Science.gov

Sample records for ah receptor ligands

  1. Aminoflavone, a ligand of the Aryl Hydrocarbon Receptor (AhR), inhibits HIF-1α expression in an AhR-independent fashion

    PubMed Central

    Terzuoli, Erika; Puppo, Maura; Rapisarda, Annamaria; Uranchimeg, Badarch; Cao, Liang; Burger, Angelika M.; Ziche, Marina; Melillo, Giovanni

    2010-01-01

    Aminoflavone (AF), the active component of a novel anticancer agent (AFP464) in phase I clinical trials, is a ligand of the aryl hydrocarbon receptor (AhR). AhR dimerizes with HIF-1β/ARNT, which is shared with HIF-1α, a transcription factor critical for the response of cells to oxygen deprivation. To address whether pharmacological activation of the AhR pathway might be a potential mechanism for inhibition of HIF-1, we tested the effects of AF on HIF-1 expression. AF inhibited HIF-1α transcriptional activity and protein accumulation in MCF-7 cells. However, inhibition of HIF-1α by AF was independent from a functional AhR pathway. Indeed, AF inhibited HIF-1α expression in AhR100 cells, in which the AhR pathway is functionally impaired, yet did not induce cytotoxicity, providing evidence that these effects are mediated by distinct signaling pathways. Moreover, AF was inactive in MDA-MB-231 cells, yet inhibited HIF-1α in MDA-MB-231 cells transfected with the SULT1A1 gene. AF inhibited HIF-1α mRNA expression by approximately 50%. Notably, actinomycin-D completely abrogated the ability of AF to down-regulate HIF-1α mRNA, indicating that active transcription was required for the inhibition of HIF-1α expression. Finally, AF inhibited HIF-1α protein accumulation and the expression of HIF-1-target genes in MCF-7 xenografts. These results demonstrate that AF inhibits HIF-1α in an AhR-independent fashion and they unveil additional activities of AF that may be relevant for its further clinical development. PMID:20736373

  2. Detection of the TCDD Binding-Fingerprint within the Ah Receptor Ligand Binding Domain by Structurally Driven Mutagenesis and Functional Analysis†

    PubMed Central

    Pandini, Alessandro; Soshilov, Anatoly A.; Song, Yujuan; Zhao, Jing; Bonati, Laura; Denison, Michael S.

    2010-01-01

    The aryl hydrocarbon receptor (AhR) is a ligand-dependent, basic helix–loop–helix Per-Arnt-Sim (PAS)-containing transcription factor that can bind and be activated by structurally diverse chemicals, including the toxic environmental contaminant 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). Our previous three-dimensional homology model of the mouse AhR (mAhR) PAS B ligand binding domain allowed identification of the binding site and its experimental validation. We have extended this analysis by conducting comparative structural modeling studies of the ligand binding domains of six additional high-affinity mammalian AhRs. These results, coupled with site-directed mutagenesis and AhR functional analysis, have allowed detection of the “TCDD binding-fingerprint” of conserved residues within the ligand binding cavity necessary for high-affinity TCDD binding and TCDD-dependent AhR transformation DNA binding. The essential role of selected residues was further evaluated using molecular docking simulations of TCDD with both wild-type and mutant mAhRs. Taken together, our results dramatically improve our understanding of the molecular determinants of TCDD binding and provide a basis for future studies directed toward rationalizing the observed species differences in AhR sensitivity to TCDD and understanding the mechanistic basis for the dramatic diversity in AhR ligand structure. PMID:19456125

  3. Ligand-dependent interactions of the Ah receptor with coactivators in a mammalian two-hybrid assay

    SciTech Connect

    Zhang Shu; Rowlands, Craig; Safe, Stephen

    2008-03-01

    2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) is a high affinity ligand for the aryl hydrocarbon receptor (AhR). In this study, we investigated structure-dependent differences in activation of the AhR by a series of halogenated aromatic hydrocarbons. TCDD, 1,2,3,7,8-pentachlorodibenzo-p-dioxin (PeCDD), 2,3,7,8-tetrachlorodibenzofuran (TCDF), 2,3,4,7,8-pentachlorodibenzofuran (PeCDF), and 3,3',4,4',5-pentachlorobiphenyl (PCB126) induced CYP1A1-dependent activities in HEK293 human embryonic kidney, Panc1 pancreatic cancer, and Hepa1c1c7 mouse hepatoma cell lines. There was a structure-dependent difference in the efficacy of TCDF and PCB126 in HEK293 and Panc1 cells since induced CYP1A1 mRNA levels were lower than observed for the other congeners. A mammalian two-hybrid assay in cells transfected with GAL4-coactivator and AhR-VP16 chimeras was used to investigate structure-dependent interactions of these chimeras in Panc1, HEK293, and Hepa1c1c7 cells. The reporter construct pGAL4-luc contains five tandem GAL4 response elements linked to the luciferase gene and the GAL4-coactivator chimeras express several coactivators including steroid receptor coactivator 1 (SRC-1), SRC-2 and SRC-3, the mediator coactivator TRAP220, coactivator associated arginine methyl transferase 1 (CARM-1), and peroxisome proliferator-activated receptor {gamma} coactivator 1 (PGC-1). Results of the mammalian two-hybrid studies clearly demonstrate that activation of pGAL4-luc in cells transfected with VP-AhR and GAL4-coactivator chimeras is dependent on the structure of the HAH congener, cell context, and coactivator, suggesting that the prototypical HAH congeners used in this study exhibit selective AhR modulator activity.

  4. Targeted delivery of DNA using YEE(GalNAcAH)3, a synthetic glycopeptide ligand for the asialoglycoprotein receptor.

    PubMed

    Merwin, J R; Noell, G S; Thomas, W L; Chiou, H C; DeRome, M E; McKee, T D; Spitalny, G L; Findeis, M A

    1994-01-01

    In vivo gene therapy shows promise as a treatment for both genetic and acquired disorders. The hepatic asialoglycoprotein receptor (ASGPr) binds asialoorosomucoid-polylysine-DNA (ASOR-PL-DNA) complexes and allows targeted delivery to hepatocytes. The tris(N-acetylgalactosamine aminohexyl glycoside) amide of tyrosyl(glutamyl) glutamate [YEE(GalNAcAH)3] has been previously reported to have subnanomolar affinity for the ASGPr. We have used an iodinated derivative of YEE(GalNAcAH)3 linked to polylysine and complexed to the luciferase gene (pCMV-Luc) in receptor-binding experiments to establish the feasibility of substituting ASOR with the synthetic glycopeptide for gene therapy. Scatchard analyses revealed similar Kd values for both ASOR and the glycopeptide. Binding and internalization of 125I-Suc-YEE(GalNAcAH)3 were competitively inhibited with either unlabeled ASOR or glycopeptide. The reverse was also true; 125I-ASOR binding was competed with unlabeled YEE(GalNAcAH)3 suggesting specific binding to the ASGPr by both compounds. Examination of in vivo delivery revealed that the 125I-labeled glycopeptide complex mimicked previous results observed with 125I-ASOR-PL-DNA. CPM in the liver accounted for 96% of the radioactivity recovered from the five major organs (liver, spleen, kidney, heart, and lungs). Cryoautoradiography displayed iodinated glycopeptide complex bound preferentially to hepatocytes rather than nonparenchymal cells. In vitro, as well as in vivo, transfections using the glycopeptide-polylysine-pCMV-luciferase gene complex (YG3-PL-Luc) resulted in expression of the gene product. These data demonstrate that the YEE(GalNAcAH)3 synthetic glycopeptide can be used as a ligand in targeted delivery of DNA to the liver-specific ASGPr. PMID:7873664

  5. Mixed-ligand copper(II) complexes activate aryl hydrocarbon receptor AhR and induce CYP1A genes expression in human hepatocytes and human cell lines.

    PubMed

    Kubešová, Kateřina; Dořičáková, Aneta; Trávníček, Zdeněk; Dvořák, Zdeněk

    2016-07-25

    The effects of four copper(II) mixed-ligand complexes [Cu(qui1)(L)]NO3·H2O (1-3) and [Cu(qui2)(phen)]NO3 (4), where qui1=2-phenyl-3-hydroxy-4(1H)-quinolinone, Hqui2=2-(4-amino-3,5-dichlorophenyl)-N-propyl-3-hydroxy-4(1H)-quinolinone-7-carboxamide, L=1,10-phenanthroline (phen) (1), 5-methyl-1,10-phenanthroline (mphen) (2), bathophenanthroline (bphen) (3), on transcriptional activities of steroid receptors, nuclear receptors and xenoreceptors have been studied. The complexes (1-4) did not influence basal or ligand-inducible activities of glucocorticoid receptor, androgen receptor, thyroid receptor, pregnane X receptor and vitamin D receptor, as revealed by gene reporter assays. The complexes 1 and 2 dose-dependently induced luciferase activity in stable gene reporter AZ-AhR cell line, and this induction was reverted by resveratrol, indicating involvement of aryl hydrocarbon receptor (AhR) in the process. The complexes 1, 2 and 3 induced CYP1A1 mRNA in LS180 cells and CYP1A1/CYP1A2 in human hepatocytes through AhR. Electrophoretic mobility shift assay EMSA showed that the complexes 1 and 2 transformed AhR in its DNA-binding form. Collectively, we demonstrate that the complexes 1 and 2 activate AhR and induce AhR-dependent genes in human hepatocytes and cancer cell lines. In conclusion, the data presented here might be of toxicological importance, regarding the multiple roles of AhR in human physiology and pathophysiology. PMID:27180721

  6. CHARACTERIZATION OF THE AH RECEPTOR

    EPA Science Inventory

    The rat liver cytosolic receptor protein containing the Ah-receptor protein was purified and studied using a photochemical assembly of 2,3,7,8-TCDD. The unbound receptor protein rapidly lost its capacity to bind 2,3,7,8-TCDD; however, the 2,3,7,8-TCDD bound Ah receptor did not re...

  7. Newspapers and newspaper ink contain agonists for the ah receptor.

    PubMed

    Bohonowych, Jessica E S; Zhao, Bin; Timme-Laragy, Alicia; Jung, Dawoon; Di Giulio, Richard T; Denison, Michael S

    2008-04-01

    Ligand-dependent activation of the aryl hydrocarbon receptor (AhR) pathway leads to a diverse array of biological and toxicological effects. The best-studied ligands for the AhR include polycyclic and halogenated aromatic hydrocarbons, the most potent of which is 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). However, as new AhR ligands are identified and characterized, their structural and physiochemical diversity continues to expand. Our identification of AhR agonists in crude extracts from diverse materials raises questions as to the magnitude and extent of human exposure to AhR ligands through normal daily activities. We have found that solvent extracts of newspapers from countries around the world stimulate the AhR signaling pathway. AhR agonist activity was observed for dimethyl sulfoxide (DMSO), ethanol, and water extracts of printed newspaper, unprinted virgin paper, and black printing ink, where activation of luciferase reporter gene expression was transient, suggesting that the AhR active chemical(s) was metabolically labile. DMSO and ethanol extracts also stimulated AhR transformation and DNA binding, and also competed with [(3)H]TCDD for binding to the AhR. In addition, DMSO extracts of printed newspaper induced cytochrome P450 1A associated 7-ethoxyresorufin-O-deethylase activity in zebrafish embryos in vivo. Although the responsible bioactive chemical(s) remain to be identified, our results demonstrate that newspapers and printing ink contain relatively potent metabolically labile agonists of the AhR. Given the large amount of recycling and reprocessing of newspapers throughout the world, release of these easily extractable AhR agonists into the environment should be examined and their potential effects on aquatic organisms assessed. PMID:18203687

  8. The AhR Ligand, TCDD, Regulates Androgen Receptor Activity Differently in Androgen-Sensitive versus Castration-Resistant Human Prostate Cancer Cells.

    PubMed

    Ghotbaddini, Maryam; Powell, Joann B

    2015-07-01

    The reported biological effects of TCDD include induction of drug metabolizing enzymes, wasting syndrome and tumor promotion. TCDD elicits most of its effects through binding the aryl hydrocarbon receptor (AhR). TCDD induced degradation of AhR has been widely reported and requires ubiquitination of the protein. The rapid depletion of AhR following TCDD activation serves as a mechanism to modulate AhR mediated gene induction. In addition to inducing AhR degradation, TCDD has been reported to induce degradation of hormone receptors. The studies reported here, evaluate the effect of TCDD exposure on androgen receptor (AR) expression and activity in androgen-sensitive LNCaP and castration-resistant C4-2 prostate cancer cells. Our results show that TCDD exposure does not induce AhR or AR degradation in C4-2 cells. However, both AhR and AR are degraded in LNCaP cells following TCDD exposure. In addition, TCDD enhances AR phosphorylation and induces expression of AR responsive genes in LNCaP cells. Our data reveals that TCDD effect on AR expression and activity differs in androgen-sensitive and castration-resistant prostate cancer cell models. PMID:26154658

  9. The AhR Ligand, TCDD, Regulates Androgen Receptor Activity Differently in Androgen-Sensitive versus Castration-Resistant Human Prostate Cancer Cells

    PubMed Central

    Ghotbaddini, Maryam; Powell, Joann B.

    2015-01-01

    The reported biological effects of TCDD include induction of drug metabolizing enzymes, wasting syndrome and tumor promotion. TCDD elicits most of its effects through binding the aryl hydrocarbon receptor (AhR). TCDD induced degradation of AhR has been widely reported and requires ubiquitination of the protein. The rapid depletion of AhR following TCDD activation serves as a mechanism to modulate AhR mediated gene induction. In addition to inducing AhR degradation, TCDD has been reported to induce degradation of hormone receptors. The studies reported here, evaluate the effect of TCDD exposure on androgen receptor (AR) expression and activity in androgen-sensitive LNCaP and castration-resistant C4-2 prostate cancer cells. Our results show that TCDD exposure does not induce AhR or AR degradation in C4-2 cells. However, both AhR and AR are degraded in LNCaP cells following TCDD exposure. In addition, TCDD enhances AR phosphorylation and induces expression of AR responsive genes in LNCaP cells. Our data reveals that TCDD effect on AR expression and activity differs in androgen-sensitive and castration-resistant prostate cancer cell models. PMID:26154658

  10. Use of natural AhR ligands as potential therapeutic modalities against inflammatory disorders.

    PubMed

    Busbee, Philip B; Rouse, Michael; Nagarkatti, Mitzi; Nagarkatti, Prakash S

    2013-06-01

    The aim of this review is to discuss research involving ligands for the aryl hydrocarbon receptor (AhR) and their role in immunomodulation. While activation of the AhR is well known for its ability to regulate the biochemical and toxic effects of environmental chemicals, more recently an exciting discovery has been made indicating that AhR ligation can also regulate T-cell differentiation, specifically through activation of Foxp3(+) regulatory T cells (Tregs) and downregulation of the proinflammatory Th17 cells. Such findings have opened new avenues of research on the possibility of targeting the AhR to treat inflammatory and autoimmune diseases. Specifically, this review will discuss the current research involving natural and dietary AhR ligands. In addition, evidence indicating the potential use of these ligands in regulating inflammation in various diseases will be highlighted. The importance of the AhR in immunological processes can be illustrated by expression of this receptor on a majority of immune cell types. In addition, AhR signaling pathways have been reported to influence a number of genes responsible for mediating inflammation and other immune responses. As interest in the AhR and its ligands increases, it seems prudent to consolidate current research on the contributions of these ligands to immune regulation during the course of inflammatory diseases. PMID:23731446

  11. Use of natural AhR ligands as potential therapeutic modalities against inflammatory disorders

    PubMed Central

    Busbee, Philip B; Rouse, Michael; Nagarkatti, Mitzi; Nagarkatti, Prakash S

    2014-01-01

    The aim of this review is to discuss research involving ligands for the aryl hydrocarbon receptor (AhR) and their role in immunomodulation. While activation of the AhR is well known for its ability to regulate the biochemical and toxic effects of environmental chemicals, more recently an exciting discovery has been made indicating that AhR ligation can also regulate T-cell differentiation, specifically through activation of Foxp3+ regulatory T cells (Tregs) and downregulation of the proinflammatory Th17 cells. Such findings have opened new avenues of research on the possibility of targeting the AhR to treat inflammatory and autoimmune diseases. Specifically, this review will discuss the current research involving natural and dietary AhR ligands. In addition, evidence indicating the potential use of these ligands in regulating inflammation in various diseases will be highlighted. The importance of the AhR in immunological processes can be illustrated by expression of this receptor on a majority of immune cell types. In addition, AhR signaling pathways have been reported to influence a number of genes responsible for mediating inflammation and other immune responses. As interest in the AhR and its ligands increases, it seems prudent to consolidate current research on the contributions of these ligands to immune regulation during the course of inflammatory diseases. PMID:23731446

  12. Cloning of a factor required for activity of the Ah (dioxin) receptor

    SciTech Connect

    Hoffman, E.C.; Reyes, H.; Chu, Fongfong; Sander, F.; Conley, L.H.; Brooks, B.A.; Hankinson, O. )

    1991-05-17

    The aryl hydrocarbon (Ah) receptor binds various environmental pollutants, such as polycyclic aromatic hydrocarbons, heterocyclic amines, and polychlorinated aromatic compounds (dioxins, dibenzofurans, and biphenyls), and mediates the carcinogenic effects of these agents. The complementary DNA and part of the gene for an 87-kilodalton human protein that is necessary for Ah receptor function have been cloned. The protein is not the ligand-binding subunit of the receptor but is a factor that is required for the ligand-binding subunit to translocate from the cytosol to the nucleus after binding ligand. The requirement for this factor distinguishes the Ah receptor from the glucocorticoid receptor, to which the Ah receptor has been presumed to be similar. Two portions of the 87-kilodalton protein share sequence similarities with two Drosophila proteins, Per and Sim. Another segment of the protein shows conformity to the consensus sequence for the basic helix-loop-helix motif found in proteins that bind DNA as homodimers or heterodimers.

  13. Transgenic Overexpression of Aryl Hydrocarbon Receptor Repressor (AhRR) and AhR-Mediated Induction of CYP1A1, Cytokines, and Acute Toxicity

    PubMed Central

    Vogel, Christoph F.A.; Chang, W.L. William; Kado, Sarah; McCulloh, Kelly; Vogel, Helena; Wu, Dalei; Haarmann-Stemmann, Thomas; Yang, GuoXiang; Leung, Patrick S.C.; Matsumura, Fumio; Gershwin, M. Eric

    2016-01-01

    Background: The aryl hydrocarbon receptor repressor (AhRR) is known to repress aryl hydrocarbon receptor (AhR) signaling, but very little is known regarding the role of the AhRR in vivo. Objective: This study tested the role of AhRR in vivo in AhRR overexpressing mice on molecular and toxic end points mediated through a prototypical AhR ligand. Methods: We generated AhRR-transgenic mice (AhRR Tg) based on the genetic background of C57BL/6J wild type (wt) mice. We tested the effect of the prototypical AhR ligand 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) on the expression of cytochrome P450 (CYP)1A1 and cytokines in various tissues of mice. We next analyzed the infiltration of immune cells in adipose tissue of mice after treatment with TCDD using flow cytometry. Results: AhRR Tg mice express significantly higher levels of AhRR compared to wt mice. Activation of AhR by TCDD caused a significant increase of the inflammatory cytokines Interleukin (IL)-1β, IL-6 and IL-10, and CXCL chemokines in white epididymal adipose tissue from both wt and AhRR Tg mice. However, the expression of IL-1β, CXCL2 and CXCL3 were significantly lower in AhRR Tg versus wt mice following TCDD treatment. Exposure to TCDD caused a rapid accumulation of neutrophils and macrophages in white adipose tissue of wt and AhRR Tg mice. Furthermore we found that male AhRR Tg mice were protected from high-dose TCDD-induced lethality associated with a reduced inflammatory response and liver damage as indicated by lower levels of TCDD-induced alanine aminotransferase and hepatic triglycerides. Females from both wt and AhRR Tg mice were less sensitive than male mice to acute toxicity induced by TCDD. Conclusion: In conclusion, the current study identifies AhRR as a previously uncharacterized regulator of specific inflammatory cytokines, which may protect from acute toxicity induced by TCDD. Citation: Vogel CF, Chang WL, Kado S, McCulloh K, Vogel H, Wu D, Haarmann-Stemmann T, Yang GX, Leung PS, Matsumura F

  14. Down regulation of hepatic PPARalpha function by AhR ligand.

    PubMed

    Shaban, Zein; El-Shazly, Samir; Abdelhady, Shawky; Fattouh, Ibrahim; Muzandu, Kaampwe; Ishizuka, Mayumi; Kimura, Kazuhiro; Kazusaka, Akio; Fujita, Shoichi

    2004-11-01

    Aryl hydrocarbon receptor (AhR) is a ligand-activated transcription factor that mediates a spectrum of toxic and biological effects of 2,3,7,8-tetrachloro dibenzo-p-dioxin (TCDD) and related compounds. Peroxisome proliferator activated receptor alpha (PPARalpha) is a nuclear receptor involved in the maintenance of lipid and glucose homeostasis. In this study we hypothesized that one of the possible mechanisms for the effect of TCDD and its related chemicals on fat metabolism could be through down regulation of PPARalpha functions. We treated Wistar rats with an AhR ligand, Sudan III (S.III), and/or PPARalpha ligand, Clofibric Acid (CA), for 3 days. We analysed the expression of one of the PPARalpha-target gene products, CYP4A protein and its mRNA. We also tested HepG2 cells with the afore-mentioned treatments and evaluated their effects on PPARalpha and RXRalpha protein. Treatment of Wistar rats with S.III was found to down regulates CYP4A protein expression and reduced its induction with CA. It also decreased mRNA expressions of CYP4A1, CYP4A2, CYP4A3 and PPARalpha. In HepG2 cells, PPARalpha and RXRalpha protein expression was decreased by S.III treatment in a dose dependent manner. Our results suggest that AhR has an inhibitory effect on PPARalpha function and a new pathway by which AhR ligands could disturb lipid metabolism. PMID:15585952

  15. The aryl hydrocarbon receptor (AhR) mediates resistance to apoptosis induced in breast cancer cells.

    PubMed

    Bekki, Kanae; Vogel, Helena; Li, Wen; Ito, Tomohiro; Sweeney, Colleen; Haarmann-Stemmann, Thomas; Matsumura, Fumio; Vogel, Christoph F A

    2015-05-01

    The aryl hydrocarbon receptor (AhR) is well known as a ligand binding transcription factor regulating various biological effects. Previously we have shown that long-term exposure to estrogen in breast cancer cells caused not only down regulation of estrogen receptor (ER) but also overexpression of AhR. The AhR interacts with several cell signaling pathways associated with induction of tyrosine kinases, cytokines and growth factors which may support the survival roles of AhR escaping from apoptosis elicited by a variety of apoptosis inducing agents in breast cancer. In this study, we studied the anti-apoptotic role of AhR in different breast cancer cells when apoptosis was induced by exposure to UV light and chemotherapeutic agents. Activation of AhR by 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) in AhR overexpressing breast cancer cells effectively suppressed the apoptotic response induced by UV-irradiation, doxorubicin, lapatinib and paclitaxel. The anti-apoptotic response of TCDD was uniformly antagonized by the treatment with 3'methoxy-4'nitroflavone (MNF), a specific antagonist of AhR. TCDD's survival action of apoptosis was accompanied with the induction of well-known inflammatory genes, such as cyclooxygenase-2 (COX-2) and NF-κB subunit RelB. Moreover, TCDD increased the activity of the immunosuppressive enzyme indoleamine 2, 3-dioxygenase (IDO), which metabolizes tryptophan to kynurenine (Kyn) and mediates tumor immunity. Kyn also acts as an AhR ligand like TCDD, and kyn induced an anti-apoptotic response in breast cancer cells. Accordingly, our present study suggests that AhR plays a pivotal role in the development of breast cancer via the suppression of apoptosis, and provides an idea that the use of AhR antagonists with chemotherapeutic agents may effectively synergize the elimination of breast cancer cells. PMID:25987214

  16. Access Path to the Ligand Binding Pocket May Play a Role in Xenobiotics Selection by AhR

    PubMed Central

    Szöllősi, Dániel; Erdei, Áron; Gyimesi, Gergely; Magyar, Csaba; Hegedűs, Tamás

    2016-01-01

    Understanding of multidrug binding at the atomic level would facilitate drug design and strategies to modulate drug metabolism, including drug transport, oxidation, and conjugation. Therefore we explored the mechanism of promiscuous binding of small molecules by studying the ligand binding domain, the PAS-B domain of the aryl hydrocarbon receptor (AhR). Because of the low sequence identities of PAS domains to be used for homology modeling, structural features of the widely employed HIF-2α and a more recent suitable template, CLOCK were compared. These structures were used to build AhR PAS-B homology models. We performed molecular dynamics simulations to characterize dynamic properties of the PAS-B domain and the generated conformational ensembles were employed in in silico docking. In order to understand structural and ligand binding features we compared the stability and dynamics of the promiscuous AhR PAS-B to other PAS domains exhibiting specific interactions or no ligand binding function. Our exhaustive in silico binding studies, in which we dock a wide spectrum of ligand molecules to the conformational ensembles, suggest that ligand specificity and selection may be determined not only by the PAS-B domain itself, but also by other parts of AhR and its protein interacting partners. We propose that ligand binding pocket and access channels leading to the pocket play equally important roles in discrimination of endogenous molecules and xenobiotics. PMID:26727491

  17. A novel AhR ligand, 2AI, protects the retina from environmental stress

    PubMed Central

    Gutierrez, Mark A.; Davis, Sonnet S.; Rosko, Andrew; Nguyen, Steven M.; Mitchell, Kylie P.; Mateen, Samiha; Neves, Joana; Garcia, Thelma Y.; Mooney, Shaun; Perdew, Gary H.; Hubbard, Troy D.; Lamba, Deepak A.; Ramanathan, Arvind

    2016-01-01

    Various retinal degenerative diseases including dry and neovascular age-related macular degeneration (AMD), retinitis pigmentosa, and diabetic retinopathy are associated with the degeneration of the retinal pigmented epithelial (RPE) layer of the retina. This consequently results in the death of rod and cone photoreceptors that they support, structurally and functionally leading to legal or complete blindness. Therefore, developing therapeutic strategies to preserve cellular homeostasis in the RPE would be a favorable asset in the clinic. The aryl hydrocarbon receptor (AhR) is a conserved, environmental ligand-dependent, per ARNT-sim (PAS) domain containing bHLH transcription factor that mediates adaptive response to stress via its downstream transcriptional targets. Using in silico, in vitro and in vivo assays, we identified 2,2′-aminophenyl indole (2AI) as a potent synthetic ligand of AhR that protects RPE cells in vitro from lipid peroxidation cytotoxicity mediated by 4-hydroxynonenal (4HNE) as well as the retina in vivo from light-damage. Additionally, metabolic characterization of this molecule by LC-MS suggests that 2AI alters the lipid metabolism of RPE cells, enhancing the intracellular levels of palmitoleic acid. Finally, we show that, as a downstream effector of 2AI-mediated AhR activation, palmitoleic acid protects RPE cells from 4HNE-mediated stress, and light mediated retinal degeneration in mice. PMID:27364765

  18. A novel AhR ligand, 2AI, protects the retina from environmental stress.

    PubMed

    Gutierrez, Mark A; Davis, Sonnet S; Rosko, Andrew; Nguyen, Steven M; Mitchell, Kylie P; Mateen, Samiha; Neves, Joana; Garcia, Thelma Y; Mooney, Shaun; Perdew, Gary H; Hubbard, Troy D; Lamba, Deepak A; Ramanathan, Arvind

    2016-01-01

    Various retinal degenerative diseases including dry and neovascular age-related macular degeneration (AMD), retinitis pigmentosa, and diabetic retinopathy are associated with the degeneration of the retinal pigmented epithelial (RPE) layer of the retina. This consequently results in the death of rod and cone photoreceptors that they support, structurally and functionally leading to legal or complete blindness. Therefore, developing therapeutic strategies to preserve cellular homeostasis in the RPE would be a favorable asset in the clinic. The aryl hydrocarbon receptor (AhR) is a conserved, environmental ligand-dependent, per ARNT-sim (PAS) domain containing bHLH transcription factor that mediates adaptive response to stress via its downstream transcriptional targets. Using in silico, in vitro and in vivo assays, we identified 2,2'-aminophenyl indole (2AI) as a potent synthetic ligand of AhR that protects RPE cells in vitro from lipid peroxidation cytotoxicity mediated by 4-hydroxynonenal (4HNE) as well as the retina in vivo from light-damage. Additionally, metabolic characterization of this molecule by LC-MS suggests that 2AI alters the lipid metabolism of RPE cells, enhancing the intracellular levels of palmitoleic acid. Finally, we show that, as a downstream effector of 2AI-mediated AhR activation, palmitoleic acid protects RPE cells from 4HNE-mediated stress, and light mediated retinal degeneration in mice. PMID:27364765

  19. Galanin Receptors and Ligands

    PubMed Central

    Webling, Kristin E. B.; Runesson, Johan; Bartfai, Tamas; Langel, Ülo

    2012-01-01

    The neuropeptide galanin was first discovered 30 years ago. Today, the galanin family consists of galanin, galanin-like peptide (GALP), galanin-message associated peptide (GMAP), and alarin and this family has been shown to be involved in a wide variety of biological and pathological functions. The effect is mediated through three GPCR subtypes, GalR1-3. The limited number of specific ligands to the galanin receptor subtypes has hindered the understanding of the individual effects of each receptor subtype. This review aims to summarize the current data of the importance of the galanin receptor subtypes and receptor subtype specific agonists and antagonists and their involvement in different biological and pathological functions. PMID:23233848

  20. Activation of the Ah receptor by extracts of dietary herbal supplements, vegetables, and fruits.

    PubMed

    Jeuken, Anoek; Keser, Bart J G; Khan, Elaine; Brouwer, Abraham; Koeman, Jan; Denison, Michael S

    2003-08-27

    The aryl hydrocarbon receptor (AhR) is a ligand-dependent transcription factor that can be activated by a structurally diverse range of synthetic and natural chemicals, and it mediates the toxic and biological effects of environmental contaminants such as 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). The spectrum of chemicals that bind to and activate the AhR signal transduction pathway and the identity of materials containing AhR active chemicals is only now being defined. Utilizing AhR-dependent gel retardation and reporter gene bioassays, the screening of extracts of 22 dietary herbal supplements and 21 food products (vegetables and fruits) was performed to identify those containing AhR agonists. Several herbal extracts (ginseng, Fo-Ti, white oak bark, licorice, ginkgo biloba, and black cohosh) stimulated AhR DNA binding and gene expression to levels between 20 and 60% of that produced by TCDD. Although some food extracts (corn, jalapeño pepper, green bell pepper, apple, Brussels sprout, and potato) were relatively potent activators of AhR DNA binding (30-50% of TCDD), only corn and jalapeño pepper extracts induced AhR-dependent luciferase reporter gene expression. However, dilution of corn, jalapeño pepper, bell pepper, and potato extracts dramatically increased their ability to induce luciferase activity, suggesting that these extracts contained AhR antagonists whose effectiveness was overcome by dilution. Overall, these results demonstrate that dietary products can be a major source of naturally occurring AhR ligands to which animals and humans are chronically exposed. PMID:12926901

  1. Persistent Binding of Ligands to the Aryl Hydrocarbon Receptor

    PubMed Central

    Bohonowych, Jessica E.; Denison, Michael S.

    2010-01-01

    The aryl hydrocarbon receptor (AhR) is a ligand-activated transcription factor that mediates many of the biological and toxic effects of halogenated aromatic hydrocarbons (HAHs), polycyclic aromatic hydrocarbons (PAHs), and other structurally diverse ligands. While HAHs are several orders of magnitude more potent in producing AhR-dependent biochemical effects than PAHs or other AhR agonists, only the HAHs have been observed to produce AhR-dependent toxicity in vivo. Here we have characterized the dissociation of a prototypical HAH ligand ([3H] 2,3,7,8-tetrachlorodibenzo-p-dioxin [TCDD]) and PAH-like ligand ([3H] β-naphthoflavone [βNF]) from the guinea pig, hamster, mouse, and rat hepatic cytosolic AhR in order to elucidate the relationship between the apparent ligand-binding affinities and the divergent potency of these chemicals. Both compounds dissociated very slowly from the AhR with the amount of specific binding remaining at 96 h ranging from 53% to 70% for [3H]TCDD and 26% to 85% for [3H] βNF, depending upon the species examined. The rate of ligand dissociation was unaffected by protein concentration or incubation temperature. Preincubation of cytosol with 2,3,7,8-tetrachlorodibenzofuran, carbaryl, or primaquine, prior to the addition of [3H]TCDD, shifted the apparent IC50 of these compounds as competitive AhR ligands by ∼10- to 50-fold. Our results support the need for reassessment of previous AhR ligand-binding affinity calculations and competitive binding analysis since these measurements are not carried out at equilibrium binding conditions. Our studies suggest that AhR binding affinity/occupancy has little effect on the observed differences in the persistence of gene expression by HAHs and PAHs. PMID:17431010

  2. Detecting Polychlorinated Biphenyls by Ah Receptor and Fluorescence Quantitative PCR with Exonuclease

    NASA Astrophysics Data System (ADS)

    Zhao, Xiaoxiang; Zhuang, Huisheng

    2010-11-01

    Tetrachlorobiphenyls as ligands were cultivated with goldfish, Ah receptors were extracted from the liver of goldfish and purified by hydroxyapatite. The complex of TCB ligands-receptors were analyzed by Surface Plasmon Resonance. DNA probes were amplified by PCR using Primers F1 and F2 with the DNA recognition site of responsive enhancer. DNA probes bound to the complex were not digested by exonuclease. The DNA that bound to the complex was quantified by real time PCR. A standard curve with TCB concentration to Ct values was obtained in the range of 10-12mol/L to 10-8 mol/L, according to TCB concentration in samples. The detection limit of the assay was below 10-12mol/L of TCB. Compared with HPLC, this assay is much more sensitive. These results suggest that fluorescence quantitative PCR with exonuclease by Ah receptors fits for detection of trace PCB.

  3. Aryl Hydrocarbon Receptor (AhR) Regulates Silica-Induced Inflammation But Not Fibrosis

    PubMed Central

    Beamer, Celine A.; Seaver, Benjamin P.; Shepherd, David M.

    2012-01-01

    The aryl hydrocarbon receptor (AhR), a ligand-activated transcription factor, is responsible for mediating a variety of pharmacological and toxicological effects caused by halogenated aromatic hydrocarbons such as 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). However, recent evidence has revealed that the AhR also has numerous physiological roles aside from xenobiotic metabolism, including regulation of immune and inflammatory signaling as well as normal development and homeostasis of several organs. To investigate the role of the AhR in crystalline silica (SiO2)–induced inflammation and fibrosis, C57Bl/6 and AhR−/− mice were exposed to SiO2 or vehicle. Similarly, C57Bl/6 mice were exposed to SiO2 and TCDD either simultaneously or sequentially to assess whether AhR activation alters inflammation and fibrosis. SiO2-induced acute lung inflammation was more severe in AhR−/− mice; however, the fibrotic response of AhR−/− mice was attenuated compared with C57Bl/6 mice. In a model of chronic SiO2 exposure, AhR activation by TCDD in C57Bl/6 mice resulted in reduced inflammation; however, the fibrotic response was not affected. Bone marrow–derived macrophages (BMM) from AhR−/− mice also produced higher levels of cytokines and chemokines in response to SiO2. Analysis of gene expression revealed that BMM derived from AhR−/− mice exhibit increased levels of pro-interleukin (IL)-1β, IL-6, and Bcl-2, yet decreased levels of signal transducers and activators of transcription (STAT)2, STAT5a, and serpin B2 (Pai-2) in response to SiO2. PMID:22273745

  4. Cancer-promoting and Inhibiting Effects of Dietary Compounds: Role of the Aryl Hydrocarbon Receptor (AhR)

    PubMed Central

    Powell, Joann B.; Ghotbaddini, Maryam

    2014-01-01

    Polyaromatic hydrocarbons, heterocyclic aromatic amines and dioxin-like compounds are environmental carcinogens shown to initiate cancer in a number of tissue types including prostate and breast. These environmental carcinogens elicit their effects through interacting with the aryl hydrocarbon receptor (AhR), a ligand activated transcription factor. Naturally occurring compounds found in fruits and vegetables shown to have anti-carcinogenic effects also interact with the AhR. This review explores dietary and environmental exposure to chemical carcinogens and beneficial natural compounds whose effects are elicited by the AhR. PMID:25258701

  5. EGF receptor ligands: recent advances

    PubMed Central

    Singh, Bhuminder; Carpenter, Graham; Coffey, Robert J.

    2016-01-01

    Seven ligands bind to and activate the mammalian epidermal growth factor (EGF) receptor (EGFR/ERBB1/HER1): EGF, transforming growth factor-alpha (TGFA), heparin-binding EGF-like growth factor (HBEGF), betacellulin (BTC), amphiregulin (AREG), epiregulin (EREG), and epigen (EPGN). Of these, EGF, TGFA, HBEGF, and BTC are thought to be high-affinity ligands, whereas AREG, EREG, and EPGN constitute low-affinity ligands. This focused review is meant to highlight recent studies related to actions of the individual EGFR ligands, the interesting biology that has been uncovered, and relevant advances related to ligand interactions with the EGFR.

  6. Binding of the Ah receptor to receptor binding factors in chromatin.

    PubMed

    Dunn, R T; Ruh, T S; Ruh, M F

    1993-03-01

    Dioxin induces biological responses through interaction with a specific intracellular receptor, the Ah receptor, and the subsequent interaction of the Ah receptor with chromatin. We report the binding of the Ah receptor, partially purified from rabbit liver, to receptor binding factors in chromatin. Rabbit liver chromatin proteins (CP) were isolated by adsorption of chromatin to hydroxylapatite followed by sequential extraction with 1-8 M GdnHCl. To assay for receptor binding a portion of each CP fraction was reconstituted to rabbit double-stranded DNA using a reverse gradient dialysis of 7.5 to 0 M GdnHCl. These reconstituted nucleoacidic proteins were then examined for binding to [3H]-2,3,7,8-tetrachlorodibenzo-p-dioxin ([3H]TCDD)-receptor complexes by the streptomycin filter assay. Prior to the binding assay, [3H]TCDD-receptor complexes were partially purified by step elution from DEAE-cellulose columns. CP fractions 2, 5, and 7 were found to bind to the Ah receptor with high affinity. Scatchard analysis yielded Kd values in the nanomolar range. Competition with 2-fold excess unlabeled TCDD-receptor complexes was demonstrated, and binding was reduced markedly when the receptor was prepared in the presence of 10 mM molybdate. Such chromatin receptor binding factors (RBFs) may participate in the interaction of receptor with specific DNA sequences resulting in modulation of specific gene expression. PMID:8384852

  7. Pityriazepin and other potent AhR ligands isolated from Malassezia furfur yeast.

    PubMed

    Mexia, Nikitia; Gaitanis, Georgios; Velegraki, Aristea; Soshilov, Anatoly; Denison, Michael S; Magiatis, Prokopios

    2015-04-01

    Malassezia furfur yeast strains isolated from diseased human skin preferentially biosynthesize indole alkaloids which can be detected in the human skin and are highly potent activators of the aryl hydrocarbon receptor (AhR) and AhR-dependent gene expression. Chemical analysis of an EtOAc extract of a M. furfur strain obtained from diseased human skin and grown on l-tryptophan agar revealed several known AhR active tryptophan metabolites along with a previously unidentified compound, pityriazepin. While its structure resembled that of the known alkaloid pityriacitrin, the comprised pyridine ring had been transformed into an azepinone. The indoloazepinone scaffold of pityriazepin is extremely rare in nature and has only been reported once previously. Pityriazepin, like the other isolated compounds, was found to be a potent activator of the AhR-dependent reporter gene assay in recombinant cell lines derived from four different species, although significant species differences in relative potency were observed. The ability of pityriazepin to competitively bind to the AhR and directly stimulate AhR DNA binding classified it as a new naturally-occurring potent AhR agonist. M. furfur produces an expanded collection of extremely potent naturally occurring AhR agonists, which produce their biological effects in a species-specific manner. PMID:25721496

  8. Pityriazepin and other potent AhR ligands isolated from Malassezia furfur yeast

    PubMed Central

    Mexia, Nikitia; Gaitanis, George; Velegraki, Aristea; Soshilov, Anatoly; Denison, Michael S.; Magiatis, Prokopios

    2015-01-01

    Malassezia furfur yeast strains isolated from diseased human skin preferentially biosynthesize indole alkaloids which can be detected in human skin and are highly potent activators of the aryl hydrocarbon receptor (AhR) and AhR-dependent gene expression. Chemical analysis of an EtOAc extract of a M. furfur strain obtained from diseased human skin and grown on L-tryptophan agar revealed several known AhR active tryptophan metabolites along with a previously unidentified compound, pityriazepin. While its structure resembled that of the known alkaloid pityriacitrin, the comprised pyridine ring had been transformed into an azepinone. The indoloazepinone scaffold of pityriazepin is extremely rare in nature and has only been reported once previously. Pityriazepin, like the other isolated compounds, was found to be a potent activator of the AhR-dependent reporter gene assays in recombinant cell lines derived from four different species, although significant species differences in relative potency was observed. The ability of pityriazepin to competitively bind to the AhR and directly stimulate AhR DNA binding classified it as a new naturally-occurring potent AhR agonist. Malassezia furfur produces an expanded collection of extremely potent naturally occurring AhR agonists, which produce their biological effects in a species-specific manner.1 PMID:25721496

  9. AhR ligand Aminoflavone inhibits α6-integrin expression and breast cancer sphere-initiating capacity.

    PubMed

    Brantley, Eileen; Callero, Mariana A; Berardi, Damian E; Campbell, Petreena; Rowland, Leah; Zylstra, Dain; Amis, Louisa; Yee, Michael; Simian, Marina; Todaro, Laura; Loaiza-Perez, Andrea I; Soto, Ubaldo

    2016-06-28

    Traditional chemotherapies debulk tumors but fail to produce long-term clinical remissions due to their inability to eradicate tumor-initiating cells (TICs). This necessitates therapy with activity against the TIC niche. Αlpha6-integrin (α6-integrin) promotes TIC growth. In contrast, aryl hydrocarbon receptor (AhR) signaling activation impedes the formation of mammospheres (clusters of cells enriched for TICs). We investigated the ability of AhR agonist Aminoflavone (AF) and AF pro-drug (AFP464) to disrupt mammospheres derived from breast cancer cells and a M05 mammary mouse model of breast cancer respectively. We further examined the capacity of AF and AFP464 to exhibit anticancer activity and modulate the expression of 'stemness' genes including α6-integrin using immunofluorescence, flow cytometry and qRT-PCR analysis. AF disrupted mammospheres and prevented secondary mammosphere formation. In contrast, AF did not disrupt mammospheres derived from AhR ligand-unresponsive MCF-7 cells. AFP464 treatment suppressed M05 tumor growth and disrupted corresponding mammospheres. AF and AFP464 reduced the expression and percentage of cells that stained for 'stemness' markers including α6-integrin in vitro and in vivo respectively. These data suggest AFP464 thwarts bulk breast tumor and TIC growth via AhR agonist-mediated α6-integrin inhibition. PMID:26996297

  10. Screening a mouse liver gene expression compendium identifies modulators of the aryl hydrocarbon receptor (AhR).

    PubMed

    Oshida, Keiyu; Vasani, Naresh; Thomas, Russell S; Applegate, Dawn; Gonzalez, Frank J; Aleksunes, Lauren M; Klaassen, Curtis D; Corton, J Christopher

    2015-10-01

    The aryl hydrocarbon receptor (AhR) is a ligand-activated transcription factor that mediates the biological and toxic effects of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), dioxin-like compounds (DLC) as well as some drugs and endogenous tryptophan metabolites. Short-term activation of AhR can lead to hepatocellular steatosis, and chronic activation can lead to liver cancer in mice and rats. Analytical approaches were developed to identify biosets in a genomic database in which AhR activity was altered. A set of 63 genes was identified (the AhR gene expression biomarker) that was dependent on AhR for regulation after exposure to TCDD or benzo[a]pyrene and includes the known AhR targets Cyp1a1 and Cyp1b1. A fold-change rank-based test (Running Fisher's test; p-value ≤ 10(-4)) was used to evaluate the similarity between the AhR biomarker and a test set of 37 and 41 biosets positive or negative, respectively for AhR activation. The test resulted in a balanced accuracy of 95%. The rank-based test was used to identify factors that activate or suppress AhR in an annotated mouse liver/mouse primary hepatocyte gene expression database of ∼ 1850 comparisons. In addition to the expected activation of AhR by TCDD and DLC, AhR was activated by AP20189 and phenformin. AhR was suppressed by phenobarbital and 1,4-Bis[2-(3,5-dichloropyridyloxy)] benzene (TCPOBOP) in a constitutive activated receptor (CAR)-dependent manner and pregnenolone-16α-carbonitrile in a pregnane X receptor (PXR)-dependent manner. Inactivation of individual genes in nullizygous models led to AhR activation (Pxr, Ghrhr, Taf10) or suppression (Ahr, Ilst6st, Hnf1a). This study describes a novel screening strategy for identifying factors in mouse liver that perturb AhR in a gene expression compendium. PMID:26215100

  11. Ah-receptor controlled luciferase expression: A novel species-specific bioassay for Ah-receptor active compounds in environmental matrices

    SciTech Connect

    Murk, A.J.; Aarts, J.M.M.J.G.; Koeman, J.H.; Brouwer, A.; Denison, M.S.

    1995-12-31

    Polyhalogenated aromatic hydrocarbons (PHAHs) such as polychlorinated dibenzo-p-dioxins (PCDDs), dibenzofurans (PCDFs) and biphenyls (PCBs) are persistent lipophilic compounds that accumulate especially in sediments and in top predators of the aquatic foodchain. PHAHs elicit a number of common toxic responses, which are highly species-specific. The most toxic, planar, PHAHs share a common mechanism of action mediated by the aryl hydrocarbon receptor (AhR). Based on this mechanism, the toxic equivalency factor (TEF) concept has been developed, allowing hazard and risk assessment for mixtures of PHAHs. The TEF-approach assumes additive responses, but also synergistic and antagonistic interactions have been observed. In addition, the often large number of compounds in a mixture, low levels of individual congeners, possible presence of unknown AhR-active substances, and species differences in inducibility, ask for an comprehensive approach in hazard assessment. A number of recombinant cell lines, including Hepa1c1c7 mouse and H411E rat hepatoma cell lines, were developed, showing AhR-mediated firefly (Photinuspyralis) luciferase gene expression. The response by 2,3,7,8-TCDD in the CALUX (chemical activated luciferase expression) assay with these cell lines is dose-dependent, and not subjected to substrate inhibition at higher ligand concentrations. The detection limit for 2,3,7,8-TCDD is below 1 pM (0.2 fmol). The luciferase assay has been successfully applied for monitoring the amount of AhR-active compounds in small aliquots of blood plasma and in both sediment and pore-water samples, of which examples will be presented.

  12. Toxic and chemopreventive ligands preferentially activate distinct aryl hydrocarbon receptor pathways: implications for cancer prevention.

    PubMed

    Okino, Steven T; Pookot, Deepa; Basak, Shashwati; Dahiya, Rajvir

    2009-03-01

    The aryl hydrocarbon receptor (AhR) is a ligand-activated regulatory protein that controls estrogen action through two distinct pathways. In one pathway, AhR acts as a transcription factor that induces the expression of the CYP1 family of estrogen-metabolizing genes; in the other pathway, AhR initiates the degradation of the estrogen receptor and suppresses estrogen signaling. The AhR ligand 3,3'-diindolylmethane (DIM) is a beneficial dietary constituent that prevents breast tumors in rodents and is associated with decreased breast cancer risk in humans. 2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) is a toxic AhR ligand that is implicated in birth defects, infertility, and cancer. We analyzed MCF-7 cells to gain insight into how two AhR ligands can exert such fundamentally different health effects. We find that DIM and TCDD have differing abilities to activate the distinct AhR-controlled pathways. TCDD strongly induces AhR-dependent CYP1 gene expression, whereas DIM is a relatively weak CYP1 inducer. DIM strongly inhibits estrogen receptor-alpha expression and estrogen signaling, whereas TCDD has a notably weaker effect on these processes. Small interfering RNA knockdown of AhR confirms that the effects of DIM and TCDD are indeed AhR dependent. Our findings reveal that DIM and TCDD each elicit a unique pattern of change in pathways that control estrogen action; such patterns may determine if an AhR ligand has beneficial or adverse health effects. PMID:19223575

  13. Polypharmacology of dopamine receptor ligands.

    PubMed

    Butini, S; Nikolic, K; Kassel, S; Brückmann, H; Filipic, S; Agbaba, D; Gemma, S; Brogi, S; Brindisi, M; Campiani, G; Stark, H

    2016-07-01

    Most neurological diseases have a multifactorial nature and the number of molecular mechanisms discovered as underpinning these diseases is continuously evolving. The old concept of developing selective agents for a single target does not fit with the medical need of most neurological diseases. The development of designed multiple ligands holds great promises and appears as the next step in drug development for the treatment of these multifactorial diseases. Dopamine and its five receptor subtypes are intimately involved in numerous neurological disorders. Dopamine receptor ligands display a high degree of cross interactions with many other targets including G-protein coupled receptors, transporters, enzymes and ion channels. For brain disorders like Parkinsońs disease, schizophrenia and depression the dopaminergic system, being intertwined with many other signaling systems, plays a key role in pathogenesis and therapy. The concept of designed multiple ligands and polypharmacology, which perfectly meets the therapeutic needs for these brain disorders, is herein discussed as a general ligand-based concept while focusing on dopaminergic agents and receptor subtypes in particular. PMID:27234980

  14. What are Nuclear Receptor Ligands?

    PubMed Central

    Sladek, Frances M.

    2010-01-01

    Nuclear receptors (NRs) are a family of highly conserved transcription factors that regulate transcription in response to small lipophilic compounds. They play a role in every aspect of development, physiology and disease in humans. They are also ubiquitous in and unique to the animal kingdom suggesting that they may have played an important role in their evolution. In contrast to the classical endocrine receptors that originally defined the family, recent studies suggest that the first NRs might have been sensors of their environment, binding ligands that were external to the host organism. The purpose of this review is to provide a broad perspective on NR ligands and address the issue of exactly what constitutes a NR ligand from historical, biological and evolutionary perspectives. This discussion will lay the foundation for subsequent reviews in this issue as well as pose new questions for future investigation. PMID:20615454

  15. Ablating the aryl hydrocarbon receptor (AhR) in CD11c+ cells perturbs intestinal epithelium development and intestinal immunity

    PubMed Central

    Chng, Song Hui; Kundu, Parag; Dominguez-Brauer, Carmen; Teo, Wei Ling; Kawajiri, Kaname; Fujii-Kuriyama, Yoshiaki; Mak, Tak Wah; Pettersson, Sven

    2016-01-01

    Diet and microbiome derived indole derivatives are known to activate the ligand induced transcription factor, the Aryl hydrocarbon Receptor (AhR). While the current understanding of AhR biology has confirmed its role in mucosal lymphocytes, its function in intestinal antigen presenting cells (APCs) is poorly understood. Here, we report that Cre-mediated deletion of AhR in CD11c-expressing cells in C57/BL6 mice is associated with altered intestinal epithelial morphogenesis in vivo. Moreover, when co-cultured with AhR-deficient DCs ex vivo, intestinal organoids showed reduced SRY (sex determining region Y)-box 9 and increased Mucin 2 expression, which correlates with reduced Paneth cells and increased goblet cell differentiation, similar to the data obtained in vivo. Further, characterization of intestinal APC subsets, devoid of AhR, revealed an expression pattern associated with aberrant intrinsic Wnt pathway regulation. At a functional level, the loss of AhR in APCs resulted in a dysfunctional epithelial barrier, associated with a more aggressive chemically induced colitis compared to wild type animals. Our results are consistent with a model whereby the AhR signalling pathway may participate in the regulation of innate immunity through intestinal epithelium development and mucosal immunity. PMID:27068235

  16. Ablating the aryl hydrocarbon receptor (AhR) in CD11c+ cells perturbs intestinal epithelium development and intestinal immunity.

    PubMed

    Chng, Song Hui; Kundu, Parag; Dominguez-Brauer, Carmen; Teo, Wei Ling; Kawajiri, Kaname; Fujii-Kuriyama, Yoshiaki; Mak, Tak Wah; Pettersson, Sven

    2016-01-01

    Diet and microbiome derived indole derivatives are known to activate the ligand induced transcription factor, the Aryl hydrocarbon Receptor (AhR). While the current understanding of AhR biology has confirmed its role in mucosal lymphocytes, its function in intestinal antigen presenting cells (APCs) is poorly understood. Here, we report that Cre-mediated deletion of AhR in CD11c-expressing cells in C57/BL6 mice is associated with altered intestinal epithelial morphogenesis in vivo. Moreover, when co-cultured with AhR-deficient DCs ex vivo, intestinal organoids showed reduced SRY (sex determining region Y)-box 9 and increased Mucin 2 expression, which correlates with reduced Paneth cells and increased goblet cell differentiation, similar to the data obtained in vivo. Further, characterization of intestinal APC subsets, devoid of AhR, revealed an expression pattern associated with aberrant intrinsic Wnt pathway regulation. At a functional level, the loss of AhR in APCs resulted in a dysfunctional epithelial barrier, associated with a more aggressive chemically induced colitis compared to wild type animals. Our results are consistent with a model whereby the AhR signalling pathway may participate in the regulation of innate immunity through intestinal epithelium development and mucosal immunity. PMID:27068235

  17. Ligand independent aryl hydrocarbon receptor inhibits lung cancer cell invasion by degradation of Smad4.

    PubMed

    Lee, Chen-Chen; Yang, Wen-Hao; Li, Ching-Hao; Cheng, Yu-Wen; Tsai, Chi-Hao; Kang, Jaw-Jou

    2016-07-01

    The aryl hydrocarbon receptor (AhR) is a ligand-dependent-activated transcriptional factor that regulates the metabolism of xenobiotic and endogenous compounds. Although AhR plays a crucial role in air toxicant-induced carcinogenesis, AhR expression was shown to negatively regulate tumorigenesis. Therefore, in the present study, we investigated the effect of AhR without ligand treatment on cancer invasion in lung cancer cell lines. Lung cancer cells expressing lower levels of AhR showed higher invasion ability (H1299 cells) compared with cells expressing higher levels of AhR (A549 cells). Overexpression of AhR in H1299 cells inhibited the invasion ability. We found that vimentin expression was inhibited in AhR-overexpressing H1299 cells. Additionally, the expression of EMT-related transcriptional factors Snail and ID-1 decreased. Interestingly, we found that Smad4 degradation was induced in AhR-overexpressing H1299 cells. Our data showed that AhR could interact with Jun-activation domain binding protein (Jab1) and Smad4, which may cause degradation of Smad4 by the proteasome. Our data suggest that AhR affects the transforming growth factor-β signaling pathway by inducing Smad4 degradation by the proteasome and suppressing tumor metastasis via epithelial to mesenchymal transition reduction in lung cancer cells. PMID:27060206

  18. Fluorescent Ligands for Adenosine Receptors

    PubMed Central

    Kozma, Eszter; Jayasekara, P Suresh; Squarcialupi, Lucia; Paoletta, Silvia; Moro, Stefano; Federico, Stephanie; Spalluto, Giampiero; Jacobson, Kenneth A.

    2012-01-01

    Interest is increasing in developing fluorescent ligands for characterization of adenosine receptors (ARs), which hold a promise of usefulness in the drug discovery process. The size of a strategically labeled AR ligand can be greatly increased after the attachment of a fluorophore. The choice of dye moiety (e.g. Alexa Fluor 488), attachment point and linker length can alter the selectivity and potency of the parent molecule. Fluorescent derivatives of adenosine agonists and antagonists (e.g. XAC and other heterocyclic antagonist scaffolds) have been synthesized and characterized pharmacologically. Some are useful AR probes for flow cytometry, fluorescence correlation spectroscopy, fluorescence microscopy, fluorescence polarization, fluorescence resonance energy transfer, and scanning confocal microscopy. Thus, the approach of fluorescent labeled GPCR ligands, including those for ARs, is a growing dynamic research field. PMID:23200243

  19. TCDD and a Putative Endogenous AhR Ligand, ITE, Elicit the Same Immediate Changes in Gene Expression in Mouse Lung Fibroblasts

    PubMed Central

    Henry, Ellen C.; Welle, Stephen L.; Gasiewicz, Thomas A.

    2010-01-01

    The aryl hydrocarbon receptor (AhR), a ligand-dependent transcription factor, mediates toxicity of several classes of xenobiotics and also has important physiological roles in differentiation, reproduction, and immunity, although the endogenous ligand(s) mediating these functions is/are as yet unidentified. One candidate endogenous ligand, 2-(1′H-indolo-3′-carbonyl)-thiazole-4-carboxylic acid methyl ester (ITE), is a potent AhR agonist in vitro, activates the murine AhR in vivo, but does not induce toxicity. We hypothesized that ITE and the toxic ligand, 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), may modify transcription of different sets of genes to account for their different toxicity. To test this hypothesis, primary mouse lung fibroblasts were exposed to 0.5μM ITE, 0.2nM TCDD, or vehicle for 4 h, and total gene expression was evaluated using microarrays. After this short-term and low-dose treatment, several hundred genes were changed significantly, and the response to ITE and TCDD was remarkably similar, both qualitatively and quantitatively. Induced gene sets included the expected battery of AhR-dependent xenobiotic-metabolizing enzymes, as well as several sets that reflect the inflammatory role of lung fibroblasts. Real time quantitative RT-qPCR assay of several selected genes confirmed these microarray data and further suggested that there may be kinetic differences in expression between ligands. These data suggest that ITE and TCDD elicit an analogous change in AhR conformation such that the initial transcription response is the same. Furthermore, if the difference in toxicity between TCDD and ITE is mediated by differences in gene expression, then it is likely that secondary changes enabled by the persistent TCDD, but not by the shorter lived ITE, are responsible. PMID:19933214

  20. Identification and expression of aryl hydrocarbon receptors (AhR1 and AhR2) provide insight in an evolutionary context regarding sensitivity of white sturgeon (Acipenser transmontanus) to dioxin-like compounds.

    PubMed

    Doering, Jon A; Wiseman, Steve; Beitel, Shawn C; Giesy, John P; Hecker, Markus

    2014-05-01

    Sturgeons are ancient fishes, which are endangered in many parts of the world. Due to their benthic nature and longevity, sturgeon are at great risk of exposure to bioaccumulative contaminants such as dioxin-like compounds (DLCs). Despite their endangered status, little research has been conducted to characterize the relative sensitivity of sturgeons to DLCs. Proper assessment of risk of DLCs posed to these fishes therefore, requires a better understanding of this sensitivity and the factors that are driving it. Adverse effects associated with exposure to DLCs are mediated by the aryl hydrocarbon receptor (AhR). This study identified and characterized two distinct AhRs, AhR1 and AhR2, in white sturgeon (Acipenser transmontanus) for the first time as a first step in studying the relative sensitivities of sturgeons to DLCs. Furthermore, tissue-specific expression of both AhRs under basal conditions and in response to exposure to the model DLC, β-naphthoflavone (βNF), was determined. The sequence of amino acids of AhR1 of white sturgeon had greater similarity to AhRs of tetrapods, including amphibians, birds, and mammals, than to AhR1s of other fishes. The sequence of amino acids in the ligand binding domain of the AhR1 had greater than 80% similarity to AhRs known to bind DLCs and was less similar to AhRs not known to bind DLCs. AhR2 of white sturgeon had greatest similarity to AhR2 of other fishes. Profiles of expression of AhR1 and AhR2 in white sturgeon were distinct from those known in other fishes and appear more similar to profiles observed in birds. Expressions of both AhR1 and AhR2 of white sturgeon were greatest in liver and heart, which are target organs for DLCs. Furthermore, abundances of transcripts of AhR1 and AhR2 in all tissues from white sturgeon were greater than controls (up to 35-fold) following exposure to βNF. Based upon both AhRs having similar abundances of transcript in target organs of DLC toxicity, both AhRs being up-regulated following

  1. Glutamate receptor ligands as anxiolytics.

    PubMed

    Chojnacka-Wójcik, E; Kłodzinska, A; Pilc, A

    2001-08-01

    The glutamatergic system has received considerable attention over recent years as a potential target for anxiolytic drugs. In spite of the pronounced anxiolytic-like effects of competitive and non-competitive antagonists of NMDA receptors in animal models of anxiety, these substances can not be regarded as potential anxiolytic drugs, mainly due to their side-effect profiles (eg, ataxia, myorelaxation, impairment of learning and memory processes and psychotomimetic effects). Antagonists and partial agonists of the glycine, receptor inhibit function of the NMDA receptor complex and evoke in animals an anxiolytic-like response. Although data concerning anti-anxiety-like effects of glycine, receptor antagonists are not very promising, studies are underway to develop new, brain-penetrating agents devoid of side effects. Further developments are necessary to more fully elucidate the possible involvement of AMPA/kainate receptors in anxiety. The recent discovery of metabotropic glutamate receptors, which modulate the function of the glutamatergic system, offers new hope for discovery of a new generation of anxiolytics. MPEP, a highly selective, brain penetrable, noncompetitive mGlu5 receptor antagonist, evokes anxiolytic-like effects in several animal models of anxiety, remaining remarkably free of side effects. LY-354740, a selective brain-penetrable group II mGlu receptor agonist, evokes marked anxiolytic-like effects in animal models of anxiety. LY-354740 causes mild sedation in mice, does not disturb motor coordination and has no potential to cause dependence. Therefore mGlu receptor ligands may become the anxiolytics of the future, free from the side effects characteristic of benzodiazepines. PMID:11892923

  2. Ultraviolet light converts propranolol, a nonselective β-blocker and potential lupus-inducing drug, into a proinflammatory AhR ligand.

    PubMed

    Dorgham, Karim; Amoura, Zahir; Parizot, Christophe; Arnaud, Laurent; Frances, Camille; Pionneau, Cédric; Devilliers, Hervé; Pinto, Sandra; Zoorob, Rima; Miyara, Makoto; Larsen, Martin; Yssel, Hans; Gorochov, Guy; Mathian, Alexis

    2015-11-01

    UV light and some medications are known to trigger lupus erythematosus (LE). A common mechanism underlying the immunopathologic effect, resulting from exposure to these two seemingly unrelated factors, remains unknown. The aryl hydrocarbon receptor (AhR) plays a key role in the regulation of IL-22 production in humans and can be activated by both xenobiotics and naturally occurring photoproducts. A significant expansion of Th17 and Th22 cells was observed in the peripheral blood of active systemic LE (SLE) patients, compared to inactive patients and controls. We also show that propranolol, a potential lupus-inducing drug, induced stronger AhR activation in PBMCs of SLE patients than in those of controls. AhR agonist activity of propranolol was enhanced by UV light exposure. MS analysis of irradiated propranolol revealed the generation of a proinflammatory photoproduct. This compound behaves like the prototypic AhR ligand 6-formylindolo[3,2-b]carbazole, a cutaneous UV light-induced tryptophan metabolite, both promoting IL-22, IL-8, and CCL2 secretion by T-cells and macrophages. Finally, LE patients exhibit signs of cutaneous AhR activation that correlate with lesional expression of the same proinflammatory cytokines, suggesting a role for photometabolites in the induction of skin inflammation. The AhR might therefore represent a target for therapeutic intervention in LE. PMID:26354876

  3. Absolute Ligand Discrimination by Dimeric Signaling Receptors.

    PubMed

    Fathi, Sepehr; Nayak, Chitra R; Feld, Jordan J; Zilman, Anton G

    2016-09-01

    Many signaling pathways act through shared components, where different ligand molecules bind the same receptors or activate overlapping sets of response regulators downstream. Nevertheless, different ligands acting through cross-wired pathways often lead to different outcomes in terms of the target cell behavior and function. Although a number of mechanisms have been proposed, it still largely remains unclear how cells can reliably discriminate different molecular ligands under such circumstances. Here we show that signaling via ligand-induced receptor dimerization-a very common motif in cellular signaling-naturally incorporates a mechanism for the discrimination of ligands acting through the same receptor. PMID:27602720

  4. Interactions among Ah receptor agonists in a novel human bioassay for induction of cytochrome P-450 IA1

    SciTech Connect

    Hasspieler, B.M.; Gillan, K.; Haffner, G.D.; Adeli, K.; Niimi, A.

    1995-12-31

    A widespread technique for monitoring pollutant exposure and toxicity is based upon induction of the cytochrome P450 (CYP) enzyme system. Numerous classes of xenobiotics, including PCBs, PAHs, PCDDs and PCDFs, stimulate induction of the CYP IA1 subfamily via binding to the intracellular Ah receptor. A widely-used catalytic marker for this subfamily is ethoxyresorufin 0-deethylase (EROD). Toxic equivalency factors may be calculated for ranking toxicity of pollutants relative to agonists such as 2,3,7,8,-TCDD, a highly potent inducer and Ah receptor ligand. These methods typically utilize cell lines from rodents (e.g., H4IIE) or fish (e.g., RTL 149), and although such models may be relevant to these and related species, they are of little direct applicability to human health concerns. The laboratory has recently developed a system for monitoring EROD induction in the HepG2 human hepatoma cell line. Treatment of HepG2 cells with Ah receptor agonists such as TCDD elicits induction responses, comparable to those observed in non-human bioassays. When cells are exposed to TCDD and purified PCBs simultaneously, significant interactions are observed. Both inductive and non-inductive PCB congeners appear to inhibit TCDD-mediated EROD induction, presumably due to competition for the Ah receptor ligand-binding site. This may potentially lead to gross underestimation of the toxicity of complex mixtures in which such interactions take place. Results demonstrate the utility of this novel bioassay for assessing hazard of environmental pollutant mixtures to human as well as ecosystem health.

  5. IMMUNOHISTOCHEMICAL DOUBLE-STAINING FOR AH RECEPTOR AND ARNT IN HUMAN EMBRYONIC PALATAL SHELVES

    EPA Science Inventory

    The aryl hydrocarbon receptor (AhR) and the AhR nuclear translocation protein (ARNT) are helix-loop-helix (HLH) proteins involved in transcriptional regulation. olycyclic aromatic halogenated chemicals, of which 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) is the most potent, bind ...

