Science.gov

Sample records for aguas fluviales utilizando

  1. Anlisis de cambios en la calidad del agua en Puerto Rico utilizando Sistemas de

    E-print Network

    Gilbes, Fernando

    Análisis de cambios en la calidad del agua en Puerto Rico utilizando Sistemas de Información;Agradecimientos · Calidad del agua (Puerto Rico) ­ Maria Uriarte de Columbia University ­ Charles B. Yackulic , Yili Lim · Calidad del agua (Cuenca Guavate) ­ Keyla Torres, Elizabeth Pabón y Fredmarie Oyola

  2. ANLISIS DE CAMBIOS EN LA CALIDAD DEL AGUA EN PUERTO RICO UTILIZANDO SISTEMAS DE INFORMACIN GEOGRFICA

    E-print Network

    Gilbes, Fernando

    ANÁLISIS DE CAMBIOS EN LA CALIDAD DEL AGUA EN PUERTO RICO UTILIZANDO SISTEMAS DE INFORMACIÓN maduros son beneficiosos para la calidad del agua en Puerto Rico. Este resultado se obtuvo integrando, mediante modelos, la información de distintas capas geográficas de Puerto Rico:(1) calidad

  3. Simulations of Fluvial Landscapes

    NASA Astrophysics Data System (ADS)

    Cattan, D.; Birnir, B.

    2013-12-01

    The Smith-Bretherton-Birnir (SBB) model for fluvial landsurfaces consists of a pair of partial differential equations, one governing water flow and one governing the sediment flow. Numerical solutions of these equations have been shown to provide realistic models in the evolution of fluvial landscapes. Further analysis of these equations shows that they possess scaling laws (Hack's Law) that are known to exist in nature. However, the simulations are highly dependent on the numerical methods used; with implicit methods exhibiting the correct scaling laws, but the explicit methods fail to do so. These equations, and the resulting models, help to bridge the gap between the deterministic and the stochastic theories of landscape evolution. Slight modifications of the SBB equations make the results of the model more realistic. By modifying the sediment flow equation, the model obtains more pronounced meandering rivers. Typical landsurface with rivers.

  4. Fluvial sediment concepts

    USGS Publications Warehouse

    Guy, Harold P.

    1970-01-01

    This report is the first of a series concerned with the measurement of and recording of information about fluvial sediment and with related environmental data needed to maintain and improve basic sediment knowledge. Concepts presented in this report involve (1) the physical characteristics of sediment which include aspects relative 'to weathering, soils, resistance to erosion, and particle size, (2) sediment erosion, transport, and deposition characteristics, which include aspects relative to fine sediment and overland flow, coarse sediment and streamflow, variations in stream sediment concentration, deposition, and denudation, (3) geomorphic considerations, which include aspects relative to the drainage basin, mass wasting, and channel properties, (4) economic aspects, and (5) data needs and program objectives to be attained through the use of several kinds of sediment records.

  5. Floods and Fluvial Wood

    NASA Astrophysics Data System (ADS)

    Comiti, F.

    2014-12-01

    Several studies have recently addressed the complex interactions existing at various spatial scales among riparian vegetation, channel morphology and wood storage. The majority of these investigations has been carried out in relatively natural river systems, focusing mostly on the long-term vegetation-morphology dynamics under "equilibrium" conditions. Little is still known about the role of flood events - of different frequency/magnitude - on several aspects of such dynamics, e.g. entrainment conditions of in-channel wood, erosion rates of vegetation from channel margins and from islands, transport distances of wood elements of different size along the channel network. Even less understood is how the river's evolutionary trajectory may affect these processes, and thus the degree to which conceptual models derivable from near-natural systems could be applicable to human-disturbed channels. Indeed, the different human pressures - present on most river basins worldwide - have greatly impaired the morphological and ecological functions of fluvial wood, and the attempts to "restore" in-channel wood storage are currently carried out without a sufficient understanding of wood transport processes occurring during floods. On the other hand, the capability to correctly predict the magnitude of large wood transport during large floods is now seen as crucial - especially in mountain basins - for flood hazard mapping, as is the identification of the potential wood sources (e.g. landslides, floodplains, islands) for the implementation of sound and effective hazard mitigation measures. The presentation will first summarize the current knowledge on fluvial wood dynamics and modelling at different spatial and temporal scales, with a particular focus on mountain rivers. The effects of floods of different characteristics on vegetation erosion and wood transport will be then addressed presenting some study cases from rivers in the European Alps and in the Italian Apennines featuring different degrees of human alteration. Finally, several conclusions about the applicability of wood transport modelling and on rationale vegetation/wood management strategies will be drawn.

  6. Coastal Geology I. Fluvial Systems

    E-print Network

    Li, X. Rong

    Activity ­ coastal areas near tectonically active plate margins may subside or uplift according to plateLab 12 Coastal Geology I. Fluvial Systems Hydrologic Cycle Runoff that flows into rivers a stream over a certain amount of time. It is usually expressed in cubic feet per second, and is measured

  7. Computation of fluvial-sediment discharge

    USGS Publications Warehouse

    Porterfield, George

    1972-01-01

    This report is one of a series concerning the concepts, measurement, laboratory procedures, and computation of fluvial-sediment discharge. Material in this report includes procedures and forms used to compile and evaluate particle-size and concentration data, to compute fluvial-sediment discharge, and to prepare sediment records for publication.

  8. Fluvial network dynamics during the agricultural period

    NASA Astrophysics Data System (ADS)

    Kuznetsova, Yulia; Golosov, Valentin; Feoktistov, Artem

    2015-04-01

    It is well-known that start of extensive land-use leads to activation of gully erosion in many agricultural areas. But the dynamics of fluvial forms, including gullies and small valleys, during the period of cultivation is not so well-defined and greatly depends on local topography. Monitoring of individual gully systems evolution, widespread overgrown gullies and small valleys point at the impulsive, undulated development of upper parts of fluvial systems. Our investigation of fluvial network dynamics was conducted for a few key study river basins (Seim, Zusha and upper part of Desna basin) located in different parts of Central Russian Plain with various geomorphic structure. A set of historic topographic maps (from 1860s to 1980s), up-to-date satellite images and field studies were used as a basement for the fluvial patterns comparison and the networks dynamics reconstruction. The general increase of total length of fluvial forms during the period of cultivation was detected for almost all studied basins. However the relations between morphologic differences of interfluvial areas, depth of relief dissection, duration of agricultural period, and the particular changes of fluvial patterns were found. The general impulsive, undulated character is natural to fluvial network dynamics. There are interchanging periods of dominant erosion or accumulation, and the duration and intensity of these periods are heavily dependent on local geomorphic structure. It was found that in the areas with gentle, long slopes and small elevation difference pre-anthropogenic gullies keep developing and almost no new forms appear due to the land use. But the thickening of fluvial network can be found in the strongly dissected areas with steep slopes and high elevation differences.

  9. Fluvial mudstone breccias and their petroleum significance

    SciTech Connect

    Putnam, P.E.

    1987-05-01

    The classic fining-upward model of fluvial deposition places mudstone breccia fragments as basal channel lag deposits. Basal breccias can form by bank erosion and collapse by migrating channels and channel down-cutting into preexisting mudstones. However, mudstone breccias associated with fluvial sediments display much wider distributions and can be found at the top of channel fills. Some formative mechanisms for breccias found toward the tops of fluvial sequences are (1) gravity sliding down point bar surfaces; (2) bank erosion and collapse by migrating underfit streams found within abandoned channel reaches undergoing vertical accretion and; (3) oversteepening and collapse of channel banks in response to stage fluctuations. Thus, breccia deposits can be located above or adjacent to well-sorted porous and permeable sands. In the subsurface, fluvial breccias are difficult to recognize in core if individual clasts are larger than the borehole diameter and flat lying. Dense concentrations of clasts also influence log readings by displaying high gamma-ray and relatively positive spontaneous potential responses. Core analyses commonly give misleadingly low indications of porosity and permeability because of the relatively small sample sizes available. It is very easy to mistake thick, dense concentrations of mudstone breccia for the deposits of shale-filled channels. Breccias found at the top of fluvial sequences are commonly overlooked reservoirs because hydrocarbons will be found in zones characterized by very large impervious blocks formed of muddy sediment. Recognition of the presence and distribution of breccias is crucial in the exploration and development of channel reservoirs.

  10. Morphology of fluvial networks on Titan: Evidence for structural control

    E-print Network

    Burr, Devon M.

    Although Titan’s surface shows clear evidence of erosional modification, such as fluvial incision, evidence for tectonism has been less apparent. On Earth, fluvial networks with strongly preferred orientations are often ...

  11. Large Fluvial Fans and Exploration for Hydrocarbons

    NASA Technical Reports Server (NTRS)

    Wilkinson, Murray Justin

    2005-01-01

    A report discusses the geological phenomena known, variously, as modern large (or large modern) fluvial fans or large continental fans, from a perspective of exploring for hydrocarbons. These fans are partial cones of river sediment that spread out to radii of 100 km or more. Heretofore, they have not been much recognized in the geological literature probably because they are difficult to see from the ground. They can, however, be seen in photographs taken by astronauts and on other remotely sensed imagery. Among the topics discussed in the report is the need for research to understand what seems to be an association among fluvial fans, alluvial fans, and hydrocarbon deposits. Included in the report is an abstract that summarizes the global distribution of large modern fluvial fans and a proposal to use that distribution as a guide to understanding paleo-fluvial reservoir systems where oil and gas have formed. Also included is an abstract that summarizes what a continuing mapping project has thus far revealed about the characteristics of large fans that have been found in a variety of geological environments.

  12. A Field Exercise in Fluvial Sediment Transport.

    ERIC Educational Resources Information Center

    Tharp, Thomas M.

    1983-01-01

    Describes an investigation which introduces the mathematical principles of stream hydraulics and fluvial sediment in a practical context. The investigation has four stages: defining hydrology of the stream; defining channel hydraulics in a study reach; measuring grain size; and calculating transportable grain size and comparing measure stream-bed…

  13. Applied fluvial geomorphology. Report No. 31

    SciTech Connect

    MacBroom, J.G.

    1981-03-01

    The first portion of this report discusses the geologic properties and characteristics of natural rivers and floodplains. The second part outlines the influence of man on fluvial geomorphology, ecological considerations, and the natural characteristics of rivers that should be applied in the design of river and bridge projects.

  14. Applied fluvial geomorphology. Report No. 31

    SciTech Connect

    MacBroom, J.G.

    1981-03-01

    The first portion of this report discusse the geologic properties and characteristics of natural rivers and floodplains. The second part outlines the influence of man on fluvial geomorphology, ecological considerations, and the natural characteristics of rivers that should be applied in the design of river and bridge projects.

  15. Martian fluvial conglomerates at Gale crater.

    PubMed

    Williams, R M E; Grotzinger, J P; Dietrich, W E; Gupta, S; Sumner, D Y; Wiens, R C; Mangold, N; Malin, M C; Edgett, K S; Maurice, S; Forni, O; Gasnault, O; Ollila, A; Newsom, H E; Dromart, G; Palucis, M C; Yingst, R A; Anderson, R B; Herkenhoff, K E; Le Mouélic, S; Goetz, W; Madsen, M B; Koefoed, A; Jensen, J K; Bridges, J C; Schwenzer, S P; Lewis, K W; Stack, K M; Rubin, D; Kah, L C; Bell, J F; Farmer, J D; Sullivan, R; Van Beek, T; Blaney, D L; Pariser, O; Deen, R G

    2013-05-31

    Observations by the Mars Science Laboratory Mast Camera (Mastcam) in Gale crater reveal isolated outcrops of cemented pebbles (2 to 40 millimeters in diameter) and sand grains with textures typical of fluvial sedimentary conglomerates. Rounded pebbles in the conglomerates indicate substantial fluvial abrasion. ChemCam emission spectra at one outcrop show a predominantly feldspathic composition, consistent with minimal aqueous alteration of sediments. Sediment was mobilized in ancient water flows that likely exceeded the threshold conditions (depth 0.03 to 0.9 meter, average velocity 0.20 to 0.75 meter per second) required to transport the pebbles. Climate conditions at the time sediment was transported must have differed substantially from the cold, hyper-arid modern environment to permit aqueous flows across several kilometers. PMID:23723230

  16. Martian fluvial conglomerates at Gale Crater

    USGS Publications Warehouse

    Williams, Rebecca M.E.; Grotzinger, J.P.; Dietrich, W.E.; Gupta, S.; Sumner, D.Y.; Wiens, R.C.; Mangold, N.; Malin, M.C.; Edgett, K.S.; Maurice, S.; Forni, O.; Gasnault, O.; Ollila, A.; Newsom, Horton E.; Dromart, G.; Palucis, M.C.; Yingst, R.A.; Anderson, Ryan B.; Herkenhoff, K.E.; Le Mouélic, S.; Goetz, W.; Madsen, M.B.; Koefoed, A.; Jensen, J.K.; Bridges, J.C.; Schwenzer, S.P.; Lewis, K.W.; Stack, K.M.; Rubin, D.; Kah, L.C.; Bell, J.F., III; Farmer, J.D.; Sullivan, R.; Van Beek, T.; Blaney, D.L.; Pariser, O.; Deen, R.G.

    2013-01-01

    Observations by the Mars Science Laboratory Mast Camera (Mastcam) in Gale crater reveal isolated outcrops of cemented pebbles (2 to 40 millimeters in diameter) and sand grains with textures typical of fluvial sedimentary conglomerates. Rounded pebbles in the conglomerates indicate substantial fluvial abrasion. ChemCam emission spectra at one outcrop show a predominantly feldspathic composition, consistent with minimal aqueous alteration of sediments. Sediment was mobilized in ancient water flows that likely exceeded the threshold conditions (depth 0.03 to 0.9 meter, average velocity 0.20 to 0.75 meter per second) required to transport the pebbles. Climate conditions at the time sediment was transported must have differed substantially from the cold, hyper-arid modern environment to permit aqueous flows across several kilometers.

  17. Martian Fluvial Conglomerates at Gale Crater

    NASA Astrophysics Data System (ADS)

    Williams, R. M. E.; Grotzinger, J. P.; Dietrich, W. E.; Gupta, S.; Sumner, D. Y.; Wiens, R. C.; Mangold, N.; Malin, M. C.; Edgett, K. S.; Maurice, S.; Forni, O.; Gasnault, O.; Ollila, A.; Newsom, H. E.; Dromart, G.; Palucis, M. C.; Yingst, R. A.; Anderson, R. B.; Herkenhoff, K. E.; Le Mouélic, S.; Goetz, W.; Madsen, M. B.; Koefoed, A.; Jensen, J. K.; Bridges, J. C.; Schwenzer, S. P.; Lewis, K. W.; Stack, K. M.; Rubin, D.; Kah, L. C.; Bell, J. F.; Farmer, J. D.; Sullivan, R.; Van Beek, T.; Blaney, D. L.; Pariser, O.; Deen, R. G.; Kemppinen, Osku; Bridges, Nathan; Johnson, Jeffrey R.; Minitti, Michelle; Cremers, David; Edgar, Lauren; Godber, Austin; Wadhwa, Meenakshi; Wellington, Danika; McEwan, Ian; Newman, Claire; Richardson, Mark; Charpentier, Antoine; Peret, Laurent; King, Penelope; Blank, Jennifer; Weigle, Gerald; Schmidt, Mariek; Li, Shuai; Milliken, Ralph; Robertson, Kevin; Sun, Vivian; Baker, Michael; Edwards, Christopher; Ehlmann, Bethany; Farley, Kenneth; Griffes, Jennifer; Miller, Hayden; Newcombe, Megan; Pilorget, Cedric; Rice, Melissa; Siebach, Kirsten; Stolper, Edward; Brunet, Claude; Hipkin, Victoria; Léveillé, Richard; Marchand, Geneviève; Sobrón Sánchez, Pablo; Favot, Laurent; Cody, George; Steele, Andrew; Flückiger, Lorenzo; Lees, David; Nefian, Ara; Martin, Mildred; Gailhanou, Marc; Westall, Frances; Israël, Guy; Agard, Christophe; Baroukh, Julien; Donny, Christophe; Gaboriaud, Alain; Guillemot, Philippe; Lafaille, Vivian; Lorigny, Eric; Paillet, Alexis; Pérez, René; Saccoccio, Muriel; Yana, Charles; Aparicio, Carlos Armiens; Caride Rodríguez, Javier; Carrasco Blázquez, Isaías; Gómez Gómez, Felipe; Elvira, Javier Gómez; Hettrich, Sebastian; Lepinette Malvitte, Alain; Marín Jiménez, Mercedes; Frías, Jesús Martínez; Soler, Javier Martín; Torres, F. Javier Martín; Molina Jurado, Antonio; Sotomayor, Luis Mora; Muñoz Caro, Guillermo; Navarro López, Sara; González, Verónica Peinado; García, Jorge Pla; Rodriguez Manfredi, José Antonio; Planelló, Julio José Romeral; Alejandra Sans Fuentes, Sara; Sebastian Martinez, Eduardo; Torres Redondo, Josefina; O'Callaghan, Roser Urqui; Zorzano Mier, María-Paz; Chipera, Steve; Lacour, Jean-Luc; Mauchien, Patrick; Sirven, Jean-Baptiste; Manning, Heidi; Fairén, Alberto; Hayes, Alexander; Joseph, Jonathan; Squyres, Steven; Thomas, Peter; Dupont, Audrey; Lundberg, Angela; Melikechi, Noureddine; Mezzacappa, Alissa; DeMarines, Julia; Grinspoon, David; Reitz, Günther; Prats, Benito; Atlaskin, Evgeny; Genzer, Maria; Harri, Ari-Matti; Haukka, Harri; Kahanpää, Henrik; Kauhanen, Janne; Paton, Mark; Polkko, Jouni; Schmidt, Walter; Siili, Tero; Fabre, Cécile; Wray, James; Wilhelm, Mary Beth; Poitrasson, Franck; Patel, Kiran; Gorevan, Stephen; Indyk, Stephen; Paulsen, Gale; Bish, David; Schieber, Juergen; Gondet, Brigitte; Langevin, Yves; Geffroy, Claude; Baratoux, David; Berger, Gilles; Cros, Alain; Uston, Claude d.; Lasue, Jérémie; Lee, Qiu-Mei; Meslin, Pierre-Yves; Pallier, Etienne; Parot, Yann; Pinet, Patrick; Schröder, Susanne; Toplis, Mike; Lewin, Éric; Brunner, Will; Heydari, Ezat; Achilles, Cherie; Oehler, Dorothy; Sutter, Brad; Cabane, Michel; Coscia, David; Szopa, Cyril; Robert, François; Sautter, Violaine; Nachon, Marion; Buch, Arnaud; Stalport, Fabien; Coll, Patrice; François, Pascaline; Raulin, François; Teinturier, Samuel; Cameron, James; Clegg, Sam; Cousin, Agnès; DeLapp, Dorothea; Dingler, Robert; Jackson, Ryan Steele; Johnstone, Stephen; Lanza, Nina; Little, Cynthia; Nelson, Tony; Williams, Richard B.; Jones, Andrea; Kirkland, Laurel; Treiman, Allan; Baker, Burt; Cantor, Bruce; Caplinger, Michael; Davis, Scott; Duston, Brian; Fay, Donald; Hardgrove, Craig; Harker, David; Herrera, Paul; Jensen, Elsa; Kennedy, Megan R.; Krezoski, Gillian; Krysak, Daniel; Lipkaman, Leslie; McCartney, Elaina; McNair, Sean; Nixon, Brian; Posiolova, Liliya; Ravine, Michael; Salamon, Andrew; Saper, Lee; Stoiber, Kevin; Supulver, Kimberley; Van Beek, Jason; Zimdar, Robert; French, Katherine Louise; Iagnemma, Karl; Miller, Kristen; Summons, Roger; Goesmann, Fred; Hviid, Stubbe; Johnson, Micah; Lefavor, Matthew; Lyness, Eric; Breves, Elly; Dyar, M. Darby; Fassett, Caleb; Blake, David F.; Bristow, Thomas; DesMarais, David; Edwards, Laurence; Haberle, Robert; Hoehler, Tori; Hollingsworth, Jeff; Kahre, Melinda; Keely, Leslie; McKay, Christopher; Bleacher, Lora; Brinckerhoff, William; Choi, David; Conrad, Pamela; Dworkin, Jason P.; Eigenbrode, Jennifer; Floyd, Melissa; Freissinet, Caroline; Garvin, James; Glavin, Daniel; Harpold, Daniel; Mahaffy, Paul; Martin, David K.

    2013-05-01

    Observations by the Mars Science Laboratory Mast Camera (Mastcam) in Gale crater reveal isolated outcrops of cemented pebbles (2 to 40 millimeters in diameter) and sand grains with textures typical of fluvial sedimentary conglomerates. Rounded pebbles in the conglomerates indicate substantial fluvial abrasion. ChemCam emission spectra at one outcrop show a predominantly feldspathic composition, consistent with minimal aqueous alteration of sediments. Sediment was mobilized in ancient water flows that likely exceeded the threshold conditions (depth 0.03 to 0.9 meter, average velocity 0.20 to 0.75 meter per second) required to transport the pebbles. Climate conditions at the time sediment was transported must have differed substantially from the cold, hyper-arid modern environment to permit aqueous flows across several kilometers.

  18. Field methods for measurement of fluvial sediment

    USGS Publications Warehouse

    Edwards, Thomas K.; Glysson, G. Douglas

    1998-01-01

    The complexity of hydrologic and physical environments and man's ever-increasing data needs make it essential for those who collect sediment data to be aware of basic concepts involved in the processes of erosion, transport, and deposition of sediment, and of the equipment and procedures necessary to representatively sample sediment and measure its concentration. This report describes equipment and procedures for the collection and measurement of fluvial sediment.

  19. Lowland fluvial phosphorus altered by dams

    NASA Astrophysics Data System (ADS)

    Zhou, Jianjun; Zhang, Man; Lin, Binliang; Lu, Pingyu

    2015-04-01

    Dams affect ecosystems, but their physical link to the variations in fluvial fluxes and downstream ecological consequences are inadequately understood. After estimating the current effects of the Three Gorges project and other reservoirs upstream on the Yangtze River on the fluvial phosphorus (P) in the middle and lower Yangtze River, we further investigated the long-term effects of dams on the fluvial regimes of P and P-enriched sediment (PES). Simultaneously measured P distributions with sediment size (PDSS) from the Three Gorges Reservoir (TGR) proved that the areal density of particulate P (PP) bound on graded sediment can be measured using the surface area concentration of the total sediment. A PDSS relationship is obtained and the selective transport and long-term sedimentation of P are simulated using a nonuniform suspended sediment model, which incorporates the PDSS formula. The computations revealed that a reservoir would significantly lower the downstream availability of P in the dry season and promote high pulses of P in summer when the reservoir is flushed as sedimentation accumulates. As a result, the P buffering and replenishing mechanism in the pristine ecosystem from upstream supplies and local re-suspension are permanently eliminated when a regulating reservoir is built upstream. This change is irreversible if reservoir regulation continues. Changes could potentially aggravate the existing P-limitation, decrease the water's ability to adjust nutrient/pollutant fluctuations, accumulate a greater surplus of carbon and nitrogen, and even exacerbate blooms in favorable conditions.

  20. Agua Caliente and Their Music.

    ERIC Educational Resources Information Center

    Ryterband, Roman

    1979-01-01

    Discusses the traditional music of the Agua Caliente band of California's Desert Cahuilla Indian tribe, including accompanying instruments, types of songs, thematic material, and performance routines. Exploring the structure of the music, the article describes meter, tempo, harmony and tonal gravitations, and use of words. (DS)

  1. Fluvial landscapes of the Harappan civilization.

    PubMed

    Giosan, Liviu; Clift, Peter D; Macklin, Mark G; Fuller, Dorian Q; Constantinescu, Stefan; Durcan, Julie A; Stevens, Thomas; Duller, Geoff A T; Tabrez, Ali R; Gangal, Kavita; Adhikari, Ronojoy; Alizai, Anwar; Filip, Florin; VanLaningham, Sam; Syvitski, James P M

    2012-06-26

    The collapse of the Bronze Age Harappan, one of the earliest urban civilizations, remains an enigma. Urbanism flourished in the western region of the Indo-Gangetic Plain for approximately 600 y, but since approximately 3,900 y ago, the total settled area and settlement sizes declined, many sites were abandoned, and a significant shift in site numbers and density towards the east is recorded. We report morphologic and chronologic evidence indicating that fluvial landscapes in Harappan territory became remarkably stable during the late Holocene as aridification intensified in the region after approximately 5,000 BP. Upstream on the alluvial plain, the large Himalayan rivers in Punjab stopped incising, while downstream, sedimentation slowed on the distinctive mega-fluvial ridge, which the Indus built in Sindh. This fluvial quiescence suggests a gradual decrease in flood intensity that probably stimulated intensive agriculture initially and encouraged urbanization around 4,500 BP. However, further decline in monsoon precipitation led to conditions adverse to both inundation- and rain-based farming. Contrary to earlier assumptions that a large glacier-fed Himalayan river, identified by some with the mythical Sarasvati, watered the Harappan heartland on the interfluve between the Indus and Ganges basins, we show that only monsoonal-fed rivers were active there during the Holocene. As the monsoon weakened, monsoonal rivers gradually dried or became seasonal, affecting habitability along their courses. Hydroclimatic stress increased the vulnerability of agricultural production supporting Harappan urbanism, leading to settlement downsizing, diversification of crops, and a drastic increase in settlements in the moister monsoon regions of the upper Punjab, Haryana, and Uttar Pradesh. PMID:22645375

  2. Fluvial geomorphology and river engineering: future roles utilizing a fluvial hydrosystems framework

    NASA Astrophysics Data System (ADS)

    Gilvear, David J.

    1999-12-01

    River engineering is coming under increasing public scrutiny given failures to prevent flood hazards and economic and environmental concerns. This paper reviews the contribution that fluvial geomorphology can make in the future to river engineering. In particular, it highlights the need for fluvial geomorphology to be an integral part in engineering projects, that is, to be integral to the planning, implementation, and post-project appraisal stages of engineering projects. It should be proactive rather than reactive. Areas in which geomorphologists will increasingly be able to complement engineers in river management include risk and environmental impact assessment, floodplain planning, river audits, determination of instream flow needs, river restoration, and design of ecologically acceptable channels and structures. There are four key contributions that fluvial geomorphology can make to the engineering profession with regard to river and floodplain management: to promote recognition of lateral, vertical, and downstream connectivity in the fluvial system and the inter-relationships between river planform, profile, and cross-section; to stress the importance of understanding fluvial history and chronology over a range of time scales, and recognizing the significance of both palaeo and active landforms and deposits as indicators of levels of landscape stability; to highlight the sensitivity of geomorphic systems to environmental disturbances and change, especially when close to geomorphic thresholds, and the dynamics of the natural systems; and to demonstrate the importance of landforms and processes in controlling and defining fluvial biotopes and to thus promote ecologically acceptable engineering. Challenges facing fluvial geomorphology include: gaining full acceptance by the engineering profession; widespread utilization of new technologies including GPS, GIS, image analysis of satellite and airborne remote sensing data, computer-based hydraulic modeling and geophysical techniques; dovetailing engineering approaches to the study of river channels which emphasize reach-scale flow resistance, shear stresses, and material strength with catchment scale geomorphic approaches, empirical predictions, bed and bank processes, landform evolution, and magnitude-frequency concepts; producing accepted river channel typologies; fundamental research aimed at producing more reliable deterministic equations for prediction of bed and bank stability and bedload transport; and collaboration with aquatic biologists to determine the role and importance of geomorphologically and hydraulically defined habitats.

  3. Fluvial processes on Mars: Erosion and sedimentation

    NASA Technical Reports Server (NTRS)

    Squyres, Steven W.

    1988-01-01

    One of the most important discoveries of the Mariner 9 and Viking missions to Mars was evidence of change of the Martian surface by the action of liquid water. From the standpoint of a Mars Rover/Sample Return Mission, fluvial activity on Mars is important in two ways: (1) channel formation has deeply eroded the Martian crust, providing access to relatively undisturbed subsurface units; and (2) much of the material eroded from channels may have been deposited in standing bodies of liquid water. The most striking fluvial erosion features on Mars are the outflow channels. A second type of channel apparently caused by flow of liquid water is the valley systems. These are similar to terrestial drainage systems. The sedimentary deposits of outflow channels are often difficult to identfy. No obvious deposits such as deltaic accumulations are visible in Viking images. Another set of deposits that may be water lain and that date approx. from the epoch of outflow channels are the layered deposits in the Valles Marineris. From the standpoint of a Mars Rover/Sample Return mission, the problem with all of these water-lain sediments is their age, or rather the lack of it.

  4. Metapopulation capacity of evolving fluvial landscapes

    NASA Astrophysics Data System (ADS)

    Bertuzzo, Enrico; Rodriguez-Iturbe, Ignacio; Rinaldo, Andrea

    2015-04-01

    The form of fluvial landscapes is known to attain stationary network configurations that settle in dynamically accessible minima of total energy dissipation by landscape-forming discharges. Recent studies have highlighted the role of the dendritic structure of river networks in controlling population dynamics of the species they host and large-scale biodiversity patterns. Here, we systematically investigate the relation between energy dissipation, the physical driver for the evolution of river networks, and the ecological dynamics of their embedded biota. To that end, we use the concept of metapopulation capacity, a measure to link landscape structures with the population dynamics they host. Technically, metapopulation capacity is the leading eigenvalue ?M of an appropriate "landscape" matrix subsuming whether a given species is predicted to persist in the long run. ?M can conveniently be used to rank different landscapes in terms of their capacity to support viable metapopulations. We study how ?M changes in response to the evolving network configurations of spanning trees. Such sequence of configurations is theoretically known to relate network selection to general landscape evolution equations through imperfect searches for dynamically accessible states frustrated by the vagaries of Nature. Results show that the process shaping the metric and the topological properties of river networks, prescribed by physical constraints, leads to a progressive increase in the corresponding metapopulation capacity and therefore on the landscape capacity to support metapopulations—with implications on biodiversity in fluvial ecosystems.

  5. Introduction Fluvial Processes in Small Southeastern Watersheds L. Allan James

    E-print Network

    James, L. Allan

    Introduction Fluvial Processes in Small Southeastern Watersheds L. Allan James Scott A. Lecce Lisa/50.4.james01.html #12;southeastern geographer, 50(4) 2010: pp. 393­396 Introduction Fluvial Processes in Small Southeastern Watersheds L. ALLAN JAMES, SCOTT A. LECCE, LISA DAVIS The seven papers

  6. Fluvial terraces of the lower Susquehanna River

    NASA Astrophysics Data System (ADS)

    Pazzaglia, Frank J.; Gardner, Thomas W.

    1993-11-01

    Fluvial terraces of the lower Susquehanna River offer a unique opportunity to investigate the late stage geologic and geomorphic evolution of the U.S. Atlantic passive margin. Petrography and elevation distinguish and provide a basis for correlation of two groups of terraces, the upland terraces and lower terraces, through the Piedmont, Newark Basin, and Great Valley. Downstream correlation to dated upper Coastal Plain and Fall Zone fluvial deposits, relative weathering, and soil profile development characteristics establish terrace age. Upland terraces (Tg1, Tg2, and Tg3), middle to late Miocene strath terraces 80 to 140 m above the present channel, occur only along the Piedmont reach. They are underlain by unstratified, texturally-mature, quartz-dominated roundstone diamictons. Lower terraces (QTg, Qt1-Qt6), Pliocene and Pleistocene strath and thin aggradational terraces within 45 m of the present channel, are underlain by stratified and unstratified, texturally and compositionally immature sand, gravel, and pebbly silt. Terrace age and longitudinal profiles suggest complex interactions among relative base level, long-term flexural isostatic processes, climate, and river grade. Our model for terrace genesis requires the Susquehanna River to attain and maintain a characteristics graded longitudinal profile over graded time. For the U.S. Atlantic margin, we propose that straths are continually cut along this graded profile during periods of relative base level stability, achieved by slow, steady, isostatic continental uplift acting in concert with eustatic rise. Change in an external modulating factor, such as eustatic fall or climate change, results in fluvial incision and subsequent genesis of strath terraces. Longitudinal profiles of lower Susquehanna River terraces, which converge at the river mouth, diverge through the Piedmont, and reconverge north of the Piedmont, contrast with their hypothesized, original concave-up profiles. Progressive and cumulative flexural upwarping of the Atlantic margin accounts for terrace profile deformation suggesting flexural isostasy as a first-order, regional deformation mechanism. These results offer new interpretations of terrace age, correlation, and geologic significance that require modification of previous studies suggesting uplifted or anticlinically-warped peneplains on the U.S. Atlantic margin.

  7. AGUA TIBIA PRIMITIVE AREA, CALIFORNIA.

    USGS Publications Warehouse

    Irwin, William P.; Thurber, Horace K.

    1984-01-01

    The Agua Tibia Primitive Area in southwestern California is underlain by igneous and metamorphic rocks that are siilar to those widely exposed throughout much of the Peninsular Ranges. To detect the presence of any concealed mineral deposits, samples of stream sediments were collected along the various creeks that head in the mountain. As an additional aid in evaluating the mineral potential, an aeromagnetic survey was made and interpreted. A search for records of past or existing mining claims within the primitive area was made but none was found. Evidence of deposits of metallic or nonmetallic minerals was not seen during the study.

  8. The global distribution of large subaerial distributary fluvial systems 

    E-print Network

    Gwynn, David Wilkinson

    2002-01-01

    Large subaerial distributary fluvial systems are cone-shaped, alluvial deposits that are ubiquitous features on Earth. These non-marine, non-lacustrine deposits have superficial similarities to small alluvial fans but are at a scale that is orders...

  9. Field methods for measurement of fluvial sediment

    USGS Publications Warehouse

    Edwards, Thomas K.; Glysson, G. Douglas

    1999-01-01

    This chapter describes equipment and procedures for collection and measurement of fluvial sediment. The complexity of the hydrologic and physical environments and man's ever-increasing data needs make it essential for those responsible for the collection of sediment data to be aware of basic concepts involved in processes of erosion, transport, deposition of sediment, and equipment and procedures necessary to representatively collect sediment data. In addition to an introduction, the chapter has two major sections. The 'Sediment-Sampling Equipment' section encompasses discussions of characteristics and limitations of various models of depth- and point-integrating samplers, single-stage samplers, bed-material samplers, bedload samplers, automatic pumping samplers, and support equipment. The 'Sediment-Sampling Techniques'` section includes discussions of representative sampling criteria, characteristics of sampling sites, equipment selection relative to the sampling conditions and needs, depth and point-integration techniques, surface and dip sampling, determination of transit rates, sampling programs and related data, cold-weather sampling, bed-material and bedload sampling, measuring total sediment discharge, and measuring reservoir sedimentation rates.

  10. Fluvial erosion on Mars: Implications for paleoclimatic change

    NASA Technical Reports Server (NTRS)

    Gulick, Virginia C.; Baker, Victor R.

    1993-01-01

    Fluvial erosion on Mars has been nonuniform in both time and space. Viking orbiter images reveal a variety of different aged terrains exhibiting widely different degrees of erosion. Based on our terrestrial analog studies, rates of fluvial erosion associated with the formation of many of the valleys on Mars is probably on the order of hundreds of meters per million years, while rates of erosion associated with the formation of the outflow channels probably ranged from tens to hundreds of meters in several weeks to months. However, estimated rates of erosion of the Martian surface at the Viking Lander sites are extremely low, on the order of 1 micron/yr or less. At most this would result in a meter of material removed per million years, and it is unlikely that such an erosion rate would be able to produce the degree of geomorphic work required to form the fluvial features present elsewhere on the surface. In addition, single terrain units are not eroded uniformly by fluvial processes. Instead fluvial valleys, particularly in the cratered highlands, typically are situated in clusters surrounded by vast expanses of uneroded surfaces of the same apparent lithologic, structural, and hydrological setting. Clearly throughout its geologic history, Mars has experienced a nonuniformity in erosion rates. By estimating the amount of fluvial erosion on dissected terrains and by studying the spatial distribution of those locations which have experienced above normal erosion rates, it should be possible to place further constraints on Mars' paleoclimatic history.

  11. Bar morphodynamics in the tidally-influenced fluvial zone

    NASA Astrophysics Data System (ADS)

    Parsons, Daniel; Ashworth, Philip; Best, James; Nicholas, Andrew; Prokocki, Eric; Sambrook-Smith, Greg; Keevil, Claire; Sandbach, Steve

    2015-04-01

    The hydrodynamics and deposits of the Tidally-Influenced Fluvial Zone (TIFZ) are complex because it experiences competing fluvial and tidal flows and spatially and temporally variable rates of sediment transport and deposition. This paper presents a new integrated field dataset from the Columbia River Estuary, USA, that quantifies the morphodynamic response the bed morphology and bar stratigraphy to fluvial-tidal flows. A 3-year, field and modelling program that started in 2011, has been monitoring the dynamics and deposits of a 40 km-reach of the Columbia River Estuary. Data obtained so far throughout the TIFZ include: bathymetry using MBES, flow using ADCP, subsurface sedimentology using GPR and shallow coring to 5 m. Initial results from the programme suggest there is a complex spatial and temporal lag in the response of the bed morphology and deposits to the fluvial-tidal flows. Zones of strong ebb and flood flow do not necessarily produce channel beds dominated by bi-directional bedforms. Many mid-channel bars are stable over decadal time periods. This paper will illustrate the variety in bar morphologies and channel change throughout the fluvial-tidal zone and contrast these bar dynamics with examples from purely fluvial environments.

  12. Distributive Fluvial Systems of the Chaco Plain - Satellite Image Assessment of Fluvial Form and Facies Distributions

    NASA Astrophysics Data System (ADS)

    Weissmann, G. S.; Hartley, A. J.; Scuderi, L.; Bhattacharyya, P.; Buehler, H.; Leleu, S.; Mather, A.

    2009-12-01

    Distributive fluvial systems (DFS) dominate fluvial deposition inside modern continental sedimentary basins and are particularly extensive in modern foreland basins. The largest of these DFS are found in the Chaco Plain, Andean Foreland Basin, South America. We use published literature, field and satellite data (Landsat, Modis, and SRTM) to construct preliminary hypotheses about the geomorphic form and fluvial facies distributions on the DFSs in this basin. The Pilcomayo River DFS extends over 700 km from apex to toe. The river enters the DFS apex as a large braided river with a bankfull channel width of 2500 m. Gravels and cobbles occur in terraces cut through the apex. At ~70-km downstream the bankfull channel width is ~2000 m and the channel is dominated by fine sand with cut banks 2-3 m high. The proximal channel belt is surrounded by floodplain sediments, however many sandy abandoned channel belts are present across the DFS, indicating a mobile channel system. Abandoned channels have a similar form to the modern channel, with minor reworking by underfit meandering streams. At ~75-km downfan, the river system diminishes in size (bankfull channel width up to 2 km but generally <1.5 km) and becomes increasingly sinuous in planform. This point appears to serve as a node for a series of recently abandoned meander belts and splays associated with discrete channels surrounded by floodplain material. At 100 km downstream the planform is highly sinuous and bankfull width has decreased to 1500 m or less. Downstream of this area abandoned meander belts dominate along the flanks of the modern channel with oxbow lakes present adjacent to the active channel. At 150 km downstream the bankfull channel belt width is 500 m or less and the river bifurcates into splays and multiple active channels which extend downstream for a further 200 km. Vegetation maps derived from Modis imagery indicate an increase in tree density around the DFS at this elevation (230 m). Along the distal portion of the DFS, a springline at ~150 m elevation separates the upper, well drained, aridisol dominated dry Chaco area of the DFS from the poorly drained wet Chaco at the toe. Channels below this line remain wet, are mud-dominated, and associated soils are hydromorphic. At the termination of the DFS the main Pilcomayo channel has a bankfull width of 120 m with sediments consisting of interbedded fine sand and mudstone. The observations from the Pilcomayo can serve as important analogues for the development of DFS in ancient foreland basin successions, particularly the recognition of the radial distribution of distinct facies types and the downstream changes in soil types associated with the spring line.

  13. Global effects of agriculture on fluvial dissolved organic matter

    PubMed Central

    Graeber, Daniel; Boëchat, Iola G.; Encina-Montoya, Francisco; Esse, Carlos; Gelbrecht, Jörg; Goyenola, Guillermo; Gücker, Björn; Heinz, Marlen; Kronvang, Brian; Meerhoff, Mariana; Nimptsch, Jorge; Pusch, Martin T.; Silva, Ricky C. S.; von Schiller, Daniel; Zwirnmann, Elke

    2015-01-01

    Agricultural land covers approximately 40% of Earth’s land surface and affects hydromorphological, biogeochemical and ecological characteristics of fluvial networks. In the northern temperate region, agriculture also strongly affects the amount and molecular composition of dissolved organic matter (DOM), which constitutes the main vector of carbon transport from soils to fluvial networks and to the sea, and is involved in a large variety of biogeochemical processes. Here, we provide first evidence about the wider occurrence of agricultural impacts on the concentration and composition of fluvial DOM across climate zones of the northern and southern hemispheres. Both extensive and intensive farming altered fluvial DOM towards a more microbial and less plant-derived composition. Moreover, intensive farming significantly increased dissolved organic nitrogen (DON) concentrations. The DOM composition change and DON concentration increase differed among climate zones and could be related to the intensity of current and historical nitrogen fertilizer use. As a result of agriculture intensification, increased DON concentrations and a more microbial-like DOM composition likely will enhance the reactivity of catchment DOM emissions, thereby fuelling the biogeochemical processing in fluvial networks, and resulting in higher ecosystem productivity and CO2 outgassing. PMID:26541809

  14. Global effects of agriculture on fluvial dissolved organic matter.

    PubMed

    Graeber, Daniel; Boëchat, Iola G; Encina-Montoya, Francisco; Esse, Carlos; Gelbrecht, Jörg; Goyenola, Guillermo; Gücker, Björn; Heinz, Marlen; Kronvang, Brian; Meerhoff, Mariana; Nimptsch, Jorge; Pusch, Martin T; Silva, Ricky C S; von Schiller, Daniel; Zwirnmann, Elke

    2015-01-01

    Agricultural land covers approximately 40% of Earth's land surface and affects hydromorphological, biogeochemical and ecological characteristics of fluvial networks. In the northern temperate region, agriculture also strongly affects the amount and molecular composition of dissolved organic matter (DOM), which constitutes the main vector of carbon transport from soils to fluvial networks and to the sea, and is involved in a large variety of biogeochemical processes. Here, we provide first evidence about the wider occurrence of agricultural impacts on the concentration and composition of fluvial DOM across climate zones of the northern and southern hemispheres. Both extensive and intensive farming altered fluvial DOM towards a more microbial and less plant-derived composition. Moreover, intensive farming significantly increased dissolved organic nitrogen (DON) concentrations. The DOM composition change and DON concentration increase differed among climate zones and could be related to the intensity of current and historical nitrogen fertilizer use. As a result of agriculture intensification, increased DON concentrations and a more microbial-like DOM composition likely will enhance the reactivity of catchment DOM emissions, thereby fuelling the biogeochemical processing in fluvial networks, and resulting in higher ecosystem productivity and CO2 outgassing. PMID:26541809

  15. Global effects of agriculture on fluvial dissolved organic matter

    NASA Astrophysics Data System (ADS)

    Graeber, Daniel; Boëchat, Iola G.; Encina-Montoya, Francisco; Esse, Carlos; Gelbrecht, Jörg; Goyenola, Guillermo; Gücker, Björn; Heinz, Marlen; Kronvang, Brian; Meerhoff, Mariana; Nimptsch, Jorge; Pusch, Martin T.; Silva, Ricky C. S.; von Schiller, Daniel; Zwirnmann, Elke

    2015-11-01

    Agricultural land covers approximately 40% of Earth’s land surface and affects hydromorphological, biogeochemical and ecological characteristics of fluvial networks. In the northern temperate region, agriculture also strongly affects the amount and molecular composition of dissolved organic matter (DOM), which constitutes the main vector of carbon transport from soils to fluvial networks and to the sea, and is involved in a large variety of biogeochemical processes. Here, we provide first evidence about the wider occurrence of agricultural impacts on the concentration and composition of fluvial DOM across climate zones of the northern and southern hemispheres. Both extensive and intensive farming altered fluvial DOM towards a more microbial and less plant-derived composition. Moreover, intensive farming significantly increased dissolved organic nitrogen (DON) concentrations. The DOM composition change and DON concentration increase differed among climate zones and could be related to the intensity of current and historical nitrogen fertilizer use. As a result of agriculture intensification, increased DON concentrations and a more microbial-like DOM composition likely will enhance the reactivity of catchment DOM emissions, thereby fuelling the biogeochemical processing in fluvial networks, and resulting in higher ecosystem productivity and CO2 outgassing.

  16. Fluvial to Lacustrine Facies Transitions in Gale Crater, Mars

    NASA Technical Reports Server (NTRS)

    Sumner, Dawn Y.; Williams, Rebecca M. E.; Schieber, Juergen; Palucis, Marisa C.; Oehler, Dorothy Z.; Mangold, Nicolas; Kah, Linda C.; Gupta, Sanjeev; Grotzinger, John P.; Grant, John A., III; Edgar, Lauren A.; Dietrich, William E.

    2015-01-01

    NASA's Curiosity rover has documented predominantly fluvial sedimentary rocks along its path from the landing site to the toe of the Peace Vallis alluvial fan (0.5 km to the east) and then along its 8 km traverse across Aeolis Palus to the base of Aeolis Mons (Mount Sharp). Lacustrine facies have been identified at the toe of the Peace Vallis fan and in the lowermost geological unit exposed on Aeolis Mons. These two depositional systems provide end members for martian fluvial/alluvial-lacustrine facies models. The Peace Vallis system consisted of an 80 square kilometers alluvial fan with decimeter-thick, laterally continuous fluvial sandstones with few sedimentary structures. The thin lacustrine unit associated with the fan is interpreted as deposited in a small lake associated with fan runoff. In contrast, fluvial facies exposed over most of Curiosity's traverse to Aeolis Mons consist of sandstones with common dune-scale cross stratification (including trough cross stratification), interbedded conglomerates, and rare paleochannels. Along the southwest portion of the traverse, sandstone facies include south-dipping meter-scale clinoforms that are interbedded with finer-grained mudstone facies, interpreted as lacustrine. Sedimentary structures in these deposits are consistent with deltaic deposits. Deltaic deposition is also suggested by the scale of fluvial to lacustrine facies transitions, which occur over greater than 100 m laterally and greater than 10 m vertically. The large scale of the transitions and the predicted thickness of lacustrine deposits based on orbital mapping require deposition in a substantial river-lake system over an extended interval of time. Thus, the lowermost, and oldest, sedimentary rocks in Gale Crater suggest the presence of substantial fluvial flow into a long-lived lake. In contrast, the Peace Vallis alluvial fan onlaps these older deposits and overlies a major unconformity. It is one of the youngest deposits in the crater, and requires only short-lived, transient flows.

  17. Fluvial-deltaic sedimentation and stratigraphy of the ferron sandstone

    USGS Publications Warehouse

    Anderson, P.B.; Chidsey, T.C., Jr.; Ryer, T.A.

    1997-01-01

    East-central Utah has world-class outcrops of dominantly fluvial-deltaic Turonian to Coniacian aged strata deposited in the Cretaceous foreland basin. The Ferron Sandstone Member of the Mancos Shale records the influences of both tidal and wave energy on fluvial-dominated deltas on the western margin of the Cretaceous western interior seaway. Revisions of the stratigraphy are proposed for the Ferron Sandstone. Facies representing a variety of environments of deposition are well exposed, including delta-front, strandline, marginal marine, and coastal-plain. Some of these facies are described in detail for use in petroleum reservoir characterization and include permeability structure.

  18. May 2004 / Vol. 54 No. 5 BioScience 413 Principles of fluvial geomorphology have guided

    E-print Network

    Poff, N. LeRoy

    May 2004 / Vol. 54 No. 5 · BioScience 413 Articles Principles of fluvial geomorphology have guided river continuum concept (RCC;Vannote et al.1980).Based on early principles of fluvial geomorphology (e

  19. Estimates of fluvial erosion on Titan from sinuosity of lake shorelines

    E-print Network

    Tewelde, Yodit

    Titan has few impact craters, suggesting that its surface is geologically young. Titan's surface also has abundant landforms interpreted to be fluvial networks. Here we evaluate whether fluvial erosion has caused significant ...

  20. Architectural studies of Jurassic-Cretaceous fluvial units, Colorado Plateau

    SciTech Connect

    Miall, A.D.; Bromley, M.H.; Cowan, E.J.; Turner-Peterson, C.E.

    1989-03-01

    A sixfold hierarchy of architectural elements and bounding surfaces evolved from outcrop studies of three fluvial units: Westwater Canyon member (WCM), Morrison Formation, Upper Jurassic; Torrivio sandstone member (TSM), Gallup Sandstone, Upper Cretaceous, northwestern New Mexico; and Kayenta Formation (KF), Lower Jurassic, southwestern Colorado. This hierarchy is discussed.

  1. The Australian Paleoflood Model for Unconfined Fluvial Deposition on Mars

    NASA Technical Reports Server (NTRS)

    Bourke, M. C.; Zimbelman, J. R.

    2001-01-01

    Paleoflood deposits in central Australia represent a new model for possible fluvial deposits on Mars. The distinct Australian assemblage of landforms and sediments is used to identify potential unconfined paleoflood deposits in Mars Orbiter Camera (MOC) images of Mars. Additional information is contained in the original extended abstract.

  2. Fluvial landscapes of the Harappan civilization Liviu Giosana,1

    E-print Network

    Clift, Peter

    in Sindh. This fluvial quiescence suggests a gra- dual decrease in flood intensity that probably stimulated intensive agriculture initially and encouraged urbanization around 4,500 BP. However, further decline in monsoon precipitation led to conditions adverse to both inundation- and rain-based farming. Contrary

  3. Fluvial network organization imprints on microbial co-occurrence networks

    E-print Network

    Widder, Stefanie

    Fluvial network organization imprints on microbial co-occurrence networks Stefanie Widdera , William T. Sloang , Andrea Rinaldof,h,1 , and Tom J. Battinb,c,1 a Division of Computational Systems of Architecture, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland; g School of Engineering

  4. Bank stability analysis for fluvial erosion and mass failure

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The central objective of this study was to highlight the differences in magnitude between mechanical and fluvial streambank erosional strength with the purpose of developing a more comprehensive bank stability analysis. Mechanical erosion and ultimately failure signifies the general movement or coll...

  5. Modeling large-scale fluvial erosion in geographic information systems

    E-print Network

    Montgomery, David R.

    Modeling large-scale fluvial erosion in geographic information systems David P. Finlayson*, David R. Montgomery Department of Earth and Space Sciences, University of Washington, Box 351310, Seattle, WA 98195 Variants of the stream power model have become standard for large-scale erosion modeling in geographic

  6. Impact of glacial erosion on 10 Be concentrations in fluvial

    E-print Network

    Bookhagen, Bodo

    Impact of glacial erosion on 10 Be concentrations in fluvial sediments of the Marsyandi catchment] Several processes contribute to denudation in high-mountain environments. Of these, glacial erosion significant variations in glacial erosion, both in space and magnitude, within the Marsyandi catchment

  7. 61. View of the Agua Fria River stream bed from ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    61. View of the Agua Fria River stream bed from atop Waddell Dam. Photographer Mark Durben. Source: Salt River Project. - Waddell Dam, On Agua Fria River, 35 miles northwest of Phoenix, Phoenix, Maricopa County, AZ

  8. A classification scheme for fluvial-aeolian system interaction in desert-margin settings

    NASA Astrophysics Data System (ADS)

    Al-Masrahy, Mohammed A.; Mountney, Nigel P.

    2015-06-01

    This study examines 130 case examples from 60 desert regions to propose a generalised framework to account for the diverse types of interaction known to exist between active aeolian and fluvial depositional systems at modern dune-field margins. Results demonstrate the significance of aeolian and fluvial system type, orientation of aeolian versus fluvial landforms, distribution of open versus closed interdune corridors, and fluvial flow processes in controlling the distance and type of penetration of fluvial systems into aeolian dune fields. Ten distinct types of fluvial-aeolian interaction are recognised: fluvial incursions aligned parallel to trend of linear chains of aeolian dune forms; fluvial incursions oriented perpendicular trend of aeolian dunes; bifurcation of fluvial flow between isolated aeolian dune forms; through-going fluvial channel networks that cross entire aeolian dune fields; flooding of dune fields due to regionally elevated water-table levels associated with fluvial floods; fluvial incursions emanating from a single point source into dune fields; incursions emanating from multiple sheet sources; cessation of the encroachment of entire aeolian dune fields by fluvial systems; termination of fluvial channel networks in aeolian dune fields; long-lived versus short-lived modes of fluvial incursion. Quantitative relationships describing spatial rates of change of desert-margin landforms are presented. The physical boundaries between geomorphic systems are dynamic: assemblages of surface landforms may change gradationally or abruptly over short spatial and temporal scales. Generalised models for the classification of types of interaction have application to the interpretation of ancient preserved successions, especially those known only from the subsurface.

  9. Instituto Universitario del Agua y de las Ciencias Ambientales

    E-print Network

    Escolano, Francisco

    Sánchez Sánchez http://iuaca.ua.es Organiza: Patrocina: AGUA, ARQUITECTURA Y PAISAJE EN EUROPA 21 nov ua idraulico Sara Maldina (Universidad de Ferrara) 12:30 Arquitectura, agua y paisaje en algunas ciudades en Europa" 18:00 Exposición de la oferta docente y de investigación en arquitectura, agua y paisaje

  10. Hillslope to fluvial process domain transitions in headwater catchments

    NASA Astrophysics Data System (ADS)

    Williams, Karen Mary

    The landscape is partitioned into hillslopes and unchanneled valleys (hollows), and colluvial (hillslope controlled) and alluvial (self-formed) channels. The key issue for any study of headwater catchments is the rational distinction between these elements. Accurate identification of process domain transitions from hillslopes to hollows, hollows to colluvial channels and colluvial to alluvial channels, are not obvious either in the field or from topographic data derived from remotely sensed data such as laser derived (LIDAR) digital elevation models. The research in this dissertation investigates the spatial arrangement of these landforms and how hillslope and fluvial process domains interact in two pairs of headwater catchments in southwest and central Montana, using LIDAR data. This dissertation uses digital terrain analysis of LIDAR-derived topography and field studies to investigate methods of detection, modeling, and prediction of process transitions from the hillslope to fluvial domains and within the fluvial domain, from colluvial to alluvial channel reaches. Inflections in the scaling relationships between landscape parameters such as flowpath length, unit stream power (a metric of the energy expended by the channel in doing work), and drainage area were used to detect transitions in flow regimes characteristic of hillslope, unchanneled valleys, and channeled landforms. Using the scale-invariant properties of fluvial systems as a threshold condition, magnitude-frequency distributions of curvature and the derivative of aspect were also used to detect hillslope, fluvial, and transitional process domains. Finally, within the classification of channeled landforms, the transition from colluvial to alluvial channels was detected using the presence/absence of repeating patterns in the power spectra of fluvial energy and channel form parameters. LIDAR-derived scaling relations and magnitude-frequency distributions successfully detected and predicted locations of mapped channel heads and hollows and spatial regions of process transitions. Subreaches of arguably alluvial channel conditions were also identified in power spectra. However, extrinsic forcing limits ability to detect a clear transition from colluvial to fully alluvial conditions. Headwater catchments present a mosaic of process domains, in large determined by local structure and lithology. However, process domain transitions appear detectable and statistically, though not deterministically, predictable, irrespective of setting.

  11. 2. William Beardsley standing along the Agua Fria River near ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. William Beardsley standing along the Agua Fria River near construction site of the Agua Fria project. Photographer James Dix Schuyler, 1903. Source: Schuyler, James D. 'Report on the Water Supply of the Agua Fria River, and the Storage Reservoir Project of the Agua Fria Water and Land Company For Irrigation in the Gila River Valley, Arizona,' (September 29, 1903). Arizona Historical Collection, Hayden Library, Arizona State University, Tempe, Arizona. (Typewritten.) - Waddell Dam, On Agua Fria River, 35 miles northwest of Phoenix, Phoenix, Maricopa County, AZ

  12. 7. Photocopy of map of the Agua Fria Valley and ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    7. Photocopy of map of the Agua Fria Valley and lands to be irrigated by the Agua Fria Water and Land Company. Photographer Mark Durben, 1987 Source: 'Map of the Agua Fria Valley and the Western Portion of the Salt River Valley Showing the System of Reservoirs and Canals of the Agua Fria Water and Land Company and the Land to be Irrigated Thereby 160,000 Acres of New Land to be Reclaimed in the Maricopa County, Arizona Territory,' (Brochure) Union Photo Engraving Company, c. 1895, Salt River Project Research Archives, Tempe, Arizona. - Waddell Dam, On Agua Fria River, 35 miles northwest of Phoenix, Phoenix, Maricopa County, AZ

  13. A Search for Unconfined Fluvial Outflow Deposits on Mars

    NASA Technical Reports Server (NTRS)

    Zimbelman, J. R.; Bourke, M. C.

    2000-01-01

    Fluvial processes have been active during a large portion of Martian history, as evidenced by a variety of erosional features, ranging from concentrations of small channels to scour features generated by floods that affected enormous areas on Mars. Most research efforts prior to Mars Global Surveyor (MGS) focused on channelized reaches since these were some of the most convincing fluvial features on the planet. Since MGS reached its planned mapping orbit in 1999, a new era of Mars exploration has been opened. The m-scale resolution of the Mars Orbiter Camera (MOC), the precise elevation measurements of the Mars Orbiter Laser Altimeter (MOLA), and the compositional constraints derived from the Thermal Emission Spectrometer (TES) allows one now to search for deposits as well as erosional landforms. Here we describe our initial efforts at a search for deposits on Mars where flow was no longer confined within a topographic channel. We are using both new MGS and existing Viking data, in conjunction with field results of fluvial deposits in unconfined reaches from central Australia and elsewhere as analogues for the deposit characteristics to search for on Mars. Additional information is contained in the original extended abstract.

  14. Discrepancy between fluvial incision and erosion rates in Pamir

    NASA Astrophysics Data System (ADS)

    Fuchs, Margret; Gloaguen, Richard; Pohl, Eric

    2015-04-01

    Understanding mountain evolution relies on quantitative estimates of surface processes. Variations in magnitude allow to decipher the control of tectonic and climatic factors. However, significant discrepancies exist between fluvial incision and erosion rates in Pamir. Optically stimulated luminescence (OSL)-based terrace incision along the Panj at the western Pamir margin outpaces cosmogenic nuclide (CN)-based erosion of marginal basins by up to 10 times. Differences in the captured time interval of both methods are not convincing to explain the contrast. The millennial erosion rates are highest (1.0 - 1.5 mm/yr) where long-term (104 years) fluvial incision is moderate (2 - 5 mm/yr). In contrast, erosion is lower (~0.8 mm/yr) where incision is highest (7 - 10 mm/yr), although the millennial scale of rates suggests to represent the most recent stage of adjustment to base level lowering. Analyses of fluvial incision and erosion patterns in Pamir reveal differing control factors. The longitudinal profile and valley profiles of the Panj highlight links between fluvial incision and tectonic structures. Several river captures across Pamir domes correspond to intense incision, while southern dome boundaries coincide with base levels of successive river segments. The interpretation of river captures implies sudden base level drops for basins at the Pamir margins. The generally high erosion at the Pamir margins (0.5 - 1.5 mm/yr) correlate with the resulting steep slopes (0.75 quartiles of values within a basin) with an R2 of ~0.8. The coincidence of the highest erosion rates with increased moisture supply from the Westerlies indicates an additional role of precipitation that becomes evident in multiple linear regression of erosion with the 0.75 quartiles of steep slopes and precipitation (R2 of 0.93). Hence, steep slopes are the primary precondition for high erosion, but sufficient winter precipitation (snow) and the related concentrated discharge during the melting season are needed for an efficient sediment transport out of basins. Accordingly, the discrepancy between erosion in marginal basins and fluvial incision along the Panj is lowest (~2 - 3 times) where a minimum of precipitation facilitates the sediment transport from hillslopes into the river channels and out of basins. We propose that river captures are responsible for the strong base level drop driving the incision along the Panj and consequently, initiate steep hillslopes that will contribute to high erosion at the Pamir margins. Precipitation may act as limiting factor to hillslope adjustment and consequently to erosion processes.

  15. Estuarine fluvial floodplain formation in the Holocene Lower Tagus valley (Central Portugal) and implications for Quaternary fluvial system evolution

    NASA Astrophysics Data System (ADS)

    van der Schriek, Tim; Passmore, David G.; Rolão, Jose; Stevenson, Anthony C.

    2007-11-01

    We present a brief synthesis of the Quaternary fluvial record in the Lower Tagus Basin (central Portugal), concentrating on factors controlling infill and incision. The Holocene part of the record forms the focus of this paper and guides the questioning of the basic assumptions of the established Quaternary fluvial evolution model, in particular the link between sea-level change and fluvial incision-deposition. We suggest that several incision-aggradation phases may have occurred during glacial periods. Major aggradation events may overlap with cold episodes, while incision appears to concentrate on the warming limb of climate transitions. The complex stratigraphy of the Quaternary record in the Lower Tagus valley is influenced by repeated base-level and climate changes. This paper submits the first chronostratigraphic framework for valley fill deposits in the Lower Tagus area. Sea-level rise forced aggradation and controlled deposition of the fine-grained sedimentary wedge underlying the low-gradient Lower Tagus floodplain. Investigations have focused on the lower Muge tributary, where rapidly aggrading estuarine and fluvial environments were abruptly established (?8150 cal BP) as sea level rose. Base level at the valley mouth controlled the upstream extent of the fine-grained backfill. Tidal environments disappeared abruptly (?5800 cal BP) when the open estuary at the Muge confluence was infilled by the Tagus River. The decrease and final still stand of sea-level rise led to floodplain stabilisation with peat (?6400-5200 cal BP) and soil formation (?5200-2200 cal BP). Localised renewed sedimentation (?2200-200 cal BP) is linked to human activity.

  16. Listeria monocytogenes aguA1, but Not aguA2, Encodes a Functional Agmatine Deiminase

    PubMed Central

    Cheng, Changyong; Chen, Jianshun; Fang, Chun; Xia, Ye; Shan, Ying; Liu, Yuan; Wen, Guilan; Song, Houhui; Fang, Weihuan

    2013-01-01

    Listeria monocytogenes is adaptable to low pH environments and therefore crosses the intestinal barrier to establish systemic infections. L. monocytogenes aguA1 and aguA2 encode putative agmatine deiminases (AgDIs) AguA1 and AguA2. Transcription of aguA1 and aguA2 was significantly induced at pH 5.0. Deletion of aguA1 significantly impaired its survival both in gastric fluid at pH 2.5 and in mouse stomach, whereas aguA2 deletion did not show significant defect of survival in gastric fluid. With agmatine as the sole substrate, AguA1 expressed in Escherichia coli was optimal at 25 °C and over a wide range of pH from 3.5 to 10.5. Recombinant AguA2 showed no deiminase activity. Site-directed mutagenesis revealed that all nine AguA1 mutants completely lost enzymatic activity. AguA2 acquired AgDI activity only when Cys-157 was mutated to glycine. AguA1 mutation at the same site, G157C, also inactivated the enzyme. Thus, we have discovered Gly-157 as a novel residue other than the known catalytic triad (Cys-His-Glu/Asp) in L. monocytogenes that is critical for enzyme activity. Of the two putative AgDIs, we conclude that only AguA1 functionally participates in the AgDI pathway and mediates acid tolerance in L. monocytogenes. PMID:23918931

  17. Western Mediterranean environmental changes: Evidences from fluvial archives

    NASA Astrophysics Data System (ADS)

    Wolf, Daniel; Faust, Dominik

    2015-08-01

    When dealing with current and past landscape evolution, a key issue addresses responses of geomorphic systems to the large number of influencing variables. Identifying morphodynamic phases and revealing interrelations with specific driving forces are demanding tasks for Quaternary research. In this paper, we present late Pleistocene and Holocene fluvial sedimentation patterns of three Western Mediterranean river catchments, namely Jarama River, Guadalete River and Guadalquivir River that extent along a climatic transect from semi-humid SW-Spain to semi-arid central Spain. These studies are based on extensive fieldwork conducted on 36 exposures and 13 drillings in floodplain positions. Field data is supported by geochemical analyses, while the chronological framework was obtained from the analyses of 70 radiocarbon samples. Results show distinct patterns of fluvial sedimentation as well as soil formation linked to floodplain stability for each river catchment. On regional or catchment scale, pollen stratigraphical correlation and comparison with lacustrine records show that fluvial dynamics have a strong reaction to climatic shifts, with phases of high fragility characterized by catchment erosion and floodplain sedimentation in response to climatic aridification events and phases of climate change in general. The comparison of the examined river systems reveals that periods of supra-regional floodplain sedimentation in several catchments occurred from 8.0 to 7.0, 5.0 to 3.8, 2.2 to 1.5, and around 1.0 as well as 0.4 ka cal. BP, while we found periods of supra-regional soil formation from 13.3 to 12.7, 7.0 to 5.1 (with a short interruption around 6.0 to 5.5 ka), 2.8 to 2.3 ka, 1.4 to 1.2 ka, and 0.8 to 0.5 ka cal. BP. Beside these consistencies we found deviating dynamic patterns that are apparently expressed in terms of differing onset and offset, differing durations, or even the lack of fluvial system response. The main reasons for this can be seen in different regional climate condition and impacts of further influencing factors, or in different levels of sensitivity of the river catchments that may be controlled by initial hydrological conditions, catchment size, or the degree of anthropogenic influence. A larger scale assessment shows that fluvial dynamic patterns are hardly comparable across entire Spain due to strong spatial heterogeneity of physiographic and climatic conditions on the Iberian Peninsula, in particular when areas are influenced by different circulation systems (e.g. regions influenced by the Atlantic Ocean vs. regions influenced by the Mediterranean Sea). However, the consideration of North Atlantic marine records reveals a certain coupling between North Atlantic coolings, atmospheric processes leading to arid climate over large parts of Spain, as well as increased landscape instability including strong fluvial sedimentation activity. Attendant atmospheric conditions are discussed.

  18. Introduction to the special issue on discontinuity of fluvial systems

    NASA Astrophysics Data System (ADS)

    Burchsted, Denise; Daniels, Melinda; Wohl, Ellen E.

    2014-01-01

    Fluvial systems include natural and human-created barriers that modify local base level; as such, these discontinuities alter the longitudinal flux of water and sediment by storing, releasing, or changing the flow path of those materials. Even in the absence of distinct barriers, fluvial systems are typically discontinuous and patchy. The size of fluvial discontinuities ranges across scales from 100 m, such as riffles, to 104 m, such as lava dams or major landslides. The frequency of occurrence appears to be inversely related to size, with creation and failure of the small features, such as beaver dams, occurring on a time scale of 100 to 101 years and a frequency of occurrence at scales as low as 101 m. In contrast, larger scale discontinuities, such as lava dams, can last for time scales up to 105 years and have a frequency of occurrence of approximately 104 m. The heterogeneity generated by features is an essential part of river networks and should be considered as part of river management. Therefore, we suggest that "natural" dams are a useful analog for human dams when evaluating options for river restoration. This collection of papers on the studies of natural dams includes bedrock barriers, log jams and beaver dams. The collection also addresses the discontinuity generated by a floodplain — in the absence of an obvious barrier in the channel — and tools for evaluation of riverbed heterogeneity. It is completed with a study of impact of human dams on floodplain sedimentation. These papers will help geomorphologists and river managers understand the factors that control river heterogeneity across scales and around the world.

  19. Energy, time, and channel evolution in catastrophically disturbed fluvial systems

    NASA Astrophysics Data System (ADS)

    Simon, Andrew

    1992-08-01

    Two diverse fluvial systems show that with time, channels adjust such that the rate of energy dissipation is minimized. One fluvial system, characterized by high relief and coarse-grained sediment, was subjected to an explosive volcanic eruption; the other system, characterized by low relief and fine-grained sediment, was subjected to dredging and straightening. Study of the expenditure of kinetic- and potential-energy components of total-mechanical energy provide an energy-based rationale of the interdependency between processes and forms during channel evolution. Spatial and temporal trends of aggradation and degradation are similar although relative amounts of aggradation in the high-energy system are greatly enhanced by the deposition of large amounts of eroded bank material from upstream reaches. Degradation accompanied by widening is the most efficient means of energy dissipation because all components of total-mechanical energy decrease with time. Widening dominates energy dissipation in the coarse-grained system to offset increases in hydraulic depth caused by incision. In the low-energy fine-grained system, channel adjustment and energy dissipation are dominated by vertical processes because of low relative values of kinetic energy, and because eroded bank sediment is transported out of the drainage basin and does not aid in downstream aggradation, energy dissipation, or channel recovery. Specific energy is shown to decrease nonlinearly with time during channel evolution and provides a measure of reductions in available energy at the channel bed. Data from two sites show convergence towards a minimum specific energy with time. Time-dependent reductions in specific energy at a point act in concert with minimization of the rate of energy dissipation over a reach during channel evolution as the fluvial systems adjust to a new equilibrium.

  20. Energy, time, and channel evolution in catastrophically disturbed fluvial systems

    USGS Publications Warehouse

    Simon, A.

    1992-01-01

    Two diverse fluvial systems show that with time, channels adjust such that the rate of energy dissipation is minimized. One fluvial system, characterized by high relief and coarse-grained sediment, was subjected to an explosive volcanic eruption; the other system, characterized by low relief and fine-grained sediment, was subjected to dredging and straightening. Study of the expenditure of kinetic- and potential-energy components of total-mechanical energy provide an energy-based rationale of the interdependency between processes and forms during channel evolution. Spatial and temporal trends of aggradation and degradation are similar although relative amounts of aggradation in the high-energy system are greatly enhanced by the deposition of large amounts of eroded bank material from upstream reaches. Degradation accompanied by widening is the most efficient means of energy dissipation because all components of total-mechanical energy decrease with time. Widening dominates energy dissipation in the coarse-grained system to offset increases in hydraulic depth caused by incision. In the low-energy fine-grained system, channel adjustment and energy dissipation are dominated by vertical processes because of low relative values of kinetic energy, and because eroded bank sediment is transported out of the drainage basin and does not aid in downstream aggradation, energy dissipation, or channel recovery. Specific energy is shown to decrease nonlinearly with time during channel evolution and provides a measure of reductions in available energy at the channel bed. Data from two sites show convergence towards a minimum specific energy with time. Time-dependent reductions in specific energy at a point act in concert with minimization of the rate of energy dissipation over a reach during channel evolution as the fluvial systems adjust to a new equilibrium. ?? 1992.

  1. New Mesoscale Fluvial Landscapes - Seismic Geomorphology and Exploration

    NASA Technical Reports Server (NTRS)

    Wilkinson, M. J.

    2013-01-01

    Megafans (100-600 km radius) are very large alluvial fans that cover significant areas on most continents, the surprising finding of recent global surveys. The number of such fans and patterns of sedimentation on them provides new mesoscale architectures that can now be applied on continental fluvial depositional systems, and therefore on. Megafan-scale reconstructions underground as yet have not been attempted. Seismic surveys offer new possibilities in identifying the following prospective situations at potentially unsuspected locations: (i) sand concentrations points, (ii) sand-mud continuums at the mesoscale, (iii) paleo-valley forms in these generally unvalleyed landscapes, (iv) stratigraphic traps, and (v) structural traps.

  2. Wilmington Submarine Canyon: a marine fluvial-like system.

    USGS Publications Warehouse

    McGregor, B.; Stubblefield, W.L.; Ryan, William B. F.; Twichell, D.C.

    1982-01-01

    Midrange sidescan sonar data show that a system of gullies and small channels feeds into large submarine canyons on the Middle Atlantic Continental Slope of the US. The surveyed canyons all have relatively flat floors, but they have different channel morphologies. Wilmington Canyon has a meandering channel that extends down the Continental Slope and across the Continental Rise, whereas two canyons south of Wilmington Canyon have straight channels that trend directly downslope onto the rise. The morphology of these submarine canyon systems is remarkably similar to that of terrestrial fluvial systems.-Authors

  3. Large Fluvial Fans: Aspects of the Attribute Array

    NASA Technical Reports Server (NTRS)

    Wilkinson, Justin M.

    2015-01-01

    In arguing for a strict definition of the alluvial fan (coarse-grained with radii less than10 km, in mountain-front settings), Blair and McPherson (1994) proposed that there is no meaningful difference between large fluvial fans (LFF) and floodplains, because the building blocks of both are channel-levee-overbank deposits. Sediment bodies at the LFF scale (greater than 100 km long, fan-shaped in planform), are relatively unstudied although greater than 160 are now identified globally. The following perspectives suggest that the significance of LFF needs to be reconsidered.

  4. Desarrollo y AplicaciDesarrollo y Aplicacin de unn de un ndice de Calidad de Agua parandice de Calidad de Agua para

    E-print Network

    Gilbes, Fernando

    Desarrollo y AplicaciDesarrollo y Aplicacióón de unn de un ÍÍndice de Calidad de Agua parandice de Calidad de Agua para RRííos en Puerto Ricoos en Puerto Rico Jorge Rivera Santos,Jorge Rivera Santos, PhConclusiones RecomendacionesRecomendaciones #12;INTRODUCCIINTRODUCCIÓÓNN #12;Calidad del AguaCalidad del Agua La calidad del

  5. Fluvial erosion of impact craters: Earth and Mars

    NASA Technical Reports Server (NTRS)

    Baker, V. R.

    1984-01-01

    Geomorphic studies of impact structures in central Australia are being used to understand the complexities of fluvial dissection in the heavily cratered terrains of Mars. At Henbury, Northern Territory, approximately 12 small meteorite craters have interacted with a semiarid drainage system. The detailed mapping of the geologic and structural features at Henbury allowed this study to concentrate on degradational landforms. The breaching of crater rims by gullies was facilitated by the northward movement of sheetwash along an extensive pediment surface extending from the Bacon Range. South-facing crater rims have been preferentially breached because gullies on those sides were able to tap the largest amounts of runoff. At crater 6 a probable rim-gully system has captured the headward reaches of a pre-impact stream channel. The interactive history of impacts and drainage development is critical to understanding the relationships in the heavily cratered uplands of Mars. Whereas Henbury craters are younger than 4700 yrs. B.P., the Gosses Bluff structure formed about 130 million years ago. The bluff is essentially an etched central peak composed of resistant sandstone units. Fluvial erosion of this structure is also discussed.

  6. Fluvial deposits as an archive of early human activity

    NASA Astrophysics Data System (ADS)

    Mishra, S.; White, M. J.; Beaumont, P.; Antoine, P.; Bridgland, D. R.; Limondin-Lozouet, N.; Santisteban, J. I.; Schreve, D. C.; Shaw, A. D.; Wenban-Smith, F. F.; Westaway, R. W. C.; White, T. S.

    2007-11-01

    River terraces are well established as an important source of Lower and Middle Palaeolithic artefacts in Europe, large collections having been assembled there during the years of manual gravel extraction. Now that many terrace sequences can be reliably dated and correlated with the oceanic record, potentially useful patterns can be recognized in the distribution of artefacts. The earliest appearance of artefacts in terrace staircases, marking the arrival of the first tool-making hominins in the region in question, is the first of several archaeological markers within fluvial sequences. The Lower to Middle Palaeolithic transition, with the appearance of Levallois, is another. Others may be more regional in significance: the occurrences of Clactonian (Mode 1) industry, twisted ovate handaxes and bout coupé handaxes, for example. IGCP Project no. 449 instigated the compilation of fluvial records from all over the 'old world'. Comparison between British and Central European sequences confirms the established view that there is a demarcation between handaxe making in the west and flake/core industries in the east. Other centres of activity reported here have been in the Middle East (Syria), South Africa and India. Data from such areas will be key in deciphering the story of the earlier 'out-of-Africa' migration, that by pre-Homo sapiens people. There is clear evidence for diachroneity between the first appearances of different industries, in keeping with the well-established idea of northward migration.

  7. Fluvial channels on Titan: Initial Cassini RADAR observations

    USGS Publications Warehouse

    Lorenz, R.D.; Lopes, R.M.; Paganelli, F.; Lunine, J.I.; Kirk, R.L.; Mitchell, K.L.; Soderblom, L.A.; Stofan, E.R.; Ori, G.; Myers, M.; Miyamoto, H.; Radebaugh, J.; Stiles, B.; Wall, S.D.; Wood, C.A.

    2008-01-01

    Cassini radar images show a variety of fluvial channels on Titan's surface, often several hundreds of kilometers in length. Some (predominantly at low- and mid-latitude) are radar-bright and braided, resembling desert washes where fines have been removed by energetic surface liquid flow, presumably from methane rainstorms. Others (predominantly at high latitudes) are radar-dark and meandering and drain into or connect polar lakes, suggesting slower-moving flow depositing fine-grained sediments. A third type, seen predominantly at mid- and high latitudes, have radar brightness patterns indicating topographic incision, with valley widths of up to 3 km across and depth of several hundred meters. These observations show that fluvial activity occurs at least occasionally at all latitudes, not only at the Huygens landing site, and can produce channels much larger in scale than those observed there. The areas in which channels are prominent so far amount to about 1% of Titan's surface, of which only a fraction is actually occupied by channels. The corresponding global sediment volume inferred is not enough to account for the extensive sand seas. Channels observed so far have a consistent large-scale flow pattern, tending to flow polewards and eastwards. ?? 2008.

  8. Fluvial sediment fingerprinting: literature review and annotated bibliography

    USGS Publications Warehouse

    Williamson, Joyce E.; Haj, Adel E., Jr.; Stamm, John F.; Valder, Joshua F.; Prautzch, Vicki L.

    2014-01-01

    The U.S. Geological Survey has evaluated and adopted various field methods for collecting real-time sediment and nutrient data. These methods have proven to be valuable representations of sediment and nutrient concentrations and loads but are not able to accurately identify specific source areas. Recently, more advanced data collection and analysis techniques have been evaluated that show promise in identifying specific source areas. Application of field methods could include studies of sources of fluvial sediment, otherwise referred to as sediment “fingerprinting.” The identification of sediment is important, in part, because knowing the primary sediment source areas in watersheds ensures that best management practices are incorporated in areas that maximize reductions in sediment loadings. This report provides a literature review and annotated bibliography of existing methodologies applied in the field of fluvial sediment fingerprinting. This literature review provides a bibliography of publications where sediment fingerprinting methods have been used; however, this report is not assumed to provide an exhaustive listing. Selected publications were categorized by methodology with some additional summary information. The information contained in the summary may help researchers select methods better suited to their particular study or study area, and identify methods in need of more testing and application.

  9. Fluvial channels on Titan: Initial Cassini RADAR observations

    NASA Astrophysics Data System (ADS)

    Lorenz, Ralph D.; Lopes, Rosaly M.; Paganelli, Flora; Lunine, Jonathan I.; Kirk, Randolph L.; Mitchell, Karl L.; Soderblom, Lawrence A.; Stofan, Ellen R.; Ori, Gian; Myers, Melissa; Miyamoto, Hideyaki; Radebaugh, Jani; Stiles, Bryan; Wall, Stephen D.; Wood, C. A.; The Cassini Radar Team

    2008-06-01

    Cassini radar images show a variety of fluvial channels on Titan's surface, often several hundreds of kilometers in length. Some (predominantly at low- and mid-latitude) are radar-bright and braided, resembling desert washes where fines have been removed by energetic surface liquid flow, presumably from methane rainstorms. Others (predominantly at high latitudes) are radar-dark and meandering and drain into or connect polar lakes, suggesting slower-moving flow depositing fine-grained sediments. A third type, seen predominantly at mid- and high latitudes, have radar brightness patterns indicating topographic incision, with valley widths of up to 3 km across and depth of several hundred meters. These observations show that fluvial activity occurs at least occasionally at all latitudes, not only at the Huygens landing site, and can produce channels much larger in scale than those observed there. The areas in which channels are prominent so far amount to about 1% of Titan's surface, of which only a fraction is actually occupied by channels. The corresponding global sediment volume inferred is not enough to account for the extensive sand seas. Channels observed so far have a consistent large-scale flow pattern, tending to flow polewards and eastwards.

  10. Impact Scales of Fluvial Response to Management along the Sacramento River,

    E-print Network

    Singer, Michael

    employed in lowland river systems such as large dams, levees, and bypasses affect flow regimes, sediment of fluvial systems with varying internal dynamics and external forcing, and which are often formalized to the fluvial system has an `impact scale' in time and space, and these impacts may manifest as persistent

  11. Riparian shrub metal concentrations and growth in amended fluvial mine tailings

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fluvial mine tailing deposition has caused extensive riparian damage throughout the western United States. Willows are often used for fluvial mine tailing revegetation, but some species accumulate excessive metal concentrations which could be detrimental to browsers. In a greenhouse experiment, gr...

  12. Revegetation of Fluvial Mine Tailing Deposits: The Use of Five Riparian Shrub Species

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fluvial deposition of mine tailings has caused extensive damage to riparian ecosystems throughout the West. Willows are often used for revegetation of fluvial mine tailing deposits but some species accumulate toxic concentrations of metals in leaves and stems. A greenhouse experiment was conducted ...

  13. Fluvial sediment in Double Creek subwatershed No. 5, Washington County, Oklahoma

    USGS Publications Warehouse

    Bednar, Gene A.; Waldrep, Thomas E.

    1973-01-01

    A total of 21,370 tons of fluvial sediment was transported into reservoir No. 5 and a total of 19,930 tons was deposited. Seventy-eight percent of the total fluvial sediment was deposited during the first 9.2 years, or 63 percent of time of reservoir operation. The computed trap efficiency of reservoir No. 5 was 93 percent.

