Sample records for agtr1a ko mice

  1. Qiliqiangxin Rescues Mouse Cardiac Function by Regulating AGTR1/TRPV1-Mediated Autophagy in STZ-Induced Diabetes Mellitus.

    PubMed

    Tong, Jing; Lai, Yan; Yao, Yi-An; Wang, Xue-Jun; Shi, Yu-Shuang; Hou, Han-Jin; Gu, Jian-Yun; Chen, Fei; Liu, Xue-Bo

    2018-06-19

    To explore the potential role of qiliqiangxin (QLQX) A traditional Chinese medicine and the involvement of angiotensin II receptor type 1 (AGTR1) and transient receptor potential vanilloid 1 (TRPV1) in diabetic mouse cardiac function. Intragastric QLQX was administered for 5 weeks after streptozotocin (STZ) treatment. Additionally, Intraperitoneal injections of angiotensin II (Ang II) or intragastric losartan (Los) were administered to assess the activities of AGTR1 and TRPV1. Two-dimensional echocardiography and tissue histopathology were used to assess cardiac function Western blot was used to detect the autophagic biomarkers Such as light chain 3 P62 and lysosomal-associated membrane protein 2 And transmission electron microscopy was used to count the number of autophagosomes. Decreased expression of TRPV1 and autophagic hallmarks and reduced numbers of autophagolysosomes as well as increased expression of angiotensin converting enzyme 1 and AGTR1 were observed in diabetic hearts. Blocking AGTR1 with Los mimicked the QLQX-mediated improvements in cardiac function Alleviated myocardial fibrosis and enabled autophagy Whereas Ang II abolished the beneficial effects of QLQX in wild type diabetic mice but not in TRPV1-/- diabetic mice. QLQX may improve diabetic cardiac function by regulating AGTR1/ TRPV1-mediated autophagy in STZ-induced diabetic mice. © 2018 The Author(s). Published by S. Karger AG, Basel.

  2. Experimental transmission of AA amyloidosis by injecting the AA amyloid protein into interleukin-1 receptor antagonist knockout (IL-1raKO) mice.

    PubMed

    Watanabe, K; Uchida, K; Chambers, J K; Tei, M; Shoji, A; Ushio, N; Nakayama, H

    2015-05-01

    The incidence of AA amyloidosis is high in humans with rheumatoid arthritis and several animal species, including cats and cattle with prolonged inflammation. AA amyloidosis can be experimentally induced in mice using severe inflammatory stimuli and a coinjection of AA amyloid; however, difficulties have been associated with transmitting AA amyloidosis to a different animal species, and this has been attributed to the "species barrier." The interleukin-1 receptor antagonist knockout (IL-1raKO) mouse, a rodent model of human rheumatoid arthritis, has been used in the transmission of AA amyloid. When IL-1raKO and BALB/c mice were intraperitoneally injected with mouse AA amyloid together with a subcutaneous pretreatment of 2% AgNO3, all mice from both strains that were injected with crude or purified murine AA amyloid developed AA amyloidosis. However, the amyloid index, which was determined by the intensity of AA amyloid deposition, was significantly higher in IL-1raKO mice than in BALB/c mice. When IL-1raKO and BALB/c mice were injected with crude or purified bovine AA amyloid together with the pretreatment, 83% (5/6 cases) and 38% (3/8 cases) of IL-1raKO mice and 17% (1/6 cases) and 0% (0/6 cases) of BALB/c mice, respectively, developed AA amyloidosis. Similarly, when IL-1raKO and BALB/c mice were injected with crude or purified feline AA amyloid, 33% (2/6 cases) and 88% (7/8 cases) of IL-1raKO mice and 0% (0/6 cases) and 29% (2/6 cases) of BALB/c mice, respectively, developed AA amyloidosis. These results indicated that IL-1raKO mice are a useful animal model for investigating AA amyloidogenesis. © The Author(s) 2014.

  3. ACE and AGTR1 polymorphisms and left ventricular hypertrophy in endurance athletes.

    PubMed

    Di Mauro, Michele; Izzicupo, Pascal; Santarelli, Francesco; Falone, Stefano; Pennelli, Alfonso; Amicarelli, Fernanda; Calafiore, Antonio M; Di Baldassarre, Angela; Gallina, Sabina

    2010-05-01

    This study aimed to evaluate the role of angiotensin type 1 receptor gene (AGTR1) polymorphism (A1166C) in left ventricular hypertrophy (LVH) mediated by the angiotensin-converting enzyme (ACE) in endurance athletes. A group of 74 white, healthy male endurance athletes, aged between 25 and 40 yr, were enrolled in this study. All of them participated primarily in isotonic sports, training for at least >10 h x wk(-1), for at least 5 yr. The ACE genotype (insertion [I] or deletion [D] alleles) was ascertained by polymerase chain reaction (DD in 35, ID in 36, and II in 3). Group II was excluded from the analysis because of its small size. No difference was found between the two groups as regards age, blood pressure, HR, and echocardiographic data. The left ventricular mass index (LVMI) was significantly higher in group DD rather than in group ID (P = 0.029). The group DD showed a slightly higher prevalence of subjects with LVH (LVMI > 131 g x m(-2); 62.9%) than group ID (44.4%, P = 0.120). No association was found between ACE-DD and LVH (odds ratio (OR) = 2.12, 95% confidence interval = 0.82-5.46). Concerning the role of AGTR1 polymorphism, the highest LVMI was found in 15 athletes with ACE-DD and AGTR1-AC/CC genotypes (150 +/- 23 g x m(-2)); the lowest value of LVMI was found in the case of ACE-ID and AGTR1-AA (127 g x m(-2) +/- 18 g x m(-2)), whereas LVMI in subjects with ACE-DD + AGTR1-AA was similar to that in the ACE-ID + AGTR1-AC/CC group (134 +/- 18 g x m(-2) vs 133 +/- 20 g x m(-2), P = 0.880). The presence of ACE-DD + AGTR1 + AC/CC was strongly associated with LVH (OR = 4.6, P = 0.029). Moreover, subjects with LVH showed longer left ventricular isovolumetric relaxation time and higher end-systolic wall stress. The latter was strongly correlated to LVMI (r = 0.588), especially in the presence of ACE-DD + AGTR1 + AC/CC (r = 0.728). LVMI may be greater in the presence of ACE- DD and AGTR1-AC/CC polymorphisms.

  4. Characterization of the insulin sensitivity of ghrelin receptor KO mice using glycemic clamps

    PubMed Central

    2011-01-01

    Background We and others have demonstrated previously that ghrelin receptor (GhrR) knock out (KO) mice fed a high fat diet (HFD) have increased insulin sensitivity and metabolic flexibility relative to WT littermates. A striking feature of the HFD-fed GhrR KO mouse is the dramatic decrease in hepatic steatosis. To characterize further the underlying mechanisms of glucose homeostasis in GhrR KO mice, we conducted both hyperglycemic (HG) and hyperinsulinemic-euglycemic (HI-E) clamps. Additionally, we investigated tissue glucose uptake and specifically examined liver insulin sensitivity. Results Consistent with glucose tolerance-test data, in HG clamp experiments, GhrR KO mice showed a reduction in glucose-stimulated insulin release relative to WT littermates. Nevertheless, a robust 1st phase insulin secretion was still achieved, indicating that a healthy β-cell response is maintained. Additionally, GhrR KO mice demonstrated both a significantly increased glucose infusion rate and significantly reduced insulin requirement for maintenance of the HG clamp, consistent with their relative insulin sensitivity. In HI-E clamps, both LFD-fed and HFD-fed GhrR KO mice showed higher peripheral insulin sensitivity relative to WT littermates as indicated by a significant increase in insulin-stimulated glucose disposal (Rd), and decreased hepatic glucose production (HGP). HFD-fed GhrR KO mice showed a marked increase in peripheral tissue glucose uptake in a variety of tissues, including skeletal muscle, brown adipose tissue and white adipose tissue. GhrR KO mice fed a HFD also showed a modest, but significant decrease in conversion of pyruvate to glucose, as would be anticipated if these mice displayed increased liver insulin sensitivity. Additionally, the levels of UCP2 and UCP1 were reduced in the liver and BAT, respectively, in GhrR KO mice relative to WT mice. Conclusions These results indicate that improved glucose homeostasis of GhrR KO mice is characterized by robust

  5. CYP1A1, GCLC, AGT, AGTR1 gene-gene interactions in community-acquired pneumonia pulmonary complications.

    PubMed

    Salnikova, Lyubov E; Smelaya, Tamara V; Golubev, Arkadiy M; Rubanovich, Alexander V; Moroz, Viktor V

    2013-11-01

    This study was conducted to establish the possible contribution of functional gene polymorphisms in detoxification/oxidative stress and vascular remodeling pathways to community-acquired pneumonia (CAP) susceptibility in the case-control study (350 CAP patients, 432 control subjects) and to predisposition to the development of CAP complications in the prospective study. All subjects were genotyped for 16 polymorphic variants in the 14 genes of xenobiotics detoxification CYP1A1, AhR, GSTM1, GSTT1, ABCB1, redox-status SOD2, CAT, GCLC, and vascular homeostasis ACE, AGT, AGTR1, NOS3, MTHFR, VEGFα. Risk of pulmonary complications (PC) in the single locus analysis was associated with CYP1A1, GCLC and AGTR1 genes. Extra PC (toxic shock syndrome and myocarditis) were not associated with these genes. We evaluated gene-gene interactions using multi-factor dimensionality reduction, and cumulative gene risk score approaches. The final model which included >5 risk alleles in the CYP1A1 (rs2606345, rs4646903, rs1048943), GCLC, AGT, and AGTR1 genes was associated with pleuritis, empyema, acute respiratory distress syndrome, all PC and acute respiratory failure (ARF). We considered CYP1A1, GCLC, AGT, AGTR1 gene set using Set Distiller mode implemented in GeneDecks for discovering gene-set relations via the degree of sharing descriptors within a given gene set. N-acetylcysteine and oxygen were defined by Set Distiller as the best descriptors for the gene set associated in the present study with PC and ARF. Results of the study are in line with literature data and suggest that genetically determined oxidative stress exacerbation may contribute to the progression of lung inflammation.

  6. ACE and AGTR1 polymorphisms in elite rhythmic gymnastics.

    PubMed

    Di Cagno, Alessandra; Sapere, Nadia; Piazza, Marina; Aquino, Giovanna; Iuliano, Enzo; Intrieri, Mariano; Calcagno, Giuseppe

    2013-02-01

    In the angiotensin-converting enzyme (ACE) gene, Alu deletion, in intron 16, is associated with higher concentrations of ACE serum activity and this may be associated with elite sprint and power performance. The Alu insertion is associated with lower ACE levels and this could lead to endurance performance. Moreover, recent studies have identified a single-nucleotide polymorphism of the angiotensin type 1 receptor gene AGTR1, which seems to be related to ACE activity. The aim of this study was to examine the involvement of the ACE and the AGTR1 gene polymorphisms in 28 Italian elite rhythmic gymnasts (age range 21 ± 7.6 years), and compare them to 23 middle level rhythmic gymnasts (age range 17 ± 10.9 years). The ACE D allele was significantly more frequent in elite athletes than in the control population (χ(2)=4.07, p=0.04). Comparisons between the middle level and elite athletes revealed significant differences (p<0.0001) for the ACE DD genotype (OR=6.48, 95% confidence interval=1.48-28.34), which was more frequent in elite athletes. There were no significant differences in the AGTR1 A/C genotype or allele distributions between the middle level and elite athletes. In conclusion, the ACE D allele genotype could be a contributing factor to high-performance rhythmic gymnastics that should be considered in athlete development and could help to identify which skills should be trained for talent promotion.

  7. Sarcocystis neurona infection in gamma interferon gene knockout (KO) mice: comparative infectivity of sporocysts in two strains of KO mice, effect of trypsin digestion on merozoite viability, and infectivity of bradyzoites to KO mice and cell culture.

    PubMed

    Dubey, J P; Sundar, N; Kwok, O C H; Saville, W J A

    2013-09-01

    The protozoan Sarcocystis neurona is the primary cause of Equine Protozoal Myeloencephalitis (EPM). EPM or EPM-like illness has been reported in horses, sea otters, and several other mammals. The gamma interferon gene knockout (KO) mouse is often used as a model to study biology and discovery of new therapies against S. neurona because it is difficult to induce clinical EPM in other hosts, including horses. In the present study, infectivity of three life cycle stages (merozoites, bradyzoites, sporozoites) to KO mice and cell culture was studied. Two strains of KO mice (C57-black, and BALB/c-derived, referred here as black or white) were inoculated orally graded doses of S. neurona sporocysts; 12 sporocysts were infective to both strains of mice and all infected mice died or became ill within 70 days post-inoculation. Although there was no difference in infectivity of sporocysts to the two strains of KO mice, the disease was more severe in black mice. S. neurona bradyzoites were not infectious to KO mice and cell culture. S. neurona merozoites survived 120 min incubation in 0.25% trypsin, indicating that trypsin digestion can be used to recover S. neurona from tissues of acutely infected animals. Published by Elsevier B.V.

  8. Aldosterone-Induced Vascular Remodeling and Endothelial Dysfunction Require Functional Angiotensin Type 1a Receptors.

    PubMed

    Briet, Marie; Barhoumi, Tlili; Mian, Muhammad Oneeb Rehman; Coelho, Suellen C; Ouerd, Sofiane; Rautureau, Yohann; Coffman, Thomas M; Paradis, Pierre; Schiffrin, Ernesto L

    2016-05-01

    We investigated the role of angiotensin type 1a receptors (AGTR1a) in vascular injury induced by aldosterone activation of mineralocorticoid receptors in Agtr1a(-/-) and wild-type (WT) mice infused with aldosterone for 14 days while receiving 1% NaCl in drinking water. Aldosterone increased systolic blood pressure (BP) by ≈30 mm Hg in WT mice and ≈50 mm Hg in Agtr1a(-/-) mice. Aldosterone induced aortic and small artery remodeling, impaired endothelium-dependent relaxation in WT mice, and enhanced fibronectin and collagen deposition and vascular inflammation. None of these vascular effects were observed in Agtr1a(-/-) mice. Aldosterone effects were prevented by the AGTR1 antagonist losartan in WT mice. In contrast to aldosterone, norepinephrine caused similar BP increase and mesenteric artery remodeling in WT and Agtr1a(-/-) mice. Agtr1a(-/-) mice infused with aldosterone did not increase sodium excretion in response to a sodium chloride challenge, suggesting that sodium retention could contribute to the exaggerated BP rise induced by aldosterone. Agtr1a(-/-) mice had decreased mesenteric artery expression of the calcium-activated potassium channel Kcnmb1, which may enhance myogenic tone and together with sodium retention, exacerbate BP responses to aldosterone/salt in Agtr1a(-/-) mice. We conclude that although aldosterone activation of mineralocorticoid receptors raises BP more in Agtr1a(-/-) mice, AGTR1a is required for mineralocorticoid receptor stimulation to induce vascular remodeling and inflammation and endothelial dysfunction. © 2016 American Heart Association, Inc.

  9. ALDOSTERONE-INDUCED VASCULAR REMODELING AND ENDOTHELIAL DYSFUNCTION REQUIRE FUNCTIONAL ANGIOTENSIN TYPE 1a RECEPTORS

    PubMed Central

    Coelho, Suellen C.; Ouerd, Sofiane; Rautureau, Yohann; Coffman, Thomas M.; Paradis, Pierre; Schiffrin, Ernesto L.

    2016-01-01

    We investigated the role of angiotensin type 1a receptors (AGTR1a) in vascular injury induced by aldosterone activation of mineralocorticoid receptors (MR) in Agtr1a−/− and wild-type mice infused with aldosterone for 14 days while receiving 1% NaCl in drinking water. Aldosterone increased systolic blood pressure by ~30 mmHg in wild-type mice, and ~50 mmHg in Agtr1a−/− mice. Aldosterone induced aortic and small artery remodeling and impaired endothelium-dependent relaxation in wild-type mice, and enhanced fibronectin and collagen deposition, and vascular inflammation. None of these vascular effects were observed in Agtr1a−/− mice. Aldosterone effects were prevented by the AGTR1 antagonist losartan in wild-type mice. In contrast to aldosterone, norepinephrine caused similar BP increase and mesenteric artery remodeling in wild-type and Agtr1a−/− mice. Agtr1a−/− mice infused with aldosterone did not increase sodium excretion in response to a sodium chloride challenge, suggesting sodium retention that could contribute to the exaggerated blood pressure rise induced by aldosterone. Agtr1a−/− mice had decreased mesenteric artery expression of the calcium-activated potassium channel Kcnmb1, which may enhance myogenic tone and together with sodium retention exacerbate BP responses to aldosterone/salt in Agtr1a−/− mice. We conclude that although aldosterone activation of MR raises BP more in Agtr1a−/− mice, AGTR1a is required for MR stimulation to induce vascular remodeling and inflammation, and endothelial dysfunction. PMID:27045029

  10. Tagging SNPs in REN, AGTR1 and AGTR2 genes and response of renin activity, angiotensin II and aldosterone concentrations to antihypertensive treatment in Kazakans.

    PubMed

    Yan, Weili; Zhang, Yuanming; Shan, Zimei; Wang, Qian; Huang, Yongdi; Wang, Chenchen; Yan, Kai

    2011-12-01

    Polymorphisms of REN, AGTR1 and AGTR2 may be associated with responses of renin-angiotensin-aldosterone system (RAAS) activity phenotypes to angiotensin-converting enzyme inhibitor (ACEI) antihypertensive treatment. A total of 400 first diagnosed Kazak hypertensives were randomly allocated to two groups and received a 3-week course of either captopril and atenolol as monotherapy under double blinding. Genotype-phenotype association analyses were performed by covariance analyses between baseline level and responses of blood pressure, renin, angiotensin II and aldosterone concentrations with tagging single nucleotide polymorphisms (SNPs) in REN, AGTR1 and AGTR2 genes. A false discovery rate method was used to adjust multiple testing. After adjustment for multiple testing, we found that the G allele of rs6676670 (T/G) in intron 1 of REN was significantly associated with higher baseline aldosterone concentrations (p < 0.0001, explained variance (EV) = 2.3%). Significant associations after adjustments were also found between the A allele of rs2887284, with higher baseline renin activity (p = 0.022, EV = 1.0%), higher responses of renin (p = 0.018 EV = 5.4%), and higher responses of angiotensin II (p = 0.0255, EV = 3.13%) to the treatment of ACEI. The carriers of the A allele of rs2887284 appeared to be more sensitive to the ACEI treatment. rs2887284 in intron 9 of REN is associated with the response of renin and angiotensin II levels to ACEI treatment.

  11. Hyperactivity and depression-like traits in Bax KO mice

    PubMed Central

    Krahe, Thomas E.; Medina, Alexandre E.; Lantz, Crystal L.; Filgueiras, Cláudio C.

    2018-01-01

    The Bax gene is a member of the Bcl-2 gene family and its pro-apoptotic Bcl-associated X (Bax) protein is believed to be crucial in regulating apoptosis during neuronal development as well as following injury. With the advent of mouse genomics, mice lacking the pro-apoptotic Bax gene (Bax KO) have been extensively used to study how cell death helps to determine synaptic circuitry formation during neurodevelopment and disease. Surprisingly, in spite of its wide use and the association of programmed neuronal death with motor dysfunctions and depression, the effects of Bax deletion on mice spontaneous locomotor activity and depression-like traits are unknown. Here we examine the behavioral characteristics of Bax KO male mice using classical paradigms to evaluate spontaneous locomotor activity and depressive-like responses. In the open field, Bax KO animals exhibited greater locomotor activity than their control littermates. In the forced swimming test, Bax KO mice displayed greater immobility times, a behavior despair state, when compared to controls. Collectively, our findings corroborate the notion that a fine balance between cell survival and death early during development is critical for normal brain function later in life. Furthermore, it points out the importance of considering depressive-like and hyperactivity behavioral phenotypes when conducting neurodevelopmental and other studies using the Bax KO strain. PMID:26363094

  12. GPR21 KO mice demonstrate no resistance to high fat diet induced obesity or improved glucose tolerance.

    PubMed

    Wang, Jinghong; Pan, Zheng; Baribault, Helene; Chui, Danny; Gundel, Caroline; Véniant, Murielle

    2016-01-01

    Gpr21 KO mice generated with Gpr21 KO ES cells obtained from Deltagen showed improved glucose tolerance and insulin sensitivity when fed a high fat diet. Further mRNA expression analysis revealed changes in Rabgap1 levels and raised the possibility that Rabgap1 gene may have been modified. To assess this hypothesis a new Gpr21 KO mouse line using TALENS technology was generated. Gpr21 gene deletion was confirmed by PCR and Gpr21 and Rabgap1 mRNA expression levels were determined by RT-PCR. The newly generated Gpr21 KO mice when fed a normal or high fat diet chow did not maintain their improved metabolic phenotype. In conclusion, Rabgap1 disturbance mRNA expression levels may have contributed to the phenotype of the originally designed Gpr21 KO mice.

  13. Expression of HLA Class II Molecules in Humanized NOD.Rag1KO.IL2RgcKO Mice Is Critical for Development and Function of Human T and B Cells

    PubMed Central

    Danner, Rebecca; Chaudhari, Snehal N.; Rosenberger, John; Surls, Jacqueline; Richie, Thomas L.; Brumeanu, Teodor-Doru; Casares, Sofia

    2011-01-01

    Background Humanized mice able to reconstitute a surrogate human immune system (HIS) can be used for studies on human immunology and may provide a predictive preclinical model for human vaccines prior to clinical trials. However, current humanized mouse models show sub-optimal human T cell reconstitution and limited ability to support immunoglobulin class switching by human B cells. This limitation has been attributed to the lack of expression of Human Leukocyte Antigens (HLA) molecules in mouse lymphoid organs. Recently, humanized mice expressing HLA class I molecules have been generated but showed little improvement in human T cell reconstitution and function of T and B cells. Methods We have generated NOD.Rag1KO.IL2RγcKO mice expressing HLA class II (HLA-DR4) molecules under the I-Ed promoter that were infused as adults with HLA-DR-matched human hematopoietic stem cells (HSC). Littermates lacking expression of HLA-DR4 molecules were used as control. Results HSC-infused HLA-DR4.NOD.Rag1KO.IL-2RγcKO mice developed a very high reconstitution rate (>90%) with long-lived and functional human T and B cells. Unlike previous humanized mouse models reported in the literature and our control mice, the HLA-DR4 expressing mice reconstituted serum levels (natural antibodies) of human IgM, IgG (all four subclasses), IgA, and IgE comparable to humans, and elicited high titers of specific human IgG antibodies upon tetanus toxoid vaccination. Conclusions Our study demonstrates the critical role of HLA class II molecules for development of functional human T cells able to support immunoglobulin class switching and efficiently respond to vaccination. PMID:21611197

  14. Attraction thresholds and sex discrimination of urinary odorants in male and female aromatase knockout (ArKO) mice.

    PubMed

    Pierman, Sylvie; Douhard, Quentin; Balthazart, Jacques; Baum, Michael J; Bakker, Julie

    2006-01-01

    We previously found that both male and female aromatase knockout (ArKO) mice, which cannot synthesize estrogens due to a targeted mutation of the aromatase gene, showed less investigation of volatile body odors from anesthetized conspecifics of both sexes in Y-maze tests. We now ask whether ArKO mice are in fact capable of discriminating between and/or responding to volatile odors. Using habituation/dishabituation tests, we found that gonadectomized ArKO and wild-type (WT) mice of both sexes, which were tested without any sex hormone replacement, reliably distinguished between undiluted volatile urinary odors of either adult males or estrous females versus deionized water as well as between these two urinary odors themselves. However, ArKO mice of both sexes were less motivated than WT controls to investigate same-sex odors when they were presented last in the sequence of stimuli. In a second experiment, we compared the ability of ArKO and WT mice to respond to decreasing concentrations of either male or female urinary odors. We found a clear-cut sex difference in urinary odor attraction thresholds among WT mice: WT males failed to respond to urine dilutions higher than 1:20 by volume, whereas WT females continued to respond to urine dilutions up to 1:80. Male ArKO mice resembled WT females in their ability to respond to lower concentrations of urinary odors, raising the possibility that the observed sex difference among WT mice in urine attraction thresholds results from the perinatal actions of estrogen in the male nervous system. Female ArKO mice failed to show significant dishabituation responses to two (1:20 and 1:80) dilutions of female urine, perhaps, again, because of a reduced motivation to investigate less salient, same-sex urinary odors. Previously observed deficits in the preference of ArKO male and female mice to approach volatile body odors from conspecifics of either sex cannot be attributed to an inability of ArKO subjects to discriminate these

  15. Heterozygous Che-1 KO mice show deficiencies in object recognition memory persistence.

    PubMed

    Zalcman, Gisela; Corbi, Nicoletta; Di Certo, Maria Grazia; Mattei, Elisabetta; Federman, Noel; Romano, Arturo

    2016-10-06

    Transcriptional regulation is a key process in the formation of long-term memories. Che-1 is a protein involved in the regulation of gene transcription that has recently been proved to bind the transcription factor NF-κB, which is known to be involved in many memory-related molecular events. This evidence prompted us to investigate the putative role of Che-1 in memory processes. For this study we newly generated a line of Che-1(+/-) heterozygous mice. Che-1 homozygous KO mouse is lethal during development, but Che-1(+/-) heterozygous mouse is normal in its general anatomical and physiological characteristics. We analyzed the behavioral characteristic and memory performance of Che-1(+/-) mice in two NF-κB dependent types of memory. We found that Che-1(+/-) mice show similar locomotor activity and thigmotactic behavior than wild type (WT) mice in an open field. In a similar way, no differences were found in anxiety-like behavior between Che-1(+/-) and WT mice in an elevated plus maze as well as in fear response in a contextual fear conditioning (CFC) and object exploration in a novel object recognition (NOR) task. No differences were found between WT and Che-1(+/-) mice performance in CFC training and when tested at 24h or 7days after training. Similar performance was found between groups in NOR task, both in training and 24h testing performance. However, we found that object recognition memory persistence at 7days was impaired in Che-1(+/-) heterozygous mice. This is the first evidence showing that Che-1 is involved in memory processes. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  16. Rescue of fragile X syndrome phenotypes in Fmr1 KO mice by a BKCa channel opener molecule

    PubMed Central

    2014-01-01

    Background Fragile X Syndrome (FXS) is the most common form of inherited intellectual disability and is also associated with autism spectrum disorders. Previous studies implicated BKCa channels in the neuropathogenesis of FXS, but the main question was whether pharmacological BKCa stimulation would be able to rescue FXS neurobehavioral phenotypes. Methods and results We used a selective BKCa channel opener molecule (BMS-204352) to address this issue in Fmr1 KO mice, modeling the FXS pathophysiology. In vitro, acute BMS-204352 treatment (10 μM) restored the abnormal dendritic spine phenotype. In vivo, a single injection of BMS-204352 (2 mg/kg) rescued the hippocampal glutamate homeostasis and the behavioral phenotype. Indeed, disturbances in social recognition and interaction, non-social anxiety, and spatial memory were corrected by BMS-204352 in Fmr1 KO mice. Conclusion These results demonstrate that the BKCa channel is a new therapeutic target for FXS. We show that BMS-204352 rescues a broad spectrum of behavioral impairments (social, emotional and cognitive) in an animal model of FXS. This pharmacological molecule might open new ways for FXS therapy. PMID:25079250

  17. The association of AGTR2 polymorphisms with preeclampsia and uterine artery bilateral notching is modulated by maternal BMI.

    PubMed

    Zhou, A; Dekker, G A; Lumbers, E R; Lee, S Y; Thompson, S D; McCowan, L M E; Roberts, C T

    2013-01-01

    This study aimed to determine the association of AGTR1 and AGTR2 polymorphisms with preeclampsia and whether these are affected by environmental factors and fetal sex. Overall 3234 healthy nulliparous women, their partners and babies were recruited prospectively to the SCOPE study in Adelaide and Auckland. Data analyses were confined to 2121 Caucasian parent-infant trios, among whom 123 had preeclamptic pregnancies. 1185 uncomplicated pregnancies served as controls. DNA was extracted from buffy coats and genotyped by utilizing the Sequenom MassARRAY system. Doppler sonography on the uterine arteries was performed at 20 weeks' gestation. Four polymorphisms in AGTR1 and AGTR2 genes, including AGTR1 A1166C, AGTR2 C4599A, AGTR2 A1675G and AGTR2 T1134C, were selected and significant associations were predominately observed for AGTR2 C4599A. When the cohort was stratified by maternal BMI, in women with BMI ≥ 25 kg/m(2), the AGTR2 C4599A AA genotype in mothers and neonates was associated with an increased risk for preeclampsia compared with the CC genotype [adjusted OR 2.1 (95% CI 1.0-4.2) and adjusted OR 3.0 (95% CI 1.4-6.4), respectively]. In the same subset of women, paternal AGTR2 C4599A A allele was associated with an increased risk for preeclampsia and uterine artery bilateral notching at 20 weeks' gestation compared with the C allele [adjusted OR 1.9 (95% CI 1.1-3.3) and adjusted OR 2.1 (95% CI 1.3-3.4), respectively]. AGTR2 C4599A in mothers, fathers and babies was associated with preeclampsia and this association was only apparent in pregnancies in which the women had a BMI ≥ 25 kg/m(2), suggesting a gene-environment interaction. Copyright © 2012 Elsevier Ltd. All rights reserved.

  18. High purity tocotrienols attenuate atherosclerotic lesion formation in apoE-KO mice.

    PubMed

    Shibata, Akira; Kobayashi, Teiko; Asai, Akira; Eitsuka, Takahiro; Oikawa, Shinichi; Miyazawa, Teruo; Nakagawa, Kiyotaka

    2017-10-01

    Previous studies have demonstrated that tocotrienol (T3) has antiatherogenic effects. However, the T3 preparations used in those studies contained considerable amounts of tocopherol (Toc), which might affect the biological activity of T3. There is little information on the effect of highly purified T3 on atherosclerosis formation. This study investigated the effect of high-purity T3 on atherosclerotic lesion formation and the underlying mechanisms. Male apolipoprotein E knockout (apoE-KO) mice were fed a cholesterol-containing diet either alone or supplemented with T3 concentrate (Toc-free T3) or with α-Toc for 12 weeks. ApoE-KO mice fed the 0.2% T3-supplemented diet showed reduced atherosclerotic lesion formation in the aortic root. The 0.2% T3 diet induced Slc27a1 and Ldlr gene expression levels in the liver, whereas the α-Toc-supplemented diet did not affect those expression levels. T3 was predominantly deposited in fat tissue in the T3 diet-fed mice, whereas α-Toc was preferentially accumulated in liver in the α-Toc diet-fed mice. Considered together, these data demonstrate that dietary T3 exerts anti-atherosclerotic effect in apoE-KO mice. The characteristic tissue distribution and biological effects of T3, that are substantially different from those of Toc, may contribute to the antiatherogenic properties of T3. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. GAL3 receptor KO mice exhibit an anxiety-like phenotype

    PubMed Central

    Brunner, Susanne M.; Farzi, Aitak; Locker, Felix; Holub, Barbara S.; Drexel, Meinrad; Reichmann, Florian; Lang, Andreas A.; Mayr, Johannes A.; Vilches, Jorge J.; Navarro, Xavier; Lang, Roland; Sperk, Günther; Holzer, Peter; Kofler, Barbara

    2014-01-01

    The neuropeptide galanin (GAL) is widely distributed in the central and peripheral nervous systems. It is a modulator of various physiological and pathological processes, and it mediates its effects via three G protein-coupled receptors (GAL1–3 receptors). A role for GAL as a modulator of mood and anxiety was suggested, because GAL and its receptors are highly expressed in limbic brain structures of rodents. In recent years, numerous studies of animal models have suggested an involvement of GAL and GAL1 and GAL2 receptors in anxiety- and depression-related behavior. However, to date, there is sparse literature implicating GAL3 receptors in behavioral functions. Therefore, we studied the behavior of GAL3 receptor-deficient (GAL3-KO) mice to elucidate whether GAL3 receptors are involved in mediating behavior-associated actions of GAL. The GAL3-KO mouse line exhibited normal breeding and physical development. In addition to behavioral tests, phenotypic characterization included analysis of hematology, amino acid profiles, metabolism, and sudomotor function. In contrast to WT littermates, male GAL3-KO mice exhibited an anxiety-like phenotype in the elevated plus maze, open field, and light/dark box tests, and they were less socially affiliated than WT animals to a stranger mouse in a social interaction test. In conclusion, our data suggest involvement of GAL3 receptors in GAL-mediated effects on mood, anxiety, and behavior, making it a possible target for alternative treatment strategies for mood disorders. PMID:24782539

  20. Function of brain α2B-adrenergic receptor characterized with subtype-selective α2B antagonist and KO mice.

    PubMed

    Luhrs, Lauren; Manlapaz, Cynthia; Kedzie, Karen; Rao, Sandhya; Cabrera-Ghayouri, Sara; Donello, John; Gil, Daniel

    2016-12-17

    Noradrenergic signaling, through the α 2A and α 2C adrenergic receptors modulates the cognitive and behavioral symptoms of disorders such as schizophrenia, attention deficit hyperactivity disorder (ADHD), and addiction. However, it is unknown whether the α 2B receptor has any significant role in CNS function. The present study elucidates the potential role of the α 2B receptor in CNS function via the discovery and use of the first subtype-selective α 2B antagonist (AGN-209419), and behavioral analyses of α-receptor knockout (KO) mice. Using AGN-209419 as radioligand, α 2B receptor binding sites were identified within the olfactory bulb, cortex, thalamus, cerebellum, and striatum. Based on the observed expression patterns of α 2 subtypes in the brain, we compared α 2B KO, α 2A KO and α 2C KO mice behavioral phenotypes with their respective wild-type lines in anxiety (plus maze), compulsive (marble burying), and sensorimotor (prepulse inhibition) tasks. α 2B KO mice exhibited increased marble burying and α 2C KO mice exhibited an increased startle response to a pulse stimulus, but otherwise intact prepulse inhibition. To further explore compulsive behavior, we evaluated novelty-induced locomotor hyperactivity and found that α 2B KO and α 2C KO mice exhibited increased locomotion in the open field. Interestingly, when challenged with amphetamine, α 2C KO mice increased activity at lower doses relative to either α 2A KO or WT mice. However, α 2B KO mice exhibited stereotypy at doses of amphetamine that were only locomotor stimulatory to all other genotypes. Following co-administration of AGN-209419 with low-dose amphetamine in WT mice, stereotypy was observed, mimicking the α 2B KO phenotype. These findings suggest that the α 2B receptor is involved in CNS behaviors associated with sensorimotor gating and compulsivity, and may be therapeutically relevant for disorders such as schizophrenia, ADHD, post-traumatic stress disorder, addiction, and

  1. Diacylglycerol Lipase α Knockout Mice Demonstrate Metabolic and Behavioral Phenotypes Similar to Those of Cannabinoid Receptor 1 Knockout Mice

    PubMed Central

    Powell, David R.; Gay, Jason P.; Wilganowski, Nathaniel; Doree, Deon; Savelieva, Katerina V.; Lanthorn, Thomas H.; Read, Robert; Vogel, Peter; Hansen, Gwenn M.; Brommage, Robert; Ding, Zhi-Ming; Desai, Urvi; Zambrowicz, Brian

    2015-01-01

    After creating >4,650 knockouts (KOs) of independent mouse genes, we screened them by high-throughput phenotyping and found that cannabinoid receptor 1 (Cnr1) KO mice had the same lean phenotype published by others. We asked if our KOs of DAG lipase α or β (Dagla or Daglb), which catalyze biosynthesis of the endocannabinoid (EC) 2-arachidonoylglycerol (2-AG), or Napepld, which catalyzes biosynthesis of the EC anandamide, shared the lean phenotype of Cnr1 KO mice. We found that Dagla KO mice, but not Daglb or Napepld KO mice, were among the leanest of 3651 chow-fed KO lines screened. In confirmatory studies, chow- or high fat diet-fed Dagla and Cnr1 KO mice were leaner than wild-type (WT) littermates; when data from multiple cohorts of adult mice were combined, body fat was 47 and 45% lower in Dagla and Cnr1 KO mice, respectively, relative to WT values. By contrast, neither Daglb nor Napepld KO mice were lean. Weanling Dagla KO mice ate less than WT mice and had body weight (BW) similar to pair-fed WT mice, and adult Dagla KO mice had normal activity and VO2 levels, similar to Cnr1 KO mice. Our Dagla and Cnr1 KO mice also had low fasting insulin, triglyceride, and total cholesterol levels, and after glucose challenge had normal glucose but very low insulin levels. Dagla and Cnr1 KO mice also showed similar responses to a battery of behavioral tests. These data suggest: (1) the lean phenotype of young Dagla and Cnr1 KO mice is mainly due to hypophagia; (2) in pathways where ECs signal through Cnr1 to regulate food intake and other metabolic and behavioral phenotypes observed in Cnr1 KO mice, Dagla alone provides the 2-AG that serves as the EC signal; and (3) small molecule Dagla inhibitors with a pharmacokinetic profile similar to that of Cnr1 inverse agonists are likely to mirror the ability of these Cnr1 inverse agonists to lower BW and improve glycemic control in obese patients with type 2 diabetes, but may also induce undesirable neuropsychiatric side

  2. Sucrose-conditioned flavor preferences in sweet ageusic T1r3 and Calhm1 knockout mice.

    PubMed

    Sclafani, Anthony; Marambaud, Philippe; Ackroff, Karen

    2014-03-14

    The present study compared the ability of sweet ageusic T1r3 knockout (KO) and Calhm1 KO mice to acquire preferences for a sucrose-paired flavor as well as for unflavored sucrose. The KO and wildtype (WT) mice were given 24-h one-bottle access to 8% sucrose containing one flavor CS+, e.g., grape) and to water containing a different flavor (CS-, e.g., cherry) over 4 training days. In subsequent two-bottle tests with the flavors in water only, the T1r3 KO and Calhm1 KO mice, like WT mice, preferred the CS+ to the CS-. After training with flavored solutions, both KO groups also preferred unflavored 8% sucrose to water although Calhm1 KO mice required more sugar experience to match the preference of the T1r3 KO mice. These findings demonstrate that Calhm1 KO mice, like T1r3 KO mice and WT mice, are sensitive to the post-oral preference conditioning actions of sucrose and can discriminate sugar from water. Yet, despite their acquired sucrose preferences, the Calhm1 KO and T1r3 KO mice consumed only half as much sugar per day as did WT mice. Thus, sweet taste signaling elements are not needed in the gut for sugar conditioning, but sweet taste signaling in the mouth is essential for the full expression of sugar appetite. Copyright © 2013 Elsevier Inc. All rights reserved.

  3. Orally administered brown seaweed-derived β-glucan effectively restrained development of gastric dysplasia in A4gnt KO mice that spontaneously develop gastric adenocarcinoma.

    PubMed

    Desamero, Mark Joseph; Kakuta, Shigeru; Chambers, James Kenn; Uchida, Kazuyuki; Hachimura, Satoshi; Takamoto, Masaya; Nakayama, Jun; Nakayama, Hiroyuki; Kyuwa, Shigeru

    2018-07-01

    β-Glucan refers to a heterogeneous group of chemically defined storage polysaccharides containing β-(1,3)-d-linked glucose polymers with branches connected by either β-(1,4) or β-(1,6) glycosidic linkage. To date, an extensive amount of scientific evidence supports their multifunctional biological activities, but their potential involvement in the progression of premalignant lesions remains to be clarified. A4gnt KO mice that lack α1,4-N-acetylglucosamine-capped O-glycans in gastric gland mucin are a unique animal model for gastric cancer because the mutant mice spontaneously develop gastric cancer through hyperplasia-dysplasia-adenocarcinoma sequence. In particular, A4gnt KO mice show gastric dysplasia during 10-20 weeks of age. Here we investigated the putative gastro-protective activity of brown seaweed-derived β-glucan (Laminaran) against development of gastric dysplasia, precancerous lesion for gastric cancer in A4gnt KO mice. The mutant mice at 12 weeks of age were randomly assigned into three treatment groups namely, wildtype control + distilled water (normal control), A4gnt KO mice + distilled water (untreated control), and A4gnt KO mice + 100 mg/kg Laminaran. After 3 weeks, the stomach was removed and examined for morphology and gene expression patterns. In contrast to the untreated control group, administration of Laminaran substantially attenuated gastric dysplasia development and counterbalanced the increased induction in cell proliferation and angiogenesis. Furthermore, Laminaran treatment effectively overcame the A4gnt KO-induced alteration in the gene expression profile of selected cytokines as revealed by real-time PCR analysis. Collectively, our present findings indicate that β-glucan can potentially restrain the development of gastric dysplasia to mediate their tissue-preserving activity. Copyright © 2018 Elsevier B.V. All rights reserved.

  4. Massive formation of square array junctions dramatically alters cell shape but does not cause lens opacity in the cav1-KO mice.

    PubMed

    Biswas, Sondip K; Brako, Lawrence; Lo, Woo-Kuen

    2014-08-01

    The wavy square array junctions are composed of truncated aquaporin-0 (AQP0) proteins typically distributed in the deep cortical and nuclear fibers in wild-type lenses. These junctions may help maintain the narrowed extracellular spaces between fiber cells to minimize light scattering. Herein, we investigate the impact of the cell shape changes, due to abnormal formation of extensive square array junctions, on the lens opacification in the caveolin-1 knockout mice. The cav1-KO and wild-type mice at age 1-22 months were used. By light microscopy examinations, cav1-KO lenses at age 1-18 months were transparent in both cortical and nuclear regions, whereas some lenses older than 18 months old exhibited nuclear cataracts. Scanning EM consistently observed the massive formation of ridge-and-valley membrane surfaces in young fibers at approximately 150 μm deep in all cav1-KO lenses studied. In contrast, the typical ridge-and-valleys were only seen in mature fibers deeper than 400 μm in wild-type lenses. The resulting extensive ridge-and-valleys dramatically altered the overall cell shape in cav1-KO lenses. Remarkably, despite dramatic shape changes, these deformed fiber cells remained intact and made close contact with their neighboring cells. By freeze-fracture TEM, ridge-and-valleys exhibited the typical orthogonal arrangement of 6.6 nm square array intramembrane particles and displayed the narrowed extracellular spaces. Immunofluorescence analysis showed that AQP0 C-terminus labeling was significantly decreased in outer cortical fibers in cav1-KO lenses. However, freeze-fracture immunogold labeling showed that the AQP0 C-terminus antibody was sparsely distributed on the wavy square array junctions, suggesting that the cleavage of AQP0 C-termini might not yet be complete. The cav1-KO lenses with nuclear cataracts showed complete cellular breakdown and large globule formation in the lens nucleus. This study suggests that despite dramatic cell shape changes, the

  5. Salty taste deficits in CALHM1 knockout mice.

    PubMed

    Tordoff, Michael G; Ellis, Hillary T; Aleman, Tiffany R; Downing, Arnelle; Marambaud, Philippe; Foskett, J Kevin; Dana, Rachel M; McCaughey, Stuart A

    2014-07-01

    Genetic ablation of calcium homeostasis modulator 1 (CALHM1), which releases adenosine triphosphate from Type 2 taste cells, severely compromises the behavioral and electrophysiological responses to tastes detected by G protein-coupled receptors, such as sweet and bitter. However, the contribution of CALHM1 to salty taste perception is less clear. Here, we evaluated several salty taste-related phenotypes of CALHM1 knockout (KO) mice and their wild-type (WT) controls: 1) In a conditioned aversion test, CALHM1 WT and KO mice had similar NaCl avoidance thresholds. 2) In two-bottle choice tests, CALHM1 WT mice showed the classic inverted U-shaped NaCl concentration-preference function but CALHM1 KO mice had a blunted peak response. 3) In brief-access tests, CALHM1 KO mice showed less avoidance than did WT mice of high concentrations of NaCl, KCl, NH(4)Cl, and sodium lactate (NaLac). Amiloride further ameliorated the NaCl avoidance of CALHM1 KO mice, so that lick rates to a mixture of 1000 mM NaCl + 10 µM amiloride were statistically indistinguishable from those to water. 4) Relative to WT mice, CALHM1 KO mice had reduced chorda tympani nerve activity elicited by oral application of NaCl, NaLac, and sucrose but normal responses to HCl and NH(4)Cl. Chorda tympani responses to NaCl and NaLac were amiloride sensitive in WT but not KO mice. These results reinforce others demonstrating that multiple transduction pathways make complex, concentration-dependent contributions to salty taste perception. One of these pathways depends on CALHM1 to detect hypertonic NaCl in the mouth and signal the aversive taste of concentrated salt. © The Author 2014. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  6. Salty Taste Deficits in CALHM1 Knockout Mice

    PubMed Central

    Ellis, Hillary T.; Aleman, Tiffany R.; Downing, Arnelle; Marambaud, Philippe; Foskett, J. Kevin; Dana, Rachel M.; McCaughey, Stuart A.

    2014-01-01

    Genetic ablation of calcium homeostasis modulator 1 (CALHM1), which releases adenosine triphosphate from Type 2 taste cells, severely compromises the behavioral and electrophysiological responses to tastes detected by G protein–coupled receptors, such as sweet and bitter. However, the contribution of CALHM1 to salty taste perception is less clear. Here, we evaluated several salty taste–related phenotypes of CALHM1 knockout (KO) mice and their wild-type (WT) controls: 1) In a conditioned aversion test, CALHM1 WT and KO mice had similar NaCl avoidance thresholds. 2) In two-bottle choice tests, CALHM1 WT mice showed the classic inverted U-shaped NaCl concentration-preference function but CALHM1 KO mice had a blunted peak response. 3) In brief-access tests, CALHM1 KO mice showed less avoidance than did WT mice of high concentrations of NaCl, KCl, NH4Cl, and sodium lactate (NaLac). Amiloride further ameliorated the NaCl avoidance of CALHM1 KO mice, so that lick rates to a mixture of 1000mM NaCl + 10 µM amiloride were statistically indistinguishable from those to water. 4) Relative to WT mice, CALHM1 KO mice had reduced chorda tympani nerve activity elicited by oral application of NaCl, NaLac, and sucrose but normal responses to HCl and NH4Cl. Chorda tympani responses to NaCl and NaLac were amiloride sensitive in WT but not KO mice. These results reinforce others demonstrating that multiple transduction pathways make complex, concentration-dependent contributions to salty taste perception. One of these pathways depends on CALHM1 to detect hypertonic NaCl in the mouth and signal the aversive taste of concentrated salt. PMID:24846212

  7. Reversal of fragile X phenotypes by manipulation of AβPP/Aβ levels in Fmr1KO mice.

    PubMed

    Westmark, Cara J; Westmark, Pamela R; O'Riordan, Kenneth J; Ray, Brian C; Hervey, Crystal M; Salamat, M Shahriar; Abozeid, Sara H; Stein, Kelsey M; Stodola, Levi A; Tranfaglia, Michael; Burger, Corinna; Berry-Kravis, Elizabeth M; Malter, James S

    2011-01-01

    Fragile X syndrome (FXS) is the most common form of inherited intellectual disability and the leading known genetic cause of autism. Fragile X mental retardation protein (FMRP), which is absent or expressed at substantially reduced levels in FXS, binds to and controls the postsynaptic translation of amyloid β-protein precursor (AβPP) mRNA. Cleavage of AβPP can produce β-amyloid (Aβ), a 39-43 amino acid peptide mis-expressed in Alzheimer's disease (AD) and Down syndrome (DS). Aβ is over-expressed in the brain of Fmr1(KO) mice, suggesting a pathogenic role in FXS. To determine if genetic reduction of AβPP/Aβ rescues characteristic FXS phenotypes, we assessed audiogenic seizures (AGS), anxiety, the ratio of mature versus immature dendritic spines and metabotropic glutamate receptor (mGluR)-mediated long-term depression (LTD) in Fmr1(KO) mice after removal of one App allele. All of these phenotypes were partially or completely reverted to normal. Plasma Aβ(1-42) was significantly reduced in full-mutation FXS males compared to age-matched controls while cortical and hippocampal levels were somewhat increased, suggesting that Aβ is sequestered in the brain. Evolving therapies directed at reducing Aβ in AD may be applicable to FXS and Aβ may serve as a plasma-based biomarker to facilitate disease diagnosis or assess therapeutic efficacy.

  8. Telmisartan regresses left ventricular hypertrophy in caveolin-1 deficient mice

    PubMed Central

    Kreiger, Marta H; Di Lorenzo, Annarita; Teutsch, Christine; Kauser, Katalin; Sessa, William C.

    2011-01-01

    The role of angiotensin II (Ang II) in promoting cardiac hypertrophy is well known, however the role of the Ang II in a spontaneous model of hypertrophy in mice lacking the protein caveolin-1 (Cav- KO) has not been explored. In this study, WT and Cav-1 KO mice were treated with angiotensin receptor blocker (ARB), telmisartan, and cardiac function assessed by echocardiography. Treatment of Cav-1 KO mice with telmisartan significantly improved cardiac function compared to age-matched, vehicle treated Cav-1 KO mice, while telmisartan did not affected cardiac function in WT mice. Both left ventricular (LV) weight to body weight ratios and LV to tibial length ratios were also reverted by telmisartan in Cav-1 KO but not WT mice. LV hypertrophy was associated with increased expression of natriuretic peptides-A and –B, β-myosin heavy chain and TGF-β and telmisartan treatment normalized the expression of these genes. Telmisartan reduced the expression of collagen genes (Col1A and Col3A) and associated perivascular fibrosis in intramyocardial vessels in Cav-1 KO mice. In conclusion, telmisartan treatment reduces indexes of cardiac hypertrophy in this unique genetic model of spontaneous LV hypertrophy. PMID:20585312

  9. Increased anxiety-related behaviour in Hint1 knockout mice.

    PubMed

    Varadarajulu, Jeeva; Lebar, Maria; Krishnamoorthy, Gurumoorthy; Habelt, Sonja; Lu, Jia; Bernard Weinstein, I; Li, Haiyang; Holsboer, Florian; Turck, Christoph W; Touma, Chadi

    2011-07-07

    Several reports have implicated a role for the histidine triad nucleotide-binding protein-1 (Hint1) in psychiatric disorders. We have studied the emotional behaviour of male Hint1 knockout (Hint1 KO) mice in a battery of tests and performed biochemical analyses on brain tissue. The behavioural analysis revealed that Hint1 KO mice exhibit an increased emotionality phenotype compared to wildtype (WT) mice, while no significant differences in locomotion or general exploratory activity were noted. In the elevated plus-maze (EPM) test, the Hint1 KO animals entered the open arms of the apparatus less often than WT littermates. Similarly, in the dark-light box test, Hint1 KO mice spent less time in the lit compartment and the number of entries were reduced, which further confirmed an increased anxiety-related behaviour. Moreover, the Hint1 KO animals showed significantly more struggling and less floating behaviour in the forced swim test (FST), indicating an increased emotional arousal in aversive situations. Hint1 is known as a protein kinase C (PKC) interacting protein. Western blot analysis showed that PKCγ expression was elevated in Hint1 KO compared to WT mice. Interestingly, PKCγ mRNA levels of the two groups did not show a significant difference, implying a post-transcriptional PKCγ regulation. In addition, PKC enzymatic activity was increased in Hint1 KO compared to WT mice. In summary, our results indicate a role for Hint1 and PKCγ in modulating anxiety-related and stress-coping behaviour in mice. Copyright © 2011 Elsevier B.V. All rights reserved.

  10. Estrogen receptor-independent catechol estrogen binding activity: protein binding studies in wild-type, Estrogen receptor-alpha KO, and aromatase KO mice tissues.

    PubMed

    Philips, Brian J; Ansell, Pete J; Newton, Leslie G; Harada, Nobuhiro; Honda, Shin-Ichiro; Ganjam, Venkataseshu K; Rottinghaus, George E; Welshons, Wade V; Lubahn, Dennis B

    2004-06-01

    Primary evidence for novel estrogen signaling pathways is based upon well-documented estrogenic responses not inhibited by estrogen receptor antagonists. In addition to 17beta-E2, the catechol estrogen 4-hydroxyestradiol (4OHE2) has been shown to elicit biological responses independent of classical estrogen receptors in estrogen receptor-alpha knockout (ERalphaKO) mice. Consequently, our research was designed to biochemically characterize the protein(s) that could be mediating the biological effects of catechol estrogens using enzymatically synthesized, radiolabeled 4-hydroxyestrone (4OHE1) and 4OHE2. Scatchard analyses identified a single class of high-affinity (K(d) approximately 1.6 nM), saturable cytosolic binding sites in several ERalphaKO estrogen-responsive tissues. Specific catechol estrogen binding was competitively inhibited by unlabeled catechol estrogens, but not by 17beta-E2 or the estrogen receptor antagonist ICI 182,780. Tissue distribution studies indicated significant binding differences both within and among various tissues in wild-type, ERalphaKO, and aromatase knockout female mice. Ligand metabolism experiments revealed extensive metabolism of labeled catechol estrogen, suggesting that catechol estrogen metabolites were responsible for the specific binding. Collectively, our data provide compelling evidence for the interaction of catechol estrogen metabolites with a novel binding protein that exhibits high affinity, specificity, and selective tissue distribution. The extensive biochemical characterization of this binding protein indicates that this protein may be a receptor, and thus may mediate ERalpha/beta-independent effects of catechol estrogens and their metabolites.

  11. Influence of autoantibodies against AT1 receptor and AGTR1 polymorphisms on candesartan-based antihypertensive regimen: results from the study of optimal treatment in hypertensive patients with anti-AT1-receptor autoantibodies trial.

    PubMed

    Sun, Yanxiang; Liao, Yuhua; Yuan, Yong; Feng, Li; Ma, Shihui; Wei, Feng; Wang, Min; Zhu, Feng

    2014-01-01

    The autoantibodies against angiotensin AT1 receptors (AT1-AAs) in patients with essential hypertension exhibited an agonistic action like angiotensin II and maintained high blood pressure (BP). Angiotensin II receptor gene (AGTR1) polymorphisms were associated with BP response to RAS inhibition in the hypertensive population. Furthermore, the BP response to AT1 receptor blockers varied significantly among individuals with hypertension. We hypothesized that the polymorphisms of the AGTR1 and AT1-AAs might affect antihypertensive response to AT1 receptor blockers based in patients with primary hypertension. Patients who received a candesartan-based regimen came from the SOT-AT1 study (Study of Optimal Treatment in Hypertensive Patients with Anti-AT1-Receptor Autoantibodies). The established enzyme-labeled immunosorbent assay was used to detect AT1-AAs in the sera of the patients. Genotype 3 single nucleotide polymorphisms in AGTR1 gene was used by DNA sequencing. The correlations among AT1-AAs, AGTR1 gene polymorphisms or haplotypes, and the antihypertensive effect candesartan-based were analyzed using SPSS. The percentage of systolic BP reduction that was candesartan-based was greater in AT1-AA positive groups than in AT1-AA negative ones (21 ± 8 vs. 18 ± 9; P = .001). Meanwhile, systolic BP reduction that was candesartan-based was more significant in the group of rs5186 AC genotypes than AA homozygotes after adjusting for other confounding factors (37.55 ± 13.7 vs. 32.47 ± 17.27 mm Hg; adjusted P = .028). Furthermore, haplotypes (GCC) and (AAC) had impacts on the antihypertensive effect of candesartan therapy. The AT1-AAs, AGTR1 gene polymorphisms and haplotypes solely or jointly have influences on candesartan-based antihypertensive response in patients with primary hypertension. Copyright © 2014 American Society of Hypertension. Published by Elsevier Inc. All rights reserved.

  12. Exaggerated phosphorylation of brain tau protein in CRH KO mice exposed to repeated immobilization stress.

    PubMed

    Kvetnansky, Richard; Novak, Petr; Vargovic, Peter; Lejavova, Katarina; Horvathova, Lubica; Ondicova, Katarina; Manz, George; Filipcik, Peter; Novak, Michal; Mravec, Boris

    2016-07-01

    Neuroendocrine and behavioral stress responses are orchestrated by corticotropin-releasing hormone (CRH) and norepinephrine (NE) synthesizing neurons. Recent findings indicate that stress may promote development of neurofibrillary pathology in Alzheimer's disease. Therefore, we investigated relationships among stress, tau protein phosphorylation, and brain NE using wild-type (WT) and CRH-knockout (CRH KO) mice. We assessed expression of phosphorylated tau (p-tau) at the PHF-1 epitope and NE concentrations in the locus coeruleus (LC), A1/C1 and A2/C2 catecholaminergic cell groups, hippocampus, amygdala, nucleus basalis magnocellularis, and frontal cortex of unstressed, singly stressed or repeatedly stressed mice. Moreover, gene expression and protein levels of tyrosine hydroxylase (TH) and CRH receptor mRNA were determined in the LC. Plasma corticosterone levels were also measured. Exposure to a single stress increases tau phosphorylation throughout the brain in WT mice when compared to singly stressed CRH KO animals. In contrast, repeatedly stressed CRH KO mice showed exaggerated tau phosphorylation relative to WT controls. We also observed differences in extent of tau phosphorylation between investigated structures, e.g. the LC and hippocampus. Moreover, CRH deficiency leads to different responses to stress in gene expression of TH, NE concentrations, CRH receptor mRNA, and plasma corticosterone levels. Our data indicate that CRH effects on tau phosphorylation are dependent on whether stress is single or repeated, and differs between brain regions. Our findings indicate that CRH attenuates mechanisms responsible for development of stress-induced tau neuropathology, particularly in conditions of chronic stress. However, the involvement of central catecholaminergic neurons in these mechanisms remains unclear and is in need of further investigation.

  13. Diabetes accelerates retinal ganglion cell dysfunction in mice lacking sigma receptor 1

    PubMed Central

    Ha, Yonju; Saul, Alan; Tawfik, Amany; Zorrilla, Eric P.; Ganapathy, Vadivel

    2012-01-01

    Purpose Sigma receptor 1 (σR1) is a non-opioid transmembrane protein that may act as a molecular chaperone at the endoplasmic reticulum–mitochondrial membrane. Ligands for σR1, such as (+)-pentazocine [(+)-PTZ], confer marked retinal neuroprotection in vivo and in vitro. Recently we analyzed the retinal phenotype of mice lacking σR1 (σR1 KO) and observed normal retinal morphology and function in young mice (5–30 weeks) but diminished negative scotopic threshold responses (nSTRs), retinal ganglion cell (RGC) loss, and disruption of optic nerve axons consistent with inner retinal dysfunction by 1 year. These data led us to test the hypothesis that σR1 may be critical in forestalling chronic retinal stress; diabetes was used as the model of chronic stress. Methods To determine whether σR1 is required for (+)-PTZ neuroprotective effects, primary RGCs isolated from wild-type (WT) and σR1 KO mice were exposed to xanthine–xanthine oxidase (10 µM:2 mU/ml) to induce oxidative stress in the presence or absence of (+)-PTZ. Cell death was evaluated by terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) analysis. To assess effects of chronic stress on RGC function, diabetes was induced in 3-week C57BL/6 (WT) and σR1 KO mice, using streptozotocin to yield four groups: WT nondiabetic (WT non-DB), WT diabetic (WT-DB), σR1 KO non-DB, and σR1 KO-DB. After 12 weeks of diabetes, when mice were 15-weeks old, intraocular pressure (IOP) was recorded, electrophysiologic testing was performed (including detection of nSTRs), and the number of RGCs was counted in retinal histological sections. Results In vitro studies showed that (+)-PTZ could not prevent oxidative stress-induced death of RGCs harvested from σR1 KO mice but afforded robust protection against death of RGCs harvested from WT mice. In the studies of chronic stress induced by diabetes, the IOP measured in the four mouse groups was within the normal range; however, there was a significant

  14. Diabetes accelerates retinal ganglion cell dysfunction in mice lacking sigma receptor 1.

    PubMed

    Ha, Yonju; Saul, Alan; Tawfik, Amany; Zorrilla, Eric P; Ganapathy, Vadivel; Smith, Sylvia B

    2012-01-01

    Sigma receptor 1 (σR1) is a non-opioid transmembrane protein that may act as a molecular chaperone at the endoplasmic reticulum-mitochondrial membrane. Ligands for σR1, such as (+)-pentazocine [(+)-PTZ], confer marked retinal neuroprotection in vivo and in vitro. Recently we analyzed the retinal phenotype of mice lacking σR1 (σR1 KO) and observed normal retinal morphology and function in young mice (5-30 weeks) but diminished negative scotopic threshold responses (nSTRs), retinal ganglion cell (RGC) loss, and disruption of optic nerve axons consistent with inner retinal dysfunction by 1 year. These data led us to test the hypothesis that σR1 may be critical in forestalling chronic retinal stress; diabetes was used as the model of chronic stress. To determine whether σR1 is required for (+)-PTZ neuroprotective effects, primary RGCs isolated from wild-type (WT) and σR1 KO mice were exposed to xanthine-xanthine oxidase (10 µM:2 mU/ml) to induce oxidative stress in the presence or absence of (+)-PTZ. Cell death was evaluated by terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) analysis. To assess effects of chronic stress on RGC function, diabetes was induced in 3-week C57BL/6 (WT) and σR1 KO mice, using streptozotocin to yield four groups: WT nondiabetic (WT non-DB), WT diabetic (WT-DB), σR1 KO non-DB, and σR1 KO-DB. After 12 weeks of diabetes, when mice were 15-weeks old, intraocular pressure (IOP) was recorded, electrophysiologic testing was performed (including detection of nSTRs), and the number of RGCs was counted in retinal histological sections. In vitro studies showed that (+)-PTZ could not prevent oxidative stress-induced death of RGCs harvested from σR1 KO mice but afforded robust protection against death of RGCs harvested from WT mice. In the studies of chronic stress induced by diabetes, the IOP measured in the four mouse groups was within the normal range; however, there was a significant increase in the IOP of σR1 KO

  15. Induction of alternative proinflammatory cytokines accounts for sustained psoriasiform skin inflammation in IL-17C+IL-6KO mice

    PubMed Central

    Fritz, Yi; Klenotic, Philip A.; Swindell, William R.; Yin, ZhiQiang; Groft, Sarah G.; Zhang, Li; Baliwag, Jaymie; Camhi, Maya I.; Diaconu, Doina; Young, Andrew B.; Foster, Alexander M.; Johnston, Andrew; Gudjonsson, Johann E.; McCormick, Thomas S.; Ward, Nicole L.

    2016-01-01

    IL-6 inhibition has been unsuccessful in treating psoriasis, despite high levels of tissue and serum IL-6 in patients. Additionally, de novo psoriasis onset has been reported following IL-6 blockade in rheumatoid arthritis patients. To explore mechanisms underlying these clinical observations, we backcrossed an established psoriasiform mouse model (IL-17C+ mice) with IL-6 deficient mice (IL-17C+KO) and examined the cutaneous phenotype. IL-17C+KO mice initially exhibited decreased skin inflammation, however this decrease was transient and reversed rapidly, concomitant with increases in skin Tnf, Il36α/β/γ, Il24, Epgn and S100a8/a9 to levels higher than those found in IL-17C+ mice. Comparison of IL-17C+ and IL-17C+KO mouse skin transcriptomes with that of human psoriasis skin, revealed significant correlation among transcripts of psoriasis patient skin and IL-17C+KO mouse skin, and confirmed an exacerbation of the inflammatory signature in IL-17C+KO mice that aligns closely with human psoriasis. Transcriptional analyses of IL-17C+ and IL-17C+KO primary keratinocytes confirmed increased expression of proinflammatory molecules, suggesting that in the absence of IL-6, keratinocytes increase production of numerous additional proinflammatory cytokines. These preclinical findings may provide insight into why arthritis patients being treated with IL-6 inhibitors develop new onset psoriasis and why IL-6 blockade for the treatment of psoriasis has not been clinically effective. PMID:27984037

  16. Association and Interaction Effect of AGTR1 and AGTR2 Gene Polymorphisms with Dietary Pattern on Metabolic Risk Factors of Cardiovascular Disease in Malaysian Adults

    PubMed Central

    Yap, Roseline Wai Kuan; Shidoji, Yoshihiro; Yap, Wai Sum; Masaki, Motofumi

    2017-01-01

    Gene-diet interaction using a multifactorial approach is preferred to study the multiple risk factors of cardiovascular disease (CVD). This study examined the association and gene-diet interaction effects of the angiotensin II type 1 receptor (AGTR1) gene (rs5186), and type 2 receptor (AGTR2) gene (rs1403543) polymorphisms on metabolic risk factors of CVD in Malaysian adults. CVD parameters (BMI, blood pressure, glycated hemoglobin, total cholesterol (TC), triglycerides, low-density lipoprotein cholesterol, high-density lipoprotein cholesterol (HDL-C), and TC/HDL-C ratio), and constructed dietary patterns “vegetables, fruits, and soy diet” (VFSD), and “rice, egg, and fish diet” (REFD) were obtained from previous studies. Genotyping analysis was performed by real-time PCR using Taqman probes. The subjects were 507 adults (151 Malays; 179 Chinese; and 177 Indians). Significant genetic associations were obtained on blood lipids for rs5186 in Malays and Chinese, and rs1403543 in Chinese females. The significant gene-diet interaction effects after adjusting for potential confounders were: rs5186 × VFSD on blood pressure in Malays (p = 0.016), and in Chinese on blood lipids for rs5186 × REFD (p = 0.009–0.023), and rs1403543 × VFSD in female subjects (p = 0.001–0.011). Malays and Chinese showed higher risk for blood pressure and/or lipids involving rs5186 and rs1403543 SNPs together with gene-diet interactions, but not Indians. PMID:28792482

  17. Association and Interaction Effect of AGTR1 and AGTR2 Gene Polymorphisms with Dietary Pattern on Metabolic Risk Factors of Cardiovascular Disease in Malaysian Adults.

    PubMed

    Yap, Roseline Wai Kuan; Shidoji, Yoshihiro; Yap, Wai Sum; Masaki, Motofumi

    2017-08-09

    Gene-diet interaction using a multifactorial approach is preferred to study the multiple risk factors of cardiovascular disease (CVD). This study examined the association and gene-diet interaction effects of the angiotensin II type 1 receptor ( AGTR1 ) gene (rs5186), and type 2 receptor ( AGTR2 ) gene (rs1403543) polymorphisms on metabolic risk factors of CVD in Malaysian adults. CVD parameters (BMI, blood pressure, glycated hemoglobin, total cholesterol (TC), triglycerides, low-density lipoprotein cholesterol, high-density lipoprotein cholesterol (HDL-C), and TC/HDL-C ratio), and constructed dietary patterns "vegetables, fruits, and soy diet" (VFSD), and "rice, egg, and fish diet" (REFD) were obtained from previous studies. Genotyping analysis was performed by real-time PCR using Taqman probes. The subjects were 507 adults (151 Malays; 179 Chinese; and 177 Indians). Significant genetic associations were obtained on blood lipids for rs5186 in Malays and Chinese, and rs1403543 in Chinese females. The significant gene-diet interaction effects after adjusting for potential confounders were: rs5186 × VFSD on blood pressure in Malays ( p = 0.016), and in Chinese on blood lipids for rs5186 × REFD ( p = 0.009-0.023), and rs1403543 × VFSD in female subjects ( p = 0.001-0.011). Malays and Chinese showed higher risk for blood pressure and/or lipids involving rs5186 and rs1403543 SNPs together with gene-diet interactions, but not Indians.

  18. Metabolism and Energy Expenditure, But Not Feeding or Glucose Tolerance, Are Impaired in Young Kiss1r KO Female Mice.

    PubMed

    Tolson, Kristen P; Garcia, Christian; Delgado, Iris; Marooki, Nuha; Kauffman, Alexander S

    2016-11-01

    Kisspeptin regulates reproduction via signaling through the receptor, Kiss1r, in GnRH neurons. However, both kisspeptin and Kiss1r are produced in several peripheral tissues, and recent studies have highlighted a role for kisspeptin signaling in metabolism and glucose homeostasis. We recently reported that Kiss1r knockout (KO) mice display a sexually dimorphic metabolic phenotype, with KO females displaying obesity, impaired metabolism, and glucose intolerance at 4-5 months of age. However, it remains unclear when this metabolic phenotype first emerges in development, or which aspects of the pleiotropic phenotype underlie the metabolic defects and which are secondary to the obesity. Here, we studied Kiss1r KO females at different ages, including several weeks before the emergence of body weight (BW) differences and later when obesity is present. We determined that at young adult ages (6 wk old), KO females already exhibit altered adiposity, leptin levels, metabolism, and energy expenditure, despite having normal BWs at this time. In contrast, food intake, water intake, and glucose tolerance are normal at young ages and only show impairments at older adult ages, suggesting that these impairments may be secondary to earlier alterations in metabolism and adiposity. We also demonstrate that, in addition to BW, all other facets of the adult metabolic phenotype persist even when gonadal sex steroids are similar between genotypes. Collectively, these data highlight the developmental emergence of a metabolic phenotype induced by disrupted kisspeptin signaling and reveal that multiple, but not all, aspects of this phenotype are already disrupted before detectable changes in BW.

  19. Induction of Alternative Proinflammatory Cytokines Accounts for Sustained Psoriasiform Skin Inflammation in IL-17C+IL-6KO Mice.

    PubMed

    Fritz, Yi; Klenotic, Philip A; Swindell, William R; Yin, Zhi Qiang; Groft, Sarah G; Zhang, Li; Baliwag, Jaymie; Camhi, Maya I; Diaconu, Doina; Young, Andrew B; Foster, Alexander M; Johnston, Andrew; Gudjonsson, Johann E; McCormick, Thomas S; Ward, Nicole L

    2017-03-01

    IL-6 inhibition has been unsuccessful in treating psoriasis, despite high levels of tissue and serum IL-6 in patients. In addition, de novo psoriasis onset has been reported after IL-6 blockade in patients with rheumatoid arthritis. To explore mechanisms underlying these clinical observations, we backcrossed an established psoriasiform mouse model (IL-17C+ mice) with IL-6-deficient mice (IL-17C+KO) and examined the cutaneous phenotype. IL-17C+KO mice initially exhibited decreased skin inflammation; however, this decrease was transient and reversed rapidly, concomitant with increases in skin Tnf, Il36α/β/γ, Il24, Epgn, and S100a8/a9 to levels higher than those found in IL-17C+ mice. A comparison of IL-17C+ and IL-17C+KO mouse skin transcriptomes with that of human psoriasis skin revealed significant correlation among transcripts of skin of patients with psoriasis and IL-17C+KO mouse skin, and confirmed an exacerbation of the inflammatory signature in IL-17C+KO mice that aligns closely with human psoriasis. Transcriptional analyses of IL-17C+ and IL-17C+KO primary keratinocytes confirmed increased expression of proinflammatory molecules, suggesting that in the absence of IL-6, keratinocytes increase production of numerous additional proinflammatory cytokines. These preclinical findings may provide insight into why patients with arthritis being treated with IL-6 inhibitors develop new onset psoriasis and why IL-6 blockade for the treatment of psoriasis has not been clinically effective. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  20. Evaluation of seasonal influenza vaccines for H1N1pdm09 and type B viruses based on a replication-incompetent PB2-KO virus.

    PubMed

    Ui, Hiroki; Yamayoshi, Seiya; Uraki, Ryuta; Kiso, Maki; Oishi, Kohei; Murakami, Shin; Mimori, Shigetaka; Kawaoka, Yoshihiro

    2017-04-04

    Vaccination is the first line of protection against influenza virus infection in humans. Although inactivated and live-attenuated vaccines are available, each vaccine has drawbacks in terms of immunogenicity and safety. To overcome these issues, our group has developed a replication-incompetent PB2-knockout (PB2-KO) influenza virus that replicates only in PB2-expressing cells. Here we generated PB2-KO viruses possessing the hemagglutinin (HA) and neuraminidase (NA) segments from H1N1pdm09 or type B viruses and tested their vaccine potential. The two PB2-KO viruses propagated efficiently in PB2-expressing cells, and expressed chimeric HA as expected. Virus-specific IgG and IgA antibodies were detected in mice immunized with the viruses, and the immunized mice showed milder clinical signs and/or lower virus replication levels in the respiratory tract upon virus challenge. Our results indicate that these PB2-KO viruses have potential as vaccine candidates. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Analysis of Polymorphism of Angiotensin System Genes (ACE, AGTR1, and AGT) and Gene ITGB3 in Patients with Arterial Hypertension in Combination with Metabolic Syndrome.

    PubMed

    Zotova, T Yu; Kubanova, A P; Azova, M M; Aissa, A Ait; Gigani, O O; Frolov, V A

    2016-07-01

    Changes in the frequencies of genotypes and mutant alleles of ACE, AGTR1, AGT, and ITGB3 genes were analyzed in patients with arterial hypertension coupled with metabolic syndrome (N=15) and compared with population data and corresponding parameters in patients with isolated hypertension (N=15). Increased frequency of genotype ID of ACE gene (hypertension predictor) was confirmed for both groups. In case of isolated hypertension, M235M genotype (gene AGT) was more frequent, in case of hypertension combined with metabolic syndrome, the frequency of genotypes A1166C and C1166C of the gene AGTR1 was higher in comparison with population data. Comparison of mutant allele frequencies in the two groups showed that at the 90% significance level allele T of the AGT gene was more frequent in hypertension coupled with metabolic syndrome (OR=1.26) and genotype A1166A of the AGTR1 gene was more frequent in the group with isolated hypertension.

  2. Direct renin inhibition modulates insulin resistance in caveolin-1-deficient mice

    PubMed Central

    Chuengsamarn, Somlak; Garza, Amanda E.; Krug, Alexander W.; Romero, Jose R.; Adler, Gail K.; Williams, Gordon H.; Pojoga, Luminita H.

    2012-01-01

    Objective To test the hypothesis that aliskiren improves the metabolic phenotype in a genetic mouse model of the metabolic syndrome (the caveolin-1 knock out (KO) mouse). Materials/Methods Eleven-week-old cav-1 KO and genetically matched wild-type (WT) mice were randomized to three treatment groups: placebo (n = 8/group), amlodipine (6 mg/kg/day, n = 18/ group), and aliskiren (50 mg/kg/day, n = 18/ group). After three weeks of treatment, all treatment groups were assessed for several measures of insulin resistance (fasting insulin and glucose, HOMA-IR, and the response to an intraperitoneal glucose tolerance test (ipGTT)) as well as for triglyceride levels and the blood pressure response to treatment. Results Treatment with aliskiren did not affect the ipGTT response but significantly lowered the HOMA-IR and insulin levels in cav-1 KO mice. However, treatment with amlodipine significantly degraded the ipGTT response, as well as the HOMA-IR and insulin levels in the cav-1 KO mice. Aliskiren also significantly lowered triglyceride levels in the cav-1 KO but not in the WT mice. Moreover, aliskiren treatment had a significantly greater effect on blood pressure readings in the cav-1 KO vs. WT mice, and marginally more effective than amlodipine. Conclusions Our results support the hypothesis that aliskiren reduces insulin resistance as indicated by improved HOMA-IR in cav-1 KO mice whereas amlodipine treatment resulted in changes consistent with increased insulin resistance. In addition, aliskiren was substantially more effective in lowering blood pressure in the cav-1 KO mouse model than in WT mice and marginally more effective than amlodipine. PMID:22954672

  3. Fus1 KO Mouse As a Model of Oxidative Stress-Mediated Sporadic Alzheimer's Disease: Circadian Disruption and Long-Term Spatial and Olfactory Memory Impairments

    PubMed Central

    Coronas-Samano, Guillermo; Baker, Keeley L.; Tan, Winston J. T.; Ivanova, Alla V.; Verhagen, Justus V.

    2016-01-01

    Insufficient advances in the development of effective therapeutic treatments of sporadic Alzheimer's Disease (sAD) to date are largely due to the lack of sAD-relevant animal models. While the vast majority of models do recapitulate AD's hallmarks of plaques and tangles by virtue of tau and/or beta amyloid overexpression, these models do not reflect the fact that in sAD (unlike familial AD) these genes are not risk factors per se and that other mechanisms like oxidative stress, metabolic dysregulation and inflammation play key roles in AD etiology. Here we characterize and propose the Fus1 KO mice that lack a mitochondrial protein Fus1/Tusc2 as a new sAD model. To establish sAD relevance, we assessed sAD related deficits in Fus1 KO and WT adult mice of 4–5 months old, the equivalent human age when the earliest cognitive and olfactory sAD symptoms arise. Fus1 KO mice showed oxidative stress (increased levels of ROS, decreased levels of PRDX1), disruption of metabolic homeostasis (decreased levels of ACC2, increased phosphorylation of AMPK), autophagy (decreased levels of LC3-II), PKC (decreased levels of RACK1) and calcium signaling (decreased levels of Calb2) in the olfactory bulb and/or hippocampus. Mice were behaviorally tested using objective and accurate video tracking (Noldus), in which Fus1 KO mice showed clear deficits in olfactory memory (decreased habituation/cross-habituation in the short and long term), olfactory guided navigation memory (inability to reduce their latency to find the hidden cookie), spatial memory (learning impairments on finding the platform in the Morris water maze) and showed more sleep time during the diurnal cycle. Fus1 KO mice did not show clear deficits in olfactory perception (cross-habituation), association memory (passive avoidance) or in species-typical behavior (nest building) and no increased anxiety (open field, light-dark box) or depression/anhedonia (sucrose preference) at this relatively young age. These neurobehavioral

  4. Independent and combined influence of AGTR1 variants and aerobic exercise on oxidative stress in hypertensives.

    PubMed

    Fenty-Stewart, Nicola; Park, Joon-Young; Roth, Stephen M; Hagberg, James M; Basu, Samar; Ferrell, Robert E; Brown, Michael D

    2009-01-01

    Abstract Angiotensin II (AngII), via the AngII type 1 receptor (AT(1)R), contributes to oxidative stress. Aerobic exercise training (AEXT) reduces the risk of cardiovascular (CV) disease, presumably by reducing the grade of oxidative stress. We investigated the independent and combined influence of the AGTR1 A1166C and -825 T/A polymorphisms on oxidative stress and plasma AngII responses to AEXT in pre- and stage 1 hypertensives. Urinary 8-iso-PGF(2alpha) significantly increased with AEXT (p=0.002); however, there were no significant changes in superoxide dismutase activity or AngII levels. There was a significant difference in the change in AngII levels with AEXT between A1166C genotype groups (p=0.04) resulting in a significant interactive effect of the A1166C polymorphism and AEXT on the change in AngII (p<0.05). Only the TT genotype group of the -825 T/A polymorphism had a significant reduction in plasma AngII (p=0.02). Risk allele analysis revealed a significant reduction in plasma AngII (p=0.04) and a significant increase in urinary 8-iso-PGF(2alpha) (p=0.01) with AEXT in individuals with two risk alleles only. Our findings suggest that variation in the AGTR1 gene is associated with differential changes in plasma AngII but not oxidative stress.

  5. Independent and combined influence of AGTR1 variants and aerobic exercise on oxidative stress in hypertensives

    PubMed Central

    FENTY-STEWART, NICOLA; PARK, JOON-YOUNG; ROTH, STEPHEN M.; HAGBERG, JAMES M.; BASU, SAMAR; FERRELL, ROBERT E.; BROWN, MICHAEL D.

    2010-01-01

    Angiotensin II (AngII), via the AngII type 1 receptor (AT1R), contributes to oxidative stress. Aerobic exercise training (AEXT) reduces the risk of cardiovascular (CV) disease, presumably by reducing the grade of oxidative stress. We investigated the independent and combined influence of the AGTR1 A1166C and −825 T/A polymorphisms on oxidative stress and plasma AngII responses to AEXT in pre- and stage 1 hypertensives. Urinary 8-iso-PGF2α significantly increased with AEXT (p=0.002); however, there were no significant changes in superoxide dismutase activity or AngII levels. There was a significant difference in the change in AngII levels with AEXT between A1166C genotype groups (p=0.04) resulting in a significant interactive effect of the A1166C polymorphism and AEXT on the change in AngII (p<0.05). Only the TT genotype group of the −825 T/A polymorphism had a significant reduction in plasma AngII (p=0.02). Risk allele analysis revealed a significant reduction in plasma AngII (p=0.04) and a significant increase in urinary 8-iso-PGF2α (p=0.01) with AEXT in individuals with two risk alleles only. Our findings suggest that variation in the AGTR1 gene is associated with differential changes in plasma AngII but not oxidative stress. PMID:19593696

  6. Phosphodiesterase-1b (Pde1b) knockout mice are resistant to forced swim and tail suspension induced immobility and show upregulation of Pde10a.

    PubMed

    Hufgard, Jillian R; Williams, Michael T; Skelton, Matthew R; Grubisha, Olivera; Ferreira, Filipa M; Sanger, Helen; Wright, Mary E; Reed-Kessler, Tracy M; Rasmussen, Kurt; Duman, Ronald S; Vorhees, Charles V

    2017-06-01

    Major depressive disorder is a leading cause of suicide and disability. Despite this, current antidepressants provide insufficient efficacy in more than 60% of patients. Most current antidepressants are presynaptic reuptake inhibitors; postsynaptic signal regulation has not received as much attention as potential treatment targets. We examined the effects of disruption of the postsynaptic cyclic nucleotide hydrolyzing enzyme, phosphodiesterase (PDE) 1b, on depressive-like behavior and the effects on PDE1B protein in wild-type (WT) mice following stress. Littermate knockout (KO) and WT mice were tested in locomotor activity, tail suspension (TST), and forced swim tests (FST). FST was also used to compare the effects of two antidepressants, fluoxetine and bupropion, in KO versus WT mice. Messenger RNA (mRNA) expression changes were also determined. WT mice underwent acute or chronic stress and markers of stress and PDE1B expression were examined. Pde1b KO mice exhibited decreased TST and FST immobility. When treated with antidepressants, both WT and KO mice showed decreased FST immobility and the effect was additive in KO mice. Mice lacking Pde1b had increased striatal Pde10a mRNA expression. In WT mice, acute and chronic stress upregulated PDE1B expression while PDE10A expression was downregulated after chronic but not acute stress. PDE1B is a potential therapeutic target for depression treatment because of the antidepressant-like phenotype seen in Pde1b KO mice.

  7. A pathophysiological role of TRPV1 in ischemic injury after transient focal cerebral ischemia in mice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miyanohara, Jun; Shirakawa, Hisashi, E-mail: shirakaw@pharm.kyoto-u.ac.jp; Sanpei, Kazuaki

    Transient receptor potential vanilloid 1 (TRPV1) is a non-selective cation channel with high Ca{sup 2+} permeability, which functions as a polymodal nociceptor activated by heat, protons and several vanilloids, including capsaicin and anandamide. Although TRPV1 channels are widely distributed in the mammalian brain, their pathophysiological roles in the brain remain to be elucidated. In this study, we investigated whether TRPV1 is involved in cerebral ischemic injury using a middle cerebral artery (MCA) occlusion model in wild-type (WT) and TRPV1-knockout (KO) mice. For transient ischemia, the left MCA of C57BL/6 mice was occluded for 60 min and reperfused at 1 and 2more » days after ischemia. We found that neurological and motor deficits, and infarct volumes in TRPV1-KO mice were lower than those of WT mice. Consistent with these results, intracerebroventricular injection of a TRPV1 antagonist, capsazepine (20 nmol), 30 min before the onset of ischemia attenuated neurological and motor deficits and improved infarct size without influencing cerebral blood flow in the occluded MCA territory. The protective effect of capsazepine on ischemic brain damage was not observed in TRPV1-KO mice. WT and TRPV1-KO mice did not show any differences with respect to the increased number of Iba1-positive microglia/macrophages, GFAP-positive astrocytes, and Gr1-positive neutrophils at 1 and 2 days after cerebral ischemia. Taken together, we conclude that brain TRPV1 channels are activated by ischemic stroke and cause neurological and motor deficits and infarction after brain ischemia. - Highlights: • We investigated whether TRPV1 is involved in transient ischemic brain damage in mice. • Neurological deficits and infarct volumes were lower in TRPV1-KO mice than in WT mice. • Injection of a TRPV1 antagonist, capsazepine, attenuated neurological deficits and improved infarct size. • No differences in astrocytic or microglial activation were observed between WT and TRPV1-KO

  8. Antidepressant-like effect of losartan involves TRKB transactivation from angiotensin receptor type 2 (AGTR2) and recruitment of FYN.

    PubMed

    Diniz, Cassiano R A F; Casarotto, Plinio C; Fred, Senem M; Biojone, Caroline; Castrén, Eero; Joca, Sâmia R L

    2018-06-01

    The renin-angiotensin system (RAS) is associated with peripheral fluid homeostasis and cardiovascular function, but recent evidence also suggests a functional role in the brain. RAS regulates physiological and behavioral parameters related to the stress response, including depressive symptoms. Apparently, RAS can modulate levels of brain-derived neurotrophic factor (BDNF) and TRKB, which are important in the neurobiology of depression and antidepressant action. However, the interaction between the BDNF/TRKB system and RAS in depression has not been investigated before. Accordingly, in the forced swimming test, we observed an antidepressant-like effect of systemic losartan but not with captopril or enalapril treatment. Moreover, infusion of losartan into the ventral hippocampus (vHC) and prelimbic prefrontal cortex (PL) mimicked the consequences of systemically injected losartan, whereas K252a (a blocker of TRK) infused into these brain areas impaired such effect. PD123319, an antagonist of AT2 receptor (AGTR2), also prevented the systemic losartan effect when infused into PL but not into vHC. Cultured cortical cells of rat embryos revealed that angiotensin II (ANG2), possibly through AGTR2, increased the surface levels of TRKB and its coupling to FYN, a SRC family kinase. Higher Agtr2 levels in cortical cells were reduced after stimulation with glutamate, and only under this condition an interaction between losartan and ANG2 was achieved. TRKB/AGTR2 heterodimers were also observed, in MG87 cells GFP-tagged AGTR2 co-immunoprecipitated with TRKB. Therefore, the antidepressant-like effect of losartan is proposed to occur through a shift of ANG2 towards AGTR2, followed by coupling of TRK/FYN and putative TRKB transactivation. Thus, the blockade of AGTR1 has therapeutic potential as a novel antidepressant therapy. Copyright © 2018 The Author(s). Published by Elsevier Ltd.. All rights reserved.

  9. Production of Mice Deficient in Genes for Interleukin (IL)-1α, IL-1β, IL-1α/β, and IL-1 Receptor Antagonist Shows that IL-1β Is Crucial in Turpentine-induced Fever Development and Glucocorticoid Secretion

    PubMed Central

    Horai, Reiko; Asano, Masahide; Sudo, Katsuko; Kanuka, Hirotaka; Suzuki, Masatoshi; Nishihara, Masugi; Takahashi, Michio; Iwakura, Yoichiro

    1998-01-01

    Interleukin (IL)-1 is a major mediator of inflammation and exerts pleiotropic effects on the neuro-immuno-endocrine system. To elucidate pathophysiological roles of IL-1, we have first produced IL-1α/β doubly deficient (KO) mice together with mice deficient in either the IL-1α, IL-1β, or IL-1 receptor antagonist (IL-1ra) genes. These mice were born healthy, and their growth was normal except for IL-1ra KO mice, which showed growth retardation after weaning. Fever development upon injection with turpentine was suppressed in IL-1β as well as IL-1α/β KO mice, but not in IL-1α KO mice, whereas IL-1ra KO mice showed an elevated response. At this time, expression of IL-1β mRNA in the diencephalon decreased 1.5-fold in IL-1α KO mice, whereas expression of IL-1α mRNA decreased >30-fold in IL-1β KO mice, suggesting mutual induction between IL-1α and IL-1β. This mutual induction was also suggested in peritoneal macrophages stimulated with lipopolysaccharide in vitro. In IL-1β KO mice treated with turpentine, the induction of cyclooxygenase-2 (EC 1.14.99.1) in the diencephalon was suppressed, whereas it was enhanced in IL-1ra KO mice. We also found that glucocorticoid induction 8 h after turpentine treatment was suppressed in IL-1β but not IL-1α KO mice. These observations suggest that IL-1β but not IL-1α is crucial in febrile and neuro-immuno-endocrine responses, and that this is because IL-1α expression in the brain is dependent on IL-1β. The importance of IL-1ra both in normal physiology and under stress is also suggested. PMID:9565638

  10. Production of mice deficient in genes for interleukin (IL)-1alpha, IL-1beta, IL-1alpha/beta, and IL-1 receptor antagonist shows that IL-1beta is crucial in turpentine-induced fever development and glucocorticoid secretion.

    PubMed

    Horai, R; Asano, M; Sudo, K; Kanuka, H; Suzuki, M; Nishihara, M; Takahashi, M; Iwakura, Y

    1998-05-04

    Interleukin (IL)-1 is a major mediator of inflammation and exerts pleiotropic effects on the neuro-immuno-endocrine system. To elucidate pathophysiological roles of IL-1, we have first produced IL-1alpha/beta doubly deficient (KO) mice together with mice deficient in either the IL-1alpha, IL-1beta, or IL-1 receptor antagonist (IL-1ra) genes. These mice were born healthy, and their growth was normal except for IL-1ra KO mice, which showed growth retardation after weaning. Fever development upon injection with turpentine was suppressed in IL-1beta as well as IL-1alpha/beta KO mice, but not in IL-1alpha KO mice, whereas IL-1ra KO mice showed an elevated response. At this time, expression of IL-1beta mRNA in the diencephalon decreased 1.5-fold in IL-1alpha KO mice, whereas expression of IL-1alpha mRNA decreased >30-fold in IL-1beta KO mice, suggesting mutual induction between IL-1alpha and IL-1beta. This mutual induction was also suggested in peritoneal macrophages stimulated with lipopolysaccharide in vitro. In IL-1beta KO mice treated with turpentine, the induction of cyclooxygenase-2 (EC 1.14.99.1) in the diencephalon was suppressed, whereas it was enhanced in IL-1ra KO mice. We also found that glucocorticoid induction 8 h after turpentine treatment was suppressed in IL-1beta but not IL-1alpha KO mice. These observations suggest that IL-1beta but not IL-1alpha is crucial in febrile and neuro-immuno-endocrine responses, and that this is because IL-1alpha expression in the brain is dependent on IL-1beta. The importance of IL-1ra both in normal physiology and under stress is also suggested.

  11. Sensorimotor Gating in Neurotensin-1 Receptor Null Mice

    PubMed Central

    Feifel, D.; Pang, Z.; Shilling, P.D.; Melendez, G.; Schreiber, R.; Button, D.

    2009-01-01

    BACKGROUND Converging evidence has implicated endogenous neurotensin (NT) in the pathophysiology of brain processes relevant to schizophrenia. Prepulse inhibition of the startle reflex (PPI) is a measure of sensorimotor gating and considered to be of strong relevance to neuropsychiatric disorders associated with psychosis and cognitive dysfunction. Mice genetically engineered to not express NT display deficits in PPI that model the PPI deficits seen in schizophrenia patients. NT1 receptors have been most strongly implicated in mediating the psychosis relevant effects of NT such as attenuating PPI deficits. To investigate the role of NT1 receptors in the regulation of PPI, we measured baseline PPI in wildtype (WT) and NT1 knockout (KO) mice. We also tested the effects of amphetamine and dizocilpine, a dopamine agonist and NMDA antagonist, respectively, that reduce PPI as well as the NT1 selective receptor agonist, PD149163, known to increase PPI in rats. METHODS Baseline PPI and acoustic startle response were measured in WT and NT1 knockout KO mice. After baseline testing, mice were tested again after receiving intraperatoneal (IP) saline or one of three doses of amphetamine (1.0, 3.0 and 10.0 mg/kg), dizocilpine (0.3, 1.0 and 3.0 mg/kg) and PD149163 (0.5, 2.0 and 6.0 mg/kg) on separate test days. RESULTS Baseline PPI and acoustic startle response in NT1 KO mice were not significantly different from NT1 WT mice. WT and KO mice exhibited similar responses to the PPI-disrupting effects of dizocilpine and amphetamine. PD149163 significantly facilitated PPI (P < 0.004) and decreased the acoustic startle response (P < 0.001) in WT but not NT1 KO mice. CONCLUSIONS The data does not support the regulation of baseline PPI or the PPI disruptive effects of amphetamine or dizocilpine by endogenous NT acting at the NT1 receptor, although they support the antipsychotic potential of pharmacological activation of NT1 receptors by NT1 agonists. PMID:19596359

  12. IL-1 receptor-antagonist (IL-1Ra) knockout mice show anxiety-like behavior by aging.

    PubMed

    Wakabayashi, Chisato; Numakawa, Tadahiro; Odaka, Haruki; Ooshima, Yoshiko; Kiyama, Yuji; Manabe, Toshiya; Kunugi, Hiroshi; Iwakura, Yoichiro

    2015-07-10

    Interleukin 1 (IL-1) plays a critical role in stress responses, and its mRNA is induced in the brain by restraint stress. Previously, we reported that IL-1 receptor antagonist (IL-1Ra) knockout (KO) mice, which lacked IL-1Ra molecules that antagonize the IL-1 receptor, showed anti-depression-like behavior via adrenergic modulation at the age of 8 weeks. Here, we report that IL-1Ra KO mice display an anxiety-like phenotype that is induced spontaneously by aging in the elevated plus-maze (EPM) test. This anxiety-like phenotype was improved by the administration of diazepam. The expression of the anxiety-related molecule glucocorticoid receptor (GR) was significantly reduced in 20-week-old but not in 11-week-old IL-1Ra KO mice compared to wild-type (WT) littermates. The expression of the mineralocorticoid receptor (MR) was not altered between IL-1Ra KO mice and WT littermates at either 11 or 20 weeks old. Analysis of monoamine concentration in the hippocampus revealed that tryptophan, the serotonin metabolite 5-hydroxyindole acetic acid (5-HIAA), and the dopamine metabolite homovanillic acid (HVA) were significantly increased in 20-week-old IL-1Ra KO mice compared to littermate WT mice. These findings strongly suggest that the anxiety-like behavior observed in older mice was caused by the complicated alteration of monoamine metabolism and/or GR expression in the hippocampus. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  13. Angiotensin-(1-7)/Mas axis modulates fear memory and extinction in mice.

    PubMed

    Lazaroni, Thiago Luiz do Nascimento; Bastos, Cristiane Perácio; Moraes, Márcio Flávio Dutra; Santos, Robson Souza; Pereira, Grace Schenatto

    2016-01-01

    Inappropriate defense-alerting reaction to fear is a common feature of neuropsychiatric diseases. Therefore, impairments in brain circuits, as well as in molecular pathways underlying the neurovegetative adjustments to fear may play an essential role on developing neuropsychiatric disorders. Here we tested the hypothesis that interfering with angiotensin-(1-7) [Ang-(1-7)]/Mas receptor axis homeostasis, which appears to be essential to arterial pressure control, would affect fear memory and extinction. Mas knockout (MasKO) mice, in FVB/N background, showed normal cued fear memory and extinction, but increased freezing in response to context. Next, as FVB/N has poor performance in contextual fear memory, we tested MasKO in mixed 129xC57BL/6 background. MasKO mice behaved similarly to wild-type (WT), but memory extinction was slower in contextual fear conditioning to a weak protocol (1CS/US). In addition, delayed extinction in MasKO mice was even more pronounced after a stronger protocol (3CS/US). We showed previously that Angiotensin II receptor AT1 antagonist, losantan, rescued object recognition memory deficit in MasKO mice. Here, losartan was also effective. Memory extinction was accelerated in MasKO mice after treatment with losartan. In conclusion, we showed for the first time that Ang-(1-7)/Mas axis may modulate fear memory extinction. Furthermore, we suggest MasKO mice as an animal model to study post-traumatic stress disorder (PTSD). Copyright © 2015 Elsevier Inc. All rights reserved.

  14. Comparison of Whole Body SOD1 Knockout with Muscle-Specific SOD1 Knockout Mice Reveals a Role for Nerve Redox Signaling in Regulation of Degenerative Pathways in Skeletal Muscle.

    PubMed

    Sakellariou, Giorgos K; McDonagh, Brian; Porter, Helen; Giakoumaki, Ifigeneia I; Earl, Kate E; Nye, Gareth A; Vasilaki, Aphrodite; Brooks, Susan V; Richardson, Arlan; Van Remmen, Holly; McArdle, Anne; Jackson, Malcolm J

    2018-02-01

    Lack of Cu,Zn-superoxide dismutase (CuZnSOD) in homozygous knockout mice (Sod1 -/- ) leads to accelerated age-related muscle loss and weakness, but specific deletion of CuZnSOD in skeletal muscle (mSod1KO mice) or neurons (nSod1KO mice) resulted in only mild muscle functional deficits and failed to recapitulate the loss of mass and function observed in Sod1 -/- mice. To dissect any underlying cross-talk between motor neurons and skeletal muscle in the degeneration in Sod1 -/- mice, we characterized neuromuscular changes in the Sod1 -/- model compared with mSod1KO mice and examined degenerative molecular mechanisms and pathways in peripheral nerve and skeletal muscle. In contrast to mSod1KO mice, myofiber atrophy in Sod1 -/- mice was associated with increased muscle oxidative damage, neuromuscular junction degeneration, denervation, nerve demyelination, and upregulation of proteins involved in maintenance of myelin sheaths. Proteomic analyses confirmed increased proteasomal activity and adaptive stress responses in muscle of Sod1 -/- mice that were absent in mSod1KO mice. Peripheral nerve from neither Sod1 -/- nor mSod1KO mice showed increased oxidative damage or molecular responses to increased oxidation compared with wild type mice. Differential cysteine (Cys) labeling revealed a specific redox shift in the catalytic Cys residue of peroxiredoxin 6 (Cys47) in the peripheral nerve from Sod1 -/- mice. Innovation and Conclusion: These findings demonstrate that neuromuscular integrity, redox mechanisms, and pathways are differentially altered in nerve and muscle of Sod1 -/- and mSod1KO mice. Results support the concept that impaired redox signaling, rather than oxidative damage, in peripheral nerve plays a key role in muscle loss in Sod1 -/- mice and potentially sarcopenia during aging. Antioxid. Redox Signal. 28, 275-295.

  15. Both chronic treatments by epothilone D and fluoxetine increase the short-term memory and differentially alter the mood status of STOP/MAP6 KO mice.

    PubMed

    Fournet, Vincent; de Lavilléon, Gaetan; Schweitzer, Annie; Giros, Bruno; Andrieux, Annie; Martres, Marie-Pascale

    2012-12-01

    Recent evidence underlines the crucial role of neuronal cytoskeleton in the pathophysiology of psychiatric diseases. In this line, the deletion of STOP/MAP6 (Stable Tubule Only Polypeptide), a microtubule-stabilizing protein, triggers various neurotransmission and behavioral defects, suggesting that STOP knockout (KO) mice could be a relevant experimental model for schizoaffective symptoms. To establish the predictive validity of such a mouse line, in which the brain serotonergic tone is dramatically imbalanced, the effects of a chronic fluoxetine treatment on the mood status of STOP KO mice were characterized. Moreover, we determined the impact, on mood, of a chronic treatment by epothilone D, a taxol-like microtubule-stabilizing compound that has previously been shown to improve the synaptic plasticity deficits of STOP KO mice. We demonstrated that chronic fluoxetine was either antidepressive and anxiolytic, or pro-depressive and anxiogenic, depending on the paradigm used to test treated mutant mice. Furthermore, control-treated STOP KO mice exhibited paradoxical behaviors, compared with their clear-cut basal mood status. Paradoxical fluoxetine effects and control-treated STOP KO behaviors could be because of their hyper-reactivity to acute and chronic stress. Interestingly, both epothilone D and fluoxetine chronic treatments improved the short-term memory of STOP KO mice. Such treatments did not affect the serotonin and norepinephrine transporter densities in cerebral areas of mice. Altogether, these data demonstrated that STOP KO mice could represent a useful model to study the relationship between cytoskeleton, mood, and stress, and to test innovative mood treatments, such as microtubule-stabilizing compounds. © 2012 The Authors Journal of Neurochemistry © 2012 International Society for Neurochemistry.

  16. Oestrogen-deficient female aromatase knockout (ArKO) mice exhibit depressive-like symptomatology.

    PubMed

    Dalla, C; Antoniou, K; Papadopoulou-Daifoti, Z; Balthazart, J; Bakker, J

    2004-07-01

    We recently found that female aromatase knockout (ArKO) mice that are deficient in oestradiol due to a targeted mutation in the aromatase gene show deficits in sexual behaviour that cannot be corrected by adult treatment with oestrogens. We determined here whether these impairments are associated with changes in general levels of activity, anxiety or 'depressive-like' symptomatology due to chronic oestrogen deficiency. We also compared the neurochemical profile of ArKO and wild-type (WT) females, as oestrogens have been shown to modulate dopaminergic, serotonergic and noradrenergic brain activities. ArKO females did not differ from WT in spontaneous motor activity, exploration or anxiety. These findings are in line with the absence of major neurochemical alterations in hypothalamus, prefrontal cortex or striatum, which are involved in the expression of these behaviours. By contrast, ArKO females displayed decreased active behaviours, such as struggling and swimming, and increased passive behaviours, such as floating, in repeated sessions of the forced swim test, indicating that these females exhibit 'depressive-like' symptoms. Adult treatment with oestradiol did not reverse the behavioural deficits observed in the forced swim test, suggesting that they may be due to the absence of oestradiol during development. Accordingly, an increased serotonergic activity was observed in the hippocampus of ArKO females compared with WT, which was also not reversed by adult oestradiol treatment. The possible organizational role of oestradiol on the hippocampal serotonergic system and the 'depressive-like' profile of ArKO females provide new insights into the pathophysiology of depression and the increased vulnerability of women to depression.

  17. Behavioral and electrophysiological characterization of Dyt1 heterozygous knockout mice.

    PubMed

    Yokoi, Fumiaki; Chen, Huan-Xin; Dang, Mai Tu; Cheetham, Chad C; Campbell, Susan L; Roper, Steven N; Sweatt, J David; Li, Yuqing

    2015-01-01

    DYT1 dystonia is an inherited movement disorder caused by mutations in DYT1 (TOR1A), which codes for torsinA. Most of the patients have a trinucleotide deletion (ΔGAG) corresponding to a glutamic acid in the C-terminal region (torsinA(ΔE)). Dyt1 ΔGAG heterozygous knock-in (KI) mice, which mimic ΔGAG mutation in the endogenous gene, exhibit motor deficits and deceased frequency of spontaneous excitatory post-synaptic currents (sEPSCs) and normal theta-burst-induced long-term potentiation (LTP) in the hippocampal CA1 region. Although Dyt1 KI mice show decreased hippocampal torsinA levels, it is not clear whether the decreased torsinA level itself affects the synaptic plasticity or torsinA(ΔE) does it. To analyze the effect of partial torsinA loss on motor behaviors and synaptic transmission, Dyt1 heterozygous knock-out (KO) mice were examined as a model of a frame-shift DYT1 mutation in patients. Consistent with Dyt1 KI mice, Dyt1 heterozygous KO mice showed motor deficits in the beam-walking test. Dyt1 heterozygous KO mice showed decreased hippocampal torsinA levels lower than those in Dyt1 KI mice. Reduced sEPSCs and normal miniature excitatory post-synaptic currents (mEPSCs) were also observed in the acute hippocampal brain slices from Dyt1 heterozygous KO mice, suggesting that the partial loss of torsinA function in Dyt1 KI mice causes action potential-dependent neurotransmitter release deficits. On the other hand, Dyt1 heterozygous KO mice showed enhanced hippocampal LTP, normal input-output relations and paired pulse ratios in the extracellular field recordings. The results suggest that maintaining an appropriate torsinA level is important to sustain normal motor performance, synaptic transmission and plasticity. Developing therapeutics to restore a normal torsinA level may help to prevent and treat the symptoms in DYT1 dystonia.

  18. Behavioral and Electrophysiological Characterization of Dyt1 Heterozygous Knockout Mice

    PubMed Central

    Yokoi, Fumiaki; Chen, Huan-Xin; Dang, Mai Tu; Cheetham, Chad C.; Campbell, Susan L.; Roper, Steven N.; Sweatt, J. David; Li, Yuqing

    2015-01-01

    DYT1 dystonia is an inherited movement disorder caused by mutations in DYT1 (TOR1A), which codes for torsinA. Most of the patients have a trinucleotide deletion (ΔGAG) corresponding to a glutamic acid in the C-terminal region (torsinAΔE). Dyt1 ΔGAG heterozygous knock-in (KI) mice, which mimic ΔGAG mutation in the endogenous gene, exhibit motor deficits and deceased frequency of spontaneous excitatory post-synaptic currents (sEPSCs) and normal theta-burst-induced long-term potentiation (LTP) in the hippocampal CA1 region. Although Dyt1 KI mice show decreased hippocampal torsinA levels, it is not clear whether the decreased torsinA level itself affects the synaptic plasticity or torsinAΔE does it. To analyze the effect of partial torsinA loss on motor behaviors and synaptic transmission, Dyt1 heterozygous knock-out (KO) mice were examined as a model of a frame-shift DYT1 mutation in patients. Consistent with Dyt1 KI mice, Dyt1 heterozygous KO mice showed motor deficits in the beam-walking test. Dyt1 heterozygous KO mice showed decreased hippocampal torsinA levels lower than those in Dyt1 KI mice. Reduced sEPSCs and normal miniature excitatory post-synaptic currents (mEPSCs) were also observed in the acute hippocampal brain slices from Dyt1 heterozygous KO mice, suggesting that the partial loss of torsinA function in Dyt1 KI mice causes action potential-dependent neurotransmitter release deficits. On the other hand, Dyt1 heterozygous KO mice showed enhanced hippocampal LTP, normal input-output relations and paired pulse ratios in the extracellular field recordings. The results suggest that maintaining an appropriate torsinA level is important to sustain normal motor performance, synaptic transmission and plasticity. Developing therapeutics to restore a normal torsinA level may help to prevent and treat the symptoms in DYT1 dystonia. PMID:25799505

  19. The role of T1r3 and Trpm5 in carbohydrate-induced obesity in mice

    PubMed Central

    Glendinning, John I.; Gillman, Jennifer; Zamer, Haley; Margolskee, Robert F.; Sclafani, Anthony

    2012-01-01

    We examined the role of T1r3 and Trpm5 taste signaling proteins in carbohydrate-induced overeating and obesity. T1r3, encoded by Tas1r3, is part of the T1r2+T1r3 sugar taste receptor, while Trpm5 mediates signaling for G protein-coupled receptors in taste cells. It is known that C57BL/6 wild-type (WT) and Tas1r3 knock-out (KO) mice are attracted to the taste of Polycose (a glucose polymer), but not sucrose. In contrast, Trpm5 KO mice are not attracted to the taste of sucrose or Polycose. In Experiment 1, we maintained the WT, Tas1r3 KO and Trpm5 KO mice on one of three diets for 38 days: lab chow plus water (Control diet); chow, water and 34% Polycose solution (Polycose diet); or chow, water and 34% sucrose solution (Sucrose diet). The WT and Tas1r3 KO mice overconsumed the Polycose diet and became obese. The WT and Tas1r3 KO mice also overconsumed the Sucrose diet, but only the WT mice became obese. The Trpm5 KO mice, in contrast, showed little or no overeating on the Sucrose and Polycose diets, and gained slightly or significantly less weight than WT mice on these diets. In Experiment 2, we asked whether the Tas1r3 KO mice exhibited impaired weight gain on the Sucrose diet because it was insipid. To test this hypothesis, we maintained the WT and Tas1r3 KO mice on one of two diets for 38 days: chow, water and a dilute (1%) but highly palatable Intralipid emulsion (Control diet); or chow, water and a 34% sucrose + 1% Intralipid solution (Suc+IL diet). The WT and Tas1r3 KO mice both gained weight and became obese on the Suc+IL diet. Our results suggest that nutritive solutions must be highly palatable to cause carbohydrate-induced obesity in mice, and that palatability produces this effect in part by enhancing nutrient utilization. PMID:22683548

  20. Histone acetylation rescues contextual fear conditioning in nNOS KO mice and accelerates extinction of cued fear conditioning in wild type mice.

    PubMed

    Itzhak, Yossef; Anderson, Karen L; Kelley, Jonathan B; Petkov, Martin

    2012-05-01

    Epigenetic regulation of chromatin structure is an essential molecular mechanism that contributes to the formation of synaptic plasticity and long-term memory (LTM). An important regulatory process of chromatin structure is acetylation and deacetylation of histone proteins. Inhibition of histone deacetylase (HDAC) increases acetylation of histone proteins and facilitate learning and memory. Nitric oxide (NO) signaling pathway has a role in synaptic plasticity, LTM and regulation of histone acetylation. We have previously shown that NO signaling pathway is required for contextual fear conditioning. The present study investigated the effects of systemic administration of the HDAC inhibitor sodium butyrate (NaB) on fear conditioning in neuronal nitric oxide synthase (nNOS) knockout (KO) and wild type (WT) mice. The effect of single administration of NaB on total H3 and H4 histone acetylation in hippocampus and amygdala was also investigated. A single administration of NaB prior to fear conditioning (a) rescued contextual fear conditioning of nNOS KO mice and (b) had long-term (weeks) facilitatory effect on the extinction of cued fear memory of WT mice. The facilitatory effect of NaB on extinction of cued fear memory of WT mice was confirmed in a study whereupon NaB was administered during extinction. Results suggest that (a) the rescue of contextual fear conditioning in nNOS KO mice is associated with NaB-induced increase in H3 histone acetylation and (b) the accelerated extinction of cued fear memory in WT mice is associated with NaB-induced increase in H4 histone acetylation. Hence, a single administration of HDAC inhibitor may rescue NO-dependent cognitive deficits and afford a long-term accelerating effect on extinction of fear memory of WT mice. Copyright © 2012 Elsevier Inc. All rights reserved.

  1. K+ channel TASK-1 knockout mice show enhanced sensitivities to ataxic and hypnotic effects of GABA(A) receptor ligands.

    PubMed

    Linden, Anni-Maija; Aller, M Isabel; Leppä, Elli; Rosenberg, Per H; Wisden, William; Korpi, Esa R

    2008-10-01

    TASK two-pore-domain leak K(+) channels occur throughout the brain. However, TASK-1 and TASK-3 knockout (KO) mice have few neurological impairments and only mildly reduced sensitivities to inhalational anesthetics, contrasting with the anticipated functions and importance of these channels. TASK-1/-3 channel expression can compensate for the absence of GABA(A) receptors in GABA(A) alpha6 KO mice. To investigate the converse, we analyzed the behavior of TASK-1 and -3 KO mice after administering drugs with preferential efficacies at GABA(A) receptor subtypes: benzodiazepines (diazepam and flurazepam, active at alpha1betagamma2, alpha2betagamma2, alpha3betagamma2, and alpha5betagamma2 subtypes), zolpidem (alpha1betagamma2 subtype), propofol (beta2-3-containing receptors), gaboxadol (alpha4betadelta and alpha6betadelta subtypes), pregnanolone, and pentobarbital (many subtypes). TASK-1 KO mice showed increased motor impairment in rotarod and beam-walking tests after diazepam and flurazepam administration but not after zolpidem. They also showed prolonged loss of righting reflex induced by propofol and pentobarbital. Autoradiography indicated no change in GABA(A) receptor ligand binding levels. These altered behavioral responses to GABAergic drugs suggest functional up-regulation of alpha2beta2/3gamma2 and alpha3beta2/3gamma2 receptor subtypes in TASK-1 KO mice. In addition, female, but not male, TASK-1 KO mice were more sensitive to gaboxadol, suggesting an increased influence of alpha4betadelta or alpha6betadelta subtypes. The benzodiazepine sensitivity of TASK-3 KO mice was marginally increased. Our results underline that TASK-1 channels perform such key functions in the brain that compensation is needed for their absence. Furthermore, because inhalation anesthetics act partially through GABA(A) receptors, the up-regulation of GABA(A) receptor function in TASK-1 KO mice might mask TASK-1 channel's significance as a target for inhalation anesthetics.

  2. MicroRNA and Transcriptomic Profiling Showed miRNA-Dependent Impairment of Systemic Regulation and Synthesis of Biomolecules in Rag2 KO Mice.

    PubMed

    Reza, Abu Musa Md Talimur; Choi, Yun-Jung; Kim, Jin-Hoi

    2018-02-27

    The Rag2 knockout (KO) mouse is a well-established immune-compromised animal model for biomedical research. A comparative study identified the deregulated expression of microRNAs (miRNAs) and messenger RNAs (mRNAs) in Rag2 KO mice. However, the interaction between deregulated genes and miRNAs in the alteration of systemic (cardiac, renal, hepatic, nervous, and hematopoietic) regulations and the synthesis of biomolecules (such as l-tryptophan, serotonin, melatonin, dopamine, alcohol, noradrenaline, putrescine, and acetate) are unclear. In this study, we analyzed both miRNA and mRNA expression microarray data from Rag2 KO and wild type mice to investigate the possible role of miRNAs in systemic regulation and biomolecule synthesis. A notable finding obtained from this analysis is that the upregulation of several genes which are target molecules of the downregulated miRNAs in Rag2 KO mice, can potentially trigger the degradation of l-tryptophan, thereby leading to the systemic impairment and alteration of biomolecules synthesis as well as changes in behavioral patterns (such as stress and fear responses, and social recognition memory) in Rag2 gene-depleted mice. These findings were either not observed or not explicitly described in other published Rag2 KO transcriptome analyses. In conclusion, we have provided an indication of miRNA-dependent regulations of clinical and pathological conditions in cardiac, renal, hepatic, nervous, and hematopoietic systems in Rag2 KO mice. These results may significantly contribute to the prediction of clinical disease caused by Rag2 deficiency.