  6. Allosterism at muscarinic receptors: ligands and mechanisms.

    PubMed

    Birdsall, N J M; Lazareno, S

    2005-06-01

    The evaluation of allosteric ligands at muscarinic receptors is discussed in terms of the ability of the experimental data to be interpreted by the allosteric ternary complex model. The compilation of useful SAR information of allosteric ligands is not simple, especially for muscarinic receptors, where there are multiple allosteric sites and complex interactions. PMID:15974931

  7. Hemagglutinin Receptor Binding of a Human Isolate of Influenza A(H10N8) Virus

    PubMed Central

    Mansour, Mena; Wohlbold, Teddy J.; Ermler, Megan E.; Hirsh, Ariana; Runstadler, Jonathan A.; Fernandez-Sesma, Ana

    2015-01-01

    Three cases of influenza A(H10N8) virus infection in humans have been reported; 2 of these infected persons died. Characterization of the receptor binding pattern of H10 hemagglutinin from avian and human isolates showed that both interact weakly with human-like receptors and maintain strong affinity for avian-like receptors. PMID:26079843

  8. Hemagglutinin Receptor Binding of a Human Isolate of Influenza A(H10N8) Virus.

    PubMed

    Ramos, Irene; Mansour, Mena; Wohlbold, Teddy J; Ermler, Megan E; Hirsh, Ariana; Runstadler, Jonathan A; Fernandez-Sesma, Ana; Krammer, Florian

    2015-07-01

    Three cases of influenza A(H10N8) virus infection in humans have been reported; 2 of these infected persons died. Characterization of the receptor binding pattern of H10 hemagglutinin from avian and human isolates showed that both interact weakly with human-like receptors and maintain strong affinity for avian-like receptors. PMID:26079843

  9. Characteristic molecular vibrations of adenosine receptor ligands.

    PubMed

    Chee, Hyun Keun; Yang, Jin-San; Joung, Je-Gun; Zhang, Byoung-Tak; Oh, S June

    2015-02-13

    Although the regulation of membrane receptor activation is known to be crucial for molecular signal transduction, the molecular mechanism underlying receptor activation is not fully elucidated. Here we study the physicochemical nature of membrane receptor behavior by investigating the characteristic molecular vibrations of receptor ligands using computational chemistry and informatics methods. By using information gain, t-tests, and support vector machines, we have identified highly informative features of adenosine receptor (AdoR) ligand and corresponding functional amino acid residues such as Asn (6.55) of AdoR that has informative significance and is indispensable for ligand recognition of AdoRs. These findings may provide new perspectives and insights into the fundamental mechanism of class A G protein-coupled receptor activation. PMID:25622891

  10. Characterizing the role of endothelin-1 in the progression of cardiac hypertrophy in aryl hydrocarbon receptor (AhR) null mice

    SciTech Connect

    Lund, Amie K.; Goens, M. Beth; Nunez, Bethany A.; Walker, Mary K. . E-mail: mkwalker@unm.edu

    2006-04-15

    The aryl hydrocarbon receptor (AhR) is a ligand-activated transcription factor characterized to play a role in detection and adaptation to environmental stimuli. Genetic deletion of AhR results in hypertension, and cardiac hypertrophy and fibrosis, associated with elevated plasma angiotensin II (Ang II) and endothelin-1 (ET-1), thus AhR appears to contribute to cardiovascular homeostasis. In these studies, we tested the hypothesis that ET-1 mediates cardiovascular pathology in AhR null mice via ET{sub A} receptor activation. First, we determine the time courses of cardiac hypertrophy, and of plasma and tissue ET-1 expression in AhR wildtype and null mice. AhR null mice exhibited increases in heart-to-body weight ratio and age-related expression of cardiac hypertrophy markers, {beta}-myosin heavy chain ({beta}-MHC), and atrial natriuretic factor (ANF), which were significant at 2 months. Similarly, plasma and tissue ET-1 expression was significantly elevated at 2 months and increased further with age. Second, AhR null mice were treated with ET{sub A} receptor antagonist, BQ-123 (100 nmol/kg/day), for 7, 28, or 58 days and blood pressure, cardiac fibrosis, and cardiac hypertrophy assessed, respectively. BQ-123 for 7 days significantly reduced mean arterial pressure in conscious, catheterized mice. BQ-123 for 28 days significantly reduced the histological appearance of cardiac fibrosis. Treatment for 58 days significantly reduced cardiac mass, assessed by heart weight, echocardiography, and {beta}-MHC and ANF expression; and reduced cardiac fibrosis as determined by osteopontin and collagen I mRNA expression. These findings establish ET-1 and the ET{sub A} receptor as primary determinants of hypertension and cardiac pathology in AhR null mice.

  11. Bioisosteric matrices for ligands of serotonin receptors.

    PubMed

    Warszycki, Dawid; Mordalski, Stefan; Staroń, Jakub; Bojarski, Andrzej J

    2015-04-01

    The concept of bioisosteric replacement matrices is applied to explore the chemical space of serotonin receptor ligands, aiming to determine the most efficient ways of manipulating the affinity for all 5-HT receptor subtypes. Analysis of a collection of over 1 million bioisosteres of compounds with measured activity towards serotonin receptors revealed that an average of 31 % of the ligands for each target are mutual bioisosteres. In addition, the collected dataset allowed the development of bioisosteric matrices-qualitative and quantitative descriptions of the biological effects of each predefined type of bioisosteric substitution, providing favored paths of modifying the compounds. The concept exemplified here for serotonin receptor ligands can likely be more broadly applied to other target classes, thus representing a useful guide for medicinal chemists designing novel ligands. PMID:25772514

  12. Naturally-Occurring Marine Brominated Indoles are Aryl Hydrocarbon Receptor Ligands/Agonists

    PubMed Central

    DeGroot, Danica E.; Franks, Diana G.; Higa, Tatsuo; Tanaka, Junichi; Hahn, Mark E.; Denison, Michael S.

    2015-01-01

    The aryl hydrocarbon receptor (AhR) is a ligand-dependent transcription factor that mediates the toxic and biological effects of structurally diverse chemicals, including the environmental contaminant 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). As part of a larger effort to identify the full spectrum of chemicals that can bind to and activate the AhR, we have examined the ability of several naturally-occurring marine-derived brominated indoles and brominated (methylthio)indoles (collectively referred to as “brominated indoles”) to bind to the AhR and stimulate AhR-dependent gene expression. Incubation of mouse, rat and guinea pig recombinant cell lines containing a stably transfected AhR-responsive luciferase reporter gene with eight brominated indoles revealed that all compounds stimulated luciferase reporter gene activity, although some species-specific differences were observed. All compounds induced significantly more luciferase activity when incubated with cells for 4 h as compared to 24 h, demonstrating that these compounds are transient activators of the AhR signaling pathway. Three of the brominated indoles induced CYP1A1 mRNA in human HepG2 cells in vitro and Cyp1a mRNA in zebrafish embryos in vivo. The identification of the brominated indoles as direct ligands and activators/agonists of the AhR was confirmed by their ability to compete with [3H]TCDD for binding to the AhR and to stimulate AhR transformation and DNA binding in vitro. Taken together, these marine-derived brominated indoles are members of a new class of naturally-occurring AhR agonists. PMID:26001051

  13. PRODUCTION AND CHARACTERIZATION OF MONOCLONAL ANTIBODIES DIRECTED AGAINST THE AH RECEPTOR

    EPA Science Inventory

    Six hybridomas secreting monoclonal antibodies that are specific for the N-terminal peptide sequence of the murine Ah receptor were isolated. hese antibodies bind with high specificity to the Al receptor on protein blots of Hepa 1c1c7 cytosol. hree IgG1 antibodies (Rpt1, 2, and 3...

  14. [Opioid receptors and their selective ligands].

    PubMed

    Piestrzeniewicz, Mariola Katarzyna; Fichna, Jakub; Michna, Jakub; Janecka, Anna

    2006-01-01

    Opioid receptors (micro, delta, and kappa) belong to a large family of G protein-coupled receptors and play an important physiological role. Stimulation of these receptors triggers analgesic effects and affects the function of gastrointestinal tract. The discovery of opioid peptides, which are endogenous ligands of opioid receptors, including delta-selective enkephalins, kappa-selective dynorphins, and micro-selective endomorphins, initiated their structure-activity relationship studies. For the last 30 years, hundreds of analogs of opioid peptides have been synthesized in an effort to obtain the compounds more active, selective, and resistant to biodegradation than the endogenous ligands. Different unnatural amino acids, as well as cyclisation procedures, leading to conformationaly restricted analogs, were employed. All these modifications resulted in obtaining very selective agonists and antagonists with high affinity at micro-, dlta-, and kappa-opioid receptors, which are extremely useful tools in further studies on the pharmacology of opioid receptors in a mammalian organism. PMID:17201067

  15. Determining ligand specificity of Ly49 receptors.

    PubMed

    Lavender, Kerry J; Kane, Kevin P

    2010-01-01

    Ly49 receptors in rodents, like KIR in humans, play an integral role in the regulation of NK cell activity. Some inhibitory Ly49 are known to interact with specific MHC I alleles to maintain tolerance to self tissues, and NK activation is triggered upon the loss of inhibitory signals due to pathological downregulation of self MHC I. Although a virally encoded ligand has been identified that can trigger NK cytotoxicity through an activating Ly49, some activating Ly49 also recognize MHC I and the role of most activating receptors in NK effector function remains poorly defined. As many Ly49 remain orphan receptors, we describe methods to unambiguously discern receptor-ligand pairs. Additionally, we describe a method for the mutagenesis of Ly49 and MHC ligands that can be used to define the motifs conferring receptor specificity for their ligands. Further elucidation of Ly49 ligands is required to continue to define the role of Ly49 in regulating NK cell effector function and may give vital clues to the role of KIR in human health and disease. PMID:20033649

  16. TCDD and omeprazole prime platelets through the aryl hydrocarbon receptor (AhR) non-genomic pathway.

    PubMed

    Pombo, Mónica; Lamé, Michael W; Walker, Naomi J; Huynh, Danh H; Tablin, Fern

    2015-05-19

    The role of the aryl hydrocarbon receptor (AhR) in hemostasis has recently gained increased attention. Here, we demonstrate, by qRT-PCR and western blot, that human platelets express both AhR mRNA and AhR protein. AhR protein levels increase in a dose dependent manner when incubated with either 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) or omeprazole. Treatment of platelets with puromycin blocks increased AhR protein synthesis in the presence of AhR activators. Additionally, treatment of platelets with either activator results in phosphorylation of p38MAPK and cPLA2, two key signaling molecules in platelet activation pathways. Using the AhR competitive inhibitors alpha naphthoflavone and CH-223191, we show that phosphorylation of p38MAPK is AhR dependent. Further, inhibition of p38MAPK blocks downstream cPLA2 phosphorylation induced by TCDD or omeprazole. Treatment with AhR activators results in platelet priming, as demonstrated by increased platelet aggregation, which is inhibited by AhR antagonists. Our data support a model of the platelet AhR non-genomic pathway in which treatment with AhR activators results in increased expression of the AhR, phosphorylation of p38MAPK and cPLA2, leading to platelet priming in response to agonist. PMID:25797602

  17. Evolution of the receptor binding properties of the influenza A(H3N2) hemagglutinin.

    PubMed

    Lin, Yi Pu; Xiong, Xiaoli; Wharton, Stephen A; Martin, Stephen R; Coombs, Peter J; Vachieri, Sebastien G; Christodoulou, Evangelos; Walker, Philip A; Liu, Junfeng; Skehel, John J; Gamblin, Steven J; Hay, Alan J; Daniels, Rodney S; McCauley, John W

    2012-12-26

    The hemagglutinin (HA) of influenza A(H3N2) virus responsible for the 1968 influenza pandemic derived from an avian virus. On introduction into humans, its receptor binding properties had changed from a preference for avian receptors (α2,3-linked sialic acid) to a preference for human receptors (α2,6-linked sialic acid). By 2001, the avidity of human H3 viruses for avian receptors had declined, and since then the affinity for human receptors has also decreased significantly. These changes in receptor binding, which correlate with increased difficulties in virus propagation in vitro and in antigenic analysis, have been assessed by virus hemagglutination of erythrocytes from different species and quantified by measuring virus binding to receptor analogs using surface biolayer interferometry. Crystal structures of HA-receptor analog complexes formed with HAs from viruses isolated in 2004 and 2005 reveal significant differences in the conformation of the 220-loop of HA1, relative to the 1968 structure, resulting in altered interactions between the HA and the receptor analog that explain the changes in receptor affinity. Site-specific mutagenesis shows the HA1 Asp-225→Asn substitution to be the key determinant of the decreased receptor binding in viruses circulating since 2005. Our results indicate that the evolution of human influenza A(H3N2) viruses since 1968 has produced a virus with a low propensity to bind human receptor analogs, and this loss of avidity correlates with the marked reduction in A(H3N2) virus disease impact in the last 10 y. PMID:23236176

  18. Interactions Between Estrogen- and Ah-Receptor Signalling Pathways in Primary Culture of Salmon Hepatocytes Exposed to Nonylphenol and 3,3',4,4'-Tetrachlorobiphenyl (Congener 77)

    PubMed Central

    Mortensen, Anne S; Arukwe, Augustine

    2007-01-01

    Background The estrogenic and xenobiotic biotransformation gene expressions are receptor-mediated processes that are ligand structure-dependent interactions with estrogen-receptor (ER) and aryl hydrocarbon receptor (AhR), probably involving all subtypes and other co-factors. The anti-estrogenic activities of AhR agonists have been reported. In teleost fish, exposure to AhR agonists has been associated with reduced Vtg synthesis or impaired gonadal development in both in vivo- and in vitro studies. Inhibitory AhR and ER cross-talk have also been demonstrated in breast cancer cells, rodent uterus and mammary tumors. Previous studies have shown that AhR-agonists potentiate xenoestrogen-induced responses in fish in vivo system. Recently, several studies have shown that AhR-agonists directly activate ERα and induce estrogenic responses in mammalian in vitro systems. In this study, two separate experiments were performed to study the molecular interactions between ER and AhR signalling pathways using different concentration of PCB-77 (an AhR-agonist) and time factor, respectively. Firstly, primary Atlantic salmon hepatocytes were exposed to nonylphenol (NP: 5 μM – an ER agonist) singly or in combination with 0.001, 0.01 and 1 μM PCB-77 and sampled at 48 h post-exposure. Secondly, hepatocytes were exposed to NP (5 μM) or PCB-77 (1 μM) singly or in combination for 12, 24, 48 and 72 h. Samples were analyzed using a validated real-time PCR for genes in the ER pathway or known to be NP-responsive and AhR pathway or known to be PCB-77 responsive. Results Our data showed a reciprocal inhibitory interaction between NP and PCB-77. PCB-77 produced anti-NP-mediated effect by decreasing the mRNA expression of ER-responsive genes. NP produced anti-AhR mediated effect or as inhibitor of AhRα, AhRR, ARNT, CYP1A1 and UDPGT expression. A novel aspect of the present study is that low (0.001 μM) and medium (0.01 μM) PCB-77 concentrations increased ERα mRNA expression above

  19. The Retinoid X Receptors and Their Ligands

    PubMed Central

    Dawson, Marcia I.; Xia, Zebin

    2014-01-01

    This chapter presents an overview of the current status of studies on the structural and molecular biology of the retinoid X receptor subtypes α, β, and γ (RXRs, NR2B1–3), their nuclear and cytoplasmic functions, post-transcriptional processing, and recently reported ligands. Points of interest are the different changes in the ligand-binding pocket induced by variously shaped agonists, the communication of the ligand–bound pocket with the coactivator binding surface and the heterodimerization interface, and recently identified ligands that are natural products, those that function as environmental toxins or drugs that had been originally designed to interact with other targets, as well as those that were deliberately designed as RXR-selective transcriptional agonists, synergists, or antagonists. Of these synthetic ligands, the general trend in design appears to be away from fully aromatic rigid structures to those containing partial elements of the flexible tetraene side chain of 9-cis-retinoic acid. PMID:22020178

  20. Ligands for Ionotropic Glutamate Receptors

    NASA Astrophysics Data System (ADS)

    Swanson, Geoffrey T.; Sakai, Ryuichi

    Marine-derived small molecules and peptides have played a central role in elaborating pharmacological specificities and neuronal functions of mammalian ionotropic glutamate receptors (iGluRs), the primary mediators of excitatory syn-aptic transmission in the central nervous system (CNS). As well, the pathological sequelae elicited by one class of compounds (the kainoids) constitute a widely-used animal model for human mesial temporal lobe epilepsy (mTLE). New and existing molecules could prove useful as lead compounds for the development of therapeutics for neuropathologies that have aberrant glutamatergic signaling as a central component. In this chapter we discuss natural source origins and pharmacological activities of those marine compounds that target ionotropic glutamate receptors.

  1. Nitrosamines as nicotinic receptor ligands.

    PubMed

    Schuller, Hildegard M

    2007-05-30

    Nitrosamines are carcinogens formed in the mammalian organism from amine precursors contained in food, beverages, cosmetics and drugs. The potent carcinogen, NNK, and the weaker carcinogen, NNN, are nitrosamines formed from nicotine. Metabolites of the nitrosamines react with DNA to form adducts responsible for genotoxic effects. We have identified NNK as a high affinity agonist for the alpha7 nicotinic acetylcholine receptor (alpha7nAChR) whereas NNN bound with high affinity to epibatidine-sensitive nAChRs. Diethylnitrosamine (DEN) bound to both receptors but with lower affinity. High levels of the alpha7nAChR were expressed in human small cell lung cancer (SCLC) cell lines and in hamster pulmonary neuroendocrine cells (PNECs), which serve as a model for the cell of origin of human SCLC. Exposure of SCLC or PNECs to NNK or nicotine increased expression of the alpha7nAChR and caused influx of Ca(2+), activation of PKC, Raf-1, ERK1/2, and c-myc, resulting in the stimulation of cell proliferation. Signaling via the alpha7nAChR was enhanced when cells were maintained in an environment of 10-15% CO(2) similar to that in the diseased lung. Hamsters with hyperoxia-induced pulmonary fibrosis developed neuroendocrine lung carcinomas similar to human SCLC when treated with NNK, DEN, or nicotine. The development of the NNK-induced tumors was prevented by green tea or theophylline. The beta-adrenergic receptor agonist, isoproterenol or theophylline blocked NNK-induced cell proliferation in vitro. NNK and nicotine-induced hyperactivity of the alpha7nAChR/RAF/ERK1/2 pathway thus appears to play a crucial role in the development of SCLC in smokers and could be targeted for cancer prevention. PMID:17459420

  2. Toward elucidation of dioxin-mediated chloracne and Ah receptor functions.

    PubMed

    Bock, Karl Walter

    2016-07-15

    Target cells and molecular targets responsible for dioxin-mediated chloracne, the hallmark of dioxin toxicity, are reviewed. The dioxin TCDD accumulates in sebum, and thereby persistently activates the Ah receptor (AhR), expressed in bipotential stem/progenitor cells of the sebaceous gland. AhR operates in cooperation with other transcription factors including c-Myc, Blimp1 and ß-Catenin/TCF: c-Myc stimulates exit of stem cells from quiescence to proliferating sebocyte progenitors; Blimp1 is a major c-Myc repressor, and ß-Catenin/TCF represses sebaceous gland differentiation and stimulates differentiation to interfollicular epidermis. TCDD has been demonstrated to induce Blimp1 expression in the sebocyte stem/progenitor cell line SZ95, leading to sebocyte apoptosis and proliferation of interfollicular epidermis cells. These findings explain observations in TCDD-poisoned individuals, and identify target cells and molecular targets of dioxin-mediated chloracne. They clearly demonstrate that the AhR operates in a cell context-dependent manner, and provide hints to homeostatic functions of AhR in stem/progenitor cells. PMID:26801687

  3. HDAC1 bound to the Cyp1a1 promoter blocks histone acetylation associated with Ah receptor-mediated transactivation

    PubMed Central

    Schnekenburger, Michael; Peng, Li; Puga, Alvaro

    2007-01-01

    Metabolic bioactivation of polycyclic aromatic hydrocarbons, such as the environmental procarcinogen benzo[a]pyrene, is catalyzed by a cytochrome P450 monooxygenase encoded by the substrate-inducible Cyp1a1 gene. Cyp1a1 induction requires trans-activation by the heterodimeric transcriptional complex formed by the liganded Ah receptor (AHR) and its partner, ARNT. Previously, we showed that constitutively bound HDAC1 dissociates from Cyp1a1 promoter chromatin after ligand-mediated induction, concomitantly with the recruitment of AHR/ARNT complexes and p300. Here, we investigated the hypothesis that HDAC1 binding maintains the Cyp1a1 gene in a silenced state in uninduced cells. We find that Cyp1a1 induction by the AHR/ARNT is associated with modification of specific chromatin marks, including hyperacetylation of histone H3K14 and H4K16, trimethylation of histone H3K4, and phosphorylation of H3S10. HDAC1 and DNMT1 form complexes on the Cyp1a1 promoter of uninduced cells but HDAC1 inhibition alone is not sufficient to induce Cyp1a1 expression, although it allows for the hyperacetylation of H3K14 and H4K16 to levels similar to those found in B[a]P-induced cells. These results show that by blocking modification of histone marks, HDAC1 plays a central role in Cyp1a1 expression and that its removal is a necessary but not sufficient condition for Cyp1a1 induction, underscoring the requirement for a concerted series of chromatin remodeling events to complete the initial steps of gene trans-activation by the Ah receptor. PMID:17707923

  4. Receptor-ligand interactions: Advanced biomedical applications.

    PubMed

    Guryanov, Ivan; Fiorucci, Stefano; Tennikova, Tatiana

    2016-11-01

    Receptor-ligand interactions (RLIs) are at the base of all biological events occurring in living cells. The understanding of interactions between complementary macromolecules in biological systems represents a high-priority research area in bionanotechnology to design the artificial systems mimicking natural processes. This review summarizes and analyzes RLIs in some cutting-edge biomedical fields, in particular, for the preparation of novel stationary phases to separate complex biological mixtures in medical diagnostics, for the design of ultrasensitive biosensors for identification of biomarkers of various diseases at early stages, as well as in the development of innovative biomaterials and approaches for regenerative medicine. All these biotechnological fields are closely related, because their success depends on a proper choice, combination and spatial disposition of the single components of ligand-receptor pairs on the surface of appropriately designed support. PMID:27524092

  5. Development of a selective modulator of aryl hydrocarbon (Ah) receptor activity that exhibits anti-inflammatory properties.

    PubMed

    Murray, Iain A; Krishnegowda, Gowdahalli; DiNatale, Brett C; Flaveny, Colin; Chiaro, Chris; Lin, Jyh-Ming; Sharma, Arun K; Amin, Shantu; Perdew, Gary H

    2010-05-17

    The aryl hydrocarbon receptor (AHR) is a ligand-activated transcription factor that mediates the toxicity of 2,3,7,8-tetrachlorodibenzo-p-dioxin. However, the role of the AHR in normal physiology is still an area of intense investigation. For example, this receptor plays an important role in certain immune responses. We have previously determined that the AHR can mediate repression of acute-phase genes in the liver. For this observation to be therapeutically useful, selective activation of the AHR would likely be necessary. Recently, the selective estrogen receptor ligand WAY-169916 has also been shown to be a selective AHR ligand. WAY-169916 can efficiently repress cytokine-mediated acute-phase gene expression (e.g., SAA1) yet fail to mediate a dioxin response element-driven increase in transcriptional activity. The goals of this study were to structurally modify WAY-169916 to block binding to the estrogen receptor and increase its affinity for the AHR. A number of WAY-169916 derivatives were synthesized and subjected to characterization as AHR ligands. The substitution of a key hydroxy group for a methoxy group ablates binding to the estrogen receptor and increases its affinity for the AHR. The compound 1-allyl-7-trifluoromethyl-1H-indazol-3-yl]-4-methoxyphenol (SGA 360), in particular, exhibited essentially no AHR agonist activity yet was able to repress cytokine-mediated SAA1 gene expression in Huh7 cells. SGA 360 was tested in a 12-O-tetradecanoylphorbol-13-acetate (TPA)-mediated ear inflammatory edema model using C57BL6/J and Ahr(-/-) mice. Our findings indicate that SGA 360 significantly inhibits TPA-mediated ear swelling and induction of a number of inflammatory genes (e.g., Saa3, Cox2, and Il6) in C57BL6/J mice. In contrast, SGA 360 had no effect on TPA-mediated ear swelling or inflammatory gene expression in Ahr(-/-) mice. Collectively, these results indicate that SGA 360 is a selective Ah receptor modulator (SAhRM) that exhibits anti

  6. Chemistry and pharmacology of GABAB receptor ligands.

    PubMed

    Froestl, Wolfgang

    2010-01-01

    This chapter presents new clinical applications of the prototypic GABA(B) receptor agonist baclofen for the treatment of addiction by drugs of abuse, such as alcohol, cocaine, nicotine, morphine, and heroin, a novel baclofen prodrug Arbaclofen placarbil, the GABA(B) receptor agonist AZD3355 (Lesogabaran) currently in Phase 2 clinical trials for the treatment of gastroesophageal reflux disease, and four positive allosteric modulators of GABA(B) receptors (CGP7930, GS39783, NVP-BHF177, and BHFF), which have less propensity for the development of tolerance due to receptor desensitization than classical GABA(B) receptor agonists. All four compounds showed anxiolytic affects. In the presence of positive allosteric modulators the "classical" GABA(B) receptor antagonists CGP35348 and 2-hydroxy-saclofen showed properties of partial GABA(B) receptor agonists. Seven micromolar affinity GABA(B) receptor antagonists, phaclofen; 2-hydroxy-saclofen; CGP's 35348, 36742, 46381, 51176; and SCH50911, are discussed. CGP36742 (SGS742) showed statistically significant improvements of working memory and attention in a Phase 2 clinical trial in mild, but not in moderate Alzheimer patients. Eight nanomolar affinity GABA(B) receptor antagonists are presented (CGP's 52432, 54626, 55845, 56433, 56999, 61334, 62349, and 63360) that were used by pharmacologists for numerous in vitro and in vivo investigations. CGP's 36742, 51176, 55845, and 56433 showed antidepressant effects. Several compounds are also available as radioligands, such as [(3)H]CGP27492, [(3)H]CGP54626, [(3)H]CGP5699, and [(3)H]CGP62349. Three novel fluorescent and three GABA(B) receptor antagonists with very high specific radioactivity (>2,000 Ci/mmol) are presented. [(125)I]CGP64213 and the photoaffinity ligand [(125)I]CGP71872 allowed the identification of GABA(B1a) and GABA(B1b) receptors in the expression cloning work. PMID:20655477

  7. Structure and receptor binding preferences of recombinant human A(H3N2) virus hemagglutinins.

    PubMed

    Yang, Hua; Carney, Paul J; Chang, Jessie C; Guo, Zhu; Villanueva, Julie M; Stevens, James

    2015-03-01

    A(H3N2) influenza viruses have circulated in humans since 1968, and antigenic drift of the hemagglutinin (HA) protein continues to be a driving force that allows the virus to escape the human immune response. Since the major antigenic sites of the HA overlap into the receptor binding site (RBS) of the molecule, the virus constantly struggles to effectively adapt to host immune responses, without compromising its functionality. Here, we have structurally assessed the evolution of the A(H3N2) virus HA RBS, using an established recombinant expression system. Glycan binding specificities of nineteen A(H3N2) influenza virus HAs, each a component of the seasonal influenza vaccine between 1968 and 2012, were analyzed. Results suggest that while its receptor-binding site has evolved from one that can bind a broad range of human receptor analogs to one with a more restricted binding profile for longer glycans, the virus continues to circulate and transmit efficiently among humans. PMID:25617824

  8. Toxicogenomic analysis of exposure to TCDD, PCB126 and PCB153: identification of genomic biomarkers of exposure to AhR ligands

    PubMed Central

    2010-01-01

    Background Two year cancer bioassays conducted by the National Toxicology Program have shown chronic exposure to dioxin-like compounds (DLCs) to lead to the development of both neoplastic and non-neoplastic lesions in the hepatic tissue of female Sprague Dawley rats. Most, if not all, of the hepatotoxic effects induced by DLC's are believed to involve the binding and activation of the transcription factor, the aryl hydrocarbon receptor (AhR). Toxicogenomics was implemented to identify genomic responses that may be contributing to the development of hepatotoxicity in rats. Results Through comparative analysis of time-course microarray data, unique hepatic gene expression signatures were identified for the DLCs, 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) (100 ng/kg/day) and 3,3',4,4',5-pentachlorobiphenyl (PCB126) (1000 ng/kg/day) and the non-DLC 2,2',4,4',5,5',-hexachlorobiphenyl (PCB153) (1000 μg/kg/day). A common time independent signature of 41 AhR genomic biomarkers was identified which exhibited at least a 2-fold change in expression following subchronic (13-wk) and chronic (52-wk) p.o. exposure to TCDD and PCB126, but not the non DLC, PCB153. Real time qPCR analysis validated that 30 of these genes also exhibited at least a 2-fold change in hepatic expression at 24 hr following a single exposure to TCDD (5 μg/kg, po). Phenotypic anchoring was conducted which identified forty-six genes that were differently expressed both following chronic p.o. exposure to DLCs and in previously reported studies of cholangiocarcinoma or hepatocellular adenoma. Conclusions Together these analyses provide a comprehensive description of the genomic responses which occur in rat hepatic tissue with exposure to AhR ligands and will help to isolate those genomic responses which are contributing to the hepatotoxicity observed with exposure to DLCs. In addition, the time independent gene expression signature of the AhR ligands may assist in identifying other agents with the potential

  9. Different AhR binding sites of diterpenoid ligands from Andrographis paniculata caused differential CYP1A1 induction in primary culture in mouse hepatocytes.

    PubMed

    Chatuphonprasert, Waranya; Remsungnen, Tawun; Nemoto, Nobuo; Jarukamjorn, Kanokwan

    2011-12-01

    Andrographis paniculata has been employed as a folklore remedy. Andrographolide (Andro), 14-deoxy-11,12-didehydroandrographolide (DHA), andrographiside (AS), and neoandrographolide (Neo), are major diterpenoids isolated from this plant. In the present study, influence of the four diterpenoids on CYP1A1 mRNA expression was investigated in primary cultured mouse hepatocytes. Additionally, binding of these compounds to aryl hydrocarbon receptor (AhR) was examined using molecular docking analysis to clarify mechanism of CYP1A1 induction. Andro and DHA induced CYP1A1 expression by itself, and co-treatment with a CYP1A1 inducer (BNF, beta-naphthoflavone) showed a synergistic increase of CYP1A1 expression. Andro demonstrated higher enhancing activity than DHA at every similar concentration. On the other hand, Neo suppressed BNF-induced CYP1A1 expression, but AS did not modify the induction. Results from molecular docking analysis of BNF and four diterpenoids on ligand binding domain of AhR were consistent with levels of CYP1A1 mRNA expressions. Furthermore, difference of binding sites of BNF in the presence of diterpenoids might affect the synergism or inhibition of CYP1A1 expression. These results suggest that use of A. paniculata as a health supplement should be concerned in term of herb-drugs interactions or risk of carcinogenesis, according to its ability to influence CYP1A1 expression. PMID:21963808

  10. Ligand-directed trafficking of receptor stimulus.

    PubMed

    Chilmonczyk, Zdzisław; Bojarski, Andrzej J; Sylte, Ingebrigt

    2014-12-01

    GPCRs are seven transmembrane-spanning receptors that convey specific extracellular stimuli to intracellular signalling. They represent the largest family of cell surface proteins that are therapeutically targeted. According to the traditional two-state model of receptor theory, GPCRs were considered as operating in equilibrium between two functional conformations, an active (R*) and inactive (R) state. Thus, it was assumed that a GPCR can exist either in an "off" or "on" conformation causing either no activation or equal activation of all its signalling pathways. Over the past several years it has become evident that this model is too simple and that GPCR signalling is far more complex. Different studies have presented a multistate model of receptor activation in which ligand-specific receptor conformations are able to differentiate between distinct signalling partners. Recent data show that beside G proteins numerous other proteins, such as β-arrestins and kinases, may interact with GPCRs and activate intracellular signalling pathways. GPCR activation may therefore involve receptor desensitization, coupling to multiple G proteins, Gα or Gβγ signalling, and pathway activation that is independent of G proteins. This latter effect leads to agonist "functional selectivity" (also called ligand-directed receptor trafficking, stimulus trafficking, biased agonism, biased signalling), and agonist intervention with functional selectivity may improve the therapy. Many commercially available drugs with beneficial efficacy also show various undesirable side effects. Further studies of biased signalling might facilitate our understanding of the side effects of current drugs and take us to new avenues to efficiently design pathway-specific medications. PMID:25443729

  11. The Aryl Hydrocarbon Receptor Ligand ITE Inhibits TGFβ1-Induced Human Myofibroblast Differentiation

    PubMed Central

    Lehmann, Geniece M.; Xi, Xia; Kulkarni, Ajit A.; Olsen, Keith C.; Pollock, Stephen J.; Baglole, Carolyn J.; Gupta, Shikha; Casey, Ann E.; Huxlin, Krystel R.; Sime, Patricia J.; Feldon, Steven E.; Phipps, Richard P.

    2011-01-01

    Fibrosis can occur in any human tissue when the normal wound healing response is amplified. Such amplification results in fibroblast proliferation, myofibroblast differentiation, and excessive extracellular matrix deposition. Occurrence of these sequelae in organs such as the eye or lung can result in severe consequences to health. Unfortunately, medical treatment of fibrosis is limited by a lack of safe and effective therapies. These therapies may be developed by identifying agents that inhibit critical steps in fibrotic progression; one such step is myofibroblast differentiation triggered by transforming growth factor-β1 (TGFβ1). In this study, we demonstrate that TGFβ1-induced myofibroblast differentiation is blocked in human fibroblasts by a candidate endogenous aryl hydrocarbon receptor (AhR) ligand 2-(1′H-indole-3′-carbonyl)-thiazole-4-carboxylic acid methyl ester (ITE). Our data show that ITE disrupts TGFβ1 signaling by inhibiting the nuclear translocation of Smad2/3/4. Although ITE functions as an AhR agonist, and biologically persistent AhR agonists, such as 2,3,7,8-tetrachlorodibenzo-p-dioxin, cause severe toxic effects, ITE exhibits no toxicity. Interestingly, ITE effectively inhibits TGFβ1-driven myofibroblast differentiation in AhR−/− fibroblasts: Its ability to inhibit TGFβ1 signaling is AhR independent. As supported by the results of this study, the small molecule ITE inhibits myofibroblast differentiation and may be useful clinically as an antiscarring agent. PMID:21406171

  12. Activation of Aryl Hydrocarbon Receptor (AhR) Leads to Reciprocal Epigenetic Regulation of FoxP3 and IL-17 Expression and Amelioration of Experimental Colitis

    PubMed Central

    Singh, Balwan; Price, Robert L.; Nagarkatti, Mitzi; Nagarkatti, Prakash S.

    2011-01-01

    Background Aryl hydrocarbon receptor (AhR), a transcription factor of the bHLH/PAS family, is well characterized to regulate the biochemical and toxic effects of environmental chemicals. More recently, AhR activation has been shown to regulate the differentiation of Foxp3+ Tregs as well as Th17 cells. However, the precise mechanisms are unclear. In the current study, we investigated the effect of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), a potent AhR ligand, on epigenetic regulation leading to altered Treg/Th17 differentiation, and consequent suppression of colitis. Methodology/Principal Findings Dextran sodium sulphate (DSS) administration induced acute colitis in C57BL/6 mice, as shown by significant weight loss, shortening of colon, mucosal ulceration, and increased presence of CXCR3+ T cells as well as inflammatory cytokines. Interestingly, a single dose of TCDD (25 µg/kg body weight) was able to attenuate all of the clinical and inflammatory markers of colitis. Analysis of T cells in the lamina propria (LP) and mesenteric lymph nodes (MLN), during colitis, revealed decreased presence of Tregs and increased induction of Th17 cells, which was reversed following TCDD treatment. Activation of T cells from AhR+/+ but not AhR -/- mice, in the presence of TCDD, promoted increased differentiation of Tregs while inhibiting Th17 cells. Analysis of MLN or LP cells during colitis revealed increased methylation of CpG islands of Foxp3 and demethylation of IL-17 promoters, which was reversed following TCDD treatment. Conclusions/Significance These studies demonstrate for the first time that AhR activation promotes epigenetic regulation thereby influencing reciprocal differentiation of Tregs and Th17 cells, and amelioration of inflammation. PMID:21858153

  13. A human intervention study with foods containing natural Ah-receptor agonists does not significantly show AhR-mediated effects as measured in blood cells and urine.

    PubMed

    de Waard, Pim W J; Peijnenburg, Ad A C M; Baykus, Hakan; Aarts, Jac M M J G; Hoogenboom, Ron L A P; van Schooten, Frederik J; de Kok, Theo M C M

    2008-10-22

    Binding and activation of the aryl hydrocarbon receptor (AhR) is thought to be an essential step in the toxicity of the environmental pollutants dioxins and dioxin-like PCBs. However, also a number of natural compounds, referred to as NAhRAs (natural Ah-receptor agonists), which are present in, for example, fruits and vegetables, can bind and activate this receptor. To study their potential effects in humans, we first investigated the effect of the prototypical AhR agonist 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) on gene expression in ex vivo exposed freshly isolated human lymphocytes, and compared the resulting gene expression profile with those caused by the well-known NAhRA indolo[3,2-b]carbazole (ICZ), originating from cruciferous vegetables, and by a hexane extract of NAhRA-containing grapefruit juice (GJE). Only ICZ induced a gene expression profile similar to TCDD in the lymphocytes, and both significantly up-regulated CYP1B1 and TIPARP (TCDD-inducible poly (ADP-ribose) polymerase) mRNA. Next, we performed a human intervention study with NAhRA-containing cruciferous vegetables and grapefruit juice. The expression of the prototypical AhR-responsive genes CYP1A1, CYP1B1 and NQO1 in whole blood cells and in freshly isolated lymphocytes was not significantly affected. Also enzyme activities of CYP1A2, CYP2A6, N-acetyltransferase 2 (NAT2) and xanthine oxidase (XO), as judged by caffeine metabolites in urine, were unaffected, except for a small down-regulation of NAT2 activity by grapefruit juice. Examination of blood plasma with DR CALUX showed a 12% increased AhR agonist activity 3 and 24 h after consumption of cruciferous vegetables, but did not show a significant effect of grapefruit juice consumption. We conclude that intake of NAhRAs from food may result in minor AhR-related effects measurable in human blood and urine. PMID:18762178

  14. Arylhydrocarbon receptor (AhR) activation in airway epithelial cells induces MUC5AC via reactive oxygen species (ROS) production.

    PubMed

    Chiba, Takahito; Uchi, Hiroshi; Tsuji, Gaku; Gondo, Hisaki; Moroi, Yoichi; Furue, Masutaka

    2011-02-01

    The dioxins and dioxin-like compounds in cigarette smoke regulate various immunological responses via the arylhydrocarbon receptor (AhR). These environmental toxicants are known to cause bronchitis, asthma, chronic obstructive pulmonary disease (COPD), and lung cancer. Recent studies have demonstrated that AhR activation upregulates the expression of mucin 5AC, oligomeric mucus/gel-forming (MUC5AC) in the airway epithelial cell line. However, the mechanism for the production of mucin has not been clarified. In this study, we investigated the role and pathway of AhR in airway epithelial cells by using selective agonists and antagonists. After stimulation with or without benzopyrene (B[a]P), an AhR agonist, MUC5AC expression was measured by real-time RT-PCR. The mechanism of AhR-induced MUC5AC expression in airway epithelial cells was studied in terms of the production of cytokine and reactive oxygen species (ROS). Treatment with B[a]P increased ROS generation in NCI-H₂₉₂ cells. Furthermore, B[a]P-induced MUC5AC upregulation and mucin production were inhibited by AhR siRNA or the use of an antioxidative agent. These results suggest that the AhR-induced increase of mucin production is partially mediated by ROS generation. An antioxidant therapy approach may help to cure AhR-induced mucus hypersecretory diseases. PMID:20709182

  15. BINDING OF POLYCHLORINATED BIPHENYLS CLASSIFIED AS EITHER PHENOBARBITONE-, 3-METHYLCHOLANTHRENE- OR MIXED-TYPE INDUCERS TO CYTOSOLIC AH RECEPTOR

    EPA Science Inventory

    It has been postulated that reversible, high-affinity binding of 3-methyl-cholanthrene (MC)-type inducers to a receptor protein (the Ah receptor) in hepatic cytosol is essential for induction of aryl hydrocarbon hydroxylase (AHH) enzymic activity. To test this postulate, the bind...

  16. Amino acid sequence of the AhR1 ligand-binding domain predicts avian sensitivity to dioxin like compounds: in vivo verification in European starlings.

    PubMed

    Eng, Margaret L; Elliott, John E; Jones, Stephanie P; Williams, Tony D; Drouillard, Ken G; Kennedy, Sean W

    2014-12-01

    Research has demonstrated that the sensitivity of avian species to the embyrotoxic effects of dioxin-like compounds can be predicted by the amino acid identities at two key sites within the ligand-binding domain of the aryl hydrocarbon receptor 1 (AhR1). The domestic chicken (Gallus gallus domesticus) has been established as a highly sensitive species to the toxic effects of dioxin-like compounds. Results from genotyping and in vitro assays predict that the European starling (Sturnus vulgaris) is also highly sensitive to dioxin-like compound toxicity. The objective of the present study was to test that prediction in vivo. To do this, we used egg injections in field nesting starlings with 3,3',4,4',5-pentachlorobiphenyl (PCB-126), a dioxin-like polychlorinated biphenyl. Eggs were dosed with either the vehicle control or 1 of 5 doses (1.4, 7.1, 15.9, 32.1, and 52.9 ng PCB-126/g egg). A dose-dependent increase in embryo mortality occurred, and the median lethal dose (LD50; 95% confidence interval [CI]) was 5.61 (2.33-9.08) ng/g. Hepatic CYP1A4/5 messenger RNA (mRNA) expression in hatchlings also increased in a dose-dependent manner, with CYP1A4 being more induced than CYP1A5. No effect of dose on morphological measures was seen, and we did not observe any overt malformations. These results indicate that, other than the chicken, the European starling is the most sensitive species to the effects of PCB-126 on avian embryo mortality reported to date, which supports the prediction of relative sensitivity to dioxin-like compounds based on amino acid sequence of the AhR1. PMID:25209921

  17. AhR sensing of bacterial pigments regulates antibacterial defence.

    PubMed

    Moura-Alves, Pedro; Faé, Kellen; Houthuys, Erica; Dorhoi, Anca; Kreuchwig, Annika; Furkert, Jens; Barison, Nicola; Diehl, Anne; Munder, Antje; Constant, Patricia; Skrahina, Tatsiana; Guhlich-Bornhof, Ute; Klemm, Marion; Koehler, Anne-Britta; Bandermann, Silke; Goosmann, Christian; Mollenkopf, Hans-Joachim; Hurwitz, Robert; Brinkmann, Volker; Fillatreau, Simon; Daffe, Mamadou; Tümmler, Burkhard; Kolbe, Michael; Oschkinat, Hartmut; Krause, Gerd; Kaufmann, Stefan H E

    2014-08-28

    The aryl hydrocarbon receptor (AhR) is a highly conserved ligand-dependent transcription factor that senses environmental toxins and endogenous ligands, thereby inducing detoxifying enzymes and modulating immune cell differentiation and responses. We hypothesized that AhR evolved to sense not only environmental pollutants but also microbial insults. We characterized bacterial pigmented virulence factors, namely the phenazines from Pseudomonas aeruginosa and the naphthoquinone phthiocol from Mycobacterium tuberculosis, as ligands of AhR. Upon ligand binding, AhR activation leads to virulence factor degradation and regulated cytokine and chemokine production. The relevance of AhR to host defence is underlined by heightened susceptibility of AhR-deficient mice to both P. aeruginosa and M. tuberculosis. Thus, we demonstrate that AhR senses distinct bacterial virulence factors and controls antibacterial responses, supporting a previously unidentified role for AhR as an intracellular pattern recognition receptor, and identify bacterial pigments as a new class of pathogen-associated molecular patterns. PMID:25119038

  18. Follitropin receptors contain cryptic ligand binding sites.

    PubMed

    Lin, Win; Bernard, Michael P; Cao, Donghui; Myers, Rebecca V; Kerrigan, John E; Moyle, William R

    2007-01-01

    Human choriogonadotropin (hCG) and follitropin (hFSH) have been shown to contact different regions of the extracellular domains of G-protein coupled lutropin (LHR) and follitropin (FSHR) receptors. We report here that hCG and hFSH analogs interact with different regions of an FSHR/LHR chimera having only two unique LHR residues and that binds both hormones with high affinity. hCG and hFSH analogs dock with this receptor chimera in a manner similar to that in which they bind LHR and FSHR, respectively. This shows that although the FSHR does not normally bind hCG, it contains a cryptic lutropin binding site that has the potential to recognize hCG in a manner similar to the LHR. The presence of this cryptic site may explain why equine lutropins bind many mammalian FSHR and why mutations in the transmembrane domain distant from the extracellular domain enable the FSHR to bind hCG. The leucine-rich repeat domain (LRD) of the FSHR also appears to contain a cryptic FSH binding site that is obscured by other parts of the extracellular domain. This will explain why contacts seen in crystals of hFSH complexed with an LRD fragment of the human FSHR are hard to reconcile with the abilities of FSH analogs to interact with membrane G-protein coupled FSHR. We speculate that cryptic lutropin binding sites in the FSHR, which are also likely to be present in thyrotropin receptors (TSHR), permit the physiological regulation of ligand binding specificity. Cryptic FSH binding sites in the LRD may enable alternate spliced forms of the FSHR to interact with FSH. PMID:17059863

  19. Environmental Ligands of the Aryl Hydrocarbon Receptor and Their Effects in Models of Adult Liver Progenitor Cells

    PubMed Central

    Vondráček, Jan; Machala, Miroslav

    2016-01-01

    The toxicity of environmental and dietary ligands of the aryl hydrocarbon receptor (AhR) in mature liver parenchymal cells is well appreciated, while considerably less attention has been paid to their impact on cell populations exhibiting phenotypic features of liver progenitor cells. Here, we discuss the results suggesting that the consequences of the AhR activation in the cellular models derived from bipotent liver progenitors could markedly differ from those in hepatocytes. In contact-inhibited liver progenitor cells, the AhR agonists induce a range of effects potentially linked with tumor promotion. They can stimulate cell cycle progression/proliferation and deregulate cell-to-cell communication, which is associated with downregulation of proteins forming gap junctions, adherens junctions, and desmosomes (such as connexin 43, E-cadherin, β-catenin, and plakoglobin), as well as with reduced cell adhesion and inhibition of intercellular communication. At the same time, toxic AhR ligands may affect the activity of the signaling pathways contributing to regulation of liver progenitor cell activation and/or differentiation, such as downregulation of Wnt/β-catenin and TGF-β signaling, or upregulation of transcriptional targets of YAP/TAZ, the effectors of Hippo signaling pathway. These data illustrate the need to better understand the potential role of liver progenitors in the AhR-mediated liver carcinogenesis and tumor promotion. PMID:27274734

  20. A Annealing Algorithm for Designing Ligands from Receptor Structures.

    NASA Astrophysics Data System (ADS)

    Zielinski, Peter J.

    DEenspace NOVO, a simulated annealing method for designing ligands is described. At a given temperature, ligand fragments are randomly selected and randomly placed within the given receptor cavity, often replacing existing ligand fragments. For each new ligand fragment combination, bonded, nonbonded, polarization and solvation energies of the new ligand-receptor system are compared to the previous system. Acceptance or rejection of the new system is decided using the Boltzmann distribution. Thus, energetically unfavorable fragment switches are sometimes accepted, sacrificing immediate energy gains in the interest of finding the system with the globally minimum energy. By lowering the temperature, the rate of unfavorable switches decreases and energetically favorable combinations become difficult to change. The process is halted when the frequency of switches becomes too small. As a test of the method, DEenspace NOVO predicted the positions of important ligand fragments for neuraminidase that are in accord with the natural ligand, sialic acid.

  1. Fluorescent ligand for human progesterone receptor imaging in live cells.

    PubMed

    Weinstain, Roy; Kanter, Joan; Friedman, Beth; Ellies, Lesley G; Baker, Michael E; Tsien, Roger Y

    2013-05-15

    We employed molecular modeling to design and then synthesize fluorescent ligands for the human progesterone receptor. Boron dipyrromethene (BODIPY) or tetramethylrhodamine were conjugated to the progesterone receptor antagonist RU486 (Mifepristone) through an extended hydrophilic linker. The fluorescent ligands demonstrated comparable bioactivity to the parent antagonist in live cells and triggered nuclear translocation of the receptor in a specific manner. The BODIPY labeled ligand was applied to investigate the dependency of progesterone receptor nuclear translocation on partner proteins and to show that functional heat shock protein 90 but not immunophilin FKBP52 activity is essential. A tissue distribution study indicated that the fluorescent ligand preferentially accumulates in tissues that express high levels of the receptor in vivo. The design and properties of the BODIPY-labeled RU486 make it a potential candidate for in vivo imaging of PR by positron emission tomography through incorporation of (18)F into the BODIPY core. PMID:23600997

  2. Comparing ligand interactions with multiple receptors via serial docking.

    PubMed

    Fernandes, Miguel X; Kairys, Visvaldas; Gilson, Michael K

    2004-01-01

    Standard uses of ligand-receptor docking typically focus on the association of candidate ligands with a single targeted receptor, but actual applications increasingly require comparisons across multiple receptors. This study demonstrates that comparative docking to multiple receptors can help to select homology models for virtual compound screening and to discover ligands that bind to one set of receptors but not to another, potentially similar, set. A serial docking algorithm is furthermore described that reduces the computational costs of such calculations by testing compounds against a series of receptor structures and discarding a compound as soon as it fails to satisfy specified bind/no bind criteria for each receptor. The algorithm also realizes substantial efficiencies by taking advantage of the fact that a ligand typically binds in similar conformations to similar receptors. Thus, once detailed docking has been used to fit a ligand into the first of a series of similar receptors, much less extensive calculations can be used for the remaining structures. PMID:15554665

  3. Sliding tethered ligands add topological interactions to the toolbox of ligand-receptor design

    NASA Astrophysics Data System (ADS)

    Bauer, Martin; Kékicheff, Patrick; Iss, Jean; Fajolles, Christophe; Charitat, Thierry; Daillant, Jean; Marques, Carlos M.

    2015-09-01

    Adhesion in the biological realm is mediated by specific lock-and-key interactions between ligand-receptor pairs. These complementary moieties are ubiquitously anchored to substrates by tethers that control the interaction range and the mobility of the ligands and receptors, thus tuning the kinetics and strength of the binding events. Here we add sliding anchoring to the toolbox of ligand-receptor design by developing a family of tethered ligands for which the spacer can slide at the anchoring point. Our results show that this additional sliding degree of freedom changes the nature of the adhesive contact by extending the spatial range over which binding may sustain a significant force. By introducing sliding tethered ligands with self-regulating length, this work paves the way for the development of versatile and reusable bio-adhesive substrates with potential applications for drug delivery and tissue engineering.

  4. Synthesis of 3-alkyl naphthalenes as novel estrogen receptor ligands

    SciTech Connect

    Fang, Jing; Akwabi-Ameyaw, Adwoa; Britton, Jonathan E.; Katamreddy, Subba R.; Navas III, Frank; Miller, Aaron B.; Williams, Shawn P.; Gray, David W.; Orband-Miller, Lisa A.; Shearin, Jean; Heyer, Dennis

    2009-06-24

    A series of estrogen receptor ligands based on a 3-alkyl naphthalene scaffold was synthesized using an intramolecular enolate-alkyne cycloaromatization as the key step. Several of these compounds bearing a C6-OH group were shown to be high affinity ligands. All compounds had similar ER{alpha} and ER{beta} binding affinity ranging from micromolar to low nanomolar.

  5. Database of Ligand-Receptor Partners, a DIP subset

    DOE Data Explorer

    Graeber, Thomas G.; Eisenberg, David

    The Database of Ligand-Receptor Partners (DLRP) is a subset of DIP (Database of Interacting Proteins). The DLRP is a database of protein ligand and protein receptor pairs that are known to interact with each other. By interact we mean that the ligand and receptor are members of a ligand-receptor complex and, unless otherwise noted, transduce a signal. In some instances the ligand and/or receptor may form a heterocomplex with other ligands/receptors in order to be functional. We have entered the majority of interactions in DLRP as full DIP entries, with links to references and additional information (see the DIP User's Guide). DLRP is a web supplement for: Thomas G. Graeber and David Eisenberg. Bioinformatic identification of potential autocrine signaling loops in cancers from gene expression profiles. Nature Genetics, 29(3):295-300 (November 2001). [Quoted from the DLRP homepage at http://dip.doe-mbi.ucla.edu/dip/DLRP.cgi] Also available from this page is the DLRP chemokine subset.

  6. Hexachlorobenzene induces cell proliferation, and aryl hydrocarbon receptor expression (AhR) in rat liver preneoplastic foci, and in the human hepatoma cell line HepG2. AhR is a mediator of ERK1/2 signaling, and cell cycle regulation in HCB-treated HepG2 cells.

    PubMed

    de Tomaso Portaz, Ana Clara; Caimi, Giselle Romero; Sánchez, Marcela; Chiappini, Florencia; Randi, Andrea S; Kleiman de Pisarev, Diana L; Alvarez, Laura

    2015-10-01

    Hexachlorobenzene (HCB) is a widespread environmental pollutant, and a liver tumor promoter in rodents. Depending on the particular cell lines studied, exposure to these compounds may lead to cell proliferation, terminal differentiation, or apoptosis. The aryl hydrocarbon receptor (AhR) is a ligand-activated transcription factor that is involved in drug and xenobiotic metabolism. AhR can also modulate a variety of cellular and physiological processes that can affect cell proliferation and cell fate determination. The mechanisms by which AhR ligands, both exogenous and endogenous, affect these processes involve multiple interactions between AhR and other signaling pathways. In the present study, we examined the effect of HCB on cell proliferation and AhR expression, using an initiation-promotion hepatocarcinogenesis protocol in rat liver and in the human-derived hepatoma cell line, HepG2. Female Wistar rats were initiated with a single dose of 100 mg/kg of diethylnitrosamine (DEN) at the start of the experiment. Two weeks later, daily dosing of 100 mg/kg HCB was maintained for 10 weeks. Partial hepatectomy was performed 3 weeks after initiation. The number and area of glutathione S-transferase-P (GST-P)-positive foci, in the rat liver were used as biomarkers of liver precancerous lesions. Immunohistochemical staining showed an increase in proliferating cell nuclear antigen (PCNA)-positive cells, along with enhanced AhR protein expression in hepatocytes within GST-P-positive foci of (DEN HCB) group, when compared to DEN. In a similar manner, Western blot analysis demonstrated that HCB induced PCNA and AhR protein expression in HepG2 cells. Flow cytometry assay indicated that the cells were accumulated at S and G2/M phases of the cell cycle. HCB increased cyclin D1 protein levels and ERK1/2 phosphorylation in a dose-dependent manner. Treatment of cells with a selective MEK1 inhibitor, prevented HCB-stimulatory effect on PCNA and cyclinD1, indicating that these effects

  7. Kynurenine 3-monooxygenase mediates inhibition of Th17 differentiation via catabolism of endogenous aryl hydrocarbon receptor ligands.

    PubMed

    Stephens, Geoffrey L; Wang, Qun; Swerdlow, Bonnie; Bhat, Geetha; Kolbeck, Roland; Fung, Michael

    2013-07-01

    The aryl hydrocarbon receptor (AhR) is a key transcriptional regulator of Th17-cell differentiation. Although endogenous ligands have yet to be identified, evidence suggests that tryptophan metabolites can act as agonists for the AhR. Tryptophan metabolites are abundant in circulation, so we hypothesized that cell intrinsic factors might exist to regulate the exposure of Th17 cells to AhR-dependent activities. Here, we find that Th17 cells preferentially express kynurenine 3-monooxygenase (KMO), which is an enzyme involved in catabolism of the tryptophan metabolite kynurenine. KMO inhibition, either with a specific inhibitor or via siRNA-mediated silencing, markedly increased IL-17 production in vitro, whereas IFN-γ production by Th1 cells was unaffected. Inhibition of KMO significantly exacerbated disease in a Th17-driven model of autoimmune gastritis, suggesting that expression of KMO by Th17 cells serves to limit their continuous exposure to physiological levels of endogenous AhR ligands in vivo. PMID:23568529

  8. The imidazoline receptors and ligands in pain modulation

    PubMed Central

    Bektas, Nurcan; Nemutlu, Dilara; Arslan, Rana

    2015-01-01

    Pain is an unpleasant experience and effects daily routine negatively. Although there are various drugs, many of them are not entirely successful in relieving pain, since pain modulation is a complex process involving numerous mediators and receptors. Therefore, it is a rational approach to identify the factors involved in the complex process and develop new agents that act on these pain producing mechanisms. In this respect, the involvement of the imidazoline receptors in pain modulation has drawn attention in recent years. In this review, it is aimed to focus on the imidazoline receptors and their ligands which contribute to the pain modulation. It is demonstrated that imidazoline-2 (I2) receptors are steady new drug targets for analgesics. Even if the mechanism of I2 receptor is not well known in the modulation of pain, it is known that it plays a role in tonic and chronic pain but not in acute phasic pain. Moreover, the I2 receptor ligands increase the analgesic effects of opioids in both acute and chronic pain and prevent the development of opioid tolerance. So, they are valuable for the chronic pain treatment and also therapeutic coadjuvants in the management of chronic pain with opiate drugs due to the attenuation of opioid tolerance and addiction. Thus, the use of the ligands which bind to the imidazoline receptors is an effective strategy for relieving pain. This educational forum exhibits the role of imidazoline receptors and ligands in pain process by utilizing experimental studies. PMID:26600633

  9. Pharmacology and therapeutic potential of sigma(1) receptor ligands.

    PubMed

    Cobos, E J; Entrena, J M; Nieto, F R; Cendán, C M; Del Pozo, E

    2008-12-01

    Sigma (sigma) receptors, initially described as a subtype of opioid receptors, are now considered unique receptors. Pharmacological studies have distinguished two types of sigma receptors, termed sigma(1) and sigma(2). Of these two subtypes, the sigma(1) receptor has been cloned in humans and rodents, and its amino acid sequence shows no homology with other mammalian proteins. Several psychoactive drugs show high to moderate affinity for sigma(1) receptors, including the antipsychotic haloperidol, the antidepressant drugs fluvoxamine and sertraline, and the psychostimulants cocaine and methamphetamine; in addition, the anticonvulsant drug phenytoin allosterically modulates sigma(1) receptors. Certain neurosteroids are known to interact with sigma(1) receptors, and have been proposed to be their endogenous ligands. These receptors are located in the plasma membrane and in subcellular membranes, particularly in the endoplasmic reticulum, where they play a modulatory role in intracellular Ca(2+) signaling. Sigma(1) receptors also play a modulatory role in the activity of some ion channels and in several neurotransmitter systems, mainly in glutamatergic neurotransmission. In accordance with their widespread modulatory role, sigma(1) receptor ligands have been proposed to be useful in several therapeutic fields such as amnesic and cognitive deficits, depression and anxiety, schizophrenia, analgesia, and against some effects of drugs of abuse (such as cocaine and methamphetamine). In this review we provide an overview of the present knowledge of sigma(1) receptors, focussing on sigma(1) ligand neuropharmacology and the role of sigma(1) receptors in behavioral animal studies, which have contributed greatly to the potential therapeutic applications of sigma(1) ligands. PMID:19587856

  10. Ligands for the Nuclear Peroxisome Proliferator-Activated Receptor Gamma.

    PubMed

    Sauer, Sascha

    2015-10-01

    Nuclear receptors are ligand-activated transcription factors, which represent a primary class of drug targets. The nuclear receptor peroxisome proliferator-activated receptor gamma (PPARγ) is a key player in various biological processes. PPARγ is widely known as the target protein of the thiazolidinediones for treating type 2 diabetes. Moreover, PPARγ ligands can induce anti-inflammatory and potentially additional beneficial effects. Recent mechanistic insights of PPARγ modulation give hope the next generation of efficient PPARγ-based drugs with fewer side effects can be developed. Furthermore, chemical approaches that make use of synergistic action of combinatorial ligands are promising alternatives for providing tailored medicine. Lessons learned from fine-tuning the action of PPARγ can provide avenues for efficient molecular intervention via many other nuclear receptors to combat common diseases. PMID:26435213

  11. The biologically active conformations of ligand CCK B receptor

    NASA Astrophysics Data System (ADS)

    Kuznetsov, Pavel E.; Kuznetsova, Nina B.; Schulgin, Sergey V.; Rogacheva, Svetlana M.; Sinyakov, Valeriy V.; Kovtun, Viktor A.

    2006-07-01

    We analyzed literature data about structures of ligands of CCK B receptor. The structure of the binding site (fragments of the third extracellular loop and the seventh transmembrane helix of CCK B receptor) was determined recently by experiments. We were finding presumable biologically active conformations (BAC) of the ligands by two methods. One of them is based on the fact that the most stable conformations of the biologically active peptide on the phase interface "water-lipophilic medium" are often similar to the BAC. Another method is based on the formation of the stable ligand-receptor complex during the modeling procedure. We used Monte-Carlo method with the fixed geometry of the receptor and the optimized geometry of tetrapeptide cholecystokinin (CCK-4). It has been shown, that the first method should be used to find BAC of antagonists of CCK B receptor. The strategy of the formation of the stable ligand-receptor complex during the modeling procedure can be used for the designing of peptide agonists of CCK B receptor.

  12. Bifunctional Ligands Allow Deliberate Extrinsic Reprogramming of the Glucocorticoid Receptor

    PubMed Central

    Højfeldt, Jonas W.; Cruz-Rodríguez, Osvaldo; Imaeda, Yasuhiro; Van Dyke, Aaron R.; Carolan, James P.; Mapp, Anna K.

    2014-01-01

    Therapies based on conventional nuclear receptor ligands are extremely powerful, yet their broad and long-term use is often hindered by undesired side effects that are often part of the receptor's biological function. Selective control of nuclear receptors such as the glucocorticoid receptor (GR) using conventional ligands has proven particularly challenging. Because they act solely in an allosteric manner, conventional ligands are constrained to act via cofactors that can intrinsically partner with the receptor. Furthermore, effective means to rationally encode a bias for specific coregulators are generally lacking. Using the (GR) as a framework, we demonstrate here a versatile approach, based on bifunctional ligands, that extends the regulatory repertoire of GR in a deliberate and controlled manner. By linking the macrolide FK506 to a conventional agonist (dexamethasone) or antagonist (RU-486), we demonstrate that it is possible to bridge the intact receptor to either positively or negatively acting coregulatory proteins bearing an FK506 binding protein domain. Using this strategy, we show that extrinsic recruitment of a strong activation function can enhance the efficacy of the full agonist dexamethasone and reverse the antagonist character of RU-486 at an endogenous locus. Notably, the extrinsic recruitment of histone deacetylase-1 reduces the ability of GR to activate transcription from a canonical GR response element while preserving ligand-mediated repression of nuclear factor-κB. By providing novel ways for the receptor to engage specific coregulators, this unique ligand design approach has the potential to yield both novel tools for GR study and more selective therapeutics. PMID:24422633

  13. Fibroblast growth factor (Fgf) 21 is a novel target gene of the aryl hydrocarbon receptor (AhR)

    SciTech Connect

    Cheng, Xingguo; Vispute, Saurabh G.; Liu, Jie; Cheng, Christine; Kharitonenkov, Alexei; Klaassen, Curtis D.

    2014-07-01

    The toxic effects of dioxins, such as 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), mainly through activation of the aryl hydrocarbon receptor (AhR) are well documented. Fibroblast growth factor (Fgf) 21 plays critical roles in metabolic adaptation to fasting by increasing lipid oxidation and ketogenesis in the liver. The present study was performed to determine whether activation of the AhR induces Fgf21 expression. In mouse liver, TCDD increased Fgf21 mRNA in both dose- and time-dependent manners. In addition, TCDD markedly increased Fgf21 mRNA expression in cultured mouse and human hepatocytes. Moreover, TCDD increased mRNA (in liver) and protein levels (in both liver and serum) of Fgf21 in wild-type mice, but not in AhR-null mice. Chromatin immunoprecipitation assays showed that TCDD increased AhR protein binding to the Fgf21 promoter (− 105/+ 1 base pair). Fgf21-null mice administered 200 μg/kg of TCDD died within 20 days, whereas wild-type mice receiving the same treatment were still alive at one month after administration. This indicates that TCDD-induced Fgf21 expression protects against TCDD toxicity. Diethylhexylphthalate (DEHP) pretreatment attenuated TCDD-induced Fgf21 expression in mouse liver and white adipose tissue, which may explain a previous report that DEHP pretreatment decreases TCDD-induced wasting. In conclusion, Fgf21 appears to be a target gene of AhR-signaling pathway in mouse and human liver. - Highlights: • TCDD induced Fgf21 expression at both mRNA and protein levels. • Fgf21 induction by TCDD is AhR-dependent. • DEHP attenuated TCDD-induced Fgf21 expression.

  14. A Spectroscopic Study of the effect of Ligand Complexation on the Reduction of Uranium(VI) by Anthraquinone-2,6-disulfonate (AH2DS)

    SciTech Connect

    Wang, Zheming; Wagnon, Ken B.; Ainsworth, Calvin C.; Liu, Chongxuan; Rosso, Kevin M.; Fredrickson, Jim K.