  14. Z .Geomorphology 31 1999 265290 Time and the persistence of alluvium: River engineering, fluvial

    E-print Network

    James, L. Allan

    Z .Geomorphology 31 1999 265­290 Time and the persistence of alluvium: River engineering, fluvial geomorphology, and mining sediment in California Allan James UniÕersity of South Carolina, USA Received 28 interpretations and is essential to a full understanding of the behavior of fluvial systems. Geomorphology

  15. Fractal topography and subsurface water flows from fluvial bedforms to the continental shield

    E-print Network

    Fractal topography and subsurface water flows from fluvial bedforms to the continental shield of contaminants in freshwater environments. Fractal scaling relationships have been found in distributions of both has not been realized. We show that the fractal nature of the land surface in fluvial and glacial

  16. Emergency Factsheet for Tratando Agua Almacenada con Cloro

    E-print Network

    Emergency Factsheet for Tratando Agua Almacenada con Cloro Monty C. Dozier, Profesor Asistente y Fertilidad de Suelos El Sistema Universitario Texas A&M Al tratamiento del agua potable para mejorar su sanidad o calidad bacteriológica sele refiere como desinfección. La cloraciónpor choque (o cloración por

  17. Active tectonics coupled to fluvial erosion in the NW Himalaya

    NASA Astrophysics Data System (ADS)

    Vannay, J.-C.; Grasemann, B.; Rahn, M.; Frank, W.; Carter, A.

    2003-04-01

    Both syntaxial extremities of the Himalaya show a spatial correlation between active exhumation of deep crustal rocks and the presence of powerful rivers, the Indus and the Tsangpo-Brahmaputra, cutting across the range two of the deepest gorges on Earth. These features strongly suggests that vigorous fluvial erosion can locally enhance isostatic and tectonic uplift, which in turn contributes to heat advection and weakening of the crust, as well as to maintain steep topographic gradients [Zeitler et al., 2001]. In order to test this positive feedback model, we combined structural and geochronological data to constrain the tectono-thermal evolution along the Sutlej (NW India), the third largest river cross-cutting entirely the Himalaya. The Himalayan crystalline core zone exposed along the Sutlej Valley is composed of two gneiss sheets, that were successively underthrusted and tectonically extruded as a consequence of the foreland-directed propagation of deformation in the Indian plate margin. During Early to Middle Miocene, combined thrusting along the Main Central Thrust (MCT) and extension along the Sangla Detachment induced the rapid exhumation and cooling of the amphibolite facies to migmatitic High Himalayan Crystalline Sequence [Vannay &Grasemann, 2001]. Underthrusting beneath the MCT led to the creation of the amphibolite facies Lesser Himalayan Crystalline Sequence (LHCS). The LHCS cooled rapidly from Late Miocene to Pleistocene, as a consequence of tectonic extrusion controlled by thrusting along the Munsiari Thrust, and extension in the MCT hanging wall. This phase is still active, as indicated by: (1) cooling rates in excess of 100^oC/Myr during the past ˜3 Myr in the LHCS; (2) Holocene neo-tectonic activity; (3) present-day hydrothermal activity testifying to elevated near-surface geothermal gradients; and (4) seismic activity along the Munsiari Thrust. Modelling of fluvial erosion in the Himalaya indicate that the Sutlej Valley corresponds to the main zone of high erosion index between the syntaxes [Finlayson et al., 2002]. The correlation between active extrusion of deep crustal rocks and focused fluvial erosion along the Sutlej supports consequently the emerging view of a positive feedback between tectonics, topography, and surface processes during the Himalayan tectono-thermal evolution. Finlayson et al. (2002), Geology, 30, 219 222. Vannay &Grasemann (2001), Geological Magazine 138, 253-276. Zeitler et al. (2001), Tectonics, 20, 712-728.

  18. The Agua Salud Project, Central Panama

    NASA Astrophysics Data System (ADS)

    Stallard, R. F.; Elsenbeer, H.; Ogden, F. L.; Hall, J. S.

    2007-12-01

    The Agua Salud Project utilizes the Panama Canal's central role in world commerce to focus global attention on the ecosystem services provided by tropical forests. It will be the largest field experiment of its kind in the tropics aimed at quantifying the environmental services (water, carbon, and biodiversity) provided by tropical forests. The Agua Salud Watershed is our principal field site. This watershed and the headwaters of several adjacent rivers include both protected mature forests and a wide variety of land uses that are typical of rural Panama. Experiments at the scale of entire catchments will permit complete water and carbon inventories and exchanges for different landscape uses. The following questions will be addressed: (1) How do landscape treatments and management approaches affect ecosystem services such as carbon storage, water quality and quantity, dry- season water supply, and biodiversity? (2) Can management techniques be designed to optimize forest production along with ecosystem services during reforestation? (3) Do different tree planting treatments and landscape management approaches influence groundwater storage, which is thought to be critical to maintaining dry-season flow, thus insuring the full operation of the Canal during periods of reduced rainfall and severe climatic events such as El Niño. In addition we anticipate expanding this project to address biodiversity, social, and economic values of these forests.

  19. Modeling post-wildfire fluvial incision and terrace formation

    NASA Astrophysics Data System (ADS)

    Rengers, F. K.; Tucker, G. E.

    2013-12-01

    Wildfires often lead to rapid erosion, sedimentation, and morphologic change. One of the challenges in developing quantitative models of post-fire landscape dynamics is a lack of high-quality datasets that document fluvial system evolution in the years to decades following a destructive fire. This study takes advantage of a natural experiment in post-fire fluvial incision to explore how the magnitude and timing of large flow events following a wildfire can change fluvial channel patterns. The study site is the Spring Creek watershed located in the foothills of central Colorado approximately 26 miles southwest of Denver, Colorado. The site burned during the Buffalo Creek wildfire, which was contained in May 1996. Within the Spring Creek watershed, 79% of the basin was burned and 63% of the burned area was considered high severity (Moody and Martin, 2001). In July 1996 a large rain storm hit the burned watershed and 110 mm of rain fell in one hour (Jarrett, 2001). This storm was larger than the estimated 100-year rainfall intensity of 60 mm/hr. Due to the increased surface erodibility after the wildfire, rapid erosion occurred within the watershed, while the main valley of Spring Creek aggraded with up to 2 m of sediment after this storm. Spring Creek has been incising through this post-wildfire sediment since the 1996 storm, and the terraces from this initial storm are still prevalent and identifiable along the valley. Repeated measurements of valley cross-sections since 1996 provide a comprehensive dataset for testing models of fluvial-system evolution on a decadal time scale. We hypothesize that the current channel pattern results from the specific sequence of rain events that occurred within the four years after the initial 1996 storm filled the valley with sediment. This hypothesis was tested using a two-dimensional coupled model of shallow-water flow, sediment transport, and topographic evolution. Discharge data were obtained from a stream gage installed at Spring Creek in 1997, with records from April 1997 to October 2000. The initial channel topography was constructed by extrapolating the 1996 terraces across the channel. Thus the initial condition for the model is the aggradation after the 1996 storm. We calibrated the model using observed measured discharges and actual closely spaced (10-50 m) cross-sections that were measured before and after large discharges from 1997-2000. Model sensitivity tests are used to explore how the channel evolution might have differed under alternative discharge sequences. For example, the natural discharge from the study site showed three large floods in 1997, two in 1998, one in 1999, and none in 2000. We ran models that varied this sequence to identify the degree to which storm sequence, magnitude, and duration influence the tempo and nature of channel evolution. Early results show that the sequence of storms is indeed important in shaping the overall channel geomorphology.

  20. Modeling fluvial erosion on regional to continental scales

    NASA Technical Reports Server (NTRS)

    Howard, Alan D.; Dietrich, William E.; Seidl, Michele A.

    1994-01-01

    The fluvial system is a major concern in modeling landform evolution in response to tectonic deformation. Three stream bed types (bedrock, coarse-bed alluvial, and fine-bed alluvial) differ in factors controlling their occurrence and evolution and in appropriate modeling approaches. Spatial and temporal transitions among bed types occur in response to changes in sediment characteristics and tectonic deformation. Erosion in bedrock channels depends upon the ability to scour or pluck bed material; this detachment capacity is often a power function of drainage area and gradient. Exposure of bedrock in channel beds, due to rapid downcutting or resistant rock, slows the response of headwater catchments to downstream baselevel changes. Sediment routing through alluvial channels must account for supply from slope erosion, transport rates, abrasion, and sorting. In regional landform modeling, implicit rate laws must be developed for sediment production from erosion of sub-grid-scale slopes and small channels.

  1. Dynamic Flocculation of Muds in Fluvial to Marine Transitions

    NASA Astrophysics Data System (ADS)

    Keyvani, A.; Strom, K. B.

    2012-12-01

    Rivers are the primary conduits for delivery of sediment and organic matter to the sea. The sediments from river plumes may deposit and be preserved in estuarine and deltaic zones, or may be carried and mixed by ocean currents to deposit elsewhere on the shelf or basin. The sediment settling velocity is the most important parameter in terms of controlling and predicting depositional patterns in river mouths and coastal shelves. Settling velocity greatly impacts the distribution of muds in deltas and turbidity currents, and is largely controlled by grain size and density. The flocculation process yields mud aggregates of variable size and density as a function of turbulent energy and salt levels. Since turbulent energy and salinity both change during the fluvial to marine transition, dynamic flocculation processes may have a significant control to the eventual distribution of sediment through these zones. The purpose of this study is to quantify the evolution of floc size distribution and fractal dimension of suspended flocs with time as a function of time and space as turbulent shear and salinity levels vary in the fluvial to marine transition (river jet/plume and turbidity currents). To do this, experiments are carried out in a laboratory chamber where turbulent shear and salinity levels are varied to mimic a fixed volume of fluid being advected through the transition zone, and floc size distribution properties are measured within the mixing chamber using a specially designed floc imaging system and a set of image processing routines that allows us to measure floc size distributions of suspended flocs. Results demonstrate that floc properties and floc settling velocity change due to the dynamic flocculation and are dependent on the turbulent time history the mud suspension was exposed to under constant concentration. Results from the study are then used to frame a discussion on the relative importance of accounting for these dynamic effects in numerical models of deltas and turbidity currents.

  2. Fluvial process and the establishment of bottomland trees

    NASA Astrophysics Data System (ADS)

    Scott, Michael L.; Friedman, Jonathan M.; Auble, Gregor T.

    1996-01-01

    The effects of river regulation on bottomland tree communities in western North America have generated substantial concern because of the important habitat and aesthetic values of these communities. Consideration of such effects in water management decisions has been hampered by the apparent variability of responses of bottomland tree communities to flow alteration. When the relation between streamflow and tree establishment is placed in a geomorphic context, however, much of that variability is explained, and prediction of changes in the tree community is improved. The relation between streamflow and establishment of bottomland trees is conditioned by the dominant fluvial process or processes acting along a stream. For successful establishment, cottonwoods, poplars, and willows require bare, moist surfaces protected from disturbance. Channel narrowing, channel meandering, and flood deposition promote different spatial and temporal patterns of establishment. During channel narrowing, the site requirements are met on portions of the bed abandoned by the stream, and establishment is associated with a period of low flow lasting one to several years. During channel meandering, the requirements are met on point bars following moderate or higher peak flows. Following flood deposition, the requirements are met on flood deposits ;high above the channel bed. Flood deposition can occur along most streams, but where a channel is constrained by a narrow valley, this process may be the only mechanism that can produce a bare, moist surface high enough to be safe from future disturbance. Because of differences in local bedrock, tributary influence, or geologic history, two nearby reaches of the same stream may be dominated by different fluvial processes and have different spatial and temporal patterns of trees. We illustrate this phenomenon with examples from forests of plains cottonwood ( Populus deltoides ssp. monilifera) along meandering and constrained reaches of the Missouri River in Montana.

  3. Episodes of fluvial and volcanic activity in Mangala Valles, Mars

    NASA Astrophysics Data System (ADS)

    Keske, Amber L.; Hamilton, Christopher W.; McEwen, Alfred S.; Daubar, Ingrid J.

    2015-01-01

    A new mapping-based study of the 900-km-long Mangala Valles outflow system was motivated by the availability of new high-resolution images and continued debates about the roles of water and lava in outflow channels on Mars. This study uses photogeologic analysis, geomorphic surface mapping, cratering statistics, and relative stratigraphy. Results show that Mangala Valles underwent at least two episodes of fluvial activity and at least three episodes of volcanic activity during the Late Amazonian. The occurrence of scoured bedrock at the base of the mapped stratigraphy, in addition to evidence provided by crater retention ages, suggests that fluvial activity preceded the deposition of two of the volcanic units. Crater counts performed at 30 locations throughout the area have allowed us to construct the following timeline: (1) formation of Noachian Highlands and possible initial flooding event(s) before ?1 Ga, (2) emplacement of Tharsis lava flows in the valley from ?700 to 1000 Ma, (3) a megaflooding event at ?700-800 Ma sourced from Mangala Fossa, (4) valley fill by a sequence of lava flows sourced from Mangala Fossa ?400-500 Ma, (5) another megaflooding event from ?400 Ma, (6) a final phase of volcanism sourced from Mangala Fossa ?300-350 Ma, and (7) emplacement of eolian sedimentary deposits in the northern portion of the valley ?300 Ma. These results are consistent with alternating episodes of aqueous flooding and volcanism in the valles. This pattern of geologic activity is similar to that of other outflow systems, such as Kasei Valles, suggesting that there is a recurring, and perhaps coupled, nature of these processes on Mars.

  4. Towards a phoenix phase in aeolian research: shifting geophysical perspectives from fluvial dominance

    SciTech Connect

    Whicker, Jeffrey J; Field, Jason P; Breshears, David D

    2008-01-01

    Aeolian processes are a fundamental driver of earth surface dynamics, yet the importance of aeolian processes in a broader geosciences context may be overshadowed by an unbalanced emphasis on fluvial processes. Here we wish to highlight that aeolian and fluvial processes need to be considered in concert relative to total erosion and to potential interactions, that relative dominance and sensitivity to disturbance vary with mean annual precipitation, and that there are important scale-dependencies associated with aeolian-fluvial interactions. We build on previous literature to present relevant conceptual syntheses highlighting these issues. We then highlight the relative investments that have been made in aeolian research on dust emission and management relative to that in fluvial research on sediment production. Literature searches highlight that aeolian processes are greatly understudied relative to fluvial processes when considering total erosion in different environmental settings. Notably, within the USA, aeolian research was triggered by the Dust Bowl catastrophe of the 1930s, but the resultant research agencies have shifted to almost completely focusing on fluvial processes, based on number of remaining research stations and on monetary investments in control measures. However, numerous research issues associated with intensification of land use and climate change impacts require a rapid ramping up in aeolian research that improves information about aeolian processes relative to fluvial processes, which could herald a post-Dust Bowl Phoenix phase in which aeolian processes are recognized as broadly critical to geo- and environmental sciences.

  5. Numerical modeling of episodic sediment supply events to headwater channels and subsequent fluvial sediment transport

    NASA Astrophysics Data System (ADS)

    Müller, T.; Hassan, M. A.

    2014-12-01

    In steep headwater catchments episodic events can rapidly contribute large amounts of sediment to the channel network. The fluvial system may react to this input in different ways, ranging from a swift evacuation of the contributed material to a long term morphological adjustment of the channel. How this response affects fluvial sediment transport is poorly understood and is scope of our study. We set up a numerical model to investigate how different magnitudes, frequencies and grain size distributions (GSD) of sediment supply events influence the sediment dynamics in the fluvial system. We used a randomized time series of disturbances and simulated subsequent fluvial reworking using a bed load transport model. Besides tracking the volume of stored sediment, we investigate changes in the GSD of the channel. In our model, the GSD of the fluvial channel approaches the GSD of the sediment input under high supply conditions, in which large quantities of material are supplied by a high frequency of events. This results in an exceedance of the ability of the fluvial system to significantly evacuate the supply. On the other hand, if the fluvial system is given enough time to rework the input material, the GSD of the channel gets coarser with time, as the smaller grain sizes are transported away. We further analyze the conditions under which the system is stable or more sensitive to changes in the magnitude or frequency of sediment supply. Our model shows how the combination of episodic time scales of disturbances and constant time scales of fluvial reworking results in temporal patterns of fluvial sediment transport.

  6. PETRLEO EN EL MAR ABIERTO La presencia de petrleo en el agua del mar puede

    E-print Network

    AGUA Y SEDIMENTOS · Monitoreo de la calidad del agua · Encuestas para detectar petróleo debajo de la actividades necesarias para restaurar el Golfo de México. PRUEBAS DE CALIDAD DEL AGUA ESTUDIOS DE CAMPOPETRÓLEO EN EL MAR ABIERTO La presencia de petróleo en el agua del mar puede afectar la salud de

  7. Landform Evolution Modeling of Specific Fluvially Eroded Physiographic Units on Titan

    NASA Technical Reports Server (NTRS)

    Moore, J. M.; Howard, A. D.; Schenk, P. M.

    2015-01-01

    Several recent studies have proposed certain terrain types (i.e., physiographic units) on Titan thought to be formed by fluvial processes acting on local uplands of bedrock or in some cases sediment. We have earlier used our landform evolution models to make general comparisons between Titan and other ice world landscapes (principally those of the Galilean satellites) that we have modeled the action of fluvial processes. Here we give examples of specific landscapes that, subsequent to modeled fluvial work acting on the surfaces, produce landscapes which resemble mapped terrain types on Titan.

  8. Lahar hazards at Agua volcano, Guatemala

    USGS Publications Warehouse

    Schilling, S.P.; Vallance, J.W.; Matías, O.; Howell, M.M.

    2001-01-01

    At 3760 m, Agua volcano towers more than 3500 m above the Pacific coastal plain to the south and 2000 m above the Guatemalan highlands to the north. The volcano is within 5 to 10 kilometers (km) of Antigua, Guatemala and several other large towns situated on its northern apron. These towns have a combined population of nearly 100,000. It is within about 20 km of Escuintla (population, ca. 100,000) to the south. Though the volcano has not been active in historical time, or about the last 500 years, it has the potential to produce debris flows (watery flows of mud, rock, and debris—also known as lahars when they occur on a volcano) that could inundate these nearby populated areas.

  9. Recent (Late Amazonian) Fluvial Features in Southeastern Elysium, Mars

    NASA Astrophysics Data System (ADS)

    Plescia, J.

    2002-12-01

    Cerberus Fossae, a major northwest trending tensional fracture in Elysium, has acted as a conduit for water in the very recent past (Late Amazonian). This same fracture system has also acted as a conduit for the release of the lavas that formed the Cerberus Plains. Water was released by the fracture in three locations in both catastrophic and non-catastrophic manners. At the northwest end of the fracture, two sources (Athabasca and Grjota' Valles) formed as the result of catastrophic flow away from the fracture carving channel systems hundreds of km long and tens of km wide. Both sources are at the same elevation -2.3 to -2.5 km suggesting they tapped the same reservoir beneath the Elysium rise. The third source is at the southeast end of Cerberus Fossae, southwest of Orcus Patera (Rahway Valles) which forms an extensive valley network. Some of these valleys begin at the fossae, others begin on the adjacent level plain to the north. This source is at a different elevation (-3.0 km) and apparently tapped a different, shallow reservoir. A shallow reservoir is suggested as there appear to be multiple sources over a broad area, possibly allowing headward erosion of some of the valleys by sapping, in addition to the larger (volume / rate) flows from the Cerberus Fossae fractures. Cerberus Fossae must have tapped two distinct reservoirs to release the water as the sources are restricted to a narrow elevation range, are at different elevations, and there are no release points between the two. Age relations suggest that all of the sources were active at the same point in geologic time. As faulting along the Cerberus Fossae trend has occurred repeatedly through time, the water must have been available for release only during the most recent episode of tectonism. Absolute timing, based on crater counts, is broadly constrained as only between 144 and 1700 Ma. These three fluvial channels can be integrated into a single fluvial system that exceeds 2500 km in length and extends across the Cerberus Plains through Marte Valles and into Amazonis. The presence of young catastrophic flood channels and valley networks indicate that significant quantities of water have been released in the recent past.

  10. Network Dynamic Connectivity for Identifying Hotspots of Fluvial Geomorphic Change

    NASA Astrophysics Data System (ADS)

    Czuba, J. A.; Foufoula-Georgiou, E.

    2014-12-01

    The hierarchical branching structure of a river network serves as a template upon which environmental fluxes of water, sediment, nutrients, etc. are conveyed and organized both spatially and temporally within a basin. Dynamical processes occurring on a river network tend to heterogeneously distribute fluxes on the network, often concentrating them into "clusters," i.e., places of excess flux accumulation. Here, we put forward the hypothesis that places in the network predisposed (due to process dynamics and network topology) to accumulate excess bed-material sediment over a considerable river reach and over a considerable period of time reflect locations where a local imbalance in sediment flux may occur thereby highlighting a susceptibility to potential fluvial geomorphic change. We have developed a framework where we are able to track fluxes on a "static" river network using a simplified Lagrangian transport model and use the spatial-temporal distribution of that flux to form a new "dynamic" network of the flux that evolves over time. From this dynamic network we can quantify the dynamic connectivity of the flux and integrate emergent "clusters" over time through a cluster persistence index (CPI) to assess the persistence of mass throughout the network. The framework was applied to sand transport on the Greater Blue Earth River Network in Minnesota where three hotspots of fluvial geomorphic change have been defined based on high rates of channel migration observed from aerial photographic analysis. Locations within the network with high CPI coincided with two of these hotspots, possibly suggesting that channel migration here is driven by sediment deposition "pushing" the stream into and thus eroding the opposite bank. The third hotspot was not identified by high CPI, but instead is believed to be a hotspot of streamflow-driven change based on additional information and the fact that high bed shear stress coincided with this hotspot. The proposed network-based dynamic connectivity framework has the potential to place dynamical processes occurring at small scales into a network context to understand how reach-scale changes cascade into network-scale effects, useful for informing the large-scale consequences of local management actions.

  11. Analysis of Ancient Fluvial Patterns on the Surface of Mars

    NASA Technical Reports Server (NTRS)

    Jethani, Henna; Williams, M. E.

    2010-01-01

    This project involves the study of ancient fluvial patterns on the surface of Mars, including raised curvilinear features (RCFs) and negative relief channels. It requires the use of geological images provided by the Mars Reconnaissance Orbiter to determine how water shaped the surface of Mars in the form of rivers, lakes and/or oceans approximately 3.5 billion years ago, during the Noachian period. The role of the intern is to examine the images and record the corresponding measurements of ancient river systems in an Excel spreadsheet to assist in determining the Noachian water cycle on Mars. Resources used to make these measurements include the Arena software, hand-drawn sketch maps, Microsoft Word, Microsoft Excel and the images provided by the Mars Reconnaissance Orbiter. The Context Imager (CTX) returns black and white images at a resolution of six meters per pixel. The camera can take images with a width of 30 km and a length of 160 km. Seventeen images were observed in total. Images are analyzed and notes are taken concerning their terminal deposits, stream ordering and drainage pattern. The Arena software is utilized to make the images more visible by allowing control of contrast and magnification. Once the image is adjusted, measurements: length, average width, drainage basin area, sinuous ridge area are recorded, at a magnification of one, through using the line segment and polygon tools. After an image has been analyzed and measured, a sketch map is drawn in order to clearly identify the various segments, basins and terminal deposits the intern observed. Observations are used to further classify the fluvial patterns; their drainage pattern is defined as dendritic, parallel, trellis, rectangular, radial, centripetal, deranged or discordant. Once observational notes are completed, mathematical relations are used to determine drainage density, stream frequency, theoretic basin area and sinuosity index. These data will be added to a larger data set that will yield a comprehensive view of early Mars drainage systems. The data obtained from the work conducted will be used to characterize the nature and behavior of water on the surface of Mars. Thorough understanding of the Martian water cycle will serve as biologically significant information. Through working on this project, I acquired insight into the study of planet Mars, and skills in the Arena software as well as the organization of a vast amount of data.

  12. What can we learn from fluvial incision in high mountains?

    NASA Astrophysics Data System (ADS)

    Fuchs, Margret; Gloaguen, Richard; Krbetschek, Matthias

    2013-04-01

    High and actively deforming mountain ranges attract the attention of geoscientists as they provide natural laboratories of fast evolving process-response systems. Tectonic compressional settings, often linked to perpendicular extension, control the topographic growth and hence, erosion, transport pathways and sedimentation. High altitude differences within short horizontal distances promote material re-organisation and high rates of surface processes. Furthermore, high mountains constitute orographic barriers that affect atmospheric circulations as well as host different climate regimes similar to those of widely separated latitudinal belts. Both cause a high sensitivity of surface processes to changes in climatic conditions. However, feedbacks between climatic and tectonic forcing are complex. Additionally, the dominance of one or the other varies in space and also over time, inheriting various traces of the paleo-morphodynamic conditions to the subsequent process regimes. To unravel the forces driving the evolution of relief in active mountains, numerous studies employ the drainage network of the corresponding mountains as a proxy of landscape evolution. Especially the rates of river incision provide a powerful tool to characterize the surface response and infer causes behind it. Several parameters of river incision are available to describe the fluvial incision at individual sites (e.g. terrace incision rates), along the river course (e.g. longitudinal river profiles, Hack index) and in its perpendicular dimension (e.g. valley cross sections, valley shape ratios). But they require careful interpretation. They are sensitive to both, climatic and tectonic forcing. Therefore, the synopsis of such indices for fluvial incision is essential to evaluate the role of climatic versus tectonic forcing. Here, we use the Panj river system, the major river draining the Pamir mountains of Central Asia, as an example. The Panj experiences high altitude changes of more than 4000 m and deflects several times from the main river orientation, where it cuts through major deformation zones and dome structures of the Pamir. Our contribution discusses the potentials and limitations of river incision analysis. We infer climatic versus tectonic forcing based on terraces along the Panj river together with the indication from its longitudinal profile, Hack index and valley shape ratios.

  13. Friday, March 17, 2006 MARS: FLUVIAL GEOMORPHOLOGY: RIVERS, OUTFLOWS, AND GULLIES

    E-print Network

    Rathbun, Julie A.

    Friday, March 17, 2006 MARS: FLUVIAL GEOMORPHOLOGY: RIVERS, OUTFLOWS, AND GULLIES 8:30 a.m. Crystal Noachian and early Hesperian, and on the consequent emergence of groundwater-dominated erosion. 8:45 a

  14. Constraining the average fill densities of Mars' lowlands and fluvial erosion of Titan's polar regions.

    E-print Network

    Tewelde, Yodit

    2013-01-01

    Other than Earth, Mars and Titan are the only bodies in our Solar System where we have observed widespread fluvial activity. In this thesis I present two approaches for constraining the extent of multiple resurfacing ...

  15. GEOG4750 (GEOG5960.02) Fluvial Geomorphology University of North Texas

    E-print Network

    Pan, Feifei

    GEOG4750 (GEOG5960.02) Fluvial Geomorphology University of North Texas Department of Geography is not allowed and will constitute an honor code violation. Policy on Late Homework: Homework is due in class

  16. GTEAMS Agua Caliente Elementary School Fibonacci Sequence Inventions

    E-print Network

    Lega, Joceline

    GTEAMS ­ Agua Caliente Elementary School Fibonacci Sequence Inventions Weather Chasers Department, the students were tasked to create an invention that would keep an ice cube frozen for the longest time

  17. Late Cenozoic fluvial development within the Sea of Azov and Black Sea coastal plains

    NASA Astrophysics Data System (ADS)

    Matoshko, A.; Gozhik, P.; Semenenko, V.

    2009-09-01

    Late Cenozoic terrestrial deposits are widespread across the northern coastal regions of the Black Sea and the Sea of Azov and represent diverse fluvial, estuarine and deltaic environments. The dating and correlation of these deposits rely on stratigraphically-associated marine index beds, mammalian and molluscan faunas and magnetostratigraphy. In detail the geometries of these sediment bodies are extremely complex, typically varying between localities and representing many cycles of incision and aggradation. However, the overall disposition of the sediments reflects the transition from the uplifting sediment source region to the north and the subsiding depocentre in the interior of the Black Sea to the south. Since the Middle Miocene the area of the Paratethys/Black Sea depocentre has decreased significantly, but since the Middle Pliocene the hinge zone between uplift and subsidence has been located close to the modern coastline. A combination of regional and local differential crustal movements has given rise to the great variety of fluvial sediment bodies, to the erosion-aggradation cycles, different phases and river activity and to the various fluvial landforms that have all been important in landscape development in this region during the past 12 Ma. The fluvial erosion-accumulation cycles (during the upper Serravillian-Messinian, the Zanclean-late Gelasian, and the Pleistocene) and corresponding cycles of relief dissection and planation are reconstructed against a background of local sea-level changes and climatic variations determined from palaeobotanical data. The maximum fluvial incision occurred in the early Zanclean time with alluvial coastal plains, unique in this area, developing in the Gelasian. Increased climatic aridity during the Pleistocene caused a reduction of fluvial activity in comparison with the Late Miocene and Pliocene. The sea-level oscillations and Pleistocene glaciations affected fluvial processes in different ways. The most remarkable events were the substantial reduction of fluvial activity during the Messinian dessication in the Black Sea and drainage of the shelf, with intensive dissection, coeval with the Last Glaciation.

  18. Defining Fluvial Megafans through Geomorphic Mapping and Metrics

    NASA Astrophysics Data System (ADS)

    Sounny-Slitine, M. A.; Latrubesse, E. M.

    2014-12-01

    Fluvial megafans are 'large' fan-shaped bodies of sediment that form from lateral migrations of a river as it exits a topographic front of a mountain belt. The criterion of what differentiates megafans from alluvial fans is an artificial scale divide. The scale divide varies in the literature, with the most common being a 100-km apex-to-toe length. Alternative values as little of 30-km apex-to-toe length have been proposed, as well as alternative metrics like coverage area. The question remains how should we define megafans, and what metrics differentiate them from smaller alluvial fans? To answer these questions, we catalog the known megafans of the world into a geodatabase delineating size and extent of basins both upstream and downstream from the apex. Through remote sensing, elevation modeling and geomorphic mapping, we populated the database with morphometric measurements, qualitative descriptions and basin parameters. We utilize the geodatabase to test a variety of criteria differentiating megafans from alluvial fans. The analysis draws into question a single parameter for defining megafans.

  19. Characteristics and historical development of fluvial sediments in the UAE

    NASA Astrophysics Data System (ADS)

    El Saiy, A.

    2012-04-01

    Fluvial deposits in the United Arab Emirates include a wide range of different lithologies and textures ranging from wadi and alluvial fan gravels, sands, silts and clay of different morphology, structures and cementation degree. These deposits represent vital economic, cultural and environmental resources in the UAE. In addition to their direct utilization in the industry as construction materials, agricultural ground and more, they are significant groundwater reservoirs (aquifers) and provide space for landfills and waste disposal. Here we present, field data coupled with geomorphologic observations and Be-10 and C-14 analyses of alluvium wadi deposits and related terraces located in the north and north-eastern parts of the UAE. The study area is strongly affected by the obduction of Oman ophiolite and subsequent tectonic activities during the late Cenozoic times. Deep incised valleys cut through the mountain ranges and deposit a mixture of gravel to clayey sediments that commonly reach a thickness of up to 30 m, but thicker sections were also encountered in scattered places. Alluvial-related terraces are developed inland and along the sea shore where deposition seems to have been interrupted by either riverine or marine peneplaination. In addition to carbonate and ophiolite dominated lithologies in the alluviums, some clay minerals and cementation by gypsum and anhydrites is found. Results of Be-10 and C-14 measurements of the clay-silt matrix and selected carbonates will be presented in relation to dating and paleoclimatic events.

  20. Geomorphic evolution of the Martian highlands through ancient fluvial processes

    NASA Astrophysics Data System (ADS)

    Craddock, R. A.; Maxwell, T. A.

    1993-02-01

    The evolution of crater degradation in the Martian highlands based on variations in crater morphology is traced. The timing of this process related to geology, elevation, and latitude is examined, the nature of fluvial resurfacing is studied, and the approximate rate of denudation is determined. The obtained data make it possible to understand the early geologic history of Mars, the interaction between the atmosphere and surface processes through time, and the nature of highland surface materials. Degradation was found to begin with sheet-flooding and the formation of runoff channels in both the interior and exterior of the craters. Progressive stripping of the ejecta material led to craters with incised rims. Erosion and infilling led to flat doors. With time, continued erosion removed ejecta and rim materials completely. Timing of degradation based on cumulative size-frequency distribution curves of highland crater population indicates that the process ceased completely in the late Hesperian. Global average denudation rates were found to be between 0.0001 and 0.005 mm/yr.

  1. Fluvial sedimentation following Quaternary eruptions of Mount St. Helens, Washington

    SciTech Connect

    Janda, R.J.; Meyer, D.F

    1985-01-01

    Depositional records of convulsive volcanic events at Mount St. Helens are in many places obscured by rapid fluvial erosion and deposition close to the volcano. Some major eruptions are recorded primarily by lahars and alluvium deposited tens of kilometers away. About 35 percent of the distinctive hummocky topography of the 1980 North Fork Toutle debris avalanche deposit now resembles an alluvial fan or a braided glacial outwash plain covered with 10 m or more of alluvium. Deposits of small (20 x 10/sup 6/m/sup 3/) but damaging lahars, such as those generated in the afternoon of 18 May 1980 and on 19 March 1982, have been largely eroded away. Rivers draining rapidly eroding areas surrounding Mount St. Helens presently have sediment yields that are among the highest in the world for nonglaciated streams of comparable size. These sediment loads are capable of causing aggradation-induced flooding in populated areas along the lower Toutle and Cowlitz Rivers. Sediment retention structures and dredging have prevented such flooding. Immediately following prehistoric eruptions, however, coarse-grained volcanic alluvium was deposited in the Cowlitz River to levels more than 1 m above the 1980 mud flow inundation level. Post-1980 rapid landscape modifications and high sediment yields are noteworthy because the eruption-impact area has not yet had a major regional storm and potentially catastrophic breachings of avalanche-impounded lakes have been prevented through engineering measures.

  2. Microbiological and Geochemical Characterization of Fluvially Deposited Sulfidic Mine Tailings

    PubMed Central

    Wielinga, Bruce; Lucy, Juliette K.; Moore, Johnnie N.; Seastone, October F.; Gannon, James E.

    1999-01-01

    The fluvial deposition of mine tailings generated from historic mining operations near Butte, Montana, has resulted in substantial surface and shallow groundwater contamination along Silver Bow Creek. Biogeochemical processes in the sediment and underlying hyporheic zone were studied in an attempt to characterize interactions consequential to heavy-metal contamination of shallow groundwater. Sediment cores were extracted and fractionated based on sediment stratification. Subsamples of each fraction were assayed for culturable heterotrophic microbiota, specific microbial guilds involved in metal redox transformations, and both aqueous- and solid-phase geochemistry. Populations of cultivable Fe(III)-reducing bacteria were most prominent in the anoxic, circumneutral pH regions associated with a ferricrete layer or in an oxic zone high in organic carbon and soluble iron. Sulfur- and iron-oxidizing bacteria were distributed in discrete zones throughout the tailings and were often recovered from sections at and below the anoxic groundwater interface. Sulfate-reducing bacteria were also widely distributed in the cores and often occurred in zones overlapping iron and sulfur oxidizers. Sulfate-reducing bacteria were consistently recovered from oxic zones that contained high concentrations of metals in the oxidizable fraction. Altogether, these results suggest a highly varied and complex microbial ecology within a very heterogeneous geochemical environment. Such physical and biological heterogeneity has often been overlooked when remediation strategies for metal contaminated environments are formulated. PMID:10103249

  3. A quantitative vulnerability function for fluvial sediment transport

    NASA Astrophysics Data System (ADS)

    Totschnig, Reinhold; Sedlacek, Walter; Fuchs, Sven

    2010-05-01

    In quantitative risk assessment, risk is expressed as a function of hazard, elements at risk exposed, and the vulnerability. From a natural sciences perspective, vulnerability is defined as the expected degree of loss for an element at risk as a consequence of a certain event. The resulting value is dependent on the impacting process intensity and the susceptibility of the elements at risk, and ranges from 0 (no damage) to 1 (complete destruction). With respect to torrent processes, i.e. fluvial sediment transport, the concept of vulnerability - though widely acknowledged - did not result in any sound quantitative relationship between process intensities and vulnerability values so far, even if considerable loss occurred during recent years. To close this gap and establish this relationship, data from three well-documented torrent events in the Austrian Alps was used to derive a quantitative vulnerability function applicable to residential buildings located on torrent fans. The method applied followed a spatial approach, and was based on process intensities, the spatial characteristics of elements at risk, and average reconstruction values on a local scale. The results suggest a modified Weibull function to fit best to the observed damage pattern if vulnerability is quantified in absolute values, and a modified Frechet function if vulnerability is quantified relatively in relation to the individual building height. The vulnerability relationship obtained is applicable to a mixed type of construction used in European mountain regions, composed from brick masonry and concrete, a typical design in post-1950s building craft in alpine countries.

  4. Microbiological and geochemical characterization of fluvially deposited sulfidic mine tailings

    SciTech Connect

    Wielinga, B.; Lucy, J.K.; Moore, J.N.; Seastone, O.F.; Gannon, J.E.

    1999-04-01

    The fluvial deposition of mine tailings generated from historic mining operations near Butte, Montana, has resulted in substantial surface and shallow groundwater contamination along Silver Bow Creek. Biogeochemical processes in the sediment and underlying hyporheic zone were studied in an attempt to characterize interactions consequential to heavy-metal contamination of shallow groundwater. Sediment cores were extracted and fractionated based on sediment stratification. Subsamples of each fraction were assayed for culturable heterotrophic microbiota, specific microbial guilds involved in metal redox transformations, and both aqueous- and solid-phase geochemistry. Populations of cultivable Fe(III)-reducing bacteria were most prominent in the anoxic, circumneutral pH regions associated with a ferricrete layer or in an oxic zone high in organic carbon and soluble iron. Sulfur- and iron-oxidizing bacteria were distributed in discrete zones throughout the tailings and were often recovered from sections at and below the anoxic groundwater interface. Sulfate-reducing bacteria were also widely distributed in the cores and often occurred in zones overlapping iron and sulfur oxidizers. Sulfate-reducing bacteria were consistently recovered from oxic zones that contained high concentrations of metals in the oxidizable fraction. Altogether, these results suggest a highly varied and complex microbial ecology within a very heterogeneous geochemical environment. Such physical and biological heterogeneity has often been overlooked when remediation strategies for metal contaminated environments are formulated.

  5. Timescales of fluvial response to climate and tectonic perturbations

    NASA Astrophysics Data System (ADS)

    Castelltort, Sebastien

    2015-04-01

    Earth's landscapes are composed of connected elements such as hillslopes, bedrock and alluvial rivers, alluvial fans and floodplains for example. Because these entities are dominated by different processes, they might respond in different ways and at different rates to external forcings depending on the nature, magnitude and time scale of changes. Knowledge of those response times is fundamental if we want to extract past climate and tectonics from landscape forms and sedimentary archives. Moreover, the interactions between different landscape elements and their response times also control the response of the landscape as a whole, and the delivery of sediment flux to the basins. Here we review the timescales of fluvial response to perturbations in bedrock and alluvial rivers and discuss the implications for delivery of sediment to basins over multi-millenial timescales. We first use existing relationships for bedrock rivers to study their response to climatic and tectonic perturbations. For alluvial rivers, we consider a simple 1D alluvial reach with a single grain size and an equilibrium slope determined by classical bedload relations. Upstream perturbations of grain size, sediment concentration and water discharge induce river aggradation or degradation according to their effect on river equilibrium slope. While minimum aggradation time can be computed analytically as a function of slope change and sediment supply, the time necessary to degrade to a lower equilibrium slope may be only a function of the timescale of the perturbation in a transport-limited system. We explore the field of natural rivers and their possible response to upstream perturbations.

  6. A Record of Fluvial Response for the Australian Wet Tropics and Relationships to Regional Climate Change

    NASA Astrophysics Data System (ADS)

    Hughes, K. E.; Croke, J.; Bartley, R.; Thompson, C.

    2014-12-01

    The reconstruction of fluvial dynamics from alluvial sedimentary sequences has contributed to our understanding of the link between global Quaternary climate change and landscape response. However, the geographical bias in such studies towards middle and higher latitudes leaves a gap in our understanding of climate change and landscape evolution in the tropics. The Wet Tropics biogeographic region in the tectonically-stable northeast Australia provides an ideal setting to study the history of fluvial response: catchments are small and steep; receive high annual rainfall; and cyclones are common which collectively, promotes short catchment response times. Additionally, the region benefits from an extensive range of paleoclimate reconstructions based on pollen, coral and speleothem proxies. The aim of this field-based research is to establish the nature of the relationship between fluvial response and Quaternary climate change in the Australian Wet Tropics region. To construct a temporal record of fluvial response, forty sediment cores (4-12m in length) were extracted from floodplains and terraces in similar geomorphic settings across five catchments. The stratigraphy of each core was described and 40 samples from select cores dated using optically stimulated luminescence. This temporal record of landscape response was then compared to the regional climate record to examine the relationship between fluvial response and tropical climate change. This work provides the first systematic study of fluvial sedimentary records in the Wet Tropics and in doing so makes valuable contribution to understanding of landscape evolution in the tropics.

  7. Paraglacial fluvial bedrock incision in postglacial landscapes: the NW Scottish Highlands

    NASA Astrophysics Data System (ADS)

    Whitbread, Katie; Jansen, John; Bishop, Paul; Fabel, Derek

    2010-05-01

    Glacial landscape forms are inherited by rivers following deglaciation. Hillslopes and valley floors configured by glacial erosion control the distribution of bedrock channels and potential sites for fluvial incision. The importance of 'stream power' parameters, channel slope and drainage area (discharge), in controlling the rate of incision is widely accepted, but the rate, timing and mechanisms of incision have yet to be quantified in these settings. The dual controls of glacially conditioned bedrock slopes and sediment supply set two of the key boundary conditions for temporally and spatially dynamic fluvial bedrock incision. Measurement of incision rates in these settings is key to understanding the influence of controls on fluvial erosion, and the role of the process in long-term evolution of deglaciated landscapes. In tectonically-passive, hard-rock terrains, such as the Scottish Highlands, incisional fluvial features such as bedrock channels, gorges and waterfalls are common on glacially carved valley steps. Here we report preliminary data on fluvial incision rates measured with cosmogenic 10Be. Our results confirm a postglacial age of bedrock straths in the NW Scottish Highlands and indicate a vertical incision rate of 0.3 mm/yr into resistant quartzites. Further work will explore erosion mechanisms and rates of incision across the Scottish Highlands, and assess controls on fluvial incision, including the potential role of paraglacial sediment.

  8. Practical Enhancement of Terrestrial Laser Scanning for Fluvial Geomorphology Surveys

    NASA Astrophysics Data System (ADS)

    Hwang, K.; Chandler, D. G.

    2014-12-01

    Accurate measurement of microtopography plays an important role in fluvial geomorphology. Whereof the surface is obscured by vegetation or landform, airborne remote sensing can be impractical and ground-based surveys using terrestrial laser scanning (TLS) show promise. TLS provides high resolution observations of the land surface for relatively low cost and with simple setup. However, the scanning range is effectively limited to less than 100 m, requiring individual scenes to be merged in software to represent larger landforms. For studies requiring several scenes, an efficient scanning strategy should be established in advance to optimize for time, resolution and spatial coverage. This requires careful consideration of scanner placement to merge scenes. We address problems encountered with blind spots. TLS is generally conducted on a 2-m (or shorter) tripod and the low scanning angle to the land surface at long distance inevitably causes blind spots in rugose or complex terrain. Similarly, the distance between TLS placement points is limited by the ability to resolve matching targets from sequential surveys. Here we present a simple geometry-based scanning plan regardless of the type and range of the instrument, with modification of the survey instrument platform. The half of a minimum range is used to make at least 18% of a superposed area with the next scan. Since scanning height barely affects the scanning range, the tripod was substituted to a 3-m stepladder and the platform of the scanner was modified to level and adjust the device easily with one hand. The results show that the new scanning plan performs well regardless of the topography and figure of the area of interest, with sufficient superposed area for combination with other adjacent scans. The modification of the platform also turned out to be more efficient to secure the observing angle and improve usability. The physical enhancement for TLS will provide valuable opportunity to conduct a standardized and field-oriented work in a practical manner.

  9. In Situ Formation of Relic Landscapes By Fluvial Processes

    NASA Astrophysics Data System (ADS)

    Willett, S.; Yang, R.; Chen, C. Y.

    2014-12-01

    Elevated low-relief landscapes are often interpreted as "relic" and characteristics such as low erosion rates or low relief are assumed to reflect pre-uplift tectonic conditions. We present here an alternative model whereby high elevation, low-relief landscapes develop in situ by purely fluvial processes. We argue that changes in tectonic regime result in change of uplift rate, but also deform the surface, thereby inducing changes in the river channel network through capture and divide migration. Loss of drainage area leads to lower erosion rate through lower river discharge and thus to higher surface uplift rate as erosion fails to keep up with tectonic uplift. Branches of a river network that lose area are thus raised to higher elevation where they have a predisposition towards further area loss, triggering a positive feedback, potentially including runaway conditions in which erosion rates and drainage area tend towards zero. Such conditions produce high-elevation, low relief, low erosion-rate branches of a river network that could be misconstrued as relic landscapes. We test this model by analyzing river profiles of several previously identified relic landscapes in the eastern Tibetan plateau region and in the Central Range of Taiwan. We apply two tests. First we check kinematic wave travel times to the relic and surrounding regions to test if there is a common uplift history with an increase in uplift rate that has not yet reached the relic. Second, we measure the channel steepness and channel profiles inside and outside the relic region to test for divide mobility and evidence of area capture. In every case examined, we find no common uplift history and widespread evidence that divides surrounding a relic landscape are moving inward, pirating drainage area and lowering erosion rates. This supports the model for in situ formation of these landscapes by progressive drainage area loss.

  10. Dynamic LiDAR-NDVI classification of fluvial landscape units

    NASA Astrophysics Data System (ADS)

    Ramírez-Núñez, Carolina; Parrot, Jean-François

    2015-04-01

    The lower basin of the Coatzacoalcos River is a wide floodplain in which, during the wet season, local and major flooding are distinguished. Both types of floods, intermittent and regional, are important in terms of resources; the regional flood sediments enrich the soils of the plains and intermittent floods allow obtaining aquatic resources for subsistence during the heatwave. In the floodplain different abandoned meanders and intermittent streams are quickly colonized by aquatic vegetation. However, from the 1990s, the Coatzacoalcos River floodplain has important topographic changes due to mining, road and bridges construction; erosion and sedimentation requires continuous parcel boundaries along with the increasing demand of channel reparation, embankments, levees and bridges associated to tributaries. NDVI data, LiDAR point cloud and various types of flood simulations taking into account the DTM are used to classify the dynamic landscape units. These units are associated to floods in relation with water resources, agriculture and livestock. In the study area, the first returns of the point cloud allow extracting vegetation strata. The last returns correspond to the bare earth surface, especially in this area with few human settlements. The surface that is not covered by trees or by aquatic vegetation, correspond to crops, pastures and bare soils. The classification is obtained by using the NDVI index coupled with vegetation strata and water bodies. The result shows that 47.96% of the area does not present active vegetation and it includes 31.53% of bare soils. Concerning the active vegetation, pastures, bushes and trees represent respectively 25.59%, 11.14% and 13.25%. The remaining 1.25% is distributed between water bodies with aquatic vegetation, trees and shrubs. Dynamic landscape units' classification represents a tool for monitoring water resources in a fluvial plain. This approach can be also applied to forest management, environmental services and habitat analysis. Thus, the unsupervised LiDAR-NDVI approach coupled with flood simulation developed here, allows studying environmental behavior without introducing subjective considerations.

  11. 75 FR 21034 - Notice of Availability of Record of Decision for the Agua Fria National Monument and Bradshaw...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-22

    ...Availability of Record of Decision for the Agua Fria National Monument and Bradshaw-Harquahala...Resource Management Plan (RMP) for the Agua Fria National Monument and Bradshaw-Harquahala...during prehistoric or historic times. The Agua Fria National Monument includes...

  12. Palaeoenvironment of braided fluvial systems in different tectonic realms of the Triassic Sherwood Sandstone Group, UK

    NASA Astrophysics Data System (ADS)

    Medici, G.; Boulesteix, K.; Mountney, N. P.; West, L. J.; Odling, N. E.

    2015-11-01

    Fluvial successions comprising the fills of sedimentary basins occur in a variety of tectonic realms related to extensional, compressional and strike-slip settings, as well as on slowly subsiding, passive basin margins. A major rifting phase affected NW Europe during the Triassic and resulted in the generation of numerous sedimentary basins. In the UK, much of the fill of these basins is represented by fluvial and aeolian successions of the Sherwood Sandstone Group. Additionally, regions that experienced slow rates of Mesozoic subsidence unrelated to Triassic rifting also acted as sites of accumulation of the Sherwood Sandstone Group, one well-exposed example being the eastern England Shelf. The fluvial depositional architecture of deposits of the Sherwood Sandstone Group of the eastern England Shelf (a shelf-edge basin) is compared with similar fluvial deposits of the St Bees Sandstone Formation, eastern Irish Sea Basin (a half-graben). The two studied successions represent the preserved deposits of braided fluvial systems that were influenced by common allogenic factors (climate, sediment source, delivery style); differences in preserved sedimentary style principally reflect their different tectonics settings. Analysis of lithofacies and architectural elements demonstrates that both studied successions are characterized by amalgamated channel-fill elements that are recorded predominantly by downstream-accreting sandy barforms. The different tectonic settings in which the two braided-fluvial systems accumulated exerted a dominant control on preserved sedimentary style and long-term preservation potential. On the eastern England Shelf, the vertical stacking of pebbly units and the general absence of fine-grained units reflect a slow rate of sediment accommodation generation (18-19.4 m/Myr). In this shelf-edge basin, successive fluvial cycles repeatedly reworked the uppermost parts of earlier fluvial deposits such that only the lowermost channel lags tend to be preserved. By contrast, in the eastern Irish Sea Basin of west Cumbria, the rate of sediment accommodation generation was substantially greater (119 m/Myr) such that space was available to preserve complete fluvial cycles, including silty drape units that cap the channelized deposits.

  13. An unnamed fluvial valley system formed under different climates at Xanthe Terra, Mars

    NASA Astrophysics Data System (ADS)

    Kereszturi, Akos

    2013-09-01

    Analyzing an unnamed fluvial system (at 5.2N 301.4E) in Xanthe Terra on Mars for the first time, the following chronology could be reconstructed. The first period of the fluvial erosion of the area produced channels with higher drainage density than later events, but some resurfacing after this period erased these early, probably interconnected tributary systems and left behind only separate channel sections with eroded appearance. In the second period of fluvial erosion three deep and obvious channels were formed. In a third period, the main inlet to the terminal crater was eroded even more heavily. The last two episodes produced two different, characteristic cross sectional and longitudinal profiles: (1) narrow, shallow and nearly straight profiles, and (2) a wider, deeper and somewhat convex shaped profile. These two profile shapes resemble to other fluvial systems’ in the Xanthe Terra region. The existence of these two different types of channel morphology suggests the change in the erosional process could be at least regional and probably related to the change of fluvial erosion’s style on Mars forced by climatic changes.

  14. Aeolian and fluvial processes in dryland regions: the need for integrated studies

    USGS Publications Warehouse

    Belnap, Jayne; Munson, Seth M.; Field, Jason P.

    2011-01-01

    Aeolian and fluvial processes play a fundamental role in dryland regions of the world and have important environmental and ecological consequences from local to global scales. Although both processes operate over similar spatial and temporal scales and are likely strongly coupled in many dryland systems, aeolian and fluvial processes have traditionally been studied separately, making it difficult to assess their relative importance in drylands, as well as their potential for synergistic interaction. Land degradation by accelerated wind and water erosion is a major problem throughout the world's drylands, and although recent studies suggest that these processes likely interact across broad spatial and temporal scales to amplify the transport of soil resources from and within drylands, many researchers and land managers continue to view them as separate and unrelated processes. Here, we illustrate how aeolian and fluvial sediment transport is coupled at multiple spatial and temporal scales and highlight the need for these interrelated processes to be studied from a more integrated perspective that crosses traditional disciplinary boundaries. Special attention is given to how the growing threat of climate change and land-use disturbance will influence linkages between aeolian and fluvial processes in the future. We also present emerging directions for interdisciplinary needs within the aeolian and fluvial research communities that call for better integration across a broad range of traditional disciplines such as ecology, biogeochemistry, agronomy, and soil conservation.

  15. Cauvery River: Late Quaternary Fluvial Process and landforms

    NASA Astrophysics Data System (ADS)

    Stalin, Manjula; Achyuthan, Hema

    2014-05-01

    The Cauvery river basin from Hogenakkal to Thiruchirapalli, Tamil nadu, lies between 10o16' N to 11o30' N latitude and longitude 78o45' E to 79o51'E as demarcated in the survey of Indian topographical maps and draining a total area about 27,700 square miles. In this study, remote sensing imageries supported by topomaps and photo geological maps in relation to the structural configuration of the Cauvery basin, geodynamics and sedimentology are presented. Previous studies revealed that Cauvery river had earlier flowed in east to west direction along the Hogenekkal transverse fault to Erode and also controlled by minor fault systems. Three major palaeochannel systems, all branching off Cauvery, such as Hogenekkal- Kaveri pattinam along the Stanley reservoir, Harur a tract of Ponnaiyar river and Dharmapuri- Tiruchirapalli plains, indicates that the Cauvery river is structurally controlled and has changed its courses in the past due to neotectonic movements. The major tributaries draining along the district of Dharmapuri and Thiruchirapalli regions are Ayyar and Uppar in the north and Koraiyar in the south. The geology of the drainage basin is predominantly formed sculpting the Precambrian rocks, principally the Dharwars, Peninsular granitic gneiss, Charnockites and the Closepet granite and in general, the drainage pattern is dendritic in nature. Geologically, the Cauvery River is influenced by a major structural depression in the southern part of the Dharwar dome granulite belt. However the drainage pattern is largely sub-parallel and parallel when the river is flowing over the Cretaceous sedimentary rocks of Thiruchirapalli. Cauvery river undergoing uplift is reveals bedrock channel weathering and erosion, narrow and incised valleys with the occurrence of over steepened lower reaches of the tributaries and hanging valleys. In the present study the tectonic controls on this river were evaluated on the basis of the longitudinal profiles, morphotectonic of active tectonics, and fluvial records. The occurrence of low channel gradients, prominent hanging valleys, narrow bedrock and rapid erosion in middle portion of the Cauvery river indicate strong bedrock channel erosion. Drainage density and length of overland flow positively correlated with each other and the relationships are significant at 85% level. In this presentation detailed morphometric analysis supported by field date are presented.

  16. Neotectonics and fluvial geomorphology of the Northern Sinai Peninsula

    NASA Astrophysics Data System (ADS)

    Kusky, T.; El-Baz, F.

    2000-08-01

    Large anticlinal ridges of Jurassic-Tertiary limestone in the northern Sinai Peninsula are part of the Syrian Arc Fold Belt, parts of which have been active intermittently from Late Cretaceous through the present. Recent uplift of the Syrian Arc Fold Belt is supported by quantitative indices of active tectonics including low values of mountain front sinuosity and, by recent seismicity, extending southwest past Cairo into the Fayoum Depression. The northern Sinai Desert has a climate similar to that of the adjacent part of the eastern Sahara. Sand sheets and dune fields cover its northwestern part, which is a depression extending from the Suez Canal to Wadi El-Arish. Numerous dry channels of palaeorivers and streams lead into this depression, where several temporary palaeolakes and flood overbank deposits have been identified. Some of the temporary pluvial palaeolakes developed behind natural dams formed by folds of the Syrian Arc, whereas others filled deeply-eroded fault traces. Migration of sand dunes may have blocked some channels, but the location of the dunes seems to be controlled by Recent uplift of parts of the fold belt, with the dunes residing in synclinal depressions and adjacent to fault scarps. The palaeolakes are correlated more with structures than with active dune fields. Wadi El-Arish abandoned a channel west of its present-day course, perhaps because of recent growth and uplift of the Gebel Halal Fold. This abandonment was synchronous with down-cutting of a gorge through Gebel Halal, which follows conjugate faults formed during uplift of an anticline. The presence of standing water during wetter climates in the past is supported by silt deposits and archaeological evidence of previous human habitation. The newly identified lake margin and fluvial sediments could be important targets for studying early-modern human and Neanderthal activities. In the eastern Sahara, cycles of pluvial periods that date back 320,000 years appear to correspond to interglacial stages. These indicate major global climate changes resulting in alternation of wet and dry climate episodes, which interplayed with local tectonic uplift to dramatically change the physiography of the northern Sinai.

  17. Pollutant fates in fluvial systems: on need of individual approach to each case study

    NASA Astrophysics Data System (ADS)

    Matys Grygar, Tomas; Elznicova, Jitka; Novakova, Tereza

    2015-04-01

    To outline the pollutant fates in fluvial systems it is necessary to combine two main kinds of knowledge: sedimentation and erosion patterns of each individual river with spatio-temporal resolution higher than in most fluvial geomorphology/sedimentology studies and timing and way how the pollutants have entered the fluvial system. Most of these aspects are commonly neglected in environmental geochemistry, a domain to which pollution studies apparently belong. In fact, only when these two main components are established (at least in a qualitative manner), we can start reading (interpretation) of the fluvial sedimentary archives, e.g., decipher the way how the primary pollution signal has been distorted during passing through the fluvial system. We conducted empirical studies on Czech rivers impacted by pollution (by risk elements). We learnt how individual (site-specific) are the main processes responsible for the primary pollution input, spread through each fluvial system and inevitable secondary pollution ("lagged pollution improvement signal"). We will discuss main features of the story on pollutant fates in three different fluvial systems, which have not been impacted by "hard" river engineering and still undergo natural fluvial processes: 1. the Ohre (the Eger) impacted by production of Hg and its compounds, historical mining of Pb and more recent U ore processing, 2. the Ploucnice impacted by U mining, and 3. the Litavka, impacted by Pb-Zn(-Sb) mining and smelting. The Ohre is specific by most pollution having been temporarily deposited in an active channel, only minor reworking of older fluvial deposits diluting pollution during downstream transport, and pollution archives existing practically only in the form of lateral accretion deposits. The deposits of archive value are rare and can be revealed by detailed study of historical maps and well-planned field analysis, best using portable analytical instruments (XRF). The Ploucnice is specific by only transient deposition in a channel belt and subsequent secondary pollution via physical mobilisation, most pollution storing in the floodplain in a surprisingly heterogeneous manner - in hotspots with a size comparable to fragments of abandoned channels (from a few to few tens of metres). The hotspots are hence best revealed by well-designed field analysis using portable instruments (gamma spectrometry or XRF). The Litavka is specific because most pollution is in its floodplain in the form of anthropogenic alluvium, a very thick vertical accretion body of "artificial" material added to the river system in the amount exceeding its normal transport capacity. That situation favours secondary pollution by chemical mobilisation of pollutants under low river discharges revealed by geochemical analysis. Our case studies show that simple "rules" such as continuous decay of pollutant concentrations downstream from the pollution source, existence of a continuous blanket of polluted overbank fines in floodplain, simple change of the pollution extent with growing distance from the river channel and as a consequence of extreme floods, or simple recipes such as low-density sampling to trace point pollution sources are too simplistic to be applicable in real polluted fluvial systems. Each river system represents a nearly unique combination of individual geomorphic processes, and each pollution has been specific by the mode how it entered the fluvial system. We will not offer "magic tools" in our contribution. In literature we can find all pieces we need for the jigsaw puzzle - pollutants fates in fluvial systems. The question is why so rarely researchers put them together. We would like to encourage them to do so.

  18. Peat soils as a source of lead contamination to upland fluvial systems.

    PubMed

    Rothwell, James J; Evans, Martin G; Daniels, Stephen M; Allott, Timothy E H

    2008-06-01

    Upland peat soils are generally regarded as effective sinks of atmospherically deposited lead. However, the physical process of erosion has the potential to transform peat soils from sinks to sources of lead contamination. Lead input and fluvial lead outputs (dissolved+particulate) were estimated for a contaminated and severely eroding peatland catchment in the southern Pennines, UK. Lead input to the catchment is 30.0+/-6.0gha(-1)a(-1) and the output from the catchment is 317+/-22.4gha(-1)a(-1). Suspended particulate matter accounts for 85% of lead export. Contaminated peat soils of the catchment are a significant source of lead to the fluvial system. This study has demonstrated strong coupling between the physical process of erosion and the mobilization of lead into the fluvial system. The process of peat erosion should therefore be considered when estimating lead outputs from peatland catchments, especially in the context of climate change. PMID:17949867

  19. Quantification of fluvial bedload transport in glacier-connected steep mountain catchments in western Norway

    NASA Astrophysics Data System (ADS)

    Beylich, Achim A.; Laute, Katja

    2015-04-01

    Contemporary fluvial bedload transport rates are still very difficult to measure and, as a result of this, in many sites only quantitative data on fluvial suspended and solute transport are included in sediment budget studies carried out for defined drainage basin systems. During the years 2010-2013 detailed field measurements with portable impact sensors as a non-invasive technique for indirectly determining fluvial bedload transport intensity were conducted in two instrumented drainage basin systems (Erdalen and Bødalen) in the fjord landscape in western Norway. The collected impact sensor field data were calibrated with laboratory flume experiments, and the data from the impact sensor field measurements and the flume experiments were combined with field data from continuous discharge monitoring, repeated surveys of channel morphometry and sediment texture, particle tracer measurements, Helley-Smith samplings, underwater video filming and biofilm analyses. The combination of methods and techniques applied provides insights into the temporal variability and intensity of fluvial bedload transport in the selected mountain streams of both drainage basin systems. The conducted analysis of fluvial bedload dynamics in different defined subsystems of Erdalen (79.5 km2) and Bødalen (60.1 km2) provides information on (i) detectable relevant sediment sources, (ii) instream channel storage of bedload material, (iii) spatiotemporal variability and controls of bedload transport rates and bedload yields, and (iv) the absolute and relative importance of fluvial bedload transport within the sedimentary budgets of these steep cold climate mountain catchments. Rockfalls, snow avalanches, stream channel bank erosion, and fluvial transfers through small tributaries draining slope systems are relevant sediment sources for fluvial bedload transport in the main stream channels, whereas the main outlet glaciers in both catchment systems are not of importance as all bedload material delivered directly from these outlet glaciers is trapped within proglacial lakes. Snow avalanches are the most important sediment source in Erdalen, whereas fluvial transfers through small tributaries followed by snow avalanches are most important in Bødalen. Narrow valleys within both drainage basin systems are characterized by a higher intensity of slope-channel coupling and display higher rates of sediment supply from slopes into main stream channels than wider valleys. Longer-term, instream channel storage is not of great importance in the steep Bødalen catchment but currently plays an important role within the Erdalen drainage basin, which is characterized by a stepped longitudinal main valley bottom profile favoring deposition of bedload material within the less steep main channel reaches. The computed mean annual bedload yields (2010-2013) are 2.4 t km-2y-1 for the entire Erdalen and 13.3 t km-2y-1 for the entire Bødalen, which are comparably low values for steep and partly glacierized catchment systems. Because of supply-limited conditions, the intensity of fluvial bedload transport is generally more related to the availability of sediments than to channel discharge. Fluvial bedload transport accounts for about one-third of the total fluvial transport in both drainage basin systems.

  20. Contrasting fluvial styles of the Paraguay River in the northwestern border of the Pantanal wetland, Brazil

    NASA Astrophysics Data System (ADS)

    Assine, Mario Luis; Silva, Aguinaldo

    2009-12-01

    The Upper Paraguay drainage basin is situated mainly in west-central Brazil, near the Bolivian border. Flowing from north to south, the Paraguay is the trunk river of an alluvial depositional tract characterized by complex geomorphologic zonation that resulted from an intricate geologic evolution since the Late Pleistocene. This paper focuses on the geomorphology of the Paraguay River at the northwestern border of the Pantanal wetland, where two broad geomorphologic zones were distinguished. North from the Pantanal wetland, the Paraguay River flows in an aggradational fluvial plain, 5 km wide and incised into older alluvial deposits. The river exhibits a meandering style over most of its course, but sinuosity drops from 2.2 to 1.1 near the northwest border of the Pantanal wetland where the river has been forming the Paraguay fluvial megafan since the Late Pleistocene. The river deflects 90° eastward at the entrance into the Pantanal, changing its fluvial style because of a progressive loss of confinement downstream of the point where the river reaches lowland plains. The river becomes more sinuous, adopts a distributary pattern within the wetland and brings about the creation of the modern depositional lobe characterized by higher topographic gradient and active sedimentation likely linked to increased accommodation space allowing progradation. Fluvial discharge diminishes in the Pantanal wetland because of channel overbank flow during the rainy season and frequent levee crevassing. Avulsion belts and channel-levee complex are preserved on the floodplain as relict forms. South of the convergence of the two main channels that define the Taiamã Island, a loss of gradient marks the base of the depositional lobe. Further downstream, the Paraguay River returns to a meandering fluvial style, but crossing a large fluvial plain populated by hundreds of small lakes and seasonally flooded that characterizes the Pantanal wetland.

  1. Integrated stratigraphy of Paleocene lignite seams of the fluvial Tullock Formation, Montana (USA).

    NASA Astrophysics Data System (ADS)

    Noorbergen, Lars J.; Kuiper, Klaudia F.; Hilgen, Frederik J.; Krijgsman, Wout; Dekkers, Mark J.; Smit, Jan; Abels, Hemmo A.

    2015-04-01

    Coal-bearing fluvial sedimentation is generally thought to be dominated by autogenic processes that are processes intrinsic to the sedimentary system. Ongoing research however suggests that several fluvial processes such as floodplain inundation and avulsion, can also be controlled by external forcing such as orbital climate change. Still, the exact role of orbital climate forcing in fluvial sediments is difficult to decipher since riverine deposits are complicated by variable sedimentation rates including erosion of previously deposited material, by lateral heterogeneity of sedimentation, and by scarcity of independent dating methods. The early Paleocene lignite-bearing Tullock Formation of the Williston Basin in eastern Montana represents a record of fluvial sedimentation that is perfectly exposed and, displays a seemingly regular alternation of sandstones and lignite seams. These coal beds contain multiple volcanic ash layers. Here, we use an integrated stratigraphic approach (litho- and magnetostratigraphy, geochemical fingerprinting and radio-isotope dating of volcanic ash layers) to establish a high-resolution time frame for the early Paleocene fluvial sediments. First age estimations indicate that the Tullock Formation in Eastern Montana was deposited over a time span of ~ 1000 kyr subsequent to the Cretaceous - Paleogene boundary, dated at ~ 65.95 Ma [1]. Initial high-resolution magnetostratigraphy revealed the occurrence of the C29r/C29n polarity reversal which was stratigraphic consistent at different field locations. We investigate the regional significance of sedimentary change at multiple sites of the same age in order to provide improved insight on the role of orbital forcing in fluvial coal formation. References: [1] Kuiper, K.F., Deino, A., Hilgen, F.J., Krijgsman, W., Renne, P.R., Wijbrans, J.R. (2008). Synchronizing Rock Clocks of Earth History. Science 320, 500-504.

  2. Fluvial Channel Networks as Analogs for the Ridge-Forming Unit, Sinus Meridiani, Mars

    NASA Technical Reports Server (NTRS)

    Wilkinson, M. J.; du Bois, J. B.

    2010-01-01

    Fluvial models have been generally discounted as analogs for the younger layered rock units of Sinus Meridiani. A fluvial model based on the large fluvial fan provides a possibly close analog for various features of the sinuous ridges of the etched, ridge-forming unit (RFU) in particular. The close spacing of the RFU ridges, their apparently chaotic orientations, and their organization in dense networks all appear unlike classical stream channel patterns. However, drainage patterns on large fluvial fans low-angle, fluvial aggradational features, 100s of km long, documented worldwide by us provide parallels. Some large fan characteristics resemble those of classical floodplains, but many differences have been demonstrated. One major distinction relevant to the RFU is that channel landscapes of large fans can dominate large areas (1.2 million km2 in one S. American study area). We compare channel morphologies on large fans in the southern Sahara Desert with ridge patterns in Sinus Meridiani (fig 1). Stream channels are the dominant landform on large terrestrial fans: they may equate to the ubiquitous, sinuous, elongated ridges of the RFU that cover areas region wide. Networks of convergent/divergent and crossing channels may equate to similar features in the ridge networks. Downslope divergence is absent in channels of terrestrial upland erosional landscapes (fig. 1, left), whereas it is common to both large fans (fig. 1, center) and RFU ridge patterns (fig 1, right downslope defined as the regional NW slope of Sinus Meridiani). RFU ridge orientation, judged from those areas apparently devoid of impact crater control, is broadly parallel with the regional slope (arrow, fig. 1, right), as is mean orientation of major channels on large fans (arrow, fig. 1, center). High densities per unit area characterize fan channels and martian ridges reaching an order of magnitude higher than those in uplands just upstream of the terrestrial study areas fig. 1. In concert with several other regional features, these morphological similarities argue for the RFU as a possibly fluvial unit.

  3. Determinacin de Criterios Numricos de Nutrimentos para Lagos y Reservas de Agua en Puerto Rico*

    E-print Network

    Gilbes, Fernando

    inventario Nacional de Calidad de Agua de los Estados Unidos identifica los nutrimentos como la principalDeterminación de Criterios Numéricos de Nutrimentos para Lagos y Reservas de Agua en Puerto Rico causa de contaminación de las aguas. Más de 3.4 millones de acre de lagos y 84,000 millas de ríos están

  4. Impactos del Huracn Isaac en la calidad del agua en Luisiana con MODIS 250m

    E-print Network

    Gilbes, Fernando

    1 Impactos del Huracán Isaac en la calidad del agua en Luisiana con MODIS 250m Thais J. Alicea lluvias. Por tal razón se quiere estudiar la calidad del agua en el delta del río Mississippi antes imágenes en ENVI. Palabras clave: Calidad del agua, ENVI, Isaac, Luisiana, MODIS

  5. Tratamiento pasivo de aguas cidas de mina con caliza y MgO

    E-print Network

    Politècnica de Catalunya, Universitat

    de lodos piríticos 200m Pozo de desagüe #12;Lugar de estudio (III): Calidad del agua de mina · pH: 2Tratamiento pasivo de aguas ácidas de mina con caliza y MgO: Resultados de los ensayos de campo en debajo de la balsa de lodos Toma de agua Decantador de salida del bidón B Decantador de salida del bidón

  6. Diagenetic history of fluvial and lacustrine sandstones of the Hartford Basin (Triassic Jurassic), Newark Supergroup, USA

    NASA Astrophysics Data System (ADS)

    Wolela, A. M.; Gierlowski-Kordesch, E. H.

    2007-04-01

    The early introduction of clays into continental sandstones has been attributed to mechanical infiltration by percolation of clay-rich surface waters into grain framework or cutans formed from pedogenic processes. The discovery of pedogenic mud aggregates as traction-load mud in ancient fluvial deposits suggests that permeability and porosity of terrigenous sandstones can be influenced at deposition and control early diagenetic patterns. This study compares diagenesis in fluvial (subaerially exposed) sandstones with lacustrine (subaqueous) sandstones in a Triassic-Jurassic continental rift basin (Hartford Basin, Newark Supergroup). Diversity of diagenetic minerals and sequence of diagenetic alteration can be directly related to depositional environment. The fluvial sandstones in the New Haven Arkose, East Berlin Formation, and Shuttle Meadow Formation of the Hartford Basin are dominated by concretionary calcite and early calcite cement, infiltrated clays (illite-smectite), pedogenic mud aggregates (smectite and illite-smectite), grain coating clays (illite/hematite, illite-chlorite/hematite), quartz overgrowths, late stage carbonate cements (calcite, ferroan calcite), pore-filling clays (illite, kaolinite with minor amounts of smectite, smectite-chlorite, illite-smectite) and hematite. However, pedogenic processes in these fluvial sandstones retarded the development of quartz and feldspar overgrowths, and carbonate authigenesis, as well as the quality of diagenetically enhanced porosity. Dark gray-black lacustrine (subaqueous) sandstones and mudrocks in the East Berlin and Shuttle Meadow Formations are dominated by pyrite, concretionary dolomite and early dolomite cement, radial grain coating clays (smectite-chlorite, illite-smectite), late stage carbonate cements (dolomite, ferroan dolomite, ankerite), albite and pore-filling clays (smectite-chlorite, illite-smectite, illite-chlorite). Clay minerals exist as detrital, mechanically infiltrated, and neoformed clay. The fluvial sandstones in the New Haven Arkose are dominated by illite. The East Berlin and Shuttle Meadow Formations are dominated by illite in the fluvial sequences and smectite-chlorite and illite-smectite in the lacustrine sandstones. Dolomite, ferroan dolomite, and ankerite are restricted to lacustrine sandstones, whereas calcite and ferroan calcite to fluvial sandstones. Albite predominantly precipitated in lacustrine rather than fluvial environments through intergranular dissolution of plagioclase by acidic meteoric water, dissolution of unstable mafic minerals, and sodium-rich brines and evaporites developed from groundwater. Albitization and carbonate cementation are the most pronounced late stage diagenetic processes affecting both types of Hartford sandstones.

  7. Debris Flow Control on Fluvial Hanging Valley Formation in the South Fork Eel River, CA

    NASA Astrophysics Data System (ADS)

    Deshpande, N.; Perkins, J.; Finnegan, N. J.

    2012-12-01

    An understanding of how base level signals are transmitted into landscapes is fundamental to interpreting river long profiles in tectonically active settings. Fluvial hanging valleys, locations where waves of incision have apparently arrested at tributary junctions, suggest that base level propagation is an unsteady process in many settings. A recent hypothesis (Wobus et al., 2006) explains the formation of fluvial hanging valleys via an instability in the saltation abrasion model of Sklar and Dietrich (2004). At locations where small steep tributaries join trunk streams, tributary incision rates can actually decrease with increasing channel slope when subjected to downstream base-level fall. However, we note that in mountainous river networks steep tributaries also commonly convey debris flows into trunk channels. Since these tributary junctions mark the upstream limit of channels whose beds are mobilized on a regular basis during flood events, here we hypothesize that transitions from fluvial to debris flow channels control the location of fluvial hanging valleys. To test our hypothesis, we exploit a natural experiment in base level fall and landscape evolution along the South Fork Eel River, which is argued to be responding to an increase in rock uplift rate associated with the passage of the Mendocino Triple Junction. In order to separate debris flow channels from fluvial channels, we use airborne laser swath mapping (ALSM) to quantify channel slopes and concavities. In our analysis, concavity data are noisy and represent a poor metric for determination of debris flow channels. In lieu of this, we choose a more straightforward metric of channel slope to discriminate where debris flows occur on the landscape. We find that, on average, fluvial hanging valleys are only present in tributaries with average gradients above 0.10, consistent with empirical determinations of the gradient at which debris flow channels transition to fluvial channels (0.03-0.10). Field observations in selected tributaries confirm our interpretation of the topographic analysis and thereby lend support to our hypothesis. Our results contradict Wobus et al. (2006) who find through a topographic analysis of tributaries in the eastern Central Range of Taiwan that channels exhibiting a signature of debris flows in slope-area space do not form hanging valleys or display evidence of a transient response. Possible explanations for this discrepancy lie in the scale of topographic data used in the respective analyses, as well as the spatial scale of the study areas themselves. Regardless, our observations of systematically steeper slopes (above the debris flow threshold) upstream of fluvial hanging valleys along the South Fork Eel River, CA suggest a process transition may be responsible for the morphologic changes observed here.

  8. Drainage network development in the Keanakko`i tephra, Klauea Volcano, Hawai`i: Implications for fluvial erosion

    E-print Network

    Hawai'i at Manoa, University of

    for fluvial erosion and valley network formation on early Mars Robert A. Craddock,1 Alan D. Howard,2 Rossman P to erosion than the interbedded, coarser weakly consolidated and friable tephra layers. Because the banks development in the Keanakko`i tephra, Klauea Volcano, Hawai`i: Implications for fluvial erosion and valley

  9. Testing fluvial erosion models using the transient response of bedrock rivers to tectonic forcing in the Apennines, Italy

    E-print Network

    Cowie, Patience

    Testing fluvial erosion models using the transient response of bedrock rivers to tectonic forcing fluvial erosion models. However, some recent studies of bedrock erosion conclude that transient river long profiles can be approximately characterized by a transportlimited erosion model, while other authors

  10. CONSERVE SU SALUD DURANTE UN DESASTRE Alimentos y agua

    E-print Network

    CONSERVE SU SALUD DURANTE UN DESASTRE Alimentos y agua Las situaciones de emergencia pueden afectar su salud. Preparese con an- ticipacion para cubrir sus necesidades de salud mediante estos sencillos presente su salud Evite las enfermedades Manténgase a salvo Refugiese en su casa, a menos que las

  11. Sinus Meridiani Landing Site for Human Exploration —- A Mesoscale Fluvial System

    NASA Astrophysics Data System (ADS)

    Wilkinson, M. J.; McGovern, P. J.

    2015-10-01

    SW Sinus Meridiani is proposed as an EZ as seen through the lens of the still poorly recognized large fluvial fan model. Hematite distribution, regional and Miyamoto Crater sedimentary stacks, sediment inundation of craters, and the rover traverse path are suggested ROIs.

  12. Using Mars's Sulfur Cycle to Constrain the Duration and Timing of Fluvial Processes

    NASA Technical Reports Server (NTRS)

    Blaney, D. L.

    2002-01-01

    Sulfur exists in high abundances at diverse locations on Mars. This work uses knowledge of the Martian sulfate system to discriminate between leading hypotheses and discusses the implications for duration and timing of fluvial processes. Additional information is contained in the original extended abstract.

  13. THE SCALING OF FLUVIAL LANDSCAPES Bjrn Birnir # Terence R. Smith + \\Lambda George E. Merchant +

    E-print Network

    California at Santa Barbara, University of

    THE SCALING OF FLUVIAL LANDSCAPES Björn Birnir # Terence R. Smith + \\Lambda George E. Merchant at Santa Barbara, California 93106, USA ABSTRACT The analysis of a family of physically­based landscape of river basins. The par­ tial differential equation determine the scaling invariances of the landscape

  14. Wildfire thermochronology and the fate and transport of apatite in hillslope and fluvial environments

    E-print Network

    Roering, Joshua J.

    Wildfire thermochronology and the fate and transport of apatite in hillslope and fluvial January 2007; revised 25 May 2007; accepted 11 July 2007; published 12 October 2007. [1] Wildfire heating of fission track annealing and He diffusion in apatite lead to a kinetic crossover whereby wildfire heating

  15. Volcanogenic Fluvial-Lacustrine Environments in Iceland and Their Utility for Identifying Past Habitability on Mars

    PubMed Central

    Cousins, Claire

    2015-01-01

    The search for once-habitable locations on Mars is increasingly focused on environments dominated by fluvial and lacustrine processes, such as those investigated by the Mars Science Laboratory Curiosity rover. The availability of liquid water coupled with the potential longevity of such systems renders these localities prime targets for the future exploration of Martian biosignatures. Fluvial-lacustrine environments associated with basaltic volcanism are highly relevant to Mars, but their terrestrial counterparts have been largely overlooked as a field analogue. Such environments are common in Iceland, where basaltic volcanism interacts with glacial ice and surface snow to produce large volumes of meltwater within an otherwise cold and dry environment. This meltwater can be stored to create subglacial, englacial, and proglacial lakes, or be released as catastrophic floods and proglacial fluvial systems. Sedimentary deposits produced by the resulting fluvial-lacustrine activity are extensive, with lithologies dominated by basaltic minerals, low-temperature alteration assemblages (e.g., smectite clays, calcite), and amorphous, poorly crystalline phases (basaltic glass, palagonite, nanophase iron oxides). This paper reviews examples of these environments, including their sedimentary deposits and microbiology, within the context of utilising these localities for future Mars analogue studies and instrument testing. PMID:25692905

  16. The origin and timing of fluvial activity at Eberswalde crater, Mars N. Mangold a,

    E-print Network

    Holden (Fig. 1). The latter shows various fluvial landforms too, including alluvial fans ­ as observed Mars, climate Impact processes Geological processes a b s t r a c t The fan deposit in Eberswalde potential role in aqueous activity. The relative timing of the Holden impact and Eberswalde's fan

  17. "The Waters of Meridiani" - Further Support for a Fluvial Interpretation of the Ridged, Layered Units

    NASA Technical Reports Server (NTRS)

    Wilkinson, Justin; Kreslavsky, Misha

    2009-01-01

    A relatively unknown terrestrial fluvial environment, the mesoscale megafan, provides analogs for various Martian landscapes, including the etched unit (etched unit, Unite E of Arvidson et al., 2003; ridge-forming unit R of Edgett, 2005) of the Sinus Meridiani region on Mars. A global survey of Earth shows that megafans are very large partial cones of dominantly fluvial sediment with radii on the order of hundreds of km, and very low slopes. Responsible fluvial processes are sufficiently different from those of classical arid alluvial fans and deltas that it is useful to class megafans as separate features. The megafan model calls into question two commonly held ideas. 1. Earth examples prove that topographic basins per se are unnecessary for the accumulation of large sedimentary bodies. 2. River channels are by no means restricted to valleys (Meridiani sediments are termed a "valley-ed volume" of Edgett). These perspectives reveal unexpected parallels with features at Meridiani-several channel-like features that are widespread, mostly as ridges inverted by eolian erosion; channel networks covering thousands of sq km, especially on intercrater plains; and regional relationships of sediment bodies situated immediately downstream of highland masses. These all suggest that fluvial explanations are at least part of the Meridiani story.

  18. Fluvial sediment transport and deposition following the 1991 eruption of Mount Pinatubo

    E-print Network

    Montgomery, David R.