  3. Sterol O-acyltransferase 1 deficiency improves defective insulin signaling in the brains of mice fed a high-fat diet.

    PubMed

    Xu, Ning; Meng, Hao; Liu, Tian-Yi; Feng, Ying-Li; Qi, Yuan; Zhang, Dong-Huan; Wang, Hong-Lei

    2018-05-05

    Insulin resistance induced by a high-fat diet (HFD) is related to metabolic diseases, and sterol O-acyltransferase 1 (SOAT1) is a key enzyme for the biosynthesis of cholesteryl ester. In the present study, wild-type (WT) mice and SOAT1-knockout (KO) mice with a C57BL6 background fed a HFD were used to explore the role of SOAT1 in the hypothalamus. The results show that the WT mice exhibited a significant increase in body weight as well as hepatic histologic changes; they also had a lower glucose and insulin tolerance than the WT mice fed a normal diet. However, the metabolic syndrome was attenuated in the SOAT1-KO HFD-fed mice. With regard to brain function, the SOAT1-KO HFD-fed mice showed improved cognitive function; they also manifested reduced levels of pro-inflammatory cytokines, including tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), and IL-6, which would otherwise be raised by a HFD. In addition, the HFD led to the overexpression of GFAP and phosphorylated NF-κB in the hypothalamus, changes that were reversed in the SOAT1-KO HFD-fed mice. Moreover, SOAT1-KO mice improved HFD-caused defective hypothalamic insulin resistance, as evidenced by the upregulation of p-insulin receptor (INSR), p-AKT and p-glycogen synthase kinase (GSK)-3β, while the downregulation of p-AMP-activated protein kinase (AMPK)-α and p-acetyl-CoA carboxylase (ACC)-α. In addition, similar results were observed in high fructose (HFR)-stimulated astrocytes (ASTs) isolated from WT or KO mice. These results suggest that SOAT1 plays an important role in hypothalamic insulin sensitivity, linked to cognitive impairment, in HFD-fed mice. Copyright © 2018. Published by Elsevier Inc.

  4. Excitability is increased in hippocampal CA1 pyramidal cells of Fmr1 knockout mice

    PubMed Central

    Luque, M. Angeles; Beltran-Matas, Pablo; Marin, M. Carmen; Torres, Blas

    2017-01-01

    Fragile X syndrome (FXS) is caused by a failure of neuronal cells to express the gene encoding the fragile mental retardation protein (FMRP). Clinical features of the syndrome include intellectual disability, learning impairment, hyperactivity, seizures and anxiety. Fmr1 knockout (KO) mice do not express FMRP and, as a result, reproduce some FXS behavioral abnormalities. While intrinsic and synaptic properties of excitatory cells in various part of the brain have been studied in Fmr1 KO mice, a thorough analysis of action potential characteristics and input-output function of CA1 pyramidal cells in this model is lacking. With a view to determining the effects of the absence of FMRP on cell excitability, we studied rheobase, action potential duration, firing frequency–current intensity relationship and action potential after-hyperpolarization (AHP) in CA1 pyramidal cells of the hippocampus of wild type (WT) and Fmr1 KO male mice. Brain slices were prepared from 8- to 12-week-old mice and the electrophysiological properties of cells recorded. Cells from both groups had similar resting membrane potentials. In the absence of FMRP expression, cells had a significantly higher input resistance, while voltage threshold and depolarization voltage were similar in WT and Fmr1 KO cell groups. No changes were observed in rheobase. The action potential duration was longer in the Fmr1 KO cell group, and the action potential firing frequency evoked by current steps of the same intensity was higher. Moreover, the gain (slope) of the relationship between firing frequency and injected current was 1.25-fold higher in the Fmr1 KO cell group. Finally, AHP amplitude was significantly reduced in the Fmr1 KO cell group. According to these data, FMRP absence increases excitability in hippocampal CA1 pyramidal cells. PMID:28931075

  5. Fatty acid desaturase 1 knockout mice are lean with improved glycemic control and decreased development of atheromatous plaque

    PubMed Central

    Powell, David R; Gay, Jason P; Smith, Melinda; Wilganowski, Nathaniel; Harris, Angela; Holland, Autumn; Reyes, Maricela; Kirkham, Laura; Kirkpatrick, Laura L; Zambrowicz, Brian; Hansen, Gwenn; Platt, Kenneth A; van Sligtenhorst, Isaac; Ding, Zhi-Ming; Desai, Urvi

    2016-01-01

    Delta-5 desaturase (D5D) and delta-6 desaturase (D6D), encoded by fatty acid desaturase 1 (FADS1) and FADS2 genes, respectively, are enzymes in the synthetic pathways for ω3, ω6, and ω9 polyunsaturated fatty acids (PUFAs). Although PUFAs appear to be involved in mammalian metabolic pathways, the physiologic effect of isolated D5D deficiency on these pathways is unclear. After generating >4,650 knockouts (KOs) of independent mouse genes and analyzing them in our high-throughput phenotypic screen, we found that Fads1 KO mice were among the leanest of 3,651 chow-fed KO lines analyzed for body composition and were among the most glucose tolerant of 2,489 high-fat-diet-fed KO lines analyzed by oral glucose tolerance test. In confirmatory studies, chow- or high-fat-diet-fed Fads1 KO mice were leaner than wild-type (WT) littermates; when data from multiple cohorts of adult mice were combined, body fat was 38% and 31% lower in Fads1 male and female KO mice, respectively. Fads1 KO mice also had lower glucose and insulin excursions during oral glucose tolerance tests along with lower fasting glucose, insulin, triglyceride, and total cholesterol levels. In additional studies using a vascular injury model, Fads1 KO mice had significantly decreased femoral artery intima/media ratios consistent with a decreased inflammatory response in their arterial wall. Based on this result, we bred Fads1 KO and WT mice onto an ApoE KO background and fed them a Western diet for 14 weeks; in this atherogenic environment, aortic trees of Fads1 KO mice had 40% less atheromatous plaque compared to WT littermates. Importantly, PUFA levels measured in brain and liver phospholipid fractions of Fads1 KO mice were consistent with decreased D5D activity and normal D6D activity. The beneficial metabolic phenotype demonstrated in Fads1 KO mice suggests that selective D5D inhibitors may be useful in the treatment of human obesity, diabetes, and atherosclerotic cardiovascular disease. PMID:27382320

  6. A distinctive patchy osteomalacia characterises Phospho1-deficient mice.

    PubMed

    Boyde, Alan; Staines, Katherine A; Javaheri, Behzad; Millan, Jose Luis; Pitsillides, Andrew A; Farquharson, Colin

    2017-08-01

    The phosphatase PHOSPHO1 is involved in the initiation of biomineralisation. Bones in Phospho1 knockout (KO) mice show histological osteomalacia with frequent bowing of long bones and spontaneous fractures: they contain less mineral, with smaller mineral crystals. However, the consequences of Phospho1 ablation on the microscale structure of bone are not yet fully elucidated. Tibias and femurs obtained from wild-type and Phospho1 null (KO) mice (25-32 weeks old) were embedded in PMMA, cut and polished to produce near longitudinal sections. Block surfaces were studied using 20 kV backscattered-electron (BSE) imaging, and again after iodine staining to reveal non-mineralised matrix and cellular components. For 3D characterisation, we used X-ray micro-tomography. Bones opened with carbide milling tools to expose endosteal surfaces were macerated using an alkaline bacterial pronase enzyme detergent, 5% hydrogen peroxide and 7% sodium hypochlorite solutions to produce 3D surfaces for study with 3D BSE scanning electron microscopy (SEM). Extensive regions of both compact cortical and trabecular bone matrix in Phospho1 KO mice contained no significant mineral and/or showed arrested mineralisation fronts, characterised by a failure in the fusion of the calcospherite-like, separately mineralising, individual micro-volumes within bone. Osteoclastic resorption of the uncalcified matrix in Phospho1 KO mice was attenuated compared with surrounding normally mineralised bone. The extent and position of this aberrant biomineralisation varied considerably between animals, contralateral limbs and anatomical sites. The most frequent manifestation lay, however, in the nearly complete failure of mineralisation in the bone surrounding the numerous transverse blood vessel canals in the cortices. In conclusion, SEM disclosed defective mineralising fronts and extensive patchy osteomalacia, which has previously not been recognised. These data further confirm the role of this phosphatase

  7. Unusual social behavior in HPC-1/syntaxin1A knockout mice is caused by disruption of the oxytocinergic neural system.

    PubMed

    Fujiwara, Tomonori; Sanada, Masumi; Kofuji, Takefumi; Akagawa, Kimio

    2016-07-01

    HPC-1/syntaxin1A (STX1A), a neuronal soluble N-ethylmaleimide-sensitive fusion attachment protein receptor, contributes to neural function in the CNS by regulating transmitter release. Recent studies reported that STX1A is associated with human neuropsychological disorders, such as autism spectrum disorder and attention deficit hyperactivity disorder. Previously, we showed that STX1A null mutant mice (STX1A KO) exhibit neuropsychological abnormalities, such as fear memory deficits, attenuation of latent inhibition, and unusual social behavior. These observations suggested that STX1A may be involved in the neuropsychological basis of these abnormalities. Here, to study the neural basis of social behavior, we analyzed the profile of unusual social behavior in STX1A KO with a social novelty preference test, which is a useful method for quantification of social behavior. Interestingly, the unusual social behavior in STX1A KO was partially rescued by intracerebroventricular administration of oxytocin (OXT). In vivo microdialysis studies revealed that the extracellular OXT concentration in the CNS of STX1A KO was significantly lower compared with wild-type mice. Furthermore, dopamine-induced OXT release was reduced in STX1A KO. These results suggested that STX1A plays an important role in social behavior through regulation of the OXTergic neural system. Dopamine (DA) release is reduced in CNS of syntaxin1A null mutant mice (STX1A KO). Unusual social behavior was observed in STX1A KO. We found that oxytocin (OXT) release, which was stimulated by DA, was reduced and was rescued the unusual social behavior in STX1A KO was rescued by OXT. These results indicated that STX1A plays an important role in promoting social behavior through regulation of DA-induced OXT release in amygdala. © 2016 International Society for Neurochemistry.

  8. Glutathione-S-transferase A3 knockout mice are sensitive to acute cytotoxic and genotoxic effects of aflatoxin B1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ilic, Zoran, E-mail: zxi01@health.state.ny.u; Crawford, Dana, E-mail: crawfod@mail.amc.ed; Egner, Patricia A., E-mail: pegner@jhsph.ed

    Aflatoxin B1 (AFB1) is a major risk factor for hepatocellular carcinoma (HCC) in humans. However, mice, a major animal model for the study of AFB1 carcinogenesis, are resistant, due to high constitutive expression, in the mouse liver, of glutathione S-transferase A3 subunit (mGSTA3) that is lacking in humans. Our objective was to establish that a mouse model for AFB1 toxicity could be used to study mechanisms of toxicity that are relevant for human disease, i.e., an mGSTA3 knockout (KO) mouse that responds to toxicants such as AFB1 in a manner similar to humans. Exons 3-6 of the mGSTA3 were replacedmore » with a neomycin cassette by homologous recombination. Southern blotting, RT-PCR, Western blotting, and measurement of AFB1-N{sup 7}-DNA adduct formation were used to evaluate the mGSTA3 KO mice. The KO mice have deletion of exons 3-6 of the mGSTA3 gene, as expected, as well as a lack of mGSTA3 expression at the mRNA and protein levels. Three hours after injection of 5 mg/kg AFB1, mGSTA3 KO mice have more than 100-fold more AFB1-N{sup 7}-DNA adducts in their livers than do similarly treated wild-type (WT) mice. In addition, the mGSTA3 KO mice die of massive hepatic necrosis, at AFB1 doses that have minimal toxic effects in WT mice. We conclude that mGSTA3 KO mice are sensitive to the acute cytotoxic and genotoxic effects of AFB1, confirming the crucial role of GSTA3 subunit in protection of normal mice against AFB1 toxicity. We propose the mGSTA3 KO mouse as a useful model with which to study the interplay of risk factors leading to HCC development in humans, as well as for testing of additional possible functions of mGSTA3.« less

  9. p21{sup WAF1/Cip1/Sdi1} knockout mice respond to doxorubicin with reduced cardiotoxicity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Terrand, Jerome; Xu, Beibei; Morrissy, Steve

    2011-11-15

    Doxorubicin (Dox) is an antineoplastic agent that can cause cardiomyopathy in humans and experimental animals. As an inducer of reactive oxygen species and a DNA damaging agent, Dox causes elevated expression of p21{sup WAF1/Cip1/Sdi1} (p21) gene. Elevated levels of p21 mRNA and p21 protein have been detected in the myocardium of mice following Dox treatment. With chronic treatment of Dox, wild type (WT) animals develop cardiomyopathy evidenced by elongated nuclei, mitochondrial swelling, myofilamental disarray, reduced cardiac output, reduced ejection fraction, reduced left ventricular contractility, and elevated expression of ANF gene. In contrast, p21 knockout (p21KO) mice did not show significantmore » changes in the same parameters in response to Dox treatment. In an effort to understand the mechanism of the resistance against Dox induced cardiomyopathy, we measured levels of antioxidant enzymes and found that p21KO mice did not contain elevated basal or inducible levels of glutathione peroxidase and catalase. Measurements of 6 circulating cytokines indicated elevation of IL-6, IL-12, IFN{gamma} and TNF{alpha} in Dox treated WT mice but not p21KO mice. Dox induced elevation of IL-6 mRNA was detected in the myocardium of WT mice but not p21KO mice. While the mechanism of the resistance against Dox induced cardiomyopathy remains unclear, lack of inflammatory response may contribute to the observed cardiac protection in p21KO mice. -- Highlights: Black-Right-Pointing-Pointer Doxorubicin induces p21 elevation in the myocardium. Black-Right-Pointing-Pointer Doxorubicin causes dilated cardiomyopathy in wild type mice. Black-Right-Pointing-Pointer p21 Knockout mice are resistant against doxorubicin induced cardiomyopathy. Black-Right-Pointing-Pointer Lack of inflammatory response correlates with the resistance in p21 knockout mice.« less

  10. Parturition failure in mice lacking Mamld1

    PubMed Central

    Miyado, Mami; Miyado, Kenji; Katsumi, Momori; Saito, Kazuki; Nakamura, Akihiro; Shihara, Daizou; Ogata, Tsutomu; Fukami, Maki

    2015-01-01

    In mice, the onset of parturition is triggered by a rapid decline in circulating progesterone. Progesterone withdrawal occurs as a result of functional luteolysis, which is characterized by an increase in the enzymatic activity of 20α-hydroxysteroid dehydrogenase (20α-HSD) in the corpus luteum and is mediated by the prostaglandin F2α (PGF2α) signaling. Here, we report that the genetic knockout (KO) of Mamld1, which encodes a putative non-DNA-binding regulator of testicular steroidogenesis, caused defective functional luteolysis and subsequent parturition failure and neonatal deaths. Progesterone receptor inhibition induced the onset of parturition in pregnant KO mice, and MAMLD1 regulated the expression of Akr1c18, the gene encoding 20α-HSD, in cultured cells. Ovaries of KO mice at late gestation were morphologically unremarkable; however, Akr1c18 expression was reduced and expression of its suppressor Stat5b was markedly increased. Several other genes including Prlr, Cyp19a1, Oxtr, and Lgals3 were also dysregulated in the KO ovaries, whereas PGF2α signaling genes remained unaffected. These results highlight the role of MAMLD1 in labour initiation. MAMLD1 likely participates in functional luteolysis by regulating Stat5b and other genes, independent of the PGF2α signaling pathway. PMID:26435405

  11. Absence of TRH receptor 1 in male mice affects gastric ghrelin production.

    PubMed

    Mayerl, Steffen; Liebsch, Claudia; Visser, Theo J; Heuer, Heike

    2015-02-01

    TRH not only functions as a thyrotropin releasing hormone but also acts as a neuropeptide in central circuits regulating food intake and energy expenditure. As one suggested mode of action, TRH expressed in the caudal brainstem influences vagal activity by activating TRH receptor 1 (TRH-R1). In order to evaluate the impact of a diminished medullary TRH signaling on ghrelin metabolism, we analyzed metabolic changes of TRH-R1 knockout (R1ko) mice in response to 24 hours of food deprivation. Because R1ko mice are hypothyroid, we also studied eu- and hypothyroid wild-type (wt) animals and R1ko mice rendered euthyroid by thyroid hormone treatment. Independent of their thyroidal state, R1ko mice displayed a higher body weight loss than wt animals and a delayed reduction in locomotor activity upon fasting. Ghrelin transcript levels in the stomach as well as total ghrelin levels in the circulation were equally high in fasted wt and R1ko mice. In contrast, only wt mice responded to fasting with a rise in ghrelin-O-acyltransferase mRNA expression and consequently an increase in serum levels of acylated ghrelin. Together, our data suggest that an up-regulation of medullary TRH expression and subsequently enhanced activation of TRH-R1 in the vagal system represents a critical step in the stimulation of ghrelin-O-acyltransferase expression upon starvation that in turn is important for adjusting the circulating levels of acylated ghrelin to the fasting condition.

  12. Compensatory T-type Ca2+ channel activity alters D2-autoreceptor responses of Substantia nigra dopamine neurons from Cav1.3 L-type Ca2+ channel KO mice.

    PubMed

    Poetschke, Christina; Dragicevic, Elena; Duda, Johanna; Benkert, Julia; Dougalis, Antonios; DeZio, Roberta; Snutch, Terrance P; Striessnig, Joerg; Liss, Birgit

    2015-09-18

    The preferential degeneration of Substantia nigra dopamine midbrain neurons (SN DA) causes the motor-symptoms of Parkinson's disease (PD). Voltage-gated L-type calcium channels (LTCCs), especially the Cav1.3-subtype, generate an activity-related oscillatory Ca(2+) burden in SN DA neurons, contributing to their degeneration and PD. While LTCC-blockers are already in clinical trials as PD-therapy, age-dependent functional roles of Cav1.3 LTCCs in SN DA neurons remain unclear. Thus, we analysed juvenile and adult Cav1.3-deficient mice with electrophysiological and molecular techniques. To unmask compensatory effects, we compared Cav1.3 KO mice with pharmacological LTCC-inhibition. LTCC-function was not necessary for SN DA pacemaker-activity at either age, but rather contributed to their pacemaker-precision. Moreover, juvenile Cav1.3 KO but not WT mice displayed adult wildtype-like, sensitised inhibitory dopamine-D2-autoreceptor (D2-AR) responses that depended upon both, interaction of the neuronal calcium sensor NCS-1 with D2-ARs, and on voltage-gated T-type calcium channel (TTCC) activity. This functional KO-phenotype was accompanied by cell-specific up-regulation of NCS-1 and Cav3.1-TTCC mRNA. Furthermore, in wildtype we identified an age-dependent switch of TTCC-function from contributing to SN DA pacemaker-precision in juveniles to pacemaker-frequency in adults. This novel interplay of Cav1.3 L-type and Cav3.1 T-type channels, and their modulation of SN DA activity-pattern and D2-AR-sensitisation, provide new insights into flexible age- and calcium-dependent activity-control of SN DA neurons and its pharmacological modulation.

  13. Humanized HLA-DR4.RagKO.IL2RγcKO.NOD (DRAG) mice sustain the complex vertebrate life cycle of Plasmodium falciparum malaria.

    PubMed

    Wijayalath, Wathsala; Majji, Sai; Villasante, Eileen F; Brumeanu, Teodor D; Richie, Thomas L; Casares, Sofia

    2014-09-30

    Malaria is a deadly infectious disease affecting millions of people in tropical and sub-tropical countries. Among the five species of Plasmodium parasites that infect humans, Plasmodium falciparum accounts for the highest morbidity and mortality associated with malaria. Since humans are the only natural hosts for P. falciparum, the lack of convenient animal models has hindered the understanding of disease pathogenesis and prompted the need of testing anti-malarial drugs and vaccines directly in human trials. Humanized mice hosting human cells represent new pre-clinical models for infectious diseases that affect only humans. In this study, the ability of human-immune-system humanized HLA-DR4.RagKO.IL2RγcKO.NOD (DRAG) mice to sustain infection with P. falciparum was explored. Four week-old DRAG mice were infused with HLA-matched human haematopoietic stem cells (HSC) and examined for reconstitution of human liver cells and erythrocytes. Upon challenge with infectious P. falciparum sporozoites (NF54 strain) humanized DRAG mice were examined for liver stage infection, blood stage infection, and transmission to Anopheles stephensi mosquitoes. Humanized DRAG mice reconstituted human hepatocytes, Kupffer cells, liver endothelial cells, and erythrocytes. Upon intravenous challenge with P. falciparum sporozoites, DRAG mice sustained liver to blood stage infection (average 3-5 parasites/microlitre blood) and allowed transmission to An. stephensi mosquitoes. Infected DRAG mice elicited antibody and cellular responses to the blood stage parasites and self-cured the infection by day 45 post-challenge. DRAG mice represent the first human-immune-system humanized mouse model that sustains the complex vertebrate life cycle of P. falciparum without the need of exogenous injection of human hepatocytes/erythrocytes or P. falciparum parasite adaptation. The ability of DRAG mice to elicit specific human immune responses to P. falciparum parasites may help deciphering immune correlates

  14. Distinct motor impairments of dopamine D1 and D2 receptor knockout mice revealed by three types of motor behavior.

    PubMed

    Nakamura, Toru; Sato, Asako; Kitsukawa, Takashi; Momiyama, Toshihiko; Yamamori, Tetsuo; Sasaoka, Toshikuni

    2014-01-01

    Both D1R and D2R knock out (KO) mice of the major dopamine receptors show significant motor impairments. However, there are some discrepant reports, which may be due to the differences in genetic background and experimental procedures. In addition, only few studies directly compared the motor performance of D1R and D2R KO mice. In this paper, we examined the behavioral difference among N10 congenic D1R and D2R KO, and wild type (WT) mice. First, we examined spontaneous motor activity in the home cage environment for consecutive 5 days. Second, we examined motor performance using the rota-rod task, a standard motor task in rodents. Third, we examined motor ability with the Step-Wheel task in which mice were trained to run in a motor-driven turning wheel adjusting their steps on foothold pegs to drink water. The results showed clear differences among the mice of three genotypes in three different types of behavior. In monitoring spontaneous motor activities, D1R and D2R KO mice showed higher and lower 24 h activities, respectively, than WT mice. In the rota-rod tasks, at a low speed, D1R KO mice showed poor performance but later improved, whereas D2R KO mice showed a good performance at early days without further improvement. When first subjected to a high speed task, the D2R KO mice showed poorer rota-rod performance at a low speed than the D1R KO mice. In the Step-Wheel task, across daily sessions, D2R KO mice increased the duration that mice run sufficiently close to the spout to drink water, and decreased time to touch the floor due to missing the peg steps and number of times the wheel was stopped, which performance was much better than that of D1R KO mice. These incongruent results between the two tasks for D1R and D2R KO mice may be due to the differences in the motivation for the rota-rod and Step-Wheel tasks, aversion- and reward-driven, respectively. The Step-Wheel system may become a useful tool for assessing the motor ability of WT and mutant mice.

  15. Loss of Ahi1 Impairs Neurotransmitter Release and Causes Depressive Behaviors in Mice

    PubMed Central

    Zhai, Lijing; Sun, Miao; Miao, Zhigang; Li, Jizhen; Xu, Xingshun

    2014-01-01

    Major depression is becoming one of the most prevalent forms of psychiatric disorders. However, the mechanisms of major depression are still not well-understood. Most antidepressants are only effective in some patients and produce some serious side effects. Animal models of depression are therefore essential to unravel the mechanisms of depression and to develop novel therapeutic strategies. Our previous studies showed that Abelson helper integration site-1 (Ahi1) deficiency causes depression-like behaviors in mice. In this study, we characterized the biochemical and behavioral changes in Ahi1 knockout (KO) mice. In Ahi1 KO mice, neurotransmitters including serotonin and dopamine were significantly decreased in different brain regions. However, glutamate and GABA levels were not affected by Ahi1 deficiency. The antidepressant imipramine attenuated depressive behaviors and partially restored brain serotonin level in Ahi1 KO mice. Our findings suggest that Ahi1 KO mice can be used for studying the mechanisms of depression and screening therapeutic targets. PMID:24691070

  16. CALHM1 Deletion in Mice Affects Glossopharyngeal Taste Responses, Food Intake, Body Weight, and Life Span

    PubMed Central

    Schmolling, Jared; Marambaud, Philippe; Rose-Hellekant, Teresa A.

    2015-01-01

    Stimulation of Type II taste receptor cells (TRCs) with T1R taste receptors causes sweet or umami taste, whereas T2Rs elicit bitter taste. Type II TRCs contain the calcium channel, calcium homeostasis modulator protein 1 (CALHM1), which releases adenosine triphosphate (ATP) transmitter to taste fibers. We have previously demonstrated with chorda tympani nerve recordings and two-bottle preference (TBP) tests that mice with genetically deleted Calhm1 (knockout [KO]) have severely impaired perception of sweet, bitter, and umami compounds, whereas their sour and salty tasting ability is unaltered. Here, we present data from KO mice of effects on glossopharyngeal (NG) nerve responses, TBP, food intake, body weight, and life span. KO mice have no NG response to sweet and a suppressed response to bitter compared with control (wild-type [WT]) mice. KO mice showed some NG response to umami, suggesting that umami taste involves both CALHM1- and non-CALHM1-modulated signals. NG responses to sour and salty were not significantly different between KO and WT mice. Behavioral data conformed in general with the NG data. Adult KO mice consumed less food, weighed significantly less, and lived almost a year longer than WT mice. Taken together, these data demonstrate that sweet taste majorly influences food intake, body weight, and life span. PMID:25855639

  17. Enhanced erythropoiesis in Hfe-KO mice indicates a role for Hfe in the modulation of erythroid iron homeostasis

    PubMed Central

    Ramos, Pedro; Guy, Ella; Chen, Nan; Proenca, Catia C.; Gardenghi, Sara; Casu, Carla; Follenzi, Antonia; Van Rooijen, Nico; Grady, Robert W.; de Sousa, Maria

    2011-01-01

    In hereditary hemochromatosis, mutations in HFE lead to iron overload through abnormally low levels of hepcidin. In addition, HFE potentially modulates cellular iron uptake by interacting with transferrin receptor, a crucial protein during erythropoiesis. However, the role of HFE in this process was never explored. We hypothesize that HFE modulates erythropoiesis by affecting dietary iron absorption and erythroid iron intake. To investigate this, we used Hfe-KO mice in conditions of altered dietary iron and erythropoiesis. We show that Hfe-KO mice can overcome phlebotomy-induced anemia more rapidly than wild-type mice (even when iron loaded). Second, we evaluated mice combining the hemochromatosis and β-thalassemia phenotypes. Our results suggest that lack of Hfe is advantageous in conditions of increased erythropoietic activity because of augmented iron mobilization driven by deficient hepcidin response. Lastly, we demonstrate that Hfe is expressed in erythroid cells and impairs iron uptake, whereas its absence exclusively from the hematopoietic compartment is sufficient to accelerate recovery from phlebotomy. In summary, we demonstrate that Hfe influences erythropoiesis by 2 distinct mechanisms: limiting hepcidin expression under conditions of simultaneous iron overload and stress erythropoiesis, and impairing transferrin-bound iron uptake by erythroid cells. Moreover, our results provide novel suggestions to improve the treatment of hemochromatosis. PMID:21059897

  18. Behavioral Characterization of β-Arrestin 1 Knockout Mice in Anxiety-Like and Alcohol Behaviors.

    PubMed

    Robins, Meridith T; Chiang, Terrance; Berry, Jennifer N; Ko, Mee Jung; Ha, Jiwon E; van Rijn, Richard M

    2018-01-01

    β-Arrestin 1 and 2 are highly expressed proteins involved in the desensitization of G protein-coupled receptor signaling which also regulate a variety of intracellular signaling pathways. Gene knockout (KO) studies suggest that the two isoforms are not homologous in their effects on baseline and drug-induced behavior; yet, the role of β-arrestin 1 in the central nervous system has been less investigated compared to β-arrestin 2. Here, we investigate how global β-arrestin 1 KO affects anxiety-like and alcohol-related behaviors in male and female C57BL/6 mice. We observed increased baseline locomotor activity in β-arrestin 1 KO animals compared with wild-type (WT) or heterozygous (HET) mice with a sex effect. KO male mice were less anxious in a light/dark transition test, although this effect may have been confounded by increased locomotor activity. No differences in sucrose intake were observed between genotypes or sexes. Female β-arrestin 1 KO mice consumed more 10% alcohol than HET females in a limited 4-h access, two-bottle choice, drinking-in-the-dark model. In a 20% alcohol binge-like access model, female KO animals consumed significantly more alcohol than HET and WT females. A significant sex effect was observed in both alcohol consumption models, with female mice consuming greater amounts of alcohol than males relative to body weight. Increased sensitivity to latency to loss of righting reflex (LORR) was observed in β-arrestin 1 KO mice although no differences were observed in duration of LORR. Overall, our efforts suggest that β-arrestin 1 may be protective against increased alcohol consumption in females and hyperactivity in both sexes.

  19. Distinct motor impairments of dopamine D1 and D2 receptor knockout mice revealed by three types of motor behavior

    PubMed Central

    Nakamura, Toru; Sato, Asako; Kitsukawa, Takashi; Momiyama, Toshihiko; Yamamori, Tetsuo; Sasaoka, Toshikuni

    2014-01-01

    Both D1R and D2R knock out (KO) mice of the major dopamine receptors show significant motor impairments. However, there are some discrepant reports, which may be due to the differences in genetic background and experimental procedures. In addition, only few studies directly compared the motor performance of D1R and D2R KO mice. In this paper, we examined the behavioral difference among N10 congenic D1R and D2R KO, and wild type (WT) mice. First, we examined spontaneous motor activity in the home cage environment for consecutive 5 days. Second, we examined motor performance using the rota-rod task, a standard motor task in rodents. Third, we examined motor ability with the Step-Wheel task in which mice were trained to run in a motor-driven turning wheel adjusting their steps on foothold pegs to drink water. The results showed clear differences among the mice of three genotypes in three different types of behavior. In monitoring spontaneous motor activities, D1R and D2R KO mice showed higher and lower 24 h activities, respectively, than WT mice. In the rota-rod tasks, at a low speed, D1R KO mice showed poor performance but later improved, whereas D2R KO mice showed a good performance at early days without further improvement. When first subjected to a high speed task, the D2R KO mice showed poorer rota-rod performance at a low speed than the D1R KO mice. In the Step-Wheel task, across daily sessions, D2R KO mice increased the duration that mice run sufficiently close to the spout to drink water, and decreased time to touch the floor due to missing the peg steps and number of times the wheel was stopped, which performance was much better than that of D1R KO mice. These incongruent results between the two tasks for D1R and D2R KO mice may be due to the differences in the motivation for the rota-rod and Step-Wheel tasks, aversion- and reward-driven, respectively. The Step-Wheel system may become a useful tool for assessing the motor ability of WT and mutant mice. PMID

  20. CALHM1 Deletion in Mice Affects Glossopharyngeal Taste Responses, Food Intake, Body Weight, and Life Span.

    PubMed

    Hellekant, Göran; Schmolling, Jared; Marambaud, Philippe; Rose-Hellekant, Teresa A

    2015-07-01

    Stimulation of Type II taste receptor cells (TRCs) with T1R taste receptors causes sweet or umami taste, whereas T2Rs elicit bitter taste. Type II TRCs contain the calcium channel, calcium homeostasis modulator protein 1 (CALHM1), which releases adenosine triphosphate (ATP) transmitter to taste fibers. We have previously demonstrated with chorda tympani nerve recordings and two-bottle preference (TBP) tests that mice with genetically deleted Calhm1 (knockout [KO]) have severely impaired perception of sweet, bitter, and umami compounds, whereas their sour and salty tasting ability is unaltered. Here, we present data from KO mice of effects on glossopharyngeal (NG) nerve responses, TBP, food intake, body weight, and life span. KO mice have no NG response to sweet and a suppressed response to bitter compared with control (wild-type [WT]) mice. KO mice showed some NG response to umami, suggesting that umami taste involves both CALHM1- and non-CALHM1-modulated signals. NG responses to sour and salty were not significantly different between KO and WT mice. Behavioral data conformed in general with the NG data. Adult KO mice consumed less food, weighed significantly less, and lived almost a year longer than WT mice. Taken together, these data demonstrate that sweet taste majorly influences food intake, body weight, and life span. © The Author 2015. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  1. Evaluating mice lacking serum carboxylesterase as a behavioral model for nerve agent intoxication.

    PubMed

    Dunn, Emily N; Ferrara-Bowens, Teresa M; Chachich, Mark E; Honnold, Cary L; Rothwell, Cristin C; Hoard-Fruchey, Heidi M; Lesyna, Catherine A; Johnson, Erik A; Cerasoli, Douglas M; McDonough, John H; Cadieux, C Linn

    2018-06-07

    Mice and other rodents are typically utilized for chemical warfare nerve agent research. Rodents have large amounts of carboxylesterase in their blood, while humans do not. Carboxylesterase nonspecifically binds to and detoxifies nerve agent. The presence of this natural bioscavenger makes mice and other rodents poor models for studies identifying therapeutics to treat humans exposed to nerve agents. To obviate this problem, a serum carboxylesterase knockout (Es1 KO) mouse was created. In this study, Es1 KO and wild type (WT) mice were assessed for differences in gene expression, nerve agent (soman; GD) median lethal dose (MLD) values, and behavior prior to and following nerve agent exposure. No expression differences were detected between Es1 KO and WT mice in more than 34 000 mouse genes tested. There was a significant difference between Es1 KO and WT mice in MLD values, as the MLD for GD-exposed WT mice was significantly higher than the MLD for GD-exposed Es1 KO mice. Behavioral assessments of Es1 KO and WT mice included an open field test, a zero maze, a Barnes maze, and a sucrose preference test (SPT). While sex differences were observed in various measures of these tests, overall, Es1 KO mice behaved similarly to WT mice. The two genotypes also showed virtually identical neuropathological changes following GD exposure. Es1 KO mice appear to have an enhanced susceptibility to GD toxicity while retaining all other behavioral and physiological responses to this nerve agent, making the Es1 KO mouse a more human-like model for nerve agent research.

  2. Ethanol-related behaviors in mice lacking the sigma-1 receptor.

    PubMed

    Valenza, Marta; DiLeo, Alyssa; Steardo, Luca; Cottone, Pietro; Sabino, Valentina

    2016-01-15

    The Sigma-1 receptor (Sig-1R) is a chaperone protein that has been implicated in drug abuse and addiction. Multiple studies have characterized the role the Sig-1R plays in psychostimulant addiction; however, fewer studies have specifically investigated its role in alcohol addiction. We have previously shown that antagonism of the Sig-1R reduces excessive drinking and motivation to drink, whereas agonism induces binge-like drinking in rodents. The objectives of these studies were to investigate the impact of Sig-1R gene deletion in C57Bl/6J mice on ethanol drinking and other ethanol-related behaviors. We used an extensive panel of behavioral tests to examine ethanol actions in male, adult mice lacking Oprs1, the gene encoding the Sig-1R. To compare ethanol drinking behavior, Sig-1 knockout (KO) and wild type (WT) mice were subject to a two-bottle choice, continuous access paradigm with different concentrations of ethanol (3-20% v/v) vs. water. Consumption of sweet and bitter solutions was also assessed in Sig-1R KO and WT mice. Finally, motor stimulant sensitivity, taste aversion and ataxic effects of ethanol were assessed. Sig-1R KO mice displayed higher ethanol intake compared to WT mice; the two genotypes did not differ in their sweet or bitter taste perception. Sig-1R KO mice showed lower sensitivity to ethanol stimulant effects, but greater sensitivity to its taste aversive effects. Ethanol-induced sedation was instead unaltered in the mutants. Our results prove that the deletion of the Sig-1R increases ethanol consumption, likely by decreasing its rewarding effects, and therefore indicating that the Sig-1R is involved in modulation of the reinforcing effects of alcohol. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Ethanol-related behaviors in mice lacking the sigma-1 receptor

    PubMed Central

    Valenza, Marta; DiLeo, Alyssa; Steardo, Luca; Cottone, Pietro; Sabino, Valentina

    2015-01-01

    Rationale The Sigma-1 receptor (Sig-1R) is a chaperone protein that has been implicated in drug abuse and addiction. Multiple studies have characterized the role the Sig-1R plays in psychostimulants addiction, but fewer studies have specifically investigated its role in alcohol addiction. We have previously shown that antagonism of the Sig-1R reduces excessive drinking and motivation to drink, whereas agonism induces binge-like drinking in rodents. Objectives The objectives of these studies were to investigate the impact of Sig-1R gene deletion in C57Bl/6J mice on ethanol drinking and other ethanol-related behaviors. Methods We used an extensive panel of behavioral tests to examine ethanol actions in male, adult mice lacking Oprs1, the gene encoding the Sig-1R. To compare ethanol drinking behavior, Sig-1 knockout (KO) and wild type (WT) mice were subject to a two-bottle choice, continuous access paradigm with different concentrations of ethanol (3%–20% v/v) vs. water. Consumption of sweet and bitter solutions was also assessed in Sig-1R KO and WT mice. Finally, motor stimulant sensitivity, taste aversion and ataxic effects of ethanol were assessed. Results Sig-1R KO mice displayed higher ethanol intake compared to WT mice; the two genotypes did not differ in their sweet or bitter taste perception. Sig-1R KO mice showed lower sensitivity to ethanol stimulant effects, but greater sensitivity to its taste aversive effects. Ethanol-induced sedation was unaltered in the mutants. Conclusions Our results suggest that the deletion of the Sig-1R increases ethanol consumption, likely by decreasing its rewarding effects, and therefore indicating that the Sig-1R is involved in modulation of the reinforcing effects of alcohol. PMID:26462569

  4. Sex differences in the development of diabetes in mice with deleted wolframin (Wfs1) gene.

    PubMed

    Noormets, K; Kõks, S; Muldmaa, M; Mauring, L; Vasar, E; Tillmann, V

    2011-05-01

    Wolfram syndrome, caused by mutations in the wolframin (Wfs1) gene, is characterised by juvenile-onset diabetes mellitus, progressive optic atrophy, diabetes insipidus and deafness. Diabetes tend to start earlier in boys. This study investigated sex differences in longitudinal changes in blood glucose concentration (BGC) in wolframin-deficient mice (Wfs1KO) and compared their plasma proinsulin and insulin levels with those of wild-type (wt) mice. Non-fasting BGC was measured weekly in 42 (21 males) mice from both groups at nine weeks of age. An intraperitoneal glucose tolerance test (IPGTT) was conducted at the 30 (th) week and plasma insulin, c-peptide and proinsulin levels were measured at the 32 (nd) week. At the 32 (nd) week, Wfs1KO males had increased BGC compared to wt males (9.40±0.60 mmol/l vs. 7.91±0.20 mmol/l; p<0.05). The opposite tendency was seen in females. Both male and female Wfs1KO mice had impaired glucose tolerance on IPGTT. Wfs1KO males had significantly lower mean plasma insulin levels than wt males (57.78±1.80 ng/ml vs. 69.42±3.06 ng/ml; p<0.01) and Wfs1KO females (70.30±4.42 ng/ml; p<0.05). Wfs1KO males had a higher proinsulin/insulin ratio than wt males (0.09±0.02 vs. 0.05±0.01; p=0.05) and Wfs1KO females (0.04±0.01; p<0.05). Plasma c-peptide levels in males were lower in Wfs1KO males (mean 55.3±14.0 pg/ml vs. 112.7±21.9 pg/ml; p<0.05). Male Wfs1KO mice had a greater risk of developing diabetes than female Wfs1KO mice. Low plasma insulin concentration with an increased proinsulin/insulin ratio in Wfs1KO males indicates possible disturbances in converting proinsulin to insulin which in long-term may lead to insulin deficiency. Further investigation is needed to clarify the mechanism for the sex differences in the development of diabetes in Wolfram syndrome. © J. A. Barth Verlag in Georg Thieme Verlag KG Stuttgart · New York.

  5. An Essential Postdevelopmental Role for Lis1 in Mice

    PubMed Central

    Hines, Timothy J.; Gao, Xu; Sahu, Subhshri; Lange, Meghann M.; Turner, Jill R.

    2018-01-01

    LIS1 mutations cause lissencephaly (LIS), a severe developmental brain malformation. Much less is known about its role in the mature nervous system. LIS1 regulates the microtubule motor cytoplasmic dynein 1 (dynein), and as LIS1 and dynein are both expressed in the adult nervous system, Lis1 could potentially regulate dynein-dependent processes such as axonal transport. We therefore knocked out Lis1 in adult mice using tamoxifen-induced, Cre-ER-mediated recombination. When an actin promoter was used to drive Cre-ER expression (Act-Cre-ER), heterozygous Lis1 knockout (KO) caused no obvious change in viability or behavior, despite evidence of widespread recombination by a Cre reporter three weeks after tamoxifen exposure. In contrast, homozygous Lis1 KO caused the rapid onset of neurological symptoms in both male and female mice. One tamoxifen-dosing regimen caused prominent recombination in the midbrain/hindbrain, PNS, and cardiac/skeletal muscle within a week; these mice developed severe symptoms in that time frame and were killed. A different tamoxifen regimen resulted in delayed recombination in midbrain/hindbrain, but not in other tissues, and also delayed the onset of symptoms. This indicates that Lis1 loss in the midbrain/hindbrain causes the severe phenotype. In support of this, brainstem regions known to house cardiorespiratory centers showed signs of axonal dysfunction in KO animals. Transport defects, neurofilament (NF) alterations, and varicosities were observed in axons in cultured DRG neurons from KO animals. Because no symptoms were observed when a cardiac specific Cre-ER promoter was used, we propose a vital role for Lis1 in autonomic neurons and implicate defective axonal transport in the KO phenotype. PMID:29404402

  6. GPR40/FFAR1 deficient mice increase noradrenaline levels in the brain and exhibit abnormal behavior.

    PubMed

    Aizawa, Fuka; Nishinaka, Takashi; Yamashita, Takuya; Nakamoto, Kazuo; Kurihara, Takashi; Hirasawa, Akira; Kasuya, Fumiyo; Miyata, Atsuro; Tokuyama, Shogo

    2016-12-01

    The free fatty acid receptor 1 (GPR40/FFAR1) is a G protein-coupled receptor, which is activated by long chain fatty acids. We have previously demonstrated that activation of brain GPR40/FFAR1 exerts an antinociceptive effect that is mediated by the modulation of the descending pain control system. However, it is unclear whether brain GPR40/FFAR1 contributes to emotional function. In this study, we investigated the involvement of GPR40/FFAR1 in emotional behavior using GPR40/FFAR1 deficient (knockout, KO) mice. The emotional behavior in wild and KO male mice was evaluated at 9-10 weeks of age by the elevated plus-maze test, open field test, social interaction test, and sucrose preference test. Brain monoamines levels were measured using LC-MS/MS. The elevated plus-maze test and open field tests revealed that the KO mice reduced anxiety-like behavior. There were no differences in locomotor activity or social behavior between the wild and KO mice. In the sucrose preference test, the KO mice showed reduction in sucrose preference and intake. The level of noradrenaline was higher in the hippocampus, medulla oblongata, hypothalamus and midbrain of KO mice. Therefore, these results suggest that brain GPR40/FFAR1 is associated with anxiety- and depression-related behavior regulated by the increment of noradrenaline in the brain. Copyright © 2016 The Authors. Production and hosting by Elsevier B.V. All rights reserved.

  7. Echium Oil Reduces Atherosclerosis in apoB100-only LDLrKO Mice

    PubMed Central

    Forrest, Lolita M.; Boudyguina, Elena; Wilson, Martha D.; Parks, John S.

    2012-01-01

    Introduction The anti-atherogenic and hypotriglyceridemic properties of fish oil are attributed to its enrichment in eicosapentaenoic acid (EPA; 20:5, n-3) and docosahexaenoic acid (DHA; 22:6, n-3). Echium oil contains stearidonic acid (SDA; 18:4, n-3), which is metabolized to EPA in humans and mice, resulting in decreased plasma triglycerides. Objective We used apoB100 only, LDLrKO mice to investigate whether echium oil reduces atherosclerosis. Methods Mice were fed palm, echium, or fish oil-containing diets for 16 weeks and plasma lipids, lipoproteins, and atherosclerosis were measured. Results Compared to palm oil, echium oil feeding resulted in significantly less plasma triglyceride and cholesterol levels, and atherosclerosis, comparable to that of fish oil. Conclusion This is the first report that echium oil is anti-atherogenic, suggesting that it may be a botanical alternative to fish oil for atheroprotection. PMID:22100249

  8. Involvement of interleukin-1 in lead nitrate-induced hypercholesterolemia in mice.

    PubMed

    Kojima, Misaki; Ashino, Takashi; Yoshida, Takemi; Iwakura, Yoichiro; Degawa, Masakuni

    2012-01-01

    Hepatic 3-hydroxy-3-methylglutaryl-CoA reductase (HMGR) and cholesterol 7α-hydroxylase (Cyp7a1) are rate-limiting enzymes for cholesterol biosynthesis and catabolism, respectively. Involvement of inflammatory cytokines, particularly interleukin-1 (IL-1), in alterations of HMGR and Cyp7a1 gene expression during development of lead nitrate (LN)-induced hypercholesterolemia was examined in IL-1α/β-knockout (IL-1-KO) and wild-type (WT) mice. Lead nitrate treatment of WT mice led to not only a marked downregulation of the Cyp7a1 gene at 6-12 h, but also a significant upregulation of the HMGR gene at 12 h. However, such changes were not observed at significant levels in IL-1-KO mice, although a slight, transient downregulation of the Cyp7a1 gene and a minimal upregulation of the HMGR gene occurred at 6 h and 24 h, respectively. Consequently, LN treatment led to development of hypercholesterolemia at 24 h in WT mice, but not in IL-1-KO mice. Furthermore, in WT mice, significant LN-mediated increases were observed at 3-6 h in hepatic IL-1 levels, which can modulate gene expression of Cyp7a1 and HMGR. These findings indicate that, in mice, LN-mediated increases in hepatic IL-1 levels contribute, at least in part, to altered expressions of Cyp7a1 and HMGR genes, and eventually to hypercholesterolemia development.

  9. Up-regulation of Thrombospondin-2 in Akt1-null Mice Contributes to Compromised Tissue Repair Due to Abnormalities in Fibroblast Function*

    PubMed Central

    Bancroft, Tara; Bouaouina, Mohamed; Roberts, Sophia; Lee, Monica; Calderwood, David A.; Schwartz, Martin; Simons, Michael; Sessa, William C.; Kyriakides, Themis R.

    2015-01-01

    Vascular remodeling is essential for tissue repair and is regulated by multiple factors, including thrombospondin-2 (TSP2) and hypoxia/VEGF-induced activation of Akt. In contrast to TSP2 knock-out (KO) mice, Akt1 KO mice have elevated TSP2 expression and delayed tissue repair. To investigate the contribution of increased TSP2 to Akt1 KO mice phenotypes, we generated Akt1/TSP2 double KO (DKO) mice. Full-thickness excisional wounds in DKO mice healed at an accelerated rate when compared with Akt1 KO mice. Isolated dermal Akt1 KO fibroblasts expressed increased TSP2 and displayed altered morphology and defects in migration and adhesion. These defects were rescued in DKO fibroblasts or after TSP2 knockdown. Conversely, the addition of exogenous TSP2 to WT cells induced cell morphology and migration rates that were similar to those of Akt1 KO cells. Akt1 KO fibroblasts displayed reduced adhesion to fibronectin with manganese stimulation when compared with WT and DKO cells, revealing an Akt1-dependent role for TSP2 in regulating integrin-mediated adhesions; however, this effect was not due to changes in β1 integrin surface expression or activation. Consistent with these results, Akt1 KO fibroblasts displayed reduced Rac1 activation that was dependent upon expression of TSP2 and could be rescued by a constitutively active Rac mutant. Our observations show that repression of TSP2 expression is a critical aspect of Akt1 function in tissue repair. PMID:25389299

  10. Mitochondrial anti-oxidant protects IEX-1 deficient mice from organ damage during endotoxemia

    PubMed Central

    Ramsey, Haley; Wu, Mei X.

    2015-01-01

    Sepsis, a leading cause of mortality in intensive care units worldwide, is often a result of overactive and systemic inflammation following serious infections. We found that mice lacking immediate early responsive gene X-1 (IEX-1) were prone to lipopolysaccharide (LPS) -induced endotoxemia. A nonlethal dose of LPS provoked numerous aberrations in IEX-1 knockout (KO) mice including pancytopenia, increased serum aspartate aminotransferase (AST), and lung neutrophilia, concurrent with liver and kidney damage, followed by death. Given these results, in conjunction with a proven role for IEX-1 in the regulation of reactive oxygen species (ROS) homeostasis during stress, we pre-treated IEX-1 KO mice with Mitoquinone (MitoQ), a mitochondrion-based antioxidant prior to LPS injection. The treatment significantly reduced ROS formation in circulatory cells and protected against pancytopenia and multiple organ failure, drastically increasing the survival rate of IEX-1 KO mice challenged by this low dose of LPS. This study confirms significant contribution of mitochondrial ROS to the etiology of sepsis. PMID:25466275

  11. Sortilin 1 Loss-of-Function Protects Against Cholestatic Liver Injury by Attenuating Hepatic Bile Acid Accumulation in Bile Duct Ligated Mice.

    PubMed

    Li, Jibiao; Woolbright, Benjamin L; Zhao, Wen; Wang, Yifeng; Matye, David; Hagenbuch, Bruno; Jaeschke, Hartmut; Li, Tiangang

    2018-01-01

    Sortilin 1 (Sort1) is an intracellular trafficking receptor that mediates protein sorting in the endocytic or secretory pathways. Recent studies revealed a role of Sort1 in the regulation of cholesterol and bile acid (BA) metabolism. This study further investigated the role of Sort1 in modulating BA detoxification and cholestatic liver injury in bile duct ligated mice. We found that Sort1 knockout (KO) mice had attenuated liver injury 24 h after bile duct ligation (BDL), which was mainly attributed to less bile infarct formation. Sham-operated Sort1 KO mice had about 20% larger BA pool size than sham-operated wildtype (WT) mice, but 24 h after BDL Sort1 KO mice had significantly attenuated hepatic BA accumulation and smaller BA pool size. After 14 days BDL, Sort1 KO mice showed significantly lower hepatic BA concentration and reduced expression of inflammatory and fibrotic marker genes, but similar degree of liver fibrosis compared with WT mice. Unbiased quantitative proteomics revealed that Sort1 KO mice had increased hepatic BA sulfotransferase 2A1, but unaltered phase-I BA metabolizing cytochrome P450s or phase-III BA efflux transporters. Consistently, Sort1 KO mice showed elevated plasma sulfated taurocholate after BDL. Finally, we found that liver Sort1 was repressed after BDL, which may be due to BA activation of farnesoid x receptor. In conclusion, we report a role of Sort1 in the regulation of hepatic BA detoxification and cholestatic liver injury in mice. The mechanisms underlying increased hepatic BA elimination in Sort1 KO mice after BDL require further investigation. © The Author 2017. Published by Oxford University Press on behalf of the Society of Toxicology. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  12. NCKX3 was compensated by calcium transporting genes and bone resorption in a NCKX3 KO mouse model.

    PubMed

    Yang, Hyun; Ahn, Changhwan; Shin, Eun-Kyeong; Lee, Ji-Sun; An, Beum-Soo; Jeung, Eui-Bae

    2017-10-15

    Gene knockout is the most powerful tool for determination of gene function or permanent modification of the phenotypic characteristics of an animal. Existing methods for gene disruption are limited by their efficiency, time required for completion and potential for confounding off-target effects. In this study, a rapid single-step approach to knockout of a targeted gene in mice using zinc-finger nucleases (ZFNs) was demonstrated for generation of mutant (knockout; KO) alleles. Specifically, ZFNs to target the sodium/calcium/potassium exchanger3 (NCKX3) gene in C57bl/6j were designed using the concept of this approach. NCKX3 KO mice were generated and the phenotypic characterization and molecular regulation of active calcium transporting genes was assessed when mice were fed different calcium diets during growth. General phenotypes such as body weight and plasma ion level showed no distinct abnormalities. Thus, the potassium/sodium/calcium exchanger of NCKX3 KO mice proceeded normally in this study. As a result, the compensatory molecular regulation of this mechanism was elucidated. Renal TRPV5 mRNA of NCKX3 KO mice increased in both male and female mice. Expression of TRPV6 mRNA was only down-regulated in the duodenum of male KO mice. Renal- and duodenal expression of PTHR and VDR were not changed; however, GR mRNA expression was increased in the kidney of NCKX3 KO mice. Depletion of the NCKX3 gene in a KO mouse model showed loss of bone mineral contents and increased plasma parathyroid hormone, suggesting that NCKX3 may play a role in regulating calcium homeostasis. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Elevated blood pressure in cytochrome P4501A1 knockout mice is associated with reduced vasodilation to omega − 3 polyunsaturated fatty acids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Agbor, Larry N.; Walsh, Mary T.; Boberg, Jason R.

    In vitro cytochrome P4501A1 (CYP1A1) metabolizes omega − 3 polyunsaturated fatty acids (n − 3 PUFAs); eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), primarily to 17,18-epoxyeicosatetraenoic acid (17,18-EEQ) and 19,20-epoxydocosapentaenoic acid (19,20-EDP), respectively. These metabolites have been shown to mediate vasodilation via increases in nitric oxide (NO) and activation of potassium channels. We hypothesized that genetic deletion of CYP1A1 would reduce vasodilatory responses to n − 3 PUFAs, but not the metabolites, and increase blood pressure (BP) due to decreases in NO. We assessed BP by radiotelemetry in CYP1A1 wildtype (WT) and knockout (KO) mice ± NO synthase (NOS) inhibitor.more » We also assessed vasodilation to acetylcholine (ACh), EPA, DHA, 17,18-EEQ and 19,20-EDP in aorta and mesenteric arterioles. Further, we assessed vasodilation to an NO donor and to DHA ± inhibitors of potassium channels. CYP1A1 KO mice were hypertensive, compared to WT, (mean BP in mm Hg, WT 103 ± 1, KO 116 ± 1, n = 5/genotype, p < 0.05), and exhibited a reduced heart rate (beats per minute, WT 575 ± 5; KO 530 ± 7; p < 0.05). However, BP responses to NOS inhibition and vasorelaxation responses to ACh and an NO donor were normal in CYP1A1 KO mice, suggesting that NO bioavailability was not reduced. In contrast, CYP1A1 KO mice exhibited significantly attenuated vasorelaxation responses to EPA and DHA in both the aorta and mesenteric arterioles, but normal vasorelaxation responses to the CYP1A1 metabolites, 17,18-EEQ and 19,20-EDP, and normal responses to potassium channel inhibition. Taken together these data suggest that CYP1A1 metabolizes n − 3 PUFAs to vasodilators in vivo and the loss of these vasodilators may lead to increases in BP. -- Highlights: ► CYP1A1 KO mice are hypertensive. ► CYP1A1 KO mice exhibit reduced vasodilation responses to n-3 PUFAs. ► Constitutive CYP1A1 expression regulates blood pressure and vascular function.« less

  14. Thyroid function in mice with compound heterozygous and homozygous disruptions of SRC-1 and TIF-2 coactivators: evidence for haploinsufficiency.

    PubMed

    Weiss, Roy E; Gehin, Martine; Xu, Jianming; Sadow, Peter M; O'Malley, Bert W; Chambon, Pierre; Refetoff, Samuel

    2002-04-01

    Steroid receptor coactivator (SRC)-1 and transcriptional intermediary factor (TIF)-2 are homologous nuclear receptor coactivators. We have investigated their possible redundancy as thyroid hormone (TH) coactivators by measuring thyroid function in compound SRC-1 and TIF-2 knock out (KO) mice. Whereas SRC-1 KO (SRC-1(-/-)) mice are resistant to TH and SRC-1(+/-) are not, we now demonstrate that TIF-2 KO (TIF-2(-/-)) mice have normal thyroid function. Yet double heterozygous, SRC-1(+/-)/TIF-2(+/-) mice manifested resistance to TH of a similar degree as that in mice completely deficient in SRC-1. KO of both SRC-1 and TIF-2 resulted in marked increases of serum TH and thyrotropin concentrations. This work demonstrates gene dosage effect in nuclear coactivators manifesting as haploinsufficiency and functional redundancy of SRC-1 and TIF-2.

  15. Autonomic nervous system involvement in the giant axonal neuropathy (GAN) KO mouse: implications for human disease.

    PubMed

    Armao, Diane; Bailey, Rachel M; Bouldin, Thomas W; Kim, Yongbaek; Gray, Steven J

    2016-08-01

    Giant axonal neuropathy (GAN) is an inherited severe sensorimotor neuropathy. The aim of this research was to investigate the neuropathologic features and clinical autonomic nervous system (ANS) phenotype in two GAN knockout (KO) mouse models. Little is known about ANS involvement in GAN in humans, but autonomic signs and symptoms are commonly reported in early childhood. Routine histology and immunohistochemistry was performed on GAN KO mouse specimens taken at various ages. Enteric dysfunction was assessed by quantifying the frequency, weight, and water content of defecation in GAN KO mice. Histological examination of the enteric, parasympathetic and sympathetic ANS of GAN KO mice revealed pronounced and widespread neuronal perikaryal intermediate filament inclusions. These neuronal inclusions served as an easily identifiable, early marker of GAN in young GAN KO mice. Functional studies identified an age-dependent alteration in fecal weight and defecation frequency in GAN KO mice. For the first time in the GAN KO mouse model, we described the early, pronounced and widespread neuropathologic features involving the ANS. In addition, we provided evidence for a clinical autonomic phenotype in GAN KO mice, reflected in abnormal gastrointestinal function. These findings in GAN KO mice suggest that consideration should be given to ANS involvement in human GAN, especially when considering treatments and patient care.

  16. CB1 Knockout Mice Unveil Sustained CB2-Mediated Antiallodynic Effects of the Mixed CB1/CB2 Agonist CP55,940 in a Mouse Model of Paclitaxel-Induced Neuropathic Pain.

    PubMed

    Deng, Liting; Cornett, Benjamin L; Mackie, Ken; Hohmann, Andrea G

    2015-07-01

    Cannabinoids suppress neuropathic pain through activation of cannabinoid CB1 and/or CB2 receptors; however, unwanted CB1-mediated cannabimimetic effects limit clinical use. We asked whether CP55,940 [(-)-3-[2-hydroxy-4-(1,1-dimethylheptyl)phenyl]-4-(3-hydroxypropyl)cyclohexanol], a potent cannabinoid that binds with similar affinity to CB1 and CB2 in vitro, produces functionally separable CB1- and CB2-mediated pharmacological effects in vivo. We evaluated antiallodynic effects, possible tolerance, and cannabimimetic effects (e.g., hypothermia, catalepsy, CB1-dependent withdrawal signs) after systemic CP55,940 treatment in a mouse model of toxic neuropathy produced by a chemotherapeutic agent, paclitaxel. The contribution of CB1 and CB2 receptors to in vivo actions of CP55,940 was evaluated using CB1 knockout (KO), CB2KO, and wild-type (WT) mice. Low-dose CP55,940 (0.3 mg/kg daily, i.p. ) suppressed paclitaxel-induced allodynia in WT and CB2KO mice, but not CB1KO mice. Low-dose CP55,940 also produced hypothermia and rimonabant-precipitated withdrawal in WT, but not CB1KO, mice. In WT mice, tolerance developed to CB1-mediated hypothermic effects of CP55,940 earlier than to antiallodynic effects. High-dose CP55,940 (10 mg/kg daily, i.p.) produced catalepsy in WT mice, which precluded determination of antiallodynic efficacy but produced sustained CB2-mediated suppression of paclitaxel-induced allodynia in CB1KO mice; these antiallodynic effects were blocked by the CB2 antagonist 6-iodopravadoline (AM630). High-dose CP55,940 did not produce hypothermia or rimonabant-precipitated withdrawal in CB1KO mice. Our results using the mixed CB1/CB2 agonist CP55,940 document that CB1 and CB2 receptor activations produce mechanistically distinct suppression of neuropathic pain. Our study highlights the therapeutic potential of targeting cannabinoid CB2 receptors to bypass unwanted central effects associated with CB1 receptor activation. Copyright © 2015 by The American Society

  17. Renoprotective impact of estrogen receptor α and its splice variants in female mice with type 1 diabetes.

    PubMed

    Irsik, Debra L; Romero-Aleshire, Melissa Jill; Chavez, Erin M; Fallet, Rachel W; Brooks, Heddwen L; Carmines, Pamela K; Lane, Pascale H

    2018-04-18

    Estrogen has been implicated in the regulation of growth and immune function in the kidney, which expresses the full-length estrogen receptor α (ERα66), its ERα splice variants, and estrogen receptor β (ERβ). Thus, we hypothesized that these splice variants may inhibit glomerular enlargement that occurs early in type 1 diabetes (T1D). T1D was induced by streptozotocin (STZ) injection in 8-12 wk-old female mice lacking ERα66 (ERα66KO) or all ERα variants (αERKO), and their wild-type (WT) littermates. Basal renal ERα36 protein expression was reduced in the ERα66KO model and was downregulated by T1D in WT mice. T1D did not alter ERα46 or ERβ in WT-STZ; however, ERα46 was decreased modestly in ERα66KO. Renal hypertrophy was evident in all diabetic mice. F4/80-positive immunostaining was reduced in ERα66KO, compared with WT and αERKO mice, but was higher in STZ than in WT mice across all genotypes. Glomerular area was greater in WT and αERKO than in ERα66KO mice, with T1D-induced glomerular enlargement apparent in WT-STZ and αERKO-STZ, but not in ERα66KO-STZ. Proteinuria and hyperfiltration were evident in ERα66KO-STZ and αERKO-STZ, but not in WT-STZ mice. These data indicate that ERα splice variants may exert an inhibitory influence on glomerular enlargement and macrophage infiltration during T1D; however, effects of splice variants are masked in the presence of the full-length ERα66, suggesting that ERα66 acts in opposition to its splice variants to influence these parameters. In contrast, hyperfiltration and proteinuria in T1D are attenuated via an ERα66-dependent mechanism that is unaffected by splice variant status.

  18. Attenuated behavioural responses to acute and chronic cocaine in GASP-1-deficient mice.

    PubMed

    Boeuf, Julien; Trigo, José Manuel; Moreau, Pierre-Henri; Lecourtier, Lucas; Vogel, Elise; Cassel, Jean-Cristophe; Mathis, Chantal; Klosen, Paul; Maldonado, Rafael; Simonin, Frédéric

    2009-09-01

    G protein-coupled receptor (GPCR) associated sorting protein 1 (GASP-1) interacts with GPCRs and is implicated in their postendocytic sorting. Recently, GASP-1 has been shown to regulate dopamine (D(2)) and cannabinoid (CB1) receptor signalling, suggesting that preventing GASP-1 interaction with GPCRs might provide a means to limit the decrease in receptor signalling upon sustained agonist treatment. In order to test this hypothesis, we have generated and behaviourally characterized GASP-1 knockout (KO) mice and have examined the consequences of the absence of GASP-1 on chronic cocaine treatments. GASP-1 KO and wild-type (WT) mice were tested for sensitization to the locomotor effects of cocaine. Additional mice were trained to acquire intravenous self-administration of cocaine on a fixed ratio 1 schedule of reinforcement, and the motivational value of cocaine was then assessed using a progressive ratio schedule of reinforcement. The dopamine and muscarinic receptor densities were quantitatively evaluated in the striatum of WT and KO mice tested for sensitization and self-administration. Acute and sensitized cocaine-locomotor effects were attenuated in KO mice. A decrease in the percentage of animals that acquired cocaine self-administration was also observed in GASP-1-deficient mice, which was associated with pronounced down-regulation of dopamine and muscarinic receptors in the striatum. These data indicate that GASP-1 participates in acute and chronic behavioural responses induced by cocaine and are in agreement with a role of GASP-1 in postendocytic sorting of GPCRs. However, in contrast to previous studies, our data suggest that upon sustained receptor stimulation GASP-1 stimulates recycling rather than receptor degradation.

  19. Alternative splicing in the C-terminal tail of Cav2.1 is essential for preventing a neurological disease in mice.

    PubMed

    Aikawa, Tomonori; Watanabe, Takaki; Miyazaki, Taisuke; Mikuni, Takayasu; Wakamori, Minoru; Sakurai, Miyano; Aizawa, Hidenori; Ishizu, Nobutaka; Watanabe, Masahiko; Kano, Masanobu; Mizusawa, Hidehiro; Watase, Kei

    2017-08-15

    Alternative splicing (AS) that occurs at the final coding exon (exon 47) of the Cav2.1 voltage-gated calcium channel (VGCC) gene produces two major isoforms in the brain, MPI and MPc. These isoforms differ in their splice acceptor sites; human MPI is translated into a polyglutamine tract associated with spinocerebellar ataxia type 6 (SCA6), whereas MPc splices to an immediate stop codon, resulting in a shorter cytoplasmic tail. To gain insight into the functional role of the AS in vivo and whether modulating the splice patterns at this locus can be a potential therapeutic strategy for SCA6, here we created knockin mice that exclusively express MPc by inserting the splice-site mutation. The resultant Cacna1aCtmKO/CtmKO mice developed non-progressive neurological phenotypes, featuring early-onset ataxia and absence seizure without significant alterations in the basic properties of the channel. Interactions of Cav2.1 with Cavβ4 and Rimbp2 were significantly reduced while those with GABAB2 were enhanced in the cerebellum of Cacna1aCtmKO/CtmKO mice. Treatment with the GABAB antagonist CGP35348 partially rescued the motor impairments seen in Cacna1aCtmKO/CtmKO mice. These results suggest that the carboxyl-terminal domain of Cav2.1 is not essential for maintaining the basic properties of the channel in the cerebellar Purkinje neurons but is involved in multiple interactions of Cav2.1 with other proteins, and plays an essential role in preventing a complex neurological disease. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  20. Maintenance of muscle mass and load-induced growth in Muscle RING Finger 1 null mice with age.

    PubMed

    Hwee, Darren T; Baehr, Leslie M; Philp, Andrew; Baar, Keith; Bodine, Sue C

    2014-02-01

    Age-related loss of muscle mass occurs to varying degrees in all individuals and has a detrimental effect on morbidity and mortality. Muscle RING Finger 1 (MuRF1), a muscle-specific E3 ubiquitin ligase, is believed to mediate muscle atrophy through the ubiquitin proteasome system (UPS). Deletion of MuRF1 (KO) in mice attenuates the loss of muscle mass following denervation, disuse, and glucocorticoid treatment; however, its role in age-related muscle loss is unknown. In this study, skeletal muscle from male wild-type (WT) and MuRF1 KO mice was studied up to the age of 24 months. Muscle mass and fiber cross-sectional area decreased significantly with age in WT, but not in KO mice. In aged WT muscle, significant decreases in proteasome activities, especially 20S and 26S β5 (20-40% decrease), were measured and were associated with significant increases in the maladaptive endoplasmic reticulum (ER) stress marker, CHOP. Conversely, in aged MuRF1 KO mice, 20S or 26S β5 proteasome activity was maintained or decreased to a lesser extent than in WT mice, and no increase in CHOP expression was measured. Examination of the growth response of older (18 months) mice to functional overload revealed that old WT mice had significantly less growth relative to young mice (1.37- vs. 1.83-fold), whereas old MuRF1 KO mice had a normal growth response (1.74- vs. 1.90-fold). These data collectively suggest that with age, MuRF1 plays an important role in the control of skeletal muscle mass and growth capacity through the regulation of cellular stress. © 2013 the Anatomical Society and John Wiley & Sons Ltd.

  1. Selegiline Ameliorates Depression-Like Behavior in Mice Lacking the CD157/BST1 Gene, a Risk Factor for Parkinson’s Disease

    PubMed Central

    Kasai, Satoka; Yoshihara, Toru; Lopatina, Olga; Ishihara, Katsuhiko; Higashida, Haruhiro

    2017-01-01

    Parkinson’s disease (PD), a neurodegenerative disorder, is accompanied by various non-motor symptoms including depression and anxiety, which may precede the onset of motor symptoms. Selegiline is an irreversible monoamine oxidase-B (MAO-B) inhibitor, and is widely used in the treatment of PD and major depression. However, there are few reports about the effects of selegiline on non-motor symptoms in PD. The aim of this study was to explore the antidepressant and anxiolytic effects of selegiline, using CD157/BST1 knockout (CD157 KO) mouse, a PD-related genetic model displaying depression and anxiety, compared with other antiparkinsonian drugs and an antidepressant, and was to investigate the effects of selegiline on biochemical parameters in emotion-related brain regions. A single administration of selegiline (1–10 mg/kg) dose-dependently reduced immobility time in the forced swimming test (FST) in CD157 KO mice, but not C57BL/6N wild-type (WT) mice. At 10 mg/kg, but not 3 mg/kg, selegiline significantly increased climbing time in CD157 KO mice. A single administration of the antiparkinsonian drugs pramipexole (a dopamine (DA) D2/D3 receptor agonist) or rasagiline (another MAO-B inhibitor), and repeated injections of a noradrenergic and specific serotonergic antidepressant (NaSSA), mirtazapine, also decreased immobility time, but did not increase climbing time, in CD157 KO mice. The antidepressant-like effects of 10 mg/kg selegiline were comparable to those of 10 mg/kg rasagiline, and tended to be stronger than those of 1 mg/kg rasagiline. After the FST, CD157 KO mice showed decreases in striatal and hippocampal serotonin (5-HT) content, cortical norepinephrine (NE) content, and plasma corticosterone concentration. A single administration of selegiline at 10 mg/kg returned striatal 5-HT, cortical NE, and plasma corticosterone levels to those observed in WT mice. In the open field test (OFT), repeated administration of mirtazapine had anxiolytic effects, and

  2. Commensal Microbiota Contributes to Chronic Endocarditis in TAX1BP1 Deficient Mice

    PubMed Central

    Nakano, Satoko; Ikebe, Emi; Tsukamoto, Yoshiyuki; Wang, Yan; Matsumoto, Takashi; Mitsui, Takahiro; Yahiro, Takaaki; Inoue, Kunimitsu; Kawazato, Hiroaki; Yasuda, Aiko; Ito, Kanako; Yokoyama, Shigeo; Takahashi, Naohiko; Hori, Mitsuo; Shimada, Tatsuo; Moriyama, Masatsugu; Kubota, Toshiaki; Ono, Katsushige; Fujibuchi, Wataru; Jeang, Kuan-Teh; Iha, Hidekatsu; Nishizono, Akira

    2013-01-01

    Tax1-binding protein 1 (Tax1bp1) negatively regulates NF-κB by editing the ubiquitylation of target molecules by its catalytic partner A20. Genetically engineered TAX1BP1-deficient (KO) mice develop age-dependent inflammatory constitutions in multiple organs manifested as valvulitis or dermatitis and succumb to premature death. Laser capture dissection and gene expression microarray analysis on the mitral valves of TAX1BP1-KO mice (8 and 16 week old) revealed 588 gene transcription alterations from the wild type. SAA3 (serum amyloid A3), CHI3L1, HP, IL1B and SPP1/OPN were induced 1,180-, 361-, 187-, 122- and 101-fold respectively. WIF1 (Wnt inhibitory factor 1) exhibited 11-fold reduction. Intense Saa3 staining and significant I-κBα reduction were reconfirmed and massive infiltration of inflammatory lymphocytes and edema formation were seen in the area. Antibiotics-induced ‘germ free’ status or the additional MyD88 deficiency significantly ameliorated TAX1BP1-KO mice's inflammatory lesions. These pathological conditions, as we named ‘pseudo-infective endocarditis’ were boosted by the commensal microbiota who are usually harmless by their nature. This experimental outcome raises a novel mechanistic linkage between endothelial inflammation caused by the ubiquitin remodeling immune regulators and fatal cardiac dysfunction. PMID:24086273

  3. DISTINCT BEHAVIORAL PHENOTYPES IN MALE MICE LACKING THE THYROID HORMONE RECEPTOR α1 OR β ISOFORMS

    PubMed Central

    Vasudevan, Nandini; Morgan, Maria; Pfaff, Donald; Ogawa, Sonoko

    2013-01-01

    Thyroid hormones influence both neuronal development and anxiety via the thyroid hormone receptors (TRs). The TRs are encoded by two different genes, TRα and TRβ. The loss of TRα1 is implicated in increased anxiety in males, possibly via a hippocampal increase in GABAergic activity. We compared both social behaviors and two underlying and related non-social behaviors, state anxiety and responses to acoustic and tactile startle in the gonadally intact TRα1 knockout (α1KO) and TRβ (βKO) male mice to their wild-type counterparts. For the first time, we show an opposing effect of the two TR isoforms, TRα1 and TRβ, in the regulation of state anxiety, with α1 knockout animals (α1KO) showing higher levels of anxiety and βKO males showing less anxiety compared to respective wild-type mice. At odds with the increased anxiety in non-social environments, α1KO males also show lower levels of responsiveness to acoustic and tactile startle stimuli. Consistent with the data that T4 is inhibitory to lordosis in female mice, we show subtly increased sex behavior in α1KO male mice. These behaviors support the idea that TRα1 could be inhibitory to ERα driven transcription that ultimately impacts ERα driven behaviors such as lordosis. The behavioral phenotypes point to novel roles for the TRs, particularly in non-social behaviors such as state anxiety and startle. PMID:23567476

  4. Effect of Shenxinning decoction on ventricular remodeling in AT1 receptor-knockout mice with chronic renal insufficiency.

    PubMed

    Yang, Xuejun; Zhou, Hua; Qu, Huiyan; Liu, Weifang; Huang, Xiaojin; Shun, Yating; He, Liqun

    2014-01-01

    To observe the efficacy of Shenxinning Decoction (SXND) in ventricular remodeling in AT1 receptor-knockout (AT1-KO) mice with chronic renal insufficiency (CRI). AT1-KO mice modeled with subtotal (5/6) nephrectomy were intervened with SXND for 12 weeks. Subsequently, blood urea nitrogen (BUN), serum creatinine (SCr), brain natriuretic peptide (BNP), echocardiography (left ventricular end-diastolic diameter, LVDD; left ventricular end-systolic diameter, LVDS; fractional shortening, FS; and ejection fraction, EF), collagen types I and III in the heart and kidney, myocardial mitochondria, and cardiac transforming growth factor-β1 (TGF-β1) of the AT1-KO mice were compared with the same model with nephrectomy only and untreated with SXND. AT1-KO mice did not affect the process of CRI but it could significantly affect cardiac remodeling process. SXND decreased to some extent the AT1-KO mice's BUN, SCr, BNP, and cardiac LVDD, LVDS, and BNP, improved FS and EF, lowered the expression of collagen type I and III in heart and kidney, increased the quantity of mitochondria and ameliorated their structure, and down-regulated the expression of TGF-β1. SXND may antagonize the renin-angiotensin system (RAS) and decrease uremia toxins, thereby ameliorating ventricular remodeling in CRI. Furthermore, SXND has a mechanism correlated with the improvement of myocardial energy metabolism and the down-regulation of TGF-β1.

  5. Mitochondrial and performance adaptations to exercise training in mice lacking skeletal muscle LKB1

    PubMed Central

    Tanner, Colby B.; Madsen, Steven R.; Hallowell, David M.; Goring, Darren M. J.; Moore, Timothy M.; Hardman, Shalene E.; Heninger, Megan R.; Atwood, Daniel R.

    2013-01-01

    LKB1 and its downstream targets of the AMP-activated protein kinase family are important regulators of many aspects of skeletal muscle cell function, including control of mitochondrial content and capillarity. LKB1 deficiency in skeletal and cardiac muscle (mLKB1-KO) greatly impairs exercise capacity. However, cardiac dysfunction in that genetic model prevents a clear assessment of the role of skeletal muscle LKB1 in the observed effects. Our purposes here were to determine whether skeletal muscle-specific knockout of LKB1 (skmLKB1-KO) decreases exercise capacity and mitochondrial protein content, impairs accretion of mitochondrial proteins after exercise training, and attenuates improvement in running performance after exercise training. We found that treadmill and voluntary wheel running capacity was reduced in skmLKB1-KO vs. control (CON) mice. Citrate synthase activity, succinate dehydrogenase activity, and pyruvate dehydrogenase kinase content were lower in KO vs. CON muscles. Three weeks of treadmill training resulted in significantly increased treadmill running performance in both CON and skmLKB1-KO mice. Citrate synthase activity increased significantly with training in both genotypes, but protein content and activity for components of the mitochondrial electron transport chain increased only in CON mice. Capillarity and VEGF protein was lower in skmLKB1-KO vs. CON muscles, but VEGF increased with training only in skmLKB1-KO. Three hours after an acute bout of muscle contractions, PGC-1α, cytochrome c, and VEGF gene expression all increased in CON but not skmLKB1-KO muscles. Our findings indicate that skeletal muscle LKB1 is required for accretion of some mitochondrial proteins but not for early exercise capacity improvements with exercise training. PMID:23982155

  6. Evidence that the granulocyte colony-stimulating factor (G-CSF) receptor plays a role in the pharmacokinetics of G-CSF and PegG-CSF using a G-CSF-R KO model.

    PubMed

    Kotto-Kome, Anne C; Fox, Samuel E; Lu, Wenge; Yang, Bing-Bing; Christensen, Robert D; Calhoun, Darlene A

    2004-07-01

    The covalent attachment of polyethylene glycol to filgrastim results in a new molecule pegfilgrastim, which has a significantly longer half-life than filgrastim. It is likely that the clearance of both filgrastim and pegfilgrastim involves granulocyte colony simulating factor (G-CSF) receptor binding, but the pharmacokinetics of these drugs have not been compared in mice with and without a functional G-CSF receptor. We sought to clarify the role of receptor-mediated clearance of filgrastim and pegfilgrastim using wild-type (WT) mice or mice with a non-functional G-CSF-R (knockout, KO). We administered single doses of filgrastim or pegfilgrastim (10 or 100 microg kg(-1)) intravenously to WT and KO mice. Plasma levels of protein were measured by enzyme-linked immunosorbent assay (ELISA) at preset time points, and AUC, MRT, CL, V(d), and T(1/2) were calculated. When compared with WT mice, the G-CSF-R KO mice had significantly greater AUC, longer MRT, longer T(1/2), and lower clearance. This was the case whether animals received 10 or 100 microg kg(-1) and whether they received filgrastim or pegfilgrastim. The volume of protein distribution was identical among WT and KO mice. However, the V(d) was larger after pegfilgrastim dosing than after filgrastim dosing. In both WT and KO mice, increasing the dose of figrastim or pegfilgrastim resulted in a proportional increase in the AUC. A functional G-CSF-R is an important mechanism in the plasma clearance of both filgrastim and pegfilgrastim.

  7. Ezetimibe inhibits hepatic Niemann-Pick C1-Like 1 to facilitate macrophage reverse cholesterol transport in mice.

    PubMed

    Xie, Ping; Jia, Lin; Ma, Yinyan; Ou, Juanjuan; Miao, Hongming; Wang, Nanping; Guo, Feng; Yazdanyar, Amirfarbod; Jiang, Xian-Cheng; Yu, Liqing

    2013-05-01

    Controversies have arisen from recent mouse studies about the essential role of biliary sterol secretion in reverse cholesterol transport (RCT). The objective of this study was to examine the role of biliary cholesterol secretion in modulating macrophage RCT in Niemann-Pick C1-Like 1 (NPC1L1) liver only (L1(LivOnly)) mice, an animal model that is defective in both biliary sterol secretion and intestinal sterol absorption, and determine whether NPC1L1 inhibitor ezetimibe facilitates macrophage RCT by inhibiting hepatic NPC1L1. L1(LivOnly) mice were generated by crossing NPC1L1 knockout (L1-KO) mice with transgenic mice overexpressing human NPC1L1 specifically in liver. Macrophage-to-feces RCT was assayed in L1-KO and L1(LivOnly) mice injected intraperitoneally with [(3)H]-cholesterol-labeled peritoneal macrophages isolated from C57BL/6 mice. Inhibition of biliary sterol secretion by hepatic overexpression of NPC1L1 substantially reduced transport of [(3)H]-cholesterol from primary peritoneal macrophages to the neutral sterol fraction in bile and feces in L1(LivOnly) mice without affecting tracer excretion in the bile acid fraction. Ezetimibe treatment for 2 weeks completely restored both biliary and fecal excretion of [(3)H]-tracer in the neutral sterol fraction in L1(LivOnly) mice. High-density lipoprotein kinetic studies showed that L1(LivOnly) mice compared with L1-KO mice had a significantly reduced fractional catabolic rate without altered hepatic and intestinal uptake of high-density lipoprotein-cholesterol ether. In mice lacking intestinal cholesterol absorption, macrophage-to-feces RCT depends on efficient biliary sterol secretion, and ezetimibe promotes macrophage RCT by inhibiting hepatic NPC1L1 function.

  8. Elevation of endogenous anandamide impairs LTP, learning, and memory through CB1 receptor signaling in mice.

    PubMed

    Basavarajappa, Balapal S; Nagre, Nagaraja N; Xie, Shan; Subbanna, Shivakumar

    2014-07-01

    In rodents, many exogenous and endogenous cannabinoids, such as anandamide (AEA) and 2-arachidonyl glycerol (2-AG), have been shown to play an important role in certain hippocampal memory processes. However, the mechanisms by which endogenous AEA regulate this processes are not well understood. Here the effects of AEA on long-term potentiation (LTP), hippocampal-dependent learning and memory tasks, pERK1/2, pCaMKIV, and pCREB signaling events in both cannabinoid receptor type 1 (CB1R) wild-type (WT) and knockout (KO) mice were assessed following administration of URB597, an inhibitor of the fatty acid amide hydrolase (FAAH). Acute administration of URB597 enhanced AEA levels without affecting the levels of 2-AG or CB1R in the hippocampus and neocortex as compared to vehicle. In hippocampal slices, URB597 impaired LTP in CB1R WT but not in KO littermates. URB597 impaired object recognition, spontaneous alternation and spatial memory in the Y-maze test in CB1R WT mice but not in KO mice. Furthermore, URB597 enhanced ERK phosphorylation in WT without affecting total ERK levels in WT or KO mice. URB597 impaired CaMKIV and CREB phosphorylation in WT but not in KO mice. CB1R KO mice have a lower pCaMKIV/CaMKIV ratio and higher pCREB/CREB ratio as compared to WT littermates. Our results indicate that pharmacologically elevated AEA impair LTP, learning and memory and inhibit CaMKIV and CREB phosphorylation, via the activation of CB1Rs. Collectively, these findings also suggest that pharmacological elevation of AEA beyond normal concentrations is also detrimental for the underlying physiological responses. © 2014 Wiley Periodicals, Inc.

  9. A disintegrin and metalloproteinase 17 regulates TNF and TNFR1 levels in inflammation and liver regeneration in mice

    PubMed Central

    McMahan, Ryan S.; Riehle, Kimberly J.; Fausto, Nelson

    2013-01-01

    A disintegrin and metalloproteinase 17 (ADAM17), or tumor necrosis factor (TNF)-α-converting enzyme, is a key metalloproteinase and physiological convertase for a number of putative targets that play critical roles in cytokine and growth factor signaling. These interdependent pathways are essential components of the signaling network that links liver function with the compensatory growth that occurs during liver regeneration following 2/3 partial hepatectomy (PH) or chemically induced hepatotoxicity. Despite identification of many soluble factors needed for efficient liver regeneration, very little is known about how such ligands are regulated in the liver. To directly study the role of ADAM17 in the liver, we employed two cell-specific ADAM17 knockout (KO) mouse models. Using lipopolysaccharide (LPS) as a robust stimulus for TNF release, we found attenuated levels of circulating TNF in myeloid-specific ADAM17 KO mice (ADAM17 m-KO) and, unexpectedly, in mice with hepatocyte-specific ADAM17 deletion (ADAM17 h-KO), indicating that ADAM17 expression in both cell types plays a role in TNF shedding. After 2/3 PH, induction of TNF, TNFR1, and amphiregulin (AR) was significantly attenuated in ADAM17 h-KO mice, implicating ADAM17 as the primary sheddase for these factors in the liver. Surprisingly, the extent and timing of hepatocyte proliferation were not affected after PH or carbon tetrachloride injection in ADAM17 h-KO or ADAM17 m-KO mice. We conclude that ADAM17 regulates TNF, TNFR1, and AR in the liver, and its expression in both hepatocytes and myeloid cells is important for TNF regulation after LPS injury or 2/3 PH, but is not required for liver regeneration. PMID:23639813

  10. Reduced Slc1a1 expression is associated with neuroinflammation and impaired sensorimotor gating and cognitive performance in mice: Implications for schizophrenia

    PubMed Central

    Afshari, Parisa; Yao, Wei-Dong

    2017-01-01

    We previously reported a 84-Kb hemi-deletion copy number variant at the SLC1A1 gene locus that reduces its expression and appeared causally linked to schizophrenia. In this report, we characterize the in vivo and in vitro consequences of reduced expression of Slc1a1 in mice. Heterozygous (HET) Slc1a1+/- mice, which more closely model the hemi-deletion we found in human subjects, were examined in a series of behavioral, anatomical and biochemical assays. Knockout (KO) mice were also included in the behavioral studies for comparative purposes. Both HET and KO mice exhibited evidence of increased anxiety-like behavior, impaired working memory, decreased exploratory activity and impaired sensorimotor gating, but no changes in overall locomotor activity. The magnitude of changes was approximately equivalent in the HET and KO mice suggesting a dominant effect of the haploinsufficiency. Behavioral changes in the HET mice were accompanied by reduced thickness of the dorsomedial prefrontal cortex. Whole transcriptome RNA-Seq analysis detected expression changes of genes and pathways involved in cytokine signaling and synaptic functions in both brain and blood. Moreover, the brains of Slc1a1+/- mice displayed elevated levels of oxidized glutathione, a trend for increased oxidative DNA damage, and significantly increased levels of cytokines. This latter finding was further supported by SLC1A1 knockdown and overexpression studies in differentiated human neuroblastoma cells, which led to decreased or increased cytokine expression, respectively. Taken together, our results suggest that partial loss of the Slc1a1 gene in mice causes haploinsufficiency associated with behavioral, histological and biochemical changes that reflect an altered redox state and may promote the expression of behavioral features and inflammatory states consistent with those observed in schizophrenia. PMID:28886095

  11. Dose-Dependent Rescue of KO Amelogenin Enamel by Transgenes in Vivo

    PubMed Central

    Bidlack, Felicitas B.; Xia, Yan; Pugach, Megan K.

    2017-01-01

    Mice lacking amelogenin (KO) have hypoplastic enamel. Overexpression of the most abundant amelogenin splice variant M180 and LRAP transgenes can substantially improve KO enamel, but only ~40% of the incisor thickness is recovered and the prisms are not as tightly woven as in WT enamel. This implies that the compositional complexity of the enamel matrix is required for different aspects of enamel formation, such as organizational structure and thickness. The question arises, therefore, how important the ratio of different matrix components, and in particular amelogenin splice products, is in enamel formation. Can optimal expression levels of amelogenin transgenes representing both the most abundant splice variants and cleavage product at protein levels similar to that of WT improve the enamel phenotype of KO mice? Addressing this question, our objective was here to understand dosage effects of amelogenin transgenes (Tg) representing the major splice variants M180 and LRAP and cleavage product CTRNC on enamel properties. Amelogenin KO mice were mated with M180Tg, CTRNCTg and LRAPTg mice to generate M180Tg and CTRNCTg double transgene and M180Tg, CTRNCTg, LRAPTg triple transgene mice with transgene hemizygosity (on one allelle) or homozygosity (on both alleles). Transgene homo- vs. hemizygosity was determined by qPCR and relative transgene expression confirmed by Western blot. Enamel volume and mineral density were analyzed by microCT, thickness and structure by SEM, and mechanical properties by Vickers microhardness testing. There were no differences in incisor enamel thickness between amelogenin KO mice with three or two different transgenes, but mice homozygous for a given transgene had significantly thinner enamel than mice hemizygous for the transgene (p < 0.05). The presence of the LRAPTg did not improve the phenotype of M180Tg/CTRNCTg/KO enamel. In the absence of endogenous amelogenin, the addition of amelogenin transgenes representing the most abundant splice

  12. A cardiomyocyte-specific Wdr1 knockout demonstrates essential functional roles for actin disassembly during myocardial growth and maintenance in mice.

    PubMed

    Yuan, Baiyin; Wan, Ping; Chu, Dandan; Nie, Junwei; Cao, Yunshan; Luo, Wen; Lu, Shuangshuang; Chen, Jiong; Yang, Zhongzhou

    2014-07-01

    Actin dynamics are critical for muscle development and function, and mutations leading to deregulation of actin dynamics cause various forms of heritable muscle diseases. AIP1 is a major cofactor of the actin depolymerizing factor/cofilin in eukaryotes, promoting actin depolymerizing factor/cofilin-mediated actin disassembly. Its function in vertebrate muscle has been unknown. To investigate functional roles of AIP1 in myocardium, we generated conditional knockout (cKO) mice with cardiomyocyte-specific deletion of Wdr1, the mammalian homolog of yeast AIP1. Wdr1 cKO mice began to die at postnatal day 13 (P13), and none survived past P24. At P12, cKO mice exhibited cardiac hypertrophy and impaired contraction of the left ventricle. Electrocardiography revealed reduced heart rate, abnormal P wave, and abnormal T wave at P10 and prolonged QT interval at P12. Actin filament (F-actin) accumulations began at P10 and became prominent at P12 in the myocardium of cKO mice. Within regions of F-actin accumulation in myofibrils, the sarcomeric components α-actinin and tropomodulin-1 exhibited disrupted patterns, indicating that F-actin accumulations caused by Wdr1 deletion result in disruption of sarcomeric structure. Ectopic cofilin colocalized with F-actin aggregates. In adult mice, Wdr1 deletion resulted in similar but much milder phenotypes of heart hypertrophy, F-actin accumulations within myofibrils, and lethality. Taken together, these results demonstrate that AIP1-regulated actin dynamics play essential roles in heart function in mice. Copyright © 2014 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  13. Effect of Shenxinning decoction on ventricular remodeling in AT1 receptor-knockout mice with chronic renal insufficiency

    PubMed Central

    Yang, Xuejun; Zhou, Hua; Qu, Huiyan; Liu, Weifang; Huang, Xiaojin; Shun, Yating; He, Liqun

    2014-01-01

    Objective: To observe the efficacy of Shenxinning Decoction (SXND) in ventricular remodeling in AT1 receptor-knockout (AT1-KO) mice with chronic renal insufficiency (CRI). Materials and Methods: AT1-KO mice modeled with subtotal (5/6) nephrectomy were intervened with SXND for 12 weeks. Subsequently, blood urea nitrogen (BUN), serum creatinine (SCr), brain natriuretic peptide (BNP), echocardiography (left ventricular end-diastolic diameter, LVDD; left ventricular end-systolic diameter, LVDS; fractional shortening, FS; and ejection fraction, EF), collagen types I and III in the heart and kidney, myocardial mitochondria, and cardiac transforming growth factor-β1 (TGF-β1) of the AT1-KO mice were compared with the same model with nephrectomy only and untreated with SXND. Results: AT1-KO mice did not affect the process of CRI but it could significantly affect cardiac remodeling process. SXND decreased to some extent the AT1-KO mice's BUN, SCr, BNP, and cardiac LVDD, LVDS, and BNP, improved FS and EF, lowered the expression of collagen type I and III in heart and kidney, increased the quantity of mitochondria and ameliorated their structure, and down-regulated the expression of TGF-β1. Conclusion: SXND may antagonize the renin–angiotensin system (RAS) and decrease uremia toxins, thereby ameliorating ventricular remodeling in CRI. Furthermore, SXND has a mechanism correlated with the improvement of myocardial energy metabolism and the down-regulation of TGF-β1. PMID:25097276

  14. Characteristics of thermoregulatory and febrile responses in mice deficient in prostaglandin EP1 and EP3 receptors

    PubMed Central

    Oka, Takakazu; Oka, Kae; Kobayashi, Takuya; Sugimoto, Yukihiko; Ichikawa, Atsushi; Ushikubi, Fumitaka; Narumiya, Shuh; Saper, Clifford B

    2003-01-01

    Previous studies have disagreed about whether prostaglandin EP1 or EP3 receptors are critical for producing febrile responses. We therefore injected lipopolysaccharide (LPS) at a variety doses (1 μg kg−11 mg kg−1) intraperitoneally (I.P.) into wild-type (WT) mice and mice lacking the EP1 or the EP3 receptors and measured changes in core temperature (Tc) by using telemetry. In WT mice, I.P. injection of LPS at 10 μg kg−1 increased Tc about 1 °C, peaking 2 h after injection. At 100 μg kg−1, LPS increased Tc, peaking 5–8 h after injection. LPS at 1 mg kg−1 decreased Tc, reaching a nadir at 5–8 h after injection. In EP1 receptor knockout (KO) mice injected with 10 μg kg−1 LPS, only the initial (< 40 min) increase in Tc was lacking; with 100 μg kg−1 LPS the mice showed no febrile response. In EP3 receptor KO mice, LPS decreased Tc in a dose- and time-dependent manner. Furthermore, in EP3 receptor KO mice subcutaneous injection of turpentine did not induce fever. Both EP1 and EP3 receptor KO mice showed a normal circadian cycle of Tc and brief hyperthermia following psychological stress (cage-exchange stress and buddy-removal stress). The present study suggests that both the EP1 and the EP3 receptors play a role in fever induced by systemic inflammation but neither EP receptor is involved in the circadian rise in Tc or psychological stress-induced hyperthermia in mice. PMID:12837930

  15. Estimation of the relationship between the polymorphisms of selected genes: ACE, AGTR1, TGFβ1 and GNB3 with the occurrence of primary vesicoureteral reflux.

    PubMed

    Życzkowski, Marcin; Żywiec, Joanna; Nowakowski, Krzysztof; Paradysz, Andrzej; Grzeszczak, Władyslaw; Gumprecht, Janusz

    2017-03-01

    Etiopathogenesis of VUR is composite and not fully understood. Many data indicate the importance of genetic predisposition. The aim of this study was to establish the relationship of selected polymorphisms: 14094 polymorphism of the ACE, polymorphism rs1800469 of TGFβ-1, rs5443 gene polymorphism of the GNB3 and receptor gene polymorphism rs5186 type 1 AGTR1 with the occurrence of the primary vesicoureteral reflux. The study included 190 children: 90 with the primary VUR confirmed with the voiding cystourethrogram and excluded secondary VUR and a control group of 100 children without a history of the diseases of the genitourinary tract. The study was planned in the scheme: "tested case versus control." Genomic DNA was isolated from the leukocytes of peripheral blood samples. The results were statistically analyzed in the Statistica 10 using χ 2 test and analysis of the variance Anova. Any of the four studied polymorphisms showed no difference in the distribution of genotypes between patients with primary vesicoureteral reflux and the control group. In patients with VUR and TT genotype polymorphism rs5443 GNB3 gene, the glomerular filtration rate was significantly higher than in patients with genotype CC or CT. (1) No relationship was found between the studied polymorphisms (14094 ACE gene, rs1800469 gene TGFβ1, GNB3 gene rs5443, rs5186 AGTR1 gene) and the occurrence of primary vesicoureteral reflux. (2) TT genotype polymorphism rs5443 GNB3 gene may be a protective factor for the improved renal function in patients with primary vesicoureteral reflux in patients with genotype CC or CT.

  16. Role for the M1 Muscarinic Acetylcholine Receptor in Top-Down Cognitive Processing Using a Touchscreen Visual Discrimination Task in Mice.

    PubMed

    Gould, R W; Dencker, D; Grannan, M; Bubser, M; Zhan, X; Wess, J; Xiang, Z; Locuson, C; Lindsley, C W; Conn, P J; Jones, C K

    2015-10-21

    The M1 muscarinic acetylcholine receptor (mAChR) subtype has been implicated in the underlying mechanisms of learning and memory and represents an important potential pharmacotherapeutic target for the cognitive impairments observed in neuropsychiatric disorders such as schizophrenia. Patients with schizophrenia show impairments in top-down processing involving conflict between sensory-driven and goal-oriented processes that can be modeled in preclinical studies using touchscreen-based cognition tasks. The present studies used a touchscreen visual pairwise discrimination task in which mice discriminated between a less salient and a more salient stimulus to assess the influence of the M1 mAChR on top-down processing. M1 mAChR knockout (M1 KO) mice showed a slower rate of learning, evidenced by slower increases in accuracy over 12 consecutive days, and required more days to acquire (achieve 80% accuracy) this discrimination task compared to wild-type mice. In addition, the M1 positive allosteric modulator BQCA enhanced the rate of learning this discrimination in wild-type, but not in M1 KO, mice when BQCA was administered daily prior to testing over 12 consecutive days. Importantly, in discriminations between stimuli of equal salience, M1 KO mice did not show impaired acquisition and BQCA did not affect the rate of learning or acquisition in wild-type mice. These studies are the first to demonstrate performance deficits in M1 KO mice using touchscreen cognitive assessments and enhanced rate of learning and acquisition in wild-type mice through M1 mAChR potentiation when the touchscreen discrimination task involves top-down processing. Taken together, these findings provide further support for M1 potentiation as a potential treatment for the cognitive symptoms associated with schizophrenia.

  17. Ganglioside accumulation in activated glia in the developing brain: comparison between WT and GalNAcT KO mice

    PubMed Central

    Saito, Mariko; Wu, Gusheng; Hui, Maria; Masiello, Kurt; Dobrenis, Kostantin; Ledeen, Robert W.; Saito, Mitsuo

    2015-01-01

    Our previous studies have shown accumulation of GM2 ganglioside during ethanol-induced neurodegeneration in the developing brain, and GM2 elevation has also been reported in other brain injuries and neurodegenerative diseases. Using GM2/GD2 synthase KO mice lacking GM2/GD2 and downstream gangliosides, the current study explored the significance of GM2 elevation in WT mice. Immunohistochemical studies indicated that ethanol-induced acute neurodegeneration in postnatal day 7 (P7) WT mice was associated with GM2 accumulation in the late endosomes/lysosomes of both phagocytic microglia and increased glial fibrillary acidic protein (GFAP)-positive astrocytes. However, in KO mice, although ethanol induced robust neurodegeneration and accumulation of GD3 and GM3 in the late endosomes/lysosomes of phagocytic microglia, it did not increase the number of GFAP-positive astrocytes, and the accumulation of GD3/GM3 in astrocytes was minimal. Not only ethanol, but also DMSO, induced GM2 elevation in activated microglia and astrocytes along with neurodegeneration in P7 WT mice, while lipopolysaccharide, which did not induce significant neurodegeneration, caused GM2 accumulation mainly in lysosomes of activated astrocytes. Thus, GM2 elevation is associated with activation of microglia and astrocytes in the injured developing brain, and GM2, GD2, or other downstream gangliosides may regulate astroglial responses in ethanol-induced neurodegeneration. PMID:26063460

  18. Novel agonists for serotonin 5-HT7 receptors reverse metabotropic glutamate receptor-mediated long-term depression in the hippocampus of wild-type and Fmr1 KO mice, a model of Fragile X Syndrome

    PubMed Central

    Costa, Lara; Sardone, Lara M.; Lacivita, Enza; Leopoldo, Marcello; Ciranna, Lucia

    2015-01-01

    Serotonin 5-HT7 receptors are expressed in the hippocampus and modulate the excitability of hippocampal neurons. We have previously shown that 5-HT7 receptors modulate glutamate-mediated hippocampal synaptic transmission and long-term synaptic plasticity. In particular, we have shown that activation of 5-HT7 receptors reversed metabotropic glutamate receptor-mediated long-term depression (mGluR-LTD) in wild-type (wt) and in Fmr1 KO mice, a mouse model of Fragile X Syndrome in which mGluR-LTD is abnormally enhanced, suggesting that 5-HT7 receptor agonists might be envisaged as a novel therapeutic strategy for Fragile X Syndrome. In this perspective, we have characterized the basic in vitro pharmacokinetic properties of novel molecules with high binding affinity and selectivity for 5-HT7 receptors and we have tested their effects on synaptic plasticity using patch clamp on acute hippocampal slices. Here we show that LP-211, a high affinity selective agonist of 5-HT7 receptors, reverses mGluR-LTD in wt and Fmr1 KO mice, correcting a synaptic malfunction in the mouse model of Fragile X Syndrome. Among novel putative agonists of 5-HT7 receptors, the compound BA-10 displayed improved affinity and selectivity for 5-HT7 receptors and improved in vitro pharmacokinetic properties with respect to LP-211. BA-10 significantly reversed mGluR-LTD in the CA3-CA1 synapse in wt and Fmr1KO mice, indicating that BA-10 behaved as a highly effective agonist of 5-HT7 receptors and reduced exaggerated mGluR-LTD in a mouse model of Fragile X Syndrome. On the other side, the compounds RA-7 and PM-20, respectively arising from in vivo metabolism of LP-211 and BA-10, had no effect on mGluR-LTD thus did not behave as agonists of 5-HT7 receptors in our conditions. The present results provide information about the structure-activity relationship of novel 5-HT7 receptor agonists and indicate that LP-211 and BA-10 might be used as novel pharmacological tools for the therapy of Fragile X Syndrome

  19. Developmental Emergence of Phenotypes in the Auditory Brainstem Nuclei of Fmr1 Knockout Mice

    PubMed Central

    Rotschafer, Sarah E.

    2017-01-01

    Abstract Fragile X syndrome (FXS), the most common monogenic cause of autism, is often associated with hypersensitivity to sound. Several studies have shown abnormalities in the auditory brainstem in FXS; however, the emergence of these auditory phenotypes during development has not been described. Here, we investigated the development of phenotypes in FXS model [Fmr1 knockout (KO)] mice in the ventral cochlear nucleus (VCN), medial nucleus of the trapezoid body (MNTB), and lateral superior olive (LSO). We studied features of the brainstem known to be altered in FXS or Fmr1 KO mice, including cell size and expression of markers for excitatory (VGLUT) and inhibitory (VGAT) synapses. We found that cell size was reduced in the nuclei with different time courses. VCN cell size is normal until after hearing onset, while MNTB and LSO show decreases earlier. VGAT expression was elevated relative to VGLUT in the Fmr1 KO mouse MNTB by P6, before hearing onset. Because glial cells influence development and are altered in FXS, we investigated their emergence in the developing Fmr1 KO brainstem. The number of microglia developed normally in all three nuclei in Fmr1 KO mice, but we found elevated numbers of astrocytes in Fmr1 KO in VCN and LSO at P14. The results indicate that some phenotypes are evident before spontaneous or auditory activity, while others emerge later, and suggest that Fmr1 acts at multiple sites and time points in auditory system development. PMID:29291238

  20. A different role of angiotensin II type 1a receptor in the development and hypertrophy of plantaris muscle in mice.

    PubMed

    Zempo, Hirofumi; Suzuki, Jun-Ichi; Ogawa, Masahito; Watanabe, Ryo; Isobe, Mitsuaki

    2016-02-01

    The role of angiotensin II type 1 (AT1) receptors in muscle development and hypertrophy remains unclear. This study was designed to reveal the effects that a loss of AT1 receptors has on skeletal muscle development and hypertrophy in mice. Eight-week-old male AT1a receptor knockout (AT1a(-/-)) mice were used for this experiment. The plantaris muscle to body weight ratio, muscle fiber cross-sectional area, and number of muscle fibers of AT1a(-/-) mice was significantly greater than wild type (WT) mice in the non-intervention condition. Next, the functional overload (OL) model was used to induce plantaris muscle hypertrophy by surgically removing the two triceps muscles consisting of the calf, soleus, and gastrocnemius muscles in mice. After 14 days of OL intervention, the plantaris muscle weight, the amount of fiber, and the fiber area increased. However, the magnitude of the increment of plantaris weight was not different between the two strains. Agtr1a mRNA expression did not change after OL in WT muscle. Actually, the Agt mRNA expression level of WT-OL was lower than WT-Control (C) muscle. An atrophy-related gene, atrogin-1 mRNA expression levels of AT1a(-/-)-C, WT-OL, and AT1a(-/-)-OL muscle were lower than that of WT-C muscle. Our findings suggest that AT1 receptor contributes to plantaris muscle development via atrogin-1 in mice.

  1. Establishment of mitochondrial pyruvate carrier 1 (MPC1) gene knockout mice with preliminary gene function analyses

    PubMed Central

    Li, Xiaoli; Li, Yaqing; Han, Gaoyang; Li, Xiaoran; Ji, Yasai; Fan, Zhirui; Zhong, Yali; Cao, Jing; Zhao, Jing; Mariusz, Goscinski; Zhang, Mingzhi; Wen, Jianguo; Nesland, Jahn M.; Suo, Zhenhe

    2016-01-01

    Pyruvate plays a critical role in the mitochondrial tricarboxylic acid (TCA) cycle, and it is the center product for the synthesis of amino acids, carbohydrates and fatty acids. Pyruvate transported across the inner mitochondrial membrane appears to be essential in anabolic and catabolic intermediary metabolism. The mitochondrial pyruvate carrier (MPC) mounted in the inner membrane of mitochondria serves as the channel to facilitate pyruvate permeating. In mammals, the MPC is formed by two paralogous subunits, MPC1 and MPC2. It is known that complete ablation of MPC2 in mice causes death on the 11th or 12th day of the embryonic period. However, MPC1 deletion and the knowledge of gene function in vivo are lacking. Using the new technology of gene manipulation known as Clustered Regularly Interspaced Short Palindromic Repeats/CRISPR-associated 9 (CRISPR/Cas9) systems, we gained stable MPC1 gene heterozygous mutation mice models, and the heterozygous mutations could be stably maintained in their offsprings. Only one line with homozygous 27 bases deletion in the first exon was established, but no offsprings could be obtained after four months of mating experiments, indicating infertility of the mice with such homozygous deletion. The other line of MPC1 knockout (KO) mice was only heterozygous, which mutated in the first exon with a terminator shortly afterwards. These two lines of MPC1 KO mice showed lower fertility and significantly higher bodyweight in the females. We concluded that heterozygous MPC1 KO weakens fertility and influences the metabolism of glucose and fatty acid and bodyweight in mice. PMID:27835892

  2. Promises and pitfalls of a Pannexin1 transgenic mouse line.

    PubMed

    Hanstein, Regina; Negoro, Hiromitsu; Patel, Naman K; Charollais, Anne; Meda, Paolo; Spray, David C; Suadicani, Sylvia O; Scemes, Eliana

    2013-01-01

    Gene targeting strategies have become a powerful technology for elucidating mammalian gene function. The recently generated knockout (KO)-first strategy produces a KO at the RNA processing level and also allows for the generation of conditional KO alleles by combining FLP/FRT and Cre/loxP systems, thereby providing high flexibility in gene manipulation. However, this multipurpose KO-first cassette might produce hypomorphic rather than complete KOs if the RNA processing module is bypassed. Moreover, the generation of a conditional phenotype is also dependent on specific activity of Cre recombinase. Here, we report the use of an efficient molecular biological approach to test pannexin1 (Panx1) mRNA expression in global and conditional Panx1 KO mice derived from the KO-first mouse line, Panx1(tm1a(KOMP)Wtsi). Using qRT-PCR, we demonstrate that tissues from wild-type (WT) mice show a range of Panx1 mRNA expression levels, with highest expression in trigeminal ganglia, bladder and spleen. Unexpectedly, we found that in mice homozygous for the KO-first allele, Panx1 mRNA expression is not abolished but reduced by 70% compared to that of WT tissues. Thus, Panx1 KO-first mice present a hypomorphic phenotype. Crosses of Panx1 KO-first with FLP deleter mice generated Panx1(f/f) mice. Further crosses of the latter mice with mGFAP-Cre or NFH-Cre mice were used to generate astrocyte- and neuron-specific Panx1 deletions, respectively. A high incidence of ectopic Cre expression was found in offspring of both types of conditional Panx1 KO mice. Our study demonstrates that Panx1 expression levels in the global and conditional Panx1 KO mice derived from KO-first mouse lines must be carefully characterized to ensure modulation of Panx1 gene expression. The precise quantitation of Panx1 expression and its relation to function is expected to provide a foundation for future efforts aimed at deciphering the role of Panx1 under physiological and pathological conditions.

  3. Podocyte-specific deletion of Rac1 leads to aggravation of renal injury in STZ-induced diabetic mice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ishizaka, Masanori; Gohda, Tomohito, E-mail: goda@juntendo.ac.jp; Takagi, Miyuki

    Rac1, a GTPase of the Rho subfamily, has a crucial role in cytoskeletal architecture, as well as the regulation of cell migration and growth. However, renal injury in mice with podocyte-specific deletion of Rac1 has yet to be elucidated fully due to conflicting findings. Herein, we identified a possible role for Rac1 in podocytes of streptozotocin- (STZ) induced diabetic mice. The urinary albumin/creatinine ratio (ACR) in the knockout (KO) group was significantly higher than that in the wild type (WT) group at any week of age. A more marked ACR increase was observed in STZ/KO group than STZ/WT group, althoughmore » ACR did increase with weeks of age in both diabetic groups. The kidney sections from diabetic mice revealed a glomerular hypertrophy with mesangial expansion, but there was no appreciable difference in glomerular findings under a light microscope between STZ/WT and STZ/KO mice. However, an electron microscopy analysis revealed that regardless of the presence or absence of diabetes, both KO (KO and STZ/KO) groups had a higher rate of foot process effacement compared with both WT (WT and STZ/WT) groups. The expression levels of the slit diaphragm protein, podocin, was reduced with the induction of diabetes, and the levels in the STZ/KO group experienced a further reduction compared with the STZ/WT group. The number of WT1-positive cells in the STZ/KO group was more significantly decreased than that in the other three groups. In contrast, the numbers of cleaved caspase 3- and TUNEL-positive cells in the glomeruli of the STZ/KO group were more increased than those in the STZ/WT group. Thus, this study provides evidence that podocyte-specific deletion of Rac1 results in morphological alteration in podocytes, and that the induction of apoptosis or decreased expression of the slit diaphragm proteins by hyperglycemic stimuli are associated with the progression of diabetic nephropathy.« less

  4. Dose-Dependent Rescue of KO Amelogenin Enamel by Transgenes in Vivo.

    PubMed

    Bidlack, Felicitas B; Xia, Yan; Pugach, Megan K

    2017-01-01

    Mice lacking amelogenin (KO) have hypoplastic enamel. Overexpression of the most abundant amelogenin splice variant M180 and LRAP transgenes can substantially improve KO enamel, but only ~40% of the incisor thickness is recovered and the prisms are not as tightly woven as in WT enamel. This implies that the compositional complexity of the enamel matrix is required for different aspects of enamel formation, such as organizational structure and thickness. The question arises, therefore, how important the ratio of different matrix components, and in particular amelogenin splice products, is in enamel formation. Can optimal expression levels of amelogenin transgenes representing both the most abundant splice variants and cleavage product at protein levels similar to that of WT improve the enamel phenotype of KO mice? Addressing this question, our objective was here to understand dosage effects of amelogenin transgenes ( Tg ) representing the major splice variants M180 and LRAP and cleavage product CTRNC on enamel properties. Amelogenin KO mice were mated with M180 Tg , CTRNC Tg and LRAP Tg mice to generate M180 Tg and CTRNC Tg double transgene and M180 Tg , CTRNC Tg , LRAP Tg triple transgene mice with transgene hemizygosity (on one allelle) or homozygosity (on both alleles). Transgene homo- vs. hemizygosity was determined by qPCR and relative transgene expression confirmed by Western blot. Enamel volume and mineral density were analyzed by microCT, thickness and structure by SEM, and mechanical properties by Vickers microhardness testing. There were no differences in incisor enamel thickness between amelogenin KO mice with three or two different transgenes, but mice homozygous for a given transgene had significantly thinner enamel than mice hemizygous for the transgene ( p < 0.05). The presence of the LRAP Tg did not improve the phenotype of M180 Tg /CTRNC Tg /KO enamel. In the absence of endogenous amelogenin, the addition of amelogenin transgenes representing the

  5. Hydroxysteroid (17β)-dehydrogenase 1-deficient female mice present with normal puberty onset but are severely subfertile due to a defect in luteinization and progesterone production.

    PubMed

    Hakkarainen, Janne; Jokela, Heli; Pakarinen, Pirjo; Heikelä, Hanna; Kätkänaho, Laura; Vandenput, Liesbeth; Ohlsson, Claes; Zhang, Fu-Ping; Poutanen, Matti

    2015-09-01

    Hydroxysteroid (17β)-dehydrogenase type 1 (HSD17B1) catalyzes the conversion of low active 17-ketosteroids, androstenedione (A-dione) and estrone (E1) to highly active 17-hydroxysteroids, testosterone (T) and E2, respectively. In this study, the importance of HSD17B1 in ovarian estrogen production was determined using Hsd17b1 knockout (HSD17B1KO) mice. In these mice, the ovarian HSD17B enzyme activity was markedly reduced, indicating a central role of HSD17B1 in ovarian physiology. The lack of Hsd17b activity resulted in increased ovarian E1:E2 and A-dione:T ratios, but we also observed reduced progesterone concentration in HSD17B1KO ovaries. Accordingly with the altered steroid production, altered expression of Star, Cyp11a1, Lhcgr, Hsd17b7, and especially Cyp17a1 was observed. The ovaries of HSD17B1KO mice presented with all stages of folliculogenesis, while the corpus luteum structure was less defined and number reduced. Surprisingly, bundles of large granular cells of unknown origin appeared in the stroma of the KO ovaries. The HSD17B1KO mice presented with severe subfertility and failed to initiate pseudopregnancy. However, the HSD17B1KO females presented with normal estrous cycle defined by vaginal smears and normal puberty appearance. This study indicates that HSD17B1 is a key enzyme in ovarian steroidogenesis and has a novel function in initiation and stabilization of pregnancy. © FASEB.

  6. Divergent responses to thermogenic stimuli in BAT and subcutaneous adipose tissue from interleukin 18 and interleukin 18 receptor 1-deficient mice.

