agricultural contaminant, although arsenic often originates from geologic sources. Nitrate has been the most studied agricultural compound in relation to prenatal exposure and birth defects. In several case-control studies published since 2000, women giving birth to babies with neural tube defects, oral clefts, and limb deficiencies were more likely than control mothers to be exposed to higher concentrations of drinking water nitrate during pregnancy. Higher concentrations of atrazine in drinking water have been associated with abdominal defects, gastroschisis, and other defects. Elevated arsenic in drinking water has also been associated with birth defects. Since these compounds often occur as mixtures, it is suggested that future research focus on the impact of mixtures, such as nitrate and atrazine, on birth defects.

  5. Correlation of water with carbon/energy footprints for effective agricultural and livestock products classification

    NASA Astrophysics Data System (ADS)

    Borsato, Eros; Marinello, Francesco; Tarolli, Paolo

    2017-04-01

    World population is increasing and human diet is becoming of considerable concern for human welfare. Natural resources are overexploited and governments need policies for a good management of the environment. Sustainable agriculture can provide some solutions, as it minimizes inputs, wastes or pollution. The aim of the present study is to provide a combined analysis of different footprints approaches in order to allow comparison of different agricultural and livestock products in terms of efficiency of resource exploitation. Time is the real important variable that influences the footprint. Water use efficiency, greenhouse gas emissions and energy indexes are included in this study. The study takes advantage of indexes collected from a wide bibliography focused on different fresh agricultural products: the target is the definition of a time table of footprints for agricultural products. Starting from a top-down prospective, an analysis of the environmental footprint for different products is an approach to understand which products can be more sustainable for human diet. This study distinguishes different clusters in different sub-cluster of vegetable products and animal products. The classification is based on a comparison of water consumption in relation to yield, greenhouse gas emissions equivalent and energy for a given product quantity. Additionally time is considered, which affects sustainability, in terms of inputs caught for a period. The footprint is spread out in time, thus changing its relevance with respect to the exploitation of a resource. Ultimately, this works wants to propose a new original basis for sustainability metrics, allowing an effective quantitative comparison of food products for a more conscious human diet.

  6. Book review: Darwinian agriculture: How understanding evolution can improve agriculture by R. Ford Dennison

    USDA-ARS?s Scientific Manuscript database

    Agricultural research continually seeks to increase productivity while protecting soil, water and genetic resources. The book Darwinian Agriculture: How Understanding Evolution Can Improve Agriculture, by R. Ford Dennison, delivers a thought-provoking view of how principles of ecology and evolution ...

  7. Climate change mitigation for agriculture: water quality benefits and costs.

    PubMed

    Wilcock, Robert; Elliott, Sandy; Hudson, Neale; Parkyn, Stephanie; Quinn, John

    2008-01-01

    New Zealand is unique in that half of its national greenhouse gas (GHG) inventory derives from agriculture--predominantly as methane (CH4) and nitrous oxide (N2O), in a 2:1 ratio. The remaining GHG emissions predominantly comprise carbon dioxide (CO2) deriving from energy and industry sources. Proposed strategies to mitigate emissions of CH4 and N2O from pastoral agriculture in New Zealand are: (1) utilising extensive and riparian afforestation of pasture to achieve CO2 uptake (carbon sequestration); (2) management of nitrogen through budgeting and/or the use of nitrification inhibitors, and minimizing soil anoxia to reduce N2O emissions; and (3) utilisation of alternative waste treatment technologies to minimise emissions of CH4. These mitigation measures have associated co-benefits and co-costs (disadvantages) for rivers, streams and lakes because they affect land use, runoff loads, and receiving water and habitat quality. Extensive afforestation results in lower specific yields (exports) of nitrogen (N), phosphorus (P), suspended sediment (SS) and faecal matter and also has benefits for stream habitat quality by improving stream temperature, dissolved oxygen and pH regimes through greater shading, and the supply of woody debris and terrestrial food resources. Riparian afforestation does not achieve the same reductions in exports as extensive afforestation but can achieve reductions in concentrations of N, P, SS and faecal organisms. Extensive afforestation of pasture leads to reduced water yields and stream flows. Both afforestation measures produce intermittent disturbances to waterways during forestry operations (logging and thinning), resulting in sediment release from channel re-stabilisation and localised flooding, including formation of debris dams at culverts. Soil and fertiliser management benefits aquatic ecosystems by reducing N exports but the use of nitrification inhibitors, viz. dicyandiamide (DCD), to achieve this may under some circumstances

  8. Demand driven decision support for efficient water resources allocation in irrigated agriculture

    NASA Astrophysics Data System (ADS)

    Schuetze, Niels; Grießbach, Ulrike Ulrike; Röhm, Patric; Stange, Peter; Wagner, Michael; Seidel, Sabine; Werisch, Stefan; Barfus, Klemens

    2014-05-01

    Due to climate change, extreme weather conditions, such as longer dry spells in the summer months, may have an increasing impact on the agriculture in Saxony (Eastern Germany). For this reason, and, additionally, declining amounts of rainfall during the growing season the use of irrigation will be more important in future in Eastern Germany. To cope with this higher demand of water, a new decision support framework is developed which focuses on an integrated management of both irrigation water supply and demand. For modeling the regional water demand, local (and site-specific) water demand functions are used which are derived from the optimized agronomic response at farms scale. To account for climate variability the agronomic response is represented by stochastic crop water production functions (SCWPF) which provide the estimated yield subject to the minimum amount of irrigation water. These functions take into account the different soil types, crops and stochastically generated climate scenarios. By applying mathematical interpolation and optimization techniques, the SCWPF's are used to compute the water demand considering different constraints, for instance variable and fix costs or the producer price. This generic approach enables the computation for both multiple crops at farm scale as well as of the aggregated response to water pricing at a regional scale for full and deficit irrigation systems. Within the SAPHIR (SAxonian Platform for High Performance Irrigation) project a prototype of a decision support system is developed which helps to evaluate combined water supply and demand management policies for an effective and efficient utilization of water in order to meet future demands. The prototype is implemented as a web-based decision support system and it is based on a service-oriented geo-database architecture.

  9. G-REALM: A lake/reservoir monitoring tool for drought monitoring and water resources management.

    NASA Astrophysics Data System (ADS)

    Birkett, C. M.; Ricko, M.; Beckley, B. D.; Yang, X.; Tetrault, R. L.

    2017-12-01

    G-REALM is a NASA/USDA funded operational program offering water-level products for lakes and reservoirs and these are currently derived from the NASA/CNES Topex/Jason series of satellite radar altimeters. The main stakeholder is the USDA/Foreign Agricultural Service (FAS) though many other end-users utilize the products for a variety of interdisciplinary science and operational programs. The FAS utilize the products within their CropExplorer Decision Support System (DSS) to help assess irrigation potential, and to monitor both short-term (agricultural) and longer-term (hydrological) drought conditions. There is increasing demand for a more global monitoring service that in particular, captures the variations in the smallest (1 to 100km2) reservoirs and water holdings in arid and semi-arid regions. Here, water resources are critical to both agriculture and regional security. A recent G-REALM 10-day resolution product upgrade and expansion has allowed for more accurate lake level products to be released and for a greater number of water bodies to be monitored. The next program phase focuses on the exploration of the enhanced radar altimeter data sets from the Cryosat-2 and Sentinel-3 missions with their improved spatial resolution, and the expansion of the system to the monitoring of 1,000 water bodies across the globe. In addition, a new element, the monitoring of surface water levels in wetland zones, is also being introduced. This aims to satisfy research and stakeholder requirements with respect to programs examining the links between inland fisheries catch potential and declining water levels, and to those monitoring the delicate balance between water resources, agriculture, and fisheries management in arid basins.

  10. Can rainfed agriculture adapt to uncertainty in availability of water in Indus Basin?

    NASA Astrophysics Data System (ADS)

    Jutla, A.; Sen, S.

    2015-12-01

    Understanding impacts of hydrological and climatological functions under changing climate on regional floods, droughts as well as agricultural commodities remain a serious challenge in tropical agricultural basins. These "tropical agricultural basins" are regions where: (i) the understanding on hydrologic functions (such as precipitation, soil moisture, evapotranspiration, surface runoff, vegetation) are not well established; (ii) increasing population is at the convergence of rural and urban boundaries; (iii) resilience and sustainability of the water resources under different climatic conditions is unknown; and, (iv) agriculture is the primary occupation for majority of the population. More than 95% of the farmed lands in tropical regions are rainfed and 60% of total agricultural production in South Asia relying on seasonal rainfall. Tropical regions frequently suffer from unexpected droughts and sudden flash floods, resulting in massive losses in human lives and affecting regional economy. Prediction of frequency, intensity and magnitude of floods in tropical regions is still a subject of debate and research. A clear example is from the massive floods in the Eastern Indus River in July 2010 that submerged 17 million acre of fertile cropland. Yet, seasonal droughts, such as 2014 rain deficits in Indus Basin, had no effects on annual crop yields - thus creating a paradox. Large amounts of groundwater is being used to supplement water needs for crops during drought conditions, leading to oversubscription of natural aquifers. Key reason that rainfed agriculture is relying heavily on groundwater is because of the uncertainty in timing and distribution of precipitation in the tropical regions, where such data are not routinely collected as well as the basins are transnational, thus limiting sharing of data. Assessment of availability of water for agricultural purposes a serious challenge in tropical regions. This study will provide a framework for using multi

  11. Front Range Infrastructure Resources Project: water-resources activities

    USGS Publications Warehouse

    Robson, Stanley G.; Heiny, Janet S.

    1998-01-01

    Infrastructure, such as roads, buildings, airports, and dams, is built and maintained by use of large quantities of natural resources such as aggregate (sand and gravel), energy, and water. As urban area expand, local sources of these resource are becoming inaccessible (gravel cannot be mined from under a subdivision, for example), or the cost of recovery of the resource becomes prohibitive (oil and gas drilling in urban areas is costly), or the resources may become unfit for some use (pollution of ground water may preclude its use as a water supply). Governmental land-use decision and environmental mandates can further preclude development of natural resources. If infrastructure resources are to remain economically available. current resource information must be available for use in well-reasoned decisions bout future land use. Ground water is an infrastructure resource that is present in shallow aquifers and deeper bedrock aquifers that underlie much of the 2,450-square-mile demonstration area of the Colorado Front Range Infrastructure Resources Project. In 1996, mapping of the area's ground-water resources was undertaken as a U.S. Geological Survey project in cooperation with the Colorado Department of Natural Resources, Division of Water Resources, and the Colorado Water Conservation Board.

  12. Crop modeling applications in agricultural water management

    USGS Publications Warehouse

    Kisekka, Isaya; DeJonge, Kendall C.; Ma, Liwang; Paz, Joel; Douglas-Mankin, Kyle R.

    2017-01-01

    This article introduces the fourteen articles that comprise the “Crop Modeling and Decision Support for Optimizing Use of Limited Water” collection. This collection was developed from a special session on crop modeling applications in agricultural water management held at the 2016 ASABE Annual International Meeting (AIM) in Orlando, Florida. In addition, other authors who were not able to attend the 2016 ASABE AIM were also invited to submit papers. The articles summarized in this introductory article demonstrate a wide array of applications in which crop models can be used to optimize agricultural water management. The following section titles indicate the topics covered in this collection: (1) evapotranspiration modeling (one article), (2) model development and parameterization (two articles), (3) application of crop models for irrigation scheduling (five articles), (4) coordinated water and nutrient management (one article), (5) soil water management (two articles), (6) risk assessment of water-limited irrigation management (one article), and (7) regional assessments of climate impact (two articles). Changing weather and climate, increasing population, and groundwater depletion will continue to stimulate innovations in agricultural water management, and crop models will play an important role in helping to optimize water use in agriculture.

  13. The economic value of remote sensing of earth resources from space: An ERTS overview and the value of continuity of service. Volume 5: Inland water resources

    NASA Technical Reports Server (NTRS)

    Wetzler, E.; Peterson, W.; Putnam, M.

    1974-01-01

    The economic value of an ERTS system in the area of inland water resources management is investigated. Benefits are attributed to new capabilities for managing inland water resources in the field of power generation, agriculture, and urban water supply. These benefits are obtained in the area of equal capability (cost savings) and increased capability (equal budget), and are estimated by applying conservative assumptions to Federal budgeting information, Congressional appropriation hearings, and ERTS technical capabilities.

  14. Modelling tools to support the harmonization of Water Framework Directive and Common Agricultural Policy

    NASA Astrophysics Data System (ADS)

    Tediosi, A.; Bulgheroni, C.; Sali, G.; Facchi, A.; Gandolfi, C.

    2009-04-01

    After a few years from the delivery of the EU Water Framework Directive (WFD) the need to link agriculture and WFD has emerged as one of the highest priorities; therefore, it is important to discuss on how the EU Common Agricultural Policy (CAP) can contribute to the achievements of the WFD objectives. The recent CAP reform - known as Mid Term Review (MTR) or Fischler Reform - has increased the opportunities, offering to farmers increased support to address some environmental issues. The central novelty coming from the MTR is the introduction of a farm single payment which aims to the Decoupling of EU Agricultural Support from production. Other MTR important topics deal with the Modulation of the payments, the Cross-Compliance and the strengthening of the Rural Development policy. All these new elements will affect the farmers' behaviour, steering their productive choices for the future, which, in turn, will have consequences on the water demand for irrigation. Indeed, from the water quantity viewpoint, agriculture is a large consumer and improving water use efficiency is one of the main issues at stake, following the increasing impacts of water scarcity and droughts across Europe in a context of climate change. According to a recent survey of the European Commission the saving potential in the agricultural sector is 43% of present abstraction and 95% of it is concentrated in southern europe. Many models have been developed to forecast the farmers' behaviour as a consequence of agricultural policies, both at sector and regional level; all of them are founded on Mathematical Programming techniques and many of them use the Positive approach, which better fits the territorial dimension. A large body of literature also exists focusing on the assessment of irrigation water requirements. The examples of conjunctive modelling of the two aspects are however much more limited. The work presented has got some innovative aspects: not only does it couple an economical model

  15. Climate Forecasts and Water Resource Management: Applications for a Developing Country

    NASA Astrophysics Data System (ADS)

    Brown, C.; Rogers, P.

    2002-05-01

    While the quantity of water on the planet earth is relatively constant, the demand for water is continuously increasing. Population growth leads to linear increases in water demand, and economic growth leads to further demand growth. Strzepek et al. calculate that with a United Nations mean population estimate of 8.5 billion people by 2025 and globally balanced economic growth, water use could increase by 70% over that time (Strzepek et al., 1995). For developing nations especially, supplying water for this growing demand requires the construction of new water supply infrastructure. The prospect of designing and constructing long life-span infrastructure is clouded by the uncertainty of future climate. The availability of future water resources is highly dependent on future climate. With realization of the nonstationarity of climate, responsible design emphasizes resiliency and robustness of water resource systems (IPCC, 1995; Gleick et al., 1999). Resilient systems feature multiple sources and complex transport and distribution systems, and so come at a high economic and environmental price. A less capital-intense alternative to creating resilient and robust water resource systems is the use of seasonal climate forecasts. Such forecasts provide adequate lead time and accuracy to allow water managers and water-based sectors such as agriculture or hydropower to optimize decisions for the expected water supply. This study will assess the use of seasonal climate forecasts from regional climate models as a method to improve water resource management in systems with limited water supply infrastructure

  16. Invisible water, visible impact: groundwater use and Indian agriculture under climate change

    NASA Astrophysics Data System (ADS)

    Zaveri, Esha; Grogan, Danielle S.; Fisher-Vanden, Karen; Frolking, Steve; Lammers, Richard B.; Wrenn, Douglas H.; Prusevich, Alexander; Nicholas, Robert E.

    2016-08-01

    India is one of the world’s largest food producers, making the sustainability of its agricultural system of global significance. Groundwater irrigation underpins India’s agriculture, currently boosting crop production by enough to feed 170 million people. Groundwater overexploitation has led to drastic declines in groundwater levels, threatening to push this vital resource out of reach for millions of small-scale farmers who are the backbone of India’s food security. Historically, losing access to groundwater has decreased agricultural production and increased poverty. We take a multidisciplinary approach to assess climate change challenges facing India’s agricultural system, and to assess the effectiveness of large-scale water infrastructure projects designed to meet these challenges. We find that even in areas that experience climate change induced precipitation increases, expansion of irrigated agriculture will require increasing amounts of unsustainable groundwater. The large proposed national river linking project has limited capacity to alleviate groundwater stress. Thus, without intervention, poverty and food insecurity in rural India is likely to worsen.

  17. The American Land. Its History, Soil, Water, Wildlife, Agricultural Land Planning, and Land Problems of Today and Tomorrow.

    ERIC Educational Resources Information Center

    Soil Conservation Service (USDA), Washington, DC.

    Presented in this booklet is the commentary for "The American Land," a television series prepared by the Soil Conservation Service and the Graduate School, United States Department of Agriculture, in cooperation with WETA - TV, Washington, D.C. It explores the resource of land in America, its history, soil, water, wildlife, agricultural land…

  18. Modeling the impacts of dryland agricultural reclamation on groundwater resources in Northern Egypt using sparse data

    NASA Astrophysics Data System (ADS)

    Switzman, Harris; Coulibaly, Paulin; Adeel, Zafar

    2015-01-01

    Demand for freshwater in many dryland environments is exerting negative impacts on the quality and availability of groundwater resources, particularly in areas where demand is high due to irrigation or industrial water requirements to support dryland agricultural reclamation. Often however, information available to diagnose the drivers of groundwater degradation and assess management options through modeling is sparse, particularly in low and middle-income countries. This study presents an approach for generating transient groundwater model inputs to assess the long-term impacts of dryland agricultural land reclamation on groundwater resources in a highly data-sparse context. The approach was applied to the area of Wadi El Natrun in Northern Egypt, where dryland reclamation and the associated water use has been aggressive since the 1960s. Statistical distributions of water use information were constructed from a variety of sparse field and literature estimates and then combined with remote sensing data in spatio-temporal infilling model to produce the groundwater model inputs of well-pumping and surface recharge. An ensemble of groundwater model inputs were generated and used in a 3D groundwater flow (MODFLOW) of Wadi El Natrun's multi-layer aquifer system to analyze trends in water levels and water budgets over time. Validation of results against monitoring records, and model performance statistics demonstrated that despite the extremely sparse data, the approach used in this study was capable of simulating the cumulative impacts of agricultural land reclamation reasonably well. The uncertainty associated with the groundwater model itself was greater than that associated with the ensemble of well-pumping and surface recharge estimates. Water budget analysis of the groundwater model output revealed that groundwater recharge has not changed significantly over time, while pumping has. As a result of these trends, groundwater was estimated to be in a deficit of

  19. Resource Guide to Educational Materials about Agriculture. A Project of Agriculture in the Classroom. 1996 Edition.

    ERIC Educational Resources Information Center

    Department of Agriculture, Washington, DC. Office of the Secretary.

    This resource guide provides a list of materials available from public and private sources on agriculture and related issues. More than 300 organizations and publishers were asked what materials they were producing that could help regular K-12 classroom teachers incorporate more information about agriculture into their instruction. This guide is…

  20. Global Water Resources Under Future Changes: Toward an Improved Estimation

    NASA Astrophysics Data System (ADS)

    Islam, M.; Agata, Y.; Hanasaki, N.; Kanae, S.; Oki, T.

    2005-05-01

    Global water resources availability in the 21st century is going to be an important concern. Despite its international recognition, however, until now there are very limited global estimates of water resources, which considered the geographical linkage between water supply and demand, defined by runoff and its passage through river network. The available studies are again insufficient due to reasons like different approaches in defining water scarcity, simply based on annual average figures without considering the inter-annual or seasonal variability, absence of the inclusion of virtual water trading, etc. In this study, global water resources under future climate change associated with several socio-economic factors were estimated varying over both temporal and spatial scale. Global runoff data was derived from several land surface models under the GSWP2 (Global Soil Wetness Project) project, which was further processed through TRIP (Total Runoff Integrated Pathways) river routing model to produce a 0.5x0.5 degree grid based figure. Water abstraction was estimated for the same spatial resolution for three sectors as domestic, industrial and agriculture. GCM outputs from CCSR and MRI were collected to predict the runoff changes. Socio-economic factors like population and GDP growth, affected mostly the demand part. Instead of simply looking at annual figures, monthly figures for both supply and demand was considered. For an average year, such a seasonal variability can affect the crop yield significantly. In other case, inter-annual variability of runoff can cause for an absolute drought condition. To account for vulnerabilities of a region to future changes, both inter-annual and seasonal effects were thus considered. At present, the study assumed the future agricultural water uses to be unchanged under climatic changes. In this connection, EPIC model is underway to use for estimating future agricultural water demand under climatic changes on a monthly basis. From

  1. Assessment and management of water resources in Egypt to face drought and water scarcity

    NASA Astrophysics Data System (ADS)

    Wolters, Wouter; El Guindy, Samia; Salah El Deen, Magdy; Roest, Koen; Smit, Robert; Froebrich, Jochen

    2013-04-01

    , innovations on resource efficiency enabling use of rest and by-products of one agricultural activity as an input for another one will be profitable for the food producers and will also be better for the environment. The creative design process to reach the required technological and policy innovations contributes to the developed adaptation strategy to face drought and water scarcity. Results will incorporate some previously un-thought of options. The issues of water scarcity and drought have consequences and implications that can no longer be adequately addressed by any one of the Ministries alone. Many other government departments and agencies must be involved and decisions will have to be made at the highest political level. All policies in Egypt must be conscious of the limitations in water availability, and water policies need to address technological developments as well as the full range of other issues, including: macro-economic factors, economic issues that influence farm-level decisions, development of human capital, governance, and financial risk management.

  2. NASA'S Water Resources Element Within the Applied Sciences Program

    NASA Technical Reports Server (NTRS)

    Toll, David; Doorn, Bradley; Engman, Edwin

    2010-01-01

    The NASA Applied Sciences Program works within NASA Earth sciences to leverage investment of satellite and information systems to increase the benefits to society through the widest practical use of NASA research results. Such observations provide a huge volume of valuable data in both near-real-time and extended back nearly 50 years about the Earth's land surface conditions such as land cover type, vegetation type and health, precipitation, snow, soil moisture, and water levels and radiation. Observations of this type combined with models and analysis enable satellite-based assessment of numerous water resources management activities. The primary goal of the Earth Science Applied Science Program is to improve future and current operational systems by infusing them with scientific knowledge of the Earth system gained through space-based observation, model results, and development and deployment of enabling technologies, systems, and capabilities. Water resources is one of eight elements in the Applied Sciences Program and it addresses concerns and decision making related to water quantity and water quality. With increasing population pressure and water usage coupled with climate variability and change, water issues are being reported by numerous groups as the most critical environmental problems facing us in the 21st century. Competitive uses and the prevalence of river basins and aquifers that extend across boundaries engender political tensions between communities, stakeholders and countries. Mitigating these conflicts and meeting water demands requires using existing resources more efficiently. The potential crises and conflicts arise when water is competed among multiple uses. For example, urban areas, environmental and recreational uses, agriculture, and energy production compete for scarce resources, not only in the Western U.S. but throughout much of the U.S. but also in many parts of the world. In addition to water availability issues, water quality related

  3. Water-Quality and Biological Characteristics and Responses to Agricultural Land Retirement in Three Streams of the Minnesota River Basin, Water Years 2006-08

    USGS Publications Warehouse

    Christensen, Victoria G.; Lee, Kathy E.; Sanocki, Christopher A.; Mohring, Eric H.; Kiesling, Richard L.

    2009-01-01

    Water-quality and biological characteristics in three streams in the Minnesota River Basin were assessed using data collected during water years 2006-08. The responses of nutrient concentrations, suspended-sediment concentrations, and biological characteristics to agricultural land retirement also were assessed. In general, total nitrogen, suspended-sediment, and chlorophyll-a concentrations, and fish resource quality improved with increasing land retirement. The Chetomba Creek, West Fork Beaver Creek, and South Branch Rush River subbasins, which range in size from about 200 to 400 square kilometers, have similar geologic and hydrologic settings but differ with respect to the amount, type, and location of retired agricultural land. Total nitrogen concentrations were largest, with a mean of 15.0 milligrams per liter (mg/L), in water samples from the South Branch Rush River, a subbasin with little to no agricultural land retirement; total nitrogen concentrations were smaller in samples from Chetomba Creek (mean of 10.6 mg/L) and West Fork Beaver Creek (mean of 7.9 mg/L), which are subbasins with more riparian or upland land retirement at the basin scale. Total phosphorus concentrations were not related directly to differing land-retirement percentages with mean concentrations at primary data-collection sites of 0.259 mg/L in the West Fork Beaver Creek subbasin, 0.164 mg/L in the Chetomba Creek subbasin, and 0.180 mg/L in the South Branch Rush River subbasin. Temporal variation in water quality was characterized using data from in-stream water-quality monitors and storm-sediment data. Fish data indicate better resource quality for the West Fork Beaver Creek subbasin than for other subbasins likely due to a combination of factors, including habitat quality, food resources, and dissolved oxygen characteristics. Index of biotic integrity (IBI) scores increased as local land-retirement percentages (within 50 and 100 meters of the streams) increased. Data and analysis from

  4. Power-law Growth and Punctuated Equilibrium Dynamics in Water Resources Systems

    NASA Astrophysics Data System (ADS)

    Parolari, A.; Katul, G. G.; Porporato, A. M.

    2015-12-01

    The global rise in population-driven water scarcity and recent appreciation of strong dynamic coupling between human and natural systems has called for new approaches to predict the future sustainability of regional and global water resources systems. The dynamics of coupled human-water systems are driven by a complex set of social, environmental, and technological factors. Present projections of water resources systems range from a finite carrying capacity regulated by accessible freshwater, or `peak renewable water,' to punctuated evolution with new supplied and improved efficiency gained from technological and social innovation. However, these projections have yet to be quantified from observations or in a comprehensive theoretical framework. Using data on global water withdrawals and storage capacity of regional water supply systems, non-trivial dynamics are identified in water resources systems development over time, including power-law growth and punctuated equilibria. Two models are introduced to explain this behavior: (1) a delay differential equation and (2) a power-law with log-periodic oscillations, both of which rely on past conditions (or system memory) to describe the present rate of growth in the system. In addition, extension of the first model demonstrates how system delays and punctuated equilibria can emerge from coupling between human population growth and associated resource demands. Lastly, anecdotal evidence is used to demonstrate the likelihood of power-law growth in global water use from the agricultural revolution 3000 BC to the present. In a practical sense, the presence of these patterns in models with delayed oscillations suggests that current decision-making related to water resources development results from the historical accumulation of resource use decisions, technological and social changes, and their consequences.

  5. Effects of virtual water flow on regional water resources stress: A case study of grain in China.

    PubMed

    Sun, Shikun; Wang, Yubao; Engel, Bernie A; Wu, Pute

    2016-04-15

    Scarcity of water resources is one of the major challenges in the world, particularly for the main water consumer, agriculture. Virtual water flow (VWF) promotes water redistribution geographically and provides a new solution for resolving regional water shortage and improving water use efficiency in the world. Virtual water transfer among regions will have a significant influence on the water systems in both grain export and import regions. In order to assess the impacts of VWF related grain transfer on regional water resources conditions, the study takes mainland China as study area for a comprehensive evaluation of virtual water flow on regional water resources stress. Results show that Northeast China and Huang-Huai-Hai region are the major grain production regions as well as the major virtual water export regions. National water savings related to grain VWF was about 58Gm(3), with 48Gm(3) blue water and 10Gm(3) green water. VWF changes the original water distribution and has a significant effect on water resources in both virtual water import and export regions. Grain VWF significantly increased water stress in grain export regions and alleviated water stress in grain import regions. Water stress index (WSI) of Heilongjiang and Inner Mongolia has been increased by 138% and 129% due to grain export. Stress from water shortages is generally severe in export regions, and issues with the sustainability of grain production and VWF pattern are worthy of further exploration. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Irrigated agriculture and groundwater resources - towards an integrated vision and sustainable relationship.

    PubMed

    Foster, Stephen; Garduño, Héctor

    2013-01-01

    Globally, irrigated agriculture is the largest abstractor, and predominant consumer, of groundwater resources, with large groundwater-dependent agro-economies now having widely evolved especially in Asia. Such use is also causing resource depletion and degradation in more arid and drought-prone regions. In addition crop cultivation practices on irrigated land exert a major influence on groundwater recharge. The interrelationship is such that cross-sector action is required to agree more sustainable land and water management policies, and this paper presents an integrated vision of the challenges in this regard. It is recognised that 'institutional arrangements' are critical to the local implementation of management policies, although the focus here is limited to the conceptual understanding needed for formulation of an integrated policy and some practical interventions required to promote more sustainable groundwater irrigation.

  7. Water resources scientific information center

    USGS Publications Warehouse

    Cardin, C. William; Campbell, J.T.

    1986-01-01

    The Water Resources Scientific Information Center (WRSIC) acquires, abstracts and indexes the major water resources related literature of the world, and makes information available to the water resources community and the public. A component of the Water Resources Division of the US Geological Survey, the Center maintains a searchable computerized bibliographic data base, and publishers a monthly journal of abstracts. Through its services, the Center is able to provide reliable scientific and technical information about the most recent water resources developments, as well as long-term trends and changes. WRSIC was established in 1966 by the Secretary of the Interior to further the objectives of the Water Resources Research Act of 1964--legislation that encouraged research in water resources and the prevention of needless duplication of research efforts. It was determined the WRSIC should be the national center for information on water resources, covering research reports, scientific journals, and other water resources literature of the world. WRSIC would evaluate all water resources literature, catalog selected articles, and make the information available in publications or by computer access. In this way WRSIC would increase the availability and awareness of water related scientific and technical information. (Lantz-PTT)

  8. The Texas Water Observatory: Utilizing Advanced Observing System Design for Understanding Water Resources Sustainability Across Climatic and Geologic Gradients of Texas

    NASA Astrophysics Data System (ADS)

    Mohanty, B.; Moore, G. W.; Miller, G. R.; Quiring, S. M.; Everett, M. E.; Morgan, C.

    2015-12-01

    The Texas Water Observatory (TWO) is a new distributed network of field observatories for better understanding of the hydrologic flow in the critical zone (encompassing groundwater, soil water, surface water, and atmospheric water) at various space and time scales. Core sites in the network will begin in Brazos River corridor and expand from there westward. Using many advanced observational platforms and real-time / near-real time sensors, this observatory will monitor high frequency data of water stores and fluxes, critical for understanding and modeling the in the state of Texas and Southern USA. Once implemented, TWO will be positioned to support high-impact water science that is highly relevant to societal needs and serve as a regional resource for better understanding and/or managing agriculture, water resources, ecosystems, biodiversity, disasters, health, energy, and weather/climate. TWO infrastructure will span land uses (cultivation agriculture, range/pasture, forest), landforms (low-relief erosional uplands to depositional lowlands), and across climatic and geologic gradients of Texas to investigate the sensitivity and resilience of fertile soils and the ecosystems they support. Besides developing a network of field water observatory infrastructure/capacity for accounting water flow and storage, TWO will facilitate developing a new generation interdisciplinary water professionals (from various TAMU Colleges) with better understanding and skills for attending to future water challenges of the region. This holistic growth will have great impact on TAMU research enterprise related to water resources, leading to higher federal and state level competitiveness for funding and establishing a center of excellence in the region

  9. Using Personal Water Footprints to Identify Consumer Food Choices that Influence the Conservation of Local Water Resources

    NASA Astrophysics Data System (ADS)

    Marrin, D. L.

    2015-12-01

    As the global demand for water and food escalates, the emphasis is on supply side factors rather than demand side factors such as consumers, whose personal water footprints are dominated (>90%) by food. Personal footprints include the water embedded in foods that are produced locally as well as those imported, raising the question of whether local shifts in people's food choices and habits could assist in addressing local water shortages. The current situation in California is interesting in that drought has affected an agriculturally productive region where a substantial portion of its food products are consumed by the state's large population. Unlike most agricultural regions where green water is the primary source of water for crops, California's arid climate demands an enormous volume of blue water as irrigation from its dwindling surface and ground water resources. Although California exports many of its food products, enough is consumed in-state so that residents making relatively minor shifts their food choices could save as much local blue water as their implementing more drastic reductions in household water use (comprising <5% of their personal footprint). One of those shifts is reducing the intake of meat and dairy products that account for just under half of a Californian's blue-green water footprint and that require the most water of any food group on both a caloric and gravimetric basis. Another change is wasting less food, which is a shared responsibility among consumers, producers and retailers; however, consumers' actions and preferences ultimately drive much of the waste. Personal water footprints suggest a role for individuals in conserving local water resources that is neither readily obvious nor a major focus of most conservation programs.

  10. Water Resource Adaptation Program

    EPA Science Inventory

    The Water Resource Adaptation Program (WRAP) contributes to the U.S. Environmental Protection Agency’s (U.S. EPA) efforts to provide water resource managers and decision makers with the tools needed to adapt water resources to demographic and economic development, and future clim...

  11. Save Our Water Resources.

    ERIC Educational Resources Information Center

    Bromley, Albert W.

    The purpose of this booklet, developed as part of Project SOAR (Save Our American Resources), is to give Scout leaders some facts about the world's resources, the sources of water pollution, and how people can help in obtaining solutions. Among the topics discussed are the world's water resources, the water cycle, water quality, sources of water…

  12. Water Depletion Threatens Agriculture

    NASA Astrophysics Data System (ADS)

    Brauman, K. A.; Richter, B. D.; Postel, S.; Floerke, M.; Malsy, M.

    2014-12-01

    Irrigated agriculture is the human activity that has by far the largest impact on water, constituting 85% of global water consumption and 67% of global water withdrawals. Much of this water use occurs in places where water depletion, the ratio of water consumption to water availability, exceeds 75% for at least one month of the year. Although only 17% of global watershed area experiences depletion at this level or more, nearly 30% of total cropland and 60% of irrigated cropland are found in these depleted watersheds. Staple crops are particularly at risk, with 75% of global irrigated wheat production and 65% of irrigated maize production found in watersheds that are at least seasonally depleted. Of importance to textile production, 75% of cotton production occurs in the same watersheds. For crop production in depleted watersheds, we find that one half to two-thirds of production occurs in watersheds that have not just seasonal but annual water shortages, suggesting that re-distributing water supply over the course of the year cannot be an effective solution to shortage. We explore the degree to which irrigated production in depleted watersheds reflects limitations in supply, a byproduct of the need for irrigation in perennially or seasonally dry landscapes, and identify heavy irrigation consumption that leads to watershed depletion in more humid climates. For watersheds that are not depleted, we evaluate the potential impact of an increase in irrigated production. Finally, we evaluate the benefits of irrigated agriculture in depleted and non-depleted watersheds, quantifying the fraction of irrigated production going to food production, animal feed, and biofuels.

  13. Preliminary research on quantitative methods of water resources carrying capacity based on water resources balance sheet

    NASA Astrophysics Data System (ADS)

    Wang, Yanqiu; Huang, Xiaorong; Gao, Linyun; Guo, Biying; Ma, Kai

    2018-06-01

    Water resources are not only basic natural resources, but also strategic economic resources and ecological control factors. Water resources carrying capacity constrains the sustainable development of regional economy and society. Studies of water resources carrying capacity can provide helpful information about how the socioeconomic system is both supported and restrained by the water resources system. Based on the research of different scholars, major problems in the study of water resources carrying capacity were summarized as follows: the definition of water resources carrying capacity is not yet unified; the methods of carrying capacity quantification based on the definition of inconsistency are poor in operability; the current quantitative research methods of water resources carrying capacity did not fully reflect the principles of sustainable development; it is difficult to quantify the relationship among the water resources, economic society and ecological environment. Therefore, it is necessary to develop a better quantitative evaluation method to determine the regional water resources carrying capacity. This paper proposes a new approach to quantifying water resources carrying capacity (that is, through the compilation of the water resources balance sheet) to get a grasp of the regional water resources depletion and water environmental degradation (as well as regional water resources stock assets and liabilities), figure out the squeeze of socioeconomic activities on the environment, and discuss the quantitative calculation methods and technical route of water resources carrying capacity which are able to embody the substance of sustainable development.

  14. Modelling mitigation options to reduce diffuse nitrogen water pollution from agriculture.

    PubMed

    Bouraoui, Fayçal; Grizzetti, Bruna

    2014-01-15

    Agriculture is responsible for large scale water quality degradation and is estimated to contribute around 55% of the nitrogen entering the European Seas. The key policy instrument for protecting inland, transitional and coastal water resources is the Water Framework Directive (WFD). Reducing nutrient losses from agriculture is crucial to the successful implementation of the WFD. There are several mitigation measures that can be implemented to reduce nitrogen losses from agricultural areas to surface and ground waters. For the selection of appropriate measures, models are useful for quantifying the expected impacts and the associated costs. In this article we review some of the models used in Europe to assess the effectiveness of nitrogen mitigation measures, ranging from fertilizer management to the construction of riparian areas and wetlands. We highlight how the complexity of models is correlated with the type of scenarios that can be tested, with conceptual models mostly used to evaluate the impact of reduced fertilizer application, and the physically-based models used to evaluate the timing and location of mitigation options and the response times. We underline the importance of considering the lag time between the implementation of measures and effects on water quality. Models can be effective tools for targeting mitigation measures (identifying critical areas and timing), for evaluating their cost effectiveness, for taking into consideration pollution swapping and considering potential trade-offs in contrasting environmental objectives. Models are also useful for involving stakeholders during the development of catchments mitigation plans, increasing their acceptability. © 2013.

  15. Water and solute balances as a basis for sustainable irrigation agriculture

    NASA Astrophysics Data System (ADS)

    Pla-Sentís, Ildefonso

    2015-04-01

    The growing development of irrigated agriculture is necessary for the sustainable production of the food required by the increasing World's population. Such development is limited by the increasing scarcity and low quality of the available water resources and by the competitive use of the water for other purposes. There are also increasing problems of contamination of surface and ground waters to be used for other purposes by the drainage effluents of irrigated lands. Irrigation and drainage may cause drastic changes in the regime and balance of water and solutes (salts, sodium, contaminants) in the soil profile, resulting in problems of water supply to crops and problems of salinization, sodification and contamination of soils and ground waters. This is affected by climate, crops, soils, ground water depth, irrigation and groundwater composition, and by irrigation and drainage management. In order to predict and prevent such problems for a sustainable irrigated agriculture and increased efficiency in water use, under each particular set of conditions, there have to be considered both the hydrological, physical and chemical processes determining such water and solute balances in the soil profile. In this contribution there are proposed the new versions of two modeling approaches (SOMORE and SALSODIMAR) to predict those balances and to guide irrigation water use and management, integrating the different factors involved in such processes. Examples of their application under Mediterranean and tropical climate conditions are also presented.

  16. Advancing water resource management in agricultural, rural, and urbanizing watersheds: Enhancing University involvement

    USDA-ARS?s Scientific Manuscript database

    In this research editorial we make four points relative to solving water resource issues: (1) they are complex problems and difficult to solve, (2) some progress has been made on solving these issues, (3) external non-stationary drivers such as land use changes, climate change and variability, and s...

  17. The Water-Energy-Food Nexus in a Rapidly Developing Resource Sector

    NASA Astrophysics Data System (ADS)

    Allen, D. M.; Kirste, D. M.

    2014-12-01

    Technological advances and access to global markets have changed the rate at which resource exploitation takes place. The environmental impact of the rapid development and distribution of resources such as minerals and hydrocarbons has led to a greater potential for significant stress on water resources both in terms of quality and quantity. How and where those impacts manifest is crucial to determining appropriate risk management strategies. North East British Columbia has an abundance of shale gas reserves that are anticipated to be exploited at a large scale in coming years, primarily for export as liquefied natural gas (LNG). However, there is growing concern that fracking and other activities related to shale gas development pose risks to water quality and quantity in the region. Water lies at the center of the water-energy-food nexus, with an accelerating water demand for fracking and industrial operations as well as for domestic, environmental and agricultural uses. Climate change is also anticipated to alter the hydrologic regime, posing added stress to the water resource. This case study examines the water-energy-food nexus in the context of a region that is impacted by a rapidly developing resource sector, encompassing water demand/supply, climate change, interaction between deep aquifers and shallow aquifers/surface waters, water quality concerns related to fracking, land use disturbance, and community impacts. Due to the rapid rate of development, there are significant knowledge gaps in our understanding of the water resource. Currently agencies are undertaking water resource assessments and establishing monitoring sites. This research aims to assess water security in North East British Columbia in a coordinated fashion through various partnerships. In addition to collecting baseline knowledge and data, the study will evaluate risk and resilience indicators in relation to water security. A risk assessment framework specific to the shale gas development

  18. Leadership Learning Opportunities in Agriculture, Food, and Natural Resources Education: The Role of The Teacher

    ERIC Educational Resources Information Center

    McKim, Aaron J.; Pauley, C. M.; Velez, Jonathan J.; Sorensen, Tyson J.

    2017-01-01

    Learning environments combining agriculture, food, natural resources, and leadership knowledge and skills are increasingly essential in preparing students for future success. School-based agricultural education offers a premier context in which to teach leadership within agriculture, food, and natural resources curriculum. However, providing…

  19. A Need for Education in Water Sustainability in the Agricultural Realm

    NASA Astrophysics Data System (ADS)

    Krajewski, J.

    2015-12-01

    This study draws upon the definition of water sustainability from the National Water Research Institute as the continual supply of clean water for human uses and for other living beings without compromising the water welfare of future generations. Currently, the greatest consumer of water resources worldwide is irrigation. The move from small-scale, family farms towards corporately owned and market driven, mass scale operations have drastically increased corn production and large-scale factory hog farming in the American Midwest—and the water quality related costs associated with this shift are well-documented. In the heart of the corn belt, the state of Iowa has dealt with issues over the past two decades ranging from flooding of historic proportions, to yield destroying droughts. Most recently, the state's water quality is intensely scrutinized due to nutrient levels higher than almost anywhere else in the world. While the changed agricultural landscape is ultimately responsible for these environmental costs, they can be mitigated if the farmers adopt practices that support water sustainability. However, many Iowa farmers have yet to embrace these necessary practices because of a lack of proper education in this context. Thus, the purpose of this paper is to explore how water sustainability is being conceptualized within the agricultural realm, and ultimately, how the issues are being communicated and understood within various subgroups in Iowa, such as the farmers, the college students, and the general public.

  20. Agricultural water use, crop water footprints and irrigation strategies in the seasonally dry Guanacaste region in Costa Rica

    NASA Astrophysics Data System (ADS)

    Morillas, Laura; Johnson, Mark S.; Hund, Silja V.; Steyn, Douw G.