    ), detailed work follow- ing the 1980 eruption of Mount St. Helens increased recognition of the potentialFluvial sediment transport and deposition following the 1991 eruption of Mount Pinatubo Shannon K 2001 Abstract The 1991 eruption of Mount Pinatubo generated extreme sediment yields from watersheds

  19. Study on detailed geological modelling for fluvial sandstone reservoir in Daqing oil field

    SciTech Connect

    Zhao Hanqing; Fu Zhiguo; Lu Xiaoguang

    1997-08-01

    Guided by the sedimentation theory and knowledge of modern and ancient fluvial deposition and utilizing the abundant information of sedimentary series, microfacies type and petrophysical parameters from well logging curves of close spaced thousands of wells located in a large area. A new method for establishing detailed sedimentation and permeability distribution models for fluvial reservoirs have been developed successfully. This study aimed at the geometry and internal architecture of sandbodies, in accordance to their hierarchical levels of heterogeneity and building up sedimentation and permeability distribution models of fluvial reservoirs, describing the reservoir heterogeneity on the light of the river sedimentary rules. The results and methods obtained in outcrop and modem sedimentation studies have successfully supported the study. Taking advantage of this method, the major producing layers (PI{sub 1-2}), which have been considered as heterogeneous and thick fluvial reservoirs extending widely in lateral are researched in detail. These layers are subdivided into single sedimentary units vertically and the microfacies are identified horizontally. Furthermore, a complex system is recognized according to their hierarchical levels from large to small, meander belt, single channel sandbody, meander scroll, point bar, and lateral accretion bodies of point bar. The achieved results improved the description of areal distribution of point bar sandbodies, provide an accurate and detailed framework model for establishing high resolution predicting model. By using geostatistic technique, it also plays an important role in searching for enriched zone of residual oil distribution.

  20. Fluvial rainbow trout contribute to the colonization of steelhead (Oncorhynchus mykiss) in a small stream

    USGS Publications Warehouse

    Weigel, Dana E.; Connolly, Patrick J.; Powell, Madison S.

    2013-01-01

    Life history polymorphisms provide ecological and genetic diversity important to the long term persistence of species responding to stochastic environments. Oncorhynchus mykiss have complex and overlapping life history strategies that are also sympatric with hatchery populations. Passive integrated transponder (PIT) tags and parentage analysis were used to identify the life history, origin (hatchery or wild) and reproductive success of migratory rainbow/steelhead for two brood years after barriers were removed from a small stream. The fluvial rainbow trout provided a source of wild genotypes to the colonizing population boosting the number of successful spawners. Significantly more parr offspring were produced by anadromous parents than expected in brood year 2005, whereas significantly more parr offspring were produced by fluvial parents than expected in brood year 2006. Although hatchery steelhead were prevalent in the Methow Basin, they produced only 2 parr and no returning adults in Beaver Creek. On average, individual wild steelhead produced more parr offspring than the fluvial or hatchery groups. Yet, the offspring that returned as adult steelhead were from parents that produced few parr offspring, indicating that high production of parr offspring may not be related to greater returns of adult offspring. These data in combination with other studies of sympatric life histories of O. mykiss indicate that fluvial rainbow trout are important to the conservation and recovery of steelhead and should be included in the management and recovery efforts.

  1. MODIFICATION OF PHOSPHORUS EXPORT FROM A CATCHMENT BY FLUVIAL SEDIMENT PHOSPHORUS INPUTS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Phosphorus (P) export from agricultural watersheds can accelerate freshwater eutrophication. Landscape-based remedial measures can reduce edge-of-field P losses. However stream channel hydraulics and fluvial sediment properties can modify the forms and amounts of P exported by the time it reaches th...

  2. Mixed fluvial systems of the Messak Sandstone, a deposit of the Nubian lithofacies, southwestern Libya

    NASA Astrophysics Data System (ADS)

    Lorenz, John C.

    1987-11-01

    The Messak Sandstone is a coarse-grained to pebbly, tabular-crossbedded deposit of the widespread nubian lithofacies. It was deposited during Late Jurassic and/or Early Cretaceous time at the northern edge of the Murzuq basin, in southwestern Libya. Although the sedimentary record is predominantly one of braided fluvial systems, a common subfacies within the formation is interpreted to record the passage of straight-crested sand waves across laterally migrating point bars in sinuous rivers, similar to parts of the modern Ganga and Yamuna rivers. Because the sand waves were larger on the lower parts of the point bar, lateral migration created diagnostic thinning-upward cosets of tabular crossbeds, as well as fining-upward grain-size trends. Common thick, interbedded claystones, deposited in associated paludal and lacustrine environments, and high variance in crossbed dispersion patterns, also suggest the local presence of sinuous fluvial systems within the overall braided regime. The Messak Sandstone contains some of the features that led to the proposal of an unconventional low-sinuosity fluvial environment for the Nubian lithofacies in Egypt, and the continuously high water levels of this model may explain channel-scale clay drapes and overturned crossbeds in the Messak. However, most of the Messak characteristics are incompatible with a low-sinuosity model, suggesting instead that the fluvial channels in the Murzuq basin alternated between braided and high-sinuosity channel patterns.

  3. 12.5 Riparian Vegetation and the Fluvial Environment: A Biogeographic Perspective

    E-print Network

    Stella, John C.

    .5.5 Influence of Vegetation on Geomorphology 59 12.5.6 Feedbacks between Vegetation and Hydrogeomorphology 60 12 the historical arc of research on biogeomorphic interactions between fluvial geomorphology and riparian on Geomorphology. Academic Press, San Diego, CA, vol. 12, Ecogeomorphology, pp. 53­74. Treatise on Geomorphology

  4. Numerical modeling of Martian gully sediment transport: Testing the fluvial hypothesis

    E-print Network

    Nimmo, Francis

    Click Here for Full Article Numerical modeling of Martian gully sediment transport: Testing crater slope at 38°S, 218°E, we measure topographic profiles along nine gullies. Typical slopes transport on gully slopes occurs via fluvial transport processes by developing a numerical sediment

  5. Fluvial features on Titan: Insights from morphology and modeling Devon M. Burr1,

    E-print Network

    Kah, Linda

    Fluvial features on Titan: Insights from morphology and modeling Devon M. Burr1, , J. Taylor Perron. Black2 1 Earth and Planetary Sciences Department, University of Tennessee­Knoxville, 1412 Circle Drive, Knoxville, Tennessee 37996-1410, USA 2 Department of Earth, Atmospheric, and Planetary Sciences

  6. Volcanogenic fluvial-lacustrine environments in iceland and their utility for identifying past habitability on Mars.

    PubMed

    Cousins, Claire

    2015-01-01

    The search for once-habitable locations on Mars is increasingly focused on environments dominated by fluvial and lacustrine processes, such as those investigated by the Mars Science Laboratory Curiosity rover. The availability of liquid water coupled with the potential longevity of such systems renders these localities prime targets for the future exploration of Martian biosignatures. Fluvial-lacustrine environments associated with basaltic volcanism are highly relevant to Mars, but their terrestrial counterparts have been largely overlooked as a field analogue. Such environments are common in Iceland, where basaltic volcanism interacts with glacial ice and surface snow to produce large volumes of meltwater within an otherwise cold and dry environment. This meltwater can be stored to create subglacial, englacial, and proglacial lakes, or be released as catastrophic floods and proglacial fluvial systems. Sedimentary deposits produced by the resulting fluvial-lacustrine activity are extensive, with lithologies dominated by basaltic minerals, low-temperature alteration assemblages (e.g., smectite clays, calcite), and amorphous, poorly crystalline phases (basaltic glass, palagonite, nanophase iron oxides). This paper reviews examples of these environments, including their sedimentary deposits and microbiology, within the context of utilising these localities for future Mars analogue studies and instrument testing. PMID:25692905

  7. Changing hillslope and fluvial Holocene sediment dynamics in a Belgian loess catchment

    E-print Network

    Marinova, Elena

    . KEYWORDS: dating; alluvium; colluvium; Holocene; land use change; climate change. Introduction Soil erosion anthropogenic land use and soil erosion and colluvial deposition, while also climatic events may haveChanging hillslope and fluvial Holocene sediment dynamics in a Belgian loess catchment BASTIAAN

  8. 3. Fluvial Processes in Puget Sound Rivers and the Pacific Northwest

    E-print Network

    Montgomery, David R.

    ambitious program for river restoration is develop- ing in the Puget Sound region driven by concerns over3. Fluvial Processes in Puget Sound Rivers and the Pacific Northwest John M. Buffington, Richard D and response potential in the Puget Sound region. We also review the influence of different channel types

  9. Quaternary Science Reviews 27 (2008) 497517 Tracking fluvial response to climate change in the Pacific Northwest

    E-print Network

    Graham, David W.

    2008-01-01

    Quaternary Science Reviews 27 (2008) 497­517 Tracking fluvial response to climate change volcanic arc, probably due to glaciation in the Cascade Range and the presence of pluvial Lake Modoc a primary role in the provenance changes seen at the core site, and is more significant than sediment

  10. Geomorphic thresholds and complex response of fluvial systems - some implications for sequence stratigraphy

    SciTech Connect

    Wescott, W.A. )

    1993-07-01

    First-generation sequence stratigraphic models have dealt in a very rudimentary fashion with the response of fluvial systems to eustasy. A major element of presently accepted models is that rivers incise when sea level falls and aggrade during the ensuing rise. Geomorphic principles state that fluvial systems are complex, process-response systems that can adjust to internal and external changes in other ways besides incision and aggradation by modifying their stream patterns and channel geometries. Application of geomorphic principles to sequence stratigraphic models results in the following observations. During eustatic lowstands, rivers may adjust to lowered base levels and changes in slope by modifying channel patterns. Therefore, not all lowstands produce type 1 sequence boundaries. Type 1 sequence boundaries characterized by fluvial-valley incision are more likely to develop when sea level drops below the shelf-slope break, resulting in topological relief near the strandline in which headwardly eroding knickpoints form. Rate of eustatic change is sufficiently low that geomorphic systems can maintain their equilibrium during eustatic changes and migrate back and forth across the shelf without major modifications. Finally, under conditions of relatively static sea level, sequences and parasequences of the same scale in time and space can be deposited as the result of purely intrinsic causes and responses of a fluvial system. In general, eustasy controls the location of deposition and erosion, but the resultant stratal geometry is controlled by sediment supply and processes acting on the sediments as the shoreline moves across the shelf in response to eustasy. Sequence stratigraphy is frequently used in petroleum exploration and basin analysis. However, present models do not adequately in corporate modern principles of fluvial geomorphology and do not accurately predict sedimentary facies and surfaces in some basins. 33 refs., 14 figs., 4 tabs.

  11. Application of Uav Photogrammetry for Assessment of Fluvial Dynamics of a Montane Stream. Case Study - Roklanský Creek, Šumava Mts., Europe.

    NASA Astrophysics Data System (ADS)

    Langhammer, J.; Mi?ijovský, J.; Hartvich, F.; Kaiglová, J.

    2014-12-01

    Current progress in hydrology and fluvial geomorphology is largely driven by the newly emerging survey and detection techniques, employing advanced technologies for remote sensing and monitoring of the runoff processes and fluvial dynamics. The contribution demonstrates the potential of the fusion of experimental survey methods for analysis of fluvial dynamics of a montane stream. The UAV photogrammetry, optical granulometry, ground LiDAR scanning and sensor network monitoring were applied as a base for building hydrodynamic model for simulation of fluvial dynamics. The UAV photogrammetry is employed to acquire high precision DTM and especially for quantitative analysis of volumetric changes related to initial flood events. The hexacopter platform has been used to acquire the data for photogrammetric analysis of complex stretch of stream with historically elevated fluvial dynamics. The SfM algorithm was used to extract accurate DTM of the channel and to consequently analyze the volumetric changes after a flood event. The sensor network with automated high frequency water level monitoring was used to derive information on hydrological properties of initial flood event. The digital granulometry enabled to analyze the structure of sedimentary material in floodplain. The terrestrial LiDAR scanning allows construction of very detailed 3D models of selected fluvial forms, enabling deeper insight into the effects of fluvial dynamics and to verify the spatial information acquired using UAS photogrammetry. The results of above mentioned techniques are applied to build hydrodynamic model explaining threshold conditions for initiation of changes in fluvial morphology of the riverbed in relation to known and theoretical flood magnitude. The results achieved in the study enabled us to discuss the synergic potential of coupling the UAV photogrammetry, sensor networks and other high precision survey techniques to enhance significantly our knowledge on the dynamics of fluvial systems.

  12. Combined fluvial and pluvial urban flood hazard analysis: method development and application to Can Tho City, Mekong Delta, Vietnam

    NASA Astrophysics Data System (ADS)

    Apel, H.; Trepat, O. M.; Hung, N. N.; Chinh, D. T.; Merz, B.; Dung, N. V.

    2015-08-01

    Many urban areas experience both fluvial and pluvial floods, because locations next to rivers are preferred settlement areas, and the predominantly sealed urban surface prevents infiltration and facilitates surface inundation. The latter problem is enhanced in cities with insufficient or non-existent sewer systems. While there are a number of approaches to analyse either fluvial or pluvial flood hazard, studies of combined fluvial and pluvial flood hazard are hardly available. Thus this study aims at the analysis of fluvial and pluvial flood hazard individually, but also at developing a method for the analysis of combined pluvial and fluvial flood hazard. This combined fluvial-pluvial flood hazard analysis is performed taking Can Tho city, the largest city in the Vietnamese part of the Mekong Delta, as example. In this tropical environment the annual monsoon triggered floods of the Mekong River can coincide with heavy local convective precipitation events causing both fluvial and pluvial flooding at the same time. Fluvial flood hazard was estimated with a copula based bivariate extreme value statistic for the gauge Kratie at the upper boundary of the Mekong Delta and a large-scale hydrodynamic model of the Mekong Delta. This provided the boundaries for 2-dimensional hydrodynamic inundation simulation for Can Tho city. Pluvial hazard was estimated by a peak-over-threshold frequency estimation based on local rain gauge data, and a stochastic rain storm generator. Inundation was simulated by a 2-dimensional hydrodynamic model implemented on a Graphical Processor Unit (GPU) for time-efficient flood propagation modelling. All hazards - fluvial, pluvial and combined - were accompanied by an uncertainty estimation considering the natural variability of the flood events. This resulted in probabilistic flood hazard maps showing the maximum inundation depths for a selected set of probabilities of occurrence, with maps showing the expectation (median) and the uncertainty by percentile maps. The results are critically discussed and ways for their usage in flood risk management are outlined.

  13. The potential of hydrodynamic analysis for the interpretation of Martian fluvial activities

    NASA Astrophysics Data System (ADS)

    Kim, Jungrack; Schumann, Guy; Neal, Jeffrey; Lin, Shih-Yuan

    2014-05-01

    After liquid water was identified as the agent of ancient Martian fluvial activities, the valley and channels on the Martian surface were investigated by a number of remote sensing and in-situ measurements. In particular, the stereo DTMs and ortho images from various successful orbital sensors are being effectively used to trace the origin and consequences of Martian hydrological channels. For instance, to analyze the Martian fluvial activities more quantitatively using the topographic products, Burr et al. (2003) employed 1D hydrodynamic models such as HEC-RAS together with the topography by MOLA to derive water flow estimates for the Athabasca Valles area on Mars [1]. Where extensive floodplain flows or detailed 2D bathymetry for the river channel exist, it may be more accurate to simulate flows in two dimensions, especially if the direction of flow is unclear a priori. Thus in this study we demonstrated a quantitative modeling method utilizing multi-resolution Martian DTMs, constructed in line with Kim and Muller's (2009) [2] approach, and an advanced hydraulics model LISFLOOD-FP (Bates et al., 2010) [3], which simulates in-channel dynamic wave behavior by solving for 2D shallow water equations without advection. Martian gravitation and manning constants were adjusted in the hydraulic model and the inflow values were iteratively refined from the outputs of the coarser to the finer model. Then we chose the target areas among Martian fluvial geomorphologies and tested the effectiveness of high resolution hydraulic modeling to retrieve the characteristics of fluvial systems. Test sites were established in the Athabasca Valles, Bahram Vallis, and Naktong Vallis respectively. Since those sites are proposed to be originated by different fluvial mechanisms, it is expected that the outputs from hydraulics modeling will provide important clues about the evolution of each fluvial system. Hydraulics modeling in the test areas with terrestrial simulation parameters was also conducted to explore the different characteristics of two planets' fluvial activities. Ultimately, this study proved the effectiveness of multi-resolution modeling using 150-1.2m DTMs and 2D hydraulics to study the Martian fluvial system. In future study, we will elaborate the hydrodynamic model to investigate the sediment transformation mechanism in Martian fluvial activities using hydrodynamic properties such as flow speed. References: [1] Burr, D.M. (2003).Hydraulic modelling of Athabasca Vallis, Mars. Hydrological Sciences Journal, 48(4), 655-664. [2] Kim, J.R. & Muller, J-P.,(2009).Multi resolution topographic data extraction from Martian stereo imagery.Planetary and Space Science. 57, 2095-2112. [3] Bates, P.D., Horritt, M.S., & Fewtrell, T.J. (2010). A simple inertial formulation of the shallow water equations for efficient two-dimensional flood inundation modelling. Journal of Hydrology, 387(1), 33-45.

  14. Using portable impact sensors for analyzing fluvial bedload transport in steep mountain streams

    NASA Astrophysics Data System (ADS)

    Beylich, A.; Laute, K.

    2013-12-01

    The timing and rate of fluvial bedload transport are of central importance in quantitative studies on fluvial transport, within sediment budget studies, and in many applications in river science and engineering. Bedload transport rates are still comparably difficult to measure and, in many sites, only suspended load and solute load data are actually included in fluvial sediment budget studies. Detailed field measurements with portable impact sensors as a comparably new and non-invasive technique for indirectly determining fluvial bedload transport intensity have been conducted since 2010 in two instrumented and supply-limited mountainous drainage basin systems (Erdalen and Bødalen) in western Norway. Additional field measurements with portable impact sensors were carried out in three selected transport-limited fluvial systems in the Coast Mountains of western Canada. The collected impact sensor field data were calibrated with laboratory impact sensor flume experiments. In the transport-limited systems (in western Canada) with generally high bedload transport rates during high discharge and with bedload moving in clusters over the impact sensor plates, impact sensor data (based on a 1 s measuring interval) provide the opportunity to detect the start and end of bedload transport, thus to identify discharge thresholds for sediment entrainment, and to roughly estimate the intensity and relative intensity changes of bedload transport during the measuring period. In the supply-limited systems (in western Norway) with generally low bedload transport rates and bedload components moving separately (as single particles) over the impact sensor plates, impact sensor data (based on a 1 s measuring interval) allow the detection of the start and end of transport of bedload components >11.3 mm, thus the identification of discharge thresholds for possible entrainment of particles, the quantification of the number of particles >11.3 mm moving over the impact sensor plates during the measuring period, the rough estimation of grain sizes of the particles >11.3 mm moving separately over the impact sensor plates, and the calculation of the total mass of the bedload material >11.3 mm moving over the impact sensor plates during the measuring period. When combined with other bedload measuring methods and techniques (Helley-Smith sampling, particle tracer measurements, biofilm analyses, underwater video filming) which have provided information on the active bedload transport channel width, on discharge thresholds for possible entrainment of particles of different grain sizes, and on transport rates of bedload material <11.3 mm, total rates of fluvial bedload transport, covering all given grain sizes of the bedload material, can be calculated for the supply-limited mountain streams with generally low bedload transport. The higher computed mean annual bedload yield in Bødalen (13.6 t km-2yr-1) compared to Erdalen (2.6 t km-2yr-1) reflects a higher level of slope-channel coupling in the Bødalen drainage basin than in Erdalen. In both drainage basins fluvial bedload transport is smaller than fluvial suspended sediment transport. In Bødalen the annual fluvial bedload yield is two times greater than annual chemical denudation whereas in Erdalen it is less than half of the annual chemical denudation rate.

  15. Impacts of dams on the geomorphodynamics of fluvial systems - Complex system response?

    NASA Astrophysics Data System (ADS)

    Pöppl, Ronald E.; Keiler, Margreth; Glade, Thomas

    2010-05-01

    In Europe, for more than 5.000 years humans impact fluvial systems in various ways, e.g. also through building dams. These constructions change the interdependencies between the components of the fluvial system. 'Natural (fluvial) systems' are scarce and humans play an active and major role in changing river systems. In return the geomorphic response of fluvial systems like channel bed degradation downstream or sedimentation upstream of dams also affects the human system which again leads to 'human responses' such as building (or abandoning) river engineering structures. Geomorphic response or geomorphic system behavior can change and feature linear or nonlinear/complex behavior depending on the internal systemic structure and system history. The study area, the 'Kaja' River watershed is located in the Eastern part of the Bohemian Massif in Austria (Europe) and drains into the 'Thaya' River which builds the northern border to the Czech Republic in Lower Austria. Furthermore it is eponymous for the local National Park 'Nationalpark Thayatal'. In the study area 14 dams are located in total, 13 along the Kaja River, and one along a tributary river. The study area influenced by dams amounts 1.615 ha. All dams are embankment dams whose cross-sections show hill-shaped forms. They are made of various compositions of soil, sand, clay, and rock. Four dams are currently active, ten are abandoned. The main objectives of this study are to identify if nonlinear/complex geomorphic system behavior occurs in this small and highly dam-affected watershed and to investigate geomorphic effects on fluvial systems due to dams. In order to find nonlinear/complex system behavior those sites are probed in which geomorphic effects due to dams are highly expected: reservoirs, channels, and floodplains. Sedimentary records, numerical modeling and mapping techniques will be used to reveal geomorphic changes and perturbations within the fluvial system. Spatial and temporal reconstructions and interpretation of geomorphic effects due to dams will be used to reconstruct system behavior. River bed surface mapping, observations of river engineering structures, and land use changes already reveal that geomorphic effects due to dams do exist within our study area. Sediment cores show that reservoir sediments of abandoned dams are preserved. These will be especially useful for further quantitative and qualitative investigations. First results of the study will be presented on European Geosciences Union General Assembly, 2010.

  16. Estimating the fluvial sediment input to the coastal sediment budget: A case study of Ghana

    NASA Astrophysics Data System (ADS)

    Boateng, Isaac; Bray, Malcolm; Hooke, Janet

    2012-02-01

    Knowledge of fluvial sediment supply to the coastal sediment budget is important for the assessment of the impacts on coastal stability. Such knowledge is valuable for designing coastal engineering schemes and the development of shoreline management planning policies. It also facilitates understanding of the connection between rivers in the hinterland and adjoining coastal systems. Ghana's coast has many fluvial sediment sources and this paper provides the first quantitative assessments of their contributions to the coastal sediment budget. The methods use largely existing data and attempt to cover all of Ghana's significant coastal rivers. Initially work was hindered by insufficient direct measured data. However, the problem was overcome by the application of a regression approach, which provides an estimated sediment yield for non-gauged rivers based on data from gauged rivers with similar characteristics. The regression approach was effective because a regional coherence in behaviour was determined between those rivers, where direct measured data were available. The results of the assessment revealed that Ghana's coast is dissected by many south-draining rivers, stream and lagoons. These rivers, streams and lagoons supply significant amounts of sediment to coastal lowlands and therefore contribute importantly to beaches. Anthropogenic impoundment of fluvial sediment, especially the Akosombo dam on the Volta River, has reduced the total fluvial sediment input to the coast from about 71 × 10 6 m 3/a before 1964 (pre-Akosombo dam) to about 7 × 10 6 m 3/a at present (post-Akosombo dam). This sharp reduction threatened the stability of the east coast and prompted an expensive ($83 million) defence scheme to be implemented to protect 8.4 km-long coastline at Keta. Sections of Ghana's coast are closely connected to the hinterland through the fluvial sediment input from local rivers. Therefore, development in the hinterland that alters the fluvial sediment input from those local rivers could have significant effects on the coast. There is the need, therefore, to ensure that catchment management plans and coastal management plans are integrated or interconnected.

  17. Controls on large-scale patterns of fluvial sandbody distribution in alluvial to coastal plain strata: Upper Cretaceous Blackhawk

    E-print Network

    Gani, M. Royhan

    Bergen, Norway ­Chevron Energy Technology Company, 6001 Bollinger Canyon Road, San Ramon, California belt (Upper Cretaceous Blackhawk Formation, central Utah, USA). Many channelized fluvial sandbodies Road, Faisal Avenue, F-8/4, Islamabad, Pakistan. 2 Present address: Neftex Petroleum Consultants

  18. Possible glacio-fluvial landforms in southern Argyre Planitia, Mars: Implications for glacier thickness and depositional settings

    NASA Astrophysics Data System (ADS)

    Bernhardt, H.; Hiesinger, H.; Reiss, D.; Ivanov, M.; Erkeling, G.

    2012-09-01

    Our study presents new insights into possible formation mechanisms and glacio-fluvial implications of previously identified esker-like sinuous ridges on layered terrain in southern Argyre Planitia [1,2,3,4,5]. Based on detailed morphologic analyses and comparisons with terrestrial analogs, we interpret the ridges and their surroundings to be eskers on glacio-fluvial sediments. We propose the formation of northward trending degraded ridges to have involved back- and downwasting ice near the glacier rim comparable to the Piedmont-style Malaspina Glacier, Alaska [6]. Computational reconstruction suggests the eastward trending, more pristine ridges to have formed beneath a ~2 km thick ice sheet before its stagnant retreat. Fluvial landforms on top of or etched into possible glacial deposits also point to a distinct period of fluvial activity after glacial activity ceased.

  19. Integrating field measurements with flume experiments for analysing fluvial bedload transport in steep mountain streams

    NASA Astrophysics Data System (ADS)

    Beylich, A. A.; Laute, K.; Liermann, S.

    2012-04-01

    Fluvial bedload transport has high importance within sediment budgets of steep catchments and steep mountain streams. It is also of crucial importance as headwater catchments and steep mountain streams can be relevant sediment sources for lowland river systems. Measured under comparable conditions of discharge, rates of fluvial bedload transport can differ by up to one order of magnitude, which is due to the irregular nature of sediment movement. Bedload transport at a defined site depends on factors such as local flow conditions, bed material composition and amount of sediment supply from upstream sources. Irregular deviations from mean rates of bedload transport can be caused by sporadic inputs of material from hillslopes. Permafrost degradation and shifts in ground frost regimes as caused by climate change can lead to increased frequencies and intensities of mass movements on slopes including the increased frequency of rock fall events. By the destabilisation of slope systems higher amounts of sediment are available from a larger number of activated sediment sources. At the same time, a higher frequency of extreme rainfall events and thermally determined runoff-peaks from glacier-fed systems is leading to an increased number of peak runoff events showing a high transport competence with significant fluvial bedload transport. A better general understanding of the exact mechanisms and the dynamics of fluvial bedload transport is essential for the further improvement of river engineering management and hazard mitigation projects. Since 2004, extended and interdisciplinary field investigations on fluvial bedload transport using a novel combination of methods and techniques have been performed in a number of selected stream segments in supply-limited fluvial systems in the inner Nordfjord (Erdalen and Bødalen drainage basins) in western Norway. Field studies include (i) continuous channel discharge monitoring, (ii) frequently repeated surveys of channel morphometry and granulometric analyses, (iii) different tracer techniques (painted stones, magnetic tracers), (iv) Helley-Smith and other basket measurements, (v) horizontally installed impact sensors, (vi) underwater video filming, and (vii) extended biofilm analyses, including also controlled biofilm growing experiments with fixed baskets in selected channels. In addition, field studies with horizontally installed impact sensors were also carried out in selected transport-limited fluvial systems in the Coast Mountains of British Columbia (Canada) in 2010 and 2011. The extended field studies are integrated with advanced flume experiments which were carried out in 2010 and 2011 at the Department of Geography at the University of British Columbia (UBC), Canada for calibration of field measurements. As a key achievement, the entire range of different bedload component grain sizes can be covered by the applied combination of techniques, and the presented integration of interdisciplinary field measurements with flume experiments appears to be a useful approach to study mechanisms, controlling factors and rates of fluvial bedload transport in steep mountain streams.

  20. An analysis of the combined consequences of pluvial and fluvial flooding.

    PubMed

    Chen, A S; Djordjevi?, S; Leandro, J; Savi?, D A

    2010-01-01

    Intense rainfall in urban areas often generates both pluvial flooding due to the limited capacity of drainage systems, as well as fluvial flooding caused by deluges from river channels. The concurrence of pluvial and fluvial flooding can aggravate their (individual) potential damages. To analyse the impact caused by individual and composite type of flooding, the SIPSON/UIM model, an integrated 1D sewer and 2D overland flow was applied to numerical modelling. An event matrix of possible pluvial scenarios was combined with hypothetic overtopping and breaching situations to estimate the surface flooding consequences in the Stockbridge area, Keighley (Bradford, UK). The modelling results identified different flooding drivers in different parts of the study area and showed that the worst scenarios resulted from synthesised events. PMID:20935365

  1. The Holocene landscape development of the Gareja region in eastern Georgia - a fluvial approach

    NASA Astrophysics Data System (ADS)

    Sukhishvili, Lasha; Elashvili, Mikheil; Janelidze, Zurab; Kikvadze, Bagrat; Navrozashvili, Levan; von Suchodoletz, Hans

    2013-04-01

    The semi-arid Gareja region in the Iori Highland in the southeastern part of the Republic of Georgia is characterized by an annual precipitation < 500 mm and shows an open steppic landscape today. As is known from historical sources, the landscape showed the same character already during the 6th century AD when the Gareja monastery located in the center of the region was founded by Assyrian monks. However, archaeological research carried out during the Soviet Period showed that there were dozens of settlements of bronze and iron age in this region almost devoid of water resources today, hinting to some sources of fresh water allowing people to live there during those periods. Furthermore, former archaeobotanical studies assume that the region was covered by forests instead of steppes during the past, although there is no final proof yet. The goal of this study is to shed light on the development of the palaeo-landscape during the prehistoric period and thus to address some of the issues described above. To do so, our work is based on the network of episodic streams that cross the region, running from the Iori mountains towards the Mtkvari (Kura) river as the main gaining stream of the region. Using rain water flow direction modeling in GIS we determined the main fluvial courses according to their. This pattern was compared with that of prehistoric settlements known from archaeologic studies, in order to get information about the possible perennial character of some rivers during the past. Furthermore, we did first investigations of outcrops with fluvial sediments found along some of such fluvial courses: Based on stratigraphic observations, pedologic investigations of potential palaeosols as indicators of landscape stability as well as on first numerical datings, we started to unravel the fluvial pattern of that region.

  2. Post Waterflood CO2 Miscible Flood in Light Oil, Fluvial-Dominated Deltaic Reservoir, Class I

    SciTech Connect

    Bou-Mikael, Sami

    2002-02-05

    This report demonstrates the effectiveness of the CO2 miscible process in Fluvial Dominated Deltaic reservoirs. It also evaluated the use of horizontal CO2 injection wells to improve the overall sweep efficiency. A database of FDD reservoirs for the gulf coast region was developed by LSU, using a screening model developed by Texaco Research Center in Houston. The results of the information gained in this project is disseminated throughout the oil industry via a series of SPE papers and industry open forums.

  3. Applicability of Complexity Theory to Martian Fluvial Systems: A Preliminary Analysis

    NASA Technical Reports Server (NTRS)

    Rosenshein, E. B.

    2003-01-01

    In the last 15 years, terrestrial geomorphology has been revolutionized by the theories of chaotic systems, fractals, self-organization, and selforganized criticality. Except for the application of fractal theory to the analysis of lava flows and rampart craters on Mars, these theories have not yet been applied to problems of Martian landscape evolution. These complexity theories are elucidated below, along with the methods used to relate these theories to the realities of Martian fluvial systems.

  4. Fluvial processes and vegetation - Glimpses of the past, the present, and perhaps the future

    USGS Publications Warehouse

    Osterkamp, W.R.; Hupp, C.R.

    2010-01-01

    Most research before 1960 into interactions among fluvial processes, resulting landforms, and vegetation was descriptive. Since then, however, research has become more detailed and quantitative permitting numerical modeling and applications including agricultural-erosion abatement and rehabilitation of altered bottomlands. Although progress was largely observational, the empiricism increasingly yielded to objective recognition of how vegetation interacts with and influences geomorphic process. A review of advances relating fluvial processes and vegetation during the last 50 years centers on hydrologic reconstructions from tree rings, plant indicators of flow- and flood-frequency parameters, hydrologic controls on plant species, regulation of sediment movement by vegetation, vegetative controls on mass movement, and relations between plant cover and sediment movement. Extension of present studies of vegetation as a regulator of bottomland hydrologic and geomorphic processes may become markedly more sophisticated and widespread than at present. Research emphases that are likely to continue include vegetative considerations for erosion modeling, response of riparian-zone forests to disturbance such as dams and water diversion, the effect of vegetation on channel and bottomland dynamics, and rehabilitation of stream corridors. Research topics that presently are receiving attention are the effect of woody vegetation on the roughness of stream corridors and, hence, processes of flood conveyance and flood-plain sedimentation, the development of a theoretical basis for rehabilitation projects as opposed to fully empirical approaches, the effect of invasive plant species on the dynamics of bottomland vegetation, the quantification of below-surface biomass and related soil-stability factors for use in erosion-prediction models, and the effect of impoundments on downstream narrowing of channels and accompanying encroachment of vegetation. Bottomland vegetation partially controls and is controlled by fluvial-geomorphic processes. The purposes of this paper are to identify and review investigations that have related vegetation to bottomland features and processes, to distinguish the present status of these investigations, and to anticipate future research into how hydrologic and fluvial-geomorphic processes of bottomlands interact with vegetation.

  5. Modeling Fluvial Incision and Transient Landscape Evolution: Influence of Dynamic Channel Adjustment

    NASA Astrophysics Data System (ADS)

    Attal, M.; Tucker, G. E.; Cowie, P. A.; Whittaker, A. C.; Roberts, G. P.

    2007-12-01

    Channel geometry exerts a fundamental control on fluvial processes. Recent work has shown that bedrock channel width (W) depends on a number of parameters, including channel slope, and is not only a function of drainage area (A) as is commonly assumed. The present work represents the first attempt to investigate the consequences, for landscape evolution, of using a static expression of channel width (W ~ A0.5) versus a relationship that allows channels to dynamically adjust to changes in slope. We consider different models for the evolution of the channel geometry, including constant width-to-depth ratio (after Finnegan et al., Geology, v. 33, no. 3, 2005), and width-to-depth ratio varying as a function of slope (after Whittaker et al., Geology, v. 35, no. 2, 2007). We use the Channel-Hillslope Integrated Landscape Development (CHILD) model to analyze the response of a catchment to a given tectonic disturbance. The topography of a catchment in the footwall of an active normal fault in the Apennines (Italy) is used as a template for the study. We show that, for this catchment, the transient response can be fairly well reproduced using a simple detachment-limited fluvial incision law. We also show that, depending on the relationship used to express channel width, initial steady-state topographies differ, as do transient channel width, slope, and the response time of the fluvial system. These differences lead to contrasting landscape morphologies when integrated at the scale of a whole catchment. Our results emphasize the importance of channel width in controlling fluvial processes and landscape evolution. They stress the need for using a dynamic hydraulic scaling law when modeling landscape evolution, particularly when the uplift field is non-uniform.

  6. Fluvial deposits of Yellowstone tephras: Implications for late Cenozoic history of the Bighorn basin area, Wyoming and Montana

    USGS Publications Warehouse

    Reheis, M.C.

    1992-01-01

    Several deposits of tephra derived from eruptions in Yellowstone National Park occur in the northern Bighorn basin area of Wyoming and Montana. These tephra deposits are mixed and interbedded with fluvial gravel and sand deposited by several different rivers. The fluvial tephra deposits are used to calculate stream incision rates, to provide insight into drainage histories and Quaternary tectonics, to infer the timing of alluvial erosion-deposition cycles, and to calibrate rates of soil development. ?? 1992.

  7. Isotope-based Fluvial Organic Carbon (ISOFLOC) Model: Model formulation, sensitivity, and evaluation

    NASA Astrophysics Data System (ADS)

    Ford, William I.; Fox, James F.

    2015-06-01

    Watershed-scale carbon budgets remain poorly understood, in part due to inadequate simulation tools to assess in-stream carbon fate and transport. A new numerical model termed ISOtope-based FLuvial Organic Carbon (ISOFLOC) is formulated to simulate the fluvial organic carbon budget in watersheds where hydrologic, sediment transport, and biogeochemical processes are coupled to control benthic and transported carbon composition and flux. One ISOFLOC innovation is the formulation of new stable carbon isotope model subroutines that include isotope fractionation processes in order to estimate carbon isotope source, fate, and transport. A second innovation is the coupling of transfers between carbon pools, including algal particulate organic carbon, fine particulate and dissolved organic carbon, and particulate and dissolved inorganic carbon, to simulate the carbon cycle in a comprehensive manner beyond that of existing watershed water quality models. ISOFLOC was tested and verified in a low-gradient, agriculturally impacted stream. Results of a global sensitivity analysis suggested the isotope response variable had unique sensitivity to the coupled interaction between fluvial shear resistance of algal biomass and the concentration of dissolved inorganic carbon. Model calibration and validation suggested good agreement at event, seasonal, and annual timescales. Multiobjective uncertainty analysis suggested inclusion of the carbon stable isotope routine reduced uncertainty by 80% for algal particulate organic carbon flux estimates.

  8. The influence of crustal strength fields on the patterns and rates of fluvial incision

    NASA Astrophysics Data System (ADS)

    Roy, S. G.; Koons, P. O.; Upton, P.; Tucker, G. E.

    2015-02-01

    Gradients in the bedrock strength field are increasingly recognized as integral to the rates and patterns of landscape evolution. To explore this influence, we incorporate data from fault strength profiles into a landscape evolution model, under the assumption that erodibility of rock is proportional to the inverse square root of cohesion for bedrock rivers incised by bedload abrasion. Our model calculations illustrate how patterns in the crustal strength field can play a dominant role in local fluvial erosion rates and consequently the development of fluvial network patterns. Fluvial incision within weak zones can be orders of magnitude faster than that for resistant bedrock. The large difference in erosion rate leads to the formation of a straight, high-order channel with short, orthogonal tributaries of low order. In comparison, channels incising into homogeneous strength fields produce dendritic drainage patterns with no directional dependence associated with erodibility gradients. Channels that cross the strength gradient experience local variations in knickpoint migration rate and the development of stationary knickpoints. Structurally confined channels can shift laterally if they incise into weak zones with a shallow dip angle, and this effect is strongly dependent on the magnitude of the strength difference, the dip angle, and the symmetry and thickness of the weak zone. The influence of the strength field on drainage network patterns becomes less apparent for erodibility gradients that approach homogeneity. There are multiple natural examples with drainage network patterns similar to those seen in our numerical experiments.

  9. Validation of a stochastic digital packing algorithm for porosity prediction in fluvial gravel deposits

    NASA Astrophysics Data System (ADS)

    Liang, Rui; Schruff, Tobias; Jia, Xiaodong; Schüttrumpf, Holger; Frings, Roy M.

    2015-11-01

    Porosity as one of the key properties of sediment mixtures is poorly understood. Most of the existing porosity predictors based upon grain size characteristics have been unable to produce satisfying results for fluvial sediment porosity, due to the lack of consideration of other porosity-controlling factors like grain shape and depositional condition. Considering this, a stochastic digital packing algorithm was applied in this work, which provides an innovative way to pack particles of arbitrary shapes and sizes based on digitization of both particles and packing space. The purpose was to test the applicability of this packing algorithm in predicting fluvial sediment porosity by comparing its predictions with outcomes obtained from laboratory measurements. Laboratory samples examined were two natural fluvial sediments from the Rhine River and Kall River (Germany), and commercial glass beads (spheres). All samples were artificially combined into seven grain size distributions: four unimodal distributions and three bimodal distributions. Our study demonstrates that apart from grain size, grain shape also has a clear impact on porosity. The stochastic digital packing algorithm successfully reproduced the measured variations in porosity for the three different particle sources. However, the packing algorithm systematically overpredicted the porosity measured in random dense packing conditions, mainly because the random motion of particles during settling introduced unwanted kinematic sorting and shape effects. The results suggest that the packing algorithm produces loose packing structures, and is useful for trend analysis of packing porosity.

  10. Assesing Hydrophysical/Enivornmenal impacts by Dams in the Amazon (fluvial) Basin

    NASA Astrophysics Data System (ADS)

    Wight, C.; Latrubesse, E. M.

    2014-12-01

    Growing demands from human activities are increasing the pressure and impacts on the Amazon River basin. Covering almost 40% of South America, the Amazon River basin's health is of global importance. With tributaries in 6 different countries, the anthropogenic impacts on this large system are complex and hard to synthesize. However to better understand large system responses to human impacts such an analysis is called for. Our objective is to organize a rigorous analysis of the potential hydro-physical impacts of dams on the major sub-basins of the Amazon. We are incorporating existing data of sediment fluxes, deforestation and land-use land-change to include the entire extent of the basin as defined by the fluvial unit. In addition, we will be analyzing the spatial distributions of dams (planned, under construction, and constructed) within each sub-basin. Our preliminary results have used statistical analysis and remote sensing to calculate the extent of deforestation on fluvial regimes of the legal Amazon and concentrated to identify the potential disruptions of sediment fluxes. Combining the spatial distributions of dam sites, and deforestation per sub-basin we will develop a system to interpret land-use and land-change per catchment. This in turn will allow us to better predict changes in the fluvial regimes and allow for comparisons of vulnerability.

  11. A comprehensive fluvial geomorphology study of riverbank erosion on the Red River in Winnipeg, Manitoba, Canada

    NASA Astrophysics Data System (ADS)

    Kimiaghalam, Navid; Goharrokhi, Masoud; Clark, Shawn P.; Ahmari, Habib

    2015-10-01

    Riverbank erosion on the Red River in Winnipeg, Manitoba has raised concerns over the last 20 years and more. Although several recent studies have shown that fluvial erosion can reduce riverbank stability and promote geotechnical slope failure, there are too few that have focused on this phenomenon. The present study includes field measurements, experimental testing, and numerical modelling to quantify fluvial erosion through a 10 km reach of the Red River. Results have shown that seasonal freeze-thaw processes can dramatically reduce the critical shear stress and increase erodibility of the riverbanks. Moreover, a simple method has been employed using hydrodynamic numerical models to define the applied shear stresses on the river banks based on the river water level, which will be useful for further research and design purposes. The TEMP/W numerical model was used to define seasonal frost depth to estimate freeze-thaw effects. Finally all field measurements, experimental and numerical models results were used to predict annual fluvial erosion through this reach of the river.

  12. Recent Fluvial, Volcanic, and Tectonic Activity on the Cerberus Plains of Mars

    NASA Astrophysics Data System (ADS)

    Berman, Daniel C.; Hartmann, William K.

    2002-09-01

    Athabasca and Marte Valles lie on the Cerberus plains, between the young, lava-covered plains of Elysium Planitia and Amazonis Planitia. To test pre- MGS ( Mars Global Surveyor) suggestions of extremely young volcanic and fluvial activity, we present the first crater counts from MGS imagery, at resolutions (˜2-20 m/pixel) much higher than previously available. The most striking result, based on morphologic relations as well as crater counts from different stratigraphic units, is to confirm quantitatively that these channel systems are much younger than most other major outflow channels. The general region has an average model age for lava and fluvial surfaces of ?200 Myr, and has possibly seen localized water releases, interspersed with lava flows, within the past 20 Myr. The youngest lavas may be no more than a few megayears old. Access of lava and liquid brines to the surface may be favored by openings of the Cerberus Fossae fracture system, but, as shown in the new images, the fractures appear to have continued developing more recently than the most recent lavas or fluvial activity. The Cerberus Fossae system may be an analog to an early stage of Valles Marineris, and its youthful activity raises questions about regional tectonic history. Large-volume water delivery to the surface of young lava flows in recent martian history puts significant boundary conditions on the storage and history of water on Mars.

  13. Human-induced changes in animal populations and distributions, and the subsequent effects on fluvial systems

    NASA Astrophysics Data System (ADS)

    Butler, David R.

    2006-09-01

    Humans have profoundly altered hydrological pathways and fluvial systems through their near-extirpation of native populations of animal species that strongly influenced hydrology and removal of surface sediment, and through the introduction of now-feral populations of animals that bring to bear a suite of different geomorphic effects on the fluvial system. In the category of effects of extirpation, examples are offered through an examination of the geomorphic effects and former spatial extent of beavers, bison, prairie dogs, and grizzly bears. Beavers entrapped hundreds of billions of cubic meters of sediment in North American stream systems prior to European contact. Individual bison wallows, that numbered in the range of 100 million wallows, each displaced up to 23 m 3 of sediment. Burrowing by prairie dogs displaced more than 5000 kg and possibly up to 67,500 kg of sediment per hectare. In the category of feral populations, the roles of feral rabbits, burros and horses, and pigs are highlighted. Much work remains to adequately quantify the geomorphic effects animals have on fluvial systems, but the influence is undeniable.

  14. Modeling fluvial incision and transient landscape evolution: Influence of dynamic channel adjustment

    NASA Astrophysics Data System (ADS)

    Attal, M.; Tucker, G. E.; Whittaker, A. C.; Cowie, P. A.; Roberts, G. P.

    2008-09-01

    Channel geometry exerts a fundamental control on fluvial processes. Recent work has shown that bedrock channel width depends on a number of parameters, including channel slope, and is not solely a function of drainage area as is commonly assumed. The present work represents the first attempt to investigate the consequences of dynamic, gradient-sensitive channel adjustment for drainage-basin evolution. We use the Channel-Hillslope Integrated Landscape Development (CHILD) model to analyze the response of a catchment to a given tectonic perturbation, using, as a template, the topography of a well-documented catchment in the footwall of an active normal fault in the Apennines (Italy) that is known to be undergoing a transient response to tectonic forcing. We show that the observed transient response can be reproduced to first order with a simple detachment-limited fluvial incision law. Transient landscape is characterized by gentler gradients and a shorter response time when dynamic channel adjustment is allowed. The differences in predicted channel geometry between the static case (width dependent solely on upstream area) and dynamic case (width dependent on both drainage area and channel slope) lead to contrasting landscape morphologies when integrated at the scale of a whole catchment, particularly in presence of strong tilting and/or pronounced slip-rate acceleration. Our results emphasize the importance of channel width in controlling fluvial processes and landscape evolution. They stress the need for using a dynamic hydraulic scaling law when modeling landscape evolution, particularly when the relative uplift field is nonuniform.

  15. Fluvial drainage systems: Margaritifer Sinus and Agyre (NC, NE) quadrangles, Mars

    NASA Technical Reports Server (NTRS)

    Boothroyd, J. C.; Grant, J. A.

    1984-01-01

    Fluvial drainage systems, delineated by mapping on stereo pairs of Viking Orbiter images, have developed in various-sized basins in the Margaritifer Sinus (MC-19) and Agyre (MC-26) Quadrangles, Mars. The Ladon Valles system is the largest, draining into and through two multi-ringed impact basins. Smaller fluvial basins to the southeast of the Ladon structural basin appear to have internal drainage. An intermediate-scale fluvial basin containing Himera Vallis extends along a north-south axis at 22 W and opens northward toward outflow channels south of Margaritifer Chaos. Stereo-pair mapping was extended furhter to the east, in MC-19 Ne, Se, and MC-26 NE, to investigate sources of outflow to the Ares Vallis system. The direction of flow in the channel at the northeast quadrant of the Ladon Basin is unresolved at present because of the poor quality of images available to form stereo pairs. However, an easterly drainage basin boundary running north-south along longitude 9 W, and extending westward at latitude 32-35 S, encloses a series of longitudinal drainage systems. Both the Parana Valles-Loire Vallis system and the Samara Valles system appear to drain in a northwesterly direction. The Samara flows to the Himera drainage basin, and the Parana-Loire to the northeast Ladon channel area.

  16. Fractal topography and subsurface water flows from fluvial bedforms to the continental shield

    USGS Publications Warehouse

    Worman, A.; Packman, A.I.; Marklund, L.; Harvey, J.W.; Stone, S.H.

    2007-01-01

    Surface-subsurface flow interactions are critical to a wide range of geochemical and ecological processes and to the fate of contaminants in freshwater environments. Fractal scaling relationships have been found in distributions of both land surface topography and solute efflux from watersheds, but the linkage between those observations has not been realized. We show that the fractal nature of the land surface in fluvial and glacial systems produces fractal distributions of recharge, discharge, and associated subsurface flow patterns. Interfacial flux tends to be dominated by small-scale features while the flux through deeper subsurface flow paths tends to be controlled by larger-scale features. This scaling behavior holds at all scales, from small fluvial bedforms (tens of centimeters) to the continental landscape (hundreds of kilometers). The fractal nature of surface-subsurface water fluxes yields a single scale-independent distribution of subsurface water residence times for both near-surface fluvial systems and deeper hydrogeological flows. Copyright 2007 by the American Geophysical Union.

  17. Fluvial Terraces Deformation Induced by Thrust Faulting : an Experimental Approach to Better Estimate Crustal Shortening Velocities

    NASA Astrophysics Data System (ADS)

    Dominguez, S.; Malavieille, J.; Avouac, J. P.

    2003-04-01

    We present structural models based on quantitative sandbox experiments, performed using video processing techniques, to study surface ground deformation associated to thrust fault propagation. Accurate correlation of CCD camera pictures and laser interferometry technique allows detailed displacement field measurements in planar view and in cross section during model deformation. We use this approach to improve the empirical mechanical models of deformation that are generally used to derive fault slip rate from fluvial terraces uplift amplitude. We test different thrust fault geometries and material rheology in frontal convergence to analyze the deformation of passive morphological markers analog to abandoned fluvial terraces. One of the main results of this work is that the kinematics relations between fault slip and surface deformation strongly evolves during thrust fault activity and that different stages can be discriminated. This evolution is related to changes in fault geometry during thrust fault localization and propagation. The fault plane evolves from diffuse conjugated shear bands associated to the forward propagation of the basal décollement to a localized flat fault plane that progressively deform into a sigmoid shape. Material rheology and sedimentation/erosion process can also play a significant role and have to be taken into account. The results are applied to field observations from the northern and southern piedmont of the Chinese Tien-Shan range where quaternary fluvial terraces are deformed by active thrust faults and fault propagation folds. Holocene crustal shortening rates are estimated combining experimental results and structural observations, including thrust fault geometry and rheology of the sedimentary sequence.

  18. Liquefaction susceptibility assessment in fluvial plains using airborne lidar: the case of the 2012 Emilia earthquake sequence area (Italy)

    NASA Astrophysics Data System (ADS)

    Civico, R.; Brunori, C. A.; De Martini, P. M.; Pucci, S.; Cinti, F. R.; Pantosti, D.

    2015-11-01

    We report a case study from the Po River plain region (northern Italy), where significant liquefaction-related land and property damage occurred during the 2012 Emilia seismic sequence. We took advantage of a 1 m pixel lidar digital terrain model (DTM) and of the 2012 Emilia coseismic liquefaction data set to (a) perform a detailed geomorphological study of the Po River plain area and (b) quantitatively define the liquefaction susceptibility of the geomorphologic features that experienced different abundance of liquefaction. One main finding is that linear topographic highs of fluvial origin - together with crevasse splays, abandoned riverbeds and very young land reclamation areas - acted as a preferential location for the occurrence of liquefaction phenomena. Moreover, we quantitatively defined a hierarchy in terms of liquefaction susceptibility for an ideal fluvial environment. We observed that a very high liquefaction susceptibility is found in coincidence with fluvial landforms, a high-to-moderate liquefaction susceptibility within a buffer distance of 100 and 200 m from mapped fluvial landforms and a low liquefaction susceptibility outside fluvial landforms and relative buffer areas. Lidar data allowed a significant improvement in mapping with respect to conventionally available topographic data and/or aerial imagery. These results have significant implications for accurate hazard and risk assessment as well as for land-use planning. We propose a simple geomorphological approach for liquefaction susceptibility estimation. Our findings can be applied to areas beyond Emilia that are characterized by similar fluvial-dominated environments and prone to significant seismic hazard.

  19. Depositional sequences and fluvial architecture in the Cameros extension basin, north-central Spain, upper Jurassic-lower cretaceous

    SciTech Connect

    Clemente, P. )

    1993-09-01

    In the Tithonian-Berriasian and Aptian, basin fill of the Cameros basin is formed by a depositional megasequence of fluvial and lacustrine sediments. Basin evolution is related the second state of rifting in the North Atlantic. In the first stages of extension, the basin is compartmentalized due to differential subsidence. As the extension continues, the subbasins merge to form one large basin. The megasequence is subdivided into five unconformity-bounded depositional sequences (SD1-SD5). Each sequence has a duration of 2.5-10 m.y. and a thickness of 400-1200 m. the internal sequence architecture is formed by a thick fluvial depositional system, which toward the top is overlapped by an expanding lacustrine facies. The architecture of the fluvial systems in depositional sequences SD1-SD3 consists of small, isolated sandstone bodies in a mudstone matrix, and results from the evolution of distal, high-sinuosity fluvio-lacustrine coastal plains. Depositional mixed (conglomeratic sandstone) and sandstone bodies. They originate from wider and nonconfined fluvial systems (conglomeratic and sandy braid plains). In SD5 this facies interfingers with a second fluvial system dominated by ephemeral streams. The evolution of fluvial architecture is controlled by the balance between subsidence, sediment supply, and relative sea level change. In a reservoir-equivalent setting, the understanding of this evolutionary process and its resultant architecture provides a better insight in reservoir distribution and interconnectedness.

  20. Fluvial dynamics of the lower Guadalete River in W-Andalucía (Spain) and decisive driving forces

    NASA Astrophysics Data System (ADS)

    Wolf, Daniel; Faust, Dominik

    2013-04-01

    This study aims to work out a solid stratigraphy for the Guadalete River in W-Andalucía with focus on late Pleistocene and Holocene fluvial dynamics. We studied 14 profile exposures and 13 percussion drillings by using geomorphologic, sedimentologic and pedogenetic approaches. Supported by ample physical and chemical soil analyses and dating of 34 radiocarbon samples, we were able to reconstruct floodplain development over the last 14 ka. The valley of the lower Guadalete River shows a fluvial architecture that is complex and inconsistent along specific river sections. According to stratigraphic findings, the lower reach of the Guadalete River can be divided into two sedimentary areas. These are characterized by a highly dynamic alternation of sedimentation and erosion, with Holocene terrace formation in the upper downstream section and more calm conditions with sediment preservation and the built-up of continuous sequences in the lower one. Stratigraphic records in combination with a disturbed longitudinal profile revealed that fluvial dynamics responded to various driving forces in late Pleistocene and Holocene times. Sea-level changes have been a determining factor on river dynamics, notably during the late Pleistocene and until the early Holocene, when phases of sea-level fall resulted in strong river incision and clearing-out of floodplain sediments. In the course of a rapid sea-level rise until the early to mid-Holocene, other parameters started to play a determining role, as fluvial dynamics became more and more the expression of environmental conditions in terms of stability and instability of the landscape. As the study area has to be characterized as tectonically very active, the magnitude of fluvial processes, such as river incision was furthermore influenced by small-scale tectonic uplift or subsidence. Periods of floodplain sedimentation (before 9.2, after 8.0, at 4.6 to 4.3, at 2.0, 0.9 and 0.4 ka cal BP) are reflective for unstable landscape conditions, often related to aridification. For a comprehensive consideration of triggers of floodplain sedimentation, we have likewise to take human behavior into account. It is not possible, however, to clearly differentiate between the impact of climate and humans on geomorphologic activity, but it seems reasonable that anthropogenic exploitation and cultivation activities contributed to raise the environmental pressure exerted by increased aridity.

  1. Simulating the development of Martian highland landscapes through the interaction of impact cratering, fluvial erosion, and variable hydrologic forcing

    NASA Astrophysics Data System (ADS)

    Howard, Alan D.

    2007-11-01

    On the highlands of Mars early in the history of the planet precipitation-driven fluvial erosion competed with ongoing impact cratering. This disruption, and the multiple enclosed basins produced by impacts, is partially responsible for a long debate concerning the processes and effectiveness of fluvial erosion. The role of fluvial erosion in sculpting the early Martian landscape is explored here using a simulation model that incorporates formation of impact craters, erosion by fluvial and slope processes, deposition in basins, and flow routing through depressions. Under assumed arid hydrologic conditions, enclosed basins created by cratering do not overflow, drainage networks are short, and fluvial bajadas infill crater basins with sediment supplied from erosion of interior crater slopes and, occasionally from adjacent steep slopes. Even under arid conditions adjacent crater basins can become integrated into larger basins through lateral erosion of crater rims or by rim burial by sediment infilling. Fluvial erosion on early Mars was sufficient to infill craters of 10 km or more in diameter with 500 1500 m of sediment. When the amount of runoff relative to evaporation is assumed to be larger, enclosed basins overflow and deeply incised valleys interconnect basins. Examples of such overflow and interconnection on the Martian highlands suggest an active hydrological cycle on early Mars, at least episodically. When fluvial erosion and cratering occur together, the drainage network is often disrupted and fragmented, but it reintegrates quickly from smaller impacts. Even when rates of impact are high, a subtle fluvial signature is retained on the landscape as broad, smooth intercrater plains that feature craters with variable amounts of infilling and rim erosion, including nearly buried “ghost” craters. The widespread occurrence of such intercrater plains on Mars suggests a strong fluvial imprint on the landscape despite the absence of deep, integrated valley networks. Indisputable deltas and alluvial fans are rare in the crater basins on Mars, in part because of subsequent destruction of surficial fluvial features by impact gardening and eolian processes. Simulations, however, suggest that temporally-varying lake levels and a high percentage of suspended to bedload supplied to the basins could also result in poor definition of fan delta complexes.

  2. Gully annealing by fluvially-sourced Aeolian sand: remote sensing investigations of connectivity along the Fluvial-Aeolian-hillslope continuum on the Colorado River

    USGS Publications Warehouse

    Sankey, Joel B.; East, Amy E.; Collins, Brian D.; Caster, Joshua

    2015-01-01

    Processes contributing to development of ephemeral gully channels are of great importance to landscapes worldwide, and particularly in dryland regions where soil loss and land degradation from gully erosion pose long-term, land-management problems. Whereas gully formation has been relatively well studied, much less is known of the processes that anneal gullies and impede their growth. This work investigates gully annealing by aeolian sediment, along the Colorado River downstream of Glen Canyon Dam in Glen, Marble, and Grand Canyons, Arizona, USA (Figure 1). In this segment of the Colorado River, gully erosion potentially affects the stability and preservation of archaeological sites that are located within valley margins. Gully erosion occurs as a function of ephemeral, rainfall-induced overland flow associated with intense episodes of seasonal precipitation. Measurements of sediment transport and topographic change have demonstrated that fluvial sand in some locations is transported inland and upslope by aeolian processes to areas affected by gully erosion, and aeolian sediment activity can be locally effective at counteracting gully erosion (Draut, 2012; Collins and others, 2009, 2012; Sankey and Draut, 2014). The degree to which specific locations are affected by upslope wind redistribution of sand from active channel sandbars to higher elevation valley margins is termed “connectivity”. Connectivity is controlled spatially throughout the river by (1) the presence of upwind sources of fluvial sand within the contemporary active river channel (e.g., sandbars), and (2) bio-physical barriers that include vegetation and topography that might impede aeolian sediment transport. The primary hypothesis of this work is that high degrees of connectivity lead to less gullying potential.

  3. Facies architecture and sequence stratigraphy of an early post-rift fluvial succession, Aptian Barbalha Formation, Araripe Basin, northeastern Brazil

    NASA Astrophysics Data System (ADS)

    Scherer, Claiton M. S.; Goldberg, Karin; Bardola, Tatiana

    2015-06-01

    The Barbalha Formation (Aptian) records deposition in a fluvial and lacustrine environment accumulated in an early post-rift sag basin. Characterization of the facies architecture and sequence stratigraphic framework of the alluvial succession was carried out through detailed description and interpretation of outcrops and cored wells. The development of depositional sequences in this unit reflects variation in the accommodation-to-sediment supply (A/S) ratio. Two depositional sequences, showing an overall fining-upward trend, are preserved within the succession. The sequences are bounded by regional subaerial unconformities formed during negative A/S ratio, and may be subdivided in Low-accommodation Systems Tracts (LAST) (positive A/S ratio close to zero) and High accommodation Systems Tracts (HAST) (A/S ratio between 0.5 and 1). Sequence 1, with a minimum thickness of 100 m, is characterized by amalgamated, multi-storey, braided fluvial channel sand bodies, defining a LAST. These are interlayered with crevasse splay and floodplain deposits toward the top, passing to open lacustrine deposits, defining a HAST. Sequence 2, with minimum thickness ranging from 50 to 90 m, overlies the organic-rich lacustrine deposits. At the base, this sequence is composed of amalgamated, multistorey braided fluvial channel sand bodies (LAST), similar to Sequence 1, overlain by well-drained floodplain with fixed fluvial channel deposits, interpreted as an anastomosed fluvial system, which are in turn capped by lacustrine deposits, both grouped in a HAST. Paleocurrent data on fluvial deposits of sequences 1 and 2 show a consistent paleoflow to the SE. Sedimentological evidence indicates humid to sub-humid climatic conditions during deposition of sequences 1 and 2. Accumulation of fluvial sequences 1 and 2 was mainly controlled by tectonics. Variation in A/S ratios must be related to tectonic subsidence and uplift of the basin.

  4. Desarrollo y Aplicacin de un ndice de Calidad de Agua para ros en Puerto Rico

    E-print Network

    Gilbes, Fernando

    Desarrollo y Aplicación de un Índice de Calidad de Agua para ríos en Puerto Rico por Francisco J en INGENIERÍA CIVIL UNIVERSIDAD DE PUERTO RICO RECINTO UNIVERSITARIO DE MAYAGÜEZ 2009 Aprobado por trabajo presenta la elaboración de un Índice de Calidad de Agua (ICA) para los ríos en Puerto Rico. Dicho

  5. 25 CFR 115.106 - Assets of members of the Agua Caliente Band of Mission Indians.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ...2010-04-01 2010-04-01 false Assets of members of the Agua Caliente Band of Mission Indians. 115.106 Section 115...INDIANS IIM Accounts § 115.106 Assets of members of the Agua Caliente Band of Mission Indians. (a) The...

  6. Comparing OSL and CN techniques for dating fluvial terraces and estimating surface process rates in Pamir

    NASA Astrophysics Data System (ADS)

    Fuchs, Margret; Gloaguen, Richard; Pohl, Eric; Sulaymonova, Vasila; Merchel, Silke; Rugel, Georg

    2014-05-01

    The quantification of surface process rates is crucial for understanding the topographic evolution of high mountains. Spatial and temporal variations in fluvial incision and basin-wide erosion enable to decipher the role of tectonic and climatic drivers. The Pamir is peculiar in both aspects because of its location at the western end of the India-Asia collision zone, and its position at the edge of two atmospheric circulation systems, the Westerlies and the Indian Summer Monsoon. The architecture of the Panj river network indicates prominent variations across the main tectonic structures of the Pamir. The trunk stream, deflects from the predominantly westward river orientation and cuts across the southern and central Pamir domes before doubling back to the west and leaving the orogen. Optically stimulated luminescence (OSL) dating of fluvial terraces reveals short-term sedimentation along the trunk stream during the last ~25 kyr. The agreement of OSL results to new exposure ages based on the cosmogenic nuclide (CN) 10Be confirms accurate terrace age modelling and treatment of incomplete bleaching. The consistent terrace sedimentation and exposure ages suggest also fast terrace abandonment and rapid onset of incision. Considerable differences in terrace heights reflect high spatial variations of fluvial incision, independent of time interval, change in rock type or catchment increase. Highest rates of (5.9 ± 1.1) mm/yr to (10.0 ± 2.0) mm/yr describe the fluvial dynamic across the Shakhdara Dome and that related to the Darvaz Fault Zone. Lower rates of (3.9 ± 0.6) mm/yr to (4.5 ± 0.7) mm/yr indicate a transient stage north of the Yazgulom Dome. Fluvial incision decreases to rates ranging from (1.7 ± 0.3) mm/yr to (3.9 ± 0.7) mm/yr in graded river reaches associated to southern dome boundaries. The pattern agrees to the interpretation of successive upstream river captures across the southern and central Pamir domes inferred from morphometric analyses of river and valley profiles. Basin-wide erosion rates based on 10Be concentrations in modern fluvial sediments yield relatively consistent rates between (0.61 ± 0.1) mm/yr and (0.75 ± 0.14) mm/yr along the Panj. The increasing Panj catchment averages variations of tributary basins, but minor variations in erosion rates of along-stream sub-basins resemble the pattern of OSL-based incision rates. In contrast, basin-wide erosion rates of tributary basins clearly differentiate between plateau-related sub-basins of (0.05 ± 0.01) mm/yr to (0.17 ± 0.03) mm/yr, and plateau margin-related sub-basins of (0.38 ± 0.06) mm/yr to (1.43 ± 0.26) mm/yr. The differentiation in plateau-related and marginal sub-basins and the northward increase in erosion rates correlate with the 75-percentile of the slope distribution within respective basins and to a minor degree to cumulative annual precipitation.

  7. Investigation of fluvial landforms in the north-eastern Pannonian Basin, using cartographic materials from the XIX-XXI Centuries

    NASA Astrophysics Data System (ADS)

    Robu, Delia; Niga, Bogdan; Per?oiu, Ioana

    2015-04-01

    The study area is located in the north-eastern Pannonian Basin, and covers approximately 3700 km2. Using cartographic materials for the last 155 years, we analyzed and defined river network and relict fluvial morphologies created by the rivers Tur, Some?, Homorod and Crasna. Database extraction from each set of historical maps was performed by field verification and validation, associated to GIS techniques. Relict fluvial morphologies on the Some? alluvial cone comprise a wide variety of channel typologies and sizes, drainage directions and their consequent typology, which indicates a complex fluvial evolution. The dominant category of relict fluvial morphology is represented by the meander loop. Following the quantitative analysis on the successive sets of maps we identified and delimited meander loops and meandering paths formed prior to the reference year 1860. Generally, the post-1860 relict fluvial morphologies are secondary morphologies, as the keynote is given by those formed previous to the reference moment 1860. An analysis of the share of the relict fluvial morphologies on the three sets of reference cartographic materials (the second Austro-Hungarian topographic survey, Google Earth and orthophotoplans) highlights that most relict fluvial morphologies were identified on the second Austro-Hungarian topographic survey, followed by those identified in Google Earth and orthophotoplans. The map of fluvial morphologies constructed in this study enables a discussion on drainage directions, based on the observation that a series of abandoned meander loops and segments follow clear directions. We applied several quantitative indices in assessing the relict fluvial morphology (radius of curvature, paleochannel width). Consequently, we identified underfit stream sectors with meander loops larger than the modern ones Some? meanders (on the Racta River), uncharacteristic features such as braided riverbed reaches, a high frequency of meander scrolls present on the right bank of Crasna at its entrance in the plain, or the occurrence of wetlands in an area affected by subsidence (the Ecedeea Plain). Despite the ample human intervention in our study area through sewers, dams, meander cuts, the river network evolution trend remained the same between 1860 and 2005, with evolution and formation of meanders, although the change rate has diminished. "ACKNOWLEDGMENT This paper has been financially supported within the project entitled "SOCERT. Knowledge society, dynamism through research", contract number POSDRU/159/1.5/S/132406. This project is co-financed by European Social Fund through Sectoral Operational Programme for Human Resources Development 2007-2013. Investing in people!"

  8. Hydrological and sedimentological variability of the peri-fluvial wetlands of the middle Loire river (France)

    NASA Astrophysics Data System (ADS)

    Gautier, E.; Kunesch, S.; Negrel, P.; Petelet-Giraud, E.

    2003-04-01

    With a catchment basin of 112,120 km^2 and a length of 1012 km, the Loire River is one of the most important fluvial hydrosystems in France. Notwithstanding numerous modifications (dikes, dams, nuclear power plants, gravel extractions), the Loire River hydrology has been saved from a total regularisation. Therefore, the spatial diversity of fluvial landforms creates a patchwork of wetlands: ox-bow lakes, dewatered channels... As one aim of this work was to determine the hydrological and sedimentological processes in the various wetlands, in a context of spatial variability of the fluvial landforms, we used a pluridisciplinarity approach: geomorphology, hydrology, geochemistry. The present study has targeted the functioning between the various hydro-geomorphologic units of the floodplain (main and secondary active channels, abandoned branches and the riverbank [alluvial] and perched aquifers), with regard to the spatial heterogeneity of the different fluxes and the temporal variations of bottom water level, full-bank stage and overflow discharge. In the upper part of the study area, mobile meanders prevail. The meanders migration results in oxbow lakes and the connection between the lakes and the other water reservoirs (e.g. river- and groundwaters) induce a strong lateral variability and a time delayed water input by the river as evidenced by the different geochemical and isotopic signatures. Downstream, the Loire River develops a multiple-channels pattern, of which numerous are abandoned. They are often dewatered along the year, only reconnected to the main channel during the periods of overflow discharges and the influence of the Loire riverwater is progressively substituted by the input of groundwaters (alluvial and perched aquifers). It appears that the submersion duration and the type of connection between the wetlands and the various reservoirs (inlet or outlet connection with the river, connection with the aquifers.) strongly influence the sedimentation rate and granulometric features.

  9. Fluvial sedimentology of a Mesozoic petrified forest assemblage, Shishu Formation, Junggar foreland basin, Xinjiang, China

    SciTech Connect

    McKnight, C.L.; Gan, O.; Carroll, A.R.; Dilcher, D.; Zhao, M.; Liang, Y.H.; Graham, S.A.

    1988-02-01

    The Upper Jurassic(.) Shishu Formation of the eastern Junggar basin, Xinjiang, northwest China, is a fluvial sand unit containing an important assemblage of well-preserved, silicified tree trunks and rooted stumps. Numerous logs, up to 83 ft (25.5 m) long, occur at several levels within a 33.6-ft (10.3 m) stratigraphic section of fluvial sand, gravel, and mud and several paleosol horizons. The uppermost logbearing layer includes a number of rooted tree stumps in growth position, with diameters of up to 8 ft (2.5 m). The maximum root length observed is 40 ft (12.3 m). The trees have been identified by Chinese paleontologists as Cupressinoxylon. The petrified forest assemblage is preserved on the northeast margin of the Mesozoic Junggar foreland basin, a large continental basin subsiding under thrust loading from the south. Logs found within channel gravel units are oriented with their log axes parallel to the channel axis. Sedimentary structures, including epsilon and trough cross-stratification and imbricated channel gravels, indicate paleocurrent flow generally to the south, toward the basin center. The size of the logs suggests the presence of a major fluvial system. The epsilon cross-sets suggest a channel depth of 26 ft (8 m). The oriented silicified logs and their enclosing clastic sediments provide important information on the depositional systems active on the northeastern margin of the Junggar basin in the Late Jurassic(.) time. Hopefully, further detailed study of the fossil trees, including the spacing of the rooted stumps, will provide new information on the paleoecology of Mesozoic forests and the climatic conditions prevailing in the region at the time of deposition.

  10. Classification of biological and non-biological fluvial particles using image processing and artificial neural network

    NASA Astrophysics Data System (ADS)

    Shrestha, Bim Prasad; Shrestha, Nabin Kumar; Poudel, Laxman

    2009-04-01

    Particles flowing along with water largely affect safe drinking water, irrigation, aquatic life preservation and hydropower generation. This research describes activities that lead to development of fluvial particle characterization that includes detection of biological and non-biological particles and shape characterization using Image Processing and Artificial Neural Network (ANN). Fluvial particles are characterized based on multi spectral images processing using ANN. Images of wavelength of 630nm and 670nm are taken as most distinctive characterizing properties of biological and non-biological particles found in Bagmati River of Nepal. The samples were collected at pre-monsoon, monsoon and post-monsoon seasons. Random samples were selected and multi spectral images are processed using MATLAB 6.5. Thirty matrices were built from each sample. The obtained data of 42 rows and 60columns were taken as input training with an output matrix of 42 rows and 2 columns. Neural Network of Perceptron model was created using a transfer function. The system was first validated and later on tested at 18 different strategic locations of Bagmati River of Kathmandu Valley, Nepal. This network classified biological and non biological particles. Development of new non-destructive technique to characterize biological and non-biological particles from fluvial sample in a real time has a significance breakthrough. This applied research method and outcome is an attractive model for real time monitoring of particles and has many applications that can throw a significant outlet to many researches and for effective utilization of water resources. It opened a new horizon of opportunities for basic and applied research at Kathmandu University in Nepal.

  11. Quantifying fluvial topography using UAS imagery and SfM photogrammetry

    NASA Astrophysics Data System (ADS)

    Woodget, Amy; Carbonneau, Patrice; Visser, Fleur; Maddock, Ian; Habit, Evelyn

    2014-05-01

    The measurement and monitoring of fluvial topography at high spatial and temporal resolutions is in increasing demand for a range of river science and management applications, including change detection, hydraulic models, habitat assessments, river restorations and sediment budgets. Existing approaches are yet to provide a single technique for rapidly quantifying fluvial topography in both exposed and submerged areas, with high spatial resolution, reach-scale continuous coverage, high accuracy and reasonable cost. In this paper, we explore the potential of using imagery acquired from a small unmanned aerial system (UAS) and processed using Structure-from-Motion (SfM) photogrammetry for filling this gap. We use a rotary winged hexacopter known as the Draganflyer X6, a consumer grade digital camera (Panasonic Lumix DMC-LX3) and the commercially available PhotoScan Pro SfM software (Agisoft LLC). We test the approach on three contrasting river systems; a shallow margin of the San Pedro River in the Valdivia region of south-central Chile, the lowland River Arrow in Warwickshire, UK, and the upland Coledale Beck in Cumbria, UK. Digital elevation models (DEMs) and orthophotos of hyperspatial resolution (0.01-0.02m) are produced. Mean elevation errors are found to vary somewhat between sites, dependent on vegetation coverage and the spatial arrangement of ground control points (GCPs) used to georeference the data. Mean errors are in the range 4-44mm for exposed areas and 17-89mm for submerged areas. Errors in submerged areas can be improved to 4-56mm with the application of a simple refraction correction procedure. Multiple surveys of the River Arrow site show consistently high quality results, indicating the repeatability of the approach. This work therefore demonstrates the potential of a UAS-SfM approach for quantifying fluvial topography.

  12. Study on fine geological modelling of the fluvial sandstone reservoir in Daqing oilfield

    SciTech Connect

    Zhoa Han-Qing

    1997-08-01

    These paper aims at developing a method for fine reservoir description in maturing oilfields by using close spaced well logging data. The main productive reservoirs in Daqing oilfield is a set of large fluvial-deltaic deposits in the Songliao Lake Basin, characterized by multi-layers and serious heterogeneities. Various fluvial channel sandstone reservoirs cover a fairly important proportion of reserves. After a long period of water flooding, most of them have turned into high water cut layers, but there are considerable residual reserves within them, which are difficult to find and tap. Making fine reservoir description and developing sound a geological model is essential for tapping residual oil and enhancing oil recovery. The principal reason for relative lower precision of predicting model developed by using geostatistics is incomplete recognition of complex distribution of fluvial reservoirs and their internal architecture`s. Tasking advantage of limited outcrop data from other regions (suppose no outcrop data available in oilfield) can only provide the knowledge of subtle changing of reservoir parameters and internal architecture. For the specific geometry distribution and internal architecture of subsurface reservoirs (such as in produced regions) can be gained only from continuous infilling logging well data available from studied areas. For developing a geological model, we think the first important thing is to characterize sandbodies geometries and their general architecture`s, which are the framework of models, and then the slight changing of interwell parameters and internal architecture`s, which are the contents and cells of the model. An excellent model should possess both of them, but the geometry is the key to model, because it controls the contents and cells distribution within a model.

  13. Digital stereo photogrammetry for grain-scale monitoring of fluvial surfaces: Error evaluation and workflow optimisation

    NASA Astrophysics Data System (ADS)

    Bertin, Stephane; Friedrich, Heide; Delmas, Patrice; Chan, Edwin; Gimel'farb, Georgy

    2015-03-01

    Grain-scale monitoring of fluvial morphology is important for the evaluation of river system dynamics. Significant progress in remote sensing and computer performance allows rapid high-resolution data acquisition, however, applications in fluvial environments remain challenging. Even in a controlled environment, such as a laboratory, the extensive acquisition workflow is prone to the propagation of errors in digital elevation models (DEMs). This is valid for both of the common surface recording techniques: digital stereo photogrammetry and terrestrial laser scanning (TLS). The optimisation of the acquisition process, an effective way to reduce the occurrence of errors, is generally limited by the use of commercial software. Therefore, the removal of evident blunders during post processing is regarded as standard practice, although this may introduce new errors. This paper presents a detailed evaluation of a digital stereo-photogrammetric workflow developed for fluvial hydraulic applications. The introduced workflow is user-friendly and can be adapted to various close-range measurements: imagery is acquired with two Nikon D5100 cameras and processed using non-proprietary "on-the-job" calibration and dense scanline-based stereo matching algorithms. Novel ground truth evaluation studies were designed to identify the DEM errors, which resulted from a combination of calibration errors, inaccurate image rectifications and stereo-matching errors. To ensure optimum DEM quality, we show that systematic DEM errors must be minimised by ensuring a good distribution of control points throughout the image format during calibration. DEM quality is then largely dependent on the imagery utilised. We evaluated the open access multi-scale Retinex algorithm to facilitate the stereo matching, and quantified its influence on DEM quality. Occlusions, inherent to any roughness element, are still a major limiting factor to DEM accuracy. We show that a careful selection of the camera-to-object and baseline distance reduces errors in occluded areas and that realistic ground truths help to quantify those errors.

  14. Channel arrangements and depositional styles in the São Lourenço fluvial megafan, Brazilian Pantanal wetland

    NASA Astrophysics Data System (ADS)

    Assine, Mario Luis; Corradini, Fabrício Anibal; Pupim, Fabiano do Nascimento; McGlue, Michael Matthew

    2014-03-01

    The Brazilian Pantanal is an extensive lowland tropical basin characterized by the presence of fluvial megafans and seasonally-inundated savanna floodplain wetlands. With an area of about 16,000 km2, the São Lourenço is the second largest megafan in the Pantanal. Three distinct fluvial channel styles that formed at different times during the late Quaternary are found here. A geomorphological and sedimentary assessment of these depositional patterns provides valuable insight on the environmental context of their evolution. New optically stimulated luminescence data indicate that the upper five meters of sediment in the São Lourenço megafan has been accumulating since the late Pleistocene. Ancient fan lobes, located in upper and intermediate fan settings, consist of medium- and coarse-grained fluvial sands and exhibit well-preserved distributary braided paleochannels on their surfaces. As the megafan evolved through time, Pleistocene lobes were incised by a prominent valley filled with Holocene-aged meander belt deposits, which consist of silts interbedded with very fine sands and clays. Currently, the incised valley is a zone of sediment bypass. Modern deposition occurs along the distal toe of the megafan system, where lobes characterized by distributary channel-levee ridges are widespread. These features formed by progradation of avulsion belts into a broad swampy floodbasin, which caused the lower portion of the meander belt to be abandoned. The significant differences observed in intra-fan morphology appear to be linked to the variability in effective precipitation. Fan lobes deposited with braided distributary channels occurred under relatively dry conditions in the late Pleistocene. By contrast, aggradational meander belt deposits and lobes with distributary channel-levee ridges formed during fluctuating precipitation conditions of the Holocene, when the Pantanal emerged from deglacial aridity. Modern lobes form under heavy seasonal flooding and deposition occurs in response to very rapid and common avulsion events. These results have implications for interpreting the complexity of megafan facies in similar continental basins.

  15. Selective deposition response to aeolian-fluvial sediment supply in the desert braided channel of the upper Yellow River, China

    NASA Astrophysics Data System (ADS)

    Wang, H.; Jia, X.; Li, Y.; Peng, W.

    2015-09-01

    Rivers flow across aeolian dunes and develop braided stream channels. Both aeolian and fluvial sediment supplies regulate sediment transport and deposition in such cross-dune braided rivers. Here we show a significant selective deposition in response to both aeolian and fluvial sediment supplies in the Ulan Buh desert braided channel. The Ulan Buh desert is the main coarse sediment source for this desert braided channel, and the mean percentage of the coarser (> 0.08 mm) grains on the aeolian dunes surface is 95.34 %. The lateral selective deposition process is developed by the interaction between the flows and the aeolian-fluvial sediment supplies, causing the coarser sediments (> 0.08 mm) from aeolian sand supply and bank erosion to accumulate in the channel centre and the finer fluvial sediments (< 0.08 mm) to be deposited on the bar and floodplain surfaces, forming a coarser-grained thalweg bed bounded by finer-grained floodplain surfaces. This lateral selective deposition reduces the downstream sediment transport and is a primary reason for the formation of an "above-ground" river in the braided reach of the upper Yellow River in response to aeolian and fluvial sediment supplies.

  16. Fluvial and glacial implications of tephra localities in the western Wind River basin, Wyoming, U. S. A

    SciTech Connect

    Jaworowski, C. . Dept. of Geology)

    1993-04-01

    Examination of Quaternary fluvial and glacial deposits in the western Wind River Basin allows a new understanding of the Quaternary Wind River fluvial system. Interbedded fluvial sediments and volcanic ashes provide important temporal information for correlation of Quaternary deposits. In the western Wind River Basin, six mid-Pleistocene localities of tephra, the Muddy Creek, Red Creek, Lander, Kinnear, Morton and Yellow Calf ashes are known. Geochronologic studies confirm the Muddy Creek, Red Creek, Kinnear and Lander ashes as the 620--650ka Lava Creek tephra from the Yellowstone region in northwestern Wyoming. The stratigraphic position and index of refraction of volcanic glass from the Morton and Yellow Calf ashes are consistent with identification as Lava Creek tephra. Approximately 350 feet (106 meters) above the Wind River and 13 miles downstream from Bull Lake, interbedded Wind River fluvial gravels, volcanic glass and pumice at the Morton locality correlate to late (upper) Sacajawea Ridge gravels mapped by Richmond and Murphy. Associated with the oxygen isotope 16--15 boundary, the ash-bearing terrace deposits reveal the nature of the Wind River fluvial system during late glacial-early interglacial times. The Lander and Yellow Calf ashes, are found in terrace deposits along tributaries of the Wind River. Differences in timing and rates of incision between the Wind River and its tributary, the Little Wind River, results in complex terrace development near their junction.

  17. Analysis of Fluvial Bed Sediments Along the Apalachicola River, Florida through Field Reconnaissance Studies

    NASA Astrophysics Data System (ADS)

    Passeri, D.; Hagen, S. C.; Daranpob, A.; Smar, D. E.