    PubMed

    Pazos, Patricia; Lima, Luis; Tovar, Sulay; González-Touceda, David; Diéguez, Carlos; García, María C

    2015-12-10

    Brown and beige adipocytes recruitment in brown (BAT) or white adipose tissue, mainly in the inguinal fat pad (iWAT), meet the need for temperature adaptation in cold-exposure conditions and protect against obesity in face of hypercaloric diets. Using interleukin18 (Il18) and Il18 receptor 1- knockout (Il18r1-KO) mice, this study aimed to investigate the role of IL18 signaling in BAT and iWAT activation and thermogenesis under both stimuli. Il18-KO, extremely dietary obesity-prone as previously described, failed to develop diet-induced thermogenesis as assessed by BAT and iWAT Ucp1 mRNA levels. Overweight when fed standard chow but not HFD, HFD-fed Il18r1-KO mice exhibited increased iWAT Ucp1 gene expression. Energy expenditure was reduced in pre-obese Il18r1-KO mice and restored upon HFD-challenge. Cold exposure lead to similar results; Il18r1-KO mice were protected against acute body temperature drop, displaying a more brown-like structure, alternative macrophage activation and thermogenic gene expression in iWAT than WT controls. Opposite effects were observed in Il18-KO mice. Thus, Il18 and Il18r1 genetic ablation disparate effects on energy homeostasis are likely mediated by divergent BAT responses to thermogenic stimuli as well as iWAT browning. These results suggest that a more complex receptor-signaling system mediates the IL18 adipose-tissue specific effects in energy expenditure.

  7. Altered gene expression in early postnatal monoamine oxidase A knockout mice.

    PubMed

    Chen, Kevin; Kardys, Abbey; Chen, Yibu; Flink, Stephen; Tabakoff, Boris; Shih, Jean C

    2017-08-15

    We reported previously that monoamine oxidase (MAO) A knockout (KO) mice show increased serotonin (5-hydroxytryptamine, 5-HT) levels and autistic-like behaviors characterized by repetitive behaviors, and anti-social behaviors. We showed that administration of the serotonin synthesis inhibitor para-chlorophenylalanine (pCPA) from post-natal day 1 (P1) through 7 (P7) in MAO A KO mice reduced the serotonin level to normal and reverses the repetitive behavior. These results suggested that the altered gene expression at P1 and P7 may be important for the autistic-like behaviors seen in MAO A KO mice and was studied here. In this study, Affymetrix mRNA array data for P1 and P7 MAO A KO mice were analyzed using Partek Genomics Suite and Ingenuity Pathways Analysis to identify genes differentially expressed versus wild-type and assess their functions and relationships. The number of significant differentially expressed genes (DEGs) varied with age: P1 (664) and P7 (3307) [false discovery rate (FDR) <0.05, fold-change (FC) >1.5 for autism-linked genes and >2.0 for functionally categorized genes]. Eight autism-linked genes were differentially expressed in P1 (upregulated: NLGN3, SLC6A2; down-regulated: HTR2C, MET, ADSL, MECP2, ALDH5A1, GRIN3B) while four autism-linked genes were differentially expressed at P7 (upregulated: HTR2B; downregulated: GRIN2D, GRIN2B, CHRNA4). Many other genes involved in neurodevelopment, apoptosis, neurotransmission, and cognitive function were differentially expressed at P7 in MAO A KO mice. This result suggests that modulation of these genes by the increased serotonin may lead to neurodevelopmental alteration in MAO A KO mice and results in autistic-like behaviors. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Impact of the NO-Sensitive Guanylyl Cyclase 1 and 2 on Renal Blood Flow and Systemic Blood Pressure in Mice.

    PubMed

    Mergia, Evanthia; Thieme, Manuel; Hoch, Henning; Daniil, Georgios; Hering, Lydia; Yakoub, Mina; Scherbaum, Christina Rebecca; Rump, Lars Christian; Koesling, Doris; Stegbauer, Johannes

    2018-03-23

    Nitric oxide (NO) modulates renal blood flow (RBF) and kidney function and is involved in blood pressure (BP) regulation predominantly via stimulation of the NO-sensitive guanylyl cyclase (NO-GC), existing in two isoforms, NO-GC1 and NO-GC2. Here, we used isoform-specific knockout (KO) mice and investigated their contribution to renal hemodynamics under normotensive and angiotensin II-induced hypertensive conditions. Stimulation of the NO-GCs by S -nitrosoglutathione (GSNO) reduced BP in normotensive and hypertensive wildtype (WT) and NO-GC2-KO mice more efficiently than in NO-GC1-KO. NO-induced increase of RBF in normotensive mice did not differ between the genotypes, but the respective increase under hypertensive conditions was impaired in NO-GC1-KO. Similarly, inhibition of endogenous NO increased BP and reduced RBF to a lesser extent in NO-GC1-KO than in NO-GC2-KO. These findings indicate NO-GC1 as a target of NO to normalize RBF in hypertension. As these effects were not completely abolished in NO-GC1-KO and renal cyclic guanosine monophosphate (cGMP) levels were decreased in both NO-GC1-KO and NO-GC2-KO, the results suggest an additional contribution of NO-GC2. Hence, NO-GC1 plays a predominant role in the regulation of BP and RBF, especially in hypertension. However, renal NO-GC2 appears to compensate the loss of NO-GC1, and is able to regulate renal hemodynamics under physiological conditions.

  9. Als2 mRNA splicing variants detected in KO mice rescue severe motor dysfunction phenotype in Als2 knock-down zebrafish.

    PubMed

    Gros-Louis, Francois; Kriz, Jasna; Kabashi, Edor; McDearmid, Jonathan; Millecamps, Stéphanie; Urushitani, Makoto; Lin, Li; Dion, Patrick; Zhu, Qinzhang; Drapeau, Pierre; Julien, Jean-Pierre; Rouleau, Guy A

    2008-09-01

    Recessive ALS2 mutations are linked to three related but slightly different neurodegenerative disorders: amyotrophic lateral sclerosis, hereditary spastic paraplegia and primary lateral sclerosis. To investigate the function of the ALS2 encoded protein, we generated Als2 knock-out (KO) mice and zAls2 knock-down zebrafish. The Als2(-/-) mice lacking exon 2 and part of exon 3 developed mild signs of neurodegeneration compatible with axonal transport deficiency. In contrast, zAls2 knock-down zebrafish had severe developmental abnormalities, swimming deficits and motor neuron perturbation. We identified, by RT-PCR, northern and western blotting novel Als2 transcripts in mouse central nervous system. These Als2 transcripts were present in Als2 null mice as well as in wild-type littermates and some rescued the zebrafish phenotype. Thus, we speculate that the newly identified Als2 mRNA species prevent the Als2 KO mice from developing severe neurodegenerative disease and might also regulate the severity of the motor neurons phenotype observed in ALS2 patients.

  10. Neuronal Growth and Behavioral Alterations in Mice Deficient for the Psychiatric Disease-Associated Negr1 Gene

    PubMed Central

    Singh, Katyayani; Loreth, Desirée; Pöttker, Bruno; Hefti, Kyra; Innos, Jürgen; Schwald, Kathrin; Hengstler, Heidi; Menzel, Lutz; Sommer, Clemens J.; Radyushkin, Konstantin; Kretz, Oliver; Philips, Mari-Anne; Haas, Carola A.; Frauenknecht, Katrin; Lilleväli, Kersti; Heimrich, Bernd; Vasar, Eero; Schäfer, Michael K. E.

    2018-01-01

    Neuronal growth regulator 1 (NEGR1), a member of the immunoglobulin superfamily cell adhesion molecule subgroup IgLON, has been implicated in neuronal growth and connectivity. In addition, genetic variants in or near the NEGR1 locus have been associated with obesity and more recently with learning difficulties, intellectual disability and psychiatric disorders. However, experimental evidence is lacking to support a possible link between NEGR1, neuronal growth and behavioral abnormalities. Initial expression analysis of NEGR1 mRNA in C57Bl/6 wildtype (WT) mice by in situ hybridization demonstrated marked expression in the entorhinal cortex (EC) and dentate granule cells. In co-cultures of cortical neurons and NSC-34 cells overexpressing NEGR1, neurite growth of cortical neurons was enhanced and distal axons occupied an increased area of cells overexpressing NEGR1. Conversely, in organotypic slice co-cultures, Negr1-knockout (KO) hippocampus was less permissive for axons grown from EC of β-actin-enhanced green fluorescent protein (EGFP) mice compared to WT hippocampus. Neuroanatomical analysis revealed abnormalities of EC axons in the hippocampal dentate gyrus (DG) of Negr1-KO mice including increased numbers of axonal projections to the hilus. Neurotransmitter receptor ligand binding densities, a proxy of functional neurotransmitter receptor abundance, did not show differences in the DG of Negr1-KO mice but altered ligand binding densities to NMDA receptor and muscarinic acetylcholine receptors M1 and M2 were found in CA1 and CA3. Activity behavior, anxiety-like behavior and sensorimotor gating were not different between genotypes. However, Negr1-KO mice exhibited impaired social behavior compared to WT littermates. Moreover, Negr1-KO mice showed reversal learning deficits in the Morris water maze and increased susceptibility to pentylenetetrazol (PTZ)-induced seizures. Thus, our results from neuronal growth assays, neuroanatomical analyses and behavioral

  11. Muscle-specific AMPK β1β2-null mice display a myopathy due to loss of capillary density in nonpostural muscles

    PubMed Central

    Thomas, Melissa M.; Wang, David C.; D'Souza, Donna M.; Krause, Matthew P.; Layne, Andrew S.; Criswell, David S.; O'Neill, Hayley M.; Connor, Michael K.; Anderson, Judy E.; Kemp, Bruce E.; Steinberg, Gregory R.; Hawke, Thomas J.

    2014-01-01

    AMP-activated protein kinase (AMPK) is a master regulator of metabolism. While muscle-specific AMPK β1β2 double-knockout (β1β2M-KO) mice display alterations in metabolic and mitochondrial capacity, their severe exercise intolerance suggested a secondary contributor to the observed phenotype. We find that tibialis anterior (TA), but not soleus, muscles of sedentary β1β2M-KO mice display a significant myopathy (decreased myofiber areas, increased split and necrotic myofibers, and increased centrally nucleated myofibers. A mitochondrial- and fiber-type-specific etiology to the myopathy was ruled out. However, β1β2M-KO TA muscles displayed significant (P<0.05) increases in platelet aggregation and apoptosis within myofibers and surrounding interstitium (P<0.05). These changes correlated with a 45% decrease in capillary density (P<0.05). We hypothesized that the β1β2M-KO myopathy in resting muscle resulted from impaired AMPK-nNOSμ signaling, causing increased platelet aggregation, impaired vasodilation, and, ultimately, ischemic injury. Consistent with this hypothesis, AMPK-specific phosphorylation (Ser1446) of nNOSμ was decreased in β1β2M-KO compared to wild-type (WT) mice. The AMPK-nNOSμ relationship was further demonstrated by administration of 5-aminoimidazole-4-carboxamide 1-β-d-ribofuranoside (AICAR) to β1β2-MKO muscles and C2C12 myotubes. AICAR significantly increased nNOSμ phosphorylation and nitric oxide production (P<0.05) within minutes of administration in WT muscles and C2C12 myotubes but not in β1β2M-KO muscles. These findings highlight the importance of the AMPK-nNOSμ pathway in resting skeletal muscle.—Thomas, M. M., Wang, D. C., D'Souza, D. M., Krause, M. P., Layne, A. S., Criswell, D. S., O'Neill, H. M., Connor, M. K., Anderson, J. E., Kemp, B. E., Steinberg, G. R., and Hawke, T. J. Muscle-specific AMPK β1β2-null mice display a myopathy due to loss of capillary density in nonpostural muscles. PMID:24522207

  12. Inhibition of endoplasmic reticulum stress by intermedin1-53 attenuates angiotensin II-induced abdominal aortic aneurysm in ApoE KO Mice.

    PubMed

    Ni, Xian-Qiang; Lu, Wei-Wei; Zhang, Jin-Sheng; Zhu, Qing; Ren, Jin-Ling; Yu, Yan-Rong; Liu, Xiu-Ying; Wang, Xiu-Jie; Han, Mei; Jing, Qing; Du, Jie; Tang, Chao-Shu; Qi, Yong-Fen

    2018-06-26

    Endoplasmic reticulum stress (ERS) is involved in the development of abdominal aortic aneurysm (AAA). Since bioactive peptide intermedin (IMD)1-53 protects against AAA formation, here we investigated whether IMD1-53 attenuates AAA by inhibiting ERS. AAA model was induced by angiotensin II (AngII) in ApoE KO mouse background. AngII-treated mouse aortas showed increased ERS gene transcription of caspase12, eukaryotic translation initiation factor 2a (eIf2a) and activating transcription factor 4(ATF4).The protein level of ERS marker glucose regulated protein 94(GRP94), ATF4 and C/EBP homologous protein 10(CHOP) was also up-regulated by AngII. Increased ERS levels were accompanied by severe VSMC apoptosis in human AAA aorta. In vivo administration of IMD1-53 greatly reduced AngII-induced AAA and abrogated the activation of ERS. To determine whether IMD inhibited AAA by ameliorating ERS, we used 2 non-selective ERS inhibitors phenyl butyrate (4-PBA) and taurine (TAU). Similar to IMD, PBA, and TAU significantly reduced the incidence of AAA and AAA-related pathological disorders. In vitro, AngII infusion up-regulated CHOP, caspase12 expression and led to VSMC apoptosis. IMD siRNA aggravated the CHOP, caspase12-mediated VSMC apoptosis, which was abolished by ATF4 silencing. IMD infusion promoted the phosphorylation of adenosine 5'-monophosphate (AMP)-activated protein kinase (AMPK) in aortas in ApoE KO mice, and the AMPK inhibitor compound C abolished the protective effect of IMD on VSMC ERS and apoptosis induced by AngII. In conclusion, IMD may protect against AAA formation by inhibiting ERS via activating AMPK phosphorylation.

  13. Gut T1R3 sweet taste receptors do not mediate sucrose-conditioned flavor preferences in mice.

    PubMed

    Sclafani, Anthony; Glass, Damien S; Margolskee, Robert F; Glendinning, John I

    2010-12-01

    Most mammals prefer the sweet taste of sugars, which is mediated by the heterodimeric T1R2+T1R3 taste receptor. Sugar appetite is also enhanced by the post-oral reinforcing actions of the nutrient in the gut. Here, we examined the contribution of gut T1R3 (either alone or as part of the T1R3+T1R3 receptor) to post-oral sugar reinforcement using a flavor-conditioning paradigm. We trained mice to associate consumption of a flavored solution (CS+) with intragastric (IG) infusions of a sweetener, and a different flavored solution (CS-) with IG infusions of water (23 h/day); then, we measured preference in a CS+ vs. CS- choice test. In experiment 1, we predicted that if activation of gut T1R3 mediates sugar reinforcement, then IG infusions of a nutritive (sucrose) or nonnutritive (sucralose) ligand for this receptor should condition a preference for the CS+ in B6 wild-type (WT) mice. While the mice that received IG sucrose infusions developed a strong preference for the CS+, those that received IG sucralose infusions developed a weak avoidance of the CS+. In experiment 2, we used T1R3 knockout (KO) mice to examine the necessity of gut T1R2+T1R3 receptors for conditioned flavor preferences. If intact gut T1R3 (or T1R2+T1R3) receptors are necessary for flavor-sugar conditioning, then T1R3 KO mice should not develop a sugar-conditioned flavor preference. We found that T1R3 KO mice, like WT mice, acquired a strong preference for the CS+ paired with IG sucrose infusions. The KO mice were also like WT mice in avoiding a CS+ flavor paired with IG sucralose infusions These findings provide clear evidence that gut T1R3 receptors are not necessary for sugar-conditioned flavor preferences or sucralose-induced flavor avoidance in mice.

  14. SIRT1 Activation by Resveratrol Alleviates Cardiac Dysfunction via Mitochondrial Regulation in Diabetic Cardiomyopathy Mice.

    PubMed

    Ma, Sai; Feng, Jing; Zhang, Ran; Chen, Jiangwei; Han, Dong; Li, Xiang; Yang, Bo; Li, Xiujuan; Fan, Miaomiao; Li, Congye; Tian, Zuhong; Wang, Yabin; Cao, Feng

    2017-01-01

    Diabetic cardiomyopathy (DCM) is a major threat for diabetic patients. Silent information regulator 1 (SIRT1) has a regulatory effect on mitochondrial dynamics, which is associated with DCM pathological changes. Our study aims to investigate whether resveratrol, a SRIT1 activator, could exert a protective effect against DCM. Cardiac-specific SIRT1 knockout (SIRT1 KO ) mice were generated using Cre-loxP system. SIRT1 KO mice displayed symptoms of DCM, including cardiac hypertrophy and dysfunction, insulin resistance, and abnormal glucose metabolism. DCM and SIRT1 KO hearts showed impaired mitochondrial biogenesis and function, while SIRT1 activation by resveratrol reversed this in DCM mice. High glucose caused increased apoptosis, impaired mitochondrial biogenesis, and function in cardiomyocytes, which was alleviated by resveratrol. SIRT1 deletion by both SIRT1 KO and shRNA abolished the beneficial effects of resveratrol. Furthermore, the function of SIRT1 is mediated via the deacetylation effect on peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α), thus inducing increased expression of nuclear respiratory factor 1 (NRF-1), NRF-2, estrogen-related receptor-α (ERR-α), and mitochondrial transcription factor A (TFAM). Cardiac deletion of SIRT1 caused phenotypes resembling DCM. Activation of SIRT1 by resveratrol ameliorated cardiac injuries in DCM through PGC-1α-mediated mitochondrial regulation. Collectively, SIRT1 may serve as a potential therapeutic target for DCM.

  15. Targeted disruption of the type 1 selenodeiodinase gene (Dio1) results in marked changes in thyroid hormone economy in mice.

    PubMed

    Schneider, Mark J; Fiering, Steven N; Thai, B; Wu, Sing-yung; St Germain, Emily; Parlow, Albert F; St Germain, Donald L; Galton, Valerie Anne

    2006-01-01

    The type 1 deiodinase (D1) is thought to be an important source of T3 in the euthyroid state. To explore the role of the D1 in thyroid hormone economy, a D1-deficient mouse (D1KO) was made by targeted disruption of the Dio1 gene. The general health and reproductive capacity of the D1KO mouse were seemingly unimpaired. In serum, levels of T4 and rT3 were elevated, whereas those of TSH and T3 were unchanged, as were several indices of peripheral thyroid status. It thus appears that the D1 is not essential for the maintenance of a normal serum T3 level in euthyroid mice. However, D1 deficiency resulted in marked changes in the metabolism and excretion of iodothyronines. Fecal excretion of endogenous iodothyronines was greatly increased. Furthermore, when compared with both wild-type and D2-deficient mice, fecal excretion of [125I]iodothyronines was greatly increased in D1KO mice during the 48 h after injection of [125I]T4 or [125I]T3, whereas urinary excretion of [125I]iodide was markedly diminished. From these data it was estimated that a majority of the iodide generated by the D1 was derived from substrates other than T4. Treatment with T3 resulted in a significantly higher serum T3 level and a greater degree of hyperthyroidism in D1KO mice than in wild-type mice. We conclude that, although the D1 is of questionable importance to the wellbeing of the euthyroid mouse, it may play a major role in limiting the detrimental effects of conditions that alter normal thyroid function, including hyperthyroidism and iodine deficiency.

  16. Functionally improved bone in Calbindin-D28k knockout mice

    PubMed Central

    Margolis, David S.; Kim, Devin; Szivek, John A.; Lai, Li-Wen; Lien, Yeong-Hau H.

    2008-01-01

    In vitro studies indicate that Calbindin-D28k, a calcium binding protein, is important in regulating the life span of osteoblasts as well as the mineralization of bone extracellular matrix. The recent creation of a Calbindin-D28k knockout mouse has provided the opportunity to study the physiological effects of the Calbindin-D28k protein on bone remodeling in vivo. In this experiment, histomorphometry, μCT, and bend testing were used to characterize bones in Calbindin-D28k KO (knockout) mice. The femora of Calbindin-D28k KO mice had significantly increased cortical bone volume (60.4% ± 3.1) compared to wild-type (WT) mice (45.4% ± 4.6). The increased bone volume was due to a decrease in marrow cavity area, and significantly decreased endosteal perimeters (3.397 mm ± 0.278 in Calbindin-D28k KO mice, and 4.046 mm ± 0.450 in WT mice). Similar changes were noted in the analysis of the tibias in both mice. The bone formation rates were similar in the femoral and tibial cortical bones of both mice. μCT analysis of the trabecular bone in the tibial plateau indicated that Calbindin-D28k KO mice had an increased bone volume (35.2% ± 3.1) compared to WT mice (24.7% ± 4.9) which was primarily due to increased trabecular number (8.99 mm−1 ± 0.94 in Calbindin-D28k KO mice compared to 6.75 mm−1 ± 0.85 in WT mice). Bone mineral content analysis of the tibias indicated that there is no difference in the calcium or phosphorus content between the Calbindin-D28k KO and WT mice. Cantilever bend testing of the femora demonstrated significantly lower strains in the bones of Calbindin-D28k KO mice (4135 μstrain/kg ± 1266) compared to WT mice (6973 μstrain/kg ± 998) indicating that the KO mice had stiffer bones. Three-point bending demonstrated increased failure loads in bones of Calbindin-D28k KO mice (31.6 N ± 2.1) compared to WT mice (15.0 N ± 1.7). In conclusion, Calbindin-D28k KO mice had increased bone volume and stiffness indicating that Calbindin-D28k plays an

  17. Cardiovascular phenotype in Smad3 deficient mice with renovascular hypertension.

    PubMed

    Kashyap, Sonu; Warner, Gina; Hu, Zeng; Gao, Feng; Osman, Mazen; Al Saiegh, Yousif; Lien, Karen R; Nath, Karl; Grande, Joseph P

    2017-01-01

    Renovascular hypertension (RVH) has deleterious effects on both the kidney and the heart. TGF-β signaling through Smad3 directs tissue fibrosis in chronic injury models. In the 2-kidney 1-clip (2K1C) model of RVH, employing mice on the 129 genetic background, Smad3 deficiency (KO) protects the stenotic kidney (STK) from development of interstitial fibrosis. However, these mice have an increased incidence of sudden cardiac death following 2K1C surgery. The purpose of this study was to characterize the cardiovascular phenotype of these mice. Renal artery stenosis (RAS) was established in Wild-type (WT) and Smad3 KO mice (129 genetic background) by placement of a polytetrafluoroethylene cuff on the right renal artery. Mortality was 25.5% for KO mice with RAS, 4.1% for KO sham mice, 1.2% for WT with RAS, and 1.8% for WT sham mice. Myocardial tissue of mice studied at 3 days following surgery showed extensive myocyte necrosis in KO but not WT mice. Myocyte necrosis was associated with a rapid induction of Ccl2 expression, macrophage influx, and increased MMP-9 activity. At later time points, both KO and WT mice developed myocardial fibrosis. No aortic aneurysms or dissections were observed at any time point. Smad3 KO mice were backcrossed to the C57BL/6J strain and subjected to RAS. Sudden death was observed at 10-14 days following surgery in 62.5% of mice; necropsy revealed aortic dissections as the cause of death. As observed in the 129 mice, the STK of Smad3 KO mice on the C57BL/6J background did not develop significant chronic renal damage. We conclude that the cardiovascular manifestations of Smad3 deficient mice are strain-specific, with myocyte necrosis in 129 mice and aortic rupture in C57BL/6J mice. Future studies will define mechanisms underlying this strain-specific effect on the cardiovascular system.

  18. Antihyperalgesic activity of a novel nonpeptide bradykinin B1 receptor antagonist in transgenic mice expressing the human B1 receptor

    PubMed Central

    Fox, Alyson; Kaur, Satbir; Li, Bifang; Panesar, Moh; Saha, Uma; Davis, Clare; Dragoni, Ilaria; Colley, Sian; Ritchie, Tim; Bevan, Stuart; Burgess, Gillian; McIntyre, Peter

    2005-01-01

    We describe the properties of a novel nonpeptide kinin B1 receptor antagonist, NVP-SAA164, and demonstrate its in vivo activity in models of inflammatory pain in transgenic mice expressing the human B1 receptor. NVP-SAA164 showed high affinity for the human B1 receptor expressed in HEK293 cells (Ki 8 nM), and inhibited increases in intracellular calcium induced by desArg10kallidin (desArg10KD) (IC50 33 nM). While a similar high affinity was observed in monkey fibroblasts (Ki 7.7 nM), NVP-SAA164 showed no affinity for the rat B1 receptor expressed in Cos-7 cells. In transgenic mice in which the native B1 receptor was deleted and the gene encoding the human B1 receptor was inserted (hB1 knockin, hB1-KI), hB1 receptor mRNA was induced in tissues following LPS treatment. No mRNA encoding the mouse or human B1 receptor was detected in mouse B1 receptor knockout (mB1-KO) mice following LPS treatment. Freund's complete adjuvant-induced mechanical hyperalgesia was similar in wild-type and hB1-KI mice, but was significantly reduced in mB1-KO animals. Mechanical hyperalgesia induced by injection of the B1 agonist desArg10KD into the contralateral paw 24 h following FCA injection was similar in wild-type and hB1-KI mice, but was absent in mB1-KO animals. Oral administration of NVP-SAA164 produced a dose-related reversal of FCA-induced mechanical hyperalgesia and desArg10KD-induced hyperalgesia in hB1-KI mice, but was inactive against inflammatory pain in wild-type mice. These data demonstrate the use of transgenic technology to investigate the in vivo efficacy of species selective agents and show that NVP-SAA164 is a novel orally active B1 receptor antagonist, providing further support for the utility of B1 receptor antagonists in inflammatory pain conditions in man. PMID:15685199

  19. 8-oxoguanine DNA Glycosylase 1-Deficiency Modifies Allergic Airway Inflammation by Regulating STAT6 and IL-4 in Cells and in Mice

    PubMed Central

    Li, Guoping; Yuan, Kefei; Yan, Chunguang; Fox, John; Gaid, Madeleine; Breitwieser, Wayne; Bansal, Arvind K.; Zeng, Huawei; Gao, Hongwei; Wu, Min

    2013-01-01

    8-oxoguanine-DNA glycosylase (OGG-1) is a base excision DNA repair enzyme; however, its function in modulating allergic diseases remains undefined. Using OGG-1 knockout (KO) mice, we show that this protein impacts allergic airway inflammation following sensitization and challenge by ovalbumin (OVA). OGG-1 KO mice exhibited less inflammatory cell infiltration and reduced oxidative stress in the lungs after OVA challenge compared to WT mice. The KO phenotype included decreased IL-4, IL-6, IL-10, and IL-17 in lung tissues. In addition, OGG-1 KO mice showed decreased expression and phosphorylation of STAT6 as well as NF-κB. Down-regulation of OGG-1 by siRNA lowered ROS and IL-4 levels but increased INF-γ production in cultured epithelial cells following exposure to house dust mite (HDM) extracts. OGG-1 may affect the levels of oxidative stress and proinflammatory cytokines during asthmatic conditions. OGG-1-deficiency negatively regulates allergen-induced airway inflammatory response. PMID:22100973

  20. Adipocyte-specific DKO of Lkb1 and mTOR protects mice against HFD-induced obesity, but results in insulin resistance.

    PubMed

    Xiong, Yan; Xu, Ziye; Wang, Yizhen; Kuang, Shihuan; Shan, Tizhong

    2018-06-01

    Liver kinase B1 (Lkb1) and mammalian target of rapamycin (mTOR) are key regulators of energy metabolism and cell growth. We have previously reported that adipocyte-specific KO of Lkb1 or mTOR in mice results in distinct developmental and metabolic phenotypes. Here, we aimed to assess how genetic KO of both Lkb1 and mTOR affects adipose tissue development and function in energy homeostasis. We used Adiponectin-Cre to drive adipocyte-specific double KO (DKO) of Lkb1 and mTOR in mice. We performed indirect calorimetry, glucose and insulin tolerance tests, and gene expression assays on the DKO and WT mice. We found that DKO of Lkb1 and mTOR results in reductions of brown adipose tissue and inguinal white adipose tissue mass, but in increases of liver mass. Notably, the DKO mice developed fatty liver and insulin resistance, but displayed improved glucose tolerance after high-fat diet (HFD)-feeding. Interestingly, the DKO mice were protected from HFD-induced obesity due to their higher energy expenditure and lower expression levels of adipogenic genes (CCAAT/enhancer binding protein α and PPARγ) compared with WT mice. These results together indicate that, compared with Lkb1 or mTOR single KOs, Lkb1/mTOR DKO in adipocytes results in overlapping and distinct metabolic phenotypes, and mTOR KO largely overrides the effect of Lkb1 KO. Copyright © 2018 by the American Society for Biochemistry and Molecular Biology, Inc.

  1. Divergent responses to thermogenic stimuli in BAT and subcutaneous adipose tissue from interleukin 18 and interleukin 18 receptor 1-deficient mice

    PubMed Central

    Pazos, Patricia; Lima, Luis; Tovar, Sulay; González-Touceda, David; Diéguez, Carlos; García, María C.

    2015-01-01

    Brown and beige adipocytes recruitment in brown (BAT) or white adipose tissue, mainly in the inguinal fat pad (iWAT), meet the need for temperature adaptation in cold-exposure conditions and protect against obesity in face of hypercaloric diets. Using interleukin18 (Il18) and Il18 receptor 1- knockout (Il18r1-KO) mice, this study aimed to investigate the role of IL18 signaling in BAT and iWAT activation and thermogenesis under both stimuli. Il18-KO, extremely dietary obesity-prone as previously described, failed to develop diet-induced thermogenesis as assessed by BAT and iWAT Ucp1 mRNA levels. Overweight when fed standard chow but not HFD, HFD-fed Il18r1-KO mice exhibited increased iWAT Ucp1 gene expression. Energy expenditure was reduced in pre-obese Il18r1-KO mice and restored upon HFD-challenge. Cold exposure lead to similar results; Il18r1-KO mice were protected against acute body temperature drop, displaying a more brown-like structure, alternative macrophage activation and thermogenic gene expression in iWAT than WT controls. Opposite effects were observed in Il18-KO mice. Thus, Il18 and Il18r1 genetic ablation disparate effects on energy homeostasis are likely mediated by divergent BAT responses to thermogenic stimuli as well as iWAT browning. These results suggest that a more complex receptor-signaling system mediates the IL18 adipose-tissue specific effects in energy expenditure. PMID:26656097

  2. IF1, a natural inhibitor of mitochondrial ATP synthase, is not essential for the normal growth and breeding of mice.

    PubMed

    Nakamura, Junji; Fujikawa, Makoto; Yoshida, Masasuke

    2013-09-17

    IF1 is an endogenous inhibitor protein of mitochondrial ATP synthase. It is evolutionarily conserved throughout all eukaryotes and it has been proposed to play crucial roles in prevention of the wasteful reverse reaction of ATP synthase, in the metabolic shift from oxidative phosphorylation to glycolysis, in the suppression of ROS (reactive oxygen species) generation, in mitochondria morphology and in haem biosynthesis in mitochondria, which leads to anaemia. Here, we report the phenotype of a mouse strain in which IF1 gene was destroyed. Unexpectedly, individuals of this IF1-KO (knockout) mouse strain grew and bred without defect. The general behaviours, blood test results and responses to starvation of the IF1-KO mice were apparently normal. There were no abnormalities in the tissue anatomy or the autophagy. Mitochondria of the IF1-KO mice were normal in morphology, in the content of ATP synthase molecules and in ATP synthesis activity. Thus, IF1 is not an essential protein for mice despite its ubiquitous presence in eukaryotes.

  3. The rescue of dentin matrix protein 1 (DMP1)-deficient tooth defects by the transgenic expression of dentin sialophosphoprotein (DSPP) indicates that DSPP is a downstream effector molecule of DMP1 in dentinogenesis.

    PubMed

    Gibson, Monica Prasad; Zhu, Qinglin; Wang, Suzhen; Liu, Qilin; Liu, Ying; Wang, Xiaofang; Yuan, Baozhi; Ruest, L Bruno; Feng, Jian Q; D'Souza, Rena N; Qin, Chunlin; Lu, Yongbo

    2013-03-08

    Dentin matrix protein 1 (DMP1) and dentin sialophosphoprotein (DSPP) are essential for the formation of dentin. Previous in vitro studies have indicated that DMP1 might regulate the expression of DSPP during dentinogenesis. To examine whether DMP1 controls dentinogenesis through the regulation of DSPP in vivo, we cross-bred transgenic mice expressing normal DSPP driven by a 3.6-kb rat Col1a1 promoter with Dmp1 KO mice to generate mice expressing the DSPP transgene in the Dmp1 KO genetic background (referred to as "Dmp1 KO/DSPP Tg mice"). We used morphological, histological, and biochemical techniques to characterize the dentin and alveolar bone of Dmp1 KO/DSPP Tg mice compared with Dmp1 KO and wild-type mice. Our analyses showed that the expression of endogenous DSPP was remarkably reduced in the Dmp1 KO mice. Furthermore, the transgenic expression of DSPP rescued the tooth and alveolar bone defects of the Dmp1 KO mice. In addition, our in vitro analyses showed that DMP1 and its 57-kDa C-terminal fragment significantly up-regulated the Dspp promoter activities in a mesenchymal cell line. In contrast, the expression of DMP1 was not altered in the Dspp KO mice. These results provide strong evidence that DSPP is a downstream effector molecule that mediates the roles of DMP1 in dentinogenesis.

  4. Physiological roles of A1 and A2A adenosine receptors in regulating heart rate, body temperature, and locomotion as revealed using knockout mice and caffeine

    PubMed Central

    Yang, Jiang-Ning; Chen, Jiang-Fan; Fredholm, Bertil B.

    2009-01-01

    Heart rate (HR), body temperature (Temp), locomotor activity (LA), and oxygen consumption (O2C) were studied in awake mice lacking one or both of the adenosine A1 or A2A receptors (A1R or A2AR, respectively) using telemetry and respirometry, before and after caffeine administration. All parameters were lower during day than night and higher in females than males. When compared with wild-type (WT) littermates, HR was higher in male A1R knockout (A1RKO) mice but lower in A2ARKO mice and intermediate in A1-A2AR double KO mice. A single dose of an unselective β-blocker (timolol; 1 mg/kg) abolished the HR differences between these genotypes. Deletion of A1Rs had little effect on Temp, whereas deletion of A2ARs increased it in females and decreased it in males. A1-A2ARKO mice had lower Temp than WT mice. LA was unaltered in A1RKO mice and lower in A2ARKO and A1-A2ARKO mice than in WT mice. Caffeine injection increased LA but only in mice expressing A2AR. Caffeine ingestion also increased LA in an A2AR-dependent manner in male mice. Caffeine ingestion significantly increased O2C in WT mice, but less in the different KO mice. Injection of 30 mg/kg caffeine decreased Temp, especially in KO mice, and hence in a manner unrelated to A1R or A2AR blockade. Selective A2B antagonism had little or no effect. Thus A1R and A2AR influence HR, Temp, LA, and O2C in mice in a sex-dependent manner, indicating effects of endogenous adenosine. The A2AR plays an important role in the modulation of O2C and LA by acute and chronic caffeine administration. There is also evidence for effects of higher doses of caffeine being independent of both A1R and A2AR. PMID:19218506

  5. Comprehensive phenotypic analysis of knockout mice deficient in cyclin G1 and cyclin G2

    PubMed Central

    Ohno, Shouichi; Ikeda, Jun-ichiro; Naito, Yoko; Okuzaki, Daisuke; Sasakura, Towa; Fukushima, Kohshiro; Nishikawa, Yukihiro; Ota, Kaori; Kato, Yorika; Wang, Mian; Torigata, Kosuke; Kasama, Takashi; Uchihashi, Toshihiro; Miura, Daisaku; Yabuta, Norikazu; Morii, Eiichi; Nojima, Hiroshi

    2016-01-01

    Cyclin G1 (CycG1) and Cyclin G2 (CycG2) play similar roles during the DNA damage response (DDR), but their detailed roles remain elusive. To investigate their distinct roles, we generated knockout mice deficient in CycG1 (G1KO) or CycG2 (G2KO), as well as double knockout mice (DKO) deficient in both proteins. All knockouts developed normally and were fertile. Generation of mouse embryonic fibroblasts (MEFs) from these mice revealed that G2KO MEFs, but not G1KO or DKO MEFs, were resistant to DNA damage insults caused by camptothecin and ionizing radiation (IR) and underwent cell cycle arrest. CycG2, but not CycG1, co-localized with γH2AX foci in the nucleus after γ-IR, and γH2AX-mediated DNA repair and dephosphorylation of CHK2 were delayed in G2KO MEFs. H2AX associated with CycG1, CycG2, and protein phosphatase 2A (PP2A), suggesting that γH2AX affects the function of PP2A via direct interaction with its B’γ subunit. Furthermore, expression of CycG2, but not CycG1, was abnormal in various cancer cell lines. Kaplan–Meier curves based on TCGA data disclosed that head and neck cancer patients with reduced CycG2 expression have poorer clinical prognoses. Taken together, our data suggest that reduced CycG2 expression could be useful as a novel prognostic marker of cancer. PMID:27982046

  6. Altered thalamocortical rhythmicity and connectivity in mice lacking CaV3.1 T-type Ca2+ channels in unconsciousness

    PubMed Central

    Choi, Soonwook; Yu, Eunah; Lee, Seongwon; Llinás, Rodolfo R.

    2015-01-01

    In unconscious status (e.g., deep sleep and anesthetic unconsciousness) where cognitive functions are not generated there is still a significant level of brain activity present. Indeed, the electrophysiology of the unconscious brain is characterized by well-defined thalamocortical rhythmicity. Here we address the ionic basis for such thalamocortical rhythms during unconsciousness. In particular, we address the role of CaV3.1 T-type Ca2+ channels, which are richly expressed in thalamic neurons. Toward this aim, we examined the electrophysiological and behavioral phenotypes of mice lacking CaV3.1 channels (CaV3.1 knockout) during unconsciousness induced by ketamine or ethanol administration. Our findings indicate that CaV3.1 KO mice displayed attenuated low-frequency oscillations in thalamocortical loops, especially in the 1- to 4-Hz delta band, compared with control mice (CaV3.1 WT). Intriguingly, we also found that CaV3.1 KO mice exhibited augmented high-frequency oscillations during unconsciousness. In a behavioral measure of unconsciousness dynamics, CaV3.1 KO mice took longer to fall into the unconscious state than controls. In addition, such unconscious events had a shorter duration than those of control mice. The thalamocortical interaction level between mediodorsal thalamus and frontal cortex in CaV3.1 KO mice was significantly lower, especially for delta band oscillations, compared with that of CaV3.1 WT mice, during unconsciousness. These results suggest that the CaV3.1 channel is required for the generation of a given set of thalamocortical rhythms during unconsciousness. Further, that thalamocortical resonant neuronal activity supported by this channel is important for the control of vigilance states. PMID:26056284

  7. Altered thalamocortical rhythmicity and connectivity in mice lacking CaV3.1 T-type Ca2+ channels in unconsciousness.

    PubMed

    Choi, Soonwook; Yu, Eunah; Lee, Seongwon; Llinás, Rodolfo R

    2015-06-23

    In unconscious status (e.g., deep sleep and anesthetic unconsciousness) where cognitive functions are not generated there is still a significant level of brain activity present. Indeed, the electrophysiology of the unconscious brain is characterized by well-defined thalamocortical rhythmicity. Here we address the ionic basis for such thalamocortical rhythms during unconsciousness. In particular, we address the role of CaV3.1 T-type Ca(2+) channels, which are richly expressed in thalamic neurons. Toward this aim, we examined the electrophysiological and behavioral phenotypes of mice lacking CaV3.1 channels (CaV3.1 knockout) during unconsciousness induced by ketamine or ethanol administration. Our findings indicate that CaV3.1 KO mice displayed attenuated low-frequency oscillations in thalamocortical loops, especially in the 1- to 4-Hz delta band, compared with control mice (CaV3.1 WT). Intriguingly, we also found that CaV3.1 KO mice exhibited augmented high-frequency oscillations during unconsciousness. In a behavioral measure of unconsciousness dynamics, CaV3.1 KO mice took longer to fall into the unconscious state than controls. In addition, such unconscious events had a shorter duration than those of control mice. The thalamocortical interaction level between mediodorsal thalamus and frontal cortex in CaV3.1 KO mice was significantly lower, especially for delta band oscillations, compared with that of CaV3.1 WT mice, during unconsciousness. These results suggest that the CaV3.1 channel is required for the generation of a given set of thalamocortical rhythms during unconsciousness. Further, that thalamocortical resonant neuronal activity supported by this channel is important for the control of vigilance states.

  8. 11β-HSD1 Modulates the Set Point of Brown Adipose Tissue Response to Glucocorticoids in Male Mice

    PubMed Central

    Doig, Craig L.; Fletcher, Rachel S.; Morgan, Stuart A.; McCabe, Emma L.; Larner, Dean P.; Tomlinson, Jeremy W.; Stewart, Paul M.; Philp, Andrew

    2017-01-01

    Glucocorticoids (GCs) are potent regulators of energy metabolism. Chronic GC exposure suppresses brown adipose tissue (BAT) thermogenic capacity in mice, with evidence for a similar effect in humans. Intracellular GC levels are regulated by 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1) activity, which can amplify circulating GC concentrations. Therefore, 11β-HSD1 could modulate the impact of GCs on BAT function. This study investigated how 11β-HSD1 regulates the molecular architecture of BAT in the context of GC excess and aging. Circulating GC excess was induced in 11β-HSD1 knockout (KO) and wild-type mice by supplementing drinking water with 100 μg/mL corticosterone, and the effects on molecular markers of BAT function and mitochondrial activity were assessed. Brown adipocyte primary cultures were used to examine cell autonomous consequences of 11β-HSD1 deficiency. Molecular markers of BAT function were also examined in aged 11β-HSD1 KO mice to model lifetime GC exposure. BAT 11β-HSD1 expression and activity were elevated in response to GC excess and with aging. 11β-HSD1 KO BAT resisted the suppression of uncoupling protein 1 (UCP1) and mitochondrial respiratory chain subunit proteins normally imposed by GC excess. Furthermore, brown adipocytes from 11β-HSD1 KO mice had elevated basal mitochondrial function and were able to resist GC-mediated repression of activity. BAT from aged 11β-HSD1 KO mice showed elevated UCP1 protein and mitochondrial content, and a favorable profile of BAT function. These data reveal a novel mechanism in which increased 11β-HSD1 expression, in the context of GC excess and aging, impairs the molecular and metabolic function of BAT. PMID:28368470

  9. Effects of gene deletion of the tissue inhibitor of the matrix metalloproteinase-type 1 (TIMP-1) on left ventricular geometry and function in mice

    NASA Technical Reports Server (NTRS)

    Roten, L.; Nemoto, S.; Simsic, J.; Coker, M. L.; Rao, V.; Baicu, S.; Defreyte, G.; Soloway, P. J.; Zile, M. R.; Spinale, F. G.

    2000-01-01

    Alterations in the expression and activity of the matrix metalloproteinases (MMPs) and the tissue inhibitors of the MMPs (TIMPs) have been implicated in tissue remodeling in a number of disease states. One of the better characterized TIMPs, TIMP-1, has been shown to bind to active MMPs and to regulate the MMP activational process. The goal of this study was to determine whether deletion of the TIMP-1 gene in mice, which in turn would remove TIMP-1 expression in LV myocardium, would produce time-dependent effects on LV geometry and function. Age-matched sibling mice (129Sv) deficient in the TIMP-1 gene (TIMP-1 knock-out (TIMP-1 KO), n=10) and wild-type mice (n=10) underwent comparative echocardiographic studies at 1 and 4 months of age. LV catheterization studies were performed at 4 months and the LV harvested for histomorphometric studies. LV end-diastolic volume and mass increased (18+/-4 and 38+/-3%, respectively, P<0.05) at 4 months in the TIMP-1 KO group; a significant increase compared to wild-type controls (P<0.05). At 4 months, LV and end-diastolic wall stress was increased by over two-fold in the TIMP-1 KO compared to wild type (P<0.05). However, LV systolic pressure and ejection performance were unchanged in the two groups of mice. LV myocyte cross-sectional area was unchanged in the TIMP-1 KO mice compared to controls, but myocardial fibrillar collagen content was reduced. Changes in LV geometry occurred in TIMP-1 deficient mice and these results suggest that constitutive TIMP-1 expression participates in the maintenance of normal LV myocardial structure. Copyright 2000 Academic Press.

  10. Motor Deficits and Decreased Striatal Dopamine Receptor 2 Binding Activity in the Striatum-Specific Dyt1 Conditional Knockout Mice

    PubMed Central

    Yokoi, Fumiaki; Dang, Mai Tu; Li, Jianyong; Standaert, David G.; Li, Yuqing

    2011-01-01

    DYT1 early-onset generalized dystonia is a hyperkinetic movement disorder caused by mutations in DYT1 (TOR1A), which codes for torsinA. Recently, significant progress has been made in studying pathophysiology of DYT1 dystonia using targeted mouse models. Dyt1 ΔGAG heterozygous knock-in (KI) and Dyt1 knock-down (KD) mice exhibit motor deficits and alterations of striatal dopamine metabolisms, while Dyt1 knockout (KO) and Dyt1 ΔGAG homozygous KI mice show abnormal nuclear envelopes and neonatal lethality. However, it has not been clear whether motor deficits and striatal abnormality are caused by Dyt1 mutation in the striatum itself or the end results of abnormal signals from other brain regions. To identify the brain region that contributes to these phenotypes, we made a striatum-specific Dyt1 conditional knockout (Dyt1 sKO) mouse. Dyt1 sKO mice exhibited motor deficits and reduced striatal dopamine receptor 2 (D2R) binding activity, whereas they did not exhibit significant alteration of striatal monoamine contents. Furthermore, we also found normal nuclear envelope structure in striatal medium spiny neurons (MSNs) of an adult Dyt1 sKO mouse and cerebral cortical neurons in cerebral cortex-specific Dyt1 conditional knockout (Dyt1 cKO) mice. The results suggest that the loss of striatal torsinA alone is sufficient to produce motor deficits, and that this effect may be mediated, at least in part, through changes in D2R function in the basal ganglia circuit. PMID:21931745

  11. SIRT1 Activation by Resveratrol Alleviates Cardiac Dysfunction via Mitochondrial Regulation in Diabetic Cardiomyopathy Mice

    PubMed Central

    Zhang, Ran; Chen, Jiangwei; Li, Xiang; Yang, Bo; Li, Xiujuan; Fan, Miaomiao; Li, Congye; Tian, Zuhong

    2017-01-01

    Background Diabetic cardiomyopathy (DCM) is a major threat for diabetic patients. Silent information regulator 1 (SIRT1) has a regulatory effect on mitochondrial dynamics, which is associated with DCM pathological changes. Our study aims to investigate whether resveratrol, a SRIT1 activator, could exert a protective effect against DCM. Methods and Results Cardiac-specific SIRT1 knockout (SIRT1KO) mice were generated using Cre-loxP system. SIRT1KO mice displayed symptoms of DCM, including cardiac hypertrophy and dysfunction, insulin resistance, and abnormal glucose metabolism. DCM and SIRT1KO hearts showed impaired mitochondrial biogenesis and function, while SIRT1 activation by resveratrol reversed this in DCM mice. High glucose caused increased apoptosis, impaired mitochondrial biogenesis, and function in cardiomyocytes, which was alleviated by resveratrol. SIRT1 deletion by both SIRT1KO and shRNA abolished the beneficial effects of resveratrol. Furthermore, the function of SIRT1 is mediated via the deacetylation effect on peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α), thus inducing increased expression of nuclear respiratory factor 1 (NRF-1), NRF-2, estrogen-related receptor-α (ERR-α), and mitochondrial transcription factor A (TFAM). Conclusions Cardiac deletion of SIRT1 caused phenotypes resembling DCM. Activation of SIRT1 by resveratrol ameliorated cardiac injuries in DCM through PGC-1α-mediated mitochondrial regulation. Collectively, SIRT1 may serve as a potential therapeutic target for DCM. PMID:28883902

  12. Characterization of liver injury, oval cell proliferation and cholangiocarcinogenesis in glutathione S-transferase A3 knockout mice.

    PubMed

    Crawford, Dana R; Ilic, Zoran; Guest, Ian; Milne, Ginger L; Hayes, John D; Sell, Stewart

    2017-07-01

    We recently generated glutathione S-transferase (GST) A3 knockout (KO) mice as a novel model to study the risk factors for liver cancer. GSTA3 KO mice are sensitive to the acute cytotoxic and genotoxic effects of aflatoxin B1 (AFB1), confirming the crucial role of GSTA3 in resistance to AFB1. We now report histopathological changes, tumor formation, biochemical changes and gender response following AFB1 treatment as well as the contribution of oxidative stress. Using a protocol of weekly 0.5 mg AFB1/kg administration, we observed extensive oval (liver stem) cell (OC) proliferation within 1-3 weeks followed by microvesicular lipidosis, megahepatocytes, nuclear inclusions, cholangiomas and small nodules. Male and female GSTA3 KO mice treated with 12 and 24 weekly AFB1 injections followed by a rest period of 12 and 6 months, respectively, all had grossly distorted livers with macro- and microscopic cysts, hepatocellular nodules, cholangiomas and cholangiocarcinomas and OC proliferation. We postulate that the prolonged AFB1 treatment leads to inhibition of hepatocyte proliferation, which is compensated by OC proliferation and eventually formation of cholangiocarcinoma (CCA). At low-dose AFB1, male KO mice showed less extensive acute liver injury, OC proliferation and AFB1-DNA adducts than female KO mice. There were no significant compensatory changes in KO mice GST subunits, GST enzymatic activity, epoxide hydrolase, or CYP1A2 and CYP3A11 levels. Finally, there was a modest increase in F2-isoprostane and isofuran in KO mice that confirmed putative GSTA3 hydroperoxidase activity in vivo for the first time. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  13. The effects of serotonin1A receptor on female mice body weight and food intake are associated with the differential expression of hypothalamic neuropeptides and the GABAA receptor.

    PubMed

    Butt, Isma; Hong, Andrew; Di, Jing; Aracena, Sonia; Banerjee, Probal; Shen, Chang-Hui

    2014-10-01

    Both common eating disorders anorexia nervosa and bulimia nervosa are characteristically diseases of women. To characterize the role of the 5-HT1A receptor (5-HT1A-R) in these eating disorders in females, we investigated the effect of saline or 8-hydroxy-2-(di-n-propylamino) tetralin (8-OH-DPAT) treatment on feeding behavior and body weight in adult WT female mice and in adult 5-HT1A-R knockout (KO) female mice. Our results showed that KO female mice have lower food intake and body weight than WT female mice. Administration of 8-OH-DPAT decreased food intake but not body weight in WT female mice. Furthermore, qRT-PCR was employed to analyze the expression levels of neuropeptides, γ-aminobutyric acid A receptor subunit β (GABAA β subunits) and glutamic acid decarboxylase in the hypothalamic area. The results showed the difference in food intake between WT and KO mice was accompanied by differential expression of POMC, CART and GABAA β2, and the difference in body weight between WT and KO mice was associated with significantly different expression levels of CART and GABAA β2. As such, our data provide new insight into the role of 5-HT1A-R in both feeding behavior and the associated expression of neuropeptides and the GABAA receptor. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Conditional deletion of Pkd1 in osteocytes disrupts skeletal mechanosensing in mice

    PubMed Central

    Xiao, Zhousheng; Dallas, Mark; Qiu, Ni; Nicolella, Daniel; Cao, Li; Johnson, Mark; Bonewald, Lynda; Quarles, L. Darryl

    2011-01-01

    We investigated whether polycystin-1 is a bone mechanosensor. We conditionally deleted Pkd1 in mature osteoblasts/osteocytes by crossing Dmp1-Cre with Pkd1flox/m1Bei mice, in which the m1Bei allele is nonfunctional. We assessed in wild-type and Pkd1-deficient mice the response to mechanical loading in vivo by ulna loading and ex vivo by measuring the response of isolated osteoblasts to fluid shear stress. We found that conditional Pkd1 heterozygotes (Dmp1-Cre;Pkd1flox/+) and null mice (Pkd1Dmp1-cKO) exhibited a ∼40 and ∼90% decrease, respectively, in functional Pkd1 transcripts in bone. Femoral bone mineral density (12 vs. 27%), trabecular bone volume (32 vs. 48%), and cortical thickness (6 vs. 17%) were reduced proportionate to the reduction of Pkd1 gene dose, as were mineral apposition rate (MAR) and expression of Runx2-II, Osteocalcin, Dmp1, and Phex. Anabolic load-induced periosteal lamellar MAR (0.58±0.14; Pkd1Dmp1-cKO vs. 1.68±0.34 μm/d; control) and increases in Cox-2, c-Jun, Wnt10b, Axin2, and Runx2-II gene expression were significantly attenuated in Pkd1Dmp1-cKO mice compared with controls. Application of fluid shear stress to immortalized osteoblasts from Pkd1null/null and Pkd1m1Bei/m1Bei-derived osteoblasts failed to elicit the increments in cytosolic calcium observed in wild-type controls. These data indicate that polycystin-1 is essential for the anabolic response to skeletal loading in osteoblasts/osteocytes.—Xiao, Z., Dallas, M., Qiu, N., Nicolella, D., Cao, L., Johnson, M., Bonewald, L., Quarles, L. D. Conditional deletion of Pkd1 in osteocytes disrupts skeletal mechanosensing in mice. PMID:21454365

  15. Methylprednisolone prevents nerve injury-induced hyperalgesia in neprilysin knockout mice.

    PubMed

    He, Lan; Uçeyler, Nurcan; Krämer, Heidrun H; Colaço, Maria Nandini; Lu, Bao; Birklein, Frank; Sommer, Claudia

    2014-03-01

    The pathophysiology of the complex regional pain syndrome involves enhanced neurogenic inflammation mediated by neuropeptides. Neutral endopeptidase (neprilysin, NEP) is a key enzyme in neuropeptide catabolism. Our previous work revealed that NEP knock out (ko) mice develop more severe hypersensitivity to thermal and mechanical stimuli after chronic constriction injury (CCI) of the sciatic nerve than wild-type (wt) mice. Because treatment with glucocorticoids is effective in early complex regional pain syndrome, we investigated whether methylprednisolone (MP) reduces pain and sciatic nerve neuropeptide content in NEP ko and wt mice with nerve injury. After CCI, NEP ko mice developed more severe thermal and mechanical hypersensitivity and hind paw edema than wt mice, confirming previous findings. Hypersensitivity was prevented by MP treatment in NEP ko but not in wt mice. MP treatment had no effect on protein levels of calcitonin-gene related peptide, substance P, and bradykinin in sciatic nerves of NEP ko mice. Endothelin-1 (ET-1) levels were higher in naïve and nerve-injured NEP ko than in wt mice, without an effect of MP treatment. Gene expression of the ET-1 receptors ETAR and ETBR was not different between genotypes and was not altered after CCI, but was increased after additional MP treatment. The ETBR agonist IRL-1620 was analgesic in NEP ko mice after CCI, and the ETBR antagonist BQ-788 showed a trend to reduce the analgesic effect of MP. The results provide evidence that MP reduces CCI-induced hyperalgesia in NEP ko mice, and that this may be related to ET-1 via analgesic actions of ETBR. Copyright © 2013 International Association for the Study of Pain. Published by Elsevier B.V. All rights reserved.

  16. Amphetamine reward in food restricted mice lacking the melanin-concentrating hormone receptor-1.

    PubMed

    Geuzaine, Annabelle; Tyhon, Amélie; Grisar, Thierry; Brabant, Christian; Lakaye, Bernard; Tirelli, Ezio

    2014-04-01

    Chronic food restriction (FR) and maintenance of low body weight have long been known to increase the rewarding and motor-activating effects of addictive drugs. However, the neurobiological mechanisms through which FR potentiates drug reward remain largely unknown. Melanin-concentrating hormone (MCH) signaling could be one of these mechanisms since this peptide is involved in energy homeostasis and modulates mesolimbic dopaminergic transmission. The purpose of the present study was to test this hypothesis by investigating the impact of FR on amphetamine reward in wild-type (WT) and knockout mice lacking the melanin-concentrating hormone receptor-1 (MCHR1-KO). The rewarding effects of amphetamine (0.75-2.25 mg/kg, i.p.) were measured with the conditioned place preference (CPP) technique. The food of the mice was restricted to maintain their body weight at 80-85% of their free-feeding (FF) weight throughout the entire CPP experiment. Locomotor activity of the animals was recorded during the conditioning sessions. Our results show that locomotion of all the food-restricted mice treated with saline or amphetamine increased over the sessions whatever the genotype. On the place preference test, the amplitude of CPP induced by 0.75 mg/kg amphetamine was higher in food restricted WT mice than in free-fed WT mice and food restricted MCHR1-KO mice. However, FR did not affect amphetamine reward in MCHR1-KO mice. The present results indicate that MCH signaling could be involved in the ability of FR to increase amphetamine-induced CPP. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. GPER Deficiency in Male Mice Results in Insulin Resistance, Dyslipidemia, and a Proinflammatory State

    PubMed Central

    Sharma, Geetanjali; Hu, Chelin; Brigman, Jonathan L.; Zhu, Gang; Hathaway, Helen J.

    2013-01-01

    Estrogen is an important regulator of metabolic syndrome, a collection of abnormalities including obesity, insulin resistance/glucose intolerance, hypertension, dyslipidemia, and inflammation, which together lead to increased risk of cardiovascular disease and diabetes. The role of the G protein-coupled estrogen receptor (GPER/GPR30), particularly in males, in these pathologies remains unclear. We therefore sought to determine whether loss of GPER contributes to aspects of metabolic syndrome in male mice. Although 6-month-old male and female GPER knockout (KO) mice displayed increased body weight compared with wild-type littermates, only female GPER KO mice exhibited glucose intolerance at this age. Weight gain in male GPER KO mice was associated with increases in both visceral and sc fat. GPER KO mice, however, exhibited no differences in food intake or locomotor activity. One-year-old male GPER KO mice displayed an abnormal lipid profile with higher cholesterol and triglyceride levels. Fasting blood glucose levels remained normal, whereas insulin levels were elevated. Although insulin resistance was evident in GPER KO male mice from 6 months onward, glucose intolerance was pronounced only at 18 months of age. Furthermore, by 2 years of age, a proinflammatory phenotype was evident, with increases in the proinflammatory and immunomodulatory cytokines IL-1β, IL-6, IL-12, TNFα, monocyte chemotactic protein-1, interferon γ-induced protein 10, and monokine induced by interferon gamma and a concomitant decrease in the adipose-specific cytokine adiponectin. In conclusion, our study demonstrates for the first time that in male mice, GPER regulates metabolic parameters associated with obesity and diabetes. PMID:23970785

  18. GPER deficiency in male mice results in insulin resistance, dyslipidemia, and a proinflammatory state.

    PubMed

    Sharma, Geetanjali; Hu, Chelin; Brigman, Jonathan L; Zhu, Gang; Hathaway, Helen J; Prossnitz, Eric R

    2013-11-01

    Estrogen is an important regulator of metabolic syndrome, a collection of abnormalities including obesity, insulin resistance/glucose intolerance, hypertension, dyslipidemia, and inflammation, which together lead to increased risk of cardiovascular disease and diabetes. The role of the G protein-coupled estrogen receptor (GPER/GPR30), particularly in males, in these pathologies remains unclear. We therefore sought to determine whether loss of GPER contributes to aspects of metabolic syndrome in male mice. Although 6-month-old male and female GPER knockout (KO) mice displayed increased body weight compared with wild-type littermates, only female GPER KO mice exhibited glucose intolerance at this age. Weight gain in male GPER KO mice was associated with increases in both visceral and sc fat. GPER KO mice, however, exhibited no differences in food intake or locomotor activity. One-year-old male GPER KO mice displayed an abnormal lipid profile with higher cholesterol and triglyceride levels. Fasting blood glucose levels remained normal, whereas insulin levels were elevated. Although insulin resistance was evident in GPER KO male mice from 6 months onward, glucose intolerance was pronounced only at 18 months of age. Furthermore, by 2 years of age, a proinflammatory phenotype was evident, with increases in the proinflammatory and immunomodulatory cytokines IL-1β, IL-6, IL-12, TNFα, monocyte chemotactic protein-1, interferon γ-induced protein 10, and monokine induced by interferon gamma and a concomitant decrease in the adipose-specific cytokine adiponectin. In conclusion, our study demonstrates for the first time that in male mice, GPER regulates metabolic parameters associated with obesity and diabetes.

  19. Lacking Ketohexokinase-A Exacerbates Renal Injury in Streptozotocin-induced Diabetic Mice.

    PubMed

    Doke, Tomohito; Ishimoto, Takuji; Hayasaki, Takahiro; Ikeda, Satsuki; Hasebe, Masako; Hirayama, Akiyoshi; Soga, Tomoyoshi; Kato, Noritoshi; Kosugi, Tomoki; Tsuboi, Naotake; Lanaspa, Miguel A; Johnson, Richard J; Kadomatsu, Kenji; Maruyama, Shoichi

    2018-03-28

    Ketohexokinase (KHK), a primary enzyme in fructose metabolism, has two isoforms, namely, KHK-A and KHK-C. Previously, we reported that renal injury was reduced in streptozotocin-induced diabetic mice which lacked both isoforms. Although both isoforms express in kidney, it has not been elucidated whether each isoform plays distinct roles in the development of diabetic kidney disease (DKD). The aim of the study is to elucidate the role of KHK-A for DKD progression. Diabetes was induced by five consecutive daily intraperitoneal injections of streptozotocin (50 mg/kg) in C57BL/6 J wild-type mice, mice lacking KHK-A alone (KHK-A KO), and mice lacking both KHK-A and KHK-C (KHK-A/C KO). At 35 weeks, renal injury, inflammation, hypoxia, and oxidative stress were examined. Metabolomic analysis including polyol pathway, fructose metabolism, glycolysis, TCA (tricarboxylic acid) cycle, and NAD (nicotinamide adenine dinucleotide) metabolism in kidney and urine was done. Diabetic KHK-A KO mice developed severe renal injury compared to diabetic wild-type mice, and this was associated with further increases of intrarenal fructose, dihydroxyacetone phosphate (DHAP), TCA cycle intermediates levels, and severe inflammation. In contrast, renal injury was prevented in diabetic KHK-A/C KO mice compared to both wild-type and KHK-A KO diabetic mice. Further, diabetic KHK-A KO mice contained decreased renal NAD + level with the increase of renal hypoxia-inducible factor 1-alpha expression despite having increased renal nicotinamide (NAM) level. These results suggest that KHK-C might play a deleterious role in DKD progression through endogenous fructose metabolism, and that KHK-A plays a unique protective role against the development of DKD. Copyright © 2018. Published by Elsevier Inc.

  20. Ascorbate supplementation inhibits growth and metastasis of B16FO melanoma and 4T1 breast cancer cells in vitamin C-deficient mice.

    PubMed

    Cha, John; Roomi, M Waheed; Ivanov, Vadim; Kalinovsky, Tatiana; Niedzwiecki, Aleksandra; Rath, Matthias

    2013-01-01

    Degradation of the extracellular matrix (ECM) plays a critical role in the formation of tumors and metastasis and has been found to correlate with the aggressiveness of tumor growth and invasiveness of cancer. Ascorbic acid, which is known to be essential for the structural integrity of the intercellular matrix, is not produced by humans and must be obtained from the diet. Cancer patients have been shown to have very low reserves of ascorbic acid. Our main objective was to determine the effect of ascorbate supplementation on metastasis, tumor growth and tumor immunohistochemistry in mice unable to synthesize ascorbic acid [gulonolactone oxidase (gulo) knockout (KO)] when challenged with B16FO melanoma or 4T1 breast cancer cells. Gulo KO female mice 36-38 weeks of age were deprived of or maintained on ascorbate in food and water for 4 weeks prior to and 2 weeks post intraperitoneal (IP) injection of 5x105 B16FO murine melanoma cells or to injection of 5x105 4T1 breast cancer cells into the mammary pad of mice. Ascorbate-supplemented gulo KO mice injected with B16FO melanoma cells demonstrated significant reduction (by 71%, p=0.005) in tumor metastasis compared to gulo KO mice on the control diet. The mean tumor weight in ascorbate supplemented mice injected with 4T1 cells was reduced by 28% compared to tumor weight in scorbutic mice. Scorbutic tumors demonstrated large dark cores, associated with increased necrotic areas and breaches to the tumor surface, apoptosis and matrix metalloproteinase-9 (MMP-9), and weak, disorganized or missing collagen I tumor capsule. In contrast, the ascorbate-supplemented group tumors had smaller fainter colored cores and confined areas of necrosis/apoptosis with no breaches from the core to the outside of the tumor and a robust collagen I tumor capsule. In both studies, ascorbate supplementation of gulo KO mice resulted in profoundly decreased serum inflammatory cytokine interleukin (IL)-6 (99% decrease, p=0.01 in the B16F0

  1. Generation and testing anti-influenza human monoclonal antibodies in a new humanized mouse model (DRAGA: HLA-A2. HLA-DR4. Rag1 KO. IL-2Rγc KO. NOD).

    PubMed

    Mendoza, Mirian; Ballesteros, Angela; Qiu, Qi; Pow Sang, Luis; Shashikumar, Soumya; Casares, Sofia; Brumeanu, Teodor-D

    2018-02-01

    Pandemic outbreaks of influenza type A viruses have resulted in numerous fatalities around the globe. Since the conventional influenza vaccines (CIV) provide less than 20% protection for individuals with weak immune system, it has been considered that broadly cross-neutralizing antibodies may provide a better protection. Herein, we showed that a recently generated humanized mouse (DRAGA mouse; HLA-A2. HLA-DR4. Rag1KO. IL-2Rgc KO. NOD) that lacks the murine immune system and expresses a functional human immune system can be used to generate cross-reactive, human anti-influenza monoclonal antibodies (hu-mAb). DRAGA mouse was also found to be suitable for influenza virus infection, as it can clear a sub-lethal infection and sustain a lethal infection with PR8/A/34 influenza virus. The hu-mAbs were designed for targeting a human B-cell epitope ( 180 WGIHHPPNSKEQ QNLY 195 ) of hemagglutinin (HA) envelope protein of PR8/A/34 (H1N1) virus with high homology among seven influenza type A viruses. A single administration of HA 180-195 specific hu-mAb in PR8-infected DRAGA mice significantly delayed the lethality by reducing the lung damage. The results demonstrated that DRAGA mouse is a suitable tool to (i) generate heterotype cross-reactive, anti-influenza human monoclonal antibodies, (ii) serve as a humanized mouse model for influenza infection, and (iii) assess the efficacy of anti-influenza antibody-based therapeutics for human use.

  2. Physiological roles of A1 and A2A adenosine receptors in regulating heart rate, body temperature, and locomotion as revealed using knockout mice and caffeine.

    PubMed

    Yang, Jiang-Ning; Chen, Jiang-Fan; Fredholm, Bertil B

    2009-04-01

    Heart rate (HR), body temperature (Temp), locomotor activity (LA), and oxygen consumption (O(2)C) were studied in awake mice lacking one or both of the adenosine A(1) or A(2A) receptors (A(1)R or A(2A)R, respectively) using telemetry and respirometry, before and after caffeine administration. All parameters were lower during day than night and higher in females than males. When compared with wild-type (WT) littermates, HR was higher in male A(1)R knockout (A(1)RKO) mice but lower in A(2A)RKO mice and intermediate in A(1)-A(2A)R double KO mice. A single dose of an unselective beta-blocker (timolol; 1 mg/kg) abolished the HR differences between these genotypes. Deletion of A(1)Rs had little effect on Temp, whereas deletion of A(2A)Rs increased it in females and decreased it in males. A(1)-A(2A)RKO mice had lower Temp than WT mice. LA was unaltered in A(1)RKO mice and lower in A(2A)RKO and A(1)-A(2A)RKO mice than in WT mice. Caffeine injection increased LA but only in mice expressing A(2A)R. Caffeine ingestion also increased LA in an A(2A)R-dependent manner in male mice. Caffeine ingestion significantly increased O(2)C in WT mice, but less in the different KO mice. Injection of 30 mg/kg caffeine decreased Temp, especially in KO mice, and hence in a manner unrelated to A(1)R or A(2A)R blockade. Selective A(2B) antagonism had little or no effect. Thus A(1)R and A(2A)R influence HR, Temp, LA, and O(2)C in mice in a sex-dependent manner, indicating effects of endogenous adenosine. The A(2A)R plays an important role in the modulation of O(2)C and LA by acute and chronic caffeine administration. There is also evidence for effects of higher doses of caffeine being independent of both A(1)R and A(2A)R.

  3. Deletion of Lkb1 in pro-opiomelanocortin neurons impairs peripheral glucose homeostasis in mice.

    PubMed

    Claret, Marc; Smith, Mark A; Knauf, Claude; Al-Qassab, Hind; Woods, Angela; Heslegrave, Amanda; Piipari, Kaisa; Emmanuel, Julian J; Colom, André; Valet, Philippe; Cani, Patrice D; Begum, Ghazala; White, Anne; Mucket, Phillip; Peters, Marco; Mizuno, Keiko; Batterham, Rachel L; Giese, K Peter; Ashworth, Alan; Burcelin, Remy; Ashford, Michael L; Carling, David; Withers, Dominic J

    2011-03-01

    AMP-activated protein kinase (AMPK) signaling acts as a sensor of nutrients and hormones in the hypothalamus, thereby regulating whole-body energy homeostasis. Deletion of Ampkα2 in pro-opiomelanocortin (POMC) neurons causes obesity and defective neuronal glucose sensing. LKB1, the Peutz-Jeghers syndrome gene product, and Ca(2+)-calmodulin-dependent protein kinase kinase β (CaMKKβ) are key upstream activators of AMPK. This study aimed to determine their role in POMC neurons upon energy and glucose homeostasis regulation. Mice lacking either Camkkβ or Lkb1 in POMC neurons were generated, and physiological, electrophysiological, and molecular biology studies were performed. Deletion of Camkkβ in POMC neurons does not alter energy homeostasis or glucose metabolism. In contrast, female mice lacking Lkb1 in POMC neurons (PomcLkb1KO) display glucose intolerance, insulin resistance, impaired suppression of hepatic glucose production, and altered expression of hepatic metabolic genes. The underlying cellular defect in PomcLkb1KO mice involves a reduction in melanocortin tone caused by decreased α-melanocyte-stimulating hormone secretion. However, Lkb1-deficient POMC neurons showed normal glucose sensing, and body weight was unchanged in PomcLkb1KO mice. Our findings demonstrate that LKB1 in hypothalamic POMC neurons plays a key role in the central regulation of peripheral glucose metabolism but not body-weight control. This phenotype contrasts with that seen in mice lacking AMPK in POMC neurons with defects in body-weight regulation but not glucose homeostasis, which suggests that LKB1 plays additional functions distinct from activating AMPK in POMC neurons.

  4. Knockdown of acid-sensing ion channel 1a (ASIC1a) suppresses disease phenotype in SCA1 mouse model.

    PubMed

    Vig, Parminder J S; Hearst, Scoty M; Shao, Qingmei; Lopez, Maripar E

    2014-08-01

    The mutated ataxin-1 protein in spinocerebellar ataxia 1 (SCA1) targets Purkinje cells (PCs) of the cerebellum and causes progressive ataxia due to loss of PCs and neurons of the brainstem. The exact mechanism of this cellular loss is still not clear. Currently, there are no treatments for SCA1; however, understanding of the mechanisms that regulate SCA1 pathology is essential for devising new therapies for SCA1 patients. We previously established a connection between the loss of intracellular calcium-buffering and calcium-signalling proteins with initiation of neurodegeneration in SCA1 transgenic (Tg) mice. Recently, acid-sensing ion channel 1a (ASIC1a) have been implicated in calcium-mediated toxicity in many brain disorders. Here, we report generating SCA1 Tg mice in the ASIC1a knockout (KO) background and demonstrate that the deletion of ASIC1a gene expression causes suppression of the SCA1 disease phenotype. Loss of the ASIC1a channel in SCA1/ASIC1a KO mice resulted in the improvement of motor deficit and decreased PC degeneration. Interestingly, the expression of the ASIC1 variant, ASIC1b, was upregulated in the cerebellum of both SCA1/ASIC1a KO and ASIC1a KO animals as compared to the wild-type (WT) and SCA1 Tg mice. Further, these SCA1/ASIC1a KO mice exhibited translocation of PC calcium-binding protein calbindin-D28k from the nucleus to the cytosol in young animals, which otherwise have both cytosolic and nuclear localization. Furthermore, in addition to higher expression of calcium-buffering protein parvalbumin, PCs of the older SCA1/ASIC1a KO mice showed a decrease in morphologic abnormalities as compared to the age-matched SCA1 animals. Our data suggest that ASIC1a may be a mediator of SCA1 pathogenesis and targeting ASIC1a could be a novel approach to treat SCA1.

  5. The effect of calorie restriction on the presence of apoptotic ovarian cells in normal wild type mice and low-plasma-IGF-1 Laron dwarf mice

    PubMed Central

    2013-01-01

    Background It is known that caloric restriction extends lifespan and can minimize age-related dysfunction of the reproductive system. We became interested in how caloric restriction influences apoptosis, which is a crucial process that maintains ovarian cell homeostasis. Methods We examined ovarian cells in: 2.5-year-old wild type mice on caloric restriction (CR) or fed ad libitum (AL) and Laron dwarf mice (GHR-KO) at the same ages on CR or fed AL. Apoptosis was assessed by histochemical analysis on paraffin sections of ovarian tissue. Results Morphological and histochemical analysis revealed that CR improved reproductive potential in 2.5-year-old WT littermates and GHR-KO female mice, as indicated by the increased number of ovarian follicles. The level of apoptosis in ovarian tissue was higher in WT mice on a CR diet compared with WT mice on the AL diet. In GHR-KO mice, the level of apoptosis in ovaries was similar for mice on CR and on AL diets and bigger than in WT mice on CR. Conclusions Morphological and histochemical analysis revealed a younger biological age of the ovaries in 2-year-old WT littermates and GHR-KO female mice on CR compared with animals fed AL. PMID:24063422

  6. Activation of microglia induces symptoms of Parkinson’s disease in wild-type, but not in IL-1 knockout mice

    PubMed Central

    2013-01-01

    Background Parkinson’s disease (PD) is an age-related progressive neurodegenerative disorder caused by selective loss of dopaminergic neurons from the substantia nigra (SN) to the striatum. The initial factor that triggers neurodegeneration is unknown; however, inflammation has been demonstrated to be significantly involved in the progression of PD. The present study was designed to investigate the role of the pro-inflammatory cytokine interleukin-1 (IL-1) in the activation of microglia and the decline of motor function using IL-1 knockout (KO) mice. Methods Lipopolysaccharide (LPS) was stereotaxically injected into the SN of mice brains as a single dose or a daily dose for 5 days (5 mg/2 ml/injection, bilaterally). Animal behavior was assessed with the rotarod test at 2 hr and 8, 15 and 22 days after the final LPS injection. Results LPS treatment induced the activation of microglia, as demonstrated by production of IL-1β and tumor necrosis factor (TNF) α as well as a change in microglial morphology. The number of cells immunoreactive for 4-hydroxynonenal (4HNE) and nitrotyrosine (NT), which are markers for oxidative insults, increased in the SN, and impairment of motor function was observed after the subacute LPS treatment. Cell death and aggregation of α-synuclein were observed 21 and 30 days after the final LPS injection, respectively. Behavioral deficits were observed in wild-type and TNFα KO mice, but IL-1 KO mice behaved normally. Tyrosine hydroxylase (TH) gene expression was attenuated by LPS treatment in wild-type and TNFα KO mice but not in IL-1 KO mice. Conclusions The subacute injection of LPS into the SN induces PD-like pathogenesis and symptoms in mice that mimic the progressive changes of PD including the aggregation of α-synuclein. LPS-induced dysfunction of motor performance was accompanied by the reduced gene expression of TH. These findings suggest that activation of microglia by LPS causes functional changes such as dopaminergic neuron

  7. Attenuated EAN in TNF-α Deficient Mice Is Associated with an Altered Balance of M1/M2 Macrophages

    PubMed Central

    Zhang, Hong-Liang; Hassan, Mohammed Y.; Zheng, Xiang-Yu; Azimullah, Sheikh; Quezada, Hernan Concha; Amir, Naheed; Elwasila, Mohamed; Mix, Eilhard; Adem, Abdu; Zhu, Jie

    2012-01-01

    The role of tumor necrosis factor (TNF)-α and its receptors in neuroautoimmune and neuroinflammatory diseases has been controversial. On the basis of our previous studies, we hereby aimed to further clarify TNF-α’s mechanism of action and to explore the potential role of TNF-α receptor (TNFR)1 as a therapeutic target in experimental autoimmune neuritis (EAN). EAN was induced by immunization with P0 peptide 180–199 in TNF-α knockout (KO) mice and anti-TNFR1 antibodies were used to treat EAN. Particularly, the effects of TNF-α deficiency and TNFR1 blockade on macrophage functions were investigated. The onset of EAN in TNF-α KO mice was markedly later than that in wild type (WT) mice. From day 14 post immunization, the clinical signs of TNF-α KO mice were significantly milder than those of their WT counterparts. Further, we showed that the clinical severity of WT mice treated with anti-TNFR1 antibodies was less severe than that of the control WT mice receiving PBS. Nevertheless, no difference with regard to the clinical signs of EAN or inflammatory infiltration in cauda equina was seen between TNF-α KO and WT mice with EAN after blockade of TNFR1. Although TNF-α deficiency did not alter the proliferation of lymphocytes in response to either antigenic or mitogenic stimuli, it down-regulated the production of interleukin (IL)-12 and nitric oxide (NO), and enhanced the production of IL-10 in macrophages. Increased ratio of regulatory T cells (Tregs) and reduced production of interferon (IFN)-γ in cauda equina infiltrating cells, and elevated levels of IgG2b antibodies against P0 peptide 180–199 in sera were found in TNF-α KO mice with EAN. In conclusion, TNF-α deficiency attenuates EAN via altering the M1/M2 balance of macrophages. PMID:22666471

  8. Mice Lacking Pannexin 1 Release ATP and Respond Normally to All Taste Qualities.

    PubMed

    Vandenbeuch, Aurelie; Anderson, Catherine B; Kinnamon, Sue C

    2015-09-01

    Adenosine triphosphate (ATP) is required for the transmission of all taste qualities from taste cells to afferent nerve fibers. ATP is released from Type II taste cells by a nonvesicular mechanism and activates purinergic receptors containing P2X2 and P2X3 on nerve fibers. Several ATP release channels are expressed in taste cells including CALHM1, Pannexin 1, Connexin 30, and Connexin 43, but whether all are involved in ATP release is not clear. We have used a global Pannexin 1 knock out (Panx1 KO) mouse in a series of in vitro and in vivo experiments. Our results confirm that Panx1 channels are absent in taste buds of the knockout mice and that other known ATP release channels are not upregulated. Using a luciferin/luciferase assay, we show that circumvallate taste buds from Panx1 KO mice normally release ATP upon taste stimulation compared with wild type (WT) mice. Gustatory nerve recordings in response to various tastants applied to the tongue and brief-access behavioral testing with SC45647 also show no difference between Panx1 KO and WT. These results confirm that Panx1 is not required for the taste evoked release of ATP or for neural and behavioral responses to taste stimuli. © The Author 2015. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  9. Regional changes in the cholinergic system in mice lacking monoamine oxidase A.

    PubMed

    Grailhe, Régis; Cardona, Ana; Even, Naïla; Seif, Isabelle; Changeux, Jean-Pierre; Cloëz-Tayarani, Isabelle

    2009-03-30

    Elevated brain monoamine concentrations resulting from monoamine oxidase A genetic ablation (MAOA knock-out mice) lead to changes in other neurotransmitter systems. To investigate the consequences of MAOA deficiency on the cholinergic system, we measured ligand binding to the high-affinity choline transporter (CHT1) and to muscarinic and nicotinic receptors in brain sections of MAOA knock-out (KO) and wild-type mice. A twofold increase in [(3)H]-hemicholinium-3 ([(3)H]-HC-3) binding to CHT1 was observed in the caudate putamen, nucleus accumbens, and motor cortex in MAOA KO mice as compared with wild-type (WT) mice. There was no difference in [(3)H]-HC-3 labeling in the hippocampus (dentate gyrus) between the two genotypes. Binding of [(125)I]-epibatidine ([(125)I]-Epi), [(125)I]-alpha-bungarotoxin ([(125)I]-BGT), [(3)H]-pirenzepine ([(3)H]-PZR), and [(3)H]-AFDX-384 ([(3)H]-AFX), which respectively label high- and low-affinity nicotinic receptors, M1 and M2 muscarinic cholinergic receptors, was not modified in the caudate putamen, nucleus accumbens, and motor cortex. A small but significant decrease of 19% in M1 binding densities was observed in the hippocampus (CA1 field) of KO mice. Next, we tested acetylcholinesterase activity and found that it was decreased by 25% in the striatum of KO mice as compared with WT mice. Our data suggest that genetic deficiency in MAOA enzyme is associated with changes in cholinergic activity, which may account for some of the behavioral alterations observed in mice and humans lacking MAOA.

  10. Scavenger Receptor Class B Type 1 Deletion Led to Coronary Atherosclerosis and Ischemic Heart Disease in Low-density Lipoprotein Receptor Knockout Mice on Modified Western-type Diet

    PubMed Central

    Liao, Jiawei; Guo, Xin; Wang, Mengyu; Dong, Chengyan; Gao, Mingming; Wang, Huan; Kayoumu, Abudurexiti; Shen, Qiang; Wang, Yuhui; Wang, Fan; Liu, George

    2017-01-01

    Aim: Atherosclerosis-prone apolipoprotein E (apoE) or low-density lipoprotein receptor (LDL-R) knockout (KO) mice are generally resistant to developing coronary atherosclerosis (CA) and ischemic heart disease (IHD). However, studies have demonstrated the occurrence of spontaneous CA and IHD in scavenger receptor class B type 1 (SR-BI)/apoE double KO (dKO) mice, which suggests that SR-BI could be a potential target for the prevention and therapy of CA and IHD. This possibility was later investigated in SR-BI/LDL-R dKO mice, but no signs of CA or IHD was identified when mice were fed a normal western-type diet. Here we explored whether SR-BI deletion could result in CA and IHD in LDL-R KO mice when fed a modified western-type diet containing higher (0.5%) cholesterol. Methods: Cardiac functions were detected by electrocardiography, single photon emission computed tomography (SPECT), echocardiography (Echo) and 2,3,5-triphenyltetrazolium chloride staining. CA was visualized by hematoxylin-eosin staining. Results: After 12 weeks on the modified diet, SR-BI/LDL-R dKO mice developed cardiac ischemia/infarction, together with systolic dysfunction and left ventricular dilatation. CA was most severe at the aortic sinus level to an extent that no dKO mice survived to 20 weeks on the modified diet. None of control mice, however, developed CA or IHD. Conclusions: SR-BI deletion led to CA and IHD in LDL-R KO mice when fed the modified western-type diet. We established SR-BI/LDL-R dKO mice as a diet-induced murine model of human IHD and developed detection methods, using a combination of SPECT and Echo, for effective in vivo evaluation of cardiac functions. PMID:27373983

  11. Dok-3 and Dok-1/-2 adaptors play distinctive roles in cell fusion and proliferation during osteoclastogenesis and cooperatively protect mice from osteopenia.

    PubMed

    Kajikawa, Shuhei; Taguchi, Yuu; Hayata, Tadayoshi; Ezura, Yoichi; Ueta, Ryo; Arimura, Sumimasa; Inoue, Jun-Ichiro; Noda, Masaki; Yamanashi, Yuji

    2018-04-15

    Bone mass is determined by coordinated acts of osteoblasts and osteoclasts, which control bone formation and resorption, respectively. Osteoclasts are multinucleated, macrophage/monocyte lineage cells from bone marrow. The Dok-family adaptors Dok-1, Dok-2 and Dok-3 are expressed in the macrophage/monocyte lineage and negatively regulate many signaling pathways, implying roles in osteoclastogenesis. Indeed, mice lacking Dok-1 and Dok-2, the closest homologues with redundant functions, develop osteopenia with increased osteoclast counts compared to the wild-type controls. Here, we demonstrate that Dok-3 knockout (KO) mice also develop osteopenia. However, Dok-3 KO, but not Dok-1/-2 double-KO (DKO), mice develop larger osteoclasts within the normal cell-count range, suggesting a distinctive role for Dok-3. Indeed, Dok-3 KO, but not Dok-1/-2 DKO, bone marrow-derived cells (BMDCs) generated larger osteoclasts with more nuclei due to augmented cell-to-cell fusion in vitro. In addition, while Dok-1/-2 DKO BMDCs generated more osteoclasts, Dok-1/-2/-3 triple-KO (TKO) BMDCs generated osteoclasts increased in both number and size. Furthermore, Dok-1/-2/-3 TKO mice showed the combined effects of Dok-3 and Dok-1/-2 deficiency: severe osteopenia with more and larger osteoclasts. Together, our findings demonstrate that Dok-3 and Dok-1/-2 play distinctive but cooperative roles in osteoclastogenesis and protect mice from osteopenia, providing physiological and pathophysiological insight into bone homeostasis. Copyright © 2018 Elsevier Inc. All rights reserved.

  12. Resilient emotionality and molecular compensation in mice lacking the oligodendrocyte-specific gene Cnp1

    PubMed Central

    Edgar, N M; Touma, C; Palme, R; Sibille, E

    2011-01-01

    Altered oligodendrocyte structure and function is implicated in major psychiatric illnesses, including low cell number and reduced oligodendrocyte-specific gene expression in major depressive disorder (MDD). These features are also observed in the unpredictable chronic mild stress (UCMS) rodent model of the illness, suggesting that they are consequential to environmental precipitants; however, whether oligodendrocyte changes contribute causally to low emotionality is unknown. Focusing on 2′-3′-cyclic nucleotide 3′-phosphodiesterase (Cnp1), a crucial component of axoglial communication dysregulated in the amygdala of MDD subjects and UCMS-exposed mice, we show that altered oligodendrocyte integrity can have an unexpected functional role in affect regulation. Mice lacking Cnp1 (knockout, KO) displayed decreased anxiety- and depressive-like symptoms (i.e., low emotionality) compared with wild-type animals, a phenotypic difference that increased with age (3–9 months). This phenotype was accompanied by increased motor activity, but was evident before neurodegenerative-associated motor coordination deficits (⩽9–12 months). Notably, Cnp1KO mice were less vulnerable to developing a depressive-like syndrome after either UCMS or chronic corticosterone exposure. Cnp1KO mice also displayed reduced fear expression during extinction, despite normal amygdala c-Fos induction after acute stress, together implicating dysfunction of an amygdala-related neural network, and consistent with proposed mechanisms for stress resiliency. However, the Cnp1KO behavioral phenotype was also accompanied by massive upregulation of oligodendrocyte- and immune-related genes in the basolateral amygdala, suggesting an attempt at functional compensation. Together, we demonstrate that the lack of oligodendrocyte-specific Cnp1 leads to resilient emotionality. However, combined with substantial molecular changes and late-onset neurodegeneration, these results suggest the low Cnp1 seen in MDD

  13. Behavioral effects of pulp exposure in mice lacking cannabinoid receptor 2.

    PubMed

    Flake, Natasha M; Zweifel, Larry S

    2012-01-01

    Cannabinoid receptor 2 (CB2) is an intriguing target for the treatment of pain because of its ability to mediate analgesia without psychoactive effects, but little is known about the role of CB2 in pain of endodontic origin. The purpose of this study was to determine the behavioral effects of dental pulp exposure in wild-type (WT) mice and to explore the contribution of CB2 to these behaviors using CB2 knockout (CB2 KO) mice. Pulp exposures were created unilaterally in the maxillary and mandibular first molars of female WT and CB2 KO mice. The open field test was used before pulp exposure or sham surgery, and postoperatively at 1 day, 1 week, 2 weeks, and 3 weeks. Mouse body weight and food consumption were recorded preoperatively and postoperatively at 1 day, 2 days, and 1 week. At baseline, CB2 KO mice weighed significantly more and had significantly greater food intake than WT mice. CB2 KO mice exhibited greater anxiety-like behavior in the baseline open field test, having significantly fewer center crossings and less distance traveled than WT mice. Pulp exposure had relatively little effect on the behavior of WT mice. CB2 KO mice with pulp exposures showed a decrease in food intake and body weight after surgery, and pulp exposure resulted in significantly fewer center crossings in the open field test in CB2 KO mice. Pulp exposure in CB2 KO mice resulted in behaviors consistent with an increase in pain and/or anxiety. Copyright © 2012 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  14. Experimental Demyelination and Axonal Loss Are Reduced in MicroRNA-146a Deficient Mice.

    PubMed

    Martin, Nellie A; Molnar, Viktor; Szilagyi, Gabor T; Elkjaer, Maria L; Nawrocki, Arkadiusz; Okarmus, Justyna; Wlodarczyk, Agnieszka; Thygesen, Eva K; Palkovits, Miklos; Gallyas, Ferenc; Larsen, Martin R; Lassmann, Hans; Benedikz, Eirikur; Owens, Trevor; Svenningsen, Asa F; Illes, Zsolt

    2018-01-01

    The cuprizone (CPZ) model of multiple sclerosis (MS) was used to identify microRNAs (miRNAs) related to in vivo de- and remyelination. We further investigated the role of miR-146a in miR-146a-deficient (KO) mice: this miRNA is differentially expressed in MS lesions and promotes differentiation of oligodendrocyte precursor cells (OPCs) during remyelination, but its role has not been examined during demyelination. MicroRNAs were examined by Agilent Mouse miRNA Microarray in the corpus callosum during CPZ-induced demyelination and remyelination. Demyelination, axonal loss, changes in number of oligodendrocytes, OPCs, and macrophages/microglia was compared by histology/immunohistochemistry between KO and WT mice. Differential expression of target genes and proteins of miR-146a was analyzed in the transcriptome (4 × 44K Agilent Whole Mouse Genome Microarray) and proteome (liquid chromatography tandem mass spectrometry) of CPZ-induced de- and remyelination in WT mice. Levels of proinflammatory molecules in the corpus callosum were compared in WT versus KO mice by Meso Scale Discovery multiplex protein analysis. miR-146a was increasingly upregulated during CPZ-induced de- and remyelination. The absence of miR-146a in KO mice protected against demyelination, axonal loss, body weight loss, and atrophy of thymus and spleen. The number of CNP + oligodendrocytes was increased during demyelination in the miR-146a KO mice, while there was a trend of increased number of NG2 + OPCs in the WT mice. miR-146a target genes, SNAP25 and SMAD4, were downregulated in the proteome of demyelinating corpus callosum in WT mice. Higher levels of SNAP25 were measured by ELISA in the corpus callosum of miR-146a KO mice, but there was no difference between KO and WT mice during demyelination. Multiplex protein analysis of the corpus callosum lysate revealed upregulated TNF-RI, TNF-RII, and CCL2 in the WT mice in contrast to KO mice. The number of Mac3 + and Iba1 + macrophages/microglia was

  15. Epac2a-null mice exhibit obesity-prone nature more susceptible to leptin resistance

    PubMed Central

    Hwang, M; Go, Y; Park, J-H; Shin, S-K; Song, S E; Oh, B-C; Im, S-S; Hwang, I; Jeon, Y H; Lee, I-K; Seino, S; Song, D-K

    2017-01-01

    Background: The exchange protein directly activated by cAMP (Epac), which is primarily involved in cAMP signaling, has been known to be essential for controlling body energy metabolism. Epac has two isoforms: Epac1 and Epac2. The function of Epac1 on obesity was unveiled using Epac1 knockout (KO) mice. However, the role of Epac2 in obesity remains unclear. Methods: To evaluate the role of Epac2 in obesity, we used Epac2a KO mice, which is dominantly expressed in neurons and endocrine tissues. Physiological factors related to obesity were analyzed: body weight, fat mass, food intake, plasma leptin and adiponectin levels, energy expenditure, glucose tolerance, and insulin and leptin resistance. To determine the mechanism of Epac2a, mice received exogenous leptin and then hypothalamic leptin signaling was analyzed. Results: Epac2a KO mice appeared to have normal glucose tolerance and insulin sensitivity until 12 weeks of age, but an early onset increase of plasma leptin levels and decrease of plasma adiponectin levels compared with wild-type mice. Acute leptin injection revealed impaired hypothalamic leptin signaling in KO mice. Consistently, KO mice fed a high-fat diet (HFD) were significantly obese, presenting greater food intake and lower energy expenditure. HFD-fed KO mice were also characterized by greater impairment of hypothalamic leptin signaling and by weaker leptin-induced decrease in food consumption compared with HFD-fed wild-type mice. In wild-type mice, acute exogenous leptin injection or chronic HFD feeding tended to induce hypothalamic Epac2a expression. Conclusions: Considering that HFD is an inducer of hypothalamic leptin resistance and that Epac2a functions in pancreatic beta cells during demands of greater work load, hypothalamic Epac2a may have a role in facilitating leptin signaling, at least in response to higher metabolic demands. Thus, our data indicate that Epac2a is critical for preventing obesity and thus Epac2a activators may be used to

  16. Epac2a-null mice exhibit obesity-prone nature more susceptible to leptin resistance.

    PubMed

    Hwang, M; Go, Y; Park, J-H; Shin, S-K; Song, S E; Oh, B-C; Im, S-S; Hwang, I; Jeon, Y H; Lee, I-K; Seino, S; Song, D-K

    2017-02-01

    The exchange protein directly activated by cAMP (Epac), which is primarily involved in cAMP signaling, has been known to be essential for controlling body energy metabolism. Epac has two isoforms: Epac1 and Epac2. The function of Epac1 on obesity was unveiled using Epac1 knockout (KO) mice. However, the role of Epac2 in obesity remains unclear. To evaluate the role of Epac2 in obesity, we used Epac2a KO mice, which is dominantly expressed in neurons and endocrine tissues. Physiological factors related to obesity were analyzed: body weight, fat mass, food intake, plasma leptin and adiponectin levels, energy expenditure, glucose tolerance, and insulin and leptin resistance. To determine the mechanism of Epac2a, mice received exogenous leptin and then hypothalamic leptin signaling was analyzed. Epac2a KO mice appeared to have normal glucose tolerance and insulin sensitivity until 12 weeks of age, but an early onset increase of plasma leptin levels and decrease of plasma adiponectin levels compared with wild-type mice. Acute leptin injection revealed impaired hypothalamic leptin signaling in KO mice. Consistently, KO mice fed a high-fat diet (HFD) were significantly obese, presenting greater food intake and lower energy expenditure. HFD-fed KO mice were also characterized by greater impairment of hypothalamic leptin signaling and by weaker leptin-induced decrease in food consumption compared with HFD-fed wild-type mice. In wild-type mice, acute exogenous leptin injection or chronic HFD feeding tended to induce hypothalamic Epac2a expression. Considering that HFD is an inducer of hypothalamic leptin resistance and that Epac2a functions in pancreatic beta cells during demands of greater work load, hypothalamic Epac2a may have a role in facilitating leptin signaling, at least in response to higher metabolic demands. Thus, our data indicate that Epac2a is critical for preventing obesity and thus Epac2a activators may be used to manage obesity and obesity-mediated metabolic

  17. Lentivirus-ABCG1 instillation reduces lipid accumulation and improves lung compliance in GM-CSF knock-out mice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Malur, Anagha; Huizar, Isham; Wells, Greg

    2011-11-18

    Highlights: Black-Right-Pointing-Pointer Lentivirus-ABCG1 reduces lipid accumulation in lungs of GM-CSF knock-out mice. Black-Right-Pointing-Pointer Up-regulation of ABCG1 improves lung function. Black-Right-Pointing-Pointer Upregulation of ABCG1 improves surfactant metabolism. -- Abstract: We have shown decreased expression of the nuclear transcription factor, peroxisome proliferator-activated receptor-gamma (PPAR{gamma}) and the PPAR{gamma}-regulated ATP-binding cassette transporter G1 (ABCG1) in alveolar macrophages from patients with pulmonary alveolar proteinosis (PAP). PAP patients also exhibit neutralizing antibodies to granulocyte-macrophage colony stimulating factor (GM-CSF), an upregulator of PPAR{gamma}. In association with functional GM-CSF deficiency, PAP lung is characterized by surfactant-filled alveolar spaces and lipid-filled alveolar macrophages. Similar pathology characterizes GM-CSF knock-out (KO)more » mice. We reported previously that intratracheal instillation of a lentivirus (lenti)-PPAR{gamma} plasmid into GM-CSF KO animals elevated ABCG1 and reduced alveolar macrophage lipid accumulation. Here, we hypothesized that instillation of lenti-ABCG1 might be sufficient to decrease lipid accumulation and improve pulmonary function in GM-CSF KO mice. Animals received intratracheal instillation of lenti-ABCG1 or control lenti-enhanced Green Fluorescent Protein (eGFP) plasmids and alveolar macrophages were harvested 10 days later. Alveolar macrophage transduction efficiency was 79% as shown by lenti-eGFP fluorescence. Quantitative PCR analyses indicated a threefold (p = 0.0005) increase in ABCG1 expression with no change of PPAR{gamma} or ABCA1 in alveolar macrophages of lenti-ABCG1 treated mice. ABCG1 was unchanged in control lenti-eGFP and PBS-instilled groups. Oil Red O staining detected reduced intracellular neutral lipid in alveolar macrophages from lenti-ABCG1 treated mice. Extracellular cholesterol and phospholipids were also decreased as

  18. Desacyl Ghrelin Decreases Anxiety-like Behavior in Male Mice.

    PubMed

    Mahbod, Parinaz; Smith, Eric P; Fitzgerald, Maureen E; Morano, Rachel L; Packard, Benjamin A; Ghosal, Sriparna; Scheimann, Jessie R; Perez-Tilve, Diego; Herman, James P; Tong, Jenny

    2018-01-01

    Ghrelin is a 28-amino acid polypeptide that regulates feeding, glucose metabolism, and emotionality (stress, anxiety, and depression). Plasma ghrelin circulates as desacyl ghrelin (DAG) or, in an acylated form, acyl ghrelin (AG), through the actions of ghrelin O-acyltransferase (GOAT), exhibiting low or high affinity, respectively, for the growth hormone secretagogue receptor (GHSR) 1a. We investigated the role of endogenous AG, DAG, and GHSR1a signaling on anxiety and stress responses using ghrelin knockout (Ghr KO), GOAT KO, and Ghsr stop-floxed (Ghsr null) mice. Behavioral and hormonal responses were tested in the elevated plus maze and light/dark (LD) box. Mice lacking both AG and DAG (Ghr KO) increased anxiety-like behaviors across tests, whereas anxiety reactions were attenuated in DAG-treated Ghr KO mice and in mice lacking AG (GOAT KO). Notably, loss of GHSR1a (Ghsr null) did not affect anxiety-like behavior in any test. Administration of AG and DAG to Ghr KO mice with lifelong ghrelin deficiency reduced anxiety-like behavior and decreased phospho-extracellular signal-regulated kinase phosphorylation in the Edinger-Westphal nucleus in wild-type mice, a site normally expressing GHSR1a and involved in stress- and anxiety-related behavior. Collectively, our data demonstrate distinct roles for endogenous AG and DAG in regulation of anxiety responses and suggest that the behavioral impact of ghrelin may be context dependent. Copyright © 2018 Endocrine Society.

  19. Interaction of Macrophage Antigen 1 and CD40 Ligand Leads to IL-12 Production and Resistance in CD40-Deficient Mice Infected with Leishmania major.

    PubMed

    Okwor, Ifeoma; Jia, Ping; Uzonna, Jude E

    2015-10-01

    Although some studies indicate that the interaction of CD40 and CD40L is critical for IL-12 production and resistance to cutaneous leishmaniasis, others suggest that this pathway may be dispensable. In this article, we compared the outcome of Leishmania major infection in both CD40- and CD40L-deficient mice after treatment with rIL-12. We show that although CD40 and CD40L knockout (KO) mice are highly susceptible to L. major, treatment with rIL-12 during the first 2 wk of infection causes resolution of cutaneous lesions and control of parasite replication. Interestingly, although treated CD40 KO mice remained healed, developed long-term immunity, and were resistant to secondary L. major challenge, treated CD40L KO reactivated their lesion after cessation of rIL-12 treatment. Disease reactivation in CD40L KO mice was associated with impaired IL-12 and IFN-γ production and a concomitant increase in IL-4 production by cells from lymph nodes draining the infection site. We show that IL-12 production by dendritic cells and macrophages via CD40L-macrophage Ag 1 (Mac-1) interaction is responsible for the sustained resistance in CD40 KO mice after cessation of rIL-12 treatment. Blockade of CD40L-Mac-1 interaction with anti-Mac-1 mAb led to spontaneous disease reactivation in healed CD40 KO mice, which was associated with impaired IFN-γ response and loss of infection-induced immunity after secondary L. major challenge. Collectively, our data reveal a novel role of CD40L-Mac-1 interaction in IL-12 production, development, and maintenance of optimal Th1 immunity in mice infected with L. major. Copyright © 2015 by The American Association of Immunologists, Inc.

  20. Presenilin-1 familial Alzheimer’s disease mutation alters hippocampal neurogenesis and memory function in CCL2 null mice

    PubMed Central

    Kiyota, Tomomi; Morrison, Christine M; Tu, Guihua; Dyavarshetty, Bhagyalaxmi; Weir, Robert A; Zhang, Gang; Xiong, Huangui; Gendelman, Howard E

    2015-01-01

    Aberrations in hippocampal neurogenesis are associated with learning and memory, synaptic plasticity and neurodegeneration in Alzheimer’s disease (AD). However, the linkage between them, β-amyloidosis and neuroinflammation is not well understood. To this end, we generated a mouse overexpressing familial AD (FAD) mutant human presenilin-1 (PS1) crossed with a knockout (KO) of the CC-chemokine ligand 2 (CCL2) gene. The PS1/CCL2KO mice developed robust age-dependent deficits in hippocampal neurogenesis associated with impairments in learning and memory, synaptic plasticity and long-term potentiation. Neurogliogenesis gene profiling supported β-amyloid independent pathways for FAD-associated deficits in hippocampal neurogenesis. We conclude that these PS1/CCL2KO mice are suitable for studies linking host genetics, immunity and hippocampal function. PMID:26112421

  1. Alternative polyadenylation drives genome-to-phenome information detours in the AMPKα1 and AMPKα2 knockout mice.

    PubMed

    Zhang, Shuwen; Zhang, Yangzi; Zhou, Xiang; Fu, Xing; Michal, Jennifer J; Ji, Guoli; Du, Min; Davis, Jon F; Jiang, Zhihua

    2018-04-24

    Currently available mouse knockout (KO) lines remain largely uncharacterized for genome-to-phenome (G2P) information flows. Here we test our hypothesis that altered myogenesis seen in AMPKα1- and AMPKα2-KO mice is caused by use of alternative polyadenylation sites (APSs). AMPKα1 and AMPKα2 are two α subunits of adenosine monophosphate-activated protein kinase (AMPK), which serves as a cellular sensor in regulation of many biological events. A total of 56,483 APSs were derived from gastrocnemius muscles. The differentially expressed APSs (DE-APSs) that were down-regulated tended to be distal. The DE-APSs that were related to reduced and increased muscle mass were down-regulated in AMPKα1-KO mice, but up-regulated in AMPKα2-KO mice, respectively. Five genes: Car3 (carbonic anhydrase 3), Mylk4 (myosin light chain kinase family, member 4), Neb (nebulin), Obscn (obscurin) and Pfkm (phosphofructokinase, muscle) utilized different APSs with potentially antagonistic effects on muscle function. Overall, gene knockout triggers genome plasticity via use of APSs, completing the G2P processes. However, gene-based analysis failed to reach such a resolution. Therefore, we propose that alternative transcripts are minimal functional units in genomes and the traditional central dogma concept should be now examined under a systems biology approach.

  2. Deletion of Lkb1 in Pro-Opiomelanocortin Neurons Impairs Peripheral Glucose Homeostasis in Mice

    PubMed Central

    Claret, Marc; Smith, Mark A.; Knauf, Claude; Al-Qassab, Hind; Woods, Angela; Heslegrave, Amanda; Piipari, Kaisa; Emmanuel, Julian J.; Colom, André; Valet, Philippe; Cani, Patrice D.; Begum, Ghazala; White, Anne; Mucket, Phillip; Peters, Marco; Mizuno, Keiko; Batterham, Rachel L.; Giese, K. Peter; Ashworth, Alan; Burcelin, Remy; Ashford, Michael L.; Carling, David; Withers, Dominic J.

    2011-01-01

    OBJECTIVE AMP-activated protein kinase (AMPK) signaling acts as a sensor of nutrients and hormones in the hypothalamus, thereby regulating whole-body energy homeostasis. Deletion of Ampkα2 in pro-opiomelanocortin (POMC) neurons causes obesity and defective neuronal glucose sensing. LKB1, the Peutz-Jeghers syndrome gene product, and Ca2+-calmodulin–dependent protein kinase kinase β (CaMKKβ) are key upstream activators of AMPK. This study aimed to determine their role in POMC neurons upon energy and glucose homeostasis regulation. RESEARCH DESIGN AND METHODS Mice lacking either Camkkβ or Lkb1 in POMC neurons were generated, and physiological, electrophysiological, and molecular biology studies were performed. RESULTS Deletion of Camkkβ in POMC neurons does not alter energy homeostasis or glucose metabolism. In contrast, female mice lacking Lkb1 in POMC neurons (PomcLkb1KO) display glucose intolerance, insulin resistance, impaired suppression of hepatic glucose production, and altered expression of hepatic metabolic genes. The underlying cellular defect in PomcLkb1KO mice involves a reduction in melanocortin tone caused by decreased α-melanocyte–stimulating hormone secretion. However, Lkb1-deficient POMC neurons showed normal glucose sensing, and body weight was unchanged in PomcLkb1KO mice. CONCLUSIONS Our findings demonstrate that LKB1 in hypothalamic POMC neurons plays a key role in the central regulation of peripheral glucose metabolism but not body-weight control. This phenotype contrasts with that seen in mice lacking AMPK in POMC neurons with defects in body-weight regulation but not glucose homeostasis, which suggests that LKB1 plays additional functions distinct from activating AMPK in POMC neurons. PMID:21266325

  3. An Essential Physiological Role for MCT8 in Bone in Male Mice

    PubMed Central

    Leitch, Victoria D.; Di Cosmo, Caterina; Liao, Xiao-Hui; O’Boy, Sam; Galliford, Thomas M.; Evans, Holly; Croucher, Peter I.; Boyde, Alan; Dumitrescu, Alexandra; Weiss, Roy E.; Refetoff, Samuel; Williams, Graham R.

    2017-01-01

    T3 is an important regulator of skeletal development and adult bone maintenance. Thyroid hormone action requires efficient transport of T4 and T3 into target cells. We hypothesized that monocarboxylate transporter (MCT) 8, encoded by Mct8 on the X-chromosome, is an essential thyroid hormone transporter in bone. To test this hypothesis, we determined the juvenile and adult skeletal phenotypes of male Mct8 knockout mice (Mct8KO) and Mct8D1D2KO compound mutants, which additionally lack the ability to convert the prohormone T4 to the active hormone T3. Prenatal skeletal development was normal in both Mct8KO and Mct8D1D2KO mice, whereas postnatal endochondral ossification and linear growth were delayed in both Mct8KO and Mct8D1D2KO mice. Furthermore, bone mass and mineralization were decreased in adult Mct8KO and Mct8D1D2KO mice, and compound mutants also had reduced bone strength. Delayed bone development and maturation in Mct8KO and Mct8D1D2KO mice is consistent with decreased thyroid hormone action in growth plate chondrocytes despite elevated serum T3 concentrations, whereas low bone mass and osteoporosis reflects increased thyroid hormone action in adult bone due to elevated systemic T3 levels. These studies identify an essential physiological requirement for MCT8 in chondrocytes, and demonstrate a role for additional transporters in other skeletal cells during adult bone maintenance. PMID:28637283

  4. Desoxycorticosterone pivalate-salt treatment leads to non-dipping hypertension in Per1 knockout mice.

    PubMed

    Solocinski, K; Holzworth, M; Wen, X; Cheng, K-Y; Lynch, I J; Cain, B D; Wingo, C S; Gumz, M L

    2017-05-01

    Increasing evidence demonstrates that circadian clock proteins are important regulators of physiological functions including blood pressure. An established risk factor for developing cardiovascular disease is the absence of a blood pressure dip during the inactive period. The goal of the present study was to determine the effects of a high salt diet plus mineralocorticoid on PER1-mediated blood pressure regulation in a salt-resistant, normotensive mouse model, C57BL/6J. Blood pressure was measured using radiotelemetry. After control diet, wild-type (WT) and Per1 (KO) knockout mice were given a high salt diet (4% NaCl) and the long-acting mineralocorticoid deoxycorticosterone pivalate. Blood pressure and activity rhythms were analysed to evaluate changes over time. Blood pressure in WT mice was not affected by a high salt diet plus mineralocorticoid. In contrast, Per1 KO mice exhibited significantly increased mean arterial pressure (MAP) in response to a high salt diet plus mineralocorticoid. The inactive/active phase ratio of MAP in WT mice was unchanged by high salt plus mineralocorticoid treatment. Importantly, this treatment caused Per1 KO mice to lose the expected decrease or 'dip' in blood pressure during the inactive compared to the active phase. Loss of PER1 increased sensitivity to the high salt plus mineralocorticoid treatment. It also resulted in a non-dipper phenotype in this model of salt-sensitive hypertension and provides a unique model of non-dipping. Together, these data support an important role for the circadian clock protein PER1 in the modulation of blood pressure in a high salt/mineralocorticoid model of hypertension. © 2016 Scandinavian Physiological Society. Published by John Wiley & Sons Ltd.

  5. Perilla Oil Reduces Fatty Streak Formation at Aortic Sinus via Attenuation of Plasma Lipids and Regulation of Nitric Oxide Synthase in ApoE KO Mice.

    PubMed

    Hong, Sun Hee; Kim, Mijeong; Noh, Jeong Sook; Song, Yeong Ok

    2016-10-01

    Consumption of n-3 polyunsaturated fatty acids (PUFA) is associated with a reduced incidence of atherosclerosis. Perilla oil (PO) is a vegetable oil rich in α-linolenic acid (ALA), an n-3 PUFA. In this study, antiatherogenic effects and related mechanisms of PO were investigated in atherosclerotic mice. Apolipoprotein E knockout (ApoE KO) mice (male, n = 27) were fed high-cholesterol and high-fat diets containing 10 % w/w lard (LD), PO, or sunflower oil (SO) for 10 weeks. Plasma triglyceride, total cholesterol, and low-density lipoprotein cholesterol concentrations reduced in the PO and SO groups compared to the concentrations in the LD group (P < 0.05). The PO group showed reduced fatty streak lesion size at the aortic sinus (P < 0.05) compared to the sizes in the LD and SO groups. A morphometric analysis showed enhancement of endothelial nitric oxide synthase expression and reduction of inducible nitric oxide synthase expression in the PO group compared to that in the LD group (P < 0.05). Furthermore, aortic protein expression of intercellular cell adhesion molecule 1 and vascular cell adhesion molecule 1 was diminished in the PO group compared to that in the LD and SO groups (P < 0.05). These findings suggested that PO inhibited the development of aortic atherosclerosis by improving the plasma lipid profile, regulating nitric oxide synthase, and suppressing the vascular inflammatory response in the aorta of ApoE KO mice.

  6. Increased pain and neurogenic inflammation in mice deficient of neutral endopeptidase.

    PubMed

    Krämer, Heidrun H; He, Lan; Lu, Bao; Birklein, Frank; Sommer, Claudia

    2009-08-01

    The complex regional pain syndrome (CRPS) is characterized by enhanced neurogenic inflammation, mediated by neuropeptides. Neutral endopeptidase (NEP) is a key enzyme in neuropeptide catabolism. We used NEP knock out (ko) mice to investigate whether NEP deficiency leads to increased pain behavior and signs of neurogenic inflammation after soft tissue trauma with and without nerve injury. After chronic constriction injury (CCI) of the right sciatic nerve, NEP ko mice were more sensitive to heat, to mechanical stimuli, and to cold than wild type mice. Tissue injury without nerve injury produced no differences between genotypes. After CCI, NEP ko mice showed increased hind paw edema but lower skin temperatures than wild type mice. Substance P (SP) and endothelin 1 (ET 1) determined by enzyme immuno assay (EIA) were increased in sciatic nerves from NEP ko mice after CCI. Tissue CGRP content did not differ between the genotypes. The results provide evidence that pain behavior and neurogenic inflammation are enhanced in NEP ko mice after nerve injury. These findings resemble human 'cold' CRPS and suggest that ET 1 plays an important role in the pathogenesis of CRPS with nerve injury.

  7. Improved motor performance in Dyt1 ΔGAG heterozygous knock-in mice by cerebellar Purkinje-cell specific Dyt1 conditional knocking-out.