    2017-04-01

    Agriculture is the main productive sector and a major water-consuming sector in the seasonally-dry Guanacaste region of north-western Costa Rica. Agriculture in the region is intensifying at the same time that seasonal water scarcity is increasing. The climate of this region is characterized by a prolonged dry season from December to March, followed by a bimodal wet season from April to November. The wet season has historically experienced periodic oscillations in rainfall timing and amounts resulting from variations of several large-scale climatic features (El Niño Southern Oscillation, the Pacific Decadal Oscillation, the Atlantic Multidecadal Oscillation and the North Atlantic Oscillation). However, global circulation models now project more recurrent variations in total annual rainfall, changes in rainfall temporal distribution, and increased temperatures in this region. This may result in a lengthening of the dry season and an increase in water scarcity and water-related conflicts as water resources are already limited and disputed in this area. In fact, this region has just undergone a four-year drought over the 2012-2015 period, which has intensified water related conflicts and put agricultural production at risk. In turn, the recent drought has also increased awareness of the local communities regarding the regional threat of water scarcity and the need of a regional water planning. The overall goal of this research is to generate data to characterize water use by the agricultural sector in this region and asses its sustainability in the regional context. Towards this goal, eddy-covariance flux towers were deployed on two extensive farms growing regionally-representative crops (melon/rice rotation and sugarcane) to evaluate, monitor and quantify water use in large-scale farms. The two identically instrumented stations provide continuous measurements of evapotranspiration and CO2 fluxes, and are equipped with additional instrumentation to monitor

  1. Performance assessment of Saskatchewan's water resource system under uncertain inter-provincial water supply

    NASA Astrophysics Data System (ADS)

    Hassanzadeh, Elmira; Elshorbagy, Amin; Nazemi, Ali; Wheater, Howard

    2014-05-01

    The trans-boundary Saskatchewan River Basin supports livelihoods and the economy of the province of Saskatchewan, Canada. Water users include irrigated agriculture, hydropower, potash mining, urban centers, and ecosystem services. Water availability in Saskatchewan is highly dependent on the flows from the upstream province of Alberta. These flows mostly originate from the Rocky Mountains headwaters and are highly regulated, due to intensive water use and redistribution before they get to the Alberta/Saskatchewan border. Warming climate and increasing water demands in Alberta have changed the incoming flow characteristics from Alberta to Saskatchewan. It is critical to assess the performance and the viability of Saskatchewan's water resources system under uncertain future inter-provincial inflows. For this purpose, a possible range of future changes in the inflows from Alberta to Saskatchewan is considered in this study. The considered changes include various combinations of shifts in the timing of the annual peak and volumetric change in the annual flow volumes. These shifts are implemented using a copula-based stochastic simulation method to generate multiple realizations of weekly flow series at two key locations of inflow to Saskatchewan's water resources system, in a way that the spatial dependencies between weekly inflows are maintained. Each flow series is of 31-years length and constitutes a possible long term water availability scenario. The stochastically generated flows are introduced as an alternative to the historical inflows for water resources planning and management purposes in Saskatchewan. Both historical and reconstructed inflows are fed into a Sustainability-oriented Water Allocation, Management, and Planning (SWAMP) model to analyze the effects of inflow changes on Saskatchewan's water resources system. The SWAMP model was developed using the System Dynamics approach and entails irrigation/soil moisture, non-irrigation uses and economic

  2. Changing patterns in water toxicity associated with current use pesticides in three California agriculture regions.

    PubMed

    Anderson, Brian S; Phillips, Bryn M; Voorhees, Jennifer P; Deng, Xin; Geraci, Jeff; Worcester, Karen; Tjeerdema, Ron S

    2018-03-01

    Regulation of agriculture irrigation water discharges in California, USA, is assessed and controlled by its 9 Regional Water Quality Control Boards under the jurisdiction of the California State Water Resources Control Board. Each Regional Water Board has developed programs to control pesticides in runoff as part of the waste discharge requirements implemented through each region's Irrigated Lands Regulatory Program. The present study assessed how pesticide use patterns differ in the Imperial (Imperial County) and the Salinas and Santa Maria (Monterey County) valleys, which host 3 of California's prime agriculture areas. Surface-water toxicity associated with current use pesticides was monitored at several sites in these areas in 2014 and 2015, and results were linked to changes in pesticide use patterns in these areas. Pesticide use patterns appeared to coincide with differences in the way agriculture programs were implemented by the 2 respective Regional Water Quality Control Boards, and these programs differed in the 2 Water Board Regions. Different pesticide use patterns affected the occurrence of pesticides in agriculture runoff, and this influenced toxicity test results. Greater detection frequency and higher concentrations of the organophosphate pesticide chlorpyrifos were detected in agriculture runoff in Imperial County compared to Monterey County, likely due to more rigorous monitoring requirements for growers using this pesticide in Monterey County. Monterey County agriculture runoff contained toxic concentrations of pyrethroid and neonicotinoid pesticides, which impacted amphipods (Hyalella azteca) and midge larvae (Chironomus dilutus) in toxicity tests. Study results illustrate how monitoring strategies need to evolve as regulatory actions affect change in pesticide use and demonstrate the importance of using toxicity test indicator species appropriate for the suite of contaminants in runoff in order to accurately assess environmental risk. Integr

  3. Evaluation of fog and rain water collected at Delta Barrage, Egypt as a new resource for irrigated agriculture

    NASA Astrophysics Data System (ADS)

    Salem, Talaat A.; Omar, Mohie El Din M.; El Gammal, H. A. A.

    2017-11-01

    Alternative clean water resources are needed in Egypt to face the current water shortage and water quality deterioration. Therefore, this research investigates the suitability of harvesting fog and rain water for irrigation using a pilot fog collector for water quantity, water quality, and economic aspects. A pilot fog collector was installed at one location at Delta Barrage, Egypt. Freeze liquid nitrogen was fixed at the back of the fiberglass sheet to increase the condensation rate. The experiment was conducted during the period from November 2015 to February 2016. In general, all physicochemical variables are observed with higher values in the majority of fog than rain water. The fog is assumed to contain higher concentrations of anthropogenic emissions. TDS in both waters collected are less than 700 mg/l at sodium content less than 60%, classifying these waters as good for various plants under most conditions. In addition, SAR calculated values are less than 3.0 in each of fog and rain water, which proves the water suitability for all irrigated agriculture. Al and Fe concentrations were found common in all samples with values less than the permissible limits of the guidelines. These metals originate from soil material, ash and metal surfaces. The sensitive heavy metals (Cd and Pb) were within the permissible limits of the guideline in fog water, indicating this water is suitable for irrigation. On the contrary, rain water that has heavy metals is not permitted in irrigation water as per the Egyptian law. As per WQI, the rain water is classified as good quality while fog is classified as medium quality. Regarding the water quantity, a significant increase in the harvested fog quantity was observed after cooling the collector surface with freeze liquid nitrogen. The current fog collector produced the lowest water quantity among different fog collectors worldwide. However, these comparative results confirmed that quantity is different from one location to another

  4. Water Resources Data--Nebraska, Water Year 2002

    USGS Publications Warehouse

    Hitch, D.E.; Hull, S.H.; Walczyk, V.C.

    2002-01-01

    The Water Resources Discipline of the U.S. Geological Survey (USGS), in cooperation with State and local agencies, obtains a large amount of data pertaining to the water resources of Nebraska each water year. These data, accumulated during many water years, constitute a valuable data base for developing an improved understanding of the water resources of the State. To make these data readily available to interested parties outside the USGS, the data are published annually in this report series entitled ?Water Resources Data - Nebraska.' The Nebraska water resources data report for water year 2002 includes records of stage, discharge, and water quality of streams; stage and/or contents of lakes and reservoirs; and water levels and quality of ground water in wells. This report contains records of stream stage for 3 stations; stream discharge for 96 continuous and 5 crest-state gaging stations, and 3 miscellaneous and 55 low-flow sites; stream water quality for 23 gaging stations and 5 miscellaneous sites; water elevation and/or contents for 1 lake and 1 reservoir; ground-water levels for 43 observation wells; and ground-water quality for 115 wells. These data represent that part of the National Water Data System collected in and near Nebraska by the U.S. Geological Survey and cooperating local, state and Federal agencies.

  5. Mapping of Temporal Surface-water Resources Availability and Agricultural Adaptability due to Climate Change and Anthropogenic Activity in a Hot Semi-arid Region of Maharashtra State, India

    NASA Astrophysics Data System (ADS)

    Roy, A.; Inamdar, A. B.

    2016-12-01

    Major part of Godavari River Basin is intensely drought prone and climate vulnerable in the Western Maharashtra State, India. The economy of the state depends on the agronomic productivity of this region. So, it is necessary to regulate the effects of existing and upcoming hydro-meteorological advances in various strata. This study investigates and maps the surface water resources availability and vegetation, their decadal deviations with multi-temporal LANDSAT images; and finally quantifies the agricultural adaptations. This work involves the utilization of Remote Sensing and GIS with Hydrological modeling. First, climatic trend analysis is carried out with NCEP dataset. Then, multi-temporal LANDSAT images are classified to determine the decadal LULC changes and correlated to the community level hydrological demand. Finally, NDVI, NDWI and SWAT model analysis are accomplished to determine irrigated and non-irrigated cropping area for identifying the agricultural adaptations. The analysis shows that the mean value of annual and monsoon rainfall is significantly decreasing, whereas the mean value of annual and summer temperature is increasing significantly and the winter temperature is decreasing. The analysis of LANDSAT images shows that the surface water availability is highly dependent on climatic conditions. Barren-lands are most dynamic during the study period followed by, vegetation, and water bodies. The spatial extent of barren-lands is increased drastically during the climate vulnerable years replacing the vegetation and surface water bodies. Hence, the barren lands are constantly increasing and the vegetation cover is linearly decreasing, whereas the water extent is changing either way in a random fashion. There appears a positive correlation between surface water and vegetation occurrence; as they are fluctuating in a similar fashion in all the years. The vegetation cover is densely replenished around the dams and natural water bodies which serve as the

  6. Virtual water trade of agricultural products: A new perspective to explore the Belt and Road.

    PubMed

    Zhang, Yu; Zhang, Jin-He; Tian, Qing; Liu, Ze-Hua; Zhang, Hong-Lei

    2018-05-01

    The Belt and Road is an initiative of cooperation and development that was proposed by China. Moreover, most of the spanning countries faced water shortages and agriculture consumed a lot of water. Virtual water links water, food and trade and is an effective tool to ease water shortages. Therefore, this paper aims to understand the Belt and Road from the new perspective of virtual water trade of agricultural products. We considered agricultural products trade from 2001 to 2015. On the whole, the results indicated that China was in virtual water trade surplus with the countries along the Belt and Road. However, in terms of each country, >40 spanning countries were in virtual water trade surplus with China and eased water shortages. Russia had the largest net imported virtual water from China. Furthermore, the proportion of the grey water footprint that China exported to the spanning countries was much higher than that imported, no matter from the whole or different geographical regions. Moreover, more than half of the countries' virtual water trade with China conformed to the virtual water strategy, which helped to ease water crises. Furthermore, the products that they exported to China were mainly advantageous products that each spanning countries have. Virtual water trade is a new perspective to explore the Belt and Road. Agricultural products trade with China definitely benefits both the countries along the Belt and Road and China from the perspective of virtual water. The findings are beneficial for the water management of the countries along the Belt and Road and China, alleviating water shortages, encouraging the rational allocation of water resources in the various departments. They can provide references for optimizing trade structures as well. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. An integrated model for the assessment of global water resources Part 2: Applications and assessments

    NASA Astrophysics Data System (ADS)

    Hanasaki, N.; Kanae, S.; Oki, T.; Masuda, K.; Motoya, K.; Shirakawa, N.; Shen, Y.; Tanaka, K.

    2008-07-01

    To assess global water resources from the perspective of subannual variation in water availability and water use, an integrated water resources model was developed. In a companion report, we presented the global meteorological forcing input used to drive the model and six modules, namely, the land surface hydrology module, the river routing module, the crop growth module, the reservoir operation module, the environmental flow requirement module, and the anthropogenic withdrawal module. Here, we present the results of the model application and global water resources assessments. First, the timing and volume of simulated agriculture water use were examined because agricultural use composes approximately 85% of total consumptive water withdrawal in the world. The estimated crop calendar showed good agreement with earlier reports for wheat, maize, and rice in major countries of production. In major countries, the error in the planting date was ±1 mo, but there were some exceptional cases. The estimated irrigation water withdrawal also showed fair agreement with country statistics, but tended to be underestimated in countries in the Asian monsoon region. The results indicate the validity of the model and the input meteorological forcing because site-specific parameter tuning was not used in the series of simulations. Finally, global water resources were assessed on a subannual basis using a newly devised index. This index located water-stressed regions that were undetected in earlier studies. These regions, which are indicated by a gap in the subannual distribution of water availability and water use, include the Sahel, the Asian monsoon region, and southern Africa. The simulation results show that the reservoir operations of major reservoirs (>1 km3) and the allocation of environmental flow requirements can alter the population under high water stress by approximately -11% to +5% globally. The integrated model is applicable to assessments of various global

  8. Irrigated Agriculture, Saudi Arabia

    NASA Technical Reports Server (NTRS)

    1990-01-01

    In Saudi Arabia, center-pivot, swing-arm irrigated agriculture complexes such as the one imaged at Jabal Tuwayq (20.5N, 45.0 E) extract deep fossil water reserves to achieve food crop production self sufficiency in this desert environment. The significance of the Saudi expanded irrigated agriculture is that the depletion of this finite water resource is a short term solution to a long term need that will still exist when the water has been extracted.

  9. Irrigated Agriculture, Saudi Arabia

    NASA Image and Video Library

    1990-01-20

    In Saudi Arabia, center-pivot, swing-arm irrigated agriculture complexes such as the one imaged at Jabal Tuwayq (20.5N, 45.0 E) extract deep fossil water reserves to achieve food crop production self sufficiency in this desert environment. The significance of the Saudi expanded irrigated agriculture is that the depletion of this finite water resource is a short term solution to a long term need that will still exist when the water has been extracted.

  10. CURRENT CONDITIONS AND RESIDENCE PREFERENCES OR CITIZENS' PERCEPTIONS ON NONCONVENTIONAL WATER RESOURCES

    NASA Astrophysics Data System (ADS)

    Tsuzuki, Yoshiaki; Aramaki, Toshiya

    Preferences or perceptions of ordinary citizens on three kinds of nonconventional water resources including rainwater, permissible groundwater exuding to underground railway stations and tunnels and reclaimed wastewater were investigated by use of the Internet survey method. The survey results were analysed with analytical hierar chal process (AHP) and willingness to pay (WTP). Weight vectors of natural environment and people's lives were found larger than other three first order evaluation conditions, society, economics and technology. The order of the weight vector values for the three water resources were rainwater, reclaimed wastewater and permissible groundwater. That for the five water usages were agricultural and horticulture water, water storage in preparation for disaster, toilet flushing water, environment water and sprinkler water for washing road and cooling atmosphere temperature. The difference between toilet flushing water and environment water was not significant by 5% significance. The analyzed data showed that differences between the weight vector values of the alternatives (water resources and their usages) became small by increasing the number of the evaluation conditions, which would be a topic to be resolved for AHP application to actual public projects. For water resources, WTP with public budgets was Japanese Yen (JY) 53,100-55,100 person-1 year-1, and WTP with private finances was JY 19,100-20,800 person-1 year-1. For water usages, public WTP was JY 20,400-47,200 person-1 year-1 and private WTP was JY 8,400-16,000 person-1 year-1. The orders of WTP values were similar to the orders of the weight vector values for both water resources and their usages obtained by the AHP analysis. Effective dissemination subjects and objects of the nonconventional water resources and their usages were extracted by the analysis for attributes including sex, age, living area, occupation and education.

  11. Invisible water, visible impact: groundwater use and Indian agriculture under climate change

    DOE PAGES

    Zaveri, Esha; Grogan, Danielle S.; Fisher-Vanden, Karen; ...

    2016-08-03

    India is one of the world's largest food producers, making the sustainability of its agricultural system of global significance. Groundwater irrigation underpins India's agriculture, currently boosting crop production by enough to feed 170 million people. Groundwater overexploitation has led to drastic declines in groundwater levels, threatening to push this vital resource out of reach for millions of small-scale farmers who are the backbone of India's food security. Historically, losing access to groundwater has decreased agricultural production and increased poverty. We take a multidisciplinary approach to assess climate change challenges facing India's agricultural system, and to assess the effectiveness of large-scalemore » water infrastructure projects designed to meet these challenges. We find that even in areas that experience climate change induced precipitation increases, expansion of irrigated agriculture will require increasing amounts of unsustainable groundwater. Finally, the large proposed national river linking project has limited capacity to alleviate groundwater stress. Thus, without intervention, poverty and food insecurity in rural India is likely to worsen.« less

  12. Invisible water, visible impact: groundwater use and Indian agriculture under climate change

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zaveri, Esha; Grogan, Danielle S.; Fisher-Vanden, Karen

    India is one of the world's largest food producers, making the sustainability of its agricultural system of global significance. Groundwater irrigation underpins India's agriculture, currently boosting crop production by enough to feed 170 million people. Groundwater overexploitation has led to drastic declines in groundwater levels, threatening to push this vital resource out of reach for millions of small-scale farmers who are the backbone of India's food security. Historically, losing access to groundwater has decreased agricultural production and increased poverty. We take a multidisciplinary approach to assess climate change challenges facing India's agricultural system, and to assess the effectiveness of large-scalemore » water infrastructure projects designed to meet these challenges. We find that even in areas that experience climate change induced precipitation increases, expansion of irrigated agriculture will require increasing amounts of unsustainable groundwater. Finally, the large proposed national river linking project has limited capacity to alleviate groundwater stress. Thus, without intervention, poverty and food insecurity in rural India is likely to worsen.« less

  13. Water - an inexhaustible resource?

    NASA Astrophysics Data System (ADS)

    Le Divenah, C.; Esperou, E.

    2012-04-01

    We have chosen to present the topic "Water", by illustrating problems that will give better opportunities for interdisciplinary work between Natural Science (Physics, Chemistry, Biology and Geology) teachers at first, but also English teachers and maybe others. Water is considered in general, in all its shapes and states. The question is not only about drinking water, but we would like to demonstrate that water can both be a fragile and short-lived resource in some ways, and an unlimited energy resource in others. Water exists on Earth in three states. It participates in a large number of chemical and physical processes (dissolution, dilution, biogeochemical cycles, repartition of heat in the oceans and the atmosphere, etc.), helping to maintain the homeostasis of the entire planet. It is linked to living beings, for which water is the major compound. The living beings essentially organized themselves into or around water, and this fact is also valid for human kind (energy, drinking, trade…). Water can also be a destroying agent for living beings (tsunamis, mud flows, collapse of electrical dams, pollution...) and for the solid earth (erosion, dissolution, fusion). I) Water, an essential resource for the human kind After having highlighted the disparities and geopolitical problems, the pupils will study the chemistry of water with its components and their origins (isotopes, water trip). Then the ways to make it drinkable will be presented (filtration, decantation, iceberg carrying…) II) From the origin of water... We could manage an activity where different groups put several hypotheses to the test, with the goal to understand the origin(s?) of water on Earth. Example: Isotopic signature of water showing its extraterrestrial origin.. Once done, we'll try to determine the origin of drinking water, as a fossil resource. Another use of isotopes will allow them to evaluate the drinking water age, to realize how precious it can be. III) Water as a sustainable energy

  14. An innovative method for water resources carrying capacity research--Metabolic theory of regional water resources.

    PubMed

    Ren, Chongfeng; Guo, Ping; Li, Mo; Li, Ruihuan

    2016-02-01

    The shortage and uneven spatial and temporal distribution of water resources has seriously restricted the sustainable development of regional society and economy. In this study, a metabolic theory for regional water resources was proposed by introducing the biological metabolism concept into the carrying capacity of regional water resources. In the organic metabolic process of water resources, the socio-economic system consumes water resources, while products, services and pollutants, etc. are output. Furthermore, an evaluation index system which takes into the characteristics of the regional water resources, the socio-economic system and the sustainable development principle was established based on the proposed theory. The theory was then applied to a case study to prove its availability. Further, suggestions aiming at improving the regional water carrying capacity were given on the basis of a comprehensive analysis of the current water resources situation. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Critical Thinking for Natural Resource, Agricultural, and Environmental Ethics Education

    ERIC Educational Resources Information Center

    Quinn, Courtney; Burbach, Mark E.; Matkin, Gina S.; Flores, Kevin

    2009-01-01

    Future decision makers in natural resource fields will be required to make judgments on issues that lack clear solutions and with information complicated by ethical challenges. Therefore, natural resource, environmental, and agricultural professionals must possess the ability to think critically about the consequences of policy, economic systems,…

  16. Groundwater footprint methodology as policy tool for balancing water needs (agriculture & tourism) in water scarce islands - The case of Crete, Greece.

    PubMed

    Kourgialas, Nektarios N; Karatzas, George P; Dokou, Zoi; Kokorogiannis, Andreas

    2018-02-15

    In many Mediterranean islands with limited surface water resources, the growth of agricultural and touristic sectors, which are the main water consumers, highly depends on the sustainable water resources management. This work highlights the crucial role of groundwater footprint (GF) as a tool for the sustainable management of water resources, especially in water scarce islands. The groundwater footprint represents the water budget between inflows and outflows in an aquifer system and is used as an index of the effect of groundwater use in natural resources and environmental flows. The case study presented in this paper is the island of Crete, which consists of 11 main aquifer systems. The data used for estimating the groundwater footprint in each system were groundwater recharges, abstractions through 412 wells, environmental flows (discharges) from 76 springs and 19 streams present in the area of study. The proposed methodology takes into consideration not only the water quantity but also the water quality of the aquifer systems and can be used as an integrated decision making tool for the sustainable management of groundwater resources. This methodology can be applied in any groundwater system. The results serve as a tool for assessing the potential of sustainable use and the optimal distribution of water needs under the current and future climatic conditions, considering both quantitative and qualitative factors. Adaptation measures and water policies that will effectively promote sustainable development are also proposed for the management of the aquifer systems that exhibit a large groundwater footprint. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Grey water on three agricultural catchments in the Czech Republic

    NASA Astrophysics Data System (ADS)

    Blazkova, Sarka D.; Kulasova, Alena

    2014-05-01

    The COST project EU EURO-AGRIWAT focuses apart from other problems on the assessment of water footprint (WF). WF is defined as the quantity of water used to produce some goods or a service. In particular, the WF of an agricultural product is the volume of water used during the crop growing period. It has three components: the green water which is rain or soil moisture transpired by a crop, the blue water which is the amount of irrigation water transpired and the grey water which is the volume of water required to dilute pollutants and to restore the quality standards of the water body. We have been observing three different agricultural catchments. The first of them is Smrzovka Brook, located in the protected nature area in the south part of the Jizerske Mountains. An ecological farming has been carried out there. The second agricultural catchment area is the Kralovsky Creek, which lies in the foothills of the Krkonose Mountains and is a part of an agricultural cooperative. The last agricultural catchment is the Klejnarka stream, located on the outskirts of the fertile Elbe lowlands near Caslav. Catchments Kralovsky Brook and Klejnarka carry out usual agricultural activities. On all three catchments, however, recreational cottages or houses not connected to the sewerage system and/or with inefficient septic tanks occur. The contribution shows our approach to trying to quantify the real grey water from agriculture, i.e. the grey water caused by nutrients not utilised by the crops.

  18. Agricultural and forest resource surveys from space

    NASA Technical Reports Server (NTRS)

    Hoffer, R. M.

    1973-01-01

    An overview is presented on the use of spaceborne remote sensors as aid to agriculture and forestry for soil mapping, crop yield predictions, acreage determinations, damage assessment, and numerous other benefits. Some results obtained by ERTS 1 are discussed in terms of the significance of information derived and the potential use of these data for better management of our natural resources.

  19. Value of irrigation water usage in South Florida agriculture.

    PubMed

    Takatsuka, Yuki; Niekus, Martijn R; Harrington, Julie; Feng, Shuang; Watkins, David; Mirchi, Ali; Nguyen, Huong; Sukop, Michael C

    2018-06-01

    This study estimates economic loss from South Florida croplands when usage of agricultural irrigation water is altered. In South Florida, 78% of the total value of farm products sold is comprised of cropland products. The majority of Florida citrus and sugarcane are produced in the area, and agricultural irrigation was the largest sector of water use in 2010, followed by public water supply. The Florida Department of Environmental Protection announced in December 2012 that traditional sources of fresh groundwater will have difficulty meeting all of the additional demands by 2030. A shortage of water will impose significant damage to the rural and agriculture economy in Florida, which may lead to higher prices and costs for consumers to purchase citrus or other Florida agriculture products. This paper presents a methodology for estimating economic loss when usage of irrigation water is altered, and examines economic values of irrigation water use for South Florida cropland. The efficient allocation of irrigation water across South Florida cropland is also investigated in order to reduce economic cost to the South Florida agricultural sector. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Water hyacinths as a resource in agriculture and energy production: a literature review.

    PubMed

    Gunnarsson, Carina C; Petersen, Cecilia Mattsson

    2007-01-01

    Water hyacinths are becoming a problem in lakes, ponds and waterways in many parts of the world. This paper contains a literature study of different ways to use water hyacinths, mainly in agricultural or alternative energy systems. The literature review indicated that water hyacinths can be rich in nitrogen, up to 3.2% of DM and have a C/N ratio around 15. The water hyacinth can be used as a substrate for compost or biogas production. The sludge from the biogas process contains almost all of the nutrients of the substrate and can be used as a fertiliser. The use of water hyacinth compost on different crops has resulted in improved yields. The high protein content makes the water hyacinth possible to use as fodder for cows, goats, sheep and chickens. Water hyacinth, due to its abundant growth and high concentrations of nutrients, has a great potential as fertiliser for the nutrient deficient soils of Africa and as feed for livestock. Applying the water hyacinths directly without any other processing than sun drying, seems to be the best alternative in small-scale use due to the relatively small losses of nutrients and workload required. To meet the ever-growing energy demand, biogas production could be one option but it requires investments and technological skills that would impose great problems in developing countries where the water hyacinth is often found. Composting as an alternative treatment has the advantage of a product that is easy to work into the soil compared with dried water hyacinths, because of the decomposed structure. Harvesting and transport of water hyacinths can be conducted manually on a small scale and does not require a new harvesting technique to be introduced. Transporting of fresh water hyacinths means, if used as fertiliser in amounts large enough to enhance or effect crop growth, an unreasonably large labour requirement. Based on the labour need and the limited access to technology, using dried water hyacinths, as green manure is a

  1. On the Water-Food Nexus: an Optimization Approach for Water and Food Security

    NASA Astrophysics Data System (ADS)

    Mortada, Sarah; Abou Najm, Majdi; Yassine, Ali; Alameddine, Ibrahim; El-Fadel, Mutasem

    2016-04-01

    Water and food security is facing increased challenges with population increase, climate and land use change, as well as resource depletion coupled with pollution and unsustainable practices. Coordinated and effective management of limited natural resources have become an imperative to meet these challenges by optimizing the usage of resources under various constraints. In this study, an optimization model is developed for optimal resource allocation towards sustainable water and food security under nutritional, socio-economic, agricultural, environmental, and natural resources constraints. The core objective of this model is to maximize the composite water-food security status by recommending an optimal water and agricultural strategy. The model balances between the healthy nutritional demand side and the constrained supply side while considering the supply chain in between. It equally ensures that the population achieves recommended nutritional guidelines and population food-preferences by quantifying an optimum agricultural and water policy through transforming optimum food demands into optimum cropping policy given the water and land footprints of each crop or agricultural product. Through this process, water and food security are optimized considering factors that include crop-food transformation (food processing), water footprints, crop yields, climate, blue and green water resources, irrigation efficiency, arable land resources, soil texture, and economic policies. The model performance regarding agricultural practices and sustainable food and water security was successfully tested and verified both at a hypothetical and pilot scale levels.

  2. Development of a real-time hydrological cycle - rice growth coupled simulation system as a tool for farmers' decision making in an ungauged basin in Cambodia for the better agricultural water resources management

    NASA Astrophysics Data System (ADS)

    Tsujimoto, K.; Ohta, T.; Yasukawa, M.; Koike, T.; Kitsuregawa, M.; Homma, K.

    2013-12-01

    The entire country of Cambodia depends on agriculture for its economy. Rice is the staple food, making it the major agricultural product (roughly 80% of total national production). The target area of this study is western Cambodia, where rice production is the greatest in the country and most land is rainfed. Since most farmers rely only on their (non-science-based) experience, they would not adjust to changing rainfall and degraded water resources under climate change, so food security in the region would be seriously threatened (Monichoth et al., 2013). Under this condition, irrigation master plans are being considered by several ODA projects. This study aims to contribute to the design of such irrigation plans through the development of a real-time hydrological cycle - rice growth coupled simulation system. The purpose of the development of this system is to support decision making 1) for determining the necessary agricultural water resources and 2) for allocating limited water resources to various sectors. Rice growing condition as affected by water stress due to the water shortage is supposed to be shown for both of the cases with and without irrigation for several rainfall patterns. A dynamically coupled model of a distributed hydrological model (WEB-DHM., Wang et al., 2009) and a rice growth model (SIMRIW-rainfed, Homma et al., 2009) has been developed with a simple irrigation model. The target basin, a small basin in western Cambodia, is basically an ungauged basin and the model was validated by soil moisture, LAI, dry matter production of the rice crop, and rice yield, using both intensive field observation and satellite observations. Calibrating hourly satellite precipitation dataset (GSMaP/NRT) using ground rain gauges, hydrological cycle (soil moisture at three layers, river discharge, irrigatable water amount, water level of each paddy field, water demand of each paddy field, etc.) and rice growth (LAI, developmental index of the rice crop, dry matter

  3. Entropy, recycling and macroeconomics of water resources

    NASA Astrophysics Data System (ADS)

    Karakatsanis, Georgios; Mamassis, Nikos; Koutsoyiannis, Demetris

    2014-05-01

    We propose a macroeconomic model for water quantity and quality supply multipliers derived by water recycling (Karakatsanis et al. 2013). Macroeconomic models that incorporate natural resource conservation have become increasingly important (European Commission et al. 2012). In addition, as an estimated 80% of globally used freshwater is not reused (United Nations 2012), under increasing population trends, water recycling becomes a solution of high priority. Recycling of water resources creates two major conservation effects: (1) conservation of water in reservoirs and aquifers and (2) conservation of ecosystem carrying capacity due to wastewater flux reduction. Statistical distribution properties of the recycling efficiencies -on both water quantity and quality- for each sector are of vital economic importance. Uncertainty and complexity of water reuse in sectors are statistically quantified by entropy. High entropy of recycling efficiency values signifies greater efficiency dispersion; which -in turn- may indicate the need for additional infrastructure for the statistical distribution's both shifting and concentration towards higher efficiencies that lead to higher supply multipliers. Keywords: Entropy, water recycling, water supply multipliers, conservation, recycling efficiencies, macroeconomics References 1. European Commission (EC), Food and Agriculture Organization (FAO), International Monetary Fund (IMF), Organization of Economic Cooperation and Development (OECD), United Nations (UN) and World Bank (2012), System of Environmental and Economic Accounting (SEEA) Central Framework (White cover publication), United Nations Statistics Division 2. Karakatsanis, G., N. Mamassis, D. Koutsoyiannis and A. Efstratiades (2013), Entropy and reliability of water use via a statistical approach of scarcity, 5th EGU Leonardo Conference - Hydrofractals 2013 - STAHY '13, Kos Island, Greece, European Geosciences Union, International Association of Hydrological Sciences

  4. Using Case Studies to Teach Interdisciplinary Water Resource Sustainability

    NASA Astrophysics Data System (ADS)

    Orr, C. H.; Tillotson, K.

    2012-12-01

    Teaching about water resources and often emphasizes the biophysical sciences to understand highly complex hydrologic, ecologic and engineering systems, yet most impediments to improving management emerge from social processes. Challenges to more sustainable management often result from trade-offs among stakeholders (e.g., ecosystem services, energy, municipal use, and agriculture) and occur while allocating resources to competing goals of economic development, social equity, and efficient governance. Competing interests operating across multiple scales can increase tensions and prevent collaborative resolution of resource management problems. Here we discuss using specific, place-based cases to teach the interdisciplinary context of water management. Using a case approach allows instructors to first explore the geologic and hydrologic setting of a specific problem to let students understand where water comes from, then how it is used by people and ecosystems, and finally what conflicts arise from mismatches between water quality, quantity, timing, human demand, and ecosystem needs. The case approach helps students focus on specific problem to understand how the landscape influences water availability, without needing to first learn everything about the relevant fields. We look at geology, hydrology and climate in specific watersheds before addressing the human and ecosystem aspects of the broader, integrated system. This gives students the context to understand what limits water availability and how a water budget constrains possible solutions to sustainability problems. It also mimics the approach we have taken in research addressing these problems. In an example case the Spokane Coeur D'Alene basin, spanning the border between SE Washington and NW Idaho, includes a sole source aquifer system with high exchange between surface water and a highly conductive aquifer. The Spokane River does not meet water quality standards and is likely to face climate driven shifts

  5. Agricultural water demand, water quality and crop suitability in Souk-Alkhamis Al-Khums, Libya

    NASA Astrophysics Data System (ADS)

    Abunnour, Mohamed Ali; Hashim, Noorazuan Bin Md.; Jaafar, Mokhtar Bin

    2016-06-01

    Water scarcity, unequal population distribution and agricultural activities increased in the coastal plains, and the probability of seawater intrusion with ground water. According to this, the quantitative and qualitative deterioration of underground water quality has become a potential for the occurrence, in addition to the decline in agricultural production in the study area. This paper aims to discover the use of ground water for irrigation in agriculture and their suitability and compatibility for agricultural. On the other hand, the quality is determines by the cultivated crops. 16 random samples of regular groundwater are collected and analyzed chemically. Questionnaires are also distributed randomly on regular basis to farmers.

  6. Teacher Resource Guide, 2002: A Guide to Educational Materials about Agriculture.

    ERIC Educational Resources Information Center

    Emery, Pamela, Ed.

    This teacher guide provides resources for teaching about agriculture. The content of the book is divided into three sections. Section 1, "California Foundation for Agriculture in the Classroom Programs, Services, and Instructional Materials," provides information on the conferences, workshops, lesson plans, summer programs, and newsletters offered…

  7. Water-resources activities in Ohio, 1986 (water fact sheet)

    USGS Publications Warehouse

    Hindall, S.M.

    1986-01-01

    The Ohio District of the Water Resources Division, U.S. Geological Survey, provides information on Ohio 's water resources for the overall benefit of the State and the Nation. An integral part of the Survey 's mission is to conduct investigations of the Nation 's land, mineral, and water resources, and to publish and disseminate the information needed to understand, to plan the use of, and to manage these resources. The activities fall into eight broad categories: collection of hydrologic data; water resources investigations and assessments; basic and problem-oriented hydrologic and water related research; acquisition of information useful in predicting and delineating water related natural hazards; coordination of the activities of all Federal agencies in the acquisition of water data, and operation of water information centers; dissemination of data and the results of investigations; provision of scientific and technical assistance in hydrologic studies; and the administration of the State Water Resources Research Institute Program and the National Water Resources Research Grant Program. (Lantz-PTT)

  8. Assessing Agricultural Intensification Strategies with a Sustainable Agriculture Matrix

    NASA Astrophysics Data System (ADS)

    Zhang, X.; Davidson, E. A.

    2017-12-01

    To meet the growing global demand for food and bioenergy, agricultural production must nearly double by 2050, placing additional pressures on the environment and the society. Thus, how to efficiently use limited land, water, and nutrient resources to produce more food with low pollution (MoFoLoPo) is clearly one of the major challenges of this century. The increasingly interconnected global market provides a great opportunity for reallocating crop production to the countries and regions that use natural resources more efficiently. For example, it is estimated that optimizing the allocation of crop production around the world can mitigate 41% of nitrogen lost to the environment. However, higher efficiency in nutrients use does not necessarily lead to higher efficiency in land use or water use. In addition, the increasing share of international trade in food supply may introduce additional systemic risk and affect the resilience of global food system. Using the data/indicator from a Sustainable Agriculture Matrix and an international trade matrix, we developed a simple model to assess the trade-offs of international trade considering resource use efficiencies (including water, land, nitrogen, and phosphorus), economic costs and benefits, and the resilience of food system.

  9. Agricultural Machinery 01.0301 for Agribusiness, Natural Resources and Environmental Occupations.

    ERIC Educational Resources Information Center

    Wright, John; And Others

    The document presents unit plans which offer lists of experiences and competencies to be learned in the area of agricultural machinery for agribusiness, natural resources, and environmental occupations. The units include: (1) safety; (2) agricultural service center; (3) component parts--bearings, gears, pulleys, clutches, and others; (4) metal…

  10. Optimizing Land and Water Use at the Local Level to Enhance Global Food Security through Virtual Resources Trade in the World

    NASA Astrophysics Data System (ADS)

    Cai, X.; Zhang, X.; Zhu, T.

    2014-12-01

    Global food security is constrained by local and regional land and water availability, as well as other agricultural input limitations and inappropriate national and global regulations. In a theoretical context, this study assumes that optimal water and land uses in local food production to maximize food security and social welfare at the global level can be driven by global trade. It follows the context of "virtual resources trade", i.e., utilizing international trade of agricultural commodities to reduce dependency on local resources, and achieves land and water savings in the world. An optimization model based on the partial equilibrium of agriculture is developed for the analysis, including local commodity production and land and water resources constraints, demand by country, and global food market. Through the model, the marginal values (MVs) of social welfare for water and land at the level of so-called food production units (i.e., sub-basins with similar agricultural production conditions) are derived and mapped in the world. In this personation, we will introduce the model structure, explain the meaning of MVs at the local level and their distribution around the world, and discuss the policy implications for global communities to enhance global food security. In particular, we will examine the economic values of water and land under different world targets of food security (e.g., number of malnourished population or children in a future year). In addition, we will also discuss the opportunities on data to improve such global modeling exercises.

  11. A Site-sPecific Agricultural water Requirement and footprint Estimator (SPARE:WATER 1.0)

    NASA Astrophysics Data System (ADS)

    Multsch, S.; Al-Rumaikhani, Y. A.; Frede, H.-G.; Breuer, L.

    2013-07-01

    The agricultural water footprint addresses the quantification of water consumption in agriculture, whereby three types of water to grow crops are considered, namely green water (consumed rainfall), blue water (irrigation from surface or groundwater) and grey water (water needed to dilute pollutants). By considering site-specific properties when calculating the crop water footprint, this methodology can be used to support decision making in the agricultural sector on local to regional scale. We therefore developed the spatial decision support system SPARE:WATER that allows us to quantify green, blue and grey water footprints on regional scale. SPARE:WATER is programmed in VB.NET, with geographic information system functionality implemented by the MapWinGIS library. Water requirements and water footprints are assessed on a grid basis and can then be aggregated for spatial entities such as political boundaries, catchments or irrigation districts. We assume inefficient irrigation methods rather than optimal conditions to account for irrigation methods with efficiencies other than 100%. Furthermore, grey water is defined as the water needed to leach out salt from the rooting zone in order to maintain soil quality, an important management task in irrigation agriculture. Apart from a thorough representation of the modelling concept, we provide a proof of concept where we assess the agricultural water footprint of Saudi Arabia. The entire water footprint is 17.0 km3 yr-1 for 2008, with a blue water dominance of 86%. Using SPARE:WATER we are able to delineate regional hot spots as well as crop types with large water footprints, e.g. sesame or dates. Results differ from previous studies of national-scale resolution, underlining the need for regional estimation of crop water footprints.

  12. Methodology of risk assessment of loss of water resources due to climate changes

    NASA Astrophysics Data System (ADS)

    Israfilov, Yusif; Israfilov, Rauf; Guliyev, Hatam; Afandiyev, Galib

    2016-04-01

    For sustainable development and management of rational use of water resources of Azerbaijan Republic it is actual to forecast their changes taking into account different scenarios of climate changes and assessment of possible risks of loss of sections of water resources. The major part of the Azerbaijani territory is located in the arid climate and the vast majority of water is used in the national economic production. An optimal use of conditional groundwater and surface water is of great strategic importance for economy of the country in terms of lack of common water resources. Low annual rate of sediments, high evaporation and complex natural and hydrogeological conditions prevent sustainable formation of conditioned resources of ground and surface water. In addition, reserves of fresh water resources are not equally distributed throughout the Azerbaijani territory. The lack of the common water balance creates tension in the rational use of fresh water resources in various sectors of the national economy, especially in agriculture, and as a result, in food security of the republic. However, the fresh water resources of the republic have direct proportional dependence on climatic factors. 75-85% of the resources of ground stratum-pore water of piedmont plains and fracture-vein water of mountain regions are formed by the infiltration of rainfall and condensate water. Changes of climate parameters involve changes in the hydrological cycle of the hydrosphere and as a rule, are reflected on their resources. Forecasting changes of water resources of the hydrosphere with different scenarios of climate change in regional mathematical models allowed estimating the extent of their relationship and improving the quality of decisions. At the same time, it is extremely necessary to obtain additional data for risk assessment and management to reduce water resources for a detailed analysis, forecasting the quantitative and qualitative parameters of resources, and also for

  13. Developing Our Water Resources

    ERIC Educational Resources Information Center

    Volker, Adriaan

    1977-01-01

    Only very recently developed as a refined scientific discipline, hydrology has to cope with a complexity of problems concerning the present and future management of a vital natural resource, water. This article examines available water supplies and the problems and prospects of water resource development. (Author/MA)

  14. Agent-Based Modelling of Agricultural Water Abstraction in Response to Climate, Policy, and Demand Changes: Results from East Anglia, UK

    NASA Astrophysics Data System (ADS)

    Swinscoe, T. H. A.; Knoeri, C.; Fleskens, L.; Barrett, J.

    2014-12-01

    Freshwater is a vital natural resource for multiple needs, such as drinking water for the public, industrial processes, hydropower for energy companies, and irrigation for agriculture. In the UK, crop production is the largest in East Anglia, while at the same time the region is also the driest, with average annual rainfall between 560 and 720 mm (1971 to 2000). Many water catchments of East Anglia are reported as over licensed or over abstracted. Therefore, freshwater available for agricultural irrigation abstraction in this region is becoming both increasingly scarce due to competing demands, and increasingly variable and uncertain due to climate and policy changes. It is vital for water users and policy makers to understand how these factors will affect individual abstractors and water resource management at the system level. We present first results of an Agent-based Model that captures the complexity of this system as individual abstractors interact, learn and adapt to these internal and external changes. The purpose of this model is to simulate what patterns of water resource management emerge on the system level based on local interactions, adaptations and behaviours, and what policies lead to a sustainable water resource management system. The model is based on an irrigation abstractor typology derived from a survey in the study area, to capture individual behavioural intentions under a range of water availability scenarios, in addition to farm attributes, and demographics. Regional climate change scenarios, current and new abstraction licence reforms by the UK regulator, such as water trading and water shares, and estimated demand increases from other sectors were used as additional input data. Findings from the integrated model provide new understanding of the patterns of water resource management likely to emerge at the system level.