    2011-12-01

    River competence is an important parameter in understanding sediment transport in fluvial systems. Competence is defined as the measure of a stream's ability to transport a certain maximum grain size of sediment. Studies have shown that bed sediment particle size in rivers and streams tends to vary spatially along the direction of stream flow. Over a river section several reaches long, variability of sediment particle sizes can be seen, often becoming finer downstream. This phenomenon is attributed to mechanisms such as local control of stream gradient, coarse tributary sediment supply or particle breakdown. Average particle size may also be smaller in tributary sections of rivers due to river morphology. The relationship between river mean velocity and particle size that can be transported has also been explored. The Hjulstrom curve classifies this relationship by relating particle size to velocity, dividing the regions of sedimentation, transportation, and erosion. The curve can also be used to find values such as the critical erosion velocity (the velocity required to transport particles of various sizes in suspension) and settling velocity (the velocity at which particles of a given size become too heavy to be transported and fall out of suspension, consequently causing deposition). The purpose of this research is to explore the principles of river competence through field reconnaissance collection and laboratory analysis of fluvial sediment core samples along the Apalachicola River, FL and its distributaries. Sediment core samples were collected in the wetlands and estuarine regions of the Apalachicola River. Sieve and hydrometer analyses were performed to determine the spatial distribution of particle sizes along the river. An existing high resolution hydrodynamic model of the study domain was used to simulate tides and generate river velocities. The Hjulstrom curve and the generated river velocities were used to define whether sediment was being transported, eroded or deposited at the different locations in the river and its distributaries. Parameters such as critical erosion velocity and settling velocity were also calculated to describe sediment transport along the channel. This research provides a better understanding of the fluvial geomorphic system, particularly sediment transport in channels. It also provides excellent validation data for future sediment transport studies in similar fluvial study domains.

  18. The human role in changing fluvial systems: Retrospect, inventory and prospect

    NASA Astrophysics Data System (ADS)

    James, L. Allan; Marcus, W. Andrew

    2006-09-01

    Historical and modern scientific contexts are provided for the 2006 Binghamton Geomorphology Symposium on the Human Role in Changing Fluvial Systems. The 2006 symposium provides a synthesis of research concerned with human impacts on fluvial systems — including hydrologic and geomorphic changes to watersheds — while also commemorating the 50th anniversary of the 1955 Man's Role in Changing the Face of the Earth Symposium [Thomas, Jr., W. L. (Ed.), 1956a. Man's Role in Changing the Face of the Earth. Univ. Chicago Press, Chicago. 1193 pp]. This paper examines the 1955 symposium from the perspective of human impacts on rivers, reviews current inquiry on anthropogenic interactions in fluvial systems, and anticipates future directions in this field. Although the 1955 symposium did not have an explicit geomorphic focus, it set the stage for many subsequent anthropogeomorphic studies. The 1955 conference provided guidance to geomorphologists by recommending and practicing interdisciplinary scholarship, through the use of diverse methodologies applied at extensive temporal and geographical scales, and through its insistence on an integrated understanding of human interactions with nature. Since 1956, research on human impacts to fluvial systems has been influenced by fundamental changes in why the research is done, what is studied, how river studies are conducted, and who does the research. Rationales for river research are now driven to a greater degree by institutional needs, environmental regulations, and aquatic restoration. New techniques include a host of dating, spatial imaging, and ground measurement methods that can be coupled with analytical functions and digital models. These new methods have led to a greater understanding of channel change, variations across multiple temporal and spatial scales, and integrated watershed perspectives; all changes that are reflected by the papers in this volume. These new methods also bring a set of technical demands for the training of geomorphologists. The 2006 Binghamton Geomorphology Symposium complements the 1956 symposium by providing a more specific and updated view of river systems coupled with human interactions. The symposium focuses on linkages between human land use, structures, and channel modification with geomorphology, hydrology, and ecology. The emergence of sustainability as a central policy guideline in environmental management should generate greater interest in geomorphic perspectives, especially as they pertain to human activities. The lack of theories of anthropogeomorphic change, however, presents a challenge for the next generation of geomorphologists in this rapidly growing subfield.

  19. Comparison of knobs on Mars to isolated hills in eolian, fluvial and glacial environments

    NASA Technical Reports Server (NTRS)

    Manent, L. S.; El-Baz, F.

    1986-01-01

    The isolated knobs of Mars, characterized in terms of length, width, geographic location, proximity to streaks, and geologic surroundings through Viking Orbiters' photomosaics, are compared to isolated hills on earth eroded by eolian, fluvia, and glacial processes. Comparison of length-to-width ratios indicates similarity of the knobs to the hills formed in a hyperarid environment. The hills formed on earth by fluvial and glacial processes have length-to-width ratios significantly higher than those of the Martian knobs and have other diagnostic features not associated with the knobs. Moreover, streaks, splotches, dunes, and pitted and fluted rocks, all indicative of an eolian regime, are associated with the Martian knobs.

  20. Late Holocene fluvial activity and correlations with dendrochronology of subfossil trunks: Case studies of northeastern Romania

    NASA Astrophysics Data System (ADS)

    R?doane, Maria; Nechita, Constantin; Chiriloaei, Francisca; R?doane, Nicolae; Popa, Ionel; Roibu, C?t?lin; Robu, Delia

    2015-06-01

    The main objective of this paper is to describe the late Holocene behaviour of rivers using an interdisciplinary approach combining fluvial geomorphology and subfossil trunk dendrochronology. The subfossil wood material collected along the rivers was investigated for dendrometric and dendrochronologic parameters. The research methods in these fields helped us to understand the effect of the fluvial environment on riparian trees and their records and helped in reconstructing the riparian palaeoenvironment. The study area consists of two rivers with different typologies but comparable sizes: the Moldova River, which features a braided to wandering channel in its lower reach, and the Siret River, which features a sinuous-meandering channel. Along the 100-km-long floodplain of the former and the 144-km-long floodplain of the latter, we found and sampled 77 subfossil trunks, of which 26 were subjected to 14C dating. The resulting data consist of floodplain facies mapping data, electric resistivity measurements, absolute dates, and dendrometric and dendrochronologic data. The results indicate that during a 100-year period, the two rivers were sensitive to climate change and anthropogenic effects, particularly a narrowing of the active channel by 76% in the braided channel and 38% in the sinuous-meandering channel. During the past 3300-3000 YBP, the Moldova River maintained its braided style, whereas the sinuous-meandering style has been characteristic of the Siret River for the previous 6800-4600 YBP. The two distinct fluvial environments are recorded in the dendrometric structure of the trunks buried in the channel-fill sediments. The braided fluvial environment was more effective in uprooting riparian trees and incorporating them in the floodplain deposits, whereas the sinuous-meandering style of stream effectively buried tree trunks in lateral accretion lobes. Absolute and dendrochronologic dating allowed for the reconstruction of timelines of the felling of the trees and estimates of the magnitude of the responsible hydrological event. The flood events on the Siret River with a recurrence interval of 200 years (Qmax ~ 2500-2800 m3/s) were those most effective in destroying riparian forests, and the events on the Moldova floods with a 100-year recurrence interval (Qmax ~ 1200-1400 m3/s) were the most effective. Dendrochronology allowed for identification of wet phases (i.e., 3500-2900 YBP, 2200-2075 YBP, and 1000-800 YBP) and dry phases (e.g., 3200-3150 or 2775-2700 YBP, 1400 YBP). Finally, we draw attention to the potential for creating a highly replicable dendrochronological series spanning at least 7000 YBP.

  1. Stochastic Modeling of Vegetation Growth, Mortality and Invasion in a Fluvial Floodplain in Interaction with Floods

    NASA Astrophysics Data System (ADS)

    Miyamoto, Hitoshi; Toshimori, Nobuhiko; Kimura, Ryo

    2013-04-01

    Vegetation overgrowth in fluvial floodplains and sand bars has become a serious engineering problem for riparian management in Japan. From both viewpoints of flood control and ecological conservation, it would be necessary to predict the vegetation dynamics accurately for long-term duration. In this research, we have tried to develop a stochastic model for predicting the dynamics of trees in fluvial floodplains with emphasis on the interaction with flood impacts. The model consists of the following four components: (i) long-term stochastic behavior of flow discharge, (ii) hydrodynamics in a channel with floodplain vegetation, (iii) variation of riverbed topography, and (iv) vegetation dynamics on floodplains. In the model, the flood discharge is stochastically simulated using a filtered Poisson process, one of the conventional approaches in hydrological time-series generation. The modeling for vegetation dynamics includes the effects of tree growth, mortality by flood impacts, and infant tree invasion. Vegetation condition has been observed mainly before and after flood impacts since 2008 at a field site located between 23.2-24.0 km from the river mouth in Kako River, Japan. The Kako River has the catchment area of 1,730 km2 and the main channel length of 96 km. This site is one of the vegetation overgrowth locations in the Kako River floodplains, where the predominant tree species are willows and bamboos. In the field survey, the position, trunk diameter and height of each tree as well as the riverbed materials were measured after several flood events to investigate their impacts on the floodplain vegetation community. In this presentation, the three effects in vegetation dynamics, i.e., the tree growth rate, mortality, and infant tree invasion, are refined for improving the model predictability. The growth rate curve proposed here is derived by introducing inhibition effect of larger trees into the conventional Richards growth curve. As for the mortality rate, Gaussian distribution is used to represent randomness of tree damage due to differences of individual tree conditions on fluvial floodplains. The infant tree invasion is modeled by taking both seed propagation and vegetative reproduction into account. The results of the present model for the fluvial floodplain in Kako River confirm the high applicability of the present refinement and its optimal model parameters for predicting current vegetation distributions in the floodplain.

  2. Hydrological and sedimentological regime of lower Vistula fluvial lakes (North Central Poland)

    NASA Astrophysics Data System (ADS)

    Kordowski, Jaros?aw; Kubiak-Wójcicka, Katarzyna; Tyszkowski, Sebastian; Solarczyk, Adam

    2015-04-01

    Regarding the outflow the Vistula River is the largest river in the Baltic catchment. In its lower course it has developed an anastomosing channel pattern modified strongly by intensive human hydrotechnical activity and by the regulation which have intensified about 200 years ago. Channel regulation apart from already existing lakes have left many new artificially created ones. This activity have also altered the hydrological and sedimentary regime. It turned out that only the small portion of the lakes infilled rapidly but the majority have persisted to present day almost unchanged in spite of regulation. The reason of this resistence to silting is connected with specific interaction of sediment removing during high flood water episodes and strong groundwater circulation in former river arms transformed in present-day lakes. As an example of a lake with an intensive groundwater exchange rate with the main Vistula channel and supposed Quaternary and Tertiary aquifers was selected the Old Vistula lake (Stara Wis?a) near Grudzi?dz town. It has got an area of 50 ha, mean depth 1,73 m, maximum depth 8 m, length about 4 km and medium width about 100 m. In the years 2011-2015 in its surficial water were conducted measures with two weeks frequency which included: temperature, pH, Eh, suspended matter amount, total and carbonaceous mineralization. For comparison similar measurements were also conducted in other fluvial lakes and Vistula tributaries. Hydrological data were supplemented by geological investigations of floodplain sediments cover which has important impact on the rate of groundwater migration and circulation. Investigations carried proved that there exists distinct gradient of carbonaceous mineralization from small values in the Vistula channel to high values at the valley edges. PH and Eh parameters in the Old Vistula lake were different than in all other surveyed sites what leads to conclusion that it is fed by deeper groundwaters than in the case of other fluvial lakes and Vistula tributaries, particularly in low water stand times. This is because it has not continuous flood sediments cover on its floor. The sediments accumulated during the low stands of water are removed from fluvial lakes while high stands by flood waters. Temporarily deposited sediment is also removed due to high groundwater "exchange" rate when the fluvial lake has a sufficient hydrological connectivity to the main Vistula channel. Acknowledgements: This study is a contribution to the Virtual Institute of Integrated Climate and Landscape Evolution (ICLEA) of the Helmholtz Association.

  3. Computer programs for computing particle-size statistics of fluvial sediments

    USGS Publications Warehouse

    Stevens, H.H.; Hubbell, D.W.

    1986-01-01

    Two versions of computer programs for inputing data and computing particle-size statistics of fluvial sediments are presented. The FORTRAN 77 language versions are for use on the Prime computer, and the BASIC language versions are for use on microcomputers. The size-statistics program compute Inman, Trask , and Folk statistical parameters from phi values and sizes determined for 10 specified percent-finer values from inputed size and percent-finer data. The program also determines the percentage gravel, sand, silt, and clay, and the Meyer-Peter effective diameter. Documentation and listings for both versions of the programs are included. (Author 's abstract)

  4. Utilization of ancient permafrost carbon in headwaters of Arctic fluvial networks.

    PubMed

    Mann, Paul J; Eglinton, Timothy I; McIntyre, Cameron P; Zimov, Nikita; Davydova, Anna; Vonk, Jorien E; Holmes, Robert M; Spencer, Robert G M

    2015-01-01

    Northern high-latitude rivers are major conduits of carbon from land to coastal seas and the Arctic Ocean. Arctic warming is promoting terrestrial permafrost thaw and shifting hydrologic flowpaths, leading to fluvial mobilization of ancient carbon stores. Here we describe (14)C and (13)C characteristics of dissolved organic carbon from fluvial networks across the Kolyma River Basin (Siberia), and isotopic changes during bioincubation experiments. Microbial communities utilized ancient carbon (11,300 to >50,000 (14)C years) in permafrost thaw waters and millennial-aged carbon (up to 10,000 (14)C years) across headwater streams. Microbial demand was supported by progressively younger ((14)C-enriched) carbon downstream through the network, with predominantly modern carbon pools subsidizing microorganisms in large rivers and main-stem waters. Permafrost acts as a significant and preferentially degradable source of bioavailable carbon in Arctic freshwaters, which is likely to increase as permafrost thaw intensifies causing positive climate feedbacks in response to on-going climate change. PMID:26206473

  5. Episodic ocean-induced CO2 greenhouse on Mars: implications for fluvial valley formation.

    PubMed

    Gulick, V C; Tyler, D; McKay, C P; Haberle, R M

    1997-11-01

    Pulses of CO2 injected into the martian atmosphere more recently than 4 Ga can place the atmosphere into a stable, higher pressure, warmer greenhouse state. One to two bar pulses of CO2 added to the atmosphere during the past several billion years are sufficient to raise global mean temperatures above 240 or 250 K for tens to hundreds of millions of years, even when accounting for CO2 condensation. Over time, the added CO2 is lost to carbonates, the atmosphere collapses and returns to its buffered state. A substantial amount of water could be transported during the greenhouse periods from the surface of a frozen body of water created by outflow channel discharges to higher elevations, despite global temperatures well below freezing. This water, precipitated as snow, could ultimately form fluvial valleys if deposition sites are associated with localized heat sources, such as magmatic intrusions or volcanoes. Thus, if outflow channel discharges were accompanied by the release of sufficient quantities of CO2, a limited hydrological cycle could have resulted that would have been capable of producing geomorphic change sufficient for fluvial erosion and valley formation. Glacial or periglacial landforms would also be a consequence of such a mechanism. PMID:11541758

  6. Episodic Ocean-Induced CO2 Greenhouse on Mars: Implications for Fluvial Valley Formation

    NASA Technical Reports Server (NTRS)

    Gulick, V. C.; Tyler, D.; McKay, C. P.; Haberle, R. M.

    1997-01-01

    Pulses of CO2 injected into the martian atmosphere more recently than 4 Ga can place the atmosphere into a stable, higher pressure, warmer greenhouse state. One to two bar pulses of CO2 added to the atmosphere during the past several billion years are sufficient to raise global mean temperatures above 240 or 250 K for tens to hundreds of millions of years, even when accounting for CO2 condensation. Over time, the added CO2 is lost to carbonates, the atmosphere collapses and returns to its buffered state. A substantial amount of water could be transported during the greenhouse periods from the surface of a frozen body of water created by outflow channel discharges to higher elevations, despite global temperatures well below freezing. This water, precipitated as snow, could ultimately form fluvial valleys if deposition sites are associated with localized heat sources, such as magmatic intrusions or volcanoes. Thus, if outflow channel discharges were accompanied by the release of sufficient quantities of CO2, a limited hydrological cycle could have resulted that would have been capable of producing geomorphic change sufficient for fluvial erosion and valley formation. Glacial or periglacial landforms would also be a consequence of such a mechanism.

  7. Utilization of ancient permafrost carbon in headwaters of Arctic fluvial networks

    PubMed Central

    Mann, Paul J.; Eglinton, Timothy I.; McIntyre, Cameron P.; Zimov, Nikita; Davydova, Anna; Vonk, Jorien E.; Holmes, Robert M.; Spencer, Robert G. M.

    2015-01-01

    Northern high-latitude rivers are major conduits of carbon from land to coastal seas and the Arctic Ocean. Arctic warming is promoting terrestrial permafrost thaw and shifting hydrologic flowpaths, leading to fluvial mobilization of ancient carbon stores. Here we describe 14C and 13C characteristics of dissolved organic carbon from fluvial networks across the Kolyma River Basin (Siberia), and isotopic changes during bioincubation experiments. Microbial communities utilized ancient carbon (11,300 to >50,000 14C years) in permafrost thaw waters and millennial-aged carbon (up to 10,000 14C years) across headwater streams. Microbial demand was supported by progressively younger (14C-enriched) carbon downstream through the network, with predominantly modern carbon pools subsidizing microorganisms in large rivers and main-stem waters. Permafrost acts as a significant and preferentially degradable source of bioavailable carbon in Arctic freshwaters, which is likely to increase as permafrost thaw intensifies causing positive climate feedbacks in response to on-going climate change. PMID:26206473

  8. Interaction of marine and fluvial clastic sedimentation, central Italy, Tyrrhenian coast

    SciTech Connect

    Evangelista, S.; Full, W.E.; Tortora, P.

    1989-03-01

    An integrated approach was used to study the interaction of fluvial, beach, and marine processes on sedimentation at the west-central coast of Italy along the Tyrrhenian Sea. The study area, 120 km northwest of Rome, is bounded on the north by Mt. Argentario, on the east by Pleistocene volcanics, on the south by the St. Augustine River, and on the west by the 50-mn bathymetric isopleth. The primary tools used included field work, textural analysis, high-resolution marine seismic, SEM, and Fourier shape analysis. Field work revealed incised streams, potentially relict beach ridges and lagoons, and relatively steep nearshore marine slopes in the northern portions of the study area. The result of the shape analysis performed on 56 samples was the definition of four end members. Each end member reflects a sedimentation process. Three end members were directly associated with fluvial sedimentation, and the fourth reflected marine processes. The seismic data along with the SEM analysis strongly supported the interpretation of four processes that dominate the recent sedimentation history. The sand interpreted to be associated with marine processes was found to represent the smoothest end member. SEM analysis suggests that the smoothing is not due to abrasion but to plastering associated with biologic processes (digestion.) and/or with silica precipitation associated with clay alteration at the freshwater/saltwater interface.

  9. Utilization of ancient permafrost carbon in headwaters of Arctic fluvial networks

    NASA Astrophysics Data System (ADS)

    Mann, Paul J.; Eglinton, Timothy I.; McIntyre, Cameron P.; Zimov, Nikita; Davydova, Anna; Vonk, Jorien E.; Holmes, Robert M.; Spencer, Robert G. M.

    2015-07-01

    Northern high-latitude rivers are major conduits of carbon from land to coastal seas and the Arctic Ocean. Arctic warming is promoting terrestrial permafrost thaw and shifting hydrologic flowpaths, leading to fluvial mobilization of ancient carbon stores. Here we describe 14C and 13C characteristics of dissolved organic carbon from fluvial networks across the Kolyma River Basin (Siberia), and isotopic changes during bioincubation experiments. Microbial communities utilized ancient carbon (11,300 to >50,000 14C years) in permafrost thaw waters and millennial-aged carbon (up to 10,000 14C years) across headwater streams. Microbial demand was supported by progressively younger (14C-enriched) carbon downstream through the network, with predominantly modern carbon pools subsidizing microorganisms in large rivers and main-stem waters. Permafrost acts as a significant and preferentially degradable source of bioavailable carbon in Arctic freshwaters, which is likely to increase as permafrost thaw intensifies causing positive climate feedbacks in response to on-going climate change.

  10. Fluvial architecture of dinosaur bonebeds in the Cretaceous Judith River Formation, south-central Montana

    SciTech Connect

    Wilson, K.M. ); Dodson, P. ); Fiorillo, A.R. )

    1991-03-01

    Fluvial architecture of dinosaur bonebeds in the Cretaceous Judith River Formation, south-central Montana, has been the subject of intensive paleontological study for many years. However, little has been published on the sedimentology of the formation in this area. The authors have completed a preliminary field study of fluvial facies, with a view towards correcting this omission. Initial results include detailed facies descriptions and maps for five quarries along a line of transect stretching some 40 km parallel to depositional dip. Facies identified are predominantly overbank splays and levees, with common point bar/alluvial channel units and occasional small, possibly estuarine sand bodies in parts of the section. Shell beds (mainly oysters) and bedded, 1 m thick coals are also significant in some sections. Preliminary attempts at paleohydrology suggest river channels in some parts of the section were about 100 m wide and 2 m deep; however, other parts of the section exhibit much larger channel widths. Channel stacking is common. Preliminary results suggest a strong correlation between the occurrence of reddish brown carbonaceous silty shales, and dinosaur bone deposits.

  11. Fluvial and Lacustrine Processes in Meridiani Planum and the Origin of the Hematite by Aqueous Alteration

    NASA Technical Reports Server (NTRS)

    Newsom, H. E.; Barber, C. A.; Schelble, R. T.; Hare, T. M.; Feldman, W. C.; Sutherland, V.; Livingston, A.; Lewis, K.

    2003-01-01

    The prime MER landing site in Meridiani Planum is located on layered materials, including hematite, whose origin as lacustrine or aeolian sediments, or volcanic materials is uncertain. Our detailed mapping of the region provides important constraints on the history of the region. Our mapping of the location of fluvial and lacustrine land forms in the region relative to the layered deposits provides new evidence of a long history of erosion and deposition as has long been noted . In addition, our detailed mapping of the southern boundary of the hematite deposit strongly supports an association between longlived fluvial channels and lacustrine basins and the strongest hematite signatures. This evidence supports an origin of the hematite deposits by interaction with water under ambient conditions in contrast to suggestions of hydrothermal processes due to volcanic or impact crater processes. An important part of the story is the evidence for the localization of the layered deposits due to topographic control induce by the presence of a large early basin we have identified that extends to the north-east of the landing site. Distribution of current channel networks, drainages,

  12. Automatic procedures for river reach delineation: Univariate and multivariate approaches in a fluvial context

    NASA Astrophysics Data System (ADS)

    Martínez-Fernández, V.; Solana-Gutiérrez, J.; González del Tánago, M.; García de Jalón, D.

    2016-01-01

    Segmenting the continuum of rivers into homogeneous reaches is an important issue in river research and management. Automatic procedures provide significance, objectivity, and repeatability. Although univariate techniques are frequently used to identify river reaches, multivariate approaches offer a more integrative context. Three nonparametric methods (multi-response permutation procedures (MRPP) with an advance in the significance level estimation, the Pettitt and Mann-Kendall tests) are applied for segmenting the river based on three geomorphic variables (valley width, active channel width, and channel slope) systematically measured in a GIS environment. The cited techniques have been applied to the Curueño River (NW Spain) to illustrate the methods, we analyse reach distribution along the river longitudinal profile. The methods successfully characterize the evident transitions along fluvial systems and also others less noticeable. The three methods provide more reaches according to valley width and less reaches according to channel slope (18.0 and 3.7 reaches on average, respectively). In contrast to the Mann-Kendall test, MRPP and Pettitt tests provide more stable segmentations when significance level varies. However, the Pettitt test provides irregular segmentations for regular patterns. The MRPP both univariate and multivariate applications enables a wider scope for the segmentation issue, which is useful in diverse aspects of fluvial domain.

  13. A Method for Applying Fluvial Geomorphology in Support of Catchment-Scale River Restoration Planning

    NASA Astrophysics Data System (ADS)

    Sear, D.; Newson, M.; Hill, C.; Branson, J.; Old, J.

    2005-12-01

    Fluvial geomorphology is increasingly used by those responsible for conserving river ecosystems; survey techniques are used to derive conceptual models of the processes and forms that characterise particular systems and locations, with a view to making statements of `condition' or `status' and providing fundamental strategies for rehabilitation/restoration. However, there are important scale-related problems in developing catchments scale restoration plans that inevitably are implemented on a reach- by-reach basis. This paper reports on a watershed scale methodology for setting geomorphological and physical habitat reference conditions based on a science-based conceptual model of cachment:channel function. Using a case study from the River Nar, a gravel-bed groundwater dominated river in the UK with important conservation status, the paper describes the sequences of the methodology; from analysis of available evidence, process of field data capture and development of a conceptual model of catchment-wide fluvial dynamics. Reference conditions were derived from the conceptual model and gathered from the literature for the two main river types found on the river Nar, and compared with the current situation in 76 sub-reaches from source to mouth. Multi-Criteria Analysis (MCA) was used to score the extent of channel departures from `natural' and to suggest the basis for a progressive restoration strategy for the whole river system. MCA is shown to be a flexible method for setting and communicating decisions that are amenable to stakeholder and public consultation.

  14. Archaeological horizons and fluvial processes at the Lower Paleolithic open-air site of Revadim (Israel).

    PubMed

    Marder, Ofer; Malinsky-Buller, Ariel; Shahack-Gross, Ruth; Ackermann, Oren; Ayalon, Avner; Bar-Matthews, Miryam; Goldsmith, Yonaton; Inbar, Moshe; Rabinovich, Rivka; Hovers, Erella

    2011-04-01

    In this paper we present new data pertaining to the paleo-landscape characteristics at the Acheulian site of Revadim, on the southern coastal plain of Israel. Sedimentological, isotopic, granulometric and micromorphological studies showed that the archaeological remains accumulated in an active fluvial environment where channel action, overbank flooding and episodic inundation occurred. Measurements of total organic matter and its carbon isotopic composition indicate that the hominin activity at the site started at a period of relatively drier conditions, which coincided with erosion of the preceding soil sequence. This process led to the formation of a gently-undulating topography, as reconstructed by a GIS model. Later deposition documents relatively wetter conditions, as indicated by carbon isotopic composition. Formation processes identified at the site include fluvial processes, inundation episodes that resulted in anaerobic conditions and formation of oxide nodules, as well as small-scale bioturbation and later infiltration of carbonate-rich solutions that resulted in the formation of calcite nodules and crusts. The combination of micro-habitats created favorable conditions that repeatedly drew hominins to the area, as seen by a series of super-imposed archaeological horizons. This study shows that site-specific paleo-landscape reconstructions should play an important role in understanding regional variation among hominin occupations and in extrapolating long-term behavioral patterns during the Middle Pleistocene. PMID:20304463

  15. Floodplain forest succession reveals fluvial processes: A hydrogeomorphic model for temperate riparian woodlands.

    PubMed

    Egger, Gregory; Politti, Emilio; Lautsch, Erwin; Benjankar, Rohan; Gill, Karen M; Rood, Stewart B

    2015-09-15

    River valley floodplains are physically-dynamic environments where fluvial processes determine habitat gradients for riparian vegetation. These zones support trees and shrubs whose life stages are adapted to specific habitat types and consequently forest composition and successional stage reflect the underlying hydrogeomorphic processes and history. In this study we investigated woodland vegetation composition, successional stage and habitat properties, and compared these with physically-based indicators of hydraulic processes. We thus sought to develop a hydrogeomorphic model to evaluate riparian woodland condition based on the spatial mosaic of successional phases of the floodplain forest. The study investigated free-flowing and dam-impacted reaches of the Kootenai and Flathead Rivers, in Idaho and Montana, USA and British Columbia, Canada. The analyses revealed strong correspondence between vegetation assessments and metrics of fluvial processes indicating morphodynamics (erosion and shear stress), inundation and depth to groundwater. The results indicated that common successional stages generally occupied similar hydraulic environments along the different river segments. Comparison of the spatial patterns between the free-flowing and regulated reaches revealed greater deviation from the natural condition for the braided channel segment than for the meandering segment. This demonstrates the utility of the hydrogeomorphic approach and suggests that riparian woodlands along braided channels could have lower resilience than those along meandering channels and might be more vulnerable to influences such as from river damming or climate change. PMID:26160662

  16. Fluvial-aeolian interactions in sediment routing and sedimentary signal buffering: an example from the Indus Basin and Thar Desert

    USGS Publications Warehouse

    East, Amy E.; Clift, Peter D.; Carter, Andrew; Alizai, Anwar; VanLaningham, Sam

    2015-01-01

    Sediment production and its subsequent preservation in the marine stratigraphic record offshore of large rivers are linked by complex sediment-transfer systems. To interpret the stratigraphic record it is critical to understand how environmental signals transfer from sedimentary source regions to depositional sinks, and in particular to understand the role of buffering in obscuring climatic or tectonic signals. In dryland regions, signal buffering can include sediment cycling through linked fluvial and eolian systems. We investigate sediment-routing connectivity between the Indus River and the Thar Desert, where fluvial and eolian systems exchanged sediment over large spatial scales (hundreds of kilometers). Summer monsoon winds recycle sediment from the lower Indus River and delta northeastward, i.e., downwind and upstream, into the desert. Far-field eolian recycling of Indus sediment is important enough to control sediment provenance at the downwind end of the desert substantially, although the proportion of Indus sediment of various ages varies regionally within the desert; dune sands in the northwestern Thar Desert resemble the Late Holocene–Recent Indus delta, requiring short transport and reworking times. On smaller spatial scales (1–10 m) along fluvial channels in the northern Thar Desert, there is also stratigraphic evidence of fluvial and eolian sediment reworking from local rivers. In terms of sediment volume, we estimate that the Thar Desert could be a more substantial sedimentary store than all other known buffer regions in the Indus basin combined. Thus, since the mid-Holocene, when the desert expanded as the summer monsoon rainfall decreased, fluvial-eolian recycling has been an important but little recognized process buffering sediment flux to the ocean. Similar fluvial-eolian connectivity likely also affects sediment routing and signal transfer in other dryland regions globally.

  17. Modern Landform Distribution of the Gilbert River Distributive Fluvial System (DFS) and Predictions Regarding Ancient Coastal Plain Progradational Successions

    NASA Astrophysics Data System (ADS)

    McNamara, K. C.; Weissmann, G. S.; Scuderi, L. A.; Owen, A.; Nichols, G. J.; Hartley, A. J.

    2011-12-01

    Distributive fluvial systems (DFSs) are modern fluvial deposits of radial distributive channel patterns and encompass a continuum from small-scale alluvial fans to large-scale fluvial megafans. Given that DFSs have been shown to comprise most continental regimes, we hypothesize that these systems form fluvial deposits in sedimentary basins at the fluvial-marine interface. Few modern examples of DFSs spanning this realm exist, as modern coastlines are presently flooded due to high-amplitude Quaternary sea level changes. The Gilbert River DFS of north Queensland, Australia, represents a modern example of a DFS terminating in the Gulf of Carpentaria. Remote sensing analyses on this system show the same recognizable depositional patterns as purely continental DFS: 1) a radial channel pattern originating from an apex, 2) a down-DFS decrease in both channel and grain size, 3) a lack of lateral channel confinement, 4) a broad fan shape, and 5) a down-DFS increase in floodplain/channel area ratio. The distal portion (influenced by sea level changes) exhibits: a) a sharp contact between DFS and marginal-marine deposits, b) channel incision, confinement and lateral movement, c) channel width increasing due to tidal influence, d) sediment redistribution (spits, small-scale deltas), and e) shoreline progradation (wave-cut platforms and beach ridges). These observations ultimately lead to sedimentologic and stratigraphic predictions regarding coastal DFS deposits in the geologic record. Data from the Gilbert system are compared with facies and facies transitions in Cordilleran foreland basin Cretaceous strata that cross the fluvial-marine interface, such as the John Henry Mbr. of the Straight Cliffs Formation and the Williams Fork Formations of Utah and Colorado, respectively. If these strata are DFS, then the following succession (in ascending order) should exist in a single progradational succession: 1) Distal channel deposits with evidence of tidal influence (herringbone cross-stratification, brackish fossils, inclined heterolithic stratification) that cut into underlying foreshore strata and laterally equivalent fine-grained strata, overlain by 2) medial deposits of coarsening-upward packages due to avulsion and well-developed, laterally extensive mature paleosols, topped by 3) proximal deposits consisting of amalgamated sandstone bodies separated by regionally discontinuous erosional surfaces and relatively rare, well-drained, immature paleosols. Thus, progradational successions should exhibit an upsection increase in grain size, sand:mud ratios, and channel downcutting. Coastal plain fluvial and marginal marine progradational successions have proven to be important hydrocarbon and carbon dioxide sequestration reservoirs, coal accumulations, and aquifers. However, existing fluvial facies models used to predict sandbody distribution and connectivity are typically based on aggradational valley fill successions at the outcrop- and borehole-scale.

  18. Precambrian fluvial deposits: Enigmatic palaeohydrological data from the c. 2 1.9 Ga Waterberg Group, South Africa

    NASA Astrophysics Data System (ADS)

    Eriksson, Patrick G.; Bumby, Adam J.; Brümer, Jacobus J.; van der Neut, Markus

    2006-08-01

    Precambrian fluvial systems, lacking the influence of rooted vegetation, probably were characterised by flashy surface runoff, low bank stability, broad channels with abundant bedload, and faster rates of channel migration; consequently, a braided fluvial style is generally accepted. Pre-vegetational braided river systems, active under highly variable palaeoclimatic conditions, may have been more widespread than are modern, ephemeral dry-land braided systems. Aeolian deflation of fine fluvial detritus does not appear to have been prevalent. With the onset of large cratons by the Neoarchaean-Palaeoproterozoic, very large, perennial braided river systems became typical. The c. 2.06-1.88 Ga Waterberg Group, preserved within a Main and a smaller Middelburg basin on the Kaapvaal craton, was deposited largely by alluvial/braided-fluvial and subordinate palaeo-desert environments, within fault-bounded, possibly pull-apart type depositories. Palaeohydrological data obtained from earlier work in the Middelburg basin (Wilgerivier Formation) are compared to such data derived from the correlated Blouberg Formation, situated along the NE margin of the Main basin. Within the preserved Blouberg depository, palaeohydrological parameters estimated from clast size and cross-bed set thickness data, exhibit rational changes in their values, either in a down-palaeocurrent direction, or from inferred basin margin to palaeo-basin centre. In both the Wilgerivier and Blouberg Formations, calculated palaeoslope values (derived from two separate formulae) plot within the gap separating typical alluvial fan gradients from those which characterise rivers (cf. [Blair, T.C., McPherson, J.G., 1994. Alluvial fans and their natural distinction from rivers based on morphology, hydraulic processes, sedimentary processes, and facies assemblages. J. Sediment. Res. A64, 450-489.]). Although it may be argued that such data support possibly unique fluvial styles within the Precambrian, perhaps related to a combination of major global-scale tectono-thermal and atmospheric-palaeoclimatic events, a simpler explanation of these apparently enigmatic palaeoslope values may be pertinent. Of the two possible palaeohydrological formulae for calculating palaeoslope, one provides results close to typical fluvial gradients; the other formula relies on preserved channel-width data. We suggest that the latter will not be reliable due to problematic preservation of original channel-widths within an active braided fluvial system. We thus find no unequivocal support for a unique fluvial style for the Precambrian, beyond that generally accepted for that period and discussed briefly in the first paragraph.

  19. Sedimentology and sequence stratigraphy of the Shanxi Formation (Lower Permian) in the northwestern Ordos Basin, China: an alternative sequence model for fluvial strata

    NASA Astrophysics Data System (ADS)

    Zhang, Zhouliang; Sun, Keqin; Yin, Jarun

    1997-08-01

    The Lower Permian Shanxi Formation in the northwestern Ordos Basin was deposited in fluvial environments under warm and humid climatic conditions. Braided, anastomosing and meandering fluvial facies associations can be recognized in the lower, middle and upper parts of the Shanxi Formation, respectively. They form a complete type-1 fluvial sequence. Based on this sequence as well as on the analysis of base level changes and their effect on fluvial deposition, an alternative sequence model for fluvial strata is proposed. The lowstand systems tract in the model comprises braided river deposits, the transgressive systems tract consists mainly of fine-grained anastomosing river deposits, and meandering river deposits dominate in the highstand systems tract. Braided sandstones in the lowstand systems tract seem to be widely distributed and have high lateral continuity. Anastomosing channel sand-bodies in the transgressive systems tract appear to be isolated and display relative low lateral continuity.

  20. The Crucial Role of Particulate Matter in Fluvial Degradation of Thaw-Released Arctic Carbon

    NASA Astrophysics Data System (ADS)

    Vonk, J.; Sobczak, W. V.; Mann, P. J.; Bulygina, E. B.; Zimov, S. A.; Holmes, R. M.

    2010-12-01

    Half of the global pool of soil organic carbon (OC) is stored in Arctic permafrost. Thaw-release of this pool, triggered by ongoing climate warming, will mobilize old OC into streams and rivers that actively process this material. Studies suggest that thawing permafrost will mostly manifest itself in the amounts of particulate OC (POC), and is expected to increase POC fluxes. While the fluvial loads of terrestrial POC might be an order of magnitude lower than the dissolved fraction DOC, the degradation rate for POC appears to be much higher. Consequently, the resulting flux of outgassed CO2 might be of similar magnitude. This essential difference between POC and DOC has shown to be valid for Russian Arctic coastal waters, but has not yet been quantified in the Arctic watersheds that drain the most climate-sensitive regions on our planet. In July 2010, a team of scientists and students as part of the Polaris Project (http://www.thepolarisproject.org) travelled to the Northeast Science station in Cherskii in the Kolyma delta, Eastern Siberia. One goal was to improve our understanding on the degradation fluxes of fluvial POC and the differences among different (sub-)watersheds. We sampled the Kolyma River along with a wide range of tributaries draining watersheds of different size, topography, vegetation and permafrost coverage. Biological oxygen demand (BOD) was measured on filtered (0.7 um) and unfiltered water samples. Additionally, an incubation experiment was set-up with resuspended particulate matter from different tributaries and Kolyma springflood material throughout late May/early June. Hereby we excluded the DOC fraction and gained degradation information on POC. Preliminary results of the BOD experiment show mineralization rates that are far higher in the unfiltered bottles than the increase one would expect solely based on the difference in OC concentrations. This implies that fluvial POC is far more reactive than the dissolved fraction. Furthermore, it is likely that particle-associated bacteria consume DOC. We will present further results on POC versus DOC degradation rates and their spatial and temporal differences.

  1. Rock strength along a fluvial transect of the Colorado Plateau - quantifying a fundamental control on geomorphology

    NASA Astrophysics Data System (ADS)

    Bursztyn, N.; Pederson, J. L.; Tressler, C.; Mackley, R. D.; Mitchell, K. J.

    2015-11-01

    Bedrock strength is a key parameter that influences slope stability, landscape erosion, and fluvial incision. Yet, it is often ignored or indirectly constrained in studies of landscape evolution, as with the K erodibility parameter in stream-power models. Empirical datasets of rock strength suited to address geomorphic questions are rare, in part because of the difficulty in measuring those rocks at Earth's surface that are heterolithic, weak, or poorly exposed. Here we present a large dataset of measured bedrock strength organized by rock units exposed along the length of the trunk Green-Colorado River through the iconic Colorado Plateau of the western U.S. Measurements include field compressive tests, fracture spacing, and Selby Rock Mass Strength at 168 localities, as well as 672 individual tensile-strength tests in the laboratory. Tensile strength results are compared to geomorphic metrics of unit stream power, river gradient, and channel and valley-bottom width through the arid Colorado Plateau, where the influence of bedrock is intuitive but unquantified. Our dataset reveals logical trends between tensile and compressive strength as well as between strength, rock type and age. In bedrock reaches of the fluvial transect, there is a positive rank-correlation and a strong power-law correlation between reach-averaged rock strength and unit stream power, as well as a linear relation between tensile strength and river gradient. Expected relations between fracture spacing and topography are masked partly by the massive yet weak sandstones in the dataset. To constrain values for weak rock types such as shale, we utilize the inverse power-law scaling between tensile strength and valley-bottom width to estimate their "effective" tensile strength. Results suggest that tensile strength varies to at least an order-of-magnitude smaller values than evident with directly testable rocks in this landscape, and values for erodibility (K) in numerical simulations may be informed by this dataset. In terms of landscape evolution, these results support the finding that equilibrium adjustment to bedrock strength, not differential uplift or transient incision, is the first-order control on large-scale fluvial geomorphology in the Colorado Plateau. This has broad implications for the interpretation of topography in terms of tectonic drivers.

  2. Case study of climatic changes in Martian fluvial systems at Xanthe Terra

    NASA Astrophysics Data System (ADS)

    Kereszturi, Akos

    2014-06-01

    An unnamed valley system was analyzed in Xanthe Terra south of Havel Vallis on Mars where three separate episodes of fluvial activity could be identified with different morphology, water source and erosional processes, inferring formation under different climatic conditions. The oldest scattered valleys (1. group) form interconnecting network and suggest areally distributed water source. Later two valley types formed from confined water source partly supported by possible subsurface water. The smaller upper reaches (2. group) with three separate segments and also a similar aged but areal washed terrain suggest contribution from shallow subsurface inflow. These valleys fed the main channel (3. group), which morphology (wide, theater shaped source, few tributaries, steep walls) is the most compatible with the subsurface sapping origin. While the first valley group formed in the Noachian, the other two, more confined groups are younger. Their crater density based age value is uncertain, and could be only 1200 million years. After these three fluvial episodes etch pitted, heavily eroded terrain formed possibly by ice sublimation driven collapse. More recently (60-200 million years ago) dunes covered the bottom of the valleys, and finally the youngest event took place when mass movements produced debris covered the valleys' slopes with sediments along their wall around 5-15 million years ago, suggesting wind activity finished earlier than the mass movements in the region. This small area represents the sequence of events probably appeared on global scale: the general cooling and drying environment of Mars. Comparing the longitudinal profiles here to other valleys in Xanthe Terra, convex shaped valley profiles are usually connected to steep terrains. The location of erosional base might play an important role in their formation that can be produced convex shapes where the erosional base descended topographically (by deep impact crater or deep outflow channel formation) as time passed by. The analysis of such nearby systems that probably witnessed similar climatic forces in the past, provides ideal possibility to identify reasons and geomorphological context of longitudinal profile shape formation for fluvial valleys in general. Three different groups of valleys were identified at a system in Xanthe Terra. The oldest scattered valleys formed by areal water source. Younger upper reaches might form by linear and areal flow, lower reaches by sapping. Crater density based ages are uncertain, but point to activity 600-1200 million years ago. Dunes are 60-200, talus slopes are 5-15 million years old in the valleys.

  3. Palynostratigraphy and sedimentary facies of Middle Miocene fluvial deposits of the Amazonas Basin, Brazil

    NASA Astrophysics Data System (ADS)

    Dino, Rodolfo; Soares, Emílio Alberto Amaral; Antonioli, Luzia; Riccomini, Claudio; Nogueira, Afonso César Rodrigues

    2012-03-01

    Palynostratigraphic and sedimentary facies analyses were made on sedimentary deposits from the left bank of the Solimões River, southwest of Manaus, State of Amazonas, Brazil. These provided the age-dating and subdivision of a post-Cretaceous stratigraphic succession in the Amazonas Basin. The Novo Remanso Formation is subdivided into upper and lower units, and delineated by discontinuous surfaces at its top and bottom. The formation consists primarily of sandstones and minor mudstones and conglomerates, reflecting fluvial channel, point bar and floodplain facies of a fluvial meandering paleosystem. Fairly well-preserved palynoflora was recovered from four palynologically productive samples collected in a local irregular concentration of gray clay deposits, rich in organic material and fossilized wood, at the top of the Novo Remanso Formation upper unit. The palynoflora is dominated by terrestrial spores and pollen grains, and is characterized by abundant angiosperm pollen grains ( Tricolpites, Grimsdalea, Perisyncolporites, Tricolporites and Malvacearumpollis). Trilete spores are almost as abundant as the angiosperm pollen, and are represented mainly by the genera Deltoidospora, Verrutriletes, and Hamulatisporis. Gymnosperm pollen is scarce. The presence of the index species Grimsdalea magnaclavata Germeraad et al. (1968) indicates that these deposits belong to the Middle Miocene homonymous palynozone (Lorente, 1986; Hoorn, 1993; Jaramillo et al., 2011). Sedimentological characteristics (poorly sorted, angular to sub-angular, fine to very-coarse quartz sands facies) are typical of the Novo Remanso Formation upper part. These are associated with a paleoflow to the NE-E and SE-E, and with an entirely lowland-derived palinofloristic content with no Andean ferns and gymnosperms representatives. All together, this suggests a cratonic origin for this Middle Miocene fluvial paleosystem, which was probably born in the Purus Arch eastern flank and areas surrounding the crystalline. The palynological analysis results presented herein are the first direct and unequivocal evidence of the occurrence of Middle Miocene deposits in the central part of the Amazonas Basin. They also provide new perspectives for intra- and interbasin correlations, as well as paleogeographic and paleoenvironmental interpretations for the later deposition stages in the northern Brazilian sedimentary basins.

  4. Turbidity in the fluvial Gironde Estuary (S-W France) based on 10 year continuous monitoring: sensitivity to hydrological conditions

    NASA Astrophysics Data System (ADS)

    Jalón-Rojas, I.; Schmidt, S.; Sottolichio, A.

    2015-03-01

    Climate change and human activities impact the volume and timing of freshwater input to estuaries. These modifications in fluvial discharges are expected to influence estuarine suspended sediment dynamics, and in particular the turbidity maximum zone (TMZ). Located in the southwest France, the Gironde fluvial-estuarine systems has an ideal context to address this issue. It is characterized by a very pronounced TMZ, a decrease in mean annual runoff in the last decade, and it is quite unique in having a long-term and high-frequency monitoring of turbidity. The effect of tide and river flow on turbidity in the fluvial estuary is detailed, focusing on dynamics related to changes in hydrological conditions (river floods, periods of low-water, inter-annual changes). Turbidity shows hysteresis loops at different time scales: during river floods and over the transitional period between the installation and expulsion of the TMZ. These hysteresis patterns, that reveal the origin of sediment, locally resuspended or transported from the watershed, may be a tool to evaluate the presence of remained mud. Statistics on turbidity data bound the range of river flow that promotes the TMZ installation in the fluvial stations. Hydrological indicators of the persistence and turbidity level of the TMZ are also defined. The long-term evolution of these indicators confirms the influence of discharge decrease on the intensification of the TMZ in tidal rivers, and provides a tool to evaluate future scenarios.

  5. Development a fluvial detachment rate model to predict the erodibility of cohesive soils under the influence of seepage

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Seepage influences the erodibility of streambanks, streambeds, dams, and embankments. Usually the erosion rate of cohesive soils due to fluvial forces is computed using an excess shear stress model, dependent on two major soil parameters: the critical shear stress (tc) and the erodibility coefficie...

  6. Stratigraphy of the fluvial deposits of the Salado river basin, Buenos Aires Province: Lithology, chronology and paleoclimate

    NASA Astrophysics Data System (ADS)

    Fucks, E.; Pisano, M. F.; Huarte, R. A.; Di Lello, C. V.; Mari, F.; Carbonari, J. E.

    2015-07-01

    The regional landscape of the Salado depression is related to weathering, eolian and fluvial processes generated under different climatic conditions. Although during most of the Holocene the climatic conditions were warm and humid, previously, a vast plain dominated by deflation processes and enhanced by weathering processes was developed in an arid environment. Fluvial deposits produced afterwards are continuous and lithologically homogeneous, which allows differentiation and characterization of the entire stratigraphic sequence. The stratigraphic units of this area, closely related to the paleoclimatic conditions, are recognized and characterized. Three lithostratigraphic units of fluvial origin (Members) and two paleosols have been differentiated. The first ones were grouped in the Luján Formation. Some of the units are related to other ones previously recognized in this area (La Chumbiada Member and La Pelada Geosol), but others have no similarity or relationship with previously known units (Gorch and Puente Las Gaviotas Members, and Frigorífico Belgrano Geosol). Radiocarbon ages suggest that the fluvial sequences were deposited after the glacial maximum, corresponding to MIS 1, except for the basal levels of the lower member which is late Late Pleistocene. Although the general paleoclimatic conditions were related to warm and humid climate, events related to water deficits were also recognized, which could be related to the Younger Dryas, the middle Holocene and the late Holocene.

  7. Pan-Arctic patterns in black carbon sources and fluvial discharges deduced from radiocarbon and PAH source apportionment markers in

    E-print Network

    Guo, Laodong

    Pan-Arctic patterns in black carbon sources and fluvial discharges deduced from radiocarbon and PAH 2008; published 29 May 2008. [1] A pan-arctic geospatial picture of black carbon (BC) characteristics: Elmquist, M., I. Semiletov, L. Guo, and O¨ . Gustafsson (2008), Pan-Arctic patterns in black carbon sources

  8. When do plants modify fluvial processes? Plant-hydraulic interactions under variable flow and sediment supply rates

    NASA Astrophysics Data System (ADS)

    Manners, Rebecca B.; Wilcox, Andrew C.; Kui, Li; Lightbody, Anne F.; Stella, John C.; Sklar, Leonard S.

    2015-02-01

    Flow and sediment regimes shape alluvial river channels; yet the influence of these abiotic drivers can be strongly mediated by biotic factors such as the size and density of riparian vegetation. We present results from an experiment designed to identify when plants control fluvial processes and to investigate the sensitivity of fluvial processes to changes in plant characteristics versus changes in flow rate or sediment supply. Live seedlings of two species with distinct morphologies, tamarisk (Tamarix spp.) and cottonwood (Populus fremontii), were placed in different configurations in a mobile sand-bed flume. We measured the hydraulic and sediment flux responses of the channel at different flow rates and sediment supply conditions representing equilibrium (sediment supply = transport rate) and deficit (sediment supply < transport rate). We found that the hydraulic and sediment flux responses during sediment equilibrium represented a balance between abiotic and biotic factors and was sensitive to increasing flow rates and plant species and configuration. Species-specific traits controlled the hydraulic response: compared to cottonwood, which has a more tree-like morphology, the shrubby morphology of tamarisk resulted in less pronation and greater reductions in near-bed velocities, Reynolds stress, and sediment flux rates. Under sediment-deficit conditions, on the other hand, abiotic factors dampened the effect of variations in plant characteristics on the hydraulic response. We identified scenarios for which the highest stem-density patch, independent of abiotic factors, dominated the fluvial response. These results provide insight into how and when plants influence fluvial processes in natural systems.

  9. A comparison of factors controlling sedimentation rates and wetland loss in fluvial-deltaic systems, Texas Gulf coast

    USGS Publications Warehouse

    White, W.A.; Morton, R.A.; Holmes, C.W.

    2002-01-01

    Submergence of coastal marshes in areas where rates of relative sea-level rise exceed rates of marsh sedimentation, or vertical accretion, is a global problem that requires detailed examination of the principal processes that establish, maintain, and degrade these biologically productive environments. Using a simple 210Pb-dating model, we measured sedimentation rates in cores from the Trinity, Lavaca-Navidad, and Nueces bayhead fluvial-deltaic systems in Texas where more than 2000 ha of wetlands have been lost since the 1950s. Long-term average rates of fluvial-deltaic aggradation decrease southwestward from 0.514 ?? 0.008 cm year -1 in the Trinity, 0.328 ?? 0.022 cm year -1 in the Lavaca-Navidad, to 0.262 ?? 0.034 cm year -1 in the Nucces. The relative magnitudes of sedimentation and wetland loss correlate with several parameters that define the differing fluvial-deltaic settings, including size of coastal drainage basin, average annual rainfall, suspended sediment load, thickness of Holocene mud in the valley fill, and rates of relative sea-level rise. There is some evidence that upstream reservoirs have reduced wetland sedimentation rates, which are now about one-half the local rates of relative sea-level rise. The extant conditions indicate that fluvial-deltaic marshes in these valleys will continue to be lost as a result of submergence and erosion. ?? 2002 Elsevier Science B.V. All rights reserved.

  10. Fluvial sequences as evidence for landscape and climatic evolution in the Late Cenozoic: A synthesis of data from IGCP 518

    NASA Astrophysics Data System (ADS)

    Westaway, Rob; Bridgland, David R.; Sinha, Rajiv; Demir, Tuncer

    2009-09-01

    This editorial synthesis introduces a collection of papers derived from International Geoscience Programme (IGCP) Project 518, entitled 'Fluvial Sequences as Evidence for Landscape and Climatic Evolution in the Late Cenozoic'. Building on information collected during an earlier project (IGCP 449: 'Global Correlation of Late Cenozoic Fluvial Deposits'), this has examined the data accumulated on fluvial records, particularly river terrace sequences, for patterns that contribute to the interpretation of Late Cenozoic landscape and climatic evolution. This introductory paper reviews the baseline evidence, noting that there are patterns (from terrace sequences in different regions) of differing amounts of fluvial incision, indicating differing uplift rates, that appear to be related to crustal province. There seems to be no general role for plate tectonics; instead the patterns are of regional uplift, probably an isostatic response to erosion, enhanced by positive feedback effects, arguably due to lower-crustal flow. As well as depocentres, which are subsiding due to loading by accumulating sediment, cratonic areas are also exceptions to the rule of widespread uplift; these show minimal Late Cenozoic uplift, presumably because they lack mobile lower crust. The ten papers that follow are reviewed briefly in this context, these being contributions concerning Turkey, the Black Sea margin of Ukraine, Morocco (×2), the Czech Republic, Britain (×2), the Netherlands, New Zealand, and China.

  11. Multiple fluvial processes detected by riverside seismic and infrasound monitoring of a controlled flood in the Grand Canyon

    E-print Network

    Tsai, Victor C.

    flood in the Grand Canyon Brandon Schmandt,1 Richard C. Aster,2,3 Dirk Scherler,4 Victor C. Tsai,4 experiment (CFE) in the Grand Canyon to show that three types of fluvial processes can be monitored from of a controlled flood in the Grand Canyon, Geophys. Res. Lett., 40, 4858­4863, doi:10.1002/grl.50953. 1

  12. Paleocurrent and fabric analyses of the imbricated fluvial gravel deposits in Huangshui Valley, the northeastern Tibetan Plateau, China

    USGS Publications Warehouse

    Miao, X.; Lu, H.; Li, Z.; Cao, G.

    2008-01-01

    Gravel deposits on fluvial terraces contain a wealth of information about the paleofluvial system. In this study, flow direction and provenance were determined by systematic counts of more than 2000 clasts of imbricated gravel deposits in the Xining Region, northeastern Tibetan Plateau, China. These gravel deposits range in age from the modern Huangshui riverbed to Miocene-aged deposits overlain by eolian sediments. Our major objectives were not only to collect first-hand field data on the fluvial gravel sediments of the Xining Region, but also to the reconstruct the evolution of the fluvial system. These data may offer valuable information about uplift of the northeastern Tibetan Plateau during the late Cenozoic era. Reconstructed flow directions of the higher and lower gravel deposits imply that the river underwent a flow reversal of approximately 130-180??. In addition, the lithological compositions in the higher gravel deposits differ significantly from the lower terraces, suggesting that the source areas changed at the same time. Eolian stratigraphy overlying the gravel deposits and paleomagnetic age determination indicate that this change occurred sometime between 1.55??Ma and 1.2??Ma. We suggest that tectonic activity could explain the dramatic changes in flow direction and lithological composition during this time period. Therefore, this study provides a new scenario of fluvial response to tectonic uplift: a reversal of flow direction. In addition, field observation and statistical analyses reveal a strong relationship between rock type, size and roundness of clasts. ?? 2007 Elsevier B.V. All rights reserved.

  13. Lower Vistula fluvial lakes as possible places of deep groundwaters effluence (Grudzi?dz Basin, North Central Poland)

    NASA Astrophysics Data System (ADS)

    Kordowski, Jaroslaw; Kubiak-Wójcicka, Katarzyna; Solarczyk, Adam; Tyszkowski, Sebastian

    2014-05-01

    Regarding the outflow the Vistula River is the largest river in the Baltic catchment. In its lower course, below Bydgoszcz, in the Late Holocene Vistula channel adopted an weakly anastomosing fluvial pattern destroyed by intensive human hydrotechnical activity and by the regulation which have intensified about 200 years ago. Channel regulation have left many artificially separated fluvial lakes. Part of them infilled rapidly but the majority have persisted to present day almost unchanged. It has also arised the question: what drives the resistence for silting? To solve the problem there were conducted simultaneous hydrological and geomorphological investigations, because there were two concepts: one that the mineral material is removed from fluvial lakes while high stands by flood waters and second that the material is removed due to high groundwater "exchange" rate when the fluvial lake has a sufficient hydrological connectivity to the main Vistula channel. The Vistula valley crosses morainic plains of the last glaciation. On the average it has about 10 km width and is incised about 70 - 80 m deep, compared to neighbouring plains, dissecting all the Quaternary aquifers. On the floodplain area the Quaternary sediments lay with a layer of only 10-20 m thickness over Miocene and Oligocene sands. In favourable conditions, particularly while a low stand there exists the possibility of Tertiary water migration toward the surface of fluvial lakes provided they have not continuous flood sediments cover on their floors. As an example of such a lake with an intensive water exchange rate by supposed deep groundwaters was chosen the Old Vistula lake (Stara Wis?a) near Grudzi?dz town. The lake has an area of 40 ha, mean depth 1,73 m, maximum depth 8 m, length about 4 km and medium width about 100 m. In the years 2011-2014, with two weeks frequency, in its surficial water layer were conducted measures which included temperature, pH, Eh, suspended matter amount, total and carbonaceous mineralization. Similar measurements were also conducted in other fluvial lakes and Vistula tributaries. Investigations carried proved the general similarity between physical and chemical properties of lakes and watercourses analysed. However, there exists distinct gradient of carbonaceous mineralization from small values in the Vistula channel to high values at the valley edges. PH and Eh parameters in the Old Vistula lake were different than in all other surveyed sites what leads to conclusion that it is fed by deeper groundwaters than in the case of other fluvial lakes and Vistula tributaries, particularly in low water stand times. Acknowledgements: This study is a contribution to the Virtual Institute of Integrated Climate and Landscape Evolution (ICLEA) of the Helmholtz Association.

  14. Temporal trends in fluvial-sediment discharge in Ohio, 1950-1987

    USGS Publications Warehouse

    Hindall, S.M.

    1991-01-01

    Long-term fluvial-sediment records of annual suspended-sediment discharge data are available for eight daily suspended-sediment stations operated in Ohio. Graphical and statistical analyses of long-term sediment records indicate that, in general, no long-term (>3- to 5-year) trends are readily apparent in the relation between annual mean suspended-sediment discharge and water discharge in Ohio; however, some short-term, year-to-year changes in that relation occur for Ohio streams. Double-mass curves for five daily suspended-sediment stations and seasonal Kendall analysis of data from eight daily suspended-sediment stations clearly illustrate the lack of any discernible changes in the suspended-sediment-discharge/water-discharge relation or in suspended-sediment concentration for most Ohio streams over the past 36 years. -from Author

  15. Quality assurance practices for the chemical and biological analyses of water and fluvial sediments

    USGS Publications Warehouse

    Friedman, Linda C.; Erdmann, David E.

    1982-01-01

    This chapter contains practices used by the U.S. Geological Survey to assure the quality of analytical data for water, fluvial sediment, and aquatic organisms. These practices are directed primarily toward personnel making water quality measurements. Some detail specific quality control techniques, others document quality assurance procedures being used by the Central Laboratories System of the U.S. Geological Survey, and still others describe various statistical techniques and give examples of their use in evaluating and assuring the quality of analytical data. The practices are arranged into eight sections: Analytical Methods Development Procedures, Standard Quantitative Analysis Techniques, Instrumental Techniques, Reference Material, Laboratory Quality Control; Quality Assurance Monitoring; Documentation, Summary, and Evaluation of Data, Materials Evaluation. Each section is preceded by a brief description of the material covered. Similarly within each section, each practice is preceded by a description of its application or scope.

  16. Reservoir Characterization, Production Characteristics, and Research Needs for Fluvial/Alluvial Reservoirs in the United States

    SciTech Connect

    Cole, E.L.; Fowler, M.L.; Jackson, S.R.; Madden, M.P.; Raw-Schatzinger, V.; Salamy, S.P.; Sarathi, P.; Young, M.A.

    1999-04-28

    The Department of Energy's (DOE's) Oil Recovery Field Demonstration Program was initiated in 1992 to maximize the economically and environmentally sound recovery of oil from known domestic reservoirs and to preserve access to this resource. Cost-shared field demonstration projects are being initiated in geology defined reservoir classes which have been prioritized by their potential for incremental recovery and their risk of abandonment. This document defines the characteristics of the fifth geological reservoir class in the series, fluvial/alluvial reservoirs. The reservoirs of Class 5 include deposits of alluvial fans, braided streams, and meandering streams. Deposit morphologies vary as a complex function of climate and tectonics and are characterized by a high degree of heterogeneity to fluid flow as a result of extreme variations in water energy as the deposits formed.

  17. Holocene monsoonal dynamics and fluvial terrace formation in the northwest Himalaya, India

    NASA Astrophysics Data System (ADS)

    Bookhagen, B.; Fleitmann, D.; Nishiizumi, K.; Strecker, M. R.; Thiede, R. C.

    2006-07-01

    Aluminum-26 and beryllium-10 surface exposure dating on cut-and-fill river-terrace surfaces from the lower Sutlej Valley (northwest Himalaya) documents the close link between Indian Summer Monsoon (ISM) oscillations and intervals of enhanced fluvial incision. During the early Holocene ISM optimum, precipitation was enhanced and reached far into the internal parts of the orogen. The amplified sediment flux from these usually dry but glaciated areas caused alluviation of downstream valleys up to 120 m above present grade at ca. 9.9 k.y. B.P. Terrace formation (i.e., incision) in the coarse deposits occurred during century-long weak ISM phases that resulted in reduced moisture availability and most likely in lower sediment flux. Here, we suggest that the lower sediment flux during weak ISM phases allowed rivers to incise episodically into the alluvial fill.

  18. Geoarchaeology, the four dimensional (4D) fluvial matrix and climatic causality

    NASA Astrophysics Data System (ADS)

    Brown, A. G.

    2008-10-01

    Geoarchaeology is the application of geological and geomorphological techniques to archaeology and the study of the interactions of hominins with the natural environment at a variety of temporal and spatial scales. Geoarchaeology in the UK over the last twenty years has flourished largely because it has gone beyond technological and scientific applications. Over the same period our ability to reconstruct the 3-dimensional stratigraphy of fluvial deposits and the matrix of fluvial sites has increased dramatically because of a number of technological advances. These have included the use of LiDAR (laser imaging) and radar to produce high-resolution digital surface models, the use of geophysics, particularly ground penetrating radar and electrical resistivity, to produce sediment depth models, and the use of GIS and data visualisation techniques to manipulate and display the data. These techniques along with more systematic and detailed sedimentological recording of exposed sections have allowed the construction of more precise 3-dimensional (volumetric) models of the matrix of artefacts within fluvial deposits. Additionally a revolution in dating techniques, particularly direct sediment dating by luminescence methods, has enabled the creation of 4-dimensional models of the creation and preservation of these sites. These 4-dimensional models have the ability to provide far more information about the processes of site creation, preservation and even destruction, and also allow the integration of these processes with independent data sources concerning cultural evolution and climatic change. All improvements in the precision of dating fluvial deposits have archaeological importance in our need to translate events from a sequential or geological timeframe to human timescales. This allows geoarchaeology to make a more direct contribution to cultural history through the recognition of agency at the individual or group level. This data can then form a component of biocomplexity or agent-based modelling which is becoming increasingly used in the natural sciences, particularly ecology and geomorphology and which can be used to test scenarios including the impact on, and response of, hominins to abrupt or catastrophic environmental change. Whilst catastrophic events clearly represent the atypical they can be illuminating in revealing cognitive processes resulting in abandonment, coping, mitigation and innovation. These points are exemplified using two in-depth case studies: one from the Holocene geoarchaeological record of the River Trent in Central England and the other from the Palaeolithic record from rivers in South West Britain. In the former the interaction between climate change and human activity is illustrated at the year to century timescale whilst in the other the timescale is millennial. These case studies have deliberately been chosen to be as different as possible in temporal and spatial scale with the aim of examining the applicability of methodological and theoretical aspects of geoarchaeology. Lastly the paper considers the problem of scale in geoarchaeology and concludes it is process-dependency, which ultimately affects the questions we can ask, and that questions of human response to climate change are fundamentally a product of materiality and cognitive processes. This demands an in-depth contextual approach to such questions rather than database-driven assertions of causality.

  19. The Origin of Warrego Valles: A Case Study for Fluvial Valley Formation on Early Mars

    NASA Technical Reports Server (NTRS)

    Gulick, Virginia C.; Dohm, James; Tanaka, Ken; Hare, Trent

    2000-01-01

    Warrego Valles is one of the best examples of a well integrated fluvial valley system that formed early in the geological history of Mars, the lack of similar erosion elsewhere along the edge of Thaumasia plateau is not consistent with a formation by rainfall. Instead the radial pattern of this valley system centered on a region of localized uplift argues for a more localized water source. We conclude that this uplift was most likely the result of a subsurface magmatic intrusion and that the estimated volume of this intrusion is sufficient to cause enough hydrothermal ground-water outflow to form the valley system. A possible alternative to this scenario is hydrothermal ground-water outflow combined with a melting snow pack.

  20. Stream restoration in dynamic fluvial systems: Scientific approaches, analyses, and tools

    NASA Astrophysics Data System (ADS)

    Schultz, Colin

    2012-04-01

    In the United States the average annual investment in river restoration programs is approximately $1 billion. Despite this burgeoning industry, the National Water Quality Inventory, which tracks the health of the nation's rivers, has shown no serious improvement in cumulative river health since the early 1990s. In the AGU monograph Stream Restoration in Dynamic Fluvial Systems: Scientific Approaches, Analyses, and Tools, editors Andrew Simon, Sean J. Bennett, and Janine M. Castro pull together the latest evidence-based understanding of stream restoration practices, with an aim of guiding the further development of the field and helping to right its apparently unsuccessful course. In this interview, Eos talks to Sean J. Bennett, University of Buffalo, about the culture, practice, and promise of restoring rivers.

  1. An optical age chronology of late Quaternary extreme fluvial events recorded in Ugandan dambo soils

    USGS Publications Warehouse

    Mahan, S.A.; Brown, D.J.

    2007-01-01

    There is little geochonological data on sedimentation in dambos (seasonally saturated, channel-less valley floors) found throughout Central and Southern Africa. Radiocarbon dating is problematic for dambos due to (i) oxidation of organic materials during dry seasons; and (ii) the potential for contemporary biological contamination of near-surface sediments. However, for luminescence dating the equatorial site and semi-arid climate facilitate grain bleaching, while the gentle terrain ensures shallow water columns, low turbidity, and relatively long surface exposures for transported grains prior to deposition and burial. For this study, we focused on dating sandy strata (indicative of high-energy fluvial events) at various positions and depths within a second-order dambo in central Uganda. Blue-light quartz optically stimulated luminescences (OSL) ages were compared with infrared stimulated luminescence (IRSL) and thermoluminescence (TL) ages from finer grains in the same sample. A total of 8 samples were dated, with 6 intervals obtained at ???35, 33, 16, 10.4, 8.4, and 5.9 ka. In general, luminescence ages were stratigraphically, geomorphically and ordinally consistent and most blue-light OSL ages could be correlated with well-dated climatic events registered either in Greenland ice cores or Lake Victoria sediments. Based upon OSL age correlations, we theorize that extreme fluvial dambo events occur primarily during relatively wet periods, often preceding humid-to-arid transitions. The optical ages reported in this study provide the first detailed chronology of dambo sedimentation, and we anticipate that further dambo work could provide a wealth of information on the paleohydrology of Central and Southern Africa. ?? 2006 Elsevier Ltd. All rights reserved.

  2. Fluvial Morphology and Bedform Migration in the Ebb Tidal Dominated Duplin River, Georgia

    NASA Astrophysics Data System (ADS)

    Straub, J. A.; Hill, J. C.; Viso, R. F.; Peterson, R. N.; Carter, M. L.

    2014-12-01

    The Duplin River is an ebb-domintated, salt marsh drainage system west of Sapelo Island, Georgia. With no riverine input, flow in the Duplin is dependent on local surface run off, groundwater discharge and tidal flushing. Repeat multibeam bathymetry surveys within this system provide insight into sediment transport, current dynamics, and the migration of bottom features. Examination of bathymetric changes and the rate of bedform migration can be used to help estimate net sediment transport in fluvial and tidal systems. The swath bathymetry data presented here were collected during December 2009, March 2013, and June 2013 (high and low tide) aboard a small survey vessel, using a pole-mounted Kongsberg EM3002d multibeam bathymetry system. Along-stream profiles from bathymetry data collected during a single spring tidal cycle show little bedform migration, while the more temporally distant profiles record significant shifts in both small (cm-scale) and large (m-scale) bedform position, as well as changes in the morphology of large erosional scour depressions. Previous work has suggested the larger bedforms, which maintain an ebb-oriented geometry through both ebb and flood tide, are indicative of sediment transport rates that are an order of magnitude greater during the ebb tide (Zarillo, 1985). The new data suggest punctuated events, such as storm surges, may also play an important role in the fluvial transport, although more analysis is needed to determine how sediment storage changes in the Duplin river system over multiple tidal cycles. Integration of topographic LiDAR data, vegetation patterns, sediment composition, groundwater inputs and planform river morphology will also provide insight into sediment storage and transport within the system.

  3. Interacting effects of climate and agriculture on fluvial DOM in temperate and subtropical catchments

    NASA Astrophysics Data System (ADS)

    Graeber, D.; Goyenola, G.; Meerhoff, M.; Zwirnmann, E.; Ovesen, N. B.; Glendell, M.; Gelbrecht, J.; Teixeira de Mello, F.; González-Bergonzoni, I.; Jeppesen, E.; Kronvang, B.

    2015-01-01

    Dissolved organic matter (DOM) is an important factor in aquatic ecosystems, which is involved in a large variety of biogeochemical and ecological processes and recent literature suggests that it could be strongly affected by agriculture in different climates. Based on novel monitoring techniques, we investigated the interaction of climate and agriculture effects on DOM quantity and molecular composition. To examine this, we took water samples over two years in two paired intensive and extensive farming catchments in each Denmark (temperate climate) and Uruguay (subtropical climate). We measured dissolved organic carbon (DOC) and nitrogen (DON) concentrations and DOC and DON molecular fractions with size-exclusion chromatography. Moreover, we assessed DOM composition with absorbance and fluorescence measurements, as well as parallel factor analysis (PARAFAC). We also calculated DOC and DON loads based on daily discharge measurements, as well as measured precipitation and air temperature. In the catchments in Uruguay, the fluvial DOM was characterized by higher temporal variability of DOC and DON loads which were clearly related to a higher temporal variability of precipitation and a DOM composition with rather plant-like character relative to the Danish catchments. Moreover, we consistently found a higher temporal variability of DOC an DON loads in the intensive farming catchments than in the extensive farming catchments, with the highest temporal variability in the Uruguayan intensive farming catchment. Moreover, the composition of DOM exported from the intensive farming catchments was always complex and related to microbial processing in both Denmark and Uruguay. This was indicated by low C : N ratios, several spectroscopic DOM composition indexes and the PARAFAC fluorescence components. We propose that the consistent effect of intensive farming on DOM composition and the temporal variability of DOC and DON loads is related to similarities in the management of agriculture, which may have wide-scale implications for fluvial DOM composition, as well as related ecological processes and biogeochemical cycles.

  4. Tectonics from fluvial topography using formal linear inversion: Theory and applications to the Inyo Mountains, California

    NASA Astrophysics Data System (ADS)

    Goren, L.; Fox, Matthew; Willett, Sean D.

    2014-08-01

    Tectonic activity generates topography, and the variability of tectonic forcing is responsible for topographic patterns and variability of relief in fluvial landscapes. Despite this basic relation, the inverse problem, by which features of the topography are used for inferring tectonic uplift rates, has proven challenging. Here we develop formal linear inversion schemes to infer a record of the rate of relative uplift as a function of space and time from the long profiles of rivers. The relative uplift rate is the difference between the rates of rock uplift and of the base level change. The inversion schemes are based on a closed-form analytic solution to the transient linear stream power model, and to increase model resolution they make use of the multiplicity of information made available by multiple rivers and their tributaries. The distribution of the fluvial response time to tectonic perturbations is a key component of the inversion scheme, as this determines which tectonic events are preserved in the topography. We develop two inversion parameterizations that differ in their assumptions about the tectonic forcing: space-invariant and time-space variability with an assumed spatial distribution. The inversion schemes are applied to the Inyo Mountains, an uplifted block along the western boundary of the Basin and Range Province in California. Inversion results indicate that the range has been experiencing an acceleration of the relative uplift in the past ˜2-3 Ma. We use the inversion results to constrain the paleotopography and paleo-erosion rate along the range and to recover the throw rate history along the fault that bounds the Inyo range.

  5. Fluvial response to abrupt global warming at the Palaeocene/Eocene boundary.

    PubMed

    Foreman, Brady Z; Heller, Paul L; Clementz, Mark T

    2012-11-01

    Climate strongly affects the production of sediment from mountain catchments as well as its transport and deposition within adjacent sedimentary basins. However, identifying climatic influences on basin stratigraphy is complicated by nonlinearities, feedback loops, lag times, buffering and convergence among processes within the sediment routeing system. The Palaeocene/Eocene thermal maximum (PETM) arguably represents the most abrupt and dramatic instance of global warming in the Cenozoic era and has been proposed to be a geologic analogue for anthropogenic climate change. Here we evaluate the fluvial response in western Colorado to the PETM. Concomitant with the carbon isotope excursion marking the PETM we document a basin-wide shift to thick, multistoried, sheets of sandstone characterized by variable channel dimensions, dominance of upper flow regime sedimentary structures, and prevalent crevasse splay deposits. This progradation of coarse-grained lithofacies matches model predictions for rapid increases in sediment flux and discharge, instigated by regional vegetation overturn and enhanced monsoon precipitation. Yet the change in fluvial deposition persisted long after the approximately 200,000-year-long PETM with its increased carbon dioxide levels in the atmosphere, emphasizing the strong role the protracted transmission of catchment responses to distant depositional systems has in constructing large-scale basin stratigraphy. Our results, combined with evidence for increased dissolved loads and terrestrial clay export to world oceans, indicate that the transient hyper-greenhouse climate of the PETM may represent a major geomorphic 'system-clearing event', involving a global mobilization of dissolved and solid sediment loads on Earth's surface. PMID:23128230

  6. Remote Sensing Innovations Applied to Mapping the Fluvial Habitat of Atlantic Salmon

    NASA Astrophysics Data System (ADS)

    Carbonneau, P.; Francis, B.; Bergeron, N.; Lane, S.

    2004-05-01

    It is increasingly recognised that the modelling of the physical habitat of aquatic species must be extended to the scale of the entire river network. In this context, the measurement of fundamental physical habitat parameters such as substrate size, flow depth and flow velocity over the entire river length becomes crucial. However, current methods used by fluvial geomorphologists to characterize fluvial systems are very labour intensive and are not suited for river scale measurements. This paper presents a series of new remote sensing methods designed to automatically derive high resolution measurements of flow depth, substrate size and flow velocity over very long river reaches. The primary data source was a set of 3cm resolution airborne digital imagery covering the full 80km of the Sainte-Marguerite river in Quebec, Canada. Automated image processing methods were developed to derive median substrate size of the dry exposed areas and of the shallow bed (i.e. where the bed submerged but still visible) areas. Algorithms were also developed to measure flow depth in the shallow areas. The resolutions of the derived parameters are on the order of 1m^2. These processes are fully automated and once calibrated, can be run without user intervention for the entire image set. In order to measure flow velocity, a ground based application of Particle Image Velocimetry (PIV) was developed. This application, which works with commercially available video equipment, allows for the measurement of surface flow velocities from video footage of the river flow. It therefore greatly increases the productivity of flow velocity measurements. Finally, all the output data is georeferenced and can be managed in a Geographic Information System (GIS).

  7. Enhancing the natural removal of As in a reactive fluvial confluence receiving acid drainage

    NASA Astrophysics Data System (ADS)

    Abarca, M. I.; Arce, G.; Montecinos, M.; Guerra, P. A.; Pasten, P.

    2014-12-01

    Fluvial confluences are natural reactors that can determine the fate of contaminants in watersheds receiving acid drainage. Hydrological, hydrodynamic and chemical factors determine distinct conditions for the formation of suspended particles of iron and aluminum oxyhydroxides. The chemical and physical properties of these particle assemblages (e.g. particle size, chemical composition) can vary according to inflow mixing ratios, hydrodynamic velocity profiles, and chemical composition of the flows mixing at the confluence. Due to their capacity to sorb metals, it is important to identify the optimal conditions for removing metals from the aqueous phase, particularly arsenic, a contaminant frequently found in acid drainage. We studied a river confluence in the Lluta watershed, located in the arid Chilean Altiplano. We performed field measurements and laboratory studies to find optimal mixing ratio for arsenic sorption onto oxyhydroxide particles at the confluence between the Azufre (pH=2, As=2 mg/L) and the Caracarani river (pH=8, As<0.1 mg/L). As the contribution of the acidic stream increased, the concentration of Fe and Al in the solid phase reached a peak at different pHs. Although the optimal pH for As sorption was ~3, the overall maximum removal of As at the confluence, ocurred for pH~4. This is produced because optimal As sorption does not occur necessarily for the highest concentrations of particles being formed. We propose that fluvial confluences could be engineered to enhance the natural attenuation of contaminants. An analogy between confluences and coagulation-flocculation-sedimentation drinking water plants could be used to engineer such intervention.Acknowledgements: Proyecto Fondecyt 1130936 and Proyecto CONICYT FONDAP 15110020

  8. Contrasting vulnerability of drained tropical and high-latitude peatlands to fluvial loss of stored carbon

    NASA Astrophysics Data System (ADS)

    Evans, Chris D.; Page, Susan E.; Jones, Tim; Moore, Sam; Gauci, Vincent; Laiho, Raija; Hruška, Jakub; Allott, Tim E. H.; Billett, Michael F.; Tipping, Ed; Freeman, Chris; Garnett, Mark H.

    2014-11-01

    Carbon sequestration and storage in peatlands rely on consistently high water tables. Anthropogenic pressures including drainage, burning, land conversion for agriculture, timber, and biofuel production, cause loss of pressures including drainage, burning, land conversion for agriculture, timber, and biofuel production, cause loss of peat-forming vegetation and exposure of previously anaerobic peat to aerobic decomposition. This can shift peatlands from net CO2 sinks to large CO2 sources, releasing carbon held for millennia. Peatlands also export significant quantities of carbon via fluvial pathways, mainly as dissolved organic carbon (DOC). We analyzed radiocarbon (14C) levels of DOC in drainage water from multiple peatlands in Europe and Southeast Asia, to infer differences in the age of carbon lost from intact and drained systems. In most cases, drainage led to increased release of older carbon from the peat profile but with marked differences related to peat type. Very low DOC-14C levels in runoff from drained tropical peatlands indicate loss of very old (centuries to millennia) stored peat carbon. High-latitude peatlands appear more resilient to drainage; 14C measurements from UK blanket bogs suggest that exported DOC remains young (<50 years) despite drainage. Boreal and temperate fens and raised bogs in Finland and the Czech Republic showed intermediate sensitivity. We attribute observed differences to physical and climatic differences between peatlands, in particular, hydraulic conductivity and temperature, as well as the extent of disturbance associated with drainage, notably land use changes in the tropics. Data from the UK Peak District, an area where air pollution and intensive land management have triggered Sphagnum loss and peat erosion, suggest that additional anthropogenic pressures may trigger fluvial loss of much older (>500 year) carbon in high-latitude systems. Rewetting at least partially offsets drainage effects on DOC age.

  9. Tectonics from Fluvial Topography Using Formal Linear Inversion: Theory and Applications to the Inyo Mountains, California

    NASA Astrophysics Data System (ADS)

    Goren, L.; Fox, M.; Willett, S.

    2014-12-01

    Tectonic activity generates topography, and the variability of tectonic forcing is responsible for topographic patterns and variability of relief in fluvial landscapes. Despite this basic relation, the inverse problem, by which features of the topography are used for inferring tectonic uplift rates, has proven challenging. In the current work, we develop formal linear inversion schemes to infer a record of the rate of relative uplift as a function of space and time from the long profiles of rivers. The relative uplift rate is the difference between the rates of rock uplift and of the base level change. The inversion schemes are based on a closed-form analytic solution to the transient linear stream power model, and to increase model resolution they make use of the multiplicity of information made available by multiple rivers and their tributaries. The distribution of the fluvial response time to tectonic perturbations is a key component of the inversion scheme,?as this determines which tectonic events are preserved in the topography. We develop two inversion parameterizations that differ in their assumptions about the tectonic forcing: space-invariant and time-space variability with an assumed spatial distribution. We apply the inversion schemes to the Inyo Mountains, an uplifted block along the western boundary of the Basin and Range Province in California. Inversion results indicate that the range has been experiencing an acceleration of the relative uplift in the past ~2-3 Myr. We further use the inversion results to constrain the paleotopography and paleo-erosion rate along the range and to recover the throw rate history along the fault that bounds the Inyo range.