    2008-11-03

    In this project, the reduction rate of uranyl complexes with hydroxide, carbonate, EDTA, and Desferriferrioxamine B (DFB) by anthraquinone-2,6-disulfonate (AH2DS), a potential electron shuttle for microbial reduction of metal ions (Newman and Kolter 2000), is studied by stopped-flow kinetics techniques under anoxic atmosphere. The apparent reaction rates varied with ligand type, solution pH, and U(VI) concentration. For each ligand, a single largest kobs within the studied pH range was observed, suggesting the influence of pH-dependent speciation on the U(VI) reduction rate. The maximum reaction rate found in each case followed the order of OH- > CO32- > EDTA > DFB, consistent with the same trend of the thermodynamic stability of the uranyl complexes and ionic sizes of the ligands. Increasing the stability of uranyl complexes and ligand size decreased the maximum reduction rate. The pH-dependent rates were modeled using a second-order rate expression that was assumed to be dependent on a single U(VI) complex and AH2DS species. By quantitatively comparing the calculated and measured apparent rate constants as a function of pH, species AHDS3- was suggested as the primary reductant in all cases examined. Species UO2CO3(aq) , UO2HEDTA-, and (UO2)2(OH)22+ were suggested as the principal electron acceptors among the U(VI) species mixture in carbonate, EDTA, and hydroxyl systems, respectively.

  15. Regulation of G Protein-Coupled Receptors by Allosteric Ligands

    PubMed Central

    2013-01-01

    Topographically distinct, druggable, allosteric sites may be present on all G protein-coupled receptors (GPCRs). As such, targeting these sites with synthetic small molecules offers an attractive approach to develop receptor-subtype selective chemical leads for the development of novel therapies. A crucial part of drug development is to understand the acute and chronic effects of such allosteric modulators at their corresponding GPCR target. Key regulatory processes including cell-surface delivery, endocytosis, recycling, and down-regulation tightly control the number of receptors at the surface of the cell. As many GPCR therapeutics will be administered chronically, understanding how such ligands modulate these regulatory pathways forms an essential part of the characterization of novel GPCR ligands. This is true for both orthosteric and allosteric ligands. In this Review, we summarize our current understanding of GPCR regulatory processes with a particular focus on the effects and implications of allosteric targeting of GPCRs. PMID:23398684

  16. RIBOSE MODIFIED NUCLEOSIDES AND NUCLEOTIDES AS LIGANDS FOR PURINE RECEPTORS

    PubMed Central

    Ravi, R. G.; Nandanan, E.; Kim, H. S.; Moro, S.; Kim, Y. C.; Lee, K.; Barak, D.; Marquez, V. E.; Ji, X. D.

    2016-01-01

    Molecular modeling of receptors for adenosine and nucleotide (P2) receptors with docked ligand, based on mutagenesis, was carried out. Adenosine 3′,5′-bisphosphate derivatives act as selective P2Y1 antagonists/partial agonists. The ribose moiety was replaced with carbocyclics, smaller and larger rings, conformationally constrained rings, and acyclics, producing compounds that retained receptor affinity. Conformational constraints were built into the ribose rings of nucleoside and nucleotide ligands using the methanocarba approach, i.e. fused cyclopropane and cyclopentane rings in place of ribose, suggesting a preference for the Northern (N) conformation among ligands for P2Y1 and A1 and A3ARs. PMID:11563046

  17. Perspectives on the potential involvement of the AH receptor-dioxin axis in cardiovascular disease.

    PubMed

    Puga, Alvaro

    2011-04-01

    The aryl hydrocarbon receptor (AHR) is a ligand-activated transcription factor that mediates the induction of the CYP1 family of cytochrome P450s and of several phase II detoxification enzymes. Although induction of these genes is the best characterized AHR function, it does not adequately explain the diversity of AHR-mediated effects. 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) is the prototypical AHR ligand and dioxin congener and a model for many environmentally relevant organochlorinated compounds. Research over the course of the last 30 years has made it evident that AHR activation in response to TCDD and other xenobiotic agonists directly affects multiple metabolic pathways, leading to the identification of many AHR-directed effects of dioxin involved in regulation of growth factor signaling, cell cycle proliferation, differentiation, arrest, and apoptosis. There is ample evidence that TCDD causes persistent cardiac defects in zebrafish, chickens, mice, and likely humans and is associated with human cardiovascular disease. The question that I address here is whether exposure to TCDD during early development perturbs the concerted differentiation patterns of cardiovascular cell lineages and tissues and leads to cardiac malformations and long-term cardiovascular disease. Research to define the mechanisms responsible for the lifelong cardiovascular malformations resulting from TCDD exposure during embryonic development will be highly significant to the prevention of environmental cardiovascular injury. PMID:21205634

  18. Quantification of ligand bias for clinically relevant β2-adrenergic receptor ligands: implications for drug taxonomy.

    PubMed

    van der Westhuizen, Emma T; Breton, Billy; Christopoulos, Arthur; Bouvier, Michel

    2014-03-01

    The concepts of functional selectivity and ligand bias are becoming increasingly appreciated in modern drug discovery programs, necessitating more informed approaches to compound classification and, ultimately, therapeutic candidate selection. Using the β2-adrenergic receptor as a model, we present a proof of concept study that assessed the bias of 19 β-adrenergic ligands, including many clinically used compounds, across four pathways [cAMP production, extracellular signal-regulated kinase 1/2 (ERK1/2) activation, calcium mobilization, and receptor endocytosis] in the same cell background (human embryonic kidney 293S cells). Efficacy-based clustering placed the ligands into five distinct groups with respect to signaling signatures. In some cases, apparent functional selectivity originated from off-target effects on other endogenously expressed adrenergic receptors, highlighting the importance of thoroughly assessing selectivity of the responses before concluding receptor-specific ligand-biased signaling. Eliminating the nonselective compounds did not change the clustering of the 10 remaining compounds. Some ligands exhibited large differences in potency for the different pathways, suggesting that the nature of the receptor-effector complexes influences the relative affinity of the compounds for specific receptor conformations. Calculation of relative effectiveness (within pathway) and bias factors (between pathways) for each of the compounds, using an operational model of agonism, revealed a global signaling signature for all of the compounds relative to isoproterenol. Most compounds were biased toward ERK1/2 activation over the other pathways, consistent with the notion that many proximal effectors converge on this pathway. Overall, we demonstrate a higher level of ligand texture than previously anticipated, opening perspectives for the establishment of pluridimensional correlations between signaling profiles, drug classification, therapeutic efficacy, and

  19. Ligand regulation of retinoic acid receptor-related orphan receptors: implications for development of novel therapeutics

    PubMed Central

    Solt, Laura A.; Griffin, Patrick R.; Burris, Thomas P.

    2016-01-01

    Purpose of review In the late 1980s, the cloning of several nuclear receptors led to the intense search and isolation of new members of this superfamily. Despite their identification, many of these receptors were dubbed ‘orphan’ receptors, as their physiological ligands remained unknown. Recent reports have presented evidence for one family of orphan receptors, the retinoic acid receptor-related orphan receptors (RORs), in several pathologies, including osteoporosis, several autoimmune diseases, asthma, cancer, diabetes and obesity. The present review summarizes the studies identifying ligands for the RORs and evaluates their role as targets for potential therapeutics. Recent findings Significant progress was made in the initial identification of ligands for the RORs when X-ray crystallographic studies identified several molecules within the ligand-binding pockets of RORα and RORβ. Recently, we identified endogenous and synthetic ligands for RORα and RORγ, thereby solidifying their function as ligand-dependent transcription factors. Summary Recent studies have established roles for the RORs in physiological development and the advent of disease. Identification of ligands for the RORs, both endogenous and synthetic, has established these receptors as attractive new therapeutic targets for the treatment of ROR-related diseases. PMID:20463469

  20. Ligand-induced ErbB receptor dimerization

    PubMed Central

    Lemmon, Mark A.

    2009-01-01

    Structural studies have provided important new insights into how ligand binding promotes homodimerization and activation of the EGF receptor and the other members of the ErbB family or receptor tyrosine kinases. These structures have also suggested possible explanations for the unique properties of ErbB2, which has no known ligand and can cause cell transformation (and tumorigenesis) by simple overexpression. In parallel with these advances, studies of the EGF receptor at the cell surface increasingly argue that the structural studies are missing key mechanistic components. This is particularly evident in the structural prediction that EGF binding linked to receptor dimerization should be positively cooperative, whereas cell-surface EGF-binding studies suggest negative cooperativity. In this review, I summarize studies of ErbB receptor extracellular regions in solution and of intact receptors at the cell surface, and attempt to reconcile the differences suggested by the two approaches. By combining results obtained with receptor ‘parts’, it is qualitatively possible to explain some models for the properties of the whole receptor. These considerations underline the need to consider the intact ErbB receptors as intact allosterically regulated enzymes, and to combine cellular and structural studies into a complete picture. PMID:19038249

  1. Ligand regulation of a constitutively dimeric EGF receptor.

    PubMed

    Freed, Daniel M; Alvarado, Diego; Lemmon, Mark A

    2015-01-01

    Ligand-induced receptor dimerization has traditionally been viewed as the key event in transmembrane signalling by epidermal growth factor receptors (EGFRs). Here we show that the Caenorhabditis elegans EGFR orthologue LET-23 is constitutively dimeric, yet responds to its ligand LIN-3 without changing oligomerization state. SAXS and mutational analyses further reveal that the preformed dimer of the LET-23 extracellular region is mediated by its domain II dimerization arm and resembles other EGFR extracellular dimers seen in structural studies. Binding of LIN-3 induces only minor structural rearrangements in the LET-23 dimer to promote signalling. Our results therefore argue that EGFR can be regulated by allosteric changes within an existing receptor dimer--resembling signalling by insulin receptor family members, which share similar extracellular domain compositions but form covalent dimers. PMID:26060020

  2. Ligand regulation of a constitutively dimeric EGF receptor

    NASA Astrophysics Data System (ADS)

    Freed, Daniel M.; Alvarado, Diego; Lemmon, Mark A.

    2015-06-01

    Ligand-induced receptor dimerization has traditionally been viewed as the key event in transmembrane signalling by epidermal growth factor receptors (EGFRs). Here we show that the Caenorhabditis elegans EGFR orthologue LET-23 is constitutively dimeric, yet responds to its ligand LIN-3 without changing oligomerization state. SAXS and mutational analyses further reveal that the preformed dimer of the LET-23 extracellular region is mediated by its domain II dimerization arm and resembles other EGFR extracellular dimers seen in structural studies. Binding of LIN-3 induces only minor structural rearrangements in the LET-23 dimer to promote signalling. Our results therefore argue that EGFR can be regulated by allosteric changes within an existing receptor dimer--resembling signalling by insulin receptor family members, which share similar extracellular domain compositions but form covalent dimers.

  3. Inside job: ligand-receptor pharmacology beneath the plasma membrane

    PubMed Central

    Babcock, Joseph J; Li, Min

    2013-01-01

    Most drugs acting on the cell surface receptors are membrane permeable and thus able to engage their target proteins in different subcellular compartments. However, these drugs' effects on cell surface receptors have historically been studied on the plasma membrane alone. Increasing evidence suggests that small molecules may also modulate their targeted receptors through membrane trafficking or organelle-localized signaling inside the cell. These additional modes of interaction have been reported for functionally diverse ligands of GPCRs, ion channels, and transporters. Such intracellular drug-target engagements affect cell surface expression. Concurrent intracellular and cell surface signaling may also increase the complexity and therapeutic opportunities of small molecule modulation. Here we discuss examples of ligand-receptor interactions that are present in both intra- and extracellular sites, and the potential therapeutic opportunities presented by this phenomenon. PMID:23685953

  4. Aryl Hydrocarbon Receptor Control of Adaptive Immunity

    PubMed Central

    2013-01-01

    The aryl hydrocarbon receptor (AhR) is a ligand-activated transcription factor that belongs to the family of basic helix-loop-helix transcription factors. Although the AhR was initially recognized as the receptor mediating the pathologic effects of dioxins and other pollutants, the activation of AhR by endogenous and environmental factors has important physiologic effects, including the regulation of the immune response. Thus, the AhR provides a molecular pathway through which environmental factors modulate the immune response in health and disease. In this review, we discuss the role of AhR in the regulation of the immune response, the source and chemical nature of AhR ligands, factors controlling production and degradation of AhR ligands, and the potential to target the AhR for therapeutic immunomodulation. PMID:23908379

  5. Selectivity profile of the novel muscarinic antagonist UH-AH 37 determined by the use of cloned receptors and isolated tissue preparations.

    PubMed Central

    Wess, J.; Lambrecht, G.; Mutschler, E.; Brann, M. R.; Dörje, F.

    1991-01-01

    1. Functional in vitro experiments were carried out to determine the antimuscarinic potencies of the pirenzepine derivative UH-AH 37 (6-chloro-5,10-dihydro-5-[(1-methyl-4-piperidinyl)acetyl]-11H-dibenzo- [b,e] [1,4] diazepine-11-one hydrochloride) at M1 muscarinic receptors of rabbit vas deferens, M2 receptors of rat left atria and M3 receptors of rat ileum. Furthermore, N-[3H]-methylscopolamine competition binding experiments were performed to obtain its affinities for the five cloned human muscarinic receptors (m1-m5) stably expressed in CHO-K1 cells. Pirenzepine served as a reference drug throughout all experiments. 2. In all preparations used, UH-AH 37 interacted with muscarinic receptors in a fashion characteristic of a simple competitive antagonist. 3. In the functional studies, UH-AH 37, like pirenzepine, showed high affinity for M1 (pA2 8.49) and low affinity for M2 muscarinic receptors (pA2 6.63). In contrast to pirenzepine, UH-AH 37 also displayed high affinity for M3 receptors (pA2 8.04). 4. In agreement with its functional profile, UH-AH 37 bound with highest affinity to m1 (pKi 8.74) and with lowest affinity to m2 receptors (pKi 7.35). Moreover, it showed a 7 fold higher affinity for m3 (pKi 8.19) than for m2 receptors, whereas pirenzepine bound to both receptors with low affinities. 5. The binding affinity of UH-AH 37 for m4 and m5 receptors (pKi 8.32 for both receptors) was only ca. 2.5 fold lower than that for m1 receptors, while the corresponding affinity differences were 6 and 13 fold in case of pirenzepine.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:2043926

  6. Fibroblast growth factor (Fgf) 21 is a novel target gene of the aryl hydrocarbon receptor (AhR).

    PubMed

    Cheng, Xingguo; Vispute, Saurabh G; Liu, Jie; Cheng, Christine; Kharitonenkov, Alexei; Klaassen, Curtis D

    2014-07-01

    The toxic effects of dioxins, such as 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), mainly through activation of the aryl hydrocarbon receptor (AhR) are well documented. Fibroblast growth factor (Fgf) 21 plays critical roles in metabolic adaptation to fasting by increasing lipid oxidation and ketogenesis in the liver. The present study was performed to determine whether activation of the AhR induces Fgf21 expression. In mouse liver, TCDD increased Fgf21 mRNA in both dose- and time-dependent manners. In addition, TCDD markedly increased Fgf21 mRNA expression in cultured mouse and human hepatocytes. Moreover, TCDD increased mRNA (in liver) and protein levels (in both liver and serum) of Fgf21 in wild-type mice, but not in AhR-null mice. Chromatin immunoprecipitation assays showed that TCDD increased AhR protein binding to the Fgf21 promoter (-105/+1 base pair). Fgf21-null mice administered 200μg/kg of TCDD died within 20days, whereas wild-type mice receiving the same treatment were still alive at one month after administration. This indicates that TCDD-induced Fgf21 expression protects against TCDD toxicity. Diethylhexylphthalate (DEHP) pretreatment attenuated TCDD-induced Fgf21 expression in mouse liver and white adipose tissue, which may explain a previous report that DEHP pretreatment decreases TCDD-induced wasting. In conclusion, Fgf21 appears to be a target gene of AhR-signaling pathway in mouse and human liver. PMID:24769090

  7. Identification of a new selective dopamine D4 receptor ligand.

    PubMed

    Sampson, Dinithia; Zhu, Xue Y; Eyunni, Suresh V K; Etukala, Jagan R; Ofori, Edward; Bricker, Barbara; Lamango, Nazarius S; Setola, Vincent; Roth, Bryan L; Ablordeppey, Seth Y

    2014-06-15

    The dopamine D4 receptor has been shown to play key roles in certain CNS pathologies including addiction to cigarette smoking. Thus, selective D4 ligands may be useful in treating some of these conditions. Previous studies in our laboratory have indicated that the piperazine analog of haloperidol exhibits selective and increased affinity to the DAD4 receptor subtype, in comparison to its piperidine analog. This led to further exploration of the piperazine moiety to identify new agents that are selective at the D4 receptor. Compound 27 (KiD4=0.84 nM) was the most potent of the compounds tested. However, it only had moderate selectivity for the D4 receptor. Compound 28 (KiD4=3.9 nM) while not as potent, was more discriminatory for the D4 receptor subtype. In fact, compound 28 has little or no binding affinity to any of the other four DA receptor subtypes. In addition, of the 23 CNS receptors evaluated, only two, 5HT1AR and 5HT2BR, have binding affinity constants better than 100 nM (Ki <100 nM). Compound 28 is a potentially useful D4-selective ligand for probing disease treatments involving the D4 receptor, such as assisting smoking cessation, reversing cognitive deficits in schizophrenia and treating erectile dysfunction. Thus, further optimization, functional characterization and evaluation in animal models may be warranted. PMID:24800940

  8. REACTIVITY PROFILE OF CONFORMATIONALLY-FLEXIBLE RETINOID RECEPTOR LIGANDS

    EPA Science Inventory

    Retinoids and associated derivatives represent a class of endogenousr hormones that bind to and activate different families of retinoic acid receptors (RARs, RXRs), and control many aspects of normal vertebrate development. Identification of potential RAR and RXRs ligands is of i...

  9. Nonsteroidal Androgen Receptor Ligands: Versatile Syntheses and Biological Data

    PubMed Central

    2012-01-01

    We report herein a stereoselective and straightforward methodology for the synthesis of new androgen receptor ligands with (anti)-agonistic activities. Oxygen–nitrogen replacement in bicalutamide-like structures paves the way to the disclosure of a new class of analogues, including cyclized/nitrogen-substituted derivatives, with promising antiandrogen (or anabolic) activity. PMID:24900495

  10. Aryl hydrocarbon receptor ligands in cancer: friend and foe.

    PubMed

    Murray, Iain A; Patterson, Andrew D; Perdew, Gary H

    2014-12-01

    The aryl hydrocarbon receptor (AHR) is a ligand-activated transcription factor that is best known for mediating the toxicity and tumour-promoting properties of the carcinogen 2,3,7,8-tetrachlorodibenzo-p-dioxin, commonly referred to as ‘dioxin’. AHR influences the major stages of tumorigenesis — initiation, promotion, progression and metastasis — and physiologically relevant AHR ligands are often formed during disease states or during heightened innate and adaptive immune responses. Interestingly, ligand specificity and affinity vary between rodents and humans. Studies of aggressive tumours and tumour cell lines show increased levels of AHR and constitutive localization of this receptor in the nucleus. This suggests that the AHR is chronically activated in tumours, thus facilitating tumour progression. This Review discusses the role of AHR in tumorigenesis and the potential for therapeutic modulation of its activity in tumours. PMID:25568920

  11. A Rapid Method for Refolding Cell Surface Receptors and Ligands

    PubMed Central

    Zhai, Lu; Wu, Ling; Li, Feng; Burnham, Robert S.; Pizarro, Juan C.; Xu, Bin

    2016-01-01

    Production of membrane-associated cell surface receptors and their ligands is often a cumbersome, expensive, and time-consuming process that limits detailed structural and functional characterization of this important class of proteins. Here we report a rapid method for refolding inclusion-body-based, recombinant cell surface receptors and ligands in one day, a speed equivalent to that of soluble protein production. This method efficiently couples modular on-column immobilized metal ion affinity purification and solid-phase protein refolding. We demonstrated the general utility of this method for producing multiple functionally active immunoreceptors, ligands, and viral decoys, including challenging cell surface proteins that cannot be produced using typical dialysis- or dilution-based refolding approaches. PMID:27215173

  12. An Endogenous Mammalian Retinoid X Receptor Ligand, At Last!

    PubMed

    de Lera, Ángel R; Krezel, Wojciech; Rühl, Ralph

    2016-05-19

    9-cis-Retinoic acid was identified and claimed to be the endogenous ligand of the retinoid X receptors (RXRs) in 1992. Since then, the endogenous presence of this compound has never been rigorously confirmed. Instead, concerns have been raised by other groups that have reported that 9-cis-retinoic acid is undetectable or that its presence occurs at very low levels. Furthermore, these low levels could not satisfactorily explain the physiological activation of RXR. Alternative ligands, among them various lipids, have also been identified, but also did not fulfill criteria for rigorous endogenous relevance, and their consideration as bona fide endogenous mammalian RXR ligand has likewise been questioned. Recently, novel studies claim that the saturated analogue 9-cis-13,14-dihydroretinoic acid functions as an endogenous physiologically relevant mammalian RXR ligand. PMID:27151148

  13. The tertiary structures of porcine AhR and ARNT proteins and molecular interactions within the TCDD/AhR/ARNT complex.

    PubMed

    Orlowska, Karina; Molcan, Tomasz; Swigonska, Sylwia; Sadowska, Agnieszka; Jablonska, Monika; Nynca, Anna; Jastrzebski, Jan P; Ciereszko, Renata E

    2016-06-01

    The aryl hydrocarbon receptor (AhR) is a ligand-dependent transcription factor that can be activated by structurally diverse synthetic and natural chemicals, including toxic environmental contaminant 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). In the present study, homology models of the porcine AhR-ligand binding domain (LBD) and the porcine aryl hydrocarbon receptor nuclear translocator-ligand binding domain (ARNT-LBD) were created on the basis of structures of closely related respective proteins i.e., human Hif-2α and ARNT. Molecular docking of TCDD to the porcine AhR-LBD model revealed high binding affinity (-8.8kcal/mol) between TCDD and the receptor. Moreover, formation of the TCDD/AhR-LBD complex was confirmed experimentally with the use of electrophoretic mobility shift assay (EMSA). It was found that TCDD (10nM, 2h of incubation) not only bound to the AhR in the porcine granulosa cells but also activated the receptor. The current study provides a framework for examining the key events involved in the ligand-dependent activation of the AhR. PMID:27288759

  14. Binding affinity prediction of novel estrogen receptor ligands using receptor-based 3-D QSAR methods.

    PubMed

    Sippl, Wolfgang

    2002-12-01

    We have recently reported the development of a 3-D QSAR model for estrogen receptor ligands showing a significant correlation between calculated molecular interaction fields and experimentally measured binding affinity. The ligand alignment obtained from docking simulations was taken as basis for a comparative field analysis applying the GRID/GOLPE program. Using the interaction field derived with a water probe and applying the smart region definition (SRD) variable selection procedure, a significant and robust model was obtained (q(2)(LOO)=0.921, SDEP=0.345). To further analyze the robustness and the predictivity of the established model several recently developed estrogen receptor ligands were selected as external test set. An excellent agreement between predicted and experimental binding data was obtained indicated by an external SDEP of 0.531. Two other traditionally used prediction techniques were applied in order to check the performance of the receptor-based 3-D QSAR procedure. The interaction energies calculated on the basis of receptor-ligand complexes were correlated with experimentally observed affinities. Also ligand-based 3-D QSAR models were generated using program FlexS. The interaction energy-based model, as well as the ligand-based 3-D QSAR models yielded models with lower predictivity. The comparison with the interaction energy-based model and with the ligand-based 3-D QSAR models, respectively, indicates that the combination of receptor-based and 3-D QSAR methods is able to improve the quality of prediction. PMID:12413831

  15. Evolution of ligand specificity in vertebrate corticosteroid receptors

    PubMed Central

    2011-01-01

    Background Corticosteroid receptors include mineralocorticoid (MR) and glucocorticoid (GR) receptors. Teleost fishes have a single MR and duplicate GRs that show variable sensitivities to mineralocorticoids and glucocorticoids. How these receptors compare functionally to tetrapod MR and GR, and the evolutionary significance of maintaining two GRs, remains unclear. Results We used up to seven steroids (including aldosterone, cortisol and 11-deoxycorticosterone [DOC]) to compare the ligand specificity of the ligand binding domains of corticosteroid receptors between a mammal (Mus musculus) and the midshipman fish (Porichthys notatus), a teleost model for steroid regulation of neural and behavioral plasticity. Variation in mineralocorticoid sensitivity was considered in a broader phylogenetic context by examining the aldosterone sensitivity of MR and GRs from the distantly related daffodil cichlid (Neolamprologus pulcher), another teleost model for neurobehavioral plasticity. Both teleost species had a single MR and duplicate GRs. All MRs were sensitive to DOC, consistent with the hypothesis that DOC was the initial ligand of the ancestral MR. Variation in GR steroid-specificity corresponds to nine identified amino acid residue substitutions rather than phylogenetic relationships based on receptor sequences. Conclusion The mineralocorticoid sensitivity of duplicate GRs in teleosts is highly labile in the context of their evolutionary phylogeny, a property that likely led to neo-functionalization and maintenance of two GRs. PMID:21232159

  16. Structural and Functional Diversity of Estrogen Receptor Ligands

    PubMed Central

    Farooq, Amjad

    2015-01-01

    Estrogen receptors, comprised of ERα and ERβ isoforms in mammals, act as ligand-modulated transcription factors and orchestrate a plethora of cellular functions from sexual development and reproduction to metabolic homeostasis. Herein, I revisit the structural basis of the binding of ERα to DNA and estradiol in light of the recent discoveries and emerging trends in the field of nuclear receptors. A particular emphasis of this review is on the chemical and structural diversity of an ever-increasing repertoire of physiological, environmental and synthetic ligands of estrogen receptors that ultimately modulate their interactions with cognate DNA located within the promoters of estrogen-responsive genes. In particular, modulation of estrogen receptors by small molecule ligands represents an important therapeutic goal toward the treatment of a wide variety of human pathologies including breast cancer, cardiovascular disease, osteoporosis and obesity. Collectively, this article provides an overview of a wide array of small organic and inorganic molecules that can fine-tune the physiological function of estrogen receptors, thereby bearing a direct impact on human health and disease. PMID:25866274

  17. A(3) adenosine receptor ligands: history and perspectives.

    PubMed

    Baraldi, P G; Cacciari, B; Romagnoli, R; Merighi, S; Varani, K; Borea, P A; Spalluto, G

    2000-03-01

    Adenosine regulates many physiological functions through specific cell membrane receptors. On the basis of pharmacological studies and molecular cloning, four different adenosine receptors have been identified and classified as A(1), A(2A), A(2B), and A(3). These adenosine receptors are members of the G-protein-coupled receptor family. While adenosine A(1) and A(2A) receptor subtypes have been pharmacologically characterized through the use of selective ligands, the A(3) adenosine receptor subtype is presently under study in order to better understand its physio-pathological functions. Activation of adenosine A(3) receptors has been shown to stimulate phospholipase C and D and to inhibit adenylate cyclase. Activation of A(3) adenosine receptors also causes the release of inflammatory mediators such as histamine from mast cells. These mediators are responsible for processes such as inflammation and hypotension. It has also been suggested that the A(3) receptor plays an important role in brain ischemia, immunosuppression, and bronchospasm in several animal models. Based on these results, highly selective A(3) adenosine receptor agonists and/or antagonists have been indicated as potential drugs for the treatment of asthma and inflammation, while highly selective agonists have been shown to possess cardioprotective effects. The updated material related to this field of research has been rationalized and arranged in order to offer an overview of the topic. PMID:10723024

  18. Receptor Specific Ligands for Spect Imaging

    SciTech Connect

    Kung, H. F.

    2003-02-25

    In the past funding period we have concentrated in developing new 99mTc labeled MIBG analogs. Basic chemistry of ligand synthesis, radiochemistry of Re and 99mTc complex formation, separation of stereoisomers and in vitro stability were investigated. We have prepared a number of new MIBG derivatives containing chelating moiety N2S2 and additional groups to increase lipophilicity. Unfortunately none of the new 99mTc labeled MIBG analogs showed promise as an imaging agent for myocardial neuronal function. Radioactive-iodine-labeled meta-iodobenzylguanidine (MIBG) is currently being used as an in vivo imaging agent to evaluate neuroendocrine tumors as well as the myocardial sympathetic nervous system in patients with myocardial infarct and cardiomyopathy. It is generally accepted that MIBG is an analog of norepinephrine and its uptake in the heart corresponds to the distribution of norepinephrine and the density of sympathetic neurons. A series of MIBG derivatives containing suitable chelating functional groups N2S2 for the formation of [Tcv0]+3N2S2 complex was successfully synthesized and the 99mTc-labeled complexes were prepared and tested in rats. One of the compounds, [99mTc]M2, tested showed significant, albeit lower, heart uptakes post iv injection in rats (0.18% dose/organ at 4 hours) as compared to [l25l]MIBG (1.4% dose/organ at 4 hours). The heart uptake of the 99mTc-labeled complex, [99mTc]M2, appears to be specific and can be reduced by coinjection with nonradioactive MIBG or by pretreatment with desipramine. a selective norepinephrine transporter inhibitor. Further evaluation of the in vitro uptake of [99mTc]M2 in cultured neuroblastoma cells displayed consistently lower, but measurable uptake (app. 10% of that for [125l]MlBG). These preliminary results suggested that the mechanisms of heart uptake of [99mTc]M2 may be related to those for [125l]MIBG uptake. To improve the heart uptake of the MIBG derivatives we have developed chemistry related to the

  19. Comparative in vitro transformation of the aromatic hydrocarbon receptor (AhR) by 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) and 3-methylcholanthrene (MC)

    SciTech Connect

    Riddick, D.S.; Harper, P.A.; Okey, A.B.; Riddick, D.S. )

    1992-02-26

    The induction of CYP1A1 by halogenated (e.g. TCDD) and nonhalogenated (e.g. MC) aromatic hydrocarbons is mediated by the AhR. In cytosol prepared from the mouse hepatoma cell line Hepa-1, AhR bound TCDD with 3 to 4-fold greater affinity than MC, whereas TCDD was 960-fold more potent than MC as an inducer of aryl hydrocarbon hydroxylase (AHH) activity in cultured Hepa-1 cells. The objective of this study was to compare the potency and efficacy of TCDD and MC with respect to transformation of the cytosolic AhR to its DNA-binding form. Following incubation of Hepa-1 cytosol with TCDD or MC at 30 C for 4 h, the extent of AhR transformation was assessed by measuring interaction of the AhR-ligand complex with a {sup 32}P-labeled 26-bp oligonucleotide containing a single dioxin-responsive element (DRE) consensus sequence in a gel retardation assay. Concentration-response studies indicated that TCDD and MC did not differ significantly in AhR transformation potency, but MC displayed only about 70% of the efficacy of TCDD. In vitro transformation efficacy appears to be a determinant of AHH induction efficacy, but the small difference between TCDD and MC in transformation potency does not seem adequate to explain quantitatively the large difference in AHH induction potency displayed by these ligands.

  20. Ligands for cannabinoid receptors, promising anticancer agents.

    PubMed

    Nikan, Marjan; Nabavi, Seyed Mohammad; Manayi, Azadeh

    2016-02-01

    Cannabinoid compounds are unique to cannabis and provide some interesting biological properties. These compounds along with endocannabinoids, a group of neuromodulator compounds in the body especially in brain, express their effects by activation of G-protein-coupled cannabinoid receptors, CB1 and CB2. There are several physiological properties attributed to the endocannabinoids including pain relief, enhancement of appetite, blood pressure lowering during shock, embryonic development, and blocking of working memory. On the other hand, activation of endocannabinoid system may be suppresses evolution and progression of several types of cancer. According to the results of recent studies, CB receptors are over-expressed in cancer cell lines and application of multiple cannabinoid or cannabis-derived compounds reduce tumor size through decrease of cell proliferation or induction of cell cycle arrest and apoptosis along with desirable effect on decrease of tumor-evoked pain. Therefore, modulation of endocannabinoid system by inhibition of fatty acid amide hydrolase (FAAH), the enzyme, which metabolized endocannabinoids, or application of multiple cannabinoid or cannabis-derived compounds, may be appropriate for the treatment of several cancer subtypes. This review focuses on how cannabinoid affect different types of cancers. PMID:26764235

  1. Cannabinoid ligand-receptor signaling in the mouse uterus.

    PubMed Central

    Das, S K; Paria, B C; Chakraborty, I; Dey, S K

    1995-01-01

    Using RNA (Northern) blot hybridization and reverse transcription-PCR, we demonstrate that the brain-type cannabinoid receptor (CB1-R) mRNA, but not the spleen-type cannabinoid receptor (CB2-R) mRNA, is expressed in the mouse uterus and that this organ has the capacity to synthesize the putative endogenous cannabinoid ligand, anandamide (arachidonylethanolamide). The psychoactive cannabinoid component of marijuana--delta 9-tetrahydrocannabinol (THC)--or anandamide, but not the inactive and nonpsychoactive cannabidiol (CBD), inhibited forskolin-stimulated cyclic AMP formation in the mouse uterus, which was prevented by pertussis toxin pretreatment. These results suggest that uterine CB1-R is coupled to inhibitory guanine nucleotide-binding protein and is biologically active. Autoradiographic studies identified ligand binding sites ([3H]anandamide) in the uterine epithelium and stromal cells, suggesting that these cells are perhaps the targets for cannabinoid action. Scatchard analysis of the binding of [3H]WIN 55212-2, another cannabinoid receptor ligand, showed a single class of high-affinity binding sites in the endometrium with an apparent Kd of 2.4 nM and Bmax of 5.4 x 10(9) molecules per mg of protein. The gene encoding lactoferrin is an estrogen-responsive gene in the mouse uterus that was rapidly and transiently up-regulated by THC, but not by CBD, in ovariectomized mice in the absence of ovarian steroids. This effect, unlike that of 17 beta-estradiol (E2), was not influenced by a pure antiestrogen, ICI 182780, suggesting that the THC-induced uterine lactoferrin gene expression does not involve estrogen receptors. We propose that the uterus is a new target for cannabinoid ligand-receptor signaling. Images Fig. 1 Fig. 3 Fig. 4 Fig. 5 PMID:7753807

  2. Metabotropic glutamate receptor ligands as potential therapeutics for addiction

    PubMed Central

    Olive, M. F.

    2009-01-01

    There is now compelling evidence that the excitatory amino acid neurotransmitter glutamate plays a pivotal role in drug addiction and alcoholism. As a result, there has been increasing interest in developing glutamate-based therapies for the treatment of addictive disorders. Receptors for glutamate are primarily divided into two classes: ionotropic glutamate receptors (iGluRs) that mediate fast excitatory glutamate transmission, and metabotropic glutamate receptors (mGluRs), which are G-protein coupled receptors that mediate slower, modulatory glutamate transmission. Most iGluR antagonists, while showing some efficacy in animal models of addiction, exhibit serious side effects when tested in humans. mGluR ligands, on the other hand, which have been advanced to testing in clinical trials for various medical conditions, have demonstrated the ability to reduce drug reward, reinforcement, and relapse-like behaviors in animal studies. mGluR ligands that have been shown to be primarily effective are Group I (mGluR1 and mGluR5) negative allosteric modulators and Group II (mGluR2 and mGluR3) orthosteric presynaptic autoreceptor agonists. In this review, we will summarize findings from animal studies suggesting that these mGluR ligands may be of potential benefit in reducing on-going drug self-administration and may aid in the prevention of relapse. The neuroanatomical distribution of mGluR1, mGluR2/3, and mGluR5 receptors and the pharmacological properties of Group I negative allosteric modulators and Group II agonists will also be overviewed. Finally, we will discuss the current status of mGluR ligands in human clinical trials. PMID:19630739

  3. Aryl Hydrocarbon Receptor Ligand 5F 203 Induces Oxidative Stress That Triggers DNA Damage in Human Breast Cancer Cells

    PubMed Central

    McLean, Lancelot S.; Watkins, Cheri N.; Campbell, Petreena; Zylstra, Dain; Rowland, Leah; Amis, Louisa H.; Scott, Lia; Babb, Crystal E.; Livingston, W. Joel; Darwanto, Agus; Davis, Willie L.; Senthil, Maheswari; Sowers, Lawrence C.; Brantley, Eileen

    2015-01-01

    Breast tumors often show profound sensitivity to exogenous oxidative stress. Investigational agent 2-(4-amino-3-methylphenyl)-5-fluorobenzothiazole (5F 203) induces aryl hydrocarbon receptor (AhR)-mediated DNA damage in certain breast cancer cells. Since AhR agonists often elevate intracellular oxidative stress, we hypothesize that 5F 203 increases reactive oxygen species (ROS) to induce DNA damage, which thwarts breast cancer cell growth. We found that 5F 203 induced single-strand break formation. 5F 203 enhanced oxidative DNA damage that was specific to breast cancer cells sensitive to its cytotoxic actions, as it did not increase oxidative DNA damage or ROS formation in nontumorigenic MCF-10A breast epithelial cells. In contrast, AhR agonist and procarcinogen benzo[a]pyrene and its metabolite, 1,6-benzo[a]pyrene quinone, induced oxidative DNA damage and ROS formation, respectively, in MCF-10A cells. In sensitive breast cancer cells, 5F 203 activated ROS-responsive kinases: c-Jun-N-terminal kinase (JNK) and p38 mitogen activated protein kinase (p38). AhR antagonists (alpha-naphthoflavone, CH223191) or antioxidants (N-acetyl-l-cysteine, EUK-134) attenuated 5F 203-mediated JNK and p38 activation, depending on the cell type. Pharmacological inhibition of AhR, JNK, or p38 attenuated 5F 203-mediated increases in intracellular ROS, apoptosis, and single-strand break formation. 5F 203 induced the expression of cytoglobin, an oxidative stress-responsive gene and a putative tumor suppressor, which was diminished with AhR, JNK, or p38 inhibition. Additionally, 5F 203-mediated increases in ROS production and cytoglobin were suppressed in AHR100 cells (AhR ligand-unresponsive MCF-7 breast cancer cells). Our data demonstrate 5F 203 induces ROS-mediated DNA damage at least in part via AhR, JNK, or p38 activation and modulates the expression of oxidative stress-responsive genes such as cytoglobin to confer its anticancer action. PMID:25781201

  4. High-affinity benzodiazepine receptor ligands among benzodiazepines and betacarbolines with different intrinsic activity

    SciTech Connect

    Yliniemelae, A.; Gynther, J. ); Konschin, H.; Tylli, H. ); Rouvinen, J. )

    1989-01-01

    Structural and electrostatic features of diazepam, flumazenil, and methyl betacarboline-3-carboxylate (BCCM) have been investigated using the molecular superimposition method. These high-affinity benzodiazepine (BZ) receptor ligands are structurally unrelated and they have different intrinsic activity. These ligands are superimposed in such a way that common structural and electrostatic features essential for the high receptor binding affinity overlap. In addition to this binding pharmacophore, there are roughly three separate binding zones in the BZ receptor, one for each class of ligands. The intrinsic activity of BZ receptor ligands depends on the molecular structures and the way the ligand approaches the receptor.

  5. Aryl hydrocarbon receptor (AhR) activation during pregnancy, and in adult nulliparous mice, delays the subsequent development of DMBA-induced mammary tumors

    PubMed Central

    Wang, Tao; Gavin, Heather M.; Arlt, Volker M.; Lawrence, B. Paige; Fenton, Suzanne E.; Medina, Daniel; Vorderstrasse, Beth A.

    2010-01-01

    TCDD (2,3,7,8-tetrachlorodibenzo-p-dioxin), the prototypic ligand for the aryl hydrocarbon receptor (AhR), promotes tumor formation in some model systems. However with regard to breast cancer, epidemiological and animal studies are inconclusive as to whether exposure increases tumor incidence or may instead be protective. We have previously reported that mice exposed to TCDD during pregnancy have impaired differentiation of mammary tissue, including decreased branching and poor development of lobuloalveolar structures. Because normal pregnancy-induced mammary differentiation may protect against subsequent neoplastic transformation, we hypothesized that TCDD-treated mice would be more susceptible to chemical carcinogenesis after parturition. To test this, mice were treated with TCDD or vehicle during pregnancy. Four weeks later, DMBA (7,12-dimethylbenz[a]anthracene) was administered to induce mammary tumor formation. Contrary to our hypothesis, TCDD-exposed parous mice showed a four-week delay in tumor formation relative to controls, and had a lower tumor incidence throughout the 27-week time course. The same results were obtained in nulliparous mice given TCDD and DMBA on the same schedule. We next addressed whether the delayed tumor incidence was a reflection of decreased tumor initiation, by testing the formation of DMBA-DNA adducts and preneoplastic lesions, induction of cytochrome P450s, and cell proliferation. None of these markers of tumor initiation differed between vehicle- and TCDD-treated animals. The expression of CXCL12 and CXCR4 was also measured to address their possible role in tumorigenesis. Taken together, our results suggest that AhR activation by TCDD slows the promotion of preneoplastic lesions to overt mammary tumors. PMID:20521247

  6. gp130 receptor ligands as potential therapeutic targets for obesity

    PubMed Central

    Febbraio, Mark A.

    2007-01-01

    Obesity and its related cluster of pathophysiologic conditions including insulin resistance, glucose intolerance, dyslipidemia, and hypertension are recognized as growing threats to world health. It is now estimated that 10% of the world’s population is overweight or obese. As a result, new therapeutic options for the treatment of obesity are clearly warranted. Recent research has focused on the role that gp130 receptor ligands may play as potential therapeutic targets in obesity. One cytokine in particular, ciliary neurotrophic factor (CNTF), acts both centrally and peripherally and mimics the biologic actions of the appetite control hormone leptin, but unlike leptin, CNTF appears to be effective in obesity and as such may have therapeutic potential. In addition, CNTF suppresses inflammatory signaling cascades associated with lipid accumulation in liver and skeletal muscle. This review examines the potential role of gp130 receptor ligands as part of a therapeutic strategy to treat obesity. PMID:17404609

  7. Tryptamine serves as a proligand of the AhR transcriptional pathway whose activation is dependent of monoamine oxidases.

    PubMed

    Vikström Bergander, Linda; Cai, Wen; Klocke, Bernward; Seifert, Martin; Pongratz, Ingemar

    2012-09-01

    The function of the aryl hydrocarbon receptor (AhR) in mediating the biological effect to environmental pollutants is well established. However, accumulated evidence indicates a wide range of physiological and pathological functions mediated by the AhR, suggesting the existence of endogenous AhR ligand(s). The nature of an AhR ligand remain elusive; however, it is known that the AhR is activated by several compounds, such as 2,3,7,8-tetrachlorodibenzo-p-dioxin or the tryptophan photoproduct 6-formylindolo[3,2-b]carbazole. In this study, we show that physiological concentrations of tryptamine (TA) lead to induction of cytochrome P4501A1 transcription through an AhR-dependent mechanism. In addition, we show that activation of the AhR by TA requires a functional monoamino oxidase system, suggesting that TA acts as an AhR proligand possibly by converting to a high-affinity AhR ligand. Taken together, we show a possible mechanism, through which AhR signaling is activated by endogenous conversion of TA involving monoamine oxidases. PMID:22865928

  8. Optimizing Ligand Efficiency of Selective Androgen Receptor Modulators (SARMs).

    PubMed

    Handlon, Anthony L; Schaller, Lee T; Leesnitzer, Lisa M; Merrihew, Raymond V; Poole, Chuck; Ulrich, John C; Wilson, Joseph W; Cadilla, Rodolfo; Turnbull, Philip

    2016-01-14

    A series of selective androgen receptor modulators (SARMs) containing the 1-(trifluoromethyl)benzyl alcohol core have been optimized for androgen receptor (AR) potency and drug-like properties. We have taken advantage of the lipophilic ligand efficiency (LLE) parameter as a guide to interpret the effect of structural changes on AR activity. Over the course of optimization efforts the LLE increased over 3 log units leading to a SARM 43 with nanomolar potency, good aqueous kinetic solubility (>700 μM), and high oral bioavailability in rats (83%). PMID:26819671

  9. Portraying G Protein-Coupled Receptors with Fluorescent Ligands

    PubMed Central

    2015-01-01

    The thermodynamics of ligand–receptor interactions at the surface of living cells represents a fundamental aspect of G protein-coupled receptor (GPCR) biology; thus, its detailed elucidation constitutes a challenge for modern pharmacology. Interestingly, fluorescent ligands have been developed for a variety of GPCRs in order to monitor ligand–receptor binding in living cells. Accordingly, new methodological strategies derived from noninvasive fluorescence-based approaches, especially fluorescence resonance energy transfer (FRET), have been successfully developed to characterize ligand–receptor interactions. Importantly, these technologies are supplanting more hazardous and expensive radioactive binding assays. In addition, FRET-based tools have also become extremely powerful approaches for visualizing receptor–receptor interactions (i.e., GPCR oligomerization) in living cells. Thus, by means of the synthesis of compatible fluorescent ligands these novel techniques can be implemented to demonstrate the existence of GPCR oligomerization not only in heterologous systems but also in native tissues. Finally, there is no doubt that these methodologies would also be relevant in drug discovery in order to develop new high-throughput screening approaches or to identify new therapeutic targets. Overall, herein, we provide a thorough assessment of all technical and biological aspects, including strengths and weaknesses, of these fluorescence-based methodologies when applied to the study of GPCR biology at the plasma membrane of living cells. PMID:25010291

  10. Oxytocin receptor ligands induce changes in cytoskeleton in neuroblastoma cells.

    PubMed

    Bakos, Jan; Strbak, Vladimir; Paulikova, Helena; Krajnakova, Lucia; Lestanova, Zuzana; Bacova, Zuzana

    2013-07-01

    Aim of the present study was to evaluate effects of ligands of oxytocin receptors on gene expression of neurofilament proteins (nestin and microtubule-associated protein 2 (MAP2)) associated with neuronal differentiation and growth factors (brain-derived neurotrophic factor (BDNF) and nerve growth factor (NGF)) related to neuronal growth. Fluorescent staining of F-actin was used to observe morphology of cells. Co-treatment with oxytocin and oxytocin receptor antagonist--atosiban--resulted in significant increase of MAP2 gene expression in SK-N-SH cells. There was no effect of oxytocin on gene expression of growth factors BDNF and NGF. Surprisingly, oxytocin with atosiban significantly increased mRNA levels for both BDNF and NGF. Gene expression of vasopressin receptor (V1aR) significantly decreased in response to vasopressin. Atosiban decreased mRNA levels for oxytocin receptor (OXTR) and V1aR. Oxytocin significantly decreased OXTR and nestin mRNA levels and increased mRNA levels for BDNF and NGF in U-87 MG cells. The densest recruitment of F-actin filaments was observed in apical parts of filopodia in SK-N-SH cells incubated in oxytocin presence. Present data demonstrate complex role of ligands of oxytocin receptors in regulation of gene expression of intermediate filaments and thus, oxytocin might be considered as a growth factor in neuronal type of cells. PMID:23335033

  11. Probing receptor-ligand interactions by sedimentation equilibrium

    NASA Astrophysics Data System (ADS)

    Philo, John S.

    1997-05-01

    While sedimentation equilibrium is most commonly used to characterize the molecular weight and state of association of single proteins, this technique is also a very powerful tool for probing the interactions between two or more different proteins, and can characterize both the binding stoichiometry and the equilibrium constants. To resolve the complex binding interactions that can occur in such systems, it is crucial to globally fit data from many experiments to a common binding model, including samples made with different mixing ratios and a wide range of total concentration. It is often also essential to constrain the parameters during fitting so that the fits correctly reproduce the molar ratio of proteins used in making each sample. We have applied this methodology to probe mechanisms of receptor activation for a number of hematopoietic receptors and their cognate ligands, using receptor extracellular domains expressed as soluble proteins. Such data can potentially help in the design of improved or new protein therapeutics, as well as in efforts to create small- molecular mimetics of protein hormones through structure- based drug design. Sedimentation equilibrium has shown that stem cell factor, erythropoietin, and granulocyte-colony stimulating factor can each dimerize their respective receptors in solution, but the mechanism of ligand-induced receptor dimerization for these three systems are strikingly different.

  12. Systematic Exploitation of Multiple Receptor Conformations for Virtual Ligand Screening

    PubMed Central

    Bottegoni, Giovanni; Rocchia, Walter; Rueda, Manuel; Abagyan, Ruben; Cavalli, Andrea

    2011-01-01

    The role of virtual ligand screening in modern drug discovery is to mine large chemical collections and to prioritize for experimental testing a comparatively small and diverse set of compounds with expected activity against a target. Several studies have pointed out that the performance of virtual ligand screening can be improved by taking into account receptor flexibility. Here, we systematically assess how multiple crystallographic receptor conformations, a powerful way of discretely representing protein plasticity, can be exploited in screening protocols to separate binders from non-binders. Our analyses encompass 36 targets of pharmaceutical relevance and are based on actual molecules with reported activity against those targets. The results suggest that an ensemble receptor-based protocol displays a stronger discriminating power between active and inactive molecules as compared to its standard single rigid receptor counterpart. Moreover, such a protocol can be engineered not only to enrich a higher number of active compounds, but also to enhance their chemical diversity. Finally, some clear indications can be gathered on how to select a subset of receptor conformations that is most likely to provide the best performance in a real life scenario. PMID:21625529

  13. 5D-QSAR for spirocyclic sigma1 receptor ligands by Quasar receptor surface modeling.

    PubMed

    Oberdorf, Christoph; Schmidt, Thomas J; Wünsch, Bernhard

    2010-07-01

    Based on a contiguous and structurally as well as biologically diverse set of 87 sigma(1) ligands, a 5D-QSAR study was conducted in which a quasi-atomistic receptor surface modeling approach (program package Quasar) was applied. The superposition of the ligands was performed with the tool Pharmacophore Elucidation (MOE-package), which takes all conformations of the ligands into account. This procedure led to four pharmacophoric structural elements with aromatic, hydrophobic, cationic and H-bond acceptor properties. Using the aligned structures a 3D-model of the ligand binding site of the sigma(1) receptor was obtained, whose general features are in good agreement with previous assumptions on the receptor structure, but revealed some novel insights since it represents the receptor surface in more detail. Thus, e.g., our model indicates the presence of an H-bond acceptor moiety in the binding site as counterpart to the ligands' cationic ammonium center, rather than a negatively charged carboxylate group. The presented QSAR model is statistically valid and represents the biological data of all tested compounds, including a test set of 21 ligands not used in the modeling process, with very good to excellent accuracy [q(2) (training set, n=66; leave 1/3 out) = 0.84, p(2) (test set, n=21)=0.64]. Moreover, the binding affinities of 13 further spirocyclic sigma(1) ligands were predicted with reasonable accuracy (mean deviation in pK(i) approximately 0.8). Thus, in addition to novel insights into the requirements for binding of spirocyclic piperidines to the sigma(1) receptor, the presented model can be used successfully in the rational design of new sigma(1) ligands. PMID:20427100

  14. Steroid receptors and their ligands: Effects on male gamete functions

    SciTech Connect

    Aquila, Saveria; De Amicis, Francesca

    2014-11-01

    In recent years a new picture of human sperm biology is emerging. It is now widely recognized that sperm contain nuclear encoded mRNA, mitochondrial encoded RNA and different transcription factors including steroid receptors, while in the past sperm were considered incapable of transcription and translation. One of the main targets of steroid hormones and their receptors is reproductive function. Expression studies on Progesterone Receptor, estrogen receptor, androgen receptor and their specific ligands, demonstrate the presence of these systems in mature spermatozoa as surface but also as nuclear conventional receptors, suggesting that both systemic and local steroid hormones, through sperm receptors, may influence male reproduction. However, the relationship between the signaling events modulated by steroid hormones and sperm fertilization potential as well as the possible involvement of the specific receptors are still controversial issues. The main line of this review highlights the current research in human sperm biology examining new molecular systems of response to the hormones as well as specific regulatory pathways controlling sperm cell fate and biological functions. Most significant studies regarding the identification of steroid receptors are reported and the mechanistic insights relative to signaling pathways, together with the change in sperm metabolism energy influenced by steroid hormones are discussed.The reviewed evidences suggest important effects of Progesterone, Estrogen and Testosterone and their receptors on spermatozoa and implicate the involvement of both systemic and local steroid action in the regulation of male fertility potential. - Highlights: • One of the main targets of steroid hormones and their receptors is reproductive function. • Pg/PR co-work to stimulate enzymatic activities to sustain a capacitation process. • E2/ERs regulate sperm motility, capacitation and acrosome reaction and act as survival factors. • Androgens

  15. Feedback, receptor clustering, and receptor restriction to single cells yield large Turing spaces for ligand-receptor-based Turing models

    NASA Astrophysics Data System (ADS)

    Kurics, Tamás; Menshykau, Denis; Iber, Dagmar

    2014-08-01

    Turing mechanisms can yield a large variety of patterns from noisy, homogenous initial conditions and have been proposed as patterning mechanism for many developmental processes. However, the molecular components that give rise to Turing patterns have remained elusive, and the small size of the parameter space that permits Turing patterns to emerge makes it difficult to explain how Turing patterns could evolve. We have recently shown that Turing patterns can be obtained with a single ligand if the ligand-receptor interaction is taken into account. Here we show that the general properties of ligand-receptor systems result in very large Turing spaces. Thus, the restriction of receptors to single cells, negative feedbacks, regulatory interactions among different ligand-receptor systems, and the clustering of receptors on the cell surface all greatly enlarge the Turing space. We further show that the feedbacks that occur in the FGF10-SHH network that controls lung branching morphogenesis are sufficient to result in large Turing spaces. We conclude that the cellular restriction of receptors provides a mechanism to sufficiently increase the size of the Turing space to make the evolution of Turing patterns likely. Additional feedbacks may then have further enlarged the Turing space. Given their robustness and flexibility, we propose that receptor-ligand-based Turing mechanisms present a general mechanism for patterning in biology.

  16. Feedback, receptor clustering, and receptor restriction to single cells yield large Turing spaces for ligand-receptor-based Turing models.

    PubMed

    Kurics, Tamás; Menshykau, Denis; Iber, Dagmar

    2014-08-01

    Turing mechanisms can yield a large variety of patterns from noisy, homogenous initial conditions and have been proposed as patterning mechanism for many developmental processes. However, the molecular components that give rise to Turing patterns have remained elusive, and the small size of the parameter space that permits Turing patterns to emerge makes it difficult to explain how Turing patterns could evolve. We have recently shown that Turing patterns can be obtained with a single ligand if the ligand-receptor interaction is taken into account. Here we show that the general properties of ligand-receptor systems result in very large Turing spaces. Thus, the restriction of receptors to single cells, negative feedbacks, regulatory interactions among different ligand-receptor systems, and the clustering of receptors on the cell surface all greatly enlarge the Turing space. We further show that the feedbacks that occur in the FGF10-SHH network that controls lung branching morphogenesis are sufficient to result in large Turing spaces. We conclude that the cellular restriction of receptors provides a mechanism to sufficiently increase the size of the Turing space to make the evolution of Turing patterns likely. Additional feedbacks may then have further enlarged the Turing space. Given their robustness and flexibility, we propose that receptor-ligand-based Turing mechanisms present a general mechanism for patterning in biology. PMID:25215767

  17. Structural and Functional Profiling of Environmental Ligands for Estrogen Receptors

    PubMed Central

    Delfosse, Vanessa; Grimaldi, Marina; Cavaillès, Vincent

    2014-01-01

    Background: Individuals are exposed daily to environmental pollutants that may act as endocrine-disrupting chemicals (EDCs), causing a range of developmental, reproductive, metabolic, or neoplastic diseases. With their mostly hydrophobic pocket that serves as a docking site for endogenous and exogenous ligands, nuclear receptors (NRs) can be primary targets of small molecule environmental contaminants. However, most of these compounds are chemically unrelated to natural hormones, so their binding modes and associated hormonal activities are hardly predictable. Objectives: We conducted a correlative analysis of structural and functional data to gain insight into the mechanisms by which 12 members of representative families of pollutants bind to and activate the estrogen receptors ERα and ERβ. Methods: We used a battery of biochemical, structural, biophysical, and cell-based approaches to characterize the interaction between ERs and their environmental ligands. Results: Our study revealed that the chemically diverse compounds bound to ERs via varied sets of protein–ligand interactions, reflecting their differential activities, binding affinities, and specificities. We observed xenoestrogens binding to both ERs—with affinities ranging from subnanomolar to micromolar values—and acting in a subtype-dependent fashion as full agonists or partial agonists/antagonists by using different combinations of the activation functions 1 and 2 of ERα and ERβ. Conclusions: The precise characterization of the interactions between major environmental pollutants and two of their primary biological targets provides rational guidelines for the design of safer chemicals, and will increase the accuracy and usefulness of structure-based computational methods, allowing for activity prediction of chemicals in risk assessment. Citation: Delfosse V, Grimaldi M, Cavaillès V, Balaguer P, Bourguet W. 2014. Structural and functional profiling of environmental ligands for estrogen

  18. Label-free integrative pharmacology on-target of opioid ligands at the opioid receptor family

    PubMed Central

    2013-01-01

    Background In vitro pharmacology of ligands is typically assessed using a variety of molecular assays based on predetermined molecular events in living cells. Many ligands including opioid ligands pose the ability to bind more than one receptor, and can also provide distinct operational bias to activate a specific receptor. Generating an integrative overview of the binding and functional selectivity of ligands for a receptor family is a critical but difficult step in drug discovery and development. Here we applied a newly developed label-free integrative pharmacology on-target (iPOT) approach to systematically survey the selectivity of a library of fifty-five opioid ligands against the opioid receptor family. All ligands were interrogated using dynamic mass redistribution (DMR) assays in both recombinant and native cell lines that express specific opioid receptor(s). The cells were modified with a set of probe molecules to manifest the binding and functional selectivity of ligands. DMR profiles were collected and translated to numerical coordinates that was subject to similarity analysis. A specific set of opioid ligands were then selected for quantitative pharmacology determination. Results Results showed that among fifty-five opioid ligands examined most ligands displayed agonist activity in at least one opioid receptor expressing cell line under different conditions. Further, many ligands exhibited pathway biased agonism. Conclusion We demonstrate that the iPOT effectively sorts the ligands into distinct clusters based on their binding and functional selectivity at the opioid receptor family. PMID:23497702

  19. Transgenic mouse lines expressing rat AH receptor variants - A new animal model for research on AH receptor function and dioxin toxicity mechanisms

    SciTech Connect

    Pohjanvirta, Raimo

    2009-04-15

    Han/Wistar (Kuopio; H/W) rats are exceptionally resistant to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) toxicity mainly because of their mutated aryl hydrocarbon receptor (AHR) gene. In H/W rats, altered splicing of the AHR mRNA generates two AHR proteins: deletion (DEL) and insertion (INS) variants, with the INS isoform being predominantly expressed. To gain further insight into their functional properties, cDNAs of these and rat wild-type (rWT) isoform were transferred into C57BL/6J-derived mice by microinjection. The endogenous mouse AHR was eliminated by selective crossing with Ahr-null mice. A single mouse line was obtained for each of the three constructs. The AHR mRNA levels in tissues were generally close to those of C57BL/6 mice in INS and DEL mice and somewhat higher in rWT mice; in testis, however, all 3 constructs exhibited marked overexpression. The transgenic mouse lines were phenotypically normal except for increased testis weight. Induction of drug-metabolizing enzymes by TCDD occurred similarly to that in C57BL/6 mice, but there tended to be a correlation with AHR concentrations, especially in testis. In contrast to C57BL/6 mice, the transgenics did not display any major gender difference in susceptibility to the acute lethality and hepatotoxicity of TCDD; rWT mice were highly sensitive, DEL mice moderately resistant and INS mice highly resistant. Co-expression of mouse AHR and rWT resulted in augmented sensitivity to TCDD and abolished the natural resistance of female C57BL/6 mice, whereas mice co-expressing mouse AHR and INS were resistant. Thus, these transgenic mouse lines provide a novel promising tool for molecular studies on dioxin toxicity and AHR function.

  20. Amino Acid Substitutions That Affect Receptor Binding and Stability of the Hemagglutinin of Influenza A/H7N9 Virus.

    PubMed

    Schrauwen, Eefje J A; Richard, Mathilde; Burke, David F; Rimmelzwaan, Guus F; Herfst, Sander; Fouchier, Ron A M

    2016-01-01

    Receptor-binding preference and stability of hemagglutinin have been implicated as crucial determinants of airborne transmission of influenza viruses. Here, amino acid substitutions previously identified to affect these traits were tested in the context of an A/H7N9 virus. Some combinations of substitutions, most notably G219S and K58I, resulted in relatively high affinity for α2,6-linked sialic acid receptor and acid and temperature stability. Thus, the hemagglutinin of the A/H7N9 virus may adopt traits associated with airborne transmission. PMID:26792744

  1. Recent developments in the synthesis of nicotinic acetylcholine receptor ligands.

    PubMed

    Breining, Scott R

    2004-01-01

    The extraordinary pharmacology of nicotine and epibatidine have indicated the potential for nicotinic acetylcholine receptor (nAChR) ligands to serve as a new therapeutic class for a host of CNS disorders. Many such ligands are natural products, or analogs thereof, which represent a significant challenge to the synthetic chemist. Synthesis of such molecules often serves as a showcase to demonstrate the potential of newly developed methodology. This synthetic challenge coupled with the promise of pharmacological activity in compounds possessing the nicotinic pharmacophore has stimulated a great deal of synthetic activity over the last five years. The present report provides an overview of novel synthetic methodology occurring during this period directed toward the synthesis of compounds with presumed affinity for the neuronal nAChR. Syntheses chosen for review here represent the major efforts toward molecules such as epibatidine analogs, anatoxin-a, nicotine and related alkaloids, conformationally constrained nicotine derivatives, cytisine and methyllycaconitine (MLA). PMID:14965298

  2. Role of Receptor Tyrosine Kinases and Their Ligands in Glioblastoma

    PubMed Central

    Carrasco-García, Estefanía; Saceda, Miguel; Martínez-Lacaci, Isabel

    2014-01-01

    Glioblastoma multiforme is the most frequent, aggressive and fatal type of brain tumor. Glioblastomas are characterized by their infiltrating nature, high proliferation rate and resistance to chemotherapy and radiation. Recently, oncologic therapy experienced a rapid evolution towards “targeted therapy,” which is the employment of drugs directed against particular targets that play essential roles in proliferation, survival and invasiveness of cancer cells. A number of molecules involved in signal transduction pathways are used as molecular targets for the treatment of various tumors. In fact, inhibitors of these molecules have already entered the clinic or are undergoing clinical trials. Cellular receptors are clear examples of such targets and in the case of glioblastoma multiforme, some of these receptors and their ligands have become relevant. In this review, the importance of glioblastoma multiforme in signaling pathways initiated by extracellular tyrosine kinase receptors such as EGFR, PDGFR and IGF-1R will be discussed. We will describe their ligands, family members, structure, activation mechanism, downstream molecules, as well as the interaction among these pathways. Lastly, we will provide an up-to-date review of the current targeted therapies in cancer, in particular glioblastoma that employ inhibitors of these pathways and their benefits. PMID:24709958

  3. NKG2D receptor and its ligands in host defense

    PubMed Central

    Lanier, Lewis L.