    PubMed

    Yokoi, Fumiaki; Dang, Mai Tu; Li, Yuqing

    2012-05-01

    Early-onset generalized torsion dystonia (dystonia 1) is an inherited movement disorder caused by mutations in DYT1 (TOR1A), which codes for torsinA. Most patients have a 3-base pair deletion (ΔGAG) in one allele of DYT1, corresponding to a loss of a glutamic acid residue (ΔE) in the C-terminal region of the protein. Functional alterations in basal ganglia circuits and the cerebellum have been reported in dystonia. Pharmacological manipulations or mutations in genes that result in functional alterations of the cerebellum have been reported to have dystonic symptoms and have been used as phenotypic rodent models. Additionally, structural lesions in the abnormal cerebellar circuits, such as cerebellectomy, have therapeutic effects in these models. A previous study has shown that the Dyt1 ΔGAG heterozygous knock-in (KI) mice exhibit motor deficits in the beam-walking test. Both Dyt1 ΔGAG heterozygous knock-in (KI) and Dyt1 Purkinje cell-specific knockout (Dyt1 pKO) mice exhibit dendritic alterations of cerebellar Purkinje cells. Here, Dyt1 pKO mice exhibited significantly less slip numbers in the beam-walking test, suggesting better motor performance than control littermates, and normal gait. Furthermore, Dyt1 ΔGAG KI/Dyt1 pKO double mutant mice exhibited significantly lower numbers of slips than Dyt1 ΔGAG heterozygous KI mice, suggesting Purkinje-cell specific knockout of Dyt1 wild-type (WT) allele in Dyt1 ΔGAG heterozygous KI mice rescued the motor deficits. The results suggest that molecular lesions of torsinA in Purkinje cells by gene therapy or intervening in the signaling pathway downstream of the cerebellar Purkinje cells may rescue motor symptoms in dystonia 1. Copyright © 2012 Elsevier B.V. All rights reserved.

  8. Improved motor performance in Dyt1 ΔGAG heterozygous knock-in mice by cerebellar Purkinje-cell specific Dyt1 conditional knocking-out

    PubMed Central

    Yokoi, Fumiaki; Dang, Mai Tu; Li, Yuqing

    2012-01-01

    Early-onset generalized torsion dystonia (dystonia 1) is an inherited movement disorder caused by mutations in DYT1 (TOR1A), which codes for torsinA. Most patients have a 3-base pair deletion (ΔGAG) in one allele of DYT1, corresponding to a loss of a glutamic acid residue (ΔE) in the C-terminal region of the protein. Functional alterations in basal ganglia circuits and the cerebellum have been reported in dystonia. Pharmacological manipulations or mutations in genes that result in functional alterations of the cerebellum have been reported to have dystonic symptoms and have been used as phenotypic rodent models. Additionally, structural lesions in the abnormal cerebellar circuits, such as cerebellectomy, have therapeutic effects in these models. A previous study has shown that the Dyt1 ΔGAG heterozygous knock-in (KI) mice exhibit motor deficits in the beam-walking test. Both Dyt1 ΔGAG heterozygous knock-in (KI) and Dyt1 Purkinje cell-specific knockout (Dyt1 pKO) mice exhibit dendritic alterations of cerebellar Purkinje cells. Here, Dyt1 pKO mice exhibited significantly less slip numbers in the beam-walking test, suggesting better motor performance than control littermates, and normal gait. Furthermore, Dyt1 ΔGAG KI/Dyt1 pKO double mutant mice exhibited significantly lower numbers of slips than Dyt1 ΔGAG heterozygous KI mice, suggesting Purkinje-cell specific knockout of Dyt1 wild-type (WT) allele in Dyt1 ΔGAG heterozygous KI mice rescued the motor deficits. The results suggest that molecular lesions of torsinA in Purkinje cells by gene therapy or intervening in the signaling pathway downstream of the cerebellar Purkinje cells may rescue motor symptoms in dystonia 1. PMID:22391119

  9. Elevated body temperature during sleep in orexin knockout mice

    PubMed Central

    Mochizuki, Takatoshi; Klerman, Elizabeth B.; Sakurai, Takeshi; Scammell, Thomas E.

    2008-01-01

    Core body temperature (Tb) is influenced by many physiological factors, including behavioral state, locomotor activity, and biological rhythms. To determine the relative roles of these factors, we examined Tb in orexin knockout (KO) mice, which have a narcolepsy-like phenotype with severe sleep-wake fragmentation. Because orexin is thought to promote heat production during wakefulness, we hypothesized that orexin KO mice would have lower Tb while awake. Surprisingly, the Tb of orexin KO mice was 0.4°C higher than wild-type (WT) littermates during the dark period. Orexin KO mice had normal diurnal variations in Tb, but the ultradian rhythms of Tb, locomotor activity, and wakefulness were markedly reduced. During sustained wakefulness, Tb was the same in both groups. During the first 15 min of spontaneous sleep, the Tb of WT mice decreased by 1.0°C, but Tb in orexin KO mice decreased only 0.4°C. Even during intense recovery sleep after 8 hr of sleep deprivation, the Tb of orexin KO mice remained 0.7°C higher than in WT mice. This blunted fall in Tb during sleep may be due to inadequate activation of heat loss mechanisms or sustained activity in heat-generating systems. These observations reveal an unexpected role for orexin in thermoregulation. In addition, because heat loss is an essential aspect of sleep, the blunted fall in Tb of orexin KO mice may provide an explanation for the fragmented sleep of narcolepsy. PMID:16556901

  10. Clozapine Reverses Phencyclidine-Induced Desynchronization of Prefrontal Cortex through a 5-HT1A Receptor-Dependent Mechanism

    PubMed Central

    Kargieman, Lucila; Riga, Maurizio S; Artigas, Francesc; Celada, Pau

    2012-01-01

    The non-competitive NMDA receptor (NMDA-R) antagonist phencyclidine (PCP)—used as a pharmacological model of schizophrenia—disrupts prefrontal cortex (PFC) activity. PCP markedly increased the discharge rate of pyramidal neurons and reduced slow cortical oscillations (SCO; 0.15–4 Hz) in rat PFC. Both effects were reversed by classical (haloperidol) and atypical (clozapine) antipsychotic drugs. Here we extended these observations to mice brain and examined the potential involvement of 5-HT2A and 5-HT1A receptors (5-HT2AR and 5-HT1AR, respectively) in the reversal by clozapine of PCP actions. Clozapine shows high in vitro affinity for 5-HT2AR and behaves as partial agonist in vivo at 5-HT1AR. We used wild-type (WT) mice and 5-HT1AR and 5-HT2AR knockout mice of the same background (C57BL/6) (KO-1A and KO-2A, respectively). Local field potentials (LFPs) were recorded in the PFC of WT, KO-1A, and KO-2A mice. PCP (10 mg/kg, intraperitoneally) reduced SCO equally in WT, KO-2A, and KO-1A mice (58±4%, 42±7%, and 63±7% of pre-drug values, n=23, 13, 11, respectively; p<0.0003). Clozapine (0.5 mg/kg, intraperitoneally) significantly reversed PCP effect in WT and KO-2A mice, but not in KO-1A mice nor in WT mice pretreated with the selective 5-HT1AR antagonist WAY-100635.The PCP-induced disorganization of PFC activity does not appear to depend on serotonergic function. However, the lack of effect of clozapine in KO-1A mice and the prevention by WAY-100635 indicates that its therapeutic action involves 5-HT1AR activation without the need to block 5-HT2AR, as observed with clozapine-induced cortical dopamine release. PMID:22012474

  11. Adenosine through the A2A adenosine receptor increases IL-1β in the brain contributing to anxiety

    PubMed Central

    Chiu, Gabriel S.; Darmody, Patrick T.; Walsh, John P.; Moon, Morgan L.; Kwakwa, Kristin A.; Bray, Julie K.; McCusker, Robert H.; Freund, Gregory G.

    2014-01-01

    Anxiety is one of the most commonly reported psychiatric conditions, but its pathogenesis is poorly understood. Ailments associated with activation of the innate immune system, however, are increasingly linked to anxiety disorders. In adult male mice, we found that adenosine doubled caspase-1 activity in brain by a pathway reliant on ATP-sensitive potassium (KATP) channels, protein kinase A (PKA) and the A2A adenosine receptor (AR). In addition, adenosine-dependent activation of caspase-1 increased interleukin (IL)-1β in the brain by two-fold. Peripheral administration of adenosine in wild-type (WT) mice led to a 2.3-fold increase in caspase-1 activity in the amygdala and to a 33% and 42% reduction in spontaneous locomotor activity and food intake, respectively, that were not observed in caspase-1 knockout (KO), IL-1 receptor type 1 (IL-1R1) KO and A2A AR KO mice or in mice administered a caspase-1 inhibitor centrally. Finally, adenosine administration increased anxiety-like behaviors in WT mice by 28% in the open field test and by 55% in the elevated zero-maze. Caspase-1 KO mice, IL-1R1 KO mice, A2A AR KO mice and WT mice treated with the KATP channel blocker, glyburide, were resistant to adenosine-induced anxiety-like behaviors. Thus, our results indicate that adenosine can act as an anxiogenic by activating caspase-1 and increasing IL-1β in the brain. PMID:24907587

  12. Role of CB2 receptors in social and aggressive behavior in male mice.

    PubMed

    Rodríguez-Arias, Marta; Navarrete, Francisco; Blanco-Gandia, M Carmen; Arenas, M Carmen; Aguilar, María A; Bartoll-Andrés, Adrián; Valverde, Olga; Miñarro, José; Manzanares, Jorge

    2015-08-01

    Male CB1KO mice exhibit stronger aggressive responses than wild-type mice. This study was designed to examine the role of cannabinoid CB2r in social and aggressive behavior. The social interaction test and resident-intruder paradigm were performed in mice lacking CB2r (CB2KO) and in wild-type (WT) littermates. The effects of the CB2r selective agonist JWH133 (1 and 2 mg/kg) on aggression were also evaluated in Oncins France 1 (OF1) mice. Gene expression analyses of monoamine oxidase-A (MAO-A), catechol-o-methyltransferase (COMT), 5-hydroxytryptamine transporter (5-HTT), and 5-HT1B receptor (5HT1Br) in the dorsal raphe nuclei (DR) and the amygdala (AMY) were carried out using real-time PCR. Group-housed CB2KO mice exhibited higher levels of aggression in the social interaction test and displayed more aggression than resident WT mice. Isolation increased aggressive behavior in WT mice but did not affect CB2KO animals; however, the latter mice exhibited higher levels of social interaction with their WT counterparts. MAO-A and 5-HTT gene expression was significantly higher in grouped CB2KO mice. The expression of 5HT1Br, COMT, and MAO-A in the AMY was more pronounced in CB2KO mice than in WT counterparts. Acute administration of the CB2 agonist JWH133 significantly reduced the level of aggression in aggressive isolated OF1 mice, an effect that decreased after pretreatment with the CB2 receptor antagonist AM630. Our results suggest that CB2r is implicated in social interaction and aggressive behavior and deserves further consideration as a potential new target for the management of aggression.

  13. Development of Murine Cyp3a Knockout Chimeric Mice with Humanized Liver.

    PubMed

    Kato, Kota; Ohbuchi, Masato; Hamamura, Satoko; Ohshita, Hiroki; Kazuki, Yasuhiro; Oshimura, Mitsuo; Sato, Koya; Nakada, Naoyuki; Kawamura, Akio; Usui, Takashi; Kamimura, Hidetaka; Tateno, Chise

    2015-08-01

    We developed murine CYP3A knockout ko chimeric mice with humanized liver expressing human P450S similar to those in humans and whose livers and small intestines do not express murine CYP3A this: approach may overcome effects of residual mouse metabolic enzymes like Cyp3a in conventional chimeric mice with humanized liver, such as PXB-mice [urokinase plasminogen activator/severe combined immunodeficiency (uPA/SCID) mice repopulated with over 70% human hepatocytes] to improve the prediction of drug metabolism and pharmacokinetics in humans. After human hepatocytes were transplanted into Cyp3a KO/uPA/SCID host mice, human albumin levels logarithmically increased until approximately 60 days after transplantation, findings similar to those in PXB-mice. Quantitative real-time-polymerase chain reaction analyses showed that hepatic human P450s, UGTs, SULTs, and transporters mRNA expression levels in Cyp3a KO chimeric mice were also similar to those in PXB-mice and confirmed the absence of Cyp3a11 mRNA expression in mouse liver and intestine. Findings for midazolam and triazolam metabolic activities in liver microsomes were comparable between Cyp3a KO chimeric mice and PXB-mice. In contrast, these activities in the intestine of Cyp3a KO chimeric mice were attenuated compared with PXB-mice. Owing to the knockout of murine Cyp3a, hepatic Cyp2b10 and 2c55 mRNA levels in Cyp3a KO/uPA/SCID mice (without hepatocyte transplants) were 8.4- and 61-fold upregulated compared with PXB-mice, respectively. However, human hepatocyte transplantation successfully restored Cyp2b10 level nearly fully and Cyp2c55 level partly (still 13-fold upregulated) compared with those in PXB-mice. Intestinal Cyp2b10 and 2c55 were also repressed by human hepatocyte transplantation in Cyp3a KO chimeric mice. Copyright © 2015 by The American Society for Pharmacology and Experimental Therapeutics.

  14. Editor's Highlight: Complete Attenuation of Mouse Lung Cell Proliferation and Tumorigenicity in CYP2F2 Knockout and CYP2F1 Humanized Mice Exposed to Inhaled Styrene for up to 2 Years Supports a Lack of Human Relevance.

    PubMed

    Cruzan, George; Bus, James S; Banton, Marcy I; Sarang, Satinder S; Waites, Robbie; Layko, Debra B; Raymond, James; Dodd, Darol; Andersen, Melvin E

    2017-10-01

    Styrene is a mouse-specific lung carcinogen, and short-term mode of action studies have demonstrated that cytotoxicity and/or cell proliferation, and genomic changes are dependent on CYP2F2 metabolism. The current study examined histopathology, cell proliferation, and genomic changes in CD-1, C57BL/6 (WT), CYP2F2(-/-) (KO), and CYP2F2(-/-) (CYP2F1, 2B6, 2A13-transgene) (TG; humanized) mice following exposure for up to 104 weeks to 0- or 120-ppm styrene vapor. Five mice per treatment group were sacrificed at 1, 26, 52, and 78 weeks. Additional 50 mice per treatment group were followed until death or 104 weeks of exposure. Cytotoxicity was present in the terminal bronchioles of some CD-1 and WT mice exposed to styrene, but not in KO or TG mice. Hyperplasia in the terminal bronchioles was present in CD-1 and WT mice exposed to styrene, but not in KO or TG mice. Increased cell proliferation, measured by KI-67 staining, occurred in CD-1 and WT mice exposed to styrene for 1 week, but not after 26, 52, or 78 weeks, nor in KO or TG mice. Styrene increased the incidence of bronchioloalveolar adenomas and carcinomas in CD-1 mice. No increase in lung tumors was found in WT despite clear evidence of lung toxicity, or, KO or TG mice. The absence of preneoplastic lesions and tumorigenicity in KO and TG mice indicates that mouse-specific CYP2F2 metabolism is responsible for both the short-term and chronic toxicity and tumorigenicity of styrene, and activation of styrene by CYP2F2 is a rodent MOA that is neither quantitatively or qualitatively relevant to humans. © The Author 2017. Published by Oxford University Press on behalf of the Society of Toxicology. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  15. The skeletal structure of insulin-like growth factor I-deficient mice

    NASA Technical Reports Server (NTRS)

    Bikle, D.; Majumdar, S.; Laib, A.; Powell-Braxton, L.; Rosen, C.; Beamer, W.; Nauman, E.; Leary, C.; Halloran, B.

    2001-01-01

    The importance of insulin-like growth factor I (IGF-I) for growth is well established. However, the lack of IGF-I on the skeleton has not been examined thoroughly. Therefore, we analyzed the structural properties of bone from mice rendered IGF-I deficient by homologous recombination (knockout [k/o]) using histomorphometry, peripheral quantitative computerized tomography (pQCT), and microcomputerized tomography (muCT). The k/o mice were 24% the size of their wild-type littermates at the time of study (4 months). The k/o tibias were 28% and L1 vertebrae were 26% the size of wild-type bones. Bone formation rates (BFR) of k/o tibias were 27% that of the wild-type littermates. The k/o bones responded normally to growth hormone (GH; 1.7-fold increase) and supranormally to IGF-I (5.2-fold increase) with respect to BFR. Cortical thickness of the proximal tibia was reduced 17% in the k/o mouse. However, trabecular bone volume (bone volume/total volume [BV/TV]) was increased 23% (male mice) and 88% (female mice) in the k/o mice compared with wild-type controls as a result of increased connectivity, increased number, and decreased spacing of the trabeculae. These changes were either less or not found in L1. Thus, lack of IGF-I leads to the development of a bone structure, which, although smaller, appears more compact.

  16. Delayed stabilization of dendritic spines in fragile X mice.

    PubMed

    Cruz-Martín, Alberto; Crespo, Michelle; Portera-Cailliau, Carlos

    2010-06-09

    Fragile X syndrome (FXS) causes mental impairment and autism through transcriptional silencing of the Fmr1 gene, resulting in the loss of the RNA-binding protein fragile X mental retardation protein (FMRP). Cortical pyramidal neurons in affected individuals and Fmr1 knock-out (KO) mice have an increased density of dendritic spines. The mutant mice also show defects in synaptic and experience-dependent circuit plasticity, which are known to be mediated in part by dendritic spine dynamics. We used in vivo time-lapse imaging with two-photon microscopy through cranial windows in male and female neonatal mice to test the hypothesis that dynamics of dendritic protrusions are altered in KO mice during early postnatal development. We find that layer 2/3 neurons from wild-type mice exhibit a rapid decrease in dendritic spine dynamics during the first 2 postnatal weeks, as immature filopodia are replaced by mushroom spines. In contrast, KO mice show a developmental delay in the downregulation of spine turnover and in the transition from immature to mature spine subtypes. Blockade of metabotropic glutamate receptor (mGluR) signaling, which reverses some adult phenotypes of KO mice, accentuated this immature protrusion phenotype in KO mice. Thus, absence of FMRP delays spine stabilization and dysregulated mGluR signaling in FXS may partially normalize this early synaptic defect.

  17. Effects of CYP1A2 on disposition of 2,3,7, 8-tetrachlorodibenzo-p-dioxin, 2,3,4,7,8-pentachlorodibenzofuran, and 2,2',4,4',5,5'-hexachlorobiphenyl in CYP1A2 knockout and parental (C57BL/6N and 129/Sv) strains of mice.

    PubMed

    Diliberto, J J; Burgin, D E; Birnbaum, L S

    1999-08-15

    TCDD is the prototype and most potent member of the highly lipophilic polyhalogenated aromatic hydrocarbons (PHAHs), which are persistent and ubiquitous environmental contaminants. In both acute and subchronic animal studies, there is a specific accumulation of TCDD in liver greater than in adipose tissue. The inducible hepatic binding protein responsible for this hepatic sequestration of TCDD and its congeners has been shown by our laboratory to be CYP1A2 (J. J. Diliberto, D. Burgin, and L. S. Birnbaum, 1997, Biochem. Biophys. Res. Commun. 236, 431-433). The present study was conducted using knockout (KO) mice lacking expression of CYP1A2 (CYP1A2-/-) in order to investigate the role of CYP1A2 gene on the disposition of TCDD, 4-PeCDF (a dioxin-like PHAH), and PCB 153 (a nondioxin-like PCB) in KO (CYP1A2-/-) mice and age-matched parental mice strains (C57BL/6N: CYP1A2+/+, Ah(b/b) and 129/Sv: CYP1A2+/+, Ah(d/d)). Mice were dosed (25 microgram [(3)H]TCDD/kg, 300 microgram [(14)C]4-PeCDF/kg, or 35.8 mg [(14)C]PCB 153/kg bw in a corn oil vehicle) orally and terminated after 4 days. Residues of administered compounds in collected tissues and daily excreta were quantitated using (3)H or (14)C activity. Results demonstrated differential effects in disposition for the various treatments within the three genetically different groups of mice. In KO mice, TCDD, 4-PeCDF, and PCB 153 had very little hepatic localization of chemical, and the major depot was adipose tissue. In contrast, parental strains demonstrated hepatic sequestration of TCDD and 4-PeCDF, whereas disposition of PCB 153 in parental strains was similar to that in KO mice. Another difference between KO mice and parental strains was the enhanced urinary excretion of 4-PeCDF. This study demonstrates the importance of CYP1A2 in pharmacokinetic behavior and mechanistic issues for TCDD and related compounds. Copyright 1999 Academic Press.

  18. Cholecystokinin knockout mice are resistant to high-fat diet-induced obesity

    PubMed Central

    Lo, Chun-Min; King, Alexandra; Samuelson, Linda C; Kindel, Tammy Lyn; Rider, Therese; Jandacek, Ronald J; Raybould, Helen E; Woods, Stephen C; Tso, Patrick

    2011-01-01

    Background & Aims Cholecystokinin (CCK) is a satiation peptide released during meals in response to lipid intake; it regulates pancreatic digestive enzymes that are required for absorption of nutrients. We proposed that mice with a disruption in the CCK gene (CCK-KO mice) that were fed a diet of 20% butter fat would have altered fat metabolism. Methods We used quantitative magnetic resonance imaging to determine body composition and monitored food intake of CCK-KO mice using an automated measurement system. Intestinal fat absorption and energy expenditure were determined using a noninvasive assessment of intestinal fat absorption and an open circuit calorimeter, respectively. Results After consuming a high-fat diet for 10 weeks, CCK-KO mice had reduced body weight gain and body fat mass and enlarged adipocytes, despite the same level of food intake as wild-type mice. CCK-KO mice also had defects in fat absorption, especially of long-chain saturated fatty acids, but pancreatic triglyceride lipase (PTL) did not appear to have a role in the fat malabsorption. Energy expenditure was higher in CCK-KO than wild-type mice and CCK-KO mice had greater oxidation of carbohydrates while on the high-fat diet. Plasma leptin levels in the CCK-KO mice fed the high-fat diet were markedly lower than in wild-type mice, although levels of insulin, gastric-inhibitory polypeptide, and glucagon-like peptide-1 were normal. Conclusion CCK is involved in regulating the metabolic rate and is important for lipid absorption and control of body weight in mice placed on a high-fat diet. PMID:20117110

  19. Tyrosine hydroxylase down-regulation after loss of Abelson helper integration site 1 (AHI1) promotes depression via the circadian clock pathway in mice.

    PubMed

    Guo, Dongkai; Zhang, Shun; Sun, Hongyang; Xu, Xingyun; Hao, Zongbing; Mu, Chenchen; Xu, Xingshun; Wang, Guanghui; Ren, Haigang

    2018-04-06

    Abelson helper integration site 1 (AHI1) is associated with several neuropsychiatric and brain developmental disorders, such as schizophrenia, depression, autism, and Joubert syndrome. Ahi1 deficiency in mice leads to behaviors typical of depression. However, the mechanisms by which AHI1 regulates behavior remain to be elucidated. Here, we found that down-regulation of expression of the rate-limiting enzyme in dopamine biosynthesis, tyrosine hydroxylase (TH), in the midbrains of Ahi1- knockout (KO) mice is responsible for Ahi1 -deficiency-mediated depressive symptoms. We also found that Rev-Erbα, a TH transcriptional repressor and circadian regulator, is up-regulated in the Ahi1- KO mouse midbrains and Ahi1 -knockdown Neuro-2a cells. Moreover, brain and muscle Arnt-like protein 1 (BMAL1), the Rev-Erb α transcriptional regulator, is also increased in the Ahi1- KO mouse midbrains and Ahi1 -knockdown cells. Our results further revealed that AHI1 decreases BMAL1/Rev-Erbα expression by interacting with and repressing retinoic acid receptor-related orphan receptor α, a nuclear receptor and transcriptional regulator of circadian genes. Of note, Bmal1 deficiency reversed the reduction in TH expression induced by Ahi1 deficiency. Moreover, microinfusion of the Rev-Erbα inhibitor SR8278 into the ventral midbrain of Ahi1- KO mice significantly increased TH expression in the ventral tegmental area and improved their depressive symptoms. These findings provide a mechanistic explanation for a link between AHI1-related behaviors and the circadian clock pathway, indicating an involvement of circadian regulatory proteins in AHI1-regulated mood and behavior. © 2018 by The American Society for Biochemistry and Molecular Biology, Inc.

  20. Long-lasting Effects of Minocycline on Behavior in Young but not Adult Fragile X Mice

    PubMed Central

    Dansie, Lorraine E.; Phommahaxay, Kelly; Okusanya, Ayodeji G.; Uwadia, Jessica; Huang, Mike; Rotschafer, Sarah E.; Razak, Khaleel A.; Ethell, Douglas W.; Ethell, Iryna M.

    2013-01-01

    Fragile X Syndrome (FXS) is the most common single-gene inherited form of intellectual disability with behaviors characteristic of autism. People with FXS display childhood seizures, hyperactivity, anxiety, developmental delay, attention deficits, and visual-spatial memory impairment, as well as a propensity for obsessive-compulsive disorder (OCD). Several of these aberrant behaviors and FXS-associated synaptic irregularities also occur in “fragile X mental retardation gene” knock-out (Fmr1 KO) mice. We previously reported that minocycline promotes the maturation of dendritic spines - postsynaptic sites for excitatory synapses - in the developing hippocampus of Fmr1 KO mice, which may underlie the beneficial effects of minocycline on anxiolytic behavior in young Fmr1 KO mice. In this study, we compared the effectiveness of minocycline treatment in young and adult Fmr1 KO mice, and determined the dependence of behavioral improvements on short-term versus long-term minocycline administration. We found that 4 and 8 week long treatments significantly reduced locomotor activity in both young and adult Fmr1 KO mice. Some behavioral improvements persisted in young mice post-treatment, but in adults the beneficial effects were lost soon after minocycline treatment was stopped. We also show, for the first time, that minocycline treatment partially attenuates the number and severity of audiogenic seizures in Fmr1 KO mice. This report provides further evidence that minocycline treatment has immediate and long-lasting benefits on FXS-associated behaviors in the Fmr1 KO mouse model. PMID:23660195

  1. TASK-3 knockout mice exhibit exaggerated nocturnal activity, impairments in cognitive functions, and reduced sensitivity to inhalation anesthetics.

    PubMed

    Linden, Anni-Maija; Sandu, Cristina; Aller, M Isabel; Vekovischeva, Olga Y; Rosenberg, Per H; Wisden, William; Korpi, Esa R

    2007-12-01

    The TASK-3 channel is an acid-sensitive two-pore-domain K+ channel, widely expressed in the brain and probably involved in regulating numerous neuronal populations. Here, we characterized the behavioral and pharmacological phenotypes of TASK-3 knockout (KO) mice. Circadian locomotor activity measurements revealed that the nocturnal activity of the TASK-3 KO mice was increased by 38% (P < 0.01) compared with wild-type littermate controls, light phase activity being similar. Although TASK-3 channels are abundant in cerebellar granule cells, the KO mice performed as well as the wild-type mice in walking on a rotating rod or along a 1.2-cm-diameter beam. However, they fell more frequently from a narrower 0.8-cm beam. The KO mice showed impaired working memory in the spontaneous alternation task, with the alternation percentage being 62 +/- 3% for the wild-type mice and 48 +/- 4% (P < 0.05) for the KO mice. Likewise, during training for the Morris water-maze spatial memory task, the KO mice were slower to find the hidden platform, and in the probe trial, the female KO mice visited fewer times the platform quadrant than the male KO and wild-type mice. In pharmacological tests, the TASK-3 KO mice showed reduced sensitivity to the inhalation anesthetic halothane and the cannabinoid receptor agonist WIN55212-2 mesylate [(R)-(+)-[2,3-dihydro-5-methyl-3-(4-morpholinylmethyl)pyrrolo[1,2,3-de]-1,4-benzoxazin-6-yl]-1-naphthalenylmethanone mesylate] but unaltered responses to the alpha2 adrenoceptor agonist dexmedetomidine, the i.v. anesthetic propofol, the opioid receptor agonist morphine, and the local anesthetic lidocaine. Overall, our results suggest important contributions of TASK-3 channels in the neuronal circuits regulating circadian rhythms, cognitive functions, and mediating specific pharmacological effects.

  2. IL-4 Knock out Mice Display Anxiety-like Behavior

    PubMed Central

    Moon, Morgan L.; Joesting, Jennifer J.; Blevins, Neil A.; Lawson, Marcus A.; Gainey, Stephen J.; Towers, Albert E.; McNeil, Leslie K.; Freund, Gregory G.

    2015-01-01

    Inflammation is a recognized antecedent and coincident factor when examining the biology of anxiety. Little is known, however, about how reductions in endogenous anti-inflammatory mediators impact anxiety. Therefore, mood- cognition- and anxiety-associated/like behaviors were examined in IL-4 knock out (KO) mice and wild-type (WT) mice. In comparison to WT mice, IL-4 KO mice demonstrated decreased burrowing and increased social exploration. No differences were seen in forced swim or saccharine preference testing. IL-4 KO mice had similar performance to WT mice in the Morris water maze and during object location and novel object recognition. In the elevated zero-maze, IL-4 KO mice, in comparison to WT mice, demonstrated anxiety-like behavior. Anxiety-like behavior in IL-4 KO mice was not observed, however, during open-field testing. Taken together, these data indicate that IL-4 KO mice display state, but not trait, anxiety suggesting that reductions in endogenous anti-inflammatory bioactives can engender subtypes of anxiety. PMID:25772794

  3. IL-4 Knock Out Mice Display Anxiety-Like Behavior.

    PubMed

    Moon, Morgan L; Joesting, Jennifer J; Blevins, Neil A; Lawson, Marcus A; Gainey, Stephen J; Towers, Albert E; McNeil, Leslie K; Freund, Gregory G

    2015-07-01

    Inflammation is a recognized antecedent and coincident factor when examining the biology of anxiety. Little is known, however, about how reductions in endogenous anti-inflammatory mediators impact anxiety. Therefore, mood- cognition- and anxiety-associated/like behaviors were examined in IL-4 knock out (KO) mice and wild-type (WT) mice. In comparison to WT mice, IL-4 KO mice demonstrated decreased burrowing and increased social exploration. No differences were seen in forced swim or saccharine preference testing. IL-4 KO mice had similar performance to WT mice in the Morris water maze and during object location and novel object recognition. In the elevated zero-maze, IL-4 KO mice, in comparison to WT mice, demonstrated anxiety-like behavior. Anxiety-like behavior in IL-4 KO mice was not observed, however, during open-field testing. Taken together, these data indicate that IL-4 KO mice display state, but not trait, anxiety suggesting that reductions in endogenous anti-inflammatory bioactives can engender subtypes of anxiety.

  4. Comprehensive behavioral analysis of pituitary adenylate cyclase-activating polypeptide (PACAP) knockout mice

    PubMed Central

    Hattori, Satoko; Takao, Keizo; Tanda, Koichi; Toyama, Keiko; Shintani, Norihito; Baba, Akemichi; Hashimoto, Hitoshi; Miyakawa, Tsuyoshi

    2012-01-01

    Pituitary adenylate cyclase-activating polypeptide (PACAP) is a neuropeptide acting as a neurotransmitter, neuromodulator, or neurotrophic factor. PACAP is widely expressed throughout the brain and exerts its functions through the PACAP-specific receptor (PAC1). Recent studies reveal that genetic variants of the PACAP and PAC1 genes are associated with mental disorders, and several behavioral abnormalities of PACAP knockout (KO) mice are reported. However, an insufficient number of backcrosses was made using PACAP KO mice on the C57BL/6J background due to their postnatal mortality. To elucidate the effects of PACAP on neuropsychiatric function, the PACAP gene was knocked out in F1 hybrid mice (C57BL/6J × 129SvEv) for appropriate control of the genetic background. The PACAP KO mice were then subjected to a behavioral test battery. PACAP deficiency had no significant effects on neurological screen. As shown previously, the mice exhibited significantly increased locomotor activity in a novel environment and abnormal anxiety-like behavior, while no obvious differences between genotypes were shown in home cage (HC) activity. In contrast to previous reports, the PACAP KO mice showed normal prepulse inhibition (PPI) and slightly decreased depression-like behavior. Previous study demonstrates that the social interaction (SI) in a resident-intruder test was decreased in PACAP KO mice. On the other hand, we showed that PACAP KO mice exhibited increased SI in Crawley's three-chamber social approach test, although PACAP KO had no significant impact on SI in a HC. PACAP KO mice also exhibited mild performance deficit in working memory in an eight-arm radial maze (RM) and the T-maze (TM), while they did not show any significant abnormalities in the left-right discrimination task in the TM. These results suggest that PACAP has an important role in the regulation of locomotor activity, social behavior, anxiety-like behavior and, potentially, working memory. PMID:23060763

  5. Immature morphological properties in subcellular-scale structures in the dentate gyrus of Schnurri-2 knockout mice: a model for schizophrenia and intellectual disability.

    PubMed

    Nakao, Akito; Miyazaki, Naoyuki; Ohira, Koji; Hagihara, Hideo; Takagi, Tsuyoshi; Usuda, Nobuteru; Ishii, Shunsuke; Murata, Kazuyoshi; Miyakawa, Tsuyoshi

    2017-12-12

    Accumulating evidence suggests that subcellular-scale structures such as dendritic spine and mitochondria may be involved in the pathogenesis/pathophysiology of schizophrenia and intellectual disability. Previously, we proposed mice lacking Schnurri-2 (Shn2; also called major histocompatibility complex [MHC]-binding protein 2 [MBP-2], or human immunodeficiency virus type I enhancer binding protein 2 [HIVEP2]) as a schizophrenia and intellectual disability model with mild chronic inflammation. In the mutants' brains, there are increases in C4b and C1q genes, which are considered to mediate synapse elimination during postnatal development. However, morphological properties of subcellular-scale structures such as dendritic spine in Shn2 knockout (KO) mice remain unknown. In this study, we conducted three-dimensional morphological analyses in subcellular-scale structures in dentate gyrus granule cells of Shn2 KO mice by serial block-face scanning electron microscopy. Shn2 KO mice showed immature dendritic spine morphology characterized by increases in spine length and decreases in spine diameter. There was a non-significant tendency toward decrease in spine density of Shn2 KO mice over wild-type mice, and spine volume was indistinguishable between genotypes. Shn2 KO mice exhibited a significant reduction in GluR1 expression and a nominally significant decrease in SV2 expression, while PSD95 expression had a non-significant tendency to decrease in Shn2 KO mice. There were significant decreases in dendrite diameter, nuclear volume, and the number of constricted mitochondria in the mutants. Additionally, neuronal density was elevated in Shn2 KO mice. These results suggest that Shn2 KO mice serve as a unique tool for investigating morphological abnormalities of subcellular-scale structures in schizophrenia, intellectual disability, and its related disorders.

  6. Pancreatic islet regeneration through PDX-1/Notch-1/Ngn3 signaling after gastric bypass surgery in db/db mice

    PubMed Central

    Huang, Tao; Fu, Jun; Zhang, Zhijing; Zhang, Yuhao; Liang, Yunjia; Ge, Cuicui; Qin, Xianju

    2017-01-01

    In view of the compelling anti-diabetic effects of gastric bypass surgery (GBS) in the treatment of morbid obesity, it is important to clarify its enhancing effect on pancreatic islets, which is closely linked with diabetes remission in obese patients, as well as the underlying mechanisms. The present study evaluated the effects of GBS on glycemic control and other pancreatic changes in db/db mice. The db/db mice were divided into Control, Sham and GBS group. A significant improvement in fasting plasma glucose levels and glucose intolerance were observed post-surgery. At 4 weeks after surgery, further noteworthy changes were observed in the GBS group, including improved islet structure (revealed by immunohistochemical analysis), enhanced insulin secretion, pancreatic hyperplasia and a marked increase in the ratio of β-cells to non-β endocrine cells. Furthermore, notable changes in the levels of Notch-1, pancreatic and duodenal homeobox 1 (PDX-1) and neurogenin 3 (Ngn3) were observed in the GBS group, indicating a potential role of Notch signaling in pancreatic islet regeneration after surgery. In addition, results obtained in PDX-1 knockout (KO), Notch-1 KO and Ngn3 KO mouse models with GBS suggested that elevated PDX-1 resulted in the inhibition of Notch-1, further facilitated Ngn3 and thus promoted pancreatic β-cell regeneration after GBS. The present findings demonstrated that GBS in db/db mice resulted in pancreatic islet regeneration through the PDX-1/Notch-1/Ngn3 signaling pathway, which also reflected the important role of the gastrointestinal system in metabolism control. PMID:28966671

  7. The Growth Hormone Receptor Gene-Disrupted (GHR-KO) Mouse Fails to Respond to an Intermittent Fasting (IF) Diet

    PubMed Central

    Arum, Oge; Bonkowski, Michael S.; Rocha, Juliana S.; Bartke, Andrzej

    2009-01-01

    SUMMARY The interaction of longevity-conferring genes with longevity-conferring diets is poorly understood. The growth hormone receptor gene-disrupted (GHR-KO) mouse is long-lived; and this longevity is not responsive to 30% caloric restriction (CR), in contrast to wild-type animals from the same strain. To determine whether this may have been limited to a particular level of dietary restriction (DR), we subjected GHR-KO mice to a different dietary restriction regimen, an intermittent fasting (IF) diet. The IF diet increased the survivorship and improved insulin sensitivity of normal males, but failed to affect either parameter in GHR-KO mice. From the results of two paradigms of dietary restriction we postulate that GHR-KO mice would be resistant to any manner of DR; potentially due to their inability to further enhance insulin sensitivity. Insulin sensitivity may be a mechanism and/or a marker of the lifespan-extending potential of an intervention. PMID:19747233

  8. Proximal tubule-dominant transfer of AT(1a) receptors induces blood pressure responses to intracellular angiotensin II in AT(1a) receptor-deficient mice.

    PubMed

    Li, Xiao C; Zhuo, Jia L

    2013-04-15

    The role of intracellular ANG II in proximal tubules of the kidney remains poorly understood. We tested the hypothesis that proximal tubule-dominant transfer of AT(1a) receptors in the cortex mediates intracellular ANG II-induced blood pressure responses in AT(1a) receptor-deficient (Agtr1a-/-) mice. A GFP-tagged AT(1a) receptor, AT(1a)R/GFP, and an enhanced cyan fluorescent intracellular ANG II fusion protein, ECFP/ANG II, were expressed in proximal tubules of Agtr1a-/- mouse kidneys via the adenoviral transfer using a sodium and glucose cotransporter 2 promoter. Transfer of AT(1a)R/GFP alone or with ECFP/ANG II induced proximal tubule-dominant expression of AT(1a)R/GFP and/or ECFP/ANG II with a peak response at 2 wk. No significant AT(1a)R/GFP and/or ECFP/ANG II expression was observed in the glomeruli, medulla, or extrarenal tissues. Transfer of AT(1a)R/GFP alone, but not ECFP/ANG II, increased systolic blood pressure by 12 ± 2 mmHg by day 14 (n = 9, P < 0.01). However, cotransfer of AT(1a)R/GFP with ECFP/ANG II increased blood pressure by 18 ± 2 mmHg (n = 12, P < 0.01). Twenty-four hour urinary sodium excretion was decreased by day 7 with proximal tubule-dominant transfer of AT(1a)R/GFP alone (P < 0.01) or with AT(1a)R/GFP and ECFP/ANG II cotransfer (P < 0.01). These responses were associated with twofold increases in phosphorylated ERK1/2, lysate, and membrane NHE-3 proteins in freshly isolated proximal tubules (P < 0.01). By contrast, transfer of control CMV-GFP (a recombinant human adenovirus type 5 expresses enhanced green fluorescent protein under the control of a cytomegalovirus (CMV) promoter), ECFP/ANG II, or a scrambled control ECFP/ANG IIc alone in proximal tubules had no effect on all indices. These results suggest that AT(1a) receptors and intracellular ANG II in proximal tubules of the kidney play an important physiological role in blood pressure regulation.

  9. Cerebral cortical blood flow maps are reorganized in MAOB-deficient mice

    PubMed Central

    Scremin, Oscar U.; Holschneider, Daniel P.; Chen, Kevin; Li, Mingen G.; Shih, Jean C.

    2014-01-01

    Cerebral cortical blood flow (CBF) was measured autoradiographically in conscious mice without the monoamine oxidase B (MAOB) gene (KO, n = 11) and the corresponding wild-type animals (WILD, n = 11). Subgroups of animals of each genotype received a continuous intravenous infusion over 30 min of phenylethylamine (PEA), an endogenous substrate of MAOB, (8 nmol g−1 min−1 in normal saline at a volume rate of 0.11 μl g−1 min−1) or saline at the same volume rate. Maps of relative CBF distribution showed predominance of midline motor and sensory area CBF in KO mice over WILD mice that received saline. PEA enhanced CBF in lateral frontal and piriform cortex in both KO and WILD mice. These changes may reflect a differential activation due to chronic and acute PEA elevations on motor and olfactory function, as well as on the anxiogenic effects of this amine. In addition to its effects on regional CBF distribution, PEA decreased CBF globally in KO mice (range −31% to −41% decrease from control levels) with a lesser effect in WILD mice. It is concluded that MAOB may normally regulate CBF distribution and its response to blood PEA. PMID:10095040

  10. A conditioned aversion study of sucrose and SC45647 taste in TRPM5 knockout mice.

    PubMed

    Eddy, Meghan C; Eschle, Benjamin K; Peterson, Darlene; Lauras, Nathan; Margolskee, Robert F; Delay, Eugene R

    2012-06-01

    Previously, published studies have reported mixed results regarding the role of the TRPM5 cation channel in signaling sweet taste by taste sensory cells. Some studies have reported a complete loss of sweet taste preference in TRPM5 knockout (KO) mice, whereas others have reported only a partial loss of sweet taste preference. This study reports the results of conditioned aversion studies designed to motivate wild-type (WT) and KO mice to respond to sweet substances. In conditioned taste aversion experiments, WT mice showed nearly complete LiCl-induced response suppression to sucrose and SC45647. In contrast, TRPM5 KO mice showed a much smaller conditioned aversion to either sweet substance, suggesting a compromised, but not absent, ability to detect sweet taste. A subsequent conditioned flavor aversion experiment was conducted to determine if TRPM5 KO mice were impaired in their ability to learn a conditioned aversion. In this experiment, KO and WT mice were conditioned to a mixture of SC45647 and amyl acetate (an odor cue). Although WT mice avoided both components of the stimulus mixture, they avoided SC45647 more than the odor cue. The KO mice also avoided both stimuli, but they avoided the odor component more than SC45647, suggesting that while the KO mice are capable of learning an aversion, to them the odor cue was more salient than the taste cue. Collectively, these findings suggest the TRPM5 KO mice have some residual ability to detect SC45647 and sucrose, and, like bitter, there may be a TRPM5-independent transduction pathway for detecting these substances.

  11. Expression of GAD67 and Dlx5 in the taste buds of mice genetically lacking Mash1.

    PubMed

    Kito-Shingaki, Ayae; Seta, Yuji; Toyono, Takashi; Kataoka, Shinji; Kakinoki, Yasuaki; Yanagawa, Yuchio; Toyoshima, Kuniaki

    2014-06-01

    It has been reported that a subset of type III taste cells express glutamate decarboxylase (GAD)67, which is a molecule that synthesizes gamma-aminobutyric acid (GABA), and that Mash1 could be a potential regulator of the development of GABAnergic neurons via Dlx transcription factors in the central nervous system. In this study, we investigated the expression of GAD67 and Dlx in the embryonic taste buds of the soft palate and circumvallate papilla using Mash1 knockout (KO)/GAD67-GFP knock-in mice. In the wild-type animal, a subset of type III taste cells contained GAD67 in the taste buds of the soft palate and the developing circumvallate papilla, whereas GAD67-expressing taste bud cells were missing from Mash1 KO mice. A subset of type III cells expressed mRNA for Dlx5 in the wild-type animals, whereas Dlx5-expressing cells were not evident in the apical part of the circumvallate papilla and taste buds in the soft palate of Mash1 KO mice. Our results suggest that Mash1 is required for the expression of GAD67 and Dlx5 in taste bud cells. © The Author 2014. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  12. Mu opioid receptors on primary afferent nav1.8 neurons contribute to opiate-induced analgesia: insight from conditional knockout mice.

    PubMed

    Weibel, Raphaël; Reiss, David; Karchewski, Laurie; Gardon, Olivier; Matifas, Audrey; Filliol, Dominique; Becker, Jérôme A J; Wood, John N; Kieffer, Brigitte L; Gaveriaux-Ruff, Claire

    2013-01-01

    Opiates are powerful drugs to treat severe pain, and act via mu opioid receptors distributed throughout the nervous system. Their clinical use is hampered by centrally-mediated adverse effects, including nausea or respiratory depression. Here we used a genetic approach to investigate the potential of peripheral mu opioid receptors as targets for pain treatment. We generated conditional knockout (cKO) mice in which mu opioid receptors are deleted specifically in primary afferent Nav1.8-positive neurons. Mutant animals were compared to controls for acute nociception, inflammatory pain, opiate-induced analgesia and constipation. There was a 76% decrease of mu receptor-positive neurons and a 60% reduction of mu-receptor mRNA in dorsal root ganglia of cKO mice. Mutant mice showed normal responses to heat, mechanical, visceral and chemical stimuli, as well as unchanged morphine antinociception and tolerance to antinociception in models of acute pain. Inflammatory pain developed similarly in cKO and controls mice after Complete Freund's Adjuvant. In the inflammation model, however, opiate-induced (morphine, fentanyl and loperamide) analgesia was reduced in mutant mice as compared to controls, and abolished at low doses. Morphine-induced constipation remained intact in cKO mice. We therefore genetically demonstrate for the first time that mu opioid receptors partly mediate opiate analgesia at the level of Nav1.8-positive sensory neurons. In our study, this mechanism operates under conditions of inflammatory pain, but not nociception. Previous pharmacology suggests that peripheral opiates may be clinically useful, and our data further demonstrate that Nav1.8 neuron-associated mu opioid receptors are feasible targets to alleviate some forms of persistent pain.

  13. Mu Opioid Receptors on Primary Afferent Nav1.8 Neurons Contribute to Opiate-Induced Analgesia: Insight from Conditional Knockout Mice

    PubMed Central

    Karchewski, Laurie; Gardon, Olivier; Matifas, Audrey; Filliol, Dominique; Becker, Jérôme A. J.; Wood, John N.; Kieffer, Brigitte L.; Gaveriaux-Ruff, Claire

    2013-01-01

    Opiates are powerful drugs to treat severe pain, and act via mu opioid receptors distributed throughout the nervous system. Their clinical use is hampered by centrally-mediated adverse effects, including nausea or respiratory depression. Here we used a genetic approach to investigate the potential of peripheral mu opioid receptors as targets for pain treatment. We generated conditional knockout (cKO) mice in which mu opioid receptors are deleted specifically in primary afferent Nav1.8-positive neurons. Mutant animals were compared to controls for acute nociception, inflammatory pain, opiate-induced analgesia and constipation. There was a 76% decrease of mu receptor-positive neurons and a 60% reduction of mu-receptor mRNA in dorsal root ganglia of cKO mice. Mutant mice showed normal responses to heat, mechanical, visceral and chemical stimuli, as well as unchanged morphine antinociception and tolerance to antinociception in models of acute pain. Inflammatory pain developed similarly in cKO and controls mice after Complete Freund’s Adjuvant. In the inflammation model, however, opiate-induced (morphine, fentanyl and loperamide) analgesia was reduced in mutant mice as compared to controls, and abolished at low doses. Morphine-induced constipation remained intact in cKO mice. We therefore genetically demonstrate for the first time that mu opioid receptors partly mediate opiate analgesia at the level of Nav1.8-positive sensory neurons. In our study, this mechanism operates under conditions of inflammatory pain, but not nociception. Previous pharmacology suggests that peripheral opiates may be clinically useful, and our data further demonstrate that Nav1.8 neuron-associated mu opioid receptors are feasible targets to alleviate some forms of persistent pain. PMID:24069332

  14. Fat-specific Dicer deficiency accelerates aging and mitigates several effects of dietary restriction in mice.

    PubMed

    Reis, Felipe C G; Branquinho, Jéssica L O; Brandão, Bruna B; Guerra, Beatriz A; Silva, Ismael D; Frontini, Andrea; Thomou, Thomas; Sartini, Loris; Cinti, Saverio; Kahn, C Ronald; Festuccia, William T; Kowaltowski, Alicia J; Mori, Marcelo A

    2016-06-01

    Aging increases the risk of type 2 diabetes, and this can be prevented by dietary restriction (DR). We have previously shown that DR inhibits the downregulation of miRNAs and their processing enzymes - mainly Dicer - that occurs with aging in mouse white adipose tissue (WAT). Here we used fat-specific Dicer knockout mice (AdicerKO) to understand the contributions of adipose tissue Dicer to the metabolic effects of aging and DR. Metabolomic data uncovered a clear distinction between the serum metabolite profiles of Lox control and AdicerKO mice, with a notable elevation of branched-chain amino acids (BCAA) in AdicerKO. These profiles were associated with reduced oxidative metabolism and increased lactate in WAT of AdicerKO mice and were accompanied by structural and functional changes in mitochondria, particularly under DR. AdicerKO mice displayed increased mTORC1 activation in WAT and skeletal muscle, where Dicer expression is not affected. This was accompanied by accelerated age-associated insulin resistance and premature mortality. Moreover, DR-induced insulin sensitivity was abrogated in AdicerKO mice. This was reverted by rapamycin injection, demonstrating that insulin resistance in AdicerKO mice is caused by mTORC1 hyperactivation. Our study evidences a DR-modulated role for WAT Dicer in controlling metabolism and insulin resistance.

  15. Fat-specific Dicer deficiency accelerates aging and mitigates several effects of dietary restriction in mice

    PubMed Central

    Reis, Felipe C. G.; Branquinho, Jéssica L. O.; Brandão, Bruna B.; Guerra, Beatriz A.; Silva, Ismael D.; Frontini, Andrea; Thomou, Thomas; Sartini, Loris; Cinti, Saverio; Kahn, C. Ronald; Festuccia, William T.; Kowaltowski, Alicia J.; Mori, Marcelo A.

    2016-01-01

    Aging increases the risk of type 2 diabetes, and this can be prevented by dietary restriction (DR). We have previously shown that DR inhibits the downregulation of miRNAs and their processing enzymes - mainly Dicer - that occurs with aging in mouse white adipose tissue (WAT). Here we used fat-specific Dicer knockout mice (AdicerKO) to understand the contributions of adipose tissue Dicer to the metabolic effects of aging and DR. Metabolomic data uncovered a clear distinction between the serum metabolite profiles of Lox control and AdicerKO mice, with a notable elevation of branched-chain amino acids (BCAA) in AdicerKO. These profiles were associated with reduced oxidative metabolism and increased lactate in WAT of AdicerKO mice and were accompanied by structural and functional changes in mitochondria, particularly under DR. AdicerKO mice displayed increased mTORC1 activation in WAT and skeletal muscle, where Dicer expression is not affected. This was accompanied by accelerated age-associated insulin resistance and premature mortality. Moreover, DR-induced insulin sensitivity was abrogated in AdicerKO mice. This was reverted by rapamycin injection, demonstrating that insulin resistance in AdicerKO mice is caused by mTORC1 hyperactivation. Our study evidences a DR-modulated role for WAT Dicer in controlling metabolism and insulin resistance. PMID:27241713

  16. An Examination of the Role of L-Glutamate and Inosine 5'-Monophosphate in Hedonic Taste-Guided Behavior by Mice Lacking the T1R1 + T1R3 Receptor.

    PubMed

    Blonde, Ginger D; Spector, Alan C

    2017-06-01

    The heterodimeric T1R1 + T1R3 receptor is considered critical for normal signaling of L-glutamate and 5'-ribonucleotides in the oral cavity. However, some taste-guided responsiveness remains in mice lacking one subunit of the receptor, suggesting that other receptors are sufficient to support some behaviors. Here, mice lacking both receptor subunits (KO) and wild-type (WT, both n = 13) mice were tested in a battery of behavioral tests. Mice were trained and tested in gustometers with a concentration series of Maltrin-580, a maltodextrin, in a brief-access test (10-s trials) as a positive control. Similar tests followed with monosodium glutamate (MSG) with and without the ribonucleotide inosine 5'-monophosphate (IMP), but always in the presence of the epithelial sodium channel blocker amiloride (A). Brief-access tests were repeated following short-term (30-min) and long-term (48-h) exposures to MSG + A + IMP and were also conducted with sodium gluconate replacing MSG. Finally, progressive ratio tests were conducted with Maltrin-580 or MSG + A + IMP, to assess appetitive behavior while minimizing satiation. Overall, MSG generated little concentration-dependent responding in either food-restricted WT or KO mice, even in combination with IMP. However, KO mice licked less to the amino acid stimuli, a measure of consummatory behavior in the brief-access tests. In contrast, both groups initiated a similar number of trials and had a similar breakpoint in the progressive ratio task, both measures of appetitive (approach) behavior. Collectively, these results suggest that while the T1R1 + T1R3 receptor is necessary for consummatory responding to MSG (+IMP), other receptors are sufficient to maintain appetitive responding to this "umami" stimulus complex in food-restricted mice. © The Author 2017. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  17. Acyl ghrelin improves cognition, synaptic plasticity deficits and neuroinflammation following amyloid β (Aβ1-40) administration in mice.

    PubMed

    Santos, V V; Stark, R; Rial, D; Silva, H B; Bayliss, J A; Lemus, M B; Davies, J S; Cunha, R A; Prediger, R D; Andrews, Z B

    2017-05-01

    Ghrelin is a metabolic hormone that has neuroprotective actions in a number of neurological conditions, including Parkinson's disease (PD), stroke and traumatic brain injury. Acyl ghrelin treatment in vivo and in vitro also shows protective capacity in Alzheimer's disease (AD). In the present study, we used ghrelin knockout (KO) and their wild-type littermates to test whether or not endogenous ghrelin is protective in a mouse model of AD, in which human amyloid β peptide 1-40 (Aβ 1-40 ) was injected into the lateral ventricles i.c.v. Recognition memory, using the novel object recognition task, was significantly impaired in ghrelin KO mice and after i.c.v. Aβ 1-40 treatment. These deficits could be prevented by acyl ghrelin injections for 7 days. Spatial orientation, as assessed by the Y-maze task, was also significantly impaired in ghrelin KO mice and after i.c.v. Aβ 1-40 treatment. These deficits could be prevented by acyl ghrelin injections for 7 days. Ghrelin KO mice had deficits in olfactory discrimination; however, neither i.c.v. Aβ 1-40 treatment, nor acyl ghrelin injections affected olfactory discrimination. We used stereology to show that ghrelin KO and Aβ 1-40 increased the total number of glial fibrillary acidic protein expressing astrocytes and ionised calcium-binding adapter expressing microglial in the rostral hippocampus. Finally, Aβ 1-40 blocked long-term potentiation induced by high-frequency stimulation and this effect could be acutely blocked with co-administration of acyl ghrelin. Collectively, our studies demonstrate that ghrelin deletion affects memory performance and also that acyl ghrelin treatment may delay the onset of early events of AD. This supports the idea that acyl ghrelin treatment may be therapeutically beneficial with respect to restricting disease progression in AD. © 2017 British Society for Neuroendocrinology.

  18. Genetic Reduction of Matrix Metalloproteinase-9 Promotes Formation of Perineuronal Nets Around Parvalbumin-Expressing Interneurons and Normalizes Auditory Cortex Responses in Developing Fmr1 Knock-Out Mice.

    PubMed

    Wen, Teresa H; Afroz, Sonia; Reinhard, Sarah M; Palacios, Arnold R; Tapia, Kendal; Binder, Devin K; Razak, Khaleel A; Ethell, Iryna M

    2017-10-13

    Abnormal sensory responses associated with Fragile X Syndrome (FXS) and autism spectrum disorders include hypersensitivity and impaired habituation to repeated stimuli. Similar sensory deficits are also observed in adult Fmr1 knock-out (KO) mice and are reversed by genetic deletion of Matrix Metalloproteinase-9 (MMP-9) through yet unknown mechanisms. Here we present new evidence that impaired development of parvalbumin (PV)-expressing inhibitory interneurons may underlie hyper-responsiveness in auditory cortex of Fmr1 KO mice via MMP-9-dependent regulation of perineuronal nets (PNNs). First, we found that PV cell development and PNN formation around GABAergic interneurons were impaired in developing auditory cortex of Fmr1 KO mice. Second, MMP-9 levels were elevated in P12-P18 auditory cortex of Fmr1 KO mice and genetic reduction of MMP-9 to WT levels restored the formation of PNNs around PV cells. Third, in vivo single-unit recordings from auditory cortex neurons showed enhanced spontaneous and sound-driven responses in developing Fmr1 KO mice, which were normalized following genetic reduction of MMP-9. These findings indicate that elevated MMP-9 levels contribute to the development of sensory hypersensitivity by influencing formation of PNNs around PV interneurons suggesting MMP-9 as a new therapeutic target to reduce sensory deficits in FXS and potentially other autism spectrum disorders. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  19. Transgenic Expression of the Vitamin D Receptor Restricted to the Ileum, Cecum, and Colon of Vitamin D Receptor Knockout Mice Rescues Vitamin D Receptor-Dependent Rickets.

    PubMed

    Dhawan, Puneet; Veldurthy, Vaishali; Yehia, Ghassan; Hsaio, Connie; Porta, Angela; Kim, Ki-In; Patel, Nishant; Lieben, Liesbet; Verlinden, Lieve; Carmeliet, Geert; Christakos, Sylvia

    2017-11-01

    Although the intestine plays the major role in 1,25-dihydroxyvitamin D3 [1,25(OH)2D3] action on calcium homeostasis, the mechanisms involved remain incompletely understood. The established model of 1,25(OH)2D3-regulated intestinal calcium absorption postulates a critical role for the duodenum. However, the distal intestine is where 70% to 80% of ingested calcium is absorbed. To test directly the role of 1,25(OH)2D3 and the vitamin D receptor (VDR) in the distal intestine, three independent knockout (KO)/transgenic (TG) lines expressing VDR exclusively in the ileum, cecum, and colon were generated by breeding VDR KO mice with TG mice expressing human VDR (hVDR) under the control of the 9.5-kb caudal type homeobox 2 promoter. Mice from one TG line (KO/TG3) showed low VDR expression in the distal intestine (<50% of the levels observed in KO/TG1, KO/TG2, and wild-type mice). In the KO/TG mice, hVDR was not expressed in the duodenum, jejunum, kidney, or other tissues. Growth arrest, elevated parathyroid hormone level, and hypocalcemia of the VDR KO mice were prevented in mice from KO/TG lines 1 and 2. Microcomputed tomography analysis revealed that the expression of hVDR in the distal intestine of KO/TG1 and KO/TG2 mice rescued the bone defects associated with systemic VDR deficiency, including growth plate abnormalities and altered trabecular and cortical parameters. KO/TG3 mice showed rickets, but less severely than VDR KO mice. These findings show that expression of VDR exclusively in the distal intestine can prevent abnormalities in calcium homeostasis and bone mineralization associated with systemic VDR deficiency. Copyright © 2017 Endocrine Society.

  20. Liver-specific deletion of prohibitin 1 results in spontaneous liver injury, fibrosis, and hepatocellular carcinoma in mice.

    PubMed

    Ko, Kwang Suk; Tomasi, Maria Lauda; Iglesias-Ara, Ainhoa; French, Barbara A; French, Samuel W; Ramani, Komal; Lozano, Juan José; Oh, Pilsoo; He, Lina; Stiles, Bangyan L; Li, Tony W H; Yang, Heping; Martínez-Chantar, M Luz; Mato, José M; Lu, Shelly C

    2010-12-01

    Prohibitin 1 (PHB1) is a highly conserved, ubiquitously expressed protein that participates in diverse processes including mitochondrial chaperone, growth and apoptosis. The role of PHB1 in vivo is unclear and whether it is a tumor suppressor is controversial. Mice lacking methionine adenosyltransferase 1A (MAT1A) have reduced PHB1 expression, impaired mitochondrial function, and spontaneously develop hepatocellular carcinoma (HCC). To see if reduced PHB1 expression contributes to the Mat1a knockout (KO) phenotype, we generated liver-specific Phb1 KO mice. Expression was determined at the messenger RNA and protein levels. PHB1 expression in cells was varied by small interfering RNA or overexpression. At 3 weeks, KO mice exhibit biochemical and histologic liver injury. Immunohistochemistry revealed apoptosis, proliferation, oxidative stress, fibrosis, bile duct epithelial metaplasia, hepatocyte dysplasia, and increased staining for stem cell and preneoplastic markers. Mitochondria are swollen and many have no discernible cristae. Differential gene expression revealed that genes associated with proliferation, malignant transformation, and liver fibrosis are highly up-regulated. From 20 weeks on, KO mice have multiple liver nodules and from 35 to 46 weeks, 38% have multifocal HCC. PHB1 protein levels were higher in normal human hepatocytes compared to human HCC cell lines Huh-7 and HepG2. Knockdown of PHB1 in murine nontransformed AML12 cells (normal mouse hepatocyte cell line) raised cyclin D1 expression, increased E2F transcription factor binding to cyclin D1 promoter, and proliferation. The opposite occurred with PHB1 overexpression. Knockdown or overexpression of PHB1 in Huh-7 cells did not affect proliferation significantly or sensitize cells to sorafenib-induced apoptosis. Hepatocyte-specific PHB1 deficiency results in marked liver injury, oxidative stress, and fibrosis with development of HCC by 8 months. These results support PHB1 as a tumor suppressor in

  1. Impaired cognitive discrimination and discoordination of coupled theta-gamma oscillations in Fmr1 knockout mice

    PubMed Central

    Radwan, Basma; Dvorak, Dino; Fenton, André

    2016-01-01

    Fragile X syndrome (FXS) patients do not make the fragile X mental retardation protein (FMRP). Absence of FMRP causes dysregulated translation, abnormal synaptic plasticity and the most common form of inherited intellectual disability. But FMRP loss has minimal effects on memory itself, making it difficult to understand why absence of FMRP impairs memory discrimination and increases risk of autistic symptoms in patients, such as exaggerated responses to environmental changes. While Fmr1 knockout (KO) and wild-type (WT) mice perform cognitive discrimination tasks, we find abnormal patterns of coupling between theta and gamma oscillations in perisomatic and dendritic hippocampal CA1 local field potentials of the KO. Perisomatic CA1 theta-gamma phase-amplitude coupling (PAC) decreases with familiarity in both the WT and KO, but activating an invisible shock zone, subsequently changing its location, or turning it off, changes the pattern of oscillatory events in the LFPs recorded along the somato-dendritic axis of CA1. The cognition-dependent changes of this pattern of neural activity are relatively constrained in WT mice compared to KO mice, which exhibit abnormally weak changes during the cognitive challenge caused by changing the location of the shock zone and exaggerated patterns of change when the shock zone is turned off. Such pathophysiology might explain how dysregulated translation leads to intellectual disability in FXS. These findings demonstrate major functional abnormalities after the loss of FMRP in the dynamics of neural oscillations and that these impairments would be difficult to detect by steady-state measurements with the subject at rest or in steady conditions. PMID:26792400

  2. Nuclear expression of IL-33 in epidermal keratinocytes promotes wound healing in mice.

    PubMed

    Oshio, Tomoyuki; Komine, Mayumi; Tsuda, Hidetoshi; Tominaga, Shin-Ichi; Saito, Hirohisa; Nakae, Susumu; Ohtsuki, Mamitaro

    2017-02-01

    Skin is the outermost tissue of the human body, and works as a mechanical, chemical, and biological barrier. The epidermis is the uppermost layer of the skin, and keratinocytes constitute the majority of epidermal cells. Wounds are disruptions of skin integrity, and cause tremendous disadvantages to humans; accordingly, rapid wound healing is very important. Interleukin (IL)-33 is expressed in barrier tissue cells, such as epithelial and endothelial cells. Upon injury, IL-33 is released to stimulate immune cells, functioning as an "alarmin." ST2 is a receptor for IL-33; its soluble form (s)ST2 acts as a decoy receptor and competes for IL-33 binding. We aimed to clarify the role of IL-33 in wound healing. Wild-type (WT), IL-33 knockout (IL33 KO) mice, and sST2 transgenic (Tg) mice were wounded with a 4-mm punch, and the wound healing process was compared. Immunohistochemical analyses were performed to detect macrophages, neutrophils, and mast cells. Total RNA was extracted from the skin samples and real-time PCR was performed. An in vitro scratch wound assay was performed. Wound healing was delayed in IL33 KO mice compared to WT mice, while wound healing in sST2 Tg mice was comparable to that of WT mice. A histological examination showed delayed elongation of the epidermal tongue in IL-33 KO mice. An immunohistochemical study revealed prolonged neutrophilic infiltration at a later stage in IL-33 KO mice. IL-6, IL-1β, and CXCL1 transcripts were more abundant in the wounds of IL-33 KO mice than WT mice. Intraperitoneal administration of an NFκB inhibitor to IL-33 KO mice normalized the delayed wound healing and the enhanced expression of IL-6 in IL-33 KO mice. Epidermal keratinocytes from IL-33 KO mice showed delayed wound closure compared to those from WT mice. Our results indicate that nuclear IL-33, but not IL-33 as a cytokine, has beneficial effects on wound healing in mice, probably by suppressing NFκB to inhibit excessive inflammation and by maintaining

  3. Food intake reductions and increases in energetic responses by hindbrain leptin and melanotan II are enhanced in mice with POMC-specific PTP1B deficiency.

    PubMed

    De Jonghe, Bart C; Hayes, Matthew R; Zimmer, Derek J; Kanoski, Scott E; Grill, Harvey J; Bence, Kendra K

    2012-09-01

    Leptin regulates energy balance through central circuits that control food intake and energy expenditure, including proopiomelanocortin (POMC) neurons. POMC neuron-specific deletion of protein tyrosine phosphatase 1B (PTP1B) (Ptpn1(loxP/loxP) POMC-Cre), a negative regulator of CNS leptin signaling, results in resistance to diet-induced obesity and improved peripheral leptin sensitivity in mice, thus establishing PTP1B as an important component of POMC neuron regulation of energy balance. POMC neurons are expressed in the pituitary, the arcuate nucleus of the hypothalamus (ARH), and the nucleus of the solitary tract (NTS) in the hindbrain, and it is unknown how each population might contribute to the phenotype of POMC-Ptp1b(-/-) mice. It is also unknown whether improved leptin sensitivity in POMC-Ptp1b(-/-) mice involves altered melanocortin receptor signaling. Therefore, we examined the effects of hindbrain administration (4th ventricle) of leptin (1.5, 3, and 6 μg) or the melanocortin 3/4R agonist melanotan II (0.1 and 0.2 nmol) in POMC-Ptp1b(-/-) (KO) and control PTP1B(fl/fl) (WT) mice on food intake, body weight, spontaneous physical activity (SPA), and core temperature (T(C)). The results show that KO mice were hypersensitive to hindbrain leptin- and MTII-induced food intake and body weight suppression and SPA compared with WT mice. Greater increases in leptin- but not MTII-induced T(C) were also observed in KO vs. WT animals. In addition, KO mice displayed elevated hindbrain and hypothalamic MC4R mRNA expression. These studies are the first to show that hindbrain administration of leptin or a melanocortin receptor agonist alters energy balance in mice likely via participation of hindbrain POMC neurons.

  4. Loss of epithelial FAM20A in mice causes amelogenesis imperfecta, tooth eruption delay and gingival overgrowth.

    PubMed

    Li, Li-Li; Liu, Pei-Hong; Xie, Xiao-Hua; Ma, Su; Liu, Chao; Chen, Li; Qin, Chun-Lin

    2016-06-30

    FAM20A has been studied to a very limited extent. Mutations in human FAM20A cause amelogenesis imperfecta, gingival fibromatosis and kidney problems. It would be desirable to systemically analyse the expression of FAM20A in dental tissues and to assess the pathological changes when this molecule is specifically nullified in individual tissues. Recently, we generated mice with a Fam20A-floxed allele containing the beta-galactosidase reporter gene. We analysed FAM20A expression in dental tissues using X-Gal staining, immunohistochemistry and in situ hybridization, which showed that the ameloblasts in the mouse mandibular first molar began to express FAM20A at 1 day after birth, and the reduced enamel epithelium in erupting molars expressed a significant level of FAM20A. By breeding K14-Cre mice with Fam20A(flox/flox) mice, we created K14-Cre;Fam20A(flox/flox) (conditional knock out, cKO) mice, in which Fam20A was inactivated in the epithelium. We analysed the dental tissues of cKO mice using X-ray radiography, histology and immunohistochemistry. The molar enamel matrix in cKO mice was much thinner than normal and was often separated from the dentinoenamel junction. The Fam20A-deficient ameloblasts were non-polarized and disorganized and were detached from the enamel matrix. The enamel abnormality in cKO mice was consistent with the diagnosis of amelogenesis imperfecta. The levels of enamelin and matrix metalloproteinase 20 were lower in the ameloblasts and enamel of cKO mice than the normal mice. The cKO mice had remarkable delays in the eruption of molars and hyperplasia of the gingival epithelium. The findings emphasize the essential roles of FAM20A in the development of dental and oral tissues.

  5. Loss of epithelial FAM20A in mice causes amelogenesis imperfecta, tooth eruption delay and gingival overgrowth

    PubMed Central

    Li, Li-Li; Liu, Pei-Hong; Xie, Xiao-Hua; Ma, Su; Liu, Chao; Chen, Li; Qin, Chun-Lin

    2016-01-01

    FAM20A has been studied to a very limited extent. Mutations in human FAM20A cause amelogenesis imperfecta, gingival fibromatosis and kidney problems. It would be desirable to systemically analyse the expression of FAM20A in dental tissues and to assess the pathological changes when this molecule is specifically nullified in individual tissues. Recently, we generated mice with a Fam20A-floxed allele containing the beta-galactosidase reporter gene. We analysed FAM20A expression in dental tissues using X-Gal staining, immunohistochemistry and in situ hybridization, which showed that the ameloblasts in the mouse mandibular first molar began to express FAM20A at 1 day after birth, and the reduced enamel epithelium in erupting molars expressed a significant level of FAM20A. By breeding K14-Cre mice with Fam20Aflox/flox mice, we created K14-Cre;Fam20Aflox/flox (conditional knock out, cKO) mice, in which Fam20A was inactivated in the epithelium. We analysed the dental tissues of cKO mice using X-ray radiography, histology and immunohistochemistry. The molar enamel matrix in cKO mice was much thinner than normal and was often separated from the dentinoenamel junction. The Fam20A-deficient ameloblasts were non-polarized and disorganized and were detached from the enamel matrix. The enamel abnormality in cKO mice was consistent with the diagnosis of amelogenesis imperfecta. The levels of enamelin and matrix metalloproteinase 20 were lower in the ameloblasts and enamel of cKO mice than the normal mice. The cKO mice had remarkable delays in the eruption of molars and hyperplasia of the gingival epithelium. The findings emphasize the essential roles of FAM20A in the development of dental and oral tissues. PMID:27281036

  6. Metformin Improves Ileal Epithelial Barrier Function in Interleukin-10 Deficient Mice

    PubMed Central

    Xue, Yansong; Zhang, Hanying; Sun, Xiaofei; Zhu, Mei-Jun

    2016-01-01

    Background and aims The impairment of intestinal epithelial barrier is the main etiologic factor of inflammatory bowel disease. The proper intestinal epithelial proliferation and differentiation is crucial for maintaining intestinal integrity. Metformin is a common anti-diabetic drug. The objective is to evaluate the protective effects of metformin on ileal epithelial barrier integrity using interleukin-10 deficient (IL10KO) mice. Methods Wild-type and IL10KO mice were fed with/without metformin for 6 weeks and then ileum was collected for analyses. The mediatory role of AMP-activated protein kinase (AMPK) was further examined by gain and loss of function study in vitro. Results Compared to wild-type mice, IL10KO mice had increased proliferation, reduced goblet cell and Paneth cell lineage differentiation in the ileum tissue, which was accompanied with increased crypt expansion. Metformin supplementation mitigated intestinal cell proliferation, restored villus/crypt ratio, increased goblet cell and Paneth cell differentiation and improved barrier function. In addition, metformin supplementation in IL10KO mice suppressed macrophage pro-inflammatory activity as indicated by reduced M1 macrophage abundance and decreased pro-inflammatory cytokine IL-1β, TNF-α and IFN-γ expressions. As a target of metformin, AMPK phosphorylation was enhanced in mice treated with metformin, regardless of mouse genotypes. In correlation, the mRNA level of differentiation regulator including bmp4, bmpr2 and math1 were also increased in IL10KO mice supplemented with metformin, which likely explains the enhanced epithelial differentiation in IL10KO mice with metformin. Consistently, in Caco-2 cells, metformin promoted claudin-3 and E-cadherin assembly and mitigated TNF-α-induced fragmentation of tight junction proteins. Gain and loss of function assay also demonstrated AMPK was correlated with epithelial differentiation and proliferation. Conclusions Metformin supplementation promotes

  7. Variations of the angiotensin II type 1 receptor gene are associated with extreme human longevity.

    PubMed

    Benigni, Ariela; Orisio, Silvia; Noris, Marina; Iatropoulos, Paraskevas; Castaldi, Davide; Kamide, Kei; Rakugi, Hiromi; Arai, Yasumichi; Todeschini, Marta; Ogliari, Giulia; Imai, Enyu; Gondo, Yasuyuki; Hirose, Nobuyoshi; Mari, Daniela; Remuzzi, Giuseppe

    2013-06-01

    Longevity phenotype in humans results from the influence of environmental and genetic factors. Few gene polymorphisms have been identified so far with a modest effect on lifespan leaving room for the search of other players in the longevity game. It has been recently demonstrated that targeted disruption of the mouse homolog of the human angiotensin II type 1 receptor (AT1R) gene (AGTR1) translates into marked prolongation of animal lifespan (Benigni et al., J Clin Invest 119(3):524-530, 2009). Based on the above study in mice, here we sought to search for AGTR1 variations associated to reduced AT1 receptor protein levels and to prolonged lifespan in humans. AGTR1 was sequenced in 173 Italian centenarians and 376 younger controls. A novel non-synonymous mutation was detected in a centenarian. Two polymorphisms in AGTR1 promoter, rs422858 and rs275653, in complete linkage disequilibrium, were significantly associated with the ability to attain extreme old age. We then replicated the study of rs275653 in a large independent cohort of Japanese origin (598 centenarians and semi-supercentenarians, 422 younger controls) and indeed confirmed its association with exceptional old age. In combined analyses, rs275653 was associated to extreme longevity either at recessive model (P = 0.007, odds ratio (OR) 3.57) or at genotype level (P = 0.015). Significance was maintained after correcting for confounding factors. Fluorescence activated cell sorting analysis revealed that subjects homozygous for the minor allele of rs275653 had less AT1R-positive peripheral blood polymorphonuclear cells. Moreover, rs275653 was associated to lower blood pressure in centenarians. These findings highlight the role of AGTR1 as a possible candidate among longevity-enabling genes.

  8. Post-Transcriptional Control of Angiotensin II Type 1 Receptor Regulates Osteosarcoma Cell Death.

    PubMed

    Zhao, Yue; Xu, Kaicheng; Liu, Peng

    2018-01-01

    MicroRNAs (miRNAs) play an essential role in the tumorigenesis of osteosarcoma (OS). However, the effects of miR-1248 on chemo-resistant potential of OS have not been studied. Here, we addressed this question. The levels of miR-1248 and apoptotic protein angiotensin II type 1 receptor (AGTR1) in OS specimens were examined by RT-qPCR and Western blotting, respectively. The relationship between miR-1248 and AGTR1 was determined by analysis of Spearman's Rank Correlation Coefficients. The patient survival was determined with Kaplan-Meier curves. Bioinformatics analyses were done to predict microRNAs (miRNAs) that target AGTR1. The functional binding of miRNAs to AGTR1 mRNA was examined by a dual luciferase reporter assay. Cell viability was determined by an CCK-8 assay. Apoptosis was determined by a fluorescence-based apoptosis assay. The levels of miR-1248 were significantly elevated while the levels of AGTR1 were significantly decreased in OS specimens than in paired adjacent normal tissue. The levels of miR-1248 were negatively correlated to the levels of AGTR1. Moreover, the patients with high miR-1248 levels had poorer survival than those with low MiR-1248 levels, and the patients with low AGTR1 levels had poorer survival than those with high AGTR1 levels. MiR-1248 inhibited protein translation of AGTR1, through binding to the 3'-UTR of the AGTR1 mRNA. The AGTR1-mediated cell apoptosis was suppressed by overexpressing miR-1248, and was augmented by depleting miR-1248. Increased miR-1248 expression in OS may inhibit AGTR1-mediated cancer cell death in chemotherapy. The outcome of chemotherapy may be improved by the suppression of miR-1248 in OS cells. © 2018 The Author(s). Published by S. Karger AG, Basel.

  9. Elevated FGF23 Levels in Mice Lacking the Thiazide-Sensitive NaCl cotransporter (NCC).

    PubMed

    Pathare, Ganesh; Anderegg, Manuel; Albano, Giuseppe; Lang, Florian; Fuster, Daniel G

    2018-02-26

    Fibroblast growth factor 23 (FGF23) participates in the orchestration of mineral metabolism by inducing phosphaturia and decreasing the production of 1,25(OH) 2 D 3 . It is known that FGF23 release is stimulated by aldosterone and extracellular volume depletion. To characterize this effect further in a model of mild hypovolemia, we studied mice lacking the thiazide sensitive NaCl cotransporter (NCC). Our data indicate that NCC knockout mice (KO) have significantly higher FGF23, PTH and aldosterone concentrations than corresponding wild type (WT) mice. However, 1,25(OH) 2 D 3 , fractional phosphate excretion and renal brush border expression of the sodium/phosphate co-transporter 2a were not different between the two genotypes. In addition, renal expression of FGF23 receptor FGFR1 and the co-receptor Klotho were unaltered in NCC KO mice. FGF23 transcript was increased in the bone of NCC KO mice compared to WT mice, but treatment of primary murine osteoblasts with the NCC inhibitor hydrochlorothiazide did not elicit an increase of FGF23 transcription. In contrast, the mineralocorticoid receptor blocker eplerenone reversed excess FGF23 levels in KO mice but not in WT mice, indicating that FGF23 upregulation in NCC KO mice is primarily aldosterone-mediated. Together, our data reveal that lack of renal NCC causes an aldosterone-mediated upregulation of circulating FGF23.

  10. Metabotropic Glutamate2 Receptors Play a Key Role in Modulating Head Twitches Induced by a Serotonergic Hallucinogen in Mice

    PubMed Central

    Benvenga, Mark J.; Chaney, Stephen F.; Baez, Melvyn; Britton, Thomas C.; Hornback, William J.; Monn, James A.; Marek, Gerard J.

    2018-01-01

    There is substantial evidence that glutamate can modulate the effects of 5-hydroxytryptamine2A (5-HT2A) receptor activation through stimulation of metabotropic glutamate2/3 (mGlu2/3) receptors in the prefrontal cortex. Here we show that constitutive deletion of the mGlu2 gene profoundly attenuates an effect of 5-HT2A receptor activation using the mouse head twitch response (HTR). MGlu2 and mGlu3 receptor knockout (KO) as well as age-matched ICR (CD-1) wild type (WT) mice were administered (±)1-(2,5-dimethoxy-4-iodophenyl)-2-aminopropane (DOI) and observed for head twitch activity. DOI failed to produce significant head twitches in mGlu2 receptor KO mice at a dose 10-fold higher than the peak effective dose in WT or mGlu3 receptor KO mice. In addition, the mGlu2/3 receptor agonist LY379268, and the mGlu2 receptor positive allosteric modulator (PAM) CBiPES, potently blocked the HTR to DOI in WT and mGlu3 receptor KO mice. Conversely, the mGlu2/3 receptor antagonist LY341495 (10 mg/kg) increased the HTR produced by DOI (3 mg/kg) in mGlu3 receptor KO mice. Finally, the mGlu2 receptor potentiator CBiPES was able to attenuate the increase in the HTR produced by LY341495 in mGlu3 receptor KO mice. Taken together, all of these results are consistent with the hypothesis that that DOI-induced head twitches are modulated by mGlu2 receptor activation. These results also are in keeping with a critical autoreceptor function for mGlu2 receptors in the prefrontal cortex with differential effects of acute vs. chronic perturbation (e.g., constitutive mGlu2 receptor KO mice). The robust attenuation of DOI-induced head twitches in the mGlu2 receptor KO mice appears to reflect the critical role of glutamate in ongoing regulation of 5-HT2A receptors in the prefrontal cortex. Future experiments with inducible knockouts for the mGlu2 receptor and/or selective mGlu3 receptor agonists/PAMs/antagonists could provide an important tools in understanding glutamatergic modulation of prefrontal

  11. The serotonin hallucinogen 5-MeO-DMT alters cortico-thalamic activity in freely moving mice: Regionally-selective involvement of 5-HT1A and 5-HT2A receptors.

    PubMed

    Riga, Maurizio S; Lladó-Pelfort, Laia; Artigas, Francesc; Celada, Pau

    2017-12-06

    5-MeO-DMT is a natural hallucinogen acting as serotonin 5-HT 1A /5-HT 2A receptor agonist. Its ability to evoke hallucinations could be used to study the neurobiology of psychotic symptoms and to identify new treatment targets. Moreover, recent studies revealed the therapeutic potential of serotonin hallucinogens in treating mood and anxiety disorders. Our previous results in anesthetized animals show that 5-MeO-DMT alters cortical activity via 5-HT 1A and 5-HT 2A receptors. Here, we examined 5-MeO-DMT effects on oscillatory activity in prefrontal (PFC) and visual (V1) cortices, and in mediodorsal thalamus (MD) of freely-moving wild-type (WT) and 5-HT 2A -R knockout (KO2A) mice. We performed local field potential multi-recordings evaluating the power at different frequency bands and coherence between areas. We also examined the prevention of 5-MeO-DMT effects by the 5-HT 1A -R antagonist WAY-100635. 5-MeO-DMT affected oscillatory activity more in cortical than in thalamic areas. More marked effects were observed in delta power in V1 of KO2A mice. 5-MeO-DMT increased beta band coherence between all examined areas. In KO2A mice, WAY100635 prevented most of 5-MeO-DMT effects on oscillatory activity. The present results indicate that hallucinatory activity of 5-MeO-DMT is likely mediated by simultaneous alteration of prefrontal and visual activities. The prevention of these effects by WAY-100635 in KO2A mice supports the potential usefulness of 5-HT 1A receptor antagonists to treat visual hallucinations. 5-MeO-DMT effects on PFC theta activity and cortico-thalamic coherence may be related to its antidepressant activity. Copyright © 2017. Published by Elsevier Ltd.

  12. Deletion of interleukin 1 receptor-associated kinase 1 (Irak1) improves glucose tolerance primarily by increasing insulin sensitivity in skeletal muscle.

    PubMed

    Sun, Xiao-Jian; Kim, Soohyun Park; Zhang, Dongming; Sun, Helen; Cao, Qi; Lu, Xin; Ying, Zhekang; Li, Liwu; Henry, Robert R; Ciaraldi, Theodore P; Taylor, Simeon I; Quon, Michael J

    2017-07-21

    Chronic inflammation may contribute to insulin resistance via molecular cross-talk between pathways for pro-inflammatory and insulin signaling. Interleukin 1 receptor-associated kinase 1 (IRAK-1) mediates pro-inflammatory signaling via IL-1 receptor/Toll-like receptors, which may contribute to insulin resistance, but this hypothesis is untested. Here, we used male Irak1 null (k/o) mice to investigate the metabolic role of IRAK-1. C57BL/6 wild-type (WT) and k/o mice had comparable body weights on low-fat and high-fat diets (LFD and HFD, respectively). After 12 weeks on LFD (but not HFD), k/o mice ( versus WT) had substantially improved glucose tolerance (assessed by the intraperitoneal glucose tolerance test (IPGTT)). As assessed with the hyperinsulinemic euglycemic glucose clamp technique, insulin sensitivity was 30% higher in the Irak1 k/o mice on chow diet, but the Irak1 deletion did not affect IPGTT outcomes in mice on HFD, suggesting that the deletion did not overcome the impact of obesity on glucose tolerance. Moreover, insulin-stimulated glucose-disposal rates were higher in the k/o mice, but we detected no significant difference in hepatic glucose production rates (± insulin infusion). Positron emission/computed tomography scans indicated higher insulin-stimulated glucose uptake in muscle, but not liver, in Irak1 k/o mice in vivo Moreover, insulin-stimulated phosphorylation of Akt was higher in muscle, but not in liver, from Irak1 k/o mice ex vivo In conclusion, Irak1 deletion improved muscle insulin sensitivity, with the effect being most apparent in LFD mice. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  13. Maladaptive defensive behaviours in monoamine oxidase A-deficient mice.

    PubMed

    Godar, Sean C; Bortolato, Marco; Frau, Roberto; Dousti, Mona; Chen, Kevin; Shih, Jean C

    2011-10-01

    Rich evidence indicates that monoamine oxidase (MAO) A, the major enzyme catalysing the degradation of monoamine neurotransmitters, plays a key role in emotional regulation. Although MAOA deficiency is associated with reactive aggression in humans and mice, the involvement of this enzyme in defensive behaviour remains controversial and poorly understood. To address this issue, we tested MAOA knockout (KO) mice in a spectrum of paradigms and settings associated with variable degrees of threat. The presentation of novel inanimate objects induced a significant reduction in exploratory approaches and increase in defensive behaviours, such as tail-rattling, biting and digging. These neophobic responses were context-dependent and particularly marked in the home cage. In the elevated plus- and T-mazes, MAOA KO mice and wild-type (WT) littermates displayed equivalent locomotor activity and time in closed and open arms; however, MAOA KO mice featured significant reductions in risk assessment, as well as unconditioned avoidance and escape. No differences between genotypes were observed in the defensive withdrawal and emergence test. Conversely, MAOA KO mice exhibited a dramatic reduction of defensive and fear-related behaviours in the presence of predator-related cues, such as predator urine or an anaesthetized rat, in comparison with those observed in their WT littermates. The behavioural abnormalities in MAOA KO mice were not paralleled by overt alterations in sensory and microvibrissal functions. Collectively, these results suggest that MAOA deficiency leads to a general inability to appropriately assess contextual risk and attune defensive and emotional responses to environmental cues.

  14. Impact of T-cell-specific Smad4 deficiency on the development of autoimmune diabetes in NOD mice

    PubMed Central

    Kim, Donghee; Lee, Song Mi; Jun, Hee-Sook

    2017-01-01

    Type 1 diabetes results from autoimmune-mediated pancreatic beta-cell destruction and transforming growth factor-beta (TGF-β) is known to play a preventive role in type 1 diabetes in non-obese diabetic (NOD) mice. In this study, we investigated the role of Smad4, a key molecule for Smad-dependent TGF-β signaling, in T cells of NOD mice in the pathogenesis of autoimmune diabetes. We generated T-cell-specific Smad4 knockout (Smad4 tKO) NOD mice and assessed the pathological and immunological changes. Smad4 tKO showed earlier onset and increased incidence of diabetes than wild type (WT) NOD mice. Pathological features such as insulitis, anti-glutamic acid decarboxylase auto-antibody levels and serum IFN-γ levels were significantly increased in Smad4 tKO compared with WT NOD mice. Proportion and number of activated/memory CD4+ T cell were significantly increased in pancreatic lymph nodes of Smad4 tKO compared with WT NOD mice. However, the proportion and function of regulatory T cells was not different. Effector CD4+ T cells from Smad4 tKO were more resistant to suppression by regulatory T cells than effector cells from WT NOD mice. The proliferative potential of effector T cells from Smad4 tKO was significantly elevated compared with WT NOD mice, and activation of sterol regulatory element binding protein-1c (SREBP-1c) in T cells of Smad4 tKO NOD mice was correlated with this proliferative activity. We conclude that Smad4 deletion in T cells of NOD mice accelerated the development of autoimmune diabetes and increased the incidence of the disease by dysregulation of T cell activation at least in part via SREBP-1c activation. PMID:27686408

  15. Impact of T-cell-specific Smad4 deficiency on the development of autoimmune diabetes in NOD mice.

    PubMed

    Kim, Donghee; Lee, Song Mi; Jun, Hee-Sook

    2017-03-01

    Type 1 diabetes results from autoimmune-mediated pancreatic beta-cell destruction and transforming growth factor-beta (TGF-β) is known to play a preventive role in type 1 diabetes in non-obese diabetic (NOD) mice. In this study, we investigated the role of Smad4, a key molecule for Smad-dependent TGF-β signaling, in T cells of NOD mice in the pathogenesis of autoimmune diabetes. We generated T-cell-specific Smad4 knockout (Smad4 tKO) NOD mice and assessed the pathological and immunological changes. Smad4 tKO showed earlier onset and increased incidence of diabetes than wild type (WT) NOD mice. Pathological features such as insulitis, anti-glutamic acid decarboxylase auto-antibody levels and serum IFN-γ levels were significantly increased in Smad4 tKO compared with WT NOD mice. Proportion and number of activated/memory CD4 + T cell were significantly increased in pancreatic lymph nodes of Smad4 tKO compared with WT NOD mice. However, the proportion and function of regulatory T cells was not different. Effector CD4 + T cells from Smad4 tKO were more resistant to suppression by regulatory T cells than effector cells from WT NOD mice. The proliferative potential of effector T cells from Smad4 tKO was significantly elevated compared with WT NOD mice, and activation of sterol regulatory element binding protein-1c (SREBP-1c) in T cells of Smad4 tKO NOD mice was correlated with this proliferative activity. We conclude that Smad4 deletion in T cells of NOD mice accelerated the development of autoimmune diabetes and increased the incidence of the disease by dysregulation of T cell activation at least in part via SREBP-1c activation.

  16. Germinated Brown Rice Attenuates Atherosclerosis and Vascular Inflammation in Low-Density Lipoprotein Receptor-Knockout Mice.

    PubMed

    Zhao, Ruozhi; Ghazzawi, Nora; Wu, Jiansu; Le, Khuong; Li, Chunyang; Moghadasian, Mohammed H; Siow, Yaw L; Apea-Bah, Franklin B; Beta, Trust; Yin, Zhengfeng; Shen, Garry X

    2018-05-02

    The present study investigates the impact of germinated brown rice (GBR) on atherosclerosis and the underlying mechanism in low-density lipoprotein receptor-knockout (LDLr-KO) mice. The intensity of atherosclerosis in aortas of LDLr-KO mice receiving diet supplemented with 60% GBR (weight/weight) was significantly less than that in mice fed with 60% white rice (WR) or control diet ( p < 0.05); all diets contained 0.06% cholesterol. WR or GBR diet did not significantly alter plasma total or LDL-cholesterol, fecal sterols, or glucose, or the activities of antioxidant enzymes, compared to the control diet. The adhesion of monocytes to aortas from LDLr-KO mice fed with WR diet was significantly more than that from mice receiving the control diet ( p < 0.01). GBR diet decreased monocyte adhesion to aortas compared to WR diet ( p < 0.01). GBR diet also reduced the levels of plasminogen activator inhibitor-1 (PAI-1), monocyte chemotactic protein-1 (MCP-1), and tumor necrosis factor-α (TNF-α) in plasma, and the abundances of MCP-1, PAI-1, TNF-α, intracellular cell adhesion molecule-1, toll-like receptor-4, PAI-1, LDLr-like protein, and urokinase plasminogen activator and its receptor in aortas or hearts from LDLr-KO mice in comparison to the WR diet ( p < 0.05, 0.01, respectively). The findings suggest that GBR administration attenuated atherosclerosis and vascular inflammation in LDLr-KO mice compared to WR. The anti-atherosclerotic effect of GBR in LDLr-KO mice at least in part results from its anti-inflammatory activity.

  17. Impact of Peptide Transporter 1 on the Intestinal Absorption and Pharmacokinetics of Valacyclovir after Oral Dose Escalation in Wild-Type and PepT1 Knockout Mice

    PubMed Central

    Yang, Bei; Hu, Yongjun

    2013-01-01

    The primary objective of this study was to determine the in vivo absorption properties of valacyclovir, including the potential for saturable proton-coupled oligopeptide transporter 1 (PepT1)-mediated intestinal uptake, after escalating oral doses of prodrug within the clinical dose range. A secondary aim was to characterize the role of PepT1 on the tissue distribution of its active metabolite, acyclovir. [3H]Valacyclovir was administered to wild-type (WT) and PepT1 knockout (KO) mice by oral gavage at doses of 10, 25, 50, and 100 nmol/g. Serial blood samples were collected over 180 minutes, and tissue distribution studies were performed 20 minutes after a 25-nmol/g oral dose of valacyclovir. We found that the Cmax and area under the curve (AUC)0–180 of acyclovir were 4- to 6-fold and 2- to 3-fold lower, respectively, in KO mice for all four oral doses of valacyclovir. The time to peak concentration of acyclovir was 3- to 10-fold longer in KO compared with WT mice. There was dose proportionality in the Cmax and AUC0–180 of acyclovir in WT and KO mice over the valacyclovir oral dose range of 10–100 nmol/g (i.e., linear absorption kinetics). No differences were observed in the peripheral tissue distribution of acyclovir once these tissues were adjusted for differences in perfusing drug concentrations in the systemic circulation. In contrast, some differences were observed between genotypes in the concentrations of acyclovir in the distal intestine. Collectively, the findings demonstrate a critical role of intestinal PepT1 in improving the rate and extent of oral absorption for valacyclovir. Moreover, this study provides definitive evidence for the rational development of a PepT1-targeted prodrug strategy. PMID:23924683

  18. Developmental expression of the neuroligins and neurexins in fragile X mice.

    PubMed

    Lai, Jonathan K Y; Doering, Laurie C; Foster, Jane A

    2016-03-01

    Neuroligins and neurexins are transsynaptic proteins involved in the maturation of glutamatergic and GABAergic synapses. Research has identified synaptic proteins and function as primary contributors to the development of fragile X syndrome. Fragile X mental retardation protein (FMRP), the protein that is lacking in fragile X syndrome, binds neuroligin-1 and -3 mRNA. Using in situ hybridization, we examined temporal and spatial expression patterns of neuroligin (NLGN) and neurexin (NRXN) mRNAs in the somatosensory (S1) cortex and hippocampus in wild-type (WT) and fragile X knockout (FMR1-KO) mice during the first 5 weeks of postnatal life. Genotype-based differences in expression included increased NLGN1 mRNA in CA1 and S1 cortex, decreased NLGN2 mRNA in CA1 and dentate gyrus (DG) regions of the hippocampus, and increased NRXN3 mRNA in CA1, DG, and S1 cortex between female WT and FMR1-KO mice. In male mice, decreased expression of NRXN3 mRNA was observed in CA1 and DG regions of FMR1-KO mice. Sex differences in hippocampal expression of NLGN2, NRXN1, NRXN2, and NRXN3 mRNAs and in S1 cortex expression of NRXN3 mRNAs were observed WT mice, whereas sex differences in NLGN3, NRXN1, NRXN2, and NRXN3 mRNA expression in the hippocampus and in NLGN1, NRXN2 and NRXN3 mRNA expression in S1 cortex were detected in FMR1-KO mice. These results provide a neuroanatomical map of NLGN and NRXN expression patterns over postnatal development in WT and FMR1-KO mice. The differences in developmental trajectory of these synaptic proteins could contribute to long-term differences in CNS wiring and synaptic function. © 2015 Wiley Periodicals, Inc.

  19. Altered learning, memory, and social behavior in type 1 taste receptor subunit 3 knock-out mice are associated with neuronal dysfunction.

    PubMed

    Martin, Bronwen; Wang, Rui; Cong, Wei-Na; Daimon, Caitlin M; Wu, Wells W; Ni, Bin; Becker, Kevin G; Lehrmann, Elin; Wood, William H; Zhang, Yongqing; Etienne, Harmonie; van Gastel, Jaana; Azmi, Abdelkrim; Janssens, Jonathan; Maudsley, Stuart

    2017-07-07

    The type 1 taste receptor member 3 (T1R3) is a G protein-coupled receptor involved in sweet-taste perception. Besides the tongue, the T1R3 receptor is highly expressed in brain areas implicated in cognition, including the hippocampus and cortex. As cognitive decline is often preceded by significant metabolic or endocrinological dysfunctions regulated by the sweet-taste perception system, we hypothesized that a disruption of the sweet-taste perception in the brain could have a key role in the development of cognitive dysfunction. To assess the importance of the sweet-taste receptors in the brain, we conducted transcriptomic and proteomic analyses of cortical and hippocampal tissues isolated from T1R3 knock-out (T1R3KO) mice. The effect of an impaired sweet-taste perception system on cognition functions were examined by analyzing synaptic integrity and performing animal behavior on T1R3KO mice. Although T1R3KO mice did not present a metabolically disrupted phenotype, bioinformatic interpretation of the high-dimensionality data indicated a strong neurodegenerative signature associated with significant alterations in pathways involved in neuritogenesis, dendritic growth, and synaptogenesis. Furthermore, a significantly reduced dendritic spine density was observed in T1R3KO mice together with alterations in learning and memory functions as well as sociability deficits. Taken together our data suggest that the sweet-taste receptor system plays an important neurotrophic role in the extralingual central nervous tissue that underpins synaptic function, memory acquisition, and social behavior. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  20. Sortilin 1 knockout alters basal adipose glucose metabolism but not diet-induced obesity in mice.

    PubMed

    Li, Jibiao; Matye, David J; Wang, Yifeng; Li, Tiangang

    2017-04-01

    Sortilin 1 (Sort1) is a trafficking receptor that has been implicated in the regulation of plasma cholesterol in humans and mice. Here, we use metabolomics and hyperinsulinemic-euglycemic clamp approaches to obtain further understanding of the in vivo effects of Sort1 deletion on diet-induced obesity as well as on adipose lipid and glucose metabolism. Results show that Sort1 knockout (KO) does not affect Western diet-induced obesity nor adipose fatty acid and ceramide concentrations. Under the basal fasting state, chow-fed Sort1 KO mice have decreased adipose glycolytic metabolites, but Sort1 deletion does not affect insulin-stimulated tissue glucose uptake during the insulin clamp. These results suggest that Sort1 loss-of-function in vivo does not affect obesity development, but differentially modulates adipose glucose metabolism under fasting and insulin-stimulated states. © 2017 Federation of European Biochemical Societies.

  1. Role of kinin B1 and B2 receptors in memory consolidation during the aging process of mice.

    PubMed

    Lemos, Mayra Tolentino Resk; Amaral, Fabio Agostini; Dong, Karis Ester; Bittencourt, Maria Fernanda Queiroz Prado; Caetano, Ariadiny Lima; Pesquero, João Bosco; Viel, Tania Araujo; Buck, Hudson Sousa

    2010-04-01

    Under physiological conditions, elderly people present memory deficit associated with neuronal loss. This pattern is also associated with Alzheimer's disease but, in this case, in a dramatically intensified level. Kinin receptors have been involved in neurodegeneration and increase of amyloid-beta concentration, associated with Alzheimer's disease (AD). Considering these findings, this work evaluated the role of kinin receptors in memory consolidation during the aging process. Male C57Bl/6 (wt), knock-out B1 (koB1) or B2 (koB2) mice (3, 6, 12 and 18-month-old - mo; n=10 per group) were submitted to an acquisition session, reinforcement to learning (24h later: test 1) and final test (7days later: test 2), in an active avoidance apparatus, to evaluate memory. Conditioned avoidance responses (CAR, % of 50 trials) were registered. In acquisition sessions, similar CAR were obtained among age matched animals from all strains. However, a significant decrease in CAR was observed throughout the aging process (3mo: 8.8+/-2.3%; 6mo: 4.1+/-0.6%; 12mo: 2.2+/-0.6%, 18mo: 3.6+/-0.6%, P<0.01), indicating a reduction in the learning process. In test 1, as expected, memory retention increased significantly (P<0.05) in all 3- and 6-month-old animals as well as in 12-month-old-wt and 12-month-old-koB1 (P<0.01), compared to the training session. However, 12-month-old-koB2 and all 18-month-old animals did not show an increase in memory retention. In test 2, 3- and 6-month-old wt and koB1 mice of all ages showed a significant improvement in memory (P<0.05) compared to test 1. However, 12-month-old wt and koB2 mice of all ages showed no difference in memory retention. We suggest that, during the aging process, the B1 receptor could be involved in neurodegeneration and memory loss. Nevertheless, the B2 receptor is apparently acting as a neuroprotective factor. Copyright 2009 Elsevier Ltd. All rights reserved.

  2. Learning-Induced Suboptimal Compensation for PKCι/λ Function in Mutant Mice.

    PubMed

    Sheng, Tao; Wang, Shaoli; Qian, Dandan; Gao, Jun; Ohno, Shigeo; Lu, Wei

    2017-06-01

    PKCι/λ has been proposed to be crucial in the early expression of long-term potentiation (LTP). Here, we further investigate the potential role of PKCι/λ in learning and memory by generating PKCι/λ conditional knockout mice specifically lacking PKCι/λ in the hippocampal CA1 pyramidal cells. Surprisingly, PKCι/λ cKO mice show normal hippocampal LTP and memory. Further close-up observation reveals compensation for PKCι/λ expression by PKMζ in PKCι/λ cKO mice. This compensation was not observed under basal conditions, but was detected either after LTP induction or learning-associated behavioral training. Accordingly, in the early stage of LTP expression, a switch from PKCι/λ- to PKMζ-dependent molecular mechanisms was detected in PKCι/λ cKO mice. Notably, when cKO mice were challenged with more difficult hippocampus-dependent learning tasks, moderate learning deficits were detected, suggesting a suboptimal compensation for PKCι/λ's function in PKCι/λ cKO mice. Thus, under physiological conditions, PKCι/λ is essential for hippocampal early-LTP and long-term memory (LTM). © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  3. Impaired cognitive discrimination and discoordination of coupled theta-gamma oscillations in Fmr1 knockout mice.

    PubMed

    Radwan, Basma; Dvorak, Dino; Fenton, André A

    2016-04-01

    Fragile X syndrome (FXS) patients do not make the fragile X mental retardation protein (FMRP). The absence of FMRP causes dysregulated translation, abnormal synaptic plasticity and the most common form of inherited intellectual disability. But FMRP loss has minimal effects on memory itself, making it difficult to understand why the absence of FMRP impairs memory discrimination and increases risk of autistic symptoms in patients, such as exaggerated responses to environmental changes. While Fmr1 knockout (KO) and wild-type (WT) mice perform cognitive discrimination tasks, we find abnormal patterns of coupling between theta and gamma oscillations in perisomatic and dendritic hippocampal CA1 local field potentials of the KO. Perisomatic CA1 theta-gamma phase-amplitude coupling (PAC) decreases with familiarity in both the WT and KO, but activating an invisible shock zone, subsequently changing its location, or turning it off, changes the pattern of oscillatory events in the LFPs recorded along the somato-dendritic axis of CA1. The cognition-dependent changes of this pattern of neural activity are relatively constrained in WT mice compared to KO mice, which exhibit abnormally weak changes during the cognitive challenge caused by changing the location of the shock zone and exaggerated patterns of change when the shock zone is turned off. Such pathophysiology might explain how dysregulated translation leads to intellectual disability in FXS. These findings demonstrate major functional abnormalities after the loss of FMRP in the dynamics of neural oscillations and that these impairments would be difficult to detect by steady-state measurements with the subject at rest or in steady conditions. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. Lipid rafts are required for signal transduction by angiotensin II receptor type 1 in neonatal glomerular mesangial cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adebiyi, Adebowale, E-mail: aadebiyi@uthsc.edu; Soni, Hitesh; John, Theresa A.

    Angiotensin II (ANG-II) receptors (AGTRs) contribute to renal physiology and pathophysiology, but the underlying mechanisms that regulate AGTR function in glomerular mesangium are poorly understood. Here, we show that AGTR1 is the functional AGTR subtype expressed in neonatal pig glomerular mesangial cells (GMCs). Cyclodextrin (CDX)-mediated cholesterol depletion attenuated cell surface AGTR1 protein expression and ANG-II-induced intracellular Ca{sup 2+} ([Ca{sup 2+}]{sub i}) elevation in the cells. The COOH-terminus of porcine AGTR1 contains a caveolin (CAV)-binding motif. However, neonatal GMCs express CAV-1, but not CAV-2 and CAV-3. Colocalization and in situ proximity ligation assay detected an association between endogenous AGTR1 and CAV-1more » in the cells. A synthetic peptide corresponding to the CAV-1 scaffolding domain (CSD) sequence also reduced ANG-II-induced [Ca{sup 2+}]{sub i} elevation in the cells. Real-time imaging of cell growth revealed that ANG-II stimulates neonatal GMC proliferation. ANG-II-induced GMC growth was attenuated by EMD 66684, an AGTR1 antagonist; BAPTA, a [Ca{sup 2+}]{sub i} chelator; KN-93, a Ca{sup 2+}/calmodulin-dependent protein kinase II inhibitor; CDX; and a CSD peptide, but not PD 123319, a selective AGTR2 antagonist. Collectively, our data demonstrate [Ca{sup 2+}]{sub i}-dependent proliferative effect of ANG-II and highlight a critical role for lipid raft microdomains in AGTR1-mediated signal transduction in neonatal GMCs. - Highlights: • AGTR1 is the functional AGTR subtype expressed in neonatal mesangial cells. • Endogenous AGTR1 associates with CAV-1 in neonatal mesangial cells. • Lipid raft disruption attenuates cell surface AGTR1 protein expression. • Lipid raft disruption reduces ANG-II-induced [Ca{sup 2+}]{sub i} elevation in neonatal mesangial cells. • Lipid raft disruption inhibits ANG-II-induced neonatal mesangial cell growth.« less

  5. TRPV1 deletion exacerbates hyperthermic seizures in an age-dependent manner in mice.

    PubMed

    Barrett, Karlene T; Wilson, Richard J A; Scantlebury, Morris H

    2016-12-01

    Febrile seizures (FS) are the most common seizure disorder to affect children. Although there is mounting evidence to support that FS occur when children have fever-induced hyperventilation leading to respiratory alkalosis, the underlying mechanisms of hyperthermia-induced hyperventilation and links to FS remain poorly understood. As transient receptor potential vanilloid-1 (TRPV1) receptors are heat-sensitive, play an important role in adult thermoregulation and modulate respiratory chemoreceptors, we hypothesize that TRPV1 activation is important for hyperthermia-induced hyperventilation leading to respiratory alkalosis and decreased FS thresholds, and consequently, TRPV1 KO mice will be relatively protected from hyperthermic seizures. To test our hypothesis we subjected postnatal (P) day 8-20 TRPV1 KO and C57BL/6 control mice to heated dry air. Seizure threshold temperature, latency and the rate of rise of body temperature during hyperthermia were assessed. At ages where differences in seizure thresholds were identified, head-out plethysmography was used to assess breathing and the rate of expired CO 2 in response to hyperthermia, to determine if the changes in seizure thresholds were related to respiratory alkalosis. Paradoxically, we observed a pro-convulsant effect of TRPV1 deletion (∼4min decrease in seizure latency), and increased ventilation in response to hyperthermia in TRPV1 KO compared to control mice at P20. This pro-convulsant effect of TRPV1 absence was not associated with an increased rate of expired CO 2 , however, these mice had a more rapid rise in body temperature following exposure to hyperthermia than controls, and the expected linear relationship between body weight and seizure latency was absent. Based on these findings, we conclude that deletion of the TRPV1 receptor prevents reduction in hyperthermic seizure susceptibility in older mouse pups, via a mechanism that is independent of hyperthermia-induced respiratory alkalosis, but

  6. The absence of reactive oxygen species production protects mice against bleomycin-induced pulmonary fibrosis

    PubMed Central

    Manoury, Boris; Nenan, Soazig; Leclerc, Olivier; Guenon, Isabelle; Boichot, Elisabeth; Planquois, Jean-Michel; Bertrand, Claude P; Lagente, Vincent

    2005-01-01

    Background Reactive oxygen species and tissue remodeling regulators, such as metalloproteinases (MMPs) and their inhibitors (TIMPs), are thought to be involved in the development of pulmonary fibrosis. We investigated these factors in the fibrotic response to bleomycin of p47phox -/- (KO) mice, deficient for ROS production through the NADPH-oxidase pathway. Methods Mice are administered by intranasal instillation of 0.1 mg bleomycin. Either 24 h or 14 days after, mice were anesthetized and underwent either bronchoalveolar lavage (BAL) or lung removal. Results BAL cells from bleomycin treated WT mice showed enhanced ROS production after PMA stimulation, whereas no change was observed with BAL cells from p47phox -/- mice. At day 1, the bleomycin-induced acute inflammatory response (increased neutrophil count and MMP-9 activity in the BAL fluid) was strikingly greater in KO than wild-type (WT) mice, while IL-6 levels increased significantly more in the latter. Hydroxyproline assays in the lung tissue 14 days after bleomycin administration revealed the absence of collagen deposition in the lungs of the KO mice, which had significantly lower hydroxyproline levels than the WT mice. The MMP-9/TIMP-1 ratio did not change at day 1 after bleomycin administration in WT mice, but increased significantly in the KO mice. By day 14, the ratio fell significantly from baseline in both strains, but more in the WT than KO strains. Conclusions These results suggest that NADPH-oxidase-derived ROS are essential to the development of pulmonary fibrosis. The absence of collagen deposition in KO mice seems to be associated with an elevated MMP-9/TIMP-1 ratio in the lungs. This finding highlights the importance of metalloproteinases and protease/anti-protease imbalances in pulmonary fibrosis. PMID:15663794

  7. Sugar-induced cephalic-phase insulin release is mediated by a T1r2+T1r3-independent taste transduction pathway in mice

    PubMed Central

    Stano, Sarah; Holter, Marlena; Azenkot, Tali; Goldman, Olivia; Margolskee, Robert F.; Vasselli, Joseph R.; Sclafani, Anthony

    2015-01-01

    Sensory stimulation from foods elicits cephalic phase responses, which facilitate digestion and nutrient assimilation. One such response, cephalic-phase insulin release (CPIR), enhances glucose tolerance. Little is known about the chemosensory mechanisms that activate CPIR. We studied the contribution of the sweet taste receptor (T1r2+T1r3) to sugar-induced CPIR in C57BL/6 (B6) and T1r3 knockout (KO) mice. First, we measured insulin release and glucose tolerance following oral (i.e., normal ingestion) or intragastric (IG) administration of 2.8 M glucose. Both groups of mice exhibited a CPIR following oral but not IG administration, and this CPIR improved glucose tolerance. Second, we examined the specificity of CPIR. Both mouse groups exhibited a CPIR following oral administration of 1 M glucose and 1 M sucrose but not 1 M fructose or water alone. Third, we studied behavioral attraction to the same three sugar solutions in short-term acceptability tests. B6 mice licked more avidly for the sugar solutions than for water, whereas T1r3 KO mice licked no more for the sugar solutions than for water. Finally, we examined chorda tympani (CT) nerve responses to each of the sugars. Both mouse groups exhibited CT nerve responses to the sugars, although those of B6 mice were stronger. We propose that mice possess two taste transduction pathways for sugars. One mediates behavioral attraction to sugars and requires an intact T1r2+T1r3. The other mediates CPIR but does not require an intact T1r2+T1r3. If the latter taste transduction pathway exists in humans, it should provide opportunities for the development of new treatments for controlling blood sugar. PMID:26157055

  8. Sugar-induced cephalic-phase insulin release is mediated by a T1r2+T1r3-independent taste transduction pathway in mice.

    PubMed

    Glendinning, John I; Stano, Sarah; Holter, Marlena; Azenkot, Tali; Goldman, Olivia; Margolskee, Robert F; Vasselli, Joseph R; Sclafani, Anthony

    2015-09-01

    Sensory stimulation from foods elicits cephalic phase responses, which facilitate digestion and nutrient assimilation. One such response, cephalic-phase insulin release (CPIR), enhances glucose tolerance. Little is known about the chemosensory mechanisms that activate CPIR. We studied the contribution of the sweet taste receptor (T1r2+T1r3) to sugar-induced CPIR in C57BL/6 (B6) and T1r3 knockout (KO) mice. First, we measured insulin release and glucose tolerance following oral (i.e., normal ingestion) or intragastric (IG) administration of 2.8 M glucose. Both groups of mice exhibited a CPIR following oral but not IG administration, and this CPIR improved glucose tolerance. Second, we examined the specificity of CPIR. Both mouse groups exhibited a CPIR following oral administration of 1 M glucose and 1 M sucrose but not 1 M fructose or water alone. Third, we studied behavioral attraction to the same three sugar solutions in short-term acceptability tests. B6 mice licked more avidly for the sugar solutions than for water, whereas T1r3 KO mice licked no more for the sugar solutions than for water. Finally, we examined chorda tympani (CT) nerve responses to each of the sugars. Both mouse groups exhibited CT nerve responses to the sugars, although those of B6 mice were stronger. We propose that mice possess two taste transduction pathways for sugars. One mediates behavioral attraction to sugars and requires an intact T1r2+T1r3. The other mediates CPIR but does not require an intact T1r2+T1r3. If the latter taste transduction pathway exists in humans, it should provide opportunities for the development of new treatments for controlling blood sugar. Copyright © 2015 the American Physiological Society.

  9. The High Calcium, High Phosphorus Rescue Diet Is Not Suitable to Prevent Secondary Hyperparathyroidism in Vitamin D Receptor Deficient Mice.

    PubMed

    Grundmann, Sarah M; Brandsch, Corinna; Rottstädt, Daniela; Kühne, Hagen; Stangl, Gabriele I

    2017-01-01

    The vitamin D receptor (VDR) knockout (KO) mouse is a common model to unravel novel metabolic functions of vitamin D. It is recommended to feed these mice a high calcium (2%), high phosphorus (1.25%) diet, termed rescue diet (RD) to prevent hypocalcaemia and secondary hyperparathyroidism. First, we characterized the individual response of VDR KO mice to feeding a RD and found that the RD was not capable of normalizing the parathyroid hormone (PTH) concentrations in each VDR KO mouse. In a second study, we aimed to study whether RD with additional 1 and 2% calcium (in total 3 and 4% of the diet) is able to prevent secondary hyperparathyroidism in the VDR KO mice. Wild type (WT) mice and VDR KO mice that received a normal calcium and phosphorus diet (ND) served as controls. Data demonstrated that the RD was no more efficient than the ND in normalizing PTH levels. An excessive dietary calcium concentration of 4% was required to reduce serum PTH concentrations in the VDR KO mice to PTH levels measured in WT mice. This diet, however, resulted in higher concentrations of circulating intact fibroblast growth factor 23 (iFGF23). To conclude, the commonly used RD is not suitable to normalize the serum PTH in VDR KO mice. Extremely high dietary calcium concentrations are necessary to prevent secondary hyperthyroidism in these mice, with the consequence that iFGF23 concentrations are being raised. Considering that PTH and iFGF23 exert numerous VDR independent effects, data obtained from VDR KO mice cannot be attributed solely to vitamin D.