  15. Skills Students Need in the Real World: Competencies Desired by Agricultural and Natural Resources Industry Leaders

    ERIC Educational Resources Information Center

    Easterly, R. G., III; Warner, Anna J.; Myers, Brian E.; Lamm, Alexa J.; Telg, Ricky W.

    2017-01-01

    The competencies addressed by undergraduate agricultural education programs should be assessed so programs are effective in supplying a well-prepared agricultural- and natural resources-oriented workforce, and so human capital is optimized. In this study, agricultural and natural resources leaders were surveyed to determine the workforce…

  16. Influence of natural vs. anthropogenic stresses on water resource sustainability: a case study.

    PubMed

    Fennell, J; Zawadzki, A; Cadman, C

    2006-01-01

    Climate change has been identified as a major influence on basin water balances. However, land use and water use practices have also been identified as players. This case study was completed to better understand a changing water balance affecting a major basin in Alberta. The Beaver River basin is located in east central Alberta. Much of the basin has been developed for agricultural use; however, a number of heavy oil operations also exist. Both sectors use surface and groundwater. Evidence exists that the basin hydrology has changed since the mid-1970s. Coincidently, it was at this time that much of the land was cleared for agricultural development and commercial-scale oil development began. Oil industry use of water was suspected as the main cause for the changes observed. To investigate this further, data from regional hydrometric and meteorological stations were assessed along with water well hydrographs and historical satellite images. A significant correlation was found between basin responses and a climate phenomenon known as the Pacific decadal oscillation. Although the correlation between the Pacific decadal oscillation and basin hydrology appeared strong, deforestation for agricultural development also seemed to have an effect. Use of the local water resources was found to be of minor significance.

  17. Impact of Drought on Groundwater and Soil Moisture - A Geospatial Tool for Water Resource Management

    NASA Astrophysics Data System (ADS)

    Ziolkowska, J. R.; Reyes, R.

    2016-12-01

    For many decades, recurring droughts in different regions in the US have been negatively impacting ecosystems and economic sectors. Oklahoma and Texas have been suffering from exceptional and extreme droughts in 2011-2014, with almost 95% of the state areas being affected (Drought Monitor, 2015). Accordingly, in 2011 alone, around 1.6 billion were lost in the agricultural sector alone as a result of drought in Oklahoma (Stotts 2011), and 7.6 billion in Texas agriculture (Fannin 2012). While surface water is among the instant indicators of drought conditions, it does not translate directly to groundwater resources that are the main source of irrigation water. Both surface water and groundwater are susceptible to drought, while groundwater depletion is a long-term process and might not show immediately. However, understanding groundwater availability is crucial for designing water management strategies and sustainable water use in the agricultural sector and other economic sectors. This paper presents an interactive geospatially weighted evaluation model and a tool at the same time to analyze groundwater resources that can be used for decision support in water management. The tool combines both groundwater and soil moisture changes in Oklahoma and Texas in 2003-2014, thus representing the most important indicators of agricultural and hydrological drought. The model allows for analyzing temporal and geospatial long-term drought at the county level. It can be expanded to other regions in the US and the world. The model has been validated with the Palmer Drought Index Severity Index to account for other indicators of meteorological drought. It can serve as a basis for an upcoming socio-economic and environmental analysis of drought events in the short and long-term in different geographic regions.

  18. Strategic Program for Biodiversity and Water Resource Management and Climate Change Adaptation in Pakistan

    NASA Astrophysics Data System (ADS)

    Sher, Hassan; Aldosari, Ali

    2014-05-01

    Population pressure, climate change and resulting extreme weather scenarios, armed con?ict and economic pressure have put the situation of Pakistan's biodiversity at risk. Melting glaciers, deforestation, erosion, landslides and depletion of agricultural areas are aggravating the regulation of water ?ow in Pakistan. In Pakistan agro-biodiversity is central to human survival and play vital role in the economy of the country. It contributes 21% to the GDP, employs 45% of the labor force and contributes 71% of the export earnings. Agro- biodiversity in Pakistan is greatly affected by short term climate variability and could be harmed signi?cantly by long-term climate change. As the duration of crop growth cycle is related to temperature, an increase in temperature will speed up crop growth and shorten the duration between sowing and harvesting. This shortening could have an adverse effect on productivity of crops. The present assessment also revealed that hydrological cycle is also likely to be in?uenced by global warming. Since the agricultural crops are heavily dependent on the water, and water resources are inextricably linked with climate; therefore, the projected climate change has serious implications for water resources of the country. The freshwater resources, in Pakistan, are based on snow- and glacier-melt and monsoon rains, both being highly sensitive to climate change. The country speci?c current information strongly suggests that: decrease in glacier volume and snow cover leading to alterations in the seasonal ?ow pattern of Indus River System; increased annual ?ows for a few decades followed by decline in ?ows in subsequent years; increase in the formation and burst of glacial lakes; higher frequency and intensity of extreme climate events coupled with irregular monsoon rains causing frequent ?oods and droughts; and greater demand of water due to higher evapotranspiration rates at elevated temperatures. These trends will have large impact on the spatial

  19. Water Resource Sustainability Conference 2015

    Science.gov Websites

    | Honolulu, Hawaii Presented By Water Resources Research Center (WRRC), Hawaii and American Samoa Water and Environmental Research Institute (WERI), Guam Puerto Rico Water Resources and Environmental Research Institute (PRWRERI), Puerto Rico The Virgin Islands Water Resources Research Institute (VI-WRRI), U. S. Virgin

  20. Past and present management of water resources in karst environments

    NASA Astrophysics Data System (ADS)

    Parise, Mario

    2010-05-01

    Karst is a very peculiar environment, and has a number of intrinsic features that clearly distinguish it from any other natural setting. Hydrology of karst is dominated by absence or very scarce presence of surface runoff, since water rapidly infiltrates underground through the complex network of conduits and fissures that are at the origin of the development of karst caves. The limited presence of water at the surface represented the main problem to be faced by man, starting from the very first historic phases of establishing settlements in karst territories. As often happens in areas with limited natural resources, man was however able to understand the local environment through observations and direct experience, develop technique in order to collect the limited available water resources, and adapt his way of life to the need of the natural environment. In a few words, a sustainable use of the water resources was reached, that went on for many centuries, allowing development of human settlements and agriculture, and, at the same time, protecting and safeguarding the precious hydric resources. Some of the most typical rural architectures built in karst areas of the Mediterranean Basin can be described as examples of such efforts: from the dry stone walls, to many types of storage-houses or dwellings, known with different names, depending upon the different countries and regions. Dry stone walls, in particular, deserve a particular attention, since they had multiple functions: to delimit the fields and properties, to act as a barrier to soil erosion, to allow terracing the high-gradient slopes, to collect and store water. At this latter aim, dry stone walls were build in order to create a small but remarkable micro-environment, functioning as collectors of moisture and water vapour. In the last centuries, with particular regard to the last decades of XX century, the attention paid by man to the need of the natural environment has dramatically changed. This

  1. Virtual water and water self-sufficiency in agricultural and livestock products in Brazil.

    PubMed

    da Silva, Vicente de Paulo R; de Oliveira, Sonaly D; Braga, Célia C; Brito, José Ivaldo B; de Sousa, Francisco de Assis S; de Holanda, Romildo M; Campos, João Hugo B C; de Souza, Enio P; Braga, Armando César R; Rodrigues Almeida, Rafaela S; de Araújo, Lincoln E

    2016-12-15

    Virtual water trade is often considered a solution for restricted water availability in many regions of the world. Brazil is the world leader in the production and export of various agricultural and livestock products. The country is either a strong net importer or a strong net exporter of these products. The objective of this study is to determine the volume of virtual water contained in agricultural and livestock products imported/exported by Brazil from 1997 to 2012, and to define the water self-sufficiency index of agricultural and livestock products in Brazil. The indexes of water scarcity (WSI), water dependency (WDI) and water self-sufficiency (WSSI) were calculated for each Brazilian state. These indexes and the virtual water balance were calculated following the methodology developed by Chapagain and Hoekstra (2008) and Hoekstra and Hung (2005). The total water exports and imports embedded in agricultural and livestock products were 5.28 × 10 10 and 1.22 × 10 10  Gm 3  yr -1 , respectively, which results in positive virtual water balance of 4.05 × 10 10  Gm 3  yr -1 . Brazil is either a strong net importer or a strong net exporter of agricultural and livestock products among the Mercosur countries. Brazil has a positive virtual water balance of 1.85 × 10 10  Gm 3  yr -1 . The indexes used in this study reveal that Brazil is self-sufficient in food production, except for a few products such as wheat and rice. Horticultural products (tomato, onion, potato, cassava and garlic) make up a unique product group with negative virtual water balance in Brazil. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Vulnerability of the Metropolitan District of Quito's Water Resources in the face of Climatic and Anthropogenic Uncertainties

    NASA Astrophysics Data System (ADS)

    Depsky, N. J.; Flores-Lopez, F.

    2014-12-01

    Earlier this year the Stockholm Environment Institute (SEI) concluded a vulnerability analysis for the Metropolitan District of Quito (DMQ) in Ecuador. Vulnerability assessments were done for five sectors in the region: water resources, public health, agriculture, ecosystems and forest fires. This abstract focuses specifically on the vulnerability of the DMQ's water resources to climatic and anthropogenic uncertainties. This analysis focused on vulnerability of potable water supply for the city of Quito, as well as industrial and agricultural water needs. Current and future vulnerability was assessed in the face of a number of scenarios of climatic and non-climatic uncertainties. The assessment used an integrated water resources model developed by Quito's National Polytechnic University for the surrounding Guayllabamba river basin. The model was built using the Water Evaluation and Planning (WEAP) software, and encompasses the urban, rural/agricultural, and industrial demands throughout the basin, linking them with existing surface and ground-water supplies. Five future scenarios were constructed in the WEAP basin model out the year 2050 in order to assess their effects: Urban population growth (~70% by 2050). Urban population growth + rising mean air temperatures (~+2°C by 2050). Urban population growth + rising temperatures + drought (recurring 3-year drought cycles built into the projection) Urban population growth + rising temperatures + conversion of 'paramo' alpine tundra ecosystem into cultivated land. (WEAP allows the user to define various types of land cover extent throughout the basin, along with their unique physical characteristics to simulate rainfall-runoff. Conversion of 'paramo' land cover to agriculture was evaluated to see potential effects it may have on the system's hydrology) Urban population growth + rising temperatures + drought + conversion of 'paramos' Coverage of demands in the model was used as the primary vulnerability metric, with

  3. AGRICULTURAL BEST MANAGEMENT PRACTICE EFFECTIVENESS DATABASE

    EPA Science Inventory

    Resource Purpose:The Agricultural Best Management Practice Effectiveness Database contains the results of research projects which have collected water quality data for the purpose of determining the effectiveness of agricultural management practices in reducing pollutants ...

  4. Conceptual model of water resources in the Kabul Basin, Afghanistan

    USGS Publications Warehouse

    Mack, Thomas J.; Akbari, M. Amin; Ashoor, M. Hanif; Chornack, Michael P.; Coplen, Tyler B.; Emerson, Douglas G.; Hubbard, Bernard E.; Litke, David W.; Michel, Robert L.; Plummer, Niel; Rezai, M. Taher; Senay, Gabriel B.; Verdin, James P.; Verstraeten, Ingrid M.

    2010-01-01

    The United States (U.S.) Geological Survey has been working with the Afghanistan Geological Survey and the Afghanistan Ministry of Energy and Water on water-resources investigations in the Kabul Basin under an agreement supported by the United States Agency for International Development. This collaborative investigation compiled, to the extent possible in a war-stricken country, a varied hydrogeologic data set and developed limited data-collection networks to assist with the management of water resources in the Kabul Basin. This report presents the results of a multidisciplinary water-resources assessment conducted between 2005 and 2007 to address questions of future water availability for a growing population and of the potential effects of climate change. Most hydrologic and climatic data-collection activities in Afghanistan were interrupted in the early 1980s as a consequence of war and civil strife and did not resume until 2003 or later. Because of the gap of more than 20 years in the record of hydrologic and climatic observations, this investigation has made considerable use of remotely sensed data and, where available, historical records to investigate the water resources of the Kabul Basin. Specifically, this investigation integrated recently acquired remotely sensed data and satellite imagery, including glacier and climatic data; recent climate-change analyses; recent geologic investigations; analysis of streamflow data; groundwater-level analysis; surface-water- and groundwater-quality data, including data on chemical and isotopic environmental tracers; and estimates of public-supply and agricultural water uses. The data and analyses were integrated by using a simplified groundwater-flow model to test the conceptual model of the hydrologic system and to assess current (2007) and future (2057) water availability. Recharge in the basin is spatially and temporally variable and generally occurs near streams and irrigated areas in the late winter and early

  5. Agricultural Groundwater Demands in the Conterminous United States

    NASA Astrophysics Data System (ADS)

    Ho, M. W.; Parthasarathy, V.; Etienne, E.; Russo, T. A.; Devineni, N.; Lall, U.

    2016-12-01

    In the conterminous United States (CONUS), over 40% of water consumed for irrigation, livestock and domestic water is sourced from groundwater. The late 20th century and 21st century saw an expansion in irrigated agriculture across the CONUS that was accompanied by increased pumping of groundwater. Groundwater is typically used to mitigate impacts of drought on surface water supplies enabling water demands to be met as well as to augment sparse surface water resources in arid regions or where surface water availability is highly variable temporally and/or spatially. A Demand Sensitive Drought Index (DSDI) is used to examine the impacts of agricultural water needs on groundwater in the CONUS. The DSDI accounts for agricultural water deficits driven by low precipitation, high agricultural water demand, or a combination of both. Changes in groundwater levels relative to agricultural water deficits are characterized relative to precipitation during the growing season and winter precipitation. In several key irrigated agricultural regions in the CONUS, long-term trends in groundwater levels appear to reflect prolonged periods of surface water deficits resulting from land use and associated unsustainable water demands. These areas are subsequent unable to recover from persistent states of agricultural drought. Conversely, reductions in agricultural water demands for crops do not necessarily lead to immediate recovery of groundwater levels due to the demand for groundwater in other sectors. Calls to establish or reform groundwater policies have recently been made in an effort to achieve holistic groundwater management strategies that consider the human demands on both surface water and groundwater. There is a need for relevant groundwater policies to ensure that water demands are adequately managed across sectors without unsustainably depleting groundwater resources and to ensure efficient economic activity.

  6. Water and Land Limitations to Future Agricultural Production in the Middle East

    NASA Astrophysics Data System (ADS)

    Koch, J. A. M.; Wimmer, F.; Schaldach, R.

    2015-12-01

    Countries in the Middle East use a large fraction of their scarce water resources to produce cash crops, such as fruit and vegetables, for international markets. At the same time, these countries import large amounts of staple crops, such as cereals, required to meet the nutritional demand of their populations. This makes food security in the Middle East heavily dependent on world market prices for staple crops. Under these preconditions, increasing food demand due to population growth, urban expansion on fertile farmlands, and detrimental effects of a changing climate on the production of agricultural commodities present major challenges to countries in the Middle East that try to improve food security by increasing their self-sufficiency rate of staple crops.We applied the spatio-temporal land-use change model LandSHIFT.JR to simulate how an expansion of urban areas may affect the production of agricultural commodities in Jordan. We furthermore evaluated how climate change and changes in socio-economic conditions may influence crop production. The focus of our analysis was on potential future irrigated and rainfed production (crop yield and area demand) of fruit, vegetables, and cereals. Our simulation results show that the expansion of urban areas and the resulting displacement of agricultural areas does result in a slight decrease in crop yields. This leads to almost no additional irrigation water requirements due to the relocation of agricultural areas, i.e. there is the same amount of "crop per drop". However, taking into account projected changes in socio-economic conditions and climate conditions, a large volume of water would be required for cereal production in order to safeguard current self-sufficiency rates for staple crops. Irrigation water requirements are expected to double until 2025 and to triple until 2050. Irrigated crop yields are projected to decrease by about 25%, whereas there is no decrease in rainfed crop yields to be expected.

  7. Evaluation for Water Conservation in Agriculture: Using a Multi-Method Econometric Approach

    NASA Astrophysics Data System (ADS)

    Ramirez, A.; Eaton, D. J.

    2012-12-01

    Since the 1960's, farmers have implemented new irrigation technology to increase crop production and planting acreage. At that time, technology responded to the increasing demand for food due to world population growth. Currently, the problem of decreased water supply threatens to limit agricultural production. Uncertain precipitation patterns, from prolonged droughts to irregular rains, will continue to hamper planting operations, and farmers are further limited by an increased competition for water from rapidly growing urban areas. Irrigation technology promises to reduce water usage while maintaining or increasing farm yields. The challenge for water managers and policy makers is to quantify and redistribute these efficiency gains as a source of 'new water.' Using conservation in farming as a source of 'new water' requires accurately quantifying the efficiency gains of irrigation technology under farmers' actual operations and practices. From a water resource management and policy perspective, the efficiency gains from conservation in farming can be redistributed to municipal, industrial and recreational uses. This paper presents a methodology that water resource managers can use to statistically verify the water savings attributable to conservation technology. The specific conservation technology examined in this study is precision leveling, and the study includes a mixed-methods approach using four different econometric models: Ordinary Least Squares, Fixed Effects, Propensity Score Matching, and Hierarchical Linear Models. These methods are used for ex-post program evaluation where random assignment is not possible, and they could be employed to evaluate agricultural conservation programs, where participation is often self-selected. The principal method taken in this approach is Hierarchical Linear Models (HLM), a useful model for agriculture because it incorporates the hierarchical nature of the data (fields, tenants, and landowners) as well as crop rotation

  8. Conceptualizations of water security in the agricultural sector: Perceptions, practices, and paradigms

    NASA Astrophysics Data System (ADS)

    Malekian, Atefe; Hayati, Dariush; Aarts, Noelle

    2017-01-01

    Conceptions of agricultural water security are conditioned by larger understandings of being and reality. It is still unclear what such understandings mean for perspectives on water security in general and on causes and solutions related to perceived water security risks and problems in agricultural sector in particular. Based on a systematic literature review, three conceptualizations of water security, related to different paradigms, are presented. Also the consequences of such conceptualizations for determining research objectives, research activities, and research outcomes on agricultural water security are discussed. The results showed that agricultural water security from a positivist paradigm referred to tangible and measurable water-related hazards and threats, such as floods and droughts, pollution, and so forth. A constructivist approach to agricultural water security, constituted by a process of interaction and negotiation, pointed at perceptions of water security of farmers and other stakeholders involved in agricultural sector. A critical approach to agricultural water security focused on the processes of securing vulnerable farmers and others from wider political, social, and natural impediments to sufficient water supplies. The conclusions of the study suggest that paradigms, underlying approaches should be expressed, clarified, and related to one another in order to find optimal and complementary ways to study water security issues in agricultural sector.

  9. The value of agricultural wetlands as invertebrate resources for wintering shorebirds

    USGS Publications Warehouse

    Taft, Oriane W.; Haig, Susan M.

    2005-01-01

    Agricultural landscapes have received little recognition for the food resources they provide to wintering waterbirds. In the Willamette Valley of Oregon, modest yet significant populations of wintering shorebirds (Charadriiformes) regularly use hundreds of dispersed wetlands on agricultural lands. Benthic invertebrates are a critical resource for the survival of overwintering shorebirds, yet the abundance of invertebrate resources in agricultural wetlands such as these has not been quantified. To evaluate the importance of agricultural wetlands to a population of wintering shorebirds, the density, biomass, and general community composition of invertebrates available to birds were quantified at a sample of Willamette Valley sites during a wet (1999–2000) and a dry winter (2000–2001). Invertebrate densities ranged among wetlands from 173 to 1925 (mean ± S.E.: 936 ± 106) individuals/m2 in the wet winter, and from 214 to 3484 (1028 ± 155) individuals/m2 in the dry winter. Total invertebrate estimated biomass among wetlands ranged from 35 to 652 (mean ± S.E.: 364 ± 35) mg/m2 in the wet winter, and from 85 to 1405 (437 ± 62) mg/m2 in the dry winter. These estimates for food abundance were comparable to that observed in some other important freshwater wintering regions in North America.

  10. The Indus basin in the framework of current and future water resources management

    NASA Astrophysics Data System (ADS)

    Laghari, A. N.; Vanham, D.; Rauch, W.

    2012-04-01

    The Indus basin is one of the regions in the world that is faced with major challenges for its water sector, due to population growth, rapid urbanisation and industrialisation, environmental degradation, unregulated utilization of the resources, inefficient water use and poverty, all aggravated by climate change. The Indus Basin is shared by 4 countries - Pakistan, India, Afghanistan and China. With a current population of 237 million people which is projected to increase to 319 million in 2025 and 383 million in 2050, already today water resources are abstracted almost entirely (more than 95% for irrigation). Climate change will result in increased water availability in the short term. However in the long term water availability will decrease. Some current aspects in the basin need to be re-evaluated. During the past decades water abstractions - and especially groundwater extractions - have augmented continuously to support a rice-wheat system where rice is grown during the kharif (wet, summer) season (as well as sugar cane, cotton, maize and other crops) and wheat during the rabi (dry, winter) season. However, the sustainability of this system in its current form is questionable. Additional water for domestic and industrial purposes is required for the future and should be made available by a reduction in irrigation requirements. This paper gives a comprehensive listing and description of available options for current and future sustainable water resources management (WRM) within the basin. Sustainable WRM practices include both water supply management and water demand management options. Water supply management options include: (1) reservoir management as the basin is characterised by a strong seasonal behaviour in water availability (monsoon and meltwater) and water demands; (2) water quality conservation and investment in wastewater infrastructure; (3) the use of alternative water resources like the recycling of wastewater and desalination; (4) land use

  11. Perceptions of agriculture and natural resource careers among minority students in a national organization

    Treesearch

    Corliss Wilson Outley

    2008-01-01

    The purpose of the study was to identify factors that influence the career choice behaviors among students who were members of Minorities in Agriculture, Natural Resources and Related Sciences (MANRRS) National Society. A secondary purpose was to identify perceptions and attitudes among students that chose careers in agriculture and natural resources. The MANRRS...

  12. Water resources activities of the U.S. Geological Survey in Afghanistan from 2004 through 2014

    USGS Publications Warehouse

    Mack, Thomas J.; Chornack, Michael P.; Vining, Kevin C.; Amer, Saud A.; Zaheer, Mohammad F.; Medlin, Jack H.

    2014-01-01

    Safe and reliable supply of water, for irrigation and domestic consumption, is one of Afghanistan’s critical needs for the country’s growing population. Water is also needed for mining and mineral processing and the associated business and community development, all of which contribute to the country’s economic growth and stability. Beginning in 2004, U.S. Geological Survey scientists have aided efforts to rebuild Afghanistan’s capacity to monitor water resources, working largely with scientists in the Afghanistan Geological Survey of the Ministry of Mines and Petroleum as well as with scientists in the Afghanistan Ministry of Energy and Water, the Afghanistan Ministry of Agriculture, Irrigation, and Livestock, and nongovernmental organizations in Afghanistan. Considerable efforts were undertaken by the U.S. Geological Survey to compile or recover hydrologic data on Afghanistan’s water resources. These collaborative efforts have assisted Afghan scientists in developing the data collection networks necessary for improved understanding, managing these resources, and monitoring critical changes that may affect future water supplies and conditions. The U.S. Geological Survey, together with Afghan scientists, developed a regional groundwater flow model to assist with water resource planning in the Kabul Basin. Afghan scientists are now independently developing the datasets and conducting studies needed to assess water resources in other population centers of Afghanistan.

  13. [Change characteristics of agricultural climate resources in recent 50 years in Shandong Province, China].

    PubMed

    Dong, Xu-guang; Li, Sheng-li; Shi, Zhen-bin; Qiu, Can

    2015-01-01

    Based on the 1961-2010 ground surface data from 90 meteorological stations, this paper analyzed the spatiotemporal change characteristics of agricultural climate resources (e.g. sunshine hours, thermal resources and water) for the growth season of winter wheat and summer maize in Shandong Province. Results indicated that temperature indicators showed a significant rising tendency especially in the winter wheat growth season. Both evapotranspiration and sunshine hours declined obviously, especially for the evapotranspiration in the summer maize growth season, while there was no clear change evidence in rainfall and aridity. Regarding the spatial distribution characteristics, agro-climatic resources presented meridional or zonal increment or decrement in the winter wheat and summer maize growth seasons. In different areas, variation features of agro-climatic resources appeared with distinct differences. In the western Shandong area, temperature indicators showed a slight rising tendency while evapotranspiration and aridity declined significantly. Sunshine hours decreased most significantly in the middle and west southern areas. Precipitation increment was relatively obvious in the winter wheat growth season in the middle and east southern areas and in the summer maize growth season in the middle and southern areas. Thermal resource increases benefited the growth of winter wheat in every phase during the growth period. However, it brought high risks of plant diseases and hot disaster as well. The decrease of sunshine hours was adverse to crop photosynthesis in the growth period while evapotranspiration decrement profited the water retention of soil.

  14. Supporting tribal agriculture and natural resources in a changing climate working group

    USDA-ARS?s Scientific Manuscript database

    The U.S. Department of Agriculture (USDA) Climate Hubs were created in 2014 to deliver science-based, region-specific information and technologies to enable climate-informed decision-making. Our stakeholders include agricultural and natural resource managers (i.e. farmers, ranchers, forest land mana...

  15. Remote sensing applications for sustainable agriculture in South Africa (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Jarmain, Caren; Van Niekerk, Adriaan; Goudriaan, Ruben

    2016-10-01

    Agriculture contributes greatly to the economy of South Africa (SA), through job creation and produce exports. SA is classified as a semi-arid country and due to its low rainfall, fierce competition exists for the available water resources. Balancing the need for water resources on the one hand, with the importance of agricultural production on the other, is often challenging. A lot of emphasis is placed on prudent water management and enhanced crop water use efficiency. Suitable information and tools are key in empowering both water resources managers and (crop) producers for sustainable agricultural production. Information and tools available at frequent intervals throughout the production season and at a range of levels - from the field to the catchment and for the entire country - has become essential. The frequency and availability of remote sensing data, developments in algorithms to produce information related to the water cycle and crop growth and hence the actual information sets produced over time, makes for fitting solutions. Though much progress has been made over the past years to integrate these spatial data products into water management and agricultural systems, it is likely still in its infancy. In the paper, some flagship projects related to sustainable agriculture and water management - both research and applied - are showcased.

  16. Water resources under future scenarios of climate change and biofuel development: A case study for Yakima River basin

    NASA Astrophysics Data System (ADS)

    Demissie, Y. K.

    2013-12-01

    In recent years, biofuel has become an important renewable energy source with a potential to help mitigate climate change. However, agriculture productivity and its potential use for sustainable production of biofuel are strongly dependent on climate and water conditions that may change in response to future changes in climate and/or socio-economic conditions. For instant in 2012, the US has experienced the most severe drought that results in a 12% decrease in corn production - the main feedstock used for biofuel in US - indicating the vulnerability of biofuel development and policies to change in climate and associated extreme weather conditions. To understand this interrelationship and the combined effects of increased biofuel production and climate change on regional and local water resources, we have applied a SWAT watershed model which integrates future scenarios of climate change and biofuel development and simulates the associated impacts on watershed hydrology, water quality, soil erosion, and agriculture productivity. The study is applied to the Yakima River basin (YRB), which has higher biomass resources in Washington State and represents a region where forestry and agriculture intersect with considerable water shortage as well as spatial variations in annual precipitation. Unlike earlier studies, which commonly define biofuel and climate change scenarios independently, in this study the decision on alternative biofuel feedstock mixes and associated change in land use and management take into account the anticipated climate change. The resulted spatial and temporal distributions of water budget, nutrient loads, and sediment erosion is analyzed to evaluate the effectiveness of biofuel policies under constraints of climate change and water resources in the region.

  17. Water resources

    NASA Technical Reports Server (NTRS)

    Salomonson, V. V.; Rango, A.

    1973-01-01

    The application of ERTS-1 imagery to the conservation and control of water resources is discussed. The effects of exisiting geology and land use in the water shed area on the hydrologic cycle and the general characteristics of runoff are described. The effects of floods, snowcover, and glaciers are analyzed. The use of ERTS-1 imagery to map surface water and wetland areas to provide rapid inventorying over large regions of water bodies is reported.

  18. Aspects of municipal wastewater reclamation and reuse for future water resource shortages in Taiwan.

    PubMed

    Chiou, R J; Chang, T C; Ouyang, C F

    2007-01-01

    The Water Resources Agency (WRA), Ministry of Economic Affairs (MOEA) has predicted that the annual water demand in Taiwan will reach approximately 20 billion m3 by 2021. However, the present water supply is only 18 billion m3 per year. This means that an additional 2 billion m3 have to be developed in the next 17 years. The reuse of treated wastewater effluent from municipal wastewater treatment plants could be one target for the development of new water resources. The responsible government departments already have plans to construct public sewerage systems in order to improve the quality of life of the populace and protect the environment. The treated wastewater effluent from such municipal wastewater treatment plants could be a very stable and readily available secondary type of water resource, different from the traditional types of water resources. The major areas where reclaimed municipal wastewater can be used to replace traditional fresh water resources include agricultural and landscape irrigation, street cleaning, toilet flushing, secondary industrial reuse and environmental uses. However, necessary wastewater reclamation and reuse systems have not yet been established. The requirements for their establishment include water reuse guidelines and criteria, the elimination of health risks ensuring safe use, the determination of the wastewater treatment level appropriate for the reuse category, as well as the development and application of management systems reuse. An integrated system for water reuse would be of great benefit to us all by providing more efficient ways to utilise the water resources.

  19. Benefits of Greenhouse Gas Mitigation on the Supply, Management, and Use of Water Resources in the United States

    EPA Science Inventory

    Climate change impacts on water resources in the U.S. are likely to be far-reaching and substantial, because the water sector spans many parts of the economy, from supply and demand for agriculture, industry, energy production, transportation and municipal use to damages from nat...

  20. Tracing organic and inorganic pollution sources of agricultural crops and water resources in Güzelhisar Basin of the Aegean Region - Turkey

    NASA Astrophysics Data System (ADS)

    Czarnecki, Sezin; Colak Esetlili, Bihter; Esetlili, Tolga; Tepecik, Mahmut; Anac, Dilek; Düring, Rolf-Alexander

    2014-05-01

    The study area Güzelhisar Basin is 6 km far from the city Aliaga, Aegean Region in Turkey which represents a rather industrialized area having five large iron and steel factories, but also areas of agriculture. Steel industry in Aliaga is causing metal pollution. Around Güzelhisar Basin and nearby, the dominant crop fields are cotton, maize, vegetables, olive trees and vineyards. Güzelhisar stream and dam water is used for irrigation of the agricultural land. Due to contamination from metal industry in Aliaga, organic farming is not allowed in this region. Industrial activities in the region present a threat on sustainable agriculture. The region is a multi-impacted area in terms of several pollutant sources affecting soil and water quality. The overall objective of the project is to trace back plant nutrients (N, P, K, Ca, Mg, Na, Fe, Mn, Zn, Cu, and B), hazardous substances (i. e. persistent organic pollutants), radionuclides (40K, 232Th, 226Ra/238U), and metal contents (As, Cd, Cr, Co, Cu, Hg, Mn, Ni, Pb, and Zn) by examining the soils, agricultural crops and natural plants from Güzelhisar Basin and water and sediments from Güzelhisar stream and dam. Spatial distribution of pollution will be evaluated by regionalization methods. For this, an advanced analytical methodology will be applied which provides an understanding of sources and occurrence of the respective substances of concern. An innovative multi-tracer approach comprising organic and inorganic marker substances, will identify and quantitatively assess sources and their impact on water pollution and the pollutant pathways in this agricultural crop production system.

  1. Remote-Sensing and Automated Water Resources Tracking: Near Real-Time Decision Support for Water Managers Facing Drought and Flood

    NASA Astrophysics Data System (ADS)

    Reiter, M. E.; Elliott, N.; Veloz, S.; Love, F.; Moody, D.; Hickey, C.; Fitzgibbon, M.; Reynolds, M.; Esralew, R.

    2016-12-01

    Innovative approaches for tracking the Earth's natural resources, especially water which is essential for all living things, are essential during a time of rapid environmental change. The Central Valley is a nexus for water resources in California, draining the Sacramento and San Joaquin River watersheds. The distribution of water throughout California and the Central Valley, while dynamic, is highly managed through an extensive regional network of canals, levees, and pumps. Water allocation and delivery is determined through a complex set of rules based on water contracts, historic priority, and other California water policies. Furthermore, urban centers, agriculture, and the environment throughout the state are already competing for water, particularly during drought. Competition for water is likely to intensify as California is projected to experience continued increases in demand due to population growth and more arid growing conditions, while also having reduced or modified water supply due to climate change. As a result, it is difficult to understand or predict how water will be used to fulfill wildlife and wetland conservation needs. A better understanding of the spatial distribution of water in near real-time can facilitate adaptation of water resource management to changing conditions on the landscape, both over the near- and long-term. The Landsat satellite mission delivers imagery every 16-days from nearly every place on the earth at a high spatial resolution. We have integrated remote sensing of satellite data, classification modeling, bioinformatics, optimization, and ecological analyses to develop an automated near real-time water resources tracking and decision-support system for the Central Valley of California. Our innovative system has applications for coordinated water management in the Central Valley to support people, places, and wildlife and is being used to understand the factors that drive variation in the distribution and abundance of water

  2. Introduction to special section on impacts of land use change on water resources

    USGS Publications Warehouse

    Stonestrom, David A.; Scanlon, Bridget R.; Zhang, Lu

    2009-01-01

    Changes in land use have potentially large impacts on water resources, yet quantifying these impacts remains among the more challenging problems in hydrology. Water, food, energy, and climate are linked through complex webs of direct and indirect effects and feedbacks. Land use is undergoing major changes due not only to pressures for more efficient food, feed, and fiber production to support growing populations but also due to policy shifts that are creating markets for biofuel and agricultural carbon sequestration. Hydrologic systems embody flows of water, solutes, sediments, and energy that vary even in the absence of human activity. Understanding land use impacts thus necessitates integrated scientific approaches. Field measurements, remote sensing, and modeling studies are shedding new light on the modes and mechanisms by which land use changes impact water resources. Such studies can help deconflate the interconnected influences of human actions and natural variations on the quantity and quality of soil water, surface water, and groundwater, past, present, and future.

  3. NASA UAV Airborne Science Capabilities in Support of Water Resource Management

    NASA Technical Reports Server (NTRS)

    Fladeland, Matthew

    2015-01-01

    This workshop presentation focuses on potential uses of unmanned aircraft observations in support of water resource management and agriculture. The presentation will provide an overview of NASA Airborne Science capabilities with an emphasis on past UAV missions to provide context on accomplishments as well as technical challenges. I will also focus on recent NASA Ames efforts to assist in irrigation management and invasive species management using airborne and satellite datasets.

  4. Surface-Water and Ground-Water Resources of Kendall County, Illinois

    USGS Publications Warehouse

    Kay, Robert T.; Mills, Patrick C.; Hogan, Jennifer L.; Arnold, Terri L.

    2005-01-01

    Water-supply needs in Kendall County, in northern Illinois, are met exclusively from ground water derived from glacial drift aquifers and bedrock aquifers open to Silurian, Ordovician, and Cambrian System units. As a result of population growth in Kendall County and the surrounding area, water use has increased from about 1.2 million gallons per day in 1957 to more than 5 million gallons per day in 2000. The purpose of this report is to characterize the surface-water and ground-water resources of Kendall County. The report presents a compilation of available information on geology, surface-water and ground-water hydrology, water quality, and water use. The Fox River is the primary surface-water body in Kendall County and is used for both wastewater disposal and as a drinking-water supply upstream of the county. Water from the Fox River requires pretreatment for use as drinking water, but the river is a potentially viable additional source of water for the county. Glacial drift aquifers capable of yielding sufficient water for municipal supply are expected to be present in northern Kendall County, along the Fox River, and in the Newark Valley and its tributaries. Glacial drift aquifers capable of yielding sufficient water for residential supply are present in most of the county, with the exception of the southeastern portion. Volatile organic compounds and select trace metals and pesticides have been detected at low concentrations in glacial drift aquifers near waste-disposal sites. Agricultural-related constituents have been detected infrequently in glacial drift aquifers near agricultural areas. However, on the basis of the available data, widespread, consistent problems with water quality are not apparent in these aquifers. These aquifers are a viable source for additional water supply, but would require further characterization prior to full development. The shallow bedrock aquifer is composed of the sandstone units of the Ancell Group, the Prairie du Chien

  5. Competency Test Items for Applied Principles of Agribusiness and Natural Resources Occupations. Agricultural Resources Component. A Report of Research.

    ERIC Educational Resources Information Center

    Cheek, Jimmy G.; McGhee, Max B.

    An activity was undertaken to develop written criterion-referenced tests for the agricultural resources component of Applied Principles of Agribusiness and Natural Resources. Intended for tenth grade students who have completed Fundamentals of Agribusiness and Natural Resources Occupations, applied principles were designed to consist of three…

  6. Linking hydrology of traditional irrigation canals and socio-economic aspects of agricultural water use around Mt. Kilimanjaro

    NASA Astrophysics Data System (ADS)

    Kimaro, Jerome; Scharsich, Valeska; Huwe, Bernd; Bogner, Christina

    2017-04-01

    Traditional irrigation network around Mt. Kilimanjaro has been an important resource for both ecosystem functioning and agricultural production. However, a number of irrigation furrows can no longer maintain their discharge throughout the year and their future sustainability is uncertain. The actual efforts to improve the water supply were unsuccessful. We attribute this failure to a lack of information about the actual causes and extent of the problem. We suppose that there is a strong link between the socio-economic aspects like institutional and community management of the furrows and conflicts about water use. Therefore, we conducted a study to determine the relationship between current hydrological patterns and socio-economic aspects of agricultural water use. We measured discharge at 11 locations along an altitudinal gradient on the southern slopes of Mt. Kilimanjaro. Additionally, we conducted focus group discussions with participants from 15 villages and key informants interviews (n = 15). We found that the mean discharge did not differ significantly between dry and rainy seasons (ANOVA, p = 0.17). The overall discharge pattern indicated that furrows located in lower altitude had higher mean monthly discharge rate of 65 l s-1 compared to 11.5 l s-1 at the source area of the canals. This is due to the convergence of canals downstream. 41% of furrows were seasonal, 22% dry and only 37% perennial. Despite of a seemingly better water resource availability downstream, water conflicts are a major challenge across the whole mountain communities. Key informants and group discussions reported poor management of water on the district level. The Rural Moshi and Hai District Councils operate on a top down approach that give less power to the local water management committees. However, the latter have been an important part of the traditional management system for decades. Since 1990, the district authorities are using 65% of springs from the catchment to abstract water

  7. The role of scenario analysis in water resources management in Yanqi Basin, Xinjiang, China

    NASA Astrophysics Data System (ADS)

    Li, N.; Kinzelbach, W. K.; Li, W.; Dong, X.

    2011-12-01

    With the rapid increase of world population and food demand, the demand for water resources is also increasing. At the same time shifts in rain patterns due to global climate change make the water resources situation more uncertain. A global water crisis can therefore not be excluded. The socio-economic and environmental problems induced by such a water crisis are especially prominent in arid and semiarid regions. The Yanqi Basin in Xinjiang province is a typical case study in China's arid and semi-arid areas, where rainfall is scarce and evaporation is extremely high. Thus its water resources have been under great pressure to satisfy the increasing water demand of agriculture and urban and industrial expansion in the last decades. The development has been accompanied by a number of environmental problems. Yanqi Basin is an important cultivated area which is irrigated by water diverted from rivers. Because of the long-term flood irrigation and an inefficient drainage system, the groundwater level under the cultivated area rose, accelerating the phreatic evaporation and leading to increased soil salinization. Simultaneously, the water quantity and quality of Boston Lake have been impaired in past years because of the decreased river discharge and the increased salt flux contained in the drainage discharge. Thus the ecosystems depending on the inflow to and outflow from the lake suffered. The riverine forests in the downstream area were degraded due to declining groundwater levels, and aquatic life as well as downstream water users had to cope with deteriorating water quality. The big challenge for decision makers in the basin is how to balance the justified requirements of agriculture, industrial development and the ecosystem. In order to provide a scientific basis to the decision making process, a scenario analysis was adopted. Here several scenarios are proposed: the basic scenario, scenario 1, describes the status of the year 2008. A second scenario maximizes the

  8. Development of an integrated water resources management plan for the Lake Manyara sub-basin, Northern Tanzania

    NASA Astrophysics Data System (ADS)

    Ngana, J. O.; Mwalyosi, R. B. B.; Madulu, N. F.; Yanda, P. Z.

    Water resources management in Lake Manyara sub-basin is an issue of very high significance as the sub-basin hosts a number of national and global assets of great socio-cultural, ecological and economic values. The sub-basin comprise of a Biosphere Reserve with boosting tourism from Lake Manyara National Park with a variety of wildlife population, large livestock population and highly fertile land for agricultural production. The prevailing system of uncoordinated water resources management in the sub-basin cannot sustain the ever increasing water needs of the various expanding sectors, therefore a strategy must be sought to integrate the various sectoral needs against the available water resources in order to attain both economic and ecological sustainability. Through participatory approach with the stakeholders, the study has established key issues, demonstrated considerable experience in water resources management in the sub-basin including existence of water boards, water committees in some districts as well as land resources management practices However, a number of constraints were noted which inhibit sustainable water resources management including ignorance of water policies, conflicting sectoral policies, lack of coordination between sectors, high in migration rates into the basin, heavy in migration of livestock, conflicts between sectors, poor land use resulting in soil erosion and sedimentation, lack of comprehensive data base on water resources and water needs for : domestic, tourism, livestock, irrigation, wild life and environmental flows. As a way forward it was recommended that a basin wide legally mandated body (involving all levels) be established to oversee water use in the sub-basin. Other strategies include capacity building of stakeholders on water natural resources management policies, water rights and enforcement of laws. This progress report paper highlights the wealth of knowledge that stakeholders possess on water resources management and

  9. Climate change vulnerability in the food, energy, and water nexus: concerns for agricultural production in Arizona and its urban export supply

    NASA Astrophysics Data System (ADS)

    Berardy, Andrew; Chester, Mikhail V.