  10. Short-term post-wildfire dry-ravel processes in a chaparral fluvial system

    NASA Astrophysics Data System (ADS)

    Florsheim, Joan L.; Chin, Anne; O'Hirok, Linda S.; Storesund, Rune

    2016-01-01

    Dry ravel, the transport of sediment by gravity, transfers material from steep hillslopes to valley bottoms during dry conditions. Following wildfire, dry ravel greatly increases in the absence of vegetation on hillslopes, thereby contributing to sediment supply at the landscape scale. Dry ravel has been documented as a dominant hillslope erosion mechanism following wildfire in chaparral environments in southern California. However, alteration after initial deposition is not well understood, making prediction of post-fire flood hazards challenging. The majority of Big Sycamore Canyon burned during the May 2013 Springs Fire leaving ash and a charred layer that covered hillslopes and ephemeral channels. Dry-ravel processes following the fire produced numerous deposits in the hillslope-channel transition zone. Field data focus on: 1) deposition from an initial post-wildfire dry-ravel pulse; and 2) subsequent alteration of dry ravel deposits over a seven-month period between September 2013 and April 2014. We quantify geomorphic responses in dry ravel deposits including responses during the one small winter storm that generated runoff following the fire. Field measurements document volumetric changes after initial post-wildfire deposition of sediment derived from dry ravel. Erosion and deposition mechanisms that occurred within dry-ravel deposits situated in the hillslope-channel transition zone included: 1) mobilization and transport of a portion or the entire deposit by fluvial erosion; 2) rilling on the surface of the unconsolidated deposits; 3) deposition on deposits via continued hillslope sediment supply; and 4) mass wasting that transfers sediment within deposits where surface profiles are near the angle of repose. Terrestrial LiDAR scanning point clouds were analyzed to generate profiles quantifying depth of sediment erosion or deposition over remaining dry ravel deposits after the first storm season. This study contributes to the understanding of potential effects of wildfire on fine sediment delivery to fluvial systems in chaparral ecosystems.

  11. Fluvial response to Holocene volcanic damming and breaching in the Gediz and Geren rivers, western Turkey

    NASA Astrophysics Data System (ADS)

    van Gorp, W.; Veldkamp, A.; Temme, A. J. A. M.; Maddy, D.; Demir, T.; van der Schriek, T.; Reimann, T.; Wallinga, J.; Wijbrans, J.; Schoorl, J. M.

    2013-11-01

    This study discusses the complex late Holocene evolution of the Gediz River north of Kula, western Turkey, when a basaltic lava flow dammed and filled this river valley. Age control was obtained using established and novel feldspar luminescence techniques on fluvial sands below and on top of the flow. This dating constrained the age of the lava flow to 3.0-2.6 ka. Two damming locations caused by the lava flow have been investigated. The upstream dam caused lake formation and siltation of the upstream Gediz. The downstream dam blocked both the Gediz and a tributary river, the Geren. The associated lake was not silted up because the upstream dam already trapped all the Gediz sediments. Backfillings of the downstream lake are found 1.5 km upstream into the Geren valley. The downstream dam breached first, after which the upstream dam breached creating an outburst flood that imbricated boulders of 10 m3 size and created an epigenetic gorge. The Gediz has lowered its floodplain level at least 15 m since the time of damming, triggering landslides, some of which are active until present. The lower reach of the Geren has experienced fast base level lowering and changed regime from meandering to a straight channel. Complex response to base level change is still ongoing in the Geren and Gediz catchments. These findings are summarized in a diagram conceptualizing lava damming and breaching events. This study demonstrates that one lava flow filling a valley floor can block a river at several locations, leading to different but interrelated fluvial responses of the same river system to the same lava flow.

  12. Climatic implications of correlated upper Pleistocene glacial and fluvial deposits on the Cinca and Gallego rivers, NE Spain

    SciTech Connect

    Lewis, Claudia J; Mcdonald, Eric; Sancho, Carlos; Pena, Jose- Luis

    2008-01-01

    We correlate Upper Pleistocene glacial and fluvial deposits of the Cinca and Gallego River valleys (south central Pyrenees and Ebro basin, Spain) using geomorphic position, luminescence dates, and time-related trends in soil development. The ages obtained from glacial deposits indicate glacial periods at 85 {+-} 5 ka, 64 {+-} 11 ka, and 36 {+-} 3 ka (from glacial till) and 20 {+-} 3 ka (from loess). The fluvial drainage system, fed by glaciers in the headwaters, developed extensive terrace systems in the Cinca River valley at 178 {+-} 21 ka, 97 {+-} 16 ka, 61 {+-} 4 ka, 47 {+-} 4 ka, and 11 {+-} 1 ka, and in the Gallego River valley at 151 {+-} 11 ka, 68 {+-} 7 ka, and 45 {+-} 3 ka. The times of maximum geomorphic activity related to cold phases coincide with Late Pleistocene marine isotope stages and heinrich events. The maximum extent of glaciers during the last glacial occurred at 64 {+-} 11 ka, and the terraces correlated with this glacial phase are the most extensive in both the Cinca (61 {+-} 4 ka) and Gallego (68 {+-} 7 ka) valleys, indicating a strong increase in fluvial discharge and availability of sediments related to the transition to deglaciation. The global Last Glacial Maximum is scarcely represented in the south central Pyrenees owing to dominantly dry conditions at that time. Precipitation must be controlled by the position of the Iberian Peninsula with respect to the North Atlantic atmospheric circulation system. The glacial systems and the associated fluvial dynamic seem sensitive to (1) global climate changes controlled by insolation, (2) North Atlantic thermohaline circulation influenced by freshwater pulses into the North Atlantic, and (3) anomalies in atmospheric circulation in the North Atlantic controlling precipitation on the Iberian peninsula. The model of glacial and fluvial evolution during the Late Pleistocene in northern Spain could be extrapolated to other glaciated mountainous areas in southern Europe.

  13. Fluvial landscapes - human societies interactions during the last 2000 years: the Middle Loire River and its embanking since the Middle Ages (France)

    NASA Astrophysics Data System (ADS)

    Castanet, Cyril; Carcaud, Nathalie

    2015-04-01

    This research deals with the study of fluvial landscapes, heavily and precociously transformed by societies (fluvial anthroposystems). It aims to characterize i), fluvial responses to climate, environmental and anthropogenic changes ii), history of hydraulical constructions relative to rivers iii), history of fluvial origin risks and their management - (Program: AGES Ancient Geomorphological EvolutionS of the Loire River hydrosystem). The Middle Loire River valley in the Val d'Orléans was strongly and precociously occupied, particularly during historical periods. Hydrosedimentary flows are there irregular. The river dykes were built during the Middle Ages (dykes named turcies) and the Modern Period, but ages and localizations of the oldest dykes were not precisely known. A systemic and multi-scaled approach aimed to characterize i), palaeo-hydrographical, -hydrological and -hydraulical evolutions of the Loire River, fluvial risks (palaeo-hazards and -vulnerabilities) and their management. It is based on an integrated approach, in and out archaeological sites: morpho-stratigraphy, sedimentology, geophysics, geochemistry, geomatics, geochronology, archaeology. Spatio-temporal variability of fluvial hazards is characterized. A model of the Loire River fluvial activity is developed: multicentennial scale variability, with higher fluvial activity episodes during the Gallo-Roman period, IX-XIth centuries and LIA. Fluvial patterns changes are indentified. Settlement dynamics and hydraulical constructions of the valley are specified. We establish the ages and localizations of the oldest discovered dikes of the Middle Loire River: after the Late Antiquity and before the end of the Early Middle Ages (2 dated dykes), between Bou and Orléans cities. During historical periods, we suggest 2 main thresholds concerning socio-environmental interactions: the first one during the Early Middle Ages (turcies: small scattered dykes), the second during the Modern Period (levees: high quasi-continuous dykes).

  14. Middle Pleistocene to Holocene fluvial terrace development and uplift-driven valley incision in the SE Carpathians, Romania

    NASA Astrophysics Data System (ADS)

    Necea, D.; Fielitz, W.; Kadereit, A.; Andriessen, P. A. M.; Dinu, C.

    2013-08-01

    This study reveals that in the SE Carpathians terrace development and fluvial incision during the Middle Pleistocene-Holocene are predominantly controlled by tectonic uplift as shown by terrace distributions and uplift amounts and rates. The work focuses on a transect from the internal nappes and Bra?ov intramontane basin (western domain) to the external nappes and Foc?ani foredeep basin (eastern domain). New infrared stimulated luminescence ages were obtained and minimum terrace formation ages were determined to derive fluvial incision rates, and thereby, to constrain tectonic uplift. In the eastern domain, non-uniform terrace distributions in adjacent sub-parallel more active Punta and less active ?u?i?a rivers and an eastward migrated fluvial incision from the orogen to the foredeep basin indicate tectonic uplift as dominant control on terrace development. Strath-terraces in the western and eastern domains indicate repeated events of vertical fluvial incision and lateral erosion during the early Middle Pleistocene and late Middle Pleistocene-Holocene, respectively. These events imply successive recurrent disturbances of equilibrium conditions due to pulses of increased tectonic uplift. Fill-terraces in the western domain show that initial aggradation periods were followed by uplift-driven vertical incision during the late Middle-Late Pleistocene. As fill-terraces show a wide-spread development, climatic change and complex response cannot be excluded as contributing factors. Synchronous to terrace development, loess deposition periods during the late Middle-Late Pleistocene and Latest Pleistocene and intercalated episodes of palaeosol formation during the Late Pleistocene imply comparable climatic conditions across the SE Carpathians. Dominant strath-terraces of the eastern domain indicate stronger fluvial incision (~ 240 m) since the late Middle Pleistocene, whereas older strath- and younger dominant fill-terraces of the western domain designate a lower amount (~ 90 m) since the early Middle Pleistocene. Middle Pleistocene-Holocene fluvial incision rates document higher tectonic uplift in the external nappes and lower towards the western intramontane and eastern foredeep basins.

  15. Evidences of Paleoearthquakes in Palaeolithic settlements within fluvial sequences of the Tagus Basin (Madrid, Central Spain).

    NASA Astrophysics Data System (ADS)

    Silva, Pablo G.; Rodríguez Pascua, M. A.; Pérez López, R.; Giner Robles, J. L.; Roquero, E.; Tapias, F.; López Recio, M.; Rus, I.; Morin, J.

    2010-05-01

    Multiple evidences of soft-sediment to brittle deformation within the Pleistocene fluvial terraces of the Tagus, Jarama, Tajuña and Manzanares river valleys have been described since the middle 20th Century. Cryoturbation, hydroplastic deformations due to underlying karstic collapses or halokinesis on the substratum of neogene gypsums, and seismic shaking have been proposed to interpret these structures. These deformations are typically concentrated in the +18-20 m terrace levels, and closely linked to well-known Palaeolithic sites, in some cases overlaying and/or affecting true prehistoric settlements (i.e. Arganda, Arriaga and Tafesa sites) within the Jarama and Manzanares valleys. The affected settlements typically display acheulian lithic industry linked to the scavenging of large Pleistocene mammals (i.e. Elephas antiquus). Commonly, deformational structures are concentrated in relatively thin horizons (10-50 cm thick) bracketed by undeformed fluvial sands and gravels. The soft-sediment deformations usually consist on medium to fine sized sands injected and protruded in overlaying flood-plain clayey silts, showing a wide variety of convolutes, injections, sand-dikes, dish and pillar structures, mud volcanoes, faults and folds, some times it is possible to undertake their 3D geometrical analysis due to the exceptional conservation of the structures (Tafesa). Recent geo-archaeological prospecting on the for the Palaeolithic Site of Arriaga (South Madrid City) conducted during the year 2009, let to find out an exceptional horizon of deformation of about 1.20 m thick. It consisted on highly disturbed and pervasively liquefacted sands, which hardly can be attributed to no-seismic processes. The acheulian lithic industry of the Madrid Region have been classically attributed the Late Middle Pleistocene (< 350 kyr BP), but recent OSL dating indicate that the basal horizons of the +18-20 m fluvial terraces hold ages younger than c.a. 120-100 kyr BP in this zone. All the evidences point to the occurrence of concentrated seismic activity during the OIS 5 (Last Interglaciar) interfering early human activity in the zone. Presently, the Tagus Basin is subject to moderate seismic activity with strongest seismic events not exceeding intensity VI MSK (1954 AD), but most of them related to the Jarama, Tajuña and Tagus river valleys, which are bounded by large linear escarpments carved in Miocene gypsums. These escarpments display a wide variety of brittle and ductile deformations, as well as clear geomorphological indicators of late Quaternary tectonic activity. Considering the recent ESI-2007 Scale, the reported structures indicate the occurrence of larger paleoearthquakes during the Middle-Late Pleistocene of at least local intensity VIII. This study has been supported by the DGPH de la Comunidad de Madrid, AUDEMA S.A. (Proyecto Arriaga-2009). This is a contribution of GQM-AEQUA.

  16. A consistent magnetic polarity stratigraphy of Plio-Pleistocene fluvial sediments from the Heidelberg Basin (Germany)

    NASA Astrophysics Data System (ADS)

    Scheidt, Stephanie; Hambach, Ulrich; Rolf, Christian

    2014-05-01

    Deep drillings in the Heidelberg Basins provide access to one of the thickest and most complete successions of Quaternary and Upper Pliocene continental sediments in Central-Europe [1]. In absence of any comprehensive chronostratigraphic model, these sediments are so far classified by lithological and hydrogeological criteria. Therefore the age of this sequence is still controversially discussed ([1], [2]). In spite of the fact that fluvial sediments are a fundamental challenge for the application of magnetic polarity stratigraphy we performed a thorough study on four drilling cores (from Heidelberg, Ludwigshafen and nearby Viernheim). Here, we present the results from the analyses of these cores, which yield to a consistent chronostratigraphic framework. The components of natural remanent magnetisation (NRM) were separated by alternating field and thermal demagnetisation techniques and the characteristic remanent magnetisations (ChRM) were isolated by principle component analysis [3]. Due to the coring technique solely inclination data of the ChRM is used for the determination of the magnetic polarity stratigraphy. Rock magnetic proxies were applied to identify the carriers of the remanent magnetisation. The investigations prove the NRM as a stable, largely primary magnetisation acquired shortly after deposition (PDRM). The Matuyama-Gauss boundary is clearly defined by a polarity change in each core, as suggested in previous work [4]. These findings are in good agreement with the biostratigraphic definition of the base of the Quaternary ([5], [6], [7]). The Brunhes-Matuyama boundary could be identified in core Heidelberg UniNord 1 and 2 only. Consequently, the position of the Jaramillo and Olduvai subchron can be inferred from the lithostratigraphy and the development of fluvial facies architecture in the Rhine system. The continuation of the magnetic polarity stratigraphy into the Gilbert chron (Upper Pliocene) allows alternative correlation schemes for the cores Viernheim and Heidelberg. All things considered, the application of magnetic polarity stratigraphy on Pliocene and Pleistocene fluvial sediments from the Heidelberg Basin provides a consistent and independent chronology and opens the perspective for global correlations where other approaches hardly come to results. [1] GABRIEL, G., ELLWANGER, D., HOSELMANN, C. & WEIDENFELLER, M. 2008. Preface: The HeidelbergBasin Drilling Project. E & G (Quaternary Science Journal), 57, 253-260. [2] ELLWANGER, D. & WIELAND-SCHUSTER, U. 2012. Fotodokumentation und Schichtenverzeichnis der Forschungsbohrungen Heidelberg UniNord I und II. LGRB-Informationen, 26, 25-86. [3] KIRSCHVINK, J. L. 1980. The least-squares line and plane and the analysis of palaeomagnetic data. Geophysical Journal, Royal Astronomical Society, 62, 699-718. [4] ROLF, C., HAMBACH, U. & WEIDENFELLER, M. 2008. Rock and palaeomagnetic evidence for the Plio-/Pleistocene palaeoclimatic change recorded in Upper Rhine Graben sediments (Core Ludwigshafen-Parkinsel), Neth. J. Geosci., 87 (1), 41-50. [5] KNIPPING, M. 2008. Early and Middle Pleistocene pollen assemblages of deep core drillings in the northern Upper Rhine Graben, Germany, Neth. J. Geosci., 87(1), 51-65. [6] HEUMANN, G., pers. Comm. [7] HAHNE, J., pers. Comm.

  17. Fluvial sediments a summary of source, transportation, deposition, and measurement of sediment discharge

    USGS Publications Warehouse

    Colby, B.R.

    1963-01-01

    This paper presents a broad but undetailed picture of fluvial sediments in streams, reservoirs, and lakes and includes a discussion of the processes involved in the movement of sediment by flowing water. Sediment is fragmental material that originates from the chemical or physical disintegration of rocks. The disintegration products may have many different shapes and may range in size from large boulders to colloidal particles. In general, they retain about the same mineral composition as the parent rocks. Rock fragments become fluvial sediment when they are entrained in a stream of water. The entrainment may occur as sheet erosion from land surfaces, particularly for the fine particles, or as channel erosion after the surface runoff has accumulated in streams. Fluvial sediments move in streams as bedload (particles moving within a few particle diameters of the streambed) or as suspended sediment in the turbulent flow. The discharge of bedload varies with several factors, which may include particle size and a type of effective shear on the surface of the streambed. The discharge of suspended sediment depends partly on concentration of moving sediment near the streambed and hence on discharge of bedload. However, the concentration of fine sediment near the streambed varies widely, even for equal flows, and, therefore, the discharge of fine sediment normally cannot be computed theoretically. The discharge of suspended sediment also depends on velocity, turbulence, depth of flow, and fall velocity of the particles. In general, the coarse sediment transported by a stream moves intermittently and is discharged at a rate that depends on properties of the flow and of the sediment. If an ample supply of coarse sediment is available at the surface of the streambed, the discharge of the coarse sediment, such as sand, can be roughly computed from properties of the available sediment and of the flow. On the other hand, much of the fine sediment in a stream usually moves nearly continuously at about the velocity of the flow, and even low flows can transport large amounts of fine sediment. Hence, the discharge of fine sediments, being largely dependent on the availability of fine sediment upstream rather than on the properties of the sediment and of the flow at a cross section, can seldom be computed from properties, other than concentrations based directly on samples, that can be observed at the cross section. Sediment particles continually change their positions in the flow; some fall to the streambed, and others are removed from the bed. Sediment deposits form locally or over large areas if the volume rate at which particles settle to the bed exceeds the volume rate at which particles are removed from the bed. In general, large particles are deposited more readily than small particles, whether the point of deposition is behind a rock, on a flood plain, within a stream channel, or at the entrance to a reservoir, a lake, or the ocean. Most samplers used for sediment observations collect a water-sediment mixture from the water surface to within a few tenths of a foot of the streambed. They thus sample most of the suspended sediment, especially if the flow is deep or if the sediment is mostly fine; but they exclude the bedload and some of the suspended sediment in a layer near the streambed where the suspended-sediment concentrations are highest. Measured sediment discharges are usually based on concentrations that are averages of several individual sediment samples for a cross section. If enough average concentrations for a cross section have been determined, the measured sediment discharge can be computed by interpolating sediment concentrations between sampling times. If only occasional samples were collected, an average relation between sediment discharge and flow can be used with a flow-duration curve to compute roughly the average or the total sediment discharges for any periods of time for which the flow-duration c

  18. The Atlas of Natural Hazards and Risks of Austria: first results for fluvial and pluvial floods

    NASA Astrophysics Data System (ADS)

    Mergili, Martin; Tader, Andreas; Glade, Thomas; Neuhold, Clemens; Stiefelmeyer, Heinz

    2015-04-01

    Incoherent societal adaptation to natural processes results in significant losses every year. A better knowledge of the spatial and temporal distribution of hazards and risks, and of particular hot spots in a given region or period, is essential for reducing adverse impacts. Commonly, different hazard and risk estimations are performed within individual approaches based on tailor-made concepts. This works well as long as specific cases are considered. The advantage of such a procedure is that each individual hazard and risk is addressed in the best possible manner. The drawback, however, consists in the fact that the results differ significantly in terms of quality and accuracy and therefore cannot be compared. Hence, there is a need to develop a strategy and concept which uses similar data sources of equivalent quality in order to adequately analyze the different natural hazards and risks at broader scales. The present study is aiming to develop such a platform. The project Risk:ATlas focuses on the design of an atlas visualizing the most relevant natural hazards and, in particular, possible consequences for the entire territory of Austria. Available as a web-based tool and as a printed atlas, it is seen as a key tool to improve the basis for risk reduction, risk adaptation and risk transfer. The atlas is founded on those data sets available for the entire territory of Austria at a consistent resolution and quality. A 1 m resolution DEM and the official cadastre and building register represent the core, further data sets are employed according to the requirements for each natural hazard and risk. In this contribution, the methodology and the preliminary results for fluvial and pluvial floods and their consequences to buildings for three selected test areas in different types of landscapes (rural, urban and mountainous) are presented. Flooding depths expected for annualities of 30, 100 and 300 are derived from existing data sets for fluvial floods and are computed using the model FloodArea for pluvial floods. Land cover parameters necessary for flood routing are deduced from the official cadastre. The values exposed to each flood scenario are quantified on the basis of objects. In this study, the focus is on buildings, thus the official building register is employed as a major data source. The same register is used to derive the vulnerability of each building with regard to floods. Combining exposed values and vulnerability, the risk for each building, expressed as the expected damage per unit of time, is derived. Furthermore, a methodology to automatically regionalize the object-based hazards, exposures, vulnerabilities and risks to any spatial unit desired is presented. This enables us (i) to adapt the web-based atlas to different zooming levels and to flexibly react to (ii) the needs of the users of the atlas and (iii) the availability of reference data for validation of the analyses. The next steps will include (1) extending the analyses for fluvial and pluvial floods to the entire territory of Austria, employing advanced computational techniques such as the use of a cluster; (2) deriving hazards, exposures, vulnerabilities and risks related to a variety of other hazardous processes as well as to chains and combinations of processes (multi-hazard); (3) considering the consequences of hazardous processes not only for buildings, but also for infrastructures and even humans; and (4) elaborating future scenarios, based on possible environmental (including climatic) and socio-economic changes.

  19. Fluvial reservoir characterization using topological descriptors based on spectral analysis of graphs

    NASA Astrophysics Data System (ADS)

    Viseur, Sophie; Chiaberge, Christophe; Rhomer, Jérémy; Audigane, Pascal

    2015-04-01

    Fluvial systems generate highly heterogeneous reservoir. These heterogeneities have major impact on fluid flow behaviors. However, the modelling of such reservoirs is mainly performed in under-constrained contexts as they include complex features, though only sparse and indirect data are available. Stochastic modeling is the common strategy to solve such problems. Multiple 3D models are generated from the available subsurface dataset. The generated models represent a sampling of plausible subsurface structure representations. From this model sampling, statistical analysis on targeted parameters (e.g.: reserve estimations, flow behaviors, etc.) and a posteriori uncertainties are performed to assess risks. However, on one hand, uncertainties may be huge, which requires many models to be generated for scanning the space of possibilities. On the other hand, some computations performed on the generated models are time consuming and cannot, in practice, be applied on all of them. This issue is particularly critical in: 1) geological modeling from outcrop data only, as these data types are generally sparse and mainly distributed in 2D at large scale but they may locally include high-resolution descriptions (e.g.: facies, strata local variability, etc.); 2) CO2 storage studies as many scales of investigations are required, from meter to regional ones, to estimate storage capacities and associated risks. Recent approaches propose to define distances between models to allow sophisticated multivariate statistics to be applied on the space of uncertainties so that only sub-samples, representative of initial set, are investigated for dynamic time-consuming studies. This work focuses on defining distances between models that characterize the topology of the reservoir rock network, i.e. its compactness or connectivity degree. The proposed strategy relies on the study of the reservoir rock skeleton. The skeleton of an object corresponds to its median feature. A skeleton is computed for each reservoir rock geobody and studied through a graph spectral analysis. To achieve this, the skeleton is converted into a graph structure. The spectral analysis applied on this graph structure allows a distance to be defined between pairs of graphs. Therefore, this distance is used as support for clustering analysis to gather models that share the same reservoir rock topology. To show the ability of the defined distances to discriminate different types of reservoir connectivity, a synthetic data set of fluvial models with different geological settings was generated and studied using the proposed approach. The results of the clustering analysis are shown and discussed.

  20. Inputs and Fluvial Transport of Pharmaceutical Chemicals in An Urban Watershed

    NASA Astrophysics Data System (ADS)

    Foster, G. D.; Shala, L.

    2006-05-01

    Pharmaceuticals and personal care products (PPCPs) are classes of emerging chemical contaminants thought to enter the aquatic environment primarily through wastewater treatment plant (WTP) discharges. As the use of drugs is expected to rise with the aging demographics of the human population and with more river water being diverted to meet potable water demands, the presence of PPCPs in surface water is becoming an issue of public concern. The intent of our study was to quantify potential WTP inputs of PPCPs to rivers in the Wasington, DC (USA) region, and to investigate the fluvial transport of PPCPs in the Anacostia River (AR), the mainstem of a highly contaminated urban watershed in Washington, DC. The approach was to sample WTP water at various stages of treatment, and to measure seasonal concentrations of PPCPs in fluvial transport in the AR. Surface water from the AR was collected through the use of automated samplers during normal flow and storm flow regimes near the head of tide of the AR, just upstream from the confluence of the Northeast (NE) and Northwest (NW) Branches, the two prominent drainages in the watershed. The water samples were filtered to separate river particles from water, and the filtered water was extracted using solid phase extraction (SPE) cartridges. The filters were extracted by sonication in methanol. The SPE and filter extracts were analyzed for a group of widely distributed PPCPs as trimethylsilyl derivatives by using gas chromatography/mass spectrometry. The most frequently detected PPCPs at WTPs included ibuprofen, caffeine, naproxen and triclosan, which ranged from 45 ?g/L (caffeine) to 5 ?g/L (triclosan) in WTP influent and from 0.08 ?g/L (triclosan) to 0.02 ?g/L (ibuprofen) in effluent water. Similar PPCPs were detected in both the NE and NW Branches of the AR, but higher concentrations on average were observed in the NE Branch, which receives WTP effluent upstream from the sampling point. The incidence of PPCPs correlated with WTP discharge, but other sources appear to exist based on the occurrence of PPCPs in the NW Branch, which does not receive WTP discharge. Surface water concentrations of the PPCPs were only weakly dependent on the flow regime of the Anacosita River, ranging from 10 to 250 ng/L in AR water. PPCPs are transported in surface waters at parts per trillion concentrations throughout the year, but sources to the AR are not confined to WTPs.

  1. Relative importance of fluvial and glacial erosion in shaping the Chandra Valley, western Himalaya, India

    NASA Astrophysics Data System (ADS)

    Eugster, Patricia; Thiede, Rasmus C.; Scherler, Dirk; Codilean, Alexandru T.; Strecker, Manfred

    2013-04-01

    Although glaciers are often believed to be the principal erosional agents and the cause for increasing the relief of mountain belts, quantifying their contribution to long-term erosion and exhumation is challenging. This is particularly true for the Himalaya, where present-day ice coverage is relatively high, but evidence for extensive glaciations in the past more limited, presumably due to high erosion rates that quickly remove the depositional and geomorphic evidence of glacial impacts. Previous work indicates that the Chandra Valley, in the headwaters of the Chenab River, was strongly glaciated during the Quaternary. In addition, existing thermochronological data suggest a large change in exhumation rates along the valley. This change spatially corresponds to a major fluvial knickpoint, the joining of several large glaciers, a lithological break, and a steep precipitation gradient. In this study we determine spatial and temporal variations in valley incision through fluvial and glacial erosion on different timescales by using cosmogenic radionuclide (CRN) dating of glacially-carved and striated surfaces, various low-temperature thermochronometers, and morphometric analysis. Knickzones are found at elevations of ~3900 m asl along several tributaries of the Chandra/Chenab valleys and other valleys throughout Lahul, potentially indicating a causal relationship with glacial processes. Our field observations and preliminary CRN data suggest major glacial occupation of the Chandra Valley, particularly by the Bara Shigri Glacier, prior to 14 ka. Our data also confirm former CRN measurements in that area. We hypothesize that these observations coincide with the glacially carved surface of the valley, which indicates a minimum altitude of ~4100 m asl for glaciation in the lower Chandra Valley. Here, glacial carving has been the first-order erosional agent during the Quaternary. Furthermore, published AFT cooling ages are young below an elevation of 4100 m asl and increase strongly in the upper part of the valley above this elevation and the observed knickpoints, suggesting slower erosional exhumation in the more arid upper Chandra Valley. The ultimate goal of this study is to better understand the regional erosion pattern within the Chandra Valley, and to possibly determine whether glaciers influenced by local conditions (tectonics, climate), impede or accelerate erosion.

  2. Agua Caliente Wind/Solar Project at Whitewater Ranch

    SciTech Connect

    Hooks, Todd; Stewart, Royce

    2014-12-16

    Agua Caliente Band of Cahuilla Indians (ACBCI) was awarded a grant by the Department of Energy (DOE) to study the feasibility of a wind and/or solar renewable energy project at the Whitewater Ranch (WWR) property of ACBCI. Red Mountain Energy Partners (RMEP) was engaged to conduct the study. The ACBCI tribal lands in the Coachella Valley have very rich renewable energy resources. The tribe has undertaken several studies to more fully understand the options available to them if they were to move forward with one or more renewable energy projects. With respect to the resources, the WWR property clearly has excellent wind and solar resources. The DOE National Renewable Energy Laboratory (NREL) has continued to upgrade and refine their library of resource maps. The newer, more precise maps quantify the resources as among the best in the world. The wind and solar technology available for deployment is also being improved. Both are reducing their costs to the point of being at or below the costs of fossil fuels. Technologies for energy storage and microgrids are also improving quickly and present additional ways to increase the wind and/or solar energy retained for later use with the network management flexibility to provide power to the appropriate locations when needed. As a result, renewable resources continue to gain more market share. The transitioning to renewables as the major resources for power will take some time as the conversion is complex and can have negative impacts if not managed well. While the economics for wind and solar systems continue to improve, the robustness of the WWR site was validated by the repeated queries of developers to place wind and/or solar there. The robust resources and improving technologies portends toward WWR land as a renewable energy site. The business case, however, is not so clear, especially when the potential investment portfolio for ACBCI has several very beneficial and profitable alternatives.

  3. Lateglacial/early Holocene fluvial reactions of the Jeetzel river (Elbe valley, northern Germany) to abrupt climatic and environmental changes

    NASA Astrophysics Data System (ADS)

    Turner, Falko; Tolksdorf, Johann Friedrich; Viehberg, Finn; Schwalb, Antje; Kaiser, Knut; Bittmann, Felix; von Bramann, Ullrich; Pott, Richard; Staesche, Ulrich; Breest, Klaus; Veil, Stephan

    2013-01-01

    Mechanisms of climatic control on river system development are still only partially known. Palaeohydrological investigations from river valleys often lack a precise chronological control of climatic processes and fluvial dynamics, which is why their specific forces remain unclear. In this multidisciplinary case study from the middle Elbe river valley (northern Germany) multiple dating of sites (palynostratigraphy, radiocarbon- and OSL-dating) and high-resolution analyses of environmental and climatological proxies (pollen, plant macro-remains and ostracods) reveal a continuous record of the environmental and fluvial history from the Lateglacial to the early Holocene. Biostratigraphical correlation to northwest European key sites shows that river system development was partially out of phase with the main climatic shifts. The transition from a braided to an incised channel system predated the main phase of Lateglacial warming (˜14.6 ka BP), and the meandering river did not change its drainage pattern during the cooling of the Younger-Dryas period. Environmental reconstructions suggest that river dynamics were largely affected by vegetation cover, as a vegetation cover consisting of herbs, dwarf-shrubs and a few larger shrubs seems to have developed before the onset of the main Lateglacial warming, and pine forests appear to have persisted in the river valley during the Younger Dryas. In addition, two phases of high fluvial activity and new channel incision during the middle part of the Younger Dryas and during the Boreal were correlated with changes from dry towards wet climatic conditions, as indicated by evident lake level rises. Lateglacial human occupation in the river valley, which is shown by numerous Palaeolithic sites, forming one of the largest settlement areas of that period known in the European Plain, is assigned to the specific fluvial and environmental conditions of the early Allerød.

  4. Inverted fluvial features in the Aeolis-Zephyria Plana, western Medusae Fossae Formation, Mars: Evidence for post-formation modification

    NASA Astrophysics Data System (ADS)

    Lefort, Alexandra; Burr, Devon M.; Beyer, Ross A.; Howard, Alan D.

    2012-03-01

    The Aeolis and Zephyria Plana contain the western-most portion of the Medusae Fossae Formation (MFF), an enigmatic and extensive light-toned deposit located in the Martian equatorial region and dated from the Hesperian to Amazonian epochs. This area hosts a large population of sinuous ridges (SRs), interpreted as inverted fluvial features, formed by precipitation, indurated by chemical cementation, buried by subsequent deposition, and finally exhumed. This interpretation of SRs as uniformly fluvial represents a modification to an earlier hypothesis for one particular SR of possible glaciofluvial (i.e. esker) formation. These SRs provide a tool to investigate the degree and character of post-fluvial modification processes in this region. We combined digital terrain models made from Context Camera (CTX) and High Resolution Imaging Science Experiment (HiRISE) stereo image pairs with individual data points from the Mars Orbiter Laser Altimeter (MOLA) to estimate relief, cross-sectional profiles, longitudinal profiles and slope directions of selected SRs. Longitudinal profiles of several SRs display undulations with amplitudes of up to order 100 m. While some of the lower amplitude undulations may be due to differential erosion, undulations having amplitudes in excess of SR relief require alternative explanations. Our combined morphologic and topographic analysis suggests that multiple post-flow processes, including compaction of the deposits and tectonic displacements, have modified the original SR profiles. Specification of the type(s) and magnitudes of these modification processes will contribute to understanding both the potential of post-flow modification of fluvial profiles elsewhere on Mars as well as the nature and properties of the MFF.

  5. Fluvial transport and surface enrichment of arsenic in semi-arid mining regions: examples from the Mojave Desert, California.

    PubMed

    Kim, Christopher S; Stack, David H; Rytuba, James J

    2012-07-01

    As a result of extensive gold and silver mining in the Mojave Desert, southern California, mine wastes and tailings containing highly elevated arsenic (As) concentrations remain exposed at a number of former mining sites. Decades of weathering and erosion have contributed to the mobilization of As-enriched tailings, which now contaminate surrounding communities. Fluvial transport plays an intermittent yet important and relatively undocumented role in the migration and dispersal of As-contaminated mine wastes in semi-arid climates. Assessing the contribution of fluvial systems to tailings mobilization is critical in order to assess the distribution and long-term exposure potential of tailings in a mining-impacted environment. Extensive sampling, chemical analysis, and geospatial mapping of dry streambed (wash) sediments, tailings piles, alluvial fans, and rainwater runoff at multiple mine sites have aided the development of a conceptual model to explain the fluvial migration of mine wastes in semi-arid climates. Intense and episodic precipitation events mobilize mine wastes downstream and downslope as a series of discrete pulses, causing dispersion both down and lateral to washes with exponential decay behavior as distance from the source increases. Accordingly a quantitative model of arsenic concentrations in wash sediments, represented as a series of overlapping exponential power-law decay curves, results in the acceptable reproducibility of observed arsenic concentration patterns. Such a model can be transferable to other abandoned mine lands as a predictive tool for monitoring the fate and transport of arsenic and related contaminants in similar settings. Effective remediation of contaminated mine wastes in a semi-arid environment requires addressing concurrent changes in the amounts of potential tailings released through fluvial processes and the transport capacity of a wash. PMID:22718027

  6. Fluvial to shelfal strata of the Late Cretaceous to Paleogene Dorotea and Tres Pasos Formations, Magallanes Basin, El Calafate, Argentina

    E-print Network

    Waynick, Michael Anthony

    2014-12-31

    , and physical and biogenic sedimentary structures. Sections were measured on a bed-by-bed basis, using the methods of Campbell (1967). Facies were defined based on vertical grain-size trends, the vertical succession of sedimentary structures, and fossil... regional erosion surfaces in the proximal part of the basin dominated by fluvial fill. If preserved, these too would become sequence boundaries in the rock record. Eustatic changes would have formed depositional sequence, but the net accommodation due...

  7. Fluvial wood function downstream of beaver versus man-made dams in headwater streams in Massachusetts, USA

    NASA Astrophysics Data System (ADS)

    David, G. C.; DeVito, L. F.; Munz, K. T.; Lisius, G.

    2014-12-01

    Fluvial wood is an essential component of stream ecosystems by providing habitat, increasing accumulation of organic matter, and increasing the processing of nutrients and other materials. However, years of channel alterations in Massachusetts have resulted in low wood loads despite the afforestation that has occurred since the early 1900s. Streams have also been impacted by a large density of dams, built during industrialization, and reduction of the beaver population. Beavers were reintroduced to Massachusetts in the 1940s and they have since migrated throughout the state. Beaver dams impound water, which traps sediment and results in the development of complex channel patterns and more ecologically productive and diverse habitats than those found adjacent to man-made dams. To develop better management practices for dam removal it is essential that we understand the geomorphic and ecologic function of wood in these channels and the interconnections with floodplain dynamics and stream water chemistry. We investigate the connections among fluvial wood, channel morphology, floodplain soil moisture dynamics, and stream water chemistry in six watersheds in Massachusetts that have been impacted by either beaver or man-made dams. We hypothesize that wood load will be significantly higher below beaver dams, subsequently altering channel morphology, water chemistry, and floodplain soil moisture. Reaches are surveyed up- and downstream of each type of dam to better understand the impact dams have on the fluvial system. Surveys include a longitudinal profile, paired with dissolved oxygen and ammonium measurements, cross-section and fluvial wood surveys, hydraulic measurements, and floodplain soil moisture mapping. We found that dissolved oxygen mirrored the channel morphology, but did not vary significantly between reaches. Wood loads were significantly larger downstream of beaver dams, which resulted in significant changes to the ammonium levels. Floodplain soil moisture dynamics revealed that wood loads increased the channel complexity and strengthened connections between the stream channel and floodplain. Future work will continue to explore the complex interconnections between beaver dams, channel morphology, hydraulics, floodplain dynamics and water chemistry.

  8. Turbidity in the fluvial Gironde Estuary (southwest France) based on 10-year continuous monitoring: sensitivity to hydrological conditions

    NASA Astrophysics Data System (ADS)

    Jalón-Rojas, I.; Schmidt, S.; Sottolichio, A.

    2015-06-01

    Climate change and human activities impact the volume and timing of freshwater input to estuaries. These modifications in fluvial discharges are expected to influence estuarine suspended sediment dynamics, and in particular the turbidity maximum zone (TMZ). Located in southwest France, the Gironde fluvial-estuarine system has an ideal context to address this issue. It is characterized by a very pronounced TMZ, a decrease in mean annual runoff in the last decade, and it is quite unique in having a long-term and high-frequency monitoring of turbidity. The effect of tide and river flow on turbidity in the fluvial estuary is detailed, focusing on dynamics related to changes in hydrological conditions (river floods, periods of low discharge, interannual changes). Turbidity shows hysteresis loops at different timescales: during river floods and over the transitional period between the installation and expulsion of the TMZ. These hysteresis patterns, that reveal the origin of sediment, locally resuspended or transported from the watershed, may be a tool to evaluate the presence of remained mud. Statistics on turbidity data bound the range of river flow that promotes the upstream migration of TMZ in the fluvial stations. Whereas the duration of the low discharge period mainly determines the TMZ persistence, the freshwater volume during high discharge periods explains the TMZ concentration at the following dry period. The evolution of these two hydrological indicators of TMZ persistence and turbidity level since 1960 confirms the effect of discharge decrease on the intensification of the TMZ in tidal rivers; both provide a tool to evaluate future scenarios.

  9. Pre-vegetation fluvial floodplains and channel-belts in the Late Neoproterozoic-Cambrian Santa Bárbara group (Southern Brazil)

    NASA Astrophysics Data System (ADS)

    Marconato, André; de Almeida, Renato Paes; Turra, Bruno Boito; Fragoso-Cesar, Antônio Romalino dos Santos

    2014-03-01

    One key element to the understanding of the dynamics of pre-vegetation fluvial systems is the reconstruction of processes operating on their floodplains given that, in modern systems, channel banks and floodplains are the environments most affected by plant colonization. Notwithstanding, few pre-vegetation floodplains have been described, and major questions regarding their most basic characteristics are still unresolved. In order to address these questions, detailed analysis of coeval channel-belt, fluvial floodplain and alluvial-fan deposits from the Santa Bárbara Group (Late Neoproterozoic to Early Cambrian, southern Brazil) was performed. While floodplain facies resemble ephemeral stream deposits, being coarser-grained than modern floodplains and marked by the stacking of flood event cycles, channel-belt deposits show composite bars, which do not present conclusive evidence for high water discharge variation. The floodplain deposits show particular features common to other pre-vegetation fluvial systems, such as better preserved small-scale structures, lack of bioturbation, and abundance of cross-laminated sandstones, while other features differ from previous depositional models, namely abundant mudcracks and evidence of soil formation. The lateral variation of depositional systems recorded in the Santa Bárbara Group shows contrasting signatures of water discharge variation in sand-dominated coeval environments, and offers an example of the relation between different alluvial environments before the evolution of land plants.

  10. Riparian vegetation patterns in relation to fluvial landforms and channel evolution along selected rivers of Tuscany (Central Italy)

    USGS Publications Warehouse

    Hupp, C.R.; Rinaldi, M.

    2007-01-01

    Riparian vegetation distribution patterns and diversity relative to various fluvial geomorphic channel patterns, landforms, and processes are described and interpreted for selected rivers of Tuscany, Central Italy; with emphasis on channel evolution following human impacts. Field surveys were conducted along thirteen gauged reaches for species presence, fluvial landforms, and the type and amount of channel/riparian zone change. Inundation frequency of different geomorphic surfaces was determined, and vegetation data were analyzed using BDA (binary discriminate analysis) and DCA (detrended correspondence analysis) and related to hydrogeomorphology. Multivariate analyses revealed distinct quantitative vegetation patterns relative to six major fluvial geomorphic surfaces. DCA of the vegetation data also showed distinct associations of plants to processes of adjustment that are related to stage of channel evolution, and clearly separated plants along disturbance/landform/soil moisture gradients. Species richness increases from the channel bed to the terrace and on heterogeneous riparian areas, whereas species richness decreases from moderate to intense incision and from low to intense narrowing. ?? 2007 by Association of American Geographers.

  11. The problem of self-correlation in fluvial flux data - The case of nitrate flux from UK rivers

    NASA Astrophysics Data System (ADS)

    Worrall, Fred; Burt, Tim P.; Howden, Nicholas J. K.

    2015-11-01

    This study proposes a general method for testing for self-correlation (also known as spurious or induced correlation) in comparisons where there is a common variable, e.g. the comparison of the fluvial flux of a component with water yield. We considered the case of the fluvial flux of nitrate from 153 catchments from across the UK for which there were at least 10 years of data. The results show that 66% of records (102 catchments) could be rejected as significantly self-correlated (P < 95%). Amongst the 51 catchments, which proved to be significantly different from the spurious, or self-correlated result, the response was variable with linear, convex, s-curve and mixed results proving the best description. There was no spatial pattern across the UK for the results that were and were not rejected as spurious; the most important predictor of not being self-correlated was the length of record rather than any catchment characteristic. The study shows that biogeochemical stationarity cannot be assumed and that caution should be applied when examining fluvial flux data.

  12. Fusion of Remote Sensing Methods, UAV Photogrammetry and LiDAR Scanning products for monitoring fluvial dynamics

    NASA Astrophysics Data System (ADS)

    Lendzioch, Theodora; Langhammer, Jakub; Hartvich, Filip

    2015-04-01

    Fusion of remote sensing data is a common and rapidly developing discipline, which combines data from multiple sources with different spatial and spectral resolution, from satellite sensors, aircraft and ground platforms. Fusion data contains more detailed information than each of the source and enhances the interpretation performance and accuracy of the source data and produces a high-quality visualisation of the final data. Especially, in fluvial geomorphology it is essential to get valuable images in sub-meter resolution to obtain high quality 2D and 3D information for a detailed identification, extraction and description of channel features of different river regimes and to perform a rapid mapping of changes in river topography. In order to design, test and evaluate a new approach for detection of river morphology, we combine different research techniques from remote sensing products to drone-based photogrammetry and LiDAR products (aerial LiDAR Scanner and TLS). Topographic information (e.g. changes in river channel morphology, surface roughness, evaluation of floodplain inundation, mapping gravel bars and slope characteristics) will be extracted either from one single layer or from combined layers in accordance to detect fluvial topographic changes before and after flood events. Besides statistical approaches for predictive geomorphological mapping and the determination of errors and uncertainties of the data, we will also provide 3D modelling of small fluvial features.

  13. Fluvial transport potential of shed and root-bearing dinosaur teeth from the late Jurassic Morrison Formation.

    PubMed

    Peterson, Joseph E; Coenen, Jason J; Noto, Christopher R

    2014-01-01

    Shed dinosaur teeth are commonly collected microvertebrate remains that have been used for interpretations of dinosaur feeding behaviors, paleoecology, and population studies. However, such interpretations may be biased by taphonomic processes such as fluvial sorting influenced by tooth shape: shed teeth, removed from the skull during life, and teeth possessing roots, removed from the skull after death. As such, teeth may behave differently in fluvial systems due to their differences in shape. In order to determine the influence of fluvial processes on the preservation and distribution of shed and root-bearing dinosaur teeth, the hydrodynamic behaviors of high-density urethane resin casts of shed and root-bearing Allosaurus and Camarasaurus teeth were experimentally tested for relative transport distances at increasing flow velocities in an artificial fluviatile environment. Results show that tooth cast specimens exhibited comparable patterns of transport at lower velocities, though the shed Camarasaurus teeth transported considerably farther in medium to higher flow velocities. Two-Way ANOVA tests indicate significant differences in the mean transport distances of tooth casts oriented perpendicular to flow (p < 0.05) with varying tooth morphologies and flow velocities. The differences exhibited in the transportability of shed and root-bearing teeth has important implications for taphonomic reconstructions, as well as future studies on dinosaur population dynamics, paleoecology, and feeding behaviors. PMID:24765581

  14. Ice jam-caused fluvial gullies and scour holes on northern river flood plains

    NASA Astrophysics Data System (ADS)

    Smith, Derald G.; Pearce, Cheryl M.

    2002-01-01

    Two anomalous fluvial landforms, gullies and scour holes, eroded into flood plains bordering meandering and braiding river channels have not been previously reported. We observed these features along the Milk River in southern Alberta, Canada, and northern Montana, USA, which has a history of frequent (50% probability of recurrence) and high-magnitude (12% probability of recurrence greater than bankfull) ice jam floods. Gullies have palmate and narrow linear shapes with open-ends downvalley and measure up to 208 m long×139 m wide×3.5 m deep (below bankfull). Channel ice jams reroute river water across meander lobes and cause headward gully erosion where flow returns to the main channel. Erosion of the most recent gully was observed during the record 1996 ice breakup flood and ice jams. Scour holes (bowl-shaped, closed depressions), eroded by water vortices beneath and between grounded ice jam blocks, measure up to 91 m long×22 m wide×4.5 m deep. Ice jam-caused gullies may be precursors to the formation of U-shaped oxbow lakes and multiple channels, common in many northern rivers.

  15. Geology of Hebrus Valles and Hephaestus Fossae, Mars: evidence for basement control of fluvial patterns

    SciTech Connect

    Christiansen, E.H.

    1985-01-01

    Hebrus Valles (HV) and Hephaestus Fossae (HF) are valley systems located SW of Elysium Mons in the low northern plains of Mars. HV share many of their characteristics with other martian outflow channels--widely interpreted as having formed by catastrophic flooding. The NW-trending HV system is 250 km long and begins in an elongate depression. Individual channels are less than 1 km wide; a braided reach is about 10 km wide. Streamlined islands are abundant in the middle reach. HV terminate as a series of narrow distributaries. No sedimentary deposits are obviously related to the development of the channel. HV cut across a broad expanse of older plains dotted by irregular mesas and smaller knobs. HF are a connected series of linear valley segments which branch and cross downslope but have high junction angles. Locally, the channel pattern is polygonal. HF are parallel to HV but are considerably deeper and longer (600 km). HF also originate in a depression, but to the NW they terminate near the gradational boundary between the knobby plains and polygonally fractured terrain of Utopia Planitia. The valley pattern has led some to suggest that HF are tectonic features. It is suggested that like HV, HF are also of fluvial origin. Downcutting to, or subsurface flow at this pre-existing surface red to a channel pattern that was strongly controlled by the polygonal troughs buried beneath the younger knobby plains materials.

  16. Characterizing fluvial systems at basin scale by fuzzy signatures of hydromorphological drivers in data scarce environments

    NASA Astrophysics Data System (ADS)

    Schmitt, R.; Bizzi, S.; Castelletti, A.

    2014-06-01

    Despite the relevance of river hydromorphology (HYMO) for integrated water resource management, consistent geomorphic information at the scale of whole river basin is still scarce, especially in emerging economies. In this paper, we propose a new, scalable and globally applicable framework to analyze and classify fluvial systems in data-scarce environments. The framework is based on a data-driven analysis of a multivariate data set of 6 key hydro-morphologic drivers derived using freely available remote-sensing information and several in situ hydrological time series. Core of the framework is a fuzzy classifier that assigns a characteristic signature of HYMO drivers to individual river reaches. We demonstrate the framework on the Red River Basin, a large, trans-boundary river basin in Vietnam and China, where human-induced morphological change, concretely endangering local livelihoods, is contrasted by very limited HYMO information. The derived HYMO information covers spatial scales from the entire basin to individual reaches. It conveys relevant information on subbasin hydro-morphologic characteristic as well as on local geomorphologic forms and processes. The fuzzy classifier successfully distinguishes abrupt from continuous downstream change and spatially dissects the river system in segments with homogeneous hydro-morphologic forcings. Successful numerical modelling of morphologic forms and process rates based on the HYMO signatures indicates that the multivariate, basin-scale classification captures relevant morphological drivers, outperforms an analysis based on local drivers only, and can support river management from diverse, morphology related perspectives over a wide range of scales.

  17. Increasing the scope of riverine ecology with state-of-the-art fluvial remote sensing (Invited)

    NASA Astrophysics Data System (ADS)

    Torgersen, C.

    2009-12-01

    Remote sensing is literally changing the way ecologists see rivers and streams and the organisms that live within them. Predominantly site-specific, spatially limited views of lotic environments that were so common in the past are evolving rapidly into high-resolution, geographically extensive remotely sensed surveys of physical and biological characteristics. This more rigorous, spatially explicit approach to pattern detection will make it possible to (1) determine with more precision the initial ecological conditions of rivers and associated biota, and (2) monitor the effects and, ultimately, the success, of ecosystem restoration. The broad array of techniques described in this review of the “state of the art” in fluvial remote sensing illustrate that increasing the geographic extent and resolution of our perception through technical means amplifies the power and flexibility of studies to evaluate ecological patterns at multiple scales. Such approaches aim to align data collection and analysis with the innate process of pattern detection in humans and, thus, offer a more complete view that better reflects ecologists’ understanding of heterogeneity, context, and scale in stream ecosystems. Changes brought about by remote sensing in the way studies are designed and conducted will yield great potential for creativity and new discoveries in riverine ecology.

  18. New microbioassays based on biomarkers are more sensitive to fluvial water micropollution than standard testing methods.

    PubMed

    Esteban, S; Fernández Rodríguez, J; Díaz López, G; Nuñez, M; Valcárcel, Y; Catalá, M

    2013-07-01

    Recent investigations suggest that, despite lack of lethality in validated bioassays, micropollutants in surface waters could induce sublethal toxicity in sensitive taxa, jeopardizing their biological performance and eventually leading to populations' extinction. A broader array of testing species, the miniaturization of bioassays and the development of reliable biomarkers of damage are sought in order to improve ecological relevance and cost efficiency of environmental monitoring. Our aim is to assess the different sensitivity of validated bioassays and new approaches using biomarkers as sensitive endpoints of toxicity in spores of Polystichum setiferum and Danio rerio embryos. Six water samples were collected in Tagus basin in summer and winter. Samples tested induce no acute toxicity in validated methods (algae growth inhibition and daphnia mobility inhibition). Summer water samples induced acute membrane damage (lipid peroxidation) in Danio rerio embryos and hormetic increases in fern spore mitochondrial activity. One of the samples dramatically reduced mitochondrial activity indicating severe acute sublethal phytotoxicity. All the winter samples induced significant decreases in fern spore mitochondrial activity and membrane damage increases in Danio rerio embryo. Furthermore, three samples induced lethal phytotoxicity in fern spores. We conclude that the new microbioassays show a better sensitivity to fluvial water micropollution and confirm the necessity to test critical life stages such as development and provide cost-efficient methods for environmental monitoring. PMID:23618774

  19. Basic principles and ecological consequences of changing water regimes on nitrogen cycling in fluvial systems.

    PubMed

    Pinay, Gilles; Clément, Jean Christophe; Naiman, Robert J

    2002-10-01

    Understanding the environmental consequences of changing water regimes is a daunting challenge for both resource managers and ecologists. Balancing human demands for fresh water with the needs of the environment for water in appropriate amounts and at the appropriate times are shaping the ways by which this natural resource will be used in the future. Based on past decisions that have rendered many freshwater resources unsuitable for use, we argue that river systems have a fundamental need for appropriate amounts and timing of water to maintain their biophysical integrity. Biophysical integrity is fundamental for the formulation of future sustainable management strategies. This article addresses three basic ecological principles driving the biogeochemical cycle of nitrogen in river systems. These are (1) how the mode of nitrogen delivery affects river ecosystem functioning, (2) how increasing contact between water and soil or sediment increases nitrogen retention and processing, and (3) the role of floods and droughts as important natural events that strongly influence pathways of nitrogen cycling in fluvial systems. New challenges related to the cumulative impact of water regime change, the scale of appraisal of these impacts, and the determination of the impacts due to natural and human changes are discussed. It is suggested that cost of long-term and long-distance cumulative impacts of hydrological changes should be evaluated against short-term economic benefits to determine the real environmental costs. PMID:12481915

  20. Monitoring of fluvial transport in small upland catchments - methods and preliminary results

    NASA Astrophysics Data System (ADS)

    Janicki, Grzegorz; Rodzik, Jan; Chabudzi?ski, ?ukasz; Franczak, ?ukasz; Si?uch, Marcin; St?pniewski, Krzysztof; Dyer, Jamie L.; Ko?odziej, Grzegorz; Maciejewska, Ewa

    2014-06-01

    In April 2011 a study was initiated, financed from resources of the Polish National Science Centre, entitled: ‘Rainstorm prediction and mathematic modelling of their environmental and social-economical effects’ (No. NN/306571640). The study, implemented by a Polish-American team, covers meteorological research, including: (1) monitoring of single cell storms developing in various synoptic situations, (2) detection of their movement courses, and (3) estimation of parameters of their rain field. Empirical studies, including hydrological and geomorphological measurements, are conducted in objects researched thoroughly in physiographic terms (experimental catchments) in the Lublin region (SE Poland), distinguished by high frequency of occurrence of the events described. For comparative purposes, studies are also carried out on selected model areas in the lower course of the Mississippi River valley (USA), in a region with high frequency of summer rainstorms. For detailed studies on sediment transport processes during rainstorm events, catchments of low hydrological rank and their sub-catchments in a cascade system were selected. For the basic, relatively uniform geomorpho logical units distinguished this way, erosion and deposition balance of material transported was determined. The aim of work was to determine influence of weather condition on fluvial transport rate in small catchment with low hydrological order

  1. Investigating Spatial Interpolation of Light Detection and Ranging Data for Analyzing Fluvial Geomorphic Properties of Streams

    NASA Astrophysics Data System (ADS)

    Besaw, L. E.; Pelletier, K.; Morrissey, L. A.; Rizzo, D. M.

    2007-12-01

    Streams are intricate components of the landscape system that vary across temporal and spatial scales while transporting and storing water, sediment, energy, nutrients as well as aquatic and terrestrial species from one part of the system to another. Such changes have traditionally been captured with extensive expert assessment and/or remote sensing analysis (i.e. photo interpretation). In collaboration with the Vermont Agency of Natural Resources River Management Program, this study aims to enhance the capabilities of traditional remote sensing studies by incorporating Light Detection and Ranging (LiDAR) data in the geomorphic assessment of fluvial channels to quantify stream adjustment properties and gain insight into a stream's state of dynamic equilibrium with greater accuracy than traditional methods. A series of 18 digital elevation models (DEM) were generated using three interpolation methods (inverse distance weighting (IDW), natural neighbor (NN), and ordinary kriging), varying raster grid cell sizes (1, 2 and 3m) and different amounts of LiDAR data (bare earth data alone and bare earth with additional reflective data that reduce the mean point spacing) and compared with survey data (n = 689) to determine the optimal interpolation parameters for an agricultural study area, a portion of Allen Brook watershed in northern Vermont. Through analytical comparison, 1m IDW with the additional reflective data was the optimal method for minimizing error metrics but 1m NN (with additional reflective data) was best for retaining maximum elevation range, computational simplicity, and identifying small stream channels.

  2. Sensitivity of fluvial sediment source apportionment to mixing model assumptions: A Bayesian model comparison

    NASA Astrophysics Data System (ADS)

    Cooper, Richard J.; Krueger, Tobias; Hiscock, Kevin M.; Rawlins, Barry G.

    2014-11-01

    Mixing models have become increasingly common tools for apportioning fluvial sediment load to various sediment sources across catchments using a wide variety of Bayesian and frequentist modeling approaches. In this study, we demonstrate how different model setups can impact upon resulting source apportionment estimates in a Bayesian framework via a one-factor-at-a-time (OFAT) sensitivity analysis. We formulate 13 versions of a mixing model, each with different error assumptions and model structural choices, and apply them to sediment geochemistry data from the River Blackwater, Norfolk, UK, to apportion suspended particulate matter (SPM) contributions from three sources (arable topsoils, road verges, and subsurface material) under base flow conditions between August 2012 and August 2013. Whilst all 13 models estimate subsurface sources to be the largest contributor of SPM (median ˜76%), comparison of apportionment estimates reveal varying degrees of sensitivity to changing priors, inclusion of covariance terms, incorporation of time-variant distributions, and methods of proportion characterization. We also demonstrate differences in apportionment results between a full and an empirical Bayesian setup, and between a Bayesian and a frequentist optimization approach. This OFAT sensitivity analysis reveals that mixing model structural choices and error assumptions can significantly impact upon sediment source apportionment results, with estimated median contributions in this study varying by up to 21% between model versions. Users of mixing models are therefore strongly advised to carefully consider and justify their choice of model structure prior to conducting sediment source apportionment investigations.

  3. Self-similarity and multifractality of fluvial erosion topography: 2. Scaling properties

    NASA Astrophysics Data System (ADS)

    Veneziano, Daniele; Niemann, Jeffrey D.

    2000-07-01

    In a companion paper [Veneziano and Niemann, this issue] the authors have proposed self-similarity and multifractality conditions for fluvial erosion topography within basins and have shown that topographic surfaces with this property can evolve from a broad class of dynamic models. Here we use the same self-similarity and multifractality conditions to derive geomorphological scaling laws of hydrologic interest. We find that several existing relations should be modified, as they were obtained using definitions of the quantities involved or measurement techniques that are inappropriate under self-similarity. These relations include Hack's law, the power law decay of the distributions of contributing area and main channel length, the scaling of channel slope with contributing area, and the self-similarity condition for river courses. Most results are further generalized by replacing main stream flow length and drainage area with generic measures of basin size. The relations we obtain among properly measured topographic variables have simple universal exponents. For example, the exponent of Hack's law is 0.5, the exponent of the distribution of contributing area is -0.5, and the exponent of the distribution of main stream length is -1.0. We also suggest a stochastic condition of drainage network self-similarity that incorporates topological as well as geometric and hydrologic features and a reformulation of Horton's laws using drained area rather than stream order.

  4. Spatial Coupling Among Landslides, Geological Structures, Cataclinal Slopes, and Fluvial Knick Zones in Nepal Himalayas

    NASA Astrophysics Data System (ADS)

    Ojha, T. P.; DeCelles, P. G.

    2014-12-01

    This work aims to identify potential landslide hazard zones in the event of heavy precipitation and seismic activity by examining spatial relationships among existing landslides, earthquake epicenters, fault zones, cataclinal (dip) slopes, anaclinal (escarp) slopes, and river steepness index in the Nepal Himalaya. In order to understand this relationship we have mapped existing landslides on Google Earth images and ESRI base maps, assembled high-resolution digital topographic data by digitizing Nepal Government published topographic maps, and gathered geological data from detailed field mapping and compilation of published geological maps. Slope angle and aspect, and dip direction and angle were extracted from GIS-based digital topographical and geological datasets to develop the new slope maps with cataclinal (dip) and anaclinal (escarp) slope distributions. Longitudinal river profiles were also extracted from high resolution DEM's derived from manually digitized contours. The slope maps with cataclinal and anaclinal slope distributions, earthquake epicenters, major geological structures, longitudinal river profiles, and landslide inventories were visualized in ESRI ArcMap 10.2 to examine the spatial correlation among landslides, fault zones, cataclinal slopes and river steepness index. We have found that landslides are spatially correlated with cataclinal slopes and fluvial knick zones with high steepness index in certain thrust boundaries. The main finding of this work is that the topographic slope threshold alone is a crude measure of landslide susceptibility. The analysis of slope using the geometric relationship among topography and geological bedding is crucial for determining landslide susceptibility in the Himalayan region.

  5. Architectural analysis of a Triassic fluvial system: The Sherwood Sandstone of the East Midlands Shelf, UK

    NASA Astrophysics Data System (ADS)

    Wakefield, Oliver J. W.; Hough, Edward; Peatfield, Alex W.

    2015-08-01

    The Sherwood Sandstone Group of the northeast UK (East Midlands Shelf) has hitherto never been studied in detail to ascertain its palaeoenvironment of deposition, largely because it is poorly exposed. As such, this paper aims to provide the first modern sedimentological interpretation of the Sherwood Sandstone in the east of England based on a field outcrop at the disused quarry at Styrrup. This is in stark contrast to the western parts of England where the Sherwood Sandstone is well exposed and offshore in the North Sea Basin where it is represented by a substantial library of core material where it is also relatively well understood. The outcrop at Styrrup Quarry allows contrasts to be made with the style and expression of the Sherwood Sandstone between eastern and western England. Specifically, this highlights differences around the variation in fluvial discharge (between lowstand and highstand) and the absence of aeolian facies types. It is interpreted that these differences relate to discharge variations between ephemeral and perennial systems with a perennial model proposed for Styrrup Quarry. This model draws upon inferences of additional water input from more local areas, likely topographic uplands of the London-Brabant and Pennine Highs which supplement the primary source of the Variscan Mountains in France with additional water and sediment.

  6. Liquefaction susceptibility assessment in fluvial plains using high-resolution airborne LiDAR data: the case of the 2012 Emilia earthquake sequence area (Italy)

    NASA Astrophysics Data System (ADS)

    Civico, R.; Brunori, C. A.; De Martini, P. M.; Pucci, S.; Cinti, F. R.; Pantosti, D.

    2015-07-01

    We report a case study from the Po River plain region (northern Italy), where a significant liquefaction-related land and property damage occurred during the 2012 Emilia seismic sequence. We took advantage of a 1 m pixel LiDAR Digital Terrain Model (DTM) and of the 2012 Emilia coseismic liquefaction dataset to: (a) perform a detailed geomorphological study of the Po River plain area, (b) quantitatively define the liquefaction susceptibility of the geomorphologic features that experienced different frequency of liquefaction. One main finding is that linear topographic highs of fluvial origin, together with crevasse splays and abandoned riverbeds, acted as preferential location for the occurrence of liquefaction phenomena. Moreover, we quantitatively defined a hierarchy in terms of liquefaction susceptibility for fluvial environments. We observed that a very high liquefaction susceptibility is found in coincidence with fluvial landforms, a high-to-moderate liquefaction susceptibility within a buffer distance of 100 and 200 m from mapped fluvial landforms and a low liquefaction susceptibility outside fluvial landforms and relative buffer areas. LiDAR data allowed a significant improvement in mapping with respect to conventional available topographic data and/or aerial imagery. These results have significant implications for accurate hazard and risk assessment as well as for land-use planning. We propose a potentially simpler approach for liquefaction susceptibility assessment with respect to in situ geotechnical investigations. Our findings can be applied to areas beyond Emilia, characterized by similar fluvial-dominated environments and prone to significant seismic hazard.

  7. 76 FR 63614 - Agua Caliente Solar, LLC; Supplemental Notice That Initial Market-Based Rate Filing Includes...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-13

    ...Docket No. ER12-21-000] Agua Caliente Solar, LLC; Supplemental Notice That Initial...above-referenced proceeding of Agua Caliente Solar, LLC's application for market-based...accessible in the Commission's eLibrary system by clicking on the appropriate link...

  8. 76 FR 63614 - Agua Caliente Solar, LLC; Supplemental Notice That Initial Market-Based Rate Filing Includes...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-13

    ... From the Federal Register Online via the Government Printing Office DEPARTMENT OF ENERGY Federal Energy Regulatory Commission Agua Caliente Solar, LLC; Supplemental Notice That Initial Market-Based Rate...-referenced proceeding of Agua Caliente Solar, LLC's application for market-based rate authority, with...

  9. Use of Archival Sources to Improve Water-Related Hazard Assessments at Volcán de Agua, Guatemala

    NASA Astrophysics Data System (ADS)

    Hutchison, A. A.; Cashman, K. V.; Rust, A.; Williams, C. A.

    2013-12-01

    This interdisciplinary study focuses on the use of archival sources from the 18th Century Spanish Empire to develop a greater understanding of mudflow trigger mechanisms at Volcán de Agua in Guatemala. Currently, hazard assessments of debris flows at Volcán de Agua are largely based on studies of analogous events, such as the mudflow at Casita Volcano in 1998 caused by excessive rainfall generated by Hurricane Mitch. A preliminary investigation of Spanish archival sources, however, indicates that a damaging mudflow from the volcano in 1717 may have been triggered by activity at the neighbouring Volcán de Fuego. A VEI 4 eruption of Fuego in late August 1717 was followed by 33 days of localized 'retumbos' and then a major local earthquake with accompanying mudflows from several 'bocas' on the southwest flank of Agua. Of particular importance for this study is an archival source from Archivos Generales de Centro América (AGCA) that consists of a series of letters, petitions and witness statements that were written and gathered following the catastrophic events of 1717. Their purpose was to argue for royal permission to relocate the capital city, which at the time was located on the lower flanks of Volcán de Agua. Within these documents there are accounts of steaming 'avenidas' of water with sulphurous smells, and quantitative descriptions that suggest fissure formation related to volcanic activity at Volcán de Fuego. Clear evidence for volcano-tectonic activity at the time, combined with the fact there is no mention of rainfall in the documents, suggest that outbursts of mud from Agua's south flank may have been caused by a volcanic perturbation of a hydrothermal system. This single example suggests that further analysis of archival documents will provide a more accurate and robust assessment of water related hazards at Volcán de Agua than currently exists.

  10. Identificacin de Humedales en Puerto Rico utilizando Imgenes Multiespectrales Lola Xiomara Bautista Rozo

    E-print Network

    Gilbes, Fernando

    áreas cuyos suelos están saturados con agua durante toda la parte del tiempo y que alberga plantas características de suelos hidrícos. Son excelentes filtros biológicos y reducen el movimiento de nutrientes hacia suelo, la hidrología y la vegetación. El suelo se compone primordialmente de sedimentos anaeróbicos y

  11. Fluvial inheritances of the Cher River floodplain (region Centre, France) as elements of characterization of hydrological dynamics and their past evolutions

    NASA Astrophysics Data System (ADS)

    Vayssière, Anaëlle; Castanet, Cyril; Gautier, Emmanuèle; Virmoux, Clément

    2015-04-01

    Geomorphological studies of floodplains provide relevant data about evolutions of fluvial landscape over long time-scales and allow a better understanding of palaeo-environnemental evolutions. The Cher River flows from the "Massif Central" to its junction with the Loire River in the South of the "Bassin de Paris". The long-term fluvial evolutions since the LGM of this medium-sized catchment, are not well documented. However, a first prospection revealed a high potential of fluvial archives. The aim of the present work is to provide elements to characterize past fluvial dynamics based on the analysis of inherited landforms (mainly palaeo-channels) and sedimentary bodies located in the floodplain, using hydrogeomorphological methods. Data are acquired through the analysis of DEM LiDAR, geophysical methods (electric tomography) and cores (boreholes) collected in the floodplain. The analysis of DEM LiDAR and morpho-sedimentary observations yields palaeo-hydrographical reconstructions and allows two generations of topographic and sedimentary fluvial inheritances to be identified. Most ancient fluvial landforms correspond to mounds slightly higher than the floodplain level, incised by wide and shallow palaeo-channels. A second fluvial pattern, more recent, is characterized by palaeo-meanders. Measuring the width, the amplitude and the curvature, we show that some of the palaeo-meanders are much larger, wider and more sinuous than the current meanders, showing changes in past flow regime. The analysis of the filling of palaeo-channels allows us to identify firstly the transverse and longitudinal geometry of former channels. These data help us to estimate bank-full discharge of palaeo-channels. Secondly, the morpho-sedimentary analysis highlights their post-abandonment environmental changes. Three main stratigraphic units are identified. (1) At the base, there is medium and coarse sand attributed to fluvial transport. (2) It is overlain by a layer composed of organo-mineral clayey deposits, characteristic of a swampy environment disconnected most of the time from the main river. (3) Finally, the upper part is constituted by a silty layer that may be attributed to an increase in fluvial activity or in erosion dynamics (slope of the catchment, local filling processes …) These first results show a good record of palaeo-environnemental changes in the Cher valley. The comparison with similar works conducted in other catchments of the "Bassin de Paris" shows that these records may describe environmental evolutions during the Pleniglacial, Lateglacial and Holocene. The perspectives of this work is to provide relevant data on the readjustment of the river related with climate changes since the LGM and on the part played by climate changes and ancient societies on the fluvial system during the Holocene.

  12. Lower Permian stems as fluvial paleocurrent indicators of the Parnaíba Basin, northern Brazil

    NASA Astrophysics Data System (ADS)

    Capretz, Robson Louiz; Rohn, Rosemarie

    2013-08-01

    A comprehensive biostratinomic study was carried out with abundant stems from the Lower Permian Motuca Formation of the intracratonic Parnaíba Basin, central-north Brazil. The fossils represent a rare tropical to subtropical paleofloristic record in north Gondwana. Tree ferns dominate the assemblages (mainly Tietea, secondarily Psaronius), followed by gymnosperms, sphenophytes, other ferns and rare lycophytes. They are silica-permineralized, commonly reach 4 m length (exceptionally more than 10 m), lie loosely on the ground or are embedded in the original sandstone or siltstone matrix, and attract particular attention because of their frequent parallel attitudes. Many tree fern stems present the original straight cylindrical to slightly conical forms, other are somewhat flattened, and the gymnosperm stems are usually more irregular. Measurements of stem orientations and dimensions were made in three sites approximately aligned in a W-E direction in a distance of 27.3 km at the conservation unit "Tocantins Fossil Trees Natural Monument". In the eastern site, rose diagrams for 54 stems indicate a relatively narrow azimuthal range to SE. These stems commonly present attached basal bulbous root mantles and thin cylindrical sandstone envelopes, which sometimes hold, almost adjacent to the lateral stem surface, permineralized fern pinnae and other small plant fragments. In the more central site, 82 measured stems are preferentially oriented in the SW-NE direction, the proportion of gymnosperms is higher and cross-stratification sets of sandstones indicate paleocurrents mainly to NE and secondarily to SE. In the western site, most of the 42 measured stems lie in E-W positions. The predominantly sandy succession, where the fossil stems are best represented, evidences a braided fluvial system under semiarid conditions. The low plant diversity, some xeromorphic features and the supposedly almost syndepositional silica impregnation of the plants are coherent with marked dry seasons. Thick mudstones and some coquinites below and above the sandy interval may represent lacustrine facies formed in probably more humid conditions. The taphonomic history of the preserved plants began with exceptional storms that caused fast-flowing high water in channels and far into the floodplains. In the eastern site region, many tree ferns only fell, thus sometimes covering and protecting plant litter and leaves from further fragmentation. Assemblages of the central and western sites suggest that the trees were uprooted and transported in suspension (floating) parallel to the flow. Heavier ends of stems (according to their form or because of attached basal bulbous root mantle or large apical fronds) were oriented to upstream because of inertial forces. During falling water stage, the stems were stranded on riverbanks, usually maintaining the previous transport orientation, and were slightly buried. The perpendicular or oblique positions of some stems may have been caused by interference with other stems or shallow bars. Rare observed stems were apparently waterlogged before the final depositional process and transported as bedload. The differences of interpreted channel orientations between the three sites are expected in a braided fluvial system, considering the very low gradients of the basin and the work scale in the order of tens of kilometers. The mean direction of the drainage probably was to east and the flows apparently became weaker downstream. This study seems to provide reliable data for paleocurrent interpretations, especially considering areas with scarce preserved sedimentary structures.

  13. Issues with using high-resolution DEMs for fluvial geomorphology modelling

    NASA Astrophysics Data System (ADS)

    Castro, Andres

    2015-04-01

    It is widely recognized that undertaking detailed fluvial morphology studies can be a difficult and expensive task due to the high amount of resources, such as time and highly trained personnel, that such studies requires in order to obtain accurate results. Yet, for a wide range of projects that in one way or another require the understanding fluvial systems, engineers are frequently challenged with the daunting task of managing expenses within tight budgets and expecting high quality results. It is with this perspective that it is often desired to simplify processes while maintaining a high reliability of results. In an attempt to tackle this issue the current PhD research presents an alternative methodology to undertake river geomorphology studies, by applying an automated procedure to model stream power from DEMs generated from high resolution LiDAR data. The main aim of the research is to estimate the stream power distribution along selected UK catchments and link the estimated stream power values to floodplain development processes. The raw LiDAR data, in the form of ASCII text files, used for the study correspond to 1m, 2m and 10m resolutions. During the process of creating the DEM of one of the selected rivers, the River Teme, the presence of a number of "blank spots" within the mosaic was noted. These areas corresponded to NoData zones generated presumably from the deflection of the laser beam on a water surface. Given that the GIS software didn't consider the missing data areas as part of the DEM, even though most of the "blank spots" were located on the river channel, it was necessary to develop a procedure in order to eliminate the NoData zones and correct the DEM, prior to undertaking the hydrological analysis of the catchment, without compromising the quality of the rest of the data. In search of an improved quality of results it has been commonly assumed that the higher resolution of the data the better and more accurate results are to be obtained. In the past much attention was focused on how to obtain and process the high resolution data. Nowadays with the availability of very high resolution spatial data and very powerful hardware it is becoming apparent that the quality and accuracy of results depends greatly of the software performance, as it has been found of the current research. While performing the hydrological analysis on GIS of the aforementioned selected UK rivers it was found that very high (1m or 2m) resolution LiDAR data does not provide of the most accurate representation of the rivers' flow paths. When compared with 10m resolution data it becomes apparent that the "lower" resolution data produces better results than the 1m or 2m data, more adjusted to the river actual path. It is possible to argue that the reason for this resides in limitations of the software itself. It is also necessary to point out that, while the for the current research purposes the 10m resolution data provides of better results, for other applications, such as topographic analyses of the area, very high resolution data (1m or 2m) is probably more adequate.

  14. Monitoring Fluvial Topography at Hyperspatial Resolutions with UAS imagery and Structure from Motion

    NASA Astrophysics Data System (ADS)

    Carbonneau, P.; James, T. D.; Black, M.

    2012-12-01

    Monitoring is a fundamental task in remote sensing. As measurement technology progresses, there is a growing interest in hyperspatial (<10 cm) resolution topographic data which could allow more detailed investigations into the small scale processes which are the building blocks of large scale geomorphic change. Many geomorphologists are approaching this problem of high resolution topographic monitoring with well-proven technology such as ground-based or airborne LiDAR. However, there is also a growing interest in Structure from Motion (SfM) approaches which use images in order to reconstruct dense topographic point clouds. SfM relies on a new generation of image matching algorithms to deliver digital topographic point clouds with an extremely high level of automation and a very low requirement for specialist photogrammetry knowledge. The result is a low-cost, virtually unsupervised process that could foreshadow a new era of widespread hyperspatial topographic data. However, a widespread usage of SfM in fluvial geomorphology will require a rigorous assessment of the associated errors and limitations, a process which has only just begun. Here we present the findings of an experiment aimed at exploring the fundamental limitations of SfM in a fluvial geomorphology context. Our specific aims are to test the suitability of SfM as a hyperspatial topography production method and to explore the relationships between the number of raw images, the resolution of the raw images and the final quality of the resulting point clouds. We compare topographic point clouds generated from SfM and with LiDAR at two scales. First, a simple experiment was conducted on the Science Site of Durham University where an outdoor building was scanned with terrestrial LiDAR and photographed with a small format camera. Second, a field experiment was conducted on a water-worked pro-glacial braiding plain on the arctic island of Svalbard where imagery was acquired with a small Unmanned Aerial System (UAS) and airborne LiDAR data was acquired through the European Facility for Airborne Reseeaarch (EUFAR) and the NERC Airborne Remote Sensing Facility (ARSF). SfM was used to produce point clouds from the imagery which were directly compared to the LiDAR point clouds without being rasterised. Increasing the number of images does not lead to better quality point clouds. Increasing the image resolution, even in complex terrain, does not increase the quality of the topographic data. However, in certain conditions, the data quality of the SfM point clouds matches that of the LiDAR data. For the ground experiment, SfM delivered an optimal standard deviation of error of 1.8 mm. In the case of the Svalbard experiment, SfM yielded an optimal standard deviation of error of 4.5 cm. In both cases, this error is ?1/3000 of the image acquisition distance (i.e. the flying height) and is below the expected errors of the LiDAR data. These findings show that SfM can produce high quality topographic data but with the caveat that maximum data quality does not occur at maximum data resolution. Therefore, these findings indicate that the standard unsupervised SfM workflow is not yet capable of producing high quality hyperspatial topographic data.

  15. Stratigraphic evidence of past fluvial activity in southern Melas Chasma, Valles Marineris, Mars

    NASA Astrophysics Data System (ADS)

    Davis, Joel; Grindrod, Peter

    2014-05-01

    During the late Noachian and early Hesperian periods, listric faulting led to the development of a series of hanging depressions throughout the Valles Marineris canyon system [1]. One such depression, situated on the southern wall of Melas Chasma, forms an enclosed basin which has since undergone modification from the late Hesperian to Amazonian. There is a multitude of evidence suggesting that the basin (hereon in referred to as the Southern Melas Chasma Basin; SMCB) was once host to active fluvial processes, that at minimum lasted for several hundred years [2,3]. Central to this is what appears to be the remains of a palaeolake, which is approximately 80 by 40 kilometres in area. The palaeolake contains a complex sequence of sedimentary stratigraphy, which includes several structures that resemble deltas and/or submarine fans on both the east and west side of the basin [4], and appear to originate from a network of channels and valleys that terminate in the basin. Previous studies have shown that the western valley network has drainage densities similar to terrestrial values and a dendritic nature that is indicative of precipitation and surface runoff [3]. Higher resolution mapping of the SMCB is important to further understand the stratigraphic succession and geomorphology, and to quantify how long liquid water may have been present within the basin. For this study, new digital elevation models (DEMs) have been produced in SOCET SET using stereo images from the Context Camera (CTX) and the High Resolution Imaging Science Experiment (HiRISE), both aboard the Mars Reconnaissance Orbiter. The DEMs have been produced at ~6 and ~1 m/pixel vertical resolution for CTX and HiRISE respectively. There is approximately 150-200 m of sediment within the stratigraphic succession; some individual strata are less than 10 m thick. The delta/fan structures appear to occur at different stratigraphic positions low down within the sequence. Clinoform-like and cross-bedded structures are shown to occur near the top of the sequence (a contrast to the laterally expansive, planar beds below), which suggest a significant change in depositional conditions within the SMCB during the time liquid water was stable. References: 1. Andrews-Hanna, J. C. The formation of Valles Marineris: 3. Trough formation through super-isostasy, stress, sedimentation, and subsidence. J. Geophys. Res. 117, E06002 (2012). 2. Mangold, N., Quantin, C., Ansan, V., Delacourt, C. & Allemand, P. Evidence for precipitation on Mars from dendritic valleys in the Valles Marineris area. Science 305, 78-81 (2004). 3. Quantin, C. Fluvial and lacustrine activity on layered deposits in Melas Chasma, Valles Marineris, Mars. J. Geophys. Res. 110, E12S19 (2005). 4. Metz, J. M. et al. Sublacustrine depositional fans in southwest Melas Chasma. J. Geophys. Res. 114, E10002 (2009).

  16. Variable responses of fluvial systems to late Quaternary climate changes in NW Romania

    NASA Astrophysics Data System (ADS)

    Per?oiu, Ioana; Per?oiu, Aurel

    2014-05-01

    In this paper, we discuss the similarities and differences in timing and style of fluvial processes (incision, terrace detachment, changes in the sedimentation styles) manifestation for different reference moments during the Late Quaternary history of two neighboring, medium size rivers from the NW part of Transylvanian Depression (Some?ul Mic River, 175 km long, drainage surface of 3773 kmp, and Arie? River, 167 km long, drainage surface of 2970 kmp). In the case of Somesul Mic River, a shallow, coarse gravel, braided channel was active at the level of the first terrace (T1, 5-8 m relative altitude), at least as early as MIS 3. After incision and formation of the present valley bottom, a low energetic river was active (,meandering or anabranching), which was later replaced by a shallow, coarse gravel braided channel (similar with the one on TI), active before LGM and maintained untill the Younger Dryas (or the early Holocene). During the early Holocene, the braided channel was replaced by a transitional one, slightly incised in the previous phase's alluvial materials, further abandoned for an incised, narrow meandering channel. The last channel type change is probably related to the large scale arrival and development of deciduous trees species in the area (~10.x kyrs BP), implying a few hundred years delay of the final fluvial adjustment to the new temperate conditions associated to the YD/Holocene transition. Along Aries River, a comparative shallow, coarse gravel, braided river was active at the level of TI, during MIS 3. However, erosional features on the top of the gravel sheet and some palaeomeanders are visible on the terrace surface, and suggest the existence of a transitional / meandering channel before this surface was completely abandoned. In the floodplain perimeter, an absolute age of the upper part of the coarse gravel sediments suggests this river style was functional at least during LGM, possibly earlier. This age, and the morphological and sedimentological evidences for generations of palaeomeanders imposed erosivelly on the upper part of the sedimentary sequence, suggest a meandering pattern probably starting with the Bolling - Allerod Interstadial. The results show that two very similar rivers, in terms of their location and present-day morphometric characteristics, do have similar large reactions to Late Quaternary climate changes, however, significant differences can be found in details of reaction time and the involved processes. The existing data suggest that Aries River is a more sensitive one than Somesul Mic River. The more conservatory behavior in the last case (e.g., no channel change during the Bolling - Allerod Interstadial, delayed reaction in the early Holocene) is probably explained by the slightly higher slope of this particular river, related to the presence of a large scale knickpoint in the medium part of the longitudinal profile (ca. 380 m), imposed by local geological conditions.