  10. Effects of Subretinal Electrical Stimulation in Mer-KO Mice

    PubMed Central

    Mocko, Julie A.; Kim, Moon; Faulkner, Amanda E.; Cao, Yang; Ciavatta, Vincent T.

    2011-01-01

    Purpose. Subretinal electrical stimulation (SES) from microphotodiode arrays protects photoreceptors in the RCS rat model of retinitis pigmentosa. The authors examined whether merkd mice, which share a Mertk mutation with RCS rats, showed similar neuroprotective effects from SES. Methods. Merkd mice were implanted with a microphotodiode array at postnatal day (P) 14. Weekly electroretinograms (ERGs) followed by retinal histology at week 4 were compared with those of age-matched controls. RT-PCR for fibroblast growth factor beta (Fgf2), ciliary nerve trophic factor (Cntf), glial-derived neurotrophic factor (Gdnf), insulin growth factor 1 (Igf1), and glial fibrillary acidic protein (Gfap) was performed on retinas at 1 week after surgery. Rates of degeneration using ERG parameters were compared between merkd mice and RCS rats from P28 to P42. Results. SES-treated merkd mice showed no differences in ERG a- and b-wave amplitudes or photoreceptor numbers compared with controls. However, the expression of Fgf2 and Cntf was greater (6.5 ± 1.9- and 2.5 ± 0.5-fold, respectively; P < 0.02) in SES-treated merkd retinas. Rates of degeneration were faster for dark-adapted maximal b-wave, log σ, and oscillatory potentials in merkd mice than in RCS rats. Conclusions. Although SES upregulated Fgf2 in merkd retinas, as reported previously for RCS retinas, this was not accompanied by neuroprotection of photoreceptors. Comparisons of ERG responses from merkd mice and RCS rats across different ages showed inner retinal dysfunction in merkd mice but not in RCS rats. This inner retinal dysfunction and the faster rate of degeneration in merkd mice may produce a retinal environment that is not responsive to neuroprotection from SES. PMID:21467171

  11. Gender differences in hypoxic acclimatization in cyclooxygenase-2-deficient mice.

    PubMed

    Xu, Kui; Sun, Xiaoyan; Benderro, Girriso F; Tsipis, Constantinos P; LaManna, Joseph C

    2017-02-01

    The aim of this study was to determine the effect of cyclooxygenase-2 (COX-2) gene deletion on the adaptive responses during prolonged moderate hypobaric hypoxia. Wild-type (WT) and COX-2 knockout (KO) mice of both genders (3 months old) were exposed to hypobaric hypoxia (~0.4 ATM) or normoxia for 21 days and brain capillary densities were determined. Hematocrit was measured at different time intervals; brain hypoxia-inducible factor -1 α (HIF-1 α ), angiopoietin 2 (Ang-2), brain erythropoietin (EPO), and kidney EPO were measured under normoxic and hypoxic conditions. There were no gender differences in hypoxic acclimatization in the WT mice and similar adaptive responses were observed in the female KO mice. However, the male KO mice exhibited progressive vulnerability to prolonged hypoxia. Compared to the WT and female KO mice, the male COX-2 KO mice had significantly lower survival rate and decreased erythropoietic and polycythemic responses, diminished cerebral angiogenesis, decreased brain accumulation of HIF-1 α , and attenuated upregulation of VEGF, EPO, and Ang-2 during hypoxia. Our data suggest that there are physiologically important gender differences in hypoxic acclimatization in COX-2-deficient mice. The COX-2 signaling pathway appears to be required for acclimatization in oxygen-limiting environments only in males, whereas female COX-2-deficient mice may be able to access COX-2-independent mechanisms to achieve hypoxic acclimatization. © 2017 Case Western Reserve University. Physiological Reports published by Wiley Periodicals, Inc. on behalf of The Physiological Society and the American Physiological Society.

  12. The coactivator PGC-1α regulates skeletal muscle oxidative metabolism independently of the nuclear receptor PPARβ/δ in sedentary mice fed a regular chow diet.

    PubMed

    Pérez-Schindler, Joaquín; Svensson, Kristoffer; Vargas-Fernández, Elyzabeth; Santos, Gesa; Wahli, Walter; Handschin, Christoph

    2014-11-01

    Physical activity improves oxidative capacity and exerts therapeutic beneficial effects, particularly in the context of metabolic diseases. The peroxisome proliferator-activated receptor (PPAR) γ coactivator-1α (PGC-1α) and the nuclear receptor PPARβ/δ have both been independently discovered to play a pivotal role in the regulation of oxidative metabolism in skeletal muscle, though their interdependence remains unclear. Hence, our aim was to determine the functional interaction between these two factors in mouse skeletal muscle in vivo. Adult male control mice, PGC-1α muscle-specific transgenic (mTg) mice, PPARβ/δ muscle-specific knockout (mKO) mice and the combination PPARβ/δ mKO + PGC-1α mTg mice were studied under basal conditions and following PPARβ/δ agonist administration and acute exercise. Whole-body metabolism was assessed by indirect calorimetry and blood analysis, while magnetic resonance was used to measure body composition. Quantitative PCR and western blot were used to determine gene expression and intracellular signalling. The proportion of oxidative muscle fibre was determined by NADH staining. Agonist-induced PPARβ/δ activation was only disrupted by PPARβ/δ knockout. We also found that the disruption of the PGC-1α-PPARβ/δ axis did not affect whole-body metabolism under basal conditions. As expected, PGC-1α mTg mice exhibited higher exercise performance, peak oxygen consumption and lower blood lactate levels following exercise, though PPARβ/δ mKO + PGC-1α mTg mice showed a similar phenotype. Similarly, we found that PPARβ/δ was dispensable for PGC-1α-mediated enhancement of an oxidative phenotype in skeletal muscle. Collectively, these results indicate that PPARβ/δ is not an essential partner of PGC-1α in the control of skeletal muscle energy metabolism.

  13. Functional β-Adrenoceptors Are Important for Early Muscle Regeneration in Mice through Effects on Myoblast Proliferation and Differentiation

    PubMed Central

    Church, Jarrod E.; Trieu, Jennifer; Sheorey, Radhika; Chee, Annabel Y. -M.; Naim, Timur; Baum, Dale M.; Ryall, James G.; Gregorevic, Paul; Lynch, Gordon S.

    2014-01-01

    Muscles can be injured in different ways and the trauma and subsequent loss of function and physical capacity can impact significantly on the lives of patients through physical impairments and compromised quality of life. The relative success of muscle repair after injury will largely determine the extent of functional recovery. Unfortunately, regenerative processes are often slow and incomplete, and so developing novel strategies to enhance muscle regeneration is important. While the capacity to enhance muscle repair by stimulating β2-adrenoceptors (β-ARs) using β2-AR agonists (β2-agonists) has been demonstrated previously, the exact role β-ARs play in regulating the regenerative process remains unclear. To investigate β-AR-mediated signaling in muscle regeneration after myotoxic damage, we examined the regenerative capacity of tibialis anterior and extensor digitorum longus muscles from mice lacking either β1-AR (β1-KO) and/or β2-ARs (β2-KO), testing the hypothesis that muscles from mice lacking the β2-AR would exhibit impaired functional regeneration after damage compared with muscles from β1-KO or β1/β2-AR null (β1/β2-KO) KO mice. At 7 days post-injury, regenerating muscles from β1/β2-KO mice produced less force than those of controls but muscles from β1-KO or β2-KO mice did not exhibit any delay in functional restoration. Compared with controls, β1/β2-KO mice exhibited an enhanced inflammatory response to injury, which delayed early muscle regeneration, but an enhanced myoblast proliferation later during regeneration ensured a similar functional recovery (to controls) by 14 days post-injury. This apparent redundancy in the β-AR signaling pathway was unexpected and may have important implications for manipulating β-AR signaling to improve the rate, extent and efficacy of muscle regeneration to enhance functional recovery after injury. PMID:25000590

  14. Male 11β-HSD1 Knockout Mice Fed Trans-Fats and Fructose Are Not Protected From Metabolic Syndrome or Nonalcoholic Fatty Liver Disease.

    PubMed

    Larner, Dean P; Morgan, Stuart A; Gathercole, Laura L; Doig, Craig L; Guest, Phil; Weston, Christopher; Hazeldine, Jon; Tomlinson, Jeremy W; Stewart, Paul M; Lavery, Gareth G

    2016-09-01

    Nonalcoholic fatty liver disease (NAFLD) defines a spectrum of conditions from simple steatosis to nonalcoholic steatohepatitis (NASH) and cirrhosis and is regarded as the hepatic manifestation of the metabolic syndrome. Glucocorticoids can promote steatosis by stimulating lipolysis within adipose tissue, free fatty acid delivery to liver and hepatic de novo lipogenesis. Glucocorticoids can be reactivated in liver through 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1) enzyme activity. Inhibition of 11β-HSD1 has been suggested as a potential treatment for NAFLD. To test this, male mice with global (11β-HSD1 knockout [KO]) and liver-specific (LKO) 11β-HSD1 loss of function were fed the American Lifestyle Induced Obesity Syndrome (ALIOS) diet, known to recapitulate the spectrum of NAFLD, and metabolic and liver phenotypes assessed. Body weight, muscle and adipose tissue masses, and parameters of glucose homeostasis showed that 11β-HSD1KO and LKO mice were not protected from systemic metabolic disease. Evaluation of hepatic histology, triglyceride content, and blinded NAFLD activity score assessment indicated that levels of steatosis were similar between 11β-HSD1KO, LKO, and control mice. Unexpectedly, histological analysis revealed significantly increased levels of immune foci present in livers of 11β-HSD1KO but not LKO or control mice, suggestive of a transition to NASH. This was endorsed by elevated hepatic expression of key immune cell and inflammatory markers. These data indicate that 11β-HSD1-deficient mice are not protected from metabolic disease or hepatosteatosis in the face of a NAFLD-inducing diet. However, global deficiency of 11β-HSD1 did increase markers of hepatic inflammation and suggests a critical role for 11β-HSD1 in restraining the transition to NASH.

  15. Odor preference and olfactory memory are impaired in Olfaxin-deficient mice.

    PubMed

    Islam, Saiful; Ueda, Masashi; Nishida, Emika; Wang, Miao-Xing; Osawa, Masatake; Lee, Dongsoo; Itoh, Masanori; Nakagawa, Kiyomi; Tana; Nakagawa, Toshiyuki

    2018-06-01

    Olfaxin, which is a BNIP2 and Cdc42GAP homology (BCH) domain-containing protein, is predominantly expressed in mitral and tufted (M/T) cells in the olfactory bulb (OB). Olfaxin and Caytaxin, which share 56.3% amino acid identity, are similar in their glutamatergic terminal localization, kidney-type glutaminase (KGA) interaction, and caspase-3 substrate. Although the deletion of Caytaxin protein causes human Cayman ataxia and ataxia in the mutant mouse, the function of Olfaxin is largely unknown. In this study, we generated Prune2 gene mutant mice (Prune2 Ex16-/- ; knock out [KO] mice) using the CRISPR/Cas9 system, during which the exon 16 containing start codon of Olfaxin mRNA was deleted. Exon 16 has 80 nucleotides and is contained in four of five Prune2 isoforms, including PRUNE2, BMCC1, BNIPXL, and Olfaxin/BMCC1s. The levels of Olfaxin mRNA and Olfaxin protein in the OB and piriform cortex of KO mice significantly decreased. Although Prune2 mRNA also significantly decreased in the spinal cord, the gross anatomy of the spinal cord and dorsal root ganglion (DRG) was intact. Further, disturbance of the sensory and motor system was not observed in KO mice. Therefore, in the current study, we examined the role of Olfaxin in the olfactory system where PRUNE2, BMCC1, and BNIPXL are scarcely expressed. Odor preference was impaired in KO mice using opposite-sex urinary scents as well as a non-social odor stimulus (almond). Results of the odor-aversion test demonstrated that odor-associative learning was disrupted in KO mice. Moreover, the NMDAR2A/NMDAR2B subunits switch in the piriform cortex was not observed in KO mice. These results indicated that Olfaxin may play a critical role in odor preference and olfactory memory. Copyright © 2018 Elsevier B.V. All rights reserved.

  16. Absence of renal enlargement in fructose-fed proximal-tubule-select insulin receptor (IR), insulin-like-growth factor receptor (IGF1R) double knockout mice.

    PubMed

    Li, Lijun; Byrd, Marcus; Doh, Kwame; Dixon, Patrice D; Lee, Hwal; Tiwari, Swasti; Ecelbarger, Carolyn M

    2016-12-01

    The major site of fructose metabolism in the kidney is the proximal tubule (PT). To test whether insulin and/or IGF1 signaling in the PT is involved in renal structural/functional responses to dietary fructose, we bred mice with dual knockout (KO) of the insulin receptor (IR) and the IGF1 receptor (IGF1R) in PT by Cre-lox recombination, using a γ-glutamyl transferase promoter. KO mice had slightly (~10%) reduced body and kidney weights, as well as, a reduction in mean protein-to-DNA ratio in kidney cortex suggesting smaller cell size. Under control diet, IR and IGF1R protein band densities were 30-50% (P < 0.05) lower than WT, and the relative difference was greater in male animals. Male, but not female KO, also had significantly reduced band densities for Akt (protein kinase B), phosphorylated Akt T308 and IR Y 1162/1163 A high-fructose diet (1-month) led to a significant increase in kidney weight in WT males (12%), but not in KO males or in either genotype of female mice. Kidney enlargement in the WT males was accompanied by a small, insignificant fall in protein-to-DNA ratio, supporting hyperplasia rather than hypertrophy. Fructose feeding of male WT mice led to significantly higher sodium bicarbonate exchanger (NBCe1), sodium hydrogen exchanger (NHE3), sodium phosphate co-transporter (NaPi-2), and transforming growth factor-β (TGF-β) abundances, as compared to male KO, suggesting elevated transport capacity and an early feature of fibrosis may have accompanied the renal enlargement. Overall, IR and/or IGF1R appear to have a role in PT cell size and enlargement in response to high-fructose diet. © 2016 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of The Physiological Society and the American Physiological Society.

  17. Different Sex-Based Responses of Gut Microbiota During the Development of Hepatocellular Carcinoma in Liver-Specific Tsc1-Knockout Mice.

    PubMed

    Huang, Rong; Li, Ting; Ni, Jiajia; Bai, Xiaochun; Gao, Yi; Li, Yang; Zhang, Peng; Gong, Yan

    2018-01-01

    Gut microbial dysbiosis is correlated with the development of hepatocellular carcinoma (HCC). Therefore, analyzing the changing patterns in gut microbiota during HCC development, especially before HCC occurrence, is essential for the diagnosis and prevention of HCC based on gut microbial composition. However, these changing patterns in HCC are poorly understood, especially considering the sex differences in HCC incidence and mortality. Here, with an aim to determine the relationship between gut microbiota and HCC development in both sexes, and to screen potential microbial biomarkers for HCC diagnosis, we studied the changing patterns in the gut microbiota from mice of both sexes with liver-specific knockout of Tsc1 ( LTsc1KO ) that spontaneously developed HCC by 9-10 months of age and compared them to the patterns observed in their wide-type Tsc1 fl/fl cohorts using high-throughput sequencing. Using the LTsc1KO model, we were able to successfully exclude the continuing influence of diet on the gut microbiota. Based on gut microbial composition, the female LTsc1KO mice exhibited gut microbial disorder earlier than male LTsc1KO mice during the development of HCC. Our findings also indicated that the decrease in the relative abundance of anaerobic bacteria and the increase in the relative abundance of facultative anaerobic bacteria can be used as risk indexes of female HCC, but would be invalid for male HCC. Most of the changes in the gut bacteria were different between female and male LTsc1KO mice. In particular, the increased abundances of Allobaculum , Erysipelotrichaceae, Neisseriaceae, Sutterella , Burkholderiales, and Prevotella species have potential for use as risk indicators of female HCC, and the increased abundances of Paraprevotella, Paraprevotellaceae, and Prevotella can probably be applied as risk indicators of male HCC. These relationships between the gut microbiota and HCC discovered in the present study may serve as a platform for the identification

  18. A novel neurological function of rice bran: a standardized rice bran supplement promotes non-rapid eye movement sleep in mice through histamine H1 receptors.

    PubMed

    Um, Min Young; Kim, Sojin; Jin, Young-Ho; Yoon, Minseok; Yang, Hyejin; Lee, Jaekwang; Jung, Jonghoon; Urade, Yoshihiro; Huang, Zhi-Li; Kwon, Sangoh; Cho, Suengmok

    2017-11-01

    Although rice bran has been shown to be associated with a wide spectrum of health benefits, to date, there are no reports on its effects on sleep. We investigated the effect of rice bran on sleep and the mechanism underlying this effect. Electroencephalography was used to evaluate the effects of standardized rice bran supplement (RBS) and doxepin hydrochloride (DH), a histamine H 1 receptor (H 1 R) antagonist used as a positive control, on sleep in mice. The mechanism of RBS action was investigated using knockout (KO) mice and ex vivo electrophysiological recordings. Oral administration of RBS and DH significantly decreased sleep latency and increased the amount of non-rapid eye movement sleep (NREMS) in mice. Similar to DH, RBS fully inhibited H 1 R agonist-induced increase in action potential frequency in tuberomammillary nucleus neurons. In H 1 R KO mice, neither RBS nor DH administration led to the increase in NREMS and decrease in sleep latency observed in WT mice. These results indicate that the sleep-promoting effect of RBS is completely dependent on H 1 R antagonism. RBS decreases sleep latency and promotes NREMS through the inhibition of H 1 R, suggesting that it could be a promising therapeutic agent for insomnia. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Dissociation Between Brown Adipose Tissue 18F-FDG Uptake and Thermogenesis in Uncoupling Protein 1-Deficient Mice.

    PubMed

    Hankir, Mohammed K; Kranz, Mathias; Keipert, Susanne; Weiner, Juliane; Andreasen, Sille G; Kern, Matthias; Patt, Marianne; Klöting, Nora; Heiker, John T; Brust, Peter; Hesse, Swen; Jastroch, Martin; Fenske, Wiebke K

    2017-07-01

    18 F-FDG PET imaging is routinely used to investigate brown adipose tissue (BAT) thermogenesis, which requires mitochondrial uncoupling protein 1 (UCP1). It remains uncertain, however, whether BAT 18 F-FDG uptake is a reliable surrogate measure of UCP1-mediated heat production. Methods: UCP1 knockout (KO) and wild-type (WT) mice housed at thermoneutrality were treated with the selective β3 adrenergic receptor agonist CL 316, 243 and underwent metabolic cage, infrared thermal imaging and 18 F-FDG PET/MRI experiments. Primary brown adipocytes were additionally examined for their bioenergetics by extracellular flux analysis as well as their uptake of 2-deoxy- 3 H-glucose. Results: In response to CL 316, 243 treatments, oxygen consumption, and BAT thermogenesis were diminished in UCP1 KO mice, but BAT 18 F-FDG uptake was fully retained. Isolated UCP1 KO brown adipocytes exhibited defective induction of uncoupled respiration whereas their glycolytic flux and 2-deoxy- 3 H-glucose uptake rates were largely unaffected. Conclusion: Adrenergic stimulation can increase BAT 18 F-FDG uptake independently of UCP1 thermogenic function. © 2017 by the Society of Nuclear Medicine and Molecular Imaging.

  20. Analysis of Kalirin-7 Knockout Mice Reveals Different Effects in Female Mice

    PubMed Central

    Mazzone, Christopher M.; Larese, Taylor P.; Kiraly, Drew D.; Eipper, Betty A.

    2012-01-01

    Estradiol treatment of ovariectomized rodents is known to affect the morphology of dendritic spines and produce behavioral and cognitive effects. Kalirin-7 (Kal7), a postsynaptic density (PSD)-localized Rho-guanine nucleotide exchange factor, is important for dendritic spine formation and stability. Male Kal7 knockout [Kal7(KO)] mice exhibit a number of abnormal behavioral and biochemical phenotypes. Given that chronic 17β-estradiol (E2) replacement of ovariectomized rats enhanced Kal7 expression in the hippocampus and primary hippocampal cultures, we assessed the behavioral and biochemical effects of chronic E2 treatment of ovariectomized female wild-type and Kal7(KO) mice. Both intact and ovariectomized Kal7(KO) female mice exhibited decreased anxiety-like behavior compared with the corresponding wild type in the elevated zero maze and were unaffected by E2 treatment. Chronic E2 decreased locomotor activity in the open field and enhanced performance in a passive-avoidance fear conditioning task, which were both unaffected by genotype. Kal7(KO) female mice engaged in significantly more object exploration, both familiar and novel, than did wild-type females. E2 enhanced the acute locomotor response to cocaine, with no significant effect of genotype. Similar to Kal7(KO) males, Kal7(KO) females had decreased levels of N-methyl-d-aspartate receptor 2B in hippocampal PSD fractions with no effect of E2 treatment. The differing behavioral effects of Kal7 ablation in female and male mice may offer insight into the molecular underpinnings of these differences. PMID:22989522

  1. Deficit of tRNALys modification by Cdkal1 causes the development of type 2 diabetes in mice

    PubMed Central

    Wei, Fan-Yan; Suzuki, Takeo; Watanabe, Sayaka; Kimura, Satoshi; Kaitsuka, Taku; Fujimura, Atsushi; Matsui, Hideki; Atta, Mohamed; Michiue, Hiroyuki; Fontecave, Marc; Yamagata, Kazuya; Suzuki, Tsutomu; Tomizawa, Kazuhito

    2011-01-01

    The worldwide prevalence of type 2 diabetes (T2D), which is caused by a combination of environmental and genetic factors, is increasing. With regard to genetic factors, variations in the gene encoding Cdk5 regulatory associated protein 1–like 1 (Cdkal1) have been associated with an impaired insulin response and increased risk of T2D across different ethnic populations, but the molecular function of this protein has not been characterized. Here, we show that Cdkal1 is a mammalian methylthiotransferase that biosynthesizes 2-methylthio-N6-threonylcarbamoyladenosine (ms2t6A) in tRNALys(UUU) and that it is required for the accurate translation of AAA and AAG codons. Mice with pancreatic β cell–specific KO of Cdkal1 (referred to herein as β cell KO mice) showed pancreatic islet hypertrophy, a decrease in insulin secretion, and impaired blood glucose control. In Cdkal1-deficient β cells, misreading of Lys codon in proinsulin occurred, resulting in a reduction of glucose-stimulated proinsulin synthesis. Moreover, expression of ER stress–related genes was upregulated in these cells, and abnormally structured ER was observed. Further, the β cell KO mice were hypersensitive to high fat diet–induced ER stress. These findings suggest that glucose-stimulated translation of proinsulin may require fully modified tRNALys(UUU), which could potentially explain the molecular pathogenesis of T2D in patients carrying cdkal1 risk alleles. PMID:21841312

  2. Host resistance of CD18 knockout mice against systemic infection with Listeria monocytogenes

    NASA Technical Reports Server (NTRS)

    Wu, Huaizhu; Prince, Joseph E.; Brayton, Cory F.; Shah, Chirayu; Zeve, Daniel; Gregory, Stephen H.; Smith, C. Wayne; Ballantyne, Christie M.

    2003-01-01

    Mice with targeted mutations of CD18, the common beta2 subunit of CD11/CD18 integrins, have leukocytosis, impaired transendothelial neutrophil emigration, and reduced host defense to Streptococcus pneumoniae, a gram-positive extracellular bacterium. Previous studies using blocking monoclonal antibodies suggested roles for CD18 and CD11b in hepatic neutrophil recruitment and host innate response to Listeria monocytogenes, a gram-positive intracellular bacterium. We induced systemic listeriosis in CD18 knockout (CD18-ko) and wild-type (WT) mice by tail vein injection with Listeria. By 14 days postinjection (dpi), 8 of 10 WT mice died, compared with 2 of 10 CD18-ko mice (P < 0.01). Quantitative organ culture showed that numbers of Listeria organisms in livers and spleens were similar in both groups at 20 min postinfection. By 3, 5, and 7 dpi, however, numbers of Listeria organisms were significantly lower in livers and spleens of CD18-ko mice than in WT mice. Histopathology showed that following Listeria infection, CD18-ko mice had milder inflammatory and necrotizing lesions in both spleens and livers than did WT mice. Cytokine assays indicated that baseline interleukin-1beta and granulocyte colony-stimulating factor (G-CSF) levels were higher in CD18-ko mice than in WT mice and that CD18-ko splenocytes produced higher levels of interleukin-1beta and G-CSF than WT splenocytes under the same amount of Listeria stimulation. These findings show that CD18 is not an absolute requirement for antilisterial innate immunity or hepatic neutrophil recruitment. We propose that the absence of CD18 in the mice results in the priming of innate immunity, as evidenced by elevated cytokine expression, and neutrophilic leukocytosis, which augments antilisterial defense.

  3. Loss of intestinal GATA4 prevents diet-induced obesity and promotes insulin sensitivity in mice

    PubMed Central

    Patankar, Jay V.; Chandak, Prakash G.; Obrowsky, Sascha; Pfeifer, Thomas; Diwoky, Clemens; Uellen, Andreas; Sattler, Wolfgang; Stollberger, Rudolf; Hoefler, Gerald; Heinemann, Akos; Battle, Michele; Duncan, Stephen; Kratky, Dagmar

    2011-01-01

    Transcriptional regulation of small intestinal gene expression controls plasma total cholesterol (TC) and triglyceride (TG) levels, which are major determinants of metabolic diseases. GATA4, a zinc finger domain transcription factor, is critical for jejunal identity, and intestinal GATA4 deficiency leads to a jejunoileal transition. Although intestinal GATA4 ablation is known to misregulate jejunal gene expression, its pathophysiological impact on various components of metabolic syndrome remains unknown. Here, we used intestine-specific GATA4 knockout (GATA4iKO) mice to dissect the contribution of GATA4 on obesity development. We challenged adult GATA4iKO mice and control littermates with a Western-type diet (WTD) for 20 wk. Our findings show that WTD-fed GATA4iKO mice are resistant to diet-induced obesity. Accordingly, plasma TG and TC levels are markedly decreased. Intestinal lipid absorption in GATA4iKO mice was strongly reduced, whereas luminal lipolysis was unaffected. GATA4iKO mice displayed a greater glucagon-like peptide-1 (GLP-1) release on normal chow and even after long-term challenge with WTD remained glucose sensitive. In summary, our findings show that the absence of intestinal GATA4 has a beneficial effect on decreasing intestinal lipid absorption causing resistance to hyperlipidemia and obesity. In addition, we show that increased GLP-1 release in GATA4iKO mice decreases the risk for development of insulin resistance. PMID:21177287

  4. Flavor preference conditioning by different sugars in sweet ageusic Trpm5 knockout mice.

    PubMed

    Sclafani, Anthony; Ackroff, Karen

    2015-03-01

    Knockout (KO) mice missing the taste signaling protein Trpm5 have greatly attenuated sweetener preferences but develop strong preferences for glucose in 24-h tests, which is attributed to post-oral sugar conditioning. Trpm5 KO mice express mild preferences for galactose but no preferences for fructose in 24-h tests, which suggests that these sugars differ in their post-oral reinforcing effects. Here we investigated sugar-conditioned flavor preferences in Trpm5 KO and C57BL/6J wildtype (B6) mice. The mice were trained to consume a flavored (CS+, e.g. grape) 8% sugar solution and flavored (CS-, e.g., cherry) water on alternating days followed by two-bottle choice tests with CS+ vs. CS- flavors in water and with unflavored sugar vs. water. The KO mice displayed strong preferences (>80%) for the CS+ glucose and CS+ galactose but not for the CS+ fructose flavor. They also preferred glucose and galactose, but not fructose to water. In contrast, the B6 mice preferred all three CS+ flavors to the CS- flavor, and all three sugars to water. In tests with the non-metabolizable sugar α-methyl-d-glucopyranoside (MDG), the KO and B6 mice preferred 8% MDG to water but did not prefer the CS+ 8% MDG to CS-. However, they preferred a CS+ flavor mixed with 4% MDG over the CS- flavor. Trpm5 KO mice also preferred galactose and MDG to fructose in direct choice tests. The Trpm5 KO data indicate that glucose and, to a lesser extent, galactose and MDG have post-oral reinforcing actions that stimulate intake and preference while fructose has a much weaker effect. The CS+ flavor and sugar preferences of B6 mice may be mediated by the sweet taste and/or post-oral actions of the various sugars. Glucose, galactose, and MDG, but not fructose, are ligands for the sodium-glucose transporter 1 (SGLT1) which is implicated in post-oral sugar conditioning in B6 mice. Copyright © 2014 Elsevier Inc. All rights reserved.

  5. Disruption of the hedgehog signaling pathway contributes to the hair follicle cycling deficiency in Vdr knockout mice.

    PubMed

    Teichert, Arnaud; Elalieh, Hashem; Bikle, Daniel

    2010-11-01

    Mice null for the Vitamin D receptor (VdrKO) have a disrupted first hair follicle cycle and aborted subsequent hair follicle cycling. We examined the expression of different markers and mediators of hair follicle cycling in the hair follicle of the VdrKO mouse during days 13-22 when the hair follicle normally initiates and completes the first catagen. We compared the expression of those genes in mice with a nonsense mutation in hairless (Rhino), which have a similar alopecia phenotype, and to Cyp27b1 null mice which are deficient in the production of 1,25(OH)2D3, the Vdr ligand, but display normal hair follicle cycling. Our results demonstrate the down regulation of hair follicle markers and the alteration of expression of hedgehog (Hh), Wnt, Fgf, and Tgfbeta pathways in VdrKO and Rhino mice, but not in Cyp27b1KO mice. Treatment of VdrKO mice with an agonist to the Hh pathway partially restored hair follicle cycling, suggesting a role of this pathway in the regulation of hair follicle cycling by VDR. These results suggest that Vdr regulates directly or indirectly the expression of genes required for hair follicle cycling, including Hh signaling, independent of 1,25(OH)2D3. (c) 2010 Wiley-Liss, Inc.

  6. SIRT1 antagonizes liver fibrosis by blocking hepatic stellate cell activation in mice.

    PubMed

    Li, Min; Hong, Wenxuan; Hao, Chenzhi; Li, Luyang; Wu, Dongmei; Shen, Aiguo; Lu, Jun; Zheng, Yuanlin; Li, Ping; Xu, Yong

    2018-01-01

    Hepatic stellate cells (HSCs) are a major source of fibrogenesis in the liver, contributing to cirrhosis. When activated, HSCs transdifferentiate into myofibroblasts and undergo profound functional alterations paralleling an overhaul of the transcriptome, the mechanism of which remains largely undefined. We investigated the involvement of the class III deacetylase sirtuin [silent information regulator 1 (SIRT1)] in HSC activation and liver fibrosis. SIRT1 levels were down-regulated in the livers in mouse models of liver fibrosis, in patients with cirrhosis, and in activated HSCs as opposed to quiescent HSCs. SIRT1 activation halted, whereas SIRT1 inhibition promoted, HSC transdifferentiation into myofibroblasts. Liver fibrosis was exacerbated in mice with HSC-specific deletion of SIRT1 [conditional knockout (cKO)], receiving CCl 4 (1 mg/kg) injection or subjected to bile duct ligation, compared to wild-type littermates. SIRT1 regulated peroxisome proliferator activated receptor γ (PPARγ) transcription by deacetylating enhancer of zeste homolog 2 (EZH2) in quiescent HSCs. Finally, EZH2 inhibition or PPARγ activation ameliorated fibrogenesis in cKO mice. In summary, our data suggest that SIRT1 plays an essential role guiding the transition of HSC phenotypes.-Li, M., Hong, W., Hao, C., Li, L., Wu, D., Shen, A., Lu, J., Zheng, Y., Li, P., Xu, Y. SIRT1 antagonizes liver fibrosis by blocking hepatic stellate cell activation in mice. © FASEB.

  7. Food-induced reinforcement is abrogated by the genetic deletion of the MT1 or MT2 melatonin receptor in C3H/HeN mice.

    PubMed

    Clough, Shannon J; Hudson, Randall L; Dubocovich, Margarita L

    2018-05-02

    Palatable food is known for its ability to enhance reinforcing responses. Studies have suggested a circadian variation in both drug and natural reinforcement, with each following its own time course. The goal of this study was to determine the role of the MT 1 and MT 2 melatonin receptors in palatable snack food-induced reinforcement, as measured by the conditioned place preference (CPP) paradigm during the light and dark phases. C3H/HeN wild-type mice were trained for snack food-induced CPP at either ZT 6 - 8 (ZT: Zeitgeber time; ZT 0 = lights on), when endogenous melatonin levels are low, or ZT 19 - 21, when melatonin levels are high. These time points also correspond to the high and low points for expression of the circadian gene Period1, respectively. The amount of snack food (chow, Cheetos®, Froot Loops® and Oreos®) consumed was of similar magnitude at both times, however only C3H/HeN mice conditioned to snack food at ZT 6 - 8 developed a place preference. C3H/HeN mice with a genetic deletion of either the MT 1 (MT 1 KO) or MT 2 (MT 2 KO) receptor tested at ZT 6 - 8 did not develop a place preference for snack food. Although the MT 2 KO mice showed a similar amount of snack food consumed when compared to wild-type mice, the MT 1 KO mice consumed significantly less than either genotype. We conclude that in our mouse model snack food-induced CPP is dependent on time of day and the presence of the MT 1 or MT 2 receptors, suggesting a role for melatonin and its receptors in snack food-induced reinforcement. Copyright © 2018 Elsevier B.V. All rights reserved.

  8. Neuronal serotonin regulates growth of the intestinal mucosa in mice.

    PubMed

    Gross, Erica R; Gershon, Michael D; Margolis, Kara G; Gertsberg, Zoya V; Li, Zhishan; Cowles, Robert A

    2012-08-01

    The enteric abundance of serotonin (5-HT), its ability to promote proliferation of neural precursors, and reports that 5-HT antagonists affect crypt epithelial proliferation led us to investigate whether 5-HT affects growth and maintenance of the intestinal mucosa in mice. cMice that lack the serotonin re-uptake transporter (SERTKO mice) and wild-type mice were given injections of selective serotonin re-uptake inhibitors (gain-of-function models). We also analyzed mice that lack tryptophan hydroxylase-1 (TPH1KO mice, which lack mucosal but not neuronal 5-HT) and mice deficient in tryptophan hydroxylase-2 (TPH2KO mice, which lack neuronal but not mucosal 5-HT) (loss-of-function models). Wild-type and SERTKO mice were given ketanserin (an antagonist of the 5-HT receptor, 5-HT(2A)) or scopolamine (an antagonist of the muscarinic receptor). 5-HT(2A) receptors and choline acetyltransferase were localized by immunocytochemical analysis. Growth of the mucosa and proliferation of mucosal cells were significantly greater in SERTKO mice and in mice given selective serotonin re-uptake inhibitors than in wild-type mice, but were diminished in TPH2KO (but not in TPH1KO) mice. Ketanserin and scopolamine each prevented the ability of SERT knockout or inhibition to increase mucosal growth and proliferation. Cholinergic submucosal neurons reacted with antibodies against 5-HT(2A). 5-HT promotes growth and turnover of the intestinal mucosal epithelium. Surprisingly, these processes appear to be mediated by neuronal, rather than mucosal, 5-HT. The 5-HT(2A) receptor activates cholinergic neurons, which provide a muscarinic innervation to epithelial effectors. Copyright © 2012 AGA Institute. Published by Elsevier Inc. All rights reserved.

  9. Phosphaturic action of fibroblast growth factor 23 in Npt2 null mice.

    PubMed

    Tomoe, Yuka; Segawa, Hiroko; Shiozawa, Kazuyo; Kaneko, Ichiro; Tominaga, Rieko; Hanabusa, Etsuyo; Aranami, Fumito; Furutani, Junya; Kuwahara, Shoji; Tatsumi, Sawako; Matsumoto, Mitsutu; Ito, Mikiko; Miyamoto, Ken-ichi

    2010-06-01

    In the present study, we evaluated the roles of type II and type III sodium-dependent P(i) cotransporters in fibroblast growth factor 23 (FGF23) activity by administering a vector encoding FGF23 with the R179Q mutation (FGF23M) to wild-type (WT) mice, Npt2a knockout (KO) mice, Npt2c KO mice, and Npt2a(-/-)Npt2c(-/-) mice (DKO mice). In Npt2a KO mice, FGF23M induced severe hypophosphatemia and markedly decreased the levels of Npt2c, type III Na-dependent P(i) transporter (PiT2) protein, and renal Na/P(i) transport activity. In contrast, in Npt2c KO mice, FGF23M decreased plasma phosphate levels comparable to those in FGF23M-injected WT mice. In DKO mice with severe hypophosphatemia, FGF23M administration did not induce an additional increase in urinary phosphate excretion. FGF23 administration significantly decreased intestinal Npt2b protein levels in WT mice but had no effect in Npt2a, Npt2c, and DKO mice, despite marked suppression of plasma 1,25(OH)(2)D(3) levels in all the mutant mice. The main findings were as follow: 1) FGF23-dependent phosphaturic activity in Npt2a KO mice is dependent on renal Npt2c and PiT-2 protein; 2) in DKO mice, renal P(i) reabsorption is not further decreased by FGF23M, but renal vitamin D synthesis is suppressed; and 3) downregulation of intestinal Npt2b may be mediated by a factor(s) other than 1,25(OH)(2)D(3). These findings suggest that Npt2a, Npt2c, and PiT-2 are necessary for the phosphaturic activity of FGF23. Thus complementary regulation of Npt2 family proteins may be involved in systemic P(i) homeostasis.

  10. The absence of 5-HT4 receptors modulates depression- and anxiety-like responses and influences the response of fluoxetine in olfactory bulbectomised mice: Adaptive changes in hippocampal neuroplasticity markers and 5-HT1A autoreceptor.

    PubMed

    Amigó, J; Díaz, A; Pilar-Cuéllar, F; Vidal, R; Martín, A; Compan, V; Pazos, A; Castro, E

    2016-12-01

    Preclinical studies support a critical role of 5-HT 4 receptors (5-HT 4 Rs) in depression and anxiety, but their influence in depression- and anxiety-like behaviours and the effects of antidepressants remain partly unknown. We evaluated 5-HT 4 R knockout (KO) mice in different anxiety and depression paradigms and mRNA expression of some neuroplasticity markers (BDNF, trkB and Arc) and the functionality of 5-HT 1A R. Moreover, the implication of 5-HT 4 Rs in the behavioural and molecular effects of chronically administered fluoxetine was assessed in naïve and olfactory bulbectomized mice (OBX) of both genotypes. 5-HT 4 R KO mice displayed few specific behavioural impairments including reduced central activity in the open-field (anxiety), and decreased sucrose consumption and nesting behaviour (anhedonia). In these mice, we measured increased levels of BDNF and Arc mRNA and reduced levels of trkB mRNA in the hippocampus, and a desensitization of 5-HT 1A autoreceptors. Chronic administration of fluoxetine elicited similar behavioural effects in WT and 5-HT 4 R KO mice on anxiety-and depression-related tests. Following OBX, locomotor hyperactivity and anxiety were similar in both genotypes. Interestingly, chronic fluoxetine failed to reverse this OBX-induced syndrome in 5-HT 4 R KO mice, a response associated with differential effects in hippocampal neuroplasticity biomarkers. Fluoxetine reduced hippocampal Arc and BDNF mRNA expressions in WT but not 5-HT 4 R KO mice subjected to OBX. These results demonstrate that the absence of 5-HT 4 Rs triggers adaptive changes that could maintain emotional states, and that the behavioural and molecular effects of fluoxetine under pathological depression appear to be critically dependent on 5-HT 4 Rs. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Loss or Mislocalization of Aquaporin-4 Affects Diffusion Properties and Intermediary Metabolism in Gray Matter of Mice.

    PubMed

    Pavlin, T; Nagelhus, E A; Brekken, C; Eyjolfsson, E M; Thoren, A; Haraldseth, O; Sonnewald, U; Ottersen, O P; Håberg, A K

    2017-01-01

    The first aim of this study was to determine how complete or perivascular loss of aquaporin-4 (AQP4) water channels affects membrane permeability for water in the mouse brain grey matter in the steady state. Time-dependent diffusion magnetic resonance imaging was performed on global Aqp4 knock out (KO) and α-syntrophin (α-syn) KO mice, in the latter perivascular AQP4 are mislocalized, but still functioning. Control animals were corresponding wild type (WT) mice. By combining in vivo diffusion measurements with the effective medium theory and previously measured extra-cellular volume fractions, the effects of membrane permeability and extracellular volume fraction were uncoupled for Aqp4 and α-syn KO. The second aim was to assess the effect of α-syn KO on cortical intermediary metabolism combining in vivo [1- 13 C]glucose and [1,2- 13 C]acetate injection with ex vivo 13 C MR spectroscopy. Aqp4 KO increased the effective diffusion coefficient at long diffusion times by 5%, and a 14% decrease in membrane water permeability was estimated for Aqp4 KO compared with WT mice. α-syn KO did not affect the measured diffusion parameters. In the metabolic analyses, significantly lower amounts of [4- 13 C]glutamate and [4- 13 C]glutamine, and percent enrichment in [4- 13 C]glutamate were detected in the α-syn KO mice. [1,2- 13 C]acetate metabolism was unaffected in α-syn KO, but the contribution of astrocyte derived metabolites to GABA synthesis was significantly increased. Taken together, α-syn KO mice appeared to have decreased neuronal glucose metabolism, partly compensated for by utilization of astrocyte derived metabolites.

  12. Impaired Discrimination Learning in Mice Lacking the NMDA Receptor NR2A Subunit

    ERIC Educational Resources Information Center

    Brigman, Jonathan L.; Feyder, Michael; Saksida, Lisa M.; Bussey, Timothy J.; Mishina, Masayoshi; Holmes, Andrew

    2008-01-01

    N-Methyl-D-aspartate receptors (NMDARs) mediate certain forms of synaptic plasticity and learning. We used a touchscreen system to assess NR2A subunit knockout mice (KO) for (1) pairwise visual discrimination and reversal learning and (2) acquisition and extinction of an instrumental response requiring no pairwise discrimination. NR2A KO mice…

  13. Assessment of Glutamate Transporter GLAST (EAAT1)-Deficient Mice for Phenotypes Relevant to the Negative and Executive/Cognitive Symptoms of Schizophrenia

    PubMed Central

    Karlsson, Rose-Marie; Tanaka, Kohichi; Saksida, Lisa M; Bussey, Timothy J; Heilig, Markus; Holmes, Andrew

    2012-01-01

    Glutamatergic dysfunction is increasingly implicated in the pathophysiology of schizophrenia. Current models postulate that dysfunction of glutamate and its receptors underlie many of the symptoms in this disease. However, the mechanisms involved are not well understood. Although elucidating the role for glutamate transporters in the disease has been limited by the absence of pharmacological tools that selectively target the transporter, we recently showed that glial glutamate and aspartate transporter (GLAST; excitatory amino-acid transporter 1) mutant mice exhibit abnormalities on behavioral measures thought to model the positive symptoms of schizophrenia, some of which were rescued by treatment with either haloperidol or the mGlu2/3 agonist, LY379268 the mGlu2/3 agonist, LY379268. To further determine the role of GLAST in schizophrenia-related behaviors we tested GLAST mutant mice on a series of behavioral paradigms associated with the negative (social withdrawal, anhedonia), sensorimotor gating (prepulse inhibition of startle), and executive/cognitive (discrimination learning, extinction) symptoms of schizophrenia. GLAST knockout (KO) mice showed poor nesting behavior and abnormal sociability, whereas KO and heterozygous (HET) both demonstrated lesser preference for a novel social stimulus compared to wild-type littermate controls. GLAST KO, but not HET, had a significantly reduced acoustic startle response, but no significant deficit in prepulse inhibition of startle. GLAST KO and HET showed normal sucrose preference. In an instrumental visual discrimination task, KO showed impaired learning. By contrast, acquisition and extinction of a simple instrumental response was normal. The mGlu2/3 agonist, LY379268, failed to rescue the discrimination impairment in KO mice. These findings demonstrate that gene deletion of GLAST produces select phenotypic abnormalities related to the negative and cognitive symptoms of schizophrenia. PMID:19078949

  14. Glutathione-S-transferase-omega [MMA(V) reductase] knockout mice: Enzyme and arsenic species concentrations in tissues after arsenate administration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chowdhury, Uttam K.; Zakharyan, Robert A.; Hernandez, Alba

    Inorganic arsenic is a human carcinogen to which millions of people are exposed via their naturally contaminated drinking water. Its molecular mechanisms of carcinogenicity have remained an enigma, perhaps because arsenate is biochemically transformed to at least five other arsenic-containing metabolites. In the biotransformation of inorganic arsenic, GSTO1 catalyzes the reduction of arsenate, MMA(V), and DMA(V) to the more toxic + 3 arsenic species. MMA(V) reductase and human (hGSTO1-1) are identical proteins. The hypothesis that GST-Omega knockout mice biotransformed inorganic arsenic differently than wild-type mice has been tested. The livers of male knockout (KO) mice, in which 222 bp ofmore » Exon 3 of the GSTO1 gene were eliminated, were analyzed by PCR for mRNA. The level of transcripts of the GSTO1 gene in KO mice was 3.3-fold less than in DBA/1lacJ wild-type (WT) mice. The GSTO2 transcripts were about two-fold less in the KO mouse. When KO and WT mice were injected intramuscularly with Na arsenate (4.16 mg As/kg body weight); tissues removed at 0.5, 1, 2, 4, 8, and 12 h after arsenate injection; and the arsenic species measured by HPLC-ICP-MS, the results indicated that the highest concentration of the recently discovered and very toxic MMA(III), a key biotransformant, was in the kidneys of both KO and WT mice. The highest concentration of DMA(III) was in the urinary bladder tissue for both the KO and WT mice. The MMA(V) reducing activity of the liver cytosol of KO mice was only 20% of that found in wild-type mice. There appears to be another enzyme(s) other than GST-O able to reduce arsenic(V) species but to a lesser extent. This and other studies suggest that each step of the biotransformation of inorganic arsenic has an alternative enzyme to biotransform the arsenic substrate.« less

  15. Chronic minocycline treatment improves social recognition memory in adult male Fmr1 knockout mice.

    PubMed

    Yau, Suk Yu; Chiu, Christine; Vetrici, Mariana; Christie, Brian R

    2016-10-01

    Fragile X syndrome (FXS) is caused by a mutation in the Fmr1 gene that leads to silencing of the gene and a loss of its gene product, Fragile X mental retardation protein (FMRP). Some of the key behavioral phenotypes for FXS include abnormal social anxiety and sociability. Here we show that Fmr1 knock-out (KO) mice exhibit impaired social recognition when presented with a novel mouse, and they display normal social interactions in other sociability tests. Administering minocycline to Fmr1 KO mice throughout critical stages of neural development improved social recognition memory in the novel mouse recognition task. To determine if synaptic changes in the prefrontal cortex (PFC) could have played a role in this improvement, we examined PSD-95, a member of the membrane-associated guanylate kinase family, and signaling molecules (ERK1/2, and Akt) linked to synaptic plasticity in the PFC. Our analyses indicated that while minocycline treatment can enhance behavioral performance, it does not enhance expression of PSD-95, ERK1/2 or Akt in the PFC. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Elastase-2, a Tissue Alternative Pathway for Angiotensin II Generation, Plays a Role in Circulatory Sympathovagal Balance in Mice

    PubMed Central

    Becari, Christiane; Durand, Marina T.; Guimaraes, Alessander O.; Lataro, Renata M.; Prado, Cibele M.; de Oliveira, Mauro; Candido, Sarai C. O.; Pais, Paloma; Ribeiro, Mauricio S.; Bader, Michael; Pesquero, Joao B.; Salgado, Maria C. O.; Salgado, Helio C.

    2017-01-01

    In vitro and ex vivo experiments indicate that elastase-2 (ELA-2), a chymotrypsin-serine protease elastase family member 2A, is an alternative pathway for angiotensin II (Ang II) generation. However, the role played by ELA-2 in vivo is unclear. We examined ELA-2 knockout (ELA-2KO) mice compared to wild-type (WT) mice and determined whether ELA-2 played a role in hemodynamics [arterial pressure (AP) and heart rate (HR)], cardiocirculatory sympathovagal balance and baroreflex sensitivity. The variability of systolic arterial pressure (SAP) and pulse interval (PI) for evaluating autonomic modulation was examined for time and frequency domains (spectral analysis), whereas a symbolic analysis was also used to evaluate PI variability. In addition, baroreflex sensitivity was examined using the sequence method. Cardiac function was evaluated echocardiographically under anesthesia. The AP was normal whereas the HR was reduced in ELA-2KO mice (425 ± 17 vs. 512 ± 13 bpm from WT). SAP variability and baroreflex sensitivity were similar in both strains. The LF power from the PI spectrum (33.6 ± 5 vs. 51.8 ± 4.8 nu from WT) and the LF/HF ratio (0.60 ± 0.1 vs. 1.45 ± 0.3 from WT) were reduced, whereas the HF power was increased (66.4 ± 5 vs. 48.2 ± 4.8 nu from WT) in ELA-2KO mice, indicating a shift toward parasympathetic modulation of HR. Echocardiographic examination showed normal fractional shortening and an ejection fraction in ELA-2KO mice; however, the cardiac output, stroke volume, and ventricular size were reduced. These findings provide the first evidence that ELA-2 acts on the sympathovagal balance of the heart, as expressed by the reduced sympathetic modulation of HR in ELA-2KO mice. PMID:28386233

  17. Elastase-2, a Tissue Alternative Pathway for Angiotensin II Generation, Plays a Role in Circulatory Sympathovagal Balance in Mice.

    PubMed

    Becari, Christiane; Durand, Marina T; Guimaraes, Alessander O; Lataro, Renata M; Prado, Cibele M; de Oliveira, Mauro; Candido, Sarai C O; Pais, Paloma; Ribeiro, Mauricio S; Bader, Michael; Pesquero, Joao B; Salgado, Maria C O; Salgado, Helio C

    2017-01-01

    In vitro and ex vivo experiments indicate that elastase-2 (ELA-2), a chymotrypsin-serine protease elastase family member 2A, is an alternative pathway for angiotensin II (Ang II) generation. However, the role played by ELA-2 in vivo is unclear. We examined ELA-2 knockout (ELA-2KO) mice compared to wild-type (WT) mice and determined whether ELA-2 played a role in hemodynamics [arterial pressure (AP) and heart rate (HR)], cardiocirculatory sympathovagal balance and baroreflex sensitivity. The variability of systolic arterial pressure (SAP) and pulse interval (PI) for evaluating autonomic modulation was examined for time and frequency domains (spectral analysis), whereas a symbolic analysis was also used to evaluate PI variability. In addition, baroreflex sensitivity was examined using the sequence method. Cardiac function was evaluated echocardiographically under anesthesia. The AP was normal whereas the HR was reduced in ELA-2KO mice (425 ± 17 vs. 512 ± 13 bpm from WT). SAP variability and baroreflex sensitivity were similar in both strains. The LF power from the PI spectrum (33.6 ± 5 vs. 51.8 ± 4.8 nu from WT) and the LF/HF ratio (0.60 ± 0.1 vs. 1.45 ± 0.3 from WT) were reduced, whereas the HF power was increased (66.4 ± 5 vs. 48.2 ± 4.8 nu from WT) in ELA-2KO mice, indicating a shift toward parasympathetic modulation of HR. Echocardiographic examination showed normal fractional shortening and an ejection fraction in ELA-2KO mice; however, the cardiac output, stroke volume, and ventricular size were reduced. These findings provide the first evidence that ELA-2 acts on the sympathovagal balance of the heart, as expressed by the reduced sympathetic modulation of HR in ELA-2KO mice.

  18. Differentiation of Forebrain and Hippocampal Dopamine 1-Class Receptors, D1R and D5R, in Spatial Learning and Memory

    PubMed Central

    Sariñana, Joshua; Tonegawa, Susumu

    2017-01-01

    Activation of prefrontal cortical (PFC), striatal, and hippocampal dopamine 1-class receptors (D1R and D5R) is necessary for normal spatial information processing. Yet the precise role of the D1R versus the D5R in the aforementioned structures, and their specific contribution to the water-maze spatial learning task remains unknown. D1R- and D5R- specific in situ hybridization probes showed that forebrain restricted D1R and D5R KO mice (F-D1R/D5R KO) displayed D1R mRNA deletion in the medial (m)PFC, dorsal and ventral striatum, and the dentate gyrus (DG) of the hippocampus. D5R mRNA deletion was limited to the mPFC, the CA1 and DG hippocampal subregions. F-D1R/D5R KO mice were given water-maze training and displayed subtle spatial latency differences between genotypes and spatial memory deficits during both regular and reversal training. To differentiate forebrain D1R from D5R activation, forebrain restricted D1R KO (F-D1R KO) and D5R KO (F-D5R KO) mice were trained on the water-maze task. F-D1R KO animals exhibited escape latency deficits throughout regular and reversal training as well as spatial memory deficits during reversal training. F-D1R KO mice also showed perseverative behavior during the reversal spatial memory probe test. In contrast, F-D5R KO animals did not present observable deficits on the water-maze task. Because F-D1R KO mice showed water-maze deficits we tested the necessity of hippocampal D1R activation for spatial learning and memory. We trained DG restricted D1R KO (DG-D1R KO) mice on the water-maze task. DG-D1R KO mice did not present detectable spatial memory deficit, but did show subtle deficits during specific days of training. Our data provides evidence that forebrain D5R activation plays a unique role in spatial learning and memory in conjunction with D1R activation. Moreover, these data suggest that mPFC and striatal, but not DG D1R activation are essential for spatial learning and memory. PMID:26174222

  19. Deficit of tRNA(Lys) modification by Cdkal1 causes the development of type 2 diabetes in mice.

    PubMed

    Wei, Fan-Yan; Suzuki, Takeo; Watanabe, Sayaka; Kimura, Satoshi; Kaitsuka, Taku; Fujimura, Atsushi; Matsui, Hideki; Atta, Mohamed; Michiue, Hiroyuki; Fontecave, Marc; Yamagata, Kazuya; Suzuki, Tsutomu; Tomizawa, Kazuhito

    2011-09-01

    The worldwide prevalence of type 2 diabetes (T2D), which is caused by a combination of environmental and genetic factors, is increasing. With regard to genetic factors, variations in the gene encoding Cdk5 regulatory associated protein 1-like 1 (Cdkal1) have been associated with an impaired insulin response and increased risk of T2D across different ethnic populations, but the molecular function of this protein has not been characterized. Here, we show that Cdkal1 is a mammalian methylthiotransferase that biosynthesizes 2-methylthio-N6-threonylcarbamoyladenosine (ms2t6A) in tRNA(Lys)(UUU) and that it is required for the accurate translation of AAA and AAG codons. Mice with pancreatic β cell-specific KO of Cdkal1 (referred to herein as β cell KO mice) showed pancreatic islet hypertrophy, a decrease in insulin secretion, and impaired blood glucose control. In Cdkal1-deficient β cells, misreading of Lys codon in proinsulin occurred, resulting in a reduction of glucose-stimulated proinsulin synthesis. Moreover, expression of ER stress-related genes was upregulated in these cells, and abnormally structured ER was observed. Further, the β cell KO mice were hypersensitive to high fat diet-induced ER stress. These findings suggest that glucose-stimulated translation of proinsulin may require fully modified tRNA(Lys)(UUU), which could potentially explain the molecular pathogenesis of T2D in patients carrying cdkal1 risk alleles.

  20. Glutamate induces the elongation of early dendritic protrusions via mGluRs in wild type mice, but not in fragile X mice.

    PubMed

    Cruz-Martín, Alberto; Crespo, Michelle; Portera-Cailliau, Carlos

    2012-01-01

    Fragile X syndrome (FXS), the most common inherited from of autism and mental impairment, is caused by transcriptional silencing of the Fmr1 gene, resulting in the loss of the RNA-binding protein FMRP. Dendritic spines of cortical pyramidal neurons in affected individuals are abnormally immature and in Fmr1 knockout (KO) mice they are also abnormally unstable. This could result in defects in synaptogenesis, because spine dynamics are critical for synapse formation. We have previously shown that the earliest dendritic protrusions, which are highly dynamic and might serve an exploratory role to reach out for axons, elongate in response to glutamate. Here, we tested the hypothesis that this process is mediated by metabotropic glutamate receptors (mGluRs) and that it is defective in Fmr1 KO mice. Using time-lapse imaging with two-photon microscopy in acute brain slices from early postnatal mice, we find that early dendritic protrusions in layer 2/3 neurons become longer in response to application of glutamate or DHPG, a Group 1 mGluR agonist. Blockade of mGluR5 signaling, which reverses some adult phenotypes of KO mice, prevented the glutamate-mediated elongation of early protrusions. In contrast, dendritic protrusions from KO mice failed to respond to glutamate. Thus, absence of FMRP may impair the ability of cortical pyramidal neurons to respond to glutamate released from nearby pre-synaptic terminals, which may be a critical step to initiate synaptogenesis and stabilize spines.

  1. Novel monoamine oxidase A knock out mice with human-like spontaneous mutation.

    PubMed

    Scott, Anna L; Bortolato, Marco; Chen, Kevin; Shih, Jean C

    2008-05-07

    A novel line of mutant mice [monoamine oxidase A knockout (MAOA KO)] harboring a spontaneous point nonsense mutation in exon 8 of the MAO A gene was serendipitously identified in a 129/SvEvTac colony. This mutation is analogous to the cause of a rare human disorder, Brunner syndrome, characterized by complete MAO A deficiency and impulsive aggressiveness. Concurrent with previous studies of MAO A KO mice generated by insertional mutagenesis ('Tg8'), MAOA(A863T) KO lack MAO A enzyme activity and display enhanced aggression toward intruder mice. MAOA(A863T) KO, however, exhibited lower locomotor activity in a novel, inescapable open field and similar immobility during tail suspension compared with wild type, observations which differ from reports of Tg8. These findings consolidate evidence linking MAO A to aggression and highlight subtle yet distinctive phenotypical characteristics.

  2. The M2 muscarinic receptors are essential for signaling in the heart left ventricle during restraint stress in mice.

    PubMed

    Tomankova, Hana; Valuskova, Paulina; Varejkova, Eva; Rotkova, Jana; Benes, Jan; Myslivecek, Jaromir

    2015-01-01

    We hypothesized that muscarinic receptors (MRs) in the heart have a role in stress responses and thus investigated changes in MR signaling (gene expression, number of receptors, adenylyl cyclase (AC), phospholipase C (PLC), protein kinase A and C (PKA and PKC) and nitric oxide synthase [NOS]) in the left ventricle, together with telemetric measurement of heart rate (HR) in mice (wild type [WT] and M2 knockout [KO]) during and after one (1R) or seven sessions (7R) of restraint stress (seven mice per group). Stress decreased M2 MR mRNA and cell surface MR in the left ventricle in WT mice. In KO mice, 1R, but not 7R, decreased surface MR. Similarly, AC activity was decreased in WT mice after 1R and 7R, whereas in KO mice, there was no change. PLC activity was also decreased after 1R in WT and KO mice. This is in accord with the concept that cAMP is a key player in HR regulation. No change was found with stress in NOS activity. Amount of AC and PKA protein was not changed, but was altered for PKC isoenzymes (PKCα, β, γ, η and ϵ (increased) in KO mice, and PKCι (increased) in WT mice). KO mice were more susceptible to stress as shown by inability to compensate HR during 120 min following repeated stress. The results imply that not only M2 but also M3 are involved in stress signaling and in allostasis. We conclude that for a normal stress response, the expression of M2 MR to mediate vagal responses is essential.

  3. β-Catenin is Essential for Ethanol Metabolism and Protection Against Alcohol-mediated Liver Steatosis in Mice

    PubMed Central

    Liu, Shiguang; Yeh, Tzu-Hsuan; Singh, Vijay P.; Shiva, Sruti; Krauland, Lindsay; Li, Huanan; Zhang, Pili; Kharbanda, Kusum; Ritov, Vladimir; Monga, Satdarshan P. S.; Scott, Donald K.; Eagon, Patricia K.; Behari, Jaideep

    2011-01-01

    The liver plays a central role in ethanol metabolism and oxidative stress is implicated in alcohol-mediated liver injury. β-Catenin regulates hepatic metabolic zonation and adaptive response to oxidative stress. We hypothesized that β-catenin regulates the hepatic response to ethanol ingestion. Female liver-specific β-catenin knockout (KO) mice and wild type (WT) littermates were fed the Lieber-Decarli liquid diet (5% ethanol) in a pair-wise fashion. Liver histology, biochemistry, and gene expression studies were performed. Plasma alcohol and ammonia levels were measured using standard assays. Ethanol-fed KO mice exhibited systemic toxicity and early mortality. KO mice exhibited severe macrovesicular steatosis and five to six-fold higher serum ALT and AST levels. KO mice had modest increase in hepatic oxidative stress, lower expression of mitochondrial superoxide dismutase (SOD-2), and lower citrate synthase activity, the first step in the tricarboxylic acid cycle. N-Acetyl cysteine (NAC) did not prevent ethanol-induced mortality in KO mice. In WT livers, β-catenin was found to co-precipitate with FoxO3, the upstream regulator of SOD-2. Hepatic alcohol dehydrogenase and aldehyde dehydrogenase activities and expression were lower in KO mice. Hepatic cytochrome P450 2E1 protein levels were upregulated in ethanol-fed WT mice but were nearly undetectable in KO mice. These changes in ethanol-metabolizing enzymes were associated with 30-fold higher blood alcohol levels in KO mice. Conclusion β-catenin is essential for hepatic ethanol metabolism and plays a protective role in alcohol-mediated liver steatosis. Our results strongly suggest that integration of these functions by β-catenin is critical for adaptation to ethanol ingestion in vivo. PMID:22031168

  4. Abnormalities of hair structure and skin histology derived from CRISPR/Cas9-based knockout of phospholipase C-delta 1 in mice.

    PubMed

    Liu, Yu-Min; Liu, Wei; Jia, Jun-Shuang; Chen, Bang-Zhu; Chen, Heng-Wei; Liu, Yu; Bie, Ya-Nan; Gu, Peng; Sun, Yan; Xiao, Dong; Gu, Wei-Wang

    2018-05-25

    Hairless mice have been widely applied in skin-related researches, while hairless pigs will be an ideal model for skin-related study and other biomedical researches because of the similarity of skin structure with humans. The previous study revealed that hairlessness phenotype in nude mice is caused by insufficient expression of phospholipase C-delta 1 (PLCD1), an essential molecule downstream of Foxn1, which encouraged us to generate PLCD1-deficient pigs. In this study, we plan to firstly produce PLCD1 knockout (KO) mice by CRISPR/Cas9 technology, which will lay a solid foundation for the generation of hairless PLCD1 KO pigs. Generation of PLCD1 sgRNAs and Cas 9 mRNA was performed as described (Shao in Nat Protoc 9:2493-2512, 2014). PLCD1-modified mice (F0) were generated via co-microinjection of PLCD1-sgRNA and Cas9 mRNA into the cytoplasm of C57BL/6J zygotes. Homozygous PLCD1-deficient mice (F1) were obtained by intercrossing of F0 mice with the similar mutation. PLCD1-modified mice (F0) showed progressive hair loss after birth and the genotype of CRISPR/Cas9-induced mutations in exon 2 of PLCD1 locus, suggesting the sgRNA is effective to cause mutations that lead to hair growth defect. Homozygous PLCD1-deficient mice (F1) displayed baldness in abdomen and hair sparse in dorsa. Histological abnormalities of the reduced number of hair follicles, irregularly arranged and curved hair follicles, epidermal hyperplasia and disturbed differentiation of epidermis were observed in the PLCD1-deficient mice. Moreover, the expression level of PLCD1 was significantly decreased, while the expression levels of other genes (i.e., Krt1, Krt5, Krt13, loricrin and involucrin) involved in the differentiation of hair follicle were remarkerably increased in skin tissues of PLCD1-deficient mice. In conclusion, we achieve PLCD1 KO mice by CRISPR/Cas9 technology, which provide a new animal model for hair development research, although homozygotes don't display completely hairless

  5. Lack of Pannexin 1 Alters Synaptic GluN2 Subunit Composition and Spatial Reversal Learning in Mice.

    PubMed

    Gajardo, Ivana; Salazar, Claudia S; Lopez-Espíndola, Daniela; Estay, Carolina; Flores-Muñoz, Carolina; Elgueta, Claudio; Gonzalez-Jamett, Arlek M; Martínez, Agustín D; Muñoz, Pablo; Ardiles, Álvaro O

    2018-01-01

    Long-term potentiation (LTP) and long-term depression (LTD) are two forms of synaptic plasticity that have been considered as the cellular substrate of memory formation. Although LTP has received considerable more attention, recent evidences indicate that LTD plays also important roles in the acquisition and storage of novel information in the brain. Pannexin 1 (Panx1) is a membrane protein that forms non-selective channels which have been shown to modulate the induction of hippocampal synaptic plasticity. Animals lacking Panx1 or blockade of Pannexin 1 channels precludes the induction of LTD and facilitates LTP. To evaluate if the absence of Panx1 also affects the acquisition of rapidly changing information we trained Panx1 knockout (KO) mice and wild type (WT) littermates in a visual and hidden version of the Morris water maze (MWM). We found that KO mice find the hidden platform similarly although slightly quicker than WT animals, nonetheless, when the hidden platform was located in the opposite quadrant (OQ) to the previous learned location, KO mice spent significantly more time in the previous quadrant than in the new location indicating that the absence of Panx1 affects the reversion of a previously acquired spatial memory. Consistently, we observed changes in the content of synaptic proteins critical to LTD, such as GluN2 subunits of N-methyl-D-aspartate receptors (NMDARs), which changed their contribution to synaptic plasticity in conditions of Panx1 ablation. Our findings give further support to the role of Panx1 channels on the modulation of synaptic plasticity induction, learning and memory processes.

  6. Epileptogenesis following Kainic Acid-Induced Status Epilepticus in Cyclin D2 Knock-Out Mice with Diminished Adult Neurogenesis

    PubMed Central

    Kondratiuk, Ilona; Plucinska, Gabriela; Miszczuk, Diana; Wozniak, Grazyna; Szydlowska, Kinga; Kaczmarek, Leszek; Filipkowski, Robert K.; Lukasiuk, Katarzyna

    2015-01-01

    The goal of this study was to determine whether a substantial decrease in adult neurogenesis influences epileptogenesis evoked by the intra-amygdala injection of kainic acid (KA). Cyclin D2 knockout (cD2 KO) mice, which lack adult neurogenesis almost entirely, were used as a model. First, we examined whether status epilepticus (SE) evoked by an intra-amygdala injection of KA induces cell proliferation in cD2 KO mice. On the day after SE, we injected BrdU into mice for 5 days and evaluated the number of DCX- and DCX/BrdU-immunopositive cells 3 days later. In cD2 KO control animals, only a small number of DCX+ cells was observed. The number of DCX+ and DCX/BrdU+ cells/mm of subgranular layer in cD2 KO mice increased significantly following SE (p<0.05). However, the number of newly born cells was very low and was significantly lower than in KA-treated wild type (wt) mice. To evaluate the impact of diminished neurogenesis on epileptogenesis and early epilepsy, we performed video-EEG monitoring of wt and cD2 KO mice for 16 days following SE. The number of animals with seizures did not differ between wt (11 out of 15) and cD2 KO (9 out of 12) mice. The median latency to the first spontaneous seizure was 4 days (range 2 – 10 days) in wt mice and 8 days (range 2 – 16 days) in cD2 KO mice and did not differ significantly between groups. Similarly, no differences were observed in median seizure frequency (wt: 1.23, range 0.1 – 3.4; cD2 KO: 0.57, range 0.1 – 2.0 seizures/day) or median seizure duration (wt: 51 s, range 23 – 103; cD2 KO: 51 s, range 23 – 103). Our results indicate that SE-induced epileptogenesis is not disrupted in mice with markedly reduced adult neurogenesis. However, we cannot exclude the contribution of reduced neurogenesis to the chronic epileptic state. PMID:26020770

  7. Methyl isobutyl ketone-induced hepatocellular carcinogenesis in B6C3F1 mice: A constitutive androstane receptor (CAR)-mediated mode of action.

    PubMed

    Hughes, B J; Thomas, J; Lynch, A M; Borghoff, S J; Green, S; Mensing, T; Sarang, S S; LeBaron, M J

    2016-11-01

    In a National Toxicology Program (NTP) chronic inhalation study with methyl isobutyl ketone (MIBK), increases in hepatocellular adenomas and hepatocellular adenomas and carcinomas (combined) were observed in male and female B6C3F 1 mice at 1800 ppm. A DNA reactive Mode-of-Action (MOA) for this liver tumor response is not supported by the evidence as MIBK and its major metabolites lack genotoxicity in both in vitro and in vivo studies. Constitutive androstane receptor (CAR) nuclear receptor-mediated activation has been hypothesized as the MOA for MIBK-induced mouse liver tumorigenesis. To further investigate the MOA for MIBK-induced murine liver tumors, male and female B6C3F1, C57BL/6, and CAR/PXR Knockout (KO) mice were exposed to either 0 or 1800 ppm MIBK for 6 h/day, 5 days/week for a total of 10 days. On day 1, mice were implanted with osmotic mini-pumps containing 5-Bromo-2-deoxyuridine (BrdU) 1 h following exposure and humanely euthanized 1-3 h following the final exposure. B6C3F 1 and C57BL/6 mice had statistically significant increases in liver weights compared to controls that corresponded with hepatocellular hypertrophy and increased mitotic figures. Hepatocellular proliferation data indicated induction of S-phase DNA synthesis in B6C3F 1 and C57BL/6 mice exposed to 1800 ppm MIBK compared to control, and no increase was observed in MIBK exposed CAR/PXR KO mice. Liver gene expression changes indicated a maximally-induced Cyp2b10 (CAR-associated) transcript and a slight increase in Cyp3a11(PXR-associated) transcript in B6C3F 1 and C57BL/6 mice exposed to 1800 ppm MIBK compared to controls, but not in Cyp1a1 (AhR-associated) or Cyp4a10 (PPAR-α-associated) transcripts. CAR/PXR KO mice exposed to 1800 ppm MIBK showed no evidence of activation of AhR, CAR, PXR or PPAR-α nuclear receptors via their associated transcripts. MIBK induced hepatic effects are consistent with a phenobarbital-like MOA where the initiating events are activation of the CAR and

  8. Impaired spine formation and learning in GPCR kinase 2 interacting protein-1 (GIT1) knockout mice.

    PubMed

    Menon, Prashanthi; Deane, Rashid; Sagare, Abhay; Lane, Steven M; Zarcone, Troy J; O'Dell, Michael R; Yan, Chen; Zlokovic, Berislav V; Berk, Bradford C

    2010-03-04

    The G-protein coupled receptor (GPCR)-kinase interacting proteins 1 and 2 (GIT1 and GIT2) are scaffold proteins with ADP-ribosylating factor GTPase activity. GIT1 and GIT2 control numerous cellular functions and are highly expressed in neurons, endothelial cells and vascular smooth muscle cells. GIT1 promotes dendritic spine formation, growth and motility in cultured neurons, but its role in brain in vivo is unknown. By using global GIT1 knockout mice (GIT1 KO), we show that compared to WT controls, deletion of GIT1 results in markedly reduced dendritic length and spine density in the hippocampus by 36.7% (p<0.0106) and 35.1% (p<0.0028), respectively. This correlated with their poor adaptation to new environments as shown by impaired performance on tasks dependent on learning. We also studied the effect of GIT1 gene deletion on brain microcirculation. In contrast to findings in systemic circulation, GIT1 KO mice had an intact blood-brain barrier and normal regional cerebral blood flow as determined with radiotracers. Thus, our data suggest that GIT1 plays an important role in brain in vivo by regulating spine density involved in synaptic plasticity that is required for processes involved in learning. 2009 Elsevier B.V. All rights reserved.

  9. Expression of interferon-induced antiviral genes is delayed in a STAT1 knockout mouse model of Crimean-Congo hemorrhagic fever.

    PubMed

    Bowick, Gavin C; Airo, Adriana M; Bente, Dennis A

    2012-06-19

    Crimean Congo hemorrhagic fever (CCHF) is a tick-borne hemorrhagic zoonosis associated with high mortality. Pathogenesis studies and the development of vaccines and antivirals against CCHF have been severely hampered by the lack of suitable animal model. We recently developed and characterized a mature mouse model for CCHF using mice carrying STAT1 knockout (KO). Given the importance of interferons in controlling viral infections, we investigated the expression of interferon pathway-associated genes in KO and wild-type (WT) mice challenged with CCHF virus. We expected that the absence of the STAT1 protein would result in minimal expression of IFN-related genes. Surprisingly, the KO mice showed high levels of IFN-stimulated gene expression, beginning on day 2 post-infection, while in WT mice challenged with virus the same genes were expressed at similar levels on day 1. We conclude that CCHF virus induces similar type I IFN responses in STAT1 KO and WT mice, but the delayed response in the KO mice permits rapid viral dissemination and fatal illness.

  10. The coactivator PGC-1α regulates mouse skeletal muscle oxidative metabolism independently of the nuclear receptor PPARβ/δ in sedentary mice fed a regular chow diet

    PubMed Central

    Pérez-Schindler, Joaquín; Svensson, Kristoffer; Vargas-Fernández, Elyzabeth; Santos, Gesa; Wahli, Walter; Handschin, Christoph

    2015-01-01

    Aims/hypothesis Physical activity improves oxidative capacity and exerts therapeutic beneficial effects, particularly in the context of metabolic diseases. The peroxisome proliferator-activated receptor γ (PPARγ) coactivator-1α (PGC-1α) and the nuclear receptor PPARβ/δ have both been independently discovered to play a pivotal role in the regulation of oxidative metabolism in skeletal muscle, though their interdependence remain unclear. Hence, our aim was to determine the functional interaction between these two factors in mouse skeletal muscle in vivo. Methods Adult male control mice, PGC-1α muscle-specific transgenic (mTg) mice, PPARβ/δ muscle-specific knockout (mKO) mice and the combination PPARβ/δ mKO + PGC-1α mTg were studied under basal conditions and following PPARβ/δ agonist administration and acute exercise. Whole body metabolism was assessed by indirect calorimetry and blood analysis, while magnetic resonance was used to measure body composition. Quantitative PCR and western blot were used to determine gene expression and intracellular signaling. Proportion of oxidative muscle fiber was determined by NADH staining. Results Agonist-induced PPARβ/δ activation was only disrupted by PPARβ/δ knockout. We also found that the disruption of the PGC-1α-PPARβ/δ axis does not affect whole body metabolism under basal conditions. As expected, PGC-1α mTg mice exhibited higher exercise performance, peak oxygen consumption and lower blood lactate levels following exercise, though PPARβ/δ mKO+PGC-1α mTg mice showed a similar phenotype. Similarly, we found that PPARβ/δ was dispensable for PGC-1α-mediated enhancement of an oxidative phenotype in skeletal muscle. Conclusions/interpretation Collectively, these results indicate that PPARβ/δ is not an essential partner of PGC-1α in the control of skeletal muscle energy metabolism. PMID:25116175

  11. ASIC1A in neurons is critical for fear-related behaviors.

    PubMed

    Taugher, R J; Lu, Y; Fan, R; Ghobbeh, A; Kreple, C J; Faraci, F M; Wemmie, J A

    2017-11-01

    Acid-sensing ion channels (ASICs) have been implicated in fear-, addiction- and depression-related behaviors in mice. While these effects have been attributed to ASIC1A in neurons, it has been reported that ASICs may also function in nonneuronal cells. To determine if ASIC1A in neurons is indeed required, we generated neuron-specific knockout (KO) mice with floxed Asic1a alleles disrupted by Cre recombinase driven by the neuron-specific synapsin I promoter (SynAsic1a KO mice). We confirmed that Cre expression occurred in neurons, but not all neurons, and not in nonneuronal cells including astrocytes. Consequent loss of ASIC1A in some but not all neurons was verified by western blotting, immunohistochemistry and electrophysiology. We found ASIC1A was disrupted in fear circuit neurons, and SynAsic1a KO mice exhibited prominent deficits in multiple fear-related behaviors including Pavlovian fear conditioning to cue and context, predator odor-evoked freezing and freezing responses to carbon dioxide inhalation. In contrast, in the nucleus accumbens ASIC1A expression was relatively normal in SynAsic1a KO mice, and consistent with this observation, cocaine conditioned place preference (CPP) was normal. Interestingly, depression-related behavior in the forced swim test, which has been previously linked to ASIC1A in the amygdala, was also normal. Together, these data suggest neurons are an important site of ASIC1A action in fear-related behaviors, whereas other behaviors likely depend on ASIC1A in other neurons or cell types not targeted in SynAsic1a KO mice. These findings highlight the need for further work to discern the roles of ASICs in specific cell types and brain sites. © 2017 John Wiley & Sons Ltd and International Behavioural and Neural Genetics Society.

  12. Oxytocin receptor knockout mice display deficits in the expression of autism-related behaviors

    PubMed Central

    Pobbe, Roger L.H.; Pearson, Brandon L.; Defensor, Erwin B.; Bolivar, Valerie J.; Young, W. Scott; Lee, Heon-Jin; Blanchard, D. Caroline; Blanchard, Robert J.

    2012-01-01

    A wealth of studies has implicated oxytocin (Oxt) and its receptors (Oxtr) in the mediation of social behaviors and social memory in rodents. It has been suggested that failures in this system contribute to deficits in social interaction that characterize autism spectrum disorders (ASD). In the current analyses, we investigated the expression of autism-related behaviors in mice that lack the ability to synthesize the oxytocin receptor itself, Oxtr knockout (KO) mice, as compared to their wild-type (WT) littermates. In the visible burrow system, Oxtr KO mice showed robust reductions in frontal approach, huddling, allo-grooming, and flight, with more time spent alone, and in self-grooming, as compared to WT. These results were corroborated in the three-chambered test: unlike WT, Oxtr KO mice failed to spend more time in the side of the test box containing an unfamiliar CD-1 mouse. In the social proximity test, Oxtr KO mice showed clear reductions in nose to nose and anogenital sniff behaviors oriented to an unfamiliar C57BL/6J (B6) mouse. In addition, our study revealed no differences between Oxtr WT and KO genotypes in the occurrence of motor and cognitive stereotyped behaviors. A significant genotype effect was found in the scent marking analysis, with Oxtr KO mice showing a decreased number of scent marks, as compared to WT. Overall, the present data indicate that the profile for Oxtr KO mice, including consistent social deficits, and reduced levels of communication, models multiple components of the ASD phenotype. This article is part of a Special Issue entitled Oxytocin, Vasopressin, and Social Behavior. PMID:22100185

  13. Analysis of glomerulosclerosis and atherosclerosis in lecithin cholesterol acyltransferase-deficient mice.

    PubMed

    Lambert, G; Sakai, N; Vaisman, B L; Neufeld, E B; Marteyn, B; Chan, C C; Paigen, B; Lupia, E; Thomas, A; Striker, L J; Blanchette-Mackie, J; Csako, G; Brady, J N; Costello, R; Striker, G E; Remaley, A T; Brewer, H B; Santamarina-Fojo, S

    2001-05-04

    To evaluate the biochemical and molecular mechanisms leading to glomerulosclerosis and the variable development of atherosclerosis in patients with familial lecithin cholesterol acyl transferase (LCAT) deficiency, we generated LCAT knockout (KO) mice and cross-bred them with apolipoprotein (apo) E KO, low density lipoprotein receptor (LDLr) KO, and cholesteryl ester transfer protein transgenic mice. LCAT-KO mice had normochromic normocytic anemia with increased reticulocyte and target cell counts as well as decreased red blood cell osmotic fragility. A subset of LCAT-KO mice accumulated lipoprotein X and developed proteinuria and glomerulosclerosis characterized by mesangial cell proliferation, sclerosis, lipid accumulation, and deposition of electron dense material throughout the glomeruli. LCAT deficiency reduced the plasma high density lipoprotein (HDL) cholesterol (-70 to -94%) and non-HDL cholesterol (-48 to -85%) levels in control, apoE-KO, LDLr-KO, and cholesteryl ester transfer protein-Tg mice. Transcriptome and Western blot analysis demonstrated up-regulation of hepatic LDLr and apoE expression in LCAT-KO mice. Despite decreased HDL, aortic atherosclerosis was significantly reduced (-35% to -99%) in all mouse models with LCAT deficiency. Our studies indicate (i) that the plasma levels of apoB containing lipoproteins rather than HDL may determine the atherogenic risk of patients with hypoalphalipoproteinemia due to LCAT deficiency and (ii) a potential etiological role for lipoproteins X in the development of glomerulosclerosis in LCAT deficiency. The availability of LCAT-KO mice characterized by lipid, hematologic, and renal abnormalities similar to familial LCAT deficiency patients will permit future evaluation of LCAT gene transfer as a possible treatment for glomerulosclerosis in LCAT-deficient states.

  14. Novel monoamine oxidase A knock out mice with human-like spontaneous mutation

    PubMed Central

    Scott, Anna L.; Bortolato, Marco; Chen, Kevin; Shih, Jean C.

    2012-01-01

    A novel line of mutant mice [monoamine oxidase A knockout (MAOAA863T KO)] harboring a spontaneous point nonsense mutation in exon 8 of the MAO A gene was serendipitously identified in a 129/SvEvTac colony. This mutation is analogous to the cause of a rare human disorder, Brunner syndrome, characterized by complete MAO A deficiency and impulsive aggressiveness. Concurrent with previous studies of MAO A KO mice generated by insertional mutagenesis (‘Tg8’), MAOAA863T KO lack MAO A enzyme activity and display enhanced aggression toward intruder mice. MAOAA863T KO, however, exhibited lower locomotor activity in a novel, inescapable open field and similar immobility during tail suspension compared with wild type, observations which differ from reports of Tg8. These findings consolidate evidence linking MAO A to aggression and highlight subtle yet distinctive phenotypical characteristics. PMID:18418249

  15. Mice lacking hippocampal left-right asymmetry show non-spatial learning deficits.

    PubMed

    Shimbo, Akihiro; Kosaki, Yutaka; Ito, Isao; Watanabe, Shigeru

    2018-01-15

    Left-right asymmetry is known to exist at several anatomical levels in the brain and recent studies have provided further evidence to show that it also exists at a molecular level in the hippocampal CA3-CA1 circuit. The distribution of N-methyl-d-aspartate (NMDA) receptor NR2B subunits in the apical and basal synapses of CA1 pyramidal neurons is asymmetrical if the input arrives from the left or right CA3 pyramidal neurons. In the present study, we examined the role of hippocampal asymmetry in cognitive function using β2-microglobulin knock-out (β2m KO) mice, which lack hippocampal asymmetry. We tested β2m KO mice in a series of spatial and non-spatial learning tasks and compared the performances of β2m KO and C57BL6/J wild-type (WT) mice. The β2m KO mice appeared normal in both spatial reference memory and spatial working memory tasks but they took more time than WT mice in learning the two non-spatial learning tasks (i.e., a differential reinforcement of lower rates of behavior (DRL) task and a straight runway task). The β2m KO mice also showed less precision in their response timing in the DRL task and showed weaker spontaneous recovery during extinction in the straight runway task. These results indicate that hippocampal asymmetry is important for certain characteristics of non-spatial learning. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Exercise-induced muscle glucose uptake in mice with graded, muscle-specific GLUT-4 deletion.

    PubMed

    Howlett, Kirsten F; Andrikopoulos, Sofianos; Proietto, Joseph; Hargreaves, Mark

    2013-08-01

    To investigate the importance of the glucose transporter GLUT-4 for muscle glucose uptake during exercise, transgenic mice with skeletal muscle GLUT-4 expression approximately 30-60% of normal (CON) and approximately 5-10% of normal (KO) were generated using the Cre/Lox system and compared with wild-type (WT) mice during approximately 40 min of treadmill running (KO: 37.7 ± 1.3 min; WT: 40 min; CON: 40 min, P = 0.18). In WT and CON animals, exercise resulted in an overall increase in muscle glucose uptake. More specifically, glucose uptake was increased in red gastrocnemius of WT mice and in the soleus and red gastrocnemius of CON mice. In contrast, the exercise-induced increase in muscle glucose uptake in all muscles was completely abolished in KO mice. Muscle glucose uptake increased during exercise in both red and white quadriceps of WT mice, while the small increases in CON mice were not statistically significant. In KO mice, there was no change at all in quadriceps muscle glucose uptake. No differences in muscle glycogen use during exercise were observed between any of the groups. However, there was a significant increase in plasma glucose levels after exercise in KO mice. The results of this study demonstrated that a reduction in skeletal muscle GLUT-4 expression to approximately 10% of normal levels completely abolished the exercise-induced increase in muscle glucose uptake.

  17. Identification of an Unfavorable Immune Signature in Advanced Lung Tumors from Nrf2-Deficient Mice.

    PubMed

    Zhang, Di; Rennhack, Jonathan; Andrechek, Eran R; Rockwell, Cheryl E; Liby, Karen T

    2018-04-16

    Activation of the nuclear factor (erythroid-derived 2)-like 2 (Nrf2) pathway in normal cells inhibits carcinogenesis, whereas constitutive activation of Nrf2 in cancer cells promotes tumor growth and chemoresistance. However, the effects of Nrf2 activation in immune cells during lung carcinogenesis are poorly defined and could either promote or inhibit cancer growth. Our studies were designed to evaluate tumor burden and identify immune cell populations in the lungs of Nrf2 knockout (KO) versus wild-type (WT) mice challenged with vinyl carbamate. Nrf2 KO mice developed lung tumors earlier than the WT mice and exhibited more and larger tumors over time, even at late stages. T cell populations were lower in the lungs of Nrf2 KO mice, whereas tumor-promoting macrophages and myeloid-derived suppressor cells were elevated in the lungs and spleen, respectively, of Nrf2 KO mice relative to WT mice. Moreover, 34 immune response genes were significantly upregulated in tumors from Nrf2 KO mice, especially a series of cytokines (Cxcl1, Csf1, Ccl9, Cxcl12, etc.) and major histocompatibility complex antigens that promote tumor growth. Our studies discovered a novel immune signature, characterized by the infiltration of tumor-promoting immune cells, elevated cytokines, and increased expression of immune response genes in the lungs and tumors of Nrf2 KO mice. A complementary profile was also found in lung cancer patients, supporting the clinical significance of our findings. Overall, our results confirmed a protective role for Nrf2 in late-stage carcinogenesis and, unexpectedly, suggest that activation of Nrf2 in immune cells may be advantageous for preventing or treating lung cancer. Antioxid. Redox Signal. 00, 000-000.

  18. Cadium pathways during gestation and lactation in control vs. metallothionein 1,2-knockout mice.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brako, E. E.; Wilson, A. K.; Jonah, M. M.

    2003-01-01

    Effects of metallothionein (MT) on cadmium absorption and transfer pathways during gestation and lactation in mice were investigated. Female 129/SvJ metallothionein-knockout (MT1,2KO) and metallothionein-normal (MTN) mice received drinking water containing trace amounts of {sup 109}CdCl{sub 2} (0.15 ng Cd/ml; 0.074 {mu}Ci {sup 109}Cd/ml). {sup 109}Cd and MT in maternal, fetal, and pup tissues were measured on gestation days 7, 14, and 17 and lactation day 11. In dams, MT influenced both the amount of {sup 109}Cd transferred from intestine into body (two- to three-fold higher in MT1,2KO than MTN dams) and tissue-specific {sup 109}Cd distribution (higher liver/kidney ratio in MT1,2KOmore » dams). Placental {sup 109}Cd concentrations in MT1,2KO dams were three- and seven-fold higher on gestation days 14 and 17, respectively, than in MTN dams. Fetal {sup 109}Cd levels were low in both mouse types, but at least 10-fold lower in MTN fetuses. MT had no effect on the amount of {sup 109}Cd transferred to pups via milk; furthermore, 85--90% of total pup {sup 109}Cd was recovered in gastrointestinal tracts of both types, despite high duodenal MT only in MTN pups. A relatively large percentage of milk-derived intestinal {sup 109}Cd was transferred to other pup tissues in both MT1,2KO and MTN pups (14 and 10%, respectively). These results demonstrate that specific sequestration of cadmium by both maternal and neonatal intestinal tract does not require MT. Although MT decreased oral cadmium transfer from intestine to body tissues at low cadmium exposure levels, MT did not play a major role in restricting transfer of cadmium from dam to fetus via placenta and to neonate via milk.« less

  19. Ca2+-Binding Protein 1 Regulates Hippocampal-dependent Memory and Synaptic Plasticity.

    PubMed

    Yang, Tian; Britt, Jeremiah K; Cintrón-Pérez, Coral J; Vázquez-Rosa, Edwin; Tobin, Kevin V; Stalker, Grant; Hardie, Jason; Taugher, Rebecca J; Wemmie, John; Pieper, Andrew A; Lee, Amy

    2018-06-01

    Ca 2+ -binding protein 1 (CaBP1) is a Ca 2+ -sensing protein similar to calmodulin that potently regulates voltage-gated Ca 2+ channels. Unlike calmodulin, however, CaBP1 is mainly expressed in neuronal cell-types and enriched in the hippocampus, where its function is unknown. Here, we investigated the role of CaBP1 in hippocampal-dependent behaviors using mice lacking expression of CaBP1 (C-KO). By western blot, the largest CaBP1 splice variant, caldendrin, was detected in hippocampal lysates from wild-type (WT) but not C-KO mice. Compared to WT mice, C-KO mice exhibited mild deficits in spatial learning and memory in both the Barnes maze and in Morris water maze reversal learning. In contextual but not cued fear-conditioning assays, C-KO mice showed greater freezing responses than WT mice. In addition, the number of adult-born neurons in the hippocampus of C-KO mice was ∼40% of that in WT mice, as measured by bromodeoxyuridine labeling. Moreover, hippocampal long-term potentiation was significantly reduced in C-KO mice. We conclude that CaBP1 is required for cellular mechanisms underlying optimal encoding of hippocampal-dependent spatial and fear-related memories. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.

  20. Inhibitory Effects of North American Wild Rice on Monocyte Adhesion and Inflammatory Modulators in Low-Density Lipoprotein Receptor-Knockout Mice.

    PubMed

    Moghadasian, Mohammed H; Zhao, Ruozhi; Ghazawwi, Nora; Le, Khuong; Apea-Bah, Franklin B; Beta, Trust; Shen, Garry X

    2017-10-18

    The present study examined the effects of wild rice on monocyte adhesion, inflammatory and fibrinolytic mediators in low-density lipoprotein receptor-knockout (LDLr-KO) mice. Male LDLr-KO mice received a cholesterol (0.06%, w/w)-supplemented diet with or without white or wild rice (60%, w/w) for 20 weeks. White rice significantly increased monocyte adhesion and abundances of monocyte chemoattractant protein-1, tissue necrosis factor-α, intracellular cell adhesion molecule-1, plasminogen activator inhibitor-1, urokinase plasminogen activator (uPA), and uPA receptor in aortae and hearts of LDLr-KO mice compared to the control diet. Wild rice inhibited monocyte adhesion to the aorta, atherosclerosis, and abundances of the inflammatory and fibrinolytic regulators in the cardiovascular tissue of LDLr-KO mice compared to white rice. White or wild rice did not significantly alter the levels of cholesterol, triglycerides, or antioxidant enzymes in plasma. The anti-atherosclerotic effect of wild rice may result from its inhibition on monocyte adhesion and inflammatory modulators in LDLr-KO mice.

  1. Analysis of multiple positive feedback paradigms demonstrates a complete absence of LH surges and GnRH activation in mice lacking kisspeptin signaling.

    PubMed

    Dror, Tal; Franks, Jennifer; Kauffman, Alexander S

    2013-06-01

    Kisspeptin stimulates gonadotropin-releasing hormone (GnRH) neurons via the kisspeptin receptor, Kiss1r. In rodents, estrogen-responsive kisspeptin neurons in the rostral hypothalamus have been postulated to mediate estrogen-induced positive feedback induction of the preovulatory luteinizing hormone (LH) surge. However, conflicting evidence exists regarding the ability of mice lacking Kiss1r to display LH surges in response to exogenous hormones. Whether the discrepancy reflects different mouse strains used and/or utilization of different surge-induction paradigms is unknown. Here, we tested multiple hormonal paradigms in one Kiss1r knockout (KO) model to see which paradigms, if any, could generate circadian-timed LH surges. Kiss1r KO and wild-type (WT) females were ovariectomized, given sex steroids in various modes, and assessed several days later for LH levels in the morning or evening (when surges occur). Serum LH levels were very low in all morning animals, regardless of genotype or hormonal paradigm. In each paradigm, virtually all WT females displayed clear LH surges in the evening, whereas none of the KO females demonstrated LH surges. The lack of LH surges in KO mice reflects a lack of GnRH secretion rather than diminished pituitary responsiveness from a lifetime lack of GnRH exposure because KO mice responded to GnRH priming with robust LH secretion. Moreover, high cfos-GnRH coexpression was detected in WT females in the evening, whereas low cfos-GnRH coexpression was present in KO females at all time points. Our findings conclusively demonstrate that WT females consistently display LH surges under multiple hormonal paradigms, whereas Kiss1r KO mice do not, indicating that kisspeptin-Kiss1r signaling is mandatory for GnRH/LH surge induction.

  2. IL-13 is a central mediator of chemical-induced airway hyperreactivity in mice

    PubMed Central

    Devos, Fien C.; Pollaris, Lore; Cremer, Jonathan; Seys, Sven; Hoshino, Tomoaki; Ceuppens, Jan; Talavera, Karel; Nemery, Benoit; Hoet, Peter H. M.

    2017-01-01

    Background While the importance of the Th2 cytokine IL-13 as a central mediator of airway hyperreactivity (AHR) has been described in allergic protein-induced asthma, this has never been investigated in chemical-induced asthma. Objective We examined the importance of IL-13 in a mouse model of chemical-induced AHR, using toluene-2,4-diisocyanate (TDI). Methods In a first set-up, wild type (WT) and IL-13 knockout (KO) C57Bl/6 mice were dermally treated on days 1 and 8 with 1% TDI or vehicle (acetone/olive oil) on both ears. On day 15, mice received an intranasal instillation with 0.1% TDI or vehicle. In a second set-up, WT mice sensitized with 1% TDI or vehicle, received i.v. either anti-IL-13 or control antibody prior to the intranasal challenge. Results TDI-sensitized and TDI-challenged WT mice showed AHR to methacholine, in contrast to TDI-sensitized and TDI-challenged IL-13 KO mice, which also showed lower levels of total serum IgE. TDI-sensitized and TDI-challenged IL-13 KO mice had lower numbers of T-cells in the auricular lymph nodes. TDI-treated WT mice, receiving anti-IL-13, showed no AHR, in contrast to those receiving control antibody, despite increased levels of IgE. Anti-IL-13 treatment in TDI-treated WT mice resulted in lower levels of serum IL-13, but did not induce changes in T- and B-cell numbers, and in the cytokine production profile. Conclusion and clinical relevance We conclude that IL-13 plays a critical role in the effector phase of chemical-induced, immune-mediated AHR. This implicates that anti-IL-13 treatment could have a beneficial effect in patients with this asthma phenotype. PMID:28704401

  3. Loss of Dok-1 and Dok-2 in mice causes severe experimental colitis accompanied by reduced expression of IL-17A and IL-22

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Waseda, Masazumi; Arimura, Sumimasa; Shimura, Eri

    Appropriate immune responses and mucosal barrier functions are required for the maintenance of intestinal homeostasis. Defects in this defense system may lead to inflammatory disorders such as inflammatory bowel disease. Downstream of tyrosine kinases 1 (Dok-1) and its closest homolog, Dok-2, are preferentially expressed in immune cells, and play essential roles in the negative regulation of multiple signaling pathways in both innate and adaptive immunity. However, the function of these proteins in intestinal homeostasis remained unclear. Here we show that Dok-1/-2 double knockout (DKO) mice were highly susceptible to dextran sodium sulfate (DSS)-induced colitis compared with Dok-1 or Dok-2 singlemore » KO and wild type (WT) mice. Furthermore, DSS-treated Dok-1/-2 DKO mice exhibited increased colonic tissue damage accompanied by reduced proliferation of the epithelial cells relative to WT controls, suggesting that Dok-1/-2 DKO mice have defects in the repair of intestinal epithelial lesions. In addition, the levels of the Th17 cytokines IL-17A and IL-22, which have protective roles in DSS-induced colitis, were reduced in DSS-treated Dok-1/-2 DKO mice compared with WT mice. Taken together, our results demonstrate that Dok-1 and Dok-2 negatively regulate intestinal inflammation, apparently through the induction of IL-17A and IL-22 expression. - Highlights: • Dok-1 and Dok-2 play a cooperative role in protection against DSS-induced colitis. • Dok-1/-2 double KO (DKO) mice show extensive ulceration of the colon after DSS treatment. • Proliferation of colonic epithelium is inhibited in DSS-treated Dok-1/-2 DKO mice. • Expression of IL-17A and IL-22 is reduced in the colon of DSS-treated Dok-1/-2 DKO mice.« less

  4. Knockout of Epstein-Barr Virus BPLF1 Retards B-Cell Transformation and Lymphoma Formation in Humanized Mice

    PubMed Central

    Li, Guangming; Montgomery, Stephanie A.; Montgomery, Nathan D.; Su, Lishan; Pagano, Joseph S.

    2015-01-01

    ABSTRACT BPLF1 of Epstein-Barr virus (EBV) is classified as a late lytic cycle protein but is also found in the viral tegument, suggesting its potential involvement at both initial and late stages of viral infection. BPLF1 possesses both deubiquitinating and deneddylating activity located in its N-terminal domain and is involved in processes that affect viral infectivity, viral DNA replication, DNA repair, and immune evasion. A recently constructed EBV BPLF1-knockout (KO) virus was used in conjunction with a humanized mouse model that can be infected with EBV, enabling the first characterization of BPLF1 function in vivo. Results demonstrate that the BPLF1-knockout virus is approximately 90% less infectious than wild-type (WT) virus. Transformation of human B cells, a hallmark of EBV infection, was delayed and reduced with BPLF1-knockout virus. Humanized mice infected with EBV BPLF1-knockout virus showed less weight loss and survived longer than mice infected with equivalent infectious units of WT virus. Additionally, splenic tumors formed in 100% of mice infected with WT EBV but in only 25% of mice infected with BPLF1-KO virus. Morphological features of spleens containing tumors were similar to those in EBV-induced posttransplant lymphoproliferative disease (PTLD) and were almost identical to cases seen in human diffuse large B-cell lymphoma. The presence of EBV genomes was detected in all mice that developed tumors. The results implicate BPLF1 in human B-cell transformation and tumor formation in humanized mice. PMID:26489865

  5. Sarcocystis jamaicensis n. sp., from Red-Tailed Hawks (Buteo jamaicensis) Definitive Host and IFN-γ Gene Knockout Mice as Experimental Intermediate Host.

    PubMed

    Verma, S K; von Dohlen, A Rosypal; Mowery, J D; Scott, D; Rosenthal, B M; Dubey, J P; Lindsay, D S

    2017-10-01

    Here, we report a new species of Sarcocystis with red-tailed hawk (RTH, Buteo jamaicensis) as the natural definitive host and IFN-γ gene knockout (KO) mice as an experimental intermediate host in which sarcocysts form in muscle. Two RTHs submitted to the Carolina Raptor Center, Huntersville, North Carolina, were euthanized because they could not be rehabilitated and released. Fully sporulated 12.5 × 9.9-μm sized sporocysts were found in intestinal scrapings of both hawks. Sporocysts were orally fed to laboratory-reared outbred Swiss Webster mice (SW, Mus musculus) and also to KO mice. The sporocysts were infective for KO mice but not for SW mice. All SW mice remained asymptomatic, and neither schizonts nor sarcocysts were found in any SW mice euthanized on days 54, 77, 103 (n = 2) or 137 post-inoculation (PI). The KO mice developed neurological signs and were necropsied between 52 to 68 days PI. Schizonts/merozoites were found in all KO mice euthanized on days 52, 55 (n = 3), 59, 61 (n = 2), 66, and 68 PI and they were confined to the brain. The predominant lesion was meningoencephalitis characterized by perivascular cuffs, granulomas, and necrosis of the neural tissue. The schizonts/merozoites were located in neural tissue and were apparently extravascular. Brain homogenates from infected KO mice were infective to KO mice by subcutaneous inoculation and when seeded on to CV-1 cells. Microscopic sarcocysts were found in skeletal muscles of 5 of 8 KO mice euthanized between 55-61 days PI. Only a few sarcocysts were detected. Sarcocysts were microscopic, up to 3.5 mm long. When viewed with light microscopy, the sarcocyst wall appeared thin (<1 μm thick) and smooth. By transmission electron microscopy, the sarcocyst wall classified as "type 1j" (new designation). Molecular characterization using 18S rRNA, 28S rRNA, ITS-1, and cox1 genes revealed a close relationship with Sarcocystis microti and Sarcocystis glareoli; both species infect birds as definitive hosts

  6. Hyperactivity and lack of social discrimination in the adolescent Fmr1 knockout mouse.

    PubMed

    Sørensen, Emilie M; Bertelsen, Freja; Weikop, Pia; Skovborg, Maria M; Banke, Tue; Drasbek, Kim R; Scheel-Krüger, Jørgen

    2015-12-01

    The aims of this study were to investigate behaviour relevant to human autism spectrum disorder (ASD) and the fragile X syndrome in adolescent Fmr1 knockout (KO) mice and to evaluate the tissue levels of striatal monoamines. Fmr1 KO mice were evaluated in the open field, marble burying and three-chamber test for the presence of hyperactivity, anxiety, repetitive behaviour, sociability and observation of social novelty compared with wild-type (WT) mice. The Fmr1 KO mice expressed anxiety and hyperactivity in the open field compared with WT mice. This increased level of hyperactivity was confirmed in the three-chamber test. Fmr1 KO mice spent more time with stranger mice compared with the WT. However, after a correction for hyperactivity, their apparent increase in sociability became identical to that of the WT. Furthermore, the Fmr1 KO mice could not differentiate between a familiar or a novel mouse. Monoamines were measured by HPLC: Fmr1 KO mice showed an increase in the striatal dopamine level. We conclude that the fragile X syndrome model seems to be useful for understanding certain aspects of ASD and may have translational interest for studies of social behaviour when hyperactivity coexists in ASD patients.

  7. Disruption of BCAA metabolism in mice impairs exercise metabolism and endurance.

    PubMed

    She, Pengxiang; Zhou, Yingsheng; Zhang, Zhiyou; Griffin, Kathleen; Gowda, Kavitha; Lynch, Christopher J

    2010-04-01

    Exercise enhances branched-chain amino acid (BCAA) catabolism, and BCAA supplementation influences exercise metabolism. However, it remains controversial whether BCAA supplementation improves exercise endurance, and unknown whether the exercise endurance effect of BCAA supplementation requires catabolism of these amino acids. Therefore, we examined exercise capacity and intermediary metabolism in skeletal muscle of knockout (KO) mice of mitochondrial branched-chain aminotransferase (BCATm), which catalyzes the first step of BCAA catabolism. We found that BCATm KO mice were exercise intolerant with markedly decreased endurance to exhaustion. Their plasma lactate and lactate-to-pyruvate ratio in skeletal muscle during exercise and lactate release from hindlimb perfused with high concentrations of insulin and glucose were significantly higher in KO than wild-type (WT) mice. Plasma and muscle ammonia concentrations were also markedly higher in KO than WT mice during a brief bout of exercise. BCATm KO mice exhibited 43-79% declines in the muscle concentration of alanine, glutamine, aspartate, and glutamate at rest and during exercise. In response to exercise, the increments in muscle malate and alpha-ketoglutarate were greater in KO than WT mice. While muscle ATP concentration tended to be lower, muscle IMP concentration was sevenfold higher in KO compared with WT mice after a brief bout of exercise, suggesting elevated ammonia in KO is derived from the purine nucleotide cycle. These data suggest that disruption of BCAA transamination causes impaired malate/aspartate shuttle, thereby resulting in decreased alanine and glutamine formation, as well as increases in lactate-to-pyruvate ratio and ammonia in skeletal muscle. Thus BCAA metabolism may regulate exercise capacity in mice.

  8. Th1 and Th17 Immunocompetence in Humanized NOD/SCID/γC-KO mice

    PubMed Central

    Rajesh, Deepika; Zhou, Ying; Jankowska-Gan, Ewa; Ronneburg, Drew Allan; Dart, Melanie M; Torrealba, Jose; Burlingham, William J

    2010-01-01

    We evaluated the immunocompetence of human T cells in humanized NOD-scid IL2r-γ-null (Hu—NSG) mice bearing a human thymic organoid, after multilinegage reconstitution with isogeneic human leukocytes. Delayed type hypersensitivity (DTH) response was assessed by a direct footpad challenge of the immunized hu-NSG host, or by transfer of splenocytes from immunized hu-NSG, along with antigen, into footpads of CB17 SCID mice [trans-vivo (tv) DTH]. Both methods revealed cellular immunity to tetanus toxoid (TT) or collagen type V (ColV). Immunohistochemical analysis of the swollen footpads revealed infiltration of human CD45+ cells, including CD3+ T cells, CD68+ macrophages and murine Ly6G+ neutrophils. We observed a significant correlation between % circulating human CD4+ cells and the direct DTH swelling response to TT. The tvDTH response to TT was inhibited by anti-IFNγ, while the tvDTH response to collagen V was inhibited by anti IL-17 antibody, mimicking the cytokine bias of adult human T cells to these antigens. Hu-NSG mice were also capable of mounting a B cell response (primarily IgM) to TT antigen. The activation of either Th1- or Th17 - dependent cellular immune response supports the utility of Hu-NSG mice as a surrogate model of allograft rejection and autoimmunity. PMID:20298731

  9. Ethanol consumption in mice lacking CD14, TLR2, TLR4, or MyD88

    PubMed Central

    Blednov, Yuri A.; Black, Mendy; Chernis, Julia; Da Costa, Adriana; Mayfield, Jody; Harris, R. Adron

    2016-01-01

    Background Molecular and behavioral studies support a role for innate immune proinflammatory pathways in mediating the effects of alcohol. Increased levels of Toll-like receptors (TLRs) have been observed in animal models of alcohol consumption and in human alcoholics, and many of these TLRs signal via the MyD88-dependent pathway. We hypothesized that this pathway is involved in alcohol drinking and examined some of its key signaling components. Methods Different ethanol drinking paradigms were studied in male and female control C57BL/6J mice vs. mice lacking CD14, TLR2, TLR4 (C57BL/10ScN), or MyD88. We studied continuous and intermittent access two-bottle choice (2BC) and one-bottle and 2BC drinking-in-the-dark (DID) tests as well as preference for saccharin, quinine, and NaCl. Results In the 2BC continuous access test, ethanol intake decreased in male TLR2 knockout (KO) mice, and we previously reported reduced 2BC drinking in male and female CD14 KO mice. In the intermittent access 2BC test, ethanol intake decreased in CD14 KO male and female mice, whereas drinking increased in MyD88 KO male mice. In the 2BC-DID test, ethanol drinking decreased in male and female mice lacking TLR2, whereas drinking increased in MyD88 KO male mice. In the one-bottle DID test, ethanol intake decreased in female TLR2 KO mice. TLR2 KO and CD14 KO mice did not differ in saccharin preference but showed reduced preference for NaCl. MyD88 KO mice showed a slight reduction in preference for saccharin. Conclusions Deletion of key components of the MyD88-dependent pathway produced differential effects on ethanol intake by decreasing (TLR2 KO and CD14 KO) or increasing (MyD88 KO) drinking, while deletion of TLR4 had no effect. Some of the drinking effects depended on the sex of the mice and/or the ethanol-drinking model. PMID:28146272

  10. Behavioral Characteristics of Ubiquitin-Specific Peptidase 46-Deficient Mice

    PubMed Central

    Imai, Saki; Kano, Makoto; Nonoyama, Keiko; Ebihara, Shizufumi

    2013-01-01

    We have previously identified Usp46, which encodes for ubiquitin-specific peptidase 46, as a quantitative trait gene affecting the immobility time of mice in the tail suspension test (TST) and forced swimming test. The mutation that we identified was a 3-bp deletion coding for lysine (Lys 92), and mice with this mutation (MT mice), as well as Usp46 KO mice exhibited shorter TST immobility times. Behavioral pharmacology suggests that the gamma aminobutyric acid A (GABAA) receptor is involved in regulating TST immobility time. In order to understand how far Usp46 controls behavioral phenotypes, which could be related to mental disorders in humans, we subjected Usp46 MT and KO mice to multiple behavioral tests, including the open field test, ethanol preference test, ethanol-induced loss of righting reflex test, sucrose preference test, novelty-suppressed feeding test, marble burying test, and novel object recognition test. Although behavioral phenotypes of the Usp46 MT and KO mice were not always identical, deficiency of Usp46 significantly affected performance in all these tests. In the open field test, activity levels were lower in Usp46 KO mice than wild type (WT) or MT mice. Both MT and KO mice showed lower ethanol preference and shorter recovery times after ethanol administration. Compared to WT mice, Usp46 MT and KO mice exhibited decreased sucrose preference, took longer latency periods to bite pellets, and buried more marbles in the sucrose preference test, novelty-suppressed feeding test, and marble burying test, respectively. In the novel object recognition test, neither MT nor KO mice showed an increase in exploration of a new object 24 hours after training. These findings indicate that Usp46 regulates a wide range of behavioral phenotypes that might be related to human mental disorders and provides insight into the function of USP46 deubiquitinating enzyme in the neural system. PMID:23472206

  11. Role of corticosteroid binding globulin in emotional reactivity sex differences in mice.

    PubMed

    Minni, A M; de Medeiros, G F; Helbling, J C; Duittoz, A; Marissal-Arvy, N; Foury, A; De Smedt-Peyrusse, V; Pallet, V; Moisan, M P

    2014-12-01

    Sex differences exist for stress reactivity as well as for the prevalence of depression, which is more frequent in women of reproductive age and often precipitated by stressful events. In animals, the differential effect of stress on male's and female's emotional behavior has been well documented. Crosstalk between the gonadal and stress hormones, in particular between estrogens and glucocorticoids, underlie these sex differences on stress vulnerability. We have previously shown that corticosteroid binding globulin (CBG) deficiency in a mouse model (Cbg k.o.) leads, in males, to an increased despair-like behavior caused by suboptimal corticosterone stress response. Because CBG displays a sexual dimorphism and is regulated by estrogens, we have now investigated whether it plays a role in the sex differences observed for emotional reactivity in mice. By analyzing Cbg k.o. and wild-type (WT) animals of both sexes, we detected sex differences in despair-like behavior in WT mice but not in Cbg k.o. animals. We showed through ovariectomy and estradiol (E2) replacement that E2 levels explain the sex differences found in WT animals. However, the manipulation of E2 levels did not affect the emotional behavior of Cbg k.o. females. As Cbg k.o. males, Cbg k.o. females have markedly reduced corticosterone levels across the circadian cycle and also after stress. Plasma free corticosterone levels in Cbg k.o. mice measured immediately after stress were blunted in both sexes compared to WT mice. A trend for higher mean levels of ACTH in Cbg k.o. mice was found for both sexes. The turnover of a corticosterone bolus was increased in Cbg k.o. Finally, the glucocorticoid-regulated immediate early gene early growth response 1 (Egr1) showed a blunted mRNA expression in the hippocampus of Cbg k.o. mutants while mineralocorticoid and glucocorticoid receptors presented sex differences but equivalent mRNA expression between genotypes. Thus, in our experimental conditions, sex differences for

  12. 3,4-methylenedioxymethamphetamine self-administration is abolished in serotonin transporter knockout mice.

    PubMed

    Trigo, José Manuel; Renoir, Thibault; Lanfumey, Laurence; Hamon, Michel; Lesch, Klaus-Peter; Robledo, Patricia; Maldonado, Rafael

    2007-09-15

    The neurobiological mechanism underlying the reinforcing effects of 3,4-methylenedioxymethamphetamine (MDMA) remains unclear. The aim of the present study was to determine the contribution of the serotonin transporter (SERT) in MDMA self-administration behavior by using knockout (KO) mice deficient in SERT. Knockout mice and wild-type (WT) littermates were trained to acquire intravenous self-administration of MDMA (0, .03, .06, .125, and .25 mg/kg/infusion) on a fixed ratio 1 (FR1) schedule of reinforcement. Additional groups of mice were trained to obtain food and water to rule out operant responding impairments. Microdialysis studies were performed to evaluate dopamine (DA) and serotonin (5-HT) extracellular levels in the nucleus accumbens (NAC) and prefrontal cortex (PFC), respectively, after acute MDMA (10 mg/kg). None of the MDMA doses tested maintained intravenous self-administration in KO animals, whereas WT mice acquired responding for MDMA. Acquisition of operant responding for food and water was delayed in KO mice, but no differences between genotypes were observed on the last day of training. MDMA increased DA extracellular levels to a similar extent in the NAC of WT and KO mice. Conversely, extracellular concentrations of 5-HT in the PFC were increased following MDMA only in WT mice. These findings provide evidence for the specific involvement of SERT in MDMA reinforcing properties.