    2017-03-01

    Interdependent systems providing water and energy services are necessary for agriculture. Climate change and increased resource demands are expected to cause frequent and severe strains on these systems. Arizona is especially vulnerable to such strains due to its hot and arid climate. However, its climate enables year-round agricultural production, allowing Arizona to supply most of the country’s winter lettuce and vegetables. In addition to Phoenix and Tucson, cities including El Paso, Las Vegas, Los Angeles, and San Diego rely on Arizona for several types of agricultural products such as animal feed and livestock, meaning that disruptions to Arizona’s agriculture also disrupt food supply chains to at least six major cities. Arizona’s predominately irrigated agriculture relies on water imported through an energy intensive process from water-stressed regions. Most irrigation in Arizona is electricity powered, so failures in energy or water systems can cascade to the food system, creating a food-energy-water (FEW) nexus of vulnerability. We construct a dynamic simulation model of the FEW nexus in Arizona to assess the potential impacts of increasing temperatures and disruptions to energy and water supplies on crop irrigation requirements, on-farm energy use, and yield. We use this model to identify critical points of intersection between energy, water, and agricultural systems and quantify expected increases in resource use and yield loss. Our model is based on threshold temperatures of crops, USDA and US Geological Survey data, Arizona crop budgets, and region-specific literature. We predict that temperature increase above the baseline could decrease yields by up to 12.2% per 1 °C for major Arizona crops and require increased irrigation of about 2.6% per 1 °C. Response to drought varies widely based on crop and phenophase, so we estimate irrigation interruption effects through scenario analysis. We provide an overview of potential adaptation measures

  10. Enhancing agricultural productivity and rural incomes through sustainable use of natural resources in the semi arid tropics.

    PubMed

    Wani, Suhas P; Dixin, Yin; Li, Zhong; Dar, William D; Chander, Girish

    2012-03-30

    A participatory watershed management approach is one of the tested, sustainable and eco-friendly options to upgrade rain-fed agriculture to meet growing food demand along with additional multiple benefits in terms of improving livelihoods, addressing equity issues and biodiversity concerns. Watershed interventions at study sites in Thailand (Tad Fa and Wang Chai) and India (Kothapally) effectively reduced runoff and the associated soil loss. Such interventions at Xiaoxincun (China) and Wang Chai improved groundwater recharging and availability. Enhanced productive transpiration increased rainwater use efficiency for crop production by 13-29% at Xiaoxincun; 13-160% at Lucheba (China), 32-37% at Tad Fa and 23-46% at Wang Chai and by two to five times at Kothapally. Watershed interventions increased significantly the additional net returns from crop production as compared with the pre-watershed intervention period. Increased water availability opened up options for crop diversification with high-value crops, including increased forage production and boosted livestock-based livelihoods. In dryland tropics, integrated watershed management approach enabled farmers to diversify the systems along with increasing agricultural productivity through increased water availability, while conserving the natural resource base. Household incomes increased substantially, leading to improved living and building the resilience of the community and natural resources. Copyright © 2011 Society of Chemical Industry.

  11. Coping with increasing water and land resources limitation for meeting world's food needs: the role of virtual water and virtual land trade

    NASA Astrophysics Data System (ADS)

    Soriano, Barbara; Garrido, Alberto; Novo, Paula

    2013-04-01

    Increasing pressure to expand agriculture production is giving rise to renewed interest to obtain access to land and water resources in the world. Water footprint evaluations show the importance of green water in global food trade and production. Green water and land are almost inseparable resources. In this work we analyse the role of foreign direct investment and cooperation programmes from developed countries in developing counties, focusing on virtual water trade and associated resources. We develop econometric models with the aim to explain observed trends in virtual water exports from developing countries as explained by the inverse flow of investments and cooperation programmes. We analyse the main 19 emerging food exporters, from Africa, Asia and America, using 15 years of data. Results show that land per capita availability and foreign direct investments explain observed flows of virtual water exports. However, there is no causality with these and flows cooperation investments. Our analysis sheds light on the underlying forces explaining the phenomenon of land grab, which is the appropriation of land access in developing countries by food-importers.

  12. Water resource accounting for a mining area in India.

    PubMed

    Chaulya, S K

    2004-01-01

    A water resource accounting study has been carried out for a limestone mining area located in Thondamuthur block of Coimbatore district under Tamilnadu state in India. The major source of surface water in the region is south-west and north-west monsoons during July-August and October-November, respectively. During the winter season, groundwater levels range from 13 to 25 m below the surface whereas during the summer season it varies from 20 to 30 m. The thickness of the weathered zone ranges from 10 to 40 m and the depth to bedrock ranges from 50 to 55 m. The groundwater is generally potable. The average annual rainfall during the twelve-year period (1988-1999) is 590 mm. Out of the total rainfall, around 11% is lost as surface runoff, 10% is lost through evaporation and transpiration, 30% is utilized for consumptive used, 16% is absorbed as subsoil loss and remaining only 33% is stored as groundwater recharge. Again out of total groundwater recharge only 85% is utilizable groundwater. The annual utilizable groundwater resource available in the area is 79.220 million cubic metre (MCM). Whereas, total groundwater demand for the region is 68.922 MCM, and breakup of industrial, domestic and agricultural demands are 0.020, 5.956 and 62.946 MCM, respectively. Therefore, at present the stage of groundwater development or utilization for the area is around 87%, and falls under 'Dark' category. The 'Dark' category indicates that the utilization of groundwater is more than 85% of available groundwater resource. This situation has to be controlled by immediate initiation of suitable measures for groundwater recharge. The identified recharge zones in the block along with the recommended recharging methodology are summarized in this paper. The paper includes a comprehensive site description, status of the water resource and demand, identification of recharge zones and recharging techniques, and recommends a water supply augmentation strategy for enhancement of water resources

  13. Modelling the impacts of agricultural management practices on river water quality in Eastern England.

    PubMed

    Taylor, Sam D; He, Yi; Hiscock, Kevin M

    2016-09-15

    Agricultural diffuse water pollution remains a notable global pressure on water quality, posing risks to aquatic ecosystems, human health and water resources and as a result legislation has been introduced in many parts of the world to protect water bodies. Due to their efficiency and cost-effectiveness, water quality models have been increasingly applied to catchments as Decision Support Tools (DSTs) to identify mitigation options that can be introduced to reduce agricultural diffuse water pollution and improve water quality. In this study, the Soil and Water Assessment Tool (SWAT) was applied to the River Wensum catchment in eastern England with the aim of quantifying the long-term impacts of potential changes to agricultural management practices on river water quality. Calibration and validation were successfully performed at a daily time-step against observations of discharge, nitrate and total phosphorus obtained from high-frequency water quality monitoring within the Blackwater sub-catchment, covering an area of 19.6 km(2). A variety of mitigation options were identified and modelled, both singly and in combination, and their long-term effects on nitrate and total phosphorus losses were quantified together with the 95% uncertainty range of model predictions. Results showed that introducing a red clover cover crop to the crop rotation scheme applied within the catchment reduced nitrate losses by 19.6%. Buffer strips of 2 m and 6 m width represented the most effective options to reduce total phosphorus losses, achieving reductions of 12.2% and 16.9%, respectively. This is one of the first studies to quantify the impacts of agricultural mitigation options on long-term water quality for nitrate and total phosphorus at a daily resolution, in addition to providing an estimate of the uncertainties of those impacts. The results highlighted the need to consider multiple pollutants, the degree of uncertainty associated with model predictions and the risk of

  14. Analyzing water resources

    NASA Technical Reports Server (NTRS)

    1979-01-01

    Report on water resources discusses problems in water measurement demand, use, and availability. Also discussed are sensing accuracies, parameter monitoring, and status of forecasting, modeling, and future measurement techniques.

  15. Assessing Pesticide Contamination to Fresh Water in Some Agricultural Sites, Close to Oaxaca City, Mexico

    NASA Astrophysics Data System (ADS)

    Tomas, G.

    2002-12-01

    This study presents the results of a survey on pesticides in fresh water in shallow aquifers, rivers and dams in Zaachila, Tlacolula and Etla and agricultural valleys close to Oaxaca City, SW of Mexico. In the study zones, there are generalized uses of pesticides and the impact on the water resources by inadequate use of agricultural activities. Water is used for irrigation and drinking. Surveying criteria was to sample the aquifer (production wells), its water table (dig wells) and a regional water collector (Plan Benito Juarez Yuayapan dam). A total of 14 samples were analyzed for the identification and quantification of organochlorine and organophosphorous pesticides. Method was 508-EPA. Gas chromatographer was a 5890 series II Hewlett Packard, calibrated with several patterns. Results: 10 samples are contaminated with some pesticide of the used patterns; Dieldrin, Chlordano, Malathion, Mirex were not found; Traces of organophosphorus compounds were found in 8 samples, mainly Merphos, Parathion Ethylic and Disulfoton ; There was detected traces of world-forbidden insecticides as Metoxychlor, Parathion Ethylic and Disulfoton; and In one sample (Cuilapam well #1) DDT exceeds, the Mexican maximum limit for potable water (1 mg/l),

  16. Appropriateness of Recommended Agricultural Water-Management Technologies as Perceived by the Personnel of Research and Extension System: A Study in the Eastern Region of India

    ERIC Educational Resources Information Center

    Ghosh, Souvik; Verma, H. N.; Chandra, Dinesh; Nanda, P.

    2005-01-01

    The key to agricultural development in the eastern region of India, where problems of excess water and water scarcity coexist, is the scientific management of water resources with the adoption of recommended water-management technologies. A vast networking of infrastructure for the development and dissemination of water-management technologies…

  17. Fiscal year 1988 program report: Pennsylvania Center for Water Resources Research

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McDonnell, A.J.

    1989-08-01

    Three projects and a program of technology transfer were conducted under the Pennsylvania Fiscal Year 1988 State Water Resources Research Grants Program (PL 98-242, Sect. 104). In a completed study focused on the protection of water supplies, mature slow sand filters were found to remove 100 percent of Cryptosporidium and Giardia cysts. A site specific study examined the behavior of sedimentary iron and manganese in an acid mine drainage wetland system. A study was initiated to link a comprehensive non-point source model, AGNPS with current GIS technology to enhance the models' utility for evaluating regional water quality problems related tomore » non-point source agricultural pollution.« less

  18. Water-resources appraisal of the upper Arkansas River basin from Leadville to Pueblo, Colorado

    USGS Publications Warehouse

    Crouch, T.M.; Cain, Doug; Abbott, P.O.; Penley, R.D.; Hurr, R.T.

    1984-01-01

    Water used for agriculture and stock and municipal supplies in the upper Arkansas River basin is derived mostly from the Arkansas River and its tributaries. The flow regime of the river has been altered by increased reservoir capacities and importation of 69,200 acre-feet per year from the Colorado River drainage through transmountain diversions. An estimated 10.2 million acre-feet of hydrologically recoverable water is present in the first 200 feet of basin-fill alluvium. Well yields of 300 gallons per minute have been reported for the Dakota-Purgatoire aquifer aquifer located east of Canon City. Water quality of ground- and surface-water resources are generally acceptable for agriculture and stock watering, but concentrations of iron, manganese, sulfate, pH, and hardness may exceed recommended drinking-water criteria during periods of river low flow. Concentrations of mercury, selenium, and select radiochemical constituents also were high in the Dakota-Purgatoire aquifer. Dissolved solids increased downstream and in local areas as a result of water use and in the Leadville area because of mine drainage. (USGS)

  19. Water resources in the Everglades

    USGS Publications Warehouse

    Schneider, William J.

    1966-01-01

    Aerial photography is playing an important role in the evaluation of the water resources of the almost-inaccessible 1,400 square miles of Everglades in southern Florida. Color, infrared, and panchromatic photographs show salient features that permit evaluation of the overall water resources picture. The fresh water-salt water interface, drainage patterns, ecologic changes resulting from flood and drought, quantities of flow, and other hydrologic features are easily observed or measured from the photographs. Such data permit areal extension of very limited point observations of water resources data, and will assist in providing the necessary guidelines for decisions in water management in the Everglades.

  20. Development of urbanization in arid and semi arid regions based on the water resource carrying capacity -- a case study of Changji, Xinjiang

    NASA Astrophysics Data System (ADS)

    Xiao, H.; Zhang, L.; Chai, Z.

    2017-07-01

    The arid and semiarid region in China where have a relatively weak economic foundation, independent development capacity, and the low-level of urbanization. The new urbanization within these regions is facing severe challenges brought by the constraints of resources. In this paper, we selected the Changji Hui Autonomous Prefecture, Xinjiang Uyghur Autonomous Region as study area. We found that agricultural planting structure is the key water consumption index based on the research about the main water demands of domestic, agriculture and industry. Finally, we suggest that more attentions should be paid to the rational utilization of water resources, population carrying capacity, and adjust and upgrade the industrial structure, with the purpose of coordination with the Silk Road Economic Belt.

  1. Supply-demand 3D dynamic model in water resources evaluation: taking Lebanon as an example

    NASA Astrophysics Data System (ADS)

    Fang, Hong; Hou, Zhimin

    2017-05-01

    In this paper, supply-demand 3D dynamic model is adopted to create a measurement of a region’s capacity to provide available water to meet the needs of its population. First of all, we draw a diagram between supply and demand. Then taking the main dynamic factors into account, we establish an index to evaluate the balance of supply and demand. The three dimension vector reflects the scarcity of industrial, agricultural and residential water. Lebanon is chosen as the object of case study, and we do quantitative analysis of its current situation. After data collecting and processing, we calculate the 3D vector in 2012, which reveals that agriculture is susceptible to water scarcity. Water resources of Lebanon are “physical rich” but “economic scarcity” according to the correlation chart and other statistical analysis.

  2. Exploring Resource Sharing between Secondary School Teachers of Agriculture and Science Departments Nationally.

    ERIC Educational Resources Information Center

    Dormody, Thomas J.

    1992-01-01

    A survey of 372 secondary agriculture teachers received 274 responses showing a majority of agriculture and science departments share resources, although at low levels. Many more predicted future sharing. Equipment and supplies were most often shared, instructional services least often. (SK)

  3. Land-use impacts on water resources and protected areas: applications of state-and-transition simulation modeling of future scenarios

    NASA Astrophysics Data System (ADS)

    Wilson, T. S.; Sleeter, B. M.; Sherba, J.; Cameron, D.

    2014-12-01

    Human land use will increasingly contribute to habitat losses and water shortages in California, given future population projections and associated demand for agricultural land. Understanding how land-use change may impact future water use and where existing protected areas may be threatened by land-use conversion will be important if effective, sustainable management approaches are to be implemented. We used a state-and-transition simulation modeling (STSM) framework to simulate spatially-explicit (1 km2) historical (1992-2010) and future (2011-2060) land-use change for 52 California counties within the Mediterranean California ecoregion. Historical land use change estimates were derived from the Farmland Mapping and Monitoring Program (FMMP) dataset and attributed with county-level agricultural water-use data from the California Department of Water Resources (CDWR). Six future alternative land-use scenarios were developed and modeled using the historical land-use change estimates and land-use projections based on the Intergovernmental Panel on Climate Change's (IPCC) Special Report on Emission Scenarios (SRES) A2 and B1 scenarios. Resulting spatial land-use scenario outputs were combined based on scenario agreement and a land conversion threat index developed to evaluate vulnerability of existing protected areas. Modeled scenario output of county-level agricultural water use data were also summarized, enabling examination of alternative water use futures. We present results of two separate applications of STSM of land-use change, demonstrating the utility of STSM in analyzing land-use related impacts on water resources as well as potential threats to existing protected land. Exploring a range of alternative, yet plausible, land-use change impacts will help to better inform resource management and mitigation strategies.

  4. Microbial quality of agricultural water in Central Florida.

    PubMed

    Topalcengiz, Zeynal; Strawn, Laura K; Danyluk, Michelle D

    2017-01-01

    The microbial quality of water that comes into the edible portion of produce is believed to directly relate to the safety of produce, and metrics describing indicator organisms are commonly used to ensure safety. The US FDA Produce Safety Rule (PSR) sets very specific microbiological water quality metrics for agricultural water that contacts the harvestable portion of produce. Validation of these metrics for agricultural water is essential for produce safety. Water samples (500 mL) from six agricultural ponds were collected during the 2012/2013 and 2013/2014 growing seasons (46 and 44 samples respectively, 540 from all ponds). Microbial indicator populations (total coliforms, generic Escherichia coli, and enterococci) were enumerated, environmental variables (temperature, pH, conductivity, redox potential, and turbidity) measured, and pathogen presence evaluated by PCR. Salmonella isolates were serotyped and analyzed by pulsed-field gel electrophoresis. Following rain events, coliforms increased up to 4.2 log MPN/100 mL. Populations of coliforms and enterococci ranged from 2 to 8 and 1 to 5 log MPN/100 mL, respectively. Microbial indicators did not correlate with environmental variables, except pH (P<0.0001). The invA gene (Salmonella) was detected in 26/540 (4.8%) samples, in all ponds and growing seasons, and 14 serotypes detected. Six STEC genes were detected in samples: hly (83.3%), fliC (51.8%), eaeA (17.4%), rfbE (17.4%), stx-I (32.6%), stx-II (9.4%). While all ponds met the PSR requirements, at least one virulence gene from Salmonella (invA-4.8%) or STEC (stx-I-32.6%, stx-II-9.4%) was detected in each pond. Water quality for tested agricultural ponds, below recommended standards, did not guarantee the absence of pathogens. Investigating the relationships among physicochemical attributes, environmental factors, indicator microorganisms, and pathogen presence allows researchers to have a greater understanding of contamination risks from agricultural surface

  5. Microbial quality of agricultural water in Central Florida

    PubMed Central

    Topalcengiz, Zeynal; Strawn, Laura K.

    2017-01-01

    The microbial quality of water that comes into the edible portion of produce is believed to directly relate to the safety of produce, and metrics describing indicator organisms are commonly used to ensure safety. The US FDA Produce Safety Rule (PSR) sets very specific microbiological water quality metrics for agricultural water that contacts the harvestable portion of produce. Validation of these metrics for agricultural water is essential for produce safety. Water samples (500 mL) from six agricultural ponds were collected during the 2012/2013 and 2013/2014 growing seasons (46 and 44 samples respectively, 540 from all ponds). Microbial indicator populations (total coliforms, generic Escherichia coli, and enterococci) were enumerated, environmental variables (temperature, pH, conductivity, redox potential, and turbidity) measured, and pathogen presence evaluated by PCR. Salmonella isolates were serotyped and analyzed by pulsed-field gel electrophoresis. Following rain events, coliforms increased up to 4.2 log MPN/100 mL. Populations of coliforms and enterococci ranged from 2 to 8 and 1 to 5 log MPN/100 mL, respectively. Microbial indicators did not correlate with environmental variables, except pH (P<0.0001). The invA gene (Salmonella) was detected in 26/540 (4.8%) samples, in all ponds and growing seasons, and 14 serotypes detected. Six STEC genes were detected in samples: hly (83.3%), fliC (51.8%), eaeA (17.4%), rfbE (17.4%), stx-I (32.6%), stx-II (9.4%). While all ponds met the PSR requirements, at least one virulence gene from Salmonella (invA-4.8%) or STEC (stx-I-32.6%, stx-II-9.4%) was detected in each pond. Water quality for tested agricultural ponds, below recommended standards, did not guarantee the absence of pathogens. Investigating the relationships among physicochemical attributes, environmental factors, indicator microorganisms, and pathogen presence allows researchers to have a greater understanding of contamination risks from agricultural surface

  6. Splash! Water Resource Education.

    ERIC Educational Resources Information Center

    Southwest Florida Water Management District, Brooksville.

    This set of activities is designed to bring water resource education into the middle school classroom using an interdisciplinary approach. The packet contains timely, localized information about the water resources of west central Florida. Each activity is aligned to middle-school Sunshine State Standards. These hands-on, minds-on activities can…

  7. Wastewater Reuse for Agriculture: Development of a Regional Water Reuse Decision-Support Model (RWRM) for Cost-Effective Irrigation Sources.

    PubMed

    Tran, Quynh K; Schwabe, Kurt A; Jassby, David

    2016-09-06

    Water scarcity has become a critical problem in many semiarid and arid regions. The single largest water use in such regions is for crop irrigation, which typically relies on groundwater and surface water sources. With increasing stress on these traditional water sources, it is important to consider alternative irrigation sources for areas with limited freshwater resources. One potential irrigation water resource is treated wastewater for agricultural fields located near urban centers. In addition, treated wastewater can contribute an appreciable amount of necessary nutrients for plants. The suitability of reclaimed water for specific applications depends on water quality and usage requirements. The main factors that determine the suitability of recycled water for agricultural irrigation are salinity, heavy metals, and pathogens, which cause adverse effects on human, plants, and soils. In this paper, we develop a regional water reuse decision-support model (RWRM) using the general algebraic modeling system to analyze the cost-effectiveness of alternative treatment trains to generate irrigation water from reclaimed wastewater, with the irrigation water designed to meet crop requirements as well as California's wastewater reuse regulations (Title 22). Using a cost-minimization framework, least-cost solutions consisting of treatment processes and their intensities (blending ratios) are identified to produce alternative irrigation sources for citrus and turfgrass. Our analysis illustrates the benefits of employing an optimization framework and flexible treatment design to identify cost-effective blending opportunities that may produce high-quality irrigation water for a wide range of end uses.

  8. Agricultural land use and N losses to water: the case study of a fluvial park in northern Italy.

    PubMed

    Morari, F; Lugato, E; Borin, M

    2003-01-01

    An integrated water resource management programme has been under way since 1999 to reduce agricultural water pollution in the River Mincio fluvial park. The experimental part of the programme consisted of: a) a monitoring phase to evaluate the impact of conventional and environmentally sound techniques (Best Management Practices, BMPs) on water quality; this was done on four representative landscape units, where twelve fields were instrumented to monitor the soil, surface and subsurface water quality; b) a modelling phase to extend the results obtained at field scale to the whole territory of the Mincio watershed. For this purpose a GIS developed in the Arc/Info environment was integrated into the CropSyst model. The model had previously been calibrated to test its ability to describe the complexity of the agricultural systems. The first results showed a variable efficiency of the BMPs depending on the interaction between management and pedo-climatic conditions. In general though, the BMPs had positive effects in improving the surface and subsurface water quality. The CropSyst model was able to describe the agricultural systems monitored and its linking with the GIS represented a valuable tool for identifying the vulnerable areas within the watershed.

  9. Interactive effects of reactive nitrogen and climate change on US water resources

    NASA Astrophysics Data System (ADS)

    Baron, J.; Bernhardt, E. S.; Finlay, J. C.; Chan, F.; Nolan, B. T.; Howarth, B.; Hall, E.; Boyer, E. W.

    2011-12-01

    Water resources and aquatic ecosystems are increasingly strained by withdrawals for agriculture and drinking water supply, nitrogen and other pollutant inputs, and climate change. We describe current and projected effects of the interactions of reactive nitrogen (N) and climate change on water resources of the United States. As perturbations to the N cycle intensify in a warmer less predictable climate, interactions will negatively affect the services we expect of our water resources. There are also feedbacks to the climate system itself through the production of greenhouse gases. We conclude: 1. Nitrogen concentrations will increase in the nation's waters from increased N loading and higher N mineralization rates. N export from terrestrial to aquatic ecosystems exhibits a high sensitivity to climate variations. 2. Consequences range from eutrophication and acidification, which reduce natural biodiversity and harm economically valuable fisheries, to adverse impacts on human health. 3. Extreme flood events have the potential to transport N rapidly long distances downstream from its source. 4. A recent national assessment found 67% of streams derived more than 37% of their total nitrate load from base flow often derived from groundwater. Long residence times for groundwater nitrate below agricultural fields may cause benefits from proper N management practices to take decades to be realized under current and future climates. 5. Streams, wetlands, rivers, lakes, estuaries and continental shelves are hotspots for denitrification. Maintenance of N removal capacity thus a critical component of eutrophication management under changing climate and land use conditions. 6. The amount of N inputs from fertilizer and manure use, human population, and deposition is tightly coupled with hydrology to influence the rates and proportion of N emitted to the atmosphere as N2O. About 20% of global N2O emissions come from groundwater, lakes, rivers, and estuaries; stream and wetland

  10. Towards the assessment of climate change and human activities impacts on the water resources of the Ebro catchment (Spain)

    NASA Astrophysics Data System (ADS)

    Milano, M.; Ruelland, D.; Dezetter, A.; Ardoin-Bardin, S.; Thivet, G.; Servat, E.

    2012-04-01

    Worldwide studies modelling the hydrological response to global changes have proven the Mediterranean area as one of the most vulnerable region to water crisis. It is characterised by limited and unequally distributed water resources, as well as by important development of its human activities. Since the late 1950s, water demand in the Mediterranean basin has doubled due to a significant expansion of irrigated land and urban areas, and has maintained on a constant upward curve. The Ebro catchment, third largest Mediterranean basin, is very representative of this context. Since the late 1970s, a negative trend in mean rainfall has been observed as well as an increase in mean temperature. Meanwhile, the Ebro River discharge has decreased by about 40%. However, climate alone cannot explain this downward trend. Another factor is the increase in water consumption for agricultural and domestic uses. Indeed, the Ebro catchment is a key element in the Spanish agricultural production with respectively 30% and 60% of the meat and fruit production of the country. Moreover, population has increased by 20% over the catchment since 1970 and the number of inhabitant doubles each summer due to tourism attraction. Finally, more than 250 storage dams have been built over the Ebro River for hydropower production and irrigation water supply purposes, hence regulating river discharge. In order to better understand the respective influence of climatic and anthropogenic pressures on the Ebro hydrological regime, an integrated water resources modelling framework was developed. This model is driven by water supplies, generated by a conceptual rainfall-runoff model and by a storage dam module that accounts for water demands and environmental flow requirements. Water demands were evaluated for the most water-demanding sector, i.e. irrigated agriculture (5 670 Hm3/year), and the domestic sector (252 Hm3/year), often defined as being of prior importance for water supply. A water allocation

  11. Water Resources Management in Turkey as a Case Study Southeastern Anatolia Project (gap)

    NASA Astrophysics Data System (ADS)

    Ačma, Bülent

    2010-05-01

    The Southeastern Anatolia Project (GAP), one of the most important projects for develop remarkable natural resources of the world, is accepted as a change for getting benefit from rich water and agricultural resources of the Southeastern Anatolia Region. The GAP Project has been considered as a regional development projects through years, but the dimensions of sustainability, protection of environment and participatory have been attached to the master of the project in recent years. When the GAP Project is completed, the Upper Mesopotomia, the centers of many civilisation, will re-again its importance as it had in the ancient times, and will be alive a center of civilisation. Moreover, when the problem of water shortage and water supplies in the world for the future is kept in mind, the importance of Southeastern Anatolia's water supplies will be doubled. For this reason, the GAP Project, developed by depending on water and natural resources of the region, will have an important place in the world. The aim of this study is to introduce the region with rich natural resources and the GAP Project. For this reason, firstly, the natural potential of the region will be introduced. Second, The GAP Project will be presented in detailes. In the third stage, the projects being processed for protecting the natural sources and environment will be analyzed. In the last stage, strategies and policies to develop and to protect the natural resources of the region in short, mid, and long terms will be proposed.

  12. Mediterranean water resources in a global change scenario

    NASA Astrophysics Data System (ADS)

    García-Ruiz, José M.; López-Moreno, J. Ignacio; Vicente-Serrano, Sergio M.; Lasanta–Martínez, Teodoro; Beguería, Santiago

    2011-04-01

    subject to increasing water resource uncertainty, because of the reduced influence of snow accumulation and snowmelt processes. Besides, reservoir capacity is naturally reduced due to increasing sedimentation and, in some cases, is also decreased to improve the safety control of floods, leading to a reduction in efficiency for agriculture. And (4) hydrological and population changes in coastal areas, particularly in the delta zones, affected by water depletion, groundwater reduction and saline water intrusion. These scenarios enhance the necessity of improving water management, water prizing and water recycling policies, in order to ensure water supply and to reduce tensions among regions and countries.

  13. Global change and water resources in the next 100 years

    USGS Publications Warehouse

    Larsen, Matthew C.; Hirsch, R.M.

    2010-01-01

    We are in the midst of a continental-scale, multi-year experiment in the United States, in which we have not defined our testable hypotheses or set the duration and scope of the experiment, which poses major water-resources challenges for the 21st century. What are we doing? We are expanding population at three times the national growth rate in our most water-scarce region, the southwestern United States, where water stress is already great and modeling predicts decreased streamflow by the middle of this century. We are expanding irrigated agriculture from the west into the east, particularly to the southeastern states, where increased competition for ground and surface water has urban, agricultural, and environmental interests at odds, and increasingly, in court. We are expanding our consumption of pharmaceutical and personal care products to historic high levels and disposing them in surface and groundwater, through sewage treatment plants and individual septic systems. These substances are now detectable at very low concentrations and we have documented significant effects on aquatic species, particularly on fish reproduction function. We don’t yet know what effects on human health may emerge, nor do we know if we need to make large investments in water treatment systems, which were not designed to remove these substances. These are a few examples of our national-scale experiment. In addition to these water resources challenges, over which we have some control, climate change models indicate that precipitation and streamflow patterns will change in coming decades, with western mid-latitude North America generally drier. We have already documented trends in more rain and less snow in western mountains. This has large implications for water supply and storage, and groundwater recharge. We have documented earlier snowmelt peak spring runoff in northeastern and northwestern States, and western montane regions. Peak runoff is now about two weeks earlier than it was

  14. A Survey of Human Resource Management and Qualification Levels in Hungarian Agriculture

    ERIC Educational Resources Information Center

    Berde, Csaba; Piros, Marta

    2006-01-01

    The question of quality and value of human resources have been at the forefront of Hungarian agriculture for the past few years. The decreasing number of agricultural employees in Hungary in the last decade (1990-2000) is a result of the crisis caused by the change of the socio-economic system rather than economic and technological development.…

  15. Geomorphologic and geologic overview for water resources development: Kharit basin, Eastern Desert, Egypt

    NASA Astrophysics Data System (ADS)

    Mosaad, Sayed

    2017-10-01

    This study demonstrates the importance of geomorphologic, geologic and hydrogeologic assessment as an efficient approach for water resources development in the Kharit watershed. Kharit is one of largest watersheds in the Eastern Desert that lacks water for agricultural and drinking purposes, for the nomadic communities. This study aims to identify and evaluate the geomorphologic, geologic and hydrogeologic conditions in the Kharit watershed relative to water resource development using remote sensing and GIS techniques. The results reveal that the watershed contains 15 sub-basins and morphometric analyses show high probability for flash floods. These hazards can be managed by constructing earth dikes and masonry dams to minimize damage from flash floods and allow recharge of water to shallow groundwater aquifers. The Quaternary deposits and the Nubian sandstone have moderate to high infiltration rates and are relatively well drained, facilitating surface runoff and deep percolation into the underlying units. The sediments cover 54% of the watershed area and have high potential for groundwater extraction.

  16. Climate change, water rights, and water supply: The case of irrigated agriculture in Idaho

    NASA Astrophysics Data System (ADS)

    Xu, Wenchao; Lowe, Scott E.; Adams, Richard M.

    2014-12-01

    We conduct a hedonic analysis to estimate the response of agricultural land use to water supply information under the Prior Appropriation Doctrine by using Idaho as a case study. Our analysis includes long-term climate (weather) trends and water supply conditions as well as seasonal water supply forecasts. A farm-level panel data set, which accounts for the priority effects of water rights and controls for diversified crop mixes and rotation practices, is used. Our results indicate that farmers respond to the long-term surface and ground water conditions as well as to the seasonal water supply variations. Climate change-induced variations in climate and water supply conditions could lead to substantial damages to irrigated agriculture. We project substantial losses (up to 32%) of the average crop revenue for major agricultural areas under future climate scenarios in Idaho. Finally, farmers demonstrate significantly varied responses given their water rights priorities, which imply that the distributional impact of climate change is sensitive to institutions such as the Prior Appropriation Doctrine.

  17. The evaluation of basin water resources utilization efficiency based on Chaos projection mode

    NASA Astrophysics Data System (ADS)

    Guan, X.; Liang, S.; Meng, Y.; Wang, H.

    2017-12-01

    To promote the coordinated development of a healthy economy, society, and environment, and the sustainable development of water resources comprehensive utilization efficiency (WRCUE), this study investigated appropriate indicators using the trapezoidal fuzzy number method, and constructed an evaluation index system for WRCUE. A WRCUE evaluation model is applied to the areas in the Yellow River Basin in China using a genetic projection pursuit method. The comprehensive evaluation index system of water use efficiency includes 6 indicators: Water consumption per unit industrial value added, water consumption per unit GDP, eliminate the climate effect on agricultural water use efficiency, irrigation water consumption per unit area, domestic water use per capita and industrial water ratio. Then, multiple indexes in the index system are transformed to a comprehensive index by the combined model, which is used to represent the total water resources utilization efficiency. Results show that the WRCUE in Yellow River basin and the provinces have a great distance. WRCUE is well developed in Shanxi, Shandong, and Henan provinces, moderately developed in Shaanxi, Inner Mongolia, and Sichuan provinces, and poorly developed in the Ningxia Autonomous Region, Gansu Province, and Qinghai Province. According to the capacities of provinces, related measures are proposed.

  18. From waste to resource: a systems-based approach to sustainable community development through equitable enterprise and agriculturally-derived polymeric composites

    NASA Astrophysics Data System (ADS)

    Teipel, Elisa

    Rural communities in developing countries are most vulnerable to the plight of requiring repeated infusions of charitable aid over time. Micro-business opportunities that effectively break the cycle of poverty in resource-rich countries in the developing world are limited. However, a strong model for global commerce can break the cycle of donor-based economic supplements and limited local economic growth. Sustainable economic development can materialize when a robust framework combines engineering with the generous investment of profits back into the community. This research presents a novel, systems-based approach to sustainable community development in which a waste-to-resource methodology catalyzes the disruption of rural poverty. The framework developed in this thesis was applied to the rural communities of Cagmanaba and Badian, Philippines. An initial assessment of these communities showed that community members are extremely poor, but they possess an abundant natural resource: coconuts. The various parts of the coconut offer excellent potential value in global commerce. Today the sale of coconut water is on the rise, and coconut oil is an established $3 billion market annually that is also growing rapidly. Since these current industries harvest only two parts of the coconut (meat and water), the 50 billion coconuts that grow annually leave behind approximately 100 billion pounds of coconut shell and husk as agricultural waste. Coconuts thus provide an opportunity to create and test a waste-to-resource model. Intensive materials analysis, research, development, and optimization proved that coconut shell, currently burned as a fuel or discarded as agricultural waste, can be manufactured into high-grade coconut shell powder (CSP), which can be a viable filler in polymeric composites. This framework was modeled and tested as a case study in a manufacturing facility known as a Community Transformation Plant (CTP) in Cagmanaba, Philippines. The CTP enables local

  19. The Urban Food-Water Nexus: Modeling Water Footprints of Urban Agriculture using CityCrop

    NASA Astrophysics Data System (ADS)

    Tooke, T. R.; Lathuilliere, M. J.; Coops, N. C.; Johnson, M. S.

    2014-12-01

    Urban agriculture provides a potential contribution towards more sustainable food production and mitigating some of the human impacts that accompany volatility in regional and global food supply. When considering the capacity of urban landscapes to produce food products, the impact of urban water demand required for food production in cities is often neglected. Urban agricultural studies also tend to be undertaken at broad spatial scales, overlooking the heterogeneity of urban form that exerts an extreme influence on the urban energy balance. As a result, urban planning and management practitioners require, but often do not have, spatially explicit and detailed information to support informed urban agricultural policy, especially as it relates to potential conflicts with sustainability goals targeting water-use. In this research we introduce a new model, CityCrop, a hybrid evapotranspiration-plant growth model that incorporates detailed digital representations of the urban surface and biophysical impacts of the built environment and urban trees to account for the daily variations in net surface radiation. The model enables very fine-scale (sub-meter) estimates of water footprints of potential urban agricultural production. Results of the model are demonstrated for an area in the City of Vancouver, Canada and compared to aspatial model estimates, demonstrating the unique considerations and sensitivities for current and future water footprints of urban agriculture and the implications for urban water planning and policy.

  20. Lunar Water Resource Demonstration

    NASA Technical Reports Server (NTRS)

    Muscatello, Anthony C.

    2008-01-01

    In cooperation with the Canadian Space Agency, the Northern Centre for Advanced Technology, Inc., the Carnegie-Mellon University, JPL, and NEPTEC, NASA has undertaken the In-Situ Resource Utilization (ISRU) project called RESOLVE. This project is a ground demonstration of a system that would be sent to explore permanently shadowed polar lunar craters, drill into the regolith, determine what volatiles are present, and quantify them in addition to recovering oxygen by hydrogen reduction. The Lunar Prospector has determined these craters contain enhanced hydrogen concentrations averaging about 0.1%. If the hydrogen is in the form of water, the water concentration would be around 1%, which would translate into billions of tons of water on the Moon, a tremendous resource. The Lunar Water Resource Demonstration (LWRD) is a part of RESOLVE designed to capture lunar water and hydrogen and quantify them as a backup to gas chromatography analysis. This presentation will briefly review the design of LWRD and some of the results of testing the subsystem. RESOLVE is to be integrated with the Scarab rover from CMIJ and the whole system demonstrated on Mauna Kea on Hawaii in November 2008. The implications of lunar water for Mars exploration are two-fold: 1) RESOLVE and LWRD could be used in a similar fashion on Mars to locate and quantify water resources, and 2) electrolysis of lunar water could provide large amounts of liquid oxygen in LEO, leading to lower costs for travel to Mars, in addition to being very useful at lunar outposts.

  1. Bibliography of selected water-resources information for the Arkansas River basin in Colorado through 1985

    USGS Publications Warehouse

    Kuzmiak, John M.; Strickland, Hyla H.

    1994-01-01

    The Arkansas River basin composes most of southeastern Colorado, and the numerous population centers and vast areas of agricultural development are located primarily in the semiarid part of the basin east of the Continental Divide. Because effective management and development of water resources in this semiarid area are essential to the viability of the basin, many hydrologic data- collection programs and investigations have been done. This report contains a bibliography of selected water-resources information about the basin, including regularly published information and special investigations, from Federal, State, and other organizations. To aid the reader, the infor- mation is indexed by author, subject, county, and hydrologic unit (drainage basin).

  2. Summary appraisal of water resources in the Redmond Quadrangle, Sanpete and Sevier counties, Utah

    USGS Publications Warehouse

    Price, Don

    1981-01-01

    This map was compiled in conjunction with an energy-related geologic-mapping project on the Redmond Quadrangle (Witkind, 1980) in order to show the general availability and chemical quality of water in the area. The map is based chiefly on data collected by the U.S. Geological Survey under a continuing cooperative program with the Utah Department of Natural Resources, Division of Water Rights, and on cursory field observations by the writer. Most of the existing fata are in reports of Carpenter and Young (1963), Hahl and Cabell (1965), Young and Carpenter (1965) and Hahl and Mundorff (1968). Additional information about water and related land resources in the map area may be found in a report of the U.S. Department of Agriculture (1969).The map is intended for general planning purposes only and needs to be used with discretion. Detailed site-specific information about the availability and quality of water or about water-related problems can be gained only by special on-site investigations.

  3. Agricultural water requirements for commercial production of cranberries

    USDA-ARS?s Scientific Manuscript database

    Abundant water resources are essential for the commercial production of cranberries, which use irrigated water for frost protection, soil moisture management, and harvest and winter floods. Given water resource demands in southeastern Massachusetts, we sought to quantify the annual water requirement...

  4. Scientific Allocation of Water Resources.

    ERIC Educational Resources Information Center

    Buras, Nathan

    Oriented for higher education students, researchers, practicing engineers and planners, this book surveys the state of the art of water resources engineering. A broad spectrum of issues is embraced in the treatment of water resources: quantity aspects as well as quality aspects within a systems approach. Using a rational mode for water resources…

  5. Interdisciplinary Methods in Water Resources

    ERIC Educational Resources Information Center

    Cosens, Barbara; Fiedler, Fritz; Boll, Jan; Higgins, Lorie; Johnson, Gary; Kennedy, Brian; Strand, Eva; Wilson, Patrick; Laflin, Maureen

    2011-01-01

    In the face of a myriad of complex water resource issues, traditional disciplinary separation is ineffective in developing approaches to promote a sustainable water future. As part of a new graduate program in water resources, faculty at the University of Idaho have developed a course on interdisciplinary methods designed to prepare students for…

  6. Climate Action Benefits: Water Resources

    EPA Pesticide Factsheets

    This page provides background on the relationship between water resources and climate change and describes what the CIRA Water Resources analyses cover. It provides links to the subsectors Inland Flooding, Drought, and Supply and Demand.

  7. Quantification and Multi-purpose Allocation of Water Resources in a Dual-reservoir System

    NASA Astrophysics Data System (ADS)

    Salami, Y. D.

    2017-12-01

    Transboundary rivers that run through separate water management jurisdictions sometimes experience competitive water usage. Where the river has multiple existing or planned dams along its course, quantification and efficient allocation of water for such purposes as hydropower generation, irrigation for agriculture, and water supply can be a challenge. This problem is even more pronounced when large parts of the river basin are located in semi-arid regions known for water insecurity, poor crop yields from irrigation scheme failures, and human population displacement arising from water-related conflict. This study seeks to mitigate the impacts of such factors on the Kainji-Jebba dual-reservoir system located along the Niger River in Africa by seasonally quantifying and efficiently apportioning water to all stipulated uses of both dams thereby improving operational policy and long-term water security. Historical storage fluctuations (18 km3 to 5 km3) and flows into and out of both reservoirs were analyzed for relationships to such things as surrounding catchment contribution, dam operational policies, irrigation and hydropower requirements, etc. Optimum values of the aforementioned parameters were then determined by simulations based upon hydrological contributions and withdrawals and worst case scenarios of natural and anthropogenic conditions (like annual probability of reservoir depletion) affecting water availability and allocation. Finally, quantification and optimized allocation of water was done based on needs for hydropower, irrigation for agriculture, water supply, and storage evacuation for flood control. Results revealed that water supply potential increased by 69%, average agricultural yield improved by 36%, and hydropower generation increased by 54% and 66% at the upstream and downstream dams respectively. Lessons learned from this study may help provide a robust and practical means of water resources management in similar river basins and multi

  8. Water, Ohio's Remarkable Resource.

    ERIC Educational Resources Information Center

    Groves, Carrie J.