    2015-01-01

    NKG2D is an activating receptor expressed on the surface of natural killer (NK) cells, CD8+ T cells, and subsets of CD4+ T cells, iNKT cells, and γδ T cells. In humans NKG2D transmits signals by its association with the DAP10 adapter subunit and in mice alternatively spliced isoforms transmit signals either using DAP10 or DAP12 adapter subunits. Although NKG2D is encoded by a highly conserved gene (KLRK1) with limited polymorphism, the receptor recognizes an extensive repertoire of ligands, encoded by at least 8 genes in humans (MICA, MICB, RAET1E, RAET1G, RAET1H, RAET1I, RAET1L, and RAET1N), some with extensive allelic polymorphism. Expression of the NKG2D ligands is tightly regulated at the level of transcription, translation, and post-translation. In general healthy adult tissues do not express NKG2D glycoproteins on the cell surface, but these ligands can be induced by hyper-proliferation and transformation, as well as when cells are infected by pathogens. Thus, the NKG2D pathway serves a mechanism for the immune system to detect and eliminate cells that have undergone “stress”. Viruses and tumor cells have devised numerous strategies to evade detection by the NKG2D surveillance system and diversification of the NKG2D ligand genes likely has been driven by selective pressures imposed by pathogens. NKG2D provides an attractive target for therapeutics in the treatment of infectious diseases, cancer, and autoimmune diseases. PMID:26041808

  4. Analysis of Edg-Like LPA Receptor-Ligand Interactions.

    PubMed

    Balogh, Balazs; Pazmany, Tamas; Matyus, Peter

    2015-01-01

    The phospholipid derivative lysophosphatidic acid (LPA) serves as a signalling molecule through the activation of LPA receptors, which belong to the G-protein-coupled receptors. From a pharmacological point of view, the ('EDG-like') LPA1-3 receptors have attracted much attention, therefore we have also been focusing in our study on these subtypes. The LPA1receptors are widely expressed in the human body; interestingly, LPA1 might have a role in the pathomechanism of obesity. In order to recognize key structural features of the molecular interactions of human LPA1with its agonists, we built up the 3D structure of the LPA1 through homology modeling. Next, LPA1 agonists and antagonists were docked into the model. The mode of binding and the interactions between ligands and key amino acids (R3.28 and Q3.29) were consistent with mutagenesis assays and previously published models, indicating that this model is able to discriminate high-affinity compounds and may be useful for the development of novel agonists of LPA1. Homology models were also constructed for LPA2 and LPA3. All available agonists with published EC50 values, antagonists with IC50 values and compounds with Ki values for either of LPA1, LPA2 or LPA3 were collected from the ChEMBL database and were docked into the corresponding model.Ourmodels for the LPA1-3 receptors can discriminate high-affinity compounds identified in silico HTS studies and may be useful for the development of novel agonistsof LPA receptors. With a better understanding of the differences between LPA1-3 receptors new, selective agonists and antagonist could be designed, which could be used in the therapy of various diseases with a better side-effect profile. PMID:25686617

  5. Functional Phylogenetics Reveals Contributions of Pleiotropic Peptide Action to Ligand-Receptor Coevolution

    PubMed Central

    Jiang, Hongbo; Wei, Zhaojun; Nachman, Ronald J.; Adams, Michael E.; Park, Yoonseong

    2014-01-01

    The evolution of peptidergic signaling has been accompanied by a significant degree of ligand-receptor coevolution. Closely related clusters of peptide signaling molecules are observed to activate related groups of receptors, implying that genes encoding these ligands may orchestrate an array of functions, a phenomenon known as pleiotropy. Here we examine whether pleiotropic actions of peptide genes might influence ligand-receptor coevolution. Four test groups of neuropeptides characterized by conserved C-terminal amino acid sequence motifs and their cognate receptors were examined in the red flour beetle (Tribolium castaneum): 1) cardioacceleratory peptide 2b (CAPA); CAPAr, 2) pyrokinin/diapause hormone (PK1/DH); PKr-A, -B, 3) pyrokinin/pheromone biosynthesis activating hormone (PK2/PBAN); PKr-C, and 4) ecdysis triggering hormone (ETH); ETHr-b. Ligand-receptor specificities were established through heterologous expression of receptors in cell-based assays for 9 endogenous ligands. Based on ligand-receptor specificity analysis, we found positive pleiotropism exhibited by ETH on ETHR-b and CAPAr, whereas PK1/DH and CAPA are more highly selective for their respective authentic receptors than would be predicted by phylogenetic analysis. Disparities between evolutionary trees deduced from receptor sequences vs. functional ligand-receptor specificities lead to the conclusion that pleiotropy exhibited by peptide genes influences ligand-receptor coevolution. PMID:25348027

  6. Ligand-binding assays for cyanobacterial neurotoxins targeting cholinergic receptors.

    PubMed

    Aráoz, Rómulo; Vilariño, Natalia; Botana, Luis M; Molgó, Jordi

    2010-07-01

    Toxic cyanobacterial blooms are a threat to public health because of the capacity of some cyanobacterial species to produce potent hepatotoxins and neurotoxins. Cyanobacterial neurotoxins are involved in the rapid death of wild and domestic animals by targeting voltage gated sodium channels and cholinergic synapses, including the neuromuscular junction. Anatoxin-a and its methylene homologue homoanatoxin-a are potent agonists of nicotinic acetylcholine receptors. Since the structural determination of anatoxin-a, several mass spectrometry-based methods have been developed for detection of anatoxin-a and, later, homoanatoxin-a. Mass spectrometry-based techniques provide accuracy, precision, selectivity, sensitivity, reproducibility, adequate limit of detection, and structural and quantitative information for analyses of cyanobacterial anatoxins from cultured and environmental cyanobacterial samples. However, these physicochemical techniques will only detect known toxins for which toxin standards are commercially available, and they require highly specialized laboratory personnel and expensive equipment. Receptor-based assays are functional methods that are based on the mechanism of action of a class of toxins and are thus, suitable tools for survey of freshwater reservoirs for cyanobacterial anatoxins. The competition between cyanobacterial anatoxins and a labelled ligand for binding to nicotinic acetylcholine receptors is measured radioactively or non-radioactively providing high-throughput screening formats for routine detection of this class of neurotoxins. The mouse bioassay is the method of choice for marine toxin monitoring, but has to be replaced by fully validated functional methods. In this paper we review the ligand-binding assays developed for detection of cyanobacterial and algal neurotoxins targeting the nicotinic acetylcholine receptors and for high-throughput screening of novel nicotinic agents. PMID:20238109

  7. Novel retinoic acid receptor ligands in Xenopus embryos.

    PubMed Central

    Blumberg, B; Bolado, J; Derguini, F; Craig, A G; Moreno, T A; Chakravarti, D; Heyman, R A; Buck, J; Evans, R M

    1996-01-01

    Retinoids are a large family of natural and synthetic compounds related to vitamin A that have pleiotropic effects on body physiology, reproduction, immunity, and embryonic development. The diverse activities of retinoids are primarily mediated by two families of nuclear retinoic acid receptors, the RARs and RXRs. Retinoic acids are thought to be the only natural ligands for these receptors and are widely assumed to be the active principle of vitamin A. However, during an unbiased, bioactivity-guided fractionation of Xenopus embryos, we were unable to detect significant levels of all-trans or 9-cis retinoic acids. Instead, we found that the major bioactive retinoid in the Xenopus egg and early embryo is 4-oxoretinaldehyde, which is capable of binding to and transactivating RARs. In addition to its inherent activity, 4-oxoretinaldehyde appears to be a metabolic precursor of two other RAR ligands, 4-oxoretinoic acid and 4-oxoretinol. The remarkable increase in activity of retinaldehyde and retinol as a consequence of 4-oxo derivatization suggests that this metabolic step could serve a critical regulatory function during embryogenesis. Images Fig. 1 Fig. 4 PMID:8643496

  8. Cherry-picked ligands at histamine receptor subtypes.

    PubMed

    Sadek, Bassem; Stark, Holger

    2016-07-01

    Histamine, a biogenic amine, is considered as a principle mediator of multiple physiological effects through binding to its H1, H2, H3, and H4 receptors (H1-H4Rs). Currently, the HRs have gained attention as important targets for the treatment of several diseases and disorders ranging from allergy to Alzheimer's disease and immune deficiency. Accordingly, medicinal chemistry studies exploring histamine-like molecules and their physicochemical properties by binding and interacting with the four HRs has led to the development of a diversity of agonists and antagonists that display selectivity for each HR subtype. An overview on H1-R4Rs and developed ligands representing some key steps in development is provided here combined with a short description of structure-activity relationships for each class. Main chemical diversities, pharmacophores, and pharmacological profiles of most innovative H1-H4R agonists and antagonists are highlighted. Therefore, this overview should support the rational choice for the optimal ligand selection based on affinity, selectivity and efficacy data in biochemical and pharmacological studies. This article is part of the Special Issue entitled 'Histamine Receptors'. PMID:26581501

  9. Binding of aromatic amines to the rat hepatic Ah receptor in vitro and in vivo and the 8S and 4S estrogen receptor of rat uterus and rat liver

    SciTech Connect

    Cikryt, P.; Kaiser, T.; Gottlicher, M. )

    1990-08-01

    Studies on structurally related aromatic amines with different carcinogenic properties have shown that 2-acetylaminofluorene (2-AAF) and 2-acetylaminophenanthrene (AAP) inhibit the binding of 2,3,7,8-tetrachlorodibenzo-p-dioxin to the Ah receptor in vitro. The apparent inhibitor constants (K{sub i}) are 2.3 {mu}M for 2-AAF and 2.7 {mu}M for AAP. In contrast, 4-acetylaminofluorene, an isomer of 2-AAF, and trans-4-acetylaminostilbene do not bind to the rat hepatic cytosolic Ah receptor. Pretreating female Wistar rats with 2-AAF or AAP leads to the induction of the P-450 isoenzymes that are under the control of the Ah receptor. Ornithine decarboxylase activity is induced by all aromatic amines tested irrespective of their Ah receptor affinity. The aromatic amines used as model compounds do not inhibit the binding of 17-{beta}-estradiol to the 8S and 4S estrogen receptor of rat uterus or rat liver in a competition assay analyzed using sucrose density gradient centrifugation. On the other hand, the aromatic amines bind to varying extents to another estrogen-binding protein of rat liver whose function and identity is still unknown. The study demonstrates that structurally related aromatic amines in their unmetabolized form interact differentially with a cellular target protein, the Ah receptor, in vitro as well as in vivo. However, a relationship between these effects and the postulated promoting properties of 2-AAF remains to be established.

  10. Oxidative Stress Promotes Ligand-independent and Enhanced Ligand-dependent Tumor Necrosis Factor Receptor Signaling*

    PubMed Central

    Ozsoy, Hatice Z.; Sivasubramanian, Natarajan; Wieder, Eric D.; Pedersen, Steen; Mann, Douglas L.

    2008-01-01

    Tumor necrosis factor (TNF) receptor 1 (TNFR1, p55) and 2 (TNFR2, p75) are characterized by several cysteine-rich modules in the extracellular domain, raising the possibility that redox-induced modifications of these cysteine residues might alter TNFR function. To test this possibility, we examined fluorescence resonance energy transfer (FRET) in 293T cells transfected with CFP- and YFP-tagged TNFRs exposed to the thiol oxidant diamide. Treatment with high concentrations of diamide (1 mm) resulted in an increase in the FRET signal that was sensitive to inhibition with the reducing agent dithiothreitol, suggesting that oxidative stress resulted in TNFR self-association. Treatment of cells with low concentrations of diamide (1 μm) that was not sufficient to provoke TNFR self-association resulted in increased TNF-induced FRET signals relative to the untreated cells, suggesting that oxidative stress enhanced ligand-dependent TNFR signaling. Similar findings were obtained when the TNFR1- and TNFR2-transfected cells were pretreated with a cell-impermeable oxidase, DsbA, that catalyzes disulfide bond formation between thiol groups on cysteine residues. The changes in TNFR self-association were functionally significant, because pretreating the HeLa cells and 293T cells resulted in increased TNF-induced NF-κB activation and TNF-induced expression of IκB and syndecan-4 mRNA levels. Although pretreatment with DsbA did not result in an increase in TNF binding to TNFRs, it resulted in increased TNF-induced activation of NF-κB, consistent with an allosteric modification of the TNFRs. Taken together, these results suggest that oxidative stress promotes TNFR receptor self-interaction and ligand-independent and enhanced ligand-dependent TNF signaling. PMID:18544535

  11. Biased ligands at G-protein-coupled receptors: promise and progress.

    PubMed

    Violin, Jonathan D; Crombie, Aimee L; Soergel, David G; Lark, Michael W

    2014-07-01

    Drug discovery targeting G protein-coupled receptors (GPCRs) is no longer limited to seeking agonists or antagonists to stimulate or block cellular responses associated with a particular receptor. GPCRs are now known to support a diversity of pharmacological profiles, a concept broadly referred to as functional selectivity. In particular, the concept of ligand bias, whereby a ligand stabilizes subsets of receptor conformations to engender novel pharmacological profiles, has recently gained increasing prominence. This review discusses how biased ligands may deliver safer, better tolerated, and more efficacious drugs, and highlights several biased ligands that are in clinical development. Biased ligands targeting the angiotensin II type 1 receptor and the μ opioid receptor illustrate the translation of the biased ligand concept from basic biology to clinical drug development. PMID:24878326

  12. Biotinylated recombinant human erythropoietins: Bioactivity and utility as receptor ligand

    SciTech Connect

    Wojchowski, D.M.; Caslake, L. )

    1989-08-15

    Recombinant human erythropoietin labeled covalently with biotin at sialic acid moieties has been prepared, and has been shown to possess high biological activity plus utility as a receptor ligand. Initially, the effects on biological activity of covalently attaching biotin to erythropoietin alternatively at carboxylate, amino, or sialic acid groups were compared. Biotinylation of erythropoietin at carboxylate groups using biotin-amidocaproyl hydrazide plus 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide led to substantial biological inactivation, although biotinylated molecules retained detectable activity when prepared at low stoichiometries. Biotinylation at amino groups using sulfosuccinimidyl 6-(biotinamido) hexanoate resulted in a high level of biological inactivation with little, if any, retention of biological activity, regardless of labeling stoichiometries. Biotinylation at sialic acid moieties using periodate and biotinamidocaproyl hydrazide proceeded efficiently (greater than 95% and 80% labeling efficiencies for human urinary and recombinant erythropoietin, respectively) and yielded stably biotinylated erythropoietin molecules possessing comparably high biological activity (ie, 45% of the activity of unmodified hormone). Utility of recombinant biotin-(sialyl)-erythropoietin (in combination with 125I-streptavidin) in the assay of cell surface receptors was demonstrated using two distinct murine erythroleukemia cell lines, Friend 745 and Rauscher Red 1. The densities and affinities of specific hormone binding sites were 116 +/- 4 sites, 3.3 +/- 0.4 nmol/L kd and 164 +/- 5 sites, 2.7 +/- 0.4 nmol/L kd, respectively. It is predicted that the present development of biotin-(sialyl)-erythropoietin as a chemically and biologically stable, bioactive ligand will assist in advancing an understanding of the regulated expression and physicochemistry of the human and murine erythropoietin receptors.

  13. Species-Specific Differential AhR Expression Protects Human Neural Progenitor Cells against Developmental Neurotoxicity of PAHs

    PubMed Central

    Gassmann, Kathrin; Abel, Josef; Bothe, Hanno; Haarmann-Stemmann, Thomas; Merk, Hans F.; Quasthoff, Kim N.; Rockel, Thomas Dino; Schreiber, Timm; Fritsche, Ellen

    2010-01-01

    Background Because of their lipophilicity, persistent organic pollutants (POPs) cross the human placenta, possibly affecting central nervous system development. Most POPs are known aryl hydrocarbon receptor (AhR) ligands and activators of AhR signaling. Therefore, AhR activation has been suggested to cause developmental neurotoxicity (DNT). Objective We studied the effects of AhR ligands on basic processes of brain development in two comparative in vitro systems to determine whether AhR-activation is the underlying mechanism for reported DNT of POPs in humans. Methods We employed neurosphere cultures based on human neural progenitor cells (hNPCs) and wild-type and AhR-deficient mouse NPCs (mNPCs) and studied the effects of different AhR agonists [3-methylcholanthrene (3-MC), benzo(a)pyrene [B(a)P], and 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD)] and an antagonist [3′-methoxy-4′-nitroflavone (MNF)] on neurosphere development. Moreover, we analyzed expression of AhR and genes involved in AhR signaling. Results In contrast to wild-type mNPCs, hNPCs and AhR-deficient mNPCs were insensitive to AhR agonism or antagonism. Although AhR modulation attenuated wild-type mNPC proliferation and migration, hNPCs and AhR-deficient mNPCs remained unaffected. Results also suggest that species-specific differences resulted from nonfunctional AhR signaling in hNPCs. Conclusion Our findings suggest that in contrast to wild-type mNPCs, hNPCs were protected against polycyclic aromatic hydrocarbon–induced DNT because of an absence of AhR. This difference may contribute to species-specific differences in sensitivity to POPs. PMID:20570779

  14. Functionalized Congener Approach to the Design of Ligands for G Protein–Coupled Receptors (GPCRs)

    PubMed Central

    Jacobson, Kenneth A.

    2009-01-01

    Functionalized congeners, in which a chemically functionalized chain is incorporated at an insensitive site on a pharmacophore, have been designed from the agonist and antagonist ligands of various G protein–coupled receptors (GPCRs). These chain extensions enable a conjugation strategy for detecting and characterizing GPCR structure and function and pharmacological modulation. The focus in many studies of functionalized congeners has been on two families of GPCRs: those responding to extracellular purines and pyrimidines—i.e., adenosine receptors (ARs) and P2Y nucleotide receptors. Functionalized congeners of small-molecule as ligands for other GPCRs and non-G protein coupled receptors have also been designed. For example, among biogenic amine neurotransmitter receptors, muscarinic acetylcholine receptor antagonists and adrenergic receptor ligands have been studied with a functionalized congener approach. Adenosine A1, A2A, and A3 receptor functionalized congeners have yielded macromolecular conjugates, irreversibly binding AR ligands for receptor inactivation and crosslinking, radioactive probes that use prosthetic groups, immobilized ligands for affinity chromatography, and dual-acting ligands that function as binary drugs. Poly(amidoamine) dendrimers have served as nanocarriers for covalently conjugated AR functionalized congeners. Rational methods of ligand design derived from molecular modeling and templates have been included in these studies. Thus, the design of novel ligands, both small molecules and macromolecular conjugates, for studying the chemical and biological properties of GPCRs have been developed with this approach, has provided researchers with a strategy that is more versatile than the classical medicinal chemical approaches. PMID:19405524

  15. Estrogen receptor transcription and transactivation: Structure-function relationship in DNA- and ligand-binding domains of estrogen receptors

    PubMed Central

    Ruff, Marc; Gangloff, Monique; Marie Wurtz, Jean; Moras, Dino

    2000-01-01

    Estrogen receptors are members of the nuclear receptor steroid family that exhibit specific structural features, ligand-binding domain sequence identity and dimeric interactions, that single them out. The crystal structures of their DNA-binding domains give some insight into how nuclear receptors discriminate between DNA response elements. The various ligand-binding domain crystal structures of the two known estrogen receptor isotypes (α and β) allow one to interpret ligand specificity and reveal the interactions responsible for stabilizing the activation helix H12 in the agonist and antagonist positions. PMID:11250728

  16. Flavonoids as GABAA receptor ligands: the whole story?

    PubMed Central

    Wasowski, Cristina; Marder, Mariel

    2012-01-01

    Benzodiazepines are the most widely prescribed class of psychoactive drugs in current therapeutic use, despite the important unwanted side effects that they produce, such as sedation, myorelaxation, ataxia, amnesia, and ethanol and barbiturate potentiation and tolerance. They exert their therapeutic effects via binding to the benzodiazepine binding site of gamma-aminobutyric acid (GABA) type A receptors, and allosterically modulating the chloride flux through the ion channel complex. First isolated from plants used as tranquilizers in folkloric medicine, some natural flavonoids have been shown to possess selective affinity for the benzodiazepine binding site with a broad spectrum of central nervous system effects. Since the initial search for alternative benzodiazepine ligands amongst the flavonoids, a list of successful synthetic derivatives has been generated with enhanced activities. This review provides an update on research developments that have established the activity of natural and synthetic flavonoids on GABA type A receptors. Flavonoids are prominent drugs in the treatment of mental disorders, and can also be used as tools to study modulatory sites at GABA type A receptors and to develop GABA type A selective agents further.

  17. Transport regulation of two-dimensional receptor-ligand association.

    PubMed

    Ju, Lining; Qian, Jin; Zhu, Cheng

    2015-04-01

    The impact of flow disturbances on platelet adhesion is complex and incompletely understood. At the molecular scale, platelet glycoprotein Ibα (GPIbα) must associate with the von Willebrand factor A1 domain (VWF-A1) with a rapid on-rate under high hemodynamic forces, as occurs in arterial thrombosis, where various transport mechanisms are at work. Here, we theoretically modeled the coupled transport-reaction process of the two-dimensional (2D) receptor-ligand association kinetics in a biomembrane force probe to explicitly account for the effects of molecular length, confinement stiffness, medium viscosity, surface curvature, and separation distance. We experimentally verified the theoretical approach by visualizing association and dissociation of individual VWF-A1-GPIbα bonds in a real-time thermal fluctuation assay. The apparent on-rate, reciprocal of the average time intervals between sequential bonds, decreased with the increasing gap distance between A1- and GPIbα-bearing surfaces with an 80-nm threshold (beyond which bond formation became prohibitive) identified as the combined contour length of the receptor and ligand molecules. The biomembrane force probe spring constant and diffusivity of the protein-bearing beads also significantly influenced the apparent on-rate, in accordance with the proposed transport mechanisms. The global agreement between the experimental data and the model predictions supports the hypothesis that receptor-ligand association behaves distinctly in the transport- and reaction-limited scenarios. To our knowledge, our results represent the first detailed quantification of physical regulation of the 2D on-rate that allows platelets to sense and respond to local changes in their hemodynamic environment. In addition, they provide an approach for determining the intrinsic kinetic parameters that employs simultaneous experimental measurements and theoretical modeling of bond association in a single assay. The 2D intrinsic forward rate

  18. Transport Regulation of Two-Dimensional Receptor-Ligand Association

    PubMed Central

    Ju, Lining; Qian, Jin; Zhu, Cheng

    2015-01-01

    The impact of flow disturbances on platelet adhesion is complex and incompletely understood. At the molecular scale, platelet glycoprotein Ibα (GPIbα) must associate with the von Willebrand factor A1 domain (VWF-A1) with a rapid on-rate under high hemodynamic forces, as occurs in arterial thrombosis, where various transport mechanisms are at work. Here, we theoretically modeled the coupled transport-reaction process of the two-dimensional (2D) receptor-ligand association kinetics in a biomembrane force probe to explicitly account for the effects of molecular length, confinement stiffness, medium viscosity, surface curvature, and separation distance. We experimentally verified the theoretical approach by visualizing association and dissociation of individual VWF-A1-GPIbα bonds in a real-time thermal fluctuation assay. The apparent on-rate, reciprocal of the average time intervals between sequential bonds, decreased with the increasing gap distance between A1- and GPIbα-bearing surfaces with an 80-nm threshold (beyond which bond formation became prohibitive) identified as the combined contour length of the receptor and ligand molecules. The biomembrane force probe spring constant and diffusivity of the protein-bearing beads also significantly influenced the apparent on-rate, in accordance with the proposed transport mechanisms. The global agreement between the experimental data and the model predictions supports the hypothesis that receptor-ligand association behaves distinctly in the transport- and reaction-limited scenarios. To our knowledge, our results represent the first detailed quantification of physical regulation of the 2D on-rate that allows platelets to sense and respond to local changes in their hemodynamic environment. In addition, they provide an approach for determining the intrinsic kinetic parameters that employs simultaneous experimental measurements and theoretical modeling of bond association in a single assay. The 2D intrinsic forward rate

  19. Non-peptide ligand binding to the formyl peptide receptor FPR2--A comparison to peptide ligand binding modes.

    PubMed

    Stepniewski, Tomasz M; Filipek, Slawomir

    2015-07-15

    Ligands of the FPR2 receptor initiate many signaling pathways including activation of phospholipase C, protein kinase C, the mitogen-activated protein kinase, and phosphatidylinositol 3-kinase/protein kinase B pathway. The possible actions include also calcium flux, superoxide generation, as well as migration and proliferation of monocytes. FPR2 activation may induce a pro- and anti-inflammatory effect depending on the ligand type. It is also found that this receptor is involved in tumor growth. Most of currently known FPR2 ligands are agonists since they were designed based on N-formyl peptides, which are natural agonists of formyl receptors. Since the non-peptide drugs are indispensable for effective treatment strategies, we performed a docking study of such ligands employing a generated dual template homology model of the FPR2 receptor. The study revealed different binding modes of particular classes of these drugs. Based on the obtained docking poses we proposed a detailed location of three hydrophobic pockets in orthosteric binding site of FPR2. Our model emphasizes the importance of aromatic stacking, especially with regard to residues His102(3.29) and Phe257(6.51), for binding of FPR2 ligands. We also identified other residues important for non-peptide ligand binding in the binding site of FPR2. PMID:25882522

  20. Selectivity of Ligand-Receptor Interactions between Nanoparticle and Cell Surfaces

    NASA Astrophysics Data System (ADS)

    Wang, Shihu; Dormidontova, Elena E.

    2012-12-01

    Selectivity of interactions between nanoparticles functionalized by tethered ligands and cell surfaces with different densities of receptors plays an essential role in biorecognition and its implementation in nanobiomedicine. We show that the onset of nanoparticle adsorption has a universal character for a range of nanoparticles: the onset receptor density decreases exponentially with the energy of ligand-receptor binding and inversely with the ligand density. We demonstrate that a bimodal tether distribution, which permits shielding ligands by longer nonfunctional tethers, leads to extra loss of entropy at the adsorption onset, enhancing the selectivity.

  1. Origin and evolution of the ligand-binding ability of nuclear receptors.

    PubMed

    Markov, Gabriel V; Laudet, Vincent

    2011-03-01

    The origin of the ligand-binding ability of nuclear receptors is still a matter of discussion. Current opposing models are the early evolution of an ancestral receptor that would bind a specific ligand with high affinity and the early evolution of an ancestral orphan that was a constitutive transcription factor. Here we review the arguments in favour or against these two hypotheses, and we discuss an alternative possibility that the ancestor was a ligand sensor, which would be able to explain the apparently contradictory data generated in previous models for the evolution of ligand binding in nuclear receptors. PMID:21055443

  2. Functional phylogenetics reveals contributions of pleiotropic peptide action to ligand-receptor coevolution

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The evolution of peptidergic signaling has been accompanied by a significant degree of ligand-receptor coevolution. Closely related clusters of peptide signaling molecules are observed to activate related groups of receptors, implying that genes encoding these ligands may orchestrate an array of fu...

  3. Novel photoaffinity ligands for the GA-receptor

    SciTech Connect

    Suttle, J.C.; Hultstrand, J.F.; Tanaka, F.S. )

    1990-05-01

    Previous studies from this laboratory have shown that certain N-substituted phthalimides (NSPs) exhibit GA-like activity in a range of specific bioassays and that bioactive NSPs compete with ({sup 3}H)-GA{sub 4} for soluble binding sites in cucumber homogenates. As such, these compounds may prove useful in the purification and characterization of GA receptor proteins. To this end, five azido-NSPs have been synthesized and are currently being screened for biological activity and photochemical stability. Three azido-NSPs elicit {alpha}-amylase production in barley half-seeds and stimulate tissue elongation in d{sub 5} maize, lettuce, sunflower, and soybean. Further evaluations are in progress and these data as well as the utility of these compounds as photo-affinity ligands will be discussed.

  4. Prolonged signaling at the parathyroid hormone receptor by peptide ligands targeted to a specific receptor conformation

    PubMed Central

    Okazaki, Makoto; Ferrandon, Sebastien; Vilardaga, Jean-Pierre; Bouxsein, Mary L.; Potts, John T.; Gardella, Thomas J.

    2008-01-01

    The parathyroid hormone receptor (PTHR) is a class B G protein-coupled receptor that plays critical roles in bone and mineral ion metabolism. Ligand binding to the PTHR involves interactions to both the amino-terminal extracellular (N) domain, and transmembrane/extracellular loop, or juxtamembrane (J) regions of the receptor. Recently, we found that PTH(1–34), but not PTH-related protein, PTHrP(1–36), or M-PTH(1–14) (M = Ala/Aib1,Aib3,Gln10,Har11,Ala12,Trp14,Arg19), binds to the PTHR in a largely GTPγS-resistant fashion, suggesting selective binding to a novel, high-affinity conformation (R0), distinct from the GTPγS-sensitive conformation (RG). We examined the effects in vitro and in vivo of introducing the M substitutions, which enhance interaction to the J domain, into PTH analogs extended C-terminally to incorporate residues involved in the N domain interaction. As compared with PTH(1–34), M-PTH(1–28) and M-PTH(1–34) bound to R0 with higher affinity, produced more sustained cAMP responses in cells, formed more stable complexes with the PTHR in FRET and subcellular localization assays, and induced more prolonged calcemic and phosphate responses in mice. Moreover, after 2 weeks of daily injection in mice, M-PTH(1–34) induced larger increases in trabecular bone volume and greater increases in cortical bone turnover, than did PTH(1–34). Thus, the putative R0 PTHR conformation can form highly stable complexes with certain PTH ligand analogs and thereby mediate surprisingly prolonged signaling responses in bone and/or kidney PTH target cells. Controlling, via ligand analog design, the selectivity with which a PTH ligand binds to R0, versus RG, may be a strategy for optimizing signaling duration time, and hence therapeutic efficacy, of PTHR agonist ligands. PMID:18946036

  5. Imaging of a glioma using peripheral benzodiazepine receptor ligands

    SciTech Connect

    Starosta-Rubinstein, S.; Ciliax, B.J.; Penney, J.B.; McKeever, P.; Young, A.B.

    1987-02-01

    Two types of benzodiazepine receptors have been demonstrated in mammalian tissues, one which is localized on neuronal elements in brain and the other, on glial cells and in peripheral tissues such as kidney. In vivo administration of /sup 3/H-labeled PK 11195 (1-(2-chlorophenyl-N-methyl-N-(1-methylpropyl)-3-isoquinoline carboxamide) or (/sup 3/H)flunitrazepam with 5 mg of clonazepam per kg to rats with intracranial C6 gliomas resulted in high levels of tritiated-drug binding to the tumor as shown by quantitative autoradiography. Pharmacological studies indicated that the bound drugs labeled the peripheral benzodiazepine binding site. Binding to the peripheral benzodiazepine site was confirmed primarily to malignant cells with little binding to adjacent normal brain tissue or to necrotic tissue. Tumor cell binding was completely inhibited by preadministration of the peripheral benzodiazepine blocking agent PK 11195 at 5 mg/kg. The centrally selective benzodiazepine ligand clonazepam had no effect on PK 11195 binding to the tumor cells. When binding to other tumor cell lines grown in nude mice and nude athymic rats was evaluated, little or no peripheral benzodiazepine binding was detected on human pheochromocytoma (RN1) and neuroblastoma (SK-N-MC, SK-N-SH) tumor cells, respectively. However, high densities of peripheral benzodiazepine binding sites were observed on tumors derived from a human glioma cell line (ATCC HTB 14, U-87 MG). The presence of high concentrations of specific peripheral benzodiazepine receptors on glial tumors suggests that human primary central nervous system tumors could be imaged and diagnosed using peripheral benzodiazepine ligands labeled with positron- or gamma-emitting isotopes.

  6. Development of radioiodinated receptor ligands for cerebral single photon emission tomography

    SciTech Connect

    Knapp, F.F. Jr.; McPherson, D.W.

    1992-01-01

    In the last decade the use of radiolabeled ligands for the imaging of cerebral receptors by emission computed tomography (ECT) has seen rapid growth. The opportunity to routinely perform cerebral single photon emission tomography (SPET) with iodine-123-labeled ligands depends on the availability of receptor ligands into which iodine can be introduced without decreasing the required high target receptor specificity. The use of iodine-123-labeled receptor-specific ligands also depends on the availability of high purity iodine-123 at reasonable costs and the necessary imaging instrumentation. In this paper, the development and current stage of evaluation of various iodine-123-labeled ligands for SPET imaging of dopaminergic, serotonergic and muscarinic acetylcholinergic receptor classes are discussed.

  7. Development of radioiodinated receptor ligands for cerebral single photon emission tomography

    SciTech Connect

    Knapp, F.F. Jr.; McPherson, D.W.

    1992-03-01

    In the last decade the use of radiolabeled ligands for the imaging of cerebral receptors by emission computed tomography (ECT) has seen rapid growth. The opportunity to routinely perform cerebral single photon emission tomography (SPET) with iodine-123-labeled ligands depends on the availability of receptor ligands into which iodine can be introduced without decreasing the required high target receptor specificity. The use of iodine-123-labeled receptor-specific ligands also depends on the availability of high purity iodine-123 at reasonable costs and the necessary imaging instrumentation. In this paper, the development and current stage of evaluation of various iodine-123-labeled ligands for SPET imaging of dopaminergic, serotonergic and muscarinic acetylcholinergic receptor classes are discussed.

  8. Bioluminescent Ligand-Receptor Binding Assays for Protein or Peptide Hormones.

    PubMed

    Liu, Ya-Li; Guo, Zhan-Yun

    2016-01-01

    Bioluminescence has been widely used in biomedical research due to its high sensitivity, low background, and broad linear range. In recent studies, we applied bioluminescence to ligand-receptor binding assays for some protein or peptide hormones based on a newly developed small monomeric Nanoluciferase (NanoLuc) reporter that has the so far brightest bioluminescence. The conventional ligand-receptor binding assays rely on radioligands that have drawbacks, such as radioactive hazards and short shelf lives. In contrast, the novel bioluminescent binding assays use the NanoLuc-based protein or peptide tracers that are safe, stable, and ultrasensitive. Thus, the novel bioluminescent ligand-receptor binding assay would be applied to more and more protein or peptide hormones for ligand-receptor interaction studies in future. In the present article, we provided detailed protocols for setting up the novel bioluminescent ligand-receptor binding assays using two representative protein hormones as examples. PMID:27424896

  9. The Quantum Nature of Drug-Receptor Interactions: Deuteration Changes Binding Affinities for Histamine Receptor Ligands

    PubMed Central

    Repič, Matej; Zakšek, Maja; Kotnik, Kristina; Fijan, Estera; Mavri, Janez

    2016-01-01

    In this article we report a combined experimental and computational study concerning the effects of deuteration on the binding of histamine and two other histaminergic agonists to 3H-tiotidine-labeled histamine H2 receptor in neonatal rat astrocytes. Binding affinities were measured by displacing radiolabeled tiotidine from H2 receptor binding sites present on cultured neonatal rat astrocytes. Quantum-chemical calculations were performed by employing the empirical quantization of nuclear motion within a cluster model of the receptor binding site extracted from the homology model of the entire H2 receptor. Structure of H2 receptor built by homology modelling is attached in the supporting information (S1 Table) Experiments clearly demonstrate that deuteration affects the binding by increasing the affinity for histamine and reducing it for 2-methylhistamine, while basically leaving it unchanged for 4-methylhistamine. Ab initio quantum-chemical calculations on the cluster system extracted from the homology H2 model along with the implicit quantization of the acidic N–H and O–H bonds demonstrate that these changes in the binding can be rationalized by the altered strength of the hydrogen bonding upon deuteration known as the Ubbelohde effect. Our computational analysis also reveals a new mechanism of histamine binding, which underlines an important role of Tyr250 residue. The present work is, to our best knowledge, the first study of nuclear quantum effects on ligand receptor binding. The ligand H/D substitution is relevant for therapy in the context of perdeuterated and thus more stable drugs that are expected to enter therapeutic practice in the near future. Moreover, presented approach may contribute towards understanding receptor activation, while a distant goal remains in silico discrimination between agonists and antagonists based on the receptor structure. PMID:27159606

  10. The Quantum Nature of Drug-Receptor Interactions: Deuteration Changes Binding Affinities for Histamine Receptor Ligands.

    PubMed

    Kržan, Mojca; Vianello, Robert; Maršavelski, Aleksandra; Repič, Matej; Zakšek, Maja; Kotnik, Kristina; Fijan, Estera; Mavri, Janez

    2016-01-01

    In this article we report a combined experimental and computational study concerning the effects of deuteration on the binding of histamine and two other histaminergic agonists to 3H-tiotidine-labeled histamine H2 receptor in neonatal rat astrocytes. Binding affinities were measured by displacing radiolabeled tiotidine from H2 receptor binding sites present on cultured neonatal rat astrocytes. Quantum-chemical calculations were performed by employing the empirical quantization of nuclear motion within a cluster model of the receptor binding site extracted from the homology model of the entire H2 receptor. Structure of H2 receptor built by homology modelling is attached in the supporting information (S1 Table) Experiments clearly demonstrate that deuteration affects the binding by increasing the affinity for histamine and reducing it for 2-methylhistamine, while basically leaving it unchanged for 4-methylhistamine. Ab initio quantum-chemical calculations on the cluster system extracted from the homology H2 model along with the implicit quantization of the acidic N-H and O-H bonds demonstrate that these changes in the binding can be rationalized by the altered strength of the hydrogen bonding upon deuteration known as the Ubbelohde effect. Our computational analysis also reveals a new mechanism of histamine binding, which underlines an important role of Tyr250 residue. The present work is, to our best knowledge, the first study of nuclear quantum effects on ligand receptor binding. The ligand H/D substitution is relevant for therapy in the context of perdeuterated and thus more stable drugs that are expected to enter therapeutic practice in the near future. Moreover, presented approach may contribute towards understanding receptor activation, while a distant goal remains in silico discrimination between agonists and antagonists based on the receptor structure. PMID:27159606

  11. Selectively Promiscuous Opioid Ligands: Discovery of High Affinity/Low Efficacy Opioid Ligands with Substantial Nociceptin Opioid Peptide Receptor Affinity

    PubMed Central

    2015-01-01

    Emerging clinical and preclinical evidence suggests that a compound displaying high affinity for μ, κ, and δ opioid (MOP, KOP, and DOP) receptors and antagonist activity at each, coupled with moderate affinity and efficacy at nociceptin opioid peptide (NOP) receptors will have utility as a relapse prevention agent for multiple types of drug abuse. Members of the orvinol family of opioid ligands have the desired affinity profile but have typically displayed substantial efficacy at MOP and or KOP receptors. In this study it is shown that a phenyl ring analogue (1d) of buprenorphine displays the desired profile in vitro with high, nonselective affinity for the MOP, KOP, and DOP receptors coupled with moderate affinity for NOP receptors. In vivo, 1d lacked any opioid agonist activity and was an antagonist of both the MOP receptor agonist morphine and the KOP receptor agonist ethylketocyclazocine, confirming the desired opioid receptor profile in vivo. PMID:24761755

  12. Development and validation of a novel protein-ligand fingerprint to mine chemogenomic space: application to G protein-coupled receptors and their ligands.

    PubMed

    Weill, Nathanael; Rognan, Didier

    2009-04-01

    The present study introduces a novel low-dimensionality fingerprint encoding both ligand and target properties which is suitable to mine protein-ligand chemogenomic space. Whereas ligand properties have been represented by standard descriptors, protein cavities are encoded by a fixed length bit string describing pharmacophoric properties of a definite number of binding site residues. In order to simplify the cavity fingerprint, the concept was applied here to a unique family of targets (G protein-coupled receptors) with a homogeneous cavity description. Particular attention was given to set up data sets of really diverse protein-ligand pairs covering as exhaustively as possible both ligand and target spaces. Several machine learning classification algorithms were trained on two sets of roughly 200000 receptor-ligand fingerprints with a different definition of inactive decoys. Cross-validated models show excellent precision (>0.9) in distinguishing true from false pairs with a particular preference for support vector machine classifiers. When applied to two external test sets of GPCR ligands, the most predictive models were not those performing the best in the previous cross-validation. The ability to recover true GPCR ligands (ligand prediction mode) or true GPCRs (receptor prediction mode) depends on multiple parameters: the molecular complexity of the ligands, the chemical space from which ligand decoys are selected to generate false protein-ligand pairs, and the target space under consideration. In most cases, predicting ligands is easier than predicting receptors. Although receptor profiling is possible, it probably requires a more detailed description of the ligand-binding site. Noteworthy, protein-ligand fingerprints outperform the corresponding ligand fingerprints in mining the GPCR-ligand space. Since they can be applied to a much larger number of receptors than ligand-based fingerprints, protein-ligand fingerprints represent a novel and promising way to

  13. The Tryptophan-Derived Endogenous Aryl Hydrocarbon Receptor Ligand 6-Formylindolo[3,2-b]Carbazole Is a Nanomolar UVA Photosensitizer in Epidermal Keratinocytes.

    PubMed

    Park, Sophia L; Justiniano, Rebecca; Williams, Joshua D; Cabello, Christopher M; Qiao, Shuxi; Wondrak, Georg T

    2015-06-01

    Endogenous UVA chromophores may act as sensitizers of oxidative stress underlying cutaneous photoaging and photocarcinogenesis, but the molecular identity of non-DNA key chromophores displaying UVA-driven photodyamic activity in human skin remains largely undefined. Here we report that 6-formylindolo[3,2-b]carbazole (FICZ), a tryptophan photoproduct and endogenous high-affinity aryl hydrocarbon receptor (AhR) agonist, acts as a nanomolar photosensitizer potentiating UVA-induced oxidative stress irrespective of AhR ligand activity. In human HaCaT and primary epidermal keratinocytes, photodynamic induction of apoptosis was elicited by the combined action of solar-simulated UVA and FICZ, whereas exposure to the isolated action of UVA or FICZ did not impair viability. In a human epidermal tissue reconstruct, FICZ/UVA cotreatment caused pronounced phototoxicity inducing keratinocyte cell death, and FICZ photodynamic activity was also substantiated in a murine skin exposure model. Array analysis revealed pronounced potentiation of cellular heat shock, endoplasmic reticulum stress, and oxidative stress response gene expression observed only upon FICZ/UVA cotreatment. FICZ photosensitization caused intracellular oxidative stress, and comet analysis revealed introduction of formamidopyrimidine-DNA glycosylase (Fpg)-sensitive oxidative DNA lesions suppressible by antioxidant cotreatment. Taken together, our data demonstrate that the endogenous AhR ligand FICZ displays nanomolar photodynamic activity representing a molecular mechanism of UVA-induced photooxidative stress potentially operative in human skin. PMID:25431849

  14. The tryptophan-derived endogenous arylhydrocarbon receptor ligand 6-formylindolo[3,2-b]carbazole (FICZ) is a nanomolar UVA-photosensitizer in epidermal keratinocytes

    PubMed Central

    Williams, Joshua D.; Cabello, Christopher M.; Qiao, Shuxi; Wondrak, Georg T.

    2014-01-01

    Endogenous UVA-chromophores may act as sensitizers of oxidative stress underlying cutaneous photoaging and photocarcinogenesis, but the molecular identity of non-DNA key chromophores displaying UVA-driven photodyamic activity in human skin remains largely undefined. Here we report that 6-formylindolo[3,2-b]carbazole (FICZ), a tryptophan photoproduct and endogenous high affinity aryl hydrocarbon receptor (AhR) agonist, acts as a nanomolar photosensitizer potentiating UVA-induced oxidative stress irrespective of AhR ligand activity. In human HaCaT and primary epidermal keratinocytes, photodynamic induction of apoptosis was elicited by the combined action of solar simulated UVA and FICZ, whereas exposure to the isolated action of UVA or FICZ did not impair viability. In a human epidermal tissue reconstruct, FICZ/UVA-cotreatment caused pronounced phototoxicity inducing keratinocyte cell death, and FICZ photodynamic activity was also substantiated in a murine skin exposure model. Array analysis revealed pronounced potentiation of cellular heat shock, ER stress, and oxidative stress response gene expression observed only upon FICZ/UVA-cotreatment. FICZ photosensitization caused intracellular oxidative stress, and comet analysis revealed introduction of formamidopyrimidine-DNA glycosylase (FPG)-sensitive oxidative DNA lesions suppressible by antioxidant cotreatment. Taken together, our data demonstrate that the endogenous AhR ligand FICZ displays nanomolar photodynamic activity representing a molecular mechanism of UVA-induced photooxidative stress potentially operative in human skin. PMID:25431849

  15. Discriminative stimulus effects of the imidazoline I2 receptor ligands BU224 and phenyzoline in rats.

    PubMed

    Qiu, Yanyan; Zhang, Yanan; Li, Jun-Xu

    2015-02-15

    Although imidazoline I2 receptor ligands have been used as discriminative stimuli, the role of efficacy of I2 receptor ligands as a critical determinant in drug discrimination has not been explored. This study characterized the discriminative stimulus effects of selective imidazoline I2 receptor ligands BU224 (a low-efficacy I2 receptor ligand) and phenyzoline (a higher efficacy I2 receptor ligand) in rats. Two groups of male Sprague-Dawley rats were trained to discriminate 5.6mg/kg BU224 or 32mg/kg phenyzoline (i.p.) from their vehicle in a two-lever food-reinforced drug discrimination procedure, respectively. All rats acquired the discriminations after an average of 18 (BU224) and 56 (phenyzoline) training sessions, respectively. BU224 and phenyzoline completely substituted for one another symmetrically. Several I2 receptor ligands (tracizoline, CR4056, RS45041, and idazoxan) all occasioned>80% drug-associated lever responding in both discriminations. The I2 receptor ligand 2-BFI and a monoamine oxidase inhibitor harmane occasioned>80% drug-associated lever responding in rats discriminating BU224. Other drugs that occasioned partial or less substitution to BU224 cue included clonidine, methamphetamine, ketamine, morphine, methadone and agmatine. Clonidine, methamphetamine and morphine also only produced partial substitution to phenyzoline cue. Naltrexone, dopamine D2 receptor antagonist haloperidol and serotonin (5-HT)2A receptor antagonist MDL100907 failed to alter the discriminative stimulus effects of BU224 or phenyzoline. Combined, these results are the first to demonstrate that BU224 and phenyzoline can serve as discriminative stimuli and that the low-efficacy I2 receptor ligand BU224 shares similar discriminative stimulus effects with higher-efficacy I2 receptor ligands such as phenyzoline and 2-BFI. PMID:25617792

  16. Discriminative stimulus effects of the imidazoline I2 receptor ligands BU224 and phenyzoline in rats

    PubMed Central

    Qiu, Yanyan; Zhang, Yanan; Li, Jun-Xu

    2015-01-01

    Although imidazoline I2 receptor ligands have been used as discriminative stimuli, the role of efficacy of I2 receptor ligands as a critical determinant in drug discrimination has not been explored. This study characterized the discriminative stimulus effects of selective imidazoline I2 receptor ligands BU224 (a low-efficacy I2 receptor ligand) and phenyzoline (a higher efficacy I2 receptor ligand) in rats. Two groups of male Sprague-Dawley rats were trained to discriminate 5.6 mg/kg BU224 or 32 mg/kg phenyzoline (i.p.) from their vehicle in a two-lever food-reinforced drug discrimination procedure, respectively. All rats acquired the discriminations after an average of 18 (BU224) and 56 (phenyzoline) training sessions, respectively. BU224 and phenyzoline completely substituted for one another symmetrically. Several I2 receptor ligands (tracizoline, CR4056, RS45041, and idazoxan) all occasioned > 80% drug-associated lever responding in both discriminations. The I2 receptor ligand 2-BFI and a monoamine oxidase inhibitor harmane occasioned > 80% drug-associated lever responding in rats discriminating BU224. Other drugs that occasioned partial or less substitution to BU224 cue included clonidine, methamphetamine, ketamine, morphine, methadone and agmatine. Clonidine, methamphetamine and morphine also only produced partial substitution to phenyzoline cue. Naltrexone, dopamine D2 receptor antagonist haloperidol and serotonin (5-HT) 2A receptor antagonist MDL100907 failed to alter the discriminative stimulus effects of BU224 or phenyzoline. Combined, these results are the first to demonstrate that BU224 and phenyzoline can serve as discriminative stimuli and that the low-efficacy I2 receptor ligand BU224 shares similar discriminative stimulus effects with higher-efficacy I2 receptor ligands such as phenyzoline and 2-BFI. PMID:25617792

  17. Progesterone in pregnancy; receptor-ligand interaction and signaling pathways.

    PubMed

    Szekeres-Bartho, Julia; Halasz, Melinda; Palkovics, Tamas

    2009-12-01

    Progesterone is indispensable in creating a suitable endometrial environment for implantation, and also for the maintenance of pregnancy. Successful pregnancy depends on an appropriate maternal immune response to the fetus. Along with its endocrine effects, progesterone also acts as an "immunosteroid", by contributing to the establishment of a pregnancy protective immune milieu. Progesterone plays a role in uterine homing of NK cells and upregulates HLA-G gene expression, the ligand for NK inhibitory and activating receptors. At high concentrations, progesterone is a potent inducer of Th2-type cytokines as well as of LIF and M-CSF production by T cells. A protein called progesterone-induced blocking factor (PIBF), by inducing a Th2-dominant cytokine production mediates the immunological effects of progesterone. PIBF binds to a novel type of the IL-4 receptor and signals via the Jak/STAT pathway, to induce a number of genes, that not only affect the immune response, but might also play a role in trophoblast invasiveness. PMID:19880194

  18. Muscarinic acetylcholine receptors: location of the ligand binding site

    SciTech Connect

    Hulme, E.; Wheatley, M.; Curtis, C.; Birdsall, N.

    1987-05-01

    The key to understanding the pharmacological specificity of muscarinic acetylcholine receptors (mAChR's) is the location within the receptor sequence of the amino acid residues responsible for ligand binding. To approach this problem, they have purified mAChR's from rat brain to homogeneity by sequential ion-exchange chromatography, affinity chromatography and molecular weight fractionation. Following labelling of the binding site with an alkylating affinity label, /sup 3/H-propylbenzilycholine mustard aziridinium ion (/sup 3/H-PrBCM), the mAChR was digested with a lysine-specific endoproteinase, and a ladder of peptides of increasing molecular weight, each containing the glycosylated N-terminus, isolated by chromatography on wheat-germ agglutinin sepharose. The pattern of labelling showed that a residue in the peptides containing transmembrane helices 2 and/or 3 of the mAChR was alkylated. The linkage was cleaved by 1 M hydroxylamine, showing that /sup 3/H-PrBCM was attached to an acidic residue, whose properties strongly suggested it to be embedded in a hydrophobic intramembrane region of the mAChR. Examination of the cloned sequence of the mAChR reveals several candidate residues, the most likely of which is homologous to an aspartic acid residue thought to protonate the retinal Schiff's base in the congeneric protein rhodopsin.

  19. Labeling of receptor ligands and other compounds with halogen radionuclides

    SciTech Connect

    Welch, M.J. . Edward Mallinckrodt Inst. of Radiology)

    1989-08-01

    Major advances have been made in all the areas. Specifically, patient studies have been carried out. This work has shown that the uptake of fluorine-18 labeled 16{alpha}-fluoroestradiol-17{beta} correlates well with receptor levels measured in vivo and also that the uptake of the tracer is blocked in humans by the administration of the antiestrogen tamoxifen. An image from this work was designated Image of the Year by Dr. Wagner, Jr., following his summary of the 1987 Society of Nuclear Medicine Meeting. We have also evaluated the brain uptake of both estrogen and progesterone, and this work was awarded the Berson-Yalow Award from the Society of Nuclear Medicine in 1988. This publication represents a new application of radiolabeled sex hormones. Hines and coworkers have suggested that hormone levels in the brain are important for sexual differentiation of human behavior. We have shown that both 16{alpha}-(F-18)-fluoroestradiol-17{beta} and 21-(F-18)-fluoro-16{alpha}-ethyl-19-norprogesterone (FENP) accumulate in the hypothalamus and pituitary tissues of primates and humans; and in primates this uptake can be blocked by administration of nonradioactive competing ligands. This presents an opportunity for studying sex hormone receptors in mammalian brain.

  20. Synergism of aromatic amines and benzo[a]pyrene in induction of Ah receptor-dependent genes.

    PubMed

    Borza, Alexandra; Plöttner, Sabine; Wolf, Alexander; Behm, Claudia; Selinski, Silvia; Hengstler, Jan G; Roos, Peter H; Bolt, Hermann M; Kuhlmann, Jürgen; Föllmann, Wolfram

    2008-12-01

    Aromatic amines have been shown to cause bladder cancer. However, epithelial cells of the urinary bladder, cells of origin of bladder cancer, may be exposed to numerous substances besides aromatic amines. In the present study, we analysed possible interactions between the aromatic amines 4-aminobiphenyl (4-ABP) as well as 2-naphthylamine (2-NA) and the polycyclic aromatic hydrocarbon benzo[a]pyrene (B[a]P). For this purpose we incubated primary porcine urinary bladder epithelial cells (PUBEC) with concentrations of 1 to 50 microM 4-ABP with and without co-exposure to B[a]P. As expected B[a]P increased mRNA expression of cytochrome P450 1A1 (CYP1A1), whereas 4-ABP had no effect. However, when co-exposed 4-ABP enhanced the induction of CYP1A1 by B[a]P. This result was confirmed by Western blot analysis of CYP1A1 protein expression. A similar effect as for CYP1A1 was also observed for cyclooxygenase-2 (COX-2) and UDP-glucuronosyltransferase 1 (UGT1). Next, we studied co-exposures of 2-NA and B[a]P. Similar as for 4-ABP also 2-NA enhanced B[a]P-mediated induction of CYP1A1. Our results demonstrate that some aromatic amines may enhance the influence of B[a]P on Ah receptor-dependent genes. PMID:18989657

  1. Acetylcholine receptors and cholinergic ligands: biochemical and genetic aspects in Torpedo californica and Drosophila melanogaster

    SciTech Connect

    Rosenthal, L.S.

    1987-01-01

    This study evaluates the biochemical and genetic aspects of the acetylcholine receptor proteins and cholinergic ligands in Drosophila melanogaster and Torpedo californica. Included are (1) a comparative study of nicotinic ligand-induced cation release from acetylcholine receptors isolated from Torpedo californica and from Drosophila melanogaster, (2) solution studies of the cholinergic ligands, nikethamide and ethamivan, aimed at measuring internal molecular rotational barriers in solvents of different polarity; and (3) the isolation and characterization of the gene(s) for the acetylcholine receptor in Drosophila melasogaster. Acetylcholine receptor proteins isolated from Drosphila melanogaster heads were found to behave kinetically similar (with regards to cholinergic ligand-induced /sup 155/Eu:/sup 3 +/ displacement from prelabeled proteins) to receptor proteins isolated from Torpedo californica electric tissue, providing additional biochemical evidence for the existence of a Drosophila acetylcholine receptor.

  2. Design and synthesis of dual 5-HT1A and 5-HT7 receptor ligands.

    PubMed

    Ofori, Edward; Zhu, Xue Y; Etukala, Jagan R; Peprah, Kwakye; Jordan, Kamanski R; Adkins, Adia A; Bricker, Barbara A; Kang, Hye J; Huang, Xi-Ping; Roth, Bryan L; Ablordeppey, Seth Y

    2016-08-15

    5-HT1A and 5-HT7 receptors have been at the center of discussions recently due in part to their major role in the etiology of major central nervous system diseases such as depression, sleep disorders, and schizophrenia. As part of our search to identify dual targeting ligands for these receptors, we have carried out a systematic modification of a selective 5HT7 receptor ligand culminating in the identification of several dual 5-HT1A and 5-HT7 receptor ligands. Compound 16, a butyrophenone derivative of tetrahydroisoquinoline (THIQ), was identified as the most potent agent with low nanomolar binding affinities to both receptors. Interestingly, compound 16 also displayed moderate affinity to other clinically relevant dopamine receptors. Thus, it is anticipated that compound 16 may serve as a lead for further exploitation in our quest to identify new ligands with the potential to treat diseases of CNS origin. PMID:27312422

  3. Pharmacological profiles of the metabotropic glutamate receptor ligands.

    PubMed

    Naples, M A; Hampson, D R

    2001-01-01

    Metabotropic glutamate receptors (mGluRs) are a family of G-protein coupled receptors that are expressed in the central and peripheral nervous systems. The purpose of this study was to compare the ligand binding selectivity profiles of the mGluR agonist [(3)H]L-AP4 and the novel radiolabeled phenylglycine antagonist [(3)H]CPPG at all eight rat mGluR subtypes expressed in transfected human embryonic kidney cells. At a concentration of 30 nM [(3)H]L-AP4, no specific binding was detected in membranes expressing the group I receptors mGluR1a or mGluR5a, or in membranes expressing the group II mGluRs, mGluR2 and mGluR3. Among the group III mGluRs, specific [(3)H]L-AP4 binding was detected in cells expressing mGluR4a and mGluR8a but not in cells expressing mGluR6 or mGluR7a. The binding of [(3)H]CPPG showed an exceptional pattern of selectivity amongst the mGluR subtypes; at a concentration of 20 nM [(3)H]CPPG, a high level of specific binding was seen in membranes containing mGluR8a but not in any of the other mGluR subtypes. The affinity constant (K(D)) calculated for [(3)H]CPPG binding to mGluR8a was 183 nM. In competition experiments, the phosphono-substituted phenylglycine congeners including MPPG, (RS)-PPG, and unlabeled CPPG were the most potent inhibitors of [(3)H]CPPG binding while non-phosphonated compounds such as L-glutamate and MCPG were substantially less potent. These results demonstrate that [(3)H]L-AP4 and [(3)H]CPPG can be used as probes to selectively label group III mGluRs and that CPPG and related phenylglycine derivatives are useful for studying differences in the ligand recognition sites of highly homologous mGluRs. PMID:11114395

  4. Fluorescent Approaches for Understanding Interactions of Ligands with G Protein Coupled Receptors

    PubMed Central

    Sridharan, Rajashri; Zuber, Jeffrey; Connelly, Sara M.; Mathew, Elizabeth; Dumont, Mark E.

    2014-01-01

    G Protein Coupled Receptors (GPCRs) are responsible for a wide variety of signaling responses in diverse cell types. Despite major advances in the determination of structures of this class of receptors, the underlying mechanisms by which binding of different types of ligands specifically elicits particular signaling responses remains unclear. The use of fluorescence spectroscopy can provide important information about the process of ligand binding and ligand dependent conformational changes in receptors, especially kinetic aspects of these processes, that can be difficult to extract from x-ray structures. We present an overview of the extensive array of fluorescent ligands that have been used in studies of GPCRs and describe spectroscopic approaches for assaying binding and probing the environment of receptor-bound ligands with particular attention to examples involving yeast pheromone receptors. In addition, we discuss the use of fluorescence spectroscopy for detecting and characterizing conformational changes in receptors induced by the binding of ligands. Such studies have provided strong evidence for diversity of receptor conformations elicited by different ligands, consistent with the idea that GPCRs are not simple on and off switches. This diversity of states constitutes an underlying mechanistic basis for biased agonism, the observation that different stimuli can produce different responses from a single receptor. It is likely that continued technical advances will allow fluorescence spectroscopy to play an important role in continued probing of structural transitions in GPCRs. PMID:24055822

  5. Connecting Prognostic Ligand Receptor Signaling Loops in Advanced Ovarian Cancer

    PubMed Central

    Eng, Kevin H.; Ruggeri, Christina

    2014-01-01

    Understanding cancer cell signal transduction is a promising lead for uncovering therapeutic targets and building treatment-specific markers for epithelial ovarian cancer. To brodaly assay the many known transmembrane receptor systems, previous studies have employed gene expression data measured on high-throughput microarrays. Starting with the knowledge of validated ligand-receptor pairs (LRPs), these studies postulate that correlation of the two genes implies functional autocrine signaling. It is our goal to consider the additional weight of evidence that prognosis (progression-free survival) can bring to prioritize ovarian cancer specific signaling mechanism. We survey three large studies of epithelial ovarian cancers, with gene expression measurements and clinical information, by modeling survival times both categorically (long/short survival) and continuously. We use differential correlation and proportional hazards regression to identify sets of LRPs that are both prognostic and correlated. Of 475 candidate LRPs, 77 show reproducible evidence of correlation; 55 show differential correlation. Survival models identify 16 LRPs with reproduced, significant interactions. Only two pairs show both interactions and correlation (PDGFAPDGFRA and COL1A1CD44) suggesting that the majority of prognostically useful LRPs act without positive feedback. We further assess the connectivity of receptors using a Gaussian graphical model finding one large graph and a number of smaller disconnected networks. These LRPs can be organized into mutually exclusive signaling clusters suggesting different mechanisms apply to different patients. We conclude that a mix of autocrine and endocrine LRPs influence prognosis in ovarian cancer, there exists a heterogenous mix of signaling themes across patients, and we point to a number of novel applications of existing targeted therapies which may benefit ovarian cancer. PMID:25244152

  6. Allosteric Modulation of G Protein Coupled Receptors by Cytoplasmic, Transmembrane and Extracellular Ligands

    PubMed Central

    Yanamala, Naveena; Klein-Seetharaman, Judith

    2010-01-01

    G protein coupled receptors (GPCRs) bind diverse classes of ligands, and depending on the receptor, these may bind in their transmembrane or the extracellular domains, demonstrating the principal ability of GPCRs to bind ligand in either domains. Most recently, it was also observed that small molecule ligands can bind in the cytoplasmic domain, and modulate binding and response to extracellular or transmembrane ligands. Thus, all three domains in GPCRs are potential sites for allosteric ligands, and whether a ligand is allosteric or orthosteric depends on the receptor. Here, we will review the evidence supporting the presence of putative binding pockets in all three domains of GPCRs and discuss possible pathways of communication between these pockets. PMID:24009470

  7. Pleiotropic effects of gold(I) mixed-ligand complexes of 9-deazahypoxanthine on transcriptional activity of receptors for steroid hormones, nuclear receptors and xenoreceptors in human hepatocytes and cell lines.

    PubMed

    Kubešová, Kateřina; Trávníček, Zdeněk; Dvořák, Zdeněk

    2016-10-01

    Development of metal-based compounds is an important research avenue in anti-cancer and anti-inflammatory drug discovery. Here we examined the effects of three gold (I) mixed-ligand complexes with the general formula [Au(Ln)(PPh3)] (1, 2, 3) involving triphenylphosphine (PPh3) and a deprotonated form of O-substituted derivatives of 9-deazahypoxanthine (Ln) on the transcriptional activity of aryl hydrocarbon receptor (AhR), androgen receptor (AR), glucocorticoid receptor (GR), thyroid receptor (TR), pregnane X receptor (PXR) and vitamin D receptor (VDR), employing gene reporter assays. In addition, we measured mRNA (RT-PCR) and protein (western blot) expression of target genes for those receptors, including drug-metabolizing P450s, in primary human hepatocytes and cancer cell lines LS180 and HepG2. The tested compounds displayed anti-glucocorticoid effects, as revealed by inhibition of dexamethasone-inducible transcriptional activity of GR and down-regulation of tyrosine aminotransferase. All the compounds slightly and dose-dependently activated PXR and AhR, and moderately induced CYP3A4 and CYP1A1/2 genes in human hepatocytes and LS180 cells. The complexes antagonized basal and ligand-activated AR and VDR, indicating inverse agonist behaviour. Both basal and thyroid hormone-inducible transcriptional activity of TR was dose-dependently increased by all tested compounds. In contrast, the expression of SPOT14 mRNA was decreased by tested compounds in human hepatocytes and HepG2 cells. In conclusion, if intended for human pharmacotherapy, the potential of the complexes 1-3 to influence studied receptors should be taken in account. PMID:27318977

  8. Biased ligands for better cardiovascular drugs: dissecting G-protein-coupled receptor pharmacology.

    PubMed

    DeWire, Scott M; Violin, Jonathan D

    2011-07-01

    Drug discovery efforts targeting G-protein-coupled receptors (GPCR) have been immensely successful in creating new cardiovascular medicines. Currently marketed GPCR drugs are broadly classified as either agonists that activate receptors or antagonists that prevent receptor activation by endogenous stimuli. However, GPCR couple to a multitude of intracellular signaling pathways beyond classical G-protein signals, and these signals can be independently activated by biased ligands to vastly expand the potential for new drugs at these classic targets. By selectively engaging only a subset of a receptor's potential intracellular partners, biased ligands may deliver more precise therapeutic benefit with fewer side effects than current GPCR-targeted drugs. In this review, we discuss the history of biased ligand research, the current understanding of how biased ligands exert their unique pharmacology, and how research into GPCR signaling has uncovered previously unappreciated capabilities of receptor pharmacology. We focus on several receptors to illustrate the approaches taken and discoveries made, and how these are steadily illuminating the intricacies of GPCR pharmacology. Discoveries of biased ligands targeting the angiotensin II type 1 receptor and of separable pharmacology suggesting the potential value of biased ligands targeting the β-adrenergic receptors and nicotinic acid receptor GPR109a highlight the powerful clinical promise of this new category of potential therapeutics. PMID:21737816

  9. Ah receptor expression in cardiomyocytes protects adult female mice from heart dysfunction induced by TCDD exposure.

    PubMed

    Kurita, Hisaka; Carreira, Vinicius S; Fan, Yunxia; Jiang, Min; Naticchioni, Mindi; Koch, Sheryl; Rubinstein, Jack; Puga, Alvaro

    2016-04-29

    Epidemiological studies in humans and experimental work in rodents suggest that exposure to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), a persistent environmental toxicant, is associated with incidence of heart disease. Although TCDD toxicity depends by and large on the aryl hydrocarbon receptor (AHR), the role of the cardiac AHR in TCDD induced cardiovascular disease is not well defined. To determine whether the Ahr gene mediates disruption of heart function by TCDD, we generated a cardiomyocyte-specific Ahr knockout mouse by crossing Ahr(fx/fx) mice with βMhc:cre/+ mice, in which expression of Cre recombinase is driven by the promoter of the βMhc (myosin heavy chain-beta) gene. Starting at three months of age, mice with cardiomyocyte-specific Ahr ablation were exposed to 1μg/kg/week of TCDD or control vehicle by oral gavage for an additional three months. Relative to unexposed controls, TCDD-exposure induced cardiomyocyte Ahr-independent changes in males but not females, including a significant increase in body weight, blood pressure, and cardiac hypertrophy and a decrease in cardiac ejection fraction. TCDD exposure also induced cardiomyocyte Ahr-dependent changes in fibrosis and calcium signaling gene expression in both males and females. TCDD exposure appears to cause sexually dimorphic effects on heart function and induce fibrosis and changes in calcium signaling in both males and females through activation of the cardiomyocyte-specific Ahr. PMID:27163630

  10. Potential ligand-binding residues in rat olfactory receptors identified by correlated mutation analysis

    NASA Technical Reports Server (NTRS)

    Singer, M. S.; Oliveira, L.; Vriend, G.; Shepherd, G. M.

    1995-01-01

    A family of G-protein-coupled receptors is believed to mediate the recognition of odor molecules. In order to identify potential ligand-binding residues, we have applied correlated mutation analysis to receptor sequences from the rat. This method identifies pairs of sequence positions where residues remain conserved or mutate in tandem, thereby suggesting structural or functional importance. The analysis supported molecular modeling studies in suggesting several residues in positions that were consistent with ligand-binding function. Two of these positions, dominated by histidine residues, may play important roles in ligand binding and could confer broad specificity to mammalian odor receptors. The presence of positive (overdominant) selection at some of the identified positions provides additional evidence for roles in ligand binding. Higher-order groups of correlated residues were also observed. Each group may interact with an individual ligand determinant, and combinations of these groups may provide a multi-dimensional mechanism for receptor diversity.

  11. Glucagon-Like Peptide-1 Receptor Ligand Interactions: Structural Cross Talk between Ligands and the Extracellular Domain

    PubMed Central

    West, Graham M.; Willard, Francis S.; Sloop, Kyle W.; Showalter, Aaron D.; Pascal, Bruce D.; Griffin, Patrick R.

    2014-01-01

    Activation of the glucagon-like peptide-1 receptor (GLP-1R) in pancreatic β-cells potentiates insulin production and is a current therapeutic target for the treatment of type 2 diabetes mellitus (T2DM). Like other class B G protein-coupled receptors (GPCRs), the GLP-1R contains an N-terminal extracellular ligand binding domain. N-terminal truncations on the peptide agonist generate antagonists capable of binding to the extracellular domain, but not capable of activating full length receptor. The main objective of this study was to use Hydrogen/deuterium exchange (HDX) to identify how the amide hydrogen bonding network of peptide ligands and the extracellular domain of GLP-1R (nGLP-1R) were altered by binding interactions and to then use this platform to validate direct binding events for putative GLP-1R small molecule ligands. The HDX studies presented here for two glucagon-like peptide-1 receptor (GLP-1R) peptide ligands indicates that the antagonist exendin-4[9-39] is significantly destabilized in the presence of nonionic detergents as compared to the agonist exendin-4. Furthermore, HDX can detect stabilization of exendin-4 and exendin-4[9-39] hydrogen bonding networks at the N-terminal helix [Val19 to Lys27] upon binding to the N-terminal extracellular domain of GLP-1R (nGLP-1R). In addition we show hydrogen bonding network stabilization on nGLP-1R in response to ligand binding, and validate direct binding events with the extracellular domain of the receptor for putative GLP-1R small molecule ligands. PMID:25180755

  12. Cell surface receptors for signal transduction and ligand transport - a design principles study

    SciTech Connect

    Shankaran, Harish; Resat, Haluk; Wiley, H. S.