  13. Narcolepsy susceptibility gene CCR3 modulates sleep-wake patterns in mice.

    PubMed

    Toyoda, Hiromi; Honda, Yoshiko; Tanaka, Susumu; Miyagawa, Taku; Honda, Makoto; Honda, Kazuki; Tokunaga, Katsushi; Kodama, Tohru

    2017-01-01

    Narcolepsy is caused by the loss of hypocretin (Hcrt) neurons and is associated with multiple genetic and environmental factors. Although abnormalities in immunity are suggested to be involved in the etiology of narcolepsy, no decisive mechanism has been established. We previously reported chemokine (C-C motif) receptor 3 (CCR3) as a novel susceptibility gene for narcolepsy. To understand the role of CCR3 in the development of narcolepsy, we investigated sleep-wake patterns of Ccr3 knockout (KO) mice. Ccr3 KO mice exhibited fragmented sleep patterns in the light phase, whereas the overall sleep structure in the dark phase did not differ between Ccr3 KO mice and wild-type (WT) littermates. Intraperitoneal injection of lipopolysaccharide (LPS) promoted wakefulness and suppressed both REM and NREM sleep in the light phase in both Ccr3 KO and WT mice. Conversely, LPS suppressed wakefulness and promoted NREM sleep in the dark phase in both genotypes. After LPS administration, the proportion of time spent in wakefulness was higher, and the proportion of time spent in NREM sleep was lower in Ccr3 KO compared to WT mice only in the light phase. LPS-induced changes in sleep patterns were larger in Ccr3 KO compared to WT mice. Furthermore, we quantified the number of Hcrt neurons and found that Ccr3 KO mice had fewer Hcrt neurons in the lateral hypothalamus compared to WT mice. We found abnormalities in sleep patterns in the resting phase and in the number of Hcrt neurons in Ccr3 KO mice. These observations suggest a role for CCR3 in sleep-wake regulation in narcolepsy patients.

  14. Successful adaptation to ketosis by mice with tissue-specific deficiency of ketone body oxidation

    PubMed Central

    Cotter, David G.; Schugar, Rebecca C.; Wentz, Anna E.; André d'Avignon, D.

    2013-01-01

    During states of low carbohydrate intake, mammalian ketone body metabolism transfers energy substrates originally derived from fatty acyl chains within the liver to extrahepatic organs. We previously demonstrated that the mitochondrial enzyme coenzyme A (CoA) transferase [succinyl-CoA:3-oxoacid CoA transferase (SCOT), encoded by nuclear Oxct1] is required for oxidation of ketone bodies and that germline SCOT-knockout (KO) mice die within 48 h of birth because of hyperketonemic hypoglycemia. Here, we use novel transgenic and tissue-specific SCOT-KO mice to demonstrate that ketone bodies do not serve an obligate energetic role within highly ketolytic tissues during the ketogenic neonatal period or during starvation in the adult. Although transgene-mediated restoration of myocardial CoA transferase in germline SCOT-KO mice is insufficient to prevent lethal hyperketonemic hypoglycemia in the neonatal period, mice lacking CoA transferase selectively within neurons, cardiomyocytes, or skeletal myocytes are all viable as neonates. Like germline SCOT-KO neonatal mice, neonatal mice with neuronal CoA transferase deficiency exhibit increased cerebral glycolysis and glucose oxidation, and, while these neonatal mice exhibit modest hyperketonemia, they do not develop hypoglycemia. As adults, tissue-specific SCOT-KO mice tolerate starvation, exhibiting only modestly increased hyperketonemia. Finally, metabolic analysis of adult germline Oxct1+/− mice demonstrates that global diminution of ketone body oxidation yields hyperketonemia, but hypoglycemia emerges only during a protracted state of low carbohydrate intake. Together, these data suggest that, at the tissue level, ketone bodies are not a required energy substrate in the newborn period or during starvation, but rather that integrated ketone body metabolism mediates adaptation to ketogenic nutrient states. PMID:23233542

  15. Successful adaptation to ketosis by mice with tissue-specific deficiency of ketone body oxidation.

    PubMed

    Cotter, David G; Schugar, Rebecca C; Wentz, Anna E; d'Avignon, D André; Crawford, Peter A

    2013-02-15

    During states of low carbohydrate intake, mammalian ketone body metabolism transfers energy substrates originally derived from fatty acyl chains within the liver to extrahepatic organs. We previously demonstrated that the mitochondrial enzyme coenzyme A (CoA) transferase [succinyl-CoA:3-oxoacid CoA transferase (SCOT), encoded by nuclear Oxct1] is required for oxidation of ketone bodies and that germline SCOT-knockout (KO) mice die within 48 h of birth because of hyperketonemic hypoglycemia. Here, we use novel transgenic and tissue-specific SCOT-KO mice to demonstrate that ketone bodies do not serve an obligate energetic role within highly ketolytic tissues during the ketogenic neonatal period or during starvation in the adult. Although transgene-mediated restoration of myocardial CoA transferase in germline SCOT-KO mice is insufficient to prevent lethal hyperketonemic hypoglycemia in the neonatal period, mice lacking CoA transferase selectively within neurons, cardiomyocytes, or skeletal myocytes are all viable as neonates. Like germline SCOT-KO neonatal mice, neonatal mice with neuronal CoA transferase deficiency exhibit increased cerebral glycolysis and glucose oxidation, and, while these neonatal mice exhibit modest hyperketonemia, they do not develop hypoglycemia. As adults, tissue-specific SCOT-KO mice tolerate starvation, exhibiting only modestly increased hyperketonemia. Finally, metabolic analysis of adult germline Oxct1(+/-) mice demonstrates that global diminution of ketone body oxidation yields hyperketonemia, but hypoglycemia emerges only during a protracted state of low carbohydrate intake. Together, these data suggest that, at the tissue level, ketone bodies are not a required energy substrate in the newborn period or during starvation, but rather that integrated ketone body metabolism mediates adaptation to ketogenic nutrient states.

  16. CaSR-mediated interactions between calcium and magnesium homeostasis in mice.

    PubMed

    Quinn, Stephen J; Thomsen, Alex R B; Egbuna, Ogo; Pang, Jian; Baxi, Khanjan; Goltzman, David; Pollak, Martin; Brown, Edward M

    2013-04-01

    Calcium (Ca) and magnesium (Mg) homeostasis are interrelated and share common regulatory hormones, including parathyroid hormone (PTH) and vitamin D. However, the role of the calcium-sensing receptor (CaSR) in Mg homeostasis in vivo is not well understood. We sought to investigate the interactions between Mg and Ca homeostasis using genetic mouse models with targeted inactivation of PTH (PTH KO) or both PTH and the calcium-sensing receptor (CaSR) (double knockout, DKO). Serum Mg is lower in PTH KO and DKO mice than in WT mice on standard chow, whereas supplemental dietary Ca leads to equivalent Mg levels for all three genotypes. Mg loading increases serum Mg in all genotypes; however, the increase in serum Mg is most pronounced in the DKO mice. Serum Ca is increased with Mg loading in the PTH KO and DKO mice but not in the WT mice. Here, too, the hypercalcemia is much greater in the DKO mice. Serum and especially urinary phosphate are reduced during Mg loading, which is likely due to intestinal chelation of phosphate by Mg. Mg loading decreases serum PTH in WT mice and increases serum calcitonin in both WT and PTH KO mice but not DKO mice. Furthermore, Mg loading elevates serum 1,25-dihydroxyvitamin D in all genotypes, with greater effects in PTH KO and DKO mice, possibly due to reduced levels of serum phosphorus and FGF23. These hormonal responses to Mg loading and the CaSR's role in regulating renal function may help to explain changes in serum Mg and Ca found during Mg loading.

  17. Conditional Deletion of Bmal1 in Ovarian Theca Cells Disrupts Ovulation in Female Mice.

    PubMed

    Mereness, Amanda L; Murphy, Zachary C; Forrestel, Andrew C; Butler, Susan; Ko, CheMyong; Richards, JoAnne S; Sellix, Michael T

    2016-02-01

    Rhythmic events in female reproductive physiology, including ovulation, are tightly controlled by the circadian timing system. The molecular clock, a feedback loop oscillator of clock gene transcription factors, dictates rhythms of gene expression in the hypothalamo-pituitary-ovarian axis. Circadian disruption due to environmental factors (eg, shift work) or genetic manipulation of the clock has negative impacts on fertility. Although the central pacemaker in the suprachiasmatic nucleus classically regulates the timing of ovulation, we have shown that this rhythm also depends on phasic sensitivity to LH. We hypothesized that this rhythm relies on clock function in a specific cellular compartment of the ovarian follicle. To test this hypothesis we generated mice with deletion of the Bmal1 locus in ovarian granulosa cells (GCs) (Granulosa Cell Bmal1 KO; GCKO) or theca cells (TCs) (Theca Cell Bmal1 KO; TCKO). Reproductive cycles, preovulatory LH secretion, ovarian morphology and behavior were not grossly altered in GCKO or TCKO mice. We detected phasic sensitivity to LH in wild-type littermate control (LC) and GCKO mice but not TCKO mice. This decline in sensitivity to LH is coincident with impaired fertility and altered patterns of LH receptor (Lhcgr) mRNA abundance in the ovary of TCKO mice. These data suggest that the TC is a pacemaker that contributes to the timing and amplitude of ovulation by modulating phasic sensitivity to LH. The TC clock may play a critical role in circadian disruption-mediated reproductive pathology and could be a target for chronobiotic management of infertility due to environmental circadian disruption and/or hormone-dependent reprogramming in women.

  18. Deficiency of liver Comparative Gene Identification-58 causes steatohepatitis and fibrosis in mice

    PubMed Central

    Guo, Feng; Ma, Yinyan; Kadegowda, Anil K. G.; Betters, Jenna L.; Xie, Ping; Liu, George; Liu, Xiuli; Miao, Hongming; Ou, Juanjuan; Su, Xiong; Zheng, Zhenlin; Xue, Bingzhong; Shi, Hang; Yu, Liqing

    2013-01-01

    Triglyceride (TG) accumulation in hepatocytes (hepatic steatosis) preludes the development of advanced nonalcoholic fatty liver diseases (NAFLDs) such as steatohepatitis, fibrosis, and cirrhosis. Mutations in human Comparative Gene Identification-58 (CGI-58) cause cytosolic TG-rich lipid droplets to accumulate in almost all cell types including hepatocytes. However, it is unclear if CGI-58 mutation causes hepatic steatosis locally or via altering lipid metabolism in other tissues. To directly address this question, we created liver-specific CGI-58 knockout (LivKO) mice. LivKO mice on standard chow diet displayed microvesicular and macrovesicular panlobular steatosis, and progressed to advanced NAFLD stages over time, including lobular inflammation and centrilobular fibrosis. Compared with CGI-58 floxed control littermates, LivKO mice showed 8-fold and 52-fold increases in hepatic TG content, which was associated with 40% and 58% decreases in hepatic TG hydrolase activity at 16 and 42 weeks, respectively. Hepatic cholesterol also increased significantly in LivKO mice. At 42 weeks, LivKO mice showed increased hepatic oxidative stress, plasma aminotransferases, and hepatic mRNAs for genes involved in fibrosis and inflammation, such as α-smooth muscle actin, collagen type 1 α1, tumor necrosis factor α, and interleukin-1β. In conclusion, CGI-58 deficiency in the liver directly causes not only hepatic steatosis but also steatohepatitis and fibrosis. PMID:23733885

  19. Dopamine Release and Uptake Impairments and Behavioral Alterations Observed in Mice that Model Fragile X Mental Retardation Syndrome.

    PubMed

    Fulks, Jenny L; O'Bryhim, Bliss E; Wenzel, Sara K; Fowler, Stephen C; Vorontsova, Elena; Pinkston, Jonathan W; Ortiz, Andrea N; Johnson, Michael A

    2010-10-20

    In this study we evaluated the relationship between amphetamine-induced behavioral alterations and dopamine release and uptake characteristics in Fmr1 knockout (Fmr1 KO) mice, which model fragile X syndrome. The behavioral analyses, obtained at millisecond temporal resolution and 2 mm spatial resolution using a force-plate actometer, revealed that Fmr1 KO mice express a lower degree of focused stereotypy compared to wild type (WT) control mice after injection with 10 mg/kg (ip) amphetamine. To identify potentially related neurochemical mechanisms underlying this phenomenon, we measured electrically-evoked dopamine release and uptake using fast-scan cyclic voltammetry at carbon-fiber microelectrodes in striatal brain slices. At 10 weeks of age, dopamine release per pulse, which is dopamine release corrected for differences in uptake, was unchanged. However, at 15 (the age of behavioral testing) and 20 weeks of age, dopamine per pulse and the maximum rate of dopamine uptake was diminished in Fmr1 KO mice compared to WT mice. Dopamine uptake measurements, obtained at different amphetamine concentrations, indicated that dopamine transporters in both genotypes have equal affinities for amphetamine. Moreover, dopamine release measurements from slices treated with quinpirole, a D2-family receptor agonist, rule out enhanced D2 autoreceptor sensitivity as a mechanism of release inhibition. However, dopamine release, uncorrected for uptake and normalized against the corresponding pre-drug release peaks, increased in Fmr1 KO mice, but not in WT mice. Collectively, these data are consistent with a scenario in which a decrease in extracellular dopamine levels in the striatum result in diminished expression of focused stereotypy in Fmr1 KO mice.

  20. Abnormal type I collagen post-translational modification and crosslinking in a cyclophilin B KO mouse model of recessive osteogenesis imperfecta.

    PubMed

    Cabral, Wayne A; Perdivara, Irina; Weis, MaryAnn; Terajima, Masahiko; Blissett, Angela R; Chang, Weizhong; Perosky, Joseph E; Makareeva, Elena N; Mertz, Edward L; Leikin, Sergey; Tomer, Kenneth B; Kozloff, Kenneth M; Eyre, David R; Yamauchi, Mitsuo; Marini, Joan C

    2014-06-01

    Cyclophilin B (CyPB), encoded by PPIB, is an ER-resident peptidyl-prolyl cis-trans isomerase (PPIase) that functions independently and as a component of the collagen prolyl 3-hydroxylation complex. CyPB is proposed to be the major PPIase catalyzing the rate-limiting step in collagen folding. Mutations in PPIB cause recessively inherited osteogenesis imperfecta type IX, a moderately severe to lethal bone dysplasia. To investigate the role of CyPB in collagen folding and post-translational modifications, we generated Ppib-/- mice that recapitulate the OI phenotype. Knock-out (KO) mice are small, with reduced femoral areal bone mineral density (aBMD), bone volume per total volume (BV/TV) and mechanical properties, as well as increased femoral brittleness. Ppib transcripts are absent in skin, fibroblasts, femora and calvarial osteoblasts, and CyPB is absent from KO osteoblasts and fibroblasts on western blots. Only residual (2-11%) collagen prolyl 3-hydroxylation is detectable in KO cells and tissues. Collagen folds more slowly in the absence of CyPB, supporting its rate-limiting role in folding. However, treatment of KO cells with cyclosporine A causes further delay in folding, indicating the potential existence of another collagen PPIase. We confirmed and extended the reported role of CyPB in supporting collagen lysyl hydroxylase (LH1) activity. Ppib-/- fibroblast and osteoblast collagen has normal total lysyl hydroxylation, while increased collagen diglycosylation is observed. Liquid chromatography/mass spectrometry (LC/MS) analysis of bone and osteoblast type I collagen revealed site-specific alterations of helical lysine hydroxylation, in particular, significantly reduced hydroxylation of helical crosslinking residue K87. Consequently, underhydroxylated forms of di- and trivalent crosslinks are strikingly increased in KO bone, leading to increased total crosslinks and decreased helical hydroxylysine- to lysine-derived crosslink ratios. The altered crosslink

  1. Adenosine A1 receptors link to smooth muscle contraction via CYP4a, PKC-α, and ERK1/2

    PubMed Central

    Kunduri, SS; Mustafa, SJ; Ponnoth, DS; Dick, GM; Nayeem, MA

    2013-01-01

    Adenosine A1 receptor (A1AR) activation contracts smooth muscle, although signaling mechanisms aren’t thoroughly understood. Activation of A1AR leads to metabolism of arachidonic acid, including the production of 20-hydroxyeicosatetraenoic acid (20-HETE) by cytochrome P4504a (CYP4a). 20-HETE can activate protein kinase C-α (PKC-α) which crosstalks with extracellular signal-regulated kinase (ERK1/2) pathway. Both these pathways can regulate smooth muscle contraction, we tested the hypothesis that A1AR contracts smooth muscle through a pathway involving CYP4a, PKC-α, and ERK1/2. Experiments included isometric tension recordings of aortic contraction and Western blots of signaling molecules in wild type (WT) and A1AR knockout (A1KO) mice. Contraction to the A1-selective agonist CCPA was absent in A1KO mice aortae, indicating the contractile role of A1AR. Inhibition of CYP4a (HET0016) abolished CCPA-induced contraction in WT aortae, indicating a critical role for 20-HETE. Both WT and A1KO mice aortae contracted in response to exogenous 20-HETE. Inhibition of PKC-α (Gö6976) or ERK1/2 (PD98059) attenuated 20-HETE-induced contraction equally, suggesting that ERK1/2 is downstream of PKC-α. Contractions to exogenous 20-HETE were significantly less in A1KO mice; reduced protein levels of PKC-α, p-ERK1/2, and total ERK1/2 supported this observation. Our data indicate that A1AR mediates smooth muscle contraction via CYP4a and a PKC-α-ERK1/2 pathway. PMID:23519140

  2. Exercise-induced muscle glucose uptake in mice with graded, muscle-specific GLUT-4 deletion

    PubMed Central

    Howlett, Kirsten F; Andrikopoulos, Sofianos; Proietto, Joseph; Hargreaves, Mark

    2013-01-01

    To investigate the importance of the glucose transporter GLUT-4 for muscle glucose uptake during exercise, transgenic mice with skeletal muscle GLUT-4 expression approximately 30–60% of normal (CON) and approximately 5–10% of normal (KO) were generated using the Cre/Lox system and compared with wild-type (WT) mice during approximately 40 min of treadmill running (KO: 37.7 ± 1.3 min; WT: 40 min; CON: 40 min, P = 0.18). In WT and CON animals, exercise resulted in an overall increase in muscle glucose uptake. More specifically, glucose uptake was increased in red gastrocnemius of WT mice and in the soleus and red gastrocnemius of CON mice. In contrast, the exercise-induced increase in muscle glucose uptake in all muscles was completely abolished in KO mice. Muscle glucose uptake increased during exercise in both red and white quadriceps of WT mice, while the small increases in CON mice were not statistically significant. In KO mice, there was no change at all in quadriceps muscle glucose uptake. No differences in muscle glycogen use during exercise were observed between any of the groups. However, there was a significant increase in plasma glucose levels after exercise in KO mice. The results of this study demonstrated that a reduction in skeletal muscle GLUT-4 expression to approximately 10% of normal levels completely abolished the exercise-induced increase in muscle glucose uptake. PMID:24303141

  3. Behavioral and pharmacological phenotypes of brain-specific diacylglycerol kinase δ-knockout mice.

    PubMed

    Usuki, Takako; Takato, Tamae; Lu, Qiang; Sakai, Hiromichi; Bando, Kana; Kiyonari, Hiroshi; Sakane, Fumio

    2016-10-01

    Diacylglycerol kinase (DGK) is a lipid-metabolizing enzyme that phosphorylates diacylglycerol to produce phosphatidic acid. Previously, we reported that the δ isozyme of DGK was abundantly expressed in the mouse brain. However, the functions of DGKδ in the brain are still unclear. Because conventional DGKδ-knockout (KO) mice die within 24h after birth, we have generated brain-specific conditional DGKδ-KO mice to circumvent the lethality. In the novel object recognition test, the number of contacts in the DGKδ-KO mice to novel and familiar objects was greatly increased compared to the control mice, indicating that the DGKδ-KO mice showed irrational contacts with objects such as compulsive checking. In the marble burying test, which is used for analyzing obsessive-compulsive disorder (OCD)-like phenotypes, the DGKδ-KO mice buried more marbles than the control mice. Additionally, these phenotypes were significantly alleviated by the administration of an OCD remedy, fluoxetine. These results indicate that the DGKδ-KO mice showed OCD-like behaviors. Moreover, the number of long axon/neurites increased in both DGKδ-KO primary cortical neurons and DGKδ-knockdown neuroblastoma Neuro-2a cells compared to control cells. Conversely, overexpression of DGKδ decreased the number of long axon/neurites of Neuro-2a cells. Taken together, these results strongly suggest that a deficiency of DGKδ induces OCD-like behavior through enhancing axon/neurite outgrowth. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Running promotes wakefulness and increases cataplexy in orexin knockout mice.

    PubMed

    España, Rodrigo A; McCormack, Sarah L; Mochizuki, Takatoshi; Scammell, Thomas E

    2007-11-01

    People with narcolepsy and mice lacking orexin/hypocretin have disrupted sleep/wake behavior and reduced physical activity. Our objective was to identify physiologic mechanisms through which orexin deficiency reduces locomotor activity. We examined spontaneous wheel running activity and its relationship to sleep/wake behavior in wild type (WT) and orexin knockout (KO) mice. Additionally, given that physical activity promotes alertness, we also studied whether orexin deficiency reduces the wake-promoting effects of exercise. Orexin KO mice ran 42% less than WT mice. Their ability to run appeared normal as they initiated running as often as WT mice and ran at normal speeds. However, their running bouts were considerably shorter, and they often had cataplexy or quick transitions into sleep after running. Wheel running increased the total amount of wakefulness in WT and orexin KO mice similarly, however, KO mice continued to have moderately fragmented sleep/wake behavior. Wheel running also doubled the amount of cataplexy by increasing the probability of transitioning into cataplexy. Orexin KO mice run significantly less than normal, likely due to sleepiness, imminent cataplexy, or a reduced motivation to run. Orexin is not required for the wake-promoting effects of wheel running given that both WT and KO mice had similar increases in wakefulness with running wheels. In addition, the clear increase in cataplexy with wheel running suggests the possibility that positive emotions or reward can trigger murine cataplexy, similar to that seen in people and dogs with narcolepsy.

  5. Progression of Alport Kidney Disease in Col4a3 Knock Out Mice Is Independent of Sex or Macrophage Depletion by Clodronate Treatment

    PubMed Central

    Kim, Munkyung; Piaia, Alessandro; Shenoy, Neeta; Kagan, David; Gapp, Berangere; Kueng, Benjamin; Weber, Delphine; Dietrich, William; Ksiazek, Iwona

    2015-01-01

    Alport syndrome is a genetic disease of collagen IV (α3, 4, 5) resulting in renal failure. This study was designed to investigate sex-phenotype correlations and evaluate the contribution of macrophage infiltration to disease progression using Col4a3 knock out (Col4a3KO) mice, an established genetic model of autosomal recessive Alport syndrome. No sex differences in the evolution of body mass loss, renal pathology, biomarkers of tubular damage KIM-1 and NGAL, or deterioration of kidney function were observed during the life span of Col4a3KO mice. These findings confirm that, similar to human autosomal recessive Alport syndrome, female and male Col4a3KO mice develop renal failure at the same age and with similar severity. The specific contribution of macrophage infiltration to Alport disease, one of the prominent features of the disease in human and Col4a3KO mice, remains unknown. This study shows that depletion of kidney macrophages in Col4a3KO male mice by administration of clodronate liposomes, prior to clinical onset of disease and throughout the study period, does not protect the mice from renal failure and interstitial fibrosis, nor delay disease progression. These results suggest that therapy targeting macrophage recruitment to kidney is unlikely to be effective as treatment of Alport syndrome. PMID:26555339

  6. Knockout of arsenic (+3 oxidation state) methyltransferase is associated with adverse metabolic phenotype in mice: the role of sex and arsenic exposure.

    PubMed

    Douillet, Christelle; Huang, Madelyn C; Saunders, R Jesse; Dover, Ellen N; Zhang, Chongben; Stýblo, Miroslav

    2017-07-01

    Susceptibility to toxic effects of inorganic arsenic (iAs) depends, in part, on efficiency of iAs methylation by arsenic (+3 oxidation state) methyltransferase (AS3MT). As3mt-knockout (KO) mice that cannot efficiently methylate iAs represent an ideal model to study the association between iAs metabolism and adverse effects of iAs exposure, including effects on metabolic phenotype. The present study compared measures of glucose metabolism, insulin resistance and obesity in male and female wild-type (WT) and As3mt-KO mice during a 24-week exposure to iAs in drinking water (0.1 or 1 mg As/L) and in control WT and As3mt-KO mice drinking deionized water. Results show that effects of iAs exposure on fasting blood glucose (FBG) and glucose tolerance in either WT or KO mice were relatively minor and varied during the exposure. The major effects were associated with As3mt KO. Both male and female control KO mice had higher body mass with higher percentage of fat than their respective WT controls. However, only male KO mice were insulin resistant as indicated by high FBG, and high plasma insulin at fasting state and 15 min after glucose challenge. Exposure to iAs increased fat mass and insulin resistance in both male and female KO mice, but had no significant effects on body composition or insulin resistance in WT mice. These data suggest that As3mt KO is associated with an adverse metabolic phenotype that is characterized by obesity and insulin resistance, and that the extent of the impairment depends on sex and exposure to iAs, including exposure to iAs from mouse diet.

  7. Increased mandibular condylar growth in mice with estrogen receptor beta deficiency.

    PubMed

    Kamiya, Yosuke; Chen, Jing; Xu, Manshan; Utreja, Achint; Choi, Thomas; Drissi, Hicham; Wadhwa, Sunil

    2013-05-01

    Temporomandibular joint (TMJ) disorders predominantly afflict women of childbearing age, suggesting a role for female hormones in the disease process. In long bones, estrogen acting via estrogen receptor beta (ERβ) inhibits axial skeletal growth in female mice. However, the role of ERβ in the mandibular condyle is largely unknown. We hypothesize that female ERβ-deficient mice will have increased mandibular condylar growth compared to wild-type (WT) female mice. This study examined female 7-day-old, 49-day-old, and 120-day-old WT and ERβ knockout (KO) mice. There was a significant increase in mandibular condylar cartilage thickness as a result of an increased number of cells, in the 49-day-old and 120-day-old female ERβ KO compared with WT controls. Analysis in 49-day-old female ERβ KO mice revealed a significant increase in collagen type X, parathyroid hormone-related protein (Pthrp), and osteoprotegerin gene expression and a significant decrease in receptor activator for nuclear factor κ B ligand (Rankl) and Indian hedgehog (Ihh) gene expression, compared with WT controls. Subchondral bone analysis revealed a significant increase in total condylar volume and a decrease in the number of osteoclasts in the 49-day-old ERβ KO compared with WT female mice. There was no difference in cell proliferation in condylar cartilage between the genotypes. However, there were differences in the expression of proteins that regulate the cell cycle; we found a decrease in the expression of Tieg1 and p57 in the mandibular condylar cartilage from ERβ KO mice compared with WT mice. Taken together, our results suggest that ERβ deficiency increases condylar growth in female mice by inhibiting the turnover of fibrocartilage. Copyright © 2013 American Society for Bone and Mineral Research.

  8. Lack of stress responses to long-term effects of corticosterone in Caps2 knockout mice.

    PubMed

    Mishima, Yuriko; Shinoda, Yo; Sadakata, Tetsushi; Kojima, Masami; Wakana, Shigeharu; Furuichi, Teiichi

    2015-03-10

    Chronic stress is associated with anxiety and depressive disorders, and can cause weight gain. Ca(2+)-dependent activator protein for secretion 2 (CAPS2) is involved in insulin release. Caps2 knockout (KO) mice exhibit decreased body weight, reduced glucose-induced insulin release, and abnormal psychiatric behaviors. We chronically administered the stress hormone corticosterone (CORT), which induces anxiety/depressive-like behavior and normally increases plasma insulin levels, via the drinking water for 10 weeks, and we examined the stress response in KO mice. Chronic CORT exposure inhibited stress-induced serum CORT elevation in wild-type (WT) mice, but not in KO mice. Poor weight gain in CORT-treated animals was observed until week 6 in WT mice, but persisted for the entire duration of the experiment in KO mice, although there is no difference in drug*genotype interaction. Among KO mice, food consumption was unchanged, while water consumption was higher, over the duration of the experiment in CORT-treated animals, compared with untreated animals. Moreover, serum insulin and leptin levels were increased in CORT-treated WT mice, but not in KO mice. Lastly, both WT and KO mice displayed anxiety/depressive-like behavior after CORT administration. These results suggest that Caps2 KO mice have altered endocrine responses to CORT administration, while maintaining CORT-induced anxiety/depressive-like behavior.

  9. TNF-α and Temporal Changes in Sleep Architecture in Mice Exposed to Sleep Fragmentation

    PubMed Central

    2012-01-01

    TNF-α plays critical roles in host-defense, sleep-wake regulation, and the pathogenesis of various disorders. Increases in the concentration of circulating TNF-α after either sleep deprivation or sleep fragmentation (SF) appear to underlie excessive daytime sleepiness in patients with sleep apnea (OSA). Following baseline recordings, mice were subjected to 15 days of SF (daily for 12 h/day from 07.00 h to 19.00 h), and sleep parameters were recorded on days1, 7 and 15. Sleep architecture and sleep propensity were assessed in both C57BL/6J and in TNF-α double receptor KO mice (TNFR KO). To further confirm the role of TNF-α, we also assessed the effect of treatment with a TNF- α neutralizing antibody in C57BL/6J mice. SF was not associated with major changes in global sleep architecture in C57BL/6J and TNFR KO mice. TNFR KO mice showed higher baseline SWS delta power. Further, following 15 days of SF, mice injected with TNF-α neutralizing antibody and TNFR KO mice showed increased EEG SWS activity. However, SWS latency, indicative of increased propensity to sleep, was only decreased in C57BL/6J, and was unaffected in TNFR KO mice as well as in C57BL/6J mice exposed to SF but treated with TNF-α neutralizing antibody. Taken together, our findings show that the excessive sleepiness incurred by recurrent arousals during sleep may be due to activation of TNF-alpha-dependent inflammatory pathways, despite the presence of preserved sleep duration and global sleep architecture. PMID:23029133

  10. Stem cell antigen-1 in skeletal muscle function.

    PubMed

    Bernstein, Harold S; Samad, Tahmina; Cholsiripunlert, Sompob; Khalifian, Saami; Gong, Wenhui; Ritner, Carissa; Aurigui, Julian; Ling, Vivian; Wilschut, Karlijn J; Bennett, Stephen; Hoffman, Julien; Oishi, Peter

    2013-08-15

    Stem cell antigen-1 (Sca-1) is a member of the Ly-6 multigene family encoding highly homologous, glycosyl-phosphatidylinositol-anchored membrane proteins. Sca-1 is expressed on muscle-derived stem cells and myogenic precursors recruited to sites of muscle injury. We previously reported that inhibition of Sca-1 expression stimulated myoblast proliferation in vitro and regulated the tempo of muscle repair in vivo. Despite its function in myoblast expansion during muscle repair, a role for Sca-1 in normal, post-natal muscle has not been thoroughly investigated. We systematically compared Sca-1-/- (KO) and Sca-1+/+ (WT) mice and hindlimb muscles to elucidate the tissue, contractile, and functional effects of Sca-1 in young and aging animals. Comparison of muscle volume, fibrosis, myofiber cross-sectional area, and Pax7+ myoblast number showed little differences between ages or genotypes. Exercise protocols, however, demonstrated decreased stamina in KO versus WT mice, with young KO mice achieving results similar to aging WT animals. In addition, KO mice did not improve with practice, while WT animals demonstrated conditioning over time. Surprisingly, myomechanical analysis of isolated muscles showed that KO young muscle generated more force and experienced less fatigue. However, KO muscle also demonstrated incomplete relaxation with fatigue. These findings suggest that Sca-1 is necessary for muscle conditioning with exercise, and that deficient conditioning in Sca-1 KO animals becomes more pronounced with age.

  11. Differential Regulation of Primary Afferent Input to Spinal Cord by Muscarinic Receptor Subtypes Delineated Using Knockout Mice*

    PubMed Central

    Chen, Shao-Rui; Chen, Hong; Yuan, Wei-Xiu; Wess, Jürgen; Pan, Hui-Lin

    2014-01-01

    Stimulation of muscarinic acetylcholine receptors (mAChRs) inhibits nociceptive transmission at the spinal level. However, it is unclear how each mAChR subtype regulates excitatory synaptic input from primary afferents. Here we examined excitatory postsynaptic currents (EPSCs) of dorsal horn neurons evoked by dorsal root stimulation in spinal cord slices from wild-type and mAChR subtype knock-out (KO) mice. In wild-type mice, mAChR activation with oxotremorine-M decreased the amplitude of monosynaptic EPSCs in ∼67% of neurons but increased it in ∼10% of neurons. The inhibitory effect of oxotremorine-M was attenuated by the M2/M4 antagonist himbacine in the majority of neurons, and the remaining inhibition was abolished by group II/III metabotropic glutamate receptor (mGluR) antagonists in wild-type mice. In M2/M4 double-KO mice, oxotremorine-M inhibited monosynaptic EPSCs in significantly fewer neurons (∼26%) and increased EPSCs in significantly more neurons (33%) compared with wild-type mice. Blocking group II/III mGluRs eliminated the inhibitory effect of oxotremorine-M in M2/M4 double-KO mice. In M2 single-KO and M4 single-KO mice, himbacine still significantly reduced the inhibitory effect of oxotremorine-M. However, the inhibitory and potentiating effects of oxotremorine-M on EPSCs in M3 single-KO and M1/M3 double-KO mice were similar to those in wild-type mice. In M5 single-KO mice, oxotremorine-M failed to potentiate evoked EPSCs, and its inhibitory effect was abolished by himbacine. These findings indicate that activation of presynaptic M2 and M4 subtypes reduces glutamate release from primary afferents. Activation of the M5 subtype either directly increases primary afferent input or inhibits it through indirectly stimulating group II/III mGluRs. PMID:24695732

  12. Restricted growth and insulin-like growth factor-1 deficiency in mice lacking presenilin-1 in the neural crest cell lineage

    PubMed Central

    Nakajima, Mitsunari; Watanabe, Sono; Okuyama, Satoshi; Shen, Jie; Furukawa, Yoshiko

    2012-01-01

    Presenilin-1 (PS1) is a transmembrane protein that is in many cases responsible for the development of early-onset familial Alzheimer’s disease. PS1 is essential for neurogenesis, somitogenesis, angiogenesis, and cardiac morphogenesis. We report here that PS1 is also required for maturation and/or maintenance of the pituitary gland. We generated PS1-conditional knockout (PS1-cKO) mice by crossing floxed PS1 and Wnt1-cre mice, in which PS1 was lacking in the neural crest-derived cell lineage. Although the PS1-cKO mice exhibited no obvious phenotypic abnormalities for several days after birth, reduced body weight in the mutant was evident by the age of 3 to 5 weeks. Pituitary weight and serum insulin-like growth factor (IGF)-1 level were also reduced in the mutant. Histologic analysis revealed severe atrophy of the cytosol in the anterior and intermediate pituitary lobes of the mutant. Immunohistochemistry did not reveal clear differences in the expression levels of thyroid-stimulating hormone, adrenocorticotropic hormone, or prolactin in the mutant pituitary. In contrast, growth hormone expression levels were reduced in the anterior lobe of the mutant. PS1 was defective in the posterior lobe, but not the anterior or intermediate lobes, in the mutant pituitary. These findings suggest that PS1 indirectly mediates the development and/or maintenance of the anterior and intermediate lobes in the pituitary gland via actions in other regions, such as the posterior lobe. PMID:19665542

  13. Transcriptional analysis of immune-related gene expression in p53-deficient mice with increased susceptibility to influenza A virus infection.

    PubMed

    Yan, Wenjun; Wei, Jianchao; Deng, Xufang; Shi, Zixue; Zhu, Zixiang; Shao, Donghua; Li, Beibei; Wang, Shaohui; Tong, Guangzhi; Ma, Zhiyong

    2015-08-18

    p53 is a tumor suppressor that contributes to the host immune response against viral infections in addition to its well-established protective role against cancer development. In response to influenza A virus (IAV) infection, p53 is activated and plays an essential role in inhibiting IAV replication. As a transcription factor, p53 regulates the expression of a range of downstream responsive genes either directly or indirectly in response to viral infection. We compared the expression profiles of immune-related genes between IAV-infected wild-type p53 (p53WT) and p53-deficient (p53KO) mice to gain an insight into the basis of p53-mediated antiviral response. p53KO and p53WT mice were infected with influenza A/Puerto Rico/8/1934 (PR8) strain. Clinical symptoms and body weight changes were monitored daily. Lung specimens of IAV-infected mice were collected for analysis of virus titers and gene expression profiles. The difference in immune-related gene expression levels between IAV-infected p53KO and p53WT mice was comparatively determined using microarray analysis and confirmed by quantitative real-time reverse transcription polymerase chain reaction. p53KO mice showed an increased susceptibility to IAV infection compared to p53WT mice. Microarray analysis of gene expression profiles in the lungs of IAV-infected mice indicated that the increased susceptibility was associated with significantly changed expression levels in a range of immune-related genes in IAV-infected p53KO mice. A significantly attenuated expression of Ifng (encoding interferon (IFN)-gamma), Irf7 (encoding IFN regulator factor 7), and antiviral genes, such as Mx2 and Eif2ak2 (encoding PKR), were observed in IAV-infected p53KO mice, suggesting an impaired IFN-mediated immune response against IAV infection in the absence of p53. In addition, dysregulated expression levels of proinflammatory cytokines and chemokines, such as Ccl2 (encoding MCP-1), Cxcl9, Cxcl10 (encoding IP-10), and Tnf, were detected

  14. Cyp26b1 within the growth plate regulates bone growth in juvenile mice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Minegishi, Yoshiki; Department of Plastic and Reconstructive Surgery, University of Fukui Hospital, 23-3 Matsuokashimoaizuki, Eiheiji-cho, Yoshida-gun, Fukui 910-1193; Department of Plastic Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871

    Highlights: • Retinoic acid and Cyp26b1 were oppositely localized in growth plate cartilage. • Cyp26b1 deletion in chondrocytes decreased bone growth in juvenile mice. • Cyp26b1 deletion reduced chondrocyte proliferation and growth plate height. • Vitamin A-depletion partially reversed growth plate abnormalities caused by Cyp26b1 deficiency. • Cyp26b1 regulates bone growth by controlling chondrocyte proliferation. - Abstract: Retinoic acid (RA) is an active metabolite of vitamin A and plays important roles in embryonic development. CYP26 enzymes degrade RA and have specific expression patterns that produce a RA gradient, which regulates the patterning of various structures in the embryo. However, itmore » has not been addressed whether a RA gradient also exists and functions in organs after birth. We found localized RA activities in the diaphyseal portion of the growth plate cartilage were associated with the specific expression of Cyp26b1 in the epiphyseal portion in juvenile mice. To disturb the distribution of RA, we generated mice lacking Cyp26b1 specifically in chondrocytes (Cyp26b1{sup Δchon} cKO). These mice showed reduced skeletal growth in the juvenile stage. Additionally, their growth plate cartilage showed decreased proliferation rates of proliferative chondrocytes, which was associated with a reduced height in the zone of proliferative chondrocytes, and closed focally by four weeks of age, while wild-type mouse growth plates never closed. Feeding the Cyp26b1 cKO mice a vitamin A-deficient diet partially reversed these abnormalities of the growth plate cartilage. These results collectively suggest that Cyp26b1 in the growth plate regulates the proliferation rates of chondrocytes and is responsible for the normal function of the growth plate and growing bones in juvenile mice, probably by limiting the RA distribution in the growth plate proliferating zone.« less

  15. Salt-Sensitive Hypertension and Cardiac Hypertrophy in Transgenic Mice Expressing a Corin Variant Identified in African Americans

    PubMed Central

    Wang, Wei; Cui, Yujie; Shen, Jianzhong; Jiang, Jingjing; Chen, Shenghan; Peng, Jianhao; Wu, Qingyu

    2012-01-01

    African Americans represent a high risk population for salt-sensitive hypertension and heart disease but the underlying mechanism remains unclear. Corin is a cardiac protease that regulates blood pressure by activating natriuretic peptides. A corin gene variant (T555I/Q568P) was identified in African Americans with hypertension and cardiac hypertrophy. In this study, we test the hypothesis that the corin variant contributes to the hypertensive and cardiac hypertrophic phenotype in vivo. Transgenic mice were generated to express wild-type or T555I/Q568P variant corin in the heart under the control of α-myosin heavy chain promoter. The mice were crossed into a corin knockout background to create KO/TgWT and KO/TgV mice that expressed WT or variant corin, respectively, in the heart. Functional studies showed that KO/TgV mice had significantly higher levels of pro-atrial natriuretic peptide in the heart compared with that in control KO/TgWT mice, indicating that the corin variant was defective in processing natriuretic peptides in vivo. By radiotelemetry, corin KO/TgV mice were found to have hypertension that was sensitive to dietary salt loading. The mice also developed cardiac hypertrophy at 12–14 months of age when fed a normal salt diet or at a younger age when fed a high salt diet. The phenotype of salt-sensitive hypertension and cardiac hypertrophy in KO/TgV mice closely resembles the pathological findings in African Americans who carry the corin variant. The results indicate that corin defects may represent an important mechanism in salt-sensitive hypertension and cardiac hypertrophy in African Americans. PMID:22987923

  16. Wild-type male offspring of fmr-1+/- mothers exhibit characteristics of the fragile X phenotype.

    PubMed

    Zupan, Bojana; Toth, Miklos

    2008-10-01

    Fragile X syndrome is an X-linked disorder caused by the inactivation of the FMR-1 gene with symptoms ranging from impaired cognitive functions to seizures, anxiety, sensory abnormalities, and hyperactivity. Males are more severely affected than heterozygote (H) females, who, as carriers, have a 50% chance of transmitting the mutated allele in each pregnancy. fmr-1 knockout (KO) mice reproduce fragile X symptoms, including hyperactivity, seizures, and abnormal sensory processing. In contrast to the expectation that wild-type (WT) males born to H (fmr-1(+/-)) mothers (H>WT) are behaviorally normal and indistinguishable from WT males born to WT mothers (WT>WT); here, we show that H>WT offspring are more active than WT>WT offspring and that their hyperactivity is similar to male KO mice born to H or KO (fmr-1(-/-)) mothers (H>KO/KO>KO). H>WT mice, however, do not exhibit seizures or abnormal sensory processing. Consistent with their hyperactivity, the effect of the D2 agonist quinpirole is reduced in H>WT as well as in H>KO and KO>KO mice compared to WT>WT offspring, suggesting a diminished feedback inhibition of dopamine release. Our data indicate that some aspects of hyperactivity and associated dopaminergic changes in 'fragile X' mice are a maternal fmr-1 genotype rather than an offspring fmr-1 genotype effect.

  17. Matrix Metalloproteinase-9–Null Mice Are Resistant to TGF-β–Induced Anterior Subcapsular Cataract Formation

    PubMed Central

    Korol, Anna; Pino, Giuseppe; Dwivedi, Dhruva; Robertson, Jennifer V.; Deschamps, Paula A.; West-Mays, Judith A.

    2015-01-01

    Epithelial-mesenchymal transition (EMT) is associated with fibrotic diseases in the lens, such as anterior subcapsular cataract (ASC) formation. Often mediated by transforming growth factor (TGF)-β, EMT in the lens involves the transformation of lens epithelial cells into a multilayering of myofibroblasts, which manifest as plaques beneath the lens capsule. TGF-β–induced EMT and ASC have been associated with the up-regulation of two matrix metalloproteinases (MMPs): MMP-2 and MMP-9. The current study used MMP-2 and MMP-9 knockout (KO) mice to further determine their unique roles in TGF-β–induced ASC formation. Adenoviral injection of active TGF-β1 into the anterior chamber of all wild-type and MMP-2 KO mice led to the formation of distinct ASC plaques that were positive for α-smooth muscle actin, a marker of EMT. In contrast, only a small proportion of the MMP-9 KO eyes injected with adenovirus-expressing TGF-β1 exhibited ASC plaques. Isolated lens epithelial explants from wild-type and MMP-2 KO mice that were treated with TGF-β exhibited features indicative of EMT, whereas those from MMP-9 KO mice did not acquire a mesenchymal phenotype. MMP-9 KO mice were further bred onto a TGF-β1 transgenic mouse line that exhibits severe ASC formation, but shows a resistance to ASC formation in the absence of MMP-9. These findings suggest that MMP-9 expression is more critical than MMP-2 in mediating TGF-β–induced ASC formation. PMID:24814605

  18. Adenosine A1 receptors link to smooth muscle contraction via CYP4a, protein kinase C-α, and ERK1/2.

    PubMed

    Kunduri, Swati S; Mustafa, S Jamal; Ponnoth, Dovenia S; Dick, Gregory M; Nayeem, Mohammed A

    2013-07-01

    Adenosine A1 receptor (A1AR) activation contracts smooth muscle, although signaling mechanisms are not thoroughly understood. Activation of A1AR leads to metabolism of arachidonic acid, including the production of 20-hydroxyeicosatetraenoic acid (20-HETE) by cytochrome P4504a (CYP4a). The 20-HETE can activate protein kinase C-α (PKC-α), which crosstalks with extracellular signal-regulated kinase (ERK1/2) pathway. Both these pathways can regulate smooth muscle contraction, we tested the hypothesis that A1AR contracts smooth muscle through a pathway involving CYP4a, PKC-α, and ERK1/2. Experiments included isometric tension recordings of aortic contraction and Western blots of signaling molecules in wild type (WT) and A1AR knockout (A1KO) mice. Contraction to the A1-selective agonist 2-chloro-N cyclopentyladenosine (CCPA) was absent in A1KO mice aortae, indicating the contractile role of A1AR. Inhibition of CYP4a (HET0016) abolished 2-chloro-N cyclopentyladenosine-induced contraction in WT aortae, indicating a critical role for 20-HETE. Both WT and A1KO mice aortae contracted in response to exogenous 20-HETE. Inhibition of PKC-α (Gö6976) or ERK1/2 (PD98059) attenuated 20-HETE-induced contraction equally, suggesting that ERK1/2 is downstream of PKC-α. Contractions to exogenous 20-HETE were significantly less in A1KO mice; reduced protein levels of PKC-α, p-ERK1/2, and total ERK1/2 supported this observation. Our data indicate that A1AR mediates smooth muscle contraction via CYP4a and a PKC-α-ERK1/2 pathway.

  19. Abrogated Freud-1/CC2D1A repression of 5-HT1A autoreceptors induces fluoxetine-resistant anxiety/depression-like behavior

    PubMed Central

    Vahid-Ansari, Faranak; Daigle, Mireille; Manzini, M. Chiara; Tanaka, Kenji F.; Hen, René; Geddes, Sean D.; Béïque, Jean-Claude; James, Jonathan; Merali, Zul; Albert, Paul R.

    2017-01-01

    Freud-1/CC2D1A represses the gene transcription of serotonin-1A (5-HT1A) autoreceptors, which negatively regulate 5-HT tone. To test the role of Freud-1 in vivo, we generated mice with adulthood conditional knockout of Freud-1 in 5-HT neurons (cF1ko). In cF1ko mice, 5-HT1A autoreceptor protein, binding and hypothermia response were increased, with reduced 5-HT content and neuronal activity in the dorsal raphe. The cF1ko mice displayed increased anxiety- and depression-like behavior that was resistant to chronic antidepressant (fluoxetine) treatment. Using conditional Freud-1/5-HT1A double knockout (cF1/1A dko) to disrupt both Freud-1 and 5-HT1A genes in 5-HT neurons, no increase in anxiety- or depression-like behaviour was seen upon knockout of Freud-1 on the 5-HT1A autoreceptor-negative background, rather a reduction in depression-like behaviour emerged. These studies implicate transcriptional dys-regulation of 5-HT1A autoreceptors by the repressor Freud-1 in anxiety and depression and provide a clinically relevant genetic model of antidepressant resistance. Targeting specific transcription factors like Freud-1 to restore transcriptional balance may augment response to antidepressant treatment. PMID:29101244

  20. Running Promotes Wakefulness and Increases Cataplexy in Orexin Knockout Mice

    PubMed Central

    España, Rodrigo A.; McCormack, Sarah L.; Mochizuki, Takatoshi; Scammell, Thomas E.

    2007-01-01

    Study Objective: People with narcolepsy and mice lacking orexin/hypocretin have disrupted sleep/wake behavior and reduced physical activity. Our objective was to identify physiologic mechanisms through which orexin deficiency reduces locomotor activity. Design: We examined spontaneous wheel running activity and its relationship to sleep/wake behavior in wild type (WT) and orexin knockout (KO) mice. Additionally, given that physical activity promotes alertness, we also studied whether orexin deficiency reduces the wake-promoting effects of exercise. Measurements and Results: Orexin KO mice ran 42% less than WT mice. Their ability to run appeared normal as they initiated running as often as WT mice and ran at normal speeds. However, their running bouts were considerably shorter, and they often had cataplexy or quick transitions into sleep after running. Wheel running increased the total amount of wakefulness in WT and orexin KO mice similarly, however, KO mice continued to have moderately fragmented sleep/wake behavior. Wheel running also doubled the amount of cataplexy by increasing the probability of transitioning into cataplexy. Conclusions: Orexin KO mice run significantly less than normal, likely due to sleepiness, imminent cataplexy, or a reduced motivation to run. Orexin is not required for the wake-promoting effects of wheel running given that both WT and KO mice had similar increases in wakefulness with running wheels. In addition, the clear increase in cataplexy with wheel running suggests the possibility that positive emotions or reward can trigger murine cataplexy, similar to that seen in people and dogs with narcolepsy. Citation: España RA; McCormack SL; Mochizuki T; Scammell TE. Running promotes wakefulness and increases cataplexy in orexin knockout mice. SLEEP 2007;30(11):1417-1425. PMID:18041476

  1. Mammalian target of rapamycin is essential for cardiomyocyte survival and heart development in mice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Pengpeng; Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070; Department of Animal Sciences, Purdue University, West Lafayette, IN 47907

    Highlights: • mTOR is a critical regulator of many biological processes yet its function in heart is not well understood. • MCK-Cre/Mtor{sup flox/flox} mice were established to delete Mtor in cardiomyocytes. • The mTOR-mKO mice developed normally but die prematurely within 5 weeks after birth due to heart disease. • The mTOR-mKO mice had dilated myocardium and increased cell death. • mTOR-mKO hearts had reduced expression of metabolic genes and activation of mTOR target proteins. - Abstract: Mammalian target of rapamycin (mTOR) is a critical regulator of protein synthesis, cell proliferation and energy metabolism. As constitutive knockout of Mtor leadsmore » to embryonic lethality, the in vivo function of mTOR in perinatal development and postnatal growth of heart is not well defined. In this study, we established a muscle-specific mTOR conditional knockout mouse model (mTOR-mKO) by crossing MCK-Cre and Mtor{sup flox/flox} mice. Although the mTOR-mKO mice survived embryonic and perinatal development, they exhibited severe postnatal growth retardation, cardiac muscle pathology and premature death. At the cellular level, the cardiac muscle of mTOR-mKO mice had fewer cardiomyocytes due to apoptosis and necrosis, leading to dilated cardiomyopathy. At the molecular level, the cardiac muscle of mTOR-mKO mice expressed lower levels of fatty acid oxidation and glycolysis related genes compared to the WT littermates. In addition, the mTOR-mKO cardiac muscle had reduced Myh6 but elevated Myh7 expression, indicating cardiac muscle degeneration. Furthermore, deletion of Mtor dramatically decreased the phosphorylation of S6 and AKT, two key targets downstream of mTORC1 and mTORC2 mediating the normal function of mTOR. These results demonstrate that mTOR is essential for cardiomyocyte survival and cardiac muscle function.« less

  2. Activation of PPARγ Ameliorates Spatial Cognitive Deficits through Restoring Expression of AMPA Receptors in Seipin Knock-Out Mice.

    PubMed

    Zhou, Libin; Chen, Tingting; Li, Guoxi; Wu, Chaoming; Wang, Conghui; Li, Lin; Sha, Sha; Chen, Lei; Liu, George; Chen, Ling

    2016-01-27

    A characteristic phenotype of congenital generalized lipodystrophy 2 (CGL2) that is caused by loss-of-function of seipin gene is mental retardation. Here, we show that seipin deficiency in hippocampal CA1 pyramidal cells caused the reduction of peroxisome proliferator-activated receptor gamma (PPARγ). Twelve-week-old systemic seipin knock-out mice and neuronal seipin knock-out (seipin-nKO) mice, but not adipose seipin knock-out mice, exhibited spatial cognitive deficits as assessed by the Morris water maze and Y-maze, which were ameliorated by the treatment with the PPARγ agonist rosiglitazone (rosi). In addition, seipin-nKO mice showed the synaptic dysfunction and the impairment of NMDA receptor-dependent LTP in hippocampal CA1 regions. The density of AMPA-induced current (IAMPA) in CA1 pyramidal cells and GluR1/GluR2 expression were significantly reduced in seipin-nKO mice, whereas the NMDA-induced current (INMDA) and NR1/NR2 expression were not altered. Rosi treatment in seipin-nKO mice could correct the decrease in expression and activity of AMPA receptor (AMPAR) and was accompanied by recovered synaptic function and LTP induction. Furthermore, hippocampal ERK2 and CREB phosphorylation in seipin-nKO mice were reduced and this could be rescued by rosi treatment. Rosi treatment in seipin-nKO mice elevated BDNF concentration. The MEK inhibitor U0126 blocked rosi-restored AMPAR expression and LTP induction in seipin-nKO mice, but the Trk family inhibitor K252a did not. These findings indicate that the neuronal seipin deficiency selectively suppresses AMPAR expression through reducing ERK-CREB activities, leading to the impairment of LTP and spatial memory, which can be rescued by PPARγ activation. Congenital generalized lipodystrophy 2 (CGL2), caused by loss-of-function mutation of seipin gene, is characterized by mental retardation. By the generation of systemic or neuronal seipin knock-out mice, the present study provides in vivo evidence that neuronal seipin

  3. Central representation of postingestive chemosensory cues in mice that lack the ability to taste.

    PubMed

    Stratford, Jennifer M; Finger, Thomas E

    2011-06-22

    The gustatory nerves of mice lacking P2X2 and P2X3 purinergic receptor subunits (P2X-dblKO) are unresponsive to taste stimulation (Finger et al., 2005). Surprisingly, P2X-dblKO mice show residual behavioral responses to concentrated tastants, presumably via postingestive detection. Therefore, the current study tested whether postingestive signaling is functional in P2X-dblKO mice and if so, whether it activates the primary viscerosensory nucleus of the medulla, the nucleus of the solitary tract (nTS). Like WT animals, P2X-dblKO mice learned to prefer a flavor paired with 150 mm monosodium glutamate (MSG) over a flavor paired with water. This preference shows that, even in the absence of taste sensory input, postingestive cues are detected and associated with a flavor in P2X-dblKO mice. MSG-evoked neuronal activation in the nTS was measured by expression of the immediate early gene c-Fos [c-Fos-like immunoreactivity (Fos-LI)]. In rostral, gustatory nTS, P2X-dblKO animals, unlike WT animals, showed no taste quality-specific labeling of neurons. Furthermore, MSG-evoked Fos-LI was significantly less in P2X-dblKO mice compared with WT animals. In contrast, in more posterior, viscerosensory nTS, MSG-induced Fos-LI was similar in WT and P2X-dblKO mice. Together, these results suggest that P2X-dblKO mice can form preferences based on postingestive cues and that postingestive detection of MSG does not rely on the same purinergic signaling that is crucial for taste.

  4. Comprehensive behavioral study of mGluR3 knockout mice: implication in schizophrenia related endophenotypes

    PubMed Central

    2014-01-01

    Background We previously performed systematic association studies of glutamate receptor gene family members with schizophrenia, and found positive associations of polymorphisms in the GRM3 (a gene of metabotropic glutamate receptor 3: mGluR3) with the disorder. Physiological roles of GRM3 in brain functions and its functional roles in the pathogenesis of schizophrenia remain to be resolved. Results We generated mGluR3 knockout (KO) mice and conducted comprehensive behavioral analyses. KO mice showed hyperactivity in the open field, light/dark transition, and 24-hour home cage monitoring tests, impaired reference memory for stressful events in the Porsolt forced swim test, impaired contextual memory in cued and contextual fear conditioning test, and impaired working memory in the T-Maze forced alternation task test. Hyperactivity and impaired working memory are known as endophenotypes of schizophrenia. We examined long-term synaptic plasticity by assessing long-term potentiation (LTP) in the CA1 region in the hippocampi of KO and wild-type (WT) mice. We observed no differences in the amplitude of LTP between the two genotypes, suggesting that mGluR3 is not essential for LTP in the CA1 region of the mouse hippocampus. As hyperactivity is typically associated with increased dopaminergic transmission, we performed in vivo microdialysis measurements of extracellular dopamine in the nucleus accumbens of KO and WT mice. We observed enhancements in the methamphetamine (MAP)-induced release of dopamine in KO mice. Conclusions These results demonstrate that a disturbance in the glutamate-dopamine interaction may be involved in the pathophysiology of schizophrenia-like behavior, such as hyperactivity in mGluR3 KO mice. PMID:24758191

  5. Characteristics of colonic migrating motor complexes in neuronal NOS (nNOS) knockout mice.

    PubMed

    Spencer, Nick J

    2013-01-01

    It is well established that the intrinsic pacemaker mechanism that generates cyclical colonic migrating motor complexes (CMMCs) does not require endogenous nitric oxide (NO). However, pharmacological blockade of endogenous NO production potently increases the frequency of CMMCs, suggesting that endogenous NO acts normally to inhibit the CMMC pacemaker mechanism. In this study, we investigated whether mice with a life long genetic deletion of the neuronal nitric oxide synthase (nNOS) gene would show similar CMMC characteristics as wild type mice that have endogenous NO production acutely inhibited. Intracellular electrophysiological and mechanical recordings were made from circular muscle cells of isolated whole mouse colon in wild type and nNOS knockout (KO) mice at 35°C. In wild type mice, the NOS inhibitor, L-NA (100 μM) caused a significant increase in CMMC frequency and a significant depolarization of the CM layer. However, unexpectedly, the frequency of CMMCs in nNOS KO mice was not significantly different from control mice. Also, the resting membrane potential of CM cells in nNOS KO mice was not depolarized compared to controls; and the amplitude of the slow depolarization phase underlying MCs was of similar amplitude between KO and wild type offspring. These findings show that in nNOS KO mice, the major characteristics of CMMCs and their electrical correlates are, at least in adult mice, indistinguishable from wild type control offspring. One possibility why the major characteristics of CMMCs were no different between both types of mice is that nNOS KO mice may compensate for their life long deletion of the nNOS gene, and their permanent loss of neuronal NO production. In this regard, we suggest caution should be exercised when assuming that data obtained from adult nNOS KO mice can be directly extrapolated to wild type mice, that have been acutely exposed to an inhibitor of NOS.

  6. Neuroprotective effects of metallothionein against rotenone-induced myenteric neurodegeneration in parkinsonian mice.

    PubMed

    Murakami, Shinki; Miyazaki, Ikuko; Sogawa, Norio; Miyoshi, Ko; Asanuma, Masato

    2014-10-01

    Parkinson's disease (PD) is a neurodegenerative disease with motor symptoms as well as non-motor symptoms that precede the onset of motor symptoms. Mitochondrial complex I inhibitor, rotenone, has been widely used to reproduce PD pathology in the central nervous system (CNS) and enteric nervous system (ENS). We reported previously that metallothioneins (MTs) released from astrocytes can protect dopaminergic neurons against oxidative stress. The present study examined the changes in MT expression by chronic systemic rotenone administration in the striatum and colonic myenteric plexus of C57BL mice. In addition, we investigated the effects of MT depletion on rotenone-induced neurodegeneration in CNS and ENS using MT-1 and MT-2 knockout (MT KO) mice, or using primary cultured neurons from MT KO mice. In normal C57BL mice, subcutaneous administration of rotenone for 6 weeks caused neurodegeneration, increased MT expression with astrocytes activation in the striatum and myenteric plexus. MT KO mice showed more severe myenteric neuronal damage by rotenone administration after 4 weeks than wild-type mice, accompanied by reduced astroglial activation. In primary cultured mesencephalic neurons from MT KO mice, rotenone exposure induced neurotoxicity in dopaminergic neurons, which was complemented by addition of recombinant protein. The present results suggest that MT seems to provide protection against neurodegeneration in ENS of rotenone-induced PD model mice.

  7. Study of oxidative and inflammatory parameters in LDLr-KO mice treated with a hypercholesterolemic diet: Comparison between the use of Campomanesia xanthocarpa and acetylsalicylic acid.

    PubMed

    Klafke, Jonatas Zeni; Pereira, Roberta Lelis Dias; Hirsch, Gabriela Elisa; Parisi, Mariana Migliorini; Porto, Fernando Garcez; de Almeida, Amanda Spring; Rubin, Fabiane Horbach; Schmidt, Aline; Beutler, Henrique; Nascimento, Sabrina; Trevisan, Gabriela; Brusco, Indiara; de Oliveira, Sara Marchesan; Duarte, Marta Maria Medeiros Frescura; Duarte, Thiago; Viecili, Paulo Ricardo Nazário

    2016-10-15

    Atherosclerosis is an inflammatory disease that affects the arterial wall leading to myocardial, cerebral, and peripheral ischemic syndromes. The use of low doses of aspirin inhibits platelet aggregation and inflammation and prevents cardiovascular mortality. However, ASA may produce hemorrhagic events. Thus, several studies have sought new natural compounds to suppress platelet aggregation without causing serious adverse effects. In this sense, this study aims to compare the effects of Campomanesia xanthocarpa plant extract with those of acetylsalicylic acid (ASA) on inflammatory parameters observed in homozygous mice knockout for the low-density lipoprotein receptor (LDLr-KO) treated with a hypercholesterolemic diet. In this study, 28 male LDLr-KO mice were divided into three groups and fed a hypercholesterolemic diet for 4 weeks. Thereafter, the animals that received the hypercholesterolemic diet were treated for 5 days with (1) distilled water, (2) C. xanthocarpa extract, or (3) acetylsalicylic acid. The levels of inflammatory markers were assessed in the blood samples. The gastric tolerability of the animals after oral administration of the treatments was assessed through quantification of the lesions in the gastric mucosa. The levels of proinflammatory cytokines IL-1, IL-6, TNF-α, and INF-γ were reduced to 19.2 ± 3%, 20.4 + 1.3%, 24.7 ± 1.2%, and 20.8 ± 1.7%, respectively, in the group treated with C. xanthocarpa, when compared to control group. Furthermore, treatment with plant extract significantly increased the levels of the anti-inflammatory cytokine IL-10 by 27.3 ± 5.9%, but ASA showed no significant effect on the same cytokines when compared to the control group, with the exception of IL-10, which presented an increase of 8.6 ± 3.5%. Treatments with C. xanthocarpa and ASA also caused significant reductions of 26.4 ± 3% and 38.4± 6% in the serum levels of oxLDL, respectively. However, only treatment with C. xanthocarpa reduced the

  8. Wild-Type Male Offspring of fmr-1+/− Mothers Exhibit Characteristics of the Fragile X Phenotype

    PubMed Central

    Zupan, Bojana; Toth, Miklos

    2009-01-01

    Fragile X syndrome is an X-linked disorder caused by the inactivation of the FMR-1 gene with symptoms ranging from impaired cognitive functions to seizures, anxiety, sensory abnormalities, and hyperactivity. Males are more severely affected than heterozygote (H) females, who, as carriers, have a 50% chance of transmitting the mutated allele in each pregnancy. fmr-1 knockout (KO) mice reproduce fragile X symptoms, including hyperactivity, seizures, and abnormal sensory processing. In contrast to the expectation that wild-type (WT) males born to H (fmr-1+/−) mothers (H> WT) are behaviorally normal and indistinguishable from WT males born to WT mothers (WT> WT); here, we show that H> WT offspring are more active than WT> WT offspring and that their hyperactivity is similar to male KO mice born to H or KO (fmr-1−/−) mothers (H> KO/KO> KO). H> WT mice, however, do not exhibit seizures or abnormal sensory processing. Consistent with their hyperactivity, the effect of the D2 agonist quinpirole is reduced in H> WT as well as in H> KO and KO> KO mice compared to WT> WT offspring, suggesting a diminished feedback inhibition of dopamine release. Our data indicate that some aspects of hyperactivity and associated dopaminergic changes in ‘fragile X’ mice are a maternal fmr-1 genotype rather than an offspring fmr-1 genotype effect. PMID:18172434

  9. Age-Related Changes in Bone Morphology Are Accelerated in Group VIA Phospholipase A2 (iPLA2β)-Null Mice

    PubMed Central

    Ramanadham, Sasanka; Yarasheski, Kevin E.; Silva, Matthew J.; Wohltmann, Mary; Novack, Deborah Veis; Christiansen, Blaine; Tu, Xiaolin; Zhang, Sheng; Lei, Xiaoyong; Turk, John

    2008-01-01

    Phospholipases A2 (PLA2) hydrolyze the sn−2 fatty acid substituent, such as arachidonic acid, from phospholipids, and arachidonate metabolites are recognized mediators of bone modeling. We have previously generated knockout (KO) mice lacking the group VIA PLA2 (iPLA2β), which participates in a variety of signaling events; iPLA2β mRNA is expressed in bones of wild-type (WT) but not KO mice. Cortical bone size, trabecular bone volume, bone mineralizing surfaces, and bone strength are similar in WT and KO mice at 3 months and decline with age in both groups, but the decreases are more pronounced in KO mice. The lower bone mass phenotype observed in KO mice is not associated with an increase in osteoclast abundance/activity or a decrease in osteoblast density, but is accompanied by an increase in bone marrow fat. Relative to WT mice, undifferentiated bone marrow stromal cells (BMSCs) from KO mice express higher levels of PPAR-γ and lower levels of Runx2 mRNA, and this correlates with increased adipogenesis and decreased osteogenesis in BMSCs from these mice. In summary, our studies indicate that age-related losses in bone mass and strength are accelerated in iPLA2β-null mice. Because adipocytes and osteoblasts share a common mesenchymal stem cell origin, our findings suggest that absence of iPLA2β causes abnormalities in osteoblast function and BMSC differentiation and identify a previously unrecognized role of iPLA2β in bone formation. PMID:18349124

  10. Activation of 5-HT7 serotonin receptors reverses metabotropic glutamate receptor-mediated synaptic plasticity in wild-type and Fmr1 knockout mice, a model of Fragile X syndrome.

    PubMed

    Costa, Lara; Spatuzza, Michela; D'Antoni, Simona; Bonaccorso, Carmela M; Trovato, Chiara; Musumeci, Sebastiano A; Leopoldo, Marcello; Lacivita, Enza; Catania, Maria V; Ciranna, Lucia

    2012-12-01

    Fragile X syndrome (FXS) is a genetic cause of intellectual disability and autism. Fmr1 knockout (Fmr1 KO) mice, an animal model of FXS, exhibit spatial memory impairment and synapse malfunctioning in the hippocampus, with abnormal enhancement of long-term depression mediated by metabotropic glutamate receptors (mGluR-LTD). The neurotransmitter serotonin (5-HT) modulates hippocampal-dependent learning through serotonin 1A (5-HT1A) and serotonin 7 (5-HT7) receptors; the underlying mechanisms are unknown. We used electrophysiology to test the effects of 5-HT on mGluR-LTD in wild-type and Fmr1 KO mice and immunocytochemistry and biotinylation assay to study related changes of 2-amino-3-(5-methyl-3-oxo-1,2-oxazol-4-yl)propanoic acid (AMPA) glutamate receptor surface expression. Application of 5-HT or 8-OH-DPAT (a mixed 5-HT1A/5-HT7 agonist) reversed mGluR-LTD in hippocampal slices. Reversal of mGluR-LTD by 8-OH-DPAT persisted in the presence of the 5-HT1A receptor antagonist WAY-100635, was abolished by SB-269970 (5-HT7 receptor antagonist), and was mimicked by LP-211, a novel selective 5-HT7 receptor agonist. Consistently, 8-OH-DPAT decreased mGluR-mediated reduction of AMPA glutamate receptor 2 (GluR2) subunit surface expression in hippocampal slices and cultured hippocampal neurons, an effect mimicked by LP-211 and blocked by SB-269970. In Fmr1 KO mice, mGluR-LTD was abnormally enhanced; similarly to wild-type, 8-OH-DPAT reversed mGluR-LTD and decreased mGluR-induced reduction of surface AMPA receptors, an effect antagonized by SB-269970. Serotonin 7 receptor activation reverses metabotropic glutamate receptor-induced AMPA receptor internalization and LTD both in wild-type and in Fmr1 KO mice, correcting excessive mGluR-LTD. Therefore, selective activation of 5-HT7 receptors may represent a novel strategy in the therapy of FXS. Copyright © 2012 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  11. Construct and face validity of a new model for the three-hit theory of depression using PACAP mutant mice on CD1 background.

    PubMed

    Farkas, József; Kovács, László Á; Gáspár, László; Nafz, Anna; Gaszner, Tamás; Ujvári, Balázs; Kormos, Viktória; Csernus, Valér; Hashimoto, Hitoshi; Reglődi, Dóra; Gaszner, Balázs

    2017-06-23

    Major depression is a common cause of chronic disability. Despite decades of efforts, no equivocally accepted animal model is available for studying depression. We tested the validity of a new model based on the three-hit concept of vulnerability and resilience. Genetic predisposition (hit 1, mutation of pituitary adenylate cyclase-activating polypeptide, PACAP gene), early-life adversity (hit 2, 180-min maternal deprivation, MD180) and chronic variable mild stress (hit 3, CVMS) were combined. Physical, endocrinological, behavioral and functional morphological tools were used to validate the model. Body- and adrenal weight changes as well as corticosterone titers proved that CVMS was effective. Forced swim test indicated increased depression in CVMS PACAP heterozygous (Hz) mice with MD180 history, accompanied by elevated anxiety level in marble burying test. Corticotropin-releasing factor neurons in the oval division of the bed nucleus of the stria terminalis showed increased FosB expression, which was refractive to CVMS exposure in wild-type and Hz mice. Urocortin1 neurons became over-active in CMVS-exposed PACAP knock out (KO) mice with MD180 history, suggesting the contribution of centrally projecting Edinger-Westphal nucleus to the reduced depression and anxiety level of stressed KO mice. Serotoninergic neurons of the dorsal raphe nucleus lost their adaptation ability to CVMS in MD180 mice. In conclusion, the construct and face validity criteria suggest that MD180 PACAP HZ mice on CD1 background upon CVMS may be used as a reliable model for the three-hit theory. Copyright © 2017 IBRO. Published by Elsevier Ltd. All rights reserved.

  12. Trpc2-deficient lactating mice exhibit altered brain and behavioral responses to bedding stimuli

    PubMed Central

    Hasen, Nina S.; Gammie, Stephen C.

    2010-01-01

    The trpc2 gene encodes an ion channel involved in pheromonal detection and is found in the vomeronasal organ. In tprc2-/- knockout (KO) mice, maternal aggression (offspring protection) is impaired and brain Fos expression in females in response to a male are reduced. Here we examine in lactating wild-type (WT) and KO mice behavioral and brain responses to different olfactory/pheromonal cues. Consistent with previous studies, KO dams exhibited decreased maternal aggression and nest building, but we also identified deficits in nighttime nursing and increases in pup weight. When exposed to the bedding tests, WT dams typically ignored clean bedding, but buried male-soiled bedding from unfamiliar males. In contrast, KO dams buried both clean and soiled bedding. Differences in brain Fos expression were found between WT and KO mice in response to either no bedding, clean bedding, or soiled bedding. In the accessory olfactory bulb, a site of pheromonal signal processing, KO mice showed suppressed Fos activation in the anterior mitral layer relative to WT mice in response to clean and soiled bedding. However, in the medial and basolateral amygdala, KO mice showed a robust Fos response to bedding, suggesting that regions of the amygdala canonically associated with pheromonal sensing can be active in the brains of KO mice, despite compromised signaling from the vomeronasal organ. Together, these results provide further insights into the complex ways by which pheromonal signaling regulates the brain and behavior of the maternal female. PMID:21070815

  13. Genetic Deletion of the Adenosine A2A Receptor Confers Postnatal Development of Relative Myopia in Mice

    PubMed Central

    Zhou, Xiangtian; Huang, Qinzhu; An, Jianhong; Lu, Runxia; Qin, Xiaoyi; Jiang, Liqin; Li, Yuan; Wang, Jianhua; Chen, Jiangfan; Qu, Jia

    2010-01-01

    Purpose. To critically evaluate whether the adenosine A2A receptor (A2AR) plays a role in postnatal refractive development in mice. Methods. Custom-built biometric systems specifically designed for mice were used to assess the development of relative myopia by examining refraction and biometrics in A2AR knockout (KO) mice and wild-type (WT) littermates between postnatal days (P)28 and P56. Ocular dimensions were measured by customized optical coherence tomography (OCT), refractive state by eccentric infrared photorefraction (EIR), and corneal radius of curvature by modified keratometry. Scleral collagen diameter and density were examined by electron microscopy on P35. The effect of A2AR activation on collagen mRNA expression and on soluble collagen production was examined in cultured human scleral fibroblasts by real-time RT-PCR and a collagen assay kit. Results. Compared with WT littermates, the A2AR KO mice displayed relative myopia (average difference, 5.1 D between P28 and P35) and associated increases in VC depth and axial length from P28 to P56. Furthermore, the myopic shift in A2AR KO mice was associated with ultrastructural changes in the sclera: Electron microscopy revealed denser collagen fibrils with reduced diameter in A2AR KO compared with WT. Last, A2AR activation induced expression of mRNAs for collagens I, III, and V and increased production of soluble collagen in cultured human scleral fibroblasts. Conclusions. Genetic deletion of the A2AR promotes development of relative myopia with increased axial length and altered scleral collagen fiber structure during postnatal development in mice. Thus, the A2AR may be important in normal refractive development. PMID:20484596

  14. Feeding-elicited cataplexy in orexin knockout mice

    PubMed Central

    Clark, Erika L.; Baumann, Christian R.; Cano, Georgina; Scammell, Thomas E.; Mochizuki, Takatoshi

    2009-01-01

    Mice lacking orexin/hypocretin signaling have sudden episodes of atonia and paralysis during active wakefulness. These events strongly resemble cataplexy, episodes of sudden muscle weakness triggered by strong positive emotions in people with narcolepsy, but it remains unknown whether murine cataplexy is triggered by positive emotions. To determine whether positive emotions elicit murine cataplexy, we placed orexin knockout (KO) mice on a scheduled feeding protocol with regular or highly palatable food. Baseline sleep/wake behavior was recorded with ad lib regular chow. Mice were then placed on a scheduled feeding protocol in which they received 60% of their normal amount of chow 3 hr after dark onset for the next 10 days. Wild-type and KO mice rapidly entrained to scheduled feeding with regular chow, with more wake and locomotor activity prior to the feeding time. On day 10 of scheduled feeding, orexin KO mice had slightly more cataplexy during the food-anticipation period and more cataplexy in the second half of the dark period, when they may have been foraging for residual food. To test whether more palatable food increases cataplexy, mice were then switched to scheduled feeding with an isocaloric amount of Froot Loops, a food often used as a reward in behavioral studies. With this highly palatable food, orexin KO mice had much more cataplexy during the food-anticipation period and throughout the dark period. The increase in cataplexy with scheduled feeding, especially with highly palatable food, suggests that positive emotions may trigger cataplexy in mice, just as in people with narcolepsy. Establishing this connection helps validate orexin KO mice as an excellent model of human narcolepsy and provides an opportunity to better understand the mechanisms that trigger cataplexy. PMID:19362119

  15. Interleukin-1 receptor 1 deletion in focal and diffuse experimental traumatic brain injury in mice.

    PubMed

    Chung, Joon Yong; Krapp, Nicolas; Wu, Limin; Lule, Sevda; McAllister, Lauren; Edmiston Iii, William; Martin, Samantha; Levy, Emily; Songtachalert, Tanya; Sherwood, John; Buckley, Erin; Sanders, Bharat; Izzy, Saef; Hickman, Suzanne; Guo, Shuzhen; Lok, Josephine; El Khoury, Joseph; Lo, Eng; Kaplan, David; Whalen, Michael

    2018-05-17

    Important differences in the biology of focal and diffuse traumatic brain injury (TBI) subtypes may result in unique pathophysiological responses to shared molecular mechanisms. Interleukin-1 (IL-1) signaling has been tested as a potential therapeutic target in preclinical models of cerebral contusion and diffuse TBI, and in a phase II clinical trial, but no published studies have examined IL-1 signaling in an impact/acceleration closed head injury (CHI) model. We hypothesized that genetic deletion of IL-1 receptor-1 (IL-1R1 KO) would be beneficial in focal (contusion) and CHI in mice. Wild type and IL-1R1 KO mice were subjected to controlled cortical impact (CCI), or to CHI. CCI produced brain leukocyte infiltration, HMGB1 translocation and release, edema, cell death, and cognitive deficits. CHI induced peak rotational acceleration of 9.7 x 105 + 8.1 x 104 rad/s2, delayed time to righting reflex, and robust Morris water maze deficits without deficits in tests of anxiety, locomotion, sensorimotor function, or depression. CHI produced no discernable acute plasmalemma damage or cell death, blood-brain barrier permeability to IgG, or brain edema and only a modest increase in brain leukocyte infiltration at 72 h. In both models, mature (17 kDa) interleukin-1 beta (IL-1β) was induced by 24 h in CD31+ endothelial cells isolated from injured brain but was not induced in CD11b+ cells in either model. High mobility group box protein-1 was released from injured brain cells in CCI but not CHI. Surprisingly, cognitive outcome in mice with global deletion of IL-1R1 was improved in CHI, but worse after CCI without affecting lesion size, edema, or infiltration of CD11b+/CD45+ leukocytes in CCI. IL-1R1 may induce unique biological responses, beneficial or detrimental to cognitive outcome, after TBI depending on the pathoanatomical subtype. Brain endothelium is a hitherto unrecognized source of mature IL-1β in both models.

  16. The Inhibitor Ko143 Is Not Specific for ABCG2.

    PubMed

    Weidner, Lora D; Zoghbi, Sami S; Lu, Shuiyu; Shukla, Suneet; Ambudkar, Suresh V; Pike, Victor W; Mulder, Jan; Gottesman, Michael M; Innis, Robert B; Hall, Matthew D

    2015-09-01

    Imaging ATP-binding cassette (ABC) transporter activity in vivo with positron emission tomography requires both a substrate and a transporter inhibitor. However, for ABCG2, there is no inhibitor proven to be specific to that transporter alone at the blood-brain barrier. Ko143 [[(3S,6S,12aS)-1,2,3,4,6,7,12,12a-octahydro-9-methoxy-6-(2-methylpropyl)-1,4-dioxopyrazino[1',2':1,6]pyrido[3,4- b]indole-3-propanoic acid 1,1-dimethylethyl ester], a nontoxic analog of fungal toxin fumitremorgin C, is a potent inhibitor of ABCG2, although its specificity in mouse and human systems is unclear. This study examined the selectivity of Ko143 using human embryonic kidney cell lines transfected with ABCG2, ABCB1, or ABCC1 in several in vitro assays. The stability of Ko143 in rat plasma was measured using high performance liquid chromatography. Our results show that, in addition to being a potent inhibitor of ABCG2, at higher concentrations (≥1 μM) Ko143 also has an effect on the transport activity of both ABCB1 and ABCC1. Furthermore, Ko143 was found to be unstable in rat plasma. These findings indicate that Ko143 lacks specificity for ABCG2 and this should be taken into consideration when using Ko143 for both in vitro and in vivo experiments. U.S. Government work not protected by U.S. copyright.

  17. Glycogen synthase kinase 3α regulates urine concentrating mechanism in mice

    PubMed Central

    Nørregaard, Rikke; Tao, Shixin; Nilsson, Line; Woodgett, James R.; Kakade, Vijayakumar; Yu, Alan S. L.; Howard, Christiana

    2015-01-01

    In mammals, glycogen synthase kinase (GSK)3 comprises GSK3α and GSK3β isoforms. GSK3β has been shown to play a role in the ability of kidneys to concentrate urine by regulating vasopressin-mediated water permeability of collecting ducts, whereas the role of GSK3α has yet to be discerned. To investigate the role of GSK3α in urine concentration, we compared GSK3α knockout (GSK3αKO) mice with wild-type (WT) littermates. Under normal conditions, GSK3αKO mice had higher water intake and urine output. GSK3αKO mice also showed reduced urine osmolality and aquaporin-2 levels but higher urinary vasopressin. When water deprived, they failed to concentrate their urine to the same level as WT littermates. The addition of 1-desamino-8-d-arginine vasopressin to isolated inner medullary collecting ducts increased the cAMP response in WT mice, but this response was reduced in GSK3αKO mice, suggesting reduced responsiveness to vasopressin. Gene silencing of GSK3α in mpkCCD cells also reduced forskolin-induced aquaporin-2 expression. When treated with LiCl, an isoform nonselective inhibitor of GSK3 and known inducer of polyuria, WT mice developed significant polyuria within 6 days. However, in GSK3αKO mice, the polyuric response was markedly reduced. This study demonstrates, for the first time, that GSK3α could play a crucial role in renal urine concentration and suggest that GSK3α might be one of the initial targets of Li+ in LiCl-induced nephrogenic diabetes insipidus. PMID:25608967

  18. Death receptor-independent FADD signalling triggers hepatitis and hepatocellular carcinoma in mice with liver parenchymal cell-specific NEMO knockout.

    PubMed

    Ehlken, H; Krishna-Subramanian, S; Ochoa-Callejero, L; Kondylis, V; Nadi, N E; Straub, B K; Schirmacher, P; Walczak, H; Kollias, G; Pasparakis, M

    2014-11-01

    Hepatocellular carcinoma (HCC) usually develops in the context of chronic hepatitis triggered by viruses or toxic substances causing hepatocyte death, inflammation and compensatory proliferation of liver cells. Death receptors of the TNFR superfamily regulate cell death and inflammation and are implicated in liver disease and cancer. Liver parenchymal cell-specific ablation of NEMO/IKKγ, a subunit of the IκB kinase (IKK) complex that is essential for the activation of canonical NF-κB signalling, sensitized hepatocytes to apoptosis and caused the spontaneous development of chronic hepatitis and HCC in mice. Here we show that hepatitis and HCC development in NEMO(LPC-KO) mice is triggered by death receptor-independent FADD-mediated hepatocyte apoptosis. TNF deficiency in all cells or conditional LPC-specific ablation of TNFR1, Fas or TRAIL-R did not prevent hepatocyte apoptosis, hepatitis and HCC development in NEMO(LPC-KO) mice. To address potential functional redundancies between death receptors we generated and analysed NEMO(LPC-KO) mice with combined LPC-specific deficiency of TNFR1, Fas and TRAIL-R and found that also simultaneous lack of all three death receptors did not prevent hepatocyte apoptosis, chronic hepatitis and HCC development. However, LPC-specific combined deficiency in TNFR1, Fas and TRAIL-R protected the NEMO-deficient liver from LPS-induced liver failure, showing that different mechanisms trigger spontaneous and LPS-induced hepatocyte apoptosis in NEMO(LPC-KO) mice. In addition, NK cell depletion did not prevent liver damage and hepatitis. Moreover, NEMO(LPC-KO) mice crossed into a RAG-1-deficient genetic background-developed hepatitis and HCC. Collectively, these results show that the spontaneous development of hepatocyte apoptosis, chronic hepatitis and HCC in NEMO(LPC-KO) mice occurs independently of death receptor signalling, NK cells and B and T lymphocytes, arguing against an immunological trigger as the critical stimulus driving

  19. Brain GLUT4 Knockout Mice Have Impaired Glucose Tolerance, Decreased Insulin Sensitivity, and Impaired Hypoglycemic Counterregulation

    PubMed Central

    Reno, Candace M.; Puente, Erwin C.; Sheng, Zhenyu; Daphna-Iken, Dorit; Bree, Adam J.; Routh, Vanessa H.; Kahn, Barbara B.

    2017-01-01

    GLUT4 in muscle and adipose tissue is important in maintaining glucose homeostasis. However, the role of insulin-responsive GLUT4 in the central nervous system has not been well characterized. To assess its importance, a selective knockout of brain GLUT4 (BG4KO) was generated by crossing Nestin-Cre mice with GLUT4-floxed mice. BG4KO mice had a 99% reduction in GLUT4 protein expression throughout the brain. Despite normal feeding and fasting glycemia, BG4KO mice were glucose intolerant, demonstrated hepatic insulin resistance, and had reduced glucose uptake in the brain. In response to hypoglycemia, BG4KO mice had impaired glucose sensing, noted by impaired epinephrine and glucagon responses and impaired c-fos activation in the hypothalamic paraventricular nucleus. Moreover, in vitro glucose sensing of glucose-inhibitory neurons from the ventromedial hypothalamus was impaired in BG4KO mice. In summary, BG4KO mice are glucose intolerant, insulin resistant, and have impaired glucose sensing, indicating a critical role for brain GLUT4 in sensing and responding to changes in blood glucose. PMID:27797912

  20. Role of WNT16 in the Regulation of Periosteal Bone Formation in Female Mice

    PubMed Central

    Wergedal, Jon E.; Kesavan, Chandrasekhar; Brommage, Robert; Das, Subhashri

    2015-01-01

    In this study, we evaluated the role of WNT16 in regulating bone size, an important determinant of bone strength. Mice with targeted disruption of the Wnt16 gene exhibited a 24% reduction in tibia cross-sectional area at 12 weeks of age compared with that of littermate wild-type (WT) mice. Histomorphometric studies revealed that the periosteal bone formation rate and mineral apposition rate were reduced (P < .05) by 55% and 32%, respectively, in Wnt16 knockout (KO) vs WT mice at 12 weeks of age. In contrast, the periosteal tartrate resistant acid phosphatase-labeled surface was increased by 20% in the KO mice. Because mechanical strain is an important physiological regulator of periosteal bone formation (BF), we determined whether mechanical loading–induced periosteal BF is compromised in Wnt16 KO mice. Application of 4800-μe strain to the right tibia using a 4-point bending loading method for 2 weeks (2-Hz frequency, 36 cycles per day, 6 days/wk) produced a significant increase in cross-sectional area (11% above that of the unloaded left tibia, P < .05, n = 6) in the WT but not in the KO mice (−0.2% change). Histomorphometric analyses revealed increases in the periosteal bone formation rate and mineral apposition rate in the loaded bones of WT but not KO mice. Wnt16 KO mice showed significant (20%–70%) reductions in the expression levels of markers of canonical (β-catenin and Axin2) but not noncanonical (Nfatc1 and Tnnt2) WNT signaling in the periosteum at 5 weeks of age. Our findings suggest that WNT16 acting via canonical WNT signaling regulates mechanical strain-induced periosteal BF and bone size. PMID:25521583

  1. Microglia-Derived Cytokines/Chemokines Are Involved in the Enhancement of LPS-Induced Loss of Nigrostriatal Dopaminergic Neurons in DJ-1 Knockout Mice

    PubMed Central

    Chien, Chia-Hung; Lee, Ming-Jen; Liou, Houng-Chi; Liou, Horng-Huei; Fu, Wen-Mei

    2016-01-01

    Mutation of DJ-1 (PARK7) has been linked to the development of early-onset Parkinson’s disease (PD). However, the underlying molecular mechanism is still unclear. This study is aimed to compare the sensitivity of nigrostriatal dopaminergic neurons to lipopolysaccharide (LPS) challenge between DJ-1 knockout (KO) and wild-type (WT) mice, and explore the underlying cellular and molecular mechanisms. Our results found that the basal levels of interferon (IFN)-γ (the hub cytokine) and interferon-inducible T-cell alpha chemoattractant (I-TAC) (a downstream mediator) were elevated in the substantia nigra of DJ-1 KO mice and in microglia cells with DJ-1 deficiency, and the release of cytokine/chemokine was greatly enhanced following LPS administration in the DJ-1 deficient conditions. In addition, direct intranigral LPS challenge caused a greater loss of nigrostriatal dopaminergic neurons and striatal dopamine content in DJ-1 KO mice than in WT mice. Furthermore, the sensitization of microglia cells to LPS challenge to release IFN-γ and I-TAC was via the enhancement of NF-κB signaling, which was antagonized by NF-κB inhibitors. LPS-induced increase in neuronal death in the neuron-glia co-culture was enhanced by DJ-1 deficiency in microglia, which was antagonized by the neutralizing antibodies against IFN-γ or I-TAC. These results indicate that DJ-1 deficiency sensitizes microglia cells to release IFN-γ and I-TAC and causes inflammatory damage to dopaminergic neurons. The interaction between the genetic defect (i.e. DJ-1) and inflammatory factors (e.g. LPS) may contribute to the development of PD. PMID:26982707

  2. aP2-Cre-mediated inactivation of acetyl-CoA carboxylase 1 causes growth retardation and reduced lipid accumulation in adipose tissues

    USDA-ARS?s Scientific Manuscript database

    Adipose tissue is one of the major sites for fatty acid synthesis and lipid storage. We generated adipose (fat)-specific ACC1 knockout (FACC1KO) mice using the aP2-Cre/loxP system. FACC1KO mice showed prenatal growth retardation; after weaning, however, their weight gain was comparable to that of wi...

  3. Neer Award 2016: reduced muscle degeneration and decreased fatty infiltration after rotator cuff tear in a poly(ADP-ribose) polymerase 1 (PARP-1) knock-out mouse model.

    PubMed

    Kuenzler, Michael B; Nuss, Katja; Karol, Agnieszka; Schär, Michael O; Hottiger, Michael; Raniga, Sumit; Kenkel, David; von Rechenberg, Brigitte; Zumstein, Matthias A

    2017-05-01

    Disturbed muscular architecture, atrophy, and fatty infiltration remain irreversible in chronic rotator cuff tears even after repair. Poly (adenosine 5'-diphosphate-ribose) polymerase 1 (PARP-1) is a key regulator of inflammation, apoptosis, muscle atrophy, muscle regeneration, and adipocyte development. We hypothesized that the absence of PARP-1 would lead to a reduction in damage to the muscle subsequent to combined tenotomy and neurectomy in a PARP-1 knockout (KO) mouse model. PARP-1 KO and wild-type C57BL/6 (WT group) mice were analyzed at 1, 6, and 12 weeks (total n = 84). In all mice, the supraspinatus and infraspinatus muscles of the left shoulder were detached and denervated. Macroscopic analysis, magnetic resonance imaging, gene expression analysis, immunohistochemistry, and histology were used to assess the differences in PARP-1 KO and WT mice. The muscles in the PARP-1 KO group had significantly less retraction, atrophy, and fatty infiltration after 12 weeks than in the WT group. Gene expression of inflammatory, apoptotic, adipogenic, and muscular atrophy genes was significantly decreased in PARP-1 KO mice in the first 6 weeks. Absence of PARP-1 leads to a reduction in muscular architectural damage, early inflammation, apoptosis, atrophy, and fatty infiltration after combined tenotomy and neurectomy of the rotator cuff muscle. Although the macroscopic reaction to injury is similar in the first 6 weeks, the ability of the muscles to regenerate was much greater in the PARP-1 KO group, leading to a near-normalization of the muscle after 12 weeks. Copyright © 2017 Journal of Shoulder and Elbow Surgery Board of Trustees. Published by Elsevier Inc. All rights reserved.

  4. CB2 cannabinoid receptors modulate HIF-1α and TIM-3 expression in a hypoxia-ischemia mouse model.

    PubMed

    Kossatz, Elk; Maldonado, Rafael; Robledo, Patricia

    2016-12-01

    The role of CB2 cannabinoid receptors (CB 2 R) in global brain lesions induced by hypoxia-ischemia (HI) insult is still unresolved. The aim of this study was to evaluate the involvement of CB 2 R in the behavioural and biochemical underpinnings related to brain damage induced by HI in adult mice, and the mechanisms involved. CB 2 R knockout (KO) mice and wild-type littermates (WT) underwent permanent ligation of the left common carotid artery and hypoxia. Behavioural measurements in the rotarod, beam walking, object recognition, open field, and Irwin tests were carried out 24h, 72h and 7 days. In KO mice, more extensive brain injury was observed. Behavioural deficits in the Irwin test were observed in both genotypes; while WT mice showed progressive recovery by day 7, KO mice did not. Only KO mice showed alterations in motor learning, coordination and balance, and did not recover over time. A higher expression of microglia and astrocytes was observed in several brain areas of lesioned WT and KO mice. The possible alteration of the inflammatory-related factors HIF-1α and TIM-3 was evaluated in these animals. In both genotypes, HIF-1α and TIM-3 expression was observed in lesioned areas associated with activated microglia. However, the expression levels of these proteins were exacerbated in KO mice in several lesioned and non-lesioned brain structures. Our results indicate that CB 2 R may have a crucial neuroprotective role following HI insult through the modulation of the inflammatory-related HIF-1α/TIM-3 signalling pathway in microglia. Copyright © 2016 Elsevier B.V. and ECNP. All rights reserved.

  5. Reduced emotional and corticosterone responses to stress in μ-opioid receptor knockout mice

    PubMed Central

    Ide, Soichiro; Sora, Ichiro; Ikeda, Kazutaka; Minami, Masabumi; Uhl, George R.; Ishihara, Kumatoshi

    2014-01-01

    The detailed mechanisms of emotional modulation in the nervous system by opioids remain to be elucidated, although the opioid system is well known to play important roles in the mechanisms of analgesia and drug dependence. In the present study, we conducted behavioral tests of anxiety and depression and measured corticosterone concentrations in both male and female μ-opioid receptor knockout (MOP-KO) mice to reveal the involvement of μ-opioid receptors in stress-induced emotional responses. MOP-KO mice entered more and spent more time in the open arms of the elevated plus maze compared with wild-type mice. MOP-KO mice also displayed significantly decreased immobility in a 15 min tail-suspension test compared with wild-type mice. Similarly, MOP-KO mice exhibited significantly decreased immobility on days 2, 3, and 4 in a 6 min forced swim test conducted for 5 consecutive days. The increase in plasma corticosterone concentration induced by tail-suspension, repeated forced swim, or restraint stress was reduced in MOP-KO mice compared with wild-type mice. Corticosterone levels were not different between wild-type and MOP-KO mice before stress exposure. In contrast, although female mice tended to exhibit fewer anxiety-like responses in the tail-suspension test in both genotypes, no significant gender differences were observed in stress-induced emotional responses. These results suggest that MOPs play an important facilitatory role in emotional responses to stress, including anxiety- and depression-like behavior and corticosterone levels. PMID:19596019

  6. The transcription factor GATA4 promotes myocardial regeneration in neonatal mice.

    PubMed

    Malek Mohammadi, Mona; Kattih, Badder; Grund, Andrea; Froese, Natali; Korf-Klingebiel, Mortimer; Gigina, Anna; Schrameck, Ulrike; Rudat, Carsten; Liang, Qiangrong; Kispert, Andreas; Wollert, Kai C; Bauersachs, Johann; Heineke, Joerg

    2017-02-01

    Heart failure is often the consequence of insufficient cardiac regeneration. Neonatal mice retain a certain capability of myocardial regeneration until postnatal day (P)7, although the underlying transcriptional mechanisms remain largely unknown. We demonstrate here that cardiac abundance of the transcription factor GATA4 was high at P1, but became strongly reduced at P7 in parallel with loss of regenerative capacity. Reconstitution of cardiac GATA4 levels by adenoviral gene transfer markedly improved cardiac regeneration after cryoinjury at P7. In contrast, the myocardial scar was larger in cardiomyocyte-specific Gata4 knockout (CM-G4-KO) mice after cryoinjury at P0, indicative of impaired regeneration, which was accompanied by reduced cardiomyocyte proliferation and reduced myocardial angiogenesis in CM-G4-KO mice. Cardiomyocyte proliferation was also diminished in cardiac explants from CM-G4-KO mice and in isolated cardiomyocytes with reduced GATA4 expression. Mechanistically, decreased GATA4 levels caused the downregulation of several pro-regenerative genes (among them interleukin-13, Il13) in the myocardium. Interestingly, systemic administration of IL-13 rescued defective heart regeneration in CM-G4-KO mice and could be evaluated as therapeutic strategy in the future. © 2017 The Authors. Published under the terms of the CC BY 4.0 license.

  7. Tumor necrosis factor-alpha-independent downregulation of hepatic cholesterol 7alpha-hydroxylase gene in mice treated with lead nitrate.

    PubMed

    Kojima, Misaki; Sekikawa, Kenji; Nemoto, Kiyomitsu; Degawa, Masakuni

    2005-10-01

    We previously reported that lead nitrate (LN), an inducer of hepatic tumor necrosis factor-alpha (TNF-alpha), downregulated gene expression of cholesterol 7alpha-hydroxylase. Herein, to clarify the role of TNF-alpha in LN-induced downregulation of cholesterol 7alpha-hydroxylase, effects of LN on gene expression of hepatic cholesterol 7alpha-hydroxylase (Cyp7a1) in TNF-alpha-knockout (KO) and TNF-alpha-wild-type (WT) mice were comparatively examined. Gene expression of hepatic Cyp7a1 in both WT and KO mice decreased to less than 5% of the corresponding controls at 6-12 h after treatment with LN (100 mumol/kg body weight, iv). Levels of hepatic TNF-alpha protein in either WT or KO mice were below the detection limit, although expression levels of the TNF-alpha gene markedly increased at 6 h in WT mice by LN treatment, but not in KO mice. In contrast, in both WT and KO mice, levels of hepatic IL-1beta protein, which is known to be a suppressor of the cholesterol 7alpha-hydroxylase gene in hamsters, were significantly increased 3-6 h after LN treatment. Furthermore, LN-induced downregulation of the Cyp7a1 gene did not necessarily result from altered gene expression of hepatic transcription factors, including positive regulators (liver X receptor alpha, retinoid X receptor alpha, fetoprotein transcription factor, and hepatocyte nuclear factor 4alpha) and a negative regulator small heterodimer partner responsible for expression of the Cyp7a1 gene. The present findings indicated that LN-induced downregulation of the Cyp7a1 gene in mice did not necessarily occur through a TNF-alpha-dependent pathway and might occur mainly through an IL-1beta-dependent pathway.

  8. NMDA receptor agonists reverse impaired psychomotor and cognitive functions associated with hippocampal Hbegf-deficiency in mice.

    PubMed

    Sasaki, Keita; Omotuyi, Olaposi Idowu; Ueda, Mutsumi; Shinohara, Kazuyuki; Ueda, Hiroshi

    2015-12-04

    Structural and functional changes of the hippocampus are correlated with psychiatric disorders and cognitive dysfunctions. Genetic deletion of heparin-binding epidermal growth factor-like growth factor (HB-EGF), which is predominantly expressed in cortex and hippocampus, also causes similar psychiatric and cognitive dysfunctions, accompanying down-regulated NMDA receptor signaling. However, little is known of such dysfunctions in hippocampus-specific Hbegf cKO mice. We successfully developed hippocampus-specific cKO mice by crossbreeding floxed Hbegf and Gng7-Cre knock-in mice, as Gng7 promoter-driven Cre is highly expressed in hippocampal neurons as well as striatal medium spiny neurons. In mice lacking hippocampus Hbegf gene, there was a decreased neurogenesis in the subgranular zone (SGZ) of the dentate gyrus as well as down-regulation of PSD-95/NMDA-receptor-NR1/NR2B subunits and related NMDA receptor signaling. Psychiatric, social-behavioral and cognitive abnormalities were also observed in hippocampal cKO mice. Interestingly, D-cycloserine and nefiracetam, positive allosteric modulators (PAMs) of NMDA receptor reversed the apparent reduction in NMDA receptor signaling and most behavioral abnormalities. Furthermore, decreased SGZ neurogenesis in hippocampal cKO mice was reversed by nefiracetam. The present study demonstrates that PAMs of NMDA receptor have pharmacotherapeutic potentials to reverse down-regulated NMDA receptor signaling, neuro-socio-cognitive abnormalities and decreased neurogenesis in hippocampal cKO mice.

  9. Dopamine D5 receptor modulates male and female sexual behavior in mice.

    PubMed

    Kudwa, A E; Dominguez-Salazar, E; Cabrera, D M; Sibley, D R; Rissman, E F

    2005-07-01

    Dopamine exerts its actions through at least five receptor (DAR) isoforms. In female rats, D5 DAR may be involved in expression of sexual behavior. We used a D5 knockout (D5KO) mouse to assess the role of D5 DAR in mouse sexual behavior. Both sexes of D5KO mice are fertile and exhibit only minor disruptions in exploratory locomotion, startle, and prepulse inhibition responses. This study was conducted to characterize the sexual behavior of male and female D5KO mice relative to their WT littermates. Female WT and D5KO littermates were ovariectomized and given a series of sexual behavior tests after treatment with estradiol benzoate (EB) and progesterone (P). Once sexual performance was optimal the dopamine agonist, apomorphine (APO), was substituted for P. Male mice were observed in pair- and trio- sexual behavior tests. To assess whether the D5 DAR is involved in rewarding aspects of sexual behavior, WT and D5KO male mice were tested for conditioned place preference. Both WT and D5KO females can display receptivity after treatment with EB and P, but APO was only able to facilitate receptivity in EB-primed WT, not in D5KO, mice. Male D5KO mice display normal masculine sexual behavior in mating tests. In conditioned preference tests, WT males formed a conditioned preference for context associated with either intromissions alone or ejaculation as the unconditioned stimulus. In contrast, D5KO males only showed a place preference when ejaculation was paired with the context. In females, the D5 DAR is essential for the actions of dopamine on receptivity. In males, D5 DAR influences rewarding aspects of intromissions. Taken together, the work suggests that the D5 receptor mediates dopamine's action on sexual behavior in both sexes, perhaps via a reward pathway.

  10. Behavioral disinhibition and reduced anxiety-like behaviors in monoamine oxidase B-deficient mice.

    PubMed

    Bortolato, Marco; Godar, Sean C; Davarian, Shieva; Chen, Kevin; Shih, Jean C

    2009-12-01

    Monoamine oxidase (MAO) B catalyzes the degradation of beta-phenylethylamine (PEA), a trace amine neurotransmitter implicated in mood regulation. Although several studies have shown an association between low MAO B activity in platelets and behavioral disinhibition in humans, the nature of this relation remains undefined. To investigate the impact of MAO B deficiency on the emotional responses elicited by environmental cues, we tested MAO B knockout (KO) mice in a set of behavioral assays capturing different aspects of anxiety-related manifestations, such as the elevated plus maze, defensive withdrawal, marble burying, and hole board. Furthermore, MAO B KO mice were evaluated for their exploratory patterns in response to unfamiliar objects and risk-taking behaviors. In comparison with their wild-type (WT) littermates, MAO B KO mice exhibited significantly lower anxiety-like responses and shorter latency to engage in risk-taking behaviors and exploration of unfamiliar objects. To determine the neurobiological bases of the behavioral differences between WT and MAO B KO mice, we measured the brain-regional levels of PEA in both genotypes. Although PEA levels were significantly higher in all brain regions of MAO B KO in comparison with WT mice, the most remarkable increments were observed in the striatum and prefrontal cortex, two key regions for the regulation of behavioral disinhibition. However, no significant differences in transcript levels of PEA's selective receptor, trace amine-associated receptor 1 (TAAR1), were detected in either region. Taken together, these results suggest that MAO B deficiency may lead to behavioral disinhibition and decreased anxiety-like responses partially through regional increases of PEA levels.

  11. Mice deficient in phosphodiesterase-4A display anxiogenic-like behavior.

    PubMed

    Hansen, Rolf T; Conti, Marco; Zhang, Han-Ting

    2014-08-01

    Phosphodiesterases (PDEs) are a super family of enzymes responsible for the halting of intracellular cyclic nucleotide signaling and may represent novel therapeutic targets for treatment of cognitive disorders. PDE4 is of considerable interest to cognitive research because it is highly expressed in the brain, particularly in the cognition-related brain regions. Recently, the functional role of PDE4B and PDE4D, two of the four PDE4 subtypes (PDE4A, B, C, and D), in behavior has begun to be identified; however, the role of PDE4A in the regulation of behavior is still unknown. The purpose of this study was to characterize the functional role of PDE4A in behavior. The role of PDE4A in behavior was evaluated through a battery of behavioral tests using PDE4A knockout (KO) mice; urine corticosterone levels were also measured. PDE4A KO mice exhibited improved memory in the step-through-passive-avoidance test. They also displayed anxiogenic-like behavior in elevated-plus maze, holeboard, light-dark transition, and novelty suppressed feeding tests. Consistent with the anxiety profile, PDE4A KO mice had elevated corticosterone levels compared with wild-type controls post-stress. Interestingly, PDE4A KO mice displayed no change in object recognition, Morris water maze, forced swim, tail suspension, and duration of anesthesia induced by co-administration of xylazine and ketamine (suggesting that PDE4A KO may not be emetic). These results suggest that PDE4A may be important in the regulation of emotional memory and anxiety-like behavior, but not emesis. PDE4A could possibly represent a novel therapeutic target in the future for anxiety or disorders affecting memory.

  12. Differential regulation of primary afferent input to spinal cord by muscarinic receptor subtypes delineated using knockout mice.

    PubMed

    Chen, Shao-Rui; Chen, Hong; Yuan, Wei-Xiu; Wess, Jürgen; Pan, Hui-Lin

    2014-05-16

    Stimulation of muscarinic acetylcholine receptors (mAChRs) inhibits nociceptive transmission at the spinal level. However, it is unclear how each mAChR subtype regulates excitatory synaptic input from primary afferents. Here we examined excitatory postsynaptic currents (EPSCs) of dorsal horn neurons evoked by dorsal root stimulation in spinal cord slices from wild-type and mAChR subtype knock-out (KO) mice. In wild-type mice, mAChR activation with oxotremorine-M decreased the amplitude of monosynaptic EPSCs in ∼67% of neurons but increased it in ∼10% of neurons. The inhibitory effect of oxotremorine-M was attenuated by the M2/M4 antagonist himbacine in the majority of neurons, and the remaining inhibition was abolished by group II/III metabotropic glutamate receptor (mGluR) antagonists in wild-type mice. In M2/M4 double-KO mice, oxotremorine-M inhibited monosynaptic EPSCs in significantly fewer neurons (∼26%) and increased EPSCs in significantly more neurons (33%) compared with wild-type mice. Blocking group II/III mGluRs eliminated the inhibitory effect of oxotremorine-M in M2/M4 double-KO mice. In M2 single-KO and M4 single-KO mice, himbacine still significantly reduced the inhibitory effect of oxotremorine-M. However, the inhibitory and potentiating effects of oxotremorine-M on EPSCs in M3 single-KO and M1/M3 double-KO mice were similar to those in wild-type mice. In M5 single-KO mice, oxotremorine-M failed to potentiate evoked EPSCs, and its inhibitory effect was abolished by himbacine. These findings indicate that activation of presynaptic M2 and M4 subtypes reduces glutamate release from primary afferents. Activation of the M5 subtype either directly increases primary afferent input or inhibits it through indirectly stimulating group II/III mGluRs. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  13. AMA1-Deficient Toxoplasma gondii Parasites Transiently Colonize Mice and Trigger an Innate Immune Response That Leads to Long-Lasting Protective Immunity

    PubMed Central

    Lagal, Vanessa; Dinis, Márcia; Cannella, Dominique; Bargieri, Daniel; Gonzalez, Virginie; Andenmatten, Nicole; Meissner, Markus

    2015-01-01

    The apical membrane antigen 1 (AMA1) protein was believed to be essential for the perpetuation of two Apicomplexa parasite genera, Plasmodium and Toxoplasma, until we genetically engineered viable parasites lacking AMA1. The reduction in invasiveness of the Toxoplasma gondii RH-AMA1 knockout (RH-AMA1KO) tachyzoite population, in vitro, raised key questions about the outcome associated with these tachyzoites once inoculated in the peritoneal cavity of mice. In this study, we used AMNIS technology to simultaneously quantify and image the parasitic process driven by AMA1KO tachyzoites. We report their ability to colonize and multiply in mesothelial cells and in both resident and recruited leukocytes. While the RH-AMA1KO population amplification is rapidly lethal in immunocompromised mice, it is controlled in immunocompetent hosts, where immune cells in combination sense parasites and secrete proinflammatory cytokines. This innate response further leads to a long-lasting status immunoprotective against a secondary challenge by high inocula of the homologous type I or a distinct type II T. gondii genotypes. While AMA1 is definitively not an essential protein for tachyzoite entry and multiplication in host cells, it clearly assists the expansion of parasite population in vivo. PMID:25847964

  14. Trpc2-deficient lactating mice exhibit altered brain and behavioral responses to bedding stimuli.

    PubMed

    Hasen, Nina S; Gammie, Stephen C

    2011-03-01

    The trpc2 gene encodes an ion channel involved in pheromonal detection and is found in the vomeronasal organ. In tprc2(-/-) knockout (KO) mice, maternal aggression (offspring protection) is impaired and brain Fos expression in females in response to a male are reduced. Here we examine in lactating wild-type (WT) and KO mice behavioral and brain responses to different olfactory/pheromonal cues. Consistent with previous studies, KO dams exhibited decreased maternal aggression and nest building, but we also identified deficits in nighttime nursing and increases in pup weight. When exposed to the bedding tests, WT dams typically ignored clean bedding, but buried male-soiled bedding from unfamiliar males. In contrast, KO dams buried both clean and soiled bedding. Differences in brain Fos expression were found between WT and KO mice in response to either no bedding, clean bedding, or soiled bedding. In the accessory olfactory bulb, a site of pheromonal signal processing, KO mice showed suppressed Fos activation in the anterior mitral layer relative to WT mice in response to clean and soiled bedding. However, in the medial and basolateral amygdala, KO mice showed a robust Fos response to bedding, suggesting that regions of the amygdala canonically associated with pheromonal sensing can be active in the brains of KO mice, despite compromised signaling from the vomeronasal organ. Together, these results provide further insights into the complex ways by which pheromonal signaling regulates the brain and behavior of the maternal female. Copyright © 2010 Elsevier B.V. All rights reserved.

  15. 2-Methyl-6-(phenylethynyl) pyridine (MPEP) reverses maze learning and PSD-95 deficits in Fmr1 knock-out mice.

    PubMed

    Gandhi, Réno M; Kogan, Cary S; Messier, Claude

    2014-01-01

    Fragile X Syndrome (FXS) is caused by the lack of expression of the fragile X mental retardation protein (FMRP), which results in intellectual disability and other debilitating symptoms including impairment of visual-spatial functioning. FXS is the only single-gene disorder that is highly co-morbid with autism spectrum disorder and can therefore provide insight into its pathophysiology. Lack of FMRP results in altered group I metabotropic glutamate receptor (mGluR) signaling, which is a target for putative treatments. The Hebb-Williams (H-W) mazes are a set of increasingly complex spatial navigation problems that depend on intact hippocampal and thus mGluR-5 functioning. In the present investigation, we examined whether an antagonist of mGluR-5 would reverse previously described behavioral deficits in fragile X mental retardation 1 knock-out (Fmr1 KO) mice. Mice were trained on a subset of the H-W mazes and then treated with either 20 mg/kg of an mGluR-5 antagonist, 2-Methyl-6-(phenylethynyl) pyridine (MPEP; n = 11) or an equivalent dose of saline (n = 11) prior to running test mazes. Latency and errors were dependent variables recorded during the test phase. Immediately after completing each test, marble-burying behavior was assessed, which confirmed that the drug treatment was pharmacologically active during maze learning. Although latency was not statistically different between the groups, MPEP treated Fmr1 KO mice made significantly fewer errors on mazes deemed more difficult suggesting a reversal of the behavioral deficit. MPEP treated mice were also less perseverative and impulsive when navigating mazes. Furthermore, MPEP treatment reversed post-synaptic density-95 (PSD-95) protein deficits in Fmr1 KO treated mice, whereas levels of a control protein (β-tubulin) remained unchanged. These data further validate MPEP as a potentially beneficial treatment for FXS. Our findings also suggest that adapted H-W mazes may be a useful tool to document alterations in

  16. Abnormal Type I Collagen Post-translational Modification and Crosslinking in a Cyclophilin B KO Mouse Model of Recessive Osteogenesis Imperfecta

    PubMed Central

    Cabral, Wayne A.; Perdivara, Irina; Weis, MaryAnn; Terajima, Masahiko; Blissett, Angela R.; Chang, Weizhong; Perosky, Joseph E.; Makareeva, Elena N.; Mertz, Edward L.; Leikin, Sergey; Tomer, Kenneth B.; Kozloff, Kenneth M.; Eyre, David R.; Yamauchi, Mitsuo; Marini, Joan C.

    2014-01-01

    Cyclophilin B (CyPB), encoded by PPIB, is an ER-resident peptidyl-prolyl cis-trans isomerase (PPIase) that functions independently and as a component of the collagen prolyl 3-hydroxylation complex. CyPB is proposed to be the major PPIase catalyzing the rate-limiting step in collagen folding. Mutations in PPIB cause recessively inherited osteogenesis imperfecta type IX, a moderately severe to lethal bone dysplasia. To investigate the role of CyPB in collagen folding and post-translational modifications, we generated Ppib−/− mice that recapitulate the OI phenotype. Knock-out (KO) mice are small, with reduced femoral areal bone mineral density (aBMD), bone volume per total volume (BV/TV) and mechanical properties, as well as increased femoral brittleness. Ppib transcripts are absent in skin, fibroblasts, femora and calvarial osteoblasts, and CyPB is absent from KO osteoblasts and fibroblasts on western blots. Only residual (2–11%) collagen prolyl 3-hydroxylation is detectable in KO cells and tissues. Collagen folds more slowly in the absence of CyPB, supporting its rate-limiting role in folding. However, treatment of KO cells with cyclosporine A causes further delay in folding, indicating the potential existence of another collagen PPIase. We confirmed and extended the reported role of CyPB in supporting collagen lysyl hydroxylase (LH1) activity. Ppib−/− fibroblast and osteoblast collagen has normal total lysyl hydroxylation, while increased collagen diglycosylation is observed. Liquid chromatography/mass spectrometry (LC/MS) analysis of bone and osteoblast type I collagen revealed site-specific alterations of helical lysine hydroxylation, in particular, significantly reduced hydroxylation of helical crosslinking residue K87. Consequently, underhydroxylated forms of di- and trivalent crosslinks are strikingly increased in KO bone, leading to increased total crosslinks and decreased helical hydroxylysine- to lysine-derived crosslink ratios. The altered

  17. The role of α1-adrenergic receptors in regulating metabolism: increased glucose tolerance, leptin secretion and lipid oxidation.