    Information on water and water resources in Ohio is presented in seven sections. Water from Ohio streams, water storage, lakes in Ohio, and ground water are discussed in the first section ("Water, A Part of the Earth"). A brief discussion on the ecosystem is provided in the second section ("Water and Life"). Topics discussed in…

  9. Biotechnologies for the management of genetic resources for food and agriculture.

    PubMed

    Lidder, Preetmoninder; Sonnino, Andrea

    2012-01-01

    In recent years, the land area under agriculture has declined as also has the rate of growth in agricultural productivity while the demand for food continues to escalate. The world population now stands at 7 billion and is expected to reach 9 billion in 2045. A broad range of agricultural genetic diversity needs to be available and utilized in order to feed this growing population. Climate change is an added threat to biodiversity that will significantly impact genetic resources for food and agriculture (GRFA) and food production. There is no simple, all-encompassing solution to the challenges of increasing productivity while conserving genetic diversity. Sustainable management of GRFA requires a multipronged approach, and as outlined in the paper, biotechnologies can provide powerful tools for the management of GRFA. These tools vary in complexity from those that are relatively simple to those that are more sophisticated. Further, advances in biotechnologies are occurring at a rapid pace and provide novel opportunities for more effective and efficient management of GRFA. Biotechnology applications must be integrated with ongoing conventional breeding and development programs in order to succeed. Additionally, the generation, adaptation, and adoption of biotechnologies require a consistent level of financial and human resources and appropriate policies need to be in place. These issues were also recognized by Member States at the FAO international technical conference on Agricultural Biotechnologies for Developing Countries (ABDC-10), which took place in March 2010 in Mexico. At the end of the conference, the Member States reached a number of key conclusions, agreeing, inter alia, that developing countries should significantly increase sustained investments in capacity building and the development and use of biotechnologies to maintain the natural resource base; that effective and enabling national biotechnology policies and science-based regulatory frameworks can

  10. Description of water-resource-related data compiled for Reno County, south-central Kansas

    USGS Publications Warehouse

    Hansen, C.V.

    1993-01-01

    Water-resource-related data for sites in Reno County, Kansas were compiled in cooperation with the Reno County Health Department as part of the Kansas Department of Health and Environment's Local Environmental Protection Program (LEPP). These data were entered into a relational data-base management system (RDBMS) to facilitate the spatial analysis required to meet the LEPP goals of developing plans for nonpoint-source management and for public- water-supply protection. The data in the RDBMS are organized into digital data sets. The data sets contain the water-resource-related data compiled by the U.S. Geological Survey for 958 wells; by the Kansas Department of Health and Environment for 3,936 wells; by the Kansas Department of Health and Environment for 51 wells, 18 public-water-supply distribution systems, and 7 streams; by the Kansas State Board of Agriculture for 643 wells and 23 streams or surface-water impoundments; and by well-drilling contractors and the Kansas Geological Survey for 96 wells. The data in these five data sets are available from the Reno County Health Department in Hutchinson, Kansas. (USGS)

  11. Study of hybrid power system potential to power agricultural water pump in mountain area

    NASA Astrophysics Data System (ADS)

    Syuhada, Ahmad; Mubarak, Amir Zaki; Maulana, M. Ilham

    2016-03-01

    As industry and Indonesian economy grow fast, there are a lot of agricultural land has changed into housing and industrial land. This causes the agricultural land moves to mountain area. In mountainous agricultural area, farmers use the water resources of small rivers in the groove of the mountain to irrigate the farmland. Farmers use their power to lift up water from the river to their land which causes inefectivity in the work of the farmers. Farmers who have capital utilize pump to raise water to their land. The only way to use pump in mountain area is by using fuel energy as there is no electricity, and the fuel price in mountain area is very expensive. Based on those reasons it is wise to consider the exploration of renewable energy available in the area such as solar energy, wind energy and hybrid energy. This study analyses the potential of the application of hybrid power plant, which is the combination of solar and wind energy, to power agricultural pump. In this research, the data of wind speed and solar radiation are collected from the measurement of BMKG SMPK Plus Sare. Related to the solar energy, the photovoltaic output power calculation is 193 W with duration of irradiation of 5 hours/day. While for the wind energy, the output power of the wind turbine is 459.84 W with blade diameter of 3 m and blow duration of 7 hours/day. The power of the pump is 558 W with 8 hours of usage, and the water capacity is 2.520 liters/hour for farmland with the area of 15 ha. Based on the analysis result, the designed system will generate electricity of 3.210 kW/year with initial investment of US 14,938.

  12. The Climaware project: Impacts of climate change on water resources management - regional strategies and European view

    NASA Astrophysics Data System (ADS)

    Thirel, Guillaume; D'Agostino, Daniela; Démerliac, Stéphane; Dorchies, David; Flörke, Martina; Jay-Allemand, Maxime; Jost, Claudine; Kehr, Katrin; Perrin, Charles; Scardigno, Alessandra; Schneider, Christof; Theobald, Stephan; Träbing, Klaus

    2014-05-01

    an integrated analysis across different spatial scales. To fulfil the objectives of the ClimAware project, the following modelling methodology was implemented. Starting from a European modelling approach of water availability and use based on the WaterGAP3 model, the changes in the hydrologic regimes and water use of different sectors were analysed. Subsequently three case studies were used to investigate the impacts of CC at a regional scale. Regional models from three different countries and focusing on three types of water management issues were developed: • Hydromorphology (Eder basin, Germany): By using different scenarios, the influence of CC on the hydromorphological characteristics of the River Weser according to the WFD was evaluated and proposals for implementation were given. The objective was to examine, on typical river sections, how the WFD objectives can be implemented under CC constraints. • Dam management (Seine basin, France): Water management on the River Seine for water supply and flood alleviation is partly based on the management of artificial reservoirs. The case study developed scenarios linking the impact of CC on water resources and the expected change on the uses and on the management of the system. • Agricultural water use (Apulia region, Italy): In this region, economic and demographic changes cause an increase in the demand for good-quality municipal and industrial water. Besides, changes in the agricultural practices increase the demand for water in the agricultural sector. Since water is scarce in this region, the study focuses on the agricultural sector, which has the largest water saving potential. The final assessment comprises a cross-scale integration between the European and regional modelling frameworks in order to facilitate knowledge transfer and to help establishing sustainable and integrated water resources management plans.

  13. The role of NASA's Water Resources applications area in improving access to water quality-related information and water resources management

    NASA Astrophysics Data System (ADS)

    Lee, C. M.

    2016-02-01

    The NASA Applied Sciences Program plays a unique role in facilitating access to remote sensing-based water information derived from US federal assets towards the goal of improving science and evidence-based decision-making in water resources management. The Water Resources Application Area within NASA Applied Sciences works specifically to develop and improve water data products to support improved management of water resources, with partners who are faced with real-world constraints and conditions including cost and regulatory standards. This poster will highlight the efforts and collaborations enabled by this program that have resulted in integration of remote sensing-based information for water quality modeling and monitoring within an operational context.

  14. The role of NASA's Water Resources applications area in improving access to water quality-related information and water resources management

    NASA Astrophysics Data System (ADS)

    Lee, C. M.

    2016-12-01

    The NASA Applied Sciences Program plays a unique role in facilitating access to remote sensing-based water information derived from US federal assets towards the goal of improving science and evidence-based decision-making in water resources management. The Water Resources Application Area within NASA Applied Sciences works specifically to develop and improve water data products to support improved management of water resources, with partners who are faced with real-world constraints and conditions including cost and regulatory standards. This poster will highlight the efforts and collaborations enabled by this program that have resulted in integration of remote sensing-based information for water quality modeling and monitoring within an operational context.

  15. A First Estimation of County-Based Green Water Availability and Its Implications for Agriculture and Bioenergy Production in the United States

    DOE PAGES

    Xu, Hui; Wu, May

    2018-02-02

    Green water is vital for the terrestrial ecosystem, but water resource assessment often focuses on blue water. In this study, we estimated green water availability for major crops (i.e., corn, soybean, and wheat) and all other users(e.g., forest, grassland, and ecosystem services) at the county level in the United States. We estimated green water resources from effective rain(ER) using three different methods: Smith, U.S. Department of Agriculture-Soil Conservation Service (USDA-SCS), and the NHD plus V2 dataset. The analysis illustrates that, if green water meets all crop water demands, the fraction of green water resources available to all other users variesmore » significantly across regions, from the Northern Plains (0.71) to the Southeast (0.98). At the county level, this fraction varies from 0.23 to 1.0. Green water resources estimated using the three different ER methods present diverse spatiotemporal distribution patterns across regions, which could affect green water availability estimates. The water availability index for green water (WAI_R) was measured taking into account crop water demand and green water resources aggregated at the county level. Beyond these parameters, WAI_R also depends on the precipitation pattern, crop type and spatially differentiated regions. In addition, seasonal analysis indicated that WAI_R is sensitive to the temporal boundary of the analysis.« less

  16. A First Estimation of County-Based Green Water Availability and Its Implications for Agriculture and Bioenergy Production in the United States

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Hui; Wu, May

    Green water is vital for the terrestrial ecosystem, but water resource assessment often focuses on blue water. In this study, we estimated green water availability for major crops (i.e., corn, soybean, and wheat) and all other users(e.g., forest, grassland, and ecosystem services) at the county level in the United States. We estimated green water resources from effective rain(ER) using three different methods: Smith, U.S. Department of Agriculture-Soil Conservation Service (USDA-SCS), and the NHD plus V2 dataset. The analysis illustrates that, if green water meets all crop water demands, the fraction of green water resources available to all other users variesmore » significantly across regions, from the Northern Plains (0.71) to the Southeast (0.98). At the county level, this fraction varies from 0.23 to 1.0. Green water resources estimated using the three different ER methods present diverse spatiotemporal distribution patterns across regions, which could affect green water availability estimates. The water availability index for green water (WAI_R) was measured taking into account crop water demand and green water resources aggregated at the county level. Beyond these parameters, WAI_R also depends on the precipitation pattern, crop type and spatially differentiated regions. In addition, seasonal analysis indicated that WAI_R is sensitive to the temporal boundary of the analysis.« less

  17. Connecticut Institute of Water Resources

    Science.gov Websites

    Research Act of 1964. The general purpose of the institutes is to promote research related to water , watershed, and related upland issues, and share research results and information regarding water resources CTIWR Annual Reports Project Publications INFORMATION Seminars Resource Links U.S. Congress Water

  18. The influence of future electricity mix alternatives on southwestern US water resources

    NASA Astrophysics Data System (ADS)

    Yates, D.; Meldrum, J.; Averyt, K.

    2013-12-01

    A climate driven, water resource systems model of the southwestern US was used to explore the implications of growth, extended drought, and climate warming on the allocation of water among competing uses. The analysis focused on the water benefits from alternative thermoelectric generation mixes, but included other uses, namely irrigated agriculture, municipal indoor and outdoor use, and environmental and inter-state compact requirements. The model, referred to as WEAP-SW, was developed on the Water Evaluation and Planning (WEAP) platform, and is scenario-based and forward projecting from 2008 to 2050. The scenario includes a southwest population that grows from about 55 million to more than 100 million, a prolonged dry period, and a long-term warming trend of 2 ° C by mid-century. In addition, the scenario assumes that water allocation under shortage conditions would prioritize thermoelectric, environmental, and inter-state compacts by shorting first irrigated agriculture, then municipal demands. We show that while thermoelectric cooling water consumption is relatively small compared with other uses, the physical realities and the legal and institutional structures of water use in the region mean that relatively small differences in regional water use across different electricity mix scenarios correspond with more substantial impacts on individual basins and water use sectors. At a region-wide level, these choices influence the buffer against further water stress afforded the region through its generous storage capacity in reservoirs.

  19. An Agent-based Modeling of Water-Food Nexus towards Sustainable Management of Urban Water Resources

    NASA Astrophysics Data System (ADS)

    Esmaeili, N.; Kanta, L.

    2017-12-01

    Growing population, urbanization, and climate change have put tremendous stress on water systems in many regions. A shortage in water system not only affects water users of a municipality but also that of food system. About 70% of global water is withdrawn for agriculture; livestock and dairy productions are also dependent on water availability. Although researchers and policy makers have identified and emphasized the water-food (WF) nexus in recent decade, most existing WF models offer strategies to reduce trade-offs and to generate benefits without considering feedback loops and adaptations between those systems. Feedback loops between water and food system can help understand long-term behavioral trends between water users of the integrated WF system which, in turn, can help manage water resources sustainably. An Agent-based modeling approach is applied here to develop a conceptual framework of WF systems. All water users in this system are modeled as agents, who are capable of making decisions and can adapt new behavior based on inputs from other agents in a shared environment through a set of logical and mathematical rules. Residential and commercial/industrial consumers are represented as municipal agents; crop, livestock, and dairy farmers are represented as food agents; and water management officials are represented as policy agent. During the period of water shortage, policy agent will propose/impose various water conservation measures, such as adapting water-efficient technologies, banning outdoor irrigation, implementing supplemental irrigation, using recycled water for livestock/dairy production, among others. Municipal and food agents may adapt conservation strategies and will update their demand accordingly. Emergent properties of the WF nexus will arise through dynamic interactions between various actors of water and food system. This model will be implemented to a case study for resource allocation and future policy development.

  20. Impact of climate change and anthropogenic pressure on the water resources of India: challenges in management

    NASA Astrophysics Data System (ADS)

    Shadananan Nair, K.

    2016-10-01

    Freshwater resources of India are getting fast degraded and depleted from the changing climate and pressure of fast rising population. Changing intensity and seasonality of rainfall affect quantity and quality of water. Most of the rivers are polluted far above safety limits from the untreated domestic, industrial and agricultural effluents. Changes in the intensity, frequency and tracks of storms salinate coastal aquifers. Aquifers are also under the threat from rising sea level. Groundwater in urban limits and industrial zones are far beyond safety limits. Large-scale destruction of wetlands for industries and residential complexes has affected the quality of surface and groundwater resources in most parts of India. Measures to maintain food security and the new developments schemes such as river linking will further deteriorate the water resources. Falling water availability leads to serious health issues and various socio-economic issues. India needs urgent and appropriate adaptation strategies in the water sector.

  1. Total Water Management: The New Paradigm for Urban Water Resources Planning

    EPA Science Inventory

    There is a growing need for urban water managers to take a more holistic view of their water resource systems as population growth, urbanization, and current resource management practices put different stresses on local water resources and urban infrastructure. Total Water Manag...

  2. Water resources activities, Georgia District, 1986

    USGS Publications Warehouse

    Casteel, Carolyn A.; Ballew, Mary D.

    1987-01-01

    The U.S. Geological Survey, through its Water Resources Division , investigates the occurrence, quantity, quality, distribution, and movement of the surface and underground water that composes the Nation 's water resources. Much of the work is a cooperative effort in which planning and financial support are shared by state and local governments and other federal agencies. This report contains a brief description of the water-resources investigations in Georgia in which the Geological Survey participates, and a list of selected references. Water-resources data for the 1985 water year for Georgia consists of records of stage, discharge, and water quality of streams; stage and contents of lakes and reservoirs; and groundwater levels. These data include discharge records for 108 gaging stations; water quality for 43 continuous stations, 109 periodic stations, and miscellaneous sites; peak stage and discharge only for 130 crest-stage partial-record stations and 44 miscellaneous sites; and water levels of 27 observation wells. Nineteen Georgia District projects are summarized. (Lantz-PTT)

  3. A Landsat-based inventory procedure for agriculture in California

    NASA Technical Reports Server (NTRS)

    Wall, S. L.; Thomas, R. W.; Brown, C. E.; Bauer, E. H.

    1982-01-01

    Agriculture, which occupies a vital position in the economy of the State of California, depends crucially on the available water. The California Department of Water Resources (DWR) is, therefore, greatly concerned with the total water requirements for agricultural applications. In view of the limitations of an area-limited, single-date survey system, the DWR has been cooperating with NASA and the University of California in a study of the applicability of Landsat imagery and digital data as an aid in making decisions concerning the management of water resources. Attention is given to a statewide inventory of irrigated land, computer-assisted estimation and mapping of irrigated land, and a crop type analysis using Landsat digital data.

  4. Water resources thesaurus: A vocabulary for indexing and retrieving the literature of water resources research and development

    USGS Publications Warehouse

    ,

    1980-01-01

    This Water Resources Thesaurus encompasses such broad research areas as the hydrologic cycle, supply of and demand for water, conservation and best use of available supplies of water, methods of increasing supplies, and the economic, legal, social, engineering, recreational, biological, geographical, ecological, and qualitative aspects of water resources. This volume represents a major revision of the previous edition of the Thesaurus, published in 1971. The principal source of terms for this edition has been the indexing used in Selected Water Resources Abstracts (SWRA). Since its inception in 1968, SWRA has indexed tens of thousands of publications. Its indexing terminology has been developed by expert abstracters and researchers, and represents the range of disciplines related to research, development, and management of water resources.

  5. Water-resources activities in Florida, 1988-89

    USGS Publications Warehouse

    Glenn, Mildred E.

    1989-01-01

    This report contains summary statements of water resources activities in Florida conducted by the Water Resources Division of the U.S. Geological Survey in cooperation with Federal, State , and local agencies during 1988. These activities are part of the Federal program of appraising the Nation 's water resources. Included are brief descriptions of the nature and scope of all active studies, summaries of significant results for 1988 and anticipated accomplishments during 1989. Water resources appraisals in Florida are highly diversified, ranging from hydrologic records networks to interpretive appraisals of water resources and applied research to develop investigative techniques. Thus, water-resources investigations range from basic descriptive water-availability studies for areas of low-intensity water development and management to sophisticated cause and effect studies in areas of high-intensity water development and management. The interpretive reports and records that are products of the investigations are a principal hydrologic foundation upon which the plans for development, management, and protection of Florida 's water resources may be used. Water data and information required to implement sound water-management programs in highly urbanized areas relate to the quantity and quality of storm runoff, sources of aquifer contamination, injection of wastes into deep strata, underground storage of freshwater, artificial recharge of aquifers, environmental effects of reuse of water, and effects of land development on changes in ground-and surface-water quality. In some parts of the State broad areas are largely rural. Future growth is anticipated in many of these. This report is intended to inform those agencies vitally interested in the water resources of Florida as to the current status and objectives of the U.S. Geological Survey cooperative program. The mission of this program is to collect, interpret, and publish information on water resources. Almost all of

  6. South Asia river flow projections and their implications for water resources

    NASA Astrophysics Data System (ADS)

    Mathison, C.; Wiltshire, A. J.; Falloon, P.; Challinor, A. J.

    2015-06-01

    South Asia is a region with a large and rising population and a high dependance on industries sensitive to water resource such as agriculture. The climate is hugely variable with the region relying on both the Asian Summer Monsoon (ASM) and glaciers for its supply of fresh water. In recent years, changes in the ASM, fears over the rapid retreat of glaciers and the increasing demand for water resources for domestic and industrial use, have caused concern over the reliability of water resources both in the present day and future for this region. The climate of South Asia means it is one of the most irrigated agricultural regions in the world, therefore pressures on water resource affecting the availability of water for irrigation could adversely affect crop yields and therefore food production. In this paper we present the first 25 km resolution regional climate projections of river flow for the South Asia region. ERA-Interim, together with two global climate models (GCMs), which represent the present day processes, particularly the monsoon, reasonably well are downscaled using a regional climate model (RCM) for the periods; 1990-2006 for ERA-Interim and 1960-2100 for the two GCMs. The RCM river flow is routed using a river-routing model to allow analysis of present day and future river flows through comparison with river gauge observations, where available. In this analysis we compare the river flow rate for 12 gauges selected to represent the largest river basins for this region; Ganges, Indus and Brahmaputra basins and characterize the changing conditions from east to west across the Himalayan arc. Observations of precipitation and runoff in this region have large or unknown uncertainties, are short in length or are outside the simulation period, hindering model development and validation designed to improve understanding of the water cycle for this region. In the absence of robust observations for South Asia, a downscaled ERA-Interim RCM simulation provides a

  7. Vulnerability of Water Resources under Climate and Land Use Change: Evaluation of Present and Future Threats for Austria

    NASA Astrophysics Data System (ADS)

    Nachtnebel, Hans-Peter; Wesemann, Johannes; Herrnegger, Mathew; Senoner, Tobias; Schulz, Karsten

    2015-04-01

    Climate and Land Use Change can have severe impacts on natural water resources needed for domestic, agricultural and industrial water use. In order to develop adaptation strategies, it is necessary to assess the present and future vulnerability of the water resources on the basis of water quantity, water quality and adaptive capacity indicators. Therefore a methodological framework was developed within the CC-Ware project and a detailed assessment was performed for Austria. The Water Exploitation Index (WEI) is introduced as a quantitative indicator. It is defined as the ratio between the water demand and the water availability. Water availability is assessed by a high resolution grid-based water balance model, utilizing the meteorological information from bias corrected regional climate models. The demand term can be divided into domestic, agricultural and industrial water demand and is assessed on the water supply association level. The Integrated Groundwater Pollution Load Index (GWPLI) represents an indicator for areas at risk regarding water quality, considering agricultural loads (nitrate pollution loads), potential erosion and potential risks from landfills. Except for the landfills, the information for the current situation is based on the CORINE Landcover data. Future changes were predicted utilizing the PRELUDE land use scenarios. Since vulnerability is also dependent on the adaptive capacity of a system, the Adaptive Capacity Index is introduced. The Adaptive Capacity Index thereby combines the Ecosystem Service Index (ESSI), which represents three water related ecosystem services (Water Provision, Water Quantity Regulation and Water Quality Regulation) and the regional economic capacity expressed by the gross value added. On the basis of these indices, the Overall Vulnerability of the water resources can be determined for the present and the future. For Austria the different indices were elaborated. Maps indicating areas of different levels of

  8. Near Real-Time Monitoring of Global Evapotranspiration and its Application to Water Resource Management

    NASA Astrophysics Data System (ADS)

    Halverson, G. H.; Fisher, J.; Jewell, L. A.; Moore, G.; Verma, M.; McDonald, T.; Kim, S.; Muniz, A.

    2016-12-01

    Water scarcity and its impact on agriculture is a pressing world concern. At the heart of this crisis is the balance of water exchange between the land and the atmosphere. The ability to monitor evapotranspiration provides a solution by enabling sustainable irrigation practices. The Priestley-Taylor Jet Propulsion Laboratory model of evapotranspiration has been implemented to meet this need as a daily MODIS product with 1 to 5 km resolution. An automated data pipeline for this model implementation provides daily data with global coverage and near real-time latency using the Geospatial Data Abstraction Library. An interactive map providing on-demand statistical analysis enables water resource managers to monitor rates of water loss. To demonstrate the application of remotely-sensed evapotranspiration to water resource management, a partnership has been arranged with the New Mexico Office of the State Engineer (NMOSE). The online water research management tool was developed to meet the specifications of NMOSE using the Leaflet, GeoServer, and Django frameworks. NMOSE will utilize this tool to monitor drought and fire risk and manage irrigation. Through this test-case, it is hoped that real-time, user-friendly remote sensing tools will be adopted globally to make resource management decisions informed by the NASA Earth Observation System.

  9. Tools for Using Citizen Science in Environmental, Agricultural, and Natural Resources Extension Programs

    ERIC Educational Resources Information Center

    Stofer, Kathryn A.

    2017-01-01

    Citizen science is quickly becoming a valuable tool in the Extension professional's tool kit. This is the case whether you are a 4-H agent looking to involve youth in agriscience and agriculture-related science, technology, engineering, and math experiential learning activities or an agriculture and natural resources agent seeking to help…

  10. UNDERGRADUATE EDUCATION IN THE BIOLOGICAL SCIENCES FOR STUDENTS IN AGRICULTURE AND NATURAL RESOURCES, PROCEEDINGS OF A CONFERENCE.

    ERIC Educational Resources Information Center

    National Academy of Sciences - National Research Council, Washington, DC.

    REPORTED ARE THE PROCEEDINGS OF A 1966 CONFERENCE WHICH DEALT WITH UNDERGRADUATE EDUCATIONAL NEEDS FOR STUDENTS IN AGRICULTURE AND NATURAL RESOURCES. THE 167 EDUCATORS (MOSTLY DEANS AND DIRECTORS OF RESIDENT INSTRUCTION) WHO PARTICIPATED IN THE CONFERENCE REPRESENTED AGRICULTURE, RENEWABLE NATURAL RESOURCES, THE BIOLOGICAL SCIENCES, AND…

  11. The agricultural water footprint of EU river basins

    NASA Astrophysics Data System (ADS)

    Vanham, Davy

    2014-05-01

    This work analyses the agricultural water footprint (WF) of production (WFprod,agr) and consumption (WFcons,agr) as well as the resulting net virtual water import (netVWi,agr) for 365 EU river basins with an area larger than 1000 km2. Apart from total amounts, also a differentiation between the green, blue and grey components is made. River basins where the WFcons,agr,tot exceeds WFprod,agr,tot values substantially (resulting in positive netVWi,agr,tot values), are found along the London-Milan axis. River basins where the WFprod,agr,totexceeds WFcons,agr,totare found in Western France, the Iberian Peninsula and the Baltic region. The effect of a healthy (HEALTHY) and vegetarian (VEG) diet on the WFcons,agr is assessed, as well as resulting changes in netVWi,agr. For HEALTHY, the WFcons,agr,tot of most river basins decreases (max 32%), although in the east some basins show an increase. For VEG, in all but one river basins a reduction (max 46%) in WFcons,agr,tot is observed. The effect of diets on the WFcons,agrof a river basin has not been carried out so far. River basins and not administrative borders are the key geographical entity for water management. Such a comprehensive analysis on the river basin scale is the first in its kind. Reduced river basin WFcons,agrcan contribute to sustainable water management both within the EU and outside its borders. They could help to reduce the dependency of EU consumption on domestic and foreign water resources.

  12. Recovery of Fresh Water Resources from Desalination of Brine Produced During Oil and Gas Production Operations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    David B. Burnett; Mustafa Siddiqui

    2006-12-29

    Management and disposal of produced water is one of the most important problems associated with oil and gas (O&G) production. O&G production operations generate large volumes of brine water along with the petroleum resource. Currently, produced water is treated as a waste and is not available for any beneficial purposes for the communities where oil and gas is produced. Produced water contains different contaminants that must be removed before it can be used for any beneficial surface applications. Arid areas like west Texas produce large amount of oil, but, at the same time, have a shortage of potable water. Amore » multidisciplinary team headed by researchers from Texas A&M University has spent more than six years is developing advanced membrane filtration processes for treating oil field produced brines The government-industry cooperative joint venture has been managed by the Global Petroleum Research Institute (GPRI). The goal of the project has been to demonstrate that treatment of oil field waste water for re-use will reduce water handling costs by 50% or greater. Our work has included (1) integrating advanced materials into existing prototype units and (2) operating short and long-term field testing with full size process trains. Testing at A&M has allowed us to upgrade our existing units with improved pre-treatment oil removal techniques and new oil tolerant RO membranes. We have also been able to perform extended testing in 'field laboratories' to gather much needed extended run time data on filter salt rejection efficiency and plugging characteristics of the process train. The Program Report describes work to evaluate the technical and economical feasibility of treating produced water with a combination of different separation processes to obtain water of agricultural water quality standards. Experiments were done for the pretreatment of produced water using a new liquid-liquid centrifuge, organoclay and microfiltration and ultrafiltration membranes for

  13. Water resources of Duval County, Florida

    USGS Publications Warehouse

    Phelps, G.G.

    1994-01-01

    The report describes the hydrology and water resources of Duval County, the development of its water supplies, and water use within the county. Also included are descriptions of various natural features of the county (such as topography and geology), an explanation of the hydrologic cycle, and an interpretation of the relationship between them. Ground-water and surface-water resources and principal water-quality features within the county are also discussed. The report is intended to provide the general public with an overview of the water resources Of Duval County, and to increase public awareness of water issues. Information is presented in nontechnical language to enable the general reader to understand facts about water as a part of nature, and the problems associated with its development and use.

  14. Assessing the Total Economic Value of Improving Water Quality to Inform Water Resources Management: Evidence and Challenges from Southeast Asia

    NASA Astrophysics Data System (ADS)

    Jalilov, S.; Fukushi, K.

    2016-12-01

    Population growth, high rates of economic development and rapid urbanization in the developing countries of Southeast Asia (SEA) have resulted in degradation and depletion of natural resources, including water resources and related ecosystem services. Many urban rivers in the region are highly polluted with domestic, industrial and agricultural wastes. Policymakers are often aware of the direct value of water resources for domestic and industrial consumption, but they often underestimate the indirect value of these functions, since they are not exchanged in the market and do not appear in national income accounts. Underestimation of pollution and over-exploitation of water resources result in a loss of these benefits and have adverse impacts on nearby residents, threatening the long-term sustainable development of natural resources in the region. Behind these constraints lies a lack of knowledge (ignorance) from governments that a clean water environment could bring significant economic benefits. This study has been initiated to tackle this issue and to foster a more rational approach for sustainable urban development in Metro Manila in the Philippines. We applied a Contingent Valuation Method (CVM) based on Computer-Assisted Personal Interviewing (CAPI) technique. Results show that users are willing to pay up to PHP 102.42 (2.18) monthly to improve quality of urban waterbodies whereas nonusers are willing to pay up to PHP 366.53 (7.80) as one-time payment towards water quality improvement. The estimated monetary value of water quality improvements would be a useful variable in cost-benefit analyses of various water quality-related policies, in both public and private sectors in Metro Manila. This survey design could serve as a useful template for similar water quality studies in other SEA countries.

  15. 30 CFR 402.6 - Water-Resources Research Program.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 2 2013-07-01 2013-07-01 false Water-Resources Research Program. 402.6 Section 402.6 Mineral Resources GEOLOGICAL SURVEY, DEPARTMENT OF THE INTERIOR WATER-RESOURCES RESEARCH PROGRAM... Water-Resources Research Program. (a) Subject to the availability of appropriated funds, the Water...

  16. 30 CFR 402.6 - Water-Resources Research Program.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 2 2011-07-01 2011-07-01 false Water-Resources Research Program. 402.6 Section 402.6 Mineral Resources GEOLOGICAL SURVEY, DEPARTMENT OF THE INTERIOR WATER-RESOURCES RESEARCH PROGRAM... Water-Resources Research Program. (a) Subject to the availability of appropriated funds, the Water...

  17. 30 CFR 402.6 - Water-Resources Research Program.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 2 2012-07-01 2012-07-01 false Water-Resources Research Program. 402.6 Section 402.6 Mineral Resources GEOLOGICAL SURVEY, DEPARTMENT OF THE INTERIOR WATER-RESOURCES RESEARCH PROGRAM... Water-Resources Research Program. (a) Subject to the availability of appropriated funds, the Water...

  18. 30 CFR 402.6 - Water-Resources Research Program.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 2 2014-07-01 2014-07-01 false Water-Resources Research Program. 402.6 Section 402.6 Mineral Resources GEOLOGICAL SURVEY, DEPARTMENT OF THE INTERIOR WATER-RESOURCES RESEARCH PROGRAM... Water-Resources Research Program. (a) Subject to the availability of appropriated funds, the Water...

  19. 30 CFR 402.6 - Water-Resources Research Program.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 2 2010-07-01 2010-07-01 false Water-Resources Research Program. 402.6 Section 402.6 Mineral Resources GEOLOGICAL SURVEY, DEPARTMENT OF THE INTERIOR WATER-RESOURCES RESEARCH PROGRAM... Water-Resources Research Program. (a) Subject to the availability of appropriated funds, the Water...

  20. Agricultural conversion without external water and nutrient inputs reduces terrestrial vegetation productivity

    USGS Publications Warehouse

    Smith, W. Kolby; Cleveland, Cory C.; Reed, Sasha C.; Running, Steven W.

    2014-01-01

    Driven by global population and standard of living increases, humanity co-opts a growing share of the planet's natural resources resulting in many well-known environmental trade-offs. In this study, we explored the impact of agriculture on a resource fundamental to life on Earth: terrestrial vegetation growth (net primary production; NPP). We demonstrate that agricultural conversion has reduced terrestrial NPP by ~7.0%. Increases in NPP due to agricultural conversion were observed only in areas receiving external inputs (i.e., irrigation and/or fertilization). NPP reductions were found for ~88% of agricultural lands, with the largest reductions observed in areas formerly occupied by tropical forests and savannas (~71% and ~66% reductions, respectively). Without policies that explicitly consider the impact of agricultural conversion on primary production, future demand-driven increases in agricultural output will likely continue to drive net declines in global terrestrial productivity, with potential detrimental consequences for net ecosystem carbon storage and subsequent climate warming.

  1. Agriculture intensifies soil moisture decline in Northern China

    DOE PAGES

    Liu, Yaling; Pan, Zhihua; Zhuang, Qianlai; ...

    2015-07-09

    Northern China is one of the most densely populated regions in the world. Agricultural activities have intensified since the 1980s to provide food security to the country. However, this intensification has likely contributed to an increasing scarcity in water resources, which may in turn be endangering food security. Based on in-situ measurements of soil moisture collected in agricultural plots during 1983–2012, we find that topsoil (0–50 cm) volumetric water content during the growing season has declined significantly (p<0.01), with a trend of -0.011 to -0.015 m3 m-3 per decade. Observed discharge declines for the three large river basins are consistentmore » with the effects of agricultural intensification, although other factors (e.g. dam constructions) likely have contributed to these trends. Practices like fertilizer application have favoured biomass growth and increased transpiration rates, thus reducing available soil water. In addition, the rapid proliferation of water-expensive crops (e.g., maize) and the expansion of the area dedicated to food production have also contributed to soil drying. Adoption of alternative agricultural practices that can meet the immediate food demand without compromising future water resources seem critical for the sustainability of the food production system.« less

  2. Agriculture intensifies soil moisture decline in Northern China

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Yaling; Pan, Zhihua; Zhuang, Qianlai

    Northern China is one of the most densely populated regions in the world. Agricultural activities have intensified since the 1980s to provide food security to the country. However, this intensification has likely contributed to an increasing scarcity in water resources, which may in turn be endangering food security. Based on in-situ measurements of soil moisture collected in agricultural plots during 1983–2012, we find that topsoil (0–50 cm) volumetric water content during the growing season has declined significantly (p<0.01), with a trend of -0.011 to -0.015 m3 m-3 per decade. Observed discharge declines for the three large river basins are consistentmore » with the effects of agricultural intensification, although other factors (e.g. dam constructions) likely have contributed to these trends. Practices like fertilizer application have favoured biomass growth and increased transpiration rates, thus reducing available soil water. In addition, the rapid proliferation of water-expensive crops (e.g., maize) and the expansion of the area dedicated to food production have also contributed to soil drying. Adoption of alternative agricultural practices that can meet the immediate food demand without compromising future water resources seem critical for the sustainability of the food production system.« less

  3. Agriculture intensifies soil moisture decline in Northern China

    PubMed Central

    Liu, Yaling; Pan, Zhihua; Zhuang, Qianlai; Miralles, Diego G.; Teuling, Adriaan J.; Zhang, Tonglin; An, Pingli; Dong, Zhiqiang; Zhang, Jingting; He, Di; Wang, Liwei; Pan, Xuebiao; Bai, Wei; Niyogi, Dev

    2015-01-01

    Northern China is one of the most densely populated regions in the world. Agricultural activities have intensified since the 1980s to provide food security to the country. However, this intensification has likely contributed to an increasing scarcity in water resources, which may in turn be endangering food security. Based on in-situ measurements of soil moisture collected in agricultural plots during 1983–2012, we find that topsoil (0–50 cm) volumetric water content during the growing season has declined significantly (p < 0.01), with a trend of −0.011 to −0.015 m3 m−3 per decade. Observed discharge declines for the three large river basins are consistent with the effects of agricultural intensification, although other factors (e.g. dam constructions) likely have contributed to these trends. Practices like fertilizer application have favoured biomass growth and increased transpiration rates, thus reducing available soil water. In addition, the rapid proliferation of water-expensive crops (e.g., maize) and the expansion of the area dedicated to food production have also contributed to soil drying. Adoption of alternative agricultural practices that can meet the immediate food demand without compromising future water resources seem critical for the sustainability of the food production system. PMID:26158774

  4. Water resources activities of the USGS, 1987

    USGS Publications Warehouse

    Moore, John E.; Cardin, C. William

    1987-01-01

    Effective management of water resources requires an understanding of hydrologic systems and the factors that determine the distribution, availability, and quality of water. Within the Federal Government, the U.S. Geological Survey has the principal responsibility for providing hydrologic information and for appraising the Nation's water resources. The water resources activities of the U.S. Geological Survey are diverse, ranging from research investigations of specific aspects of the hydrologic cycle to large programs of regional water-resources investigations, such as the Regional Aquifer System Analyses.This report describes the U.S. Geological Survey's water resources activities. Some activities, such as the acid rain program, are mandated by line items in the Survey's fiscal year 1987 budget. Others, such as floods, sediment, and snow and ice, are topics of general interest to the water resources community. Still others are related to current water issues, such as nonpoint sources of pollution, the irrigation drainage problem of the western San Joaquin Valley, and national ground-water protection.In many cases, there is considerable overlap in the topical descrip-tions. The Survey's water resources research program, for example, conducts investigations that are applicable to virtually all of the activities listed in this book. Similarly, projects in the Federal-State Cooperative Program cover multiple aspects of water resources. For these reasons, the sums associated with funding for each of the activities listed exceeds by a considerable amount the Survey's budget for water resources activities.The report first describes the water-resources mission of the U.S. Geological Survey and discusses the principal sources of funds that support the activities. The remainder of the report consists of descriptions of 39 of the most significant water resources activities. An index appears at the end of the report.Each description of a significant water activity has the

  5. Systems assessment of water savings impact of controlled environment agriculture (CEA) utilizing wirelessly networked Sense•Decide•Act•Communicate (SDAC) systems.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Campbell, Jonathan T.; Baynes, Edward E., Jr.; Aguirre,Carlos

    Reducing agricultural water use in arid regions while maintaining or improving economic productivity of the agriculture sector is a major challenge. Controlled environment agriculture (CEA, or, greenhouse agriculture) affords advantages in direct resource use (less land and water required) and productivity (i.e., much higher product yield and quality per unit of resources used) relative to conventional open-field practices. These advantages come at the price of higher operating complexity and costs per acre. The challenge is to implement and apply CEA such that the productivity and resource use advantages will sufficiently outweigh the higher operating costs to provide for overall benefitmore » and viability. This project undertook an investigation of CEA for livestock forage production as a water-saving alternative to open-field forage production in arid regions. Forage production is a large consumer of fresh water in many arid regions of the world, including the southwestern U.S. and northern Mexico. With increasing competition among uses (agriculture, municipalities, industry, recreation, ecosystems, etc.) for limited fresh water supplies, agricultural practice alternatives that can potentially maintain or enhance productivity while reducing water use warrant consideration. The project established a pilot forage production greenhouse facility in southern New Mexico based on a relatively modest and passive (no active heating or cooling) system design pioneered in Chihuahua, Mexico. Experimental operations were initiated in August 2004 and carried over into early-FY05 to collect data and make initial assessments of operational and technical system performance, assess forage nutrition content and suitability for livestock, identify areas needing improvement, and make initial assessment of overall feasibility. The effort was supported through the joint leveraging of late-start FY04 LDRD funds and bundled CY2004 project funding from the New Mexico Small Business

  6. Water-Related Impacts of Climate Change on Agriculture and Subsequently on Public Health: A Review for Generalists with Particular Reference to Pakistan.

    PubMed

    Ahmed, Toqeer; Scholz, Miklas; Al-Faraj, Furat; Niaz, Wajeeha

    2016-10-27

    Water-related impacts due to change in climatic conditions ranging from water scarcity to intense floods and storms are increasing in developing countries like Pakistan. Water quality and waterborne diseases like hepatitis, cholera, typhoid, malaria and dengue fever are increasing due to chaotic urbanization, industrialization, poor hygienic conditions, and inappropriate water management. The morbidity rate is high due to lack of health care facilities, especially in developing countries. Organizations linked to the Government of Pakistan (e.g., Ministry of Environment, Ministry of Climate Change, Planning and Development, Ministry of Forest, Irrigation and Public Health, Pakistan Meteorological Department, National Disaster Management, Pakistan Agricultural Research Centre, Pakistan Council for Research in Water Resources, and Global Change Impact Study Centre), United Nation organizations, provincial government departments, non-governmental organizations (e.g., Global Facility and Disaster Reduction), research centers linked to universities, and international organizations (International Institute for Sustainable Development, Food and Agriculture, Global Climate Fund and World Bank) are trying to reduce the water-related impacts of climate change, but due to lack of public awareness and health care infrastructure, the death rate is steadily increasing. This paper critically reviews the scientific studies and reports both at national and at international level benefiting generalists concerned with environmental and public health challenges. The article underlines the urgent need for water conservation, risk management, and the development of mitigation measures to cope with the water-related impacts of climate change on agriculture and subsequently on public health. Novel solutions and bioremediation methods have been presented to control environmental pollution and to promote awareness among the scientific community. The focus is on diverse strategies to handle

  7. Unprotected karst resources in western Iran: the environmental impacts of intensive agricultural pumping on the covered karstic aquifer, a case in Kermanshah province

    NASA Astrophysics Data System (ADS)

    Taheri, Kamal; Taheri, Milad; Parise, Mario

    2015-04-01

    Bare and covered karst areas, with developed karstic aquifers, cover 35 percent of the Kermanshah province in western Iran. These aquifers are the vital sources for drinking and agricultural water supplies. Over the past decade, intensive groundwater use (exploitation) for irrigation imposed a significant impact on the carbonate environments. The huge amount of groundwater over-exploitations has been carried out and still goes on by local farmers in the absence of appropriate governance monitoring control. Increasing in water demands, for more intense crop production, is an important driving force toward groundwater depletion in alluvial aquifers. Progressive groundwater over-exploitations from underlying carbonate rocks have led to dramatic drawdown in alluvial aquifers and deep karst water tables. Detecting new sources of groundwater extractions and prohibiting the karst water utilization for agricultural use could be the most effective strategy to manage the sustainability of covered karst aquifers. Anthropogenic pressures on covered karst aquifers have magnified the drought impacts and caused dryness of most of the karst springs and deep wells. In this study, the combination of geophysical and geological studies was used to estimate the most intensively exploited agricultural zones of Islam Abad plain in the southwestern Kermanshah province using GIS. The results show that in the past decade a great number of deep wells were drilled through the overburden alluvial aquifer and reached the deep karst water resources. However, the difficulties involved in monitoring deep wells in covered karst aquifer were the main cause of karst water depletion. Overexploitation from both alluvial and karst aquifers is the main reason for drying out the Arkawazi, Sharafshah, Gawrawani karst springs, and the karst drinking water wells 1, 3 and 5 of Islam Abad city. Karst spring landscape destructions, fresh water supply deficit for inhabitants, decreasing of tourism and

  8. 78 FR 71724 - Recordations, Water Carrier Tariffs, and Agricultural Contract Summaries

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-29

    ... DEPARTMENT OF TRANSPORTATION Surface Transportation Board Recordations, Water Carrier Tariffs, and Agricultural Contract Summaries AGENCY: Surface Transportation Board, DOT. ACTION: Notice of OMB Approval of..., Control Number 2140-0025 (2) Water Carrier Tariffs, Control Number 2140-26 (3) Agricultural Contract...