    2007-06-01

    Although many different receptors undergo endocytosis, the system-level design principles that govern the evolution of receptor dynamics are far from fully understood. We have constructed a generalized mathematical model to understand how receptor internalization dynamics encodes receptor function and regulation. Parametric analysis of the response of receptor systems to ligand inputs reveals that receptors can be categorized a being: i) avidity-controlled where the response control depends primarily on the extracelluar ligand capture efficiency, ii) consumption-controlled where the ability to internalize surface-bound ligand is the primary control parameter, and iii) dual-sensitivity where both the avidity and consumption parameters are important. We show that the transferrin and low-density lipoprotein receptors are avidity-controlled, the vitellogenin receptor is consumption-controlled and epidermal growth factor receptor is a dual-sensitivity receptor. Significantly, we show that ligand-induced endocytosis is a mechanism to anhance the accuracy of signaling receptors rather than serving to attenuate signaling. Our analysis reveals that the location of a receptor system in the avidity-consumption parameter space can be used to understand both its function and its regulations.

  13. FOLLITROPIN RECEPTORS CONTAIN CRYPTIC LIGAND BINDING SITES1

    PubMed Central

    Lin, Win; Bernard, Michael P.; Cao, Donghui; Myers, Rebecca V.; Kerrigan, John E.; Moyle, William R.

    2007-01-01

    Human choriogonadotropin (hCG) and follitropin (hFSH) have been shown to contact different regions of the extracellular domains of G-protein coupled lutropin (LHR) and follitropin (FSHR) receptors. We report here that hCG and hFSH analogs interact with an FSHR/LHR chimera having only two unique LHR residues similar to the manners in which they dock with LHR and FSHR, respectively. This shows that although the FSHR does not normally bind hCG, it contains a cryptic lutropin binding site that has the potential to recognize hCG in a manner similar to the LHR. The presence of this cryptic site may explain why equine lutropins bind many mammalian FSHR and why mutations in the transmembrane domain distant from the extracellular domain enable the FSHR to bind hCG. The leucine-rich repeat domain (LRD) of the FSHR also appears to contain a cryptic FSH binding site that is obscured by other parts of the extracellular domain. This will explain why contacts seen in crystals of hFSH complexed with an LRD fragment of the human FSHR are hard to reconcile with the abilities of FSH analogs to interact with membrane G-protein coupled FSHR. We speculate that cryptic lutropin binding sites in the FSHR, which are also likely to be present in thyrotropin receptors (TSHR), permit the physiological regulation of ligand binding specificity. Cryptic FSH binding sites in the LRD may enable alternate spliced forms of the FSHR to interact with FSH. PMID:17059863

  14. Transcriptional activation by the thyroid hormone receptor through ligand-dependent receptor recruitment and chromatin remodelling.

    PubMed

    Grøntved, Lars; Waterfall, Joshua J; Kim, Dong Wook; Baek, Songjoon; Sung, Myong-Hee; Zhao, Li; Park, Jeong Won; Nielsen, Ronni; Walker, Robert L; Zhu, Yuelin J; Meltzer, Paul S; Hager, Gordon L; Cheng, Sheue-yann

    2015-01-01

    A bimodal switch model is widely used to describe transcriptional regulation by the thyroid hormone receptor (TR). In this model, the unliganded TR forms stable, chromatin-bound complexes with transcriptional co-repressors to repress transcription. Binding of hormone dissociates co-repressors and facilitates recruitment of co-activators to activate transcription. Here we show that in addition to hormone-independent TR occupancy, ChIP-seq against endogenous TR in mouse liver tissue demonstrates considerable hormone-induced TR recruitment to chromatin associated with chromatin remodelling and activated gene transcription. Genome-wide footprinting analysis using DNase-seq provides little evidence for TR footprints both in the absence and presence of hormone, suggesting that unliganded TR engagement with repressive complexes on chromatin is, similar to activating receptor complexes, a highly dynamic process. This dynamic and ligand-dependent interaction with chromatin is likely shared by all steroid hormone receptors regardless of their capacity to repress transcription in the absence of ligand. PMID:25916672

  15. Selective Aryl Hydrocarbon Receptor Modulator 3,3'-Diindolylmethane Impairs AhR and ARNT Signaling and Protects Mouse Neuronal Cells Against Hypoxia.

    PubMed

    Rzemieniec, J; Litwa, E; Wnuk, A; Lason, W; Krzeptowski, W; Kajta, M

    2016-10-01

    The neuroprotective potential of 3,3'-diindolylmethane (DIM), which is a selective aryl hydrocarbon receptor modulator, has recently been shown in cellular and animal models of Parkinson's disease and lipopolysaccharide-induced inflammation. However, there are no data concerning the protective capacity and mechanisms of DIM action in neuronal cells exposed to hypoxia. The aim of the present study was to investigate the neuroprotective potential of DIM against the hypoxia-induced damage in mouse hippocampal cells in primary cultures, with a particular focus on DIM interactions with the aryl hydrocarbon receptor (AhR), its nuclear translocator ARNT, and estrogen receptor β (ERβ). In the present study, 18 h of hypoxia induced apoptotic processes, in terms of the mitochondrial membrane potential, activation of caspase-3, and fragmentation of cell nuclei. These effects were accompanied by substantial lactate dehydrogenase release and neuronal cell death. The results of the present study demonstrated strong neuroprotective and anti-apoptotic actions of DIM in hippocampal cells exposed to hypoxia. In addition, DIM decreased the Ahr and Arnt mRNA expression and stimulated Erβ mRNA expression level. DIM-induced mRNA alterations were mirrored by changes in protein levels, except for ERβ, as detected by ELISA, Western blotting, and immunofluorescence labeling. We also demonstrated that DIM decreased the expression of AhR-regulated CYP1A1. Using specific siRNAs, we provided evidence that impairment of AhR and ARNT, but not ERβ plays a key role in the neuroprotective action of DIM against hypoxia-induced cell damage. This study may have implication for identifying new agents that could protect neurons against hypoxia by targeting AhR/ARNT signaling. PMID:26476840

  16. Monitoring ligand-receptor interactions by photonic force microscopy

    PubMed Central

    Jeney, Sylvia; Mor, Flavio; Koszali, Roland; Forró, László; Moy, Vincent T.

    2011-01-01

    We introduce a method for the acquisition of single molecule force measurements of ligandreceptor interactions using the photonic force microscope (PFM). Biotin-functionalized beads, manipulated with an optical trap, and a streptavidin-functionalized coverslip were used to measure the effect of different pulling forces on the lifetime of individual streptavidin-biotin complexes. By optimizing the design of the optical trap and selection of the appropriate bead size, pulling forces in excess of 50 pN were achieved. Based on the amplitude of three dimensional (3D) thermal position fluctuations of the attached bead, we were able to select for a bead-coverslip interaction that was mediated by a single streptavidin-biotin complex. Moreover, the developed experimental system was greatly accelerated by automation of data acquisition and analysis. In force-dependent kinetic measurements carried out between streptavidin and biotin, we observed that the streptavidin-biotin complex exhibited properties of a catch bond with the lifetime increasing 10 fold when the pulling force increased from 10 to 20 pN. We also show that silica beads were more appropriate than polystyrene beads for the force measurements as polystyrene tethers, longer than 200 nm, could be extracted from the beads. PMID:20516583

  17. Identification of estrogen receptor α ligands with virtual screening techniques.

    PubMed

    Niinivehmas, Sanna P; Manivannan, Elangovan; Rauhamäki, Sanna; Huuskonen, Juhani; Pentikäinen, Olli T

    2016-03-01

    Utilization of computer-aided molecular discovery methods in virtual screening (VS) is a cost-effective approach to identify novel bioactive small molecules. Unfortunately, no universal VS strategy can guarantee high hit rates for all biological targets, but each target requires distinct, fine-tuned solutions. Here, we have studied in retrospective manner the effectiveness and usefulness of common pharmacophore hypothesis, molecular docking and negative image-based screening as potential VS tools for a widely applied drug discovery target, estrogen receptor α (ERα). The comparison of the methods helps to demonstrate the differences in their ability to identify active molecules. For example, structure-based methods identified an already known active ligand from the widely-used bechmarking decoy molecule set. Although prospective VS against one commercially available database with around 100,000 drug-like molecules did not retrieve many testworthy hits, one novel hit molecule with pIC50 value of 6.6, was identified. Furthermore, our small in-house compound collection of easy-to-synthesize molecules was virtually screened against ERα, yielding to five hit candidates, which were found to be active in vitro having pIC50 values from 5.5 to 6.5. PMID:26774287

  18. The twin drug approach for novel nicotinic acetylcholine receptor ligands.

    PubMed

    Tomassoli, Isabelle; Gündisch, Daniela

    2015-08-01

    The association of two pharmacophoric entities generates so-called 'twin drugs' or dimer derivatives. We applied this approach for the design of a small compound library for the interaction with α4β2(∗) nicotinic acetylcholine receptors (nAChRs). In this compound series, the nAChR ligand N,N-dimethyl-2-(pyridin-3-yloxy)ethan-1-amine 9 served as one pharmacological entity and it was initially kept constant as one part of the 'twin' compound. 'Twin' compounds with identical or non-identical entities using the 'no linker mode' or 'overlap' mode were synthesized and evaluated for their nAChR affinities. Compound 17a showed the highest affinity for the α4β2(∗) nAChR subtype (Ki=0.188 nM) and its (di)fluoro analogs could retain nanomolar affinities, when replacing pyridine as the hydrogen bond acceptor system by mono- or difluoro-phenyls. The 'twin drug' approach proved to provide compounds with high affinity and subtype selectivity for α4β2(∗) nAChRs. PMID:26142318

  19. Effect of size and conformation of the ligand on asialoglycoprotein receptor-mediated ligand internalization and degradation in rat hepatocytes

    SciTech Connect

    Chang, C.H.; Chang, T.M.

    1987-05-01

    The rates of internalization and degradation of /sup 125/-I-labeled desialylated cyanogen bromide fragment I of orosomucoid (AS-CNBr-I) and its reduced and carboxymethylated derivative (AS-RC-CNBr-I) were compared with those of /sup 125/I-labeled asialoorosomucoid (ASOR) in rat hepatocytes. At 30 nM the rates of internalization and degradation of /sup 125/I-AS-CNBr-I were greater than those of /sup 125/I-ASOR. /sup 125/I-AS-RC-CNBr-I also had a lower rate of internalization and degradation. In contrast to /sup 125/I-ASOR, when degradation was inhibited by 5 ..mu..M colchicine there was a significant intracellular accumulation of the smaller ligands. At 4/sup 0/C the hepatocytes were found to bind the fragmented ligands more than /sup 125/I-ASOR. Incubation of the cells with bound ligand at 37/sup 0/ indicated that diacytosis of /sup 125/I-ASOR was greater than the smaller ligands. Colchincine markedly enhanced diacytosis of /sup 125/I-ASOR. On the other hand, there were marked accumulation of the smaller ligands by colchicine. These results suggest that the rates of internalization, degradation and diacytosis of the ligand are affected by the size and conformation of the ligand through different rates of receptor binding and intracellular transport.

  20. Ligand-independent pathway that controls stability of interferon alpha receptor

    SciTech Connect

    Liu Jianghuai; Plotnikov, Alexander; Banerjee, Anamika; Suresh Kumar, K.G.; Ragimbeau, Josiane; Marijanovic, Zrinka; Baker, Darren P.; Pellegrini, Sandra; Fuchs, Serge Y.

    2008-03-07

    Ligand-specific negative regulation of cytokine-induced signaling relies on down regulation of the cytokine receptors. Down regulation of the IFNAR1 sub-unit of the Type I interferon (IFN) receptor proceeds via lysosomal receptor proteolysis, which is triggered by ubiquitination that depends on IFNAR1 serine phosphorylation. While IFN-inducible phosphorylation, ubiquitination, and degradation requires the catalytic activity of the Tyk2 Janus kinase, here we found the ligand- and Tyk2-independent pathway that promotes IFNAR1 phosphorylation, ubiquitination, and degradation when IFNAR1 is expressed at high levels. A major cellular kinase activity that is responsible for IFNAR1 phosphorylation in vitro does not depend on either ligand or Tyk2 activity. Inhibition of ligand-independent IFNAR1 degradation suppresses cell proliferation. We discuss the signaling events that might lead to ubiquitination and degradation of IFNAR1 via ligand-dependent and independent pathways and their potential physiologic significance.

  1. Kidney branching morphogenesis under the control of a ligand-receptor-based Turing mechanism

    NASA Astrophysics Data System (ADS)

    Menshykau, Denis; Iber, Dagmar

    2013-08-01

    The main signalling proteins that control early kidney branching have been defined. Yet the underlying mechanism is still elusive. We have previously shown that a Schnakenberg-type Turing mechanism can recapitulate the branching and protein expression patterns in wild-type and mutant lungs, but it is unclear whether this mechanism would extend to other branched organs that are regulated by other proteins. Here, we show that the glial cell line-derived neurotrophic factor-RET regulatory interaction gives rise to a Schnakenberg-type Turing model that reproduces the observed budding of the ureteric bud from the Wolffian duct, its invasion into the mesenchyme and the observed branching pattern. The model also recapitulates all relevant protein expression patterns in wild-type and mutant mice. The lung and kidney models are both based on a particular receptor-ligand interaction and require (1) cooperative binding of ligand and receptor, (2) a lower diffusion coefficient for the receptor than for the ligand and (3) an increase in the receptor concentration in response to receptor-ligand binding (by enhanced transcription, more recycling or similar). These conditions are met also by other receptor-ligand systems. We propose that ligand-receptor-based Turing patterns represent a general mechanism to control branching morphogenesis and other developmental processes.

  2. Role of the Ah locus in suppression of cytotoxic T lymphocyte activity by halogenated aromatic hydrocarbons (PCBs and TCDD): Structure-activity relationships and effects in C57Bl/6 mice congenic at the Ah locus

    SciTech Connect

    Kerkvliet, N.I.; Baecher-Steppan, L.; Smith, B.B.; Youngberg, J.A.; Henderson, M.C.; Buhler, D.R. )

    1990-04-01

    Previous studies have shown that the generation of cytotoxic T lymphocytes (CTL) following allogeneic tumor challenge is suppressed in Ah-responsive C57Bl/6 mice treated with a single oral dose of the toxic, Ah receptor-binding 3,4,5,3',4',5'-hexachlorobiphenyl (HxCB). The present studies have examined the specific role of the Ah receptor in this immunotoxic response by utilizing HxCB isomers of known, varied affinity for the Ah receptor as well as by comparing effects of high-affinity Ah receptor ligands (3,4,5,3',4',5'-HxCB and 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD)) on the CTL response of mice that differ only at the Ah locus, that is, Ah-responsive (Ahbb) and Ah-nonresponsive (Ahdd) congenic C57Bl/6 mice. Correlative changes in thymic weight, serum corticosterone (CS) levels, and spleen cellularity were also measured. The potency of HxCB congeners (3,4,5,3',4',5'-; 2,3,4,5,3',4'-; 2,4,5,2',4',5'-) and 2,3,7,8-TCDD to suppress the CTL response, to reduce spleen cellularity, to cause thymic atrophy, and to elevate serum CS levels was directly correlated with the binding affinity of the congener for the Ah receptor. Furthermore, these parameters of immunotoxicity in Ahdd C57Bl/6 mice were significantly more resistant to alterations induced by either 3,4,5,3',4',5'-HxCB or 2,3,7,8-TCDD as compared to Ahbb C57Bl/6 mice. These results strongly support an Ah receptor-dependent immunotoxic mechanism in suppression of the CTL response following acute exposure to halogenated aromatic hydrocarbons.

  3. Potential applications for sigma receptor ligands in cancer diagnosis and therapy.

    PubMed

    van Waarde, Aren; Rybczynska, Anna A; Ramakrishnan, Nisha K; Ishiwata, Kiichi; Elsinga, Philip H; Dierckx, Rudi A J O

    2015-10-01

    Sigma receptors (sigma-1 and sigma-2) represent two independent classes of proteins. Their endogenous ligands may include the hallucinogen N,N-dimethyltryptamine (DMT) and sphingolipid-derived amines which interact with sigma-1 receptors, besides steroid hormones (e.g., progesterone) which bind to both sigma receptor subpopulations. The sigma-1 receptor is a ligand-regulated molecular chaperone with various ion channels and G-protein-coupled membrane receptors as clients. The sigma-2 receptor was identified as the progesterone receptor membrane component 1 (PGRMC1). Although sigma receptors are over-expressed in tumors and up-regulated in rapidly dividing normal tissue, their ligands induce significant cell death only in tumor tissue. Sigma ligands may therefore be used to selectively eradicate tumors. Multiple mechanisms appear to underlie cell killing after administration of sigma ligands, and the signaling pathways are dependent both on the type of ligand and the type of tumor cell. Recent evidence suggests that the sigma-2 receptor is a potential tumor and serum biomarker for human lung cancer and an important target for inhibiting tumor invasion and cancer progression. Current radiochemical efforts are focused on the development of subtype-selective radioligands for positron emission tomography (PET) imaging. Right now, the mostpromising tracers are [18F]fluspidine and [18F]FTC-146 for sigma-1 receptors and [11C]RHM-1 and [18F]ISO-1 for the sigma-2 subtype. Nanoparticles coupled to sigma ligands have shown considerable potential for targeted delivery of antitumor drugs in animal models of cancer, but clinical studies exploring this strategy in cancer patients have not yet been reported. This article is part of a Special Issue entitled: Membrane channels and transporters in cancers. PMID:25173780

  4. Toll-like receptor 3 gene polymorphisms and severity of pandemic A/H1N1/2009 influenza in otherwise healthy children

    PubMed Central

    2012-01-01

    Background Toll-like receptors (TLRs) form an essential part of the innate immune system, which plays a fundamental role in rapidly and effectively controlling infections and initiating adaptive immunity. There are no published data concerning the importance of polymorphisms of TLRs in conditioning susceptibility to influenza or the severity of the disease. The aim of this study was to evaluate whether selected polymorphisms of TLR2, TLR3 and TLR4 influence the incidence and clinical picture of pandemic A/H1N1/2009 influenza. Results The study involved 272 healthy children attending our Emergency Room for influenza-like illness (ILI), including 51 (18.8%) with pandemic A/H1N1/2009 influenza as revealed by real-time polymerase chain reaction, and 164 healthy controls examined after minor surgery. Genomic DNA was extracted from whole blood samples and five single-nucleotide polymorphisms (SNPs) were studied: TLR2 rs5743708, TLR3 rs5743313, TLR3 rs5743315, TLR4 rs4986790 and TLR4 rs4986791. The TLR3 rs5743313/CT polymorphism was found in all of the children with pneumonia and influenza infection, but in a significantly smaller number of those with A/H1N1/2009 influenza without pneumonia (<0.0001). TLR2, TLR3 rs5743315/AC and TLR4 polymorphisms were equally distributed in all of the groups regardless of the presence of the pandemic A/H1N1/2009 virus and clinical diagnosis. Viral load was comparable in all of the study groups. Conclusions There is a close relationship between the presence of TLR3 rs5743313/CT and an increased risk of pneumonia in children infected by the pandemic A/H1N1/2009 influenza virus. PMID:23151015

  5. Unique Expression of Angiotensin Type-2 Receptor in Sex-Specific Distribution of Myelinated Ah-Type Baroreceptor Neuron Contributing to Sex-Dimorphic Neurocontrol of Circulation.

    PubMed

    Liu, Yang; Zhou, Jia-Ying; Zhou, Yu-Hong; Wu, Di; He, Jian-Li; Han, Li-Min; Liang, Xiao-Bo; Wang, Lu-Qi; Lu, Xiao-Long; Chen, Hanying; Qiao, Guo-Fen; Shou, Weinian; Li, Bai-Yan

    2016-04-01

    This study aims to understand the special expression patterns of angiotensin-II receptor (AT1R and AT2R) in nodose ganglia and nucleus of tractus solitary of baroreflex afferent pathway and their contribution in sex difference of neurocontrol of blood pressure regulation. In this regard, action potentials were recorded in baroreceptor neurons (BRNs) using whole-cell patch techniques; mRNA and protein expression of AT1R and AT2R in nodose ganglia and nucleus of tractus solitary were evaluated using real time-polymerase chain reaction, Western blot, and immunohistochemistry at both tissue and single-cell levels. The in vivo effects of 17β-estradiol on blood pressure and AT2R expression were also tested. The data showed that AT2R, rather than AT1R, expression was higher in female than age-matched male rats. Moreover, AT2R was downregulated in ovariectomized rats, which was restored by the administration of 17β-estradiol. Single-cell real time-polymerase chain reaction data indicated that AT2R was uniquely expressed in Ah-type BRNs. Functional study showed that long-term administration of 17β-estradiol significantly alleviated the blood pressure increase in ovariectomized rats. Electrophysiological recordings showed that angiotensin-II treatment increased the neuroexcitability more in Ah- than C-type BRNs, whereas no such effect was observed in A-types. In addition, angiotensin-II treatment prolonged action potential duration, which was not further changed by iberiotoxin. The density of angiotensin-II-sensitive K(+) currents recorded in Ah-types was equivalent with iberiotoxin-sensitive component. In summary, the unique, sex- and afferent-specific expression of AT2R was identified in Ah-type BRNs, and AT2R-mediated KCa1.1 inhibition in Ah-type BRNs may exert great impacts on baroreflex afferent function and blood pressure regulation in females. PMID:26883269

  6. The mammalian tachykinin ligand-receptor system: an emerging target for central neurological disorders

    PubMed Central

    Pantaleo, Nick; Chadwick, Wayne; Park, Sung-Soo; Wang, Liyun; Zhou, Yu; Martin, Bronwen; Maudsley, Stuart

    2010-01-01

    Our understanding of the complex signaling neurophysiology of the central nervous system has facilitated the exploration of potential novel receptor-ligand system targets for disorders of this most complex organ. In recent years, many relatively neglected receptor-ligand systems have been re-evaluated with respect to their ability to potently modulate discrete tracts in the central nervous system. One such system is the tachykinin (previously neurokinin) system. The multiple heptahelical G protein-coupled receptors and neuropeptide ligands that comprise this system may be significantly involved in more central nervous systems actions than previously thought, including sleep disorders, amyotrophic lateral sclerosis, Alzheimer’s and Machado-Joseph disease. The development of our understanding of the role of the tachykinin receptor-ligand system in higher order central functions is likely to allow the creation of more specific and selective tachykinin-related neurotherapeutics. PMID:20632965

  7. Imaging G protein-coupled receptors while quantifying their ligand-binding free-energy landscape.

    PubMed

    Alsteens, David; Pfreundschuh, Moritz; Zhang, Cheng; Spoerri, Patrizia M; Coughlin, Shaun R; Kobilka, Brian K; Müller, Daniel J

    2015-09-01

    Imaging native membrane receptors and testing how they interact with ligands is of fundamental interest in the life sciences but has proven remarkably difficult to accomplish. Here, we introduce an approach that uses force-distance curve-based atomic force microscopy to simultaneously image single native G protein-coupled receptors in membranes and quantify their dynamic binding strength to native and synthetic ligands. We measured kinetic and thermodynamic parameters for individual protease-activated receptor-1 (PAR1) molecules in the absence and presence of antagonists, and these measurements enabled us to describe PAR1's ligand-binding free-energy landscape with high accuracy. Our nanoscopic method opens an avenue to directly image and characterize ligand binding of native membrane receptors. PMID:26167642

  8. Computational Exploration of a Protein Receptor Binding Space with Student Proposed Peptide Ligands

    ERIC Educational Resources Information Center

    King, Matthew D.; Phillips, Paul; Turner, Matthew W.; Katz, Michael; Lew, Sarah; Bradburn, Sarah; Andersen, Tim; McDougal, Owen M.

    2016-01-01

    Computational molecular docking is a fast and effective "in silico" method for the analysis of binding between a protein receptor model and a ligand. The visualization and manipulation of protein to ligand binding in three-dimensional space represents a powerful tool in the biochemistry curriculum to enhance student learning. The…

  9. Computer-aided design of a novel ligand for retinoic acid receptor in cancer chemotherapy

    NASA Astrophysics Data System (ADS)

    Silva, Carlos H. T. P.; Leopoldino, Andreia M.; Silva, Eloiza H. T.; Espinoza, V. A. A.; Taft, C. A.

    The isotypes of RAR and RXR are retinoic acid and retinoid X acid receptors, respectively, whose ligand-binding domain contains the ligand-dependent activation function, with distinct pharmacological targets for retinoids, involved in the treatment of various cancers and skin diseases. Due to the major challenge which cancer treatment and cure still imposes after many decades to the international scientific community, there is actually considerable interest in new ligands with increased bioactivity. We have focused on the retinoid acid receptor, which is considered an interesting target for drug design. In this work, we carried out density functional geometry optimizations and different docking procedures. We performed screening in a large database (hundreds of thousands of molecules which we optimized at the AM1 level) yielding a set of potential bioactive ligands. A new ligand was selected and optimized at the B3LYP/6-31G* level. A flexible docking program was used to investigate the interactions between the receptor and the new ligand. The result of this work is compared with several crystallographic ligands of RAR. Our theoretically more bioactive new ligand indicates stronger and more hydrogen bonds as well as hydrophobic interactions with the receptor.

  10. Discriminative stimulus effects of the novel imidazoline I₂ receptor ligand CR4056 in rats.

    PubMed

    Qiu, Yanyan; He, Xiao-Hua; Zhang, Yanan; Li, Jun-Xu

    2014-01-01

    This study examined whether a novel imidazoline I₂ receptor ligand CR4056 could serve as a discriminative stimulus and whether it shares similar discriminative stimulus effects with other reported I₂ receptor ligands. Eight male Sprague-Dawley rats were trained to discriminate 10.0 mg/kg CR4056 (i.p.) from vehicle in a two-lever food-reinforced drug discrimination procedure. Once rats acquired the discrimination, substitution and combination studies were conducted to elucidate the underlying receptor mechanisms. All rats acquired CR4056 discrimination after an average of 26 training sessions. Several I₂ receptor ligands (phenyzoline, tracizoline, RS45041, and idazoxan, 3.2-75 mg/kg, i.p.) all occasioned > 80% CR4056-associated lever responding. Other drugs that occasioned partial or no CR4056-associated lever responding included methamphetamine, ketamine, the endogenous imidazoline ligand agmatine, the monoamine oxidase (MAO) inhibitor harmane, the α₂-adrenoceptor agonist clonidine, the μ-opioid receptor agonists morphine and methadone, and the selective I₂ receptor ligands BU224 and 2-BFI. The α₁ adrenoceptor antagonist WB4101, α₂ adrenoceptor antagonist yohimbine and μ-opioid receptor antagonist naltrexone failed to alter the stimulus effects of CR4056. Together, these results show that CR4056 can serve as a discriminative stimulus in rats, which demonstrates high pharmacological specificity and appears to be mediated by imidazoline I₂ receptors. PMID:25308382

  11. Discriminative stimulus effects of the novel imidazoline I2 receptor ligand CR4056 in rats

    PubMed Central

    Qiu, Yanyan; He, Xiao-Hua; Zhang, Yanan; Li, Jun-Xu

    2014-01-01

    This study examined whether a novel imidazoline I2 receptor ligand CR4056 could serve as a discriminative stimulus and whether it shares similar discriminative stimulus effects with other reported I2 receptor ligands. Eight male Sprague-Dawley rats were trained to discriminate 10.0 mg/kg CR4056 (i.p.) from vehicle in a two-lever food-reinforced drug discrimination procedure. Once rats acquired the discrimination, substitution and combination studies were conducted to elucidate the underlying receptor mechanisms. All rats acquired CR4056 discrimination after an average of 26 training sessions. Several I2 receptor ligands (phenyzoline, tracizoline, RS45041, and idazoxan, 3.2–75 mg/kg, i.p.) all occasioned > 80% CR4056-associated lever responding. Other drugs that occasioned partial or no CR4056-associated lever responding included methamphetamine, ketamine, the endogenous imidazoline ligand agmatine, the monoamine oxidase (MAO) inhibitor harmane, the α2-adrenoceptor agonist clonidine, the μ-opioid receptor agonists morphine and methadone, and the selective I2 receptor ligands BU224 and 2-BFI. The α1 adrenoceptor antagonist WB4101, α2 adrenoceptor antagonist yohimbine and μ-opioid receptor antagonist naltrexone failed to alter the stimulus effects of CR4056. Together, these results show that CR4056 can serve as a discriminative stimulus in rats, which demonstrates high pharmacological specificity and appears to be mediated by imidazoline I2 receptors. PMID:25308382

  12. Expression and Purification of Functional Ligand-binding Domains of T1R3 Taste Receptors

    SciTech Connect

    Nie,Y.; Hobbs, J.; Vigues, S.; Olson, W.; Conn, G.; Munger, S.

    2006-01-01

    Chemosensory receptors, including odor, taste, and vomeronasal receptors, comprise the largest group of G protein-coupled receptors (GPCRs) in the mammalian genome. However, little is known about the molecular determinants that are critical for the detection and discrimination of ligands by most of these receptors. This dearth of understanding is due in part to difficulties in preparing functional receptors suitable for biochemical and biophysical analyses. Here we describe in detail two strategies for the expression and purification of the ligand-binding domain of T1R taste receptors, which are constituents of the sweet and umami taste receptors. These class C GPCRs contain a large extracellular N-terminal domain (NTD) that is the site of interaction with most ligands and that is amenable to expression as a separate polypeptide in heterologous cells. The NTD of mouse T1R3 was expressed as two distinct fusion proteins in Escherichia coli and purified by column chromatography. Spectroscopic analysis of the purified NTD proteins shows them to be properly folded and capable of binding ligands. This methodology should not only facilitate the characterization of T1R ligand interactions but may also be useful for dissecting the function of other class C GPCRs such as the large family of orphan V2R vomeronasal receptors.

  13. Early detection of influenza A(H5) viruses with affinity for the human sialic acid receptor by MALDI-TOF mass spectrometry based mutation detection.

    PubMed

    Yea, C; McCorrister, S; Westmacott, G; Petric, M; Tellier, R

    2011-03-01

    Highly pathogenic avian influenza (HPAI) A(H5N1) strains have been causing sporadic cases of disease in South East Asia and Africa for many years. These cases are associated with a high fatality rate, and it is feared that the virus could evolve into a strain capable of causing a pandemic. It is likely that a requirement for a A(H5) pandemic to occur is a switch in the receptor affinity of the virus. Candidate mutations in the hemagglutinin glycoprotein have been identified in the literature, and their emergence in circulating viruses would be an ominous development. This study describes a method to identify the presence of these mutations, even within a quasispecies, using RT-PCR followed by in vitro translation and peptide characterization by MALDI-TOF mass spectrometry. PMID:21195111

  14. Influence of TCDD and natural Ah receptor agonists on benzo[a]pyrene-DNA adduct formation in the Caco-2 human colon cell line.

    PubMed

    de Waard, Pim W J; de Kok, Theo M C M; Maas, Lou M; Peijnenburg, Ad A C M; Hoogenboom, Ron L A P; Aarts, Jac M M J G; van Schooten, Frederik-Jan

    2008-01-01

    Several compounds originating from cruciferous vegetables and citrus fruits bind to and activate the aryl hydrocarbon receptor (AhR). This receptor plays an important role in the toxicity of the known tumour promoter and potent AhR-agonist 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). However, vegetables and fruits are generally considered as healthy. Therefore, besides the AhR activation, the natural AhR agonists (NAhRAs) are assumed to show other health-concerning effects. AhR activation induces several cytochrome P450 phase I enzymes involved, e.g. in the bioactivation of carcinogenic polycyclic aromatic hydrocarbons, like benzo[a]pyrene (BaP), and may as such stimulate DNA adduct formation of those compounds. Therefore, the influence of TCDD, indolo[3,2-b]carbazole (ICZ, an NAhRA originating from cruciferous vegetables) and an NAhRA-containing extract of grapefruit juice (GJE) on BaP-DNA adduct formation in the human Caco-2 cell line was studied. Also, we investigated if different effects of TCDD, ICZ and GJE on adduct formation could be related to the modulation of transcription of biotransformation- and DNA-repair enzymes. Co-exposure to high AhR-activating concentrations of both TCDD and ICZ significantly reduced the amount of BaP-DNA adducts at 0.1 microM BaP, while at higher concentrations of BaP no influence was observed. In contrast, exposure to 0.1 microM BaP combined with GJE showed a significant increase in BaP-DNA adducts, and a significant decrease at 0.3 and 1 microM BaP. These differences could not be related to transcription of the phase I and II enzymes CYP1A1, CYP1B1, NQO1, GSTP1 and UGT1A6 or to transcription of the nucleotide excision repair enzymes ERCC1, XPA, XPC, XPF and XPG. We conclude that ICZ showed a similar effect on BaP-DNA adduct formation than TCDD, while GJE influenced the adduct formation in a different way. The difference in the influence on adduct formation may be due to effects at the level of enzyme activity, rather than gene

  15. Insights into bombesin receptors and ligands: Highlighting recent advances.

    PubMed

    Ramos-Álvarez, Irene; Moreno, Paola; Mantey, Samuel A; Nakamura, Taichi; Nuche-Berenguer, Bernardo; Moody, Terry W; Coy, David H; Jensen, Robert T

    2015-10-01

    This following article is written for Prof. Abba Kastin's Festschrift, to add to the tribute to his important role in the advancement of the role of peptides in physiological, as well as pathophysiological processes. There have been many advances during the 35 years of his prominent role in the Peptide field, not only as editor of the journal Peptides, but also as a scientific investigator and editor of two volumes of the Handbook of Biological Active Peptides [146,147]. Similar to the advances with many different peptides, during this 35 year period, there have been much progress made in the understanding of the pharmacology, cell biology and the role of (bombesin) Bn receptors and their ligands in various disease states, since the original isolation of bombesin from skin of the European frog Bombina bombina in 1970 [76]. This paper will briefly review some of these advances over the time period of Prof. Kastin 35 years in the peptide field concentrating on the advances since 2007 when many of the results from earlier studies were summarized [128,129]. It is appropriate to do this because there have been 280 articles published in Peptides during this time on bombesin-related peptides and it accounts for almost 5% of all publications. Furthermore, 22 Bn publications we have been involved in have been published in either Peptides [14,39,55,58,81,92,93,119,152,216,225,226,231,280,302,309,355,361,362] or in Prof. Kastin's Handbook of Biological Active Peptides [137,138,331]. PMID:25976083

  16. Recombinant T Cell Receptor Ligand (RTL) Treats Experimental Stroke

    PubMed Central

    Subramanian, Sandhya; Zhang, Bing; Kosaka, Yasuharu; Burrows, Gregory G.; Grafe, Marjorie R.; Vandenbark, Arthur A.; Hurn, Patricia D.; Offner, Halina

    2009-01-01

    Background and Purpose Experimental stroke induces a biphasic effect on the immune response that involves early activation of peripheral leukocytes followed by severe immunodepression and atrophy of spleen and thymus. In tandem, the developing infarct is exacerbated by influx of numerous inflammatory cell types, including T and B lymphocytes. These features of stroke prompted our use of Recombinant T Cell Receptor Ligands (RTL), partial MHC class II molecules covalently bound to myelin peptides. We tested the hypothesis that RTL would improve ischemic outcome in brain without exacerbating defects in peripheral immune system function. Methods Four daily doses of RTL were administered subcutaneously to C57BL/6 mice after middle cerebral artery occlusion (MCAO), and lesion size and cellular composition were assessed in brain, and cell numbers were assessed in spleen and thymus. Results Treatment with RTL551 (I-Ab molecule linked to MOG-35−55 peptide) reduced cortical and total stroke lesion size by ∼50%, inhibited the accumulation of inflammatory cells, particularly macrophages/activated microglial cells and dendritic cells, and mitigated splenic atrophy. Treatment with RTL1000 (HLA-DR2 moiety linked to human MOG-35−55 peptide) similarly reduced the stroke lesion size in HLA-DR2 transgenic mice. In contrast, control RTL with a non-neuroantigen peptide or a mismatched MHC class II moiety had no effect on stroke lesion size. Conclusions These data are the first to demonstrate successful treatment of experimental stroke using a neuroantigen specific immunomodulatory agent administered after ischemia, suggesting therapeutic potential in human stroke. PMID:19443805

  17. Histamine H4 receptor ligands: future applications and state of art.

    PubMed

    Corrêa, Michelle Fidelis; dos Santos Fernandes, João Paulo

    2015-04-01

    Histamine is a chemical transmitter found practically in whole organism and exerts its effects through the interaction with H1 to H4 histaminergic receptors. Specifically, H4 receptors are found mainly in immune cells and blood-forming tissues, thus are involved in inflammatory and immune processes, as well as some actions in central nervous system. Therefore, H4 receptor ligands can have applications in the treatment of chronic inflammatory and immune diseases and may be novel therapeutic option in these conditions. Several H4 receptor ligands have been described from early 2000's until nowadays, being imidazole, indolecarboxamide, 2-aminopyrimidine, quinazoline, and quinoxaline scaffolds the most explored and discussed in this review. Moreover, several studies of molecular modeling using homology models of H4 receptor and QSAR data of the ligands are summarized. The increasing and promising therapeutic applications are leading these compounds to clinical trials, which probably will be part of the next generation of blockbuster drugs. PMID:25228262

  18. Synthesis and estrogen receptor affinity of a 4-hydroxytamoxifen-labeled ligand for diagnostic imaging.

    PubMed

    Lashley, Matthew R; Niedzinski, Edmund J; Rogers, Jane M; Denison, Michael S; Nantz, Michael H

    2002-12-01

    A 10-step synthesis of a novel 4-hydroxytamoxifen-DTPA ligand (HOTam-DTPA) is reported. Tamoxifen and its primary metabolite 4-hydroxytamoxifen are common estrogen receptor ligands. Consequently, tamoxifen has found utility as the targeting component of various diagnostic agents for selective imaging of estrogen receptor-rich tissue, specifically breast cancer. An L-aspartic acid-derived DTPA analogue was attached to the ethyl side chain of 4-hydroxy-tamoxifen using N,N'-dimethylethylenediamine as a hydrophilic linker. A competitve estrogen receptor binding assay using [3H]-17beta-estradiol was performed to determine the effect of the ethyl side chain modification on estrogen receptor affinity. The results show that while the relative affinity of HOTam-DTPA for the estrogen receptor is approximately 10-fold lower than that of tamoxifen, it still remains a potent ligand at relatively low concentrations. PMID:12413861

  19. Monitoring ligand-mediated internalization of G protein-coupled receptor as a novel pharmacological approach.

    PubMed

    Fukunaga, Shin'ichi; Setoguchi, Shingo; Hirasawa, Akira; Tsujimoto, Gozoh

    2006-12-01

    Agonist activation of a G protein-coupled receptor (GPCR) results in the redistribution of the receptor protein away from the cell surface into internal cellular compartments through a process of endocytosis known as internalization. Visualization of receptor internalization has become experimentally practicable by using fluorescent reagents such as green fluorescent protein (GFP). In this study, we examined whether the ligand-mediated internalization of a GPCR can be exploited for pharmacological evaluations. We acquired fluorescent images of cells expressing GFP-labeled GPCRs and evaluated the ligand-mediated internalization quantitatively by image processing. Using beta2-adrenoceptor and vasopressin V1a receptor as model GPCRs that couple to Gs and Gq, respectively, we first examined whether these GFP-tagged GPCRs exhibited appropriate pharmacology. The rank order of receptor internalization potency for a variety of agonists and antagonists specific to each receptor corresponded well with that previously observed in ligand binding studies. In addition to chemical ligand-induced internalization, this cell-based fluorescence imaging system successfully monitored the internalization of the proton-sensing GPCR TDAG8, and that of the free fatty acid-sensitive GPCR GPR120. The results show that monitoring receptor internalization can be a useful approach for pharmacological characterization of GPCRs and in fishing for ligands of orphan GPCRs. PMID:16978657

  20. Expression of chemokine decoy receptors and their ligands at the porcine maternal-fetal interface.

    PubMed

    Wessels, Jocelyn M; Linton, Nicola F; van den Heuvel, Marianne J; Cnossen, Sonya A; Edwards, Andrew K; Croy, Barbara Anne; Tayade, Chandrakant

    2011-02-01

    Successful pregnancy requires coordinated maternal-fetal cross-talk to establish vascular connections that support conceptus growth. In pigs, two waves of spontaneous fetal loss occur and 30-40% of conceptuses are lost before parturition. Previous studies associated these losses with decreased angiogenic and increased inflammatory cytokines. Chemokines, a sub-category of cytokines, and decoy receptors control leukocyte trafficking, angiogenesis and development. The availability of chemokines is regulated by three non-signalling decoy receptors: chemokine decoy receptor (D6), Duffy antigen receptor for chemokines (DARC) and Chemocentryx decoy receptor (CCX CKR). We hypothesized that the expression of these receptors and their chemokine ligands regulate the porcine pregnancy success or failure. Here, we describe for the first time the transcription and translation of all three decoy receptors and several chemokine ligands in endometrium and trophoblast associated with healthy and arresting conceptuses at gestation day (gd) 20 and gd50. Among decoy receptors, transcripts for DARC were significantly reduced in endometrium, whereas that for CCX CKR were significantly increased in endometrium and trophoblast at gd50 arresting compared with healthy sites. However, western blot analysis revealed no differences in decoy receptor expression between healthy and arresting tissues. Transcripts for decoy receptor ligands CCL2, CCL3, CCL4, CCL5, CCL11, CCL19, CCL21, CXCL2 and CXCL8 were stable between healthy and arresting littermates. Quantification by SearchLight chemiluminescent protein array confirmed ligand expression at the protein level. These data indicate that decoy receptors and ligands are expressed at the porcine maternal-fetal interface and dysregulation of decoy receptor (DARC and CCX CKR) transcripts occurs at sites of fetal arrest. PMID:20680026

  1. Lipid G Protein-coupled Receptor Ligand Identification Using β-Arrestin PathHunter™ Assay

    PubMed Central

    Yin, Hong; Chu, Alan; Li, Wei; Wang, Bin; Shelton, Fabiola; Otero, Francella; Nguyen, Deborah G.; Caldwell, Jeremy S.; Chen, Yu Alice

    2009-01-01

    A growing number of orphan G-protein-coupled receptors (GPCRs) have been reported to be activated by lipid ligands, such as lysophosphatidic acid, sphingosine 1-phosphate (S1P), and cannabinoids, for which there are already well established receptors. These new ligand claims are controversial due to either lack of independent confirmations or conflicting reports. We used the β-arrestin PathHunter™ assay system, a newly developed, generic GPCR assay format that measures β-arrestin binding to GPCRs, to evaluate lipid receptor and ligand pairing. This assay eliminates interference from endogenous receptors on the parental cells because it measures a signal that is specifically generated by the tagged receptor and is immediately downstream of receptor activation. We screened a large number of newly “deorphaned” receptors (GPR23, GPR92, GPR55, G2A, GPR18, GPR3, GPR6, GPR12, and GPR63) and control receptors against a collection of ∼400 lipid molecules to try to identify the receptor ligand in an unbiased fashion. GPR92 was confirmed to be a lysophosphatidic acid receptor with weaker responses to farnesyl pyrophosphate and geranylgeranyl diphosphate. The putative cannabinoid receptor GPR55 responded strongly to AM251, rimonabant, and lysophosphatidylinositol but only very weakly to endocannabinoids. G2A receptor was confirmed to be an oxidized free fatty acid receptor. In addition, we discovered that 3,3′-diindolylmethane, a dietary molecule from cruciferous vegetables, which has known anti-cancer properties, to be a CB2 receptor partial agonist, with binding affinity around 1 μm. The anti-inflammatory effect of 3,3′-diindolylmethane in RAW264.7 cells was shown to be partially mediated by CB2. PMID:19286662

  2. Revealing a steroid receptor ligand as a unique PPAR[gamma] agonist

    SciTech Connect

    Lin, Shengchen; Han, Ying; Shi, Yuzhe; Rong, Hui; Zheng, Songyang; Jin, Shikan; Lin, Shu-Yong; Lin, Sheng-Cai; Li, Yong

    2012-06-28

    Peroxisome proliferator-activated receptor gamma (PPAR{gamma}) regulates metabolic homeostasis and is a molecular target for anti-diabetic drugs. We report here the identification of a steroid receptor ligand, RU-486, as an unexpected PPAR{gamma} agonist, thereby uncovering a novel signaling route for this steroid drug. Similar to rosiglitazone, RU-486 modulates the expression of key PPAR{gamma} target genes and promotes adipocyte differentiation, but with a lower adipogenic activity. Structural and functional studies of receptor-ligand interactions reveal the molecular basis for a unique binding mode for RU-486 in the PPAR{gamma} ligand-binding pocket with distinctive properties and epitopes, providing the molecular mechanisms for the discrimination of RU-486 from thiazolidinediones (TZDs) drugs. Our findings together indicate that steroid compounds may represent an alternative approach for designing non-TZD PPAR{gamma} ligands in the treatment of insulin resistance.

  3. The Role of Endogenous Epidermal Growth Factor Receptor Ligands in Mediating Corneal Epithelial Homeostasis

    PubMed Central

    Peterson, Joanne L.; Phelps, Eric D.; Doll, Mark A.; Schaal, Shlomit; Ceresa, Brian P.

    2014-01-01

    Purpose. To provide a comprehensive study of the biological role and therapeutic potential of six endogenous epidermal growth factor receptor (EGFR) ligands in corneal epithelial homeostasis. Methods. Kinetic analysis and dose response curves were performed by using in vitro and in vivo wound-healing assays. Biochemical assays were used to determine receptor expression and activity. Human tears were collected and quantitatively analyzed by multianalyte profiling for endogenous EGFR ligands. Results. Epidermal growth factor receptor ligands improved wound closure and activated EGFR, but betacellulin (BTC) was the most efficacious promoter of wound healing in vitro. In contrast, only epidermal growth factor (EGF) promoted wound healing in vivo. Human tears from 25 healthy individuals showed EGFR ligands at these average concentrations: EGF at 2053 ± 312.4 pg/mL, BTC at 207 ± 39.4 pg/mL, heparin-binding EGF at 44 ± 5.8 pg/mL, amphiregulin at 509 ± 28.8 pg/mL, transforming growth factor-α at 84 ± 19 pg/mL, and epiregulin at 52 ± 15 pg/mL. Conclusions. Under unwounded conditions, only EGF was present at concentrations near the ligand's Kd for the receptor, indicating it is the primary mediator of corneal epithelial homeostasis. Other ligands were present but at concentrations 11- to 7500-fold less their Kd, preventing significant ligand binding. Further, the high levels of EGF and its predicted binding preclude receptor occupancy by exogenous ligand and can explain the discrepancy between the in vitro and in vivo data. Therefore, therapeutic use of EGFR ligands may be unpredictable and impractical. PMID:24722692

  4. Visualization and ligand-induced modulation of dopamine receptor dimerization at the single molecule level.

    PubMed

    Tabor, Alina; Weisenburger, Siegfried; Banerjee, Ashutosh; Purkayastha, Nirupam; Kaindl, Jonas M; Hübner, Harald; Wei, Luxi; Grömer, Teja W; Kornhuber, Johannes; Tschammer, Nuska; Birdsall, Nigel J M; Mashanov, Gregory I; Sandoghdar, Vahid; Gmeiner, Peter

    2016-01-01

    G protein-coupled receptors (GPCRs), including dopamine receptors, represent a group of important pharmacological targets. An increased formation of dopamine receptor D2 homodimers has been suggested to be associated with the pathophysiology of schizophrenia. Selective labeling and ligand-induced modulation of dimerization may therefore allow the investigation of the pathophysiological role of these dimers. Using TIRF microscopy at the single molecule level, transient formation of homodimers of dopamine receptors in the membrane of stably transfected CHO cells has been observed. The equilibrium between dimers and monomers was modulated by the binding of ligands; whereas antagonists showed a ratio that was identical to that of unliganded receptors, agonist-bound D2 receptor-ligand complexes resulted in an increase in dimerization. Addition of bivalent D2 receptor ligands also resulted in a large increase in D2 receptor dimers. A physical interaction between the protomers was confirmed using high resolution cryogenic localization microscopy, with ca. 9 nm between the centers of mass. PMID:27615810

  5. Recent developments in A2B adenosine receptor ligands.

    PubMed

    Kalla, Rao V; Zablocki, Jeff; Tabrizi, Mojgan Aghazadeh; Baraldi, Pier Giovanni

    2009-01-01

    A selective, high-affinity A(2B) adenosine receptor (AR) antagonist will be useful as a pharmacological tool to help determine the role of the A(2B)AR in inflammatory diseases and angiogenic diseases. Based on early A(2B)AR-selective ligands with nonoptimal pharmaceutical properties, such as 15 (MRS 1754: K(i)(hA(2B)) = 2 nM; K(i)(hA(1)) = 403 nM; K(i)(hA(2A)) = 503 NM, and K(i)(hA(3)) = 570 nM), several groups have discovered second-generation A(2B)AR ligands that are suitable for development. Scientists at CV Therapeutics have discovered the selective, high-affinity A(2B)AR antagonist 22, a 8-(4-pyrazolyl)-xanthine derivative, (CVT-6883, K(i)(hA(2B)) = 22 nM; K(i)(hA(1)) = 1,940 nM; K(i)(hA(2A)) = 3,280; and K(i)(hA(3)) = 1,070 nM). Compound 22 has demonstrated favorable pharmacokinetic (PK) properties (T(1/2) = 4 h and F > 35% rat), and it is a functional antagonist at the A(2B)AR(K (B) = 6 nM). In a mouse model of asthma, compound 22 demonstrated a dose-dependent efficacy supporting the role of the A(2B)AR in asthma. In two Phase I clinical trails, 22 (CVT-6883) was found to be safe, well tolerated, and suitable for once-daily dosing. Baraldi et al. have independently discovered a selective, high-affinity A(2B)AR antagonist, 30 (MRE2029F20), 8-(5-pyrazolyl)-xanthine (K(i)(hA(2B)) = 5.5 nM; K(i)(hA(1)) = 200 nM; K(i)(hA(2A), A(3)) > 1,000, that has been selected for development in conjunction with King Pharmaceuticals. Compound 30 has been demonstrated to be a functional antagonist of the A(2B)AR, and it has been radiolabeled for use in pharmacological studies. A third compound, 58 (LAS-38096), is a 2-aminopyrimidine derivative (discovered by the Almirall group) that has high A(2B)AR affinity and selectivity (K(i)(hA(2B)) = 17 nM; K(i)(hA(1)) > 1,000 nM; K(i)(hA(2A)) > 2,500; and K(i)(hA(3)) > 1,000 nM), and 58 has been moved into preclinical safety testing. A fourth selective, high-affinity A(2B)AR antagonist, 54 (OSIP339391 K(i))(hA(2B)) = 0.5 nM; K(i))(hA(1

  6. Modeling multivalent ligand-receptor interactions with steric constraints on configurations of cell surface receptor aggregates

    SciTech Connect

    Monine, Michael; Posner, Richard; Savage, Paul; Faeder, James; Hlavacek, William S

    2008-01-01

    Signal transduction generally involves multivalent protein-protein interactions, which can produce various protein complexes and post-translational modifications. The reaction networks that characterize these interactions tend to be so large as to challenge conventional simulation procedures. To address this challenge, a kinetic Monte Carlo (KMC) method has been developed that can take advantage of a model specification in terms of reaction rules for molecular interactions. A set of rules implicitly defines the reactions that can occur as a result of the interactions represented by the rules. With the rule-based KMC method, explicit generation of the underlying chemical reaction network implied by rules is avoided. Here, we apply and extend this method to characterize the interactions of a trivalent ligand with a bivalent cell-surface receptor. This system is also studied experimentally. We consider the following kinetic models: an equivalent-site model, an extension of this model, which takes into account steric constraints on the configurations of receptor aggregates, and finally, a model that accounts for cyclic receptor aggregates. Simulation results for the equivalent-site model are consistent with an equilibrium continuum model. Using these models, we investigate the effects of steric constraints and the formation of cyclic aggregates on the kinetics and equilibria of small and large aggregate formation and the percolation phase transition that occurs in this system.

  7. Assessment and Challenges of Ligand Docking into Comparative Models of G-Protein Coupled Receptors

    PubMed Central

    Frimurer, Thomas M.; Meiler, Jens

    2013-01-01

    The rapidly increasing number of high-resolution X-ray structures of G-protein coupled receptors (GPCRs) creates a unique opportunity to employ comparative modeling and docking to provide valuable insight into the function and ligand binding determinants of novel receptors, to assist in virtual screening and to design and optimize drug candidates. However, low sequence identity between receptors, conformational flexibility, and chemical diversity of ligands present an enormous challenge to molecular modeling approaches. It is our hypothesis that rapid Monte-Carlo sampling of protein backbone and side-chain conformational space with Rosetta can be leveraged to meet this challenge. This study performs unbiased comparative modeling and docking methodologies using 14 distinct high-resolution GPCRs and proposes knowledge-based filtering methods for improvement of sampling performance and identification of correct ligand-receptor interactions. On average, top ranked receptor models built on template structures over 50% sequence identity are within 2.9 Å of the experimental structure, with an average root mean square deviation (RMSD) of 2.2 Å for the transmembrane region and 5 Å for the second extracellular loop. Furthermore, these models are consistently correlated with low Rosetta energy score. To predict their binding modes, ligand conformers of the 14 ligands co-crystalized with the GPCRs were docked against the top ranked comparative models. In contrast to the comparative models themselves, however, it remains difficult to unambiguously identify correct binding modes by score alone. On average, sampling performance was improved by 103 fold over random using knowledge-based and energy-based filters. In assessing the applicability of experimental constraints, we found that sampling performance is increased by one order of magnitude for every 10 residues known to contact the ligand. Additionally, in the case of DOR, knowledge of a single specific ligand

  8. Three amino acids in the D2 dopamine receptor regulate selective ligand function and affinity

    PubMed Central

    Cummings, David F.; Ericksen, Spencer S.; Schetz, John A.

    2016-01-01

    The D2 dopamine receptor is an important therapeutic target for the treatment of psychotic, agitated, and abnormal behavioral states. To better understand the specific interactions of subtype-selective ligands with dopamine receptor subtypes, seven ligands with high selectivity (>120-fold) for the D4 subtype of dopamine receptor were tested on wild-type and mutant D2 receptors. Five of the selective ligands were observed to have 21-fold to 293-fold increases in D2 receptor affinity when three non-conserved amino acids in TM2 and TM3 were mutated to the corresponding D4 amino acids. The two ligands with the greatest improvement in affinity for the D2 mutant receptor [i.e., 3-{[4-(4-iodophenyl) piperazin-1-yl]methyl}-1H-pyrrolo[2,3-b]pyridine (L-750,667) and 1-[4-iodobenzyl]-4-[N-(3-isopropoxy-2-pyridinyl)-N-methyl]-aminopiperidine (RBI-257)] were investigated in functional assays. Consistent with their higher affinity for the mutant than for the wild-type receptor, concentrations of L-750,667 or RBI-257 that produced large reductions in the potency of quinpirole’s functional response in the mutant did not significantly reduce quinpirole’s functional response in the wild-type D2 receptor. In contrast to RBI-257 which is an antagonist at all receptors, L-750,667 is a partial agonist at the wild-type D2 but an antagonist at both the mutant D2 and wild-type D4 receptors. Our study demonstrates for the first time that the TM2/3 microdomain of the D2 dopamine receptor not only regulates the selective affinity of ligands, but in selected cases can also regulate their function. Utilizing a new docking technique that incorporates receptor backbone flexibility, the three non-conserved amino acids that encompass the TM2/3 microdomain were found to account in large part for the differences in intermolecular steric contacts between the ligands and receptors. Consistent with the experimental data, this model illustrates the interactions between a variety of subtype

  9. Ligand Binding Ensembles Determine Graded Agonist Efficacies at a G Protein-coupled Receptor.

    PubMed

    Bock, Andreas; Bermudez, Marcel; Krebs, Fabian; Matera, Carlo; Chirinda, Brian; Sydow, Dominique; Dallanoce, Clelia; Holzgrabe, Ulrike; De Amici, Marco; Lohse, Martin J; Wolber, Gerhard; Mohr, Klaus

    2016-07-29

    G protein-coupled receptors constitute the largest family of membrane receptors and modulate almost every physiological process in humans. Binding of agonists to G protein-coupled receptors induces a shift from inactive to active receptor conformations. Biophysical studies of the dynamic equilibrium of receptors suggest that a portion of receptors can remain in inactive states even in the presence of saturating concentrations of agonist and G protein mimetic. However, the molecular details of agonist-bound inactive receptors are poorly understood. Here we use the model of bitopic orthosteric/allosteric (i.e. dualsteric) agonists for muscarinic M2 receptors to demonstrate the existence and function of such inactive agonist·receptor complexes on a molecular level. Using all-atom molecular dynamics simulations, dynophores (i.e. a combination of static three-dimensional pharmacophores and molecular dynamics-based conformational sampling), ligand design, and receptor mutagenesis, we show that inactive agonist·receptor complexes can result from agonist binding to the allosteric vestibule alone, whereas the dualsteric binding mode produces active receptors. Each agonist forms a distinct ligand binding ensemble, and different agonist efficacies depend on the fraction of purely allosteric (i.e. inactive) versus dualsteric (i.e. active) binding modes. We propose that this concept may explain why agonist·receptor complexes can be inactive and that adopting multiple binding modes may be generalized also to small agonists where binding modes will be only subtly different and confined to only one binding site. PMID:27298318

  10. Heterologous production of death ligands' and death receptors' extracellular domains: structural features and efficient systems.

    PubMed

    Muraki, Michiro

    2012-08-01

    The extracellular domains of death ligands and those of death receptors are closely related to many serious human diseases through the initiation of apoptosis. Recombinant production of the extracellular domains has been investigated due to demand for a large amount of purified samples, which are a prerequisite for their biochemical characterization and constitute the fundamentals of medical applications. This review focuses on the recombinant production of extracellular domains of the major members of death ligand and death receptor families using non-mammalian expression systems with an emphasis on Fas ligand and Fas receptor. In contrast to the efficient production of the functional extracellular domains of TRAIL, TNFα and LTα by intracellular expression systems using Escherichia coli or Pichia pastoris, that of Fas ligand requires the secretory expression systems using P. pastoris or Dictyostelium discoideum, and the productivity in P. pastoris was largely dependent on tag sequence, potential N-glycosylation site and expressed protein region. On the other hand, the exploitation of insect cell systems is generally useful for the preparation of functional extracellular domains of death receptors containing many disulfide bridges in the absence of extended secondary structure, and a Bombyx mori larvae secretion system presented a superior productivity for human Fas receptor extracellular domain. Based on the results obtained so far, further efforts should be devoted to the artificial control of death ligand - death receptor interactions in order to make a contribution to medicine, represented by the development of novel biopharmaceuticals. PMID:22762186

  11. Linking Ah receptor mediated effects of sediments and impacts on fish to key pollutants in the Yangtze Three Gorges Reservoir, China - A comprehensive perspective.

    PubMed

    Floehr, Tilman; Scholz-Starke, Björn; Xiao, Hongxia; Hercht, Hendrik; Wu, Lingling; Hou, Junli; Schmidt-Posthaus, Heike; Segner, Helmut; Kammann, Ulrike; Yuan, Xingzhong; Roß-Nickoll, Martina; Schäffer, Andreas; Hollert, Henner

    2015-12-15

    The Three Gorges Reservoir (TGR), created in consequence of the Yangtze River's impoundment by the Three Gorges Dam, faces numerous anthropogenic impacts that challenge its unique ecosystem. Organic pollutants, particularly aryl hydrocarbon receptor (AhR) agonists, have been widely detected in the Yangtze River, but only little research was yet done on AhR-mediated activities. Hence, in order to assess effects of organic pollution, with particular focus on AhR-mediated activities, several sites in the TGR area were examined applying the "triad approach". It combines chemical analysis, in vitro, in vivo and in situ investigations to a holistic assessment. Sediments and the benthic fish species Pelteobagrus vachellii were sampled in 2011/2012, respectively, to identify relevant endpoints. Sediment was tested in vitro with the ethoxyresorufin-O-deethylase (EROD) induction assay, and in vivo with the Fish Embryo Toxicity Test and Sediment Contact Assay with Danio rerio. Activities of phase I (EROD) and phase II (glutathione-S-transferase) biotransformation enzymes, pollutant metabolites and histopathological alterations were studied in situ in P. vachellii. EROD induction was tested in vitro and in situ to evaluate possible relationships. Two sites, near Chongqing and Kaixian city, were identified as regional hot-spots and further investigated in 2013. The sediments induced in the in vitro/in vivo bioassays AhR-mediated activities and embryotoxic/teratogenic effects - particularly on the cardiovascular system. These endpoints could be significantly correlated to each other and respective chemical data. However, particle-bound pollutants showed only low bioavailability. The in situ investigations suggested a rather poor condition of P. vachellii, with histopathological alterations in liver and excretory kidney. Fish from Chongqing city exhibited significant hepatic EROD induction and obvious parasitic infestations. The polycyclic aromatic hydrocarbon (PAH) metabolite 1

  12. Eph receptors and ephrin class B ligands are expressed at tissue boundaries in Hydra vulgaris.

    PubMed

    Tischer, Susanne; Reineck, Mona; Söding, Johannes; Münder, Sandra; Böttger, Angelika

    2013-01-01

    Eph receptors and ephrins are important players in axon guidance, cell sorting and boundary formation. Both the receptors and the ligands are integrated transmembrane proteins and signalling is bidirectional. The prevalent outcome of signal transduction is repulsion of adjacent cells or cell populations. Eph/ephrins have been identified in all multicellular animals from human to sponge, their functions however appear to have been altered during evolution. Here we have identified four Eph receptors and three class B ligands in the cnidarian Hydra vulgaris, indicating that those are the evolutionary older ones. In situ hybridisation experiments revealed a striking complementarity of expression of receptors and ligands in tentacles and in developing buds. This suggests that the original function of ephrin signalling may have been in epithelial cell adhesion and the formation of tissue boundaries. PMID:24307295

  13. Trifluoromethoxyl Substituted Phenylethylene Diamines as High Affinity σ Receptor Ligands with Potent Anti-Cocaine Actions

    PubMed Central

    Smith, Trudy A.; Yang, Xiaowen; Wu, Huifang; Pouw, Buddy; Matsumoto, Rae R.; Coop, Andrew

    2012-01-01

    The phenylethylene diamines are a class of σ receptor ligands with excellent selectivity over other biological systems and with anti-cocaine actions that involve antagonism of σ1 receptors. In order to increase the potency of the aromatic methoxyl substituted analogues, trifluoromethoxyl groups were introduced to prevent metabolic demethylation. The para-substituted trifluoromethoxyl substituted analogues were shown to have increased σ receptor affinity and represent the most potent anti-cocaine phenylethylene diamines yet described. PMID:18461921

  14. Theoretical investigation of interaction between the set of ligands and α7 nicotinic acetylcholine receptor

    NASA Astrophysics Data System (ADS)

    Glukhova, O. E.; Prytkova, T. R.; Shmygin, D. S.

    2016-03-01

    Nicotinic acetylcholine receptors (nAChRs) are neuron receptor proteins that provide a transmission of nerve impulse through the synapses. They are composed of a pentametric assembly of five homologous subunits (5 α7 subunits for α7nAChR, for example), oriented around the central pore. These receptors might be found in the chemical synapses of central and peripheral nervous system, and also in the neuromuscular synapses. Transmembrane domain of the one of such receptors constitutes ion channel. The conductive properties of ion channel strongly depend on the receptor conformation changes in the response of binding with some molecule, f.e. acetylcholine. Investigation of interaction between ligands and acetylcholine receptor is important for drug design. In this work we investigate theoretically the interaction between the set of different ligands (such as vanillin, thymoquinone, etc.) and the nicotinic acetylcholine receptor (primarily with subunit of the α7nAChR) by different methods and packages (AutodockVina, GROMACS, KVAZAR, HARLEM, VMD). We calculate interaction energy between different ligands in the subunit using molecular dynamics. On the base of obtained calculation results and using molecular docking we found an optimal location of different ligands in the subunit.

  15. Development of novel cellular model for affinity studies of histamine H(4) receptor ligands.

    PubMed

    Karcz, Tadeusz; Kieć-Kononowicz, Katarzyna

    2013-01-01

    The G protein-coupled histamine H4 receptor (H4R) is the last member of histamine receptors family discovered so far. Its expression pattern, together with postulated involvement in a wide variety of immunological and inflammatory processes make histamine H4 receptor an interesting target for drug development. Potential H4R ligands may provide an innovative therapies for different immuno-based diseases, including allergy, asthma, pruritus associated with allergy or autoimmune skin conditions, rheumatoid arthritis and pain. However, none of successfully developed selective and potent histamine H4 receptor ligands have been introduced to the market up to date. For that reason there is still a strong demand for pharmacological models to be used in studies on potent H4R ligands. In current work we present the development of novel mammalian cell line, stably expressing human histamine H4 receptor, with use of retroviral transduction approach. Obtained cell line was pharmacologically characterized in radioligand binding studies and its utility for affinity testing of potent receptor ligands was confirmed in comparative studies with the use of relevant insect cells expression model. Obtained results allow for statement that developed cellular model may be successfully employed in search for new compounds active at histamine H4 receptor. PMID:24432340

  16. Engineering and optimization of an allosteric biosensor protein for peroxisome proliferator-activated receptor γ ligands.

    PubMed

    Li, Jingjing; Gierach, Izabela; Gillies, Alison R; Warden, Charles D; Wood, David W

    2011-11-15

    The peroxisome proliferator-activated receptor gamma (PPARγ or PPARG) belongs to the nuclear receptor superfamily, and is a potential drug target for a variety of diseases. In this work, we constructed a series of bacterial biosensors for the identification of functional PPARγ ligands. These sensors entail modified Escherichia coli cells carrying a four-domain fusion protein, comprised of the PPARγ ligand binding domain (LBD), an engineered mini-intein domain, the E. coli maltose binding protein (MBD), and a thymidylate synthase (TS) reporter enzyme. E. coli cells expressing this protein exhibit hormone ligand-dependent growth phenotypes. Unlike our published estrogen (ER) and thyroid receptor (TR) biosensors, the canonical PPARγ biosensor cells displayed pronounced growth in the absence of ligand. They were able to distinguish agonists and antagonists, however, even in the absence of agonist. To improve ligand sensitivity of this sensor, we attempted to engineer and optimize linker peptides flanking the PPARγ LBD insertion point. Truncation of the original linkers led to decreased basal growth and significantly enhanced ligand sensitivity of the PPARγ sensor, while substitution of the native linkers with optimized G(4)S (Gly-Gly-Gly-Gly-Ser) linkers further increased the sensitivity. Our studies demonstrate that the properties of linkers, especially the C-terminal linker, greatly influence the efficiency and fidelity of the allosteric signal induced by ligand binding. Our work also suggests an approach to increase allosteric behavior in this multidomain sensor protein, without modification of the functional LBD. PMID:21893405

  17. Molecular studies of pH dependent ligand interactions with the low-density lipoprotein receptor*

    PubMed Central

    Yamamoto, Taichi; Chen, Hsuan-Chih; Guigard, Emmanuel; Kay, Cyril M.; Ryan, Robert O.