    PubMed

    Shi, Ting; Papay, Robert S; Perez, Dianne M

    2017-04-01

    The role of α 1 -adrenergic receptors (α 1 -ARs) and their subtypes in metabolism is not well known. Most previous studies were performed before the advent of transgenic mouse models and utilized transformed cell lines and poorly selective antagonists. We have now studied the metabolic regulation of the α 1A - and α 1B -AR subtypes in vivo using knock-out (KO) and transgenic mice that express a constitutively active mutant (CAM) form of the receptor, assessing subtype-selective functions. CAM mice increased glucose tolerance while KO mice display impaired glucose tolerance. CAM mice increased while KO decreased glucose uptake into white fat tissue and skeletal muscle with the CAM α 1A -AR showing selective glucose uptake into the heart. Using indirect calorimetry, both CAM mice demonstrated increased whole body fatty acid oxidation, while KO mice preferentially oxidized carbohydrate. CAM α 1A -AR mice displayed significantly decreased fasting plasma triglycerides and glucose levels while α 1A -AR KO displayed increased levels of triglycerides and glucose. Both CAM mice displayed increased plasma levels of leptin while KO mice decreased leptin levels. Most metabolic effects were more efficacious with the α 1A -AR subtype. Our results suggest that stimulation of α 1 -ARs results in a favorable metabolic profile of increased glucose tolerance, cardiac glucose uptake, leptin secretion and increased whole body lipid metabolism that may contribute to its previously recognized cardioprotective and neuroprotective benefits.

  18. Impact of chronic low to moderate alcohol consumption on blood lipid and heart energy profile in acetaldehyde dehydrogenase 2-deficient mice.

    PubMed

    Fan, Fan; Cao, Quan; Wang, Cong; Ma, Xin; Shen, Cheng; Liu, Xiang-wei; Bu, Li-ping; Zou, Yun-zeng; Hu, Kai; Sun, Ai-jun; Ge, Jun-bo

    2014-08-01

    To investigate the roles of acetaldehyde dehydrogenase 2 (ALDH2), the key enzyme of ethanol metabolism, in chronic low to moderate alcohol consumption-induced heart protective effects in mice. Twenty-one male wild-type (WT) or ALDH2-knockout (KO) mice were used in this study. In each genotype, 14 animals received alcohol (2.5%, 5% and 10% in week 1-3, respectively, and 18% in week 4-7), and 7 received water for 7 weeks. After the treatments, survival rate and general characteristics of the animals were evaluated. Serum ethanol and acetaldehyde levels and blood lipids were measured. Metabolomics was used to characterize the heart and serum metabolism profiles. Chronic alcohol intake decreased the survival rate of KO mice by 50%, and significantly decreased their body weight, but did not affect those of WT mice. Chronic alcohol intake significantly increased the serum ethanol levels in both WT and KO mice, but KO mice had significantly higher serum acetaldehyde levels than WT mice. Chronic alcohol intake significantly increased the serum HDL cholesterol levels in WT mice, and did not change the serum HDL cholesterol levels in KO mice. After chronic alcohol intake, WT and KO mice showed differential heart and serum metabolism profiles, including the 3 main energy substrate types (lipids, glucose and amino acids) and three carboxylic acid cycles. Low to moderate alcohol consumption increases HDL cholesterol levels and improves heart energy metabolism profile in WT mice but not in ALDH2-KO mice. Thus, preserved ALDH2 function is essential for the protective effect of low to moderate alcohol on the cardiovascular system.

  19. Superoxide Stabilization and a Universal KO2 Growth Mechanism in Potassium-Oxygen Batteries.

    PubMed

    Wang, Wanwan; Lai, Nien-Chu; Liang, Zhuojian; Wang, Yu; Lu, Yi-Chun

    2018-04-23

    Rechargeable potassium-oxygen (K-O 2 ) batteries promise to provide higher round-trip efficiency and cycle life than other alkali-oxygen batteries with satisfactory gravimetric energy density (935 Wh kg -1 ). Exploiting a strong electron-donating solvent, for example, dimethyl sulfoxide (DMSO) strongly stabilizes the discharge product (KO 2 ), resulting in significant improvement in electrode kinetics and chemical/electrochemical reversibility. The first DMSO-based K-O 2 battery demonstrates a much higher energy efficiency and stability than the glyme-based electrolyte. A universal KO 2 growth model is developed and it is demonstrated that the ideal solvent for K-O 2 batteries should strongly stabilize superoxide (strong donor ability) to obtain high electrode kinetics and reversibility while providing fast oxygen diffusion to achieve high discharge capacity. This work elucidates key electrolyte properties that control the efficiency and reversibility of K-O 2 batteries. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Western Diet-Induced Dysbiosis in Farnesoid X Receptor Knockout Mice Causes Persistent Hepatic Inflammation after Antibiotic Treatment.

    PubMed

    Jena, Prasant K; Sheng, Lili; Liu, Hui-Xin; Kalanetra, Karen M; Mirsoian, Annie; Murphy, William J; French, Samuel W; Krishnan, Viswanathan V; Mills, David A; Wan, Yu-Jui Yvonne

    2017-08-01

    Patients who have liver cirrhosis and liver cancer also have reduced farnesoid X receptor (FXR). The current study analyzes the effect of diet through microbiota that affect hepatic inflammation in FXR knockout (KO) mice. Wild-type and FXR KO mice were on a control (CD) or Western diet (WD) for 10 months. In addition, both CD- and WD-fed FXR KO male mice, which had hepatic lymphocyte and neutrophil infiltration, were treated by vancomycin, polymyxin B, and Abx (ampicillin, neomycin, metronidazole, and vancomycin). Mice were subjected to morphological analysis as well as gut microbiota and bile acid profiling. Male WD-fed FXR KO mice had the most severe steatohepatitis. FXR KO also had reduced Firmicutes and increased Proteobacteria, which could be reversed by Abx. In addition, Abx eliminated hepatic neutrophils and lymphocytes in CD-fed, but not WD-fed, FXR KO mice. Proteobacteria and Bacteroidetes persisted in WD-fed FXR KO mice even after Abx treatment. Only polymyxin B could reduce hepatic lymphocytes in WD-fed FXR KO mice. The reduced hepatic inflammation by antibiotics was accompanied by decreased free and conjugated secondary bile acids as well as changes in gut microbiota. Our data revealed that Lactococcus, Lactobacillus, and Coprococcus protect the liver from inflammation. Copyright © 2017 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  1. Nramp1 promotes efficient macrophage recycling of iron following erythrophagocytosis in vivo

    PubMed Central

    Soe-Lin, Shan; Apte, Sameer S.; Andriopoulos, Billy; Andrews, Marc C.; Schranzhofer, Matthias; Kahawita, Tanya; Garcia-Santos, Daniel; Ponka, Prem

    2009-01-01

    Natural resistance-associated macrophage protein 1 (Nramp1) is a divalent metal transporter expressed exclusively in phagocytic cells. We hypothesized that macrophage Nramp1 may participate in the recycling of iron acquired from phagocytosed senescent erythrocytes. To evaluate the role of Nramp1 in vivo, the iron parameters of WT and KO mice were analyzed after acute and chronic induction of hemolytic anemia. We found that untreated KO mice exhibited greater serum transferrin saturation and splenic iron content with higher duodenal ferroportin (Fpn) and divalent metal transporter 1 (DMT1) expression. Furthermore, hepatocyte iron content and hepcidin mRNA levels were dramatically lower in KO mice, indicating that hepcidin levels can be regulated by low-hepatocyte iron stores despite increased transferrin saturation. After acute treatment with the hemolytic agent phenylhydrazine (Phz), KO mice experienced a significant decrease in transferrin saturation and hematocrit, whereas WT mice were relatively unaffected. After a month-long Phz regimen, KO mice retained markedly increased quantities of iron within the liver and spleen and exhibited more pronounced splenomegaly and reticulocytosis than WT mice. After injection of 59Fe-labeled heat-damaged reticulocytes, KO animals accumulated erythrophagocytosed 59Fe within their liver and spleen, whereas WT animals efficiently recycled phagocytosed 59Fe to the marrow and erythrocytes. These data imply that without Nramp1, iron accumulates within the liver and spleen during erythrophagocytosis and hemolytic anemia, supporting our hypothesis that Nramp1 promotes efficient hemoglobin iron recycling in macrophages. Our observations suggest that mutations in Nramp1 could result in a novel form of human hereditary iron overload. PMID:19321419

  2. Nramp1 promotes efficient macrophage recycling of iron following erythrophagocytosis in vivo.

    PubMed

    Soe-Lin, Shan; Apte, Sameer S; Andriopoulos, Billy; Andrews, Marc C; Schranzhofer, Matthias; Kahawita, Tanya; Garcia-Santos, Daniel; Ponka, Prem

    2009-04-07

    Natural resistance-associated macrophage protein 1 (Nramp1) is a divalent metal transporter expressed exclusively in phagocytic cells. We hypothesized that macrophage Nramp1 may participate in the recycling of iron acquired from phagocytosed senescent erythrocytes. To evaluate the role of Nramp1 in vivo, the iron parameters of WT and KO mice were analyzed after acute and chronic induction of hemolytic anemia. We found that untreated KO mice exhibited greater serum transferrin saturation and splenic iron content with higher duodenal ferroportin (Fpn) and divalent metal transporter 1 (DMT1) expression. Furthermore, hepatocyte iron content and hepcidin mRNA levels were dramatically lower in KO mice, indicating that hepcidin levels can be regulated by low-hepatocyte iron stores despite increased transferrin saturation. After acute treatment with the hemolytic agent phenylhydrazine (Phz), KO mice experienced a significant decrease in transferrin saturation and hematocrit, whereas WT mice were relatively unaffected. After a month-long Phz regimen, KO mice retained markedly increased quantities of iron within the liver and spleen and exhibited more pronounced splenomegaly and reticulocytosis than WT mice. After injection of (59)Fe-labeled heat-damaged reticulocytes, KO animals accumulated erythrophagocytosed (59)Fe within their liver and spleen, whereas WT animals efficiently recycled phagocytosed (59)Fe to the marrow and erythrocytes. These data imply that without Nramp1, iron accumulates within the liver and spleen during erythrophagocytosis and hemolytic anemia, supporting our hypothesis that Nramp1 promotes efficient hemoglobin iron recycling in macrophages. Our observations suggest that mutations in Nramp1 could result in a novel form of human hereditary iron overload.

  3. Diethylnitrosamine-induced hepatocarcinogenesis is suppressed in lecithin:retinol acyltransferase-deficient mice primarily through retinoid actions immediately after carcinogen administration.

    PubMed

    Shirakami, Yohei; Gottesman, Max E; Blaner, William S

    2012-02-01

    Loss of retinoid-containing lipid droplets upon hepatic stellate cell (HSC) activation is one of the first events in the development of liver disease leading to hepatocellular carcinoma. Although retinoid stores are progressively lost from HSCs during the development of hepatic disease, how this affects hepatocarcinogenesis is unclear. To investigate this, we used diethylnitrosamine (DEN) to induce hepatic tumorigenesis in matched wild-type (WT) and lecithin:retinol acyltransferase (LRAT) knockout (KO) mice, which lack stored retinoid and HSC lipid droplets. Male 15-day-old WT or Lrat KO mice were given intraperitoneal injections of DEN (25 mg/kg body wt). Eight months later, Lrat KO mice showed significantly less liver tumor development compared with WT mice, characterized by less liver tumor incidence and smaller tumor size. Two days after DEN injection, lower serum levels of alanine aminotransferase and decreased hepatic levels of cyclin D1 were observed in Lrat KO mice. Lrat KO mice also exhibited increased levels of retinoic acid-responsive genes, including p21, lower levels of cytochrome P450 enzymes required for DEN bioactivation and higher levels of the DNA repair enzyme O(6)-methylguanine-DNA methyltransferase (MGMT), both before and after DEN treatment. Our results indicate that Lrat KO mice are less susceptible to DEN-induced hepatocarcinogenesis due to increased retinoid signaling and higher expression of p21, which is accompanied by altered hepatic levels of DEN-activating enzymes and MGMT in Lrat KO mice also contribute to decreased cancer initiation and suppressed liver tumor development.

  4. Temporal and Molecular Analyses of Cardiac Extracellular Matrix Remodeling following Pressure Overload in Adiponectin Deficient Mice

    PubMed Central

    Dadson, Keith; Turdi, Subat; Boo, Stellar; Hinz, Boris; Sweeney, Gary

    2015-01-01

    Adiponectin, circulating levels of which are reduced in obesity and diabetes, mediates cardiac extracellular matrix (ECM) remodeling in response to pressure overload (PO). Here, we performed a detailed temporal analysis of progressive cardiac ECM remodelling in adiponectin knockout (AdKO) and wild-type (WT) mice at 3 days and 1, 2, 3 and 4 weeks following the induction of mild PO via minimally invasive transverse aortic banding. We first observed that myocardial adiponectin gene expression was reduced after 4 weeks of PO, whereas increased adiponectin levels were detected in cardiac homogenates at this time despite decreased circulating levels of adiponectin. Scanning electron microscopy and Masson’s trichrome staining showed collagen accumulation increased in response to 2 and 4 weeks of PO in WT mice, while fibrosis in AdKO mice was notably absent after 2 weeks but highly apparent after 4 weeks of PO. Time and intensity of fibroblast appearance after PO was not significantly different between AdKO and WT animals. Gene array analysis indicated that MMP2, TIMP2, collagen 1α1 and collagen 1α3 were induced after 2 weeks of PO in WT but not AdKO mice. After 4 weeks MMP8 was induced in both genotypes, MMP9 only in WT mice and MMP1α only in AdKO mice. Direct stimulation of primary cardiac fibroblasts with adiponectin induced a transient increase in total collagen detected by picrosirius red staining and collagen III levels synthesis, as well as enhanced MMP2 activity detected via gelatin zymography. Adiponectin also enhanced fibroblast migration and attenuated angiotensin-II induced differentiation to a myofibroblast phenotype. In conclusion, these data indicate that increased myocardial bioavailability of adiponectin mediates ECM remodeling following PO and that adiponectin deficiency delays these effects. PMID:25910275

  5. Natural Killer T Cell Activation Protects Mice Against Experimental Autoimmune Encephalomyelitis

    PubMed Central

    Singh, Avneesh K.; Wilson, Michael T.; Hong, Seokmann; Olivares-Villagómez, Danyvid; Du, Caigan; Stanic, Aleksandar K.; Joyce, Sebastian; Sriram, Subramaniam; Koezuka, Yasuhiko; Van Kaer, Luc

    2001-01-01

    Experimental autoimmune encephalomyelitis (EAE) serves as a prototypic model for T cell–mediated autoimmunity. Vα14 natural killer T (NKT) cells are a subset of T lymphocytes that recognize glycolipid antigens presented by the nonpolymorphic major histocompatibility complex (MHC) class I–like protein CD1d. Here, we show that activation of Vα14 NKT cells by the glycosphingolipid α-galactosylceramide (α-GalCer) protects susceptible mice against EAE. β-GalCer, which binds CD1d but is not recognized by NKT cells, failed to protect mice against EAE. Furthermore, α-GalCer was unable to protect CD1d knockout (KO) mice against EAE, indicating the requirement for an intact CD1d antigen presentation pathway. Protection of disease conferred by α-GalCer correlated with its ability to suppress myelin antigen-specific Th1 responses and/or to promote myelin antigen-specific Th2 cell responses. α-GalCer was unable to protect IL-4 KO and IL-10 KO mice against EAE, indicating a critical role for both of these cytokines. Because recognition of α-GalCer by NKT cells is phylogenetically conserved, our findings have identified NKT cells as novel target cells for treatment of inflammatory diseases of the central nervous system. PMID:11748281

  6. CARDIOMYOPATHY AND WORSENED ISCHEMIC HEART FAILURE IN SM22-α CRE-MEDIATED NEUROPILIN-1 NULL MICE: DYSREGULATION OF PGC1α AND MITOCHONDRIAL HOMEOSTASIS

    PubMed Central

    Wang, Ying; Cao, Ying; Yamada, Satsuki; Thirunavukkarasu, Mahesh; Nin, Veronica; Joshi, Mandip; Rishi, Muhammed T.; Bhattacharya, Santanu; Camacho-Pereira, Juliana; Sharma, Anil K.; Shameer, Khader; Kocher, Jean-Pierre A.; Sanchez, Juan A; Wang, Enfeng; Hoeppner, Luke H.; Dutta, Shamit K.; Leof1, Edward B.; Shah, Vijay; Claffey, Kevin P.; Chini, Eduardo; Simons, Michael; Terzic, Andre; Maulik, Nilanjana; Mukhopadhyay, Debabrata

    2015-01-01

    Objective Neuropilin-1 (NRP-1) is a multi-domain membrane receptor involved in angiogenesis and development of neuronal circuits, however, the role of NRP-1 in cardiovascular pathophysiology remains elusive. Approach and Results In this study, we first observed that deletion of NRP-1 induced peroxisome proliferator-activated receptor γ coactivator 1α (PGC1α) in cardiomyocytes (CMs) and vascular smooth muscle cells (VSMCs), which was accompanied by dysregulated cardiac mitochondrial accumulation and induction of cardiac hypertrophy- and stress-related markers. To investigate the role of NRP-1 in vivo, we generated mice lacking Nrp-1 in CMs and VSMCs (SM22-α-Nrp-1 KO), which exhibited decreased survival rates, developed cardiomyopathy and aggravated ischemia-induced heart failure. Mechanistically, we found that NRP-1 specifically controls PGC1α and PPARγ in CMs through crosstalk with Notch1 and Smad2 signaling pathways respectively. Moreover, SM22-α-Nrp-1 KO mice exhibited impaired physical activities and altered metabolite levels in serum, liver, and adipose tissues, as demonstrated by global metabolic profiling analysis. Conclusions Our findings provide new insights into the cardio-protective role of NRP-1 and its influence on global metabolism. PMID:25882068

  7. Deletion of fibroblast growth factor 22 (FGF22) causes a depression-like phenotype in adult mice.

    PubMed

    Williams, Aislinn J; Yee, Patricia; Smith, Mitchell C; Murphy, Geoffrey G; Umemori, Hisashi

    2016-07-01

    Specific growth factors induce formation and differentiation of excitatory and inhibitory synapses, and are essential for brain development and function. Fibroblast growth factor 22 (FGF22) is important for specifying excitatory synapses during development, including in the hippocampus. Mice with a genetic deletion of FGF22 (FGF22KO) during development subsequently have fewer hippocampal excitatory synapses in adulthood. As a result, FGF22KO mice are resistant to epileptic seizure induction. In addition to playing a key role in learning, the hippocampus is known to mediate mood and anxiety. Here, we explored whether loss of FGF22 alters affective, anxiety or social cognitive behaviors in mice. We found that relative to control mice, FGF22KO mice display longer duration of floating and decreased latency to float in the forced swim test, increased immobility in the tail suspension test, and decreased preference for sucrose in the sucrose preference test, which are all suggestive of a depressive-like phenotype. No differences were observed between control and FGF22KO mice in other behavioral assays, including motor, anxiety, or social cognitive tests. These results suggest a novel role for FGF22 specifically in affective behaviors. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Knockout of the aryl hydrocarbon receptor results in distinct hepatic and renal phenotypes in rats and mice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harrill, Joshua A.; Hukkanen, Renee R.; Lawson, Marie

    2013-10-15

    The aryl hydrocarbon receptor (AHR) is a ligand-activated transcription factor which plays a role in the development of multiple tissues and is activated by a large number of ligands, including 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). In order to examine the roles of the AHR in both normal biological development and response to environmental chemicals, an AHR knockout (AHR-KO) rat model was created and compared with an existing AHR-KO mouse. AHR-KO rats harboring either 2-bp or 29-bp deletion mutation in exon 2 of the AHR were created on the Sprague–Dawley genetic background using zinc-finger nuclease (ZFN) technology. Rats harboring either mutation type lacked expressionmore » of AHR protein in the liver. AHR-KO rats were also insensitive to thymic involution, increased hepatic weight and the induction of AHR-responsive genes (Cyp1a1, Cyp1a2, Cyp1b1, Ahrr) following acute exposure to 25 μg/kg TCDD. AHR-KO rats had lower basal expression of transcripts for these genes and also accumulated ∼ 30–45-fold less TCDD in the liver at 7 days post-exposure. In untreated animals, AHR-KO mice, but not AHR-KO rats, had alterations in serum analytes indicative of compromised hepatic function, patent ductus venosus of the liver and persistent hyaloid arteries in the eye. AHR-KO rats, but not AHR-KO mice, displayed pathological alterations to the urinary tract: bilateral renal dilation (hydronephrosis), secondary medullary tubular and uroepithelial degenerative changes and bilateral ureter dilation (hydroureter). The present data indicate that the AHR may play significantly different roles in tissue development and homeostasis and toxicity across rodent species. - Highlights: • An AHR knockout rat was generated on a Sprague–Dawley outbred background. • AHR-KO rats lack expression of AHR protein. • AHR-KO rats are insensitive to TCDD-mediated effects. • Data suggests difference in the role of AHR in tissue development of rats and mice. • Abnormalities in

  9. Oral exposure to Listeria monocytogenes in aged IL-17RKO mice: A possible murine model to study listeriosis in susceptible populations.

    PubMed

    Alam, Mohammad S; Costales, Matthew; Cavanaugh, Christopher; Pereira, Marion; Gaines, Dennis; Williams, Kristina

    2016-10-01

    Foodborne Listeria monocytogenes (LM) is a cause of serious illness and death in the US. The case-fatality rate of invasive LM infection in the elderly population is >50%. The goal of this study is to establish a murine model of oral LM infection that can be used as a surrogate for human foodborne listeriosis in the geriatric population. Adult C57BL/6 (wild-type, WT) and adult or old IL17R-KO (knock-out) mice were gavaged with a murinized LM strain (Lmo-InlA m ) and monitored for body-weight loss and survivability. Tissues were collected and assayed for bacterial burden, histology, and cytokine responses. When compared to WT mice, adult IL17R-KO mice are more susceptible to LM infection and showed increased LM burden and tissue pathology and a higher mortality rate. Older LM-infected KO-mice lost significantly (p < 0.02, ANOVA) more body-weight and had a higher bacterial burden in the liver (p = 0.03) and spleen as compared to adult mice. Uninfected, aged KO-mice showed a higher baseline pro-inflammatory response when compared to uninfected adult-KO mice. After infection, the pro-inflammatory cytokine, IFN-γ, mRNA in the liver was higher in the adult mice as compared to the old mice. The anti-inflammatory cytokine, IL-10, mRNA and regulatory T-cells (CD4 + CD25 +h or CD4 + Foxp3 + ) cells in the aged mice increased significantly after infection as compared to adult mice. Expression of the T-cell activation marker, CD25 (IL-2Rα) in the aged mice did not increase significantly over baseline. These data suggest that aged IL17R-KO mice can be used as an in vivo model to study oral listeriosis and that aged mice are more susceptible to LM infection due to dysregulation of pro- and anti-inflammatory responses compared to adult mice, resulting in a protracted clearance of the infection. Published by Elsevier Ltd.

  10. Aromatase Deficient Female Mice Demonstrate Altered Expression of Molecules Critical for Renal Calcium Reabsorption

    NASA Astrophysics Data System (ADS)

    Öz, Orhan K.; Hajibeigi, Asghar; Cummins, Carolyn; van Abel, Monique; Bindels, René J.; Kuro-o, Makoto; Pak, Charles Y. C.; Zerwekh, Joseph E.

    2007-04-01

    The incidence of kidney stones increases in women after the menopause, suggesting a role for estrogen deficiency. In order to determine if estrogen may be exerting an effect on renal calcium reabsorption, we measured urinary calcium excretion in the aromatase-deficient female mouse (ArKO) before and following estrogen therapy. ArKO mice had hypercalciuria that corrected during estrogen administration. To evaluate the mechanism by which estrogen deficiency leads to hypercalciuria, we examined the expression of several proteins involved in distal tubule renal calcium reabsorption, both at the message and protein levels. Messenger RNA levels of TRPV5, TRPV6, calbindin-D28K, the Na+/Ca++ exchanger (NCX1), and the plasma membrane calcium ATPase (PMCA1b) were significantly decreased in kidneys of ArKO mice. On the other hand, klotho mRNA levels were elevated in kidneys of ArKO mice. ArKO renal protein extracts had lower levels of calbindin-D28K but higher levels of the klotho protein. Immunochemistry demonstrated increased klotho expression in ArKO kidneys. Estradiol therapy normalized the expression of TRPV5, calbindin-D28K, PMCA1b and klotho. Taken together, these results demonstrate that estrogen deficiency produced by aromatase inactivation is sufficient to produce a renal leak of calcium and consequent hypercalciuria. This may represent one mechanism leading to the increased incidence of kidney stones following the menopause in women.

  11. Investigation of a role for ghrelin signaling in binge-like feeding in mice under limited access to high-fat diet.

    PubMed

    King, S J; Rodrigues, T; Watts, A; Murray, E; Wilson, A; Abizaid, A

    2016-04-05

    Binge eating is defined by the consumption of an excessive amount of food in a short time, reflecting a form of hedonic eating that is not necessarily motivated by caloric need. Foods consumed during a binge are also often high in fat and/or sugar. Ghrelin, signaling centrally via the growth-hormone secretagogue receptor (GHSR), stimulates growth hormone release and appetite. GHSR signaling also enhances the rewarding value of palatable foods and increases the motivation for such foods. As ghrelin interacts directly with dopaminergic reward circuitry, shown to be involved in binge eating, the current studies explored the role of GHSR signaling in a limited access model of binge eating in mice. In this model, mice received either intermittent (INT) or daily (DAILY) access to a nutritionally complete high-fat diet (HFD) for 2h late in the light cycle, alongside 24-h ad libitum chow. In CD-1 mice, 2-h exposure to HFD generated substantial binge-like intake of HFD, as well as a binge-compensate pattern of 24-h daily intake. INT and daily groups did not differ in 2-h HFD consumption, while INT mice maintained stable intake of chow despite access to HFD. GHSR knock-out (KO) and wild-type (WT) mice both binged during HFD access, and exhibited the same binge-compensate pattern. INT GHSR KO mice did not binge as much as WT, while DAILY KO and WT were comparable. Overall, GHSR KO mice consumed fewer calories from HFD, regardless of access condition. GHSR KO mice also had reduced activation of the nucleus accumbens shell, but not core, following HFD consumption. These data support the ability of INT HFD in mice to induce a binge-compensate pattern of intake that emulates select components of binge eating in humans. There also appears to be a role for GHSR signaling in driving HFD consumption under these conditions, potentially via mediation of reward-related circuitry. Copyright © 2016 IBRO. Published by Elsevier Ltd. All rights reserved.

  12. Brain GLUT4 Knockout Mice Have Impaired Glucose Tolerance, Decreased Insulin Sensitivity, and Impaired Hypoglycemic Counterregulation.

    PubMed

    Reno, Candace M; Puente, Erwin C; Sheng, Zhenyu; Daphna-Iken, Dorit; Bree, Adam J; Routh, Vanessa H; Kahn, Barbara B; Fisher, Simon J

    2017-03-01

    GLUT4 in muscle and adipose tissue is important in maintaining glucose homeostasis. However, the role of insulin-responsive GLUT4 in the central nervous system has not been well characterized. To assess its importance, a selective knockout of brain GLUT4 (BG4KO) was generated by crossing Nestin-Cre mice with GLUT4-floxed mice. BG4KO mice had a 99% reduction in GLUT4 protein expression throughout the brain. Despite normal feeding and fasting glycemia, BG4KO mice were glucose intolerant, demonstrated hepatic insulin resistance, and had reduced glucose uptake in the brain. In response to hypoglycemia, BG4KO mice had impaired glucose sensing, noted by impaired epinephrine and glucagon responses and impaired c-fos activation in the hypothalamic paraventricular nucleus. Moreover, in vitro glucose sensing of glucose-inhibitory neurons from the ventromedial hypothalamus was impaired in BG4KO mice. In summary, BG4KO mice are glucose intolerant, insulin resistant, and have impaired glucose sensing, indicating a critical role for brain GLUT4 in sensing and responding to changes in blood glucose. © 2017 by the American Diabetes Association.

  13. TNF-α contributes to spinal cord synaptic plasticity and inflammatory pain: Distinct role of TNF receptor subtype 1 and 2

    PubMed Central

    Zhang, Ling; Berta, Temugin; Xu, Zhen-Zhong; Liu, Tong; Park, Jong Yeon; Ji, Ru-Rong

    2010-01-01

    Tumor necrosis factor-alpha (TNF-α) is a key proinflammatory cytokine. It is generally believed that TNF-α exerts its effects primarily via TNF receptor subtype-1 (TNFR1). We investigated distinct role of TNFR1 and TNFR2 in spinal cord synaptic transmission and inflammatory pain. Compared to wild-type (WT) mice, TNFR1 and TNFR2 knockout (KO) mice exhibited normal heat sensitivity and unaltered excitatory synaptic transmission in the spinal cord, as revealed by spontaneous excitatory postsynaptic currents (sEPSCs) in lamina II neurons of spinal cord slices. However, heat hyperalgesia after intrathecal TNF-α and the second-phase spontaneous pain in the formalin test were reduced in both TNFR1- and TNFR2-KO mice. In particular, heat hyperalgesia after intraplantar injection of complete Freund's adjuvant (CFA) was decreased in the early phase in TNFR2-KO mice but reduced in both early and later phase in TNFR1-KO mice. Consistently, CFA elicited a transient increase of TNFR2 mRNA levels in the spinal cord on day 1. Notably, TNF-α evoked a drastic increase in sEPSC frequency in lamina II neurons, which was abolished in TNFR1-KO mice and reduced in TNFR2-KO mice. TNF-α also increased NMDA currents in lamina II neurons, and this increase was abolished in TNFR1-KO mice but retained in TNFR2-KO mice. Finally, intrathecal injection of the NMDA receptor antagonist MK-801 prevented heat hyperalgesia elicited by intrathecal TNF-α. Our findings support a central role of TNF-α in regulating synaptic plasticity (central sensitization) and inflammatory pain via both TNFR1 and TNFR2. Our data also uncover a unique role of TNFR2 in mediating early-phase inflammatory pain. PMID:21159431

  14. Adenosine A2A receptor deficiency attenuates the somnogenic effect of prostaglandin D2 in mice

    PubMed Central

    Zhang, Bin-jia; Huang, Zhi-li; Chen, Jiang-fan; Urade, Yoshihiro; Qu, Wei-min

    2017-01-01

    Prostaglandin D2 (PGD2) is one of the most potent endogenous sleep promoting substances. PGD2 activates the PGD2 receptor (DPR) and increases the extracellular level of adenosine in wild-type (WT) mice but not DPR knockout (KO) mice, suggesting that PGD2-induced sleep is DPR-dependent, and adenosine may be the signaling molecule that mediates the somnogenic effect of PGD2. The aim of this study was to determine the involvement of the adenosine A2A receptor (A2AR) in PGD2-induced sleep. We infused PGD2 into the lateral ventricle of WT and A2AR KO mice between 20:00 and 2:00 for 6 h, and electroencephalograms and electromyograms were simultaneously recorded. In WT mice, PGD2 infusion dose-dependently increased non-rapid eye movement (non-REM, NREM) sleep, which was 139.1%, 145.0% and 202.7% as large as that of vehicle-treated mice at doses of 10, 20 and 50 pmol/min, respectively. PGD2 infusion at doses of 20 and 50 pmol/min also increased REM sleep during the 6-h PGD2 infusion and 4-h post-dosing periods in WT mice to 148.9% and 166.7%, respectively. In A2AR KO mice, however, PGD2 infusion at 10 pmol/min did not change the sleep profile, whereas higher doses at 20 and 50 pmol/min increased the NREM sleep during the 6-h PGD2 infusion to 117.5% and 155.6%, respectively, but did not change the sleep in the post-dosing period. Moreover, PGD2 infusion at 50 pmol/min significantly increased the episode number in both genotypes but only enhanced the episode duration in WT mice. The results demonstrate that PGD2-induced sleep in mice is mediated by both adenosine A2AR-dependent and -independent systems. PMID:28112177

  15. Mice Deficient in NF-κB p50 and p52 or RANK Have Defective Growth Plate Formation and Post-natal Dwarfism.

    PubMed

    Xing, Lianping; Chen, Di; Boyce, Brendan F

    2013-12-01

    NF-κBp50/p52 double knockout (dKO) and RANK KO mice have no osteoclasts and develop severe osteopetrosis associated with dwarfism. In contrast, Op/Op mice, which form few osteoclasts, and Src KO mice, which have osteoclasts with defective resorptive function, are osteopetrotic, but they are not dwarfed. Here, we compared the morphologic features of long bones from p50/p52 dKO, RANK KO, Op/Op and Src KO mice to attempt to explain the differences in their long bone lengths. We found that growth plates in p50/p52 dKO and RANK KO mice are significantly thicker than those in WT mice due to a 2-3-fold increase in the hypertrophic chondrocyte zone associated with normal a proliferative chondrocyte zone. This growth plate abnormality disappears when animals become older, but their dwarfism persists. Op/Op or Src KO mice have relatively normal growth plate morphology. In-situ hybridization study of long bones from p50/p52 dKO mice showed marked thickening of the growth plate region containing type 10 collagen-expressing chondrocytes. Treatment of micro-mass chondrocyte cultures with RANKL did not affect expression levels of type 2 collagen and Sox9, markers for proliferative chondrocytes, but RANKL reduced the number of type 10 collagen-expressing hypertrophic chondrocytes. Thus, RANK/NF-κB signaling plays a regulatory role in post-natal endochondral ossification that maintains hypertrophic conversion and prevents dwarfism in normal mice.

  16. Reduced hepatic injury in Toll-like receptor 4-deficient mice following D-galactosamine/lipopolysaccharide-induced fulminant hepatic failure.

    PubMed

    Ben Ari, Ziv; Avlas, Orna; Pappo, Orit; Zilbermints, Veacheslav; Cheporko, Yelena; Bachmetov, Larissa; Zemel, Romy; Shainberg, Asher; Sharon, Eran; Grief, Franklin; Hochhauser, Edith

    2012-01-01

    Liver transplantation is the only therapy of proven benefit in fulminant hepatic failure (FHF). Lipopolysaccharide (LPS), D-galactosamine (GalN)-induced FHF is a well established model of liver injury in mice. Toll-Like Receptor 4 (TLR4) has been identified as a receptor for LPS. The aim of this study was to investigate the role of TLR4 in FHF induced by D-GalN/LPS administration in mice. Wild type (WT) and TLR4 deficient (TLR4ko) mice were studied in vivo in a fulminant model induced by GalN/LPS. Hepatic TLR4 expression, serum liver enzymes, hepatic and serum TNF-α and interleukin-1β levels were determined. Apoptotic cells were identified by immunohistochemistry for caspase-3. Nuclear factor-kappaβ (NF-κ β) and phosphorylated c-Jun hepatic expression were studied using Western blot analysis. All WT mice died within 24 hours after administration of GalN/LPS while all TLR4ko mice survived. Serum liver enzymes, interleukin-1β, TNF-α level, TLR4 mRNA expression, hepatic injury and hepatocyte apoptosis all significantly decreased in TLR4ko mice compared with WT mice. A significant decrease in hepatic c-Jun and IκB signaling pathway was noted in TLR4ko mice compared with WT mice. In conclusion, following induction of FHF, the inflammatory response and the liver injury in TLR4ko mice was significantly attenuated through decreased hepatic c-Jun and NF-κB expression and thus decreased TNF-α level. Down-regulation of TLR4 expression plays a pivotal role in GalN/LPS induced FHF. These findings might have important implications for the use of the anti TLR4 protein signaling as a potential target for therapeutic intervention in FHF. Copyright © 2012 S. Karger AG, Basel.

  17. Abnormal motor phenotype at adult stages in mice lacking type 2 deiodinase.

    PubMed

    Bárez-López, Soledad; Bosch-García, Daniel; Gómez-Andrés, David; Pulido-Valdeolivas, Irene; Montero-Pedrazuela, Ana; Obregon, Maria Jesus; Guadaño-Ferraz, Ana

    2014-01-01

    Thyroid hormones have a key role in both the developing and adult central nervous system and skeletal muscle. The thyroid gland produces mainly thyroxine (T4) but the intracellular concentrations of 3,5,3'-triiodothyronine (T3; the transcriptionally active hormone) in the central nervous system and skeletal muscle are modulated by the activity of type 2 deiodinase (D2). To date no neurological syndrome has been associated with mutations in the DIO2 gene and previous studies in young and juvenile D2-knockout mice (D2KO) did not find gross neurological alterations, possibly due to compensatory mechanisms. This study aims to analyze the motor phenotype of 3-and-6-month-old D2KO mice to evaluate the role of D2 on the motor system at adult stages in which compensatory mechanisms could have failed. Motor abilities were explored by validated tests. In the footprint test, D2KO showed an altered global gait pattern (mice walked slower, with shorter strides and with a hindlimb wider base of support than wild-type mice). No differences were detected in the balance beam test. However, a reduced latency to fall was found in the rotarod, coat-hanger and four limb hanging wire tests indicating impairment on coordination and prehensile reflex and a reduction of muscle strength. In histological analyses of cerebellum and skeletal muscle, D2KO mice did not present gross structural abnormalities. Thyroid hormones levels and deiodinases activities were also determined. In D2KO mice, despite euthyroid T3 and high T4 plasma levels, T3 levels were significantly reduced in cerebral cortex (48% reduction) and skeletal muscle (33% reduction), but not in the cerebellum where other deiodinase (type 1) is expressed. The motor alterations observed in D2KO mice indicate an important role for D2 in T3 availability to maintain motor function and muscle strength. Our results suggest a possible implication of D2 in motor disorders.

  18. Abnormal Motor Phenotype at Adult Stages in Mice Lacking Type 2 Deiodinase

    PubMed Central

    Gómez-Andrés, David; Pulido-Valdeolivas, Irene; Montero-Pedrazuela, Ana; Obregon, Maria Jesus; Guadaño-Ferraz, Ana

    2014-01-01

    Background Thyroid hormones have a key role in both the developing and adult central nervous system and skeletal muscle. The thyroid gland produces mainly thyroxine (T4) but the intracellular concentrations of 3,5,3′-triiodothyronine (T3; the transcriptionally active hormone) in the central nervous system and skeletal muscle are modulated by the activity of type 2 deiodinase (D2). To date no neurological syndrome has been associated with mutations in the DIO2 gene and previous studies in young and juvenile D2-knockout mice (D2KO) did not find gross neurological alterations, possibly due to compensatory mechanisms. Aim This study aims to analyze the motor phenotype of 3-and-6-month-old D2KO mice to evaluate the role of D2 on the motor system at adult stages in which compensatory mechanisms could have failed. Results Motor abilities were explored by validated tests. In the footprint test, D2KO showed an altered global gait pattern (mice walked slower, with shorter strides and with a hindlimb wider base of support than wild-type mice). No differences were detected in the balance beam test. However, a reduced latency to fall was found in the rotarod, coat-hanger and four limb hanging wire tests indicating impairment on coordination and prehensile reflex and a reduction of muscle strength. In histological analyses of cerebellum and skeletal muscle, D2KO mice did not present gross structural abnormalities. Thyroid hormones levels and deiodinases activities were also determined. In D2KO mice, despite euthyroid T3 and high T4 plasma levels, T3 levels were significantly reduced in cerebral cortex (48% reduction) and skeletal muscle (33% reduction), but not in the cerebellum where other deiodinase (type 1) is expressed. Conclusions The motor alterations observed in D2KO mice indicate an important role for D2 in T3 availability to maintain motor function and muscle strength. Our results suggest a possible implication of D2 in motor disorders. PMID:25083788

  19. Ethanol self-administration in serotonin transporter knockout mice: unconstrained demand and elasticity.

    PubMed

    Lamb, R J; Daws, L C

    2013-10-01

    Low serotonin function is associated with alcoholism, leading to speculation that increasing serotonin function could decrease ethanol consumption. Mice with one or two deletions of the serotonin transporter (SERT) gene have increased extracellular serotonin. To examine the relationship between SERT genotype and motivation for alcohol, we compared ethanol self-administration in mice with zero (knockout, KO), one (HET) or two copies (WT) of the SERT gene. All three genotypes learned to self-administer ethanol. The SSRI, fluvoxamine, decreased responding for ethanol in the HET and WT, but not the KO mice. When tested under a progressive ratio schedule, KO mice had lower breakpoints than HET or WT. As work requirements were increased across sessions, behavioral economic analysis of ethanol self-administration indicated that the decreased breakpoint in KO as compared to HET or WT mice was a result of lower levels of unconstrained demand, rather than differences in elasticity, i.e. the proportional decreases in ethanol earned with increasing work requirements were similar across genotypes. The difference in unconstrained demand was unlikely to result from motor or general motivational factors, as both WT and KO mice responded at high levels for a 50% condensed milk solution. As elasticity is hypothesized to measure essential value, these results indicate that KO value ethanol similarly to WT or HET mice despite having lower break points for ethanol. © 2013 John Wiley & Sons Ltd and International Behavioural and Neural Genetics Society.

  20. Infusion of oxytocin induces successful delivery in prostanoid FP-receptor-deficient mice.

    PubMed

    Kawamata, Masaki; Yoshida, Masahide; Sugimoto, Yukihiko; Kimura, Tadashi; Tonomura, Yutaka; Takayanagi, Yuki; Yanagisawa, Teruyuki; Nishimori, Katsuhiko

    2008-02-13

    The dramatic increase of oxytocin (OT) receptor (OTR) in the myometrium as well as circulating progesterone withdrawal has been thought to be the most important factor in the induction and accomplishment of parturition since delivery fails in prostaglandin F2alpha receptor (FP) knockout (FP KO) mice. The expression levels of OTR mRNA/protein were not dramatically increased in the near-term uteri of FP KO mice. However, OT-induced myometrial contractions and the concentration-response curves in FP KO in vitro were almost similar to those in wild-type (WT) mice. OT-infusion (0.3 U/day) enabled FP KO mice to experience successful delivery, and furthermore the duration until the onset was hastened by a higher dose of OT (3 U/day). The plasma progesterone levels of FP KO females were maintained at high levels, but decreased during labor by OT-infusion (3 U/day). These results suggest that OT has potentials to induce strong myometrial contractions in uterus with low expression levels of OTR and luteolysis in ovary, which enabled FP KO females to undergo successful delivery.

  1. Phosphatidyl Inositol 3 Kinase-Gamma Balances Antiviral and Inflammatory Responses During Influenza A H1N1 Infection: From Murine Model to Genetic Association in Patients

    PubMed Central

    Garcia, Cristiana C.; Tavares, Luciana P.; Dias, Ana Carolina F.; Kehdy, Fernanda; Alvarado-Arnez, Lucia Elena; Queiroz-Junior, Celso M.; Galvão, Izabela; Lima, Braulio H.; Matos, Aline R.; Gonçalves, Ana Paula F.; Soriani, Frederico M.; Moraes, Milton O.; Marques, João T.; Siqueira, Marilda M.; Machado, Alexandre M. V.; Sousa, Lirlândia P.; Russo, Remo C.; Teixeira, Mauro M.

    2018-01-01

    Influenza A virus (IAV) infection causes severe pulmonary disease characterized by intense leukocyte infiltration. Phosphoinositide-3 kinases (PI3Ks) are central signaling enzymes, involved in cell growth, survival, and migration. Class IB PI3K or phosphatidyl inositol 3 kinase-gamma (PI3Kγ), mainly expressed by leukocytes, is involved in cell migration during inflammation. Here, we investigated the contribution of PI3Kγ for the inflammatory and antiviral responses to IAV. PI3Kγ knockout (KO) mice were highly susceptible to lethality following infection with influenza A/WSN/33 H1N1. In the early time points of infection, infiltration of neutrophils was higher than WT mice whereas type-I and type-III IFN expression and p38 activation were reduced in PI3Kγ KO mice resulting in higher viral loads when compared with WT mice. Blockade of p38 in WT macrophages infected with IAV reduced levels of interferon-stimulated gene 15 protein to those induced in PI3Kγ KO macrophages, suggesting that p38 is downstream of antiviral responses mediated by PI3Kγ. PI3Kγ KO-derived fibroblasts or macrophages showed reduced type-I IFN transcription and altered pro-inflammatory cytokines suggesting a cell autonomous imbalance between inflammatory and antiviral responses. Seven days after IAV infection, there were reduced infiltration of natural killer cells and CD8+ T lymphocytes, increased concentration of inflammatory cytokines in bronchoalveolar fluid, reduced numbers of resolving macrophages, and IL-10 levels in PI3Kγ KO. This imbalanced environment in PI3Kγ KO-infected mice culminated in enhanced lung neutrophil infiltration, reactive oxygen species release, and lung damage that together with the increased viral loads, contributed to higher mortality in PI3Kγ KO mice compared with WT mice. In humans, we tested the genetic association of disease severity in influenza A/H1N1pdm09-infected patients with three potentially functional PIK3CG single-nucleotide polymorphisms (SNPs

  2. Impaired airway mucociliary function reduces antigen-specific IgA immune response to immunization with a claudin-4-targeting nasal vaccine in mice.

    PubMed

    Suzuki, Hidehiko; Nagatake, Takahiro; Nasu, Ayaka; Lan, Huangwenxian; Ikegami, Koji; Setou, Mitsutoshi; Hamazaki, Yoko; Kiyono, Hiroshi; Yagi, Kiyohito; Kondoh, Masuo; Kunisawa, Jun

    2018-02-13

    Vaccine delivery is an essential element for the development of mucosal vaccine, but it remains to be investigated how physical barriers such as mucus and cilia affect vaccine delivery efficacy. Previously, we reported that C-terminal fragment of Clostridium perfringens enterotoxin (C-CPE) targeted claudin-4, which is expressed by the epithelium associated with nasopharynx-associated lymphoid tissue (NALT), and could be effective as a nasal vaccine delivery. Mice lacking tubulin tyrosine ligase-like family, member 1 (Ttll1-KO mice) showed mucus accumulation in nasal cavity due to the impaired motility of respiratory cilia. Ttll1-KO mice nasally immunized with C-CPE fused to pneumococcal surface protein A (PspA-C-CPE) showed reduced PspA-specific nasal IgA responses, impaired germinal center formation, and decreased germinal center B-cells and follicular helper T cells in the NALT. Although there was no change in the expression of claudin-4 in the NALT epithelium in Ttll1-KO mice, the epithelium was covered by a dense mucus that prevented the binding of PspA-C-CPE to NALT. However, administration of expectorant N-acetylcysteine removed the mucus and rescued the PspA-specific nasal IgA response. These results show that the accumulation of mucus caused by impaired respiratory cilia function is an interfering factor in the C-CPE-based claudin-4-targeting nasal vaccine.

  3. Morphology of ovaries in laron dwarf mice, with low circulating plasma levels of insulin-like growth factor-1 (IGF-1), and in bovine GH-transgenic mice, with high circulating plasma levels of IGF-1

    PubMed Central

    2012-01-01

    Background It is well known that somatotrophic/insulin signaling affects lifespan in experimental animals, and one of the signs of aging is progressive gonadal dysfunction. Methods To study the effects of insulin-like growth factor-1 (IGF-1) plasma level on ovaries, we analyzed ovaries isolated from 2-year-old growth hormone receptor knockout (GHR-KO) Laron dwarf mice, with low circulating plasma levels of IGF-1, and 6-month-old bovine growth hormone transgenic (bGHTg) mice, with high circulating plasma levels of IGF-1. The ages of the Laron dwarf mutants employed in our studies were selected based on their overall survival (up to ~ 4 years for Laron dwarf mice and ~ 1 year for bGHTg mice). Results Morphological analysis of the ovaries of mice that reached ~50% of their maximal life span revealed a lower biological age for the ovaries isolated from 2-year-old Laron dwarf mice than their normal-lifespan wild type littermates. By contrast, the ovarian morphology of increased in size 6 month old bGHTg mice was generally normal. Conclusion Ovaries isolated from 2-year-old Laron dwarf mice exhibit a lower biological age compared with ovaries from normal WT littermates at the same age. At the same time, no morphological features of accelerated aging were found in 0.5-year-old bGHTg mice compared with ovaries from normal the same age-matched WT littermates. PMID:22747742

  4. Monoamine oxidase A and A/B knockout mice display autistic-like features

    PubMed Central

    Bortolato, Marco; Godar, Sean C.; Alzghoul, Loai; Zhang, Junlin; Darling, Ryan D.; Simpson, Kimberly L.; Bini, Valentina; Chen, Kevin; Wellman, Cara L.; Lin, Rick C. S.; Shih, Jean C.

    2012-01-01

    Converging lines of evidence show that a sizable subset of autism-spectrum disorders (ASDs) is characterized by increased blood levels of serotonin (5-hydroxytryptamine, 5-HT), yet the mechanistic link between these two phenomena remains unclear. The enzymatic degradation of brain 5-HT is mainly mediated by monoamine oxidase (MAO)A and, in the absence of this enzyme, by its cognate isoenzyme MAOB. MAOA and A/B knockout (KO) mice display high 5-HT levels, particularly during early developmental stages. Here we show that both mutant lines exhibit numerous behavioural hallmarks of ASDs, such as social and communication impairments, perseverative and stereotypical responses, behavioural inflexibility, as well as subtle tactile and motor deficits. Furthermore, both MAOA and A/B KO mice displayed neuropathological alterations reminiscent of typical ASD features, including reduced thickness of the corpus callosum, increased dendritic arborization of pyramidal neurons in the prefrontal cortex and disrupted microarchitecture of the cerebellum. The severity of repetitive responses and neuropathological aberrances was generally greater in MAOA/B KO animals. These findings suggest that the neurochemical imbalances induced by MAOAdeficiency (either by itself or in conjunction with lack of MAOB) may result in an array of abnormalities similar to those observed in ASDs. Thus, MAOA and A/B KO mice may afford valuable models to help elucidate the neurobiological bases of these disorders and related neurodevelopmental problems. PMID:22850464

  5. GSK-3α is a central regulator of age-related pathologies in mice

    PubMed Central

    Zhou, Jibin; Freeman, Theresa A.; Ahmad, Firdos; Shang, Xiying; Mangano, Emily; Gao, Erhe; Farber, John; Wang, Yajing; Ma, Xin-Liang; Woodgett, James; Vagnozzi, Ronald J.; Lal, Hind; Force, Thomas

    2013-01-01

    Aging is regulated by conserved signaling pathways. The glycogen synthase kinase-3 (GSK-3) family of serine/threonine kinases regulates several of these pathways, but the role of GSK-3 in aging is unknown. Herein, we demonstrate premature death and acceleration of age-related pathologies in the Gsk3a global KO mouse. KO mice developed cardiac hypertrophy and contractile dysfunction as well as sarcomere disruption and striking sarcopenia in cardiac and skeletal muscle, a classical finding in aging. We also observed severe vacuolar degeneration of myofibers and large tubular aggregates in skeletal muscle, consistent with impaired clearance of insoluble cellular debris. Other organ systems, including gut, liver, and the skeletal system, also demonstrated age-related pathologies. Mechanistically, we found marked activation of mTORC1 and associated suppression of autophagy markers in KO mice. Loss of GSK-3α, either by pharmacologic inhibition or Gsk3a gene deletion, suppressed autophagy in fibroblasts. mTOR inhibition rescued this effect and reversed the established pathologies in the striated muscle of the KO mouse. Thus, GSK-3α is a critical regulator of mTORC1, autophagy, and aging. In its absence, aging/senescence is accelerated in multiple tissues. Strategies to maintain GSK-3α activity and/or inhibit mTOR in the elderly could retard the appearance of age-related pathologies. PMID:23549082

  6. Medium-chain triglycerides impair lipid metabolism and induce hepatic steatosis in very long-chain acyl-CoA dehydrogenase (VLCAD)-deficient mice.

    PubMed

    Tucci, Sara; Primassin, Sonja; Ter Veld, Frank; Spiekerkoetter, Ute

    2010-09-01

    A medium-chain-triglyceride (MCT)-based diet is mainstay of treatment in very-long-chain acyl-CoA dehydrogenase deficiency (VLCADD), a long-chain fatty acid beta-oxidation defect. Beneficial effects have been reported with an MCT-bolus prior to exercise. Little is known about the impact of a long-term MCT diet on hepatic lipid metabolism. Here we investigate the effects of MCT-supplementation on liver and blood lipids in the murine model of VLCADD. Wild-type (WT) and VLCAD-knock-out (KO) mice were fed (1) a long-chain triglyceride (LCT)-diet over 5weeks, (2) an MCT diet over 5 weeks and (3) an LCT diet plus MCT-bolus. Blood and liver lipid content were determined. Expression of genes regulating lipogenesis was analyzed by RT-PCR. Under the LCT diet, VLCAD-KO mice accumulated significantly higher blood cholesterol concentrations compared to WT mice. The MCT-diet induced severe hepatic steatosis, significantly higher serum free fatty acids and impaired hepatic lipid mobilization in VLCAD-KO mice. Expression at mRNA level of hepatic lipogenic genes was up-regulated. The long-term MCT diet stimulates lipogenesis and impairs hepatic lipid metabolism in VLCAD-KO mice. These results suggest a critical reconsideration of a long-term MCT-modified diet in human VLCADD. In contrast, MCT in situations of increased energy demand appears to be a safer treatment alternative.

  7. STRIATAL-ENRICHED PROTEIN TYROSINE PHOSPHATASE (STEP) KNOCKOUT MICE HAVE ENHANCED HIPPOCAMPAL MEMORY

    PubMed Central

    Venkitaramani, Deepa V.; Moura, Paula J.; Picciotto, Marina R.; Lombroso, Paul J.

    2011-01-01

    STEP is a brain-specific phosphatase that opposes synaptic strengthening by the regulation of key synaptic signaling proteins. Previous studies suggest a possible role for STriatal-Enriched protein tyrosine Phosphatase (STEP) in learning and memory. To demonstrate the functional importance of STEP in learning and memory, we generated STEP knockout (KO) mice and examined the effect of deletion of STEP on behavioral performance, as well as the phosphorylation and expression of its substrates. Here we report that loss of STEP leads to significantly enhanced performance in hippocampal-dependent learning and memory tasks. In addition, STEP KO mice displayed greater dominance behavior, although they were normal in their motivation, motor coordination, visual acuity and social interactions. STEP KO mice displayed enhanced tyrosine phosphorylation of extracellular-signal regulated kinase 1/2 (ERK1/2), the NR2B subunit of the N-methyl-D-aspartate receptor (NMDAR), Proline-rich tyrosine kinase (Pyk2), as well as an increased phosphorylation of ERK1/2 substrates. Concomitant to the increased phosphorylation of NR2B, synaptosomal expression of NR1/NR2B NMDARs was increased in STEP KO mice, as was the GluR1/GluR2 containing α-amino-3-hydroxy-5-methyl-4-isoxazole-propionic acid receptors (AMPAR), providing a potential molecular mechanism for the improved cognitive performance. The data support a role for STEP in the regulation of synaptic strengthening. The absence of STEP improves cognitive performance, and may do so by the regulation of downstream effectors necessary for synaptic transmission. PMID:21501258

  8. Mice lacking the transcriptional regulator Bhlhe40 have enhanced neuronal excitability and impaired synaptic plasticity in the hippocampus.

    PubMed

    Hamilton, Kelly A; Wang, Yue; Raefsky, Sophia M; Berkowitz, Sean; Spangler, Ryan; Suire, Caitlin N; Camandola, Simonetta; Lipsky, Robert H; Mattson, Mark P

    2018-01-01

    Bhlhe40 is a transcription factor that is highly expressed in the hippocampus; however, its role in neuronal function is not well understood. Here, we used Bhlhe40 null mice on a congenic C57Bl6/J background (Bhlhe40 KO) to investigate the impact of Bhlhe40 on neuronal excitability and synaptic plasticity in the hippocampus. Bhlhe40 KO CA1 neurons had increased miniature excitatory post-synaptic current amplitude and decreased inhibitory post-synaptic current amplitude, indicating CA1 neuronal hyperexcitability. Increased CA1 neuronal excitability was not associated with increased seizure severity as Bhlhe40 KO relative to +/+ (WT) control mice injected with the convulsant kainic acid. However, significant reductions in long term potentiation and long term depression at CA1 synapses were observed in Bhlhe40 KO mice, indicating impaired hippocampal synaptic plasticity. Behavioral testing for spatial learning and memory on the Morris Water Maze (MWM) revealed that while Bhlhe40 KO mice performed similarly to WT controls initially, when the hidden platform was moved to the opposite quadrant Bhlhe40 KO mice showed impairments in relearning, consistent with decreased hippocampal synaptic plasticity. To investigate possible mechanisms for increased neuronal excitability and decreased synaptic plasticity, a whole genome mRNA expression profile of Bhlhe40 KO hippocampus was performed followed by a chromatin immunoprecipitation sequencing (ChIP-Seq) screen of the validated candidate genes for Bhlhe40 protein-DNA interactions consistent with transcriptional regulation. Of the validated genes identified from mRNA expression analysis, insulin degrading enzyme (Ide) had the most significantly altered expression in hippocampus and was significantly downregulated on the RNA and protein levels; although Bhlhe40 did not occupy the Ide gene by ChIP-Seq. Together, these findings support a role for Bhlhe40 in regulating neuronal excitability and synaptic plasticity in the hippocampus

  9. Critical role of toll-like receptor 9 in morphine and Mycobacterium tuberculosis-Induced apoptosis in mice.

    PubMed

    Chen, Lin; Shi, Wanliang; Li, Hui; Sun, Xiuli; Fan, Xionglin; Lesage, Gene; Li, Hui; Li, Yi; Zhang, Yi; Zhang, Xiumei; Zhang, Ying; Yin, Deling

    2010-02-19

    Although it is established that opioid and Mycobacterium tuberculosis are both public health problems, the mechanisms by which they affect lung functions remain elusive. We report here that mice subjected to chronic morphine administration and M. tuberculosis infection exhibited significant apoptosis in the lung in wild type mice as demonstrated by the terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate nick end labeling assay. Morphine and M. tuberculosis significantly induced the expression of Toll-like receptor 9 (TLR9), a key mediator of innate immunity and inflammation. Interestingly, deficiency in TLR9 significantly inhibited the morphine and M. tuberculosis induced apoptosis in the lung. In addition, chronic morphine treatment and M. tuberculosis infection enhanced the levels of cytokines (TNF-alpha, IL-1beta, and IL-6) in wild type mice, but not in TLR9 knockout (KO) mice. The bacterial load was much lower in TLR9 KO mice compared with that in wild type mice following morphine and M. tuberculosis treatment. Morphine alone did not alter the bacterial load in either wild type or TLR9 KO mice. Moreover, administration of morphine and M. tuberculosis decreased the levels of phosphorylation of Akt and GSK3beta in the wild type mice, but not in TLR9 KO mice, suggesting an involvement of Akt/GSK3beta in morphine and M. tuberculosis-mediated TLR9 signaling. Furthermore, administration of morphine and M. tuberculosis caused a dramatic decrease in Bcl-2 level but increase in Bax level in wild type mice, but not in TLR9 KO mice, indicating a role of Bcl-2 family in TLR9-mediated apoptosis in the lung following morphine and M. tuberculosis administration. These data reveal a role for TLR9 in the immune response to opioids during M. tuberculosis infection.

  10. Critical Role of the Src Homology 2 (SH2) Domain of Neuronal SH2B1 in the Regulation of Body Weight and Glucose Homeostasis in Mice

    PubMed Central

    Morris, David L.; Cho, Kae Won; Rui, Liangyou

    2010-01-01

    SH2B1 is an SH2 domain-containing adaptor protein that plays a key role in the regulation of energy and glucose metabolism in both rodents and humans. Genetic deletion of SH2B1 in mice results in obesity and type 2 diabetes. Single-nucleotide polymorphisms in the SH2B1 loci and chromosomal deletions of the SH2B1 loci associate with obesity and insulin resistance in humans. In cultured cells, SH2B1 promotes leptin and insulin signaling by binding via its SH2 domain to phosphorylated tyrosines in Janus kinase 2 and the insulin receptor, respectively. Here we generated three lines of mice to analyze the role of the SH2 domain of SH2B1 in the central nervous system. Transgenic mice expressing wild-type, SH2 domain-defective (R555E), or SH2 domain-alone (ΔN503) forms of SH2B1 specifically in neurons were crossed with SH2B1 knockout mice to generate KO/SH2B1, KO/R555E, or KO/ΔN503 compound mutant mice. R555E had a replacement of Arg555 with Glu within the SH2 domain. ΔN503 contained an intact SH2 domain but lacked amino acids 1-503. Neuron-specific expression of recombinant SH2B1, but not R555E or ΔN503, corrected hyperphagia, obesity, glucose intolerance, and insulin resistance in SH2B1 null mice. Neuron-specific expression of R555E in wild-type mice promoted obesity and insulin resistance. These results indicate that in addition to the SH2 domain, N-terminal regions of neuronal SH2B1 are also required for the maintenance of normal body weight and glucose metabolism. Additionally, mutations in the SH2 domain of SH2B1 may increase the susceptibility to obesity and type 2 diabetes in a dominant-negative manner. PMID:20484460

  11. Critical role of the Src homology 2 (SH2) domain of neuronal SH2B1 in the regulation of body weight and glucose homeostasis in mice.

    PubMed

    Morris, David L; Cho, Kae Won; Rui, Liangyou

    2010-08-01

    SH2B1 is an SH2 domain-containing adaptor protein that plays a key role in the regulation of energy and glucose metabolism in both rodents and humans. Genetic deletion of SH2B1 in mice results in obesity and type 2 diabetes. Single-nucleotide polymorphisms in the SH2B1 loci and chromosomal deletions of the SH2B1 loci associate with obesity and insulin resistance in humans. In cultured cells, SH2B1 promotes leptin and insulin signaling by binding via its SH2 domain to phosphorylated tyrosines in Janus kinase 2 and the insulin receptor, respectively. Here we generated three lines of mice to analyze the role of the SH2 domain of SH2B1 in the central nervous system. Transgenic mice expressing wild-type, SH2 domain-defective (R555E), or SH2 domain-alone (DeltaN503) forms of SH2B1 specifically in neurons were crossed with SH2B1 knockout mice to generate KO/SH2B1, KO/R555E, or KO/DeltaN503 compound mutant mice. R555E had a replacement of Arg(555) with Glu within the SH2 domain. DeltaN503 contained an intact SH2 domain but lacked amino acids 1-503. Neuron-specific expression of recombinant SH2B1, but not R555E or DeltaN503, corrected hyperphagia, obesity, glucose intolerance, and insulin resistance in SH2B1 null mice. Neuron-specific expression of R555E in wild-type mice promoted obesity and insulin resistance. These results indicate that in addition to the SH2 domain, N-terminal regions of neuronal SH2B1 are also required for the maintenance of normal body weight and glucose metabolism. Additionally, mutations in the SH2 domain of SH2B1 may increase the susceptibility to obesity and type 2 diabetes in a dominant-negative manner.

  12. Sodium–hydrogen exchanger NHA1 and NHA2 control sperm motility and male fertility

    PubMed Central

    Chen, Su-Ren; Chen, M; Deng, S-L; Hao, X-X; Wang, X-X; Liu, Y-X

    2016-01-01

    Our previous work identified NHA1, a testis-specific sodium–hydrogen exchanger, is specifically localized on the principal piece of mouse sperm flagellum. Our subsequent study suggested that the number of newborns and fertility rate of NHA1-vaccinated female mice are significantly stepped down. In order to define the physiological function of NHA1 in spermatozoa, we generated Nha1Fx/Fx, Zp3-Cre (hereafter called Nha1 cKO) mice and found that Nha1 cKO males were viable and subfertile with reduced sperm motility. Notably, cyclic AMP (cAMP) synthesis by soluble adenylyl cyclase (sAC) was attenuated in Nha1 cKO spermatozoa and cAMP analogs restored sperm motility. Similar to Nha1 cKO males, Nha2Fx/Fx, Zp3-Cre (hereafter called Nha2 cKO) male mice were subfertile, indicating these two Nha genes may be functionally redundant. Furthermore, we demonstrated that male mice lacking Nha1 and Nha2 genes (hereafter called Nha1/2 dKO mice) were completely infertile, with severely diminished sperm motility owing to attenuated sAC-cAMP signaling. Importantly, principal piece distribution of NHA1 in spermatozoa are phylogenetically conserved in spermatogenesis. Collectively, our data revealed that NHA1 and NHA2 function as a key sodium–hydrogen exchanger responsible for sperm motility after leaving the cauda epididymidis. PMID:27010853

  13. Loss of hypothalamic corticotropin-releasing hormone markedly reduces anxiety behaviors in mice.

    PubMed

    Zhang, R; Asai, M; Mahoney, C E; Joachim, M; Shen, Y; Gunner, G; Majzoub, J A

    2017-05-01

    A long-standing paradigm posits that hypothalamic corticotropin-releasing hormone (CRH) regulates neuroendocrine functions such as adrenal glucocorticoid release, whereas extra-hypothalamic CRH has a key role in stressor-triggered behaviors. Here we report that hypothalamus-specific Crh knockout mice (Sim1CrhKO mice, created by crossing Crhflox with Sim1Cre mice) have absent Crh mRNA and peptide mainly in the paraventricular nucleus of the hypothalamus (PVH) but preserved Crh expression in other brain regions including amygdala and cerebral cortex. As expected, Sim1CrhKO mice exhibit adrenal atrophy as well as decreased basal, diurnal and stressor-stimulated plasma corticosterone secretion and basal plasma adrenocorticotropic hormone, but surprisingly, have a profound anxiolytic phenotype when evaluated using multiple stressors including open-field, elevated plus maze, holeboard, light-dark box and novel object recognition task. Restoring plasma corticosterone did not reverse the anxiolytic phenotype of Sim1CrhKO mice. Crh-Cre driver mice revealed that PVHCrh fibers project abundantly to cingulate cortex and the nucleus accumbens shell, and moderately to medial amygdala, locus coeruleus and solitary tract, consistent with the existence of PVHCrh-dependent behavioral pathways. Although previous, nonselective attenuation of CRH production or action, genetically in mice and pharmacologically in humans, respectively, has not produced the anticipated anxiolytic effects, our data show that targeted interference specifically with hypothalamic Crh expression results in anxiolysis. Our data identify neurons that express both Sim1 and Crh as a cellular entry point into the study of CRH-mediated, anxiety-like behaviors and their therapeutic attenuation.

  14. Loss of hypothalamic corticotropin-releasing hormone markedly reduces anxiety behaviors in mice

    PubMed Central

    Zhang, Rong; Asai, Masato; Mahoney, Carrie E; Joachim, Maria; Shen, Yuan; Gunner, Georgia; Majzoub, Joseph A

    2016-01-01

    A long-standing paradigm posits that hypothalamic corticotropin-releasing hormone (CRH) regulates neuroendocrine functions such as adrenal glucocorticoid release, while extra-hypothalamic CRH plays a key role in stressor-triggered behaviors. Here we report that hypothalamus-specific Crh knockout mice (Sim1CrhKO mice, created by crossing Crhflox with Sim1Cre mice) have absent Crh mRNA and peptide mainly in the paraventricular nucleus of the hypothalamus (PVH) but preserved Crh expression in other brain regions including amygdala and cerebral cortex. As expected, Sim1CrhKO mice exhibit adrenal atrophy as well as decreased basal, diurnal and stressor-stimulated plasma corticosterone secretion and basal plasma ACTH, but surprisingly, have a profound anxiolytic phenotype when evaluated using multiple stressors including open field, elevated plus maze, holeboard, light-dark box, and novel object recognition task. Restoring plasma corticosterone did not reverse the anxiolytic phenotype of Sim1CrhKO mice. Crh-Cre driver mice revealed that PVHCrh fibers project abundantly to cingulate cortex and the nucleus accumbens shell, and moderately to medial amygdala, locus coeruleus, and solitary tract, consistent with the existence of PVHCrh-dependent behavioral pathways. Although previous, nonselective attenuation of CRH production or action, genetically in mice and pharmacologically in humans, respectively, has not produced the anticipated anxiolytic effects, our data show that targeted interference specifically with hypothalamic Crh expression results in anxiolysis. Our data identify neurons that express both Sim1 and Crh as a cellular entry point into the study of CRH-mediated, anxiety-like behaviors and their therapeutic attenuation. PMID:27595593

  15. A beta cell ATGL-lipolysis/adipose tissue axis controls energy homeostasis and body weight via insulin secretion in mice.

    PubMed

    Attané, Camille; Peyot, Marie-Line; Lussier, Roxane; Poursharifi, Pegah; Zhao, Shangang; Zhang, Dongwei; Morin, Johane; Pineda, Marco; Wang, Shupei; Dumortier, Olivier; Ruderman, Neil B; Mitchell, Grant A; Simons, Brigitte; Madiraju, S R Murthy; Joly, Erik; Prentki, Marc

    2016-12-01

    To directly assess the role of beta cell lipolysis in insulin secretion and whole-body energy homeostasis, inducible beta cell-specific adipose triglyceride lipase (ATGL)-deficient (B-Atgl-KO) mice were studied under normal diet (ND) and high-fat diet (HFD) conditions. Atgl flox/flox mice were cross-bred with Mip-Cre-ERT mice to generate Mip-Cre-ERT /+ ;Atgl flox/flox mice. At 8 weeks of age, these mice were injected with tamoxifen to induce deletion of beta cell-specific Atgl (also known as Pnpla2), and the mice were fed an ND or HFD. ND-fed male B-Atgl-KO mice showed decreased insulinaemia and glucose-induced insulin secretion (GSIS) in vivo. Changes in GSIS correlated with the islet content of long-chain saturated monoacylglycerol (MAG) species that have been proposed to be metabolic coupling factors for insulin secretion. Exogenous MAGs restored GSIS in B-Atgl-KO islets. B-Atgl-KO male mice fed an HFD showed reduced insulinaemia, glycaemia in the fasted and fed states and after glucose challenge, as well as enhanced insulin sensitivity. Moreover, decreased insulinaemia in B-Atgl-KO mice was associated with increased energy expenditure, and lipid metabolism in brown (BAT) and white (WAT) adipose tissues, leading to reduced fat mass and body weight. ATGL in beta cells regulates insulin secretion via the production of signalling MAGs. Decreased insulinaemia due to lowered GSIS protects B-Atgl-KO mice from diet-induced obesity, improves insulin sensitivity, increases lipid mobilisation from WAT and causes BAT activation. The results support the concept that fuel excess can drive obesity and diabetes via hyperinsulinaemia, and that an islet beta cell ATGL-lipolysis/adipose tissue axis controls energy homeostasis and body weight via insulin secretion.

  16. What have we learned about GPER function in physiology and disease from knockout mice?

    PubMed Central

    Prossnitz, Eric R.; Hathaway, Helen J.

    2015-01-01

    Estrogens, predominantly 17β-estradiol, exert diverse effects throughout the body in both normal and patho-physiology, during development and in reproductive, metabolic, endocrine, cardiovascular, nervous, musculoskeletal and immune systems. Estrogen and its receptors also play important roles in carcinogenesis and therapy, particularly for breast cancer. In addition to the classical nuclear estrogen receptors (ERα and ERβ) that traditionally mediate predominantly genomic signaling, the G protein-coupled estrogen receptor GPER has become recognized as a critical mediator of rapid signaling in response to estrogen. Mouse models, and in particular knockout (KO) mice, represent an important approach to understand the functions of receptors in normal physiology and disease. Whereas ERα KO mice display multiple significant defects in reproduction and mammary gland development, ERβ KO phenotypes are more limited, and GPER KO exhibit no reproductive deficits. However, the study of GPER KO mice over the last six years has revealed that GPER deficiency results in multiple physiological alterations including obesity, cardiovascular dysfunction, insulin resistance and glucose intolerance. In addition, the lack of estrogen-mediated effects in numerous tissues of GPER KO mice, studied in vivo or ex vivo, including those of the cardiovascular, endocrine, nervous and immune systems, reveals GPER as a genuine mediator of estrogen action. Importantly, GPER KO mice have also revealed roles for GPER in breast carcinogenesis and metastasis. In combination with the supporting effects of GPER-selective ligands and GPER knockdown approaches, GPER KO mice demonstrate the therapeutic potential of targeting GPER activity in diseases as diverse as obesity, diabetes, multiple sclerosis, hypertension, atherosclerosis, myocardial infarction, stroke and cancer. PMID:26189910

  17. Differential response of nNOS knockout mice to MDMA ("ecstasy")- and methamphetamine-induced psychomotor sensitization and neurotoxicity.

    PubMed

    Itzhak, Yossef; Anderson, Karen L; Ali, Syed F

    2004-10-01

    It has been shown that mice deficient in neuronal nitric oxide synthase (nNOS) gene are resistant to cocaine-induced psychomotor sensitization and methamphetamine (METH)-induced dopaminergic neurotoxicity. The present study was undertaken to investigate the hypothesis that nNOS has a major role in dopamine (DA)- but not serotonin (5-hydroxytryptamine; 5-HT)-mediated effects of psychostimulants. The response of nNOS knockout (KO) and wild-type (WT) mice to the psychomotor-stimulating and neurotoxic effects of 3,4-methylenedioxymethamphetamine (MDMA; "Ecstasy") and METH were investigated. Repeated administration of MDMA for 5 days resulted in psychomotor sensitization in both WT and nNOS KO mice, while repeated administration of METH caused psychomotor sensitization in WT but not in KO mice. Sensitization to both MDMA and METH was persistent for 40 days in WT mice, but not in nNOS KO mice. These findings suggest that the induction of psychomotor sensitization to MDMA and METH is NO independent and NO dependent, respectively, while the persistence of sensitization to both drugs is NO dependent. For the neurochemical studies, a high dose of MDMA caused marked depletion of 5-HT in several brain regions of both WT and KO mice, suggesting that the absence of the nNOS gene did not afford protection against MDMA-induced depletion of 5-HT. Striatal dopaminergic neurotoxicity caused by high doses of MDMA and METH in WT mice was partially prevented in KO mice administered with MDMA, but it was fully precluded in KO mice administered with METH. The differential response of nNOS KO mice to the behavioral and neurotoxic effects of MDMA and METH suggests that the nNOS gene is required for the expression and persistence of DA-mediated effects of METH and MDMA, while 5-HT-mediated effects of MDMA (induction of sensitization and 5-HT depletion) are not dependent on nNOS.

  18. Genetic Ablation of Calcium-independent Phospholipase A2γ Induces Glomerular Injury in Mice*

    PubMed Central

    Elimam, Hanan; Papillon, Joan; Kaufman, Daniel R.; Guillemette, Julie; Aoudjit, Lamine; Gross, Richard W.; Takano, Tomoko; Cybulsky, Andrey V.

    2016-01-01

    Glomerular visceral epithelial cells (podocytes) play a critical role in the maintenance of glomerular permselectivity. Podocyte injury, manifesting as proteinuria, is the cause of many glomerular diseases. We reported previously that calcium-independent phospholipase A2γ (iPLA2γ) is cytoprotective against complement-mediated glomerular epithelial cell injury. Studies in iPLA2γ KO mice have demonstrated an important role for iPLA2γ in mitochondrial lipid turnover, membrane structure, and metabolism. The aim of the present study was to employ iPLA2γ KO mice to better understand the role of iPLA2γ in normal glomerular and podocyte function as well as in glomerular injury. We show that deletion of iPLA2γ did not cause detectable albuminuria; however, it resulted in mitochondrial structural abnormalities and enhanced autophagy in podocytes as well as loss of podocytes in aging KO mice. Moreover, after induction of anti-glomerular basement membrane nephritis in young mice, iPLA2γ KO mice exhibited significantly increased levels of albuminuria, podocyte injury, and loss of podocytes compared with wild type. Thus, iPLA2γ has a protective functional role in the normal glomerulus and in glomerulonephritis. Understanding the role of iPLA2γ in glomerular pathophysiology provides opportunities for the development of novel therapeutic approaches to glomerular injury and proteinuria. PMID:27226532

  19. Age-Dependent Long-Term Potentiation Deficits in the Prefrontal Cortex of the Fmr1 Knockout Mouse Model of Fragile X Syndrome.

    PubMed

    Martin, Henry G S; Lassalle, Olivier; Brown, Jonathan T; Manzoni, Olivier J

    2016-05-01

    The most common inherited monogenetic cause of intellectual disability is Fragile X syndrome (FXS). The clinical symptoms of FXS evolve with age during adulthood; however, neurophysiological data exploring this phenomenon are limited. The Fmr1 knockout (Fmr1KO) mouse models FXS, but studies in these mice of prefrontal cortex (PFC) function are underrepresented, and aging linked data are absent. We studied synaptic physiology and activity-dependent synaptic plasticity in the medial PFC of Fmr1KO mice from 2 to 12 months. In young adult Fmr1KO mice, NMDA receptor (NMDAR)-mediated long-term potentiation (LTP) is intact; however, in 12-month-old mice this LTP is impaired. In parallel, there was an increase in the AMPAR/NMDAR ratio and a concomitant decrease of synaptic NMDAR currents in 12-month-old Fmr1KO mice. We found that acute pharmacological blockade of mGlu5 receptor in 12-month-old Fmr1KO mice restored a normal AMPAR/NMDAR ratio and LTP. Taken together, the data reveal an age-dependent deficit in LTP in Fmr1KO mice, which may correlate to some of the complex age-related deficits in FXS. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  20. Effect of nerve injury on the number of dorsal root ganglion neurons and autotomy behavior in adult Bax-deficient mice.

    PubMed

    Lyu, Chuang; Lyu, Gong-Wei; Martinez, Aurora; Shi, Tie-Jun Sten

    2017-01-01

    The proapoptotic molecule BAX, plays an important role in mitochondrial apoptotic pathway. Dorsal root ganglion (DRG) neurons depend on neurotrophic factors for survival at early developmental stages. Withdrawal of neurotrophic factors will induce apoptosis in DRG neurons, but this type of cell death can be delayed or prevented in neonatal Bax knockout (KO) mice. In adult animals, evidence also shows that DRG neurons are less dependent upon neurotrophic factors for survival. However, little is known about the effect of Bax deletion on the survival of normal and denervated DRG neurons in adult mice. A unilateral sciatic nerve transection was performed in adult Bax KO mice and wild-type (WT) littermates. Stereological method was employed to quantify the number of lumbar-5 DRG neurons 1 month post-surgery. Nerve injury-induced autotomy behavior was also examined on days 1, 3, and 7 post-surgery. There were significantly more neurons in contralateral DRGs of KO mice as compared with WT mice. The number of neurons was reduced in ipsilateral DRGs in both KO and WT mice. No changes in size distributions of DRG neuron profiles were detected before or after nerve injury. Injury-induced autotomy behavior developed much earlier and was more serious in KO mice. Although postnatal death or loss of DRG neurons is partially prevented by Bax deletion, this effect cannot interfere with long-term nerve injury-induced neuronal loss. The exaggerated self-amputation behavior observed in the mutant mice indicates that Bax deficiency may enhance the development of spontaneous pain following nerve injury.

  1. Ocular Dominance Plasticity after Stroke Was Preserved in PSD-95 Knockout Mice.

    PubMed

    Greifzu, Franziska; Parthier, Daniel; Goetze, Bianka; Schlüter, Oliver M; Löwel, Siegrid

    2016-01-01

    Neuronal plasticity is essential to enable rehabilitation when the brain suffers from injury, such as following a stroke. One of the most established models to study cortical plasticity is ocular dominance (OD) plasticity in the primary visual cortex (V1) of the mammalian brain induced by monocular deprivation (MD). We have previously shown that OD-plasticity in adult mouse V1 is absent after a photothrombotic (PT) stroke lesion in the adjacent primary somatosensory cortex (S1). Exposing lesioned mice to conditions which reduce the inhibitory tone in V1, such as raising animals in an enriched environment or short-term dark exposure, preserved OD-plasticity after an S1-lesion. Here we tested whether modification of excitatory circuits can also be beneficial for preserving V1-plasticity after stroke. Mice lacking postsynaptic density protein-95 (PSD-95), a signaling scaffold present at mature excitatory synapses, have lifelong juvenile-like OD-plasticity caused by an increased number of AMPA (α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid) -silent synapses in V1 but unaltered inhibitory tone. In fact, using intrinsic signal optical imaging, we show here that OD-plasticity was preserved in V1 of adult PSD-95 KO mice after an S1-lesion but not in PSD-95 wildtype (WT)-mice. In addition, experience-enabled enhancement of the optomotor reflex of the open eye after MD was compromised in both lesioned PSD-95 KO and PSD-95 WT mice. Basic V1-activation and retinotopic map quality were, however, not different between lesioned PSD-95 KO mice and their WT littermates. The preserved OD-plasticity in the PSD-95 KO mice indicates that V1-plasticity after a distant stroke can be promoted by either changes in excitatory circuitry or by lowering the inhibitory tone in V1 as previously shown. Furthermore, the present data indicate that an increased number of AMPA-silent synapses preserves OD-plasticity not only in the healthy brain, but also in another experimental paradigm of

  2. Ocular Dominance Plasticity after Stroke Was Preserved in PSD-95 Knockout Mice

    PubMed Central

    Greifzu, Franziska; Parthier, Daniel; Goetze, Bianka; Schlüter, Oliver M.; Löwel, Siegrid

    2016-01-01

    Neuronal plasticity is essential to enable rehabilitation when the brain suffers from injury, such as following a stroke. One of the most established models to study cortical plasticity is ocular dominance (OD) plasticity in the primary visual cortex (V1) of the mammalian brain induced by monocular deprivation (MD). We have previously shown that OD-plasticity in adult mouse V1 is absent after a photothrombotic (PT) stroke lesion in the adjacent primary somatosensory cortex (S1). Exposing lesioned mice to conditions which reduce the inhibitory tone in V1, such as raising animals in an enriched environment or short-term dark exposure, preserved OD-plasticity after an S1-lesion. Here we tested whether modification of excitatory circuits can also be beneficial for preserving V1-plasticity after stroke. Mice lacking postsynaptic density protein-95 (PSD-95), a signaling scaffold present at mature excitatory synapses, have lifelong juvenile-like OD-plasticity caused by an increased number of AMPA (α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid) -silent synapses in V1 but unaltered inhibitory tone. In fact, using intrinsic signal optical imaging, we show here that OD-plasticity was preserved in V1 of adult PSD-95 KO mice after an S1-lesion but not in PSD-95 wildtype (WT)-mice. In addition, experience-enabled enhancement of the optomotor reflex of the open eye after MD was compromised in both lesioned PSD-95 KO and PSD-95 WT mice. Basic V1-activation and retinotopic map quality were, however, not different between lesioned PSD-95 KO mice and their WT littermates. The preserved OD-plasticity in the PSD-95 KO mice indicates that V1-plasticity after a distant stroke can be promoted by either changes in excitatory circuitry or by lowering the inhibitory tone in V1 as previously shown. Furthermore, the present data indicate that an increased number of AMPA-silent synapses preserves OD-plasticity not only in the healthy brain, but also in another experimental paradigm of

  3. Deletion of Glutamate Delta-1 Receptor in Mouse Leads to Enhanced Working Memory and Deficit in Fear Conditioning

    PubMed Central

    Yadav, Roopali; Hillman, Brandon G.; Gupta, Subhash C.; Suryavanshi, Pratyush; Bhatt, Jay M.; Pavuluri, Ratnamala; Stairs, Dustin J.; Dravid, Shashank M.

    2013-01-01

    Glutamate delta-1 (GluD1) receptors are expressed throughout the forebrain during development with high levels in the hippocampus during adulthood. We have recently shown that deletion of GluD1 receptor results in aberrant emotional and social behaviors such as hyperaggression and depression-like behaviors and social interaction deficits. Additionally, abnormal expression of synaptic proteins was observed in amygdala and prefrontal cortex of GluD1 knockout mice (GluD1 KO). However the role of GluD1 in learning and memory paradigms remains unknown. In the present study we evaluated GluD1 KO in learning and memory tests. In the eight-arm radial maze GluD1 KO mice committed fewer working memory errors compared to wildtype mice but had normal reference memory. Enhanced working memory in GluD1 KO was also evident by greater percent alternation in the spontaneous Y-maze test. No difference was observed in object recognition memory in the GluD1 KO mice. In the Morris water maze test GluD1 KO mice showed no difference in acquisition but had longer latency to find the platform in the reversal learning task. GluD1 KO mice showed a deficit in contextual and cue fear conditioning but had normal latent inhibition. The deficit in contextual fear conditioning was reversed by D-Cycloserine (DCS) treatment. GluD1 KO mice were also found to be more sensitive to foot-shock compared to wildtype. We further studied molecular changes in the hippocampus, where we found lower levels of GluA1, GluA2 and GluK2 subunits while a contrasting higher level of GluN2B in GluD1 KO. Additionally, we found higher postsynaptic density protein 95 (PSD95) and lower glutamate decarboxylase 67 (GAD67) expression in GluD1 KO. We propose that GluD1 is crucial for normal functioning of synapses and absence of GluD1 leads to specific abnormalities in learning and memory. These findings provide novel insights into the role of GluD1 receptors in the central nervous system. PMID:23560106

  4. Loss of β1-integrin from urothelium results in overactive bladder and incontinence in mice: a mechanosensory rather than structural phenotype

    PubMed Central

    Kanasaki, Keizo; Yu, Weiqun; von Bodungen, Maximilian; Larigakis, John D.; Kanasaki, Megumi; Ayala de la Pena, Francisco; Kalluri, Raghu; Hill, Warren G.

    2013-01-01

    Bladder urothelium senses and communicates information about bladder fullness. However, the mechanoreceptors that respond to tissue stretch are poorly defined. Integrins are mechanotransducers in other tissues. Therefore, we eliminated β1-integrin selectively in urothelium of mice using Cre-LoxP targeted gene deletion. β1-Integrin localized to basal/intermediate urothelial cells by confocal microscopy. β1-Integrin conditional-knockout (β1-cKO) mice lacking urothelial β1-integrin exhibited down-regulation and mislocalization of α3- and α5-integrins by immunohistochemistry but, surprisingly, had normal morphology, permeability, and transepithelial resistance when compared with Cre-negative littermate controls. β1-cKO mice were incontinent, as judged by random urine leakage on filter paper (4-fold higher spotting, P<0.01; 2.5-fold higher urine area percentage, P<0.05). Urodynamic function assessed by cystometry revealed bladder overfilling with 80% longer intercontractile intervals (P<0.05) and detrusor hyperactivity (3-fold more prevoid contractions, P<0.05), but smooth muscle contractility remained intact. ATP secretion into the lumen was elevated (49 vs. 22 nM, P<0.05), indicating abnormal filling-induced purinergic signaling, and short-circuit currents (measured in Ussing chambers) revealed 2-fold higher stretch-activated ion channel conductances in response to hydrostatic pressure of 1 cmH2O (P<0.05). We conclude that loss of integrin signaling from urothelium results in incontinence and overactive bladder due to abnormal mechanotransduction; more broadly, our findings indicate that urothelium itself directly modulates voiding.—Kanasaki, K., Yu, W., von Bodungen, M., Larigakis, J. D., Kanasaki, M., Ayala de la Pena, F., Kalluri, R., Hill, W.G. Loss of β1-integrin from urothelium results in overactive bladder and incontinence in mice: a mechanosensory rather than structural phenotype. PMID:23395910

  5. Muscarinic acetylcholine receptor subtype 4 is essential for cholinergic stimulation of duodenal bicarbonate secretion in mice - relationship to D cell/somatostatin.

    PubMed

    Takeuchi, K; Kita, K; Takahashi, K; Aihara, E; Hayashi, S

    2015-06-01

    We investigated the roles of muscarinic (M) acetylcholine receptor subtype in the cholinergic stimulation of duodenal HCO3(-) secretion using knockout (KO) mice. Wild-type and M1-M5 KO C57BL/6J mice were used. The duodenal mucosa was mounted on an Ussing chamber, and HCO3(-) secretion was measured at pH 7.0 using a pH-stat method in vitro. Carbachol (CCh) or other agents were added to the serosal side. CCh dose-dependently stimulated HCO3(-) secretion in wild-type mice, and this effect was completely inhibited in the presence of atropine. The HCO3(-) response to CCh in wild-type mice was also inhibited by pirenzepine (M1 antagonist), 4DAMP (M3 antagonist), and tropicamide (M4 antagonist), but not by methoctramine (M2 antagonist). CCh stimulated HCO3(-) secretion in M2 and M5 KO animals as effectively as in WT mice; however, this stimulatory effect was significantly attenuated in M1, M3, and M4 KO mice. The decrease observed in the CCh-stimulated HCO3(-) response in M4 KO mice was reversed by the co-application of CYN154806, a somatostatin receptor type 2 (SST2) antagonist. Octreotide (a somatostatin analogue) decreased the basal and CCh-stimulated secretion of HCO3(-) in wild-type mice. The co-localized expression of somatostatin and M4 receptors was confirmed immunohistologically in the duodenum. We concluded that the duodenal HCO3(-) response to CCh was directly mediated by M1/M3 receptors and indirectly modified by M4 receptors. The activation of M4 receptors was assumed to inhibit the release of somatostatin from D cells and potentiate the HCO3(-) response by removing the negative influence of somatostatin via the activation of SST2 receptors.

  6. Canonical Transient Receptor Channel 5 (TRPC5) and TRPC1/4 Contribute to Seizure and Excitotoxicity by Distinct Cellular Mechanisms

    PubMed Central

    Phelan, Kevin D.; Shwe, U Thaung; Abramowitz, Joel; Wu, Hong; Rhee, Sung W.; Howell, Matthew D.; Gottschall, Paul E.; Freichel, Marc; Flockerzi, Veit; Birnbaumer, Lutz

    2013-01-01

    Seizures are the manifestation of highly synchronized burst firing of a large population of cortical neurons. Epileptiform bursts with an underlying plateau potential in neurons are a cellular correlate of seizures. Emerging evidence suggests that the plateau potential is mediated by neuronal canonical transient receptor potential (TRPC) channels composed of members of the TRPC1/4/5 subgroup. We previously showed that TRPC1/4 double-knockout (DKO) mice lack epileptiform bursting in lateral septal neurons and exhibit reduced seizure-induced neuronal cell death, but surprisingly have unaltered pilocarpine-induced seizures. Here, we report that TRPC5 knockout (KO) mice exhibit both significantly reduced seizures and minimal seizure-induced neuronal cell death in the hippocampus. Interestingly, epileptiform bursting induced by agonists for metabotropic glutamate receptors in the hippocampal CA1 area is unaltered in TRPC5 KO mice, but is abolished in TRPC1 KO and TRPC1/4 DKO mice. In contrast, long-term potentiation is greatly reduced in TRPC5 KO mice, but is normal in TRPC1 KO and TRPC1/4 DKO mice. The distinct changes from these knockouts suggest that TRPC5 and TRPC1/4 contribute to seizure and excitotoxicity by distinct cellular mechanisms. Furthermore, the reduced seizure and excitotoxicity and normal spatial learning exhibited in TRPC5 KO mice suggest that TRPC5 is a promising novel molecular target for new therapy. PMID:23188715

  7. Canonical transient receptor channel 5 (TRPC5) and TRPC1/4 contribute to seizure and excitotoxicity by distinct cellular mechanisms.

    PubMed

    Phelan, Kevin D; Shwe, U Thaung; Abramowitz, Joel; Wu, Hong; Rhee, Sung W; Howell, Matthew D; Gottschall, Paul E; Freichel, Marc; Flockerzi, Veit; Birnbaumer, Lutz; Zheng, Fang

    2013-02-01

    Seizures are the manifestation of highly synchronized burst firing of a large population of cortical neurons. Epileptiform bursts with an underlying plateau potential in neurons are a cellular correlate of seizures. Emerging evidence suggests that the plateau potential is mediated by neuronal canonical transient receptor potential (TRPC) channels composed of members of the TRPC1/4/5 subgroup. We previously showed that TRPC1/4 double-knockout (DKO) mice lack epileptiform bursting in lateral septal neurons and exhibit reduced seizure-induced neuronal cell death, but surprisingly have unaltered pilocarpine-induced seizures. Here, we report that TRPC5 knockout (KO) mice exhibit both significantly reduced seizures and minimal seizure-induced neuronal cell death in the hippocampus. Interestingly, epileptiform bursting induced by agonists for metabotropic glutamate receptors in the hippocampal CA1 area is unaltered in TRPC5 KO mice, but is abolished in TRPC1 KO and TRPC1/4 DKO mice. In contrast, long-term potentiation is greatly reduced in TRPC5 KO mice, but is normal in TRPC1 KO and TRPC1/4 DKO mice. The distinct changes from these knockouts suggest that TRPC5 and TRPC1/4 contribute to seizure and excitotoxicity by distinct cellular mechanisms. Furthermore, the reduced seizure and excitotoxicity and normal spatial learning exhibited in TRPC5 KO mice suggest that TRPC5 is a promising novel molecular target for new therapy.

  8. Implantation failure in mice with a disruption in Phospholipase C beta 1 gene: lack of embryonic attachment, aberrant steroid hormone signalling and defective endocannabinoid metabolism

    PubMed Central

    Filis, Panayiotis; Kind, Peter C.; Spears, Norah

    2013-01-01

    Phospholipase C beta 1 (PLCβ1) is a downstream effector of G-protein-coupled receptor signalling and holds central roles in reproductive physiology. Mice with a disruption in the Plcβ1 gene are infertile with pleiotropic reproductive defects, the major reproductive block in females being implantation failure. Here, PLCβ1 was demonstrated at the luminal and glandular epithelia throughout the pre- and peri-implantation period, with transient stromal expression during 0.5–1.5 days post coitum (dpc). Examination of implantation sites at 4.5 dpc showed that in females lacking functional PLCβ1 (knock-out (KO) females), embryos failed to establish proper contact with the uterine epithelium. Proliferating luminal epithelial cells were evident in KO implantation sites, indicating failure to establish a receptive uterus. Real-time PCR demonstrated that KO implantation sites had aberrant ovarian steroid signalling, with high levels of estrogen receptor α, lactoferrin and amphiregulin mRNA, while immunohistochemistry revealed very low levels of estrogen receptor α protein, possibly due to rapid receptor turnover. KO implantation sites expressed markedly less fatty acid amide hydrolase and monoacylglycerol lipase, indicating that endocannabinoid metabolism was also affected. Collectively, our results show that PLCβ1 is essential for uterine preparation for implantation, and that defective PLCβ1-mediated signalling during implantation is associated with aberrant ovarian steroid signalling and endocannabinoid metabolism. PMID:23295235

  9. Role of CYP1A1 in modulating the vascular and blood pressure benefits of omega-3 polyunsaturated fatty acids.

    PubMed

    Agbor, Larry N; Wiest, Elani F; Rothe, Michael; Schunck, Wolf-Hagen; Walker, Mary K

    2014-12-01

    The mechanisms that mediate the cardiovascular protective effects of omega 3 (n-3) polyunsaturated fatty acids (PUFAs) have not been fully elucidated. Cytochrome P450 1A1 efficiently metabolizes n-3 PUFAs to potent vasodilators. Thus, we hypothesized that dietary n-3 PUFAs increase nitric oxide (NO)-dependent blood pressure regulation and vasodilation in a CYP1A1-dependent manner. CYP1A1 wild-type (WT) and knockout (KO) mice were fed an n-3 or n-6 PUFA-enriched diet for 8 weeks and were analyzed for tissue fatty acids and metabolites, NO-dependent blood pressure regulation, NO-dependent vasodilation of acetylcholine (ACh) in mesenteric resistance arterioles, and endothelial NO synthase (eNOS) and phospho-Ser1177-eNOS expression in the aorta. All mice fed the n-3 PUFA diet showed significantly higher levels of n-3 PUFAs and their metabolites, and significantly lower levels of n-6 PUFAs and their metabolites. In addition, KO mice on the n-3 PUFA diet accumulated significantly higher levels of n-3 PUFAs in the aorta and kidney without a parallel increase in the levels of their metabolites. Moreover, KO mice exhibited significantly less NO-dependent regulation of blood pressure on the n-3 PUFA diet and significantly less NO-dependent, ACh-mediated vasodilation in mesenteric arterioles on both diets. Finally, the n-3 PUFA diet significantly increased aortic phospho-Ser1177-eNOS/eNOS ratio in the WT compared with KO mice. These data demonstrate that CYP1A1 contributes to eNOS activation, NO bioavailability, and NO-dependent blood pressure regulation mediated by dietary n-3 PUFAs. Copyright © 2014 by The American Society for Pharmacology and Experimental Therapeutics.

  10. Hypothyroidism Compromises Hypothalamic Leptin Signaling in Mice

    PubMed Central

    Groba, Claudia; Mayerl, Steffen; van Mullem, Alies A.; Visser, Theo J.; Darras, Veerle M.; Habenicht, Andreas J.

    2013-01-01

    The impact of thyroid hormone (TH) on metabolism and energy expenditure is well established, but the role of TH in regulating nutritional sensing, particularly in the central nervous system, is only poorly defined. Here, we studied the consequences of hypothyroidism on leptin production as well as leptin sensing in congenital hypothyroid TRH receptor 1 knockout (Trhr1 ko) mice and euthyroid control animals. Hypothyroid mice exhibited decreased circulating leptin levels due to a decrease in fat mass and reduced leptin expression in white adipose tissue. In neurons of the hypothalamic arcuate nucleus, hypothyroid mice showed increased leptin receptor Ob-R expression and decreased suppressor of cytokine signaling 3 transcript levels. In order to monitor putative changes in central leptin sensing, we generated hypothyroid and leptin-deficient animals by crossing hypothyroid Trhr1 ko mice with the leptin-deficient ob/ob mice. Hypothyroid Trhr1/ob double knockout mice showed a blunted response to leptin treatment with respect to body weight and food intake and exhibited a decreased activation of phospho-signal transducer and activator of transcription 3 as well as a up-regulation of suppressor of cytokine signaling 3 upon leptin treatment, particularly in the arcuate nucleus. These data indicate alterations in the intracellular processing of the leptin signal under hypothyroid conditions and thereby unravel a novel mode of action by which TH affects energy metabolism. PMID:23518925

  11. CD4 T cells promote rather than control tuberculosis in the absence of PD-1-mediated inhibition.

    PubMed

    Barber, Daniel L; Mayer-Barber, Katrin D; Feng, Carl G; Sharpe, Arlene H; Sher, Alan

    2011-02-01

    Although CD4 T cells are required for host resistance to Mycobacterium tuberculosis, they may also contribute to pathology. In this study, we examine the role of the inhibitory receptor PD-1 and its ligand PD-L1 during M. tuberculosis infection. After aerosol exposure, PD-1 knockout (KO) mice develop high numbers of M. tuberculosis-specific CD4 T cells but display markedly increased susceptibility to infection. Importantly, we show that CD4 T cells themselves drive the increased bacterial loads and pathology seen in infected PD-1 KO mice, and PD-1 deficiency in CD4 T cells is sufficient to trigger early mortality. PD-L1 KO mice also display enhanced albeit less severe susceptibility, indicating that T cells are regulated by multiple PD ligands during M. tuberculosis infection. M. tuberculosis-specific CD8 T cell responses were normal in PD-1 KO mice, and CD8 T cells only had a minor contribution to the exacerbated disease in the M. tuberculosis-infected PD-1 KO and PD-L1 KO mice. Thus, in the absence of the PD-1 pathway, M. tuberculosis benefits from CD4 T cell responses, and host resistance requires inhibition by PD-1 to prevent T cell-driven exacerbation of the infection.

  12. Neonatal uterine and vaginal cell proliferation and adenogenesis are independent of estrogen receptor 1 (ESR1) in the mouse.

    PubMed

    Nanjappa, Manjunatha K; Medrano, Theresa I; March, Amelia G; Cooke, Paul S

    2015-03-01

    Neonatal uterus and vagina express estrogen receptor 1 (ESR1) and respond mitogenically to exogenous estrogens. However, neonatal ovariectomy does not inhibit preweaning uterine cell proliferation, indicating that this process is estrogen independent. Extensive literature suggests that ESR1 can be activated by growth factors in a ligand-independent manner and drive uterine cell proliferation. Alternatively, neonatal uterine cell proliferation could be ESR1 independent despite its obligatory role in adult luminal epithelial proliferation. To determine ESR1's role in uterine and vaginal development, we analyzed cell proliferation, apoptosis, and uterine gland development (adenogenesis) in wild-type (WT) and Esr1 knockout (Esr1KO) mice from Postnatal Day 2 to Postnatal Day 60. Uterine and vaginal cell proliferation, apoptosis, and uterine adenogenesis were comparable in WT and Esr1KO mice before weaning. By Days 29-60, glands had regressed, and uterine cell proliferation was reduced in Esr1KO mice in contrast to continued adenogenesis and proliferation in WT. Apoptosis in Esr1KO uterine epithelium was not increased compared to WT at any age, indicating that differences in cell proliferation, rather than apoptosis, cause divergence of uterine size in these two groups at puberty. Similarly, vaginal epithelial proliferation was reduced, and the epithelium became atrophic in Esr1KO mice by 29 days of age and later in Esr1KO mice. These results indicate that preweaning uterine and vaginal development is ESR1 independent but becomes dependent on ESR1 by Day 29 on. It is not yet clear what mechanisms drive preweaning vaginal and uterine development, but ligand-independent activation of ESR1 is not involved. © 2015 by the Society for the Study of Reproduction, Inc.

  13. Renal ischemia-reperfusion injury and adenosine 2A receptor-mediated tissue protection: the role of CD4+ T cells and IFN-gamma.

    PubMed

    Day, Yuan-Ji; Huang, Liping; Ye, Hong; Li, Li; Linden, Joel; Okusa, Mark D

    2006-03-01

    A(2A) adenosine receptor (A(2A)R)-expressing bone marrow (BM)-derived cells contribute to the renal protective effect of A(2A) agonists in renal ischemia-reperfusion injury (IRI). We performed IRI in mice lacking T and B cells to determine whether A(2A)R expressed in CD4+ cells mediate protection from IRI. Rag-1 knockout (KO) mice were protected in comparison to wild-type (WT) mice when subjected to IRI. ATL146e, a selective A(2A) agonist, did not confer additional protection. IFN-gamma is an important early signal in IRI and is thought to contribute to reperfusion injury. Because IFN-gamma is produced by kidney cells and T cells we performed IRI in BM chimeras in which the BM of WT mice was reconstituted with BM from IFN-gamma KO mice (IFN-gamma KO-->WT chimera). We observed marked reduction in IRI in comparison to WT-->WT chimeras providing additional indirect support for the role of T cells. To confirm the role of CD4+ A(2A)R in mediating protection from IRI, Rag-1 KO mice were subjected to ischemia-reperfusion. The protection observed in Rag-1 KO mice was reversed in Rag-1 KO mice that were adoptively transferred WT CD4+ cells (WT CD4+-->Rag-1 KO) or A(2A) KO CD4+ cells (A(2A) KO CD4+-->Rag-1 KO). ATL146e reduced injury in WT CD4+-->Rag-1 KO mice but not in A(2A) KO CD4+-->Rag-1 KO mice. Rag-1 KO mice reconstituted with CD4+ cells derived from IFN-gamma KO mice (IFN-gamma CD4+-->Rag-1 KO) were protected from IRI; ATL146e conferred no additional protection. These studies demonstrate that CD4+ IFN-gamma contributes to IRI and that A(2A) agonists mediate protection from IRI through action on CD4+ cells.

  14. The active metabolite of leflunomide, A77 1726, attenuates inflammatory arthritis in mice with spontaneous arthritis via induction of heme oxygenase-1.

    PubMed

    Moon, Su-Jin; Kim, Eun-Kyung; Jhun, Joo Yeon; Lee, Hee Jin; Lee, Weon Sun; Park, Sang-Hi; Cho, Mi-La; Min, Jun-Ki

    2017-02-13

    Leflunomide is a low-molecular-weight compound that is widely used in the treatment of rheumatoid arthritis. Although leflunomide is thought to act through the inhibition of the de novo pyrimidine synthesis, the molecular mechanism of the drug remains largely unknown. We investigated the antiarthritis effects and mechanisms of action of the active metabolite of leflunomide, A77 1726, in interleukin-1 receptor antagonist-knockout (IL-1Ra-KO) mice. 14- to 15-week-old male IL-1Ra-KO mice were treated with 10 or 30 mg/kg A77 1726 via intraperitoneal injection three times per week for 6 weeks. The effects of A77 1726 on arthritis severities were assessed by clinical scoring and histological analysis. The serum concentrations of IL-1β, tumor necrosis factor-α (TNF-α), and malondialdehyde were measured by enzyme-linked immunosorbent assay. Histologic analysis of the joints was performed using Safranin O, and immunohistochemical staining. The frequencies of interleukin-17-producing CD4 + T (Th17) cells were analyzed by flow cytometry. Heme oxygenase-1 (HO-1) expression in splenic CD4 + T cells isolated from A77 1726-treated arthritis mice were assessed by western blotting. A77 1726 treatment induced heme oxygenase-1 (HO-1) in Jurkat cells and primary mouse T cells. Interestingly, A77 1726 inhibited Th17 cell differentiation. In vivo, A77 1726 reduced the clinical arthritis severity of histological inflammation and cartilage destruction. The joints isolated from A77 1726-treated mice showed decreased expression of inducible nitric oxide synthase, nitrotyrosine, TNF-α, and IL-1β. The serum levels of TNF-α, IL-1β, and malondialdehyde were also decreased in A77 1726-treated mice. Whereas the number of Th17 cells in spleens was decreased in A77 1726-treated arthritis mice, a significant increase in the number of Treg cells in spleens was observed. Interestingly, HO-1 expression was significantly higher in splenic CD4 + T cells isolated from A77 1726-treated mice

  15. Oral Serum-Derived Bovine Immunoglobulin/Protein Isolate Has Immunomodulatory Effects on the Colon of Mice that Spontaneously Develop Colitis.

    PubMed

    Pérez-Bosque, Anna; Miró, Lluïsa; Maijó, Mònica; Polo, Javier; Campbell, Joy M; Russell, Louis; Crenshaw, Joe D; Weaver, Eric; Moretó, Miquel

    2016-01-01

    Dietary immunoglobulin concentrates prepared from animal plasma can modulate the immune response of gut-associated lymphoid tissue (GALT). Previous studies have revealed that supplementation with serum-derived bovine immunoglobulin/protein isolate (SBI) ameliorates colonic barrier alterations in the mdr1a-/- genetic mouse model of IBD. Here, we examine the effects of SBI on mucosal inflammation in mdr1a-/- mice that spontaneously develop colitis. Wild type (WT) mice and mice lacking the mdr1a gene (KO) were fed diets supplemented with either SBI (2% w/w) or milk proteins (Control diet), from day 21 (weaning) until day 56. Leucocytes in mesenteric lymph nodes (MLN) and in lamina propria were determined, as was mucosal cytokine production. Neutrophil recruitment and activation in MLN and lamina propria of KO mice were increased, but were significantly reduced in both by SBI supplementation (p < 0.05). The increased neutrophil recruitment and activation observed in KO mice correlated with increased colon oxidative stress (p < 0.05) and SBI supplementation reduced this variable (p < 0.05). The Tact/Treg lymphocyte ratios in MLN and lamina propria were also increased in KO animals, but SBI prevented these changes (both p < 0.05). In the colon of KO mice, there was an increased production of mucosal pro-inflammatory cytokines such as IL-2 (2-fold), IL-6 (26-fold) and IL-17 (19-fold), and of chemokines MIP-1β (4.5-fold) and MCP-1 (7.2-fold). These effects were significantly prevented by SBI (p < 0.05). SBI also significantly increased TGF-β secretion in the colon mucosa, suggesting a role of this anti-inflammatory cytokine in the modulation of GALT and the reduction of the severity of the inflammatory response during the onset of colitis.

  16. Cellular Functions of the Autism Risk Factor PTCHD1 in Mice.

    PubMed

    Tora, David; Gomez, Andrea M; Michaud, Jean-Francois; Yam, Patricia T; Charron, Frédéric; Scheiffele, Peter

    2017-12-06

    The gene patched domain containing 1 ( PTCHD1 ) is mutated in patients with autism spectrum disorders and intellectual disabilities and has been hypothesized to contribute to Sonic hedgehog (Shh) signaling and synapse formation. We identify a panel of Ptchd1-interacting proteins that include postsynaptic density proteins and the retromer complex, revealing a link to critical regulators of dendritic and postsynaptic trafficking. Ptchd1 knock-out (KO) male mice exhibit cognitive alterations, including defects in a novel object recognition task. To test whether Ptchd1 is required for Shh-dependent signaling, we examined two Shh-dependent cell populations that express high levels of Ptchd1 mRNA: cerebellar granule cell precursors and dentate granule cells in the hippocampus. We found that proliferation of these neuronal precursors was not altered significantly in Ptchd1 KO male mice. We used whole-cell electrophysiology and anatomical methods to assess synaptic function in Ptchd1-deficient dentate granule cells. In the absence of Ptchd1, we observed profound disruption in excitatory/inhibitory balance despite normal dendritic spine density on dentate granule cells. These findings support a critical role of the Ptchd1 protein in the dentate gyrus, but indicate that it is not required for structural synapse formation in dentate granule cells or for Shh-dependent neuronal precursor proliferation. SIGNIFICANCE STATEMENT The mechanisms underlying neuronal and cellular alterations resulting from patched domain containing 1 ( Ptchd1 ) gene mutations are unknown. The results from this study support an association with dendritic trafficking complexes of Ptchd1. Loss-of-function experiments do not support a role in sonic hedgehog-dependent signaling, but reveal a disruption of synaptic transmission in the mouse dentate gyrus. The findings will help to guide ongoing efforts to understand the etiology of neurodevelopmental disorders arising from Ptchd1 deficiency. Copyright

  17. Interleukin 1 Receptor (IL-1R1) Activation Exacerbates Toxin-Induced Acute Kidney Injury.

    PubMed

    Privratsky, Jamie R; Zhang, Jiandong; Lu, Xiaohan; Rudemiller, Nathan; Wei, Qingqing; Yu, Yen-Rei; Gunn, Michael Dee; Crowley, Steven D

    2018-05-23

    Acute kidney injury (AKI) is a leading cause of morbidity and mortality. Cisplatin is an effective chemotherapeutic agent whose administration is limited by nephrotoxicity. Therapies to prevent cisplatin-induced AKI are lacking. While tumor necrosis factor-α (TNF) plays a key role in the pathogenesis of cisplatin nephrotoxicity, the immune signaling pathways that trigger TNF generation in this context require elucidation. Sterile injury triggers the release and activation of both isoforms of interleukin(IL)-1, IL-1α and IL-1β, and stimulation of the interleukin-1 receptor (IL-1R1) by these ligands engages a pro-inflammatory signaling cascade that induces TNF induction. We therefore hypothesized that IL-1R1 activation exacerbates cisplatin-induced AKI by inducing TNF production thereby augmenting inflammatory signals between kidney parenchymal cells and infiltrating myeloid cells. IL-1R1+/+ (WT) and IL-1R1-/- (KO) mice were subjected to cisplatin-induced AKI. Compared to WT mice, IL-1R1 KO mice had attenuated AKI as measured by serum creatinine and BUN; renal NGAL mRNA levels; and blinded histological analysis of kidney pathology. In the cisplatin-injured kidney, IL-1R1 KO mice had diminished levels of whole kidney TNF and fewer Ly6G-expressing neutrophils. In addition, an unbiased machine learning analysis of intra-renal immune cells revealed a diminished number of CD11bint/CD11cint myeloid cells in IL-1R1 KO injured kidneys compared to IL-1R1 WT kidneys. Following cisplatin, IL-1R1 KO kidneys, compared to WTs, had fewer TNF-producing macrophages, CD11bint/CD11cint cells, and neutrophils, consistent with an effect of IL-1R1 to polarize intra-renal myeloid cells toward a pro-inflammatory phenotype. Interruption of IL-1-dependent signaling pathways warrants further evaluation to decrease nephrotoxicity during cisplatin therapy.