  9. Relations of Water Quality to Agricultural Chemical Use and Environmental Setting at Various Scales - Results from Selected Studies of the National Water-Quality Assessment Program

    USGS Publications Warehouse

    ,

    2008-01-01

    In 1991, the U.S. Geological Survey (USGS) began studies of 51 major river basins and aquifers across the United States as part of the National Water-Quality Assessment (NAWQA) Program to provide scientifically sound information for managing the Nation's water resources. The major goals of the NAWQA Program are to assess the status and long-term trends of the Nation's surface- and ground-water quality and to understand the natural and human factors that affect it (Gilliom and others, 1995). In 2001, the NAWQA Program began a second decade of intensive water-quality assessments. The 42 study units for this second decade were selected to represent a wide range of important hydrologic environments and potential contaminant sources. These NAWQA studies continue to address the goals of the first decade of the assessments to determine how water-quality conditions are changing over time. In addition to local- and regional-scale studies, NAWQA began to analyze and synthesize water-quality status and trends at the principal aquifer and major river-basin scales. This fact sheet summarizes results from four NAWQA studies that relate water quality to agricultural chemical use and environmental setting at these various scales: * Comparison of ground-water quality in northern and southern High Plains agricultural settings (principal aquifer scale); * Distribution patterns of pesticides and degradates in rain (local scale); * Occurrence of pesticides in shallow ground water underlying four agricultural areas (local and regional scales); and * Trends in nutrients and sediment over time in the Missouri River and its tributaries (major river-basin scale).

  10. Ground-water models for water resource planning

    USGS Publications Warehouse

    Moore, J.E.

    1983-01-01

    In the past decade hydrogeologists have emphasized the development of computer-based mathematical models to aid in the understanding of flow, the transport of solutes, transport of heat, and deformation in the ground-water system. These models have been used to provide information and predictions for water managers. Too frequently, ground-water was neglected in water resource planning because managers believed that it could not be adequately evaluated in terms of availability, quality, and effect of development on surface-water supplies. Now, however, with newly developed digital ground-water models, effects of development can be predicted. Such models have been used to predict hydrologic and quality changes under different stresses. These models have grown in complexity over the last ten years from simple one-layer models to three-dimensional simulations of ground-water flow, which may include solute transport, heat transport, effects of land subsidence, and encroachment of saltwater. Case histories illustrate how predictive ground-water models have provided the information needed for the sound planning and management of water resources in the USA. ?? 1983 D. Reidel Publishing Company.

  11. [Problems in development of agriculture-animal husbandry ecotone and its countermeasures].

    PubMed

    Baoyin, Taogetao; Bai, Yongfei

    2004-02-01

    Problems in development of Duolun, a typical agriculture-animal husbandry ecotone, and its countermeasures were discussed in this paper. Economic structure was not rational in Duolun, and it should develop industry and commerce, limit the scope of agriculture and animal husbandry, and actively increase efficiency of agriculture and animal husbandry. The structure of land use was not rational, and the main countermeasures were to increase area of forestland and grassland, and decrease cultivated area. On resources use, the main countermeasures were to exploit water resource rationally and bring into play resource superiority of mutually benefits on agriculture and animal husbandry. The ecological environment construction was the foundation of the national economy for sustainable development in agriculture-animal husbandry ecotone.

  12. Contamination of water resources by pathogenic bacteria

    PubMed Central

    2014-01-01

    Water-borne pathogen contamination in water resources and related diseases are a major water quality concern throughout the world. Increasing interest in controlling water-borne pathogens in water resources evidenced by a large number of recent publications clearly attests to the need for studies that synthesize knowledge from multiple fields covering comparative aspects of pathogen contamination, and unify them in a single place in order to present and address the problem as a whole. Providing a broader perceptive of pathogen contamination in freshwater (rivers, lakes, reservoirs, groundwater) and saline water (estuaries and coastal waters) resources, this review paper attempts to develop the first comprehensive single source of existing information on pathogen contamination in multiple types of water resources. In addition, a comprehensive discussion describes the challenges associated with using indicator organisms. Potential impacts of water resources development on pathogen contamination as well as challenges that lie ahead for addressing pathogen contamination are also discussed. PMID:25006540

  13. DRINKING WATER FROM AGRICULTURALLY CONTAMINATED GROUNDWATER

    EPA Science Inventory

    Sharp increases in fertilizer and pesticide use throughout the 1960s and 1970s along with generally less attachment to soil particles may result in more widespread contamination of drinking water supplies. he purpose of this study was to highlight the use of agricultural chemical...

  14. The impact of climate change on the water resource

    NASA Astrophysics Data System (ADS)

    Perac, Marija Å.; Grgurevac, Anamarija

    2010-05-01

    The EU has defined dangerous climate change as an increase in 2 degrees Celsius of average global temperatures. Rising global temperatures will lead to an intensification of hydrological cycle, resulting in dryer dry season, and subsequently heightened risk of more extreme and frequent floods and drought. Climate change is caused by greenhouse gasses ( GHGs), which enhance the " greenhouse " properties of the earth's atmosphere. These gasses allow solar radiation from the sun to travel through the atmosphere but prevent the reflected heat from escaping back into space. This causes the earth's temperature to rise. Changing climate will also have significant impacts on the availability of water as well as the quality of water that is available and accessible. Possibly, climate change magnificent impact at water cycles in Croatia. It means more droughts, it will have impact in agriculture and natural systems, specially swamp areas. Also, it will be come to reduction river flows, and maybe lower underground water level which used for water supply. Climate change can be impact on intensity of floods and quality/quantity of water.Successes of climate change in Croatia are: decrease volume of precipitation at whole state area; long drought years directly water quantity for irrigation; decreasing drinking water. Ponder able for next 40 years mean temperature will be increase for 2,5 C. It assumes that sea level will be increase at 65 - 100 cm. It will be endanger cities and settlements besides coast ( cities: Split, Zadar; west coast of Istra; delta of Neretva; islands: Krk, Cres, Lošinj…). Suggestions for next activities: monitoring and notation hydro meteorological information's; account impact of climate change on the: evaporation, drain, water balance, water management activity, make a region impact study of a possibly account on the water resources. Maintaining and development of water resources and agrotehnical systems and application water management strategy

  15. The U.S. Geological Survey Federal-State Cooperative Water- Resources Program: Fiscal Year 1988

    USGS Publications Warehouse

    Gilbert, Bruce K.; Mann, William B.

    1989-01-01

    The Federal-State Cooperative Program is a partnership between the U.S. Geological Survey and State and local agencies. It provides a balanced approach to the study and resolution of water-related problems and to acquiring hydrologic data. The principal program objectives are to: (1) collect, on a systematic basis, data needed for the continuing determination and evaluation of the quantity, quality, and use of the Nation's water resources, and (2) appraise the availability and the physical, chemical, and biological characteristics of surface and ground water through analytical and interpretive investigations. During fiscal year 1988, hydrologic data collection, interpretive investigations, and research were conducted by Geological Survey personnel in offices in every State, Puerto Rico, and several territories in cooperation with more than 1,000 local, State, and regional agencies. In fiscal year 1988, Federal funding of almost $60 million was matched by cooperating agencies, who also provided approximately $6 million unmatched for a total program of about $126 million. This amounted to more than 40 percent of the total funds for Geological Survey water-resources activities. This report presents examples of current (1988) investigations. It also lists about 250 water-resources investigations related to agricultural activities that the Geological Survey conducted from 1970 to 1988.

  16. Potential implications for expansion of freeze-tolerant eucalyptus plantations on water resources in the southern United States

    Treesearch

    James M. Vose; Chelcy F. Miniat; Ge Sun; Peter V. Caldwell

    2014-01-01

    The potential expansion of freeze-tolerant (FT) Eucalyptus plantations in the United States has raised concerns about the implications for water resources. Modeling was used to examine the potential effects of expanding the distribution of FT Eucalyptus plantations in US Department of Agriculture Plant Hardiness Zones 8b and...

  17. Climate impacts on European agriculture and water management in the context of adaptation and mitigation--the importance of an integrated approach.

    PubMed

    Falloon, Pete; Betts, Richard

    2010-11-01

    We review and qualitatively assess the importance of interactions and feedbacks in assessing climate change impacts on water and agriculture in Europe. We focus particularly on the impact of future hydrological changes on agricultural greenhouse gas (GHG) mitigation and adaptation options. Future projected trends in European agriculture include northward movement of crop suitability zones and increasing crop productivity in Northern Europe, but declining productivity and suitability in Southern Europe. This may be accompanied by a widening of water resource differences between the North and South, and an increase in extreme rainfall events and droughts. Changes in future hydrology and water management practices will influence agricultural adaptation measures and alter the effectiveness of agricultural mitigation strategies. These interactions are often highly complex and influenced by a number of factors which are themselves influenced by climate. Mainly positive impacts may be anticipated for Northern Europe, where agricultural adaptation may be shaped by reduced vulnerability of production, increased water supply and reduced water demand. However, increasing flood hazards may present challenges for agriculture, and summer irrigation shortages may result from earlier spring runoff peaks in some regions. Conversely, the need for effective adaptation will be greatest in Southern Europe as a result of increased production vulnerability, reduced water supply and increased demands for irrigation. Increasing flood and drought risks will further contribute to the need for robust management practices. The impacts of future hydrological changes on agricultural mitigation in Europe will depend on the balance between changes in productivity and rates of decomposition and GHG emission, both of which depend on climatic, land and management factors. Small increases in European soil organic carbon (SOC) stocks per unit land area are anticipated considering changes in climate

  18. Black water sludge reuse in agriculture: are heavy metals a problem?

    PubMed

    Tervahauta, Taina; Rani, Sonia; Hernández Leal, Lucía; Buisman, Cees J N; Zeeman, Grietje

    2014-06-15

    Heavy metal content of sewage sludge is currently the most significant factor limiting its reuse in agriculture within the European Union. In the Netherlands most of the produced sewage sludge is incinerated, mineralizing the organic carbon into the atmosphere rather than returning it back to the soil. Source-separation of black water (toilet water) excludes external heavy metal inputs, such as industrial effluents and surface run-offs, producing sludge with reduced heavy metal content that is a more favorable source for resource recovery. The results presented in this paper show that feces is the main contributor to the heavy metal loading of vacuum collected black water (52-84%), while in sewage the contribution of feces is less than 10%. To distinguish black water from sewage in the sludge reuse regulation, a control parameter should be implemented, such as the Hg and Pb content that is significantly higher in sewage sludge compared to black water sludge (from 50- to 200-fold). The heavy metals in feces and urine are primarily from dietary sources, and promotion of the soil application of black water sludge over livestock manure and artificial fertilizers could further reduce the heavy metal content in the soil/food cycle. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Global change and water resources in the next 100 years

    NASA Astrophysics Data System (ADS)

    Larsen, M. C.; Hirsch, R. M.

    2010-03-01

    We are in the midst of a continental-scale, multi-year experiment in the United States, in which we have not defined our testable hypotheses or set the duration and scope of the experiment, which poses major water-resources challenges for the 21st century. What are we doing? We are expanding population at three times the national growth rate in our most water-scarce region, the southwestern United States, where water stress is already great and modeling predicts decreased streamflow by the middle of this century. We are expanding irrigated agriculture from the west into the east, particularly to the southeastern states, where increased competition for ground and surface water has urban, agricultural, and environmental interests at odds, and increasingly, in court. We are expanding our consumption of pharmaceutical and personal care products to historic high levels and disposing them in surface and groundwater, through sewage treatment plants and individual septic systems. These substances are now detectable at very low concentrations and we have documented significant effects on aquatic species, particularly on fish reproduction function. We don’t yet know what effects on human health may emerge, nor do we know if we need to make large investments in water treatment systems, which were not designed to remove these substances. These are a few examples of our national-scale experiment. In addition to these water resources challenges, over which we have some control, climate change models indicate that precipitation and streamflow patterns will change in coming decades, with western mid-latitude North America generally drier. We have already documented trends in more rain and less snow in western mountains. This has large implications for water supply and storage, and groundwater recharge. We have documented earlier snowmelt peak spring runoff in northeastern and northwestern States, and western montane regions. Peak runoff is now about two weeks earlier than it was

  20. Social and ecological aspects of the water resources management of the transboundary rivers of Central Asia

    NASA Astrophysics Data System (ADS)

    Normatov, P.

    2014-09-01

    The Zeravshan River is a transboundary river whose water is mainly used for irrigation of agricultural lands of the Republic of Uzbekistan. Sufficiently rich hydropower resources in upstream of the Zeravshan River characterize the Republic of Tajikistan. Continuous monitoring of water resources condition is necessary for planning the development of this area taking into account hydropower production and irrigation needs. Water quality of Zeravshan River is currently one of the main problems in the relationship between the Republics of Uzbekistan and Tajikistan, and it frequently triggers conflict situations between the two countries. In most cases, the problem of water quality of the Zeravshan River is related to river pollution by wastewater of the Anzob Mountain-concentrating Industrial Complex (AMCC) in Tajikistan. In this paper results of research of chemical and bacteriological composition of the Zeravshan River waters are presented. The minimum impact of AMCC on quality of water of the river was experimentally established.

  1. South Asia river-flow projections and their implications for water resources

    NASA Astrophysics Data System (ADS)

    Mathison, C.; Wiltshire, A. J.; Falloon, P.; Challinor, A. J.

    2015-12-01

    South Asia is a region with a large and rising population, a high dependence on water intense industries, such as agriculture and a highly variable climate. In recent years, fears over the changing Asian summer monsoon (ASM) and rapidly retreating glaciers together with increasing demands for water resources have caused concern over the reliability of water resources and the potential impact on intensely irrigated crops in this region. Despite these concerns, there is a lack of climate simulations with a high enough resolution to capture the complex orography, and water resource analysis is limited by a lack of observations of the water cycle for the region. In this paper we present the first 25 km resolution regional climate projections of river flow for the South Asia region. Two global climate models (GCMs), which represent the ASM reasonably well are downscaled (1960-2100) using a regional climate model (RCM). In the absence of robust observations, ERA-Interim reanalysis is also downscaled providing a constrained estimate of the water balance for the region for comparison against the GCMs (1990-2006). The RCM river flow is routed using a river-routing model to allow analysis of present-day and future river flows through comparison with available river gauge observations. We examine how useful these simulations are for understanding potential changes in water resources for the South Asia region. In general the downscaled GCMs capture the seasonality of the river flows but overestimate the maximum river flows compared to the observations probably due to a positive rainfall bias and a lack of abstraction in the model. The simulations suggest an increasing trend in annual mean river flows for some of the river gauges in this analysis, in some cases almost doubling by the end of the century. The future maximum river-flow rates still occur during the ASM period, with a magnitude in some cases, greater than the present-day natural variability. Increases in river flow

  2. Florida Agriculture - Utilizing TRMM to Analyze Sea Breeze Thunderstorm Patterns During El Nino Southern Oscillations and Their Effects Upon Available Fresh Water for South Florida Agricultural Planning and Management

    NASA Technical Reports Server (NTRS)

    Billiot, Amanda; Lee, Lucas; McKee, Jake; Cooley, Zachary Clayton; Mitchell, Brandie

    2010-01-01

    This project utilizes Tropical Rainfall Measuring Mission (TRMM) and Landsat satellite data to assess the impact of sea breeze precipitation upon areas of agricultural land use in southern Florida. Water is a critical resource to agriculture, and the availability of water for agricultural use in Florida continues to remain a key issue. Recent projections of statewide water use by 2020 estimate that 9.3 billion gallons of water per day will be demanded, and agriculture represents 47% of this demand (Bronson 2003). Farmers have fewer options for water supplies than public users and are often limited to using available supplies from surface and ground water sources which depend in part upon variable weather patterns. Sea breeze thunderstorms are responsible for much of the rainfall delivered to Florida during the wet season (May-October) and have been recognized as an important overall contributor of rainfall in southern Florida (Almeida 2003). TRMM satellite data was used to analyze how sea breeze-induced thunderstorms during El Nino and La Nina affected interannual patterns of precipitation in southern Florida from 1998-2009. TRMM's Precipitation Radar and Microwave Imager provide data to quantify water vapor in the atmosphere, precipitation rates and intensity, and the distribution of precipitation. Rainfall accumulation data derived from TRMM and other microwave sensors were used to analyze the temporal and spatial variations of rainfall during each phase of the El Nino Southern Oscillation (ENSO). Through the use of TRMM and Landsat, slight variations were observed, but it was determined that neither sea breeze nor total rainfall patterns in South Florida were strongly affected by ENSO during the study period. However, more research is needed to characterize the influence of ENSO on summer weather patterns in South Florida. This research will provide the basis for continued observations and study with the Global Precipitation Measurement Mission.

  3. Projections of water resources availability in Crete for the 21st century under the global change perspective

    NASA Astrophysics Data System (ADS)

    Koutroulis, A. G.; Tsanis, I. K.; Jacob, D.

    2012-04-01

    A robust signal of a warmer and drier climate over the western Mediterranean region is projected from the majority of climate models. This effect appears more pronounced during warm periods, when the seasonal decrease of precipitation can exceed control climatology by 25-30%. The rapid development of Crete in the last 30 years has exerted strong pressures on the natural resources of the region. Urbanization and growth of agriculture, tourism and industry had strong impact on the water resources of island by substantially increasing water demand. The objective of this study is to analyze and assess the impact of global change on the water resources status for the island of Crete for a range of 24 different scenarios of projected hydro-climatological regime, demand and supply potential. Water resources application issues analyzed and facilitated within this study, focusing on a refinement of the future water demands of the island, and comparing with "state of the art" global climate model (GCM) results and an ensemble of regional climate models (RCMs) under three different emission scenarios, to estimate water resources availability, during the 21st century. A robust signal of water scarcity is projected for all the combinations of emission (A2, A1B and B1), demand and infrastructure scenarios. Despite the uncertainty of the assessments, the quantitative impact of the projected changes on water availability indicates that climate change plays an equally important role to water use and management in controlling future water status in a Mediterranean island like the island of Crete. The outcome of this analysis will assist in short and long-term strategic water resources planning by prioritizing water related infrastructure development.

  4. Waters Without Borders: Scarcity and the Future of State Interactions over Shared Water Resources

    DTIC Science & Technology

    2010-04-01

    urbanization, increasing per capita consumption (associated with globalization and economic development), pollution , and climate change will exacerbate...Standards of Living, and Pollution : Water is fundamental to ensuring an adequate food supply. Agricultural irrigation accounts for 70% of fresh water...Agricultural run-off is also a major source of pollution reducing the quality and availability of drinking water. Energy: Water is also needed for the

  5. Managing aquatic ecosystems and water resources under multiple stress--an introduction to the MARS project.

    PubMed

    Hering, Daniel; Carvalho, Laurence; Argillier, Christine; Beklioglu, Meryem; Borja, Angel; Cardoso, Ana Cristina; Duel, Harm; Ferreira, Teresa; Globevnik, Lidija; Hanganu, Jenica; Hellsten, Seppo; Jeppesen, Erik; Kodeš, Vit; Solheim, Anne Lyche; Nõges, Tiina; Ormerod, Steve; Panagopoulos, Yiannis; Schmutz, Stefan; Venohr, Markus; Birk, Sebastian

    2015-01-15

    Water resources globally are affected by a complex mixture of stressors resulting from a range of drivers, including urban and agricultural land use, hydropower generation and climate change. Understanding how stressors interfere and impact upon ecological status and ecosystem services is essential for developing effective River Basin Management Plans and shaping future environmental policy. This paper details the nature of these problems for Europe's water resources and the need to find solutions at a range of spatial scales. In terms of the latter, we describe the aims and approaches of the EU-funded project MARS (Managing Aquatic ecosystems and water Resources under multiple Stress) and the conceptual and analytical framework that it is adopting to provide this knowledge, understanding and tools needed to address multiple stressors. MARS is operating at three scales: At the water body scale, the mechanistic understanding of stressor interactions and their impact upon water resources, ecological status and ecosystem services will be examined through multi-factorial experiments and the analysis of long time-series. At the river basin scale, modelling and empirical approaches will be adopted to characterise relationships between multiple stressors and ecological responses, functions, services and water resources. The effects of future land use and mitigation scenarios in 16 European river basins will be assessed. At the European scale, large-scale spatial analysis will be carried out to identify the relationships amongst stress intensity, ecological status and service provision, with a special focus on large transboundary rivers, lakes and fish. The project will support managers and policy makers in the practical implementation of the Water Framework Directive (WFD), of related legislation and of the Blueprint to Safeguard Europe's Water Resources by advising the 3rd River Basin Management Planning cycle, the revision of the WFD and by developing new tools for

  6. Stochastic Optimization For Water Resources Allocation

    NASA Astrophysics Data System (ADS)

    Yamout, G.; Hatfield, K.

    2003-12-01

    For more than 40 years, water resources allocation problems have been addressed using deterministic mathematical optimization. When data uncertainties exist, these methods could lead to solutions that are sub-optimal or even infeasible. While optimization models have been proposed for water resources decision-making under uncertainty, no attempts have been made to address the uncertainties in water allocation problems in an integrated approach. This paper presents an Integrated Dynamic, Multi-stage, Feedback-controlled, Linear, Stochastic, and Distributed parameter optimization approach to solve a problem of water resources allocation. It attempts to capture (1) the conflict caused by competing objectives, (2) environmental degradation produced by resource consumption, and finally (3) the uncertainty and risk generated by the inherently random nature of state and decision parameters involved in such a problem. A theoretical system is defined throughout its different elements. These elements consisting mainly of water resource components and end-users are described in terms of quantity, quality, and present and future associated risks and uncertainties. Models are identified, modified, and interfaced together to constitute an integrated water allocation optimization framework. This effort is a novel approach to confront the water allocation optimization problem while accounting for uncertainties associated with all its elements; thus resulting in a solution that correctly reflects the physical problem in hand.

  7. Characterization of Ground-Water Quality, Upper Republican Natural Resources District, Nebraska, 1998-2001

    USGS Publications Warehouse

    Frankforter, Jill D.; Chafin, Daniele T.

    2004-01-01

    Nearly all rural inhabitants and livestock in the Upper Republican Natural Resources District (URNRD) in southwestern Nebraska use ground water that can be affected by elevated nitrate concentrations. The development of ground-water irrigation in this area has increased the vulnerability of ground water to the introduction of fertilizers and other agricultural chemicals. In 1998, the U.S. Geological Survey, in cooperation with the Upper Republican Natural Resources District, began a study to characterize the quality of ground water in the Upper Republican Natural Resources District area with respect to physical properties and concentrations of major ions, coliform bacteria, nitrate, and pesticides, and to assess the presence of nitrogen concentrations in the unsaturated zone. At selected well sites, the ground-water characterization also included tritium and nitrogen-isotope analyses to provide information about the approximate age of the ground water and potential sources of nitrogen detected in ground-water samples, respectively. In 1998, ground-water samples were collected from 101 randomly selected domestic-well sites. Of the 101 samples collected, 26 tested positive for total coliform bacteria, exceeding the U.S. Environmental Protection Agency's Maximum Contaminant Level (MCL) of zero colonies. In 1999, ground-water samples were collected from 31 of the 101 well sites, and 16 tested positive for coliform bacteria. Nitrates were detected in ground water from all domestic-well samples and from all but four of the irrigation-well samples collected from 1998 to 2001. Eight percent of the domestic-well samples and 3 percent of the irrigation-well samples had nitrate concentrations exceeding the U.S. Environmental Protection Agency's MCL for drinking water of 10 milligrams per liter. Areas with nitrate concentrations exceeding 6 milligrams per liter, the URNRD's ground-water management-plan action level, were found predominantly in north-central Chase, western and

  8. Water resources activities in Kentucky, 1993-94

    USGS Publications Warehouse

    Maglothin, L. S.; Forbes, R.W.

    1994-01-01

    The U.S. Geological Survey (USGS) is the principal Federal water-resources data collection and investigation agency. Through the Water Resources Division District Office in Kentucky, the USGS investigates the occurrence, distribution, quantity, movement, and chemical and biological quality of surface and ground water in the State. The mission of this program is to collect, interpret, and publish information on water resources. Almost all research and data collection is a cooperative effort in which planning and financial support are shared by State and local agencies and governments. Other activities are funded by other Federal agencies or by direct Congressional appropriation. This report is intended to inform the public and cooperating agencies, vitally interested in the water resources of Kentucky, as to the current status of the Distfict's data collection and investigation program. Included in the report are summaries of water-resources activities in Kentucky conducted by the USGS. Also included is a description of the USGS mission and program, District organization, funding sources and cooperating agencies, and a list of USGS publications relevant to the water resources of the State.

  9. Water Resources of Ouachita Parish

    USGS Publications Warehouse

    Tomaszewski, Dan J.; Lovelace, John K.; Griffith, Jason M.

    2009-01-01

    Ouachita Parish, located in north-central Louisiana, contains fresh groundwater and surface-water resources. In 2005, about 152 million gallons per day (Mgal/d) were withdrawn from water sources in Ouachita Parish. About 84 percent (128 Mgal/d) was withdrawn from surface water, and 16 percent (24 Mgal/d) was withdrawn from groundwater. Power generation (87 Mgal/d) accounted for 58 percent of the total water withdrawn. Withdrawals for other uses included public supply (22 Mgal/d), industrial (24 Mgal/d), and irrigation (18 Mgal/d). This fact sheet summarizes basic information on the water resources of Ouachita Parish, La. Information on groundwater and surface-water availability, quality, development, use, and trends is based on previously published reports.

  10. The Watershed and River Systems Management Program: Decision Support for Water- and Environmental-Resource Management

    NASA Astrophysics Data System (ADS)

    Leavesley, G.; Markstrom, S.; Frevert, D.; Fulp, T.; Zagona, E.; Viger, R.

    2004-12-01

    Increasing demands for limited fresh-water supplies, and increasing complexity of water-management issues, present the water-resource manager with the difficult task of achieving an equitable balance of water allocation among a diverse group of water users. The Watershed and River System Management Program (WARSMP) is a cooperative effort between the U.S. Geological Survey (USGS) and the Bureau of Reclamation (BOR) to develop and deploy a database-centered, decision-support system (DSS) to address these multi-objective, resource-management problems. The decision-support system couples the USGS Modular Modeling System (MMS) with the BOR RiverWare tools using a shared relational database. MMS is an integrated system of computer software that provides a research and operational framework to support the development and integration of a wide variety of hydrologic and ecosystem models, and their application to water- and ecosystem-resource management. RiverWare is an object-oriented reservoir and river-system modeling framework developed to provide tools for evaluating and applying water-allocation and management strategies. The modeling capabilities of MMS and Riverware include simulating watershed runoff, reservoir inflows, and the impacts of resource-management decisions on municipal, agricultural, and industrial water users, environmental concerns, power generation, and recreational interests. Forecasts of future climatic conditions are a key component in the application of MMS models to resource-management decisions. Forecast methods applied in MMS include a modified version of the National Weather Service's Extended Streamflow Prediction Program (ESP) and statistical downscaling from atmospheric models. The WARSMP DSS is currently operational in the Gunnison River Basin, Colorado; Yakima River Basin, Washington; Rio Grande Basin in Colorado and New Mexico; and Truckee River Basin in California and Nevada.

  11. Science Education in Two-Year Colleges: Agriculture and Natural Resources.

    ERIC Educational Resources Information Center

    Beckwith, Miriam M.

    Agricultural and natural resources education in two-year colleges is examined as revealed by a study of science education that involved: (1) a review of the literature, (2) an examination of 175 college catalogs and class schedules from colleges nationwide, and (3) a survey of 1,275 science teachers. Part I of the study report discusses…

  12. Quantification of the impacts of climate change and human agricultural activities on oasis water requirements in an arid region: a case study of the Heihe River basin, China

    NASA Astrophysics Data System (ADS)

    Liu, Xingran; Shen, Yanjun

    2018-03-01

    Ecological deterioration in arid regions caused by agricultural development has become a global issue. Understanding water requirements of the oasis ecosystems and the influences of human agricultural activities and climate change is important for the sustainable development of oasis ecosystems and water resource management in arid regions. In this study, water requirements of the main oasis in Heihe River basin during 1986-2013 were analyzed and the amount showed a sharp increase from 10.8 × 108 m3 in 1986 to 19.0 × 108 m3 in 2013. Both human agricultural activities and climate change could lead to the increase in water requirement. To quantify the contributions of agricultural activities and climate change to the increase in water requirements, partial derivative and slope method were used. Results showed that climate change and human agricultural activities, such as oasis expansion and changes in land cropping structure, has contributed to the increase in water requirement at rates of 6.9, 58.1, and 25.3 %, respectively. Overall, human agricultural activities were the dominant forces driving the increase in water requirement. In addition, the contribution of oasis expanding to the increased water requirement was significantly greater than that of other concerned variables. This reveals that controlling the oasis scale is extremely important and effective for balancing water for agriculture and ecosystems and to achieving a sustainable oasis development in arid regions.

  13. Snowmelt and water resources in a changing climate and dustier world

    NASA Astrophysics Data System (ADS)

    Painter, T. H.

    2015-12-01

    Snow cover and its melt dominate regional climate and water resources in the world's mountain regions, providing for critical agricultural and sustaining populations in otherwise dry regions. Snowmelt timing and magnitude in mountains tend to be controlled by absorption of solar radiation and snow water equivalent, respectively, and yet both of these are very poorly known even in the best-instrumented mountain regions of the globe. In this talk, we discuss developments in the spaceborne and airborne remote sensing of snow properties, and the assimilation of these products into research water cycle modeling and operational forecasting. Our work with the NWS Colorado Basin River Forecast Center has shown marked improvements in runoff forecasting through inclusion of MODIS and VIIRS fractional snow covered area data. Moreover, the analyses have shown that the CBRFC forecasting errors are strongly sensitive to actual dust radiative forcing in snow with rising limb excursions as large as 40%. With MODIS retrievals of dust radiative forcing, the CBRFC will be implementing modifications to forecasts to reduce those errors to order < 10%. In the last few years, the NASA Airborne Snow Observatory has emerged to provide the first spatially explicit distributions of snow water equivalent and coincident snow albedo products for mountain basins. ASO is an imaging spectrometer and imaging LiDAR system, to quantify snow water equivalent and snow albedo, provide unprecedented knowledge of snow properties, and provide complete, robust inputs to snowmelt runoff models, water management models, and systems of the future. ASO has been flying in the Western US for three snowmelt seasons. In 2015, ASO provided complete basin coverage for the Tuolumne, Merced, Lakes, Rush Creek, and Middle+South Forks of Kings River Basins in the California Sierra Nevada and the Upper Rio Grande, Conejos, and Uncompahgre Basins in the Colorado Rocky Mountains. Analyses show that with ASO data, river

  14. Efficiency in the European agricultural sector: environment and resources.

    PubMed

    Moutinho, Victor; Madaleno, Mara; Macedo, Pedro; Robaina, Margarita; Marques, Carlos

    2018-04-22

    This article intends to compute agriculture technical efficiency scores of 27 European countries during the period 2005-2012, using both data envelopment analysis (DEA) and stochastic frontier analysis (SFA) with a generalized cross-entropy (GCE) approach, for comparison purposes. Afterwards, by using the scores as dependent variable, we apply quantile regressions using a set of possible influencing variables within the agricultural sector able to explain technical efficiency scores. Results allow us to conclude that although DEA and SFA are quite distinguishable methodologies, and despite attained results are different in terms of technical efficiency scores, both are able to identify analogously the worst and better countries. They also suggest that it is important to include resources productivity and subsidies in determining technical efficiency due to its positive and significant exerted influence.

  15. From Waste to Wealth: Using Produced Water for Agriculture in Colorado

    NASA Astrophysics Data System (ADS)

    Dolan, F.; Hogue, T. S.

    2017-12-01

    According to estimates from the Colorado Water Plan, the state's population may double by 2050. Due to increasing demand, as much as 0.8 million irrigated acres may dry up statewide from agricultural to municipal and industrial transfers. To help mitigate this loss, new sources of water are being explored in Colorado. One such source may be produced water. Oil and gas production in 2016 alone produced over 300 million barrels of produced water. Currently, the most common method of disposal of produced water is deep well injection, which is costly and has been shown to cause induced seismicity. Treating this water to agricultural standards eliminates the need to dispose of this water and provides a new source of water. This research explores which counties in Colorado may be best suited to reusing produced water for agriculture based on a combined index of need, quality of produced water, and quantity of produced water. The volumetric impact of using produced water for agricultural needs is determined for the top six counties. Irrigation demand is obtained using evapotranspiration estimates from a range of methods, including remote sensing products and ground-based observations. The economic feasibility of treating produced water to irrigation standards is also determined using treatment costs found in the literature and disposal costs in each county. Finally, data from the IHS database is used to obtain the ratio between hydraulic fracturing fluid volumes and produced water volumes in each county. The results of this research will aid in the transition between viewing produced water as a waste product and using it as a tool to help secure water for the arid West.

  16. Occurrence of chemical contaminants in peri-urban agricultural irrigation waters and assessment of their phytotoxicity and crop productivity.

    PubMed

    Margenat, Anna; Matamoros, Víctor; Díez, Sergi; Cañameras, Núria; Comas, Jordi; Bayona, Josep M

    2017-12-01

    Water scarcity and water pollution have increased the pressure on water resources worldwide. This pressure is particularly important in highly populated areas where water demand exceeds the available natural resources. In this regard, water reuse has emerged as an excellent water source alternative for peri-urban agriculture. Nevertheless, it must cope with the occurrence of chemical contaminants, ranging from trace elements (TEs) to organic microcontaminants. In this study, chemical contaminants (i.e., 15 TEs, 34 contaminants of emerging concern (CECs)), bulk parameters, and nutrients from irrigation waters and crop productivity (Lycopersicon esculentum Mill. cv. Bodar and Lactuca sativa L. cv. Batavia) were seasonally surveyed in 4 farm plots in the peri-urban area of the city of Barcelona. A pristine site, where rain-groundwater is used for irrigation, was selected for background concentrations. The average concentration levels of TEs and CECs in the irrigation water impacted by treated wastewater (TWW) were 3 (35±75μgL -1 ) and 13 (553±1050ngL -1 ) times higher than at the pristine site respectively. Principal component analysis was used to classify the irrigation waters by chemical composition. To assess the impact of the occurrence of these contaminants on agriculture, a seed germination assay (Lactuca sativa L) and real field-scale study of crop productivity (i.e., lettuce and tomato) were used. Although irrigation waters from the peri-urban area exhibited a higher frequency of detection and concentration of the assessed chemical contaminants than those of the pristine site (P1), no significant differences were found in seed phytotoxicity or crop productivity. In fact, the crops impacted by TWW showed higher productivity than the other farm plots studied, which was associated with the higher nutrient availability for plants. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Impacts of Embankment System on Natural Wetlands and Sustainable Water Resources Development in the Northwest Region of Bangladesh

    NASA Astrophysics Data System (ADS)

    Pervin, M.; Rahman, M. A.

    2012-12-01

    In the Northwest region of Bangladesh, the Chalan Beel is one of the largest Beel ("Beel" refers to natural wetland) in Bangladesh. Polder C (an area surrounded by embankment) of Chalan Beel area consists of 50% natural wetland of the region. Historically, the area was rich with fish, flora and fauna, and agricultural resources. Both flood and drainage congestion have been identified as major problems existing in the project area. Farmers are badly affected by the sudden onrush of floodwater through the embankment breaches, public cuts and incomplete hydraulic structures during the rainy season. The floodwater damages B. Aman and late Boro paddy by 10% and washes away housing settlements. Sometimes water gets scarce in polder C in dry season that is unfavorable for the crop. Loss of crops and fishery affects the economy strongly. The polder was not according to master plan and with lack of operation and maintenance. Instead of improving the livelihood in the study area the embankment arises detrimental effect on the people. This paper focuses mainly the impact of the embankments on hydrology, fishery, agriculture and socio-economic condition in polder C at Chalan Beel area. Present conditions are compared with the natural conditions existed in the last decades. Finally, the paper gives some recommendations for further sustainable water resources management. It is estimated that the natural wetland loss is about 10%. The analysis shows that the river or channel cross-sections are reduced by ca. 2 m and water level is increasing with time in the rivers along the polder due to confinement effect and siltation. It appears from the study that due to this confinement effect and siltation effect, flood and drainage problems are increasing and consequently, the area is affected in every year to a great extent. At present, cross sections of natural canals are not working properly and back water flow from Hurasagar River creates drainage congestion. About 20% of fish

  18. Virtual water flows and trade liberalization.

    PubMed

    Ramirez-Vallejo, J; Rogers, P

    2004-01-01

    The linkages between agricultural trade and water resources need to be identified and analyzed to better understand the potential impacts that a full liberalization, or lack thereof, will have on water resources. This paper examines trade of virtual water embodied in agricultural products for most countries of the world. The main purpose of the paper, however, is to examine the impact of trade liberalization on virtual-water trade in the future. Based on a simulation of global agricultural trade, a scenario of full liberalization of agriculture was used to assess the net effect of virtual water flows from the relocation of meat and cereals' trade. The paper also identifies the main reasons behind the changes in the magnitude and direction of the net virtual water trade over time, and shows that virtual water trade flows are independent of water resource endowments, contrary to what the Heckscher-Ohlin Theorem states. Finally, based on a formal model, some input demand functions at the country level are estimated. The estimates of the income and agricultural support elasticities of demand for import of virtual water have the expected sign, and are statistically significant. Variables found to have some explanatory power of the variance of virtual water imports are average income; population; agriculture as value added; irrigated area, and exports of goods and services.

  19. Water for Agriculture in a Vulnerable Delta: A Case Study of Indian Sundarban

    NASA Astrophysics Data System (ADS)

    Das, S.; Bhadra, T.; Hazra, S.

    2015-12-01

    Indian Sundarban lies in the south-western part of the Ganges-Brahmaputra Delta and supports a 4.43 million strong population. The agrarian economy of Sundarban is dominated by rainfed subsistence rice farming. Unavailability of upstream fresh water, high salinity of river water of up to 32ppt, soil salinity ranging between 2dSm-1 to 19dSm-1, small land holdings of per capita 840 sq. metre and inadequate irrigation facilities are serious constraints for agricultural production in Sundarban. This paper assesses Cropping Intensity, Irrigation Intensity and Man-Cropland Ratio from Agriculture Census (2010-11) data and estimates the seasonal water demand for agriculture in different blocks of Sundarban. The research exposes the ever increasing population pressure on agriculture with an average Man Cropland Ratio of 1745 person/sq.km. In 2010-2011, the average cropping intensity was 129.97% and the irrigation intensity was 20.40%. The highest cropping and irrigation intensity have been observed in the inland blocks where shallow ground water is available for agriculture on the contrary, the lowest values have been observed in the southern blocks, due to existence of saline shallow ground water. The annual water demand for agriculture in Sundarban has been estimated as 2784 mcm. Available water from 70000 freshwater tanks and around 8000 numbers of shallow tube wells are not sufficient to meet the agricultural water demand. Existing irrigation sources and rainfall of 343 mcm fall far short of the water demand of 382 mcm during peak dry Season. Unavailability of fresh water restricts the food production, which endangers the food security of 87.5% of the people in Sundarban. To ensure the food security in changing climatic condition, expansion of irrigation network and harnessing of new water sources are essential. Large scale rainwater harvesting, rejuvenation and re-connection of disconnected river channels, artificial recharge within shallow aquifer to bring down its

  20. Discussion on water resources value accounting and its application

    NASA Astrophysics Data System (ADS)

    Guo, Biying; Huang, Xiaorong; Ma, Kai; Gao, Linyun; Wang, Yanqiu

    2018-06-01

    The exploration of the compilation of natural resources balance sheet has been proposed since 2013. Several elements of water resources balance sheet have been discussed positively in China, including basic concept, framework and accounting methods, which focused on calculating the amount of water resources with statistical methods but lacked the analysis of the interrelationship between physical volume and magnitude of value. Based on the study of physical accounting of water resources balance sheet, the connotation of water resources value is analyzed in combination with research on the value of water resources in the world. What's more, the theoretical framework, form of measurement and research methods of water resources value accounting are further explored. Taking Chengdu, China as an example, the index system of water resources balance sheet in Chengdu which includes both physical and valuable volume is established to account the depletion of water resources, environmental damage and ecological water occupation caused by economic and social water use. Moreover, the water resources balance sheet in this region which reflects the negative impact of the economy on the environment is established. It provides a reference for advancing water resources management, improving government and social investment, realizing scientific and rational allocation of water resources.

  1. 30 CFR 402.7 - Water-Resources Technology Development Program.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 2 2011-07-01 2011-07-01 false Water-Resources Technology Development Program. 402.7 Section 402.7 Mineral Resources GEOLOGICAL SURVEY, DEPARTMENT OF THE INTERIOR WATER-RESOURCES RESEARCH PROGRAM AND THE WATER-RESOURCES TECHNOLOGY DEVELOPMENT PROGRAM Description of Water-Resources...

  2. 30 CFR 402.7 - Water-Resources Technology Development Program.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 2 2014-07-01 2014-07-01 false Water-Resources Technology Development Program. 402.7 Section 402.7 Mineral Resources GEOLOGICAL SURVEY, DEPARTMENT OF THE INTERIOR WATER-RESOURCES RESEARCH PROGRAM AND THE WATER-RESOURCES TECHNOLOGY DEVELOPMENT PROGRAM Description of Water-Resources...

  3. 30 CFR 402.7 - Water-Resources Technology Development Program.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 2 2010-07-01 2010-07-01 false Water-Resources Technology Development Program. 402.7 Section 402.7 Mineral Resources GEOLOGICAL SURVEY, DEPARTMENT OF THE INTERIOR WATER-RESOURCES RESEARCH PROGRAM AND THE WATER-RESOURCES TECHNOLOGY DEVELOPMENT PROGRAM Description of Water-Resources...

  4. 30 CFR 402.7 - Water-Resources Technology Development Program.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 2 2013-07-01 2013-07-01 false Water-Resources Technology Development Program. 402.7 Section 402.7 Mineral Resources GEOLOGICAL SURVEY, DEPARTMENT OF THE INTERIOR WATER-RESOURCES RESEARCH PROGRAM AND THE WATER-RESOURCES TECHNOLOGY DEVELOPMENT PROGRAM Description of Water-Resources...

  5. 30 CFR 402.7 - Water-Resources Technology Development Program.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 2 2012-07-01 2012-07-01 false Water-Resources Technology Development Program. 402.7 Section 402.7 Mineral Resources GEOLOGICAL SURVEY, DEPARTMENT OF THE INTERIOR WATER-RESOURCES RESEARCH PROGRAM AND THE WATER-RESOURCES TECHNOLOGY DEVELOPMENT PROGRAM Description of Water-Resources...