    2009-01-01

    Ligand release from the low-density lipoprotein receptor (LDLR) has been postulated to involve a “histidine switch” induced intra-molecular rearrangement that discharges bound ligand. A recombinant soluble low-density lipoprotein receptor (sLDLR) was employed in ligand binding experiments with a fluorescent-tagged variant apolipoprotein E-N-terminal domain (apoE-NT). Binding was monitored as a function of fluorescence resonance energy transfer (FRET) from excited Trp residues in sLDLR to an extrinsic fluorophore covalently attached to Trp null apoE3-NT. In binding experiments with wild type (WT) sLDLR, FRET-dependent AEDANS fluorescence decreased as the pH was lowered. To investigate the role of His190, His562 and His586 in sLDLR on pH dependent ligand binding and discharge, site directed mutagenesis studies were performed. Compared to WT sLDLR, triple His→Ala mutant sLDLR displayed attenuated pH-dependent ligand binding and decreased ligand release as a function of low pH. When these His residues were substituted for Lys, whose positively charged side chain does not ionize over this pH range, ligand binding was nearly abolished at all pH values. When sequential His to Lys mutants were examined, evidence obtained suggested that His562 and His586 function cooperatively. Whereas the sedimentation coefficient for WT sLDLR increased upon lowering the pH from 7 to 5, no such change occurred in the case of the triple Lys mutant receptor or a His562Lys / His586Lys double mutant receptor. The data support the existence of a cryptic, histidine side chain ionization-dependent alternative ligand that modulates ligand discharge via conformational reorganization. PMID:18847225

  18. 3,5-T2 is an alternative ligand for the thyroid hormone receptor β1.

    PubMed

    Mendoza, A; Navarrete-Ramírez, P; Hernández-Puga, G; Villalobos, P; Holzer, G; Renaud, J P; Laudet, V; Orozco, A

    2013-08-01

    Several liganded nuclear receptors have alternative ligands acting in a tissue-specific fashion and playing important biological roles. We present evidence that 3,5-diiodothyronine (T(2)), a naturally occurring iodothyronine that results from T(3) outer-ring deiodination, is an alternative ligand for thyroid hormone receptor β1 (TRβ1). In tilapia, 2 TRβ isoforms differing by 9 amino acids in the ligand-binding domain were cloned. Binding and transactivation studies showed that T(2) activates the human and the long tilapia TRβ1 isoform, but not the short one. A chimeric human TRβ1 (hTRβ1) that contained the 9-amino-acid insert showed no response to T(2), suggesting that the conformation of the hTRβ1 naturally allows T(2) binding and that other regions of the receptor are implicated in TR activation by T(2). Indeed, further analysis showed that the N terminus is essential for T(2)-mediated transactivation but not for that by T(3) in the long and hTRβ1, suggesting a functional interaction between the N-terminal domain and the insertion in the ligand-binding domain. To establish the functional relevance of T(2)-mediated TRβ1 binding and activation, mRNA expression and its regulation by T(2) and T(3) was evaluated for both isoforms. Our data show that long TRβ1expression is 10(6)-fold higher than that of the short isoform, and T(3) and T(2) differentially regulate the expression of these 2 TRβ1 isoforms in vivo. Taken together, our results prompted a reevaluation of the role and mechanism of action of thyroid hormone metabolites previously believed to be inactive. More generally, we propose that classical liganded receptors are only partially locked to very specific ligands and that alternative ligands may play a role in the tissue-specific action of receptors. PMID:23736295

  19. Disruption of Ah Receptor Signaling during Mouse Development Leads to Abnormal Cardiac Structure and Function in the Adult.

    PubMed

    Carreira, Vinicius S; Fan, Yunxia; Kurita, Hisaka; Wang, Qin; Ko, Chia-I; Naticchioni, Mindi; Jiang, Min; Koch, Sheryl; Zhang, Xiang; Biesiada, Jacek; Medvedovic, Mario; Xia, Ying; Rubinstein, Jack; Puga, Alvaro

    2015-01-01

    The Developmental Origins of Health and Disease (DOHaD) Theory proposes that the environment encountered during fetal life and infancy permanently shapes tissue physiology and homeostasis such that damage resulting from maternal stress, poor nutrition or exposure to environmental agents may be at the heart of adult onset disease. Interference with endogenous developmental functions of the aryl hydrocarbon receptor (AHR), either by gene ablation or by exposure in utero to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), a potent AHR ligand, causes structural, molecular and functional cardiac abnormalities and altered heart physiology in mouse embryos. To test if embryonic effects progress into an adult phenotype, we investigated whether Ahr ablation or TCDD exposure in utero resulted in cardiac abnormalities in adult mice long after removal of the agent. Ten-months old adult Ahr-/- and in utero TCDD-exposed Ahr+/+ mice showed sexually dimorphic abnormal cardiovascular phenotypes characterized by echocardiographic findings of hypertrophy, ventricular dilation and increased heart weight, resting heart rate and systolic and mean blood pressure, and decreased exercise tolerance. Underlying these effects, genes in signaling networks related to cardiac hypertrophy and mitochondrial function were differentially expressed. Cardiac dysfunction in mouse embryos resulting from AHR signaling disruption seems to progress into abnormal cardiac structure and function that predispose adults to cardiac disease, but while embryonic dysfunction is equally robust in males and females, the adult abnormalities are more prevalent in females, with the highest severity in Ahr-/- females. The findings reported here underscore the conclusion that AHR signaling in the developing heart is one potential target of environmental factors associated with cardiovascular disease. PMID:26555816

  20. Disruption of Ah Receptor Signaling during Mouse Development Leads to Abnormal Cardiac Structure and Function in the Adult

    PubMed Central

    Carreira, Vinicius S.; Fan, Yunxia; Kurita, Hisaka; Wang, Qin; Ko, Chia-I; Naticchioni, Mindi; Jiang, Min; Koch, Sheryl; Zhang, Xiang; Biesiada, Jacek; Medvedovic, Mario; Xia, Ying; Rubinstein, Jack; Puga, Alvaro

    2015-01-01

    The Developmental Origins of Health and Disease (DOHaD) Theory proposes that the environment encountered during fetal life and infancy permanently shapes tissue physiology and homeostasis such that damage resulting from maternal stress, poor nutrition or exposure to environmental agents may be at the heart of adult onset disease. Interference with endogenous developmental functions of the aryl hydrocarbon receptor (AHR), either by gene ablation or by exposure in utero to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), a potent AHR ligand, causes structural, molecular and functional cardiac abnormalities and altered heart physiology in mouse embryos. To test if embryonic effects progress into an adult phenotype, we investigated whether Ahr ablation or TCDD exposure in utero resulted in cardiac abnormalities in adult mice long after removal of the agent. Ten-months old adult Ahr-/- and in utero TCDD-exposed Ahr+/+ mice showed sexually dimorphic abnormal cardiovascular phenotypes characterized by echocardiographic findings of hypertrophy, ventricular dilation and increased heart weight, resting heart rate and systolic and mean blood pressure, and decreased exercise tolerance. Underlying these effects, genes in signaling networks related to cardiac hypertrophy and mitochondrial function were differentially expressed. Cardiac dysfunction in mouse embryos resulting from AHR signaling disruption seems to progress into abnormal cardiac structure and function that predispose adults to cardiac disease, but while embryonic dysfunction is equally robust in males and females, the adult abnormalities are more prevalent in females, with the highest severity in Ahr-/- females. The findings reported here underscore the conclusion that AHR signaling in the developing heart is one potential target of environmental factors associated with cardiovascular disease. PMID:26555816

  1. Versatility or Promiscuity: The Estrogen Receptors, Control of Ligand Selectivity and an Update on Subtype Selective Ligands

    PubMed Central

    Ng, Hui Wen; Perkins, Roger; Tong, Weida; Hong, Huixiao

    2014-01-01

    The estrogen receptors (ERs) are a group of versatile receptors. They regulate an enormity of processes starting in early life and continuing through sexual reproduction, development, and end of life. This review provides a background and structural perspective for the ERs as part of the nuclear receptor superfamily and discusses the ER versatility and promiscuity. The wide repertoire of ER actions is mediated mostly through ligand-activated transcription factors and many DNA response elements in most tissues and organs. Their versatility, however, comes with the drawback of promiscuous interactions with structurally diverse exogenous chemicals with potential for a wide range of adverse health outcomes. Even when interacting with endogenous hormones, ER actions can have adverse effects in disease progression. Finally, how nature controls ER specificity and how the subtle differences in receptor subtypes are exploited in pharmaceutical design to achieve binding specificity and subtype selectivity for desired biological response are discussed. The intent of this review is to complement the large body of literature with emphasis on most recent developments in selective ER ligands. PMID:25162709

  2. Discriminating agonist and antagonist ligands of the nuclear receptors using 3D-pharmacophores.

    PubMed

    Lagarde, Nathalie; Delahaye, Solenne; Zagury, Jean-François; Montes, Matthieu

    2016-01-01

    Nuclear receptors (NRs) constitute an important class of therapeutic targets. We evaluated the performance of 3D structure-based and ligand-based pharmacophore models in predicting the pharmacological profile of NRs ligands using the NRLiSt BDB database. We could generate selective pharmacophores for agonist and antagonist ligands and we found that the best performances were obtained by combining the structure-based and the ligand-based approaches. The combination of pharmacophores that were generated allowed to cover most of the chemical space of the NRLiSt BDB datasets. By screening the whole NRLiSt BDB on our 3D pharmacophores, we demonstrated their selectivity towards their dedicated NRs ligands. The 3D pharmacophores herein presented can thus be used as a predictor of the pharmacological activity of NRs ligands.Graphical AbstractUsing a combination of structure-based and ligand-based pharmacophores, agonist and antagonist ligands of the Nuclear Receptors included in the NRLiSt BDB database could be separated. PMID:27602059

  3. A mollusk retinoic acid receptor (RAR) ortholog sheds light on the evolution of ligand binding.

    PubMed

    Gutierrez-Mazariegos, Juliana; Nadendla, Eswar Kumar; Lima, Daniela; Pierzchalski, Keely; Jones, Jace W; Kane, Maureen; Nishikawa, Jun-Ichi; Hiromori, Youhei; Nakanishi, Tsuyoshi; Santos, Miguel M; Castro, L Filipe C; Bourguet, William; Schubert, Michael; Laudet, Vincent

    2014-11-01

    Nuclear receptors are transcription factors that regulate networks of target genes in response to small molecules. There is a strong bias in our knowledge of these receptors because they were mainly characterized in classical model organisms, mostly vertebrates. Therefore, the evolutionary origins of specific ligand-receptor couples still remain elusive. Here we present the identification and characterization of a retinoic acid receptor (RAR) from the mollusk Nucella lapillus (NlRAR). We show that this receptor specifically binds to DNA response elements organized in direct repeats as a heterodimer with retinoid X receptor. Surprisingly, we also find that NlRAR does not bind all-trans retinoic acid or any other retinoid we tested. Furthermore, NlRAR is unable to activate the transcription of reporter genes in response to stimulation by retinoids and to recruit coactivators in the presence of these compounds. Three-dimensional modeling of the ligand-binding domain of NlRAR reveals an overall structure that is similar to vertebrate RARs. However, in the ligand-binding pocket (LBP) of the mollusk receptor, the alteration of several residues interacting with the ligand has apparently led to an overall decrease in the strength of the interaction with the ligand. Accordingly, mutations of NlRAR at key positions within the LBP generate receptors that are responsive to retinoids. Altogether our data suggest that, in mollusks, RAR has lost its affinity for all-trans retinoic acid, highlighting the evolutionary plasticity of its LBP. When put in an evolutionary context, our results reveal new structural and functional features of nuclear receptors validated by millions of years of evolution that were impossible to reveal in model organisms. PMID:25116705

  4. A Mollusk Retinoic Acid Receptor (RAR) Ortholog Sheds Light on the Evolution of Ligand Binding

    PubMed Central

    Gutierrez-Mazariegos, Juliana; Nadendla, Eswar Kumar; Lima, Daniela; Pierzchalski, Keely; Jones, Jace W.; Kane, Maureen; Nishikawa, Jun-Ichi; Hiromori, Youhei; Nakanishi, Tsuyoshi; Santos, Miguel M.; Castro, L. Filipe C.; Bourguet, William

    2014-01-01

    Nuclear receptors are transcription factors that regulate networks of target genes in response to small molecules. There is a strong bias in our knowledge of these receptors because they were mainly characterized in classical model organisms, mostly vertebrates. Therefore, the evolutionary origins of specific ligand-receptor couples still remain elusive. Here we present the identification and characterization of a retinoic acid receptor (RAR) from the mollusk Nucella lapillus (NlRAR). We show that this receptor specifically binds to DNA response elements organized in direct repeats as a heterodimer with retinoid X receptor. Surprisingly, we also find that NlRAR does not bind all-trans retinoic acid or any other retinoid we tested. Furthermore, NlRAR is unable to activate the transcription of reporter genes in response to stimulation by retinoids and to recruit coactivators in the presence of these compounds. Three-dimensional modeling of the ligand-binding domain of NlRAR reveals an overall structure that is similar to vertebrate RARs. However, in the ligand-binding pocket (LBP) of the mollusk receptor, the alteration of several residues interacting with the ligand has apparently led to an overall decrease in the strength of the interaction with the ligand. Accordingly, mutations of NlRAR at key positions within the LBP generate receptors that are responsive to retinoids. Altogether our data suggest that, in mollusks, RAR has lost its affinity for all-trans retinoic acid, highlighting the evolutionary plasticity of its LBP. When put in an evolutionary context, our results reveal new structural and functional features of nuclear receptors validated by millions of years of evolution that were impossible to reveal in model organisms. PMID:25116705

  5. Identification of Receptor Ligands and Receptor Subtypes Using Antagonists in a Capillary Electrophoresis Single-Cell Biosensor Separation System

    NASA Astrophysics Data System (ADS)

    Fishman, Harvey A.; Orwar, Owe; Scheller, Richard H.; Zare, Richard N.

    1995-08-01

    A capillary electrophoresis system with single-cell biosensors as a detector has been used to separate and identify ligands in complex biological samples. The power of this procedure was significantly increased by introducing antagonists that inhibited the cellular response from selected ligand-receptor interactions. The single-cell biosensor was based on the ligand-receptor binding and G-protein-mediated signal transduction pathways in PC12 and NG108-15 cell lines. Receptor activation was measured as increases in cytosolic free calcium ion concentration by using fluorescence microscopy with the intracellular calcium ion indicator fluo-3 acetoxymethyl ester. Specifically, a mixture of bradykinin (BK) and acetylcholine (ACh) was fractionated and the components were identified by inhibiting the cellular response with icatibant (HOE 140), a selective antagonist to the BK B_2 receptor subtype (B_2BK), and atropine, an antagonist to muscarinic ACh receptor subtypes. Structurally related forms of BK were also identified based on inhibiting B_2BK receptors. Applications of this technique include identification of endogenous BK in a lysate of human hepatocellular carcinoma cells (Hep G2) and screening for bioactivity of BK degradation products in human blood plasma. The data demonstrate that the use of antagonists with a single-cell biosensor separation system aids identification of separated components and receptor subtypes.

  6. Regulatory crosstalk and interference between the xenobiotic and hypoxia sensing pathways at the AhR-ARNT-HIF1α signaling node

    PubMed Central

    Vorrink, Sabine U.; Domann, Frederick E.

    2014-01-01

    The aryl hydrocarbon receptor (AhR) is a ligand-activated transcription factor that mediates many of the responses to toxic environmental chemicals such as TCDD or dioxin-like PCBs. To regulate gene expression, the AhR requires its binding partner, the aryl hydrocarbon receptor nuclear translocator (ARNT). ARNT is also required by the hypoxia-inducible factor-1α (HIF-1α), a crucial regulator of responses to conditions of reduced oxygen. The important role of ARNT in both the AhR and HIF-1α signaling pathways establishes a meaningful foundation for a possible crosstalk between these two vitally important signaling pathways. This crosstalk might lead to interference between the two signaling pathways and thus might play a role in the variety of cellular responses after exposure to AhR ligands and reduced oxygen availability. This review focuses on studies that have analyzed the effect of low oxygen environments and hypoxiamimetic agents on AhR signaling and conversely, the effect of AhR ligands, with a special emphasis on PCBs, on HIF-1α signaling. We highlight studies that assess the role of ARNT, elucidate the mechanism of the crosstalk, and discuss the physiological implications for exposure to AhR-inducing compounds in the context of hypoxia. PMID:24824450

  7. Responses of mixtures of polyhalogenated aromatic compounds or single compounds in the CALUX-assay a novel species-specific bioassay for Ah-receptor active compounds

    SciTech Connect

    Murk, A.J.; Aarts, J.M.M.J.G.; Jonas, A.; Brouwer, A.; Denison, M.S.

    1995-12-31

    Polyhalogenated aromatic hydrocarbons (PHAHs) elicit a number of common toxic responses, including reproductive toxicity, teratogenicity, impairment of immune responses, alterations in vitamin A and thyroid hormone metabolism and carcinogenesis. The toxic effects however are highly dependent on the animal species used, The most toxic PHAHs are approximate isostereomeres of 2,3,7,8 tetrachlorinated dibenzo-p-dioxin (TCDD) and share a common mechanism of action mediated by the aryl hydrocarbon receptor (AhR). Based on the common receptor mediated mechanism, the toxic equivalency factor concept was developed, in which the potency of each individual congener is expressed relative to TCDD, thus allowing hazard and risk assessment for mixtures of PHAHs. A number of recombinant cell lines were developed, including hepalclc7 mouse and H4IIE rat hepatoma cell lines, with AhR-mediated firefly (Photinus pyralis) luciferase gene expression. The response in this so-called CALUX (chemical activated luciferase expression) assay is additive for polychlorinated dibenzofurans (PCDFs) and PCDDS, but for polychlorinated biphenyls (PCBs) both synergistic and antagonistic interactions have been demonstrated, which are partially species-dependent. Also some structurally related compounds, like polybrominated diphenyl ether, pentachlorinated phenol, benzo(a)pyrene, pyrene, tetrachlorobenzyltoluene (Ugilec 141) and mixtures of polychlorinated terphenyls have been tested in the CALUX assay. The responses of these compounds were sometimes agonistic, but also antagonistic and synergistic effects on the TCDO response were observed.

  8. Role of Ah-receptor in suppression of in vivo antibody response by 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) is dependent on exposure conditions

    SciTech Connect

    Holsapple, M.P.; Snyder, N.K.; Blair, R.E.; Morris, D.L. ); Gokani, V. )

    1991-03-11

    The authors have previously reported that subchronic exposure to 2,7,-DCDD, a dioxin congener with very weak affinity for the Ah-receptor, produces a dose-related suppression of the in vivo Ab response, but has no effect on liver induction. In the present study the authors have compared the effect of acute or subchronic exposure to TCDD in B6C3F1 and DBA/2 mice. Acute exposure to TCDD produced a marked suppression in B6C3F1 mice but had much less effect in the DBA/2 mice. Subchronic exposure produced comparable suppression in both strains - exposure to 1.4 ug/kg TCDD suppressed the Ab response by 52% in B6C3F1 mice and by 74% in DBA/2 mice, respectively. Both acute and subchronic exposure produced a dose-related increase in liver weight in B6C3F1 mice; but neither type of exposure produced any changes in the liver weights of DBA/2 mice. The authors have confirmed that the Ah-receptor appears to play a role in the immunosuppression by a single exposure to relatively high doses, and have suggested that it plays a minimal role in the immunosuppression by daily exposure to much lower doses.

  9. Photomodulation of G Protein-Coupled Adenosine Receptors by a Novel Light-Switchable Ligand

    PubMed Central

    2015-01-01

    The adenosinergic system operates through G protein-coupled adenosine receptors, which have become promising therapeutic targets for a wide range of pathological conditions. However, the ubiquity of adenosine receptors and the eventual lack of selectivity of adenosine-based drugs have frequently diminished their therapeutic potential. Accordingly, here we aimed to develop a new generation of light-switchable adenosine receptor ligands that change their intrinsic activity upon irradiation, thus allowing the spatiotemporal control of receptor functioning (i.e., receptor activation/inactivation dependent on location and timing). Therefore, we synthesized an orthosteric, photoisomerizable, and nonselective adenosine receptor agonist, nucleoside derivative MRS5543 containing an aryl diazo linkage on the N6 substituent, which in the dark (relaxed isomer) behaved as a full adenosine A3 receptor (A3R) and partial adenosine A2A receptor (A2AR) agonist. Conversely, upon photoisomerization with blue light (460 nm), it remained a full A3R agonist but became an A2AR antagonist. Interestingly, molecular modeling suggested that structural differences encountered within the third extracellular loop of each receptor could modulate the intrinsic, receptor subtype-dependent, activity. Overall, the development of adenosine receptor ligands with photoswitchable activity expands the pharmacological toolbox in support of research and possibly opens new pharmacotherapeutic opportunities. PMID:25248077

  10. Programmable Multivalent Display of Receptor Ligands using Peptide Nucleic Acid Nanoscaffolds

    PubMed Central

    Englund, Ethan A.; Wang, Deyun; Fujigaki, Hidetsugu; Sakai, Hiroyasu; Micklitsch, Christopher M.; Ghirlando, Rodolfo; Martin-Manso, Gema; Pendrak, Michael L.; Roberts, David D.; Durell, Stewart R.; Appella, Daniel H.

    2012-01-01

    Multivalent effects dictate the binding affinity of multiple ligands on one molecular entity to receptors. Integrins are receptors that mediate cell attachment through multivalent binding to peptide sequences within the extracellular matrix, and overexpression promotes the metastasis of some cancers. Multivalent display of integrin antagonists enhances their efficacy, but current scaffolds have limited ranges and precision for the display of ligands. Here we present an approach to study multivalent effects across wide ranges of ligand number, density, and three-dimensional arrangement. Using L-lysine γ-substituted peptide nucleic acids, the multivalent effects of an integrin antagonist were examined over a range of 1 to 45 ligands. The optimal construct improves the inhibitory activity of the antagonist by two orders of magnitude against the binding of melanoma cells to the extracellular matrix in both in vitro and in vivo models. PMID:22233624

  11. Direct Colorimetric Detection of a Receptor-Ligand Interaction by a Polymerized Bilayer Assembly

    NASA Astrophysics Data System (ADS)

    Charych, Deborah H.; Nagy, Jon O.; Spevak, Wayne; Bednarski, Mark D.

    1993-07-01

    Detection of receptor-ligand interactions is generally accomplished by indirect assays such as enzyme-linked immunosorbent assay. A direct colorimetric detection method based on a polydiacetylene bilayer assembled on glass microscope slides has been developed. The bilayer is composed of a self-assembled monolayer of octadecylsilane and a Langmuir-Blodgett monolayer of polydiacetylene. The polydiacetylene layer is functionalized with an analog of sialic acid, the receptor-specific ligand for the influenza virus hemagglutinin. The sialic acid ligand serves as a molecular recognition element and the conjugated polymer backbone signals binding at the surface by a chromatic transition. The color transition is readily visible to the naked eye as a blue to red color change and can be quantified by visible absorption spectroscopy. Direct colorimetric detection by polydiacetylene films offers new possibilities for diagnostic applications and screening for new drug candidates or binding ligands.

  12. Direct colorimetric detection of a receptor-ligand interaction by a polymerized bilayer assembly

    SciTech Connect

    Charych, D.H.; Nagy, J.O.; Bednarski, M.D. ); Spevak, W. )

    1993-07-30

    Detection of receptor-ligand interactions is generally accomplished by indirect assays such as enzyme-linked immunosorbent assay. A direct colorimetric detection method based on a polydiacetylene bilayer assembled on glass microscope slides has been developed. The bilayer is composed of a self-assembled monolayer of octadecylsilane and a Langmuir-Blodgett monolayer of polydiacetylene. The polydiacetylene layer is functionalized with an analog of sialic acid, the receptor-specific ligand for the influenza virus hemagglutinin. The sialic acid ligand serves as a molecular recognition element and the conjugated polymer backbone signals binding at the surface by a chromatic transition. The color transition is readily visible to the naked eye as a blue to red color change and can be quantified by visible absorption spectroscopy. Direct colorimetric detection by polydiacetylene films offers new possibilities for diagnostic applications and screening for new drug candidates or binding ligands.

  13. Cholinergic ligand interactions with acetylcholine receptor proteins and solvent interactions with N,N-dialkylnicotinamides

    SciTech Connect

    Bean, J.W.

    1987-01-01

    A dual-chambered flow dialysis nuclear counting apparatus was used to monitor cholinergic ligand induced displacement of {sup 155}Eu{sup 3+} from acetylcholine receptor proteins. Acetylcholine, nicotine and carbamylcholine induced similar rates of displacement of {sup 155}Eu{sup 3+} probes of calcium binding sites in receptor proteins from wild type Drosophila melanogaster and Torpedo californica. The receptor isolated from a nicotine resistant strain of Drosophila melanogaster displayed an altered dependency of cholinergic ligand induced cation displacement with respect to the other two receptor proteins. Both Drosophila strains' solubilized receptor proteins migrated as three bands of molecular weights 68,000, 66,000, and 60,000 on denaturing polyacrylamide gels. Carbon-13 NMR techniques were employed to examine the effects of solvent environment on rotational energy barriers in a series of molecules related to the analeptic, nikethamide: N,N-dimethylnicotinamide, 1-nicotinoyl piperidine, and N,N-dipropylnicotinamide.

  14. Targeting ligand-operated chaperone sigma-1 receptors in the treatment of neuropsychiatric disorders

    PubMed Central

    Teruo, Hayashi; Shang-Yi, Tsai; Tomohisa, Mori; Michiko, Fujimoto; Tsung-Ping, Su

    2011-01-01

    Introduction Current conventional therapeutic drugs for the treatment of psychiatric or neurodegenerative disorders have certain limitations of use. Psychotherapeutic drugs such as typical and atypical antipsychotics, tricyclic antidepressants, and selective monoamine reuptake inhibitors, aim to normalize the hyper- or hypo-neurotransmission of monoaminergic systems. Despite their great contribution to the outcomes of psychiatric patients, these agents often exert severe side effects and require chronic treatments to promote amelioration of symptoms. Furthermore, drugs available for the treatment of neurodegenerative disorders are severely limited. Areas covered This review discusses recent evidence that has shed light on sigma-1 receptor ligands, which may serve as a new class of antidepressants or neuroprotective agents. Sigma-1 receptors are novel ligand-operated molecular chaperones regulating a variety of signal transduction, ER stress, cellular redox, cellular survival, and synaptogenesis. Selective sigma-1 receptor ligands exert rapid antidepressant-like, anxiolytic, antinociceptive and robust neuroprotective actions in preclinical studies. The review also looks at recent studies which suggest that reactive oxygen species might play a crucial role as signal integrators at the downstream of Sig-1Rs Expert opinion The significant advances in sigma receptor research in the last decade have begun to elucidate the intracellular signal cascades upstream and downstream of sigma-1 receptors. The novel ligand-operated properties of the sigma-1 receptor chaperone may enable a variety of interventions by which stress-related cellular systems are pharmacologically controlled. PMID:21375464

  15. Modeling of cell adhesion and deformation mediated by receptor-ligand interactions.

    PubMed

    Golestaneh, Amirreza F; Nadler, Ben

    2016-04-01

    The current work is devoted to studying adhesion and deformation of biological cells mediated by receptors and ligands in order to enhance the existing models. Due to the sufficient in-plane continuity and fluidity of the phospholipid molecules, an isotropic continuum fluid membrane is proposed for modeling the cell membrane. The developed constitutive model accounts for the influence of the presence of receptors on the deformation and adhesion of the cell membrane through the introduction of spontaneous area dilation. Motivated by physics, a nonlinear receptor-ligand binding force is introduced based on charge-induced dipole interaction. Diffusion of the receptors on the membrane is governed by the receptor-ligand interaction via Fick's Law and receptor-ligand interaction. The developed model is then applied to study the deformation and adhesion of a biological cell. The proposed model is used to study the role of the material, binding, spontaneous area dilation and environmental properties on the deformation and adhesion of the cell. PMID:26093646

  16. A comprehensive ligand based mapping of the σ₂ receptor binding pocket.

    PubMed

    Rhoades, Derek J; Kinder, David H; Mahfouz, Tarek M

    2014-01-01

    The sigma (σ) receptor system consists of at least two major receptor subtypes: σ₁ and σ₂. Several potential therapeutic applications would benefit from structural knowledge of the σ₂ receptor but gaining this knowledge has been hampered by the difficulties associated with its isolation and, thus, characterization. Here, a ligand based approach has been adopted using the program PHASE® and a group of 41 potent and structurally diverse σ₂ ligands to develop several pharmacophore models for different families of σ₂ ligands. These pharmacophores were analyzed to identify the different binding modes to the receptor and were combined together to construct a comprehensive pharmacophore that was used to develop a structural model for the σ₂ binding pocket. A total of six binding modes were identified and could be classified as neutral or charged modes. The results presented here also indicate the significance of hydrophobic interactions to σ₂ binding and the requirement of hydrogen bonding interactions to increase the affinity for this receptor subtype. This work adds breadth to our knowledge of this receptor's binding site, and should contribute significantly to the development of novel selective σ₂ ligands. PMID:23521001

  17. Virtual fragment screening: discovery of histamine H3 receptor ligands using ligand-based and protein-based molecular fingerprints.

    PubMed

    Sirci, Francesco; Istyastono, Enade P; Vischer, Henry F; Kooistra, Albert J; Nijmeijer, Saskia; Kuijer, Martien; Wijtmans, Maikel; Mannhold, Raimund; Leurs, Rob; de Esch, Iwan J P; de Graaf, Chris

    2012-12-21

    Virtual fragment screening (VFS) is a promising new method that uses computer models to identify small, fragment-like biologically active molecules as useful starting points for fragment-based drug discovery (FBDD). Training sets of true active and inactive fragment-like molecules to construct and validate target customized VFS methods are however lacking. We have for the first time explored the possibilities and challenges of VFS using molecular fingerprints derived from a unique set of fragment affinity data for the histamine H(3) receptor (H(3)R), a pharmaceutically relevant G protein-coupled receptor (GPCR). Optimized FLAP (Fingerprints of Ligands and Proteins) models containing essential molecular interaction fields that discriminate known H(3)R binders from inactive molecules were successfully used for the identification of new H(3)R ligands. Prospective virtual screening of 156,090 molecules yielded a high hit rate of 62% (18 of the 29 tested) experimentally confirmed novel fragment-like H(3)R ligands that offer new potential starting points for the design of H(3)R targeting drugs. The first construction and application of customized FLAP models for the discovery of fragment-like biologically active molecules demonstrates that VFS is an efficient way to explore protein-fragment interaction space in silico. PMID:23140085

  18. Toll-like receptor 2 ligands regulate monocyte Fcγ receptor expression and function.

    PubMed

    Shah, Prexy; Fatehchand, Kavin; Patel, Hemal; Fang, Huiqing; Justiniano, Steven E; Mo, Xiaokui; Jarjoura, David; Tridandapani, Susheela; Butchar, Jonathan P

    2013-04-26

    Fcγ receptor (FcγR) clustering on monocytes/macrophages results in phagocytosis and inflammatory cytokine production, which serve to eliminate antibody-opsonized targets and activate neighboring immune cells. Toll-like receptor 2 (TLR2), which recognizes a range of both bacterial and fungal components, elicits strong proinflammatory responses in these cells when stimulated by ligands, either natural or synthetic. Thus, we explored the possibility that TLR2 agonists could strengthen FcγR activity within the context of antibody therapy. Human peripheral blood monocytes treated with the TLR2 agonist Pam2CSK4 showed significantly enhanced FcγR-mediated cytokine production as well as phagocytic ability. An examination of the molecular mechanism behind this enhancement revealed increased expression of both FcγRIIa and the common γ subunit following Pam2CSK4 treatment. Interestingly however, expression of the inhibitory receptor FcγRIIb was also modestly increased. Further investigation revealed that Pam2CSK4 also dramatically decreased the expression of SHIP, the major mediator of FcγRIIb inhibitory activity. Using a murine Her2/neu solid tumor model of antibody therapy, we found that Pam2CSK4 significantly enhanced the ability of anti-Her2 antibody to reduce the rate of tumor growth. To verify that the FcγR enhancement was not unique to the diacylated Pam2CSK4, we also tested Pam3CSK4, a related triacylated TLR2 agonist. Results showed significant enhancement in FcγR function and expression. Taken together, these findings indicate that TLR2 activation can positively modulate FcγR and suggest that TLR2 agonists should be considered for testing as adjuvants for antitumor antibody therapy. PMID:23504312

  19. Muscarinic Receptors as Model Targets and Antitargets for Structure-Based Ligand Discovery

    PubMed Central

    Kruse, Andrew C.; Weiss, Dahlia R.; Rossi, Mario; Hu, Jianxin; Hu, Kelly; Eitel, Katrin; Gmeiner, Peter; Wess, Jürgen

    2013-01-01

    G protein–coupled receptors (GPCRs) regulate virtually all aspects of human physiology and represent an important class of therapeutic drug targets. Many GPCR-targeted drugs resemble endogenous agonists, often resulting in poor selectivity among receptor subtypes and restricted pharmacologic profiles. The muscarinic acetylcholine receptor family exemplifies these problems; thousands of ligands are known, but few are receptor subtype–selective and nearly all are cationic in nature. Using structure-based docking against the M2 and M3 muscarinic receptors, we screened 3.1 million molecules for ligands with new physical properties, chemotypes, and receptor subtype selectivities. Of 19 docking-prioritized molecules tested against the M2 subtype, 11 had substantial activity and 8 represented new chemotypes. Intriguingly, two were uncharged ligands with low micromolar to high nanomolar Ki values, an observation with few precedents among aminergic GPCRs. To exploit a single amino-acid substitution among the binding pockets between the M2 and M3 receptors, we selected molecules predicted by docking to bind to the M3 and but not the M2 receptor. Of 16 molecules tested, 8 bound to the M3 receptor. Whereas selectivity remained modest for most of these, one was a partial agonist at the M3 receptor without measurable M2 agonism. Consistent with this activity, this compound stimulated insulin release from a mouse β-cell line. These results support the ability of structure-based discovery to identify new ligands with unexplored chemotypes and physical properties, leading to new biologic functions, even in an area as heavily explored as muscarinic pharmacology. PMID:23887926

  20. Predictive features of ligand-specific signaling through the estrogen receptor.

    PubMed

    Nwachukwu, Jerome C; Srinivasan, Sathish; Zheng, Yangfan; Wang, Song; Min, Jian; Dong, Chune; Liao, Zongquan; Nowak, Jason; Wright, Nicholas J; Houtman, René; Carlson, Kathryn E; Josan, Jatinder S; Elemento, Olivier; Katzenellenbogen, John A; Zhou, Hai-Bing; Nettles, Kendall W

    2016-01-01

    Some estrogen receptor-α (ERα)-targeted breast cancer therapies such as tamoxifen have tissue-selective or cell-specific activities, while others have similar activities in different cell types. To identify biophysical determinants of cell-specific signaling and breast cancer cell proliferation, we synthesized 241 ERα ligands based on 19 chemical scaffolds, and compared ligand response using quantitative bioassays for canonical ERα activities and X-ray crystallography. Ligands that regulate the dynamics and stability of the coactivator-binding site in the C-terminal ligand-binding domain, called activation function-2 (AF-2), showed similar activity profiles in different cell types. Such ligands induced breast cancer cell proliferation in a manner that was predicted by the canonical recruitment of the coactivators NCOA1/2/3 and induction of the GREB1 proliferative gene. For some ligand series, a single inter-atomic distance in the ligand-binding domain predicted their proliferative effects. In contrast, the N-terminal coactivator-binding site, activation function-1 (AF-1), determined cell-specific signaling induced by ligands that used alternate mechanisms to control cell proliferation. Thus, incorporating systems structural analyses with quantitative chemical biology reveals how ligands can achieve distinct allosteric signaling outcomes through ERα. PMID:27107013

  1. Nonsteroidal Bivalent Estrogen Ligands - An Application of the Bivalent Concept to the Estrogen Receptor

    PubMed Central

    Shan, Min; Carlson, Kathryn E.; Bujotzek, Alexander; Wellner, Anja; Gust, Ronald; Weber, Marcus; Katzenellenbogen, John A.; Haag, Rainer

    2013-01-01

    The estrogen receptor (ER) is a hormone-regulated transcription factor that binds, as a dimer, to estrogens and to specific DNA sequences. To explore at a fundamental level the geometric and topological features of bivalent-ligand binding to the ER dimer, dimeric ER crystal structures were used to rationally design nonsteroidal bivalent estrogen ligands. Guided by this structure-based ligand design, we prepared two series of bivalent ligands (agonists and antagonists) tethered by flexible spacers of varying lengths (7–47Å) and evaluated their ER-binding affinities for the two ER subtypes and their biological activities in cell lines. Bivalent ligands based on the agonist diethylstilbestrol (DES) proved to be poor candidates, but bivalent ligands based on the antagonist hydroxytamoxifen (OHT) were well suited for intensive study. Binding affinities of the OHT-based bivalent ligands were related to spacer length in a distinctive fashion, reaching two maximum values at 14 and 29Å in both ER subtypes. These results demonstrate that the bivalent concept can operate in determining ER-ligand binding affinity and suggest that two distinct modes operate for the binding of bivalent estrogen ligands to the ER dimers, an intermolecular as well as an intramolecular mode. Our insights, particularly the possibility of intramolecular bivalent binding on a single ER monomer, may provide an alternative strategy to prepare more selective and active ER antagonists for endocrine therapy of breast cancer. PMID:23312071

  2. Collagens are functional, high affinity ligands for the inhibitory immune receptor LAIR-1

    PubMed Central

    Lebbink, Robert Jan; de Ruiter, Talitha; Adelmeijer, Jelle; Brenkman, Arjan B.; van Helvoort, Joop M.; Koch, Manuel; Farndale, Richard W.; Lisman, Ton; Sonnenberg, Arnoud; Lenting, Peter J.; Meyaard, Linde

    2006-01-01

    Collagens are the most abundant proteins in the human body, important in maintenance of tissue structure and hemostasis. Here we report that collagens are high affinity ligands for the broadly expressed inhibitory leukocyte-associated immunoglobulin-like receptor-1 (LAIR-1). The interaction is dependent on the conserved Gly-Pro-Hyp collagen repeats. Antibody cross-linking of LAIR-1 is known to inhibit immune cell function in vitro. We now show that collagens are functional ligands for LAIR-1 and directly inhibit immune cell activation in vitro. Thus far, all documented ligands for immune inhibitory receptors are membrane molecules, implying a regulatory role in cell–cell interaction. Our data reveal a novel mechanism of peripheral immune regulation by inhibitory immune receptors binding to extracellular matrix collagens. PMID:16754721

  3. Sliding tethered ligands add topological interactions to the toolbox of ligand–receptor design

    PubMed Central

    Bauer, Martin; Kékicheff, Patrick; Iss, Jean; Fajolles, Christophe; Charitat, Thierry; Daillant, Jean; Marques, Carlos M.

    2015-01-01

    Adhesion in the biological realm is mediated by specific lock-and-key interactions between ligand–receptor pairs. These complementary moieties are ubiquitously anchored to substrates by tethers that control the interaction range and the mobility of the ligands and receptors, thus tuning the kinetics and strength of the binding events. Here we add sliding anchoring to the toolbox of ligand–receptor design by developing a family of tethered ligands for which the spacer can slide at the anchoring point. Our results show that this additional sliding degree of freedom changes the nature of the adhesive contact by extending the spatial range over which binding may sustain a significant force. By introducing sliding tethered ligands with self-regulating length, this work paves the way for the development of versatile and reusable bio-adhesive substrates with potential applications for drug delivery and tissue engineering. PMID:26350224

  4. Design, Synthesis, and Structure–Activity Relationships of Highly Potent 5-HT3 Receptor Ligands

    PubMed Central

    2012-01-01

    The 5-HT3 receptor, a pentameric ligand-gated ion channel (pLGIC), is an important therapeutic target. During a recent fragment screen, 6-chloro-N-methyl-2-(4-methyl-1,4-diazepan-1-yl)quinazolin-4-amine (1) was identified as a 5-HT3R hit fragment. Here we describe the synthesis and structure–activity relationships (SAR) of a series of (iso)quinoline and quinazoline compounds that were synthesized and screened for 5-HT3R affinity using a [3H]granisetron displacement assay. These studies resulted in the discovery of several high affinity ligands of which compound 22 showed the highest affinity (pKi > 10) for the 5-HT3 receptor. The observed SAR is in agreement with established pharmacophore models for 5-HT3 ligands and is used for ligand–receptor binding mode prediction using homology modeling and in silico docking approaches. PMID:23006041

  5. Unnatural agrochemical ligands for engineered abscisic acid receptors.

    PubMed

    Rodriguez, Pedro L; Lozano-Juste, Jorge

    2015-06-01

    Existing agrochemicals can be endowed with new applications through protein engineering of plant receptors. A recent study shows an engineered PYR1 ABA receptor can be activated by mandipropamid. Plants engineered with such PYR1 variant are responsive to this agrochemical, which confers protection against drought through activation of ABA signaling. PMID:25891067

  6. Evolution of gonadotropin-inhibitory hormone receptor and its ligand.

    PubMed

    Ubuka, Takayoshi; Tsutsui, Kazuyoshi

    2014-12-01

    Gonadotropin-inhibitory hormone (GnIH) is a neuropeptide inhibitor of gonadotropin secretion, which was first identified in the Japanese quail hypothalamus. GnIH peptides share a C-terminal LPXRFamide (X=L or Q) motif in most vertebrates. The receptor for GnIH (GnIHR) is the seven-transmembrane G protein-coupled receptor 147 (GPR147) that inhibits cAMP production. GPR147 is also named neuropeptide FF (NPFF) receptor 1 (NPFFR1), because it also binds NPFF that has a C-terminal PQRFamide motif. To understand the evolutionary history of the GnIH system in the animal kingdom, we searched for receptors structurally similar to GnIHR in the genome of six mammals (human, mouse, rat, cattle, cat, and rabbit), five birds (pigeon, chicken, turkey, budgerigar, and zebra finch), one reptile (green anole), one amphibian (Western clawed flog), six fishes (zebrafish, Nile tilapia, Fugu, coelacanth, spotted gar, and lamprey), one hemichordate (acorn worm), one echinoderm (purple sea urchin), one mollusk (California sea hare), seven insects (pea aphid, African malaria mosquito, honey bee, buff-tailed bumblebee, fruit fly, jewel wasp, and red flour beetle), one cnidarian (hydra), and constructed phylogenetic trees by neighbor joining (NJ) and maximum likelihood (ML) methods. A multiple sequence alignment of the receptors showed highly conserved seven-transmembrane domains as well as disulfide bridge sites between the first and second extracellular loops, including the receptor of hydra. Both NJ and ML analyses grouped the receptors of vertebrates into NPFFR1 and NPFFR2 (GPR74), and the receptors of insects into the receptor for SIFamide peptides that share a C-terminal YRKPPFNGSIFamide motif. Although human, quail and zebrafish GnIHR (NPFFR1) were most structurally similar to SIFamide receptor of fruit fly in the Famide peptide (FMRFamide, neuropeptide F, short neuropeptide F, drosulfakinin, myosuppressin, SIFamide) receptor families, the amino acid sequences and the peptide coding

  7. Siaα2-3Galβ1- Receptor Genetic Variants Are Associated with Influenza A(H1N1)pdm09 Severity

    PubMed Central

    Tovo-Rodrigues, Luciana; Santos, Mirleide Cordeiro; Barbagelata, Luana; Moraes, Milene Raiol; Alencar de Mello, Wyller; Gusmão, Leonor; Sousa, Rita Catarina Medeiros; Emanuel Batista dos Santos, Sidney

    2015-01-01

    Different host genetic variants may be related to the virulence and transmissibility of pandemic Influenza A(H1N1)pdm09, influencing events such as binding of the virus to the entry receptor on the cell of infected individuals and the host immune response. In the present study, two genetic variants of the ST3GAL1 gene, which encodes the Siaα2-3Galβ1- receptor to which influenza A(H1N1)pdm09 virus binds for entry into the host cell, were investigated in an admixed Brazilian population. First, the six exons encoding the ST3GAL1 gene were sequenced in 68 patients infected with strain A(H1N1)pdm09. In a second phase of the study, the rs113350588 and rs1048479 polymorphisms identified in this sample were genotyped in a sample of 356 subjects from the northern and northeastern regions of Brazil with a diagnosis of pandemic influenza. Functional analysis of the polymorphisms was performed in silico and the influence of these variants on the severity of infection was evaluated. The results suggest that rs113350588 and rs1048479 may alter the function of ST3GAL1 either directly through splicing regulation alteration and/or indirectly through LD with SNP with regulatory function. In the study the rs113350588 and rs1048479 polymorphisms were in linkage disequilibrium in the population studied (D’ = 0.65). The GC haplotype was associated with an increased risk of death in subjects with influenza (OR = 4.632, 95% CI = 2.10;1.21). The AT haplotype was associated with an increased risk of severe disease and death (OR = 1.993, 95% CI = 1.09;3.61 and OR 4.476, 95% CI = 2.37;8.44, respectively). This study demonstrated for the first time the association of ST3GAL1 gene haplotypes on the risk of more severe disease and death in patients infected with Influenza A(H1N1)pdm09 virus. PMID:26436774

  8. Siaα2-3Galβ1- Receptor Genetic Variants Are Associated with Influenza A(H1N1)pdm09 Severity.

    PubMed

    Maestri, Alvino; Sortica, Vinicius Albuquerque; Tovo-Rodrigues, Luciana; Santos, Mirleide Cordeiro; Barbagelata, Luana; Moraes, Milene Raiol; Alencar de Mello, Wyller; Gusmão, Leonor; Sousa, Rita Catarina Medeiros; Emanuel Batista Dos Santos, Sidney

    2015-01-01

    Different host genetic variants may be related to the virulence and transmissibility of pandemic Influenza A(H1N1)pdm09, influencing events such as binding of the virus to the entry receptor on the cell of infected individuals and the host immune response. In the present study, two genetic variants of the ST3GAL1 gene, which encodes the Siaα2-3Galβ1- receptor to which influenza A(H1N1)pdm09 virus binds for entry into the host cell, were investigated in an admixed Brazilian population. First, the six exons encoding the ST3GAL1 gene were sequenced in 68 patients infected with strain A(H1N1)pdm09. In a second phase of the study, the rs113350588 and rs1048479 polymorphisms identified in this sample were genotyped in a sample of 356 subjects from the northern and northeastern regions of Brazil with a diagnosis of pandemic influenza. Functional analysis of the polymorphisms was performed in silico and the influence of these variants on the severity of infection was evaluated. The results suggest that rs113350588 and rs1048479 may alter the function of ST3GAL1 either directly through splicing regulation alteration and/or indirectly through LD with SNP with regulatory function. In the study the rs113350588 and rs1048479 polymorphisms were in linkage disequilibrium in the population studied (D' = 0.65). The GC haplotype was associated with an increased risk of death in subjects with influenza (OR = 4.632, 95% CI = 2.10;1.21). The AT haplotype was associated with an increased risk of severe disease and death (OR = 1.993, 95% CI = 1.09;3.61 and OR 4.476, 95% CI = 2.37;8.44, respectively). This study demonstrated for the first time the association of ST3GAL1 gene haplotypes on the risk of more severe disease and death in patients infected with Influenza A(H1N1)pdm09 virus. PMID:26436774

  9. DEPENDENCE OF PPAR LIGAND-INDUCED MAPK SIGNALING ON EPIDERMAL GROWTH FACTOR RECEPTOR TRANSACTIVATION HEPARIN-BINDING EGF CLEAVAGE MEDIATES ZINC-INDUCED EGF RECEPTOR PHOSPHORYLATION

    EPA Science Inventory

    Peroxisome proliferator-activated receptors (PPARs) are nuclear hormone receptors that function as ligand-activated transcription factors regulating lipid metabolism and homeostasis. In addition to their ability to regulate PPAR-mediated gene transcription, PPARalpha and gamma li...

  10. Differentiation between ligand trapping into intact cells and binding on muscarinic receptors.

    PubMed

    Gossuin, A; Maloteaux, J M; Trouet, A; Laduron, P

    1984-05-22

    Binding properties of [3H] dexetimide , L-quinuclidinyl[phenyl-4-3H] benzilate and [3H]methylscopolamine were compared with intact 108 CC 15 cells and membrane preparations of those. The ability of the three ligands to label specifically muscarinic receptors on membrane fractions was quite similar. By contrast, when performed with intact cells, [3H] dexetimide and L-quinuclidinyl [phenyl-4-3H]benzilate revealed higher nonspecific binding which was prevented by methylamine, suggesting a trapping of the ligands within the cells presumably in the lysosomes. To the contrary, such nonspecific 'binding' or trapping was not detectable when [3H]methylscopolamine was used as ligand, a fact which makes this ligand particularly appropriate for labelling cell surface muscarinic receptors. It is concluded that more caution is needed in binding studies when performed with intact cells; indeed, besides specific binding on receptor sites, [3H]ligand can be entrapped within the cell and can even sometimes give the illusion of specific binding. The use of lysosomal agents which do not interfere with specific receptors on membrane preparations should allow one, in most cases, to discard the possibility of a trapping phenomenon in intact cells. PMID:6722181

  11. In silico analysis of human Toll-like receptor 7 ligand binding domain.

    PubMed

    Gupta, Chhedi Lal; Akhtar, Salman; Sayyed, Uzma; Pathak, Neelam; Bajpai, Preeti

    2016-05-01

    Toll-like receptors recognizing pathogen-associated molecular patterns are preface actors for innate immunity. Among them TLR7 is a transmembrane protein playing very crucial role in the signaling pathways involved in innate immunity by recognizing viral ssRNA and specific small molecule agonists. The unavailability of experimental 3D structure of this receptor till date hampers the focused exploration of TLR7 interaction with its ligands. However, several proteins possessing high homology domain enabled us to construct a reliable 3D model of hTLR7 ECD, which was employed to generate the homodimer model using protein-protein docking strategy. Further molecular docking studies between developed homodimer model and ligands were performed to explore the most preferred site of hTLR7 ECD interacting with ligands. The comparative analysis of docking energies and protein-ligand interactions of all the ligands revealed resiquimod as the prominent agonist. Furthermore, molecular interactions between protein-ligand complexes suggested LRR15 and LRR16 region of hTLR7 ECD as the most preferential site for ligand binding. The Ser434 and Gly437 of LRR15 region of hTLR7 were found to be conserved with Drosophila Toll protein. The obtained complex model may lead to a better understanding of TLR7 functioning along with its inheritance from invertebrates to mammals. PMID:25817271

  12. Docking and free energy perturbation studies of ligand binding in the kappa opioid receptor.

    PubMed

    Goldfeld, Dahlia A; Murphy, Robert; Kim, Byungchan; Wang, Lingle; Beuming, Thijs; Abel, Robert; Friesner, Richard A

    2015-01-22

    The kappa opioid receptor (KOR) is an important target for pain and depression therapeutics that lack harmful and addictive qualities of existing medications. We present a model for the binding of morphinan ligands and JDTic to the JDTic/KOR crystal structure based on an atomic level description of the water structure within its active site. The model contains two key interaction motifs that are supported by experimental evidence. The first is the formation of a salt bridge between the ligand and Asp 138(3.32) in transmembrane domain (TM) 3. The second is the stabilization by the ligand of two high energy, isolated, and ice-like waters near TM5 and TM6. This model is incorporated via energetic terms into a new empirical scoring function, WScore, designed to assess interactions between ligands and localized water in a binding site. Pairing WScore with the docking program Glide discriminates known active KOR ligands from large sets of decoy molecules much better than Glide's older generation scoring functions, SP and XP. We also use rigorous free energy perturbation calculations to provide evidence for the proposed mechanism of interaction between ligands and KOR. The molecular description of ligand binding in KOR should provide a good starting point for future drug discovery efforts for this receptor. PMID:25395044

  13. Determinants governing ligand specificity of the Vibrio harveyi LuxN quorum-sensing receptor.

    PubMed

    Ke, Xiaobo; Miller, Laura C; Bassler, Bonnie L

    2015-01-01

    Quorum sensing is a process of bacterial cell-cell communication that relies on the production, release and receptor-driven detection of extracellular signal molecules called autoinducers. The quorum-sensing bacterium Vibrio harveyi exclusively detects the autoinducer N-((R)-3-hydroxybutanoyl)-L-homoserine lactone (3OH-C4 HSL) via the two-component receptor LuxN. To discover the principles underlying the exquisite selectivity LuxN has for its ligand, we identified LuxN mutants with altered specificity. LuxN uses three mechanisms to verify that the bound molecule is the correct ligand: in the context of the overall ligand-binding site, His210 validates the C3 modification, Leu166 surveys the chain-length and a strong steady-state kinase bias imposes an energetic hurdle for inappropriate ligands to elicit signal transduction. Affinities for the LuxN kinase on and kinase off states underpin whether a ligand will act as an antagonist or an agonist. Mutations that bias LuxN to the agonized, kinase off, state are clustered in a region adjacent to the ligand-binding site, suggesting that this region acts as the switch that triggers signal transduction. Together, our analyses illuminate how a histidine sensor kinase differentiates between ligands and exploits those differences to regulate its signaling activity. PMID:25367076

  14. Determinants governing ligand specificity of the Vibrio harveyi LuxN quorum-sensing receptor

    PubMed Central

    Ke, Xiaobo; Miller, Laura C.; Bassler, Bonnie L.

    2014-01-01

    Summary Quorum sensing is a process of bacterial cell-cell communication that relies on the production, release, and receptor-driven detection of extracellular signal molecules called autoinducers. The quorum-sensing bacterium Vibrio harveyi exclusively detects the autoinducer N-((R)-3-hydroxybutanoyl)-L-homoserine lactone (3OH-C4 HSL) via the two-component receptor LuxN. To discover the principles underlying the exquisite selectivity LuxN has for its ligand, we identified LuxN mutants with altered specificity. LuxN uses three mechanisms to verify that the bound molecule is the correct ligand: In the context of the overall ligand-binding site, His210 validates the C3 modification, Leu166 surveys the chain-length, and a strong steady-state kinase bias imposes an energetic hurdle for inappropriate ligands to elicit signal transduction. Affinities for the LuxN Kinaseon and Kinaseoff states underpin whether a ligand will act as an antagonist or an agonist. Mutations that bias LuxN to the agonized, Kinaseoff, state are clustered in a region adjacent to the ligand-binding site, suggesting that this region acts as the switch that triggers signal transduction. Together, our analyses illuminate how a histidine sensor kinase differentiates between ligands and exploits those differences to regulate its signaling activity. PMID:25367076

  15. The heterodimeric sweet taste receptor has multiple potential ligand binding sites.

    PubMed

    Cui, Meng; Jiang, Peihua; Maillet, Emeline; Max, Marianna; Margolskee, Robert F; Osman, Roman

    2006-01-01

    The sweet taste receptor is a heterodimer of two G protein coupled receptors, T1R2 and T1R3. This discovery has increased our understanding at the molecular level of the mechanisms underlying sweet taste. Previous experimental studies using sweet receptor chimeras and mutants show that there are at least three potential binding sites in this heterodimeric receptor. Receptor activity toward the artificial sweeteners aspartame and neotame depends on residues in the amino terminal domain of human T1R2. In contrast, receptor activity toward the sweetener cyclamate and the sweet taste inhibitor lactisole depends on residues within the transmembrane domain of human T1R3. Furthermore, receptor activity toward the sweet protein brazzein depends on the cysteine rich domain of human T1R3. Although crystal structures are not available for the sweet taste receptor, useful homology models can be developed based on appropriate templates. The amino terminal domain, cysteine rich domain and transmembrane helix domain of T1R2 and T1R3 have been modeled based on the crystal structures of metabotropic glutamate receptor type 1, tumor necrosis factor receptor, and bovine rhodopsin, respectively. We have used homology models of the sweet taste receptors, molecular docking of sweet ligands to the receptors, and site-directed mutagenesis of the receptors to identify potential ligand binding sites of the sweet taste receptor. These studies have led to a better understanding of the structure and function of this heterodimeric receptor, and can act as a guide for rational structure-based design of novel non-caloric sweeteners, which can be used in the fighting against obesity and diabetes. PMID:17168764

  16. New halogenated tris-(phenylalkyl)amines as h5-HT2B receptor ligands.

    PubMed

    Kapadia, Nirav; Ahmed, Shahrear; Harding, Wayne W

    2016-07-15

    A series of compounds in which various halogen substituents were incorporated into a phenyl ring of a tris-(phenylalkyl)amine scaffold, was synthesized and evaluated for affinity to h5-HT2 receptors. In general, all compounds were found to have good affinity for the 5-HT2B receptor and were selective over 5-HT2A and 5-HT2C receptors. Compound 9i was the most selective compound in this study and is the highest affinity 5-HT2B receptor ligand bearing a tris-(phenylalkyl)amine scaffold to date. PMID:27261181

  17. Does the tissue concentration in receptor binding studies change the affinity of the labelled ligand?

    PubMed

    Ensing, K; De Zeeuw, R A

    1984-12-14

    When the tissue concentration in a radioreceptor assay for anticholinergic drugs was varied in order to obtain optimum conditions, and the receptor concentration Cr and the equilibrium dissociation constant KD were determined by Scatchard analysis, the KD increased with increasing tissue concentrations. This phenomenon was considered as an artefact caused by non-specific binding of the labelled ligand to constituents of the receptor preparation which were not completely retained on the glass-fibre filters used for the separation of bound and free fraction of radio-labelled ligand. The increase in KD in these experiments could be described with a mathematical model of the binding experiments. PMID:6514542

  18. Minireview: Regulation of Gap Junction Dynamics by Nuclear Hormone Receptors and Their Ligands

    PubMed Central

    Kapadia, Bhumika J.

    2012-01-01

    Gap junctions are plasma membrane channels comprising connexin proteins that mediate intercellular permeability and communication. The presence, composition, and function of gap junctions can be regulated by diverse sets of physiological signals. Evidence from many hormone-responsive tissues has shown that connexin expression, modification, stability, and localization can be targeted by nuclear hormone receptors and their ligands through both transcriptional and nontranscriptional mechanisms. The focus of this review is to discuss molecular, cellular, and physiological studies that directly link receptor- and ligand-triggered signaling pathways to the regulation of gap junction dynamics. PMID:22935924

  19. Functional interaction of nuclear receptor coactivator 4 with aryl hydrocarbon receptor

    SciTech Connect

    Kollara, Alexandra; Brown, Theodore J. . E-mail: brown@mshri.on.ca

    2006-07-28

    Aryl hydrocarbon receptor (AhR) transcriptional activity is enhanced by interaction with p160 coactivators. We demonstrate here that NcoA4, a nuclear receptor coactivator, interacts with and amplifies AhR action. NcoA4-AhR and NcoA4-ARNT interactions were demonstrated by immunoprecipitation in T47D breast cancer and COS cells and was independent of ligand. Overexpression of NcoA4 enhanced AhR transcriptional activity 3.2-fold in the presence of dioxin, whereas overexpression of a splice variant, NcoA4{beta}, as well as a variant lacking the C-terminal region enhanced AhR transcriptional activity by only 1.6-fold. Enhanced AhR signaling by NcoA4 was independent of the LXXLL and FXXLF motifs or of the activation domain. NcoA4 protein localized to cytoplasm in the absence of dioxin and in both the cytoplasm and nucleus following dioxin treatment. NcoA4-facilitation of AhR activity was abolished by overexpression of androgen receptor, suggesting a potential competition of AhR and androgen receptor for NcoA4. These findings thus demonstrate a functional interaction between NcoA4 and AhR that may alter AhR activity to affect disease development and progression.

  20. Contributions of conserved serine residues to the interactions of ligands with dopamine D2 receptors.

    PubMed

    Cox, B A; Henningsen, R A; Spanoyannis, A; Neve, R L; Neve, K A

    1992-08-01

    Four dopamine D2 receptor mutants were constructed, in each of which an alanine residue was substituted for one of four conserved serine residues, i.e., Ser-193, Ser-194, Ser-197, and Ser-391. Wild-type and mutant receptors were expressed transiently in COS-7 cells and stably in C6 glioma cells for analysis of ligand-receptor interactions. In radioligand binding assays, the affinity of D2 receptors for dopamine was decreased 50-fold by substitution of alanine for Ser-193, implicating this residue in the binding of dopamine. Each mutant had smaller decreases in affinity for one or more of the ligands tested, with no apparent relationship between the class of ligand and the pattern of mutation-induced changes in affinity, except that the potency of agonists was decreased by substitution for Ser-193. The potency of dopamine for inhibition of adenylyl cyclase was reduced substantially by substitution of alanine for Ser-193 or Ser-197. Mutation of Ser-194 led to a complete loss of efficacy for dopamine and p-tyramine, which would be consistent with an interaction between Ser-194 and the p-hydroxyl substituent of dopamine that is necessary for activation of the receptors to occur. Because mutation of the corresponding residues of beta 2-adrenergic receptors has very different consequences, we conclude that although the position of these serine residues is highly conserved among catecholamine receptors, and the residues as a group are important in ligand binding and activation of receptors by agonists, the function of each of the residues considered separately varies among catecholamine receptors. PMID:1321233

  1. A nonplanar porphyrin-based receptor molecule for chiral amine ligands

    SciTech Connect

    MUZZI,CINZIA M.; MEDFORTH,CRAIG J.; SMITH,KEVIN M.; JIA,SONG-LING; SHELNUTT,JOHN A.

    2000-03-06

    A novel porphyrin-based receptor molecule for chiral amine ligands is described in which nonplanarity of the porphyrin macrocycle is used to orient the ligand and to enhance porphyrin-ligand interactions. The porphyrin macrocycle provides a versatile platform upon which to build elaborate superstructures, and this feature coupled with a rich and well-developed synthetic chemistry has led to the synthesis of many elegant models of heme protein active sites and numerous porphyrin-based receptor molecules. One design feature which is not usually considered in the design of porphyrin-based receptor molecules is nonplanarity of the porphyrin ring, although there are a few systems such as the pyridine sensitive Venus Flytrap and the chirality-memory molecule which illustrate that nonplanar porphyrin-based receptors can display unique and interesting behavior. Given the novel properties of these receptors and the continuing interest in the effects of nonplanarity on the properties of porphyrins the authors decided to investigate in more detail the potential applications of nonplanarity in the design of porphyrin-based receptors. Herein, they describe the design, synthesis, and characterization of a new kind of nonplanar porphyrin-based receptor molecule for chiral amines.

  2. Ligand induction of a transcriptionally active thyroid hormone receptor coactivator complex.

    PubMed Central

    Fondell, J D; Ge, H; Roeder, R G

    1996-01-01

    Transcriptional regulation by nuclear hormone receptors is thought to involve interactions with putative cofactors that may potentiate receptor function. Here we show that human thyroid hormone receptor alpha purified from HeLa cells grown in the presence of thyroid hormone (T3) is associated with a group of distinct nuclear proteins termed thyroid hormone receptor-associated proteins (TRAPs). In an in vitro system reconstituted with general initiation factors and cofactors (and in the absence of added T3), the "liganded" thyroid hormone receptor (TR)/TRAP complex markedly activates transcription from a promoter template containing T3-response elements. Moreover, whereas the retinoid X receptor is not detected in the TR/TRAP complex, its presence is required for the function of the complex. In contrast, human thyroid hormone receptor alpha purified from cells grown in the absence of T3 lacks the TRAPs and effects only a low level of activation that is dependent on added ligand. These findings demonstrate the ligand-dependent in vivo formation of a transcriptionally active TR-multisubunit protein complex and suggest a role for TRAPs as positive coactivators for gene-specific transcriptional activation. Images Fig. 2 Fig. 3 Fig. 4 Fig. 5 Fig. 6 PMID:8710870

  3. Tools and Strategies to Match Peptide-Ligand Receptor Pairs[OPEN

    PubMed Central

    Butenko, Melinka A.; Wildhagen, Mari; Albert, Markus; Jehle, Anna; Kalbacher, Hubert; Aalen, Reidunn B.; Felix, Georg

    2014-01-01

    Peptide signals have emerged as an important class of regulators in cell-to-cell communication in plants. Several families of small, secreted proteins with a conserved C-terminal Pro-rich motif have been identified as functional peptide signals in Arabidopsis thaliana. These proteins are presumed to be trimmed proteolytically and undergo posttranslational modifications, such as hydroxylation of Pro residues and glycosylation, to form mature, bioactive signals. Identification and matching of such ligands with their respective receptors remains a major challenge since the genes encoding them often show redundancy and low expression restricted to a few cells or particular developmental stages. To overcome these difficulties, we propose the use of ectopic expression of receptor genes in suitable plant cells like Nicotiana benthamiana for testing ligand candidates in receptor output assays and in binding studies. As an example, we used the IDA peptide HAE/HSL2 receptor signaling system known to regulate floral organ abscission. We demonstrate that the oxidative burst response can be employed as readout for receptor activation by synthetic peptides and that a new, highly sensitive, nonradioactive labeling approach can be used to reveal a direct correlation between peptide activity and receptor affinity. We suggest that these approaches will be of broad value for the field of ligand-receptor studies in plants. PMID:24808051

  4. Identifying and quantifying two ligand-binding sites while imaging native human membrane receptors by AFM

    NASA Astrophysics Data System (ADS)

    Pfreundschuh, Moritz; Alsteens, David; Wieneke, Ralph; Zhang, Cheng; Coughlin, Shaun R.; Tampé, Robert; Kobilka, Brian K.; Müller, Daniel J.