  17. Exploring Predictive Relationships of Fluvial Morphology: Using Shuttle Radar Topography Mission Data

    NASA Astrophysics Data System (ADS)

    Hannon, Mark Thomas

    2011-12-01

    To identify general large-scale patterns (slope, slope change, sinuosity) along a river's course the worldwide SRTM 3 arc-second DEM satellite derived data was analyzed. Longitudinal profiles were calculated for sixteen rivers. This analysis uses auxiliary data sets to develop an understanding of the external and internal influences that are pressed upon and inherent within the lower 100 meters of the river systems. Contradictory to previous findings, the sixteen rivers studied here show that slope and sinuosity are not strongly correlated at the reach scale. The total river's longitudinal profile up to 100 meters, provides an average slope and sinuosity throughout the entire system and increases the correlation between slope and sinuosity (˜0.56). Comparing the entire river's longitudinal profiles also illustrates a threshold of planform sinuosity (>1.6) in which meandering rivers are found. Using this threshold, the Indus, Mississippi, and Fly Rivers are further examined to understand lateral migration rates, the link between meandering rivers and the production of oxbow lakes throughout their floodplain. The slope of three rivers was examined for external controls by overlaying geological data of bedrock type and fault locations. Neotectonics appears to impact the slope and/or sinuosity of the Mississippi, Niger, and Magdalena rivers. Results indicate growth faulting found in the mud-dominated systems of the Mississippi and Niger influences sinuosity. The resulting sinuosity is greatest in regions where these rivers are bound by growth faults. The Magdalena has several regions where the river intersects strike-slip faults, resulting in increased slopes with the more parallel the encounter. River longitudinal profiles can also reveal areas of bedload erosion and deposition. Zones of erosion (sources) and deposition (sinks), and knowing how to locate them, are of great interest to a variety of geoscientists. These predictive relationships will provide future assistance to the field of fluvial morphology.

  18. Spatial and temporal variation of dissolved organic matter in the Changjiang: Fluvial transport and flux estimation

    NASA Astrophysics Data System (ADS)

    Bao, Hongyan; Wu, Ying; Zhang, Jing

    2015-09-01

    The Changjiang is the most important source of freshwater and dissolved organic matter (DOM) for the East China Sea. However, knowledge regarding the sources, seasonal fluxes, and fluvial transport of terrigenous DOM (tDOM) in the Changjiang is lacking. To fill this knowledge gap, we measured dissolved organic carbon (DOC) and dissolved lignin in water samples collected in the middle and lower Changjiang under different hydrological conditions. Additional samples were collected biweekly in the lower Changjiang. Through comparisons with other rivers, we found that the DOC in the Changjiang is mainly from soil organic matter and has a higher fraction of tDOM during flood. Mass balance model results indicate that approximately 33% of the dissolved lignin discharged into the middle and lower Changjiang is removed during its transport to the lower reach during both low-discharge and flood periods. Based on a comparison of the removal rates under these two contrasting hydrological conditions and considering the lower organic carbon content and fine grain size of the Changjiang's suspended particles, we speculate that the major process for the removal of dissolved lignin is sorption, and potentially flocculation by suspended particles. Changjiang discharges 1.4 ± 0.10 Tg yr-1 and 8.6 ± 0.30 Gg yr-1 DOC and dissolved lignin to the estuary during the period of July 2010 to June 2011, respectively. Seasonal distributions of DOC and dissolved lignin fluxes are controlled by water discharge, which will be affected by future climate change and the Three Gorges Dam.

  19. Improved oil recovery in fluvial dominated reservoirs of Kansas--near-term. Annual report

    SciTech Connect

    Green, D.W.; Willhite, G.P.; Walton, A.; Schoeling, L.; Reynolds, R.; Michnick, M.; Watney, L.

    1996-11-01

    Common oil field problems exist in fluvial dominated deltaic reservoirs in Kansas. The problems are poor waterflood sweep efficiency and lack of reservoir management. The poor waterflood sweep efficiency is due to (1) reservoir heterogeneity, (2) channeling of injected water through high permeability zones or fractures, and (3) clogging of injection wells due to solids in the injection water. In many instances the lack of reservoir management results from (1) poor data collection and organization, (2) little or no integrated analysis of existing data by geological and engineering personnel, (3) the presence of multiple operators within the field, and (4) not identifying optimum recovery techniques. Two demonstration sites operated by different independent oil operators are involved in this project. The Stewart Field is located in Finney County, Kansas and is operated by North American Resources Company. This field was in the latter stage of primary production at the beginning of this project and is currently being waterflooded as a result of this project. The Nelson Lease (an existing waterflood) is located in Allen County, Kansas, in the N.E. Savonburg Field and is operated by James E. Russell Petroleum, Inc. The objective is to increase recovery efficiency and economics in these type of reservoirs. The technologies being applied to increase waterflood sweep efficiency are (1) in situ permeability modification treatments, (2) infill drilling, (3) pattern changes, and (4) air flotation to improve water quality. The technologies being applied to improve reservoir management are (1) database development, (2) reservoir simulation, (3) transient testing, (4) database management and (5) integrated geological and engineering analysis. Results of these two field projects are discussed.

  20. Changes in the fluvial system of the Kondoa Irangi Hills, central Tanzania, since 1960

    NASA Astrophysics Data System (ADS)

    Eriksson, Mats; Reuterswärd, Karin; Christiansson, Carl

    2003-11-01

    Using evidence from aerial photographs, supported by field checks, changes in the fluvial systems of three catchments in the Kondoa Irangi Hills, Kondoa District, central Tanzania were mapped. This area is known for its severely eroded landscape and, today, also for the drastic measures introduced to deal with the soil erosion problem. In the early stages these included mechanical construction of contour bunds, but later emphasis was placed on tree planting and planting of elephant grass on sand fans and dry, sandy riverbeds. Restrictions were introduced on clearing land for cultivation and on felling of trees for construction material and fuel wood. The most dramatic conservation measure was the eviction, in 1979, of all livestock from 19 villages to halt the severe overgrazing.Since the different conservation measures have now been in effect for more than 20 years, their impact can be assessed. The sand rivers, conspicuous features of the study area, have in many places decreased in width. Their total surface area in the three catchments decreased by about two-thirds between 1960 and 1987. Previously unvegetated sand fans have been converted to crop production. Natural vegetation is now establishing itself on formerly barren areas. However, the badlands, which cover some 25% of the study area and which take a very long time to recover, still seem to be relatively unaffected by the conservation efforts, although they decreased in extent by about 10% between 1960 and 1987. In the present report, the biophysical landscape changes and their implications for the drainage system in parts of the Kondoa Irangi Hills are discussed. Copyright

  1. Impacts of Columbia River discharge on salmonid habitat: 1. A nonstationary fluvial tide model

    NASA Astrophysics Data System (ADS)

    Kukulka, Tobias; Jay, David A.

    2003-09-01

    This is the first part of a two-part investigation that applies nonstationary time series analysis methods and the St. Venant equations to the problem of understanding juvenile salmonid access to favorable shallow-water habitat in a tidal river. Habitat access is a function of river stage, tidal range, and the distribution of bed elevation. Part 1 models nonstationary tidal properties: species amplitudes and phases and tidal range. Part 2 models low-frequency river stage in the Lower Columbia River and reconstructs historical water levels, using the tidal model from part 1. To incorporate the nonstationary frictional effects of variable river discharge into the tidal model, we decompose the tidal wave into tidal species and calculate daily tidal range. Our one-dimensional tidal model is based on analytic wave solutions to the linearized St. Venant equation and uses six coefficients per tidal species to represent the upstream evolution of the frictionally damped tidal wave. The form of the coefficients is derived from the St. Venant equations, but their values are determined objectively from the data. About 50 station-years of surface elevation data collected (1981-2000) below Bonneville Dam (235 km from the ocean) were processed with a wavelet filter bank to retrieve time series of tidal species properties. A min-max filter was used to estimate daily tidal range. Tidal range, diurnal, and semidiurnal amplitudes were predicted with mean root mean square errors <30 mm, which is significantly more accurate than predictions obtained from harmonic analysis. Thus despite the compact form of our solution, we model nonstationary fluvial tidal properties with a high level of accuracy.

  2. An objective approach to marginal benefit functions for environmental flows: an example for fluvial systems

    NASA Astrophysics Data System (ADS)

    Perona, P.; Burlando, P.

    2009-12-01

    Environmental flows can result from the economical competition for water allocation between traditional and non-traditional water uses. This requires the definition of convenient benefit functions (bf) associated with the use of the resource. Since the use of water by the riparian ecosystem is an intangible good, common ways based for instance on the “willingness to pay” have the dramatic weakness of not being objective with regard to the environmental rights. That is, water withdrawal from a given stream environment would depend on the importance and, in turn, on the economical value that people assign to this environment. In this work we discuss a possible objective criterion to establish benefit functions for the environmental uses of the water resource. Our approach is based on studying the optimal water allocation between the users as resulting from marginal economic analysis. That is, we show that the parameters of the marginal demand curve for the riparian ecosystem are intrinsically defined by knowing: (a) the ecological status of the riverine system in pristine conditions, and (b) the marginal benefit function of the potential competitor (e.g., exploitation activity). We solve analytically the water allocation problem for the simple case of water withdrawal from a fluvial system. We show the link between the parameters of the marginal benefit functions and the minimal environmental flow arising from classic engineering analysis, as well as their ecological meaning. This approach allows to restore a more natural variability of the streamflow regime in impounded reaches, to the cost of a profit reduction for the resource exploitation. However, on the long term, the overall idea is that the benefit for having preserved more natural environmental flow conditions since exploitation began would balance the future cost for potential restoration of the riverine corridor and the missing revenues.

  3. Improved Oil Recovery In Fluvial Dominated Deltaic Reservoirs of Kansas - Near Term

    SciTech Connect

    Green, Don W.; McCune, D.; Michnick, M.; Reynolds, R.; Walton, A.; Watney, L.; Willhite, G. Paul

    1999-01-14

    Common oil field problems exist in fluvial dominated deltaic reservoirs in Kansas. The problems are poor waterflood sweep efficiency and lack of reservoir management. The poor waterflood sweep efficiency is due to (1) reservoir heterogeneity, (2) channeling of injected water through high permeability zones or fractures, and (3) clogging of injection wells due to solids in the injection water. In many instances the lack of reservoir management results from (1) poor data collection and organization, (2) little or no integrated analysis of existing data by geological and engineering personnel, (3) the presence of multiple operators within the field, and (4) not identifying optimum recovery techniques. Two demonstration sites operated by different independent oil operators are involved in this project. The Stewart Field is located in Finney County, Kansas and is operated by PetroSantander, Inc. This field was in the latter stage of primary production at the beginning of this project and is currently being waterflooded as a result of this project. The Nelson Lease (an existing waterflood) is located in Allen County, Kansas, in the N.E. Savonburg Field and is operated by James E. Russell Petroleum, Inc. The objective is to increase recovery efficiency and economics in these types of reservoirs. The technologies being applied to increase waterflood sweep efficiency are (1) in situ permeability modification treatments, (2) infill drilling, (3) pattern changes, and (4) air flotation to improve water quality. The technologies being applied to improve reservoir management are (1) database development, (2) reservoir simulation, (3) transient testing, (4) database management, and (5) integrated geological and engineering analysis.

  4. Effects of river hydrology and fluvial processes on riparian vegetation establishment, growth, and survival

    NASA Astrophysics Data System (ADS)

    Shafroth, P. B.; Merritt, D. M.; Wilcox, A. C.

    2012-12-01

    Stream hydrology, sediment, and geology interact to determine the spatial and temporal availability of river bottomland substrates on which plants establish and grow. Collectively, these surfaces comprise a mosaic of landscape patches with associated plant communities that fall along key gradients of physical disturbance and water availability. Aspects of flow such as magnitude, frequency, timing, and rate of change of floods and magnitude and duration of low flows, interact with sediment flux and plant traits to determine plant distribution and fitness in different parts of the bottomland. Flow and sediment dynamics can influence different aspects of the plant life cycle such as germination, establishment, growth, and survival. Feedbacks between plants and fluvial processes, such as increased surface roughness and associated reductions in flow velocity and potential for aggradation, can determine differential survival of plant species depending on their tolerance of high velocity flow and associated shear stress, dislodgement, or burial by sediment. We present an overview of some key relationships between flow, sediment, plant traits, and riparian vegetation responses, and provide specific examples from our research on rivers in the semi-arid western U.S., including unaltered systems, dam-altered systems, and in the context of development of environmental flows to restore native riparian vegetation communities. Further, we describe the riparian response guilds framework and demonstrate how it can facilitate both an understanding of vegetation response to changing flow, sediment, and disturbance regimes and the development of priorities for flow management. Through understanding how guilds of species respond to variations in flow and sediment regimes, we are be better able to anticipate and predict biotic change in response to human-caused and climate-driven flow alteration.

  5. Pleistocene fluvial sediments, palaeontology and archaeology of the upper River Thames at Latton, Wiltshire, England

    NASA Astrophysics Data System (ADS)

    Lewis, S. G.; Maddy, D.; Buckingham, C.; Coope, G. R.; Field, M. H.; Keen, D. H.; Pike, A. W. G.; Roe, D. A.; Scaife, R. G.; Scott, K.

    2006-02-01

    Pleistocene fluvial sediments of the Northmoor Member of the Upper Thames Formation exposed at Latton, Wiltshire, record episodic deposition close to the Churn-Thames confluence possibly spanning the interval from Marine Isotope Stages (MIS) 7 to 2. The sequence is dominated by gravel facies, indicating deposition by a high-energy, gravel-bed river. A number of fine-grained organic sediment bodies within the sequence have yielded palaeoenvironmental and biostratigraphical data from Mollusca, Coleoptera, vertebrates, pollen and plant macrofossils. The basal deposit (Facies Association A) contains faunal material indicating temperate conditions. Most of the palaeontological evidence including a distinctive small form of mammoth (Mammuthus cf. trogontherii), together with the U-series age estimate of >147.4 +/- 20 kyr suggest correlation with MIS 7. The overlying deposits (Facies Associations B and C) represent deposition under a range of climatic conditions. Two fine-grained organic deposits occurred within Association B; one (Association Ba) in the northern part of the pit as a channel fill and the other (Association Bb) in its southern part as a scour-fill deposit. The coleopteran assemblages from Ba, indicate that it accumulated under temperate oceanic conditions, while Bb, which also yielded a radiocarbon age estimate of 39 560 +/- 780 14C yr BP, was formed under much colder and more continental climatic conditions. The sequence is considered to represent deposition within an alluvial fan formed at the Churn-Thames confluence; a depositional scenario which may account for the juxtaposition of sediments and fossils of widely differing age within the same altitudinal range.

  6. Fluvial islands: First stage of development from nonmigrating (forced) bars and woody-vegetation interactions

    NASA Astrophysics Data System (ADS)

    Wintenberger, Coraline L.; Rodrigues, Stéphane; Bréhéret, Jean-Gabriel; Villar, Marc

    2015-10-01

    Fluvial islands can develop from the channel bed by interactions between pioneer trees and bars. Although vegetation recruitment and survival is possible on all bar types, it is easier for trees to survive on nonmigrating bars developed from a change in channel geometry or to the presence of a steady perturbation. This field study details the first stages of development of a vegetated mid-channel, nonmigrating (or forced) bar and its evolution toward an island form. Over six years, analysis of bed topographical changes, vegetation density and roughness, scour and fill depths, sediment grain size and architecture, and excess bed shear stress highlighted a specific signature of trees on topography and grain size segregation. Two depositional processes combining the formation of obstacle marks and upstream-shifting deposition of sediments led to the vertical accretion of the vegetated bar. During the first stage of the bar accretion, bedload sediment supply coming from surrounding channels during floods was identified as a key process modulated by the presence of woody vegetation and a deflection effect induced by the preexisting topography. Grain size segregation between vegetated and bare areas was also highlighted and interpreted as an important process affecting the development of surrounding channels and the degree of disconnection (and hence the speed of development) of a growing island. The heterogeneity of bedload supply can explain why sediment deposition and density of trees are not strictly related. A general conceptual model detailing the first stages of evolution from a bar to an established island is proposed for relatively large lowland rivers.

  7. Fluvial response to Holocene volcanic damming and breaching in the Gediz and Geren rivers, Western Turkey

    NASA Astrophysics Data System (ADS)

    van Gorp, Wouter; Veldkamp, Antonie; Temme, Arnaud; Maddy, Darrel; Demir, Tuncer; van der Schriek, Tim; Reimann, Tony; Wallinga, Jakob; Wijbrans, Jan; Schoorl, Jeroen

    2013-04-01

    This study discusses the complex late Holocene evolution of the Gediz River North of Kula, Western Turkey, when a basaltic lava flow dammed and filled this river valley. Age control was obtained using established and novel feldspar luminescence techniques on sands below and on top of the flow. This constrained the age of the lava flow to 3.0 - 2.1 ka. In addition, 40Ar/39Ar dating was attempted but due a combination of the young age and low potassium content of the basalt this technique was unsuitable. Two damming locations caused by the lava flow have been investigated. The upstream dam caused lake formation and silting of the upstream Gediz. The downstream dam blocked both the Gediz and its tributary, the Geren. The associated lake was not silted up because the upstream dam already trapped all the Gediz sediments. Backfillings of the downstream lake are found 1.5 km upstream into the Geren valley. The downstream dam breached first, after which the upstream dam breached creating an outburst flood that imbricated boulders of approx. 10 m3 size and created an epigenetic gorge. The Gediz lowered its floodplain level with at least 15 m in a short time, triggering landslides, some of which are active until present. The lower reach of the Geren has experienced fast base level lowering and changed regime from meandering to a straight channel. Complex response to base level change is still on-going in both Geren and Gediz catchments. These findings are summarized in a diagram conceptualizing lava damming and breaching events. It is concluded that one lava flow filling a valley floor can block a river several times, leading to different, but interrelated fluvial responses of the same river system to the same lava flow.

  8. Remote sensing of rivers: an emerging tool to facilitate management and restoration of fluvial systems

    NASA Astrophysics Data System (ADS)

    Legleiter, C. J.; Overstreet, B. T.

    2013-12-01

    All phases of river restoration, from design to implementation to assessment, require spatially distributed, high-resolution data on channels and floodplains. Conventional field methods are cost prohibitive for large areas, but remote sensing presents an increasingly viable alternative for characterizing fluvial systems. For example, bathymetric maps useful for habitat assessment can be derived from readily available, free or low cost image data, provided depth measurements are available for calibration. In combination with LiDAR, spectrally-based bathymetry can be used to determine bed elevations for estimating scour and fill and/or to obtain topographic input data for morphodynamic modeling. New, water-penetrating green LiDAR systems that measure sub-aerial and submerged elevations could provide a single-sensor solution for mapping riparian environments. Our current research on the Snake River focuses on comparing optical- and LiDAR-based methods for retrieving depths and bed elevations. Multi-sensor surveys from 2012 and 2013 will allow us to evaluate each instrument's capabilities for measuring volumes of erosion and deposition in a dynamic gravel-bed river. Ongoing studies also suggest that additional river attributes, such as substrate composition and flow velocity, could be inferred from hyperspectral image data. In general, remote sensing has considerable potential to facilitate various aspects of river restoration, from site evaluation to post-project assessment. Moreover, by providing more extensive coverage, this approach favors an integrated, watershed perspective for planning, execution, and monitoring of sustainable restoration programs. To stimulate progress toward these objectives, our research group is now working to advance the remote sensing of rivers through tool development and sensor deployment. Bathymetric map of the Snake River, WY, derived from hyperspectral image data via optimal band ratio analysis. Flow direction is from right to left.

  9. Sensitivity of fluvial sediment source apportionment to mixing model assumptions: A Bayesian model comparison

    PubMed Central

    Cooper, Richard J; Krueger, Tobias; Hiscock, Kevin M; Rawlins, Barry G

    2014-01-01

    Mixing models have become increasingly common tools for apportioning fluvial sediment load to various sediment sources across catchments using a wide variety of Bayesian and frequentist modeling approaches. In this study, we demonstrate how different model setups can impact upon resulting source apportionment estimates in a Bayesian framework via a one-factor-at-a-time (OFAT) sensitivity analysis. We formulate 13 versions of a mixing model, each with different error assumptions and model structural choices, and apply them to sediment geochemistry data from the River Blackwater, Norfolk, UK, to apportion suspended particulate matter (SPM) contributions from three sources (arable topsoils, road verges, and subsurface material) under base flow conditions between August 2012 and August 2013. Whilst all 13 models estimate subsurface sources to be the largest contributor of SPM (median ?76%), comparison of apportionment estimates reveal varying degrees of sensitivity to changing priors, inclusion of covariance terms, incorporation of time-variant distributions, and methods of proportion characterization. We also demonstrate differences in apportionment results between a full and an empirical Bayesian setup, and between a Bayesian and a frequentist optimization approach. This OFAT sensitivity analysis reveals that mixing model structural choices and error assumptions can significantly impact upon sediment source apportionment results, with estimated median contributions in this study varying by up to 21% between model versions. Users of mixing models are therefore strongly advised to carefully consider and justify their choice of model structure prior to conducting sediment source apportionment investigations. Key Points An OFAT sensitivity analysis of sediment fingerprinting mixing models is conducted Bayesian models display high sensitivity to error assumptions and structural choices Source apportionment results differ between Bayesian and frequentist approaches PMID:26612962

  10. Fracture density as a controlling factor of postglacial fluvial incision rate, Granite Range, Alaska.

    NASA Astrophysics Data System (ADS)

    Champagnac, J.-D.; Sternai, P.; Herman, F.; Guralnik, B.; Beaud, F.

    2012-04-01

    The relations between lithosphere and atmosphere to shape the landscape are disputed since the last two decades. The classical "chicken or egg" problem raised the idea that erosion can promote creation of topography thanks to isostatic compensation of eroded material and subsequent positive feedback. Quaternary glaciations and high erosion rates are supposed to be the main agent of such process. More recently, "tectonic activity" has been considered not only as a rock uplift agent, but also as a rock crusher, that in turn promote erosion, thanks to the reduction of size of individual rock elements, more easily transported. The Granite Range in Alaska presents a contrasted morphology: its western part shows preserved glacial landscape, whereas its eastern part presents a strong fluvial / hillslope imprint, and only a few relicts of glacial surfaces. We quantify these differences by 1) qualitative appreciation of the landscape, 2) quantification of post-glacial erosion, and 3) hypsometric quantification of the landscape. On the field, the eastern part appears to be highly fractured, with many, large, penetrative faults, associated with km-thick fault gouges and cataclasites. The westernmost part shows massive bedrock, with minor, localised faults. Remote-sensed fracture mapping confirms this: fracture density is much higher to the east, where hypsometric parameters (HI and HIP) display anomalies, and where high post-glacial incision (up to 600m) is observed. We provide here an impressive case study for tectonic-erosion interactions through rock crushing effect, and document that half of the sediments coming out of the range come from the ~10% of the most fractured area, all other being equal. This challenges the usual view of tectonic "driving" rock uplift, while erosion removes material: In our case, tectonics is the main erosional agent, rivers and glaciers being (efficient) transport agents.

  11. Geologie study off gravels of the Agua Fria River, Phoenix, AZ

    USGS Publications Warehouse

    Langer, W.H.; Dewitt, E.; Adams, D.T.; O'Briens, T.

    2010-01-01

    The annual consumption of sand and gravel aggregate in 2006 in the Phoenix, AZ metropolitan area was about 76 Mt (84 million st) (USGS, 2009), or about 18 t (20 st) per capita. Quaternary alluvial deposits in the modern stream channel of the Agua Fria River west of Phoenix are mined and processed to provide some of this aggregate to the greater Phoenix area. The Agua Fria drainage basin (Fig. 1) is characterized by rugged mountains with high elevations and steep stream gradients in the north, and by broad alluvial filled basins separated by elongated faultblock mountain ranges in the south. The Agua Fria River, the basin’s main drainage, flows south from Prescott, AZ and west of Phoenix to the Gila River. The Waddel Dam impounds Lake Pleasant and greatly limits the flow of the Agua Fria River south of the lake. The southern portion of the watershed, south of Lake Pleasant, opens out into a broad valley where the river flows through urban and agricultural lands to its confluence with the Gila River, a tributary of the Colorado River.

  12. Al tratamiento del agua potable para mejo-rar su sanidad o calidad bacteriolgica se

    E-print Network

    cloración por choque de los pozos de agua privados están señalados en la publi- cación número L-5441S de la Mark L. McFarland, Profesor Asociado y Especialista en Fertilidad de Suelos El Sistema Universitario departamento de salud de su condado para encontrar un laboratorio autor-

  13. Post-Last Glacial Maximum fluvial incision and sediment generation in the unglaciated Waipaoa catchment, North Island, New Zealand

    NASA Astrophysics Data System (ADS)

    Marden, M.; Betts, H.; Palmer, A.; Taylor, R..; Bilderback, E..; Litchfield, N.

    2014-06-01

    Small river systems contribute a significant component of sediment delivered to oceans, but the temporal evolution of fluvially eroded landscapes is needed. A sequence of postglacial terraces in the unglaciated Waipaoa River catchment provides the opportunity to document fluvial incision and sediment flux on an ~ 2000-year timescale since the Last Glacial Maximum (LGM), which has previously only been undertaken for the entire post-LGM period. This study also calculates sediment mass, where previously sediment volume was calculated. Using a 15-m DEM, field mapping and surveying, and tephrochronology, we calculate rates of fluvial incision and sediment volumes excavated during successive age-constrained, postglacial, incision events and correlate these with a framework of inferred climatic events established for New Zealand. We identify seven periods of terrace formation each succeeded by a period of fluvial incision, six in total. Although the magnitude of the response during each incision event and thus the sediment volumes generated varied through time and across subcatchments draining two contrasting lithological terrains, we conclude that incision events were essentially synchronous, at least within the timeframe constrained by the ca. 2000 year interval between successive eruptive airfall events. Slope relaxation processes were simultaneous with incision thereby indicating that both processes were likely climate driven. We identify a period of accelerated fluvial incision ~ 7 mm y- 1 commencing before ca. 14.0 cal. ka BP (during the early postglacial period) and ceasing ca. 7.9 cal. ka BP toward the end of the Early Holocene Warming period. The magnitude of this incision response was significantly higher in subcatchments draining highly erodible lithologies in the higher uplifting parts of the catchment when river bedload was at over capacity. In contrast, within the remainder of subcatchments draining the more resistant lithologies and in areas of lower uplift (and in parts subsiding), incision and sediment generation was moderated by the presence of knickpoints. Overall, since abandonment of the LGM to present day, fluvial incision in the Waipaoa and the adjacent Waimata catchments generated ~ 16.7 km3 of sediment of which ~ 10 km3 (~ 90% of the estimated 35 Mt of glacial-postglacial slope and shelf sediment mass) was potentially available for transport offshore. Of this, 14.08 km3 (7.4 km3 derived from 'upper' and 6.7 km3 from 'remainder' of subcatchments) was excavated from Waipaoa catchment at an average of ~ 0.6 km3 ka- 1 of which ~ 80% was generated by ca. 7.9 cal. ka BP. This potentially validates previous accounts of high rates of offshore sediment flux before 8000 14C YBP (ca. 8877 cal. YBP). Thereafter, for the period mid-Holocene cooling and variability (MHCV) (ca. 6.5 cal. ka BP) until the present day, the rate of incision across all subcatchments slowed to ~ 2 mm y- 1 and generated just ~ 20% of the total sediment volume. In part, this reflected a depletion of available sediment as rivers in the upper subcatchments returned to a steady state and, coincidental with an increase in accommodation space in the rapidly growing coastal floodplain, sediment flux to the marine depocentres was thereby limited.

  14. Fluvial geomorphic elements in modern sedimentary basins and their potential preservation in the rock record: A review

    NASA Astrophysics Data System (ADS)

    Weissmann, G. S.; Hartley, A. J.; Scuderi, L. A.; Nichols, G. J.; Owen, A.; Wright, S.; Felicia, A. L.; Holland, F.; Anaya, F. M. L.

    2015-12-01

    Since tectonic subsidence in sedimentary basins provides the potential for long-term facies preservation into the sedimentary record, analysis of geomorphic elements in modern continental sedimentary basins is required to understand facies relationships in sedimentary rocks. We use a database of over 700 modern sedimentary basins to characterize the fluvial geomorphology of sedimentary basins. Geomorphic elements were delineated in 10 representative sedimentary basins, focusing primarily on fluvial environments. Elements identified include distributive fluvial systems (DFS), tributive fluvial systems that occur between large DFS or in an axial position in the basin, lacustrine/playa, and eolian environments. The DFS elements include large DFS (> 30 km in length), small DFS (< 30 km in length), coalesced DFS in bajada or piedmont plains, and incised DFS. Our results indicate that over 88% of fluvial deposits in the evaluated sedimentary basins are present as DFS, with tributary systems covering a small portion (1-12%) of the basin. These geomorphic elements are commonly arranged hierarchically, with the largest transverse rivers forming large DFS and smaller transverse streams depositing smaller DFS in the areas between the larger DFS. These smaller streams commonly converge between the large DFS, forming a tributary system. Ultimately, most transverse rivers become tributary to the axial system in the sedimentary basin, with the axial system being confined between transverse DFS entering the basin from opposite sides of the basin, or a transverse DFS and the edge of the sedimentary basin. If axial systems are not confined by transverse DFS, they will form a DFS. Many of the world's largest rivers are located in the axial position of some sedimentary basins. Assuming uniformitarianism, sedimentary basins from the past most likely had a similar configuration of geomorphic elements. Facies distributions in tributary positions and those on DFS appear to display specific morphologic patterns. Tributary rivers tend to increase in size in the downstream direction. Because axial tributary rivers are present in confined settings in the sedimentary basin, they migrate back and forth within a relatively narrow belt (relative to the overall size of the sedimentary basin). Thus, axial tributary rivers tend to display amalgamated channel belt form with minimal preservation potential of floodplain deposits. Chute and neck cutoff avulsions are also common on meandering rivers in these settings. Where rivers on DFS exit their confining valley on the basin margin, sediment transport capacity is reduced and sediment deposition occurs resulting in development of a 'valley exit' nodal avulsion point that defines the DFS apex. Rivers may incise downstream of the basin margin valley because of changes in sediment supply and discharge through climatic variability or tectonic processes. We demonstrate that rivers on DFS commonly decrease in width down-DFS caused by infiltration, bifurcation, and evaporation. In proximal areas, channel sands are amalgamated through repeated avulsion, reoccupation of previous channel belts, and limited accumulation space. When rivers flood on the medial to distal portions of a DFS, the floodwaters spread across a large area on the DFS surface and typically do not re-enter the main channel. In these distal areas, rivers on DFS commonly avulse, leaving a discrete sand body and providing high preservation potential for floodplain deposits. Additional work is needed to evaluate the geomorphic character of modern sedimentary basins in order to construct improved facies models for the continental sedimentary rock record. Specifically, models for avulsion, bifurcation, infiltration, and geomorphic form on DFS are required to better define and subsequently predict facies geometries. Studies of fluvial systems in sedimentary basins are also important for evaluating flood patterns and groundwater distributions for populations in these regions.

  15. Sediment sources, spatiotemporal variability and rates of fluvial bedload transport in glacier-connected steep mountain valleys in western Norway (Erdalen and Bødalen drainage basins)

    NASA Astrophysics Data System (ADS)

    Beylich, Achim A.; Laute, Katja

    2015-01-01

    Contemporary fluvial bedload transport rates are still very difficult to measure and, as a result of this, in many sites only quantitative data on suspended and solute transport are included in sediment budget studies carried out for defined drainage basin systems. The presented analysis of fluvial bedload dynamics in different defined subsystems of the glacier-connected Erdalen (79.5 km2) and Bødalen (60.1 km2) drainage basins in the steep fjord landscape of western Norway provides insights into (i) detectable relevant sediment sources, (ii) instream channel storage of bedload material, (iii) spatiotemporal variability and controls of bedload transport rates and bedload yields, and (iv) the absolute and relative importance of fluvial bedload transport within the sedimentary budgets of these steep cold climate mountain valleys. Rockfalls, snow avalanches, stream channel bank erosion, and fluvial transfers through small tributaries draining slope systems are relevant sediment sources for fluvial bedload transport in the main stream channels, whereas the main outlet glaciers in both drainage basins are not of importance as all bedload material delivered directly from these outlet glaciers is trapped within proglacial lakes. Narrow valleys within both drainage basin systems are characterized by a higher intensity of slope-channel coupling and display higher rates of sediment supply from slopes into the main stream channels than wider valleys. Snow avalanches are the most important sediment source in Erdalen, whereas fluvial transfers through small tributaries followed by snow avalanches are most important in Bødalen. Longer term, instream channel storage is not of great importance in the steep Bødalen drainage basin but currently plays an important role within the Erdalen drainage basin, which is characterized by a stepped longitudinal main valley bottom profile favoring deposition of bedload material within less steep main channel reaches. The mean annual bedload yields (2010-2013) are 2.4 t km- 2y- 1 for the entire Erdalen and 13.3 t km- 2y- 1 for the entire Bødalen drainage basin, which are comparably low values for steep and partly glacierized drainage basin systems. Because of supply-limited conditions, the intensity of fluvial bedload transport is generally much more related to the availability of sediments than to channel discharge. Fluvial bedload transport accounts for about one-third of the total fluvial transport and accordingly plays an important role within the sedimentary budgets of both drainage basin systems.

  16. The linkage between hillslope vegetation changes and late-Quaternary fluvial-system aggradation in the Mojave Desert revisited

    NASA Astrophysics Data System (ADS)

    Pelletier, J. D.

    2014-03-01

    Valley-floor-channel and alluvial-fan deposits and terraces in the southwestern US record multiple episodes of late Quaternary fluvial aggradation and incision. Perhaps the most well constrained of these episodes took place from the latest Pleistocene to the present in the Mojave Desert. One hypothesis for this episode, i.e. the paleo-vegetation change hypothesis (PVCH), posits that a reduction in hillslope vegetation cover associated with the transition from Pleistocene woodlands to Holocene desert scrub generated a pulse of sediment that triggered a primary phase of aggradation downstream, followed by channel incision, terrace abandonment, and initiation of a secondary phase of aggradation further downstream. A second hypothesis, i.e. the extreme-storm hypothesis, attributes episodes of aggradation and incision to changes in the frequency and/or intensity of extreme storms. In the past decade a growing number of studies has advocated the extreme-storm hypothesis and challenged the PVCH on the basis of inconsistencies in both timing and process. Here I show that in eight out of nine sites where the timing of fluvial-system aggradation in the Mojave Desert is reasonably well constrained, measured ages of primary aggradation and/or incision are consistent with the predictions of the PVCH if the time-transgressive nature of paleo-vegetation changes with elevation is fully taken into account. I also present an alternative process model for PVCH that is more consistent with available data and produces sediment pulses primarily via an increase in drainage density (i.e. a transformation of hillslopes into low-order channels) rather than solely via an increase in sediment yield from hillslopes. This paper further documents the likely important role of changes in upland vegetation cover and drainage density in driving fluvial-system response during semiarid-to-arid climatic changes.

  17. Toward the Validation of Depth-Averaged Three Dimensional, Rans Steady-State Simulations of Fluvial Flows at Natural Scale

    NASA Astrophysics Data System (ADS)

    Mateo Villanueva, P. A.; Hradisky, M.

    2010-12-01

    Simulations of fluvial flows are strongly influenced by geometric complexity and overall uncertainty on measured flow variables, including those assumed to be well known boundary conditions. Often, 2D steady-state models are used for computational simulations of flows at the scale of natural rivers. Such models have been successfully incorporated in iRIC (formerly MD_SWMS), one of the widely used quasi-3D CFD solvers to perform studies of environmental flows. iRIC aids in estimating such quantities as surface roughness and shear stress, which, in turn, can be used to estimate sediment transport. However, the computational results are inherently limited in accuracy because of restricting the computations to 2D, or quasi-3D, space, which can affect the values of these predictions. In the present work we perform computer-based simulations of fluvial flows using OpenFOAM, a free, open source fully 3D CFD software package, and compare our results to predictions obtained from iRIC. First, we study the suitability of OpenFOAM as the main CFD solver to analyze fluvial flows and validate our results for two well documented rectangular channel configurations: the first case consists of a large aspect-ratio channel (ratio of depth over width 0.017, ratio of depth over length 0.0019) with a rectangular obstacle mounted at the bottom wall; the second case involves a large aspect-ratio channel (ratio of depth over width 0.1, ratio of depth over length 0.0025) with cubic obstacles mounted at the lower wall (one obstacle) and upper wall (two obstacles). Secondly, we apply our model to simulation or river at natural scale and compare our results to the output obtained from iRIC to quantify the differences in velocity profiles and other flow parameters when comparable solution techniques are used. Steady-state, RANS k-epsilon models are employed for all simulations.

  18. Do river channels decrease in width downstream on Distributive Fluvial Systems? An evaluation of modern mega-fans

    NASA Astrophysics Data System (ADS)

    Espinoza, T. N.; Scuderi, L. A.; Weissmann, G. S.; Hartley, A. J.

    2014-12-01

    Recent studies on aggradational continental sedimentary basins globally show that fluvial deposits in most modern sedimentary basins are dominated Distributive Fluvial Systems (DFS). DFS's are identified by: (1) pattern of channels and floodplain deposits that radiate outward from an apex located where the river enters the sedimentary basin, (2) deposition where an alluvial system becomes unconfined upon entering the sedimentary basin, (3) broadly fan shaped deposit that is convex upward across the DFS and concave upward down-fan, and (4) if the DFS is incised, an intersection point above which the alluvial system is held in an incised valley and below which it distributes sediment across an active depositional lobe. Several papers about DFS hypothesized that rivers on DFS decrease in size down-fan. We are testing this hypothesis through evaluation of LANDSAT and STRM data from large DFS described by Hartley et al (2010). We use ArcGIS to: (1) open the images and merge them together if there are more than one image corresponding to the DFS being studied, (2) use a Maximum Likelihood Analysis in six classes to segment different features on the DFS (e.g. exposed sands, water, vegetation, and other fan environments), (3) isolate the classes that correspond to the active channel belt (e.g., exposed sand bars and water), (4) divide the active channel belt into 1000 m long sections, (5) determine the area of active channel belt in each section, and (6) calculate the average width of the river in each section (e.g., W = area/1000m). We present our result for each DFS river on a graph that shows the change in width downstream. Our final product will be a dataset that contains width versus distance down-fan from the apex for as many of the large DFS from Hartley et al (2010) as possible. If the hypothesis is supported, the decrease in width could have a substantial predictive significance on sandstone geometry in fluvial successions.

  19. Evolution of Subaerial Coastal Fluvial Delta Island Topography into Multiple Stable States Under Influence of Vegetation and Stochastic Hydrology

    NASA Astrophysics Data System (ADS)

    Moffett, K. B.; Smith, B. C.; O'Connor, M.; Mohrig, D. C.

    2014-12-01

    Coastal fluvial delta morphodynamics are prominently controlled by external fluvial sediment and water supplies; however, internal sediment-water-vegetation feedbacks are now being proposed as potentially equally significant in organizing and maintaining the progradation and aggradation of such systems. The time scales of fluvial and climate influences on these feedbacks, and of their responses, are also open questions. Historical remote sensing study of the Wax Lake Delta model system (Louisiana, USA) revealed trends in the evolution of the subaerial island surfaces from a non-systematic arrangement of elevations to a discrete set of levees and intra-island platforms with distinct vegetation types, designated as high marsh, low marsh, and mudflat habitat. We propose that this elevation zonation is consistent with multiple stable state theory, e.g. as applied to tidal salt marsh systems but not previously to deltas. According to zonally-distributed sediment core analyses, differentiation of island elevations was not due to organic matter accumulation as in salt marshes, but rather by differential mineral sediment accumulation with some organic contributions. Mineral sediment accumulation rates suggested that elevation growth was accelerating or holding steady over time, at least to date in this young delta, in contrast to theory suggesting rates should slow as elevation increases above mean water level. Hydrological analysis of island flooding suggested a prominent role of stochastic local storm events in raising island water levels and supplying mineral sediment to the subaerial island surfaces at short time scales; over longer time scales, the relative influences of local storms and inland/regional floods on the coupled sediment-water-vegetation system of the subaerial delta island surfaces remain the subject of ongoing study. These results help provide an empirical foundation for the next generation of coupled sediment-water-vegetation modeling and theory.

  20. Miocene fluvial-tidal sedimentation in a residual forearc basin of the Northeastern Pacific Rim: Cook Inlet, Alaska case study

    SciTech Connect

    Stricker, G.D.; Flores, R.M. )

    1996-01-01

    Cook Inlet in southern Alaska represents a Cenozoic residual forearc basin in a convergent continental margin, where the Pacific Plate is being subducted beneath the North American Plate. This basin accumulated the >6,700-m-thick, mainly nonmarine, Eocene-Pliocene Kenai Group. These rocks contain biogenic coal-bed methane estimated to be as high as 245 TCF. Lignites to subbituminous coals with subsurface R[sub o] ranging from 0.38 to 0.73 percent and the stage of clay-mineral diagenesis and expandibility indicate a thermally [open quotes]cool[close quotes] basin. Miocene Tyonek and Beluga Formations compose 65 percent (>4,300 m thick) of the Kenai Group. The Tyonek includes conglomeratic sandstones, siltstones, mudstones, coals, and carbonaceous shales, interpreted as braided- stream deposits. These fluvial deposits are interbecided with burrowed, lenticular, and flaser-bedded sandstones, siltstones, and mudstones, interpreted as tidal deposits. Tyonek framework conglomerates formed in wet alluvial fans incised on paleovalleys of the Chugach terrane. Coal-forming mires are well developed on abandoned braided-stream deposits. Tyonek drainages formed in high-gradient alluvial plains inundated by tides similar to environments in the modern upper Cook Inlet. The upper Miocene Beluga consists of sandstones, siltstones, mudstones, carbonaceous shales, and coals deposited in meandering (low sinuosity) and anastomosed fluvial systems. These fluvial deposits alternated vertically with deposits of coal-forming mires. The Beluga drainages formed in low-gradient alluvial plains. The high-gradient Tyonek alluvial plain was probably controlled by provenance uplift and eustatic change, whereas the low-gradient Beluga alluvial plain was influenced by subdued provenance uplift and rapid basin subsidence. Rapid sedimentation on both these low- and high-gradient alluvial plains, which kept up with subsidence, produced a thermally [open quotes]cool[close quotes] basin.

  1. Miocene fluvial-tidal sedimentation in a residual forearc basin of the Northeastern Pacific Rim: Cook Inlet, Alaska case study

    SciTech Connect

    Stricker, G.D.; Flores, R.M.

    1996-12-31

    Cook Inlet in southern Alaska represents a Cenozoic residual forearc basin in a convergent continental margin, where the Pacific Plate is being subducted beneath the North American Plate. This basin accumulated the >6,700-m-thick, mainly nonmarine, Eocene-Pliocene Kenai Group. These rocks contain biogenic coal-bed methane estimated to be as high as 245 TCF. Lignites to subbituminous coals with subsurface R{sub o} ranging from 0.38 to 0.73 percent and the stage of clay-mineral diagenesis and expandibility indicate a thermally {open_quotes}cool{close_quotes} basin. Miocene Tyonek and Beluga Formations compose 65 percent (>4,300 m thick) of the Kenai Group. The Tyonek includes conglomeratic sandstones, siltstones, mudstones, coals, and carbonaceous shales, interpreted as braided- stream deposits. These fluvial deposits are interbecided with burrowed, lenticular, and flaser-bedded sandstones, siltstones, and mudstones, interpreted as tidal deposits. Tyonek framework conglomerates formed in wet alluvial fans incised on paleovalleys of the Chugach terrane. Coal-forming mires are well developed on abandoned braided-stream deposits. Tyonek drainages formed in high-gradient alluvial plains inundated by tides similar to environments in the modern upper Cook Inlet. The upper Miocene Beluga consists of sandstones, siltstones, mudstones, carbonaceous shales, and coals deposited in meandering (low sinuosity) and anastomosed fluvial systems. These fluvial deposits alternated vertically with deposits of coal-forming mires. The Beluga drainages formed in low-gradient alluvial plains. The high-gradient Tyonek alluvial plain was probably controlled by provenance uplift and eustatic change, whereas the low-gradient Beluga alluvial plain was influenced by subdued provenance uplift and rapid basin subsidence. Rapid sedimentation on both these low- and high-gradient alluvial plains, which kept up with subsidence, produced a thermally {open_quotes}cool{close_quotes} basin.

  2. Variations of fluvial tufa sub-environments in a tectonically active basin, Pleistocene Teruel Basin, NE Spain

    NASA Astrophysics Data System (ADS)

    Camuera, Jon; Alonso-Zarza, Ana M.; Rodríguez-Berriguete, Álvaro; Meléndez, Alfonso

    2015-12-01

    The Pleistocene Tortajada fluvial deposit occurs in the eastern active margin of the Teruel Basin. It developed in the early stages of opening of the basin and at present is disconnected to the Alfambra River. The preserved deposits show that the fluvial system consisted in three different sub-environments including: Upper Terraces, Ponds and Cascades. The main facies are framestones of stems, phytoclastic rudstone, framestone of bryophytes, peloidal and filamentous stromatolites, mudstone and detrital (conglomerates and slope-breccias) facies. These facies are arranged in three different sequence types, all of them showing a lower detrital term followed by pond and, in cases, cascade deposits. The microfacies analyses reveal that both biotic and abiotic processes performed an important role in the deposition within the river. Isotopic analyses (?18O from - 8.58‰ to - 6.70‰ VPDB and ?13C from - 7.44‰ to - 3.97‰ VPDB) are indicative of meteoric water within a hydrologically open system. The carbonate hinterland rocks, together with a semi-arid to sub-humid climate favored carbonate accumulation within the river. Our results point out that the location, morphology and sedimentary sequences of the Tortajada fluvial system had an important tectonic control. The situation of the main and secondary faults controlled the paleomorphology of the river floor. Thus cascades are found in areas of important step faults, whereas the spaces between faults were occupied by fluviatile/lacustrine areas. In addition the development of the different sedimentary sequences was also a reflection of movements of these faults. In short, our study may confirm that tectonism is an important control on tufa development.

  3. Predicting interwell heterogeneity in fluvial-deltaic reservoirs: Outcrop observations and applications of progressive facies variation through a depositional cycle

    SciTech Connect

    Knox, P.R.; Barton, M.D.

    1997-08-01

    Nearly 11 billion barrels of mobile oil remain in known domestic fluvial-deltaic reservoirs despite their mature status. A large percentage of this strategic resource is in danger of permanent loss through premature abandonment. Detailed reservoir characterization studies that integrate advanced technologies in geology, geophysics, and engineering are needed to identify remaining resources that can be targeted by near-term recovery methods, resulting in increased production and the postponement of abandonment. The first and most critical step of advanced characterization studies is the identification of reservoir architecture. However, existing subsurface information, primarily well logs, provides insufficient lateral resolution to identify low-permeability boundaries that exist between wells and compartmentalize the reservoir. Methods to predict lateral variability in fluvial-deltaic reservoirs have been developed on the basis of outcrop studies and incorporate identification of depositional setting and position within a depositional cycle. The position of a reservoir within the framework of a depositional cycle is critical. Outcrop studies of the Cretaceous Ferron Sandstone of Utah have demonstrated that the architecture and internal heterogeneity of sandstones deposited within a given depositional setting (for example, delta front) vary greatly depending upon whether they were deposited in the early, progradational part of a cycle or the late, retrogradational part of a cycle. The application of techniques similar to those used by this study in other fluvial-deltaic reservoirs will help to estimate the amount and style of remaining potential in mature reservoirs through a quicklook evaluation, allowing operators to focus characterization efforts on reservoirs that have the greatest potential to yield additional resources.

  4. The fluvial flux of particulate organic matter from the UK: Quantifying in-stream losses and carbon sinks

    NASA Astrophysics Data System (ADS)

    Worrall, Fred; Burt, Tim P.; Howden, Nicholas J. K.

    2014-11-01

    This study considers records of fluvial suspended sediment concentration and its organic matter content from across the United Kingdom from 1974 to 2010. Suspended sediment, mineral concentration and river flow data were used to estimate the particulate organic matter (POM) concentration and flux. Median annual POM flux from the UK was 1596 ktonnes/yr. The POM concentration significantly declined after the European Commission's Urban Wastewater Directive was adopted in 1991 although the POM flux after 1992 was significantly higher. Estimates of POM flux were compared to a range of catchment properties to estimate the flux of particulate organic carbon (POC) and particulate organic nitrogen (PON) as they entered rivers and thus estimate the net catchment losses. The total fluvial flux of N from the soil source to rivers was 2209 ktonnes N/yr with 814 ktonnes N lost at the tidal limit, and so leaving 1395 ktonnes N/yr loss to atmosphere from across UK catchments - equivalent to an N2O flux from UK rivers of between 33 and 154 ktonnes (N2O)/yr. The total fluvial flux of carbon from the soil source to rivers for the UK was 5020 ktonnes C/yr; the flux at the tidal limit was 1508 ktonnes C/yr, equivalent to 6.5 tonnes C/km2/yr. Assuming that all the net catchment loss goes into the atmosphere, then the impact of rivers on the atmosphere is 3512 ktonnes C/yr, equivalent to 15.2 tonnes C/km2/yr. The loss of POM from the UK suggests that soil erosion in the UK prevents soil being a net sink of CO2 and is instead a small net source to the atmosphere.

  5. Cross-stratified Wood: Enigmatic Woody Debris Deposits in Warm-Polar Fluvial Sediments (Pliocene Beaufort Formation, Nunavut)

    NASA Astrophysics Data System (ADS)

    Davies, N. S.; Gosse, J. C.; Rybczynski, N.

    2012-04-01

    Woody debris has been an important sediment component and a significant geomorphic agent in pristine fluvial systems since the Devonian. In recent years a large volume of research has focussed on various aspects of the importance of woody debris within the fluvial realm; from the evolutionary significance of fossil wood accumulations in the rock record to studies of the biogeomorphological and ecological importance of woody debris in modern rivers. In this presentation we describe cross-stratified woody debris deposits comprising organic detritus from a boreal-type treeline forest that included species of pine, birch, poplar, alder, spruce, eastern cedar, and larch, in both shrub and tree form. The cross-stratified wood is an enigmatic subset of fine woody debris which, to our knowledge, has never before been described from either the global stratigraphic record or modern fluvial environments. The deposits we describe are located within the Pliocene Beaufort Formation on Meighen Island, Nunavut, Canada, at a latitude of 80°N, and are compared with other cross-stratified woody debris deposits that have been noted elsewhere in the Pliocene of the Canadian Arctic. We make the robust observation that these deposits appear to be geographically and stratigraphically restricted to polar latitudes from a period of warm climatic conditions during the Pliocene (15-20 °C warmer mean annual temperature than the present day). In this regard it is possible to speculate that the transport of large amounts of woody debris as bedload is potentially a unique feature of forested high latitude rivers. Such bedload deposition requires a large amount of woody debris with a greater density than the fluid transporting it. The softwood composition of the debris suggests that this was most likely attained by saturation and subsequent entrainment of extensive accumulations of deadwood, promoted by unusually high rates of tree mortality and low rates of bacterial decomposition arising from the high latitude and extreme seasonal variations in light and temperature regimes. This observation requires further investigation because, if cross-stratified woody debris is confirmed as a common yet unique feature of warm-polar climates, it may have significant implications for predictive studies of fluvial processes, woody debris accumulation, and carbon burial in a warming Arctic. Recognition of cross-stratified woody debris in pre-Cenozoic records may also provide an independent proxy for this particular environment.

  6. Paleochannel and paleohydrology of a Middle Siwalik (Pliocene) fluvial system, northern India

    NASA Astrophysics Data System (ADS)

    Khan, Z. A.; Tewari, R. C.

    2011-06-01

    Late Cenozoic fresh water molasses sediments (+6000 m thick) deposited all along the length of the Himalayan fore deep, form the Siwalik Supergroup. This paper reports the results of the paleodrainage and paleohydrology of the Middle Siwalik sub-group of rocks, deposited in non-marine basins adjacent to a rising mountain chain during Pliocene. Well-exposed sections of these rocks have provided adequate paleodrainage data for the reconstruction of paleochannel morphology and paleohydrological attributes of the Pliocene fluvial system. Cross-bedding data has been used as inputs to estimate bank full channel depth and channel sinuosity of Pliocene rivers. Various empirical relationships of modern rivers were used to estimate other paleohydrological attributes such as channel width, sediment load parameter, annual discharge, and channel slope and flow velocity. Computed channel depth, channel slope and flow velocity are supported independently by recorded data of scour depth, cross-bedding variability and Chezy's equation. The estimates indicate that the Middle Siwalik sequence corresponds to a system of rivers, whose individual channels were about 400 m wide and 5.2-7.3 m deep; the river on an average had a low sinuous channel and flowed over a depositional surface sloping at the rate of 53 cm/km. The 700-km-long Middle Siwalik (Pliocene) river drained an area of 42925 km2 to the north-northeast, with a flow velocity of 164-284 cm/s, as it flowed generally south-southwest of the Himalayan Orogen. Bed-load was about 15% of the total load of this river, whose annual discharge was about 346-1170 m3/s normally and rose to approximately 1854 m3/s during periodic floods. The Froude number of 0.22 suggests that the water flows in the Pliocene river channels were tranquil, which in turn account for the profuse development of cross-bedded units in the sandstone. The estimated paleochannel parameters, bedding characteristics and the abundance of coarse clastics in the lithic fill are rather similar to the modern braided rivers of Canada and India such as South Sackatchewan and Gomti, respectively.

  7. Late Weichselian fluvial evolution on the southern Kara Sea Shelf, North Siberia

    NASA Astrophysics Data System (ADS)

    Dittmers, K.; Niessen, F.; Stein, R.

    2008-02-01

    Glaciations had a profound impact on the global sea-level and particularly on the Arctic environments. One of the key questions related to this topic is, how did the discharge of the Siberian Ob and Yenisei rivers interact with a proximal ice sheet? In order to answer this question high-resolution (1-12 kHz), shallow-penetration seismic profiles were collected on the passive continental margin of the Kara Sea Shelf to study the paleo-drainage pattern of the Ob and Yenisei rivers. Both rivers incised into the recent shelf, leaving filled and unfilled river channels and river canyons/valleys connecting to a complex paleo-drainage network. These channels have been subaerially formed during a regressive phase of the global sea-level during the Last Glacial Maximum. Beyond recent shelf depths of 120 m particle transport is manifested in submarine channel-levee complexes acting as conveyor for fluvial-derived fines. In the NE area, uniform draping sediments are observed. Major morphology determining factors are (1) sea-level fluctuations and (2) LGM ice sheet influence. Most individual channels show geometries typical for meandering rivers and appear to be an order of magnitude larger than recent channel profiles of gauge stations on land. The Yenisei paleo-channels have larger dimensions than the Ob examples and could be originated by additional water release during the melt of LGM Putoran ice masses. Asymmetrical submarine channel-levee complexes with channel depths of 60 m and more developed, in some places bordered by glacially dominated morphology, implying deflection by the LGM ice masses. A total of more than 12,000 km of acoustic profiles reveal no evidence for an ice-dammed lake of greater areal extent postulated by several workers. Furthermore, the existence of the channel-levee complexes is indicative of unhindered sediment flow to the north. Channels situated on the shelf above 120-m water depth exhibit no phases of ponding and or infill during sea-level lowstand. These findings denote the non-existence of an ice sheet on large areas of the Kara Sea shelf.

  8. Integration of fluvial erosion factors for predicting landslides along meandering rivers

    NASA Astrophysics Data System (ADS)

    Chen, Yi-chin; Chang, Kang-tsung; Ho, Jui-yi

    2015-04-01

    River incision and lateral erosion are important geomorphologic processes in mountainous areas of Taiwan. During a typhoon or storm event, the increase of water discharge, flow velocity, and sediment discharge enhances the power of river erosion on channel bank. After the materials on toe of hillslope were removed by river erosion, landslides were triggered at outer meander bends. Although it has been long expected that river erosion can trigger landslide, studies quantifying the effects of river erosion on landslide and the application of river erosion index in landslide prediction are still overlooked. In this study, we investigated the effect of river erosion on landslide in a particular meanders landscape of the Jhoukou River, southern Taiwan. We developed a semi-automatic model to separate meandering lines into several reach segments based on the inflection points and to calculate river erosion indexes, e.g. sinuosity of meander, stream power, and stream order, for each reach segment. This model, then, built the spatial relationship between the reaches and its corresponding hillslopes, of which the toe was eroded by the reach. Based on the spatial relationship, we quantified the correlations between these indexes and landslides triggered by Typhoon Morakot in 2009 to examine the effects of river erosion on landslide. The correlated indexes were then used as landslide predictors in logistic regression model. Results of the study showed that there is no significant correlation between landslide density and meander sinuosity. This may be a result of wider channel dispersing the erosion at a meandering reach. On the other hand, landslide density at concave bank is significantly higher than that at convex bank in the downstream (stream order > 3), but that is almost the same in the upstream (stream order < 3). This may imply that river sediment play different roles between down- and upstream segments. River sediment in the upstream is an erosion agent vertically scouring the river bed, resulting in a symmetrical effect on both concave and convex bank. In contrast, river sediment in the downstream is an erosion agent eroding the concave bank laterally, but also depositing on the concave side and protecting the bank from erosion. Finally, the results also showed that the integration of fluvial erosion factors can improve the performance in predicting landsliding along meandering rivers.

  9. Fluvial dissolved inorganic C dynamics in the Western Amazonian basin: where does this carbon come from?

    NASA Astrophysics Data System (ADS)

    Waldron, S.; Vihermaa, L. E.; Newton, J.; Krusche, A.; Salimon, C.

    2012-04-01

    The Amazon river and tributaries constitute globally a significant freshwater body and thus a source of atmospheric carbon dioxide. Aquatic carbon dioxide may originate from biological or physicochemical reprocessing of allochthonous dissolved, particulate or inorganic C (ecosystem-derived C, EDC) or it may derive from groundwater inputs of dissolved inorganic C through lithological weathering by soil-derived organic acids or by the dissolution of atmospheric carbon dioxide (minerogenic-derived C, MDC). In addition to quantifying and scaling catchment source import and export terms, accurate budgeting requires additional source differentiation. The significance of MDC is not usually considered by those assessing carbon dioxide efflux, yet differentiating MDC from EDC is crucial. For example, MDC should be less directly affected than EDC by future climatic change, becoming proportionally more important to fluvial carbon dioxide efflux in drought episodes. We are measuring the stable carbon isotopic ratio of dissolved inorganic C to determine the relative importance of MDC and EDC to total C loads in the Tambopata basin in Western Peru. This is an area little studied for C cycling, but important as the soils here are more nutrient rich than the remainder of the Amazon basin which is more studied. Our field station is in the Tambopata national park and since 2010 we have sampled four different river systems which vary in size and drainage characteristics: the Tambopata, (CA ~14,000 km sq.; ~30% of its in the Andes Mountains); La Torre (~2000 km sq.), New Colpita and Main Trail (both < 2 km sq. forest drainage but Main Trail only active in the wet season). Additionally the pH, conductivity, dissolved oxygen, water temperature and stage height have been monitored in these drainage systems where possible by logging at 15 minute intervals. Our data shows that there are statistically significant differences in carbon isotopic composition (ranging from -14 to -29 ‰) and [DIC] concentration (ranging from 0.1 to 0.7 mM) between rivers, which we interpret to represent differences in the MDC / EDC input. We will present this data and discuss in more detail local, seasonal and regional controls on composition, and its application in source contribution apportionment. Whilst we are utilising this DIC isotope tracer to differentiate the source of DIC (and ultimately effluxed carbon dioxide) this study shows the potential of utilising the DIC-C isotopic composition as a tracer of groundwater-surface water interaction.

  10. Geospatial Characterization of Fluvial Wood Arrangement in a Semi-confined Alluvial River

    NASA Astrophysics Data System (ADS)

    Martin, D. J.; Harden, C. P.; Pavlowsky, R. T.

    2014-12-01

    Large woody debris (LWD) has become universally recognized as an integral component of fluvial systems, and as a result, has become increasingly common as a river restoration tool. However, "natural" processes of wood recruitment and the subsequent arrangement of LWD within the river network are poorly understood. This research used a suite of spatial statistics to investigate longitudinal arrangement patterns of LWD in a low-gradient, Midwestern river. First, a large-scale GPS inventory of LWD, performed on the Big River in the eastern Missouri Ozarks, resulted in over 4,000 logged positions of LWD along seven river segments that covered nearly 100 km of the 237 km river system. A global Moran's I analysis indicates that LWD density is spatially autocorrelated and displays a clustering tendency within all seven river segments (P-value range = 0.000 to 0.054). A local Moran's I analysis identified specific locations along the segments where clustering occurs and revealed that, on average, clusters of LWD density (high or low) spanned 400 m. Spectral analyses revealed that, in some segments, LWD density is spatially periodic. Two segments displayed strong periodicity, while the remaining segments displayed varying degrees of noisiness. Periodicity showed a positive association with gravel bar spacing and meander wavelength, although there were insufficient data to statistically confirm the relationship. A wavelet analysis was then performed to investigate periodicity relative to location along the segment. The wavelet analysis identified significant (? = 0.05) periodicity at discrete locations along each of the segments. Those reaches yielding strong periodicity showed stronger relationships between LWD density and the geomorphic/riparian independent variables tested. Analyses consistently identified valley width and sinuosity as being associated with LWD density. The results of these analyses contribute a new perspective on the longitudinal distribution of LWD in a river system, which should help identify physical and/or riparian control mechanisms of LWD arrangement and support the development of models of LWD arrangement. Additionally, the spatial statistical tools presented here have shown to be valuable for identifying longitudinal patterns in river system components.

  11. Putative eskers and new insights into glacio-fluvial depositional settings in southern Argyre Planitia, Mars

    NASA Astrophysics Data System (ADS)

    Bernhardt, H.; Hiesinger, H.; Reiss, D.; Ivanov, M.; Erkeling, G.

    2013-09-01

    We present new insights into possible formation mechanisms and implications for previously identified landforms of putative glacio-fluvial origin along the southern rim of the Argyre basin on Mars. We compiled a detailed geomorphologic map of the study area and conducted morphometric and stratigraphic analyses of specific features, e.g., esker-like sinuous ridges on layered terrain. Based on their morphology and orientations, we subdivided the sinuous ridges on the southern Argyre basin floor into two populations, which could reflect changing conditions of glacial retreat. With the transition and oblique path methods we quantified the ice thickness of the glacier under which the first, lesser degraded, population of ridges probably formed. Our results imply an ice sheet thickness of ~2 km and at least ~100,000-150,000 km³ of ice on the southern floor of the Argyre basin during the time those ridges were deposited (>30× the volume of Vatnajökull, Iceland). The second population of ridges is more degraded and shows layers occasionally extending into the surrounding layered terrain. Comparisons with the morphology surrounding the Piedmont-style Malaspina Glacier in Alaska show similarities, suggesting population II formed during a glacial retreat involving back- and downwasting of stagnant ice lying beneath fresh outwash sediments, creating degraded and layered lag deposits around the emerging eskers. If outwash sediments were fed by the same drainage source as the eskers, sections of layers can extend from a given ridge into the surrounding deposits. The differences between the two ridge populations are probably a result of the subglacial drainage direction changing from northward to north-eastward around 3.6 Ga ago. This was likely coupled with the deposition of less or no outwash sediments resulting in a decrease of lag deposits. A subsequent phase of stagnant glacial retreat left no terminal moraines and largely preserved the population I ridges, thus implying sufficient glacial thinning in order for the ice flow to stop. This, in turn, may have been caused either by sublimation in a cold but increasingly dry climate, or by melting and increased glacier surface runoff due to rising temperatures.

  12. Landscape evolution reconstructions on Mars: a detailed analysis of lacustrine and fluvial terraces

    NASA Astrophysics Data System (ADS)

    Rossato, Sandro; Pajola, Maurizio; Baratti, Emanuele; Mangili, Clara; Coradini, Marcello

    2015-04-01

    Liquid water was flowing on the surface of Mars in the past, leaving behind a wide range of geomorphic features. The ancient major Martian water fluxes vanished about 3.5 Ga. Meteoritic impacts, wind-erosion, gravity-related phenomena, tectonic deformations and volcanic activities deeply altered the landforms during the ages. Hence, the reconstruction of water-shaped landscapes is often complicated. Fluvial and lacustrine terraces analysis and correlation is a useful approach to understand and reconstruct the past changes in Martian landscape evolution. These features are commonly used as reference for the top of water bodies on Earth, since they are void of the uncertainties or errors deriving from erosional or slumping processes that could have acted on the valley flanks or in the plateau, where the hydrological network was carved in. The study area is located in the western hemisphere of Mars, in the Memnonia quadrangle, between latitude 9° 10'-9° 50'South and longitude 167° 0'-167° 30' West and it constitutes a transition region between the southern highlands of Terra Sirenum and the northern lowlands of Lucus Planum. Many water-shaped features have already been described near the study area, the most prominent of them being the Ma'adim Vallis and the Mangala Valles system. Our results derive from the observations and the analysis of HRSC images (12.5 m spatial resolution) and Digital Elevation Models (DEMs) derived from the MEX-HRSC (75 m resolution), that allow the identification of elevation differences up to the tens of meter scale. We were able to reconstruct six main evolutionary stages of a complex hydrologic systems consisting of two main palaeorivers (up to 5 km wide) connected one another by a palaeolake that formed within a meteor crater (~20 km diameter). On the basis of Earth analogs, these stages/terraces should have evolved during a long period of time, at least thousands years long. Furthermore, crater counting date back the deactivation of the system to ca 3.5±0.1 Ga ago, suggesting the presence of a stable environment with subaerial water fluxes during the Late Hesperian, very close to the liquid-water disappearance. Apart from the above mentioned reasons, the increasing interest and ongoing programs of on-site Martian exploration are additional reasons to study fluviolacustrine depositional environments. Together with the technology improvements that lead to more flexible safety constraints for landing/exploring, the possibility to focus on specific and more detailed scientific aspects is enhanced.

  13. Petrography and provenance of the Early Permian Fluvial Warchha Sandstone, Salt Range, Pakistan

    NASA Astrophysics Data System (ADS)

    Ghazi, Shahid; Mountney, Nigel P.

    The Warchha Sandstone of the Salt Range of Pakistan is a continental succession that accumulated as part of a meandering, fluvial system during Early Permian times. Several fining-upward depositional cycles are developed, each of which is composed of conglomerate, cross-bedded sandstone and, in their upper parts, bioturbated siltstone and claystone units with distinctive desiccation cracks and carbonate concretions. Clast lithologies are mainly of plutonic and low-grade metamorphic origin, with an additional minor sedimentary component. Textural properties of the sandstone are fine- to coarse-grained, poorly to moderately sorted, sub-angular to sub-rounded, and with generally loose packing. Based on modal analyses, the sandstone is dominantly a feldspathoquartzose (arkose to sub-arkose). Detrital constituents are mainly composed of monocrystalline quartz, feldspars (more K-feldspar than plagioclase) and various types of lithic clasts. XRD and SEM studies indicate that kaolinite is the dominant clay mineral and that it occurs as both allogenic and authigenic forms. However, illite, illite-smectite mixed layer, smectite and chlorite are also recognised in both pores and fractures. Much of the kaolinite was likely derived by the severe chemical weathering of previously deposited basement rocks under the influence of a hot and humid climate. Transported residual clays deposited as part of the matrix of the Warchha Sandstone show coherent links with the sandstone petrofacies, thereby indicating the same likely origin. Illite, smectite and chlorite mainly occur as detrital minerals and as alteration products of weathered acidic igneous and metamorphic rocks. Based primarily on fabric relationship, the sequence of cement formation in the Warchha Sandstone is clay (generally kaolinite), iron oxide, calcareous and siliceous material, before iron-rich illite and occasional mixed layer smectite-illite and rare chlorite. Both petrographic analysis and field characteristics of the sandstone indicate that the source areas were characterised by uplift of a moderate to high relief continental block that was weathered under the influence of hot and humid climatic conditions. The rocks weathered from the source areas included primary granites and gneisses, together with metamorphic basement rocks and minor amounts of sedimentary rocks. Regional palaeogeographic reconstructions indicate that much of the Warchha Sandstone detritus was derived from the Aravalli and Malani ranges and surrounding areas of the Indian Craton to the south and southeast, before being transported to and deposited within the Salt Range region under the influence of a semi-arid to arid climatic regime.

  14. Physical and human influences on fluvial water quality in the Tagus river catchment, Portugal

    NASA Astrophysics Data System (ADS)

    Nunes, A.

    2009-04-01

    Rivers are important resources of drinkable water, ecosystems with a high biologic potency and places of entertainment. Water quality at the catchment scale depends on climate, geology, geomorphology, soils and mainly of land use and land cover. Different activities such as agriculture, livestock, industrial and urban drains have promoted the deterioration of the fluvial water quality. The announced climate changes, the increase of food requirements, as well as the urban concentration of people pose new challenges for the assessment and sustainable management of water quality on the catchment scale. At present about 2/3 of portuguese population live near coast, in urban centers. Since the last three decades, the largest part of the marginal agricultural land has been abandoned whilst the most productive soils have experienced an intensification on its productivity. The Tagus river catchment, with an area of 24.850 km2 only in the Portuguese territory, shows very important contrasts in climate, geology, geomorphology, land use and population density. The main objectives of this work are to evaluate and compare the surface water quality in different sub catchments of Tagus river and to contribute to a better understanding of how physical and human factors (such as geology, precipitation, temperature, runoff, land use and land cover and population density) interfere in their spatial-temporal variability. In order to achieve this issue, twenty sub catchments were selected. The chosen catchments show different locations and areas, and a quite long data series of physical, chemical and biology properties of water, such as nitrates, phosphates, dissolved oxygen, total coliforms, etc. Making use of Geographic Information System (GIS) tools, a database was created for each sub-catchment containing all the physical and human characteristics. Afterwards, statistical analysis was carried out by using SPSS programme (11.0 for Windows. One-way analysis of variance and the Tukey multiple comparison procedure was performed in order to assess whether differences in physical and human factors and water properties existed among the selected sub catchments. Other statistical procedures were carried out to determine correlations and dependencies between available data. Obtained results show significant statistical differences (p<0,001) among sub catchments concerning surface water quality. Results allow us to conclude that such water is in good quality, contrary to other water which contains a very high nitrates, phosphates and total coliform levels. The factors which better explain this variability are related to the land use, chiefly when social use is preponderate.

  15. Fluvial response to sub-orbital scale environmental changes in southern French Alps

    NASA Astrophysics Data System (ADS)

    Bonneau, Lucile; Jorry, Stephan; Toucanne, Samuel; Emmanuel, Laurent

    2013-04-01

    Linkage between landscape processes and deep sea deposits is assumed by rivers transfer. Despite all the efforts of the Source-to-Sink community during the last decade, very few studies permit to link marine sedimentary records with phenomena occurring onland. The Var sedimentary system is a spatial restricted sediment routing system with a very narrow continental shelf and steep slope. This particularity makes the Var an ideal target for studying sediment transfers under glacial climate. Late Quaternary sea level changes didn't modified the size of drainage area and during both highstand and lowstand, the deep submarine fan (Var Sedimentary Ridge) was continuously feed by a single channel directly connected to Var river mouth. Located at the border between Mediterranean and alpine domains, the Var River watershed is characterized by steep slope and rare sediment dams. Several studies during the last 20 years had shown that for centennial to daily scale, turbidity flows are related to Var river floods. Based on the analysis of stable oxygen isotopes and radiocarbon dates we established the first high resolution stratigraphy of 20 meters long turbidite deposits on the Var Sedimentary Ridge. This record covers the last 75 ka of the Var turbiditic activity which directly reflects the hydrological and sediment discharge of the onshore fluvial system. The turbidite frequencies show a multiscale variability : (1) the higher frequency corresponds to Dansgaard-Oeschger oscillations and Heinrich events, and (2) the lower frequency characterizes the amplitude of suborbital-scale variability which seems to be modulated by long term orbital parameters variations. The same pattern is reported for vegetation history of European Mediterranean border. This is consistent with our results which suggest that soil stabilization by vegetation cover plays an important role in the modulation of sediment transfers. Under stadials and Heinrich cold and dry climate, the scarce vegetation cover was favorable to intense sediment discharge of the Var River. The opposite trend is observed during interstadials when milder condition permit the spreading of tree cover, the turbidite activity at that time was as low as during Holocene. The highest frequency of turbidite deposition is observed during LGM and rapidly decreases during Heinrich stadial 1, this period could correspond to glacier retreat towards upper valleys. In order to test this hypothesis, future studies will focus on the nature and origin of sediment sources.

  16. The Influence of the Soil Water Balance Within Catchment Hillslopes on Runoff Variability and Fluvial Incision

    NASA Astrophysics Data System (ADS)

    Rossi, M. W.; Whipple, K. X.; Vivoni, E. R.; DiBiase, R.; Heimsath, A. M.

    2014-12-01

    The variability of daily runoff has direct consequences on water availability, flood hazard, ecosystem function, and erosional processes. One component to predicting runoff variability is solid understanding of soil moisture dynamics and the runoff response to rainfall events. By using a point-scale soil water balance model that accounts for vegetation and soil properties, we test how daily rainfall statistics and vegetation response to water availability affect mean hydrologic partitioning and the runoff response during rare storms. Simulations span a transect in mean annual precipitation (MAP) from 200 to 1200 mm/year and are motivated by analysis of a long-term observational network of rainfall in the contiguous U.S. Whether driven by higher storm depths or increased frequency of storm arrivals, increases in MAP always lead to more fractional runoff generation due to the synchronous increase in mean antecedent soil moisture and probability of large rainfall events. Simulations also show that at any given MAP, there are important tradeoffs between increasing the probability of large rainfall events and associated decreases in the mean soil moisture state. Results from this ecohydrologic analysis are then used to drive 1-D simulations of the longitudinal river profile that account for runoff variability and thresholds to incision. We show that in natural settings where long-term hydrologic observations are available and where millennial-scale erosion rates were measured, much of the observed variation between local relief and long-term erosion rates can be explained by combining these two relatively simple models. However, we also show that large differences in MAP often lead to comparatively small differences in the geomorphically effective climate. This partially explains why prior studies have struggled to isolate a climatic control on long-term erosion rates. Expectations for how vegetation influences landscape evolution are often based on the seminal work by Langbein and Schumm (1958) which argues that vegetation introduces negative feedbacks between climate and erosion by stabilizing and protecting the hillslopes. Alternatively, we hypothesize that the role of vegetation in altering hydrologic partitioning may be its most diagnostic imprint on fluvial landscape form and function.

  17. Experimental investigation of fluvial incision on Titan by low-velocity sediment impacts

    NASA Astrophysics Data System (ADS)

    Polito, P. J.; Zygielbaum, B. R.; Sklar, L. S.; Collins, G.

    2008-12-01

    Images returned by the Cassini-Huygens mission reveal evidence for widespread fluvial incision in the polar regions of Titan. Dendritic channel networks draining to large lakes and the absence of cratering suggest active incision into Titan's water-ice bedrock surface. Previous work using the saltation-abrasion bedrock incision model suggests that a terrestrial channel transposed to Titan conditions would incise at remarkably similar rates, because the effects of Titan's lower gravity and less-dense sediments are offset by a much lower resistance to abrasion for ice than rock of similar strength. Here we report new laboratory measurements of ice erosion by low-velocity sediment impacts, part of a larger study investigating the temperature dependence of the material properties that control ice erodibility. We measure the energy required to erode a unit volume of ice using drop tests, in which a 110-150 g ice clast falls 5-10 cm onto a 20 cm diameter ice disk, and differences in mass and measurements of ice density are used to calculate the volume eroded. We construct the 10cm thick ice disks using 2-4 mm seed crystals and near-freezing distilled water. After freezing at 253 K a disk is placed in the bottom of a steel cylinder surrounded by dry ice and liquid nitrogen is pumped into the cylinder from below, chilling the ice to near-Titan temperatures for several hours but never submerging the samples (all drop test trials are completed in air). Our preliminary drop test results show that 4 J and 25 J are required to erode 1 cm3 of ice at temperatures of 205 K and110 K respectively, suggesting that ice may be no more than 2-3 times more erodible than previously-tested rocks of similar tensile strengths. A key limitation of this experimental method is the small size of our target disks, which fail catastrophically by through-cracking after several hundred drops. To avoid through-cracking and obtain direct measurements of ice surface erosion, we are preparing new experiments using a large ice block (~1.25x105 cm3) enclosed in an insulated test chamber, and a laser topographic scanning system. The drop-test results will then be used to design ice-flume experiments in a walk-in freezer to investigate controls on rates of ice incision by mobile sediments and the morphodynamics of incising ice channels.

  18. POST WATERFLOOD CO2 MISCIBLE FLOOD IN LIGHT OIL FLUVIAL DOMINATED DELTAIC RESERVOIR

    SciTech Connect

    Tim Tipton

    2004-04-06

    Texaco Exploration and Production Inc. (TEPI) and the US Department of Energy (DOE) entered into a cost sharing cooperative agreement to conduct an Enhanced Oil Recovery demonstration project at Port Neches. The field is located in Orange County near Beaumont, Texas, and shown in Appendix A. The project would demonstrate the effectiveness of the CO{sub 2} miscible process in Fluvial Dominated Deltaic reservoirs. It would also evaluate the use of horizontal CO{sub 2} injection wells to improve the overall sweep efficiency and determine the recovery efficiency of CO{sub 2} floods in waterflooded and partial waterdrive reservoirs. Texaco's objective on this project was (1) to utilize all available technologies, and to develop new ones, and (2) to design a CO{sub 2} flood process which is cost effective and can be applied to many other reservoirs throughout the US. A database of potential reservoirs for the gulf coast region was developed by LSU, using a screening model developed by Texaco Research Center in Houston. A PC-based CO{sub 2} screening model was developed and the aforementioned database generated to show the utility of this technology throughout the US. Finally, the results and the information gained from this project was disseminated throughout the oil industry via a series of SPE papers and industry open forums. Reservoir characterization efforts for the Marginulina sand shown in Appendix C, were accomplished utilizing conventional and advanced technologies including 3-D seismic. Sidewall and conventional cores were cut and analyzed, lab tests were conducted on reservoir fluids and reservoir voidage was monitored as shown in Appendices B through M. Texaco has utilized the above data to develop a Stratamodel to best describe and characterize the reservoir and to use it as input for the compositional simulator. The compositional model was revised several times to integrate the new data from the 3-D seismic and field performance under CO{sub 2} injection, to ultimately develop an accurate economic model. The Port Neches CO{sub 2} Project concentrated upon the tertiary oil recoveries, to be obtained from two sections of the reservoir, which were at different stages of depletion. The large waterflooded fault block had an average remaining oil saturation of 31% while the small partial waterdrive fault block had an oil saturation of 43%.

  19. Coastal wetland response to sea level rise in a marine and fluvial estuarine system

    NASA Astrophysics Data System (ADS)

    Alizad, K.; Hagen, S. C.; Morris, J. T.; Bilskie, M. V.; Passeri, D. L.; Medeiros, S. C.

    2014-12-01

    Coastal wetlands are at the risk of losing their productivity under increasing rates of sea level rise (SLR). Studies show that under extreme enough stressors, salt marshes will not have time to establish an equilibrium and may migrate landward (Donnelly and Bertness 2001; Warren and Niering 1993) or become open water. In order to investigate salt marsh productivity under SLR scenarios, an integrated hydrodynamic-marsh model was incorporated to dynamically couple physics and biology. The hydrodynamic model calculates mean high water (MHW) and mean low water (MLW) within the river and tidal creeks by analysis of simulated tidal constituents. The response of MHW and MLW is nonlinear due to local changes in the salt marsh platform elevation and biomass productivity. Spatially-varying MHW and MLW are utilized in a biologic model that is a two-dimensional application of the Marsh Equilibrium Model (Morris et al. 2002) to capture the effects of the hydrodynamics on biomass productivity and accretion. Including accurate marsh table elevations into the model is crucial to obtain accurate biomass productivity results. A lidar-derived Digital Elevation Model (DEM) is corrected by incorporating Real Time Kinematic (RTK) surveying elevation data. Additionally, salt marshes continually adapt themselves to reach an equilibrium, in which there are ideal ranges of relative SLR and depth of inundation to increase biomass productivity (Morris et al. 2002). The inputs of the model are updated using the biomass productivity results at each coupling time step to capture the interaction between the marsh and hydrodynamic models. The hydro-marsh model is used to assess the effects of four projections of SLR (Parris et al., 2012) on salt marsh productivity for the year 2100 for the marine dominated Grand Bay, MS estuary and the fluvial dominated Apalachicola, FL estuary. The results show higher productivity under a low SLR scenario and less productivity under the intermediate low SLR. Most of the salt marshes become flooded and some of them migrate under higher SLR scenarios. These examples show how this tool can be used in any estuarine system to project salt marsh productivity and accretion under sea level change scenarios to better interpret responses and improve restoration and planning management decisions.

  20. Implications of the fluvial history of the Wacheqsa River for hydrologic engineering and water use at Chavín de Húntar, Peru

    USGS Publications Warehouse

    Contreras, Daniel A.; Keefer, David K.

    2009-01-01

    Channeling of water through a variety of architectural features represents a significant engineering investment at the first millennium B.C. ceremonial center of Chavín de Huántar in the Peruvian Central Andes. The site contains extensive evidence of the manipulation of water, apparently for diverse purposes. The present configuration of the two local rivers, however, keeps available water approximately 9m below the highest level of water-bearing infrastructure in the site. Geomorphic and archaeological investigation of the fluvial history of the Wacheqsa River has revealed evidence that the Chavín-era configuration of the Wacheqsa River was different. A substantially higher water level, likely the result of a local impoundment of river water caused by a landslide dam, made the provision of water for the hydrologic system within the site a more readily practical possibility. We review what is known of that system and argue that the fluvial history of the Wacheqsa River is critical to understanding this aspect of hydrologic engineering and ritual practice at Chavín. This study demonstrates the relative rapidity and archaeological relevance of landscape change in a dynamic environment.