  6. Linking poverty levels to water resource use and conflicts in rural Tanzania

    NASA Astrophysics Data System (ADS)

    Madulu, Ndalahwa F.

    Water scarcity is an important environmental constraint to development. Water availability is closely linked to human welfare and health by affecting nutrition status and quantity of drinking water especially for the poor. It has impacts on household labour because of the time and energy spent in obtaining it. These problems are more keenly felt among the poor households and in the agricultural subsistence economy. In many areas, the demand for water has been increasing due to rapid population growth, economic development, and climatic change. Water scarcity also stimulates social conflicts between various water users: individuals, communities, industries, livestock, wildlife, agriculture etc. Consequently, local communities have evolved strategies for coping with water stress and drought. These strategies include use of various sources of water, inaction to strict bye-laws regarding the use of water, crop diversification, wage labour, and possibly seasonal migration. The available strategies are likely to vary from one area to another. Some of these actions have measurable longterm demographic consequences, particularly if water stress is severe or repetitive. Although most governments and donor organizations often put much emphasis on the provision of water for drinking purposes, there is clear evidence that the supply of water for other uses has equal importance especially among rural communities. This observation suggests that putting too much emphasis on drinking water needs, addresses a rather insignificant part of the problem of water resources and biases the range of solutions which are likely to be proposed for perceived shortages. The presence of other water uses necessitates the provision of multi-purpose water sources that can serve a number of contrasting functions. This demand-responsive approach can enable the local communities and the poor households to choose the type of services they require on the basis of perceived needs and their ability to

  7. Water demand and supply co-adaptation to mitigate climate change impacts in agricultural water management

    NASA Astrophysics Data System (ADS)

    Giuliani, Matteo; Mainardi, Matteo; Castelletti, Andrea; Gandolfi, Claudio

    2013-04-01

    Agriculture is the main land use in the world and represents also the sector characterised by the highest water demand. To meet projected growth in human population and per-capita food demand, agricultural production will have to significantly increase in the next decades. Moreover, water availability is nowadays a limiting factor for agricultural production, and is expected to decrease over the next century due to climate change impacts. To effectively face a changing climate, agricultural systems have therefore to adapt their strategies (e.g., changing crops, shifting sowing and harvesting dates, adopting high efficiency irrigation techniques). Yet, farmer adaptation is only one part of the equation because changes in water supply management strategies, as a response to climate change, might impact on farmers' decisions as well. Despite the strong connections between water demand and supply, being the former dependent on agricultural practices, which are affected by the water available that depends on the water supply strategies designed according to a forecasted demand, an analysis of their reciprocal feedbacks is still missing. Most of the recent studies has indeed considered the two problems separately, either analysing the impact of climate change on farmers' decisions for a given water supply scenario or optimising water supply for different water demand scenarios. In this work, we explicitly connect the two systems (demand and supply) by activating an information loop between farmers and water managers, to integrate the two problems and study the co-evolution and co-adaptation of water demand and water supply systems under climate change. The proposed approach is tested on a real-world case study, namely the Lake Como serving the Muzza-Bassa Lodigiana irrigation district (Italy). In particular, given an expectation of water availability, the farmers are able to solve a yearly planning problem to decide the most profitable crop to plant. Knowing the farmers

  8. Water-Related Impacts of Climate Change on Agriculture and Subsequently on Public Health: A Review for Generalists with Particular Reference to Pakistan

    PubMed Central

    Ahmed, Toqeer; Scholz, Miklas; Al-Faraj, Furat; Niaz, Wajeeha

    2016-01-01

    Water-related impacts due to change in climatic conditions ranging from water scarcity to intense floods and storms are increasing in developing countries like Pakistan. Water quality and waterborne diseases like hepatitis, cholera, typhoid, malaria and dengue fever are increasing due to chaotic urbanization, industrialization, poor hygienic conditions, and inappropriate water management. The morbidity rate is high due to lack of health care facilities, especially in developing countries. Organizations linked to the Government of Pakistan (e.g., Ministry of Environment, Ministry of Climate Change, Planning and Development, Ministry of Forest, Irrigation and Public Health, Pakistan Meteorological Department, National Disaster Management, Pakistan Agricultural Research Centre, Pakistan Council for Research in Water Resources, and Global Change Impact Study Centre), United Nation organizations, provincial government departments, non-governmental organizations (e.g., Global Facility and Disaster Reduction), research centers linked to universities, and international organizations (International Institute for Sustainable Development, Food and Agriculture, Global Climate Fund and World Bank) are trying to reduce the water-related impacts of climate change, but due to lack of public awareness and health care infrastructure, the death rate is steadily increasing. This paper critically reviews the scientific studies and reports both at national and at international level benefiting generalists concerned with environmental and public health challenges. The article underlines the urgent need for water conservation, risk management, and the development of mitigation measures to cope with the water-related impacts of climate change on agriculture and subsequently on public health. Novel solutions and bioremediation methods have been presented to control environmental pollution and to promote awareness among the scientific community. The focus is on diverse strategies to handle

  9. Climate change, agroclimatic resources and agroclimatic zoning of agriculture in Bulgaria

    NASA Astrophysics Data System (ADS)

    Kazandjiev, V.; Moteva, M.; Georgieva, V.

    2009-09-01

    The important factors for the agrarian output in Bulgaria are only thermal and water probability. From the two factors the component related to soil moisture is more limited. As well water and temperatures probabilities in the agrarian output are estimated trough sums of temperatures and rainfalls or by derivatives indicators (most frequently named as coefficients or indices). The heat conditions and the heat resources are specified by the continuousness of the vegetative period. Duration of vegetative season is limited for each type of plant, between the spring and autumn steady pass of air temperature across the biological minimum. For the agricultural crops in Bulgaria the three biological minimums: in 5°C are taken for wheat and barley, oat, pea, lentil and sunflower; 10°C for corn, haricot, and soybean and in 15°C for the cotton, vegetables and other spring cultures). The cold and warm period duration are mutually related characteristics. The first period define number of days with the snow fall and days with the snow cover, that are in the basis in the formation of soil moisture reserves after the spring snow melt. Definition of the regions with temperature stress conditions during vegetative season is one of the most important parameters of agroclimatic conditions. The values indicating for the limitations are one or more periods from at least 10 consecutive days with maximal air temperature over 35 °С. More from the agricultures, character for the moderate continental climatic zone are developed normally under temperatures 25-28°С. Temperatures over 28°C are ballast slowing the growth and destroying plants due to the heat tension. The component, limiting in greatest degree growth, development and formation of yields from the agricultural crops are the conditions of moisturizing, present trough atmospheric and soil moisture. The most apparent indicator is the year sum of the rains or their sum by the periods with the average daily temperatures of

  10. Agriculture — A river runs through it — The connections between agriculture and water quality

    USGS Publications Warehouse

    Capel, Paul D.; McCarthy, Kathleen A.; Coupe, Richard H.; Grey, Katia M.; Amenumey, Sheila E.; Baker, Nancy T.; Johnson, Richard L.

    2018-06-06

    Sustaining the quality of the Nation’s water resources and the health of our diverse ecosystems depends on the availability of sound water-resources data and information to develop effective, science-based policies. Effective management of water resources also brings more certainty and efficiency to important economic sectors. Taken together, these actions lead to immediate and longterm economic, social, and environmental benefits that make a difference to the lives of the almost 400 million people projected to live in the United States by 2050.In 1991, Congress established the U.S. Geological Survey National Water-Quality Assessment (NAWQA) to address where, when, why, and how the Nation’s water quality has changed, or is likely to change in the future, in response to human activities and natural factors. Since then, NAWQA has been a leading source of scientific data and knowledge used by national, regional, state, and local agencies to develop science-based policies and management strategies to improve and protect water resources used for drinking water, recreation, irrigation, energy development, and ecosystem needs. Plans for the third decade of NAWQA (2013–23) address priority water-quality issues and science needs identified by NAWQA stakeholders, such as the Advisory Committee on Water Information and the National Research Council, and are designed to meet increasing challenges related to population growth, increasing needs for clean water, and changing land-use and weather patterns.This report is one of a series of publications, The Quality of Our Nation’s Waters, which describes major findings of the NAWQA Project on water-quality issues of regional and national concern and provides science-based information for assessing and managing the quality of our groundwater resources. Other reports in this series focus on occurrence and distribution of nutrients, pesticides, and volatile organic compounds in streams and groundwater, the effects of

  11. Influence of agricultural practice on trace metals in soils and vegetation in the water conservation area along the East River (Dongjiang River), South China.

    PubMed

    Luo, Chunling; Yang, Renxiu; Wang, Yan; Li, Jun; Zhang, Gan; Li, Xiangdong

    2012-08-01

    Dongjiang (East River) is the key resource of potable water for the Pearl River Delta region, South China. Although industrial activities are limited in the water conservation area along this river, agriculture is very intensive. The present study evaluated trace metals in four soils under different cultivation. The total concentrations of trace metals decreased in the order orchard soil>vegetable soil>paddy soil>natural soil, reflecting decreasing inputs of agrochemicals to soils. Relatively high concentrations of Cd were recorded in the 60-cm soil profiles. The (206)Pb/(207)Pb ratio in the above-ground tissues of plant was significantly lower than their corresponding soils. In combination with the low transfer factor of Pb from soil to plant shoots, atmospheric deposition is probably a major pathway for Pb to enter plant leaves. Regular monitoring on the soil quality in this area is recommended for the safety of water resource and agricultural products. Copyright © 2012 Elsevier B.V. All rights reserved.

  12. Integrating Research and Extension for the Nsf-Reu Program in Water Resources

    NASA Astrophysics Data System (ADS)

    Judge, J.; Migliaccio, K.; Gao, B.; Shukla, S.; Ehsani, R.; McLamore, E.

    2011-12-01

    Providing positive and meaningful research experiences to students in their undergraduate years is critical for motivating them to pursue advanced degrees or research careers in science and engineering. Such experiences not only offer training for the students in problem solving and critical thinking via hands-on projects, but also offer excellent mentoring and recruiting opportunities for the faculty advisors. The goal of the Research Experience for Undergraduates (REU) Program in the Agricultural and Biological Engineering Department (ABE) at the University of Florida (UF) is to provide eight undergraduate students a unique opportunity to conduct research in water resources using interdisciplinary approaches, integrating research and extension. The students are selected from diverse cultural and educational backgrounds. The eight-week REU Program utilizes the extensive infrastructure of UF - Institute of Food and Agricultural Sciences (IFAS) through the Research and Education Centers (RECs). Two students are paired to participate in their own project under the direct supervision of one of the four research mentors. Four of the eight students are located at the main campus, in Gainesville, Fl, and four remaining students are located off-campus, at the RECs, where some of the ABE faculty are located. The students achieve an enriching cohort experience through social networking, daily blogs, and weekly video conferences to share their research and other REU experiences. The students are co-located during the Orientation week and also during the 5-day Florida Waters Tour. Weekly group meetings and guest lectures are conducted via synchronously through video conferencing. The integration of research and extension is naturally achieved through the projects at the RECs, the guest lectures, Extension workshops, and visits to the Water Management Districts in Florida. In the last two years of the Program, we have received over 80 applicants, from four-year and advanced

  13. Adaptation Resources for Agriculture: Responding to climate variability and change in the midwest and northeast

    USDA-ARS?s Scientific Manuscript database

    Changes in climate and extreme weather have already occurred and are increasing challenges for agriculture nationally and globally, and many of these impacts will continue into the future. This technical bulletin contains information and resources designed to help agricultural producers, service pro...

  14. Evaluation of groundwater artificial recharge management scenario for sustainable water resources development in Gaza Strip

    NASA Astrophysics Data System (ADS)

    Rusteberg, Bernd; Azizur Rahman, M.; Abusaada, Muath; Rabi, Ayman; Rahman Tamimi, A.; Sauter, Martin

    2010-05-01

    The water resources in Gaza Strip are currently facing extreme over-exploitation which has led to a sharp decline of the groundwater level in this Mediterranean coastal aquifer overtime. Salinity of the groundwater is very high as a result of subsequent seawater intrusion of the aquifer. The contamination of the Gaza Strip groundwater by seawater has wide-ranging effects on the regional economy as well as agricultural productivity. In order to guarantee the sustainability of regional development, which requires the access to clean water, groundwater artificial recharge (AR) is being considered as a potential solution to this current water resources problem. The objective of the present study is to analyze several strategies for the implementation and management of AR in Gaza Strip and their potential impacts on agriculture, environment, and the socio-economy. Based on the water policy on wastewater reclamation and reuse (Yr. 2005 - 2025), six AR management strategies were developed in close cooperation with the local stakeholder community. These scenarios take into consideration the development of the new North Gaza Wastewater Treatment Plant and were also judged with respect to a base-line scenario, otherwise known as the "Do Nothing Approach." Multi-Criteria Decision Analysis (MCDA) on ranking of the AR management scenarios was used. Twenty-one criteria ranging over a wide spectrum and four categories (Environmental, Public Health, Social, and Economical) were defined to ensure sound evaluation of each of the six AR management scenarios. A detailed geo-database was prepared to analyze all the related spatial, non-spatial, and temporal data. Socio-economic studies, field surveys, mathematical modeling, and GIS analysis were used for the criteria quantification. In the MCDA, Analytical Hierarchy Method (AHP) combined with weighted Linear Combination (WLC) and Composite Programming (CP) was employed. The six AR management strategies were thus compared to the "Do

  15. Virtual Water Trade: Revisiting the Assessments to Incorporate Regional Water Stress

    NASA Astrophysics Data System (ADS)

    Perveen, S.; Puma, M. J.; Troy, T. J.; Browne, M.; Ghosh, M.

    2011-12-01

    Virtual water (VW) refers to the volume of freshwater embedded in the production and shipment of a commodity, which can include agricultural or industrial products, and the trade of commodities can then be viewed as the trade of one region's water resources to another. The premise behind this trade is that countries with a comparative water advantage may choose to export crops, and countries with scarce water resources may focus economic activity on non-water intensive sectors. However, this assumption is not always true given food self-sufficiency policies; water scarce regions often choose to unsustainably mine aquifers for irrigation. Recent studies have shown no correlation between dependency on VW imports and water scarcity for nations, suggesting that politico-economic considerations rather than resource scarcity considerations may dominate the current VW dynamics. Existing VW computations do not take into account water-scarcity value or the full-cost pricing of commodities. This study aims to fill in this gap by focusing on three countries - the United States, India, and Japan - and their production, imports and exports of crop, livestock and industrial commodities. These countries offer three different perspectives on virtual water, with Japan as a net importer of agriculture virtual water and a major industrial nation. The United States, on the other hand, exports significant quantities of grain. India is a developing country with a strong focus on food self-sufficiency. We first quantify the amount of water used in the production of each commodity and then examine the virtual water trade balance for each country, examining the tradeoffs each country has made between agriculture and industrial water use; given that water resources are finite. To examine the interplay between virtual water trade and water scarcity, we focus on two sub-regions, the Ogallala Aquifer in the US and the Punjab region in India, both of which have significant agricultural

  16. Unconventional oil and gas development and its stresses on water resources in the context of Water-Energy-Food Nexus: The case of Weld County, Colorado

    NASA Astrophysics Data System (ADS)

    Oikonomou, P. D.; Waskom, R.; Boone, K.; Ryan, J. N.

    2015-12-01

    The development of unconventional oil and gas resources in Colorado started to rapidly increase since the early 2000's. The recent oil price plunge resulted in a decline of well starts' rate in the US, but in Weld County, Colorado, it is currently at the 2013-levels. The additional water demand, despite its insignificant percentage in overall state's demand (0.1% in 2012), it competes with traditional ones, since Colorado's water is almost fully appropriated. Presently, the state has 53,597 active producing oil and gas wells. More than 40% of these are located in Weld County, which happens also to be one of top food production U.S. counties. The competition for land and water resources between the energy and agricultural sectors in water stressed areas, like the western U.S., is further intensified if recycle and reuse practices are not preferred to water disposal by the energy industry. Satisfying the multiple objectives of the Water-Energy-Food Nexus in order to achieve sustainable economic development requires balanced management of these resources. Identifying pressures on key areas that food and energy sectors are competing for water, is essential for prudent water management and developing appropriate policies. Weld County, as a water stressed and fossil fuel producing area, was selected for investigating current stresses on local water resources alongside with future climatic and water demand scenarios for exploring probable long-term effects.

  17. How to allocate water resources under climate change in the arid endorheic river basin, Northwest China

    NASA Astrophysics Data System (ADS)

    Zhang, A.; Feng, D.; Tian, Y.; Zheng, Y.

    2017-12-01

    Water resource is of fundamental importance to the society and ecosystem in arid endorheic river basins, and water-use conflicts between upstream and downstream are usually significant. Heihe river basin (HRB) is the second largest endorheic river basin in china, which is featured with dry climate, intensively irrigated farmlands in oases and significant surface water-groundwater interaction. The irrigation districts in the middle HRB consume a large portion of the river flow, and the low HRB, mainly Gobi Desert, has an extremely vulnerable ecological environment. The water resources management has significantly altered the hydrological processes in HRB, and is now facing multiple challenges, including decline of groundwater table in the middle HRB, insufficient environmental flow for the lower HRB. Furthermore, future climate change adds substantial uncertainty to the water system. Thus, it is imperative to have a sustainable water resources management in HRB in order to tackle the existing challenges and future uncertainty. Climate projection form a dynamical downscaled climate change scenario shows precipitation will increase at a rate of approximately 3 millimeter per ten years and temperature will increase at a rate of approximately 0.2 centigrade degree per ten years in the following 50 years in the HRB. Based on an integrated ecohydrological model, we evaluated how the climate change and agricultural development would collaboratively impact the water resources and ecological health in the middle and lower HRB, and investigated how the water management should cope with the complex impact.

  18. Cyanobacteria: A Precious Bio-resource in Agriculture, Ecosystem, and Environmental Sustainability

    PubMed Central

    Singh, Jay Shankar; Kumar, Arun; Rai, Amar N.; Singh, Devendra P.

    2016-01-01

    Keeping in view, the challenges concerning agro-ecosystem and environment, the recent developments in biotechnology offers a more reliable approach to address the food security for future generations and also resolve the complex environmental problems. Several unique features of cyanobacteria such as oxygenic photosynthesis, high biomass yield, growth on non-arable lands and a wide variety of water sources (contaminated and polluted waters), generation of useful by-products and bio-fuels, enhancing the soil fertility and reducing green house gas emissions, have collectively offered these bio-agents as the precious bio-resource for sustainable development. Cyanobacterial biomass is the effective bio-fertilizer source to improve soil physico-chemical characteristics such as water-holding capacity and mineral nutrient status of the degraded lands. The unique characteristics of cyanobacteria include their ubiquity presence, short generation time and capability to fix the atmospheric N2. Similar to other prokaryotic bacteria, the cyanobacteria are increasingly applied as bio-inoculants for improving soil fertility and environmental quality. Genetically engineered cyanobacteria have been devised with the novel genes for the production of a number of bio-fuels such as bio-diesel, bio-hydrogen, bio-methane, synga, and therefore, open new avenues for the generation of bio-fuels in the economically sustainable manner. This review is an effort to enlist the valuable information about the qualities of cyanobacteria and their potential role in solving the agricultural and environmental problems for the future welfare of the planet. PMID:27148218

  19. Cyanobacteria: A Precious Bio-resource in Agriculture, Ecosystem, and Environmental Sustainability.

    PubMed

    Singh, Jay Shankar; Kumar, Arun; Rai, Amar N; Singh, Devendra P

    2016-01-01

    Keeping in view, the challenges concerning agro-ecosystem and environment, the recent developments in biotechnology offers a more reliable approach to address the food security for future generations and also resolve the complex environmental problems. Several unique features of cyanobacteria such as oxygenic photosynthesis, high biomass yield, growth on non-arable lands and a wide variety of water sources (contaminated and polluted waters), generation of useful by-products and bio-fuels, enhancing the soil fertility and reducing green house gas emissions, have collectively offered these bio-agents as the precious bio-resource for sustainable development. Cyanobacterial biomass is the effective bio-fertilizer source to improve soil physico-chemical characteristics such as water-holding capacity and mineral nutrient status of the degraded lands. The unique characteristics of cyanobacteria include their ubiquity presence, short generation time and capability to fix the atmospheric N2. Similar to other prokaryotic bacteria, the cyanobacteria are increasingly applied as bio-inoculants for improving soil fertility and environmental quality. Genetically engineered cyanobacteria have been devised with the novel genes for the production of a number of bio-fuels such as bio-diesel, bio-hydrogen, bio-methane, synga, and therefore, open new avenues for the generation of bio-fuels in the economically sustainable manner. This review is an effort to enlist the valuable information about the qualities of cyanobacteria and their potential role in solving the agricultural and environmental problems for the future welfare of the planet.

  20. Global change and rampant land and water resource development a case study in western Canada

    NASA Astrophysics Data System (ADS)

    Byrne, J.; Kienzle, S.; Schindler, D.

    2006-12-01

    This paper reviews the impacts of global and regional change on the land and water resources in Alberta, Canada. Alberta contains most of Canada's fossil fuel energy resources, including: extensive conventional crude oil and natural gas fields; widespread coal deposits over the southern half of the province with potential for mining and coal bed methane extraction (CBM); and the Athabasca oil sands a crude oil supply of at least several hundred billion barrels entangled in extensive sand deposits lying along the Athabasca River. The province is also a focal point for intensive agriculture in the form of irrigation that has led to over allocated rivers in the south, and a booming economy associated with rapid population growth and associated urban sprawl in support of rapid resource development. All this development is occurring in a region where global climate change is expected to have substantial impacts on land and water in the next few decades. This work outlines the potential impacts of a range of human activities associated with some of the most intensive and extensive resource development plans in North America focused on one region - Alberta. Oil sands investments alone in the next few decades are forecast to exceed one hundred billion dollars! There are plans to double and triple primary and secondary agricultural production; expand coal mining in support of conventional coal fired power plants; and establish CBM well networks over much of the southern half of the province, including extensive development of CBM on the eastern slopes of the Rocky Mountains, the principal source of water for most of the semi-arid Canadian plains. The development pace and direction will likely result in widespread environmental contamination of regional and global consequence.

  1. Climate change and large-scale land acquisitions in Africa: Quantifying the future impact on acquired water resources

    NASA Astrophysics Data System (ADS)

    Chiarelli, Davide Danilo; Davis, Kyle Frankel; Rulli, Maria Cristina; D'Odorico, Paolo

    2016-08-01

    Pressure on agricultural land has markedly increased since the start of the century, driven by demographic growth, changes in diet, increasing biofuel demand, and globalization. To better ensure access to adequate land and water resources, many investors and countries began leasing large areas of agricultural land in the global South, a phenomenon often termed "large-scale land acquisition" (LSLA). To date, this global land rush has resulted in the appropriation of 41million hectares and about 490 km3 of freshwater resources, affecting rural livelihoods and local environments. It remains unclear to what extent land and water acquisitions contribute to the emergence of water-stress conditions in acquired areas, and how these demands for water may be impacted by climate change. Here we analyze 18 African countries - 20 Mha (or 80%) of LSLA for the continent - and estimate that under present climate 210 km3 year-1of water would be appropriated if all acquired areas were actively under production. We also find that consumptive use of irrigation water is disproportionately contributed by water-intensive biofuel crops. Using the IPCCA1B scenario, we find only small changes in green (-1.6%) and blue (+2.0%) water demand in targeted areas. With a 3 °C temperature increase, crop yields are expected to decrease up to 20% with a consequent increase in the water footprint. When the effect of increasing atmospheric CO2concentrations is accounted for, crop yields increase by as much as 40% with a decrease in water footprint up to 29%. The relative importance of CO2 fertilization and warming will therefore determine water appropriations and changes in water footprint under climate change scenarios.

  2. Geothermal Water Use: Life Cycle Water Consumption, Water Resource Assessment, and Water Policy Framework

    DOE Data Explorer

    Schroeder, Jenna N.

    2014-06-10

    This report examines life cycle water consumption for various geothermal technologies to better understand factors that affect water consumption across the life cycle (e.g., power plant cooling, belowground fluid losses) and to assess the potential water challenges that future geothermal power generation projects may face. Previous reports in this series quantified the life cycle freshwater requirements of geothermal power-generating systems, explored operational and environmental concerns related to the geochemical composition of geothermal fluids, and assessed future water demand by geothermal power plants according to growth projections for the industry. This report seeks to extend those analyses by including EGS flash, both as part of the life cycle analysis and water resource assessment. A regional water resource assessment based upon the life cycle results is also presented. Finally, the legal framework of water with respect to geothermal resources in the states with active geothermal development is also analyzed.

  3. Food and Environment. A Teachers' Resource Guide to California Valley Agriculture.

    ERIC Educational Resources Information Center

    Railton, Esther, Comp.

    Presented is a compilation of teaching resources prepared by teachers enrolled in a graduate-level environmental education course at California State University, Hayward. The emphasis of these materials is upon agriculture and related environmental practices in California's San Joaquin Valley. Following a description of course logistics are six…

  4. Managing the drinking water catchment areas: the French agricultural cooperatives feed back.

    PubMed

    Charrière, Séverine; Aumond, Claire

    2016-06-01

    The quality of raw water is problematic in France, largely polluted by nitrates and pesticides (Mueller and Helsel, Nutrients in the nation's waters-too much of a good thing? Geological Survey (U.S.), 1996; European Environment Agency, European waters-assessment of status and pressures, 2012).This type of pollution, even though not always due to agriculture (example of the catchment of Ambleville, county 95, France where the nitrate pollution is mainly due to sewers (2012)), has been largely related to the agricultural practices (Sci Total Environ 407:6034-6043, 2009).Taking note of this observation, and instead of letting it paralyze their actions, the agricultural cooperatives decided with Agrosolutions to act directly on the field with their subscribers to change the agricultural practices impacting the water and the environment.This article shows how the French agricultural cooperatives transformed the awareness of the raw water quality problem into an opportunity for the development and implementation of more precise and responsible practices, to protect their environment. They measure in order to pilot, co-construct and build the best action plans possible according to the three pillars of environment, economy and agronomy.

  5. Riverine threat indices to assess watershed condition and identify primary management capacity of agriculture natural resource management agencies.

    PubMed

    Fore, Jeffrey D; Sowa, Scott P; Galat, David L; Annis, Gust M; Diamond, David D; Rewa, Charles

    2014-03-01

    Managers can improve conservation of lotic systems over large geographies if they have tools to assess total watershed conditions for individual stream segments and can identify segments where conservation practices are most likely to be successful (i.e., primary management capacity). The goal of this research was to develop a suite of threat indices to help agriculture resource management agencies select and prioritize watersheds across Missouri River basin in which to implement agriculture conservation practices. We quantified watershed percentages or densities of 17 threat metrics that represent major sources of ecological stress to stream communities into five threat indices: agriculture, urban, point-source pollution, infrastructure, and all non-agriculture threats. We identified stream segments where agriculture management agencies had primary management capacity. Agriculture watershed condition differed by ecoregion and considerable local variation was observed among stream segments in ecoregions of high agriculture threats. Stream segments with high non-agriculture threats were most concentrated near urban areas, but showed high local variability. 60 % of stream segments in the basin were classified as under U.S. Department of Agriculture's Natural Resources Conservation Service (NRCS) primary management capacity and most segments were in regions of high agricultural threats. NRCS primary management capacity was locally variable which highlights the importance of assessing total watershed condition for multiple threats. Our threat indices can be used by agriculture resource management agencies to prioritize conservation actions and investments based on: (a) relative severity of all threats, (b) relative severity of agricultural threats, and (c) and degree of primary management capacity.

  6. Protecting water resources with smart growth.

    DOT National Transportation Integrated Search

    2004-05-01

    Protecting Water Resources with : Smart Growth is intended for audiences already familiar with smart : growth, who now seek specific ideas : on how techniques for smarter growth : can be used to protect their water : resources. This document is one...

  7. Integrated Water Resources Simulation Model for Rural Community

    NASA Astrophysics Data System (ADS)

    Li, Y.-H.; Liao, W.-T.; Tung, C.-P.

    2012-04-01

    The purpose of this study is to develop several water resources simulation models for residence houses, constructed wetlands and farms and then integrate these models for a rural community. Domestic and irrigation water uses are the major water demand in rural community. To build up a model estimating domestic water demand for residence houses, the average water use per person per day should be accounted first, including water uses of kitchen, bathroom, toilet and laundry. On the other hand, rice is the major crop in the study region, and its productive efficiency sometimes depends on the quantity of irrigation water. The water demand can be estimated by crop water use, field leakage and water distribution loss. Irrigation water comes from rainfall, water supply system and reclaimed water which treated by constructed wetland. In recent years, constructed wetlands play an important role in water resources recycle. They can purify domestic wastewater for water recycling and reuse. After treating from constructed wetlands, the reclaimed water can be reused in washing toilets, watering gardens and irrigating farms. Constructed wetland is one of highly economic benefits for treating wastewater through imitating the processing mechanism of natural wetlands. In general, the treatment efficiency of constructed wetlands is determined by evapotranspiration, inflow, and water temperature. This study uses system dynamics modeling to develop models for different water resource components in a rural community. Furthermore, these models are integrated into a whole system. The model not only is utilized to simulate how water moves through different components, including residence houses, constructed wetlands and farms, but also evaluates the efficiency of water use. By analyzing the flow of water, the water resource simulation model can optimizes water resource distribution under different scenarios, and the result can provide suggestions for designing water resource system of a

  8. A satellite-driven, client-server hydro-economic model prototype for agricultural water management

    NASA Astrophysics Data System (ADS)

    Maneta, Marco; Kimball, John; He, Mingzhu; Payton Gardner, W.

    2017-04-01

    this product is only available for the conterminous United States, the framework is currently only applicable in this region. To obtain information on crop phenology, productivity and transpiration at adequate spatial and temporal frequencies we blend high spatial resolution Landsat information with high temporal fidelity MODIS imagery. The result is a 30 m, 8-day fused dataset of crop greenness that is subsequently transformed into productivity and transpiration by adapting existing forest productivity and transpiration algorithms for agricultural applications. To ensure all involved agencies work with identical information and that end-users are sheltered from the computational burden of storing and processing remote sensing data, this modeling framework is integrated in a client-server architecture based on the Hydra platform (www.hydraplatform.org). Assimilation and processing of resource-intensive remote sensing information, as well as hydrologic and other ancillary data, occur on the server side. With this architecture, our decision support system becomes a light weight 'app' that connects to the server to retrieve the latest information regarding water demands, land use, yields and hydrologic information required to run different management scenarios. This architecture ensures that all agencies and teams involved in water management use the same, up-to-date information in their simulations.

  9. Transforming Agricultural Water Management in Support of Ecosystem Restoration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hanlon, Edward; Capece, John

    Threats to ecosystems are not local; they have to be handled with the global view in mind. Eliminating Florida farms, in order to meet its environmental goals, would simply move the needed agricultural production overseas, where environmentally less sensitive approaches are often used, thus yielding no net ecological benefit. South Florida is uniquely positioned to lead in the creation of sustainable agricultural systems, given its population, technology, and environmental restoration imperative. Florida should therefore aggressively focus on developing sustainable systems that deliver both agricultural production and environmental services. This presentation introduces a new farming concept of dealing with Florida’s agriculturalmore » land issues. The state purchases large land areas in order to manage the land easily and with ecosystem services in mind. The proposed new farming concept is an alternative to the current “two sides of the ditch” model, in which on one side are yield-maximizing, input-intensive, commodity price-dependent farms, while on the other side are publicly-financed, nutrient-removing treatment areas and water reservoirs trying to mitigate the externalized costs of food production systems and other human-induced problems. The proposed approach is rental of the land back to agriculture during the restoration transition period in order to increase water storage (allowing for greater water flow-through and/or water storage on farms), preventing issues such as nutrients removal, using flood-tolerant crops and reducing soil subsidence. Since the proposed approach is still being developed, there exist various unknown variables and considerations. However, working towards a long-term sustainable scenario needs to be the way ahead, as the threats are global and balancing the environment and agriculture is a serious global challenge.« less

  10. Climate change, agriculture and water resources in the Southwestern United States

    USDA-ARS?s Scientific Manuscript database

    In February 2014 the USDA established regional climate hubs across the United States to assist farmers, ranchers and foresters in adapting to the effects of climate change. The Southwest (SW) region encompasses six states which provide highly diverse agricultural crops including cotton, stone fruit ...

  11. Water Resources of Rapides Parish

    USGS Publications Warehouse

    Griffith, J.M.

    2009-01-01

    Rapides Parish, located in central Louisiana, contains fresh groundwater and surface-water resources. In 2005, about 443 million gallons per day (Mgal/d) were withdrawn from water sources in Rapides Parish. About 92 percent (409 Mgal/d) was withdrawn from surface water, and 8 percent (34 Mgal/d) was withdrawn from groundwater. Withdrawals for power generation accounted for 91 percent (403 Mgal/d) of the total water withdrawn. Withdrawals for other uses included public supply (27 Mgal/d), irrigation (9 Mgal/d), and aquaculture (3 Mgal/d). Water withdrawals in the parish generally increased from 1960 to 1995 and decreased from 1995 to 2005. This fact sheet summarizes basic information on the water resources of Rapides Parish, La. Information on groundwater and surface-water availability, quality, development, use, and trends is based on previously published reports listed in the references section.

  12. OVERVIEW OF USEPA'S WATER SUPPLY & WATER RESOURCES DIVISION PROGRAM

    EPA Science Inventory

    The United States Environmental Protection Agency's (USEPA) Water Supply and Water Resources Division (WSWRD) conducts a wide range of research on regulated and unregulated contaminants in drinking water, water distribution systems, homeland security, source water protection, and...

  13. [Towards a renewable and sustainable agriculture. Biological agriculture: from marginal vanguard to spearhead of the agriculture of the future].

    PubMed

    Diek Van Mansvelt, J

    1992-01-01

    This work seeks to demonstrate how different types of organic agriculture can meet the need for renewable and sustainable agriculture, rural development, and management of the land and water resources. An obstacle to the spread of organic agriculture is the widespread perception that without intensive factors of production, demographic growth will necessarily outstrip the available food resources. Calculation of economic costs and benefits at present carries greater weight in planning than do soil erosion, deforestation, extinction of species, disappearance of habitats, and similar environmental damage. The different types of organic agriculture do not follow rigid rules and are not defined solely by the nonuse of nitrogenous fertilizers and pesticides. One of the main principles or organic agriculture is to respect local soil and climatic conditions. Self-sufficiency regarding external factors of production and an emphasis on recycling and optimal use of natural resources were concept ahead of their time when they initially were introduced in the 1920s. The specialization which restructured agriculture over the past century has seriously damaged the system of mixed agriculture and the chain of food production. The solution will be to seek for each region an appropriate balance linking animals and agricultural production in an organic process. The objective of organic agriculture, also known as autonomous ecosystem management, is to preserve as far as possible the balance between needs for food and fiber on the 1 hand and the potential of local ecosystems on the other. General principles of organic agriculture include mixed exploitation in which both plants and animals have specific functions in the context of their local soil and climatic characteristics. Different types of crop rotation are practiced to optimize mutual interactions between crops, and the varied organic cycles are also optimized within the framework of anorganic management in accord with nature

  14. Intra-EU agricultural trade, virtual water flows and policy implications.

    PubMed

    Antonelli, M; Tamea, S; Yang, H

    2017-06-01

    The development of approaches to tackle the European Union (EU) water-related challenges and shift towards sustainable water management and use is one of the main objectives of Horizon 2020, the EU strategy to lead a smart, sustainable and inclusive growth. The EU is an increasingly water challenged area and is a major agricultural trader. As agricultural trade entails an exchange of water embodied in goods as a factor of production, this study investigates the region's water-food-trade nexus by analysing intra-regional virtual water trade (VWT) in agricultural products. The analysed period (1993-2011) comprises the enactment of the Water Framework Directive (WFD) in the year 2000. Aspects of the VWT that are relevant for the WFD are explored. The EU is a net importer of virtual water (VW) from the rest of the world, but intra-regional VWT represents 46% of total imports and 75% of total exports. Five countries account for 60% of total VW imports (Germany, France, Italy, The Netherlands, Belgium) and 65% of total VW exports (The Netherlands, France, Germany, Belgium and Spain). Intra-EU VWT more than doubled over the period considered, while trade with extra-EU countries did not show such a marked trend. In the same period, blue VWT increased significantly within the region and net import from the rest of the world slightly decreased. Water scarce countries, such as Spain and Italy, are major exporters of blue water in the region. The traded volumes of VW have been increasing almost monotonically over the years, and with a substantial increase after 2000. The overall trend in changes in VWT does not seem to be in accordance with the WFD goals. This study demonstrated that VWT analyses can help evaluate intertwining effects of water, agriculture and trade policies which are often made separately in respective sectors. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Reclaimed water as a main resource to enhance the adaptive capacity to climate change in semi-arid Mediterranean agricultural areas using Earth Observation products

    NASA Astrophysics Data System (ADS)

    Pavia Rico, Ana; Lopez-Baeza, Ernesto; Matieu, Pierre-Philippe; Hernandez Sancho, Francesc; Loarte, Edwin

    Lack of water is being a big problem in semi-arid areas to make agricultural profits. Most of Mediterranean countries like Spain, Italy, Greece or Cyprus and other countries like Morocco, the Arab United Emirates, South-American countries or China are starting to reuse wastewater as adaptation to climate change water scarcity. Drought areas are nowadays increasing, thus making fertile areas unproductive. For this reason, the European trend is to work on reusing wastewater as a solution to water scarcity in agriculture. Moreover, since population is growing fast, wastewater production is increasing as well as drinkable water demand, thus making reclaimed water as the water guarantee for irrigation and better agricultural management. This work represents a preliminary initiative to check, analyse and monitor the land by using remote sensing techniques to identify and determine the potential lands that used to be productive in the past, are now abandoned, and we want to recuperate to obtain socio-economic benefits. On top of this, this initiative will clearly enhance the adaption capacity of rural/agricultural lands to climate change. Alternatively to reclaimed water, greenhouses, desalination plants or transboarding water do not really eliminate the problem but only offer a temporary solution, make spending plenty of money and always provoking irreversible damages to the environment. The pilot area to first develop this research is the Valencia and Murcia Autonomous Communities located in the Spanish Mediterranean Coastline. An added value of this work will be to develop a methodology transferable to other potential countries with similar climatic characteristics and difficulties for irrigation, by using remote sensing methods and techniques. The remote sensing products obtained provide full information about the current state of the potential lands to grow crops. Potential areas are then being selected to carry out a socio-economic analysis leading to: (i

  16. Two-stage seasonal streamflow forecasts to guide water resources decisions and water rights allocation

    NASA Astrophysics Data System (ADS)

    Block, P. J.; Gonzalez, E.; Bonnafous, L.

    2011-12-01

    Decision-making in water resources is inherently uncertain producing copious risks, ranging from operational (present) to planning (season-ahead) to design/adaptation (decadal) time-scales. These risks include human activity and climate variability/change. As the risks in designing and operating water systems and allocating available supplies vary systematically in time, prospects for predicting and managing such risks become increasingly attractive. Considerable effort has been undertaken to improve seasonal forecast skill and advocate for integration to reduce risk, however only minimal adoption is evident. Impediments are well defined, yet tailoring forecast products and allowing for flexible adoption assist in overcoming some obstacles. The semi-arid Elqui River basin in Chile is contending with increasing levels of water stress and demand coupled with insufficient investment in infrastructure, taxing its ability to meet agriculture, hydropower, and environmental requirements. The basin is fed from a retreating glacier, with allocation principles founded on a system of water rights and markets. A two-stage seasonal streamflow forecast at leads of one and two seasons prescribes the probability of reductions in the value of each water right, allowing water managers to inform their constituents in advance. A tool linking the streamflow forecast to a simple reservoir decision model also allows water managers to select a level of confidence in the forecast information.

  17. Evaluating sustainable water quality management in the U.S.: Urban, Agricultural, and Environmental Protection Practices

    NASA Astrophysics Data System (ADS)

    van Oel, P. R.; Alfredo, K. A.; Russo, T. A.

    2015-12-01

    Sustainable water management typically emphasizes water resource quantity, with focus directed at availability and use practices. When attention is placed on sustainable water quality management, the holistic, cross-sector perspective inherent to sustainability is often lost. Proper water quality management is a critical component of sustainable development practices. However, sustainable development definitions and metrics related to water quality resilience and management are often not well defined; water quality is often buried in large indicator sets used for analysis, and the policy regulating management practices create sector specific burdens for ensuring adequate water quality. In this research, we investigated the methods by which water quality is evaluated through internationally applied indicators and incorporated into the larger idea of "sustainability." We also dissect policy's role in the distribution of responsibility with regard to water quality management in the United States through evaluation of three broad sectors: urban, agriculture, and environmental water quality. Our research concludes that despite a growing intention to use a single system approach for urban, agricultural, and environmental water quality management, one does not yet exist and is even hindered by our current policies and regulations. As policy continues to lead in determining water quality and defining contamination limits, new regulation must reconcile the disparity in requirements for the contaminators and those performing end-of-pipe treatment. Just as the sustainable development indicators we researched tried to integrate environmental, economic, and social aspects without skewing focus to one of these three categories, policy cannot continue to regulate a single sector of society without considering impacts to the entire watershed and/or region. Unequal distribution of the water pollution burden creates disjointed economic growth, infrastructure development, and policy

  18. Water resources of Tangipahoa Parish, Louisiana

    USGS Publications Warehouse

    White, Vincent E.; Prakken, Lawrence B.

    2016-07-25

    Information concerning the availability, use, and quality of water in Tangipahoa Parish, Louisiana, is critical for proper water-resource management. The purpose of this fact sheet is to present information that can be used by water managers, parish residents, and others for stewardship of this vital resource. Information on the availability, past and current use, use trends, and water quality from groundwater and surface-water sources in the parish is presented. Previously published reports and data stored in the U.S. Geological Survey’s National Water Information System (http://waterdata.usgs.gov/nwis) are the primary sources of the information presented here.

  19. Water resources of Livingston Parish, Louisiana

    USGS Publications Warehouse

    White, Vincent E.; Prakken, Lawrence B.

    2016-07-27

    Information concerning the availability, use, and quality of water in Livingston Parish, Louisiana, is critical for proper water-resource management. The purpose of this fact sheet is to present information that can be used by water managers, parish residents, and others for stewardship of this vital resource. Information on the availability, past and current use, use trends, and water quality from groundwater and surface-water sources in the parish is presented. Previously published reports and data stored in the U.S. Geological Survey’s National Water Information System (http://waterdata.usgs.gov/nwis) are the primary sources of the information presented here.