    2015-11-01

    A current challenge in life sciences is to image cell membrane receptors while characterizing their specific interactions with various ligands. Addressing this issue has been hampered by the lack of suitable nanoscopic methods. Here we address this challenge and introduce multifunctional high-resolution atomic force microscopy (AFM) to image human protease-activated receptors (PAR1) in the functionally important lipid membrane and to simultaneously localize and quantify their binding to two different ligands. Therefore, we introduce the surface chemistry to bifunctionalize AFM tips with the native receptor-activating peptide and a tris-N-nitrilotriacetic acid (tris-NTA) group binding to a His10-tag engineered to PAR1. We further introduce ways to discern between the binding of both ligands to different receptor sites while imaging native PAR1s. Surface chemistry and nanoscopic method are applicable to a range of biological systems in vitro and in vivo and to concurrently detect and localize multiple ligand-binding sites at single receptor resolution.

  5. Identifying and quantifying two ligand-binding sites while imaging native human membrane receptors by AFM

    PubMed Central

    Pfreundschuh, Moritz; Alsteens, David; Wieneke, Ralph; Zhang, Cheng; Coughlin, Shaun R.; Tampé, Robert; Kobilka, Brian K.; Müller, Daniel J.

    2015-01-01

    A current challenge in life sciences is to image cell membrane receptors while characterizing their specific interactions with various ligands. Addressing this issue has been hampered by the lack of suitable nanoscopic methods. Here we address this challenge and introduce multifunctional high-resolution atomic force microscopy (AFM) to image human protease-activated receptors (PAR1) in the functionally important lipid membrane and to simultaneously localize and quantify their binding to two different ligands. Therefore, we introduce the surface chemistry to bifunctionalize AFM tips with the native receptor-activating peptide and a tris-N-nitrilotriacetic acid (tris-NTA) group binding to a His10-tag engineered to PAR1. We further introduce ways to discern between the binding of both ligands to different receptor sites while imaging native PAR1s. Surface chemistry and nanoscopic method are applicable to a range of biological systems in vitro and in vivo and to concurrently detect and localize multiple ligand-binding sites at single receptor resolution. PMID:26561004

  6. Divergent Label-free Cell Phenotypic Pharmacology of Ligands at the Overexpressed β2-Adrenergic Receptors

    NASA Astrophysics Data System (ADS)

    Ferrie, Ann M.; Sun, Haiyan; Zaytseva, Natalya; Fang, Ye

    2014-01-01

    We present subclone sensitive cell phenotypic pharmacology of ligands at the β2-adrenergic receptor (β2-AR) stably expressed in HEK-293 cells. The parental cell line was transfected with green fluorescent protein (GFP)-tagged β2-AR. Four stable subclones were established and used to profile a library of sixty-nine AR ligands. Dynamic mass redistribution (DMR) profiling resulted in a pharmacological activity map suggesting that HEK293 endogenously expresses functional Gi-coupled α2-AR and Gs-coupled β2-AR, and the label-free cell phenotypic activity of AR ligands are subclone dependent. Pathway deconvolution revealed that the DMR of epinephrine is originated mostly from the remodeling of actin microfilaments and adhesion complexes, to less extent from the microtubule networks and receptor trafficking, and certain agonists displayed different efficacy towards the cAMP-Epac pathway. We demonstrate that receptor signaling and ligand pharmacology is sensitive to the receptor expression level, and the organization of the receptor and its signaling circuitry.

  7. Dissecting the chemistry of nicotinic receptor-ligand interactions with infrared difference spectroscopy.

    PubMed

    Ryan, Stephen E; Hill, Danny G; Baenziger, John E

    2002-03-22

    The physical interactions that occur between the nicotinic acetylcholine receptor from Torpedo and the agonists carbamylcholine and tetramethylamine have been studied using both conventional infrared difference spectroscopy and a novel double-ligand difference technique. The latter was developed to isolate vibrational bands from residues in a membrane receptor that interact with individual functional groups on a small molecule ligand. The binding of either agonist leads to an increase in vibrational intensity at frequencies centered near 1663, 1655, 1547, 1430, and 1059 cm(-1) indicating that both induce a conformational change from the resting to the desensitized state. Vibrational shifts near 1580, 1516, 1455, 1334, and between 1300 and 1400 cm(-1) are assigned to structural perturbations of tyrosine and possibly both tryptophan and charged carboxylic acid residues upon the formation of receptor-quaternary amine interactions, with the relatively intense feature near 1516 cm(-1) indicating a key role for tyrosine. Other vibrational bands suggest the involvement of additional side chains in agonist binding. Two side-chain vibrational shifts from 1668 and 1605 cm(-1) to 1690 and 1620 cm(-1), respectively, could reflect the formation of a hydrogen bond between the ester carbonyl of carbamylcholine and an arginine residue. The results demonstrate the potential of the double-ligand difference technique for dissecting the chemistry of membrane receptor-ligand interactions and provide new insight into the nature of nicotinic receptor-agonist interactions. PMID:11782459

  8. [Probable mechanism of recognition of cholinergic ligands by acetylcholine receptors].

    PubMed

    Demushkin, V P; Kotelevtsev, Iu V; Pliashkevich, Iu G; Khramtsov, N V

    1982-01-01

    Dryding's models were used for the conformational analysis of compounds affecting muscarin-specific acetylcholine receptor and nicotin-specific acetylcholine receptor. Ammonium group and ether oxygen (3.6 A apart from the ammonium group) specifically oriented to each other were shown to be necessary structural elements to reveal muscarin-type cholinergic activity. Ammonium group along with carbonyl oxygen or its substituent (5 A distance) are the necessary structural units providing nicotin-type cholinergic activity. The presence of two hydrophobic substituents (one in the ammonium area and the other neighbouring the second active grouping) is the additional factor. The developed principles were justified by the use of a series of synthetic samples. The compounds were obtained likely favouring affinitive modification of acetylcholine receptor (dissociation constants of acetylcholine receptor complexes equalling to 10(-4)--10(-7) M-1). PMID:7070378

  9. The Aryl Hydrocarbon Receptor: A Key Bridging Molecule of External and Internal Chemical Signals

    PubMed Central

    Tian, Jijing; Feng, Yu; Fu, Hualing; Xie, Heidi Qunhui; Jiang, Joy Xiaosong; Zhao, Bin

    2015-01-01

    The aryl hydrocarbon receptor (AhR) is a highly evolutionary conserved, ligand-activated transcription factor that is best known to mediate the toxicities of dioxins and dioxin-like compounds. Phenotype of AhR-null mice, together with the recent discovery of a variety of endogenous and plant-derived ligands, point to the integral roles of AhR in normal cell physiology, in addition to its roles in sensing the environmental chemicals. Here, we summarize the current knowledge about AhR signaling pathways, its ligands and AhR-mediated effects on cell specialization, host defense and detoxification. AhR-mediated health effects particularly in liver, immune, and nervous systems, as well as in tumorgenesis are discussed. Dioxin-initiated embryotoxicity and immunosuppressive effects in fish and birds are reviewed. Recent data demonstrate that AhR is a convergence point of multiple signaling pathways that inform the cell of its external and internal environments. As such, AhR pathway is a promising potential target for therapeutics targeting nervous, liver, and autoimmune diseases through AhR ligand-mediated interventions and other perturbations of AhR signaling. Additionally, using available laboratory data obtained on animal models, AhR-centered adverse outcome pathway analysis is useful in reexamining known and potential adverse outcomes of specific or mixed compounds on wildlife. PMID:26079192

  10. Doubling the Size of the Glucocorticoid Receptor Ligand Binding Pocket by Deacylcortivazol

    SciTech Connect

    Suino-Powell, Kelly; Xu, Yong; Zhang, Chenghai; Tao, Yong-guang; Tolbert, W. David; Simons, Jr., S. Stoney; Xu, H. Eric

    2010-03-08

    A common feature of nuclear receptor ligand binding domains (LBD) is a helical sandwich fold that nests a ligand binding pocket within the bottom half of the domain. Here we report that the ligand pocket of glucocorticoid receptor (GR) can be continuously extended into the top half of the LBD by binding to deacylcortivazol (DAC), an extremely potent glucocorticoid. It has been puzzling for decades why DAC, which contains a phenylpyrazole replacement at the conserved 3-ketone of steroid hormones that are normally required for activation of their cognate receptors, is a potent GR activator. The crystal structure of the GR LBD bound to DAC and the fourth LXXLL motif of steroid receptor coactivator 1 reveals that the GR ligand binding pocket is expanded to a size of 1,070 {angstrom}{sup 3}, effectively doubling the size of the GR dexamethasone-binding pocket of 540 {angstrom}{sup 3} and yet leaving the structure of the coactivator binding site intact. DAC occupies only {approx}50% of the space of the pocket but makes intricate interactions with the receptor around the phenylpyrazole group that accounts for the high-affinity binding of DAC. The dramatic expansion of the DAC-binding pocket thus highlights the conformational adaptability of GR to ligand binding. The new structure also allows docking of various nonsteroidal ligands that cannot be fitted into the previous structures, thus providing a new rational template for drug discovery of steroidal and nonsteroidal glucocorticoids that can be specifically designed to reach the unoccupied space of the expanded pocket.

  11. Ligand-Based Peptide Design and Combinatorial Peptide Libraries to Target G Protein-Coupled Receptors

    PubMed Central

    Gruber, Christian W.; Muttenthaler, Markus; Freissmuth, Michael

    2016-01-01

    G protein-coupled receptors (GPCRs) are considered to represent the most promising drug targets; it has been repeatedly said that a large fraction of the currently marketed drugs elicit their actions by binding to GPCRs (with cited numbers varying from 30–50%). Closer scrutiny, however, shows that only a modest fraction of (~60) GPCRs are, in fact, exploited as drug targets, only ~20 of which are peptide-binding receptors. The vast majority of receptors in the humane genome have not yet been explored as sites of action for drugs. Given the drugability of this receptor class, it appears that opportunities for drug discovery abound. In addition, GPCRs provide for binding sites other than the ligand binding sites (referred to as the “orthosteric site”). These additional sites include (i) binding sites for ligands (referred to as “allosteric ligands”) that modulate the affinity and efficacy of orthosteric ligands, (ii) the interaction surface that recruits G proteins and arrestins, (iii) the interaction sites of additional proteins (GIPs, GPCR interacting proteins that regulate G protein signaling or give rise to G protein-independent signals). These sites can also be targeted by peptides. Combinatorial and natural peptide libraries are therefore likely to play a major role in identifying new GPCR ligands at each of these sites. In particular the diverse natural peptide libraries such as the venom peptides from marine cone-snails and plant cyclotides have been established as a rich source of drug leads. High-throughput screening and combinatorial chemistry approaches allow for progressing from these starting points to potential drug candidates. This will be illustrated by focusing on the ligand-based drug design of oxytocin (OT) and vasopressin (AVP) receptor ligands using natural peptide leads as starting points. PMID:20687879

  12. Agonist ligand discrimination by the two orexin receptors depends on the expression system.

    PubMed

    Putula, Jaana; Turunen, Pauli M; Jäntti, Maria H; Ekholm, Marie E; Kukkonen, Jyrki P

    2011-04-20

    Despite the recent successes in producing orexin receptor subtype-selective antagonists, these are not commonly available, and therefore, agonist ligands are regularly used to ascribe cell and tissue responses to OX(1) or OX(2) receptors. In the current study, we have compared the native "subtype-selective" agonist, orexin-B, and its reputedly enhanced synthetic variant, Ala(11), d-Leu(15)-orexin-B, in two different recombinant cell lines. Ca2+ elevation was used as readout, and the two "selective" ligands were compared to the subtype-non-selective orexin-A, as is customary with these ligands. In transiently transfected HEK-293 cells, orexin-B showed 9-fold selectivity for the OX(2) receptor and Ala(11), d-Leu(15)-orexin-B 23-fold selectivity, when the potency ratios of ligands were compared between OX(1) and OX(2). In stable CHO-K1 cells, the corresponding values were only 2.6- and 14-fold, respectively. In addition to being low, the selectivity of the ligands was also variable, as indicated by the comparison of the two cell lines. For instance, the relative potency of Ala(11), d-Leu(15)-orexin-B at OX(2) in CHO cells was only 2.3-fold higher than its relative potency at OX(1) in HEK-293 cells; this indicates that Ala(11), d-Leu(15)-orexin-B does not show high enough selectivity for OX(2) to be useful for determination of receptor subtype expression. Comparison of the potencies of orexin-A and -B with respect to a number of published responses in OX(1)-expressing CHO cells, demonstrates that these show great variation: i.e., orexin-A is 1.6-18-fold more potent than orexin-B, depending on the response assessed. These data together suggest that orexin receptor ligands show signal trafficking, which makes agonist-based pharmacology unreliable. PMID:21362456

  13. Structural insights into ligand-induced activation of the insulin receptor

    SciTech Connect

    Ward, C.; Lawrence, M.; Streltsov, V.; Garrett, T.; McKern, N.; Lou, M.-Z.; Lovrecz, G.; Adams, T.

    2008-04-29

    The current model for insulin binding to the insulin receptor proposes that there are two binding sites, referred to as sites 1 and 2, on each monomer in the receptor homodimer and two binding surfaces on insulin, one involving residues predominantly from the dimerization face of insulin (the classical binding surface) and the other residues from the hexamerization face. High-affinity binding involves one insulin molecule using its two surfaces to make bridging contacts with site 1 from one receptor monomer and site 2 from the other. Whilst the receptor dimer has two identical site 1-site 2 pairs, insulin molecules cannot bridge both pairs simultaneously. Our structures of the insulin receptor (IR) ectodomain dimer and the L1-CR-L2 fragments of IR and insulin-like growth factor receptor (IGF-1R) explain many of the features of ligand-receptor binding and allow the two binding sites on the receptor to be described. The IR dimer has an unexpected folded-over conformation which places the C-terminal surface of the first fibronectin-III domain in close juxtaposition to the known L1 domain ligand-binding surface suggesting that the C-terminal surface of FnIII-1 is the second binding site involved in high-affinity binding. This is very different from previous models based on three-dimensional reconstruction from scanning transmission electron micrographs. Our single-molecule images indicate that IGF-1R has a morphology similar to that of IR. In addition, the structures of the first three domains (L1-CR-L2) of the IR and IGF-1R show that there are major differences in the two regions governing ligand specificity. The implications of these findings for ligand-induced receptor activation will be discussed. This review summarizes the key findings regarding the discovery and characterization of the insulin receptor, the identification and arrangement of its structural domains in the sequence and the key features associated with ligand binding. The remainder of the review

  14. Nociceptin/Orphanin FQ Receptor Structure, Signaling, Ligands, Functions, and Interactions with Opioid Systems.

    PubMed

    Toll, Lawrence; Bruchas, Michael R; Calo', Girolamo; Cox, Brian M; Zaveri, Nurulain T

    2016-04-01

    The NOP receptor (nociceptin/orphanin FQ opioid peptide receptor) is the most recently discovered member of the opioid receptor family and, together with its endogenous ligand, N/OFQ, make up the fourth members of the opioid receptor and opioid peptide family. Because of its more recent discovery, an understanding of the cellular and behavioral actions induced by NOP receptor activation are less well developed than for the other members of the opioid receptor family. All of these factors are important because NOP receptor activation has a clear modulatory role on mu opioid receptor-mediated actions and thereby affects opioid analgesia, tolerance development, and reward. In addition to opioid modulatory actions, NOP receptor activation has important effects on motor function and other physiologic processes. This review discusses how NOP pharmacology intersects, contrasts, and interacts with the mu opioid receptor in terms of tertiary structure and mechanism of receptor activation; location of receptors in the central nervous system; mechanisms of desensitization and downregulation; cellular actions; intracellular signal transduction pathways; and behavioral actions with respect to analgesia, tolerance, dependence, and reward. This is followed by a discussion of the agonists and antagonists that have most contributed to our current knowledge. Because NOP receptors are highly expressed in brain and spinal cord and NOP receptor activation sometimes synergizes with mu receptor-mediated actions and sometimes opposes them, an understanding of NOP receptor pharmacology in the context of these interactions with the opioid receptors will be crucial to the development of novel therapeutics that engage the NOP receptor. PMID:26956246

  15. Effects of particle size and ligand density on the kinetics of receptor-mediated endocytosis of nanoparticles

    NASA Astrophysics Data System (ADS)

    Yuan, Hongyan; Zhang, Sulin

    2010-01-01

    We elucidate, from thermodynamic arguments, the governing factors of receptor-mediated endocytosis of nanoparticles (NPs). We show that the endocytic energetics specifies a minimal particle size and a minimal ligand density below which endocytosis is not possible. Due to the entropic penalty involved in ligand-receptor binding, endocytosis may occur with a large fraction of ligands unbound with receptors. Our analyses suggest that the endocytic time depends interrelatedly on the particle size and ligand density. There exists an optimal condition at which the endocytic time minimizes. These findings may provide valuable guidance to the rational designs of NP-based biomarkers and anticancer bioagents.

  16. Ligand-induced IFN gamma receptor tyrosine phosphorylation couples the receptor to its signal transduction system (p91).

    PubMed Central

    Greenlund, A C; Farrar, M A; Viviano, B L; Schreiber, R D

    1994-01-01

    Herein we report that interferon-gamma (IFN gamma) induces the rapid and reversible tyrosine phosphorylation of the IFN gamma receptor. Using a panel of receptor intracellular domain mutants, we show that a membrane-proximal LPKS sequence (residues 266-269) is required for ligand-induced tyrosine kinase activation and/or kinase-receptor association and biological responsiveness, and a functionally critical membrane-distal tyrosine residue (Y440) is a target of the activated enzyme. The biological significance of Y440 phosphorylation was demonstrated by showing that a receptor-derived nonapeptide corresponding to receptor residues 436-444 and containing phosphorylated Y440 bound specifically to p91, blocked p91 phosphorylation and inhibited the generation of an active p91-containing transcription factor complex. In contrast, nonphosphorylated wild-type, phosphorylated mutant, or phosphorylated irrelevant peptides did not. Moreover, the phosphorylated Y440-containing peptide did not interact with a related but distinct latent transcription factor (p113) which is activatible by IFN alpha but not IFN gamma. These results thus document the specific and inducible association of p91 with the phosphorylated IFN gamma receptor and thereby elucidate the mechanism by which ligand couples the IFN gamma receptor to its signal transduction system. Images PMID:8156998

  17. Post-docking optimization and analysis of protein-ligand interactions of estrogen receptor alpha using AMMOS software.

    PubMed

    Pencheva, Tania; Jereva, Dessislava; Miteva, Maria A; Pajeva, Ilza

    2013-03-01

    Understanding protein-ligand interactions is a critical step in rational drug design/virtual ligand screening. In this work we applied the AMMOS_ProtLig software for post-docking optimization of estrogen receptor alpha complexes generated after virtual ligand screening protocol. Using MOE software we identified the ligand-receptor interactions in the optimized complexes at different levels of protein flexibility and compared them to the experimentally observed interactions. We analyzed in details the binding sites of three X-ray complexes of the same receptor and identified the key residues for the protein-ligand interactions. The complexes were further processed with AMMOS_ProtLig and the interactions in the predicted poses were compared to those observed in the X-ray structures. The effect of employing different levels of flexibility was analyzed. The results confirmed the AMMOS_ProtLig applicability as a helpful postdocking optimization tool for virtual ligand screening of estrogen receptors. PMID:23106778

  18. Controlling the Dissociation of Ligands from the Adenosine A2A Receptor through Modulation of Salt Bridge Strength.

    PubMed

    Segala, Elena; Guo, Dong; Cheng, Robert K Y; Bortolato, Andrea; Deflorian, Francesca; Doré, Andrew S; Errey, James C; Heitman, Laura H; IJzerman, Adriaan P; Marshall, Fiona H; Cooke, Robert M

    2016-07-14

    The association and dissociation kinetics of ligands binding to proteins vary considerably, but the mechanisms behind this variability are poorly understood, limiting their utilization for drug discovery. This is particularly so for G protein-coupled receptors (GPCRs) where high resolution structural information is only beginning to emerge. Engineering the human A2A adenosine receptor has allowed structures to be solved in complex with the reference compound ZM241385 and four related ligands at high resolution. Differences between the structures are limited, with the most pronounced being the interaction of each ligand with a salt bridge on the extracellular side of the receptor. Mutagenesis experiments confirm the role of this salt bridge in controlling the dissociation kinetics of the ligands from the receptor, while molecular dynamics simulations demonstrate the ability of ligands to modulate salt bridge stability. These results shed light on a structural determinant of ligand dissociation kinetics and identify a means by which this property may be optimized. PMID:27312113

  19. Evaluation of the Ecotoxicity of Sediments from Yangtze River Estuary and Contribution of Priority PAHs to Ah Receptor-Mediated Activities

    PubMed Central

    Liu, Li; Chen, Ling; Shao, Ying; Zhang, Lili; Floehr, Tilman; Xiao, Hongxia; Yan, Yan; Eichbaum, Kathrin; Hollert, Henner; Wu, Lingling

    2014-01-01

    In this study, in vitro bioassays were performed to assess the ecotoxicological potential of sediments from Yangtze River estuary. The cytotoxicity and aryl hydrocarbon receptor (AhR)-mediated toxicity of sediment extracts with rainbow trout (Oncorhynchus mykiss) liver cells were determined by neutral red retention and 7-ethoxyresorufin-O-deethylase assays. The cytotoxicity and AhR-mediated activity of sediments from the Yangtze River estuary ranged from low level to moderate level compared with the ecotoxicity of sediments from other river systems. However, Yangtze River releases approximately 14 times greater water discharge compared with Rhine, a major river in Europe. Thus, the absolute pollution mass transfer of Yangtze River may be detrimental to the environmental quality of estuary and East China Sea. Effect-directed analysis was applied to identify substances causing high dioxin-like activities. To identify unknown substances contributing to dioxin-like potencies of whole extracts, we fractionated crude extracts by open column chromatography. Non-polar paraffinic components (F1), weakly and moderately polar components (F2), and highly polar substances (F3) were separated from each crude extract of sediments. F2 showed the highest dioxin-like activities. Based on the results of mass balance calculation of chemical toxic equivalent concentrations (TEQs), our conclusion is that priority polycyclic aromatic hydrocarbons indicated a low portion of bio-TEQs ranging from 1% to 10% of crude extracts. Further studies should be conducted to identify unknown pollutants. PMID:25111307

  20. Genetic variability of aryl hydrocarbon receptor (AhR)-mediated regulation of the human UDP glucuronosyltransferase (UGT) 1A4 gene

    SciTech Connect

    Erichsen, Thomas J.; Ehmer, Ursula; Kalthoff, Sandra; Lankisch, Tim O.; Mueller, Tordis M.; Munzel, Peter A.; Manns, Michael P.; Strassburg, Christian P.

    2008-07-15

    UDP glucuronosyltransferases (UGTs) play an important role for drug detoxification and toxicity. UGT function is genetically modulated by single nucleotide polymorphisms (SNPs) which lead to the expression of functionally altered protein, or altered expression levels. UGT1A4 activity includes anticonvulsants, antidepressants and environmental mutagens. In this study the induction of the human UGT1A4 gene and a potential influence of genetic variation in its promoter region were analyzed. SNPs at bp - 219 and - 163 occurred in 9% among 109 blood donors reducing UGT1A4 transcription by 40%. UGT1A4 transcription was dioxin inducible. Reporter gene experiments identified 2 xenobiotic response elements (XRE), which were functionally confirmed by mutagenesis analyses, and binding was demonstrated by electromobility shift assays. Constitutive human UGT1A4 gene expression and induction was aryl hydrocarbon receptor (AhR)-dependent, and reduced in the presence of SNPs at bp - 219 and - 163. AhR-mediated regulation of the human UGT1A4 gene by two XRE and a modulation by naturally occurring genetic variability by SNPs is demonstrated, which indicates gene-environment interaction with potential relevance for drug metabolism.

  1. NFkappaB Selectivity of Estrogen Receptor Ligands Revealed By Comparative Crystallographic Analyses

    SciTech Connect

    Nettles, K.W.; Bruning, J.B.; Gil, G.; Nowak, J.; Sharma, S.K.; Hahm, J.B.; Kulp, K.; Hochberg, R.B.; Zhou, H.; Katzenellenbogen, J.A.; Katzenllenbogen, B.S.; Kim, Y.; Joachmiak, A.; Greene, G.L.

    2009-05-22

    Our understanding of how steroid hormones regulate physiological functions has been significantly advanced by structural biology approaches. However, progress has been hampered by misfolding of the ligand binding domains in heterologous expression systems and by conformational flexibility that interferes with crystallization. Here, we show that protein folding problems that are common to steroid hormone receptors are circumvented by mutations that stabilize well-characterized conformations of the receptor. We use this approach to present the structure of an apo steroid receptor that reveals a ligand-accessible channel allowing soaking of preformed crystals. Furthermore, crystallization of different pharmacological classes of compounds allowed us to define the structural basis of NF{kappa}B-selective signaling through the estrogen receptor, thus revealing a unique conformation of the receptor that allows selective suppression of inflammatory gene expression. The ability to crystallize many receptor-ligand complexes with distinct pharmacophores allows one to define structural features of signaling specificity that would not be apparent in a single structure.

  2. LiCABEDS II. Modeling of ligand selectivity for G-protein-coupled cannabinoid receptors.

    PubMed

    Ma, Chao; Wang, Lirong; Yang, Peng; Myint, Kyaw Z; Xie, Xiang-Qun

    2013-01-28

    The cannabinoid receptor subtype 2 (CB2) is a promising therapeutic target for blood cancer, pain relief, osteoporosis, and immune system disease. The recent withdrawal of Rimonabant, which targets another closely related cannabinoid receptor (CB1), accentuates the importance of selectivity for the development of CB2 ligands in order to minimize their effects on the CB1 receptor. In our previous study, LiCABEDS (Ligand Classifier of Adaptively Boosting Ensemble Decision Stumps) was reported as a generic ligand classification algorithm for the prediction of categorical molecular properties. Here, we report extension of the application of LiCABEDS to the modeling of cannabinoid ligand selectivity with molecular fingerprints as descriptors. The performance of LiCABEDS was systematically compared with another popular classification algorithm, support vector machine (SVM), according to prediction precision and recall rate. In addition, the examination of LiCABEDS models revealed the difference in structure diversity of CB1 and CB2 selective ligands. The structure determination from data mining could be useful for the design of novel cannabinoid lead compounds. More importantly, the potential of LiCABEDS was demonstrated through successful identification of newly synthesized CB2 selective compounds. PMID:23278450

  3. Nuclear receptor ligand-binding domains: reduction of helix H12 dynamics to favour crystallization

    SciTech Connect

    Nahoum, Virginie; Lipski, Alexandra; Quillard, Fabien; Guichou, Jean-François; Boublik, Yvan; Pérez, Efrèn; Germain, Pierre; Lera, Angel R. de; Bourguet, William

    2008-07-01

    Attempts have been made to crystallize the ligand-binding domain of the human retinoid X receptor in complex with a variety of newly synthesized ligands. An inverse correlation was observed between the ‘crystallizability’ and the structural dynamics of the various receptor–ligand complexes. Crystallization trials of the human retinoid X receptor α ligand-binding domain (RXRα LBD) in complex with various ligands have been carried out. Using fluorescence anisotropy, it has been found that when compared with agonists these small-molecule effectors enhance the dynamics of the RXRα LBD C-terminal helix H12. In some cases, the mobility of this helix could be dramatically reduced by the addition of a 13-residue co-activator fragment (CoA). In keeping with these observations, crystals have been obtained of the corresponding ternary RXRα LBD–ligand–CoA complexes. In contrast, attempts to crystallize complexes with a highly mobile H12 remained unsuccessful. These experimental observations substantiate the previously recognized role of co-regulator fragments in facilitating the crystallization of nuclear receptor LBDs.

  4. Ligand-selective activation of heterologously-expressed mammalian olfactory receptor.

    PubMed

    Ukhanov, K; Bobkov, Y; Corey, E A; Ache, B W

    2014-10-01

    Mammalian olfactory receptors (ORs) appear to have the capacity to couple to multiple G protein-coupled signaling pathways in a ligand-dependent selective manner. To better understand the mechanisms and molecular range of such ligand selectivity, we expressed the mouse eugenol OR (mOR-EG) in HEK293T cells together with Gα15 to monitor activation of the phospholipase-C (PLC) signaling pathway and/or Gαolf to monitor activation of the adenylate cyclase (AC) signaling pathway, resulting in intracellular Ca(2+) release and/or Ca(2+) influx through a cyclic nucleotide-gated channel, respectively. PLC-dependent responses differed dynamically from AC-dependent responses, allowing them to be distinguished when Gα15 and Gαolf were co-expressed. The dynamic difference in readout was independent of the receptor, the heterologous expression system, and the ligand concentration. Of 17 reported mOR-EG ligands tested, including eugenol, its analogs, and structurally dissimilar compounds (mousse cristal, nootkatone, orivone), some equally activated both signaling pathways, some differentially activated both signaling pathways, and some had no noticeable effect even at 1-5mM. Our findings argue that mOR-EG, when heterologously expressed, can couple to two different signaling pathways in a ligand selective manner. The challenge now is to determine the potential of mOR-EG, and perhaps other ORs, to activate multiple signaling pathways in a ligand selective manner in native ORNs. PMID:25149566

  5. Ligand-selective activation of heterologously-expressed mammalian olfactory receptor

    PubMed Central

    Ukhanov, K.; Bobkov, Y.; Corey, E.A.; Ache, B.W.

    2014-01-01

    Mammalian olfactory receptors (ORs) appear to have the capacity to couple to multiple G protein-coupled signaling pathways in a ligand-dependent selective manner. To better understand the mechanisms and molecular range of such ligand selectivity, we expressed the mouse eugenol OR (mOR-EG) in HEK293T cells together with Gα15 to monitor activation of the phospholipase-C (PLC) signaling pathway and/or Gαolf to monitor activation of the adenylate cyclase (AC) signaling pathway, resulting in intracellular Ca2+ release and/or Ca2+ influx through a cyclic nucleotide-gated channel, respectively. PLC-dependent responses differed dynamically from AC-dependent responses, allowing them to be distinguished when Gα15 and Gαolf were co-expressed. The dynamic difference in readout was independent of the receptor, the heterologous expression system, and the ligand concentration. Of 17 reported mOR-EG ligands tested, including eugenol, its analogs, and structurally dissimilar compounds (mousse cristal, nootkatone, orivone), some equally activated both signaling pathways, some differentially activated both signaling pathways, and some had no noticeable effect even at 1-5 mM. Our findings argue that mOR-EG, when heterologously expressed, can couple to two different signaling pathways in a ligand selective manner. The challenge now is to determine the potential of mOR-EG, and perhaps other ORs, to activate multiple signaling pathways in a ligand selective manner in native ORNs. PMID:25149566

  6. Receptor-based 3D QSAR analysis of estrogen receptor ligands--merging the accuracy of receptor-based alignments with the computational efficiency of ligand-based methods.

    PubMed

    Sippl, W

    2000-08-01

    One of the major challenges in computational approaches to drug design is the accurate prediction of binding affinity of biomolecules. In the present study several prediction methods for a published set of estrogen receptor ligands are investigated and compared. The binding modes of 30 ligands were determined using the docking program AutoDock and were compared with available X-ray structures of estrogen receptor-ligand complexes. On the basis of the docking results an interaction energy-based model, which uses the information of the whole ligand-receptor complex, was generated. Several parameters were modified in order to analyze their influence onto the correlation between binding affinities and calculated ligand-receptor interaction energies. The highest correlation coefficient (r2 = 0.617, q2Loo = 0.570) was obtained considering protein flexibility during the interaction energy evaluation. The second prediction method uses a combination of receptor-based and 3D quantitative structure-activity relationships (3D QSAR) methods. The ligand alignment obtained from the docking simulations was taken as basis for a comparative field analysis applying the GRID/GOLPE program. Using the interaction field derived with a water probe and applying the smart region definition (SRD) variable selection, a significant and robust model was obtained (r2 = 0.991, q2LOO = 0.921). The predictive ability of the established model was further evaluated by using a test set of six additional compounds. The comparison with the generated interaction energy-based model and with a traditional CoMFA model obtained using a ligand-based alignment (r2 = 0.951, q2L00 = 0.796) indicates that the combination of receptor-based and 3D QSAR methods is able to improve the quality of the underlying model. PMID:10921772

  7. Activation of the Aryl Hydrocarbon Receptor Dampens the Severity of Inflammatory Skin Conditions

    PubMed Central

    Di Meglio, Paola; Duarte, João H.; Ahlfors, Helena; Owens, Nick D.L.; Li, Ying; Villanova, Federica; Tosi, Isabella; Hirota, Keiji; Nestle, Frank O.; Mrowietz, Ulrich; Gilchrist, Michael J.; Stockinger, Brigitta

    2014-01-01

    Summary Environmental stimuli are known to contribute to psoriasis pathogenesis and that of other autoimmune diseases, but the mechanisms are largely unknown. Here we show that the aryl hydrocarbon receptor (AhR), a transcription factor that senses environmental stimuli, modulates pathology in psoriasis. AhR-activating ligands reduced inflammation in the lesional skin of psoriasis patients, whereas AhR antagonists increased inflammation. Similarly, AhR signaling via the endogenous ligand FICZ reduced the inflammatory response in the imiquimod-induced model of skin inflammation and AhR-deficient mice exhibited a substantial exacerbation of the disease, compared to AhR-sufficient controls. Nonhematopoietic cells, in particular keratinocytes, were responsible for this hyperinflammatory response, which involved upregulation of AP-1 family members of transcription factors. Thus, our data suggest a critical role for AhR in the regulation of inflammatory responses and open the possibility for novel therapeutic strategies in chronic inflammatory disorders. PMID:24909886

  8. Functional Selectivity and Antidepressant Activity of Serotonin 1A Receptor Ligands

    PubMed Central

    Chilmonczyk, Zdzisław; Bojarski, Andrzej Jacek; Pilc, Andrzej; Sylte, Ingebrigt

    2015-01-01

    Serotonin (5-HT) is a monoamine neurotransmitter that plays an important role in physiological functions. 5-HT has been implicated in sleep, feeding, sexual behavior, temperature regulation, pain, and cognition as well as in pathological states including disorders connected to mood, anxiety, psychosis and pain. 5-HT1A receptors have for a long time been considered as an interesting target for the action of antidepressant drugs. It was postulated that postsynaptic 5-HT1A agonists could form a new class of antidepressant drugs, and mixed 5-HT1A receptor ligands/serotonin transporter (SERT) inhibitors seem to possess an interesting pharmacological profile. It should, however, be noted that 5-HT1A receptors can activate several different biochemical pathways and signal through both G protein-dependent and G protein-independent pathways. The variables that affect the multiplicity of 5-HT1A receptor signaling pathways would thus result from the summation of effects specific to the host cell milieu. Moreover, receptor trafficking appears different at pre- and postsynaptic sites. It should also be noted that the 5-HT1A receptor cooperates with other signal transduction systems (like the 5-HT1B or 5-HT2A/2B/2C receptors, the GABAergic and the glutaminergic systems), which also contribute to its antidepressant and/or anxiolytic activity. Thus identifying brain specific molecular targets for 5-HT1A receptor ligands may result in a better targeting, raising a hope for more effective medicines for various pathologies. PMID:26262615

  9. Elimination of a ligand gating site generates a supersensitive olfactory receptor

    PubMed Central

    Sharma, Kanika; Ahuja, Gaurav; Hussain, Ashiq; Balfanz, Sabine; Baumann, Arnd; Korsching, Sigrun I.

    2016-01-01

    Olfaction poses one of the most complex ligand-receptor matching problems in biology due to the unparalleled multitude of odor molecules facing a large number of cognate olfactory receptors. We have recently deorphanized an olfactory receptor, TAAR13c, as a specific receptor for the death-associated odor cadaverine. Here we have modeled the cadaverine/TAAR13c interaction, exchanged predicted binding residues by site-directed mutagenesis, and measured the activity of the mutant receptors. Unexpectedly we observed a binding site for cadaverine at the external surface of the receptor, in addition to an internal binding site, whose mutation resulted in complete loss of activity. In stark contrast, elimination of the external binding site generated supersensitive receptors. Modeling suggests this site to act as a gate, limiting access of the ligand to the internal binding site and thereby downregulating the affinity of the native receptor. This constitutes a novel mechanism to fine-tune physiological sensitivity to socially relevant odors. PMID:27323929

  10. Structure-Based Virtual Screening for Dopamine D2 Receptor Ligands as Potential Antipsychotics.

    PubMed

    Kaczor, Agnieszka A; Silva, Andrea G; Loza, María I; Kolb, Peter; Castro, Marián; Poso, Antti

    2016-04-01

    Structure-based virtual screening using a D2 receptor homology model was performed to identify dopamine D2 receptor ligands as potential antipsychotics. From screening a library of 6.5 million compounds, 21 were selected and were subjected to experimental validation. From these 21 compounds tested, ten D2 ligands were identified (47.6 % success rate, among them D2 receptor antagonists, as expected) that have additional affinity for other receptors tested, in particular 5-HT2A receptors. The affinity (Ki values) of the compounds ranged from 58 nm to about 24 μm. Similarity and fragment analysis indicated a significant degree of structural novelty among the identified compounds. We found one D2 receptor antagonist that did not have a protonatable nitrogen atom, which is a key structural element of the classical D2 pharmacophore model necessary for interaction with the conserved Asp(3.32) residue. This compound exhibited greater than 20-fold binding selectivity for the D2 receptor over the D3 receptor. We provide additional evidence that the amide hydrogen atom of this compound forms a hydrogen bond with Asp(3.32), as determined by tests of its derivatives that cannot maintain this interaction. PMID:26990027

  11. REACTIVITY PROFILE OF LIGANDS OF MAMMALIAN RETINOIC ACID RECEPTORS: A PRELIMINARY COREPA ANALYSIS

    EPA Science Inventory

    Retinoic acid and associated derivatives comprise a class of endogenous hormones that bind to and activate different families of retinoic acid receptors (RARs, RXRs), and control many aspects of vertebrate development. Identification of potential RAR and RXR ligands is of interes...

  12. Characterization and Evaluation of Two Novel Fluorescent Sigma-2 Receptor Ligands as Proliferation Probes

    PubMed Central

    Zeng, Chenbo; Vangveravong, Suwanna; Jones, Lynne A.; Hyrc, Krzysztof; Chang, Katherine C.; Xu, Jinbin; Rothfuss, Justin M.; Goldberg, Mark P.; Hotchkiss, Richard S.; Mach, Robert H.

    2015-01-01

    We synthesized and characterized two novel fluorescent sigma-2 receptor selective ligands, SW120 and SW116, and evaluated these ligands as potential probes for imaging cell proliferation. Both ligands are highly selective for sigma-2 receptors versus sigma-1 receptors. SW120 and SW116 were internalized into MDA-MB-435 cells, and 50% of the maximum fluorescent intensity was reached in 11 and 24 minutes, respectively. In vitro studies showed that 50% of SW120 or SW116 washed out of cells in 1 hour. The internalization of SW120 was reduced ≈30% by phenylarsine oxide, an inhibitor of endocytosis, suggesting that sigma-2 ligands are internalized, in part, by an endocytotic pathway. Subcellular localization studies using confocal and two-photon microscopy showed that SW120 and SW116 partially colocalized with fluorescent markers of mitochondria, endoplasmic reticulum, lysosomes, and the plasma membrane, suggesting that sigma-2 receptors localized to the cytoplasmic organelles and plasma membrane. SW120 did not colocalize with the nuclear dye 4′,6-diamidino-2-phenylindole. In vivo studies showed that the uptake of SW120 in solid tumors and peripheral blood mononuclear cells of mice positively correlated with the expression level of the cell proliferation marker Ki-67, suggesting that sigma-2 fluorescent probes may be used to image cell proliferation in mice. PMID:22201533

  13. Structural Analysis on the Pathologic Mutant Glucocorticoid Receptor Ligand-Binding Domains.

    PubMed

    Hurt, Darrell E; Suzuki, Shigeru; Mayama, Takafumi; Charmandari, Evangelia; Kino, Tomoshige

    2016-02-01

    Glucocorticoid receptor (GR) gene mutations may cause familial or sporadic generalized glucocorticoid resistance syndrome. Most of the missense forms distribute in the ligand-binding domain and impair its ligand-binding activity and formation of the activation function (AF)-2 that binds LXXLL motif-containing coactivators. We performed molecular dynamics simulations to ligand-binding domain of pathologic GR mutants to reveal their structural defects. Several calculated parameters including interaction energy for dexamethasone or the LXXLL peptide indicate that destruction of ligand-binding pocket (LBP) is a primary character. Their LBP defects are driven primarily by loss/reduction of the electrostatic interaction formed by R611 and T739 of the receptor to dexamethasone and a subsequent conformational mismatch, which deacylcortivazol resolves with its large phenylpyrazole moiety and efficiently stimulates transcriptional activity of the mutant receptors with LBP defect. Reduced affinity of the LXXLL peptide to AF-2 is caused mainly by disruption of the electrostatic bonds to the noncore leucine residues of this peptide that determine the peptide's specificity to GR, as well as by reduced noncovalent interaction against core leucines and subsequent exposure of the AF-2 surface to solvent. The results reveal molecular defects of pathologic mutant receptors and provide important insights to the actions of wild-type GR. PMID:26745667

  14. The Tumor Necrosis Factor Receptor Stalk Regions Define Responsiveness to Soluble versus Membrane-Bound Ligand

    PubMed Central

    Richter, Christine; Messerschmidt, Sylvia; Holeiter, Gerlinde; Tepperink, Jessica; Osswald, Sylvia; Zappe, Andrea; Branschädel, Marcus; Boschert, Verena; Mann, Derek A.; Scheurich, Peter

    2012-01-01

    The family of tumor necrosis factor receptors (TNFRs) and their ligands form a regulatory signaling network that controls immune responses. Various members of this receptor family respond differently to the soluble and membrane-bound forms of their respective ligands. However, the determining factors and underlying molecular mechanisms of this diversity are not yet understood. Using an established system of chimeric TNFRs and novel ligand variants mimicking the bioactivity of membrane-bound TNF (mTNF), we demonstrate that the membrane-proximal extracellular stalk regions of TNFR1 and TNFR2 are crucial in controlling responsiveness to soluble TNF (sTNF). We show that the stalk region of TNFR2, in contrast to the corresponding part of TNFR1, efficiently inhibits both the receptor's enrichment/clustering in particular cell membrane regions and ligand-independent homotypic receptor preassembly, thereby preventing sTNF-induced, but not mTNF-induced, signaling. Thus, the stalk regions of the two TNFRs not only have implications for additional TNFR family members, but also provide potential targets for therapeutic intervention. PMID:22547679

  15. Binding kinetics of membrane-anchored receptors and ligands: Molecular dynamics simulations and theory

    NASA Astrophysics Data System (ADS)

    Hu, Jinglei; Xu, Guang-Kui; Lipowsky, Reinhard; Weikl, Thomas R.

    2015-12-01

    The adhesion of biological membranes is mediated by the binding of membrane-anchored receptor and ligand proteins. Central questions are how the binding kinetics of these proteins is affected by the membranes and by the membrane anchoring of the proteins. In this article, we (i) present detailed data for the binding of membrane-anchored proteins from coarse-grained molecular dynamics simulations and (ii) provide a theory that describes how the binding kinetics depends on the average separation and thermal roughness of the adhering membranes and on the anchoring, lengths, and length variations of the proteins. An important element of our theory is the tilt of bound receptor-ligand complexes and transition-state complexes relative to the membrane normals. This tilt results from an interplay of the anchoring energy and rotational entropy of the complexes and facilitates the formation of receptor-ligand bonds at membrane separations smaller than the preferred separation for binding. In our simulations, we have considered both lipid-anchored and transmembrane receptor and ligand proteins. We find that the binding equilibrium constant and binding on-rate constant of lipid-anchored proteins are considerably smaller than the binding constant and on-rate constant of rigid transmembrane proteins with identical binding domains.

  16. Tension-compression asymmetry in the binding affinity of membrane-anchored receptors and ligands

    NASA Astrophysics Data System (ADS)

    Xu, Guang-Kui; Liu, Zishun; Feng, Xi-Qiao; Gao, Huajian

    2016-03-01

    Cell adhesion plays a crucial role in many biological processes of cells, e.g., immune responses, tissue morphogenesis, and stem cell differentiation. An essential problem in the molecular mechanism of cell adhesion is to characterize the binding affinity of membrane-anchored receptors and ligands under different physiological conditions. In this paper, a theoretical model is presented to study the binding affinity between a large number of anchored receptors and ligands under both tensile and compressive stresses, and corroborated by demonstrating excellent agreement with Monte Carlo simulations. It is shown that the binding affinity becomes lower as the magnitude of the applied stress increases, and drops to zero at a critical tensile or compressive stress. Interestingly, the critical compressive stress is found to be substantially smaller than the critical tensile stress for relatively long and flexible receptor-ligand complexes. This counterintuitive finding is explained by using the Euler instability theory of slender columns under compression. The tension-compression asymmetry in the binding affinity of anchored receptors and ligands depends subtly on the competition between the breaking and instability of their complexes. This study helps in understanding the role of mechanical forces in cell adhesion mediated by specific binding molecules.

  17. NEW DEVELOPMENTS IN A HAZARD IDENTIFICATION ALGORITHM FOR HORMONE RECEPTOR LIGANDS

    EPA Science Inventory

    Recently we described the COmmon REactivity PAttern (COREPA) techniques to screen data sets of diverse structures for their ability to serve as ligands for steroid hormone receptors (Environ. Sci. Technol. 31:3702-3711). The approach identifies and quantifies similar global and l...

  18. Structural basis for ligand and innate immunity factor uptake by the trypanosome haptoglobin-haemoglobin receptor.

    PubMed

    Lane-Serff, Harriet; MacGregor, Paula; Lowe, Edward D; Carrington, Mark; Higgins, Matthew K

    2014-01-01

    The haptoglobin-haemoglobin receptor (HpHbR) of African trypanosomes allows acquisition of haem and provides an uptake route for trypanolytic factor-1, a mediator of innate immunity against trypanosome infection. In this study, we report the structure of Trypanosoma brucei HpHbR in complex with human haptoglobin-haemoglobin (HpHb), revealing an elongated ligand-binding site that extends along its membrane distal half. This contacts haptoglobin and the β-subunit of haemoglobin, showing how the receptor selectively binds HpHb over individual components. Lateral mobility of the glycosylphosphatidylinositol-anchored HpHbR, and a ∼50° kink in the receptor, allows two receptors to simultaneously bind one HpHb dimer. Indeed, trypanosomes take up dimeric HpHb at significantly lower concentrations than monomeric HpHb, due to increased ligand avidity that comes from bivalent binding. The structure therefore reveals the molecular basis for ligand and innate immunity factor uptake by trypanosomes and identifies adaptations that allow efficient ligand uptake in the context of the complex trypanosome cell surface. PMID:25497229

  19. Structural basis for ligand and innate immunity factor uptake by the trypanosome haptoglobin-haemoglobin receptor

    PubMed Central

    Lane-Serff, Harriet; MacGregor, Paula; Lowe, Edward D; Carrington, Mark; Higgins, Matthew K

    2014-01-01

    The haptoglobin-haemoglobin receptor (HpHbR) of African trypanosomes allows acquisition of haem and provides an uptake route for trypanolytic factor-1, a mediator of innate immunity against trypanosome infection. In this study, we report the structure of Trypanosoma brucei HpHbR in complex with human haptoglobin-haemoglobin (HpHb), revealing an elongated ligand-binding site that extends along its membrane distal half. This contacts haptoglobin and the β-subunit of haemoglobin, showing how the receptor selectively binds HpHb over individual components. Lateral mobility of the glycosylphosphatidylinositol-anchored HpHbR, and a ∼50o kink in the receptor, allows two receptors to simultaneously bind one HpHb dimer. Indeed, trypanosomes take up dimeric HpHb at significantly lower concentrations than monomeric HpHb, due to increased ligand avidity that comes from bivalent binding. The structure therefore reveals the molecular basis for ligand and innate immunity factor uptake by trypanosomes and identifies adaptations that allow efficient ligand uptake in the context of the complex trypanosome cell surface. DOI: http://dx.doi.org/10.7554/eLife.05553.001 PMID:25497229

  20. Peroxisome Proliferator-Activated Receptor Ligands and Their Role in Chronic Myeloid Leukemia: Therapeutic Strategies.

    PubMed

    Yousefi, Bahman; Samadi, Nasser; Baradaran, Behzad; Shafiei-Irannejad, Vahid; Zarghami, Nosratollah

    2016-07-01

    Imatinib therapy remains the gold standard for treatment of chronic myeloid leukemia; however, the acquired resistance to this therapeutic agent in patients has urged the scientists to devise modalities for overcoming this chemoresistance. For this purpose, initially therapeutic agents with higher tyrosine kinase activity were introduced, which had the potential for inhibiting even mutant forms of Bcr-Abl. Furthermore, coupling imatinib with peroxisome proliferator-activated receptor ligands also showed beneficial effects in chronic myeloid leukemia cell proliferation. These combination protocols inhibited cell growth and induced apoptosis as well as differentiation in chronic myeloid leukemia cell lines. In addition, peroxisome proliferator-activated receptors ligands increased imatinib uptake by upregulating the expression of human organic cation transporter 1. Taken together, peroxisome proliferator-activated receptors ligands are currently being considered as novel promising therapeutic candidates for chronic myeloid leukemia treatment, because they can synergistically enhance the efficacy of imatinib. In this article, we reviewed the potential of peroxisome proliferator-activated receptors ligands for use in chronic myeloid leukemia treatment. The mechanism of action of these therapeutics modalities are also presented in detail. PMID:26841308

  1. Calculations of distance distributions and probabilities of binding by ligands between parallel plane membranes comprising receptors

    NASA Astrophysics Data System (ADS)

    Plante, Ianik; Devroye, Luc; Cucinotta, Francis A.

    2014-03-01

    Cell communication through biochemical signaling pathways is a key determinant of tissue responses to radiation. Several molecules, such as the transforming growth factor β (TGFβ), are implicated in radiation-induced signaling between cells. Brownian Dynamics (BD) algorithms have recently been used to simulate the interaction of ligands with receptors and to elucidate signal transduction and autocrine loops in ligand-receptors systems. In this paper, we discuss the simulation of particle diffusion and binding kinetics in a space bounded by two parallel plane membranes, using an exact algorithm to sample the propagator (Green’s function) of a particle located between 2 membranes. We also show that the simulation results are independent of the number of time steps used, in accordance with time discretization equations. These simulations could be used to simulate the motion and binding of ligand molecules in a cell culture, and possibly in neuronal synapses.

  2. Major advances in the development of histamine H4 receptor ligands.

    PubMed

    Smits, Rogier A; Leurs, Rob; de Esch, Iwan J P

    2009-08-01

    The search for new and potent histamine H4 receptor ligands is leading to a steadily increasing number of scientific publications and patent applications. Several interesting and structurally diverse compounds have been found, but fierce IP competition for a preferred 2-aminopyrimidine scaffold is becoming apparent. Recent investigations into the role of the histamine H(4)R in (patho)physiology and the use of H4R ligands in in vivo disease models reveal enormous potential in the field of inflammation and allergy, among others. The development of ligands that display activity at two or more histamine receptor (HR) subtypes is another clinical opportunity that is currently being explored. Taken together, the histamine H4R field is gearing up for clinical studies and has the potential to deliver another generation of blockbuster drugs. PMID:19477292

  3. Disruption of nicotine conditioning by dopamine D(3) receptor ligands.

    PubMed

    Le Foll, B; Schwartz, J-C; Sokoloff, P

    2003-02-01

    Tobacco smoking is the first cause of preventable death in modern countries. Nicotine replacement therapy or sustained release bupropion helps smoking cessation, but relapse rates are still very high. Nicotine, like other drugs of abuse, activates the dopamine mesolimbic system, which originates in the ventral tegmental area and projects notably to the nucleus accumbens. Situations or environmental stimuli previously associated with cigarette smoking, for example, smell of cigarette smoke, can elicit craving in abstinent smokers and promote relapse. Reducing the effects of nicotine-associated cues might therefore have potential therapeutic utility for smoking cessation. Such an approach has been validated for cocaine in animals, by using the dopamine D(3) receptor-selective partial agonist BP 897, which inhibits cocaine cue-induced drug-seeking behavior. Here we show that rats repeatedly injected with nicotine in a particular environment develop nicotine-conditioned locomotor responses, accompanied by an increase in D(3) receptor expression in the nucleus accumbens. This conditioned behavior was inhibited by BP 897 or a selective D(3) receptor antagonist, suggesting that antagonizing dopamine selectively at the D(3) receptor disrupts nicotine-conditioned effects and might represent a novel therapeutic approach for smoking cessation. PMID:12610655

  4. Computational Prediction of Alanine Scanning and Ligand Binding Energetics in G-Protein Coupled Receptors

    PubMed Central

    Boukharta, Lars; Gutiérrez-de-Terán, Hugo; Åqvist, Johan

    2014-01-01

    Site-directed mutagenesis combined with binding affinity measurements is widely used to probe the nature of ligand interactions with GPCRs. Such experiments, as well as structure-activity relationships for series of ligands, are usually interpreted with computationally derived models of ligand binding modes. However, systematic approaches for accurate calculations of the corresponding binding free energies are still lacking. Here, we report a computational strategy to quantitatively predict the effects of alanine scanning and ligand modifications based on molecular dynamics free energy simulations. A smooth stepwise scheme for free energy perturbation calculations is derived and applied to a series of thirteen alanine mutations of the human neuropeptide Y1 receptor and series of eight analogous antagonists. The robustness and accuracy of the method enables univocal interpretation of existing mutagenesis and binding data. We show how these calculations can be used to validate structural models and demonstrate their ability to discriminate against suboptimal ones. PMID:24743773

  5. Phenethyl pyridines with non-polar internal substituents as selective ligands for estrogen receptor beta.

    PubMed

    Waibel, Michael; Kieser, Karen J; Carlson, Kathryn E; Stossi, Fabio; Katzenellenbogen, Benita S; Katzenellenbogen, John A

    2009-09-01

    To create estrogen receptor beta (ERbeta)-selective ligands with improved biological characteristics, we have extended our investigations of structurally simple bibenzyl-core ligands by preparing a series of compounds in which one phenol is replaced by a 3-hydroxypyridine ring. These phenethyl pyridines were obtained by picoline anion alkylation, and compounds with different patterns of alkyl substitution on the central two carbon units were prepared. Binding affinities for ERalpha and ERbeta were determined, and ligands with promising affinities and selectivities for ERbeta were further tested for their gene transcriptional activity. Several compounds had high affinity selectivity and good potency selectivity in transcription assays. This study advances our understanding of compounds having ER-subtype selectivity and will help to direct efforts in developing novel ER ligands. PMID:19394116

  6. Design and synthesis of carborane-containing estrogen receptor-beta (ERβ)-selective ligands.

    PubMed

    Ohta, Kiminori; Ogawa, Takumi; Oda, Akifumi; Kaise, Asako; Endo, Yasuyuki

    2015-10-01

    Candidates for highly selective estrogen receptor-beta (ERβ) ligands (6a-c, 7a-c, 8a and 8b) were designed and synthesized based on carborane-containing ER ligands 1 and 2 as lead compounds. Among them, p-carboranylcyclohexanol derivatives 8a and 8b exhibited high ERβ selectivity in competitive binding assay: for example, 8a showed 56-fold selectivity for ERβ over ERα. Docking studies of 8a and 8b with the ERα and ERβ ligand-binding domains (LBDs) suggested that the p-carborane cage of the ligands is located close to key amino acid residues that influence ER-subtype selectivity, that is, Leu384 in the ERα LBD and Met336 in the ERβ LBD. The p-carborane cage in 8a and 8b appears to play a crucial role in the increased ERβ selectivity. PMID:26298498

  7. Peroxisome proliferator-activated receptors and retinoic acid receptors differentially control the interactions of retinoid X receptor heterodimers with ligands, coactivators, and corepressors.

    PubMed Central

    DiRenzo, J; Söderstrom, M; Kurokawa, R; Ogliastro, M H; Ricote, M; Ingrey, S; Hörlein, A; Rosenfeld, M G; Glass, C K

    1997-01-01

    As the obligate member of most nuclear receptor heterodimers, retinoid X receptors (RXRs) can potentially perform two functions: cooperative binding to hormone response elements and coordinate regulation of target genes by RXR ligands. In this paper we describe allosteric interactions between RXR and two heterodimeric partners, retinoic acid receptors (RARs) and peroxisome proliferator-activated receptors (PPARs); RARs and PPARs prevent and permit activation by RXR-specific ligands, respectively. By competing for dimerization with RXR on response elements consisting of direct-repeat half-sites spaced by 1 bp (DR1 elements), the relative abundance of RAR and PPAR determines whether the RXR signaling pathway will be functional. In contrast to RAR, which prevents the binding of RXR ligands and recruits the nuclear receptor corepressor N-CoR, PPAR permits the binding of SRC-1 in response to both RXR and PPAR ligands. Overexpression of SRC-1 markedly potentiates ligand-dependent transcription by PPARgamma, suggesting that SRC-1 serves as a coactivator in vivo. Remarkably, the ability of RAR to both block the binding of ligands to RXR and interact with corepressors requires the CoR box, a structural motif residing in the N-terminal region of the RAR ligand binding domain. Mutations in the CoR box convert RAR from a nonpermissive to a permissive partner of RXR signaling on DR1 elements. We suggest that the differential recruitment of coactivators and corepressors by RAR-RXR and PPAR-RXR heterodimers provides the basis for a transcriptional switch that may be important in controlling complex programs of gene expression, such as adipocyte differentiation. PMID:9121466

  8. The Aryl Hydrocarbon Receptor Complex and the Control of Gene Expression

    PubMed Central

    Beischlag, Timothy V.; Morales, J. Luis; Hollingshead, Brett D.; Perdew, Gary H.

    2008-01-01

    The aryl hydrocarbon receptor (AhR) is a ligand-activated transcription factor that controls the expression of a diverse set of genes. The toxicity of the potent AhR ligand 2,3,7,8-tetrachlorodibenzo-p-dioxin is almost exclusively mediated through this receptor. However, the key alterations in gene expression that mediate toxicity are poorly understood. It has been established through characterization of AhR-null mice that the AhR has a required physiological function, yet how endogenous mediators regulate this orphan receptor remains to be established. A picture as to how the AhR/ARNT heterodimer actually mediates gene transcription is starting to emerge. The AhR/ARNT complex can alter transcription both by binding to its cognate response element and through tethering to other transcription factors. In addition, many of the coregulatory proteins necessary for AhR-mediated transcription have been identified. Cross talk between the estrogen receptor and the AhR at the promoter of target genes appears to be an important mode of regulation. Inflammatory signaling pathways and the AhR also appear to be another important site of cross talk at the level of transcription. A major focus of this review is to highlight experimental efforts to characterize nonclassical mechanisms of AhR-mediated modulation of gene transcription. PMID:18540824

  9. Uncoupling the Structure-Activity Relationships of β2 Adrenergic Receptor Ligands from Membrane Binding.

    PubMed

    Dickson, Callum J; Hornak, Viktor; Velez-Vega, Camilo; McKay, Daniel J J; Reilly, John; Sandham, David A; Shaw, Duncan; Fairhurst, Robin A; Charlton, Steven J; Sykes, David A; Pearlstein, Robert A; Duca, Jose S

    2016-06-23

    Ligand binding to membrane proteins may be significantly influenced by the interaction of ligands with the membrane. In particular, the microscopic ligand concentration within the membrane surface solvation layer may exceed that in bulk solvent, resulting in overestimation of the intrinsic protein-ligand binding contribution to the apparent/measured affinity. Using published binding data for a set of small molecules with the β2 adrenergic receptor, we demonstrate that deconvolution of membrane and protein binding contributions allows for improved structure-activity relationship analysis and structure-based drug design. Molecular dynamics simulations of ligand bound membrane protein complexes were used to validate binding poses, allowing analysis of key interactions and binding site solvation to develop structure-activity relationships of β2 ligand binding. The resulting relationships are consistent with intrinsic binding affinity (corrected for membrane interaction). The successful structure-based design of ligands targeting membrane proteins may require an assessment of membrane affinity to uncouple protein binding from membrane interactions. PMID:27239696

  10. Notch Receptor-Ligand Engagement Maintains Hematopoietic Stem Cell Quiescence and Niche Retention

    PubMed Central

    Wang, Weihuan; Yu, Shuiliang; Zimmerman, Grant; Wang, Yiwei; Myers, Jay; Yu, Vionnie W.C.; Huang, Dan; Huang, Xiaoran; Shim, Jeongsup; Huang, Yuanshuai; Xin, William; Qiao, Peter; Yan, Minhong; Xin, Wei; Scadden, David T.; Stanley, Pamela; Lowe, John B.; Huang, Alex Y.; Siebel, Christian W.; Zhou, Lan

    2015-01-01

    Notch is long recognized as a signaling molecule important for stem cell self-renewal and fate determination. Here we reveal a novel adhesive role of Notch-ligand engagement in hematopoietic stem and progenitor cells (HSPCs). Using mice with conditional loss of O-fucosylglycans on Notch EGF-like repeats important for the binding of Notch ligands, we report that HSPCs with faulty ligand binding ability display enhanced cycling accompanied by increased egress from the marrow, a phenotype mainly attributed to their reduced adhesion to Notch ligand-expressing stromal cells and osteoblastic cells and their altered occupation in osteoblastic niches. Adhesion to Notch ligand-bearing osteoblastic or stromal cells inhibits wild type but not O-fucosylglycan-deficient HSPC cycling, independent of RBP-JK-mediated canonical Notch signaling. Furthermore, Notch-ligand neutralizing antibodies induce RBP-JK-independent HSPC egress and enhanced HSPC mobilization. We therefore conclude that Notch receptor-ligand engagement controls HSPC quiescence and retention in the marrow niche that is dependent on O-fucosylglycans on Notch. PMID:25851125

  11. Conformationally constrained analogs of BAY 59–3074 as novel cannabinoid receptor ligands

    PubMed Central

    Teng, Heidi; Thakur, Ganesh A.; Makriyannis, Alexandros

    2013-01-01

    To obtain information on the pharmacophoric requirements of the CB1/CB2 partial agonist BAY 59–3074 we have synthesized a series of new conformationally constrained dibenzofuran (4a–d) and dibenzopyran analogs (5). All constrained analogs exhibited reduced binding affinity at both cannabinoid receptor subtypes, suggesting that planar conformations of these ligands are less favored by both receptors. We also found that 4c, 4d, and 5 exhibited 3- to 12-fold selectivity for hCB2 over rCB1 receptors and may serve as new chemotypes for the development of CB2-selective cannabinergics. PMID:21880487

  12. Transcytosis in the blood–cerebrospinal fluid barrier of the mouse brain with an engineered receptor/ligand system

    PubMed Central

    Méndez-Gómez, Héctor R; Galera-Prat, Albert; Meyers, Craig; Chen, Weijun; Singh, Jasbir; Carrión-Vázquez, Mariano; Muzyczka, Nicholas

    2015-01-01

    Crossing the blood–brain and the blood–cerebrospinal fluid barriers (BCSFB) is one of the fundamental challenges in the development of new therapeutic molecules for brain disorders because these barriers prevent entry of most drugs from the blood into the brain. However, some large molecules, like the protein transferrin, cross these barriers using a specific receptor that transports them into the brain. Based on this mechanism, we engineered a receptor/ligand system to overcome the brain barriers by combining the human transferrin receptor with the cohesin domain from Clostridium thermocellum, and we tested the hybrid receptor in the choroid plexus of the mouse brain with a dockerin ligand. By expressing our receptor in choroidal ependymocytes, which are part of the BCSFB, we found that our systemically administrated ligand was able to bind to the receptor and accumulate in ependymocytes, where some of the ligand was transported from the blood side to the brain side. PMID:26491705

  13. Structural and biophysical characterisation of G protein-coupled receptor ligand binding using resonance energy transfer and fluorescent labelling techniques.

    PubMed

    Ward, Richard J; Milligan, Graeme

    2014-01-01

    The interaction between ligands and the G protein-coupled receptors (GPCRs) to which they bind has long been the focus of intensive investigation. The signalling cascades triggered by receptor activation, due in most cases to ligand binding, are of great physiological and medical importance; indeed, GPCRs are targeted by in excess of 30% of small molecule therapeutic medicines. Attempts to identify further pharmacologically useful GPCR ligands, for receptors with known and unknown endogenous ligands, continue apace. In earlier days direct assessment of such interactions was restricted largely to the use of ligands incorporating radioactive isotope labels as this allowed detection of the ligand and monitoring its interaction with the GPCR. This use of such markers has continued with the development of ligands labelled with fluorophores and their application to the study of receptor-ligand interactions using both light microscopy and resonance energy transfer techniques, including homogenous time-resolved fluorescence resonance energy transfer. Details of ligand-receptor interactions via X-ray crystallography are advancing rapidly as methods suitable for routine production of substantial amounts and stabilised forms of GPCRs have been developed and there is hope that this may become as routine as the co-crystallisation of serine/threonine kinases with ligands, an approach that has facilitated widespread use of rapid structure-based ligand design. Conformational changes involved in the activation of GPCRs, widely predicted by biochemical and biophysical means, have inspired the development of intramolecular FRET-based sensor forms of GPCRs designed to investigate the events following ligand binding and resulting in a signal propagation across the cell membrane. Finally, a number of techniques are emerging in which ligand-GPCR binding can be studied in ways that, whilst indirect, are able to monitor its results in an unbiased and integrated manner. This article is part

  14. Ligand-Induced Dynamics of Neurotrophin Receptors Investigated by Single-Molecule Imaging Approaches

    PubMed Central

    Marchetti, Laura; Luin, Stefano; Bonsignore, Fulvio; de Nadai, Teresa; Beltram, Fabio; Cattaneo, Antonino

    2015-01-01

    Neurotrophins are secreted proteins that regulate neuronal development and survival, as well as maintenance and plasticity of the adult nervous system. The biological activity of neurotrophins stems from their binding to two membrane receptor types, the tropomyosin receptor kinase and the p75 neurotrophin receptors (NRs). The intracellular signalling cascades thereby activated have been extensively investigated. Nevertheless, a comprehensive description of the ligand-induced nanoscale details of NRs dynamics and interactions spanning from the initial lateral movements triggered at the plasma membrane to the internalization and transport processes is still missing. Recent advances in high spatio-temporal resolution imaging techniques have yielded new insight on the dynamics of NRs upon ligand binding. Here we discuss requirements, potential and practical implementation of these novel approaches for the study of neurotrophin trafficking and signalling, in the framework of current knowledge available also for other ligand-receptor systems. We shall especially highlight the correlation between the receptor dynamics activated by different neurotrophins and the respective signalling outcome, as recently revealed by single-molecule tracking of NRs in living neuronal cells. PMID:25603178

  15. Domain Architecture of a Calcium-Permeable AMPA Receptor in a Ligand-Free Conformation

    PubMed Central

    Midgett, Charles R.; Gill, Avinash; Madden, Dean R.