  18. The prolyl isomerase Pin1 increases β-cell proliferation and enhances insulin secretion.

    PubMed

    Nakatsu, Yusuke; Mori, Keiichi; Matsunaga, Yasuka; Yamamotoya, Takeshi; Ueda, Koji; Inoue, Yuki; Mitsuzaki-Miyoshi, Keiko; Sakoda, Hideyuki; Fujishiro, Midori; Yamaguchi, Suguru; Kushiyama, Akifumi; Ono, Hiraku; Ishihara, Hisamitsu; Asano, Tomoichiro

    2017-07-14

    The prolyl isomerase Pin1 binds to the phosphorylated Ser/Thr-Pro motif of target proteins and enhances their cis-trans conversion. This report is the first to show that Pin1 expression in pancreatic β cells is markedly elevated by high-fat diet feeding and in ob/ob mice. To elucidate the role of Pin1 in pancreatic β cells, we generated β-cell-specific Pin1 KO (βPin1 KO) mice. These mutant mice showed exacerbation of glucose intolerance but had normal insulin sensitivity. We identified two independent factors underlying impaired insulin secretion in the βPin1 KO mice. Pin1 enhanced pancreatic β-cell proliferation, as indicated by a reduced β-cell mass in βPin1 KO mice compared with control mice. Moreover, a diet high in fat and sucrose failed to increase pancreatic β-cell growth in the βPin1 KO mice, an observation to which up-regulation of the cell cycle protein cyclin D appeared to contribute. The other role of Pin1 was to activate the insulin-secretory step: Pin1 KO β cells showed impairments in glucose- and KCl-induced elevation of the intracellular Ca 2+ concentration and insulin secretion. We also identified salt-inducible kinase 2 (SIK2) as a Pin1-binding protein that affected the regulation of Ca 2+ influx and found Pin1 to enhance SIK2 kinase activity, resulting in a decrease in p35 protein, a negative regulator of Ca 2+ influx. Taken together, our observations demonstrate critical roles of Pin1 in pancreatic β cells and that Pin1 both promotes β-cell proliferation and activates insulin secretion. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  19. The role of vitamin D3 upregulated protein 1 in thioacetamide-induced mouse hepatotoxicity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kwon, Hyo-Jung; Department of Veterinary Pathology, College of Veterinary Medicine, Seoul National University, Seoul; Lim, Jong-Hwan

    2010-11-01

    Thioacetamide (TA) is a commonly used drug that can trigger acute hepatic failure (AHF) through generation of oxidative stress. Vitamin D3 upregulated protein 1 (VDUP1) is an endogenous inhibitor of thioredoxin, a ubiquitous thiol oxidoreductase, that regulates cellular redox status. In this study, we investigated the role of VDUP1 in AHF using a TA-induced liver injury model. VDUP1 knockout (KO) and wild-type (WT) mice were subjected to a single intraperitoneal TA injection, and various parameters of hepatic injury were assessed. VDUP1 KO mice displayed a significantly higher survival rate, lower serum alanine aminotransferase and aspartate aminotransferase levels, and less hepaticmore » damage, compared to WT mice. In addition, induction of apoptosis was decreased in VDUP1 KO mice, with the alteration of caspase-3 and -9 activities, Bax-to-Bcl-2 expression ratios, and mitogen activated protein kinase (MAPK) signaling pathway. Importantly, analysis of TA bioactivation revealed lower plasma clearance of TA and covalent binding of [{sup 14}C]TA to liver macromolecules in VDUP1 KO mice. Furthermore, the level of oxidative stress was significantly less in VDUP1 KO mice than in their WT counterparts, as evident from lipid peroxidation assay. These results collectively indicate that VDUP1 deficiency protects against TA-induced acute liver injury via lower bioactivation of TA and antioxidant effects.« less

  20. Identification of long non-coding RNA and mRNA expression in βΒ2-crystallin knockout mice.

    PubMed

    Jia, Yin; Xiong, Kang; Ren, Han-Xiao; Li, Wen-Jie

    2018-05-01

    βΒ2-crystallin (CRYBB2) is expressed at an increased level in the postnatal lens cortex and is associated with cataracts. Improved understanding of the underlying biology of cataracts is likely to be critical for the development of early detection strategies and new therapeutics. The present study aimed to identify long non-coding RNAs (lncRNAs) and mRNAs associated with CRYBB2 knockdown (KO)-induced cataracts. RNAs from 3 non-treated mice and 3 CRYBB2 KO mice were analyzed using the Affymetrix GeneChip Mouse Gene 2.0 ST array. A total of 149 lncRNAs and 803 mRNAs were identified to have upregulated expression, including Snora73b, Klk1b22 and Rnu3a, while the expression levels of 180 lncRNAs and 732 mRNAs were downregulated in CRYBB2 KO mice, including Snord82, Snhg9 and Foxn3. This lncRNA and mRNA expression profile of mice with CRYBB2 KO provides a basis for studying the genetic mechanisms of cataract progression.

  1. Social deficits and perseverative behaviors, but not overt aggression, in MAO-A hypomorphic mice.

    PubMed

    Bortolato, Marco; Chen, Kevin; Godar, Sean C; Chen, Gao; Wu, Weihua; Rebrin, Igor; Farrell, Mollee R; Scott, Anna L; Wellman, Cara L; Shih, Jean C

    2011-12-01

    Monoamine oxidase (MAO)-A is a key enzyme for the degradation of brain serotonin (5-hydroxytryptamine, 5-HT) and norepinephrine (NE). In humans and mice, total MAO-A deficiency results in high 5-HT and NE levels, as well as elevated reactive aggression. Here we report the generation of MAO-A(Neo) mice, a novel line of hypomorphic MAO-A mutants featuring the insertion of a floxed neomycin-resistance cassette in intron-12 of the Maoa gene. This construct resulted in a chimeric, non-functional variant of the Maoa-Neo transcript, with a truncated C-terminus, likely due to aberrant splicing; these deficits notwithstanding, small amounts of functional Maoa transcript were found in the brain of MAO-A(Neo) mice. In the prefrontal cortex and amygdala, MAO-A(Neo) mice showed low, yet detectable, MAO-A catalytic activity, as well as 5-HT levels equivalent to WT littermates; conversely, the hippocampus and midbrain of MAO-A(Neo) mice featured a neurochemical profile akin to MAO-A-knockout (KO) mice, with undetectable MAO-A activity and high 5-HT concentrations. MAO-A(Neo) mice showed significant increases in dendritic length in the pyramidal neurons of orbitofrontal cortex, but not basolateral amygdala, in comparison with WT littermates; by contrast, the orbitofrontal cortex of MAO-A KO mice showed significant reductions in basilar dendritic length, as well as a profound increase in apical dendritic length. MAO-A(Neo) mice showed a unique set of behavioral abnormalities, encompassing reduced open-field locomotion, perseverative responses, such as marble burying and water mist-induced grooming, and a lack of anxiety-like behaviors in the elevated plus-maze and light-dark box paradigms. Notably, whereas MAO-A(Neo) and KO mice showed significant reductions in social interaction, only the latter genotype showed increases in resident-intruder aggression. Taken together, our findings indicate that MAO A hypomorphism results in behavioral and morphological alterations distinct from

  2. Attenuated Stress Response to Acute Restraint and Forced Swimming Stress in Arginine Vasopressin 1b Receptor Subtype (Avpr1b) Receptor Knockout Mice and Wild-Type Mice Treated with a Novel Avpr1b Receptor Antagonist

    PubMed Central

    Roper, J A; Craighead, M; O’Carroll, A-M; Lolait, S J

    2010-01-01

    Arginine vasopressin (AVP) synthesised in the parvocellular region of the hypothalamic paraventricular nucleus and released into the pituitary portal vessels acts on the 1b receptor subtype (Avpr1b) present in anterior pituitary corticotrophs to modulate the release of adrenocorticotrophic hormone (ACTH). Corticotrophin-releasing hormone is considered the major drive behind ACTH release; however, its action is augmented synergistically by AVP. To determine the extent of vasopressinergic influence in the hypothalamic-pituitary-adrenal axis response to restraint and forced swimming stress, we compared the stress hormone levels [plasma ACTH in both stressors and corticosterone (CORT) in restraint stress only] following acute stress in mutant Avpr1b knockout (KO) mice compared to their wild-type controls following the administration of a novel Avpr1b antagonist. Restraint and forced swimming stress-induced increases in plasma ACTH were significantly diminished in mice lacking a functional Avpr1b and in wild-type mice that had been pre-treated with Avpr1b antagonist. A corresponding decrease in plasma CORT levels was also observed in acute restraint-stressed knockout male mice, and in Avpr1b-antagonist-treated male wild-type mice. By contrast, plasma CORT levels were not reduced in acutely restraint-stressed female knockout animals, or in female wild-type animals pre-treated with Avpr1b antagonist. These results demonstrate that pharmacological antagonism or inactivation of Avpr1b causes a reduction in the hypothalamic-pituitary-adrenal (HPA) axis response, particularly ACTH, to acute restraint and forced swimming stress, and show that Avpr1b knockout mice constitute a model by which to study the contribution of Avpr1b to the HPA axis response to acute stressors. PMID:20846299

  3. Attenuated stress response to acute restraint and forced swimming stress in arginine vasopressin 1b receptor subtype (Avpr1b) receptor knockout mice and wild-type mice treated with a novel Avpr1b receptor antagonist.

    PubMed

    Roper, J A; Craighead, M; O'Carroll, A-M; Lolait, S J

    2010-11-01

    Arginine vasopressin (AVP) synthesised in the parvocellular region of the hypothalamic paraventricular nucleus and released into the pituitary portal vessels acts on the 1b receptor subtype (Avpr1b) present in anterior pituitary corticotrophs to modulate the release of adrenocorticotrophic hormone (ACTH). Corticotrophin-releasing hormone is considered the major drive behind ACTH release; however, its action is augmented synergistically by AVP. To determine the extent of vasopressinergic influence in the hypothalamic-pituitary-adrenal axis response to restraint and forced swimming stress, we compared the stress hormone levels [plasma ACTH in both stressors and corticosterone (CORT) in restraint stress only] following acute stress in mutant Avpr1b knockout (KO) mice compared to their wild-type controls following the administration of a novel Avpr1b antagonist. Restraint and forced swimming stress-induced increases in plasma ACTH were significantly diminished in mice lacking a functional Avpr1b and in wild-type mice that had been pre-treated with Avpr1b antagonist. A corresponding decrease in plasma CORT levels was also observed in acute restraint-stressed knockout male mice, and in Avpr1b-antagonist-treated male wild-type mice. By contrast, plasma CORT levels were not reduced in acutely restraint-stressed female knockout animals, or in female wild-type animals pre-treated with Avpr1b antagonist. These results demonstrate that pharmacological antagonism or inactivation of Avpr1b causes a reduction in the hypothalamic-pituitary-adrenal (HPA) axis response, particularly ACTH, to acute restraint and forced swimming stress, and show that Avpr1b knockout mice constitute a model by which to study the contribution of Avpr1b to the HPA axis response to acute stressors. © 2010 The Authors. Journal of Neuroendocrinology © 2010 Blackwell Publishing Ltd.

  4. Inquiries into the Biological Significance of Transmembrane AMPA Receptor Regulatory Protein (TARP) γ-8 Through Investigations of TARP γ-8 Null Mice§.

    PubMed

    Gleason, Scott D; Kato, Akihiko; Bui, Hai H; Thompson, Linda K; Valli, Sabrina N; Stutz, Patrick V; Kuo, Ming-Shang; Falcone, Julie F; Anderson, Wesley H; Li, Xia; Witkin, Jeffrey M

    2015-01-01

    affected by deletion of the γ-8 protein. Of a large panel of plasma lipids, only two monoacylglycerols (1OG and 2OG) were marginally but nonsignificantly altered in WT vs KO mice. Overall, the data suggest genetic inactivation of this specific population of AMPA receptors results in modest changes in behavior characterized by a mild hyperactivity which is condition dependent and a marked reduction in digging and burying behaviors. Despite deletion of TARP γ-8, chemoconvulsants were still active. Consistent with their predicted pharmacological actions, the convulsant effects of kainate and the antidepressant-like effects of an AMPA receptor potentiator (both acting upon AMPA receptors) were reduced or absent in KO mice.

  5. What have we learned about GPER function in physiology and disease from knockout mice?

    PubMed

    Prossnitz, Eric R; Hathaway, Helen J

    2015-09-01

    Estrogens, predominantly 17β-estradiol, exert diverse effects throughout the body in both normal and pathophysiology, during development and in reproductive, metabolic, endocrine, cardiovascular, nervous, musculoskeletal and immune systems. Estrogen and its receptors also play important roles in carcinogenesis and therapy, particularly for breast cancer. In addition to the classical nuclear estrogen receptors (ERα and ERβ) that traditionally mediate predominantly genomic signaling, the G protein-coupled estrogen receptor GPER has become recognized as a critical mediator of rapid signaling in response to estrogen. Mouse models, and in particular knockout (KO) mice, represent an important approach to understand the functions of receptors in normal physiology and disease. Whereas ERα KO mice display multiple significant defects in reproduction and mammary gland development, ERβ KO phenotypes are more limited, and GPER KO exhibit no reproductive deficits. However, the study of GPER KO mice over the last six years has revealed that GPER deficiency results in multiple physiological alterations including obesity, cardiovascular dysfunction, insulin resistance and glucose intolerance. In addition, the lack of estrogen-mediated effects in numerous tissues of GPER KO mice, studied in vivo or ex vivo, including those of the cardiovascular, endocrine, nervous and immune systems, reveals GPER as a genuine mediator of estrogen action. Importantly, GPER KO mice have also demonstrated roles for GPER in breast carcinogenesis and metastasis. In combination with the supporting effects of GPER-selective ligands and GPER knockdown approaches, GPER KO mice demonstrate the therapeutic potential of targeting GPER activity in diseases as diverse as obesity, diabetes, multiple sclerosis, hypertension, atherosclerosis, myocardial infarction, stroke and cancer. Copyright © 2015. Published by Elsevier Ltd.

  6. Endurance performance and energy metabolism during exercise in mice with a muscle-specific defect in the control of branched-chain amino acid catabolism.

    PubMed

    Xu, Minjun; Kitaura, Yasuyuki; Ishikawa, Takuya; Kadota, Yoshihiro; Terai, Chihaya; Shindo, Daichi; Morioka, Takashi; Ota, Miki; Morishita, Yukako; Ishihara, Kengo; Shimomura, Yoshiharu

    2017-01-01

    It is known that the catabolism of branched-chain amino acids (BCAAs) in skeletal muscle is suppressed under normal and sedentary conditions but is promoted by exercise. BCAA catabolism in muscle tissues is regulated by the branched-chain α-keto acid (BCKA) dehydrogenase complex, which is inactivated by phosphorylation by BCKA dehydrogenase kinase (BDK). In the present study, we used muscle-specific BDK deficient mice (BDK-mKO mice) to examine the effect of uncontrolled BCAA catabolism on endurance exercise performance and skeletal muscle energy metabolism. Untrained control and BDK-mKO mice showed the same performance; however, the endurance performance enhanced by 2 weeks of running training was somewhat, but significantly less in BDK-mKO mice than in control mice. Skeletal muscle of BDK-mKO mice had low levels of glycogen. Metabolome analysis showed that BCAA catabolism was greatly enhanced in the muscle of BDK-mKO mice and produced branched-chain acyl-carnitine, which induced perturbation of energy metabolism in the muscle. These results suggest that the tight regulation of BCAA catabolism in muscles is important for homeostasis of muscle energy metabolism and, at least in part, for adaptation to exercise training.

  7. Characterization of periodontal structures of enamelin-null mice.

    PubMed

    Chan, Hsun-Liang; Giannobile, William V; Eber, Robert M; Simmer, James P; Hu, Jan C

    2014-01-01

    Enamelin-null (ENAM(-/-)) mice have no enamel. When characterizing ENAM(-/-) mice, alveolar bone height reduction was observed, and it was hypothesized that enamel defects combined with diet are associated with the periodontal changes of ENAM(-/-)mice. The aim of the present study is to compare the dimension of interradicular bone of ENAM(-/-) (knock-out [KO]) with wild-type (WT) mice, maintained on hard (HC) or soft (SC) chow. A total of 100 animals divided into four groups were studied at 3, 8, and 24 weeks of age: 1) KO/HC; 2) KO/SC; 3) WT/HC; and 4) WT/SC. Microcomputed tomography was performed, and the following measurements were made between mandibular first (M1) and second (M2) molars: relative alveolar bone height (RBH), crestal bone width (CBW), bone volume (BV), bone mineral content (BMC), and bone mineral density (BMD). The position of M1 and M2 in relation to the inferior border of the mandible was also determined at 24 weeks. All variables were analyzed by one-way analysis of variance and Dunnett test for pairwise comparisons. Morphologic analyses were conducted on hematoxylin and eosin-stained sections. Radiographically, the enamel layer was absent in ENAM(-/-) mice. Interproximal open contacts were observed exclusively in ENAM(-/-) mice, and the prevalence decreased over time, suggesting that a shifting of tooth position had occurred. Additionally, in the two ENAM(-/-) groups, RBH was significantly lower at 8 and 24 weeks (P <0.02); CBW, BV, and BMC were significantly less (P <0.05) at 24 weeks. No differences in BMD were found among the four groups. The molars migrated to a more coronal position in ENAM(-/-) mice and mice on HC. Histologic findings were consistent with radiographic observations. After eruption, the junctional epithelium was less organized in ENAM(-/-) mice. The interdental bone density was not affected in the absence of enamelin, but its volume was, which is likely a consequence of alternations in tooth position.

  8. Metabolomic profiles of arsenic (+3 oxidation state) methyltransferase knockout mice: Effect of sex and arsenic exposure

    PubMed Central

    Huang, Madelyn C.; Douillet, Christelle; Su, Mingming; Zhou, Kejun; Wu, Tao; Chen, Wenlian; Galanko, Joseph A.; Drobná, Zuzana; Saunders, R. Jesse; Martin, Elizabeth; Fry, Rebecca C.; Jia, Wei; Stýblo, Miroslav

    2016-01-01

    Arsenic (+3 oxidation state) methyltransferase (As3mt) is the key enzyme in the pathway for methylation of inorganic arsenic (iAs). Altered As3mt expression and AS3MT polymorphism have been linked to changes in iAs metabolism and in susceptibility to iAs toxicity in laboratory models and in humans. As3mt-knockout mice have been used to study the association between iAs metabolism and adverse effects of iAs exposure. However, little is known about systemic changes in metabolism of these mice and how these changes lead to their increased susceptibility to iAs toxicity. Here, we compared plasma and urinary metabolomes of male and female wild-type (WT) and As3mt-KO (KO) C57BL6 mice and examined metabolomic shifts associated with iAs exposure in drinking water. Surprisingly, exposure to 1 ppm As elicited only small changes in the metabolite profiles of either WT or KO mice. In contrast, comparisons of KO mice with WT mice revealed significant differences in plasma and urinary metabolites associated with lipid (phosphatidylcholines, cytidine, acyl-carnitine), amino acid (hippuric acid, acetylglycine, urea), and carbohydrate (L-sorbose, galactonic acid, gluconic acid) metabolism. Notably, most of these differences were sex-specific. Sex-specific differences were also found between WT and KO mice in plasma triglyceride and lipoprotein cholesterol levels. Some of the differentially changed metabolites (phosphatidylcholines, carnosine, and sarcosine) are substrates or products of reactions catalyzed by other methyltransferases. These results suggest that As3mt KO alters major metabolic pathways in a sex-specific manner, independent of iAs treatment, and that As3mt may be involved in other cellular processes beyond iAs methylation. PMID:26883664

  9. Partial loss of Smad7 function impairs bone remodeling, osteogenesis and enhances osteoclastogenesis in mice.

    PubMed

    Li, Nan; Lee, Wayne Yuk-Wai; Lin, Si-En; Ni, Ming; Zhang, Ting; Huang, Xiao-Ru; Lan, Hui-Yao; Li, Gang

    2014-10-01

    Smad7 is well demonstrated as a negative regulator of TGF-β signaling. Its alteration in expression often results in diseases such as cancer and fibrosis. However, the exact role of Smad7 in regulating bone remodeling during mammalian development has not been properly delineated. In this study we performed experiments to clarify the involvement of Smad7 in regulating osteogenesis and osteoclastogenesis both invivo and invitro. Genetically engineered Smad7(ΔE1) (KO) mice were used, whereby partial functional of Smad7 is lost by deleting exon I of the Smad7 gene and the truncated proteins cause a hypomorphic allele. Analysis with μCT imagery and bone histomorphometry showed that the KO mice had lower TbN, TbTh, higher TbSp in the metaphysic region of the femurs at 6, 12, 24weeks from birth, as well as decreased MAR and increased osteoclast surface compared with the WT mice. In vitro BM-MSC multi-lineage differentiation evaluation showed that the KO group had reduced osteogenic potential, fewer mineralized nodules, lower ALP activity, and reduced gene expression of Col1A1, Runx2 and OCN. The adipogenic potential was elevated in the KO group with more formation of lipid droplets, and increased gene expression of Adipsin and C/EBPα. The osteoclastogenic potential of KO mice BMMs was elevate, with emergence of more osteoclasts, larger resorptive areas, and increased gene expression of TRAP and CTR. Our results indicate that partial loss of Smad7 function in mice leads to compromised bone formation and enhanced bone resorption. Thus, Smad7 is acknowledged as a novel key regulator between osteogenesis and osteoclastogenesis. Copyright © 2014 Elsevier Inc. All rights reserved.

  10. Treatment with the anti-IL-6 receptor antibody attenuates muscular dystrophy via promoting skeletal muscle regeneration in dystrophin-/utrophin-deficient mice.

    PubMed

    Wada, Eiji; Tanihata, Jun; Iwamura, Akira; Takeda, Shin'ichi; Hayashi, Yukiko K; Matsuda, Ryoichi

    2017-10-27

    Chronic increases in the levels of the inflammatory cytokine interleukin-6 (IL-6) in serum and skeletal muscle are thought to contribute to the progression of muscular dystrophy. Dystrophin/utrophin double-knockout (dKO) mice develop a more severe and progressive muscular dystrophy than the mdx mice, the most common murine model of Duchenne muscular dystrophy (DMD). In particular, dKO mice have smaller body sizes and muscle diameters, and develop progressive kyphosis and fibrosis in skeletal and cardiac muscles. As mdx mice and DMD patients, we found that IL-6 levels in the skeletal muscle were significantly increased in dKO mice. Thus, in this study, we aimed to analyze the effects of IL-6 receptor (IL-6R) blockade on the muscle pathology of dKO mice. Male dKO mice were administered an initial injection (200 mg/kg intraperitoneally (i.p.)) of either the anti-IL-6R antibody MR16-1 or an isotype-matched control rat IgG at the age of 14 days, and were then given weekly injections (25 mg/kg i.p.) until 90 days of age. Treatment of dKO mice with the MR16-1 antibody successfully inhibited the IL-6 pathway in the skeletal muscle and resulted in a significant reduction in the expression levels of phosphorylated signal transducer and activator of transcription 3 in the skeletal muscle. Pathologically, a significant increase in the area of embryonic myosin heavy chain-positive myofibers and muscle diameter, and reduced fibrosis in the quadriceps muscle were observed. These results demonstrated the therapeutic effects of IL-6R blockade on promoting muscle regeneration. Consistently, serum creatine kinase levels were decreased. Despite these improvements observed in the limb muscles, degeneration of the diaphragm and cardiac muscles was not ameliorated by the treatment of mice with the MR16-1 antibody. As no adverse effects of treatment with the MR16-1 antibody were observed, our results indicate that the anti-IL-6R antibody is a potential therapy for muscular dystrophy

  11. Alterations in bladder function associated with urothelial defects in uroplakin II and IIIa knockout mice.

    PubMed

    Aboushwareb, Tamer; Zhou, Ge; Deng, Fang-Ming; Turner, Chanda; Andersson, Karl-Erik; Tar, Moses; Zhao, Weixin; Melman, Arnold; D'Agostino, Ralph; Sun, Tung-Tien; Christ, George J

    2009-01-01

    The effects of deleting genes encoding uroplakins II (UPII) and III (UPIIIa) on mouse bladder physiology/dysfunction were studied in male and female wild type and knockout (KO) mice. UPII, UPIIIa, and WT mice were catheterized using previously described techniques. Continuous cystometry was conducted in conscious, freely moving animals. Bladder strips were harvested after animal sacrifice and pharmacological studies and EFS were conducted in an organ chamber. Histological studies were also carried on with H&E staining to identify differences among the three mouse types. These studies have revealed numerous alterations, some of which were apparently gender-specific. Nonvoiding contractions were common in both UPII and UPIIIa KO mice, although more severe in the former. In particular, the increased bladder capacity, micturition pressure and demonstrable nonvoiding contractions observed in the male UPII KO's, were reminiscent of an obstruction-like syndrome accompanied by evidence of emerging bladder decompensation, as reflected by an increased residual volume. Pharmacological studies revealed a modest, gender-specific reduction in sensitivity of isolated detrusor strips from UPII KO female mice to carbachol-induced contractions. A similar reduction was observed in UPIIIa KO female mice. Histological investigation showed urothelial hyperplasia in both UPII KO and UPIIIa KO mice, although again, apparently more severe in the former. These results confirm and extend previous work to indicate that urothelial defects due to uroplakin deficiency are associated with significant alterations in bladder function and further highlight the importance of the urothelium to bladder physiology/dysfunction.

  12. Early postnatal inhibition of serotonin synthesis results in long-term reductions of perseverative behaviors, but not aggression, in MAO A-deficient mice

    PubMed Central

    Bortolato, Marco; Godar, Sean C.; Tambaro, Simone; Li, Felix G.; Devoto, Paola; Coba, Marcelo P.; Chen, Kevin; Shih, Jean C.

    2013-01-01

    Monoamine oxidase (MAO) A, the major enzyme catalyzing the oxidative degradation of serotonin (5-hydroxytryptamine, 5-HT), plays a key role in emotional regulation. In humans and mice, MAO-A deficiency results in high 5-HT levels, antisocial, aggressive, and perseverative behaviors. We previously showed that the elevation in brain 5-HT levels in MAO-A knockout (KO) mice is particularly marked during the first two weeks of postnatal life. Building on this finding, we hypothesized that the reduction of 5-HT levels during these early stages may lead to enduring attenuations of the aggression and other behavioral aberrances observed in MAO-A KO mice. To test this possibility, MAO-A KO mice were treated with daily injections of a 5-HT synthesis blocker, the tryptophan hydroxylase inhibitor p-chloro-phenylalanine (pCPA, 300 mg/kg/day, IP), from postnatal day 1 through 7. As expected, this regimen significantly reduced 5-HT forebrain levels in MAO-A KO pups. These neurochemical changes persisted throughout adulthood, and resulted in significant reductions in marble-burying behavior, as well as increases in spontaneous alternations within a T-maze. Conversely, pCPA-treated MAO-A KO mice did not exhibit significant changes in anxiety-like behaviors in a novel open-field and elevated plus-maze; furthermore, this regimen did not modify their social deficits, aggressive behaviors and impairments in tactile sensitivity. Treatment with pCPA from postnatal day 8 through 14 elicited similar, yet milder, behavioral effects on marble-burying behavior. These results suggest that early developmental enhancements in 5-HT levels have long-term effects on the modulation of behavioral flexibility associated with MAO-A deficiency. PMID:23871843

  13. Cortical Structure Alterations and Social Behavior Impairment in p50-Deficient Mice.

    PubMed

    Bonini, Sara Anna; Mastinu, Andrea; Maccarinelli, Giuseppina; Mitola, Stefania; Premoli, Marika; La Rosa, Luca Rosario; Ferrari-Toninelli, Giulia; Grilli, Mariagrazia; Memo, Maurizio

    2016-06-01

    Alterations in genes that regulate neurodevelopment can lead to cortical malformations, resulting in malfunction during postnatal life. The NF-κB pathway has a key role during neurodevelopment by regulating the maintenance of the neural progenitor cell pool and inhibiting neuronal differentiation. In this study, we evaluated whether mice lacking the NF-κB p50 subunit (KO) present alterations in cortical structure and associated behavioral impairment. We found that, compared with wild type (WT), KO mice at postnatal day 2 present an increase in radial glial cells, an increase in Reelin protein expression levels, in addition to an increase of specific layer thickness. Moreover, adult KO mice display abnormal columnar organization in the somatosensory cortex, a specific decrease in somatostatin- and parvalbumin-expressing interneurons, altered neurite orientation, and a decrease in Synapsin I protein levels. Concerning behavior, KO mice, in addition to an increase in locomotor and exploratory activity, display impairment in social behaviors, with a reduction in social interaction. Finally, we found that risperidone treatment decreased hyperactivity of KO mice, but had no effect on defective social interaction. Altogether, these data add complexity to a growing body of data, suggesting a link between dysregulation of the NF-κB pathway and neurodevelopmental disorders pathogenesis. © The Author 2016. Published by Oxford University Press.

  14. Cellular chloride and bicarbonate retention alters intracellular pH regulation in Cftr KO crypt epithelium

    PubMed Central

    Walker, Nancy M.; Liu, Jinghua; Stein, Sydney R.; Stefanski, Casey D.; Strubberg, Ashlee M.

    2015-01-01

    Cystic fibrosis (CF) is caused by mutations in the CF transmembrane conductance regulator (CFTR), an anion channel providing a major pathway for Cl− and HCO3− efflux across the apical membrane of the epithelium. In the intestine, CF manifests as obstructive syndromes, dysbiosis, inflammation, and an increased risk for gastrointestinal cancer. Cftr knockout (KO) mice recapitulate CF intestinal disease, including intestinal hyperproliferation. Previous studies using Cftr KO intestinal organoids (enteroids) indicate that crypt epithelium maintains an alkaline intracellular pH (pHi). We hypothesized that Cftr has a cell-autonomous role in downregulating pHi that is incompletely compensated by acid-base regulation in its absence. Here, 2′,7′-bis(2-carboxyethyl)-5(6)-carboxyfluorescein microfluorimetry of enteroids showed that Cftr KO crypt epithelium sustains an alkaline pHi and resistance to cell acidification relative to wild-type. Quantitative real-time PCR revealed that Cftr KO enteroids exhibit downregulated transcription of base (HCO3−)-loading proteins and upregulation of the basolateral membrane HCO3−-unloader anion exchanger 2 (Ae2). Although Cftr KO crypt epithelium had increased Ae2 expression and Ae2-mediated Cl−/HCO3− exchange with maximized gradients, it also had increased intracellular Cl− concentration relative to wild-type. Pharmacological reduction of intracellular Cl− concentration in Cftr KO crypt epithelium normalized pHi, which was largely Ae2-dependent. We conclude that Cftr KO crypt epithelium maintains an alkaline pHi as a consequence of losing both Cl− and HCO3− efflux, which impairs pHi regulation by Ae2. Retention of Cl− and an alkaline pHi in crypt epithelium may alter several cellular processes in the proliferative compartment of Cftr KO intestine. PMID:26542396

  15. ENHANCED 5-HT1A RECEPTOR-DEPENDENT FEEDBACK CONTROL OVER DORSAL RAPHE SEROTONIN NEURONS IN THE SERT KNOCKOUT MOUSE

    PubMed Central

    Soiza-Reilly, Mariano; Goodfellow, Nathalie M.; Lambe, Evelyn K.; Commons, Kathryn G.

    2014-01-01

    5-HT1A receptors are widely expressed in the brain and play a critical role in feedback inhibition of serotonin (5-HT) neurons through multiple mechanisms. Yet, it remains poorly understood how these feedback mechanisms, particularly those involving long-range projections, adapt in mood disorders. Here, we examined several aspects of 5-HT1A receptor function in the 5-HT transporter knockout mouse (SERT-KO), a model of vulnerability to stress and mood disorders. We found that in comparison to wild-type (WT) mice, SERT-KO mice had more passive coping in response to acute swim stress and this was accompanied by hypo-activation of medial prefrontal cortex (mPFC) Fos expression. Both of these effects were reversed by systemically blocking 5-HT1A receptors. Ex-vivo electrophysiological experiments showed that 5-HT exerted greater 5-HT1A-mediated inhibitory effects in the mPFC of SERT-KO mice compared to WT. Since 5-HT1A receptors in the mPFC provide a key feedback regulation of the dorsal raphe nucleus (DRN), we used a disinhibition strategy to examined endogenous feedback control of 5-HT neurons. Blocking 5-HT1A receptors disinhibited several fold more 5-HT neurons in the DRN of SERT-KO than in WT mice, revealing the presence of enhanced feedback inhibition of 5-HT neurons in the SERT-KO. Taken together our results indicate that increased stress sensitivity in the SERT-KO is associated with the enhanced capacity of 5-HT1A receptors to inhibit neurons in the mPFC as well as to exert feedback inhibition of DRN 5-HT neurons. PMID:25261781

  16. Tumor-extrinsic discoidin domain receptor 1 promotes mammary tumor growth by regulating adipose stromal interleukin 6 production in mice.

    PubMed

    Sun, Xiujie; Gupta, Kshama; Wu, Bogang; Zhang, Deyi; Yuan, Bin; Zhang, Xiaowen; Chiang, Huai-Chin; Zhang, Chi; Curiel, Tyler J; Bendeck, Michelle P; Hursting, Stephen; Hu, Yanfen; Li, Rong

    2018-02-23

    Discoidin domain receptor 1 (DDR1) is a collagen receptor that mediates cell communication with the extracellular matrix (ECM). Aberrant expression and activity of DDR1 in tumor cells are known to promote tumor growth. Although elevated DDR1 levels in the stroma of breast tumors are associated with poor patient outcome, a causal role for tumor-extrinsic DDR1 in cancer promotion remains unclear. Here we report that murine mammary tumor cells transplanted to syngeneic recipient mice in which Ddr1 has been knocked out (KO) grow less robustly than in WT mice. We also found that the tumor-associated stroma in Ddr1- KO mice exhibits reduced collagen deposition compared with the WT controls, supporting a role for stromal DDR1 in ECM remodeling of the tumor microenvironment. Furthermore, the stromal-vascular fraction (SVF) of Ddr1 knockout adipose tissue, which contains committed adipose stem/progenitor cells and preadipocytes, was impaired in its ability to stimulate tumor cell migration and invasion. Cytokine array-based screening identified interleukin 6 (IL-6) as a cytokine secreted by the SVF in a DDR1-dependent manner. SVF-produced IL-6 is important for SVF-stimulated tumor cell invasion in vitro , and, using antibody-based neutralization, we show that tumor promotion by IL-6 in vivo requires DDR1. In conclusion, our work demonstrates a previously unrecognized function of DDR1 in promoting tumor growth. © 2018 by The American Society for Biochemistry and Molecular Biology, Inc.

  17. Phospholipase Cε deficiency delays the early stage of cutaneous wound healing and attenuates scar formation in mice.

    PubMed

    Zhu, Xiaolong; Sun, Yue; Mu, Xin; Guo, Pan; Gao, Fei; Zhang, Jing; Zhu, Yunjuan; Zhang, Xianzhi; Chen, Lingling; Ning, Zhiwei; Bai, Yunfeng; Ren, Jiling; Man, Maoqiang; Liu, Peimei; Hu, Lizhi

    2017-02-26

    This study aimed to investigate the role of phospholipase Cε (PLCε) in the skin wound healing process. PLCε, an effect factor of Ras/Rap small G protein, plays a crucial role in skin inflammation by regulating inflammatory cytokines. Inflammatory responses are closely associated with wound healing. Full-thickness skin wounds were made in the PLCε knockout (KO) and wild-type (WT) mice, and the healing process was analyzed. The macroscopic wound closure rate declined in the PLCε KO mice on days 3, 4, and 5 after wounding, following the decreased expression of interleukin (IL)-6, chemokine (C-X-C motif) ligand (Cxcl)-1, Cxcl-2, and chemokine (C-C motif) ligand (Ccl) 20. The proliferation rate of epidermal keratinocytes was not affected by PLCε, but silencing of PLCε resulted in the delayed migration of keratinocytes. Moreover, the scars were found to be much smaller in the PLCε KO mice than in the WT mice. The mRNA expression of Ccl20, collagen (Col) 6a1, and Col17a1 decreased in the PLCε KO mice. These results were in agreement with a previous hypothesis that PLCε might delay the early stage of cutaneous wound healing by inhibiting the migration of keratinocytes, and decrease the expression of Col6a1, Col17a1, and Ccl20 by inhibiting the inflammatory response to reduce scar formation. This study shed light on a novel role of PLCε in wound healing and provided new therapeutic approaches to target PLCε for diminishing scar formation after injury. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Mice lacking the PACAP type I receptor have impaired photic entrainment and negative masking.

    PubMed

    Hannibal, Jens; Brabet, Philippe; Fahrenkrug, Jan

    2008-12-01

    The retinohypothalamic tract (RHT) is a retinofugal neuronal pathway which, in mammals, mediates nonimage-forming vision to various areas in the brain involved in circadian timing, masking behavior, and regulation of the pupillary light reflex. The RHT costores the two neurotransmitters glutamate and pituitary adenylate cyclase activating peptide (PACAP), which in a rather complex interplay are mediators of photic adjustment of the circadian system. To further characterize the role of PACAP/PACAP receptor type 1 (PAC1) receptor signaling in light entrainment of the clock and in negative masking behavior, we extended previous studies in mice lacking the PAC1 receptor (PAC1 KO) by examining their phase response to single light pulses using Aschoff type II regime, their ability to entrain to non-24-h light-dark (LD) cycles and large phase shifts of the LD cycle (jet lag), as well as their negative masking response during different light intensities. A prominent finding in PAC1 KO mice was a significantly decreased phase delay of the endogenous rhythm at early night. In accordance, PAC1 KO mice had a reduced ability to entrain to T cycles longer than 26 h and needed more time to reentrain to large phase delays, which was prominent at low light intensities. The data obtained at late night indicated that PACAP/PAC1 receptor signaling is less important during the phase-advancing part of the phase-response curve. Finally, the PAC1 KO mice showed impaired negative masking behavior at low light intensities. Our findings substantiate a role for PACAP/PAC1 receptor signaling in nonimage-forming vision and indicate that the system is particularly important at lower light intensities.

  19. Loss of β1-integrin from urothelium results in overactive bladder and incontinence in mice: a mechanosensory rather than structural phenotype.

    PubMed

    Kanasaki, Keizo; Yu, Weiqun; von Bodungen, Maximilian; Larigakis, John D; Kanasaki, Megumi; Ayala de la Pena, Francisco; Kalluri, Raghu; Hill, Warren G

    2013-05-01

    Bladder urothelium senses and communicates information about bladder fullness. However, the mechanoreceptors that respond to tissue stretch are poorly defined. Integrins are mechanotransducers in other tissues. Therefore, we eliminated β1-integrin selectively in urothelium of mice using Cre-LoxP targeted gene deletion. β1-Integrin localized to basal/intermediate urothelial cells by confocal microscopy. β1-Integrin conditional-knockout (β1-cKO) mice lacking urothelial β1-integrin exhibited down-regulation and mislocalization of α3- and α5-integrins by immunohistochemistry but, surprisingly, had normal morphology, permeability, and transepithelial resistance when compared with Cre-negative littermate controls. β1-cKO mice were incontinent, as judged by random urine leakage on filter paper (4-fold higher spotting, P<0.01; 2.5-fold higher urine area percentage, P<0.05). Urodynamic function assessed by cystometry revealed bladder overfilling with 80% longer intercontractile intervals (P<0.05) and detrusor hyperactivity (3-fold more prevoid contractions, P<0.05), but smooth muscle contractility remained intact. ATP secretion into the lumen was elevated (49 vs. 22 nM, P<0.05), indicating abnormal filling-induced purinergic signaling, and short-circuit currents (measured in Ussing chambers) revealed 2-fold higher stretch-activated ion channel conductances in response to hydrostatic pressure of 1 cmH2O (P<0.05). We conclude that loss of integrin signaling from urothelium results in incontinence and overactive bladder due to abnormal mechanotransduction; more broadly, our findings indicate that urothelium itself directly modulates voiding.

  20. Attenuating GABAA Receptor Signaling in Dopamine Neurons Selectively Enhances Reward Learning and Alters Risk Preference in Mice

    PubMed Central

    Parker, Jones G.; Wanat, Matthew J.; Soden, Marta E.; Ahmad, Kinza; Zweifel, Larry S.; Bamford, Nigel S.; Palmiter, Richard D.

    2011-01-01

    Phasic dopamine transmission encodes the value of reward-predictive stimuli and influences both learning and decision-making. Altered dopamine signaling is associated with psychiatric conditions characterized by risky choices such as pathological gambling. These observations highlight the importance of understanding how dopamine neuron activity is modulated. While excitatory drive onto dopamine neurons is critical for generating phasic dopamine responses, emerging evidence suggests that inhibitory signaling also modulates these responses. To address the functional importance of inhibitory signaling in dopamine neurons, we generated mice lacking the β3 subunit of the GABAA receptor specifically in dopamine neurons (β3-KO mice) and examined their behavior in tasks that assessed appetitive learning, aversive learning, and risk preference. Dopamine neurons in midbrain slices from β3-KO mice exhibited attenuated GABA-evoked inhibitory post-synaptic currents. Furthermore, electrical stimulation of excitatory afferents to dopamine neurons elicited more dopamine release in the nucleus accumbens of β3-KO mice as measured by fast-scan cyclic voltammetry. β3-KO mice were more active than controls when given morphine, which correlated with potential compensatory upregulation of GABAergic tone onto dopamine neurons. β3-KO mice learned faster in two food-reinforced learning paradigms, but extinguished their learned behavior normally. Enhanced learning was specific for appetitive tasks, as aversive learning was unaffected in β3-KO mice. Finally, we found that β3-KO mice had enhanced risk preference in a probabilistic selection task that required mice to choose between a small certain reward and a larger uncertain reward. Collectively, these findings identify a selective role for GABAA signaling in dopamine neurons in appetitive learning and decision-making. PMID:22114279

  1. A Chimera Analysis of Prestin Knockout Mice

    PubMed Central

    Cheatham, Mary Ann; Low-Zeddies, Sharon; Naik, Khurram; Edge, Roxanne; Zheng, Jing; Anderson, Charles T.; Dallos, Peter

    2009-01-01

    A chimera is a genetic composite containing a unique mix of cells derived from more than one zygote. This mouse model allows one to learn how cells of contrasting genotype functionally interact in vivo. Here we investigate the effect that different proportions of prestin-containing outer hair cells (OHC) have on cochlear amplification. In order to address this issue, we developed a prestin chimeric mouse in which both ROSA26 wildtype (WT) and prestin knockout (KO) genotypes are present in a single cochlea. The WT ROSA26 mice express a cell marker, allowing one to identify cells originating from the WT genome. Examination of cochlear tissue indicated that prestin chimeric mice demonstrate a mosaic in which mutant and normal OHCs interleave along the cochlear partition, similar to all other chimeric mouse models. The anatomical distribution of prestin-containing OHCs was compared with physiological data including thresholds and tuning curves for the compound action potential (CAP) recorded in anesthetized mice. Analysis of these measures did not reveal mixed phenotypes in which the distribution of prestin-containing OHCs impacted sensitivity and frequency selectivity to different degrees. However, by reducing the number of prestin-containing OHCs, phenotypes intermediate between WT and KO response patterns were obtained. Accordingly, we demonstrate a proportional reduction in sensitivity and in the tip length of CAP tuning curves as the number of OHCs derived from the KO genome increases, i.e., genotype ratio and phenotype are closely related. PMID:19776286

  2. Muscle-specific PPARγ-deficient mice develop increased adiposity and insulin resistance but respond to thiazolidinediones

    PubMed Central

    Norris, Andrew W.; Chen, Lihong; Fisher, Simon J.; Szanto, Ildiko; Ristow, Michael; Jozsi, Alison C.; Hirshman, Michael F.; Rosen, Evan D.; Goodyear, Laurie J.; Gonzalez, Frank J.; Spiegelman, Bruce M.; Kahn, C. Ronald

    2003-01-01

    Activation of peroxisome proliferator-activated receptor γ (PPARγ) by thiazolidinediones (TZDs) improves insulin resistance by increasing insulin-stimulated glucose disposal in skeletal muscle. It remains debatable whether the effect of TZDs on muscle is direct or indirect via adipose tissue. We therefore generated mice with muscle-specific PPARγ knockout (MuPPARγKO) using Cre/loxP recombination. Interestingly, MuPPARγKO mice developed excess adiposity despite reduced dietary intake. Although insulin-stimulated glucose uptake in muscle was not impaired, MuPPARγKO mice had whole-body insulin resistance with a 36% reduction (P < 0.05) in the glucose infusion rate required to maintain euglycemia during hyperinsulinemic clamp, primarily due to dramatic impairment in hepatic insulin action. When placed on a high-fat diet, MuPPARγKO mice developed hyperinsulinemia and impaired glucose homeostasis identical to controls. Simultaneous treatment with TZD ameliorated these high fat–induced defects in MuPPARγKO mice to a degree identical to controls. There was also altered expression of several lipid metabolism genes in the muscle of MuPPARγKO mice. Thus, muscle PPARγ is not required for the antidiabetic effects of TZDs, but has a hitherto unsuspected role for maintenance of normal adiposity, whole-body insulin sensitivity, and hepatic insulin action. The tissue crosstalk mediating these effects is perhaps due to altered lipid metabolism in muscle. PMID:12925701

  3. Dynamic control of glutamatergic synaptic input in the spinal cord by muscarinic receptor subtypes defined using knockout mice.

    PubMed

    Chen, Shao-Rui; Chen, Hong; Yuan, Wei-Xiu; Wess, Jürgen; Pan, Hui-Lin

    2010-12-24

    Activation of muscarinic acetylcholine receptors (mAChRs) in the spinal cord inhibits pain transmission. At least three mAChR subtypes (M(2), M(3), and M(4)) are present in the spinal dorsal horn. However, it is not clear how each mAChR subtype contributes to the regulation of glutamatergic input to dorsal horn neurons. We recorded spontaneous excitatory postsynaptic currents (sEPSCs) from lamina II neurons in spinal cord slices from wild-type (WT) and mAChR subtype knock-out (KO) mice. The mAChR agonist oxotremorine-M increased the frequency of glutamatergic sEPSCs in 68.2% neurons from WT mice and decreased the sEPSC frequency in 21.2% neurons. Oxotremorine-M also increased the sEPSC frequency in ∼50% neurons from M(3)-single KO and M(1)/M(3) double-KO mice. In addition, the M(3) antagonist J104129 did not block the stimulatory effect of oxotremorine-M in the majority of neurons from WT mice. Strikingly, in M(5)-single KO mice, oxotremorine-M increased sEPSCs in only 26.3% neurons, and J104129 abolished this effect. In M(2)/M(4) double-KO mice, but not M(2)- or M(4)-single KO mice, oxotremorine-M inhibited sEPSCs in significantly fewer neurons compared with WT mice, and blocking group II/III metabotropic glutamate receptors abolished this effect. The M(2)/M(4) antagonist himbacine either attenuated the inhibitory effect of oxotremorine-M or potentiated the stimulatory effect of oxotremorine-M in WT mice. Our study demonstrates that activation of the M(2) and M(4) receptor subtypes inhibits synaptic glutamate release to dorsal horn neurons. M(5) is the predominant receptor subtype that potentiates glutamatergic synaptic transmission in the spinal cord.

  4. Dynamic Control of Glutamatergic Synaptic Input in the Spinal Cord by Muscarinic Receptor Subtypes Defined Using Knockout Mice*

    PubMed Central

    Chen, Shao-Rui; Chen, Hong; Yuan, Wei-Xiu; Wess, Jürgen; Pan, Hui-Lin

    2010-01-01

    Activation of muscarinic acetylcholine receptors (mAChRs) in the spinal cord inhibits pain transmission. At least three mAChR subtypes (M2, M3, and M4) are present in the spinal dorsal horn. However, it is not clear how each mAChR subtype contributes to the regulation of glutamatergic input to dorsal horn neurons. We recorded spontaneous excitatory postsynaptic currents (sEPSCs) from lamina II neurons in spinal cord slices from wild-type (WT) and mAChR subtype knock-out (KO) mice. The mAChR agonist oxotremorine-M increased the frequency of glutamatergic sEPSCs in 68.2% neurons from WT mice and decreased the sEPSC frequency in 21.2% neurons. Oxotremorine-M also increased the sEPSC frequency in ∼50% neurons from M3-single KO and M1/M3 double-KO mice. In addition, the M3 antagonist J104129 did not block the stimulatory effect of oxotremorine-M in the majority of neurons from WT mice. Strikingly, in M5-single KO mice, oxotremorine-M increased sEPSCs in only 26.3% neurons, and J104129 abolished this effect. In M2/M4 double-KO mice, but not M2- or M4-single KO mice, oxotremorine-M inhibited sEPSCs in significantly fewer neurons compared with WT mice, and blocking group II/III metabotropic glutamate receptors abolished this effect. The M2/M4 antagonist himbacine either attenuated the inhibitory effect of oxotremorine-M or potentiated the stimulatory effect of oxotremorine-M in WT mice. Our study demonstrates that activation of the M2 and M4 receptor subtypes inhibits synaptic glutamate release to dorsal horn neurons. M5 is the predominant receptor subtype that potentiates glutamatergic synaptic transmission in the spinal cord. PMID:20940295

  5. Contribution of β-adrenoceptor subtypes to relaxation of colon and oesophagus and pacemaker activity of ureter in wildtype and β3-adrenoceptor knockout mice

    PubMed Central

    Oostendorp, Jaap; Preitner, Frédéric; Moffatt, James; Jimenez, Maria; Giacobino, Jean Paul; Molenaar, Peter; Kaumann, Alberto Julio

    2000-01-01

    The smooth muscle relaxant responses to the mixed β3-, putative β4-adrenoceptor agonist, (−)-CGP 12177 in rat colon are partially resistant to blockade by the β3-adrenoceptor antagonist SR59230A suggesting involvement of β3- and putative β4-adrenoceptors. We now investigated the function of the putative β4-adrenoceptor and other β-adrenoceptor subtypes in the colon, oesophagus and ureter of wildtype (WT) and β3-adrenoceptor knockout (β3KO) mice.(−)-Noradrenaline and (−)-adrenaline relaxed KCl (30 mM)-precontracted colon mostly through β1-and β3-adrenoceptors to a similar extent and to a minor extent through β2-adrenoceptors. In colon from β3KO mice, (−)-noradrenaline was as potent as in WT mice but the effects were mediated entirely through β1-adrenoceptors. (−)-CGP 12177 relaxed colon from β3KO mice with 2 fold greater potency than in WT mice. The maintenance of potency for (−)-noradrenaline and increase for (−)-CGP 12177 indicate compensatory increases in β1- and putative β4-adrenoceptor function in β3KO mice.In oesophagi precontracted with 1 μM carbachol, (−)-noradrenaline caused relaxation mainly through β1-and β3-adrenoceptors. (−)-CGP 12177 (2 μM) relaxed oesophagi from WT by 61.4±5.1% and β3KO by 67.3±10.1% of the (−)-isoprenaline-evoked relaxation, consistent with mediation through putative β4-adrenoceptors.In ureter, (−)-CGP 12177 (2 μM) reduced pacemaker activity by 31.1±2.3% in WT and 31.3±7.5% in β3KO, consistent with mediation through putative β4-adrenoceptors.Relaxation of mouse colon and oesophagus by catecholamines are mediated through β1- and β3-adrenoceptors in WT. The putative β4-adrenoceptor, which presumably is an atypical state of the β1-adrenoceptor, mediates the effects of (−)-CGP 12177 in colon, oesophagus and ureter. PMID:10864880

  6. Rearing-environment-dependent hippocampal local field potential differences in wild-type and inositol trisphosphate receptor type 2 knockout mice.

    PubMed

    Tanaka, Mika; Wang, Xiaowen; Mikoshiba, Katsuhiko; Hirase, Hajime; Shinohara, Yoshiaki

    2017-10-15

    Mice reared in an enriched environment are demonstrated to have larger hippocampal gamma oscillations than those reared in isolation, thereby confirming previous observations in rats. To test whether astrocytic Ca 2+ surges are involved in this experience-dependent LFP pattern modulation, we used inositol trisphosphate receptor type 2 (IP 3 R2)-knockout (KO) mice, in which IP 3 /Ca 2+ signalling in astrocytes is largely diminished. We found that this experience-dependent gamma power alteration persists in the KO mice. Interestingly, hippocampal ripple events, the synchronized events critical for memory consolidation, are reduced in magnitude and frequency by both isolated rearing and IP 3 R2 deficiency. Rearing in an enriched environment (ENR) is known to enhance cognitive and memory abilities in rodents, whereas social isolation (ISO) induces depression-like behaviour. The hippocampus has been documented to undergo morphological and functional changes depending on these rearing environments. For example, rearing condition during juvenility alters CA1 stratum radiatum gamma oscillation power in rats. In the present study, hippocampal CA1 local field potentials (LFP) were recorded from bilateral CA1 in urethane-anaesthetized mice that were reared in either an ENR or ISO condition. Similar to previous findings in rats, gamma oscillation power during theta states was higher in the ENR group. Ripple events that occur during non-theta periods in the CA1 stratum pyramidale also had longer intervals in ISO mice. Because astrocytic Ca 2+ elevations play a key role in synaptic plasticity, we next tested whether these changes in LFP are also expressed in inositol trisphosphate receptor type 2 (IP 3 R2)-knockout (KO) mice, in which astrocytic Ca 2+ elevations are largely diminished. We found that the gamma power was also higher in IP 3 R2-KO-ENR mice compared to IP 3 R2-KO-ISO mice, suggesting that the rearing-environment-dependent gamma power alteration does not necessarily

  7. CD34 Expression by Hair Follicle Stem Cells Is Required for Skin Tumor Development in Mice

    PubMed Central

    Trempus, Carol S.; Morris, Rebecca J.; Ehinger, Matthew; Elmore, Amy; Bortner, Carl D.; Ito, Mayumi; Cotsarelis, George; Nijhof, Joanne G.W.; Peckham, John; Flagler, Norris; Kissling, Grace; Humble, Margaret M.; King, Leon C.; Adams, Linda D.; Desai, Dhimant; Amin, Shantu; Tennant, Raymond W.

    2007-01-01

    The cell surface marker CD34 marks mouse hair follicle bulge cells, which have attributes of stem cells, including quiescence and multipotency. Using a CD34 knockout (KO) mouse, we tested the hypothesis that CD34 may participate in tumor development in mice because hair follicle stem cells are thought to be a major target of carcinogens in the two-stage model of mouse skin carcinogenesis. Following initiation with 200 nmol 7,12-dimethylbenz(a)anthracene (DMBA), mice were promoted with 12-O-tetradecanoylphorbol-13-acetate (TPA) for 20 weeks. Under these conditions, CD34KO mice failed to develop papillomas. Increasing the initiating dose of DMBA to 400 nmol resulted in tumor development in the CD34KO mice, albeit with an increased latency and lower tumor yield compared with the wild-type (WT) strain. DNA adduct analysis of keratinocytes from DMBA-initiated CD34KO mice revealed that DMBA was metabolically activated into carcinogenic diol epoxides at both 200 and 400 nmol. Chronic exposure to TPA revealed that CD34KO skin developed and sustained epidermal hyperplasia. However, CD34KO hair follicles typically remained in telogen rather than transitioning into anagen growth, confirmed by retention of bromodeoxyuridine-labeled bulge stem cells within the hair follicle. Unique localization of the hair follicle progenitor cell marker MTS24 was found in interfollicular basal cells in TPA-treated WT mice, whereas staining remained restricted to the hair follicles of CD34KO mice, suggesting that progenitor cells migrate into epidermis differently between strains. These data show that CD34 is required for TPA-induced hair follicle stem cell activation and tumor formation in mice. PMID:17483328

  8. MDR1A deficiency restrains tumor growth in murine colitis-associated carcinogenesis

    PubMed Central

    Hennenberg, Eva Maria; Eyking, Annette; Reis, Henning

    2017-01-01

    Patients with Ulcerative Colitis (UC) have an increased risk to develop colitis-associated colorectal cancer (CAC). Here, we found that protein expression of ABCB1 (ATP Binding Cassette Subfamily B Member 1) / MDR1 (multidrug resistance 1) was diminished in the intestinal mucosa of patients with active UC with or without CAC, but not in non-UC patients with sporadic colon cancer. We investigated the consequences of ABCB1/MDR1 loss-of-function in a common murine model for CAC (AOM/DSS). Mice deficient in MDR1A (MDR1A KO) showed enhanced intratumoral inflammation and cellular damage, which were associated with reduced colonic tumor size and decreased degree of dysplasia, when compared to wild-type (WT). Increased cell injury correlated with reduced capacity for growth of MDR1A KO tumor spheroids cultured ex-vivo. Gene expression analysis by microarray demonstrated that MDR1A deficiency shaped the inflammatory response towards an anti-tumorigenic microenvironment by downregulating genes known to be important mediators of cancer progression (PTGS2 (COX2), EREG, IL-11). MDR1A KO tumors showed increased gene expression of TNFSF10 (TRAIL), a known inducer of cancer cell death, and CCL12, a strong trigger of B cell chemotaxis. Abundant B220+ B lymphocyte infiltrates with interspersed CD138+ plasma cells were recruited to the MDR1A KO tumor microenvironment, concomitant with high levels of immunoglobulin light chain genes. In contrast, MDR1A deficiency in RAG2 KO mice that lack both B and T cells aggravated colonic tumor progression. MDR1A KO CD19+ B cells, but not WT CD19+ B cells, suppressed growth of colonic tumor-derived spheroids from AOM/DSS-WT mice in an ex-vivo co-culture system, implying that B-cell regulated immune responses contributed to delayed tumor development in MDR1A deficiency. In conclusion, we provide first evidence that loss of ABCB1/MDR1 function may represent an essential tumor-suppressive host defense mechanism in CAC. PMID:28686677

  9. MDR1A deficiency restrains tumor growth in murine colitis-associated carcinogenesis.

    PubMed

    Hennenberg, Eva Maria; Eyking, Annette; Reis, Henning; Cario, Elke

    2017-01-01

    Patients with Ulcerative Colitis (UC) have an increased risk to develop colitis-associated colorectal cancer (CAC). Here, we found that protein expression of ABCB1 (ATP Binding Cassette Subfamily B Member 1) / MDR1 (multidrug resistance 1) was diminished in the intestinal mucosa of patients with active UC with or without CAC, but not in non-UC patients with sporadic colon cancer. We investigated the consequences of ABCB1/MDR1 loss-of-function in a common murine model for CAC (AOM/DSS). Mice deficient in MDR1A (MDR1A KO) showed enhanced intratumoral inflammation and cellular damage, which were associated with reduced colonic tumor size and decreased degree of dysplasia, when compared to wild-type (WT). Increased cell injury correlated with reduced capacity for growth of MDR1A KO tumor spheroids cultured ex-vivo. Gene expression analysis by microarray demonstrated that MDR1A deficiency shaped the inflammatory response towards an anti-tumorigenic microenvironment by downregulating genes known to be important mediators of cancer progression (PTGS2 (COX2), EREG, IL-11). MDR1A KO tumors showed increased gene expression of TNFSF10 (TRAIL), a known inducer of cancer cell death, and CCL12, a strong trigger of B cell chemotaxis. Abundant B220+ B lymphocyte infiltrates with interspersed CD138+ plasma cells were recruited to the MDR1A KO tumor microenvironment, concomitant with high levels of immunoglobulin light chain genes. In contrast, MDR1A deficiency in RAG2 KO mice that lack both B and T cells aggravated colonic tumor progression. MDR1A KO CD19+ B cells, but not WT CD19+ B cells, suppressed growth of colonic tumor-derived spheroids from AOM/DSS-WT mice in an ex-vivo co-culture system, implying that B-cell regulated immune responses contributed to delayed tumor development in MDR1A deficiency. In conclusion, we provide first evidence that loss of ABCB1/MDR1 function may represent an essential tumor-suppressive host defense mechanism in CAC.

  10. CB1 receptor-mediated signaling underlies the hippocampal synaptic, learning, and memory deficits following treatment with JWH-081, a new component of spice/K2 preparations.

    PubMed

    Basavarajappa, Balapal S; Subbanna, Shivakumar

    2014-02-01

    Recently, synthetic cannabinoids have been sprayed onto plant material, which is subsequently packaged and sold as "Spice" or "K2" to mimic the effects of marijuana. A recent report identified several synthetic additives in samples of "Spice/K2", including JWH-081, a synthetic ligand for the cannabinoid receptor 1 (CB1). The deleterious effects of JWH-081 on brain function are not known, particularly on CB1 signaling, synaptic plasticity, learning and memory. Here, we evaluated the effects of JWH-081 on pCaMKIV, pCREB, and pERK1/2 signaling events followed by long-term potentiation (LTP), hippocampal-dependent learning and memory tasks using CB1 receptor wild-type (WT) and knockout (KO) mice. Acute administration of JWH-081 impaired CaMKIV phosphorylation in a dose-dependent manner, whereas inhibition of CREB phosphorylation in CB1 receptor WT mice was observed only at higher dose of JWH-081 (1.25 mg/kg). JWH-081 at higher dose impaired CaMKIV and CREB phosphorylation in a time-dependent manner in CB1 receptor WT mice but not in KO mice and failed to alter ERK1/2 phosphorylation. In addition, SR treated or CB1 receptor KO mice have a lower pCaMKIV/CaMKIV ratio and higher pCREB/CREB ratio compared with vehicle or WT littermates. In hippocampal slices, JWH-081 impaired LTP in CB1 receptor WT but not in KO littermates. Furthermore, JWH-081 at higher dose impaired object recognition, spontaneous alternation and spatial memory on the Y-maze in CB1 receptor WT mice but not in KO mice. Collectively our findings suggest that deleterious effects of JWH-081 on hippocampal function involves CB1 receptor mediated impairments in CaMKIV and CREB phosphorylation, LTP, learning and memory in mice. © 2013 Wiley Periodicals, Inc.

  11. Deficiency in Nrf2 transcription factor decreases adipose tissue mass and hepatic lipid accumulation in leptin-deficient mice.

    PubMed

    Xu, Jialin; Donepudi, Ajay C; More, Vijay R; Kulkarni, Supriya R; Li, Liya; Guo, Liangran; Yan, Bingfang; Chatterjee, Tapan; Weintraub, Neal; Slitt, Angela L

    2015-02-01

    To evaluate whether Nrf2 deficiency impacts insulin resistance and lipid accumulation in liver and white adipose tissue. Lep(ob/ob) mice (OB) with targeted Nrf2 deletion (OB-Nrf2KO) were generated. Pathogenesis of obesity and type 2 diabetes was measured in C57BL/6J, Nrf2KO, OB, and OB-Nrf2KO mice. Hepatic lipid content, lipid clearance, and very low-density lipoprotein (VLDL) secretion were determined between OB and OB-Nrf2KO mice. OB-Nrf2KO mice exhibited decreased white adipose tissue mass and decreased adipogenic and lipogenic gene expression compared with OB mice. Nrf2 deficiency prolonged hyperglycemia in response to glucose challenge, which was paralleled by reduced insulin-stimulated Akt phosphorylation. In OB mice, Nrf2 deficiency decreased hepatic lipid accumulation, decreased peroxisome proliferator-activated receptor γ expression and nicotinamide adenine dinucleotide phosphate (NADPH) content, and enhanced VLDL secretion. However, this observation was opposite in lean mice. Additionally, OB-Nrf2KO mice exhibited increased plasma triglyceride content, decreased HDL-cholesterol content, and enhanced apolipoprotein B expression, suggesting Nrf2 deficiency caused dyslipidemia in these mice. Nrf2 deficiency in Lep(ob/ob) mice reduced white adipose tissue mass and prevented hepatic lipid accumulation but induced insulin resistance and dyslipidemia. This study indicates a dual role of Nrf2 during metabolic dysregulation-increasing lipid accumulation in liver and white adipose tissue but preventing lipid accumulation in obese mice. © 2014 The Obesity Society.

  12. TRPA1 mediates changes in heart rate variability and cardiac mechanical function in mice exposed to acrolein

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kurhanewicz, Nicole

    Short-term exposure to ambient air pollution is linked with adverse cardiovascular effects. While previous research focused primarily on particulate matter-induced responses, gaseous air pollutants also contribute to cause short-term cardiovascular effects. Mechanisms underlying such effects have not been adequately described, however the immediate nature of the response suggests involvement of irritant neural activation and downstream autonomic dysfunction. Thus, this study examines the role of TRPA1, an irritant sensory receptor found in the airways, in the cardiac response of mice to acrolein and ozone. Conscious unrestrained wild-type C57BL/6 (WT) and TRPA1 knockout (KO) mice implanted with radiotelemeters were exposed once tomore » 3 ppm acrolein, 0.3 ppm ozone, or filtered air. Heart rate (HR) and electrocardiogram (ECG) were recorded continuously before, during and after exposure. Analysis of ECG morphology, incidence of arrhythmia and heart rate variability (HRV) were performed. Cardiac mechanical function was assessed using a Langendorff perfusion preparation 24 h post-exposure. Acrolein exposure increased HRV independent of HR, as well as incidence of arrhythmia. Acrolein also increased left ventricular developed pressure in WT mice at 24 h post-exposure. Ozone did not produce any changes in cardiac function. Neither gas produced ECG effects, changes in HRV, arrhythmogenesis, or mechanical function in KO mice. These data demonstrate that a single exposure to acrolein causes cardiac dysfunction through TRPA1 activation and autonomic imbalance characterized by a shift toward parasympathetic modulation. Furthermore, it is clear from the lack of ozone effects that although gaseous irritants are capable of eliciting immediate cardiac changes, gas concentration and properties play important roles. - Highlights: • Acute acrolein exposure causes autonomic imbalance and altered CV function in mice. • TRPA1 mediates acrolein-induced autonomic nervous system

  13. c-RET Molecule in Malignant Melanoma from Oncogenic RET-Carrying Transgenic Mice and Human Cell Lines

    PubMed Central

    Takeda, Kozue; Iida, Machiko; Kumasaka, Mayuko; Matsumoto, Yoshinari; Kato, Masashi

    2010-01-01

    Malignant melanoma is one of the most aggressive cancers and its incidence worldwide has been increasing at a greater rate than that of any other cancer. We previously reported that constitutively activated RFP-RET-carrying transgenic mice (RET-mice) spontaneously develop malignant melanoma. In this study, we showed that expression levels of intrinsic c-Ret, glial cell line-derived neurotrophic factor (Gdnf) and Gdnf receptor alpha 1 (Gfra1) transcripts in malignant melanomas from RET-transgenic mice were significantly upregulated compared with those in benign melanocytic tumors. These results suggest that not only introduced oncogenic RET but also intrinsic c-Ret/Gdnf are involved in murine melanomagenesis in RET-mice. We then showed that c-RET and GDNF transcript expression levels in human malignant melanoma cell lines (HM3KO and MNT-1) were higher than those in primary cultured normal human epithelial melanocytes (NHEM), while GFRa1 transcript expression levels were comparable among NHEM, HM3KO and MNT-1. We next showed c-RET and GFRa1 protein expression in HM3KO cells and GDNF-mediated increased levels of their phosphorylated c-RET tyrosine kinase and signal transduction molecules (ERK and AKT) sited potentially downstream of c-RET. Taken together with the finding of augmented proliferation of HM3KO cells after GDNF stimulation, our results suggest that GDNF-mediated c-RET kinase activation is associated with the pathogenesis of malignant melanoma. PMID:20422010

  14. c-RET molecule in malignant melanoma from oncogenic RET-carrying transgenic mice and human cell lines.

    PubMed

    Ohshima, Yuichiro; Yajima, Ichiro; Takeda, Kozue; Iida, Machiko; Kumasaka, Mayuko; Matsumoto, Yoshinari; Kato, Masashi

    2010-04-21

    Malignant melanoma is one of the most aggressive cancers and its incidence worldwide has been increasing at a greater rate than that of any other cancer. We previously reported that constitutively activated RFP-RET-carrying transgenic mice (RET-mice) spontaneously develop malignant melanoma. In this study, we showed that expression levels of intrinsic c-Ret, glial cell line-derived neurotrophic factor (Gdnf) and Gdnf receptor alpha 1 (Gfra1) transcripts in malignant melanomas from RET-transgenic mice were significantly upregulated compared with those in benign melanocytic tumors. These results suggest that not only introduced oncogenic RET but also intrinsic c-Ret/Gdnf are involved in murine melanomagenesis in RET-mice. We then showed that c-RET and GDNF transcript expression levels in human malignant melanoma cell lines (HM3KO and MNT-1) were higher than those in primary cultured normal human epithelial melanocytes (NHEM), while GFRa1 transcript expression levels were comparable among NHEM, HM3KO and MNT-1. We next showed c-RET and GFRa1 protein expression in HM3KO cells and GDNF-mediated increased levels of their phosphorylated c-RET tyrosine kinase and signal transduction molecules (ERK and AKT) sited potentially downstream of c-RET. Taken together with the finding of augmented proliferation of HM3KO cells after GDNF stimulation, our results suggest that GDNF-mediated c-RET kinase activation is associated with the pathogenesis of malignant melanoma.

  15. CuZnSOD gene deletion targeted to skeletal muscle leads to loss of contractile force but does not cause muscle atrophy in adult mice

    PubMed Central

    Zhang, Yiqiang; Davis, Carol; Sakellariou, George K.; Shi, Yun; Kayani, Anna C.; Pulliam, Daniel; Bhattacharya, Arunabh; Richardson, Arlan; Jackson, Malcolm J.; McArdle, Anne; Brooks, Susan V.; Van Remmen, Holly

    2013-01-01

    We have previously shown that deletion of CuZnSOD in mice (Sod1−/− mice) leads to accelerated loss of muscle mass and contractile force during aging. To dissect the relative roles of skeletal muscle and motor neurons in this process, we used a Cre-Lox targeted approach to establish a skeletal muscle-specific Sod1-knockout (mKO) mouse to determine whether muscle-specific CuZnSOD deletion is sufficient to cause muscle atrophy. Surprisingly, mKO mice maintain muscle masses at or above those of wild-type control mice up to 18 mo of age. In contrast, maximum isometric specific force measured in gastrocnemius muscle is significantly reduced in the mKO mice. We found no detectable increases in global measures of oxidative stress or ROS production, no reduction in mitochondrial ATP production, and no induction of adaptive stress responses in muscle from mKO mice. However, Akt-mTOR signaling is elevated and the number of muscle fibers with centrally located nuclei is increased in skeletal muscle from mKO mice, which suggests elevated regenerative pathways. Our data demonstrate that lack of CuZnSOD restricted to skeletal muscle does not lead to muscle atrophy but does cause muscle weakness in adult mice and suggest loss of CuZnSOD may potentiate muscle regenerative pathways.—Zhang, Y., Davis, C., Sakellariou, G.K., Shi, Y., Kayani, A.C., Pulliam, D., Bhattacharya, A., Richardson, A., Jackson, M.J., McArdle, A., Brooks, S.V., Van Remmen, H. CuZnSOD gene deletion targeted to skeletal muscle leads to loss of contractile force but does not cause muscle atrophy in adult mice. PMID:23729587

  16. Male aromatase-knockout mice exhibit normal levels of activity, anxiety and "depressive-like" symptomatology.

    PubMed

    Dalla, C; Antoniou, K; Papadopoulou-Daifoti, Z; Balthazart, J; Bakker, J

    2005-09-08

    It is well known that estradiol derived from neural aromatization of testosterone plays a crucial role in the development of the male brain and the display of sexual behaviors in adulthood. It was recently found that male aromatase knockout mice (ArKO) deficient in estradiol due to a mutation in the aromatase gene have general deficits in coital behavior and are sexually less motivated. We wondered whether these behavioral deficits of ArKO males could be related to changes in activity, exploration, anxiety and "depressive-like" symptomatology. ArKO and wild type (WT) males were subjected to open field (OF), elevated plus maze (EPM), and forced swim tests (FST), after being exposed or not to chronic mild stress (CMS). CMS was used to evaluate the impact of chronic stressful procedures and to unveil possible differences between genotypes. There was no effect of genotype on OF, EPM and FST behavioral parameters. WT and ArKO mice exposed to CMS or not exhibited the same behavioral profile during these three types of tests. However, all CMS-exposed mice (ArKO and WT) spent less time in the center of the EPM. Additionally, floating duration measured in the FST increased between two tests in both WT and ArKO mice, though that increase was less prominent in mice previously subjected to CMS than in controls. Therefore, both ArKO and WT males displayed the same behavior and had the same response to CMS however CMS exposure slightly modified the behavior displayed by mice of both genotypes in the FST and EPM paradigms. These results show that ArKO males display normal levels of activity, exploration, anxiety and "depressive-like" symptomatology and thus their deficits in sexual behavior are specific in nature and do not result indirectly from other behavioral changes.

  17. Altered nutrient response of mTORC1 as a result of changes in REDD1 expression: effect of obesity vs. REDD1 deficiency

    PubMed Central

    Li, Zhuyun; Tuder, Rubin M.; Feinstein, Elena; Kimball, Scot R.; Dungan, Cory M.

    2014-01-01

    Although aberrant mTORC1 signaling has been well established in models of obesity, little is known about its repressor, REDD1. Therefore, the initial goal of this study was to determine the role of REDD1 on mTORC1 in obese skeletal muscle. REDD1 expression (protein and message) and mTORC1 signaling (S6K1, 4E-BP1, raptor-mTOR association, Rheb GTP) were examined in lean vs. ob/ob and REDD1 wild-type (WT) vs. knockout (KO) mice, under conditions of altered nutrient intake [fasted and fed or diet-induced obesity (10% vs. 60% fat diet)]. Despite higher (P < 0.05) S6K1 and 4E-BP1 phosphorylation, two models of obesity (ob/ob and diet-induced) displayed elevated (P < 0.05) skeletal muscle REDD1 expression compared with lean or low-fat-fed mouse muscle under fasted conditions. The ob/ob mice displayed elevated REDD1 expression (P < 0.05) that coincided with aberrant mTORC1 signaling (hyperactive S6K1, low raptor-mTOR binding, elevated Rheb GTP; P < 0.05) under fasted conditions, compared with the lean, which persisted in a dysregulated fashion under fed conditions. REDD1 KO mice gained limited body mass on a high-fat diet, although S6K1 and 4E-BP1 phosphorylation remained elevated (P < 0.05) in both the low-fat and high-fat-fed KO vs. WT mice. Similarly, the REDD1 KO mouse muscle displayed blunted mTORC1 signaling responses (S6K1 and 4E-BP1, raptor-mTOR binding) and circulating insulin under fed conditions vs. the robust responses (P < 0.05) in the WT fed mouse muscle. These studies suggest that REDD1 in skeletal muscle may serve to limit hyperactive mTORC1, which promotes aberrant mTORC1 signaling responses during altered nutrient states. PMID:24876363

  18. Contribution of P2X4 receptors to ethanol intake in male C57BL/6 mice

    PubMed Central

    Wyatt, Letisha R.; Finn, Deborah A.; Khoja, Sheraz; Yardley, Megan M; Asatryan, Liana; Alkana, Ronald L.; Davies, Daryl L.

    2014-01-01

    P2X receptors (P2XRs) are a family of cation-permeable ligand-gated ion channels activated by synaptically released extracellular ATP. The P2X4 subtype is abundantly expressed in the CNS and is sensitive to low intoxicating ethanol concentrations. Genetic meta-analyses identified the p2rx4 gene as a candidate gene for innate alcohol intake and/or preference. The current study used mice lacking the p2rx4 gene (knockout, KO) and wildtype (WT) C57BL/6 controls to test the hypothesis that P2X4Rs contribute to ethanol intake. The early acquisition and early maintenance phases of ethanol intake were measured with three different drinking procedures. Further, we tested the effects of ivermectin (IVM), a drug previously shown to reduce ethanol’s effects on P2X4Rs and to reduce ethanol intake and preference, for its ability to differentially alter stable ethanol intake in KO and WT mice. Depending on the procedure and the concentration of the ethanol solution, ethanol intake was transiently increased in P2X4R KO versus WT mice during the acquisition of 24-hr and limited access ethanol intake. IVM significantly reduced ethanol intake in P2X4R KO and WT mice, but the degree of reduction was 50% less in the P2X4R KO mice. Western blot analysis identified significant changes in -γ aminobutyric acidA receptor (GABAAR) α1 subunit expression in brain regions associated with the regulation of ethanol behaviors in P2X4R KO mice. These findings add to evidence that P2X4Rs contribute to ethanol intake and indicate that there is a complex interaction between P2X4Rs, ethanol, and other neurotransmitter receptor systems. PMID:24671605

  19. Trace amine-associated receptor 1 regulation of methamphetamine-induced neurotoxicity.

    PubMed

    Miner, Nicholas B; Elmore, Josh S; Baumann, Michael H; Phillips, Tamara J; Janowsky, Aaron

    2017-12-01

    Trace amine-associated receptor 1 (TAAR1) is activated by methamphetamine (MA) and modulates dopaminergic (DA) function. Although DA dysregulation is the hallmark of MA-induced neurotoxicity leading to behavioral and cognitive deficits, the intermediary role of TAAR1 has yet to be characterized. To investigate TAAR1 regulation of MA-induced neurotoxicity, Taar1 transgenic knock-out (KO) and wildtype (WT) mice were administered saline or a neurotoxic regimen of 4 i.p. injections, 2h apart, of MA (2.5, 5, or 10mg/kg). Temperature data were recorded during the treatment day. Additionally, striatal tissue was collected 2 or 7days following MA administration for analysis of DA, 3,4-dihydroxyphenylacetic acid (DOPAC), homovanillic acid (HVA), and tyrosine hydroxylase (TH) levels, as well as glial fibrillary acidic protein (GFAP) expression. MA elicited an acute hypothermic drop in body temperature in Taar1-WT mice, but not in Taar1-KO mice. Two days following treatment, DA and TH levels were lower in Taar1-KO mice compared to Taar1-WT mice, regardless of treatment, and were dose-dependently decreased by MA. GFAP expression was significantly increased by all doses of MA at both time points and greater in Taar1-KO compared to Taar1-WT mice receiving MA 2.5 or 5mg/kg. Seven days later, DA levels were decreased in a similar pattern: DA was significantly lower in Taar1-KO compared to Taar1-WT mice receiving MA 2.5 or 5mg/kg. TH levels were uniformly decreased by MA, regardless of genotype. These results indicate that activation of TAAR1 potentiates MA-induced hypothermia and TAAR1 confers sustained neuroprotection dependent on its thermoregulatory effects. Published by Elsevier B.V.

  20. Genetic deletion of GPR52 enhances the locomotor-stimulating effect of an adenosine A2A receptor antagonist in mice: A potential role of GPR52 in the function of striatopallidal neurons.

    PubMed

    Nishiyama, Keiji; Suzuki, Hirobumi; Maruyama, Minoru; Yoshihara, Tomoki; Ohta, Hiroyuki

    2017-09-01

    G protein-coupled receptor 52 (GPR52) is largely co-expressed with dopamine D 2 receptor (DRD2) in the striatum and nucleus accumbens, and this expression pattern is similar to that of adenosine A 2A receptor (ADORA2A). GPR52 has been proposed as a therapeutic target for positive symptoms of schizophrenia, based on observations from pharmacological and transgenic mouse studies. However, the physiological role of GPR52 in dopaminergic functions in the basal ganglia remains unclear. Here, we used GPR52 knockout (KO) mice to examine the role of GPR52 in dopamine receptor-mediated and ADORA2A-mediated locomotor activity and dopamine receptor signaling. High expression of GPR52 protein in the striatum, nucleus accumbens, and lateral globus pallidus of wild type (WT) littermates was confirmed by immunohistochemical analysis. GPR52 KO and WT mice exhibited almost identical locomotor responses to the dopamine releaser methamphetamine and the N-methyl-d-aspartate antagonist MK-801. In contrast, the locomotor response to the ADORA2A antagonist istradefylline was significantly augmented in GPR52 KO mice compared to WT mice. Gene expression analysis revealed that striatal expression of DRD2, but not of dopamine D 1 receptor and ADORA2A, was significantly decreased in GPR52 KO mice. Moreover, a significant reduction in the mRNA expression of enkephalin, a marker of the activity of striatopallidal neurons, was observed in the striatum of GPR52 KO mice, suggesting that GPR52 deletion could enhance DRD2 signaling. Taken together, these results imply the physiological relevance of GPR52 in modulating the function of striatopallidal neurons, possibly by interaction of GPR52 with ADORA2A and DRD2. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Increased consumption of ethanol and sugar water in mice lacking the dopamine D2 long receptor

    PubMed Central

    Bulwa, Zachary B.; Sharlin, Jordan A.; Clark, Peter J.; Bhattacharya, Tushar K.; Kilby, Chessa N.; Wang, Yanyan; Rhodes, Justin S.

    2011-01-01

    Individual differences in dopamine D2 receptor (D2R) expression in the brain are thought to influence motivation and reinforcement for ethanol and other rewards. D2R exists in two isoforms, D2 long (D2LR) and D2 short (D2SR), produced by alternative splicing of the same gene. The relative contributions of D2LR versus D2SR to ethanol and sugar water drinking are not known. Genetic engineering was used to produce a line of knockout (KO) mice that lack D2LR and consequently have increased expression of D2SR. KO and wild-type (WT) mice of both sexes were tested for intake of 20% ethanol, 10% sugar water and plain tap water using established drinking-in-the-dark procedures. Mice were also tested for effects of the D2 antagonist eticlopride on intake of ethanol to determine whether KO responses were caused by lack of D2LR or over-representation of D2SR. Locomotor activity on running wheels and in cages without wheels was also measured for comparison. D2L KO mice drank significantly more ethanol than WT in both sexes. KO mice drank more sugar water than WT in females but not in males. Eticlopride dose- dependently decreased ethanol intake in all groups except male KO. KO mice were less physically active than WT in cages with or without running wheels. Results suggest that over-representation of D2SR contributes to increased intake of ethanol in the KO mice. Decreasing wheel running and general levels of physical activity in the KO mice rules out the possibility that higher intake results from higher motor activity. Results extend the literature implicating altered expression of D2R in risk for addiction by delineating the contribution of individual D2R isoforms. These findings suggest that D2LR and D2SR play differential roles in consumption of alcohol and sugar rewards. PMID:21803530

  2. Increased consumption of ethanol and sugar water in mice lacking the dopamine D2 long receptor.

    PubMed

    Bulwa, Zachary B; Sharlin, Jordan A; Clark, Peter J; Bhattacharya, Tushar K; Kilby, Chessa N; Wang, Yanyan; Rhodes, Justin S

    2011-11-01

    Individual differences in dopamine D2 receptor (D2R) expression in the brain are thought to influence motivation and reinforcement for ethanol and other rewards. D2R exists in two isoforms, D2 long (D2LR) and D2 short (D2SR), produced by alternative splicing of the same gene. The relative contributions of D2LR versus D2SR to ethanol and sugar water drinking are not known. Genetic engineering was used to produce a line of knockout (KO) mice that lack D2LR and consequently have increased expression of D2SR. KO and wild-type (WT) mice of both sexes were tested for intake of 20% ethanol, 10% sugar water and plain tap water using established drinking-in-the-dark procedures. Mice were also tested for effects of the D2 antagonist eticlopride on intake of ethanol to determine whether KO responses were caused by lack of D2LR or overrepresentation of D2SR. Locomotor activity on running wheels and in cages without wheels was also measured for comparison. D2L KO mice drank significantly more ethanol than WT in both sexes. KO mice drank more sugar water than WT in females but not in males. Eticlopride dose dependently decreased ethanol intake in all groups except male KO. KO mice were less physically active than WT in cages with or without running wheels. Results suggest that overrepresentation of D2SR contributes to increased intake of ethanol in the KO mice. Decreasing wheel running and general levels of physical activity in the KO mice rules out the possibility that higher intake results from higher motor activity. Results extend the literature implicating altered expression of D2R in risk for addiction by delineating the contribution of individual D2R isoforms. These findings suggest that D2LR and D2SR play differential roles in consumption of alcohol and sugar rewards. Copyright © 2011 Elsevier Inc. All rights reserved.

  3. Loss of CTRP1 disrupts glucose and lipid homeostasis

    PubMed Central

    Rodriguez, Susana; Lei, Xia; Petersen, Pia S.; Tan, Stefanie Y.; Little, Hannah C.

    2016-01-01

    C1q/TNF-related protein 1 (CTRP1) is a conserved plasma protein of the C1q family with notable metabolic and cardiovascular functions. We have previously shown that CTRP1 infusion lowers blood glucose and that transgenic mice with elevated circulating CTRP1 are protected from diet-induced obesity and insulin resistance. Here, we used a genetic loss-of-function mouse model to address the requirement of CTRP1 for metabolic homeostasis. Despite similar body weight, food intake, and energy expenditure, Ctrp1 knockout (KO) mice fed a low-fat diet developed insulin resistance and hepatic steatosis. Impaired glucose metabolism in Ctrp1 KO mice was associated with increased hepatic gluconeogenic gene expression and decreased skeletal muscle glucose transporter glucose transporter 4 levels and AMP-activated protein kinase activation. Loss of CTRP1 enhanced the clearance of orally administered lipids but did not affect intestinal lipid absorption, hepatic VLDL-triglyceride export, or lipoprotein lipase activity. In contrast to triglycerides, hepatic cholesterol levels were reduced in Ctrp1 KO mice, paralleling the reduced expression of cholesterol synthesis genes. Contrary to expectations, when challenged with a high-fat diet to induce obesity, Ctrp1 KO mice had increased physical activity and reduced body weight, adiposity, and expression of lipid synthesis and fibrotic genes in adipose tissue; these phenotypes were linked to elevated FGF-21 levels. Due in part to increased hepatic AMP-activated protein kinase activation and reduced expression of lipid synthesis genes, Ctrp1 KO mice fed a high-fat diet also had reduced liver and serum triglyceride and cholesterol levels. Taken together, these results provide genetic evidence to establish the significance of CTRP1 to systemic energy metabolism in different metabolic and dietary contexts. PMID:27555298

  4. Behavioural and neurobiological consequences of macrophage migration inhibitory factor gene deletion in mice.

    PubMed

    Bay-Richter, Cecilie; Janelidze, Shorena; Sauro, Analise; Bucala, Richard; Lipton, Jack; Deierborg, Tomas; Brundin, Lena

    2015-09-04

    Evidence from clinical studies and animal models show that inflammation can lead to the development of depression. Macrophage migration inhibitory factor (MIF) is an important multifunctional cytokine that is synthesized by several cell types in the brain. MIF can increase production of other cytokines, activates cyclooxygenase (COX)-2 and can counter-regulate anti-inflammatory effects of glucocorticoids. Increased plasma levels of MIF are associated with hypothalamic-pituitary-adrenal (HPA) axis dysregulation and depressive symptoms in patients. In contrast, MIF knockout (KO) mice have been found to exhibit increased depressive-like behaviour. The exact role for MIF in depression is therefore still controversial. To further understand the role of MIF in depression, we studied depressive-like behaviour in congenic male and female MIF KO mice and wild-type (WT) littermates and the associated neurobiological mechanisms underlying the behavioural outcome. MIF KO and WT mice were tested for spontaneous locomotor activity in the open-field test, anhedonia-like behaviour in the sucrose preference test (SPT), as well as behavioural despair in the forced swim test (FST) and tail suspension test (TST). Brain and serum levels of cytokines, the enzymes COX-2 and indoleamine-2,3-dioxygenase (IDO) and the glucocorticoid hormone corticosterone were measured by RT-qPCR and/or high-sensitivity electrochemiluminescence-based multiplex immunoassays. Monoamines and metabolites were examined using HPLC. We found that MIF KO mice of both sexes displayed decreased depressive-like behaviour as measured in the FST. In the TST, a similar, but non-significant, trend was also found. IFN-γ levels were decreased, and dopamine metabolism increased in MIF KO mice. Decreased brain IFN-γ levels predicted higher striatal dopamine levels, and high dopamine levels in turn were associated with reduced depressive-like behaviour. In the SPT, there was a sex-specific discrepancy, where male MIF KO mice

  5. Impaired spatial memory and enhanced long-term potentiation in mice with forebrain-specific ablation of the Stim genes

    PubMed Central

    Garcia-Alvarez, Gisela; Shetty, Mahesh S.; Lu, Bo; Yap, Kenrick An Fu; Oh-Hora, Masatsugu; Sajikumar, Sreedharan; Bichler, Zoë; Fivaz, Marc

    2015-01-01

    Recent findings point to a central role of the endoplasmic reticulum-resident STIM (Stromal Interaction Molecule) proteins in shaping the structure and function of excitatory synapses in the mammalian brain. The impact of the Stim genes on cognitive functions remains, however, poorly understood. To explore the function of the Stim genes in learning and memory, we generated three mouse strains with conditional deletion (cKO) of Stim1 and/or Stim2 in the forebrain. Stim1, Stim2, and double Stim1/Stim2 cKO mice show no obvious brain structural defects or locomotor impairment. Analysis of spatial reference memory in the Morris water maze revealed a mild learning delay in Stim1 cKO mice, while learning and memory in Stim2 cKO mice was indistinguishable from their control littermates. Deletion of both Stim genes in the forebrain resulted, however, in a pronounced impairment in spatial learning and memory reflecting a synergistic effect of the Stim genes on the underlying neural circuits. Notably, long-term potentiation (LTP) at CA3-CA1 hippocampal synapses was markedly enhanced in Stim1/Stim2 cKO mice and was associated with increased phosphorylation of the AMPA receptor subunit GluA1, the transcriptional regulator CREB and the L-type Voltage-dependent Ca2+ channel Cav1.2 on protein kinase A (PKA) sites. We conclude that STIM1 and STIM2 are key regulators of PKA signaling and synaptic plasticity in neural circuits encoding spatial memory. Our findings also reveal an inverse correlation between LTP and spatial learning/memory and suggest that abnormal enhancement of cAMP/PKA signaling and synaptic efficacy disrupts the formation of new memories. PMID:26236206

  6. Thrombospondin-1 deficiency causes a shift from fibroproliferative to inflammatory kidney disease and delays onset of renal failure.

    PubMed

    Zeisberg, Michael; Tampe, Björn; LeBleu, Valerie; Tampe, Desiree; Zeisberg, Elisabeth M; Kalluri, Raghu

    2014-10-01

    Thrombospondin-1 (TSP1) is a multifunctional matricellular protein known to promote progression of chronic kidney disease. To gain insight into the underlying mechanisms through which TSP1 accelerates chronic kidney disease, we compared disease progression in Col4a3 knockout (KO) mice, which develop spontaneous kidney failure, with that of Col4a3;Tsp1 double-knockout (DKO) mice. Decline of excretory renal function was significantly delayed in the absence of TSP1. Although Col4a3;Tsp1 DKO mice did progress toward end-stage renal failure, their kidneys exhibited distinct histopathological lesions, compared with creatinine level-matched Col4a3 KO mice. Although kidneys of both Col4a3 KO and Col4a3;Tsp1 DKO mice exhibited a widened tubulointerstitium, predominant lesions in Col4a3 KO kidneys were collagen deposition and fibroblast accumulation, whereas in Col4a3;Tsp1 DKO kidney inflammation was predominant, with less collagen deposition. Altered disease progression correlated with impaired activation of transforming growth factor-β1 (TGF-β1) in vivo and in vitro in the absence of TSP1. In summary, our findings suggest that TSP1 contributes to progression of chronic kidney disease by catalyzing activation of latent TGF-β1, resulting in promotion of a fibroproliferative response over an inflammatory response. Furthermore, the findings suggest that fibroproliferative and inflammatory lesions are independent entities, both of which contribute to decline of renal function. Copyright © 2014 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  7. Role of METTL20 in regulating β-oxidation and heat production in mice under fasting or ketogenic conditions.

    PubMed

    Shimazu, Tadahiro; Furuse, Tamio; Balan, Shabeesh; Yamada, Ikuko; Okuno, Shuzo; Iwanari, Hiroko; Suzuki, Takehiro; Hamakubo, Takao; Dohmae, Naoshi; Yoshikawa, Takeo; Wakana, Shigeharu; Shinkai, Yoichi

    2018-01-19

    METTL20 is a seven-β-strand methyltransferase that is localised to the mitochondria and tri-methylates the electron transfer flavoprotein (ETF) β subunit (ETFB) at lysines 200 and 203. It has been shown that METTL20 decreases the ability of ETF to extract electrons from medium-chain acyl-coenzyme A (CoA) dehydrogenase (MCAD) and glutaryl-CoA dehydrogenase in vitro. METTL20-mediated methylation of ETFB influences the oxygen consumption rate in permeabilised mitochondria, suggesting that METTL20-mediated ETFB methylation may also play a regulatory role in mitochondrial metabolism. In this study, we generated Mettl20 knockout (KO) mice to uncover the in vivo functions of METTL20. The KO mice were viable, and a loss of ETFB methylation was confirmed. In vitro enzymatic assays revealed that mitochondrial ETF activity was higher in the KO mice than in wild-type mice, suggesting that the KO mice had higher β-oxidation capacity. Calorimetric analysis showed that the KO mice fed a ketogenic diet had higher oxygen consumption and heat production. A subsequent cold tolerance test conducted after 24 h of fasting indicated that the KO mice had a better ability to maintain their body temperature in cold environments. Thus, METTL20 regulates ETF activity and heat production through lysine methylation when β-oxidation is highly activated.

  8. Difference in Perseverative Errors during a Visual Attention Task with Auditory Distractors in Alpha-9 Nicotinic Receptor Subunit Wild Type and Knock-Out Mice.

    PubMed

    Jorratt, Pascal; Delano, Paul H; Delgado, Carolina; Dagnino-Subiabre, Alexies; Terreros, Gonzalo

    2017-01-01

    The auditory efferent system is a neural network that originates in the auditory cortex and projects to the cochlear receptor through olivocochlear (OC) neurons. Medial OC neurons make cholinergic synapses with outer hair cells (OHCs) through nicotinic receptors constituted by α9 and α10 subunits. One of the physiological functions of the α9 nicotinic receptor subunit (α9-nAChR) is the suppression of auditory distractors during selective attention to visual stimuli. In a recent study we demonstrated that the behavioral performance of alpha-9 nicotinic receptor knock-out (KO) mice is altered during selective attention to visual stimuli with auditory distractors since they made less correct responses and more omissions than wild type (WT) mice. As the inhibition of the behavioral responses to irrelevant stimuli is an important mechanism of the selective attention processes, behavioral errors are relevant measures that can reflect altered inhibitory control. Errors produced during a cued attention task can be classified as premature, target and perseverative errors. Perseverative responses can be considered as an inability to inhibit the repetition of an action already planned, while premature responses can be considered as an index of the ability to wait or retain an action. Here, we studied premature, target and perseverative errors during a visual attention task with auditory distractors in WT and KO mice. We found that α9-KO mice make fewer perseverative errors with longer latencies than WT mice in the presence of auditory distractors. In addition, although we found no significant difference in the number of target error between genotypes, KO mice made more short-latency target errors than WT mice during the presentation of auditory distractors. The fewer perseverative error made by α9-KO mice could be explained by a reduced motivation for reward and an increased impulsivity during decision making with auditory distraction in KO mice.

  9. Loss of aryl hydrocarbon receptor promotes gene changes associated with premature hematopoietic stem cell exhaustion and development of a myeloproliferative disorder in aging mice.

    PubMed

    Singh, Kameshwar P; Bennett, John A; Casado, Fanny L; Walrath, Jason L; Welle, Stephen L; Gasiewicz, Thomas A

    2014-01-15

    Loss of immune function and increased hematopoietic disease are among the most clinically significant consequences of aging. Hematopoietic stem cells (HSCs) from mice lacking aryl hydrocarbon receptor (AhR) have high rates of cell division. Studies were designed to test the hypothesis that aging AhR-null allele (AhR-KO) mice develop premature HSC exhaustion, and changes leading to hematological disease. Compared to wild-type, aging AhR-KO mice showed a decreased survival rate, splenomegaly, increased circulating white blood cells, hematopoietic cell accumulation in tissues, and anemia. Analysis of bone marrow indicated increased numbers of stem/progenitor and lineage-committed cells, but decreased erythroid progenitors. There was also decreased self-renewal capacity of HSCs determined by competitive repopulation and serial transplantation. HSCs also showed increased levels of reactive oxygen species (ROS), Ki-67, and γ-H2A.X, but decreased p16(Ink4a). Splenic cells from aging KO mice had abnormal expression of genes, including Gata-1, Sh2d3c, Gfi-1, p21, and c-myc, involved in trafficking and associated with leukemia. HSCs from AhR-KO mice had gene changes related to HSC maintenance and consistent with phenotype observed. The most prominent gene changes (overexpression of Srpk2, Creb1, Hes1, mtor, pdp1) have been associated with HSC hyperproliferation, leukemia, and accelerated aging. Pathway analyses also indicated an enrichment of genes associated with oxidative stress, acute myelogenous leukemia, aging, and heat shock response, and the β-catenin/Wnt pathways. These data indicate that loss of AhR and associated changes in multiple signaling pathways promote premature HSC exhaustion and development of a myeloproliferative disorder. They also implicate a critical role of the AhR in the regulation of HSCs.

  10. The Pure Rotational Spectrum of KO

    NASA Astrophysics Data System (ADS)

    Burton, Mark; Russ, Benjamin; Sheridan, Phillip M.; Bucchino, Matthew; Ziurys, Lucy M.

    2017-06-01

    The pure rotational spectrum of potassium monoxide (KO) has been recorded using millimeter-wave direct absorption spectroscopy. KO was synthesized by the reaction of potassium vapor, produced in a Broida-type oven, with nitrous oxide. No DC discharge was necessary. Eleven rotational transitions belonging to the ^{2}Π_{3/2} spin-orbit component have been measured and have been fit successfully to a case (c) Hamiltonian. Rotational and lambda-doubling constants for this spin-orbit component have been determined. It has been suggested that the ground electronic state of KO is either ^{2}Π (as for LiO and NaO) or ^{2}Σ (as for RbO and CsO), both of which lie close in energy. Recent computational studies favor a ^{2}Σ ground state. Further measurements of the rotational transitions of the ^{2}Π_{1/2} spin-orbit component and the ^{2}Σ state are currently in progress, as well as the potassium hyperfine structure.

  11. SHH-dependent knockout of HIF-1 alpha accelerates the degenerative process in mouse intervertebral disc.

    PubMed

    Wu, W J; Zhang, X K; Zheng, X F; Yang, Y H; Jiang, S D; Jiang, L S

    2013-01-01

    Hypoxia-inducible factor-1alpha (HIF-1 alpha) has been reported to have an important role in the metabolism and synthesis of extracellular matrix of the nucleus pulposus cells (NPCs) and was assumed to be involved in the process of intervertebral disc degeneration. The objective of this study was to investigate the role of HIF-1alpha in disc degeneration in vivo using a conditional HIF-1alpha knockout (KO) mouse model. ShhCre transgenic mice were mated with HIF-1 alpha fl/fl mice to generate conditional HIF-1alpha KO mice (HIF-1alpha fl/fl-ShhCre+). Three mice of each genotype (Wide-type and HIF-1alpha KO) at the age of 3 days, 6, and 12 weeks were sacrificed after genotyping. Five lumbar disc samples were harvested from each mouse, with a total of 45 disc samples for each genotype. In situ hybridization and immunohistochemical analysis were used to check the efficacy of HIF-1alpha knockout. Histological grading of the disc degeneration was performed according to the classification system proposed by Boos et al. Picro-sirius red staining, Safranine O/fast green staining and immunohistochemical study were used to evaluate the expression of aggrecan, type-II collagen and vascular endothelial growth factor (VEGF). Histologic analysis revealed more NPC deaths and signs of degeneration in HIF-1alpha KO mice and the degeneration scores of HIF-1alpha KO mice were significantly higher than those of the Wide-type mice at the age of 6 weeks and 12 weeks. There were less expressions of aggrecan, type-II collagen and VEGF in the intervertebral discs of HIF1-alpha KO mice than in those of wild-type mice. Taken together, the results of our study indicated that HIF-1alpha is a pivotal contributor to NPC survival and the homeotasis of extracellular matrix through the HIF-1alpha/VEGF signaling pathway, and plays an important role in the development of disc degeneration.

  12. Somatostatin Is Essential for the Sexual Dimorphism of GH Secretion, Corticosteroid-Binding Globulin Production, and Corticosterone Levels in Mice

    PubMed Central

    Adams, Jessica M.; Otero-Corchon, Veronica; Hammond, Geoffrey L.; Veldhuis, Johannes D.; Qi, Nathan

    2015-01-01

    Distinct male and female patterns of pituitary GH secretion produce sexually differentiated hepatic gene expression profiles, thereby influencing steroid and xenobiotic metabolism. We used a fully automated system to obtain serial nocturnal blood samples every 15 minutes from cannulated wild-type (WT) and somatostatin knockout (Sst-KO) mice to determine the role of SST, the principal inhibitor of GH release, in the generation of sexually dimorphic GH pulsatility. WT males had lower mean and median GH values, less random GH secretory bursts, and longer trough periods between GH pulses than WT females. Each of these parameters was feminized in male Sst-KO mice, whereas female Sst-KO mice had higher GH levels than all other groups, but GH pulsatility was unaffected. We next performed hepatic mRNA profiling with high-density microarrays. Male Sst-KO mice exhibited a globally feminized pattern of GH-dependent mRNA levels, but female Sst-KO mice were largely unaffected. Among the differentially expressed female-predominant genes was Serpina6, which encodes corticosteroid-binding globulin (CBG). Increased CBG was associated with elevated diurnal peak plasma corticosterone in unstressed WT females and both sexes of Sst-KO mice compared with WT males. Sst-KO mice also had exaggerated ACTH and corticosterone responses to acute restraint stress. However, consistent with their lack of phenotypic signs of excess glucocorticoids, cerebrospinal fluid concentrations of free corticosterone in Sst-KO mice were not elevated. In summary, SST is necessary for the prolonged interpulse troughs that define masculinized pituitary GH secretion. SST also contributes to sexual dimorphism of the hypothalamic-pituitary-adrenal axis via GH-dependent regulation of hepatic CBG production. PMID:25551181

  13. Toll-like receptor-2 deficiency induces schizophrenia-like behaviors in mice

    PubMed Central

    Park, Se Jin; Lee, Jee Youn; Kim, Sang Jeong; Choi, Se-Young; Yune, Tae Young; Ryu, Jong Hoon

    2015-01-01

    Dysregulation of the immune system contributes to the pathogenesis of neuropsychiatric disorders including schizophrenia. Here, we demonstrated that toll-like receptor (TLR)-2, a family of pattern-recognition receptors, is involved in the pathogenesis of schizophrenia-like symptoms. Psychotic symptoms such as hyperlocomotion, anxiolytic-like behaviors, prepulse inhibition deficits, social withdrawal, and cognitive impairments were observed in TLR-2 knock-out (KO) mice. Ventricle enlargement, a hallmark of schizophrenia, was also observed in TLR-2 KO mouse brains. Levels of p-Akt and p-GSK-3α/β were markedly higher in the brain of TLR-2 KO than wild-type (WT) mice. Antipsychotic drugs such as haloperidol or clozapine reversed behavioral and biochemical alterations in TLR-2 KO mice. Furthermore, p-Akt and p-GSK-3α/β were decreased by treatment with a TLR-2 ligand, lipoteichoic acid, in WT mice. Thus, our data suggest that the dysregulation of the innate immune system by a TLR-2 deficiency may contribute to the development and/or pathophysiology of schizophrenia-like behaviors via Akt-GSK-3α/β signaling. PMID:25687169

  14. Apo A1 Mimetic Rescues the Diabetic Phenotype of HO-2 Knockout Mice via an Increase in HO-1 Adiponectin and LKBI Signaling Pathway

    PubMed Central

    Cao, Jian; Puri, Nitin; Sodhi, Komal; Bellner, Lars; Abraham, Nader G.; Kappas, Attallah

    2012-01-01

    Insulin resistance, with adipose tissue dysfunction, is one of the hallmarks of metabolic syndrome. We have reported a metabolic syndrome-like phenotype in heme oxygenase (HO)-2 knockout mice, which presented with concurrent HO-1 deficiency and were amenable to rescue by an EET analog. Apo A-I mimetic peptides, such as L-4F, have been shown to induce HO-1 expression and decrease oxidative stress and adiposity. In this study we aimed to characterize alleviatory effects of HO-1 induction (if any) on metabolic imbalance observed in HO-2 KO mice. In this regard, HO-2(−/−) mice were injected with 2 mg/kg/day L-4F, or vehicle, i.p., for 6 weeks. As before, compared to WT animals, the HO-2 null mice were obese, displayed insulin resistance, and had elevated blood pressure. These changes were accompanied by enhanced tissue (hepatic) oxidative stress along with attenuation of HO-1 expression and activity and reduced adiponectin, pAMPK, and LKB1 expression. Treatment with L-4F restored HO-1 expression and activity and increased adiponectin, LKB1, and pAMPK in the HO-2(−/−) mice. These alterations resulted in a decrease in blood pressure, insulin resistance, blood glucose, and adiposity. Taken together, our results show that a deficient HO-1 response, in a state with reduced HO-2 basal levels, is accompanied by disruption of metabolic homeostasis which is successfully restored by an HO-1 inducer. PMID:22577519

  15. Forebrain-specific expression of monoamine oxidase A reduces neurotransmitter levels, restores the brain structure, and rescues aggressive behavior in monoamine oxidase A-deficient mice.

    PubMed

    Chen, Kevin; Cases, Olivier; Rebrin, Igor; Wu, Weihua; Gallaher, Timothy K; Seif, Isabelle; Shih, Jean Chen

    2007-01-05

    Previous studies have established that abrogation of monoamine oxidase (MAO) A expression leads to a neurochemical, morphological, and behavioral specific phenotype with increased levels of serotonin (5-HT), norepinephrine, and dopamine, loss of barrel field structure in mouse somatosensory cortex, and an association with increased aggression in adults. Forebrain-specific MAO A transgenic mice were generated from MAO A knock-out (KO) mice by using the promoter of calcium-dependent kinase IIalpha (CaMKIIalpha). The presence of human MAO A transgene and its expression were verified by PCR of genomic DNA and reverse transcription-PCR of mRNA and Western blot, respectively. Significant MAO A catalytic activity, autoradiographic labeling of 5-HT, and immunocytochemistry of MAO A were found in the frontal cortex, striatum, and hippocampus but not in the cerebellum of the forebrain transgenic mice. Also, compared with MAO A KO mice, lower levels of 5-HT, norepinephrine, and DA and higher levels of MAO A metabolite 5-hydroxyindoleacetic acid were found in the forebrain regions but not in the cerebellum of the transgenic mice. These results suggest that MAO A is specifically expressed in the forebrain regions of transgenic mice. This forebrain-specific differential expression resulted in abrogation of the aggressive phenotype. Furthermore, the disorganization of the somatosensory cortex barrel field structure associated with MAO A KO mice was restored and became morphologically similar to wild type. Thus, the lack of MAO A in the forebrain of MAO A KO mice may underlie their phenotypes.

  16. Gsα Deficiency in the Ventromedial Hypothalamus Enhances Leptin Sensitivity and Improves Glucose Homeostasis in Mice on a High-Fat Diet.

    PubMed

    Berger, Alta; Kablan, Ahmed; Yao, Catherine; Ho, Thuy; Podyma, Brandon; Weinstein, Lee S; Chen, Min

    2016-02-01

    In both mice and patients with Albright hereditary osteodystrophy, heterozygous inactivating mutations of Gsα, a ubiquitously expressed G protein that mediates receptor-stimulated intracellular cAMP production, lead to obesity and insulin resistance but only when the mutation is present on the maternal allele. This parent-of-origin effect in mice was shown to be due to Gsα imprinting in one or more brain regions. The ventromedial hypothalamus (VMH) is involved in the regulation of energy and glucose homeostasis, but the role of Gsα in VMH on metabolic regulation is unknown. To examine this, we created VMH-specific Gsα-deficient mice by mating Gsα-floxed mice with SF1-cre mice. Heterozygotes with Gsα mutation on either the maternal or paternal allele had a normal metabolic phenotype, and there was no molecular evidence of Gsα imprinting, indicating that the parent-of-origin metabolic effects associated with Gsα mutations is not due to Gsα deficiency in VMH SF1 neurons. Homozygous VMH Gsα knockout mice (VMHGsKO) showed no changes in body weight on either a regular or high-fat diet. However, glucose metabolism (fasting glucose, glucose tolerance, insulin sensitivity) was significantly improved in male VMHGsKO mice, with the difference more dramatic on the high-fat diet. In addition, male VMHGsKO mice on the high-fat diet showed a greater anorexigenic effect and increased VMH signal transducer and activator of transcription-3 phosphorylation in response to leptin. These results indicate that VMH Gsα/cyclic AMP signaling regulates glucose homeostasis and alters leptin sensitivity in mice, particularly in the setting of excess caloric intake.

  17. Inflammatory markers associated with osteoarthritis after destabilization surgery in young mice with and without Receptor for Advanced Glycation End-products (RAGE)

    PubMed Central

    Larkin, D. Justin; Kartchner, Jeffrey Z.; Doxey, Alexander S.; Hollis, Weston R.; Rees, Jeffrey L.; Wilhelm, Spencer K.; Draper, Christian S.; Peterson, Danielle M.; Jackson, Gregory G.; Ingersoll, Chelsey; Haynie, S. Scott; Chavez, Elizabeth; Reynolds, Paul R.; Kooyman, David L.

    2013-01-01

    HtrA1, Ddr-2, and Mmp-13 are reliable biomarkers for osteoarthritis (OA), yet the exact mechanism for the upregulation of HtrA-1 is unknown. Some have shown that chondrocyte hypertrophy is associated with early indicators of inflammation including TGF-β and the Receptor for Advanced Glycation End-products (RAGE). To examine the correlation of inflammation with the expression of biomarkers in OA, we performed right knee destabilization surgery on 4-week-old-wild type and RAGE knock-out (KO) mice. We assayed for HtrA-1, TGF-β1, Mmp-13, and Ddr-2 in articular cartilage at 3, 7, 14, and 28 days post-surgery by immunohistochemistry on left and right knee joints. RAGE KO and wild type mice both showed staining for key OA biomarkers. However, RAGE KO mice were significantly protected against OA compared to controls. We observed a difference in the total number of chondrocytes and percentage of chondrocytes staining positive for OA biomarkers between RAGE KO and control mice. The percentage of cells staining for OA biomarkers correlated with severity of cartilage degradation. Our results indicate that the absence of RAGE did protect against the development of advanced OA. We conclude that HtrA-1 plays a role in lowering TGF-β1 expression in the process of making articular cartilage vulnerable to damage associated with OA progression. PMID:23755017

  18. Gene knockout of Zmym3 in mice arrests spermatogenesis at meiotic metaphase with defects in spindle assembly checkpoint.

    PubMed

    Hu, Xiangjing; Shen, Bin; Liao, Shangying; Ning, Yan; Ma, Longfei; Chen, Jian; Lin, Xiwen; Zhang, Daoqin; Li, Zhen; Zheng, Chunwei; Feng, Yanmin; Huang, Xingxu; Han, Chunsheng

    2017-06-29

    ZMYM3, a member of the MYM-type zinc finger protein family and a component of a LSD1-containing transcription repressor complex, is predominantly expressed in the mouse brain and testis. Here, we show that ZMYM3 in the mouse testis is expressed in somatic cells and germ cells until pachytene spermatocytes. Knockout (KO) of Zmym3 in mice using the CRISPR-Cas9 system resulted in adult male infertility. Spermatogenesis of the KO mice was arrested at the metaphase of the first meiotic division (MI). ZMYM3 co-immunoprecipitated with LSD1 in spermatogonial stem cells, but its KO did not change the levels of LSD1 or H3K4me1/2 or H3K9me2. However, Zmym3 KO resulted in elevated numbers of apoptotic germ cells and of MI spermatocytes that are positive for BUB3, which is a key player in spindle assembly checkpoint. Zmym3 KO also resulted in up-regulated expression of meiotic genes in spermatogonia. These results show that ZMYM3 has an essential role in metaphase to anaphase transition during mouse spermatogenesis by regulating the expression of diverse families of genes.

  19. Neurolysin Knockout Mice Generation and Initial Phenotype Characterization*

    PubMed Central

    Cavalcanti, Diogo M. L. P.; Castro, Leandro M.; Rosa Neto, José C.; Seelaender, Marilia; Neves, Rodrigo X.; Oliveira, Vitor; Forti, Fábio L.; Iwai, Leo K.; Gozzo, Fabio C.; Todiras, Mihail; Schadock, Ines; Barros, Carlos C.; Bader, Michael; Ferro, Emer S.

    2014-01-01

    The oligopeptidase neurolysin (EC 3.4.24.16; Nln) was first identified in rat brain synaptic membranes and shown to ubiquitously participate in the catabolism of bioactive peptides such as neurotensin and bradykinin. Recently, it was suggested that Nln reduction could improve insulin sensitivity. Here, we have shown that Nln KO mice have increased glucose tolerance, insulin sensitivity, and gluconeogenesis. KO mice have increased liver mRNA for several genes related to gluconeogenesis. Isotopic label semiquantitative peptidomic analysis suggests an increase in specific intracellular peptides in gastrocnemius and epididymal adipose tissue, which likely is involved with the increased glucose tolerance and insulin sensitivity in the KO mice. These results suggest the exciting new possibility that Nln is a key enzyme for energy metabolism and could be a novel therapeutic target to improve glucose uptake and insulin sensitivity. PMID:24719317

  20. Lycopene attenuated hepatic tumorigenesis via differential mechanisms depending on carotenoid cleavage enzyme in mice

    PubMed Central

    Ip, Blanche C.; Liu, Chun; Ausman, Lynne M.; von Lintig, Johannes; Wang, Xiang-Dong

    2014-01-01

    Obesity is associated with increased liver cancer risks and mortality. We recently showed that apo-10’-lycopenoic acid, a lycopene metabolite generated by beta-carotene-9’,10’-oxygenase (BCO2), inhibited carcinogen-initiated, high-fat diet (HFD)-promoted liver inflammation and hepatic tumorigenesis development. The present investigation examined the outstanding question of whether the lycopene could suppress HFD-promoted hepatocellular carcinoma (HCC) progression, and if BCO2 is important in BCO2-knockout (BCO2-KO) and wild-type male mice. Results showed that lycopene supplementation (100 mg/kg diet) for 24 weeks resulted in comparable accumulation of hepatic lycopene (19.4 vs 18.2 nmol/g) and had similar effects on suppressing HFD-promoted HCC incidence (19% vs 20%) and multiplicity (58% vs 62%) in wild-type and BCO2-KO mice, respectively. Intriguingly, lycopene chemopreventive effects in wild-type mice were associated with reduced hepatic pro-inflammatory signaling (phosphorylation of nuclear factor-κB p65 and signal transducer and activator of transcription 3; interleukin-6 protein) and inflammatory foci. In contrast, the protective effects of lycopene in BCO2-KO but not in wild-type mice were associated with reduced hepatic endoplasmic reticulum stress-mediated unfolded protein response (ERUPR), through decreasing ERUPR-mediated protein kinase RNA-activated like kinase– eukaryotic initiation factor 2α activation, and inositol requiring 1α–X-box binding protein 1 signaling. Lycopene supplementation in BCO2-KO mice suppressed oncogenic signals including Met mRNA, β-catenin protein, and mammalian target of rapamycin (mTOR) complex 1 activation, which was associated with increased hepatic microRNA (miR)-199a/b and miR-214 levels. These results provided novel experimental evidence that dietary lycopene can prevent HFD-promoted HCC incidence and multiplicity in mice, and may elicit different mechanisms depending on BCO2 expression. PMID:25293877