  20. Agricultural development in a petroleum-based economy: Qatar

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hassan, M.F

    Developing countries, whose policies may have emphasized import substitution as a way to industrialize, now have incentives to stress agriculture. These new incentives are primarily the rapid increase in food prices, but also include the decline of foreign aid, particularly food aid. Qatar, a petroleum exporter, is examined to see if agricultural development is feasible, given the country's economy, which is lopsided with petroleum revenue and lacks modern accounting practices; constraints against agriculture, such as adverse climate, limited land used for cultivation, poor soil conditions, and a shortage of labor and equipment; the governmental role in agriculture; and the opportunitiesmore » for agricultural technology. Policies are needed to deal with questions of water use and resource allocation, with oil resources providing the financial means to overcome some of the constraints and with the government taking the initiative for modernizing the agricultural sector.« less

  1. Water Resources of Ascension Parish

    USGS Publications Warehouse

    Griffith, J.M.; Fendick, R.B.

    2009-01-01

    Ascension Parish, located along the banks of the Mississippi River in south-central Louisiana, contains fresh groundwater and surface-water resources. In 2005, about 202 million gallons per day (Mgal/d) were withdrawn from water sources in Ascension Parish. About 94 percent (190 Mgal/d) was withdrawn from surface water, and 6 percent (12 Mgal/d) was withdrawn from groundwater. Additional water is supplied to Ascension Parish for public-supply use from East Baton Rouge Parish. Withdrawals for industrial use accounted for 95 percent (192 Mgal/d) of the total water withdrawn. Withdrawals for other uses included public-supply (4 Mgal/d), rural-domestic (3 Mgal/d), and aquaculture (3 Mgal/d). Water withdrawals in the parish generally increased from 1960 to 1995 and decreased from 1995 to 2005. This fact sheet summarizes basic information on the water resources of Ascension Parish, La. Information on groundwater and surface-water availability, quality, development, use, and trends is based on previously published reports listed in the references section.

  2. Learning about water resource sharing through game play

    NASA Astrophysics Data System (ADS)

    Ewen, Tracy; Seibert, Jan

    2016-10-01

    Games are an optimal way to teach about water resource sharing, as they allow real-world scenarios to be enacted. Both students and professionals learning about water resource management can benefit from playing games, through the process of understanding both the complexity of sharing of resources between different groups and decision outcomes. Here we address how games can be used to teach about water resource sharing, through both playing and developing water games. An evaluation of using the web-based game Irrigania in the classroom setting, supported by feedback from several educators who have used Irrigania to teach about the sustainable use of water resources, and decision making, at university and high school levels, finds Irrigania to be an effective and easy tool to incorporate into a curriculum. The development of two water games in a course for masters students in geography is also presented as a way to teach and communicate about water resource sharing. Through game development, students learned soft skills, including critical thinking, problem solving, team work, and time management, and overall the process was found to be an effective way to learn about water resource decision outcomes. This paper concludes with a discussion of learning outcomes from both playing and developing water games.

  3. Analyses on Water Vapor Resource in Chengdu City

    NASA Astrophysics Data System (ADS)

    Liu, B.; Xiao, T.; Wang, C.; Chen, D.

    2017-12-01

    Chengdu is located in the Sichuan basin, and it is the most famous inland city in China. With suitable temperatures and rainfall, Chengdu is the most livable cities in China. With the development of urban economy and society, the population has now risen to 16 million, and it will up to 22 million in 2030. This will cause the city water resources demand, and the carrying capacity of water resources become more and more serious. In order to improve the contradiction between urban waterlogging and water shortage, sponge city planning was proposed by Chengdu government, and this is of great practical significance for promoting the healthy development of the city. Base on the reanalysis data from NCEP during 2007-2016, the characters of Water Vapor Resources was analyzed, and the main contents of this research are summarized as follows: The water vapor resource in Chengdu plain is more than that in Southeast China and less in Northwest China. The annual average water vapor resource is approximately 160 mm -320 mm, and the water vapor resource in summer can reach 3 times in winter. But the annual average precipitation in Chengdu is about 800 mm -1200 mm and it is far greater than the water vapor resource, this is because of the transport of water vapor. Using the formula of water vapor flux, the water vapor in Chengdu is comes from the west and the south, and the value is around 50kg/(ms). Base on the calculation of boundary vapor budget, the water vapor transport under 500hPa accounted for 97% of the total. Consider the water vapor transport, transformation and urban humidification effect, the Water Vapor Resource in Chengdu is 2500mm, and it can be used by artificial precipitation enhancement. Therefore, coordinated development of weather modification and sponge city construction, the shortage of water resources in Chengdu plain can be solved. Key words: Chengdu; Sponge city; Water vapor resource; Precipitation; Artificial precipitation enhancement Acknowledgements

  4. Drivers and Effects of Virtual Water Cycling

    NASA Astrophysics Data System (ADS)

    D'Odorico, P.

    2016-12-01

    The increasing global demand for farmland products by the growing and increasingly burgeoning human population is placing unprecedented pressure on the global agricultural system and its water resources. Many regions of the world that are not self-sufficient because of their chronic water scarcity or lack of suitable agricultural land strongly depend on the importation of agricultural commodities and associated embodied (or "virtual") water. International trade, however, may become unreliable when the supplies in the international food market are scarce. As a result, transboundary investments in agricultural land have become a priority for a number of governments and corporations that are trying to expand their agricultural production while securing good profits. This global "land rush" is often driven by the need for a secure access to water resources for agriculture. The globalization of water and land through trade and foreign land acquisitions is leading to a displacement of land use and a disconnection between human populations and the water resources they rely on. Despite the recognized importance of these phenomena in reshaping the patterns of water dependency through teleconnections between consumer behavior and production areas, their effect on global and regional food security, remains poorly quantified. New teleconnections are also emerging from the increasing water use for energy production. Competition in water use for food and energy security constitutes the core of an emerging debate that is generating new questions on the environmental, ethical, economic, and policy implications of human appropriation of water resources. This lecture will examine the ways societies virtually modify their access to water through trade and foreign land acquisitions to meet their growing food and energy needs.

  5. Water-quality, water-level, and discharge data associated with the Mississippi embayment agricultural chemical-transport study, 2006-2008

    USGS Publications Warehouse

    Dalton, Melinda S.; Rose, Claire E.; Coupe, Richard H.

    2010-01-01

    In 2006, the Agricultural Chemicals: Sources, Transport and Fate study team (Agricultural Chemicals Team, ACT) of the U.S. Geological Survey National Water-Quality Assessment Program began a study in northwestern Mississippi to evaluate the influence of surface-water recharge on the occurrence of agriculturally related nutrients and pesticides in the Mississippi River Valley alluvial aquifer. The ACT study was composed in the Bogue Phalia Basin, an indicator watershed within the National Water-Quality Assessment Program Mississippi Embayment Study Unit and utilized several small, subbasins within the Bogue Phalia to evaluate surface and groundwater interaction and chemical transport in the Basin. Data collected as part of this ACT study include water-quality data from routine and incident-driven water samples evaluated for major ions, nutrients, organic carbon, physical properties, and commonly used pesticides in the area; discharge, gage height and water-level data for surface-water sites, the shallow alluvial aquifer, and hyporheic zone; additionally, agricultural data and detailed management activities were reported by land managers for farms within two subbasins of the Bogue Phalia Basin—Tommie Bayou at Pace, MS, and an unnamed tributary to Clear Creek near Napanee, MS.

  6. Evolution of agricultural water use in India: a systems approach

    NASA Astrophysics Data System (ADS)

    Hora, T.; Basu, N. B.

    2016-12-01

    Groundwater plays an important role in improving the resilience of agriculture practices by mitigating the risk associated with unreliable and seasonal rainfalls. This has been an important driver in satisfying the food demand for an ever increasing population across the world. However, the inability to manage this large but limited freshwater reserve has resulted in a sharp decline in water table levels, with India being at the forefront of this problem. This study looks at the temporal trajectory of groundwater extraction in India over a 40 year time span during which well irrigation has evolved to become a central component of agriculture there. Using a systems approach, we identify the regional hot-spots of unsustainable groundwater extraction and then analyze its relationship with the environmental, economic and social components of the region. Early results indicate that the state of Punjab has been overexploiting its groundwater resources since the early 1980's with a 22% jump in groundwater extraction after the introduction of a free electricity policy, with a concomitant reduction in the number of marginal farmers by 36%. This is in contrast with the state of Tamil Nadu, in which groundwater extraction is less severe, but the number of marginal farmers has increased.

  7. Comparison between agricultural and urban ground-water quality in the Mobile River Basin

    USGS Publications Warehouse

    Robinson, James L.

    2003-01-01

    The Black Warrior River aquifer is a major source of public water supply in the Mobile River Basin. The aquifer outcrop trends northwest - southeast across Mississippi and Alabama. A relatively thin shallow aquifer overlies and recharges the Black Warrior River aquifer in the flood plains and terraces of the Alabama, Coosa, Black Warrior, and Tallapoosa Rivers. Ground water in the shallow aquifer and the Black Warrior River aquifer is susceptible to contamination due to the effects of land use. Ground-water quality in the shallow aquifer and the shallow subcrop of the Black Warrior River aquifer, underlying an agricultural and an urban area, is described and compared. The agricultural and urban areas are located in central Alabama in Autauga, Elmore, Lowndes, Macon, Montgomery, and Tuscaloosa Counties. Row cropping in the Mobile River Basin is concentrated within the flood plains of major rivers and their tributaries, and has been practiced in some of the fields for nearly 100 years. Major crops are cotton, corn, and beans. Crop rotation and no-till planting are practiced, and a variety of crops are grown on about one-third of the farms. Row cropping is interspersed with pasture and forested areas. In 1997, the average farm size in the agricultural area ranged from 196 to 524 acres. The urban area is located in eastern Montgomery, Alabama, where residential and commercial development overlies the shallow aquifer and subcrop of the Black Warrior River aquifer. Development of the urban area began about 1965 and continued in some areas through 1995. The average home is built on a 1/8 - to 1/4 - acre lot. Ground-water samples were collected from 29 wells in the agricultural area, 30 wells in the urban area, and a reference well located in a predominately forested area. The median depth to the screens of the agricultural and urban wells was 22.5 and 29 feet, respectively. Ground-water samples were analyzed for physical properties, major ions, nutrients, and pesticides

  8. Ground-water models for water resources planning

    USGS Publications Warehouse

    Moore, John E.

    1980-01-01

    In the past decade hydrologists have emphasized the development of computer-based mathematical models to aid in the understanding of flow, the transport of solutes, transport of heat, and deformation in the groundwater system. These models have been used to provide information and predictions for water managers. Too frequently, groundwater was neglected in water-resource planning because managers believed that it could not be adequately evaluated in terms of availability, quality, and effect of development on surface water supplies. Now, however, with newly developed digital groundwater models, effects of development can be predicted. Such models have been used to predict hydrologic and quality changes under different stresses. These models have grown in complexity over the last 10 years from simple one-layer flow models to three-dimensional simulations of groundwater flow which may include solute transport, heat transport, effects of land subsidence, and encroachment of salt water. This paper illustrates, through case histories, how predictive groundwater models have provided the information needed for the sound planning and management of water resources in the United States. (USGS)

  9. 18 CFR 701.76 - The Water Resources Council Staff.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... Council Staff. 701.76 Section 701.76 Conservation of Power and Water Resources WATER RESOURCES COUNCIL COUNCIL ORGANIZATION Headquarters Organization § 701.76 The Water Resources Council Staff. The Water Resources Council Staff (hereinafter the Staff) serves the Council and the Chairman in the performance of...

  10. 18 CFR 701.76 - The Water Resources Council Staff.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... Council Staff. 701.76 Section 701.76 Conservation of Power and Water Resources WATER RESOURCES COUNCIL COUNCIL ORGANIZATION Headquarters Organization § 701.76 The Water Resources Council Staff. The Water Resources Council Staff (hereinafter the Staff) serves the Council and the Chairman in the performance of...

  11. 18 CFR 701.76 - The Water Resources Council Staff.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... Council Staff. 701.76 Section 701.76 Conservation of Power and Water Resources WATER RESOURCES COUNCIL COUNCIL ORGANIZATION Headquarters Organization § 701.76 The Water Resources Council Staff. The Water Resources Council Staff (hereinafter the Staff) serves the Council and the Chairman in the performance of...

  12. 18 CFR 701.76 - The Water Resources Council Staff.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... Council Staff. 701.76 Section 701.76 Conservation of Power and Water Resources WATER RESOURCES COUNCIL COUNCIL ORGANIZATION Headquarters Organization § 701.76 The Water Resources Council Staff. The Water Resources Council Staff (hereinafter the Staff) serves the Council and the Chairman in the performance of...

  13. 18 CFR 701.76 - The Water Resources Council Staff.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... Council Staff. 701.76 Section 701.76 Conservation of Power and Water Resources WATER RESOURCES COUNCIL COUNCIL ORGANIZATION Headquarters Organization § 701.76 The Water Resources Council Staff. The Water Resources Council Staff (hereinafter the Staff) serves the Council and the Chairman in the performance of...

  14. Investigating the Environmental Effects of Agriculture Practices on Natural Resources: Scientific Contributions of the U.S. Geological Survey to Enhance the Management of Agricultural Landscapes

    USGS Publications Warehouse

    ,

    2007-01-01

    The U.S. Geological Survey (USGS) enhances and protects the quality of life in the United States by advancing scientific knowledge to facilitate effective management of hydrologic, biologic, and geologic resources. Results of selected USGS research and monitoring projects in agricultural landscapes are presented in this Fact Sheet. Significant environmental and social issues associated with agricultural production include changes in the hydrologic cycle; introduction of toxic chemicals, nutrients, and pathogens; reduction and alteration of wildlife habitats; and invasive species. Understanding environmental consequences of agricultural production is critical to minimize unintended environmental consequences. The preservation and enhancement of our natural resources can be achieved by measuring the success of improved management practices and by adjusting conservation policies as needed to ensure long-term protection.

  15. Water Quality Instructional Resources Information System (IRIS): A Compilation of Abstracts to Water Quality and Water Resources materials. Supplement 31, 1987.

    ERIC Educational Resources Information Center

    Ohio State Univ., Columbus, OH. Information Reference Center for Science, Mathematics, and Environmental Education.

    The Environmental Quality Instructional Resources Center in Columbus, Ohio, acquires, reviews, indexes, and announces both print (books, modules, units, etc.) and non-print (films, slides, video tapes, etc.) materials related to water quality and water resources education and instruction. This publication contains abstracts and indexes to selected…

  16. Water Quality Instructional Resources Information System (IRIS): A Compilation of Abstracts to Water Quality and Water Resources Materials. Supplement 32, 1987.

    ERIC Educational Resources Information Center

    Ohio State Univ., Columbus, OH. Information Reference Center for Science, Mathematics, and Environmental Education.

    The Environmental Quality Instructional Resources Center in Columbus, Ohio, acquires, reviews, indexes, and announces both print (books, modules, units, etc.) and non-print (films, slides, video tapes, etc.) materials related to water quality and water resources education and instruction. In addition some materials related to pesticides, hazardous…

  17. Water Quality Instructional Resources Information System (IRIS): A Compilation of Abstracts to Water Quality and Water Resources Materials. Supplement 34, 1988.

    ERIC Educational Resources Information Center

    Ohio State Univ., Columbus, OH. Information Reference Center for Science, Mathematics, and Environmental Education.

    The Environmental Quality Instructional Resources Center in Columbus, Ohio, acquires, reviews, indexes, and announces both print (books, modules, units, etc.) and non-print (films, slides, video tapes, etc.) materials related to water quality and water resources education and instruction. In addition some materials related to pesticides, hazardous…

  18. Water Quality Instructional Resources Information System (IRIS): A Compilation of Abstracts to Water Quality and Water Resources Materials, Supplement 30, 1987.

    ERIC Educational Resources Information Center

    Ohio State Univ., Columbus, OH. Information Reference Center for Science, Mathematics, and Environmental Education.

    The Environmental Quality Instructional Resources Center acquires, reviews, indexes, and announces both print (books, modules, units, etc.) and non-print (films, slides, video tapes, etc.) materials related to water quality and water resources education and instruction. This publication contains abstracts and indexes to selected materials related…

  19. Benefits of Greenhouse Gas Mitigation on the Supply, Management, and Use of Water Resources in the United States

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Strzepek, K.; Neumann, Jim; Smith, Joel

    Climate change impacts on water resources in the U.S. are likely to be far-reaching and substantial, because the water sector spans many parts of the economy, from supply and demand for agriculture, industry, energy production, transportation and municipal use to damages from natural hazards. This paper provides impact and damage estimates from five water resource-related models in the CIRA frame work, addressing drought risk, flooding damages, water supply and demand, and global water scarcity. The four models differ in the water system assessed, their spatial scale, and the units of assessment, but together they provide a quantitative and descriptive richnessmore » in characterizing water resource sector effects of climate change that no single model can capture. The results also address the sensitivity of these estimates to greenhouse gas emission scenarios, climate sensitivity alternatives, and global climate model selection. While calculating the net impact of climate change on the water sector as a whole may be impractical, because each of the models applied here uses a consistent set of climate scenarios, broad conclusions can be drawn regarding the patterns of change and the benefits of GHG mitigation policies for the water sector. Two key findings emerge: 1) climate mitigation policy substantially reduces the impact of climate change on the water sector across multiple dimensions; and 2) the more managed the water resources system, the more tempered the climate change impacts and the resulting reduction of impacts from climate mitigation policies.« less

  20. Benefits of Greenhouse Gas Mitigation on the Supply, Management, and Use of Water Resources in the United States

    DOE PAGES

    Strzepek, K.; Neumann, Jim; Smith, Joel; ...

    2014-11-29

    Climate change impacts on water resources in the U.S. are likely to be far-reaching and substantial, because the water sector spans many parts of the economy, from supply and demand for agriculture, industry, energy production, transportation and municipal use to damages from natural hazards. This paper provides impact and damage estimates from five water resource-related models in the CIRA frame work, addressing drought risk, flooding damages, water supply and demand, and global water scarcity. The four models differ in the water system assessed, their spatial scale, and the units of assessment, but together they provide a quantitative and descriptive richnessmore » in characterizing water resource sector effects of climate change that no single model can capture. The results also address the sensitivity of these estimates to greenhouse gas emission scenarios, climate sensitivity alternatives, and global climate model selection. While calculating the net impact of climate change on the water sector as a whole may be impractical, because each of the models applied here uses a consistent set of climate scenarios, broad conclusions can be drawn regarding the patterns of change and the benefits of GHG mitigation policies for the water sector. Two key findings emerge: 1) climate mitigation policy substantially reduces the impact of climate change on the water sector across multiple dimensions; and 2) the more managed the water resources system, the more tempered the climate change impacts and the resulting reduction of impacts from climate mitigation policies.« less

  1. Water Resources Research Center

    Science.gov Websites

    Untitled Document  Search Welcome to the University of Hawai'i at Manoa Water Resources Research Center and contracts. Our Focus is to: Serve as the Water Research Center in Hawaii and in this capacity to coordinate and conduct research to identify, characterize, and quantify water-related problems in the state

  2. Framework and tools for agricultural landscape assessment relating to water quality protection.

    PubMed

    Gascuel-Odoux, Chantal; Massa, Florence; Durand, Patrick; Merot, Philippe; Troccaz, Olivier; Baudry, Jacques; Thenail, Claudine

    2009-05-01

    While many scientific studies show the influence of agricultural landscape patterns on water cycle and water quality, only a few of these have proposed scientifically based and operational methods to improve water management. Territ'eau is a framework developed to adapt agricultural landscapes to water quality protection, using components such as farmers' fields, seminatural areas, and human infrastructures, which can act as sources, sinks, or buffers on water quality. This framework allows us to delimit active areas contributing to water quality, defined by the following three characteristics: (i) the dominant hydrological processes and their flow pathways, (ii) the characteristics of each considered pollutant, and (iii) the main landscape features. These areas are delineated by analyzing the flow connectivity from the stream to the croplands, by assessing the buffer functions of seminatural areas according to their flow pathways. Hence, this framework allows us to identify functional seminatural areas in terms of water quality and assess their limits and functions; it helps in proposing different approaches for changing agricultural landscape, acting on agricultural practices or systems, and/or conserving or rebuilding seminatural areas in controversial landscapes. Finally, it allows us to objectivize the functions of the landscape components, for adapting these components to new environmental constraints.

  3. Ground-water quality beneath irrigated agriculture in the central High Plains aquifer, 1999-2000

    USGS Publications Warehouse

    Bruce, Breton W.; Becker, Mark F.; Pope, Larry M.; Gurdak, Jason J.

    2003-01-01

    In 1999 and 2000, 30 water-quality monitoring wells were installed in the central High Plains aquifer to evaluate the quality of recently recharged ground water in areas of irrigated agriculture and to identify the factors affecting ground-water quality. Wells were installed adjacent to irrigated agricultural fields with 10- or 20-foot screened intervals placed near the water table. Each well was sampled once for about 100 waterquality constituents associated with agricultural practices. Water samples from 70 percent of the wells (21 of 30 sites) contained nitrate concentrations larger than expected background concentrations (about 3 mg/L as N) and detectable pesticides. Atrazine or its metabolite, deethylatrazine, were detected with greater frequency than other pesticides and were present in all 21 samples where pesticides were detected. The 21 samples with detectable pesticides also contained tritium concentrations large enough to indicate that at least some part of the water sample had been recharged within about the last 50 years. These 21 ground-water samples are considered to show water-quality effects related to irrigated agriculture. The remaining 9 groundwater samples contained no pesticides, small tritium concentrations, and nitrate concentrations less than 3.45 milligrams per liter as nitrogen. These samples are considered unaffected by the irrigated agricultural land-use setting. Nitrogen isotope ratios indicate that commercial fertilizer was the dominant source of nitrate in 13 of the 21 samples affected by irrigated agriculture. Nitrogen isotope ratios for 4 of these 21 samples were indicative of an animal waste source. Dissolved-solids concentrations were larger in samples affected by irrigated agriculture, with large sulfate concentrations having strong correlation with large dissolved solids concentrations in these samples. A strong statistical correlation is shown between samples affected by irrigated agriculture and sites with large rates of

  4. Climate change impact on water resources - Example of an anthropized basin (Llobregat, Spain)

    NASA Astrophysics Data System (ADS)

    Versini, P.-A.; Pouget, L.; Mc Ennis, S.; Guiu Carrio, R.; Sempere-Torres, D.; Escaler, I.

    2012-04-01

    The impact of climate change is one of the central topics of study by water agencies and companies. Indeed, the forecasted increase of atmospheric temperature may change the amount, frequency and intensity of precipitation and affect the hydrological cycle: runoff, infiltration, aquifer recharge, etc… Moreover, global change combining climate change but also land use and water demand changes, may cause very important impacts on water availability and quality. Global change scenarios in Spain describe a general trend towards increased temperature and water demand, and reduced precipitation as a result of its geographical situation and socio-economic characteristics. The European project WATER CHANGE (included in the LIFE + Environment Policy and Governance program) aims to develop a modeling system to assess the Global Change impacts, and their associated uncertainties, on water availability for water supply and water use. Its objective is to help river basin agencies and water companies in their long term planning and in the definition of adaptation measures. This work presents the results obtained by applying the modelling system to the Llobregat river basin (Spain). This is an anthropized catchment of about 5000 km2, where water resources are used for different purposes, such as drinking water production, agriculture irrigation, industry and hydroelectric energy production. Based on future global change scenarios, the water resources system has been assessed in terms of water deficit and supply. A cost-benefit analysis has also been conducted in order to evaluate every realistic measure that could optimize and improve the system.

  5. Facing Water Scarcity in Jordan: Reuse, Demand Reduction, Energy and Transboundary Approaches to Assure Future Water Supplies

    NASA Astrophysics Data System (ADS)

    Scott, C. A.; El-Naser, H.; Hagan, R. E.; Hijazi, A.

    2001-05-01

    Jordan is extremely water-scarce with just 170 cubic meters per capita per year to meet domestic, industrial, agricultural, tourism, and environmental demands for water. Given the natural climatological conditions, demographic pressure, and transboundary nature of water resources, all renewable water resources of suitable quality are being exploited and some non-renewable aquifers are being depleted. The heavy exploitation of water resources has contributed to declines in the level of the Dead Sea. Rapid growth in demand, particularly for higher quality water for domestic, industrial and tourism uses, is significantly increasing pressure on agricultural and environmental uses of water, both of which must continue to adapt to reduced volumes and lower quality water. The agricultural sector has begun to respond by improving irrigation efficiency and increasing the use of recycled water. Total demand for water still exceeds renewable supplies while inadequate treatment of sewage used for irrigation creates potential environmental and health risks and presents agricultural marketing challenges that undermine the competitiveness of exports. The adaptive capability of the natural environment may already be past sustainable limits with groundwater discharge oasis wetlands that have been seriously affected. Development of new water resources is extremely expensive in Jordan with an average investment cost of US\\$ 4-5 per cubic meter. Integrated water resources management (IWRM) that incorporates factors external to the 'water sector' as conventionally defined will help to assure sustainable future water supplies in Jordan. This paper examines four IWRM approaches of relevance to Jordan: water reuse, demand management, energy-water linkages, and transboundary water management. While progress in Jordan has been made, the Ministry of Water and Irrigation continues to be concerned about the acute water scarcity the country faces as well as the need to continue working with

  6. Water Resources Council Proposed Principles and Standards for Planning Water and Related Land Resources. Notice of Public Review and Hearing.

    ERIC Educational Resources Information Center

    National Archives and Records Services (GSA), Washington, DC. Office of the Federal Register.

    Presented in this notice of a public review and hearing are the proposed Principles and Standards for planning water and related land resources of the United States. Developed by the Water Resources Council pursuant to the Water Resources Planning Act of 1965 (Public Law 89-80), the purpose is to achieve objectives, determined cooperatively,…

  7. Ground-water resources of Flagler County, Florida

    USGS Publications Warehouse

    Navoy, A.S.; Bradner, L.A.

    1987-01-01

    Groundwater is the only significant source of potable water in Flagler County. Usable water occurs in the Upper Floridan aquifer, the intermediate population is expected to place stresses on the water resources of the county. Although rainfall averages almost 50 in/yr, most of the water leaves as evapotranspiration and streamflow. Less than 1 in/yr recharge may be occurring to the Upper Floridan aquifer, the highest yielding aquifer. The Upper Floridan aquifer consists of the Avon Park Formation, the Ocala Limestone, and the basal dolomitic limestone of the Hawthorne. Use of the Upper Floridan aquifer for public water supply is limited in most of the county because it contains marginally potable or brackish water. It is used extensively for agricultural irrigation. The intermediate aquifer system consists of thin, discontinues lenses of sand, shell, and limestone between clays overlying the Floridan aquifer system. The intermediate aquifer system is an important part of the public water supply of the county because of the good quality of the water. The intermediate aquifer system has variable yields because of the discontinuous lenses. The surficial aquifer system is composed of sand and shell with varying fractions of finer materials. Well yields are small in the west and central parts of Flagler County, but the surficial aquifer system is an adequate source of domestic supply on the barrier island. A zone of freshwater in the surficial aquifer system is very important in the Hammock area, being the local source of most domestic supply in the area. Changes in hydrologic conditions from the 1950 's include a long-term decline in water levels in the Upper Floridan aquifer coincident with lower-than-average rainfall and a greater seasonal fluctuation of water levels. Chloride concentrations of water in the Upper Floridan aquifer do not appear to have changed significantly, presently ranging from 7 to 3,700 mg/L. Development will place stress on the aquifers and may

  8. Water resources of Calcasieu Parish, Louisiana

    USGS Publications Warehouse

    White, Vincent E.; Prakken, Lawrence B.

    2017-01-12

    Information concerning the availability, use, and quality of water in Calcasieu Parish, Louisiana, is critical for proper water-resource management. The purpose of this fact sheet is to present information that can be used by water managers, parish residents, and others for stewardship of this vital resource. Information on the availability, past and current use, use trends, and water quality from groundwater and surface-water sources in the parish is presented. Previously published reports and data stored in the U.S. Geological Survey’s National Water Information System (http://dx.doi.org/10.5066/F7P55KJN) are the primary sources of the information presented here.

  9. Managed aquifer recharge through off-season irrigation in agricultural regions

    USGS Publications Warehouse

    Niswonger, Richard; Morway, Eric D.; Triana, Enrique; Huntington, Justin L.

    2017-01-01

    Options for increasing reservoir storage in developed regions are limited and prohibitively expensive. Projected increases in demand call for new long-term water storage to help sustain agriculture, municipalities, industry, and ecological services. Managed aquifer recharge (MAR) is becoming an integral component of water resources around the world. However, MAR faces challenges, including infrastructure costs, difficulty in enhancing recharge, water quality issues, and lack of available water supplies. Here we examine, through simulation modeling of a hypothetical agricultural subbasin in the western U.S., the potential of agricultural managed aquifer recharge (Ag-MAR) via canal seepage and off-season field irrigation. Weather phenomenon in many regions around the world exhibit decadal and other multiyear cycles of extreme precipitation. An ongoing challenge is to develop approaches to store greater amounts of water during these events. Simulations presented herein incorporate Ag-MAR programs and demonstrate that there is potential to enhance regional recharge by 7–13%, increase crop consumptive use by 9–12%, and increase natural vegetation consumption by 20–30%, where larger relative increases occur for lower aquifer hydraulic conductivity and higher specific yield values. Annual increases in groundwater levels were 7 m, and sustained levels following several years of drought were greater than 2 m. Results demonstrate that Ag-MAR has great potential to enhance long-term sustainability of water resources in agricultural basins.

  10. Managed aquifer recharge through off-season irrigation in agricultural regions

    NASA Astrophysics Data System (ADS)

    Niswonger, Richard G.; Morway, Eric D.; Triana, Enrique; Huntington, Justin L.

    2017-08-01

    Options for increasing reservoir storage in developed regions are limited and prohibitively expensive. Projected increases in demand call for new long-term water storage to help sustain agriculture, municipalities, industry, and ecological services. Managed aquifer recharge (MAR) is becoming an integral component of water resources around the world. However, MAR faces challenges, including infrastructure costs, difficulty in enhancing recharge, water quality issues, and lack of available water supplies. Here we examine, through simulation modeling of a hypothetical agricultural subbasin in the western U.S., the potential of agricultural managed aquifer recharge (Ag-MAR) via canal seepage and off-season field irrigation. Weather phenomenon in many regions around the world exhibit decadal and other multiyear cycles of extreme precipitation. An ongoing challenge is to develop approaches to store greater amounts of water during these events. Simulations presented herein incorporate Ag-MAR programs and demonstrate that there is potential to enhance regional recharge by 7-13%, increase crop consumptive use by 9-12%, and increase natural vegetation consumption by 20-30%, where larger relative increases occur for lower aquifer hydraulic conductivity and higher specific yield values. Annual increases in groundwater levels were 7 m, and sustained levels following several years of drought were greater than 2 m. Results demonstrate that Ag-MAR has great potential to enhance long-term sustainability of water resources in agricultural basins.

  11. Water Quality Instructional Resources Information System (IRIS): A Compilation of Abstracts to Water Quality and Water Resources Materials. Supplement 33, 1988.

    ERIC Educational Resources Information Center

    Ohio State Univ., Columbus, OH. Information Reference Center for Science, Mathematics, and Environmental Education.

    The Environmental Quality Instructional Resources Center in Columbus, Ohio, acquires, reviews, indexes, and announces both print (books, modules, units, etc.) and non-print (films, slides, video tapes, etc.) materials related to water quality and water resources education and instruction. In addition some materials related to hazardous materials,…

  12. Sustaining the Earth's watersheds, agricultural research data system

    USDA-ARS?s Scientific Manuscript database

    The USDA-ARS water resources program has developed a web-based data system, STEWARDS: Sustaining the Earth’s Watersheds, Agricultural Research Data System to support research that encompasses a broad range of topics such as water quality, hydrology, conservation, land use, and soils. The data syst...

  13. Adaptation resources for agriculture: Responding to climate variability and change in the midwest and northeast

    Treesearch

    Maria K. Janowiak; Daniel D. Dostie; Michael A. Wilson; Michael J. Kucera; R. Howard Skinner; Jerry L. Hatfield; David Hollinger; Christopher W. Swanston

    2016-01-01

    Changes in climate and extreme weather are already increasing challenges for agriculture nationally and globally, and many of these impacts will continue into the future. This technical bulletin contains information and resources designed to help agricultural producers, service providers, and educators in the Midwest and Northeast regions of the United States integrate...

  14. AN INNOVATIVE SYSTEM FOR BIOREMEDIATION OF AGRICULTURAL CHEMICALS FOR ENVIRONMENTAL SUSTAINABILITY

    EPA Science Inventory

    Agricultural chemicals (both inorganic and organic) in drainage discharge from watersheds have raised concerns about the quality of surface water resources. For example, hypoxia in the Gulf of Mexico has been related to the nutrients discharging from agricultural watersheds...

  15. Water Resource Assessment in KRS Reservoir Using Remote Sensing and GIS Modelling

    NASA Astrophysics Data System (ADS)

    Manubabu, V. H.; Gouda, K. C.; Bhat, N.; Reddy, A.

    2014-12-01

    In the recent time the fresh water resource becomes very important because of various reasons like population growth, pollution, over exploitation of the ground water resources etc. As there is no efficient and proper measures for recharging ground water exists and also the climatological impacts on water resources like global warming exacerbating water shortages, growing populations and rising demand for freshwater in agriculture, industry, and energy production. There is a need and challenging task for analyzing the future changes in regional water availability and it is also very much necessary to asses and predict the fresh water present in a lake or reservoir to make better decision making in the optimal usage of surface water. In the present study is intended to provide a practical discussion of methodology that deals with how to asses and predict amount of surface water available in the future using Remote Sensing(RS) data , Geographical Information System(GIS) techniques, and GCM (Global Circulation Model). Basically the study emphasized over one of the biggest reservoir i.e. the Krishna Raja Sagara (KRS) reservoir situated in the state of Karnataka in India. Multispectral satellite images like IRS LISS III and Landsat L8 from different open source web portals like NRSC-Bhuvan and NASA Earth Explorer respectively are used for the present analysis. The multispectral satellite images are used to identify the temporal changes of the water quantity in the reservoir for the period 2000 to 2014. Also the water volume are being calculated using Advances Space born Thermal Emission and Reflection Radiometer (ASTER) Global DEM over the reservoir basin. The hydro meteorological parameters are also studied using multi-source observed data and the empirical water budget models for the reservoir in terms of rainfall, temperature, run off, water inflow and outflow etc. are being developed and analyzed. Statistical analysis are also carried out to quantify the relation

  16. Sustainability of Water Resources in Arid Ecosystems: A View from Hei River Basin, China (Invited)

    NASA Astrophysics Data System (ADS)

    Zheng, C.; Cheng, G.; Xiao, H.; Ma, R.

    2009-12-01

    The northwest of China is characterized by an arid climate and fragile ecosystems. With irrigated agriculture, the region is a prolific producer of cotton, wheat, and maize with some of the highest output per acre in the country. The region is also rich in ore deposits, with the reserves of numerous minerals ranked at or near the top in the country. However, the sustainability of irrigated agriculture and economic development in the region is threaten by severe eco-environmental problems resulting from both global changes and human activities, such as desertification, salinization, groundwater depletion, and dust storms. All these problems are a direct consequence of water scarcity. As global warming accelerates and rapid economic growth continues, the water shortage crisis is expected to worsen. To improve the bleak outlook for the health of ecosystem and environment in northwest China, the Chinese government has invested heavily in ecosystem restoration and watershed management in recent years. However, the effectiveness of such measures and actions depends on scientific understanding of the complex interplays among ecological, hydrological and socioeconomic factors. This presentation is intended to provide an overview of a major new research initiative supported by the National Natural Science Foundation of China to study the integration of ecological principles, hydrological processes and socioeconomic considerations toward more sustainable exploitation of surface water and groundwater resources in the Hei River Basin in northwest China. The Hei River Basin is an inland watershed located at the center of the arid region in East Asia, stretching from Qilianshan Mountains in the south to the desert in the north bordering China’s Inner Mongolia Autonomous Region and Mongolia. The total area of Hei River Basin is approximately 130,000 km2. The research initiative builds on existing research infrastructure and ecohydrological data and seeks to reveal complex

  17. Management of water for irrigation agriculture in semi-arid areas: Problems and prospects

    NASA Astrophysics Data System (ADS)

    Mvungi, A.; Mashauri, D.; Madulu, N. F.

    Most of the Mwanga district is classified as semi-arid with a rainfall range of 300 and 600 mm. Rainfall patterns in the district are unpredictable and are subject to great fluctuations. Like other semi-arid areas, the district is characterized with land degradation, unreliable rainfall, repeated water shortage, periodic famine, overgrazing, dry land cultivation in the marginal areas and heavy competition for limited biomass between farmers and cattle. Vulnerability here is high due to unreliability of weather. The people of Mwanga are dependent on agriculture for their livelihood. However agriculture is difficult in the area due to inadequate rainfall. For a very long time the people have been dependent on irrigation agriculture to ensure food security. Of late the traditional irrigation system is on the decline threatening food security in the area. This paper examines the state and status of the irrigation canal system in Mwanga district with the view of recommending ways in which it can be improved. The study used participatory, survey and in-depth interviews to obtain both quantitative and qualitative data. The major findings are that social, political, environmental and demographic bases that supported the traditional irrigation system have changed drastically. As a corollary to this, the cultural and religious belief systems that supported and guided the traditional canal system management have been replaced by mistrust and corruption in water allocation. In addition the ownership and management system of the water resources that was vested in the initiator clans has changed and now water user groups own the canals/furrows but they do not own the water sources. This has rendered the control of the water sources difficult if not impossible. Currently the system is faced by a number of problems including shortage of water and poor management as demand for water increases and this has led to serious conflicts among and between crop producers and pastoralists

  18. A General Water Resources Regulation Software System in China

    NASA Astrophysics Data System (ADS)

    LEI, X.

    2017-12-01

    To avoid iterative development of core modules in water resource normal regulation and emergency regulation and improve the capability of maintenance and optimization upgrading of regulation models and business logics, a general water resources regulation software framework was developed based on the collection and analysis of common demands for water resources regulation and emergency management. It can provide a customizable, secondary developed and extensible software framework for the three-level platform "MWR-Basin-Province". Meanwhile, this general software system can realize business collaboration and information sharing of water resources regulation schemes among the three-level platforms, so as to improve the decision-making ability of national water resources regulation. There are four main modules involved in the general software system: 1) A complete set of general water resources regulation modules allows secondary developer to custom-develop water resources regulation decision-making systems; 2) A complete set of model base and model computing software released in the form of Cloud services; 3) A complete set of tools to build the concept map and model system of basin water resources regulation, as well as a model management system to calibrate and configure model parameters; 4) A database which satisfies business functions and functional requirements of general water resources regulation software can finally provide technical support for building basin or regional water resources regulation models.

  19. Patterns and processes of nutrient transfers from land to water: a catchment approach to evaluate Good Agricultural Practice in Ireland

    NASA Astrophysics Data System (ADS)

    Mellander, P.-E.; Melland, A. R.; Shortle, G.; Wall, D.; Mechan, S.; Buckley, C.; Fealy, R.; Jordan, P.

    2009-04-01

    Eutrophication of fresh, transitional and coastal waters by excessive nutrient inputs is one of the most widespread water quality problems in developed countries. Sources of nutrient nitrogen (N) and phosphorus (P) can come from a multiplicity of sources and be dependent on numerous hydrological controls from catchments with both urban and agricultural landuses. Aquatic impacts are widely reported as a result of excessive nutrient transfers from land to water and include changes in ecological integrity and loss of amenity. In the European Union, the Water Framework Directive (WFD) and associated Directives are the key structures with which member states must develop national and often trans-national polices to deal with issues of water resources management. The linked Nitrates Directive is particularly concerned with integrating sustainable agriculture and good water quality objectives and is written into national polices. In Ireland this policy is the Nitrates Directive National Action Programme (NAP), Statutory Instruction 378, Good Agricultural Practise regulation, and amongst other things, sets targets and limits on the use of organic and inorganic fertilisers, soil fertility and slurry/fertiliser spreading and cultivation times. To evaluate the effectiveness of this policy, Teagasc, the Irish Agriculture and Food Development Authority, is undertaking a catchment scale audit on sources, sinks, and changes in nutrient use and export over several years. The Agricultural Catchments Programme is based on a science-stakeholder-management partnership to generate knowledge and specifically to protect water quality from nitrogen and phosphorus transfers within the constraints of the requirements of modern Irish agricultural practises. Eight catchments of 5-12 km2 have been selected for the programme to represent a range of agricultural intensities and vulnerabilities to nitrogen and phosphorus loss including catchments that are situated on permeable and impermeable

  20. Incorporating agricultural management into an earth system model for the Pacific Northwest region: Interactions between climate, hydrology, agriculture, and economics

    NASA Astrophysics Data System (ADS)

    Chinnayakanahalli, K.; Adam, J. C.; Stockle, C.; Nelson, R.; Brady, M.; Rajagopalan, K.; Barber, M. E.; Dinesh, S.; Malek, K.; Yorgey, G.; Kruger, C.; Marsh, T.; Yoder, J.

    2011-12-01

    For better management and decision making in the face of climate change, earth system models must explicitly account for natural resource and agricultural management activities. Including crop system, water management, and economic models into an earth system modeling framework can help in answering questions related to the impacts of climate change on irrigation water and crop productivity, how agricultural producers can adapt to anticipated climate change, and how agricultural practices can mitigate climate change. Herein we describe the coupling of the Variability Infiltration Capacity (VIC) land surface model, which solves the water and energy balances of the hydrologic cycle at regional scales, with a crop-growth model, CropSyst. This new model, VIC-CropSyst, is the land surface model that will be used in a new regional-scale model development project focused on the Pacific Northwest, termed BioEarth. Here we describe the VIC-CropSyst coupling process and its application over the Columbia River basin (CRB) using agricultural-specific land cover information. The Washington State Department of Agriculture (WSDA) and U. S. Department of Agriculture (USDA) cropland data layers were used to identify agricultural land use patterns, in which both irrigated and dry land crops were simulated. The VIC-CropSyst model was applied over the CRB for the historical period of 1976 - 2006 to establish a baseline for surface water availability, irrigation demand, and crop production. The model was then applied under future (2030s) climate change scenarios derived from statistically-downscaled Global Circulation Models output under two emission scenarios (A1B and B1). Differences between simulated future and historical irrigation demand, irrigation water availability, and crop production were used in an economics model to identify the most economically-viable future cropping pattern. The economics model was run under varying scenarios of regional growth, trade, water pricing, and