  1. Use of an intact core and stable-metal isotopes to examine leaching characteristics of a fluvial tailings deposit

    USGS Publications Warehouse

    Ranville, James F.; Smith, Kathleen S.; Lamothe, Paul J.; Jackson, Brian P.; Walton-Day, Katie

    2003-01-01

    In this paper, we use Cd as an example of the utility of stable-metal isotopes in geochemical studies. In the case of Cd, after the core was partially saturated, the 111Cd spike was released as evidenced by a change in the Cd isotope ratios in the effluent. This release continued during the fully saturated leaching phase, however, the total Cd concentration did not increase. These results suggest that the 111Cd spike was retained inside the core during the unsaturated leaching phase, and only partially released as reducing conditions developed. Results from this core-leaching experiment indicate there is a large reservoir of water-soluble material within the fluvial tailings deposit, which yields elevated metal concentrations and high acidity, and which may degrade adjacent ground- and surface-water quality. Use of stable metal isotopes in this study facilitated the determination of different metal-retention processes, metal-release processes, and metal sources in the fluvial tailings deposit in response to changing geochemical conditions.

  2. Sequence stratigraphic-structural analysis of the East Midlands Carboniferous oil field, UK: Implications for fluvial reservoir models

    SciTech Connect

    Aitken, J.F.; Quirk, D.G.

    1996-12-31

    The integration of seismic, well log and core data from, the Scampton North and Welton oil fields, Lincolnshire, UK, has enabled the development of a sequence stratigraphic-structural model for late Namurian and early Westphalian fluvial reservoirs. The tectonic and sequence stratigraphic setting is remarkably similar to that in the Southern North Sea which extends more than 250 km to the east. Closer onshore well spacing, supplemented with coal exploration borehole data, provides an excellent analogue for new Carboniferous Southern North Sea developments and prospects. The reservoirs comprise medium-grained, low sinuosity fluvial aggradational packages within a coal-bearing, fluvio-deltaic depositional environment. Although major active faults occur within the Namurian, tectonic activity had ceased by the start of the Westphalian which has a tramline-like appearance on seismic. The reservoirs are poorly interconnected as a consequence of small-scale faults and extensive shale baffles, which have resulted in considerable production problems, accentuated by an initial poor reservoir correlation. Palynology has proven to be highly imprecise, consequently, the use of seismic picks as chronostratigraphic markers combined with the coal stratigraphy from British Coal boreholes and the application of sequence stratigraphic, concepts has enabled a more precise reservoir correlation to be made.

  3. Sequence stratigraphic-structural analysis of the East Midlands Carboniferous oil field, UK: Implications for fluvial reservoir models

    SciTech Connect

    Aitken, J.F.; Quirk, D.G. )

    1996-01-01

    The integration of seismic, well log and core data from, the Scampton North and Welton oil fields, Lincolnshire, UK, has enabled the development of a sequence stratigraphic-structural model for late Namurian and early Westphalian fluvial reservoirs. The tectonic and sequence stratigraphic setting is remarkably similar to that in the Southern North Sea which extends more than 250 km to the east. Closer onshore well spacing, supplemented with coal exploration borehole data, provides an excellent analogue for new Carboniferous Southern North Sea developments and prospects. The reservoirs comprise medium-grained, low sinuosity fluvial aggradational packages within a coal-bearing, fluvio-deltaic depositional environment. Although major active faults occur within the Namurian, tectonic activity had ceased by the start of the Westphalian which has a tramline-like appearance on seismic. The reservoirs are poorly interconnected as a consequence of small-scale faults and extensive shale baffles, which have resulted in considerable production problems, accentuated by an initial poor reservoir correlation. Palynology has proven to be highly imprecise, consequently, the use of seismic picks as chronostratigraphic markers combined with the coal stratigraphy from British Coal boreholes and the application of sequence stratigraphic, concepts has enabled a more precise reservoir correlation to be made.

  4. Volcanic or Fluvial Channels on Ascraeus Mons: Focus on the Source Area of Sinuous Channels on the Southeast Rift Apron

    NASA Technical Reports Server (NTRS)

    Signorella, Julia D.; deWet, A.; Bleacher, J. E.; Collins, A.; Schierl, Z. P.; Schwans, B.

    2012-01-01

    Deciphering the Mars water history is important to understanding the planet's geological evolution and whether it could have sustained life. Channel features on Mars, such as the features documented in Kasei Valles, are generally accepted as evidence for water flowing over the Mars surface in the past [1]. However, not all channels are the product of fluvial processes and many can be interpreted as having a volcanic origin [2]. This research involves studying channel features on the flanks of the Ascraeus Mons volcano, which is a part of the Tharsis province. Numerous sinuous channels exist on the rift apron of Ascraeus Mons and they have been interpreted as either fluvial [3] or volcanic [4,5]. The channels originate from pits and linear depressions and extend for many 100 s of km downslope. Mapping the proximal to distal morphology of the complete channel and determining its relationship with other features on the apron provides evidence for the processes of formation and their relative temporal relationships. This study focused on sinuous channels located on the south-east part of the Ascraeus rift apron (Fig. 1). Observations of possible analogous features on Hawaii are used to provide insights into the processes of formation of the Mars features.

  5. A model to study the grain size components of the sediment deposited in aeolian-fluvial interplay erosion watershed

    NASA Astrophysics Data System (ADS)

    Zhang, Xiang; Li, Zhanbin; Li, Peng; Cheng, Shengdong; Zhang, Yang; Tang, Shanshan; Wang, Tian

    2015-12-01

    Aeolian-fluvial interplay erosion areas with complex dynamics and physical sources are the main suppliers of coarse sediment in the Yellow River. Understanding the composition, distribution, and sources of deposited sediments in such areas is of great importance for the control of sediment transport in rivers. In this paper, a typical aeolian-fluvial interplay erosion watershed - the Dongliu Gully - was studied and the frequency distribution curves of sediments deposited in the stream channel were fitted using the Weibull function. Sources of deposited sediment in the stream channel were analyzed based on the law of the conservation of matter. Results showed that the hilly zone accounted for 78% of deposited sediments, which were dominated by material with a median grain size (d50) of 0.093 mm, and the desert zone accounted for 22% of deposited sediments, which were dominated by material with a d50 of 0.01 mm. Wind erosion dynamics accounted for 72% of deposited sediments, while water erosion dynamics accounted for only 28%. This research provides a theoretical basis for the control and management of rivers with high sediment content.

  6. Combining impact sensor field and laboratory flume measurements with other techniques for studying fluvial bedload transport in steep mountain streams

    NASA Astrophysics Data System (ADS)

    Beylich, Achim A.; Laute, Katja

    2014-08-01

    The timing and rate of fluvial bedload transport are of central importance within sediment budget studies and in many applications in river science and engineering. During the years 2010, 2011 and 2012 detailed field measurements with portable impact sensors as a non-invasive technique for indirectly determining fluvial bedload transport intensity were conducted in two instrumented and supply-limited drainage basin systems (Erdalen and Bødalen) in the fjord landscape in western Norway. Additional field measurements with portable impact sensors were carried out in 2010 and 2011 in selected transport-limited fluvial systems in the Coast Mountains of western Canada. The collected impact sensor field data were calibrated with laboratory flume experiments. The data from the impact sensor field measurements in western Norway and the flume experiments were combined with field data from continuous discharge monitoring, repeated surveys of channel morphometry and sediment texture, particle tracer measurements, Helley-Smith samplings, underwater video filming and biofilm analyses. The combination of methods and techniques applied provides insights into the temporal variability and intensity of fluvial bedload transport in the selected mountain streams: (i) in the transport-limited systems with generally high bedload transport rates during high discharge and with bedload material moving in clusters over the impact sensor plates, impact sensor data (based on a 1 s measuring interval) provide the opportunity to detect the start and end of bedload transport, thus to identify discharge thresholds for sediment entrainment, and to roughly estimate the intensity and relative intensity of change of bedload transport during the measuring period; (ii) in the supply-limited systems with low bedload transport rates and bedload components moving separately (as single particles) over the impact sensor plates, impact sensor data (with a 1 s measuring interval) allow the detection of the start and end of transport of bedload components > 11.3 mm, thus the identification of discharge thresholds for possible entrainment of particles, the quantification of the number of particles > 11.3 mm moving over the impact sensor plates during the measuring period, the rough estimation of grain sizes of the particles moving separately over the impact sensor plates, and the calculation of the total mass of the bedload material > 11.3 mm moving over the impact sensor plates during the measuring period; (iii) when combined with other methods and techniques (Helley-Smith sampling, particle tracer measurements, biofilm analyses, underwater video filming) which provide information on the active bedload transport channel width, on discharge thresholds for possible entrainment of particles of different grain sizes, and on transport rates of bedload material < 11.3 mm, total rates of fluvial bedload transport, covering all given grain sizes of the bedload material, can be calculated for the supply-limited mountain streams with generally low bedload transport. The higher measured annual bedload yield in Bødalen (13.6 t km- 2 yr- 1) compared to Erdalen (2.6 t km- 2 yr- 1) reflects a higher level of slope-channel coupling in Bødalen than in Erdalen.

  7. Does Model Development Ahead of Data Collection Have Merit? A Case for Advancing Non-Local Fluvial Transport Theories

    NASA Astrophysics Data System (ADS)

    Voller, V. R.; Falcini, F.; Foufoula-Georgiou, E.; Ganti, V.; Paola, C.; Hill, K. M.; Swenson, J. B.; Longjas, A.

    2013-12-01

    The purpose of this work is to suggest how experiments might be constructed to provide data to test recently proposed phenomenological non-local model of depositional transport; formulated on the basis of morphological arguments but with limited data. A sound methodology for developing models of geological systems is to first collect significant data and then carefully identify an appropriate model form and parameters. An alternative approach is to construct what might be referred to as a phenomenological model, where limited observation of the system is used to suggest an appropriate mathematical form that matches the critical nature of the physical system behavior. By their nature, phenomenological models are often developed within a fairly narrow range of observations. In this way, interesting findings can occur when the models are modified and exercised across wider physical domains, in particular in domains where there is an absence of hard data to corroborate or invalidate the model predictions. Although this approach might be frown on my some, it is important to recognize the stellar and proven track record of phenomenological models, which despite the original scarcity of data, often pave the way to new perspectives and important findings. The poster child example is the Higgs boson. In the early 60's manipulation of the quantum field equations revealed a critical inconsistency related to the masses of fundamental particles that could only be mathematically resolved by assuming that they operated within a field that would exert drag; this conjecture took almost fifty years and the vast experimental operation of the Large Hadron Collider to physically confirm. In this work we examine a current phenomenological model used to describe non-local transport in fluvial sediment domains. This model has its genesis in attempting to describe the shapes of hill slope profiles, while acknowledging the fact that two points of the landscape with the same local slope are not always associated with the same sediment flux. The key innovation then is to model the sediment flux at a point in terms of an upstream weighted sum of fluvial slopes or other geomorphological attributes of the system. In the hill-slope context, the downstream flow of information in this non-local formalism is well supported by fundamental observations of the distribution of downstream particle transport distances. However, when the same model is applied in the context of depositional systems it appears to be inconsistent with profiles of depositional surfaces. In particular, the model predicts fluvial profiles with curvature signs opposite to those observed in nature. When a simple mathematical manipulation is made, where the flux at a point is expressed as a downstream weighting of fluvial slopes, however, predictions with the correct form are recovered. At this time, no specific mechanism or clear corroborating data have been identified that would explain this downstream control. Does this mean we should ignore this result or would it be better to use it as a motivation to seek out hypotheses tests that would confirm or invalidate the current suggested models of downstream non-local transport? A series of innovative experiments that address the collection of experimental evidence for downstream control in fluvial transport are described.

  8. Revitalizing a mature oil play: Strategies for finding and producing unrecovered oil in frio fluvial-deltaic sandstone reservoirs at South Texas. Annual report, October 1994--October 1995

    SciTech Connect

    Holtz, M.; Knox, P.; McRae, L.

    1996-02-01

    The Frio Fluvial-Deltaic Sandstone oil play of South Texas has produced nearly 1 billion barrels of oil, yet it still contains about 1.6 billion barrels of unrecovered mobile oil and nearly the same amount of residual oil resources. Interwell-scale geologic facise models of Frio Fluvial-deltaic reservoirs are being combined with engineering assessments and geophysical evaluations in order to determine the controls that these characteristics exert on the location and volume or unrecovered mobile and residual oil. Progress in the third year centered on technology transfer. An overview of project tasks is presented.

  9. Upstream facing convex surfaces and the importance of bedload in fluvial bedrock incision: observations from Taiwan.

    NASA Astrophysics Data System (ADS)

    Wilson, Andrew; Hovius, Niels

    2010-05-01

    Until recently many bedrock bedforms have been little more than ornate curiosities found in many bedrock river channels because few process-form linkages had been established for the myriad of forms recognised in the literature. In addition rates of bedrock bedform development from direct observations in natural channels are rare due to difficulties in confidently linking spatial observations from two monitoring visits using extant methods. We have documented bedrock bedforms present at 45 river locations in a survey of Taiwanese rivers and monitored erosion at sites on a single river, the Li Wu River, between 2007 and 2008. Taiwan is an ideal location to investigate bedrock bedforms produced by bedload abrasion due to regular high discharge events, high discharge variability, high sediment transport rates of bedload calibre material, and documented high fluvial bedrock erosion rates. In this paper we present surface texture observations (photographs and scanning electron microscope images) of a particularly common variety of bedrock bedform found in Taiwanese rivers: upstream facing convex surfaces (UFCS). A distinct contrast exists in surface textures, on two scales of observation, between the upstream and downstream facing facets. On a millimetre scale, upstream facing convex surfaces have a sugary roughness with centimetre-scale pits superimposed on a larger-scale smoothed convex form. In contrast downstream facing surfaces are often more intricately sculpted on a centimetre scale with millimetre- to micrometre-scale roughness, defined by roughness elements smaller than the rock forming grain, superimposed on an often undulatory concave form. A linear crestline feature marks the change in slope and surface texture of the bedform and is orientated approximately normal to the channel axis. To complement these qualitative observations we present a novel method to quantify small-magnitude surface changes by using embedded, two-part datums and conventional 3D laser scanning. Using this method the kinematics of ten nascent upstream facing convex surfaces were determined by differencing three-dimensional models acquired in March of 2007 and 2008. A feature common to all sites is an asymmetric pattern of erosion at the scale of the bedform. Erosion was dominantly focused on the upstream facing surfaces whereas the downstream facing surfaces experienced minor erosion. The linear crestline maps the boundary between high and low relative erosion rates, in addition to marking the boundary between changing surface texture and slope characteristics. To a much lesser extent, in some cases, erosion is also spatially variable within each facet of the bedrock bedform. We argue that the erosion of the upstream facing, or stoss, surface of this variety of bedrock bedform is the work of abrasion by bedload, which by being decoupled from the flow can only impact the stoss surface to any significant extent. If this is the case then the high erosion rates observed indicate that abrasion by bedload is the controlling process in the formation of this variety of bedrock bedform and perhaps the channel at large in this setting. Lee surfaces, which are sculpted more slowly, are the product of suspended load abrasion due to much smaller particles impacting the substrate in the lee of the obstacle where they are ejected from tightly curved flow lines. As bedload accounts for only ~30% of the total river sediment load yet bedload abrasion accounts for virtually all the erosion on UFCSs, the quantity of bedload passing through bedrock rivers has a strong control on channel incision rates.

  10. Evolving fluvial response of the Sandy River, Oregon, following removal of Marmot Dam

    USGS Publications Warehouse

    Major, Jon J.; O'Connor, Jim E.; Podolak, Charles J.; Keith, Mackenzie K.; Spicer, Kurt R.; Wallick, J. Rose; Bragg, Heather M.; Pittman, Smokey; Wilcock, Peter R.; Rhode, Abagail; Grant, Gordon E.

    2010-01-01

    The October 2007 removal of Marmot Dam on the Sandy River, Oregon, triggered a rapid sequence of fluvial responses as ~730,000 m3 of sand and gravel that filled the former reservoir were suddenly exposed to an energetic river. Using direct measurements of sediment transport, photogrammetry, and repeat surveys between transport events, we monitored the erosion, transport, and redeposition of this sediment in the hours, days, and months following breaching. Measurements of suspended load and bedload documented an initial spike in the flux of fine suspended sediment in the minutes after breaching followed by high rates of suspendedand bedload transport of sand. Significant gravel transport did not begin at a measurement site 0.4 km downstream of the dam until 18–20 hours after breaching, when bedload transport achieved rates of about 60 kg/s—rates that greatly exceeded concurrent measurements of less than 10 kg/s at sites upstream and farther downstream of the dam. Bedload transport rates just below the dam site remained 10–100 times above upstream and downstream rates through subsequent high flow events during the winter and spring of 2007 and 2008. Much of the elevated sediment load was derived from eroded reservoir sediment, which initially began eroding when a multi-meter-tall knickpoint migrated upstream 200 meters in the first hour. Rapid knickpoint migration triggered bank collapse in the unconsolidated fill, which swiftly widened the channel. Over the following days and months, the knickpoint migrated slowly upchannel, simultaneously lowering and becoming less distinct. By May 2008, a riffle-like feature approximately 1 m high, a few tens of meters long, and 2 km upstream from the breached dam persisted. Knickpoint and lateral erosion evacuated ~100,000 cubic meters of sediment from the reservoir in the first 60 hours, and by the end of high flows in May 2008 about 350,000 cubic meters (45 percent of the initial reservoir volume) had been evacuated. Large stormflows in November 2008 and January 2009 eroded another 39,000 cubic meters of sediment. Thus, within 15 months of breaching, about 55 percent of the impounded sediment (390,000 cubic meters) had been eroded. Two years after breaching, only another 10,000 m3 (~400,000 m3 total) had been eroded. About 30 percent of the eroded sediment has been redeposited in a tapered wedge of sediment that extends 2 km from the former dam site to the entrance of a confined bedrock gorge. Much of the balance of the eroded sediment is distributed along and partly fills pools within the Sandy River gorge, a narrow bedrock canyon extending 2–9 km downstream of the former dam site, and along the channel farther downstream.

  11. Rapid fluvial aggradation in response to climate change in northwestern Argentina

    NASA Astrophysics Data System (ADS)

    Wickert, Andrew; Schildgen, Taylor; Strecker, Manfred

    2015-04-01

    River channels near the edge of the northwestern Argentine Andes are rapidly aggrading at present, with preliminary estimates suggesting rates of ~20 cm yr-1. This mirrors cycles of extensive aggradation over the past 100,000 years that formed pronounced fill terraces along regional valley networks and record periods in which in which climate-driven sediment supply overcame uplift-driven river incision (Robinson et al, 2005). Here we use the new SedFlow model (Heimann et al., 2014) to help us understand the causes and spread of aggradation across these basins in the modern system, with the additional eventual goal to better interpret the geologic record. We provide field-derived grain-size distributions, field-measured and remotely-sensed channel widths and valley slopes, and a variety of possible sediment source locations and amounts as inputs to SedFlow, which routes sediment through the fluvial channel network to produce time-evolving predictions of aggradation and incision. We compare these predictions against changes in topography measured by IceSAT (Zwally et al., 2014) and field surveys. We initially test the system response to a series of isolated sediment inputs to observe interactions between tributary systems and the mainstem river. Recent observations indicate that debris-flow induced landslides are important contributors to aggradation in these rivers (Cencetti and Rivelli, 2011). These and other sediment production and transport processes are likely driven by variations in the El Niño Southern Oscillation (ENSO) (Bookhagen and Strecker, 2009). Therefore, we then run SedFlow with sediment inputs distributed across the landscape based on locations where ENSO influences may trigger enhanced landsliding. These model experiments help us towards our end goal of providing a more quantitative basis to interpret field observations of landscape response to changing patterns of precipitation. References: Bookhagen, B. and Strecker, M.: Amazonia: Landscape and Species Evolution, in Amazonia, Landscape and Species Evolution: A Look into the Past, edited by C. Hoorn and F. P. Wesselingh, Wiley-Blackwell Publishing Ltd., Oxford, UK., 2009. Cencetti, C. and Rivelli, F. R.: Landslides Dams Induced by Debris Flows in Quebrada Del Toro (Province of Salta, Argentina), in 5th International Conference on Debris-Flow Hazards Mitigation: Mechanics, Prediction and Assessment, pp. 645-650, Casa Editrice Università La Sapienza, Padua, Italy., 2011. Heimann, F. U. M., Rickenmann, D., Turowski, J. M. and Kirchner, J. W.: sedFlow - an efficient tool for simulating bedload transport, bed roughness, and longitudinal profile evolution in mountain streams, Earth Surf. Dyn. Discuss., 2(2), 733-772, doi:10.5194/esurfd-2-733-2014, 2014. Robinson, R. a. J., Spencer, J. Q. G., Strecker, M. R., Richter, a. and Alonso, R. N.: Luminescence dating of alluvial fans in intramontane basins of NW Argentina, Geol. Soc. London, Spec. Publ., 251(1), 153-168, doi:10.1144/GSL.SP.2005.251.01.11, 2005. Zwally, H., R. Schutz, C. Bentley, J. Bufton, T. Herring, J. Minster, J. Spinhirne, and R. Thomas. GLAS/ICESat L1B Global Elevation Data. Version 34. GLA06. Boulder, Colorado USA: NASA DAAC at the National Snow and Ice Data Center. http://dx.doi.org/10.5067/ICESAT/GLAS/DATA126. 2014.

  12. Flood of February 1980 along the Agua Fria River, Maricopa County, Arizona

    USGS Publications Warehouse

    Thomsen, B.W.

    1980-01-01

    The flood of February 20, 1980, along the Agua Fria River below Waddell Dam, Maricopa County, Ariz., was caused by heavy rains during February 13-20. The runoff filled Lake Pleasant and resulted in the largest release--66,600 cubic feet per second--from the reservoir since it was built in 1927; the maximum inflow to the reservoir was about 73,300 cubic feet per second. The area inundated by the releases includes about 28 miles along the channel from the mouth of the Agua Fria River to the Beardsley Canal flume crossing 5 miles downstream from Waddell Dam. The flood of 1980 into Lake Pleasant has a recurrence interval of about 47 years, whereas the flood of record (1919) has a recurrence interval of about 100 years. (USGS)

  13. SEISMIC STUDY OF THE AGUA DE PAU GEOTHERMAL PROSPECT, SAO MIGUEL, AZORES.

    USGS Publications Warehouse

    Dawson, Phillip B.; Rodrigues da Silva, Antonio; Iyer, H.M.; Evans, John R.

    1985-01-01

    A 16 station array was operated over the 200 km**2 central portion of Sao Miguel utilizing 8 permanent Instituto Nacional de Meterologia e Geofisica stations and 8 USGS portable stations. Forty four local events with well constrained solutions and 15 regional events were located. In addition, hundreds of unlocatable seismic events were recorded. The most interesting seismic activity occurred in a swarm on September 6 and 7, 1983 when over 200 events were recorded in a 16 hour period. The seismic activity around Agua de Pau was centered on the east and northeast slopes of the volcano. The data suggest a boiling hydrothermal system beneath the Agua de Pau volcano, consistent with a variety of other data.

  14. Agua Caliente Solar Feasibility and Pre-Development Study Final Report

    SciTech Connect

    Carolyn T. Stewart, Managing Partner; Red Mountain Energy Partners

    2011-04-26

    Evaluation of facility- and commercial-scale solar energy projects on the Agua Caliente Band of Cahuilla Indians Reservation in Palm Springs, CA. The Agua Caliente Band of Cahuilla Indians (ACBCI) conducted a feasibility and pre-development study of potential solar projects on its lands in southern California. As described below, this study as a logical and necessary next step for ACBCI. Support for solar project development in California, provided through the statewide California Solar Initiative (CSI), its Renewable Portfolio Standard and Feed-in Tariff Program, and recently announced Reverse Auction Mechanism, provide unprecedented support and incentives that can be utilized by customers of California's investor-owned utilities. Department of Energy (DOE) Tribal Energy Program funding allowed ACBCI to complete its next logical step to implement its Strategic Energy Plan, consistent with its energy and sustainability goals.

  15. Hydrologic characteristics of the Agua Fria National Monument, central Arizona, determined from the reconnaissance study

    USGS Publications Warehouse

    Fleming, John B.

    2005-01-01

    Hydrologic conditions in the newly created Agua Fria National Monument were characterized on the basis of existing hydrologic and geologic information, and streamflow data collected in May 2002. The study results are intended to support the Bureau of Land Management's future water-resource management responsibilities, including quantification of a Federal reserved water right within the monument. This report presents the study results, identifies data deficiencies, and describes specific approaches for consideration in future studies. Within the Agua Fria National Monument, the Agua Fria River flows generally from north to south, traversing almost the entire 23-mile length of the monument. Streamflow has been measured continuously at a site near the northern boundary of the monument since 1940. Streamflow statistics for this site, and streamflow measurements from other sites along the Agua Fria River, indicate that the river is perennial in the northern part of the monument but generally is intermittent in downstream reaches. The principal controls on streamflow along the river within the monument appear to be geology, the occurrence and distribution of alluvium, inflow at the northern boundary and from tributary canyons, precipitation, and evapotranspiration. At present, (2004) there is no consistent surface-water quality monitoring program being implemented for the monument. Ground-water recharge within the monument likely results from surface-water losses and direct infiltration of precipitation. Wells are most numerous in the Cordes Junction and Black Canyon City areas. Only eight wells are within the monument. Ground-water quality data for wells in the monument area consist of specific-conductance values and fluoride concentrations. During the study, ground-water quality data were available for only one well within the monument. No ground-water monitoring program is currently in place for the monument or surrounding areas.

  16. Identificacin de deslizamientos de terreno utilizando fotos areas de Ponce, Puerto Rico

    E-print Network

    Gilbes, Fernando

    Identificación de deslizamientos de terreno utilizando fotos aéreas de Ponce, Puerto Rico Rosimar sobre el área. Para el caso de Ponce, se tenían disponibles fotos aéreas que fueron toma- das por una de esta técnica. Palabras claves: clasificaciones, deslizamientos, ENVI, fotos, percepción remota

  17. Testing the Late Noachian Icy Highlands Model: Geological Observations, Processes and Origin of Fluvial and Lacustrine Features.

    NASA Astrophysics Data System (ADS)

    Head, James; Wordsworth, Robin; Forget, Francis; Madeleine, Jean-Baptiste; Halvey, Italy

    2014-05-01

    A new reconstruction of the Late Noachian Mars atmosphere and climate shows atmosphere-surface thermal coupling and an adiabatic cooling effect producing preferential distribution of snow and ice in the highlands. In this Late Noachian Icy Highlands (LNIH) scenario, snow and ice accumulate in the south circumpolar region and in the higher altitudes of the southern uplands, but the mean annual temperature is everywhere below freezing. How can the abundant evidence for water-related fluvial and lacustrine activity (valley networks, VN; open-basin lakes, OBL; closed-basin lakes; CBL) be reconciled with the icy highlands model? We investigate the nature of geologic processes operating in the icy highlands and use the Antarctic McMurdo Dry Valleys (MDV) as guidance in understanding and assessing how melting might be taking place. In the MDV, mean annual temperatures (MAT) are well below freezing. This results in a thick regional permafrost layer, the presence of an ice-table at shallow depths, and an overlying dry active layer. This configuration produces a perched aquifer and a horizontally stratified hydrologic system, where any melting results in local saturation of the dry active layer and channelized flow on top of the ice table. Top-down melting results in the dominance of lateral water transport, in contrast to temperate climates with vertical infiltration and transport to the groundwater table. Despite subzero MAT, MDV peak seasonal and peak daytime temperatures can exceed 273K and have a strong influence on the melting of available water ice. We present maps of the predicted distribution of LNIH snow and ice, compare these to the distribution of VN, OBL and CBL, and assess how top-down and bottom-up melting processes might explain the formation of these features in an otherwise cold and icy LN Mars. We assess the global near-surface water budget, analyze thickness estimates to distinguish areas of cold-based and wet-based glaciation, analyze the state of the ice cover and its susceptibility to melting and runoff, and describe top-down melting and fluvial channel formation processes in a LNIH environment. We find that: 1) episodic top-down melting of the LNIH is a robust mechanism to produce the observed fluvial and lacustrine features; 2) the characteristics and distribution of features in the Dorsa Argentea Formation are consistent with an extensive circum-polar ice cap during LNIH time; and 3) the nature of preserved LN impact craters is consistent with impact cratering processes in the LNIH environment. 393 words.

  18. An Early Pennsylvanian threshold for the influence of vegetation on fluvial landscapes, based on the geological record of Atlantic Canada

    NASA Astrophysics Data System (ADS)

    Gibling, Martin; Ielpi, Alessandro; Bashforth, Arden; Davies, Neil

    2015-04-01

    Vegetation profoundly influences modern fluvial systems, depending on plant life-history strategies, tolerance to disturbance, and habitat drainage. However, direct evidence for these dynamic relationships is cryptic and has commonly been overlooked in ancient deposits. We report evidence for profound interactions between channels, in situ and transported vegetation in Lower Pennsylvanian formations of Atlantic Canada (~310 Ma), attributed to braided, meandering and fixed-channel (anastomosing) systems. Plant groups include lycopsids that preferred stable wetland settings, disturbance-tolerant calamitaleans, and deeply rooted cordaitaleans (early gymnosperms) that originated in the late Mississippian and colonised both wetland and dryland settings. For the meandering and anastomosing channel deposits, upright vegetation was observed within channel-based bedforms and bars and on channel margins. Lycopsids and calamitalean groves colonized the channel bed and bank-attached bars during periods of reduced flow, nucleating bar growth after flow resumed. Upright lycopsids and cordaitaleans are common along channel cutbanks and are locally tilted towards the channel, implying involvement in bank stabilization. Rhizoconcretions that formed around deep cordaitalean roots may have aided bank reinforcement. Tetrapod and arthropod trackways in the channel deposits indicate a close linkage between riparian and aquatic ecosystems. In the braided systems, sediments that contain abundant cordaitalean logs constitute nearly 20% of channel deposits, and the logs form channel-base lags, fill channels up to 6 m deep, and form nuclei for shallow sandbars. Log accumulations overlain by shale lenses imply a contribution to channel avulsion. Rooted channel-sandstones containing upright trees are interpreted as vegetated islands in an island-braided system. Anastomosing systems are abundant in these Lower Pennsylvanian formations but rare in older strata, and the multi-channel island-braided systems are the oldest yet described. The rise to prominence of these two anabranching styles, broadly coinciding with the rise of cordaitaleans, implies that fluvial landscapes had crossed a threshold from a geomorphic and biogeomorphic mode of operation into a fully ecological mode with feedback loops between vegetation and fluvial processes. Thereafter, patterns of interaction between rivers and vegetation broadly resembled those of today, with prominent riparian corridors and profound consequences for aquatic, soil and other terrestrial ecosystems. Our field observations confirm the co-evolution of river systems, vegetation and animals, and highlight a need to incorporate vegetation more fully into earth-system and landscape models.

  19. Post Waterflood CO2 Miscible Flood in Light Oil, Fluvial-Dominated Deltaic Reservoir (Pre-Work and Project Proposal - Appendix)

    SciTech Connect

    Bou-Mikael, Sami

    2002-02-05

    The main objective of the Port Neches Project was to determine the feasibility and producibility of CO2 miscible flooding techniques enhanced with horizontal drilling applied to a Fluvial Dominated Deltaic reservoir. The second was to disseminate the knowledge gained through established Technology Transfer mechanisms to support DOE's programmatic objectives of increasing domestic oil production and reducing abandonment of oil fields.

  20. Sedimentation of loess-like sediments on fluvial terraces in the high mountains of Taiwan and its implications for assessing Quaternary morphodynamics.

    NASA Astrophysics Data System (ADS)

    Wenske, Dirk; Böse, Margot; Frechen, Manfred; Lüthgens, Christopher

    2010-05-01

    Loess-like sediments have been found at numerous locations in the summit areas of the high mountains of Taiwan. Their occurrence has been interpreted indicating a relative morphodynamic stability in the uppermost parts of the mountain belt under present day climate conditions (Wenske et al., in press). Previously the occurrence of these sediments seemed to be limited to areas not influenced by fluvial morphodynamics. Now, a section studied near the town of Sung Mao in the upper catchment of the Tachia river exposes sandy loess overlaying fluvial sands and gravels of an accumulation terrace at approximately 50m above the present channel. Three different outcrop locations along a forestry road crossing the fluvial terrace have been studied and sampled for optically stimulated luminescence dating. This will give a timeframe for the deposition of these sediments in relation to the aggradation of the fluvial terrace sediments. Sediment properties such as grain size distribution and the geochemical characteristics of the sandy loess and the over- and underlaying sediments are analyzed in order to reconstruct the sedimentation regime. Silty soil material on the near Fushoushan plateau has been sampled to complement the study and give a better understanding of the transport and sedimentation pattern of aeolian sediments to the area. References Wenske, D., Böse, M., Frechen, M., Lüthgens, C. (2009): Late Holocene mobilisation of loess-like sediments in Hohuan Shan, high mountains of Taiwan, Quaternary International, doi:10.1016/j.quaint.2009.10.034

  1. Late Quaternary fluvial terraces of the Romagna and Marche Apennines, Italy: Climatic, lithologic, and tectonic controls on terrace genesis in an active orogen

    E-print Network

    Pazzaglia, Frank J.

    Late Quaternary fluvial terraces of the Romagna and Marche Apennines, Italy: Climatic, lithologic, and tectonic controls on terrace genesis in an active orogen Karl W. Wegmann a,*,1 , Frank J. Pazzaglia b a Department of Marine, Earth, and Atmospheric Sciences, North Carolina State University, Campus Box 8208

  2. Post Waterflood CO2 Miscible Flood in Light Oil, Fluvial-Dominated Deltaic Reservoir (Pre-Work and Project Proposal), Class I

    SciTech Connect

    Bou-Mikael, Sami

    2002-02-05

    This project outlines a proposal to improve the recovery of light oil from waterflooded fluvial dominated deltaic (FDD) reservoir through a miscible carbon dioxide (CO2) flood. The site is the Port Neches Field in Orange County, Texas. The field is well explored and well exploited. The project area is 270 acres within the Port Neches Field.

  3. A stability analysis of semi-cohesive streambanks with CONCEPTS: Coupling field and laboratory investigations to quantify the onset of fluvial erosion and mass failure

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The overarching goal of this study is to perform a comprehensive bank stability analysis that is phenomenologically sound by considering both mass failure and fluvial erosion. The nature of this study is twofold. First, field and experimental analysis is conducted to generate data for channel cross-...

  4. The Association of Anastomosed fluvial deposits and dinosaur tracks, eggs, and nests: Implications for the interpretation of floodplain environments and a possible survival strategy for ornithopods

    SciTech Connect

    Nadon, G.C. )

    1993-02-01

    The St. Mary River Formation (Maastrichtian) consists of anastomosed fluvial deposits containing several hundred track-bearing beds. Paleontologic and sedimentologic analyses of these beds indicate that large herbivores, ornithopods, inhabited a seasonal wetland dominated by marshes and lakes. Shallow tracks in fine-grained sediments, formed as the sediments dewatered to the point of stiffness, display the highest resolution of detail. The preservation potential of tracks in anastomosed fluvial deposits is large because of the abundance of soft substrates to record the tracks and the occurrence of annual flooding to rapidly bury the footprints. Comparison of the St. Mary River Formation to other anastomosed fluvial deposits as old as the Early Jurassic confirms that tracks are common in this type of deposit. The variation in preservation of track types and depth of penetration raises the possibility that ornithopods employed a survival strategy involving seasonal wetlands. The wetlands provided an abundant food source and at the same time the combination of a soft substrate and flooded conditions would have effectively countered the superior speed and agility of large carnivores. The relatively common occurrence of ornithopod eggshells from anastomosed fluvial deposits suggests that the abundant food supply accompanying the wet season also made the wetlands an ideal location to rear young. These data can be used to refine the interpretations of depositional environment derived from the sediments by allowing estimates to be made regarding the early post-depositional conditions of the sediments. 95 refs., 7 figs., 1 tab.

  5. Critical Evaluation of How the Rosgen Classification and Associated "Natural Channel Design" Methods Fail to Integrate and Quantify Fluvial Processes and Channel Response

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Over the past 10 years the Rosgen classification system and its associated methods of “natural channel design” have become synonymous to some with the term “stream restoration” and the science of fluvial geomorphology. Since the mid 1990s, this classification approach has become widely adopted by go...

  6. GONE BUT NOT FORGOTTEN-THE AEOLIAN MODIFICATION OF FLUVIAL SURFACES ON MARS: PRELIMINARY RESULTS FROM CENTRAL AUSTRALIA. M. C. BOURKE, School

    E-print Network

    Bourke, Mary C.

    GONE BUT NOT FORGOTTEN-THE AEOLIAN MODIFICATION OF FLUVIAL SURFACES ON MARS: PRELIMINARY RESULTS mask and even obliterate primary deposi- tional surfaces on Mars. This modification increases. Following field assessments, four type-sites were selected (two on the Hale, one on the Todd and one

  7. Recent changes in sediment redistribution in the upper parts of the fluvial system of European Russia: regional aspects

    NASA Astrophysics Data System (ADS)

    Yermolaev, O. P.; Golosov, V. N.; Kumani, M. V.; Litvin, L. F.; Rysin, I. I.; Dvinskikh, A. P.

    2015-03-01

    Quantitative assessments of soil loss from cultivated land and sediment redistribution along pathways from cultivated fields to river channels have been undertaken using a range of different methods and techniques, including erosion models, detailed studies of sediment redistribution in representative catchments, monitoring of gully head retreat and evaluation of sediment deposition in ponds and small reservoirs. Most of the sediment eroded from arable land is deposited between the lower portions of the cultivated slopes and the river channels. Less than 15% of the eroded sediment is delivered to the river channels. Sediment redistribution rates in the upper parts of the fluvial system have declined during the last 25 years in both the western and eastern parts of the Russian Plain, because of a major reduction of surface runoff during snowmelt and a reduction of the area of arable land in some parts of the study area.

  8. [Protection of the environment, protection of the health. Note 1 - fluvial monitoring: cultural evolution and methodological evolution].

    PubMed

    Cocchioni, M; Scuri, S; Morichetti, L; Petrelli, F; Grappasonni, I

    2006-01-01

    The article underlines the fundamental importance of the protection and promotion of environmental quality for the human health. The evolution of fluvial monitoring techniques is contemplated from chemical and bacteriological analysis until the Index Functional Index (I.F.F). This evolution it's very important because shows a new methodological and cultural maturation that has carried from a anthropocentric vision until an ecocentric vision. The target of this ecological vision is the re-establishment of ecological functionality of the rivers, eliminating the consumer's vision of the water considered only as a usable resource. The importance of an correct monitoring of a river is confirmed, even though the preventive approach priority remains. PMID:17063633

  9. Early Mars was wet but not warm: Erosion, fluvial features, liquid water habitats, and life below freezing

    NASA Technical Reports Server (NTRS)

    Mckay, C. P.; Davis, W. L.

    1993-01-01

    There is considerable evidence that Mars had liquid water early in its history and possibly at recurrent interval. It has generally been assumed that this implied that the climate was warmer as a result of a thicker CO2 atmosphere than at the present. However, recent models suggest that Mars may have had a thick atmosphere but may not have experienced mean annual temperatures above freezing. In this paper we report on models of liquid water formation and maintenance under temperatures well below freezing. Our studies are based on work in the north and south polar regions of Earth. Our results suggest that early Mars did have a thick atmosphere but precipitation and hence erosion was rare. Transient liquid water, formed under temperature extremes and maintained under thick ice covers, could account for the observed fluvial features. The main difference between the present climate and the early climate was that the total surface pressure was well above the triple point of water.

  10. Post waterflood CO{sub 2} miscible flood in light oil, fluvial-dominated deltaic reservoir. FY 1993 annual report

    SciTech Connect

    Davis, D.W.

    1995-03-01

    The project is a Class 1 DOE-sponsored field demonstration project of a CO{sub 2} miscible flood project at the Port Neches Field in Orange County, Texas. The project will determine the recovery efficiency of CO{sub 2} flooding a waterflooded and a partial waterdrive sandstone reservoir at a depth of 5,800. The project will also evaluate the use of a horizontal CO{sub 2} injection well placed at the original oil-water contact of the waterflooded reservoir. A PC-based reservoir screening model will be developed by Texaco`s research lab in Houston and Louisiana State University will assist in the development of a database of fluvial-dominated deltaic reservoirs where CO{sub 2} flooding may be applicable. This technology will be transferred throughout the oil industry through a series of technical papers and industry open forums.

  11. Contrasting fluvial styles across the mid-Pleistocene climate transition in the northern shelf of the South China Sea: Evidence from 3D seismic data

    NASA Astrophysics Data System (ADS)

    Zhuo, Haiteng; Wang, Yingmin; Shi, Hesheng; He, Min; Chen, Weitao; Li, Hua; Wang, Ying; Yan, Weiyao

    2015-12-01

    Multiple successions of buried fluvial channel systems were identified in the Quaternary section of the mid-shelf region of the northern South China Sea, providing a new case study for understanding the interplay between sea level variations and climate change. Using three commercial 3D seismic surveys, accompanied by several 2D lines and a few shallow boreholes, the sequence stratigraphy, seismic geomorphology and stratal architecture of these fluvial channels were carefully investigated. Based on their origin, dimensions, planform geometries and infill architectures, six classes of channel systems, from Class 1 to Class 6, were recognized within five sequences of Quaternary section (SQ1 to SQ5). Three types of fluvial systems among them are incised in their nature, including the trunk incised valleys (Class 1), medium incised valleys (Class 2) and incised tributaries (Class 3). The other three types are unincised, which comprise the trunk channels (Class 4), lateral migrating channels (Class 5) and the stable channels (Class 6). The trunk channels and/or the major valleys that contain braided channels at their base are hypothesized to be a product of deposition from the "big rivers" that have puzzled the sedimentologists for the last decade, providing evidence for the existence of such rivers in the ancient record. Absolute age dates from a few shallow boreholes indicate that the landscapes that were associated with these fluvial systems changed significantly near the completion of the mid-Pleistocene climate transition (MPT), which approximately corresponds to horizon SB2 with an age of ?0.6 Ma BP. Below SB2, the Early Pleistocene sequence (SQ1) is dominated by a range of different types of unincised fluvial systems. Evidence of incised valleys is absent in SQ1. In contrast, extensive fluvial incision occurred in the successions above horizon SB2 (within SQ2-SQ5). Although recent studies call for increased incision being a product of climate-controlled increase in river discharge, the down-dip location of our study area suggests that relative sea level change was the most important control of the evolution of fluvial systems. However, it is acknowledged that climate change was also important through its role in regulating glacio-eustasy. We speculate that the small amplitude and periodicity of sea level cycles before and during the MPT were not sufficient to fully expose the shelf and cause extensive fluvial incisions. Completion of the MPT as well as the onset of 100 ky climate cycles at ?0.6 Ma, during which the duration of cycles and magnitude of sea level change both increased, are considered to be triggering event for extensive development of incised fluvial systems. In addition to the eustatically driven causes of enhanced incision, the intensification of the East Asia monsoon at 0.9 Ma and 0.6 Ma driven by the episodic uplift of the Tibetan Plateau may have also significantly enhanced the amplitude of sea level falls and thus the fluvial incisions of the northern shelf of the South China Sea.

  12. The igapó of the Negro River in central Amazonia: Linking late-successional inundation forest with fluvial geomorphology

    NASA Astrophysics Data System (ADS)

    Montero, Juan Carlos; Latrubesse, Edgardo M.

    2013-10-01

    Despite important progress on Amazonian floodplain research, the flooded forest of the Negro River "igapó" has been little investigated. In particular, no study has previously focused the linkage between fluvial geomorphology and the floristic variation across the course of the river. In this paper we describe and interpret relations between igapó forest, fluvial geomorphology and the spatial evolution of the igapó forest through the Holocene. Therefore, we investigate the effect of geomorphological units of the floodplain and channel patterns on tree diversity, composition and structural parameters of the late-successional igapó forest. Our results show that sites sharing almost identical flooding regime, exhibit variable tree assemblages, species richness and structural parameters such as basal area, tree density and tree heights, indicating a trend in which the geomorphologic styles seem to partially control the organization of igapó's tree communities. This can be also explained by the high variability of well-developed geomorphologic units in short distances and concentrated in small areas. In this dynamic the inputs from the species pool of tributary rivers play a crucial role, but also the depositional and erosional processes associated with the evolution of the floodplain during the Holocene may control floristic and structural components of the igapó forests. These results suggest that a comprehensive approach integrating floristic and geomorphologic methods is needed to understand the distribution of the complex vegetation patterns in complex floodplains such as the igapó of the Negro River. This combination of approaches may introduce a better comprehension of the temporal and spatial evolutionary analysis and a logic rationale to understand the vegetation distribution and variability in function of major landforms, soil distributions and hydrology. Thus, by integrating the past into macroecological analyses will sharpen our understanding of the underlying forces for contemporary floristic patterns along the inundation forests of the Negro River.

  13. Quantifying Quaternary Deformation in the Eastern Cordillera of the Colombian Andes Using Cosmogenic Nuclide Geochronology and Fluvial Geomorphology

    NASA Astrophysics Data System (ADS)

    Dalman, E.; Taylor, M. H.; Veloza-fajardo, G.; Mora, A.

    2014-12-01

    Northwest South America is actively deforming through the interaction between the Nazca, South American, and Caribbean plates. Though the Colombian Andes are well studied, much uncertainty remains in the rate of Quaternary deformation along the east directed frontal thrust faults hundreds of kilometers in board from the subduction zones. The eastern foothills of the Eastern Cordillera (EC) preserve deformed landforms, allowing us to quantify incision rates. Using 10Be in-situ terrestrial cosmogenic nuclide (TCN) geochronology, we dated 2 deformed fluvial terraces in the hanging wall of the Guaicaramo thrust fault. From the 10Be concentration and terrace profile relative to local base level, we calculated incision rates. We present a reconstructed slip history of the Guaicaramo thrust fault and its Quaternary slip rate. Furthermore, to quantify the regional Quaternary deformation, we look at the fluvial response to tectonic uplift. Approximately 20 streams along the eastern foothills of the Eastern Cordillera (EC) were studied using a digital elevation model (DEM). From the DEM, longitudinal profiles were created and normalized channel steepness (Ksn) values calculated from plots of drainage area vs. slope. Knickpoints in the longitudinal profiles can record transient perturbations or differential uplift. Calculated Ksn values indicate that the EC is experiencing high rates of uplift, with the highest mean Ksn values occurring in the Cocuy region. Mean channel steepness values along strike of the foothills are related to increasing uplift rates from south to north. In contrast, we suggest that high channel steepness values in the south appear to be controlled by high rates of annual precipitation.

  14. Sediment facies and Holocene deposition rate of near-coastal fluvial systems: An example from the Nobi Plain, Japan

    NASA Astrophysics Data System (ADS)

    Hori, Kazuaki; Usami, Shogo; Ueda, Hiroki

    2011-05-01

    Floodplains are a major component of present near-coastal fluvial systems that have evolved in response to postglacial changes in climate and sea level. Knowledge of sedimentary facies and deposition rates on a centennial to millennial time scale is required for considering floodplain evolution. Two cores, AP1 and AP2, were acquired from an abandoned channel of the Ibi River and its natural levee on the Nobi Plain, central Japan. Sediment facies analysis, electrical conductivity, and radiocarbon dating of borehole samples showed that in both cores organic-rich dark gray floodbasin mud overlies deltaic deposits dating to after approximately 3200 years calibrated radiocarbon age (cal BP) in relation to delta progradation. The accumulation of floodbasin mud continued at the both sites until about 400 cal BP. Around 400 cal BP, the mud was eroded by the overlying channel sand and gravel at AP1 and was covered by fine-grained natural levee deposits at AP2 with an abrupt contact. This timing is concordant with the historical record of avulsion of the Ibi River during the Keicho Era (AD 1596-1615). Averaged aggradation rates at the AP1 and AP2 sites were approximately 2.2 and 3.2 mm/yr, respectively. Faulting-related subsidence along the western edge of the plain has influenced these rates by creating accommodation. Averaged deposition rates differed greatly between the floodbasin and the levee, suggesting that rapid aggradation of the natural levee also occurred on a centennial to millennial scale. These empirical data may be useful for testing models of the architecture and evolution of near-coastal fluvial systems.

  15. Persistence, variance and toxic levels of organochlorine pesticides in fluvial sediments and the role of black carbon in their retention.

    PubMed

    Parween, Musarrat; Ramanathan, Al; Khillare, P S; Raju, N J

    2014-05-01

    The present study assesses the persistence and variation of organochlorine pesticides (OCPs) and their regulation by total organic carbon (TOC) and black carbon (BC) in freshwater sediment. Sediment samples from the Yamuna River, a major tributary of the Ganges (one of the most populated and intensively used rivers in Asia), had high levels of ?20OCPs (21.41 to 139.95 ng g(-1)). ?-Hexachlorocyclohexane (?-HCH) was the most predominant component. ?HCH and ?dichloro-diphenyl-trichloroethane (DDT) constituted ~86% of ?20OCPs. Isomer ratios indicated fresh usage of lindane, DDT and technical-grade HCH. Toxicological comparison with freshwater sediment quality guidelines showed ?-HCH and DDT at high levels of concern. ?-HCH, ?-HCH, endrin, heptachlor epoxide, dichloro-diphenyl-dichloroethane (DDD), dichloro-diphenyl-dichloroethylene and chlordane were above some of the guideline levels. TOC and BC had mean concentrations of 1.37?±?0.51% and 0.46?±?0.23 mg g(-1), respectively. BC constituted 1.25 to 10.56% of TOC. We observed low to moderate correlations of BC with isomers of HCH, p,p'-DDT and methoxychlor while of TOC with ?20OCPs, ?-HCH, endosulfan sulfate and methoxychlor. Principal component analysis enabled correlating and clustering of various OCPs, BC and TOC. OCP distribution was related with pH, electrical conductivity, soil moisture and finer fractions of sediment. OCPs with similarity in properties that determine their interactions with carbonaceous components of sediment clustered together. A number of factors may, thus, be involved in the regulation of interactive forces between BC and OCPs. BC in this study may be more important than TOC in the retention of some OCPs into fluvial sediments, thereby reducing their bioavailability. The finding is probably the first of its kind to report and emphasises the role of BC in the persistence of OCPs in fluvial sediments. PMID:24488553

  16. The variogram and the simple kriging estimator: Useful tools to complement lithologic correlation in a complex fluvial depositional environment

    SciTech Connect

    Murphy, J.

    1995-12-31

    Three dimensional grid estimation has been combined with an interpretive model of fluvial deposition for correlating low permeability zones in the shallow subsurface. Improvement in correlation reliability was realized by combining hand drawn interpretive cross-sections (spotting local trends in grain size, CPT log signature, etc.) with cross-section maps of the geostatistical grid model. The site is a military installation where soil contamination is being mapped and quantified using three dimensional modeling techniques. The subsurface is a complex fluvial depositional environment with intermittent bedrock highs and more frequent calcite and Calcium/Iron related cementation. Hence, the problem of lithologic correlation occurred where the drillhole spacing became wider than the channel belt width or cemented materials prevented detailed sampling. The goals of the sampling and analysis plan called for sampling within the first continuous silt or clay unit in order to quantify the zone of greatest contaminant retention on its downward migratory path. This paper will describe a three dimensional correlation technique which employs geostatistical analysis of CPT hole data specifically coded by permeability indicator thresholds. The process yielded variogram ranges applied to a simple kriging estimator on a 3-dimensional grid block. Estimates of clay probability are then provided as output and overlaid with the geologists cross section interpretation. The marriage of these two tools was invaluable in that geostatistical estimates sometimes behaved contrary to the channel depositional process, while on the other hand, the geologists interpretation often failed to recognize data in the third dimension (i.e. off section CPT data).

  17. Response of fluvial, aeolian, and lacustrine systems to late Pleistocene to Holocene climate change, Lower Moravian Basin, Czech Republic

    NASA Astrophysics Data System (ADS)

    Kadlec, Jaroslav; Kocurek, Gary; Mohrig, David; Shinde, Dattatreya P.; Murari, Madhav K.; Varma, Vaidehi; Stehlík, Filip; Beneš, Vojt?ch; Singhvi, Ashok K.

    2015-03-01

    Late Pleistocene to Holocene Morava River valley-fill of the eastern Czech Republic reflects the geomorphic evolution of the valley as forced by climate change. Valley-fill stratigraphy was studied through measured sections, optically stimulated luminescence (OSL) and radiocarbon dating, ground-penetrating radar surveys of relict sand dunes, archived drill-hole data, and a comparison of elevations and ages of stratigraphic units. Fluvial systems evolved from meandering with floodplains to braided during MIS 3. Braided fluvio-aeolian systems dominated through MIS 2 and the Last Glacial Maximum (LGM). Valley aggradation occurred during arid glacial times of a low water-to-sediment discharge ratio. Most valley-fill was removed at 13 ka with incision by a large-bend meandering river with an estimated bankful paleodischarge 3 × larger than the modern Morava River. The Holocene Morava River has varied from meandering to anabranching with low rates of floodplain aggradation. The Bzenec sand body, up to 36 m thick, represents an erosional remnant bypassed during late Pleistocene incision and consists of interpreted lacustrine turbidites overlain by braided stream and aeolian dune strata. The turbidites consist of laterally continuous, thin, normally graded beds of rounded and frosted sand grains of aeolian origin. Dates and elevation data argue that the valley lake formed during the LGM through downstream damming by a braided terminal fan and sand dune complex. The turbidites are interpreted to have formed through fluvial undercutting and slumping of dune accumulations as lake level rose. This process forced an erosional unroofing of aeolian accumulations, reflected in inverted OSL dates for the turbidites.

  18. Seasonal Movement and Distribution of Fluvial Adult Bull Trout in Selected Watersheds in the Mid-Columbia River and Snake River Basins

    PubMed Central

    Starcevich, Steven J.; Howell, Philip J.; Jacobs, Steven E.; Sankovich, Paul M.

    2012-01-01

    From 1997 to 2004, we used radio telemetry to investigate movement and distribution patterns of 206 adult fluvial bull trout (mean, 449 mm FL) from watersheds representing a wide range of habitat conditions in northeastern Oregon and southwestern Washington, a region for which there was little previous information about this species. Migrations between spawning and wintering locations were longest for fish from the Imnaha River (median, 89 km) and three Grande Ronde River tributaries, the Wenaha (56 km) and Lostine (41 km) rivers and Lookingglass Creek (47 km). Shorter migrations were observed in the John Day (8 km), Walla Walla (20 km) and Umatilla river (22 km) systems, where relatively extensive human alterations of the riverscape have been reported. From November through May, fish displayed station-keeping behavior within a narrow range (basin medians, 0.5–6.2 km). Prespawning migrations began after snowmelt-driven peak discharge and coincided with declining flows. Most postspawning migrations began by late September. Migration rates of individuals ranged from 0.1 to 10.7 km/day. Adults migrated to spawning grounds in consecutive years and displayed strong fidelity to previous spawning areas and winter locations. In the Grande Ronde River basin, most fish displayed an unusual fluvial pattern: After exiting the spawning tributary and entering a main stem river, individuals moved upstream to wintering habitat, often a substantial distance (maximum, 49 km). Our work provides additional evidence of a strong migratory capacity in fluvial bull trout, but the short migrations we observed suggest adult fluvial migration may be restricted in basins with substantial anthropogenic habitat alteration. More research into bull trout ecology in large river habitats is needed to improve our understanding of how adults establish migration patterns, what factors influence adult spatial distribution in winter, and how managers can protect and enhance fluvial populations. PMID:22655037

  19. Seasonal movement and distribution of fluvial adult bull trout in selected watersheds in the mid-Columbia River and Snake River basins.

    PubMed

    Starcevich, Steven J; Howell, Philip J; Jacobs, Steven E; Sankovich, Paul M

    2012-01-01

    From 1997 to 2004, we used radio telemetry to investigate movement and distribution patterns of 206 adult fluvial bull trout (mean, 449 mm FL) from watersheds representing a wide range of habitat conditions in northeastern Oregon and southwestern Washington, a region for which there was little previous information about this species. Migrations between spawning and wintering locations were longest for fish from the Imnaha River (median, 89 km) and three Grande Ronde River tributaries, the Wenaha (56 km) and Lostine (41 km) rivers and Lookingglass Creek (47 km). Shorter migrations were observed in the John Day (8 km), Walla Walla (20 km) and Umatilla river (22 km) systems, where relatively extensive human alterations of the riverscape have been reported. From November through May, fish displayed station-keeping behavior within a narrow range (basin medians, 0.5-6.2 km). Prespawning migrations began after snowmelt-driven peak discharge and coincided with declining flows. Most postspawning migrations began by late September. Migration rates of individuals ranged from 0.1 to 10.7 km/day. Adults migrated to spawning grounds in consecutive years and displayed strong fidelity to previous spawning areas and winter locations. In the Grande Ronde River basin, most fish displayed an unusual fluvial pattern: After exiting the spawning tributary and entering a main stem river, individuals moved upstream to wintering habitat, often a substantial distance (maximum, 49 km). Our work provides additional evidence of a strong migratory capacity in fluvial bull trout, but the short migrations we observed suggest adult fluvial migration may be restricted in basins with substantial anthropogenic habitat alteration. More research into bull trout ecology in large river habitats is needed to improve our understanding of how adults establish migration patterns, what factors influence adult spatial distribution in winter, and how managers can protect and enhance fluvial populations. PMID:22655037

  20. Fluvial terrain models produced with Structure-from-Motion and optical bathymetric mapping: Fit for the purpose of numerical modelling

    NASA Astrophysics Data System (ADS)

    Javernick, L. A.; Caruso, B. S.; Measures, R.; Hicks, M.; Brasington, J.

    2013-12-01

    During the past decade, the advances in survey and sensor technology and three-dimensional morphologic analysis have been partially driven by the need for high resolution topography for physical and numerical fluvial modelling and have in return created new opportunities to investigate and model the structure and dynamics of fluvial systems. While the potential of such revolutionary survey technologies such as GPS, LiDAR, and terrestrial laser scanners have proven to produce high resolution fluvial terrain models, their high hardware and facility costs or labor intensive methods restrict data acquisition; thus limiting the extent and frequency of surveys. However, recent advances in computer vision and image analysis have led to the development of a novel, fully automated photogrammetric method to generate dense 3d point cloud data. This approach, termed Structure-from-Motion or SfM, requires only limited ground-control and is ideally suited to imagery obtained from low-cost, non-metric cameras acquired either at close-range or using aerial platforms. With numerous survey technologies available, there is a need to determine if simpler and more affordable methods are fit for the purpose of numerical modelling. To address this demand, the hydrodynamic numerical model Delft3D was utilized to simulate various flow conditions of a SfM produced terrain model. Using the SfM software PhotoScan (version 0.9.0) and optical bathymetric mapping, a 0.5 m resolution terrain model was generated for a 1.6 km reach of the braided Ahuriri River, New Zealand. This topography was imported into Delft3D where a 1.5 m and 2.5 m grid resolutions were generated and utilized to simulate a low, medium, and high flow conditions. Following a stringent calibration, hydraulic conditions of velocity, depth, and inundation were tested. Results reveal that average modelled depth errors were comparable to the SfM uncertainty (0.14 m average error), velocity errors of a small anabranch produced average errors of 0.09 m/s, and areal inundation was correctly predicted up to 81% of the observed (inundated and non-inundated areas). Given the river's braid complexity and shallow depths, subtle topographic inaccuracies would greatly influence the model's river routing prediction. Therefore, based on inundation extent results, it can be reasoned that the SfM and optical bathymetric produced terrain model was fit for the purpose of numerical modeling using Delft3D. These results are encouraging, as SfM can be acquired easily and cheaply; thus offering low-budget research the opportunity for long temporal studies. Funding support from the New Zealand Department of Conservation: Project River Recovery

  1. Supercritical strata in Lower Paleozoic fluvial rocks: a super critical link to upper flow regime processes and preservation in nature

    NASA Astrophysics Data System (ADS)

    Lowe, David; Arnott, Bill

    2015-04-01

    Recent experimental work has much improved our understanding of the lithological attributes of open-channel supercritical flow deposits, namely those formed by antidunes, chutes-and-pools and cyclic steps. However their limited documentation in the ancient sedimentary record brings into question details about their geological preservation. Antidune, chute-and-pool and cyclic step deposits are well developed in sandy ephemeral fluvial deposits of the Upper Cambrian - Lower Ordovician Potsdam Group in the Ottawa Embayment of eastern North America. These high energy fluvial strata form dm- to a few m-thick units intercalated within thick, areally expansive successions of sheet sandstones consisting mostly of wind ripple and adhesion stratification with common deflation lags. Collectively these strata record deposition in a semi-arid environment in which rare, episodic high-energy fluvial events accounted for most of the influx of sediment from upland sources. Following deposition, however, extensive aeolian processes reworked the sediment pile, and hence modified profoundly the preserved stratigraphic record. Antidune deposits occur as 0.2 - 1.6 m thick cosets made up of 2 - 15 cm thick lenticular sets of low angle (? 20o) cross-stratified, medium- to coarse-grained sandstone bounded by low-angle (5 - 15o) concave-upward scours and, in many cases, capped by low angle (10 - 15o) convex-upwards symmetrical formsets. Chute-and-pool deposits form single sets, 5 - 55 cm thick and 0.6 - 6 m wide, with scoured bases and low to high angle (5 - 25o) sigmoidal cross-strata consisting of medium- to coarse-grained sandstone. Cyclic step deposits consist of trough cross-stratified sets, 20 cm - 1.6 m thick, 2.5 - 12 m long and 7 - 35 m wide, typically forming trains that laterally are erosively juxtaposed at regularly-spaced intervals. They are composed of medium- to coarse-grained sandstone with concave-up, moderate to high angle (15 - 35o) cross-strata with tangential bases that conform to the shape of the basal bounding surface of the set. Antidune and cyclic step deposits are common and fill 0.4 - 1.8 m deep channels, which then are generally overlain by extensive (>1 km) aeolian deflation surfaces. Chute-and-pool strata, however, are rare and only occur as isolated scour-filling sets within unconfined floodplain deposits. Nowhere in outcrop do different kinds of supercritical bedform deposits interfinger or appear related to the same flow event, suggesting that individual packages of supercritical strata were deposited by discreet, rapidly waning flows with little time for incremental growth or deposition under changing flow conditions. The stratal characteristics and geometries of channel-filling antidune and cyclic step cosets in the Potsdam are similar to those produced in steady experimental flows with high rates of aggradation. Similar conditions in the Potsdam were probably attained because the flows were channelized, which also caused the freshly deposited sediment to lie beneath the water table, and hence beneath the effects of extensive post-flood aeolian deflation. Conversely, scour-filling chute-and-pool deposits formed on the floodplain where highly unsteady, erosive and rapidly waning unconfined flows formed isolated, partly-filled, erosively-based, ephemeral structures. Moreover, being formed on the surface of the floodplain subjected these deposits to extensive post-depositional reworking, and as a consequence caused them to be poorly preserved.

  2. Multi-storey calcrete profiles developed during the initial stages of the configuration of the Ebro Basin's exorrheic fluvial network

    NASA Astrophysics Data System (ADS)

    Meléndez, Alfonso; Alonso-Zarza, Ana M.; Sancho, Carlos

    2011-11-01

    Multi-storey calcrete profiles developed in the Quaternary on strath terraces of the Cinca and Alcanadre rivers, tributaries of the Ebro River in NE Spain. Two calcrete profiles (Tor 1 and Tor 2) near the village of El Tormillo show horizons with an arrangement that differs from that of commonly described calcrete profiles. Significant lateral changes occur in these profiles within a distance of less than 200 m, reflecting their pedofacies relationship. The Tor 1 profile on terrace Qt1 (the highest and oldest) consists of six horizons (from bottom to top): 1) coarse fluvial gravels; 2) mudstones with carbonate nodules; 3) a chalky horizon; 4) laminar horizons, including one peloidal horizon; 5) a multi-storey horizon formed of at least six minor sequences, each of which includes a lower detrital layer, a pisolithic horizon, and a thin discontinuous laminar horizon (these sequences indicate several cycles of brecciation and/or reworking); and 6) a topmost laminar and brecciated horizon also including reworked pisoliths. Some 200 m to the north of Tor 1, horizon 5 undergoes a lateral change to channel fill-deposits. The infill of the channels shows a fining-upwards sequence ranging from clasts of about 10 cm in diameter to red silts with sparse pebbles. All the clasts come from the underlying calcrete horizons. Laminar horizons are interbedded with the clastic channel deposits. The youngest calcrete profiles developed on terrace Qt3 of the Cinca River and on the Qp4 and Qp6 mantled pediment levels. All show relatively simple profiles composed mostly of lower horizons of coated gravels, with thin laminar horizons at the top. Most of the horizons, especially the laminar ones, show biogenic features such as alveolar septal structures, calcified filaments, biofilms, spherulites, micropores and needle-like calcite crystals. These features indicate the important role of vegetation in the formation of all the above profiles. The interbedding of clastic sediments and pisolithic horizons within the Tor 2 profile indicates several stages of stabilisation during profile formation. These sequences are an indication of the sedimentation, soil formation and reworking processes operating on the soil surface. The alternation of these processes is interpreted as the result of climate-vegetation changes. The channel-fills of Tor 2 indicate erosion and reworking of the hard laminar calcrete horizon. Both Tor 1 and Tor 2 are multi-storey profiles reflecting the complex sedimentation-erosion-pedogenesis relationships at the final stages of the development of its corresponding fluvial terrace. The study of these calcretes shows that these supposedly abandoned terraces continue to be active even though the fluvial network is entrenched. Both the pedofacies relationships and the complexity shown by Tor 1 and Tor 2 reflect the complex and unstable geomorphic setting in which these profiles developed. After the establishment of the exorrheic network, less complex calcrete profiles were produced in the lower terraces.

  3. Downstream mixing of sediment and tracers in agricultural catchments: Evidence of changing sediment sources and fluvial processes?

    NASA Astrophysics Data System (ADS)

    Ralph, Timothy; Wethered, Adam; Smith, Hugh; Heijnis, Henk

    2014-05-01

    Land clearance, soil tillage and grazing in agricultural catchments have liberated sediment and altered hydrological connectivity between hillslopes and channels, leading to increased sediment availability, mobilisation and delivery to rivers. The type and amount of sediment supplied to rivers is critical for fluvial geomorphology and aquatic ecosystem health. Contemporary sediment dynamics are routinely investigated using environmental radionuclides such as caesium-137 (Cs-137) and excess lead-210 (Pb-210ex), which can provide information regarding sediment source types and fluvial processes if sediment sources can be distinguished from one another and mixing models applied to representative samples. However, downstream transport, mixing and dilution of radionuclide-labelled sediment (especially from sources with low initial concentrations) can obliterate the tracer signal; sometimes before anything of geomorphological importance happens in the catchment. Can these findings be used as evidence of sediment source variations and fluvial processes when the limits of detection (of Cs-137 in particular) are being exceeded so rapidly downstream? Sediment sources and downstream sediment dynamics were investigated in Coolbaggie Creek, a major supplier of sediment to the Macquarie River in an agricultural catchment with temperate to semi-arid climate in Australia. Radionuclides were used to discriminate between the <63 micron fraction of sediment sources including forested topsoils (Cs-137 11.28 +/- 0.75 Bq/kg; Pb-210ex 181.87 +/- 20.00 Bq/kg), agricultural topsoils (Cs-137 3.21 +/- 0.26 Bq/kg; Pb-210ex 29.59 +/- 10.94 Bq/kg) and sub-soils from channel banks and gullies (Cs-137 1.45 +/- 0.47 Bq/kg; Pb-210ex 4.67 +/- 1.93 Bq/kg). Within the trunk stream, suspended sediment, organic matter and Cs-137 and Pb-210ex concentrations declined downstream. Results from a mixing model suggest that agricultural topsoils account for 95% of fine sediment entering the channel in the upper reach (<10 km long), while sub-soils account for 90 to 100% of sediment entering and being transported in the remaining ~50 km of the system. This shift in dominant sediment source material coincided with a large increase in channel cross sectional area (~20 to >200 m2) downstream, with channel expansion and gullies contributing fine sediment to the system. A lack of topsoil being supplied to the channel suggests minimal lateral connectivity between the catchment and the trunk stream in all areas apart from the upper catchment. The enlargement and entrenchment of the channel downstream has also resulted in lateral disconnection between the channel and floodplain. In this case, a rapid reduction in radionuclide concentrations downstream does coincide with hydrogeomorphic changes, supporting their use for studying short-term sediment dynamics. These findings highlight the importance of understanding hydrogeomorphic processes and connectivity when interpreting sediment source and tracer data.

  4. Magnetic characteristics of aeolian and fluvial sediments and onset of dust accumulation at Lake Yoa (northern Chad) during the Holocene

    NASA Astrophysics Data System (ADS)

    Just, Janna; Kröpelin, Stefan; Karls, Jens; Rethemeyer, Janet; Melles, Martin

    2014-05-01

    The Holocene is a period of fundamental climatic change in North Africa. Humid conditions during the Holocene Humid Period have favored the formation of big lake systems (e.g. Lake Megachad) and are evident in terrestrial and marine archives. Only very few of these lakes persist until today. One of them is Lake Yoa (19°03'N/20°31'E) in the Ounianga Basin, Chad, which maintains its water level by ground water inflow. Here we present the magnetic characteristics of a continuous 16 m long sediment record (Co1240) from Lake Yoa, retrieved in 2010 within the framework of the Collaborative Research Centre 806 - Our Way to Europe (Deutsche Forschungsgemeinschaft). The sedimentary section covers the past 11,000 years. In an earlier core (Kröpelin et al. 2008), a humid climate during the Mid-Holocene is indicated by fresh-water conditions in the lake. At about 4,000 cal. years BP, a fresh-to-saline transition is reflected in the record. However, a major rise in magnetic susceptibility, interpreted as an increase in the accumulation of wind-blown material, is only visible after 3,000 cal. years BP. Beyond using the concentration of magnetic minerals (susceptibility), environmental magnetic proxies, e.g. magnetic grain size and the composition of the magnetic mineral fabric, are often used as paleoenvironmental indicators. The underlying assumption is that the formation of magnetic minerals during pedogenesis is catalyzed by precipitation and soil-temperature. The application of magnetic proxies as reliable climofunctions has, however, recently been challenged. Possible problems are that soil formation might not reach an equilibrium state if climate perturbations are too short (e.g. hundreds of years) or that other variables such as soil organic carbon and vegetation have varied. In this study, we will focus on the variability of magnetic parameters in Lake Yoa sediments and its implication for the regional environmental development throughout Holocene times. 400 discrete samples will be analyzed using a cryogenic magnetometer. The magnetic grain size will be used to identify the initiation of increased accumulation of aeolian material. By analyzing Isothermal Remanent Magnetization acquisition curves, fluvial and aeolian end-members will be characterized in terms of magnetic mineralogy. Furthermore, a possible climate-induced impact on the formation of pedogenetic magnetic minerals in the source area of fluvial and aeolian sediments will be evaluated by a comparison of the environmental magnetic with organic proxies.

  5. Using pebble lithology and roundness to interpret gravel provenance in piedmont fluvial systems of the Rocky Mountains, USA

    USGS Publications Warehouse

    Lindsey, D.A.; Langer, W.H.; Van Gosen, B. S.

    2007-01-01

    Clast populations in piedmont fluvial systems are products of complex histories that complicate provenance interpretation. Although pebble counts of lithology are widely used, the information provided by a pebble count has been filtered by a potentially large number of processes and circumstances. Counts of pebble lithology and roundness together offer more power than lithology alone for the interpretation of provenance. In this study we analyze pebble counts of lithology and roundness in two contrasting fluvial systems of Pleistocene age to see how provenance varies with drainage size. The two systems are 1) a group of small high-gradient incised streams that formed alluvial fans and terraces and 2) a piedmont river that formed terraces in response to climate-driven cycles of aggradation and incision. We first analyze the data from these systems within their geographic and geologic context. After this is done, we employ contingency table analysis to complete the interpretation of pebble provenance. Small tributary streams that drain rugged mountains on both sides of the Santa Cruz River, southeast Arizona, deposited gravel in fan and terrace deposits of Pleistocene age. Volcanic, plutonic and, to a lesser extent, sedimentary rocks are the predominant pebble lithologies. Large contrasts in gravel lithology are evident among adjacent fans. Subangular to subrounded pebbles predominate. Contingency table analysis shows that hard volcanic rocks tend to remain angular and, even though transport distances have been short, soft tuff and sedimentary rocks tend to become rounded. The Wind River, a major piedmont stream in Wyoming, drains rugged mountains surrounding the northwest part of the Wind River basin. Under the influence of climate change and glaciation during the Pleistocene, the river deposited an extensive series of terrace gravels. In contrast to Santa Cruz tributary gravel, most of the Wind River gravel is relatively homogenous in lithology and is rounded to well-rounded. Detailed analysis reveals a multitude of sources in the headwaters and the basin itself, but lithologies from these sources are combined downstream. Well-rounded volcanic and recycled quartzite clasts were derived from the headwaters. Precambrian igneous and metamorphic clasts were brought down tributary valleys to the Wind River by glaciers, and sandstone was added where the river enters the Wind River structural basin.

  6. Inter- and intra-annual variability of fluvial sediment transport in the proglacial river Riffler Bach (Weißseeferner, Ötztal Alps, Tyrol)

    NASA Astrophysics Data System (ADS)

    Baewert, Henning; Weber, Martin; Morche, David

    2015-04-01

    The hydrology of a proglacial river is strongly affected by glacier melting. Due to glacier retreat the effects of snow melt and rain storms will become more important in future decades. Additionally, the development of periglacial landscapes will play a more important role in the hydrology of proglacial rivers. The importance of paraglacial sediment sources in sediment budgets of glacier forefields is increasing, while the role of glacial erosion is declining. In two consecutive ablation seasons the fluvial sediment transport of the river Riffler Bach in the Kaunertal (Tyrol/Austria) was quantified. The catchment area of this station is 20 km² with an altitudinal range from 1929 m to 3518 m above msl. The "Weißseeferner" glacier (2.34 km² in 2012) is the greatest of the remaining glaciers. An automatic water sampler (AWS 2002) and a probe for water level were installed were installed at the outlet of the catchment. In order to calculate annual stage-discharge-relations, discharge (Q) was repeatedly measured with current meters. Concurrent to the discharge measurements bed load was collected using a portable Helley-Smith sampler. Bed load (BL) samples were weighted and sieved in the laboratory to gain annual bed load rating curves and grain size distributions. In 2012, 154 water samples were sampled during 7 periods and subsequently filtered to quantify suspended sediment concentrations (SSC). A Q-SSC-relation was calculated for every period due to the high variability in suspended sediment transport. In addition, the grain size distribution of the filtered material was determined by laser diffraction analysis. In 2013, the same procedure was performed for 232 water samples which were collected during 9 periods. Meteorological data were logged at the climate station "Weißsee", which is located in the centre of the study area. First results show a high variability of discharge and solid sediment transport both at the inter-annual as well as at the intra-annual timescale. In 2012, a larger amount of sediment was transported compared to 2013. A higher runoff during the snowmelt period 2012 and a heavy rain fall event in late August 2012 were the main reasons. Only 8 of 16 Q-SSC-relations show causal dependency. Thus, indicating that sediment transport strongly depends on the availability of sediment and the coupling of sediment sources to the fluvial system.

  7. Folded fluvial terraces and the deforming of a new uplifted region in the mountain front the Qilian Shan Mountain, China

    NASA Astrophysics Data System (ADS)

    Hu, X.; Pan, B.; Wang, J.; Hu, Z.

    2014-12-01

    How the Tibetan Plateau is extended is one of the key problems to understand the earth crust evolution in the frame of plate tectonics. A newly uplifting area, the Dahe region, locating between the Yumu Shan Mountain and the Qilian Shan Mountain, in the northeastern Tibetan Plateau, would supply us a fresh sight on the process that how the plateau is extended to a new region. The Dahe region was a relatively depressing or stable area before late Pleistocene, and received thick fluvial sediment derived from the Qilian Shan in the south. In late Pleistocene, the old depositing surface Sp (alluvial fan surface) was deeply cut by the Dahe River. Below the old depositing surface, four staircases of strath terraces (strath is the old fluvial deposition) are formed by the Dahe River, and each terrace surfaces are buried by aeolian loess. By the OSL dating on overlying loess on the terraces and correlating to climate records, we obtain formation ages (terrace surface abandoning time) of the four terraces (from high to low): 128.2 ±9.8 ka, 109.6±20.8 ka, 96.3 ±9.0 ka, and 15.9 ±2.5 ka. We obtain the extrapolated Sp age of 160 ±25 ka, which represents the time when the fan depositing was end and river cutting and eroding was started in the Dahe region. By the uplifted terrace staircases and warped long profiles of terraces, we can find that the region is not only experiencing regional uplifting but also folding deformation. Through analyzing the geometry of the deforming terrace surfaces, we propose that a new blind thrust fault was derived from the main decollement in the upper crust, and thus the growing fault deduced the uplift of the Dahe region and the folding near the fault tip. The growth of the Dahe region, which is sandwiched by the Yumu Shan and the Qilian Shan, both uplifted millions years ago, suggests that northeastern extending of the plateau is in the form of new fault-fold system growing in mountain front and back.

  8. Knickpoint initiation and distribution within fluvial networks: 236 waterfalls in the Waipaoa River, North Island, New Zealand

    NASA Astrophysics Data System (ADS)

    Crosby, Benjamin T.; Whipple, Kelin X.

    2006-12-01

    If knickpoints transmit signals of base level fall in river networks, then improvements in our understanding of their retreat rate and basin wide distribution helps constrain the transient response following perturbation. Many studies of knickpoint retreat focus on the response of trunk streams to base level fall. Here we examine the response of an entire fluvial network, as recorded by 236 active knickpoints distributed within the Waipaoa River on the North Island of New Zealand. Base level fall within the Waipaoa catchment initiated 18,000 years ago in response to a climatically triggered and tectonically exacerbated pulse of incision. Using observations from field work, aerial photo analysis and a digital elevation model (DEM), we study the knickpoint positions within the network. We find that ˜ 70% of the knickpoints are located at drainage areas between 1 × 10 5 m 2 and 1 × 10 6 m 2 and more than half are < 1 km upstream of a large change in drainage area. For the knickpoints < 1 km upstream of large tributary junctions, we find that the retreat distances were well correlated with the tributaries' drainage areas. In order to determine how a pulse of incision distributes itself throughout a fluvial network, we develop two simple, end-member models and compare their behavior to the observed knickpoint distribution in the Waipaoa. In the first model, we propose that a knickpoint initiated at the basin outlet retreats upstream and distributes the signal throughout the network at a rate that is a power law function of drainage area. In the second model, we propose that knickpoints form near a threshold drainage area, below which channels cannot incise with the same efficiency as possible in downstream reaches. Though neither model addresses the along-stream variability in substrate or knickpoint form, the misfit between the modeled and the observed knickpoints' along-stream positions are surprisingly low (< 1 km; ˜ 1.25% of the total stream length) for knickpoints with drainage areas < 1 × 10 6 m 2. Large misfits (up to 3.5 km) are observed for knickpoints with present-day drainage areas greater than 1 × 10 6 m 2. The large, single step in channel elevation that characterizes knickpoints presently observed in tributaries of the Waipaoa River may not characterize the base level fall signal that propagated through the trunk streams. Evidence for progressive (rather than instantaneous) incision in the trunk streams, the knickpoints' vicinities to tributary junctions and the equivalent success of the two-end member models lead us to conclude that the present positions of the 236 observed knickpoints are largely a consequence of thresholds in channel incision at low drainage areas.

  9. Remnants of Miocene fluvial sediments in the Negev Desert, Israel, and the Jordanian Plateau: Evidence for an extensive subsiding basin in the northwestern margins of the Arabian plate

    NASA Astrophysics Data System (ADS)

    Zilberman, Ezra; Calvo, Ran

    2013-06-01

    Relics of a thick, widely spread, fluvial sequence of Early Miocene age are scattered throughout southern Israel, eastern Sinai, the Dead Sea Rift Valley and the western margins of the Jordanian Plateau. These relics are mainly preserved in structural lows, karstic systems, and abandoned stream valleys. The paleogeography of this fluvial system was reconstructed based on the relations between the sequence remnants and the main structural and morphological features of the southeastern Levant region. Three sedimentary associations were identified in the Miocene sequence: a lower part dominated by locally derived clastic sediments; a thicker middle part, composed mostly of far-field allochthonous clastic sediments; and an upper part composed of local as well as allochthonous sediments. The two lower parts are regionally distributed whereas the upper part is syn-tectonic and confined to the Dead Sea basin and the Karkom graben in the central Negev. The composition of the far-field allochthonous sediments points to a provenance of Precambrian crystalline rocks of the Arabo-Nubian massif that were exposed along the uplifted shoulders of the Red Sea Rift as the upper drainage basin of the fluvial system. The diverse mammal remains found in this fluvial sequence suggest a complex of savanna, forests and fluvial habitats similar to those of present East Africa, with monsoon-type rains, which were the dominant water source of the rivers. The thickness of the Miocene sequence in the central Negev is at least 1700 m, similar to that of the subsurface sequence encountered in the Dead Sea basin. This similarity suggests that both were parts of an extensive subsiding sedimentary basin that developed between the Neo-Tethys and the uplifted margins of the Red Sea. The relations between the reconstructed pre-depositional landscape of southern Israel during the Early Miocene and the overlying fluvial sequence indicate that the entire area was buried under several hundred meters of fluvial sediments, reflecting a subsidence of the northern margins of the African continent (Arabian plate) before its breakup and the splitting of the Sinai-Israel subplate by the Dead Sea Transform. During the early Middle Miocene the subsidence was inversed as the mountainous backbone of Israel was uplifted. The uplift triggered a large scale denudation that removed the thick Early Miocene fluvial sequence from the Negev and transported the eroded sediments northwestward toward the eastern Mediterranean basin. Additional uplift during the late-Middle Miocene was associated with entrenchment of the Be'er Sheva Valley between the Judea Mountains in the north and the Negev Highlands in the south. This valley was flooded by the sea during the Late Miocene. We suggest that the formation of the Early Miocene subsiding basin at the northern edge of the Arabian sub-plate predated the breakup of the Arabian plate by the DST. The inversion of the subsiding regime, which led to the establishment of the Negev Highlands seems to be intimately related to the detachment of the Sinai-Israel sub-plate from the Arabian plate during the Middle Miocene.

  10. Mineralogy and fluvial history of the watersheds of Gale, Knobel, and Sharp craters: A regional context for the Mars Science Laboratory Curiosity's exploration

    NASA Astrophysics Data System (ADS)

    Ehlmann, Bethany L.; Buz, Jennifer

    2015-01-01

    500 km long network of valleys extends from Herschel crater to Gale, Knobel, and Sharp craters. The mineralogy and timing of fluvial activity in these watersheds provide a regional framework for deciphering the origin of sediments of Gale crater's Mount Sharp, an exploration target for the Curiosity rover. Olivine-bearing bedrock is exposed throughout the region, and its erosion contributed to widespread olivine-bearing sand dunes. Fe/Mg phyllosilicates are found in both bedrock and sediments, implying that materials deposited in Gale crater may have inherited clay minerals, transported from the watershed. While some topographic lows of the Sharp-Knobel watershed host chloride salts, the only salts detected in the Gale watershed are sulfates within Mount Sharp, implying regional or temporal differences in water chemistry. Crater counts indicate progressively more spatially localized aqueous activity: large-scale valley network activity ceased by the early Hesperian, though later Hesperian/Amazonian fluvial activity continued near Gale and Sharp craters.

  11. New insight into the sedimentology and stratigraphy of the Dur At Talah tidal-fluvial transition sequence (Eocene-Oligocene, Sirt Basin, Libya)

    NASA Astrophysics Data System (ADS)

    Abouessa, Ashour; Pelletier, Jonathan; Duringer, Philippe; Schuster, Mathieu; Schaeffer, Philippe; Métais, Eddy; Benammi, Mouloud; Salem, Mustafa; Hlal, Osama; Brunet, Michel; Jaeger, Jean-Jacques; Rubino, Jean-Loup

    2012-04-01

    The Dur At Talah escarpment is exposed in the Abu Tumayam Trough at the southern part of the Sirt Basin, central Libya. The cliff (˜145 m high and ˜150 km long) is oriented along an E-W axis and faces southward. Only a few field studies have been previously carried out in this area, and these were mainly focused on the succession's famous vertebrate fossil-content. The reconstruction of the depositional environments, which is the purpose of this paper, remained poorly documented. In this study, the uppermost Eocene rock succession composing the Dur At Talah escarpment is divided into two stratigraphic units: the New Idam Unit at the base composed of highly bioturbated fine sand/claystone alternations, and the Sarir Unit at the top dominated by medium to very coarse grading sometimes to microconglomeratic sandstones. This complete succession is built up of shallow marine (New Idam Unit) to fluvial (upper part of Sarir Unit) deposits passing through a "marine/fluvial" transition zone (lower Sarir Unit). The stratigraphic succession suggests a global regressive trend. The marine part of the New Idam Unit is dominated by deposits attributed to tidal depositional environments including tidal flat, tidal channel and tidal bars as well as biostroms of oyster shells at the base of the unit. The lower part of the Sarir Unit appears to be deposited in a fluvial influenced, tide-dominated environment. The upper part of the Sarir Unit, made of coarse-grained to microconglomeratic sandstones interbedded with paleosoil horizons, is interpreted as being fluvial.

  12. Fluvial and deltaic facies and environments of the late permian back-reef shelves of the Permian Basin of Texas and New Mexico

    SciTech Connect

    Mazzullo, J. )

    1993-02-01

    The Artesia Group is a sequence of carbonates, evaporites, and clastics that was deposited across the back-reef shelves of the Permian Basin during late Permian time. There has been some controversy over the depositional environments of the clastic members of the Artesia Group and the role of sea level fluctuations in their accumulation. However, the results of a regional core study of the Queen Formation of the Artesia Group indicate that they were largely deposited in desert fluvial and deltaic environments during low-stands of sea level. Three fluvial-deltaic facies are recognized within the clastic members of the Queen. The first consists of medium to very find sandstones and silty sandstones with cross-beds, ripple cross-laminae, and planar and wavy laminae. This facies forms wavy sheets that thicken and thin along linear trends, and was deposited in sandy braided streams. The second facies consists of very find to fine sandstones, silty sandstones, and siltstones with ripple cross-laminae, planar and wavy laminae, cross-beds, clay drapes and pedogenetic cutans, as well as siltstones and silty mudstones with haloturbation structures and evaporite nodules. This facies forms thick planar sheets, and was deposited in fluvial sandflats and adjacent fluvial-dominated continental sabkhas. The third facies consists of cyclic deposits of haloturbated silty mudstones that grade into siltstones and very fine sandstones with crossbeds, planar and wavy laminae, haloturbation structures and evaporite nodules. Each cycle forms a lobate body that is bounded by carbonates or evaporites and which was deposited in sheet deltas that formed along the landward margins of a back-reef lagoon.

  13. Influence of fracture anisotropy and lithological heterogeneity on wellfield response in a fluvial sandstone aquifer of the Carboniferous Moncton Subbasin, Canada

    NASA Astrophysics Data System (ADS)

    DesRoches, Aaron J.; Butler, Karl E.; Pelkey, Shaun

    2013-05-01

    Pump tests and geophysical logs acquired in a fluvial sandstone aquifer within the resource-rich Moncton Subbasin of New Brunswick, Canada, have been used to characterize fracture patterns and flow directions for purposes of developing a water-wellfield protection plan. Fracture patterns consist of three high-angle sets, and a low-angle set parallel to bedding. NW-trending high-angle fractures, predominantly in fluvial sandstone units, appear to be most important in controlling groundwater flow directions. This contrasts with an earlier regional hydrogeological study that attributed most flow to sub-horizontal bedding-plane fractures. Water levels monitored during a 72-h pump test revealed drawdown extension parallel to the NW-trending fracture set. Drawdown curves indicate that the aquifer is laterally constrained—likely reflecting differences in fracturing observed between the channelized sandstone and surrounding shale units. As a result, groundwater flow induced by pumping is influenced by both fracture anisotropy and by the heterogeneity of the fluvial depositional environment. Relationships observed between fracture patterns, regional geological structure and lithology provide a basis for extrapolating the conceptual model to other nearby areas in the region, where potential impacts of geological resource development on groundwater are attracting public concern.

  14. Fluvial sedimentology and basin analyses of the Permian Fairchild and Buckley formations, Beardmore Glacier region, and the Weller Coal Measures, southern Victoria Land, Antarctica

    SciTech Connect

    Isbell, J.L.

    1990-01-01

    The Beardmore Glacier region contains a 1-km-thick Permian fluvial sequence that was deposited in an elongate basin along the margin of the East Antarctica craton. Fluvial architecture, sandstone composition and paleocurrents within the basin record a change from an early Permian cratonic to a late Permian foreland basin. The Lower Permian Fairchild Formation consists entirely of overlapping channel-form sandstone bodies deposited by braided streams. Arkosic sandstone was deposited by SE flowing streams. Fairchild strata record slow subsidence within a broad cratonic basin. The Lower to Upper Permian Buckley Formation consists of an arkosic lower member and a volcaniclastic upper member. Paleocurrents which consist of transverse and longitudinal paleocurrents, suggest a cratonward migration of the basin axis through time. The Buckley Formation was deposited within a braided stream setting and is an important unit because it contains interstratified channel-sandstone sheets, shale and coal, along with evidence of channel-belt avulsions. Sandstone sheets predominate at the base of the formation, while flood-plain deposits thicken and increase in abundance upward. The interaction between fluvial processes and subsidence rates produced this alluvial stratigraphy. The Lower Permian Weller Coal Measures in southern Victoria Land were deposited within a narrow basin located cratonward of the foreland basin. Basin geometry and depositional patterns are similar to those of fault-bounded basins. Although basin formation is not constrained, deposition of the Weller was contemporaneous with the development of the foreland basin. This suggests a relationship between subsidence within the two basins.

  15. Modeling the Effects of Hydrodynamic Regimes on Microbial Communities within Fluvial Biofilms: Combining Deterministic and Stochastic Processes.

    PubMed

    Li, Yi; Wang, Chao; Zhang, Wenlong; Wang, Peifang; Niu, Lihua; Hou, Jun; Wang, Jing; Wang, Linqiong

    2015-11-01

    To fully understand the effects of hydrodynamics on a microbial community, the roles of niche-based and neutral processes must be considered in a mathematical model. To this end, a two-dimensional model combining mechanisms of immigration, dispersal, and niche differentiation was first established to describe the effects of hydrodynamics on bacterial communities within fluvial biofilms. Deterministic factors of the model were identified via the calculation of Spearman's rank correlation coefficients between parameters of hydrodynamics and the bacterial community. It was found that turbulent kinetic energy and turbulent intensity were considered as a set of reasonable predictors of community composition, whereas flow velocity and turbulent intensity can be combined together to predict biofilm bacterial biomass. According to the modeling result, the bacterial community could get its favorable assembly condition with a flow velocity ranging from 0.041 to 0.061 m/s. However, the driving force for biofilm community assembly changed with the local hydrodynamics. Individuals reproduction within the biofilm was the main driving force with flow velocity less than 0.05 m/s, while cell migration played a much more important role with velocity larger than 0.05 m/s. The developed model could be considered as a useful tool for improving the technologies of water environment protection and remediation. PMID:26437120

  16. Tropical/subtropical Upper Paleocene Lower Eocene fluvial deposits in eastern central Patagonia, Chile (46°45'S)

    NASA Astrophysics Data System (ADS)

    Suárez, M.; de la Cruz, R.; Troncoso, A.

    2000-11-01

    A succession of quartz-rich fluvial sandstones and siltstones derived from a mainly rhyolitic source and minor metamorphic rocks, located to the west, represent the first Upper Paleocene-Early Eocene deposits described in Chilean eastern central Patagonian Cordillera (46°45'S). This unit, exposed 25 km south of Chile Chico, south of lago General Carrera, is here defined as the Ligorio Márquez Formation. It overlies with an angular unconformity Lower Cretaceous shallow marine sedimentary rocks (Cerro Colorado Formation) and subaerial tuffs that have yielded K-Ar dates of 128, 125 and 123 Ma (Flamencos Tuffs, of the Divisadero Group). The Ligorio Márquez Formation includes flora indicative of a tropical/subtropical climate, and its deposition took place during the initial part of the Late Paleocene-Early Eocene Cenozoic optimum. The underlying Lower Cretaceous units exhibit folding and faulting, implying a pre-Paleocene-Lower Eocene contractional tectonism. Overlying Oligocene-Miocene marine and continental facies in the same area exhibit thrusts and normal faults indicative of post-Lower Miocene contractional tectonism.

  17. Agricultural land use and N losses to water: the case study of a fluvial park in northern Italy.

    PubMed

    Morari, F; Lugato, E; Borin, M

    2003-01-01

    An integrated water resource management programme has been under way since 1999 to reduce agricultural water pollution in the River Mincio fluvial park. The experimental part of the programme consisted of: a) a monitoring phase to evaluate the impact of conventional and environmentally sound techniques (Best Management Practices, BMPs) on water quality; this was done on four representative landscape units, where twelve fields were instrumented to monitor the soil, surface and subsurface water quality; b) a modelling phase to extend the results obtained at field scale to the whole territory of the Mincio watershed. For this purpose a GIS developed in the Arc/Info environment was integrated into the CropSyst model. The model had previously been calibrated to test its ability to describe the complexity of the agricultural systems. The first results showed a variable efficiency of the BMPs depending on the interaction between management and pedo-climatic conditions. In general though, the BMPs had positive effects in improving the surface and subsurface water quality. The CropSyst model was able to describe the agricultural systems monitored and its linking with the GIS represented a valuable tool for identifying the vulnerable areas within the watershed. PMID:12793690

  18. The impact of glacial/interglacial climate changes on fluvial and mass-wasting processes in the Taiwan's mountains

    NASA Astrophysics Data System (ADS)

    Li, W. L.; Hsieh, M. L.; Tsui, H. K.; Hsiao, Y. T.

    2014-12-01

    The Taiwan orogenic belt, located in Southeastern Asia, is under monsoon climate, frequently attacked by tropical typhoons, and characterized by rapid tectonic uplift with high seismicity. Researchers have been linking the Taiwan's landscapes to active tectonic uplift. In this study, we show the significance of glacial/interglacial climate changes in shaping the landscapes. We focus on the mountain areas that have never been glaciated. Based on >400 radiocarbon dates (70 of which >12 ka), we find that both the slope and fluvial activities were generally low during the glacial time. Still, extensive alluviation had occurred at certain time periods, forming large debris slopes or alluvial fans (typically along mountain fronts), and causing significant aggradation along some major rivers. In contrast, with numerous landslides and debris flows, river incision has dominated during the postglacial time. Episodic river aggradation with alluvial-terrace development (typically at tributary mouths) also occurred during this time period, but was less extensive than previously. Some huge postglacial alluvial terraces have been proved sourced from the colluviums deposited in the glacial time. We attribute the low landscape activities of the glacial period to the dryness during the period. However, even in this time rare but severe rainfall events must have occurred to trigger some extensive alluviation. In contrast, the increase in both rainfall and typhoon frequency during the postglacial time drastically increased the slope instability and sediment yield. The great stream power, along with the sufficient coarse debris acting as erosion tools, ensured the rapid river incision during this time.

  19. Paleoclimate cycles and tectonic controls on fluvial, lacustrine, and eolian strata in upper Triassic Chinle Formation, San Juan basin

    SciTech Connect

    Dubiel, R.F. )

    1989-09-01

    Sedimentologic study of the Upper Triassic Chinle Formation in the San Juan basin (SJB) indicates that Late Triassic paleoclimate and tectonic movements influenced the distribution of continental lithofacies. The Shinarump, Monitor Butte, and Petrified Forest Members in the lower part of the Chinle consist of complexly interfingered fluvial, floodplain, marsh, and lacustrine rocks; the Owl Rock and Rock Point Members in the upper part consists of lacustrine-basin and eolian sandsheet strata. Facies analysis, vertebrate and invertebrate paleontology, and paleoclimate models demonstrate that the Late Triassic was dominated by tropical monsoonal circulation, which provided abundant precipitation interspersed with seasonally dry periods. Owl Rock lacustrine strata comprise laminated limestones that reflect seasonal monsoonal precipitation and larger scale, interbedded carbonates and fine-grained clastics that represent longer term, alternating wet and dry climatic cycles. Overlying Rock Point eolian sand-sheet and dune deposits indicate persistent alternating but drier climatic cyclicity. Within the Chinle, upward succession of lacustrine, alternating lacustrine/eolian sand-sheet, and eolian sand-sheet/dune deposits reflects an overall decrease in precipitation due to the northward migration of Pangaea out of low latitudes dominated by monsoonal circulation.

  20. Landscape change in eastern Georgia (Transcaucasus) during the Late Holocene - documented by fluvial sediments, slope deposits and archaeology

    NASA Astrophysics Data System (ADS)

    von Suchodoletz, Hans; Sukhishvili, Lasha; Elashvili, Mikheil; Djanelidze, Zurab; Navrozashvili, Levan; Kühn, Peter

    2014-05-01

    The semi-arid Gareja region in the Iori Highland in the eastern part of the Republic of Georgia is characterized by an annual precipitation < 600 mm and shows an open steppic landscape today. As is known from historical sources, the landscape showed the same character already during the 6th century AD when the Gareja monastery located in the center of the region was founded by Assyrian monks. However, archaeological research carried out during the Soviet Period showed the existence of numerous settlements of bronze and iron age in this region almost devoid of water resources today, hinting to some sources of fresh water allowing people to live there during those periods. Furthermore, former archaeobotanical studies assume that the region was covered by forests instead of steppes during the past, although there is no final proof yet. The goal of this study is to shed light on the development of the landscape during the prehistoric period and thus to address some of the issues described above. To do so, our work is based on the spatial pattern of prehistoric settlements derived from archaeologic data of the Soviet period, as well as on the analysis of fluvial and slope deposits from the area using a multi-proxy approach. Altogether, these data indicate a dramatic palaeoenvironmental change in the Gareja region ca. 3 ka ago, leading to the recent steppe and almost unpopulated character of the landscape.

  1. Genetic sequences and unconformities in shallow marine to fluvial depositional systems, Mesaverde Group, north-central Wyoming

    SciTech Connect

    Klug, B.; Wurster, P. ); Vondra, C.F. )

    1991-03-01

    Continuous exposures of the Mesaverde Group (Campanian) in the Bighorn basin area, Wyoming, were utilized to establish regional facies architecture and to test sequence stratigraphic concepts along and perpendicular to the general trend of the shoreline of the Western Interior Cretaceous Seaway. Sections along the west flank of the basin begin with stacked seaward stepping, wave dominated beach sandstones that are fed by widely spaced river systems. These sandstones grade eastward into storm influenced intercalated shale/sandstone beds of the lower shoreface-shelf transitional zone. Bioturbated lower and upper shoreface deposits are often truncated by a laterally continuous erosion surface and overlain by coastal swamp and channel deposits, suggesting a regional regressive unconformity. The overlying fluvial units exhibit a distinct transition in architecture from single and multistoried, lens-shaped, avulsion-controlled, low sinuosity channel bodies to single-storied sheets of high sinuosity channels that consist exclusively of gently dipping, heterolithic lateral accretion units. The uppermost depositional sequence of the Mesaverde is the Teapot Sandstone, a conspicuous multistoried sheet sandstone that consists of laterally amalgamated, vertically stacked low to high sinuosity channels. Floodplain sediments are only represented by shale rip-up clasts in channel lags. Laterally persistent ferricrete horizons, containing plant impressions, are time significant surfaces within the Teapot and indicate a rhythmic pattern of sedimentation, nondeposition, and pedogenesis. The base of the Teapot unconformably overlies weathered lower shoreface sandstone along the east flank of the Bighorn basin and thus represents a regional sequence boundary.

  2. Identification and evaluation of fluvial-dominated deltaic (Class I oil) reservoirs in Oklahoma. Final report, August 1998

    SciTech Connect

    Banken, M.K.

    1998-11-01

    The Oklahoma Geological Survey (OGS), the Geo Information Systems department, and the School of Petroleum and Geological Engineering at the University of Oklahoma have engaged in a five-year program to identify and address Oklahoma`s oil recovery opportunities in fluvial-dominated deltaic (FDD) reservoirs. This program included a systematic and comprehensive collection and evaluation of information on all FDD oil reservoirs in Oklahoma and the recovery technologies that have been (or could be) applied to those reservoirs with commercial success. The execution of this project was approached in phases. The first phase began in January, 1993 and consisted of planning, play identification and analysis, data acquisition, database development, and computer systems design. By the middle of 1994, many of these tasks were completed or nearly finished including the identification of all FDD reservoirs in Oklahoma, data collection, and defining play boundaries. By early 1995, a preliminary workshop schedule had been developed for project implementation and technology transfer activities. Later in 1995, the play workshop and publication series was initiated with the Morrow and the Booch plays. Concurrent with the initiation of the workshop series was the opening of a computer user lab that was developed for use by the petroleum industry. Industry response to the facility initially was slow, but after the first year lab usage began to increase and is sustaining. The remaining six play workshops were completed through 1996 and 1997, with the project ending on December 31, 1997.

  3. Age of Terrestrial Biomarkers in Fluvial Transit Across the Andes-Amazon Reveal Timescales of Carbon Storage and Turnover

    NASA Astrophysics Data System (ADS)

    Ponton, C.; Feakins, S. J.; West, A. J.; Galy, V.

    2014-12-01

    Environmental signatures carried by fluvially-exported terrestrial organic matter are shaped by storage, remineralization and replacement at various spatial and temporal scales. Uncertainties in the timescales of these processes are key caveats in the accurate interpretation of sedimentary records. As part of a multi-isotope leaf wax biomarker project, we report the age of biomarkers transported by rivers from mountain to floodplain across the Andes-Amazon transition in southern Peru. We tracked the age of organic carbon using the radiocarbon (14?C) composition of plant leaf waxes extracted from particulate organic carbon (POC) in river suspended sediments. Leaf waxes from POC are younger in mountain headwaters (<500 yrs old) and increase in age across the floodplain (>1000 yrs). Downstream aging is associated with the greater storage potential and residence times in lowland mineral soils and sedimentary sequences that include Pleistocene age eroding river terraces. Given three key observations that 1) carbon loading in suspended sediment does not substantively change from Andes to Amazon, 2) ~80% of sediment is sourced in the Andes, and 3) age increases downstream (this study); we find proof of the decoupling of organic carbon from sediment, which we attribute to loss of Andean carbon and replacement during transport.

  4. Tectonic controls upon Kaveri River drainage, cratonic Peninsular India: Inferences from longitudinal profiles, morphotectonic indices, hanging valleys and fluvial records

    NASA Astrophysics Data System (ADS)

    Kale, Vishwas S.; Sengupta, Somasis; Achyuthan, Hema; Jaiswal, Manoj K.

    2014-12-01

    The Indian Peninsula is generally considered as a tectonically stable region, where ancient rocks, rivers and land surfaces predominate. In some parts of this ancient landscape, however, the role of tectonic landsculpting is strongly indicated by the presence of youthful topography and historical seismic activity. The present study is primarily focused on the middle domain of the Kaveri River, which displays such youthful features. The tectonic controls on this cratonic river were evaluated on the basis of the investigations of the longitudinal profiles, morphotectonic indices of active tectonics, and fluvial records. The presence of steep channel gradients, prominent knickpoints, hanging valleys, narrow bedrock gorges, and channel-in-channel morphology imply rapid erosion rates in the middle domain of the basin in response to active deformation, particularly in the reach defined by two major active faults - the Kollegal-Sivasamudram Fault and the Mekedatu Fault. Further, considering the remarkably low modern and long-term denudation rates and OSL ages of the alluvial deposits (30-40 ka), the tectonically-driven rejuvenation does not appear to be geologically recent as postulated by earlier workers.

  5. Nutrient sources and dynamics in a mediterranean fluvial regime (Ebro river, NE Spain) and their implications for water management

    NASA Astrophysics Data System (ADS)

    Torrecilla, Néstor J.; Galve, Jorge P.; Zaera, Lidia G.; Retamar, Javier F.; Álvarez, Alejandro N. A.

    2005-03-01

    Nonpoint source and point source nutrient loads (N, PO 4-P, COD) to the Ebro River in its central sector were estimated using hydrogeological and socioeconomical data. Their impacts on eutrophication and nutrient dynamics in the river were analyzed through a review of the public administration's historical data and the interpretation of two sampling profiles in September 02 (low flows season) and April 03 (high flows season). A marked seasonality was found in nutrient concentrations, nutrient loads and eutrophication indicators (O 2, Turbidity), appearing symptoms of eutrophication during the summer related to both NPS and PS Nutrient loads within the study area. Agricultural NPS account for 64% of NO 3 loads generated within the study area while urban and industrial PS are responsible of 88% PO 4-P and 71% COD loads. Biological reactions within the river ecosystem (including denitrification in the most eutrophic branches) were found to be a key factor in nutrient content and dynamics. Improvements in urban and industrial wastewater treatment facilities, land use planning and restoration of river-side wetlands, seem to be adequate policies for the improvement of the nutrient water quality in the studied sector of the Ebro River. Flow and temperature seasonality related to Mediterranean fluvial regime imposes significant limitations to nutrient PS in order to accomplish the combined approach proposed in European Water Framework Directive (WFD), based upon Emission Limit Values (ELV) and Environmental Quality Standards (EQS).

  6. Multiple climatic cycles imprinted on regional uplift-controlled fluvial terraces in the lower Yalong River and Anning River, SE Tibetan Plateau

    NASA Astrophysics Data System (ADS)

    He, Zexin; Zhang, Xujiao; Bao, Shuyan; Qiao, Yansong; Sheng, Yuying; Liu, Xiaotong; He, Xiangli; Yang, Xingchen; Zhao, Junxiang; Liu, Ru; Lu, Chunyu

    2015-12-01

    The development of fluvial systems on the southeastern margin of the Tibetan Plateau is linked to significant and rapid late Cenozoic uplift. The relatively complete fluvial terrace sequence preserved along the Yalong River valley and that of its tributary, the Anning River, provides an excellent archive for studying the development of terraces in rapidly uplifting mountainous areas. This study reveals that terrace development is predominantly controlled by multiscale climate cycles and long-term uplift, as shown by terrace dating, sedimentary characteristics, and incision rates. At least six alluvial terrace units were identified in 20 transverse sections through the terraces along about a 600 km length of river and were dated using Electron Spin Resonance (ESR) and Optically Stimulated Luminescence (OSL). The climatostratigraphic positions of the terrace deposits and their respective age constraints suggest that fluvial aggradation was concentrated during Marine Isotope Stages (MIS) 32, 22, 18, 4, 2, and the Younger Dryas (YD) and that incision occurred during the succeeding cold-to-warm transitions. The changes in fluvial style marked by terraces 6, 5, and 4 predominantly occurred in synchrony with the 100-ka Milankovitch climate cycles, while terraces 3 and 2 were controlled by the obliquity-driven 41-ka climate cycles. Finally, the aggradation of terrace T1 occurred in response to the YD stadial. During the intervening time between 0.72 and 0.063 Ma, terraces either did not form or were not preserved, which may suggest that uplift rates varied through time and influenced terrace formation/preservation. The progressive valley incision recorded by these fluvial terraces cannot be entirely explained by climate cycling alone. Temporal and spatial variations in incision rates indicate that the continuing long-term incision has been driven by uplift. The temporal distribution of the incision rates reveals two rapidly uplifting stages in the southeastern Tibetan Plateau, including an accelerated uplift that has been taking place since 0.06 Ma. The spatial distributions of differing incision rates reflect the geomorphological response to crustal shortening and differential uplift in this region.

  7. Climate-dependent fluvial architecture and processes on a suborbital timescale in areas of rapid tectonic uplift: An example from the NE Tibetan Plateau

    NASA Astrophysics Data System (ADS)

    Wang, Xianyan; Vandenberghe, Jef; Yi, Shuangwen; Van Balen, Ronald; Lu, Huayu

    2015-10-01

    The substantial tectonic uplift (1000-2500 m in a few million years) of the Northeastern Tibetan Plateau (NETP), together with the major climatic changes during the Quaternary, provides an opportunity to study the impact of tectonic and climatic changes on the morphological development and sedimentary architecture of fluvial deposits. The effects of these processes are revealed by a terrace staircase, together with the stratigraphy of each individual terrace, in the confluence zone of the Huang Shui and Yellow Rivers in the NETP, during the late Quaternary. On the basis of morphological mapping and OSL-dating, at least seven strath terraces were identified that formed during the last glacial cycle, which are preserved at locations where tectonic uplift was sufficient to separate them altitudinally from one another. The terraces are composed of stacked fluvial gravels, sands and alluvial loams. The principal result is that we demonstrate that the terraces were formed in response to climatic cycles on a suborbital timescale. For each terrace, the lower coarse-grained sediments (gravel and sand) were deposited during cold periods (such as the LGM, MIS3b, MIS4 and MIS5d) associated with a strong Asian winter monsoon. The aggradation during cold periods was associated with floodplain widening. The river incised slightly during the transitions from cold to warm phases, resulting in the transformation of the previous river plain into a terrace. The coarse grained cold phase deposits are covered by inter-bedded, horizontally-laminated silt and sand (representing flood sediments that often contain reworked soil material), during the (cold to warm) transitional phases. The floodplain accumulation on the terrace continued during the subsequent warm period. The warm periods (such as MIS3a, MIS3c, and MIS5a) of the climatic cycles are associated with a strong Asian summer monsoon. Pronounced incision took place at the subsequent warm-cold transitions. After this warm-cold transition, aeolian loess accumulated on the abandoned terrace without any further fluvial reworking. Our results demonstrate that critical thresholds for fluvial response can be crossed at climatic changes on a suborbital timescale given conditions of accelerated tectonic uplift in the NETP. In addition, based on the OSL ages of different units in the sedimentary sequences of the terraces, we conclude that the durations of terrace aggradations and floodplain widening lasted much longer than the periods of fluvial downcutting.

  8. Spatial Distribution of Landslides Triggered by the 2008 Wenchuan Earthquake: Implications for Landslide Fluvial Mobilization and Earthquake Source Mechanism

    NASA Astrophysics Data System (ADS)

    Li, G.; West, A.; Hilton, R. G.

    2013-12-01

    Assessing the spatial distribution of earthquake-induced landslides is important for quantifying the fluvial evacuation of landslide material [Hovius et al., 2011], for deriving information about earthquake sources [Meunier et al., 2013], and for understanding the role of earthquakes in shaping surface topography and in driving orogen evolution. The 2008 Mw 7.9 Wenchuan earthquake is characterized by large magnitude, widespread coseismic landsliding, typical mountainous ridge-and-valley topography of the region, and comprehensive geophysical observation. Previous work on landslides associated with the Wenchuan earthquake has focused on the occurrences of landslide-induced hazards and spatial relations between the landslide locations and the seismic features (i.e., the surface ruptures and the epicenter) [e.g., Dai et al., 2011; Gorum et al., 2011]. Little attention has been paid to how the landslide distribution determines the fluvial mobilization of landslide material or quantitative landslide-earthquake source mechanism inversion, even though the Wenchuan event provides an ideal case study to explore these problems for a larger magnitude earthquake than has yet been considered. We obtained a landslide inventory for the 2008 Wenchuan earthquake using high-resolution remote imagery and a semi-automated mapping algorithm. Here we report the results from spatial and statistical analysis of this landslide map using a digital elevation model (DEM) framework. We present the probability distribution of primary parameters (i.e., slope, aspect, elevation, and area density of all landslides) of the landslide inventory and discuss their relations to regional topographic features (i.e., river channels and mountain ridges). The landslide-river channel connectivity and landslide mobility were estimated using different hillslope-channel transition cutoffs. The landslide density and the probability of slope failure were calculated for all lithological units within the Longmen Shan range. The patterns of the derived landslide statistical parameters were compared to the fault slip distribution of the Wenchuan earthquake. This comparison allows the evaluation of the applicability of the inversion from landslide distribution to earthquake source mechanism for this high-magnitude earthquake. References Dai, F. C., C. Xu, X. Yao, L. Xu, X. B. Tu, and Q. M. Gong (2011), Spatial distribution of landslides triggered by the 2008 Ms 8.0 Wenchuan earthquake, China, Journal of Asian Earth Sciences, 40(4), 883-895. Gorum, T., X. M. Fan, C. J. van Westen, R. Q. Huang, Q. Xu, C. Tang, and G. H. Wang (2011), Distribution pattern of earthquake-induced landslides triggered by the 12 May 2008 Wenchuan earthquake, Geomorphology, 133(3-4), 152-167. Hovius, N., P. Meunier, L. Ching-Weei, C. Hongey, C. Yue-Gau, S. Dadson, H. Ming-Jame, and M. Lines (2011), Prolonged seismically induced erosion and the mass balance of a large earthquake, Earth and Planetary Science Letters, 304(3-4), 347-355. Meunier, P., T. Uchida, and N. Hovius (2013), Landslide patterns reveal the sources of large earthquakes, Earth and Planetary Science Letters, 363(0), 27-33.

  9. Distribution pattern of metals in fluvial sediments in mountainous rural catchments: a case study in Northern Portugal

    NASA Astrophysics Data System (ADS)

    Reis, Anabela; Parker, Andrew; Alencoão, Ana

    2015-04-01

    The management of sediments-associated contaminants, concerning quality and quantity, in mountainous rivers is a pertinent issue; it is well known that mountainous rivers contribute with significant sedimentary loads, transported in short periods of time, in response to short precipitation episodes. Our contribution presents results of a research study developed in one of the tributaries of the River Douro, the River Corgo catchment (studied area of 295 km2). The River Corgo traverses Vila Real city and encounters the River Douro in Régua, in the West limit of the Douro Region - classified as UNESCO World Heritage. The altitudes vary between 200-1400m. The bedrock is composed of crystalline rocks and the land use is mainly forest and agriculture, with scattered urban settlements. The aim was to investigate the dynamics and availability of sediment contaminants in mountainous rural rivers, in a temperate climate. Active fluvial sediments (<63?m fraction) were studied with the aim of characterising the spatial and temporal distribution of the contents of Cd, Co, Cr, Ni, Cu, Zn, Pb, Fe and Mn, in the catchment. To assess possible different origins of metals (natural vs. anthropogenic), and potential availability, a sequential chemical approach was used (modified BCR procedure); the element concentrations were obtained by ICP-AES. The results suggest that Cr and Ni are the main metals from lithological source, with relatively higher contents in the residual fraction, and the lowest in the most mobile fractions. Copper, Zn and, in particular, Pb show higher concentrations in the most labile fractions, suggesting an important contribution of anthropogenic activities to the total contents in the sediments. The spatial distribution pattern of metal contents indicates higher contents of metals in the most mobile fractions occurring along the main courses of the major tributaries (in particular in the flatter reaches, where finer sediment preferentially accumulates). In sampling sites located in the vicinity of point pollution sources, there is an increase of sediment bound-metal contents, which indicates that even in more energetic streams the sediments are able to control, to a significant extent, the levels of metals in the fluvial water. Complementary studies to estimate the delivered quantities of eroded material and associated contaminants, with the aim to relate to the amount of sediments transported within the catchment, are being performed. A GIS based potential soil loss spatial index model was developed with assessment of sediment yield from different lithologies within the catchment. The results show that about 2% of the study area is classified as highest erosion risk potential, and 22% area is under low to moderate erosion risk; these locate in the west, northwest and southern regions of the study area. The estimated soil losses are related, essentially, with one lithology (48%).

  10. Long-term interactions between man and the fluvial environment - case of the Diyala alluvial fan, Iraq

    NASA Astrophysics Data System (ADS)

    Heyvaert, Vanessa M. A.; Walstra, Jan; Mortier, Clément

    2014-05-01

    The Mesopotamian alluvial plain is dominated by large aggradading river systems (the Euphrates, Tigris and their tributaries), which are prone to avulsions. An avulsion can be defined as the diversion of flow from an existing channel onto the floodplain, eventually resulting in a new channel belt. Early civilizations depended on the position of rivers for their economic survival and hence the impact of channel shifts could be devastating (Wilkinson 2003; Morozova 2005; Heyvaert & Baeteman 2008). Research in the Iranian deltaic part of the Mesopotamian plain has demonstrated that deliberate human action (such as the construction of irrigation canals and dams) triggered or obstructed the alluvial processes leading to an avulsion on fluvial megafans (during preconditioning, triggering and post-triggering stages) (Walstra et al. 2010; Heyvaert et al. 2012, Heyvaert et al.2013). Thus, there is ample evidence that the present-day alluvial landscapes in the region are the result of complex interactions between natural and anthropogenic processes. Here we present a reconstruction of the Late Holocene evolution of the Diyala alluvial fan (one of the main tributaries of the Tigris in Iraq), with particular attention to the relations between alluvial fan development, changes in channel pattern, the construction of irrigation networks and the rise and collapse of societies through historic times. The work largely draws on the use of remote sensing and GIS techniques for geomorphological mapping, and previously published archaeological field data (Adams 1965). By linking archaeological sites of known age with traces of ancient irrigation networks we were able to establish a chronological framework of alluvial activity of the Diyala alluvial fan. Our results demonstrate that centralized and technologically advanced societies were able to maintain a rapidly aggradading distibutary channel system, supplying water and sediment across the entire alluvial fan. As a consequence, during these periods (Parthian, Sasanian and again in modern times), significant human modification of the landscape took place. Periods of societal decline are associated with reduced human impact and the development of a single-threaded incising river system. Adams, R.M. (1965). Land behind Baghdad: A history of settlement on the Diyala plains. University of Chicago Press, Chicago, Illinois. Heyvaert, V.M.A. & Baeteman, C. (2008). A Middle to Late Holocene avulsion history of the Euphrates river: a case study from Tell ed-D-er, Iraq, Lower Mesopotamia. Quaternary Science Reviews, 27, 2401-2410. Heyvaert, V. M. A., Walstra, J., Verkinderen, P., Weerts, H. J. T. & Ooghe, B. (2012). The role of human interference on the channel shifting of the river Karkheh in the Lower Khuzestan plain (Mesopotamia, SW Iran). Quaternary International, 251, 52-63. Heyvaert, V.M.A., Walstra, J., Weerts, H.J.T. (2013). Human impact on avulsion and fan development in a semi-arid region: examples from SW Iran. Abstractbook of the 10th International Fluvial Sedimentology Conference, July 2013,Leeds, United Kingdom. Morozova, G.S. (2005). A review of Holocene avulsions of the Tigris and Euphrates rivers and possible effects on the evolution of civilizations in lower Mesopotamia. Geoarchaeology, 20, 401-423. Walstra, J., Heyvaert, V. M. A. & Verkinderen, P. (2010). Assessing human impact on alluvial fan development: a multidisciplinary case-study from Lower Khuzestan (SW Iran). Geodinamica Acta, 23, 267-285. Wilkinson, T.J. (2003). Archaeological Landscapes of the Near East. The University of Arizona Press, Tucson, Arizona.

  11. Time-Correlative Recovery of Milankovitch-Scale Cyclicity From An Eocene Fluvial-Deltaic System, Southern Pyrenees, Spain

    NASA Astrophysics Data System (ADS)

    Anastasio, D. J.; Kodama, K. P.; Teletzke, A. L.; Boulton, S.; Bilardello, D.

    2012-12-01

    Given the controversial state of cyclostratigraphy and the important contributions it provides to the construction of the geologic time scale it is important to know what processes encode environmental changes and what data sets best preserve the integrity of the stratigraphic signal. We test cyclostratigraphy based on rock magnetic data to calibrate time at sub-magnetic chron scales to reconstruct a ~100 kilometer-long transect of an ancient fluvial-deltaic system. Rock magnetic data provides an objective record of multi-frequency cyclicity we interpret to be climate cycles preserved in the Tertiary Ainsa-Jaca-Pamplona Basins. Anhysteretic Remanent Magnetization (ARM) from rocks dominated with low coercivity magnetite and Fe-sulfides and Isothermal Remanent Magnetization (IRM) from rocks dominated by high coercivity hematite and goethite shows the potential to trace correlative beds from terrestrial watersheds to the deep marine basin across facies boundaries. The fluvial Escanilla Fm.-Campodarbe Gp. along the Eripol-Olson section varies from sheet sandstones and overbank siltstone to amalgamated gravels up-section, is 910 m long, records chrons C19r to C15n, and was deposited at a rate of 14cm/kyr. A modified S-ratio, which takes advantage of the differences in coercivities of goethite and hematite was used to assess relative mineral abundance and shows variations in the ratio of goethite : goethite + hematite concentrations around the frequencies expected for short eccentricity (~100 kyr) and obliquity (~40 kyr). A 5 T field saturation IRM (SIRM) was first applied followed by alternating field (af) demagnetization in a 100 mT field (=goethite + hematite concentration), followed by the application of a 1 T backfield and 100 mT af demagnetization (= goethite concentration only). The correlative deltaic Arguis Fm. section coarsens up section from a condensed middle-outer neritic glauconite sandstone and marl sequence to proximal prodeltaic shales and siltstones, to nearshore delta front sandstones of the Belsue-Atarés Fm. We recognized C19n to C16r in the 840 m section which was deposited at rates of 20 cm to >1 m/kyr (Kodama et al. 2010). The deposits record eccentricity and precessional Milankovitch frequencies in ARM data collected with a peak alternating field of 100mT and a DC field of 0.97?T (=fine-grained (~<3?) ferromagnetic mineral content). Further west at Berdun, the Pamplona Fm. represents distal turbidites of the prodelta. The Pamplona Fm. is also of Baratonian and Priabonian in age and includes chrons C17 and C18. The primary paleomagnetic directions are recorded by both magnetite and Fe-sulfides in the section. Time frequency analysis of ARM data collected with a peak af of 25 mT and DC field of 0.5

  12. Numerical analysis of palynological data from Neogene fluvial sediments as evidence for rainforest dynamics in western Amazonia

    NASA Astrophysics Data System (ADS)

    Salamanca, Sonia; van Manen, Milan; Hoorn, Carina

    2014-05-01

    Deep-time records that give an insight into the composition and dynamics of the ancestral Amazon rain forest are rare. Yet to understand the modern biodiversity patterns it is important to untangle the long-term evolution of this forest. Sampling Neogene strata requires drilling operations or complex fieldwork along the rivers where outcrops generally are small. In the nineties an exceptionally good exposure of fluvial sediments of early Miocene age (17.7-16.1 Ma) was documented near the island of Mariñame (Caquetá River, Colombian Amazonia) (Hoorn, 1994). This 60 m sediment succession consists of quartz-rich sands with a circa 10 m black, sandy clay intercalation. Palynomorphs are well preserved in these organic-rich clays and palynological analysis indicated high pollen diversity and changes in composition following changes in the sedimentary environment and water composition (see van Soelen et al., this session). A numerical analysis in R (2013) of the existing data, using a number of multivariate and other statistical techniques now shows a gradient of change in the composition of the Miocene palynological assemblages. Non-metric-multidimensional scaling using distance matrixes (Oksanen, 2012) and their visualizations in correlograms (Friendly, 2002) indicate that the regional (palm) swamp forests of Mauritiides franciscoi (Mauritia), frequently found together with other palms such as Psilamonocolpites amazonicus (Euterpe?) and Psilamonocolpites rinconii, were affected by a marine incursion. The latter is suggested by the change of composition and the presence of estuarine elements such as Zonocostites ramonae (Rhizophora), foraminifer linings and dinoflagellate cysts, which became common during the marine event. In the older part of the section, and at the top, Rhoipites guianensis (Sterculiaceae/Tiliaceae) is quite abundant, in contrast with the relatively low abundance of M. franciscoi. The numerical analysis allowed us to: a) group the pollen data into 3 associations, and b) estimate the palynological diversity along the sampled interval. Together these data suggest that the marine incursion altered the vegetation composition, but did not dramatically alter the diversity. After the marine incursion the vegetation returned to a modified version of the former floodplain forest. As yet no clear analogue has been found for this ancestral forest, but the palynological composition suggests a tropical rain forest to woody savanna. References Friendly, M., 2002. Correlograms: Exploratory Displays for Correlation Matrices. The American Statistician, 56, 316-324. Hoorn, 1994. Hoorn, C. (1994). Fluvial palaeoenvironments in the intracratonic Amazonas Basin (Early Miocene-early Middle Miocene, Colomnbian). Palaeogeography, Palaeoclimatology, Palaeoecology , vol 109, 1-54. Oksanen, J., Blanchet, F.G., Kindt, R., Legendre, P., Minchin, P.R., O'Hara, R. B., Simpson, G.L., Solymos, P., Henry, M. Stevensand, H., Wagner, H., 2013. Vegan: Community Ecology Package. R package version 2.0-8., J. 2012. R: A Language and Environment for Statistical Computing, R Foundation for Statistical Computing, 2013

  13. Multitemporal 3D data capturing and GIS analysis of fluvial processes and geomorphological changes with terrestrial laser scanning

    NASA Astrophysics Data System (ADS)

    Hämmerle, Martin; Forbriger, Markus; Höfle, Bernhard

    2013-04-01

    LiDAR is a state of the art method for directly capturing 3D geodata. A laser beam is emitted in a known direction. The time of flight of the laser pulse is recorded and transformed into the distance between sensor and scanned object. The result of the scanning process is a 3D laser point cloud densely covering the surveyed area. LiDAR is used in a vast variety of research fields. In this study, the focus is on the application of terrestrial laser scanning (TLS), the static and ground-based LiDAR operation, in a multitemporal analysis of fluvial geomorphology. Within the framework of two study projects in 2011/2012, two TLS surveys were carried out. The surveys covered a gravel bar of about 150 m × 25 m size in a side branch of the Neckar River near Heidelberg (49°28'36''N, 8°34'32''E) located in a nature reserve with natural river characteristics. The first survey was performed in November 2011, the second in June 2012. Due to seasonally changing water levels, the gravel bar was flooded and the morphology changed. For the field campaigns, a Riegl VZ-400 was available. Height control points and tie points for registration and georeferencing were obtained with a total station and GPS equipment. The first survey was done from 6 scan positions (77 million points) and the second from 5 positions (89 million points). The point spacing for each single scan was set to 3 mm at 10 m distance. Co-registration of the individual campaigns was done via an Iterative Closest Point algorithm. Thereafter, co-registration and fine georeferencing of both epochs was performed using manually selected tie points and least-squares adjustment. After filtering of vegetation in the 3D point cloud in the software OPALS, a digital terrain model (DTM) with 0.25 m by 0.25 m cell size was generated for each epoch. A difference raster model of the two DTMs for assessing the changes was derived excluding water surface areas using the signal amplitude recorded for each echo. From the mean difference in z-values (-0.14 m) a net erosion of about 660 m³ was estimated. The difference model further indicates the spatial distribution, magnitude and patterns of morphological processes. The study exhibits a great potential of high resolution 3D TLS data for research in fluvial geomorphology. In particular, the full access to 3D point cloud data, processing and analysis is to be emphasized also for geomorphological studies because e.g. fine georeferencing, 3D surface classification (e.g. vegetation and water) and DTM generation require the point cloud and are the basis for accurate change detection and quantification. Future research will focus on the integration of TLS full-waveform and radiometric information for improving surface classification and thus morphological change analysis.

  14. Hydrologic-Hydraulic Modeling of Fluvial Sediment Transport During a Storm Event in a Highly Managed Watershed

    NASA Astrophysics Data System (ADS)

    Bressan, F.; Mantilla, R.

    2014-12-01

    Sediment movement along the main stem of a watershed is strongly affected by the sediment supply and the channel morphology. Anthropogenic interventions tend to alter the hydraulic conveyance and consequently modify the sediment regime of the main stem. This connection between channel hydraulics and sediment transport is often overlooked in hydrologic models where simplified methods are used for flow and sediment routing. In this study, we adopt a hydrologic-hydraulic modeling approach to quantify the fluvial sediment transport along the main stem of a watershed during a storm event. The hydrologic model CUENCAS is implemented to estimate the sub-hourly hydrographs of the major tributaries of the watershed. The simulated hydrographs are used as boundary conditions for the depth-averaged two-dimensional hydraulic model FESMWS to simulate the propagation of the flood wave along the main stem. The corresponding sub-hourly, unsteady non-equilibrium sediment transport along the main stem is also simulated with FESWMS. This procedure is applied to a highly managed agricultural watershed of Iowa. The study site has a catchment area of 70 Km2 with soils that are silty clay loams. The land-use is mostly row crop, but in the past decade a large portion of the watershed was converted to native prairie. The main stem is a meandering stream with a length of 15 Km and ten major tributaries contribute to its flow. Several sections of the main stem have been heavily channelized and straightened since the 1930s. Different grain size distributions and sediment boundary conditions are investigated to discern the effects of land-use changes and channelization on the sediment regime along the main stem. The simulations are able to capture the typical hysteresis between flow and sediment transport. The results indicate that the in-stream sediment transport rate is in general higher in the channelized sections and depends, to a certain extent, on the degree of straightening.

  15. Laramide basin subsidence and fluvial architecture of the Fort Union and Wasatch Formations in the southern greater Green River basin

    SciTech Connect

    Johnson, P.L. )

    1990-05-01

    The late Paleocene Fort Union Formation and early Eocene Wasatch Formation exposed around the Rock Springs uplift demonstrate subsidence variations in the southern greater Green River basin. Total unit thickness and distribution of channel sandstones within overbank deposits record differences in subsidence rate across the basin. On the west flank of the Rock springs uplift, west of the bounding fault, channels have close spacing and thickness is low. On the south flank within the uplift, the thickness values are intermediary but channels are very closely spaced. Away from the uplift on the southeast flank, the thickness is greatest and channels are very widely spaced. Paleocurrents indicate that rivers flowed southward across the central basin to an eastward-flowing axis trunk river at the southern end of the basin. Both the south and southeast flank area were within the basin axis, but the west flank areas was within the central basin. Thickness trends represent subsidence variations across the basin. Subsidence was slowest at the west flank area. On the south flank, subsidence was greater, and the highest subsidence rate was on the southeast flank. Generally, thickness indicates increasing subsidence toward the Uinta uplift, but the south flank area is an exception. Basin subsidence occurred by flexure of the lithosphere under a tectonic load from the Uinta uplift to the south. Thickened lithosphere at the Rock springs uplift bounding fault was resistant to flexure. Thus, on the south flank near the fault, subsidence was slower than on the southeast flank where the lithosphere was not thickened. The closely spaced fluvial architecture on the south flank resulted from a narrow basin axis flood plain. A narrow flood plain possibly resulted from the subsidence resistance of thickened lithosphere at the Rock Springs uplift bounding fault or from topographic expression of the uplift itself.

  16. Channel morphology and patterns of bedload transport in fluvial, formerly-glaciated, forested headwater streams of the Columbia Mountains, Canada

    NASA Astrophysics Data System (ADS)

    Green, Kim; Brardinoni, Francesco; Alila, Younes

    2013-04-01

    This study examines channel-reach morphology and bedload transport dynamics in relation to landscape structure and snowmelt hydrology in Cotton and Elk Creek, two headwater streams of the southern Columbia Mountains, Canada. Data collection is based on field surveys and GIS analysis in conjunction with a nested monitoring network of water discharge and bed load transfer. The nested monitoring network is designed to examine the effects of channel bed texture, and the influence of free-formed (i.e., boulder cascades, step pools, and riffle pools) and forced-alluvial morphologies (i.e., forced step pools) on bedload entrainment and transport. The landscape is characterized by subdued glaciated topography in which sediment is primarily supplied by bank failures and fluvial transfer dominates the channelized sediment cascade. The spatial distribution of channel types is mainly controlled by glacially imposed local slope together with availability of wood and glacigenic materials. Interestingly, downstream hydraulic geometry as well as downstream patterns of the coarse channel bed fraction and stream power are all insensitive to systematic changes of local slope along the typically stepped longitudinal profiles. An indication that the study alluvial systems are adjusted to the contemporary hydrologic and sedimentary regimes, and as such through post-LGM times have been able to compensate for the glacially-imposed boundary conditions. Stepwise multiple regression indicates that annual bedload yield is chiefly controlled by the number of peak events over threshold discharge. During such high flows, repeated destabilization of channel bed armouring and re-mobilization of sediment stored behind logjams can ensure sediment supply for bedload transport across the entire snowmelt season. In particular, channel morphology affects distinctively the variability of bed load response to hydrologic forcing. The observed spatial variability in annual bedload yield appears to correlate with inter-basin differences in basic morphometric attributes, among which slope aspect plays a prominent role.

  17. Paleo-channel reconstruction and grain size variability in fluvial deposits, Ferron Sandstone, Notom Delta, Hanksville, Utah

    NASA Astrophysics Data System (ADS)

    Bhattacharyya, Proma; Bhattacharya, Janok P.; Khan, Shuhab D.

    2015-07-01

    Planform meanderbelt exposures display the evolution of the channel which leads to better understanding of three dimensional architecture of the fluvial deposit. Due to the paucity of extensive plan-view exposures in rock record, reconstruction of paleo channels from plan form exposures has been hardly studied. This study combines closely spaced paleocurrent and grain size data from plan-view exposures of point bar deposits in the delta plain deposits of the Cretaceous Ferron Sandstone near Hanksville, Utah, USA. Airborne Light Detection and Ranging (LiDAR) was used to create hillshade images in which numerous crescent shaped sandstone ridges were identified. These are dominated by unidirectional paleocurrent and thus they are interpreted as scroll bars associated with four distinct meander loops. The loops show a combination of growth by lateral expansion and downstream translation. Cross-cutting relationships allow us to decipher the order of loop formation. Paleocurrent directions closely follow the shape of individual scroll bars. Plan-view grain size distributions show a coarsening trend toward the bend apex on individual scroll bars. However, at the scale of an entire meander loop, this trend is less prominent. Paleohydraulic estimates show that these channels have low sinuosity (1.3-1.7) and have an average discharge ranging from 42.1 to 66.4 m3/s. Comparison with larger sandbodies in underlying valley systems suggests that the studied channels represent the upper delta plain distributary channels and indicate an overall backstep with respect to channels in the immediately underlying incised valley.

  18. Fluvial geoarchaeology in Avaris, the Hyksos capital in the Eastern Nile Delta (2nd Mill. B.C.)

    NASA Astrophysics Data System (ADS)

    Schmitt, Laurent; Goiran, Jean-Philippe; Tronchère, Hervé; Forstner-Muller, Irene

    2014-05-01

    Tell el-Dab'a, the ancient city of Avaris, is a key site for understanding the complex alluvial environment of the Nile delta in northern Egypt which is characterized by a palaeo-network of anastomosing branches. Avaris, the capital of the Hyksos kings, is located on the Pelusiac palaeo-branch, near the eastern margin of the delta. Avaris was an important harbour town from the late 12th Dynasty until the end of the Hyksos Period and then again in the Ramesside Period. For the first time, OSL, radiocarbon and archaeological datings have been combined on the fluvial archives. This database helps us to understand better the chrono-stratigraphy and the evolution of the palaeo-environments. Sedimentary analyses have been conducted on (i) the stratigraphy on the main harbour basin revealed by an excavation in spring 2013 (ii) the sediments that gradually silted in the pelusiac branch: coarse bedload at the bottom and sands to fine silts above. A complete bankfull cross section of the Pelusiac branch has been obtained. Thus, we get 3 important characteristics of the main branch: (1) the width, (2) the depth (3) and the palaeo-discharge has been computed. In order to get an idea of the palaeo-processes, C/M diagrams have been done thanks to the micro-granulometric data. By combining these results, a 5 millennium diachronic cartography of the evolution of the Pelusiac palaeo-branch near Avaris has been produced, providing new insights into the natural landscape evolution that may have accelerated the demise of the great city.

  19. The effects of sample scheduling and sample numbers on estimates of the annual fluxes of suspended sediment in fluvial systems

    USGS Publications Warehouse

    Horowitz, Arthur J.; Clarke, Robin T.; Merten, Gustavo Henrique

    2015-01-01

    Since the 1970s, there has been both continuing and growing interest in developing accurate estimates of the annual fluvial transport (fluxes and loads) of suspended sediment and sediment-associated chemical constituents. This study provides an evaluation of the effects of manual sample numbers (from 4 to 12?year?1) and sample scheduling (random-based, calendar-based and hydrology-based) on the precision, bias and accuracy of annual suspended sediment flux estimates. The evaluation is based on data from selected US Geological Survey daily suspended sediment stations in the USA and covers basins ranging in area from just over 900?km2 to nearly 2?million?km2 and annual suspended sediment fluxes ranging from about 4?Kt?year?1 to about 200?Mt?year?1. The results appear to indicate that there is a scale effect for random-based and calendar-based sampling schemes, with larger sample numbers required as basin size decreases. All the sampling schemes evaluated display some level of positive (overestimates) or negative (underestimates) bias. The study further indicates that hydrology-based sampling schemes are likely to generate the most accurate annual suspended sediment flux estimates with the fewest number of samples, regardless of basin size. This type of scheme seems most appropriate when the determination of suspended sediment concentrations, sediment-associated chemical concentrations, annual suspended sediment and annual suspended sediment-associated chemical fluxes only represent a few of the parameters of interest in multidisciplinary, multiparameter monitoring programmes. The results are just as applicable to the calibration of autosamplers/suspended sediment surrogates currently used to measure/estimate suspended sediment concentrations and ultimately, annual suspended sediment fluxes, because manual samples are required to adjust the sample data/measurements generated by these techniques so that they provide depth-integrated and cross-sectionally representative data. 

  20. Holocene interdependences of changes in sea surface temperature, productivity, and fluvial inputs in the Iberian continental shelf (Tagus mud patch)

    NASA Astrophysics Data System (ADS)

    Rodrigues, Teresa; Grimalt, Joan O.; Abrantes, FáTima G.; Flores, Jose A.; Lebreiro, Susana M.

    2009-07-01

    Sea surface temperature (SST), marine productivity, and fluvial input have been reconstructed for the last 11.5 calendar (cal) ka B.P. using a high-resolution study of C37 alkenones, coccolithophores, iron content, and higher plant n-alkanes and n-alkan-1-ols in sedimentary sequences from the inner shelf off the Tagus River Estuary in the Portuguese Margin. The SST record is marked by a continuous decrease from 19°C, at 10.5 and 7 ka, to 15°C at present. This trend is interrupted by a fall from 18°C during the Roman and Medieval Warm Periods to 16°C in the Little Ice Age. River input was very low in the early Holocene but increased in the last 3 cal ka B.P. in association with an intensification of agriculture and deforestation and possibly the onset of the North Atlantic Oscillation/Atlantic Multidecadal Oscillation modes of variability. River influence must have reinforced the marine cooling trend relative to the lower amplitude in similar latitude sites of the eastern Atlantic. The total concentration of alkenones reflects river-induced productivity, being low in the early Holocene but increasing as river input became more important. Rapid cooling, of 1-2°C occurring in 250 years, is observed at 11.1, 10.6, 8.2, 6.9, and 5.4 cal ka B.P. The estimated age of these events matches the ages of equivalent episodes common in the NE Atlantic-Mediterranean region. This synchronicity reveals a common widespread climate feature, which considering the twentieth century analog between colder SSTs and negative North Atlantic Oscillation (NAO), is likely to reflect periods of strong negative NAO.

  1. Chronology and evolution of a fluvial/canyon connection around the Last Glacial Maximum: The Bourcart canyon head (western Mediterranean)

    NASA Astrophysics Data System (ADS)

    Mauffrey, Marie-Aline; Berné, Serge; Gaudin, Matthieu; Jouet, Gwenael

    2013-04-01

    Deeply incised canyons have been described in the Gulf of Lions since the end of the 19th century. Recently, the role of axial incision, as a pathway of high-density flows initiated within streams and cutting across the main thalweg of canyons, has been proposed as a mechanism for canyon evolution, in this area and elsewhere (Baztan et al., 2005). In this study, we used a large data base of very-high resolution seismic profiles in order to determine the precise architecture of the Bourcart (Aude) canyon head. The accurate 3D geometry of the buried and recent incisions through the Bourcart canyon head allows us to draw the pattern of canyon connections with shelf incised valleys. Furthermore, time constraints (and relation with sea-level changes) were obtained through the correlation with the Promess 1 drill site situated in the vicinity of the Bourcart canyon, and with long piston cores retrieved on the continental shelf in the same area. Our results demonstrate the direct connection of fluvial system(s) to present (and buried) axial incisions, and show the progressive evolution of seismic facies from typical "valley-fill" to typical "confined channel-levee" systems. Streams from the East (possibly the Rhone), then from the West (possibly the Agly) of the Gulf of Lions successively fed the canyon head. An important phase of deposition occurred within the canyon head at the onset of sea-level rise, probably in relation with increased water and sediment flux from the Pyrenees during the early Deglacial period. We hypothesize that, during this period, Pyrenean streams seasonally experienced very high-concentration sediment loads, capable of generating high density (probably hyperpycnal) flows in the canyon head. Only such high-concentration flows may explain the meandering pattern of axial incisions observed at very shallow depths, within the canyon head. Reference: Baztan, J. et al., 2005, Marine and Petroleum Geology, 22, 805-826

  2. Evaluating fluvial terrace riser degradation using LiDAR-derived topography: An example from the northern Tian Shan, China

    NASA Astrophysics Data System (ADS)

    Wei, Zhanyu; Arrowsmith, J. Ramon; He, Honglin

    2015-06-01

    The morphological degradation of fluvial terrace risers provides a constraint to terrace chronology. In this study, we morphologically date the terrace risers along the Kuitun River on the north flank of the Tian Shan, China and subsequently discuss possible relationships between terrace formation and the past regional climate changes and tectonic activity of the Dushanzi fault-related fold. To do this, 159 topographic profile swaths of terrace risers were extracted from LiDAR-derived DEM and were analysed to determine a range of best fitting morphological ages. Through Monte Carlo simulation, a locally applicable sediment transport coefficient (diffusivity) was calibrated as 5.5 ± 1.6 m2/ky given the morphological age of the T1/T2 riser and its independently known age. Taking this calibrated coefficient, we estimate age ranges of 11.6 ± 3.4 ka, 6.5 ± 1.4 ka, 5.3 ± 1.1 ka, and 4.2 ± 1.2 ka for terraces T3, T4, T5, and T6, respectively, under the assumption that the age of the riser is close to the abandonment age of the lower surface. These new terrace ages, combining climate proxy records from the oxygen isotope curve from the Guliya ice cap and paleoearthquake events in the Dushanzi fault related fold, suggest that tectonic activity may be an important factor in the formation of lower terraces within the growing anticlines, while in more extensive areas beyond anticlines, climate changes controlled the main deposition and incision events in the present study area, and thus terrace formation of T1-T3.

  3. Terrace styles and timing of terrace formation in the Weser and Leine valleys, northern Germany: Response of a fluvial system to climate change and glaciation

    NASA Astrophysics Data System (ADS)

    Winsemann, Jutta; Lang, Jörg; Roskosch, Julia; Polom, Ulrich; Böhner, Utz; Brandes, Christian; Glotzbach, Christoph; Frechen, Manfred

    2015-09-01

    In glaciated continental basins accommodation space is not only controlled by tectonics and sea-level but also by the position of ice-sheets, which may act as a regional base-level for fluvial systems. Although the Pleistocene terrace record of major river systems in northwestern Europe has been investigated by many authors, relatively little attention has been paid to base-level changes related to glacier advance-retreat cycles and how these regional changes in base-level interacted with river catchment processes. This study provides a synthesis of the stratigraphic architecture of Middle Pleistocene to Holocene fluvial terraces in the upper Weser and middle Leine valley in northern Germany and links it to glaciation, climate and base-level change. The depositional architecture of the fluvial terrace deposits has been reconstructed from outcrops and high-resolution shear wave seismic profiles. The chronology is based on luminescence ages, 230Th/U ages, 14C ages and Middle Palaeolithic archaeological assemblages. The drainage system of the study area developed during the Early Miocene. During the Pleistocene up to 170 m of fluvial incision took place. A major change in terrace style from strath terraces to cut-and-fill terraces occurred during the early Middle Pleistocene before Marine Isotope Stage MIS 12, which may correlate with climate deterioration and the onset of glaciation in northern central Europe. During this time a stable buffer zone was established within which channels avulsed and cut and filled freely without leaving these vertical confines. Climate was the dominant driver for river incision and aggradation, whereas the terrace style was controlled by base-level changes during ice-sheet growth and decay. A major effect of glacio-isostatic processes was the post-Elsterian re-direction of the River Weser and River Leine. The Middle Pleistocene fluvial terraces are vertically stacked, indicating a high aggradation to degradation ratio, corresponding with a regional base-level rise during glacier advance. At the beginning of the Late Pleistocene the terrace style changed from a vertical to a lateral stacking pattern, which is attributed to a decrease in accommodation space during glacier retreat. The formation of laterally attached terraces persisted into the Holocene. Major incision phases took place during MIS 5e, 5d, 5c, and probably early MIS 4, early MIS 3 and MIS 2 (Lateglacial). During MIS 5e and the Lateglacial the braided river systems changed into meandering rivers, indicated by preserved organic-rich flood-plain and point bar deposits. The Late Pleistocene braided river systems (MIS 5c to MIS 3) are characterized by a high sinuosity, which may be a direct effect of an increased downstream gradient after deglaciation when the channel lengthened and the river adjusted to the increased gradient by increasing sinuosity. These Middle Pleniglacial fluvial deposits are unconformably overlain by Lateglacial to Holocene meandering river deposits, which form laterally attached terraces, recording millennial-scale channel shifts. The lack of Late Pleniglacial deposits might be related to Late Weichselian forebulge formation.

  4. The linkages among hillslope-vegetation changes, elevation, and the timing of late-Quaternary fluvial-system aggradation in the Mojave Desert revisited

    NASA Astrophysics Data System (ADS)

    Pelletier, J. D.

    2014-08-01

    Valley-floor-channel and alluvial-fan deposits and terraces in the southwestern US record multiple episodes of late-Quaternary fluvial-system aggradation and incision. Perhaps the most well-constrained of these episodes took place from the latest Pleistocene to the present in the Mojave Desert. One hypothesis for this episode - i.e., the paleovegetation-change hypothesis (PVCH) - posits that a reduction in hillslope vegetation cover associated with the transition from Pleistocene woodlands to Holocene desert scrub generated a pulse of sediment that triggered a primary phase of aggradation downstream, followed by channel incision, terrace abandonment, and initiation of a secondary phase of aggradation further downstream. A second hypothesis - i.e., the extreme-storm hypothesis - attributes episodes of aggradation and incision to changes in the frequency and/or intensity of extreme storms. In the past decade a growing number of studies has advocated the extreme-storm hypothesis and challenged the PVCH on the basis of inconsistencies in both timing and process. Here I show that in eight out of nine sites where the timing of fluvial-system aggradation in the Mojave Desert is reasonably well constrained, measured ages of primary aggradation are consistent with the predictions of the PVCH if the time-transgressive nature of paleovegetation changes with elevation is fully taken into account. I also present an alternative process model for PVCH that is more consistent with available data and produces sediment pulses primarily via an increase in drainage density (i.e., a transformation of hillslopes into low-order channels) rather than solely via an increase in sediment yield from hillslopes. This paper further documents the likely important role of changes in upland vegetation cover and drainage density in driving fluvial-system response during semiarid-to-arid climatic changes.

  5. Late Quaternary aeolian sand deposition sustained by fluvial reworking and sediment supply in the Hexi Corridor - An example from northern Chinese drylands

    NASA Astrophysics Data System (ADS)

    Nottebaum, Veit; Lehmkuhl, Frank; Stauch, Georg; Lu, Huayu; Yi, Shuangwen

    2015-12-01

    Aeolian deposits are frequently used for palaeoenvironmental change studies. Their formation depends on an array of requirements: the supply of material suitable for aeolian transport and favorable conditions of sediment availability and wind strength. In order to infer palaeoenvironmental information from aeolian sand deposits these factors need to be carefully evaluated. We present a study from northern Chinese Hexi Corridor, based on 11 optically stimulated luminescence (OSL) dated sediment sections. These represent interchanging aeolian and alluvial deposits under gravel surfaces and aeolian sand in dune fields interrupted by interdunal flood deposits. Investigations in two subareas reveal contrasting geomorphologic and sedimentary histories: (1) sediment deposition during the Pleistocene-Holocene transition (~ 12 ka) followed by deflation during the Holocene and (2) frequent sediment recycling revealed by a wide spectrum of ages throughout the Holocene. The late glacial sediment pulse recorded in the western Hexi Corridor is attributed to high sediment supply, generated by efficient (peri-)glacial sediment production during glacial times in the adjacent Qilian Shan (< 5700 m asl) and a moisture increase inducing the reworking of those (glacio-)fluvial deposits during the Pleistocene-Holocene transition. The absence of a powerful reworking agent preserved these late glacial deposits in the western Hexi Corridor in contrast to moister eastern parts where Holocene sediment reworking prevailed. Geomorphological and hydrological preconditions of the subareas are discussed and reveal the controlling influence of fluvial processes on sand supply for the aeolian system. While a perennial drainage is missing in the drier western part, the Hei River drainage is fed by higher monsoonal precipitation in the central Hexi Corridor. It maintains a sediment recycling system and has ensured a sufficient sediment supply throughout the Holocene. The study promotes closer consideration of the fluvial influence on aeolian archives in palaeoenvironmental studies from central Asian and other drylands.

  6. Sediment sources and fluvial transport during thermally and pluvially generated peak runoff in a glacier-fed mountain catchment in Nordfjord, western Norway

    NASA Astrophysics Data System (ADS)

    Beylich, A. A.

    2009-04-01

    Continuous and year-round monitoring of runoff, solute and suspended sediment transport is carried out (since 2005) in the Erdalen catchment in Nordfjord, using five stationary stations. Erdalen is a typical U-shaped and glacier-fed valley in the mountain landscape of western Norway characterised by steep valley-fjord systems. Two outlet glaciers of the Jostedalsbreen ice cap are covering the uppermost parts of Erdalen. The runoff regime in Erdalen is complex, with peak runoff occuring during snow melt in spring, glacier melt in summer and heavy rainfalls in fall. Peak runoff in spring and summer is mainly thermally determined whereas runoff peaks in fall are pluvially induced. Different sediment sources are activated during different periods of the year. Runoff peaks in fall appear to be most relevant with respect to fluvial sediment transport. Heavy rainfalls can cause debris flows and saturation overland flow with connected wash processes at slopes, and related to this significantly increased sediment supplies from slopes into channel systems. Altogether, fluvial sediment transport and fluvial mechanical denudation in Erdalen seem to be supply-limited and the annual suspended sediment yield can vary significantly. Annual suspended sediment yields are to a high extent determined by the annual number of heavy rainfall events as well as by air temperatures in July and August determining the range of runoff peaks in summer, and by the total amount of wintry snow storage controling the range of peak runoff in spring. The contemporary mean annual suspended sediment yield in Erdalen is similar to the mean chemical denudation rate in this valley.

  7. INTRODUCCIN A LA ESTADSTICA APLICADA EN LA QUMICA Los institutos de Qumica Avanzada de Catalua (IQAC) y del Diagnstico Ambiental y Estudios del Agua (IDAEA) del CSIC

    E-print Network

    (IQAC) y del Diagnóstico Ambiental y Estudios del Agua (IDAEA) del CSIC ofrecen la posibilidad de datos: diseño, grabación, exportación. 3.Control de calidad de la información contenida en una base de

  8. U.S. Geological Survey approved inorganic and organic methods for the analysis of water and fluvial sediment, 1954-94

    USGS Publications Warehouse

    Fishman, Marvin J.; Raese, Jon W.; Gerlitz, Carol N.; Husband, Richard A.

    1994-01-01

    All inorganic and organic methods for analyzing samples of water and fluvial sediment, which have been approved for use by the U.S. Geological Survey from 1954 to the present (1994), are listed. Descriptive method names include references to published reports for easy retrieval of methodology. The year each method was approved is listed as well as the year the method was discontinued. Inorganic and organic methods are listed separately by sample type (dissolved, whole water, bottom material, suspended sediment, or fish tissue) and by mode of analysis (manual or automated, or both).

  9. Patterns of Quaternary uplift of the Corinth rift southern border (N Peloponnese, Greece) revealed by fluvial landscape morphometry

    NASA Astrophysics Data System (ADS)

    Demoulin, A.; Beckers, A.; Hubert-Ferrari, A.

    2015-10-01

    The Rift of Corinth is a world-class example of young active rifting and, as such, is an ideal natural laboratory of continental extension. However, though much investigated for two decades, several aspects of the mechanisms at work are still poorly understood. The aim of this paper is a detailed morphometric study of the fluvial landscape response to the tectonic uplift of the rift southern shoulder in order to reconstruct the rift's Quaternary evolution, with special attention to timing, location, and intensity of uplift episodes. Based on the use of a large set of catchment and long profile metrics complemented by the new R/SR integrative approach of the regional drainage network, we identified three distinct episodes of uplift of the northern Peloponnese coastal tract, of which the intermediate one, dated around 0.35-0.4 Ma, is only recorded in the topography of the central part of the rift shoulder, and the youngest one appears to have propagated from east to west over the last 10-20 ka. While net uplift remained minimum in the eastern part of the study area during the whole Quaternary, it shows a clear maximum in the central part of the rift shoulder since 0.4 Ma and an eastward shift of this maximum in recent times. Maximum uplift rates calculated from the morphometric data are of > 1.05 and 2-5 mm year- 1 for, the mid-Middle Pleistocene and Holocene uplift episodes, respectively. The morphometric evidence reveals an onshore uplift history remarkably consistent with the rift evolution reconstructed from other data sets. In the long term, it shows a stable pattern of maximum activity in the central part of the rift, confirming previous conclusions about the absence of rift propagation. In the short term, it sheds light on a possible E-W migration of the zone of recent uplift, suggesting that in the near future fault activity and seismic hazard might concentrate in the Heliki-Aegion area, at the western tip of this uplift wave.

  10. Late Holocene development of a major fluvial discontinuity in floodplain wetlands of the Blood River, eastern South Africa

    NASA Astrophysics Data System (ADS)

    Tooth, Stephen; McCarthy, Terence; Rodnight, Helena; Keen-Zebert, Amanda; Rowberry, Matthew; Brandt, Dion

    2014-01-01

    In dryland settings, most floodplain wetlands form in low gradient, low energy environments that are characterised by strong interactions between flow, sediment and biota. Some floodplain wetlands are only partly channelled or largely unchannelled, and represent major discontinuities in drainage networks, fundamentally influencing downvalley water and sediment transfer. In the > 15 km2 Blood River floodplain wetlands, located in subhumid to semiarid eastern South Africa, field investigations, aerial photographs, and optically stimulated luminescence (OSL) ages provide evidence for development of a major discontinuity during the very late Holocene. Between ~ 800 and 100 years ago, the wetlands were characterised by a through-going, meandering channel set within a floodplain up to 2.5 km wide. A sinuous channel remains in the lower part of the wetlands but during the last ~ 100 years major morphological and sedimentary changes have occurred upvalley. The former through-going, meandering channel has been replaced by a straighter channel that decreases in size downstream and terminates in a 'floodout', characterised here by an unchannelled reedbed. Small tributaries supply water and limited sediment to this floodout and another floodout located farther downvalley. Organo-clastic sediments > 3 m thick have accumulated in the floodouts as broad lobes, in places burying the former meander-belt sediments. On the steepened, downvalley sides of these lobes, small headcutting channels convey water that filters through the reedbeds. If headcutting through the lobes continues, a through-going channel may re-establish upvalley, possibly eventually linking with the sinuous but now moribund channel in the lower part of the wetlands. Along the Blood River, the initial cause(s) of the sequence of changes is not known, but these channel-floodplain adjustments are partially analogous to the system-scale, autogenic morphological and sedimentary dynamics of those dryland fluvial systems that are also characterised by a combination of channelled and unchannelled landforms (e.g. discontinuous ephemeral streams, erosion cells). Knowledge of these historical changes can provide scientific underpinning for present-day management of wetlands, including assessments of ecosystem service provision and the suitability of measures to control erosion.

  11. Tectonic control of the Tejo river fluvial incision during the late Cenozoic, in Ródão—central Portugal (Atlantic Iberian border)

    NASA Astrophysics Data System (ADS)

    Cunha, P. Proença; Antunes Martins, A.; Daveau, S.; Friend, P. F.

    2005-01-01

    Staircases of strath terraces and strongly incised valleys are the most typical landscape features of Portuguese rivers. This paper examines the incision achieved during the late Cenozoic in an area crossed by the Tejo river between the border with Spain and the small town of Gavião. In the more upstream reach of this area, the Tejo crosses the Ródão tectonic depression, where four levels of terraces are distinguished. During the late Cenozoic fluvial incision stage, the Ródão depression underwent less uplift than the adjacent areas along the river. This is reflected by the greater thicknesses and spatial extent of the terraces; terrace genesis was promoted by impoundment of alluvium behind a quartzitic ridge and the local presence of a soft substratum. Outside this tectonic depression, the Tejo has a narrow valley incised in the Hercynian basement, with some straight reaches that probably correspond to NE-SW and NNW-SSE faults, the terraces being nearly absent. Geomorphological evidence of tectonic displacements affecting the Ródão dissected terrace remnants is described. Geochronological dating of the two younger and lower terrace levels of this depression suggests a time-averaged incision rate for the Tejo in the Ródão area, of ca. 1.0 m/ka over the last 60 thousand years. A clear discrepancy exists between this rate and the 0.1 m/ka estimated for the longer period since the end of the Pliocene. Although episodes of valley incision may be conditioned by climate and base-level changes, they may also have been controlled by local factors such as movement of small fault-bounded blocks, lithology and structure. Regional crustal uplift is considered to be the main control of the episodes of valley incision identified for this large, long-lived river. A model is proposed in which successive regional uplift events—tectonic phases—essentially determined the long periods of rapid river downcutting that were punctuated by short periods of lateral erosion and later by some aggradation, producing strath terraces.

  12. Stratigraphy of fluvial sediment sequences and their palaeoenvironmental information in the foreland of the Serra dos Órgãos, southeastern Brazil

    NASA Astrophysics Data System (ADS)

    Kirchner, André; Nehren, Udo; Heinrich, Jürgen

    2013-04-01

    In the hinterland of Rio de Janeiro city the rivers Guapiaçu, Macacu and Iconha originate in the Serra dos Órgãos mountain range and drain into the Atlantic Ocean. Since their channelization in the 1950s, higher flow velocities caused an incision of the rivers into the valley fills. These circumstances provide the possibility to study the alluvial deposits along the streams during low water level and allow conclusions on palaeoenvironmental change and landscape history. Sedimentological investigations of 13 exposures as well as AMS 14C measurements were carried out to investigate sediment properties and reconstruct the sedimentation history within the floodplains. These results enable to distinguish three different facies units. A late Pleistocene Unit I can be detected at the base of the observed exposures and consists of clast-supported fine to coarse gravels. It can be assumed that the gravel bodies were formed by a climatically induced erosional-depositional cycle within a braided river system. The gravels are overlaid by Unit II, a grayish to bluish loam mainly of mid-Holocene age. During generally drier climates these loams have been deposited during high water stages or flooding events as a splay facies proximal to the rivers. A reduced flow competence and relatively stable morphodynamic conditions are assumed for that period. Unit III accumulated in the late Holocene typically consists of several meters of planar or cross bedded sands to fine gravels, interfingered by loamy inclusions, buried peat bogs and organic debris. Fining-upward sequences can be frequently studied within Unit III which were completed by loamy sediments in the uppermost parts of the exposures. The increased flow competence from Unit II to Unit III seems to be a fluvial response to the increased humidity of the late Holocene as well as the enhancement of El Niño-Southern Oscillation (ENSO). Heavy rainfall likely caused higher sediment supply from the steep slopes as well as a reworking of sediments followed by sedimentation in the floodplains. The development of the uppermost loams is attributed to deforestation and land use intensification in historical times which led to higher erosion rates and related sediment loads. An increased human impact can be postulated for the last 250 years.

  13. Consequences of an unusual flood event: case study of a drainage canal breach on a fluvial plain in NE Slovenia

    NASA Astrophysics Data System (ADS)

    Vidmar, Ines; Ambroži?, Bojan; Debeljak, Barbara; Dolžan, Erazem; Gregorin, Špela; Grom, Nina; Herman, Polona; Keršmanc, Teja; Mencin, Eva; Mernik, Natalija; Švara, Astrid; Trobec, Ana; Turnšek, Anita; Vodeb, Petra; Torkar, Anja; Bren?i?, Mihael

    2013-04-01

    On November 4-6 2012 heavy precipitation resulted in floods in the middle and lower course of Drava River in NE Slovenia causing damage to many properties in the flooded area. The meteorological situation that led to consequent floods was characterized by high precipitation, fast snowmelt, SW wind and relatively high air temperature. The weather event was part of a cyclone which was spreading over the area of North, West and Central Europe in the direction of Central Europe and carried with it the passing of a cold front through Slovenia on November 4 and 5. The flood wave travelled on the Drava River from Austria to Slovenia past the 11 hydroelectric power plants after eventually moving over the Slovenian-Croatian border. The river discharge increased in the early morning of November 5 reaching 3165 m3/s. This work focuses on a single event in the Ptujsko polje where among other damage caused by the flooding, the river broke through the drainage canal of the Formin hydroelectric power plant and changed its course. The Ptujsko polje contains two fluvial terraces. In the area of Formin HPP, the lower terrace is 1.5 km wide and the surface as well as the groundwater gradient shift from west to east with the groundwater flowing parallel to the river. These characteristics contributed to the flooding and consequential breach in the embankment of the drainage canal. Several aspects of the recent floods are discussed including a critical reflection of data accessibility, possible causes and mechanisms behind it as well as the possibility of its forecasting. Synthesis of accessible data from open domain sources is performed with emphasis on geological conditions. Discharge and precipitation data from the data base of Slovenian Environment Agency are collected, reviewed and analyzed. The flood event itself is analyzed and described in detail. It is determined that the flood wave was different from the ones regulated by natural processes which points to an anthropogenic influence. In the paper we are focusing not only on the characteristics of a single event but try to interpret it in the context of a broader time scale using sources of similar past events of high precipitation and discharge, recorded flood events in the past and general flood characteristics of a river environment.

  14. The influence of impurities in Titan ice bedrock on tensile strength and resistance to fluvial erosion: experimental results

    NASA Astrophysics Data System (ADS)

    Litwin, K. L.; Polito, P.; Zygielbaum, B.; Sklar, L. S.; Collins, G. C.

    2010-12-01

    Images of the surface of Titan returned by the Cassini-Huygens mission show extensive fluvial drainage networks, which may be eroded by low-velocity impacts by ice clasts moving as bedload in rivers of liquid methane. Recent work has shown that the strength of polycrystalline water ice at Titan surface temperature of 93K is comparable to moderate strength rocks on Earth, and is significantly stronger than ice at terrestrial temperatures. However, the ice bedrock on Titan is likely to contain impurities such as silicates, atmospherically-derived hydrocarbon polymers and compounds of cryovolcanic origin. In this laboratory investigation, we examine the dependence of ice erosion resistance on the concentration of impurities, across a wide range of temperatures. The polycrystalline ice is made from a log-normally distributed seed crystal material with a median size of 1.4mm, which we combine with particles of basalt, ammonium-sulfate, and a urea polymer. We use the Brazilian tensile splitting test to measure the strength of the ice as a function of the concentration of each impurity. We erode 57-cm diameter drums of ice by repeatedly dropping a clast of known mass from a constant height and measure volume eroded with a topographic scanning technique where photographs are taken at an oblique angle to a