    2012-01-01

    Ligand-gated ion channels couple the free energy of agonist binding to the gating of selective transmembrane ion pores, permitting cells to regulate ion flux in response to external chemical stimuli. However, the stereochemical mechanisms responsible for this coupling remain obscure. In the case of the ionotropic glutamate receptors (iGluRs), the modular nature of receptor subunits has facilitated structural analysis of the N-terminal domain (NTD), and of multiple conformations of the ligand-binding domain (LBD). Recently, the crystallographic structure of an antagonist-bound form of the receptor was determined. However, disulfide trapping of this conformation blocks channel opening, suggesting that channel activation involves additional quaternary packing arrangements. To explore the conformational space available to iGluR channels, we report here a second, clearly distinct domain architecture of homotetrameric, calcium-permeable AMPA receptors, determined by single-particle electron microscopy of untagged and fluorescently tagged constructs in a ligand-free state. It reveals a novel packing of NTD dimers, and a separation of LBD dimers across a central vestibule. In this arrangement, which reconciles diverse functional observations, agonist-induced cleft closure across LBD dimers can be converted into a twisting motion that provides a basis for receptor activation. PMID:22232575

  16. Cholinesterase inhibitory activity of chlorophenoxy derivatives-Histamine H3 receptor ligands.

    PubMed

    Łażewska, Dorota; Jończyk, Jakub; Bajda, Marek; Szałaj, Natalia; Więckowska, Anna; Panek, Dawid; Moore, Caitlin; Kuder, Kamil; Malawska, Barbara; Kieć-Kononowicz, Katarzyna

    2016-08-15

    In recent years, multitarget-directed ligands have become an interesting strategy in a search for a new treatment of Alzheimer's disease. Combination of both: a histamine H3 receptor antagonist/inverse agonist and a cholinesterases inhibitor in one molecule could provide a new therapeutic opportunity. Here, we present biological evaluation of histamine H3 receptor ligands-chlorophenoxyalkylamine derivatives against cholinesterases: acetyl- and butyrylcholinesterase. The target compounds showed cholinesterase inhibitory activity in a low micromolar range. The most potent in this group was 1-(7-(4-chlorophenoxy)heptyl)homopiperidine (18) inhibiting the both enzymes (EeAChE IC50=1.93μM and EqBuChE IC50=1.64μM). Molecular modeling studies were performed to explain the binding mode of 18 with histamine H3 receptor as well as with cholinesterases. PMID:27445168

  17. How does oxygen rise drive evolution? Clues from oxygen-dependent biosynthesis of nuclear receptor ligands

    SciTech Connect

    Jiang, Ying-Ying; Kong, De-Xin; Qin, Tao; Zhang, Hong-Yu

    2010-01-08

    It is well known that oxygen rise greatly facilitated biological evolution. However, the underlying mechanisms remain elusive. Recently, Raymond and Segre revealed that molecular oxygen allows 1000 more metabolic reactions than can occur in anoxic conditions. From the novel metabolites produced in aerobic metabolism, we serendipitously found that some of the metabolites are signaling molecules that target nuclear receptors. Since nuclear signaling systems are indispensable to superior organisms, we speculated that aerobic metabolism may facilitate biological evolution through promoting the establishment of nuclear signaling systems. This hypothesis is validated by the observation that most (97.5%) nuclear receptor ligands are produced by aerobic metabolism, which is further explained in terms of the chemical criteria (appropriate volume and rather high hydrophobicity) of nuclear receptor ligands that aerobic metabolites are more ready than anaerobic counterparts to satisfy these criteria.

  18. Dynamic disorder in receptor-ligand forced dissociation experiments.

    PubMed

    Liu, Fei; Ou-Yang, Zhong-can; Iwamoto, Mitsumasa

    2006-01-01

    Recently experiments showed that some biological noncovalent bonds increase their lifetimes when they are stretched by an external force, and their lifetimes will decrease when the force increases further. Several specific quantitative models have been proposed to explain the intriguing transitions from the "catch bond" to the "slip bond." In this work we propose that the dynamic disorder of the force-dependent dissociation rate can account for the counterintuitive behaviors of the bonds. A Gaussian stochastic rate model is used to quantitatively describe the transitions observed recently in the single bond P-selctin glycoprotein ligand 1-P-selectin force rupture experiment [Marshall, Nature 423, 190 (2003)]. Our model agrees well with the experimental data. We conclude that the catch bonds could arise from the stronger positive correlation between the height of the intrinsic energy barrier and the distance from the bound state to the barrier; classical pathway scenario or a priori catch bond assumption is not essential. PMID:16486112

  19. ML314: A Biased Neurotensin Receptor Ligand for Methamphetamine Abuse.

    PubMed

    Barak, Larry S; Bai, Yushi; Peterson, Sean; Evron, Tama; Urs, Nikhil M; Peddibhotla, Satyamaheshwar; Hedrick, Michael P; Hershberger, Paul; Maloney, Patrick R; Chung, Thomas D Y; Rodriguiz, Ramona M; Wetsel, William C; Thomas, James B; Hanson, Glen R; Pinkerton, Anthony B; Caron, Marc G

    2016-07-15

    Pharmacological treatment for methamphetamine addiction will provide important societal benefits. Neurotensin receptor NTR1 and dopamine receptor distributions coincide in brain areas regulating methamphetamine-associated reward, and neurotensin peptides produce behaviors opposing psychostimulants. Therefore, undesirable methamphetamine-associated activities should be treatable with druggable NTR1 agonists, but no such FDA-approved therapeutics exist. We address this limitation with proof-of-concept data for ML314, a small-molecule, brain penetrant, β-arrestin biased, NTR1 agonist. ML314 attenuates amphetamine-like hyperlocomotion in dopamine transporter knockout mice, and in C57BL/6J mice it attenuates methamphetamine-induced hyperlocomotion, potentiates the psychostimulant inhibitory effects of a ghrelin antagonist, and reduces methamphetamine-associated conditioned place preference. In rats, ML314 blocks methamphetamine self-administration. ML314 acts as an allosteric enhancer of endogenous neurotensin, unmasking stoichiometric numbers of hidden NTR1 binding sites in transfected-cell membranes or mouse striatal membranes, while additionally supporting NTR1 endocytosis in cells in the absence of NT peptide. These results indicate ML314 is a viable, preclinical lead for methamphetamine abuse treatment and support an allosteric model of G protein-coupled receptor signaling. PMID:27119457

  20. Inhibition of mu and delta opioid receptor ligand binding by the peptide aldehyde protease inhibitor, leupeptin.

    PubMed

    Christoffers, Keith H; Khokhar, Arshia; Chaturvedi, Kirti; Howells, Richard D

    2002-04-15

    We reported recently that the ubiquitin-proteasome pathway is involved in agonist-induced down regulation of mu and delta opioid receptors [J. Biol. Chem. 276 (2001) 12345]. While evaluating the effects of various protease inhibitors on agonist-induced opioid receptor down regulation, we observed that while the peptide aldehyde, leupeptin (acetyl-L-Leucyl-L-Leucyl-L-Arginal), did not affect agonist-induced down regulation, leupeptin at submillimolar concentrations directly inhibited radioligand binding to opioid receptors. In this study, the inhibitory activity of leupeptin on radioligand binding was characterized utilizing human embryonic kidney (HEK) 293 cell lines expressing transfected mu, delta, or kappa opioid receptors. The rank order of potency for leupeptin inhibition of [3H]bremazocine binding to opioid receptors was mu > delta > kappa. In contrast to the effect of leupeptin, the peptide aldehyde proteasome inhibitor, MG 132 (carbobenzoxy-L-Leucyl-L-Leucyl-L-Leucinal), had significantly less effect on bremazocine binding to mu, delta, or kappa opioid receptors. We propose that leupeptin inhibits ligand binding by reacting reversibly with essential sulfhydryl groups that are necessary for high-affinity ligand/receptor interactions. PMID:11853866

  1. Only high-affinity receptors for interleukin 2 mediate internalization of ligand

    SciTech Connect

    Weissman, A.M.; Harford, J.B.; Svetlik, P.B.; Leonard, W.L.; Depper, J.M.; Waldmann, T.A.; Greene, W.C.; Klausner, R.D.

    1986-03-01

    Interleukin 2 (IL-2) receptors are expressed on activated T cells and in select T-cell leukemias. Recently, it has been demonstrated that at least two classes of receptor for IL-2 exist with markedly different affinities for ligand. All known biological actions of IL-2 have been correlated with occupancy of high-affinity sites; the function of the low-affinity sites remains unknown. Receptor-mediated endocytosis is the primary means of internalization of cell-surface receptors and their ligands. The internalization of IL-2 bound to high- and low-affinity receptor sites was studied in a human T-cell lymphotrophic virus type 1 (HTLV-1)-infected human T-cell leukemia cell line and in a cloned murine cytotoxic T-cell line (CTLL). Internalization of IL-2 occurred only when bound to high-affinity sites. In addition, an anti-receptor antibody (anti-Tac), which binds equally well to high- and low-affinity sites, demonstrated no detectable internalization. The implications of these findings as they relate to IL-2 receptor structure and function are discussed.

  2. Quantitative Analysis of the EGF Receptor Autocrine System Reveals Cryptic Regulation of Cell Response by Ligand Capture

    SciTech Connect

    Dewitt, Ann E.; Dong, Jian Y.; Wiley, H S.; Lauffenburger, Douglas A.

    2001-06-15

    Autocrine signaling is important in normal tissue physiology as well as pathological conditions. It is difficult to analyze these systems, however, because they are both self-contained and recursive. To understand how parameters, such as ligand production and receptor expression influence autocrine activity, we investigated a human epidermal growth factor/epidermal growth factor receptor (EGF/EGFR) loop engineered into mouse B82 fibroblasts. We varied the level of ligand production using the tet-off expression system and used metalloprotease inhibitors to modulate ligand release. Receptor expression was varied using antagonistic, blocking antibodies. We compared autocrine ligand release to receptor activation using a microphysiometer-based assay and analyzed our data with a quantitative model of ligand release and receptor dynamics. We found that the activity of our autocrine system could be described in terms of a simple ratio between the rate of ligand production (VL) and the rate of receptor production (VR). At a VL/VR ratio of < 0.3, essentially no ligand was found in the extracellular medium, but a significant number cell receptors (30-40%) were occupied. As the VL/VR ratio increased from 0.3 towards unity, receptor occupancy increased, and significant amounts of ligand now appeared in the medium. Above a VL/VR ratio of 1.0, receptor occupancy approached saturation and most of the released ligand was lost into the medium. Analysis of human mammary epithelial cells showed that a VL/VR ratio of < 5 x 10 -4 was sufficient to evoke >20% of a maximal proliferative response. This suggests that natural autocrine systems are active even when no ligand appears in the extracellular medium; i.e., they operate 'invisibly' to general detection.

  3. The thrombin receptor extracellular domain contains sites crucial for peptide ligand-induced activation.

    PubMed Central

    Bahou, W F; Coller, B S; Potter, C L; Norton, K J; Kutok, J L; Goligorsky, M S

    1993-01-01

    A thrombin receptor (TR) demonstrating a unique activation mechanism has recently been isolated from a megakaryocytic (Dami) cell line. To further study determinants of peptide ligand-mediated activation phenomenon, we have isolated, cloned, and stably expressed the identical receptor from a human umbilical vein endothelial cell (HUVEC) library. Chinese hamster ovary (CHO) cells expressing a functional TR (CHO-TR), platelets, and HUVECs were then used to specifically characterize alpha-thrombin- and peptide ligand-induced activation responses using two different antibodies: anti-TR34-52 directed against a 20-amino acid peptide spanning the thrombin cleavage site, and anti-TR1-160 generated against the NH2-terminal 160 amino acids of the TR expressed as a chimeric protein in Escherichia coli. Activation-dependent responses to both alpha-thrombin (10 nM) and peptide ligand (20 microM) were studied using fura 2-loaded cells and microspectrofluorimetry. Whereas preincubation of CHO-TR with anti-TR34-52 abolished only alpha-thrombin-induced [Ca2+]i transients, preincubation with anti-TR1-160 abrogated both alpha-thrombin- and peptide ligand-induced responses. This latter inhibitory effect was dose dependent and similar for both agonists, with an EC50 of approximately 90 micrograms/ml. Anti-TR1-160 similarly abolished peptide ligand-induced [Ca2+]i transients in platelets and HUVECs, whereas qualitatively different responses characterized by delayed but sustained elevations in [Ca2+]i transients were evident using alpha-thrombin. Platelet aggregation to low concentrations of both ligands was nearly abolished by anti-TR1-160, although some shape change remained; anti-TR34-52 only inhibited alpha-thrombin-induced aggregation. These data establish that a critical recognition sequence for peptide ligand-mediated receptor activation is contained on the NH2-terminal portion of the receptor, upstream from the first transmembrane domain. Furthermore, alpha

  4. The aryl hydrocarbon receptor promotes aging phenotypes across species

    PubMed Central

    Eckers, Anna; Jakob, Sascha; Heiss, Christian; Haarmann-Stemmann, Thomas; Goy, Christine; Brinkmann, Vanessa; Cortese-Krott, Miriam M.; Sansone, Roberto; Esser, Charlotte; Ale-Agha, Niloofar; Altschmied, Joachim; Ventura, Natascia; Haendeler, Judith

    2016-01-01

    The ubiquitously expressed aryl hydrocarbon receptor (AhR) induces drug metabolizing enzymes as well as regulators of cell growth, differentiation and apoptosis. Certain AhR ligands promote atherosclerosis, an age-associated vascular disease. Therefore, we investigated the role of AhR in vascular functionality and aging. We report a lower pulse wave velocity in young and old AhR-deficient mice, indicative of enhanced vessel elasticity. Moreover, endothelial nitric oxide synthase (eNOS) showed increased activity in the aortas of these animals, which was reflected in increased NO production. Ex vivo, AhR activation reduced the migratory capacity of primary human endothelial cells. AhR overexpression as well as treatment with a receptor ligand, impaired eNOS activation and reduced S-NO content. All three are signs of endothelial dysfunction. Furthermore, AhR expression in blood cells of healthy human volunteers positively correlated with vessel stiffness. In the aging model Caenorhabditis elegans, AhR-deficiency resulted in increased mean life span, motility, pharynx pumping and heat shock resistance, suggesting healthier aging. Thus, AhR seems to have a negative impact on vascular and organismal aging. Finally, our data from human subjects suggest that AhR expression levels could serve as an additional, new predictor of vessel aging. PMID:26790370

  5. Toll-like receptor ligands sensitize B-cell receptor signalling by reducing actin-dependent spatial confinement of the receptor

    PubMed Central

    Freeman, Spencer A.; Jaumouillé, Valentin; Choi, Kate; Hsu, Brian E.; Wong, Harikesh S.; Abraham, Libin; Graves, Marcia L.; Coombs, Daniel; Roskelley, Calvin D.; Das, Raibatak; Grinstein, Sergio; Gold, Michael R.

    2015-01-01

    Integrating signals from multiple receptors allows cells to interpret the physiological context in which a signal is received. Here we describe a mechanism for receptor crosstalk in which receptor-induced increases in actin dynamics lower the threshold for signalling by another receptor. We show that the Toll-like receptor ligands lipopolysaccharide and CpG DNA, which are conserved microbial molecules, enhance signalling by the B-cell antigen receptor (BCR) by activating the actin-severing protein cofilin. Single-particle tracking reveals that increased severing of actin filaments reduces the spatial confinement of the BCR within the plasma membrane and increases BCR mobility. This allows more frequent collisions between BCRs and greater signalling in response to low densities of membrane-bound antigen. These findings implicate actin dynamics as a means of tuning receptor signalling and as a mechanism by which B cells distinguish inert antigens from those that are accompanied by indicators of microbial infection. PMID:25644899

  6. Aryl Hydrocarbon Receptor Ligand Effects in RBL2H3 Cells

    PubMed Central

    Maaetoft-Udsen, Kristina; Shimoda, Lori M.N.; Frøkiær, Hanne; Turner, Helen

    2012-01-01

    The aryl hydrocarbon receptor (AHR) mediates toxic effects of dioxin and xenobiotic metabolism. AHR has an emerging role in the immune system but its physiological ligands and functional role in immunocytes remain poorly understood. Mast cells are immunocytes that are central to inflammatory responses and release a spectrum of pro-inflammatory mediators including histamine, mast cell proteases, and pro-inflammatory cytokines such as IL-6 upon stimulation. Our aim was to investigate the AHR in model mast cells and examine how both putative and known AHR ligands, e.g., kynurenine, kynurenic acid (KA), Resveratrol, indolmycin, and violacein, affect mast cell activation and signaling. We tested these ligands on calcium signaling, degranulation, and gene expression. Our data show that AHR is present in three model mast cell lines, and that various known and putative AHR ligands regulate gene expression of Cyp1a1, a gene down-stream of AHR. Furthermore, we found that calcium influxes and mast cell secretory responses were enhanced or suppressed after chronic treatment with AHR agonists or antagonists, and that AHR ligands modified RBL2H3 cell degranulation. AHR ligands can chronically change cytokine gene expression in activated mast cells, as exemplified by IL-6. The antagonist Resveratrol repressed expression of induced IL-6 gene expression. Though KA and kynurenine are both AHR agonists, these ligands behaved differently in regards to degranulation and IL-6 expression, indicating that they may function outside of AHR pathways. These data suggest considerable complexity in RBL2H3 responses to AHR ligands, with implications for our understanding of both dioxin pathology and the immunological effects of endogenous AHR ligands. PMID:22471748

  7. Aryl hydrocarbon receptor ligand effects in RBL2H3 cells.

    PubMed

    Maaetoft-Udsen, Kristina; Shimoda, Lori M N; Frøkiær, Hanne; Turner, Helen

    2012-01-01

    The aryl hydrocarbon receptor (AHR) mediates toxic effects of dioxin and xenobiotic metabolism. AHR has an emerging role in the immune system, but its physiological ligands and functional role in immunocytes remain poorly understood. Mast cells are immunocytes that are central to inflammatory responses and release a spectrum of pro-inflammatory mediators including histamine, mast cell proteases, and pro-inflammatory cytokines such as IL-6 upon stimulation. The aim was to investigate the AHR in model mast cells and examine how both putative and known AHR ligands, e.g., kynurenine, kynurenic acid (KA), Resveratrol, indolmycin, and violacein, affect mast cell activation and signaling. These ligands were tested on calcium signaling, degranulation, and gene expression. The data show that AHR is present in three model mast cell lines, and that various known and putative AHR ligands regulate gene expression of Cyp1a1, a gene down-stream of AHR. Furthermore, it was found that calcium influxes and mast cell secretory responses were enhanced or suppressed after chronic treatment with AHR agonists or antagonists, and that AHR ligands modified RBL2H3 cell degranulation. AHR ligands can chronically change cytokine gene expression in activated mast cells, as exemplified by IL-6. The antagonist Resveratrol repressed expression of induced IL-6 gene expression. Although KA and kynurenine are both AHR agonists, these ligands behaved differently in regards to degranulation and IL-6 expression, indicating that they may function outside of AHR pathways. These data suggest considerable complexity in RBL2H3 responses to AHR ligands, with implications for understanding of both dioxin pathology and the immunological effects of endogenous AHR ligands. PMID:22471748

  8. Bordetella adenylate cyclase toxin is a unique ligand of the integrin complement receptor 3

    PubMed Central

    Osicka, Radim; Osickova, Adriana; Hasan, Shakir; Bumba, Ladislav; Cerny, Jiri; Sebo, Peter

    2015-01-01

    Integrins are heterodimeric cell surface adhesion and signaling receptors that are essential for metazoan existence. Some integrins contain an I-domain that is a major ligand binding site. The ligands preferentially engage the active forms of the integrins and trigger signaling cascades that alter numerous cell functions. Here we found that the adenylate cyclase toxin (CyaA), a key virulence factor of the whooping cough agent Bordetella pertussis, preferentially binds an inactive form of the integrin complement receptor 3 (CR3), using a site outside of its I-domain. CyaA binding did not trigger downstream signaling of CR3 in human monocytes and CyaA-catalyzed elevation of cAMP effectively blocked CR3 signaling initiated by a natural ligand. This unprecedented type of integrin-ligand interaction distinguishes CyaA from all other known ligands of the I-domain-containing integrins and provides a mechanistic insight into the previously observed central role of CyaA in the pathogenesis of B. pertussis. DOI: http://dx.doi.org/10.7554/eLife.10766.001 PMID:26650353

  9. Bordetella adenylate cyclase toxin is a unique ligand of the integrin complement receptor 3.

    PubMed

    Osicka, Radim; Osickova, Adriana; Hasan, Shakir; Bumba, Ladislav; Cerny, Jiri; Sebo, Peter

    2015-01-01

    Integrins are heterodimeric cell surface adhesion and signaling receptors that are essential for metazoan existence. Some integrins contain an I-domain that is a major ligand binding site. The ligands preferentially engage the active forms of the integrins and trigger signaling cascades that alter numerous cell functions. Here we found that the adenylate cyclase toxin (CyaA), a key virulence factor of the whooping cough agent Bordetella pertussis, preferentially binds an inactive form of the integrin complement receptor 3 (CR3), using a site outside of its I-domain. CyaA binding did not trigger downstream signaling of CR3 in human monocytes and CyaA-catalyzed elevation of cAMP effectively blocked CR3 signaling initiated by a natural ligand. This unprecedented type of integrin-ligand interaction distinguishes CyaA from all other known ligands of the I-domain-containing integrins and provides a mechanistic insight into the previously observed central role of CyaA in the pathogenesis of B. pertussis. PMID:26650353

  10. Ligand Valency Affects Transcytosis, Recycling and Intracellular Trafficking Mediated by the Neonatal Fc Receptor

    PubMed Central

    Tesar, Devin B; Tiangco, Noreen E; Bjorkman, Pamela J

    2006-01-01

    The neonatal Fc receptor (FcRn) transports IgG across epithelial cell barriers to provide maternal antibodies to offspring and serves as a protection receptor by rescuing endocytosed IgG and albumin from lysosomal degradation. Here we describe the generation of polarized Madin–Darby canine kidney (MDCK) cells expressing rat FcRn (rFcRn) to investigate the potential requirement for ligand bivalency in FcRn-mediated transport. The rFcRn-MDCK cells bind, internalize and bidirectionally transcytose the bivalent ligands IgG and Fc across polarized cell monolayers. However, they cannot be used to study FcRn-mediated transport of the monovalent ligand albumin, as we observe no specific binding, internalization or transcytosis of rat albumin. To address whether ligand bivalency is required for transport, the ability of rFcRn to transcytose and recycle wild-type Fc homodimers (wtFc; two FcRn-binding sites) and a heterodimeric Fc (hdFc; one FcRn-binding site) was compared. We show that ligand bivalency is not required for transcytosis or recycling, but that wtFc is transported more efficiently than hdFc, particularly at lower concentrations. We also demonstrate that hdFc and wtFc have different intracellular fates, with more hdFc than wtFc being trafficked to lysosomes and degraded, suggesting a role for avidity effects in FcRn-mediated IgG transport. PMID:17004319

  11. Brain receptor autoradiography with ( sup 3 H)-YM 09151-2: A ligand for labeling dopamine D-2 receptors

    SciTech Connect

    Unis, A.S.; Vincent, J.G.; Dillon, B. )

    1990-01-01

    Using the technique of in vitro receptor autoradioagraphy to slide-mounted tissue sections, the authors studied the suitability of ({sup 3}H)-YM-09151-2 as a ligand for labeling D-2 receptors in adult F344 rat brains. Specific ({sup 3}H)-YM-09151-2 binding accounted for 70-80% of the total bound ligand and reached equilibrium after a 60-90 minute incubation. Scatchard analysis revealed a K{sub d} of 626 pM. The apparent B{sub max} was 23.2 fmol/tissue section. Autoradiographs demonstrated high grain densities in the striatum and olfactory tubercle. Diffuse specific binding was also observed in the cortex.

  12. Enhanced dimerization drives ligand-independent activity of mutant epidermal growth factor receptor in lung cancer

    PubMed Central

    Valley, Christopher C.; Arndt-Jovin, Donna J.; Karedla, Narain; Steinkamp, Mara P.; Chizhik, Alexey I.; Hlavacek, William S.; Wilson, Bridget S.; Lidke, Keith A.; Lidke, Diane S.

    2015-01-01

    Mutations within the epidermal growth factor receptor (EGFR/erbB1/Her1) are often associated with tumorigenesis. In particular, a number of EGFR mutants that demonstrate ligand-independent signaling are common in non–small cell lung cancer (NSCLC), including kinase domain mutations L858R (also called L834R) and exon 19 deletions (e.g., ΔL747-P753insS), which collectively make up nearly 90% of mutations in NSCLC. The molecular mechanisms by which these mutations confer constitutive activity remain unresolved. Using multiple subdiffraction-limit imaging modalities, we reveal the altered receptor structure and interaction kinetics of NSCLC-associated EGFR mutants. We applied two-color single quantum dot tracking to quantify receptor dimerization kinetics on living cells and show that, in contrast to wild-type EGFR, mutants are capable of forming stable, ligand-independent dimers. Two-color superresolution localization microscopy confirmed ligand-independent aggregation of EGFR mutants. Live-cell Förster resonance energy transfer measurements revealed that the L858R kinase mutation alters ectodomain structure such that unliganded mutant EGFR adopts an extended, dimerization-competent conformation. Finally, mutation of the putative dimerization arm confirmed a critical role for ectodomain engagement in ligand-independent signaling. These data support a model in which dysregulated activity of NSCLC-associated kinase mutants is driven by coordinated interactions involving both the kinase and extracellular domains that lead to enhanced dimerization. PMID:26337388

  13. Differential utilization of binding loop flexibility in T cell receptor ligand selection and cross-reactivity.

    PubMed

    Ayres, Cory M; Scott, Daniel R; Corcelli, Steven A; Baker, Brian M

    2016-01-01

    Complementarity determining region (CDR) loop flexibility has been suggested to play an important role in the selection and binding of ligands by T cell receptors (TCRs) of the cellular immune system. However, questions remain regarding the role of loop motion in TCR binding, and crystallographic structures have raised questions about the extent to which generalizations can be made. Here we studied the flexibility of two structurally well characterized αβ TCRs, A6 and DMF5. We found that the two receptors utilize loop motion very differently in ligand binding and cross-reactivity. While the loops of A6 move rapidly in an uncorrelated fashion, those of DMF5 are substantially less mobile. Accordingly, the mechanisms of binding and cross-reactivity are very different between the two TCRs: whereas A6 relies on conformational selection to select and bind different ligands, DMF5 uses a more rigid, permissive architecture with greater reliance on slower motions or induced-fit. In addition to binding site flexibility, we also explored whether ligand-binding resulted in common dynamical changes in A6 and DMF5 that could contribute to TCR triggering. Although binding-linked motional changes propagated throughout both receptors, no common features were observed, suggesting that changes in nanosecond-level TCR structural dynamics do not contribute to T cell signaling. PMID:27118724

  14. Differential utilization of binding loop flexibility in T cell receptor ligand selection and cross-reactivity

    PubMed Central

    Ayres, Cory M.; Scott, Daniel R.; Corcelli, Steven A.; Baker, Brian M.

    2016-01-01

    Complementarity determining region (CDR) loop flexibility has been suggested to play an important role in the selection and binding of ligands by T cell receptors (TCRs) of the cellular immune system. However, questions remain regarding the role of loop motion in TCR binding, and crystallographic structures have raised questions about the extent to which generalizations can be made. Here we studied the flexibility of two structurally well characterized αβ TCRs, A6 and DMF5. We found that the two receptors utilize loop motion very differently in ligand binding and cross-reactivity. While the loops of A6 move rapidly in an uncorrelated fashion, those of DMF5 are substantially less mobile. Accordingly, the mechanisms of binding and cross-reactivity are very different between the two TCRs: whereas A6 relies on conformational selection to select and bind different ligands, DMF5 uses a more rigid, permissive architecture with greater reliance on slower motions or induced-fit. In addition to binding site flexibility, we also explored whether ligand-binding resulted in common dynamical changes in A6 and DMF5 that could contribute to TCR triggering. Although binding-linked motional changes propagated throughout both receptors, no common features were observed, suggesting that changes in nanosecond-level TCR structural dynamics do not contribute to T cell signaling. PMID:27118724

  15. Acetylation of pregnane X receptor protein determines selective function independent of ligand activation

    SciTech Connect

    Biswas, Arunima; Pasquel, Danielle; Tyagi, Rakesh Kumar; Mani, Sridhar

    2011-03-18

    Research highlights: {yields} Pregnane X receptor (PXR), a major regulatory protein, is modified by acetylation. {yields} PXR undergoes dynamic deacetylation upon ligand-mediated activation. {yields} SIRT1 partially mediates PXR deacetylation. {yields} PXR deacetylation per se induces lipogenesis mimicking ligand-mediated activation. -- Abstract: Pregnane X receptor (PXR), like other members of its class of nuclear receptors, undergoes post-translational modification [PTM] (e.g., phosphorylation). However, it is unknown if acetylation (a major and common form of protein PTM) is observed on PXR and, if it is, whether it is of functional consequence. PXR has recently emerged as an important regulatory protein with multiple ligand-dependent functions. In the present work we show that PXR is indeed acetylated in vivo. SIRT1 (Sirtuin 1), a NAD-dependent class III histone deacetylase and a member of the sirtuin family of proteins, partially mediates deacetylation of PXR. Most importantly, the acetylation status of PXR regulates its selective function independent of ligand activation.

  16. Receptor Crosslinking: A General Method to Trigger Internalization and Lysosomal Targeting of Therapeutic Receptor:Ligand Complexes

    PubMed Central

    Moody, Paul R; Sayers, Edward J; Magnusson, Johannes P; Alexander, Cameron; Borri, Paola; Watson, Peter; Jones, Arwyn T

    2015-01-01

    A major unmet clinical need is a universal method for subcellular targeting of bioactive molecules to lysosomes. Delivery to this organelle enables either degradation of oncogenic receptors that are overexpressed in cancers, or release of prodrugs from antibody–drug conjugates. Here, we describe a general method that uses receptor crosslinking to trigger endocytosis and subsequently redirect trafficking of receptor:cargo complexes from their expected route, to lysosomes. By incubation of plasma membrane receptors with biotinylated cargo and subsequent addition of streptavidin to crosslink receptor:cargo–biotin complexes, we achieved rapid and selective lysosomal targeting of transferrin, an anti-MHC class I antibody, and the clinically approved anti-Her2 antibody trastuzumab. These three protein ligands each target a receptor with a distinct cellular function and intracellular trafficking profile. Importantly, we confirmed that crosslinking of trastuzumab increased lysosomal degradation of its cognate oncogenic receptor Her2 in breast cancer cell lines SKBR3 and BT474. These data suggest that crosslinking could be exploited for a wide range of target receptors, for navigating therapeutics through the endolysosomal pathway, for significant therapeutic benefit. PMID:26412588

  17. The aromatic hydrocarbon receptor modulates the Hepa 1c1c7 cell cycle and differentiated state independently of dioxin.

    PubMed Central

    Ma, Q; Whitlock, J P

    1996-01-01

    The aromatic hydrocarbon receptor (AhR) has been defined and characterized according to its ability to mediate biological responses to exogenous ligands, such as the synthetic environmental contaminant 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). The natural ligand(s) for AhR is unknown, and we know relatively little about AhR function in the absence of TCDD. Here, we have exploited the availability of AhR-defective (AhR-D) mouse hepatoma (Hepa 1c1c7) cells to analyze AhR's effects under conditions in which TCDD is not present. Our results reveal that AhR-D cells exhibit a different morphology, decreased albumin synthesis, and a prolonged doubling time compared with wild-type cells. Introduction of AhR cDNA into AhR-D cells by stable transfection alters these characteristics such that the cells resemble wild-type cells. Conversely, introduction of antisense AhR cDNA into wild-type cells changes their phenotype such that they resemble AhR-D cells. Fluorescence microscopy reveals that AhR-D cells do not exhibit an increased rate of death. Flow cytometric and biochemical analyses imply that the slowed growth rate of AhR-D cells reflects prolongation of G1. Our findings reveal a potential link between AhR and the G1 phase of the Hepa 1c1c7 cell cycle. These effects of AhR occur in the absence of TCDD. We speculate that they represent responses to an endogenous AhR ligand in Hepa 1c1c7 cells. PMID:8628281

  18. Bile acid derivatives as ligands of the farnesoid x receptor: molecular determinants for bile acid binding and receptor modulation.

    PubMed

    Gioiello, Antimo; Cerra, Bruno; Mostarda, Serena; Guercini, Chiara; Pellicciari, Roberto; Macchiarulo, Antonio

    2014-01-01

    Bile acids are a peculiar class of steroidal compounds that never cease to amaze. From being simple detergents with a primary role in aiding the absorption of fats and fat-soluble vitamins, bile acids are now widely considered as crucial hormones endowed with genomic and non-genomic functions that are mediated by their interaction with several proteins including the nuclear receptor Farnesoid X Receptor (FXR). Taking advantages of the peculiar properties of bile acids in interacting with the FXR receptor, several biliary derivatives have been synthesized and tested as FXR ligands. The availability of these compounds has contributed to characterize the receptor from a structural, patho-physiological and therapeutic standpoint. Among these, obeticholic acid is a first-in-class FXR agonist that is demonstrating hepatoprotective effects upon FXR activation in patients with liver diseases such as primary biliary cirrhosis and nonalcoholic steatohepatitis. This review provides an historical overview of the rationale behind the discovery of obeticholic acid and chemical tools generated to depict the molecular features and bio-pharmacological relevance of the FXR receptor, as well as to summarize structure-activity relationships of bile acid-based FXR ligands so far reported. PMID:25388535

  19. Rational Quantitative Structure-Activity Relationship (RQSAR) Screen for PXR and CAR Isoform-Specific Nuclear Receptor Ligands

    PubMed Central

    Dring, Ann M.; Anderson, Linnea E.; Qamar, Saima; Stoner, Matthew A.

    2010-01-01

    Constitutive androstane receptor (CAR) and pregnane X receptor (PXR) are closely related orphan nuclear receptor proteins that share several ligands and target overlapping sets of genes involved in homeostasis and all phases of drug metabolism. CAR and PXR are involved in the development of certain diseases, including diabetes, metabolic syndrome and obesity. Ligand screens for these receptors so far have typically focused on steroid hormone analogs with pharmacophore-based approaches, only to find relatively few new hits. Multiple CAR isoforms have been detected in human liver, with the most abundant being the constitutively active reference, CAR1, and the ligand-dependent isoform CAR3. It has been assumed that any compound that binds CAR1 should also activate CAR3, and so CAR3 can be used as a ligand-activated surrogate for CAR1 studies. The possibility of CAR3-specific ligands has not, so far, been addressed. To investigate the differences between CAR1, CAR3 and PXR, and to look for more CAR ligands that may be of use in quantitative structure-activity relationship (QSAR) studies, we performed a luciferase transactivation assay screen of 60 mostly non-steroid compounds. Known active compounds with different core chemistries were chosen as starting points and structural variants were rationally selected for screening. Distinct differences in agonist versus inverse agonist/antagonist effects were seen in 49 compounds that had some ligand effect on at least one receptor and 18 that had effects on all three receptors; eight were CAR1 ligands only, three were CAR3 only ligands and four affected PXR only. This work provides evidence for new CAR ligands, some of which have CAR3-specific effects, and provides observational data on CAR and PXR ligands with which to inform in silico strategies. Compounds that demonstrated unique activity on any one receptor are potentially valuable diagnostic tools for the investigation of in vivo molecular targets. PMID:20869355

  20. Structure-Based Ligand Discovery Targeting Orthosteric and Allosteric Pockets of Dopamine Receptors

    PubMed Central

    Lane, J. Robert; Chubukov, Pavel; Liu, Wei; Canals, Meritxell; Cherezov, Vadim; Abagyan, Ruben; Stevens, Raymond C.

    2013-01-01

    Small molecules targeting allosteric pockets of G protein–coupled receptors (GPCRs) have a great therapeutic potential for the treatment of neurologic and other chronic disorders. Here we performed virtual screening for orthosteric and putative allosteric ligands of the human dopamine D3 receptor (D3R) using two optimized crystal-structure–based models: the receptor with an empty binding pocket (D3RAPO), and the receptor complex with dopamine (D3RDopa). Subsequent biochemical and functional characterization revealed 14 novel ligands with a binding affinity of better than 10 μM in the D3RAPO candidate list (56% hit rate), and 8 novel ligands in the D3RDopa list (32% hit rate). Most ligands in the D3RAPO model span both orthosteric and extended pockets and behave as antagonists at D3R, with compound 7 showing the highest potency of dopamine inhibition (IC50 = 7 nM). In contrast, compounds identified by the D3RDopa model are predicted to occupy an allosteric site at the extracellular extension of the pocket, and they all lack the anchoring amino group. Compounds targeting the allosteric site display a variety of functional activity profiles, where behavior of at least two compounds (23 and 26) is consistent with noncompetitive allosteric modulation of dopamine signaling in the extracellular signal-regulated kinase 1 and 2 phosphorylation and β-arrestin recruitment assays. The high affinity and ligand efficiency of the chemically diverse hits identified in this study suggest utility of structure-based screening targeting allosteric sites of GPCRs. PMID:24021214

  1. Evolutionary diversification of retinoic acid receptor ligand-binding pocket structure by molecular tinkering.

    PubMed

    Gutierrez-Mazariegos, Juliana; Nadendla, Eswar Kumar; Studer, Romain A; Alvarez, Susana; de Lera, Angel R; Kuraku, Shigehiro; Bourguet, William; Schubert, Michael; Laudet, Vincent

    2016-03-01

    Whole genome duplications (WGDs) have been classically associated with the origin of evolutionary novelties and the so-called duplication-degeneration-complementation model describes the possible fates of genes after duplication. However, how sequence divergence effectively allows functional changes between gene duplicates is still unclear. In the vertebrate lineage, two rounds of WGDs took place, giving rise to paralogous gene copies observed for many gene families. For the retinoic acid receptors (RARs), for example, which are members of the nuclear hormone receptor (NR) superfamily, a unique ancestral gene has been duplicated resulting in three vertebrate paralogues: RARα, RARβ and RARγ. It has previously been shown that this single ancestral RAR was neofunctionalized to give rise to a larger substrate specificity range in the RARs of extant jawed vertebrates (also called gnathostomes). To understand RAR diversification, the members of the cyclostomes (lamprey and hagfish), jawless vertebrates representing the extant sister group of gnathostomes, provide an intermediate situation and thus allow the characterization of the evolutionary steps that shaped RAR ligand-binding properties following the WGDs. In this study, we assessed the ligand-binding specificity of cyclostome RARs and found that their ligand-binding pockets resemble those of gnathostome RARα and RARβ. In contrast, none of the cyclostome receptors studied showed any RARγ-like specificity. Together, our results suggest that cyclostome RARs cover only a portion of the specificity repertoire of the ancestral gnathostome RARs and indicate that the establishment of ligand-binding specificity was a stepwise event. This iterative process thus provides a rare example for the diversification of receptor-ligand interactions of NRs following WGDs. PMID:27069642

  2. Mass spectrometry-based ligand binding assays on adenosine A1 and A2A receptors.

    PubMed

    Massink, A; Holzheimer, M; Hölscher, A; Louvel, J; Guo, D; Spijksma, G; Hankemeier, T; IJzerman, A P

    2015-12-01

    Conventional methods to measure ligand-receptor binding parameters typically require radiolabeled ligands as probes. Despite the robustness of radioligand binding assays, they carry inherent disadvantages in terms of safety precautions, expensive synthesis, special lab requirements, and waste disposal. Mass spectrometry (MS) is a method that can selectively detect ligands without the need of a label. The sensitivity of MS equipment increases progressively, and currently, it is possible to detect low ligand quantities that are usually found in ligand binding assays. We developed a label-free MS ligand binding (MS binding) assay on the adenosine A(1) and A(2A) receptors (A(1)AR and A(2A)AR), which are well-characterized members of the class A G protein-coupled receptor (GPCR) family. Radioligand binding assays for both receptors are well established, and ample data is available to compare and evaluate the performance of an MS binding assay. 1,3-Dipropyl-8-cyclopentyl-xanthine (DPCPX) and 4-(2-((7-amino-2-(furan-2-yl)-[1,2,4]triazolo[1,5-a]-[1,3,5]triazin-5-yl)amino)ethyl)phenol (ZM-241,385) are high-affinity ligands selective for the A(1)AR and A(2A)AR, respectively. To proof the feasibility of MS binding on the A(1)AR and A(2A)AR, we first developed an MS detection method for unlabeled DPCPX and ZM-241,385. To serve as internal standards, both compounds were also deuterium-labeled. Subsequently, we investigated whether the two unlabeled compounds could substitute for their radiolabeled counterparts as marker ligands in binding experiments, including saturation, displacement, dissociation, and competition association assays. Furthermore, we investigated the accuracy of these assays if the use of internal standards was excluded. The results demonstrate the feasibility of the MS binding assay, even in the absence of a deuterium-labeled internal standard, and provide great promise for the further development of label-free assays based on MS for other GPCRs. PMID

  3. Drosophila PS1 integrin is a laminin receptor and differs in ligand specificity from PS2.

    PubMed Central

    Gotwals, P J; Fessler, L I; Wehrli, M; Hynes, R O

    1994-01-01

    We have expressed Drosophila position-specific (PS) integrins on the surfaces of Schneider S2 cells and tested for adhesion and spreading on various matrix molecules. We report that PS1 integrin is a laminin receptor and that PS1 and PS2 integrins promote cell spreading on two different Drosophila extracellular matrix molecules, laminin and tiggrin, respectively. The differing ligand specificities of these two integrins, combined with data on the in vivo expression patterns of the integrins and their ligands, lead to a model for the structure of integrin-dependent attachments in the pupal wings and embryonic muscles of Drosophila. Images PMID:7972082

  4. International Union of Basic and Clinical Pharmacology. LXXIX. Cannabinoid Receptors and Their Ligands: Beyond CB1 and CB2

    PubMed Central

    Howlett, A. C.; Abood, M. E.; Alexander, S. P. H.; Di Marzo, V.; Elphick, M. R.; Greasley, P. J.; Hansen, H. S.; Kunos, G.; Mackie, K.; Mechoulam, R.; Ross, R. A.

    2010-01-01

    There are at least two types of cannabinoid receptors (CB1 and CB2). Ligands activating these G protein-coupled receptors (GPCRs) include the phytocannabinoid Δ9-tetrahydrocannabinol, numerous synthetic compounds, and endogenous compounds known as endocannabinoids. Cannabinoid receptor antagonists have also been developed. Some of these ligands activate or block one type of cannabinoid receptor more potently than the other type. This review summarizes current data indicating the extent to which cannabinoid receptor ligands undergo orthosteric or allosteric interactions with non-CB1, non-CB2 established GPCRs, deorphanized receptors such as GPR55, ligand-gated ion channels, transient receptor potential (TRP) channels, and other ion channels or peroxisome proliferator-activated nuclear receptors. From these data, it is clear that some ligands that interact similarly with CB1 and/or CB2 receptors are likely to display significantly different pharmacological profiles. The review also lists some criteria that any novel “CB3” cannabinoid receptor or channel should fulfil and concludes that these criteria are not currently met by any non-CB1, non-CB2 pharmacological receptor or channel. However, it does identify certain pharmacological targets that should be investigated further as potential CB3 receptors or channels. These include TRP vanilloid 1, which possibly functions as an ionotropic cannabinoid receptor under physiological and/or pathological conditions, and some deorphanized GPCRs. Also discussed are 1) the ability of CB1 receptors to form heteromeric complexes with certain other GPCRs, 2) phylogenetic relationships that exist between CB1/CB2 receptors and other GPCRs, 3) evidence for the existence of several as-yet-uncharacterized non-CB1, non-CB2 cannabinoid receptors; and 4) current cannabinoid receptor nomenclature. PMID:21079038

  5. Deciphering Dimerization Modes of PAS Domains: Computational and Experimental Analyses of the AhR:ARNT Complex Reveal New Insights Into the Mechanisms of AhR Transformation

    PubMed Central

    Corrada, Dario; Soshilov, Anatoly A.; Denison, Michael S.

    2016-01-01

    The Aryl hydrocarbon Receptor (AhR) is a transcription factor that mediates the biochemical response to xenobiotics and the toxic effects of a number of environmental contaminants, including dioxins. Recently, endogenous regulatory roles for the AhR in normal physiology and development have also been reported, thus extending the interest in understanding its molecular mechanisms of activation. Since dimerization with the AhR Nuclear Translocator (ARNT) protein, occurring through the Helix-Loop-Helix (HLH) and PER-ARNT-SIM (PAS) domains, is needed to convert the AhR into its transcriptionally active form, deciphering the AhR:ARNT dimerization mode would provide insights into the mechanisms of AhR transformation. Here we present homology models of the murine AhR:ARNT PAS domain dimer developed using recently available X-ray structures of other bHLH-PAS protein dimers. Due to the different reciprocal orientation and interaction surfaces in the different template dimers, two alternative models were developed for both the PAS-A and PAS-B dimers and they were characterized by combining a number of computational evaluations. Both well-established hot spot prediction methods and new approaches to analyze individual residue and residue-pairwise contributions to the MM-GBSA binding free energies were adopted to predict residues critical for dimer stabilization. On this basis, a mutagenesis strategy for both the murine AhR and ARNT proteins was designed and ligand-dependent DNA binding ability of the AhR:ARNT heterodimer mutants was evaluated. While functional analysis disfavored the HIF2α:ARNT heterodimer-based PAS-B model, most mutants derived from the CLOCK:BMAL1-based AhR:ARNT dimer models of both the PAS-A and the PAS-B dramatically decreased the levels of DNA binding, suggesting this latter model as the most suitable for describing AhR:ARNT dimerization. These novel results open new research directions focused at elucidating basic molecular mechanisms underlying the

  6. Neuropeptide derivatives to regulate the reproductive axis: Kisspeptin receptor (KISS1R) ligands and neurokinin-3 receptor (NK3R) ligands.

    PubMed

    Oishi, Shinya; Fujii, Nobutaka

    2016-11-01

    Recent research has indicated pivotal roles for neuropeptides and their cognate receptors in reproductive physiology. Kisspeptins are RF-amide neuropeptides that stimulate gonadotropin-releasing hormone (GnRH) neurons in the hypothalamus. Neurokinin B (NKB) is a member of the tachykinin family of neuropeptides and positively regulates pulsatile GnRH secretion. These peptides are coexpressed in kisspeptin/NKB/Dyn (KNDy) neurons of the arcuate nucleus, where they contribute to the regulation of puberty onset and other reproductive functions. In this review, the design of peptide ligands for the kisspeptin (KISS1R) and neurokinin-3 (NK3R) receptors are described. © 2016 Wiley Periodicals, Inc. Biopolymers (Pept Sci) 106: 588-597, 2016. PMID:27271543

  7. Micropatterned ligand arrays to study spatial regulation in Fc receptor signaling

    PubMed Central

    Torres, Alexis J.; Holowka, David

    2013-01-01

    Summary Fc receptor signaling plays a fundamental role in the adaptive immune response. A plethora of Fc receptors (e.g. Fc gamma, Fc-alpha and Fc-epsilon) are expressed on different immune cells, including natural killer cells, macrophages, mast cells and neutrophils. Receptor clustering and activation by multivalent ligands or opsonized particles induces a signaling cascade that leads to targeted secretion of chemical mediators (i.e. histamine, cytokines and chemokines) and phagocytosis, among other responses. Spatial targeting and compartmentalization are common mechanisms of regulation in Fc receptor signaling. However, the tools for studying these dynamic interactions have been limited. To overcome these limitations in our model system, microfabricated surfaces containing spatially defined ligands are used to cluster and activate IgE receptors (FcεRI), involved in allergic responses by mast cells. Micron-scale control of cell activation allows investigation of spatially regulated mechanisms for intracellular signaling with fluorescence microscopy. This approach in conjunction with biochemical techniques has proven to be valuable for investigating immune receptor signaling. PMID:21701976

  8. Multicomponent Synthesis and Biological Evaluation of a Piperazine-Based Dopamine Receptor Ligand Library.

    PubMed

    Stucchi, Mattia; Gmeiner, Peter; Huebner, Harald; Rainoldi, Giulia; Sacchetti, Alessandro; Silvani, Alessandra; Lesma, Giordano

    2015-08-13

    A series of 1,4-disubstituted piperazine-based compounds were designed, synthesized, and evaluated as dopamine D2/D3 receptor ligands. The synthesis relies on the key multicomponent split-Ugi reaction, assessing its great potential in generating chemical diversity around the piperazine core. With the aim of evaluating the effect of such diversity on the dopamine receptor affinity, a small library of compounds was prepared, applying post-Ugi transformations. Ligand stimulated binding assays indicated that some compounds show a significant affinity, with K i values up to 53 nM for the D2 receptor. Molecular docking studies with the D2 and D3 receptor homology models were also performed on selected compounds. They highlighted key interactions at the indole head and at the piperazine moiety, which resulted in good agreement with the known pharmacophore models, thus helping to explain the observed structure-activity relationship data. Molecular insights from this study could enable a rational improvement of the split-Ugi primary scaffold, toward more selective ligands. PMID:26288260

  9. Molecular mechanism of ligand recognition by NR3 subtype glutamate receptors

    SciTech Connect

    Yao, Yongneng; Harrison, Chris B.; Freddolino, Peter L.; Schulten, Klaus; Mayer, Mark L.

    2008-10-27

    NR3 subtype glutamate receptors have a unique developmental expression profile, but are the least well-characterized members of the NMDA receptor gene family, which have key roles in synaptic plasticity and brain development. Using ligand binding assays, crystallographic analysis, and all atom MD simulations, we investigate mechanisms underlying the binding by NR3A and NR3B of glycine and D-serine, which are candidate neurotransmitters for NMDA receptors containing NR3 subunits. The ligand binding domains of both NR3 subunits adopt a similar extent of domain closure as found in the corresponding NR1 complexes, but have a unique loop 1 structure distinct from that in all other glutamate receptor ion channels. Within their ligand binding pockets, NR3A and NR3B have strikingly different hydrogen bonding networks and solvent structures from those found in NR1, and fail to undergo a conformational rearrangement observed in NR1 upon binding the partial agonist ACPC. MD simulations revealed numerous interdomain contacts, which stabilize the agonist-bound closed-cleft conformation, and a novel twisting motion for the loop 1 helix that is unique in NR3 subunits.

  10. Variable ligand- and receptor-binding hot spots in key strains of influenza neuraminidase

    PubMed Central

    Votapka, Lane; Demir, Özlem; Swift, Robert V; Walker, Ross C; Amaro, Rommie E

    2012-01-01

    Influenza A continues to be a major public health concern due to its ability to cause epidemic and pandemic disease outbreaks in humans. Computational investigations of structural dynamics of the major influenza glycoproteins, especially the neuraminidase (NA) enzyme, are able to provide key insights beyond what is currently accessible with standard experimental techniques. In particular, all-atom molecular dynamics simulations reveal the varying degrees of flexibility for such enzymes. Here we present an analysis of the relative flexibility of the ligand- and receptor-binding area of three key strains of influenza A: highly pathogenic H5N1, the 2009 pandemic H1N1, and a human N2 strain. Through computational solvent mapping, we investigate the various ligand- and receptor-binding “hot spots” that exist on the surface of NA which interacts with both sialic acid receptors on the host cells and antiviral drugs. This analysis suggests that the variable cavities found in the different strains and their corresponding capacities to bind ligand functional groups may play an important role in the ability of NA to form competent reaction encounter complexes with other species of interest, including antiviral drugs, sialic acid receptors on the host cell surface, and the hemagglutinin protein. Such considerations may be especially useful for the prediction of how such complexes form and with what binding capacity. PMID:22872804

  11. Ligands for SPECT and PET imaging of muscarinic-cholinergic receptors of the heart and brain

    SciTech Connect

    Knapp, F.F. Jr.; McPherson, D.W.; Luo, H.

    1995-06-01

    Interest in the potential use of cerebral SPECT and PET imaging for determination of the density and activity of muscarinic-cholinergic receptors (mAChR) has been stimulated by the changes in these receptors which occur in many neurological diseases. In addition, the important involvement of mAChR in modulating negative inotropic cardiac activity suggests that such receptor ligands may have important applications in evaluation of changes which may occur in cardiac disease. In this paper, the properties of several key muscarinic receptor ligands being developed or which have been used for clinical SPECT and PET are discussed. In addition, the ORNL development of the new iodinated IQNP ligand based on QNB and the results of in vivo biodistribution studies in rats, in vitro competitive binding studies and ex vivo autoradiographic experiments are described. The use of radioiodinated IQNP may offer several advantages in comparison to IQNB because of its easy and high yield preparation and high brain uptake and the potential usefulness of the {open_quotes}partial{close_quotes} subtype selective IONP isomers. We also describe the development of new IQNP-type analogues which offer the opportunity for radiolabeling with positron-emitting radioisotopes (carbon-11, fluorine-18 and bromine-76) for potential use with PET.

  12. Development of CNS multi-receptor ligands: Modification of known D2 pharmacophores.

    PubMed

    Etukala, Jagan R; Zhu, Xue Y; Eyunni, Suresh V K; Onyameh, Edem K; Ofori, Edward; Bricker, Barbara A; Kang, Hye J; Huang, Xi-Ping; Roth, Bryan L; Ablordeppey, Seth Y

    2016-08-15

    Several known D2 pharmacophores have been explored as templates for identifying ligands with multiple binding affinities at dopamine and serotonin receptors considered as clinically relevant receptors in the treatment of neuropsychiatric diseases. This approach has resulted in the identification of ligands that target multiple CNS receptors while avoiding others associated with deleterious effects. In particular, compounds 11, 15 and 22 may have potential for further development as antipsychotic agents as they favorably interact with the clinically relevant receptors including D2R, 5-HT1AR, and 5-HT7R. We have also identified the pair of compounds 11 and 10 as high affinity D2R ligands with and without SERT binding affinities, respectively. These differential binding profiles endow the pair with the potential for evaluating SERT contributions to antipsychotic drug activity in animal behavioral models. In addition, compound 11 has no significant affinity for 5-HT2CR and binds only moderately to the H1R, suggesting it may not induce weight gain or sedation when used clinically. Taken together, compound 11 displays an interesting pharmacological profile that necessitates the evaluation of its functional and in vivo effects in animal models which are currently ongoing. PMID:27364609

  13. Neuronal circuitry underlying the impact of D3 receptor ligands in drug addiction.

    PubMed

    Le Foll, Bernard; Di Ciano, Patricia

    2015-09-01

    Since the cloning of the D3 receptor in the early 1990s, there has been a great deal of interest in this receptor as a possible therapeutic target for drug addiction. The development of a D3 ligand suitable for use in humans has remained elusive, so the study of the function of the D3 receptor and its possible therapeutic efficacy has largely been restricted to animals. Pre-clinical studies have established that systemic administration of D3 ligands, particularly antagonists and partial agonists, can alter drug-seeking in animals. Despite over a decade of research, few studies have investigated the effects of intra-cerebral infusion of D3 ligands on drug-seeking. In the present review, these studies are summarized, which have largely focused on stimulus-controlled behaviors. Converging evidence from studies of D3 receptor expression, Fos and pharmacological Magnetic Resonance Imaging (phMRI) is also provided to delineate some of the D3 brain systems involved in drug-seeking and taking. The data so far indicate that different brain systems may be involved in different types of stimulus control as well as drug taking. PMID:25266821

  14. Multicomponent Synthesis and Biological Evaluation of a Piperazine-Based Dopamine Receptor Ligand Library

    PubMed Central

    2015-01-01

    A series of 1,4-disubstituted piperazine-based compounds were designed, synthesized, and evaluated as dopamine D2/D3 receptor ligands. The synthesis relies on the key multicomponent split-Ugi reaction, assessing its great potential in generating chemical diversity around the piperazine core. With the aim of evaluating the effect of such diversity on the dopamine receptor affinity, a small library of compounds was prepared, applying post-Ugi transformations. Ligand stimulated binding assays indicated that some compounds show a significant affinity, with Ki values up to 53 nM for the D2 receptor. Molecular docking studies with the D2 and D3 receptor homology models were also performed on selected compounds. They highlighted key interactions at the indole head and at the piperazine moiety, which resulted in good agreement with the known pharmacophore models, thus helping to explain the observed structure–activity relationship data. Molecular insights from this study could enable a rational improvement of the split-Ugi primary scaffold, toward more selective ligands. PMID:26288260

  15. Red fluorescent turn-on ligands for imaging and quantifying G protein-coupled receptors in living cells.

    PubMed

    Karpenko, Iuliia A; Kreder, Rémy; Valencia, Christel; Villa, Pascal; Mendre, Christiane; Mouillac, Bernard; Mély, Yves; Hibert, Marcel; Bonnet, Dominique; Klymchenko, Andrey S

    2014-02-10

    Classical fluorescence-based approaches to monitor ligand-protein interactions are generally hampered by the background signal of unbound ligand, which must be removed by tedious washing steps. To overcome this major limitation, we report here the first red fluorescent turn-on probes for a G protein-coupled receptor (oxytocin receptor) at the surface of living cells. The peptide ligand carbetocin was conjugated to one of the best solvatochromic (fluorogenic) dyes, Nile Red, which turns on emission when reaching the hydrophobic environment of the receptor. We showed that the incorporation of hydrophilic octa(ethylene glycol) linker between the pharmacophore and the dye minimized nonspecific interaction of the probe with serum proteins and lipid membranes, thus ensuring receptor-specific turn-on response. The new ligand was successfully applied for background-free imaging and quantification of oxytocin receptors in living cells. PMID:24449564

  16. Certain photooxidized derivatives of tryptophan bind with very high affinity to the Ah receptor and are likely to be endogenous signal substances

    SciTech Connect

    Rannug, A.; Rannug, U.; Rosenkranz, H.S.; Winqvist, L.; Westerholm, R.; Agurell, E.; Grafstroem, A.K.

    1987-11-15

    The purpose of the present study was to determine whether ultraviolet light (UV) irradiation of amino acids produces compounds with affinity for the Ah receptor. Aqueous solutions of L-tryptophan were exposed to radiation from an unfiltered high-pressure mercury lamp. The photoproducts formed were solvent-extracted or concentrated on Sep-Pak C18 cartridges. The concentrated extracts or eluants were treated for their ability to compete with /sup 3/H-labeled 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). Binding was assayed in liver cytosolic preparations from Sprague-Dawley rats using a technique based on hydroxylapatite separation. Photoproducts with receptor affinity were formed in a time-dependent manner. Histidine and tryptamine also gave products upon UV irradiation that competed with TCDD. Commercial tryptophan, at least aged, contained trace amounts of impurities with receptor affinity. Analysis by TLC and high-pressure liquid chromatography of the photo-products of tryptophan showed a minimum of three different binding compounds. Two of the products were studied in greater detail. One of them, showing UV absorbance and yellow fluorescence, gave a molecular ion (M+) of 284 and the other gave M+ 312 but showed little UV absorption and fluorescence. The concentration, based on mass spectrometry quantifications, of the two compounds that displaced more than 50% of TCDD was found to be extremely low, giving Kd values of 0.44 nM (M+ 312) and 0.07 nM (M+ 284). The existence of high affinity receptors for oxidized amino acids is postulated and their possible role in the proliferative cellular responses to TCDD and tryptophan is discussed briefly.

  17. Role of EGF receptor ligands in TCDD-induced EGFR down-regulation and cellular proliferation.

    PubMed

    Campion, Christina M; Leon Carrion, Sandra; Mamidanna, Gayatri; Sutter, Carrie Hayes; Sutter, Thomas R; Cole, Judith A

    2016-06-25

    In cultures of normal human epidermal keratinocytes (NHEKs), 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) induces the expression of the epidermal growth factor receptor ligands transforming growth factor-α (TGF-α) and epiregulin (EREG). TCDD also down-regulates EGF receptors (EGFR), suggesting that decreases in signaling contribute to the effects of TCDD. In this study, we treated post-confluent NHEKs with 10 nM TCDD and assessed its effects on EGFR binding, EGFR ligand secretion, basal ERK activity, and proliferation. TCDD caused time-dependent deceases in [(125)I]-EGF binding to levels 78% of basal cell values at 72 h. Amphiregulin (AREG) levels increased with time in culture in basal and TCDD-treated cells, while TGF-α and epiregulin (EREG) secretion were stimulated by TCDD. Inhibiting EGFR ligand release with the metalloproteinase inhibitor batimastat prevented EGFR down-regulation and neutralizing antibodies for AREG and EREG relieved receptor down-regulation. In contrast, neutralizing TGF-α intensified EGFR down-regulation. Treating NHEKs with AREG or TGF-α caused rapid internalization of receptors with TGF-α promoting recycling within 90 min. EREG had limited effects on rapid internalization or recycling. TCDD treatment increased ERK activity, a response reduced by batimastat and the neutralization of all three ligands indicating that the EGFR and its ligands maintain ERK activity. All three EGFR ligands were required for the maintenance of total cell number in basal and TCDD-treated cultures. The EGFR inhibitor PD1530305 blocked basal and TCDD-induced increases in the number of cells labeled by 5-ethynyl-2'-deoxyuridine, identifying an EGFR-dependent pool of proliferating cells that is larger in TCDD-treated cultures. Overall, these data indicate that TCDD-induced EGFR down-regulation in NHEKs is caused by AREG, TGF-α, and EREG, while TGF-α enhances receptor recycling to maintain a pool of EGFR at the cell surface. These receptors are required for

  18. The aryl hydrocarbon receptor: Regulation of hematopoiesis and involvement in the progression of blood diseases

    PubMed Central

    Casado, Fanny L.; Singh, Kameshwar P.; Gasiewicz, Thomas A.

    2010-01-01

    The aryl hydrocarbon receptor (AhR) is a basic helix-loop-helix protein that belongs to the superfamily of environment-sensing PAS (Per-ARNT-Sim) proteins. A large number of ligands have been described to bind AhR and promote its nuclear translocation. In the nucleus, the AhR and its dimerization partner the AhR nuclear translocase (ARNT), also known as HIF1β, form a DNA-binding complex that acts as a transcriptional regulator. Animal and human data suggest that, beyond its mediating responses to xenobiotic and/or unknown endogenous ligands, the AhR has a role, although as yet undefined, in the regulation of cell cycle and inflammation. The AhR also appears to regulate the hematopoietic and immune systems during development and adult life in a cell-specific manner. While accidental exposure to xenobiotic AhR ligands has been associated with leukemia in humans, the specific mechanisms of AhR involvement are still not completely understood. However, recent data are consistent with a functional role of the AhR in the maintenance of hematopoietic stem and/or progenitor cells (HSCs/HPCs). Studies highlighting AhR-regulation of HSCs/HPCs provide a rational framework to understand their biology, a role of the AhR in hematopoietic diseases, and a means to develop interventions for these diseases. PMID:20171126

  19. Conformational Rearrangement Within the Soluble Domains of the CD4 Receptor is Ligand-Specific

    SciTech Connect

    Ashish,F.; Juncadella, I.; Garg, R.; Boone, C.; Anguita, J.; Krueger, J.

    2008-01-01

    Ligand binding induces shape changes within the four modular ectodomains (D1-D4) of the CD4 receptor, an important receptor in immune signaling. Small angle x-ray scattering (SAXS) on both a two-domain and a four-domain construct of the soluble CD4 (sCD4) is consistent with known crystal structures demonstrating a bilobal and a semi-extended tetralobal Z conformation in solution, respectively. Detection of conformational changes within sCD4 as a result of ligand binding was followed by SAXS on sCD4 bound to two different glycoprotein ligands: the tick saliva immunosuppressor Salp15 and the HIV-1 envelope protein gp120. Ab initio modeling of these data showed that both Salp15 and gp120 bind to the D1 domain of sCD4 and yet induce drastically different structural rearrangements. Upon binding, Salp15 primarily distorts the characteristic lobal architecture of the sCD4 without significantly altering the semi-extended shape of the sCD4 receptor. In sharp contrast, the interaction of gp120 with sCD4 induces a shape change within sCD4 that can be described as a Z-to-U bi-fold closure of the four domains across its flexible D2-D3 linker. Placement of known crystal structures within the boundaries of the SAXS-derived models suggests that the ligand-induced shape changes could be a result of conformational changes within this D2-D3 linker. Functionally, the observed shape changes in CD4 receptor causes dissociation of lymphocyte kinase from the cytoplasmic domain of Salp15-bound CD4 and facilitates an interaction between the exposed V3 loops of CD4-bound gp120 molecule to the extracellular loops of its co-receptor, a step essential for HIV-1 viral entry.

  20. Novel method demonstrates differential ligand activation and phosphatase-mediated deactivation of insulin receptor tyrosine-specific phosphorylation.

    PubMed

    Cieniewicz, Anne M; Cooper, Philip R; McGehee, Jennifer; Lingham, Russell B; Kihm, Anthony J

    2016-08-01

    Insulin receptor signaling is a complex cascade leading to a multitude of intracellular functional responses. Three natural ligands, insulin, IGF1 and IGF2, are each capable of binding with different affinities to the insulin receptor, and result in variable biological responses. However, it is likely these affinity differences alone cannot completely explain the myriad of diverse cellular outcomes. Ligand binding initiates activation of a signaling cascade resulting in phosphorylation of the IR itself and other intracellular proteins. The direct catalytic activity along with the temporally coordinated assembly of signaling proteins is critical for insulin receptor signaling. We hypothesized that determining differential phosphorylation among individual tyrosine sites activated by ligand binding or dephosphorylation by phosphatases could provide valuable insight into insulin receptor signaling. Here, we present a sensitive, novel immunoassay adapted from Meso Scale Discovery technology to quantitatively measure changes in site-specific phosphorylation levels on endogenous insulin receptors from HuH7 cells. We identified insulin receptor phosphorylation patterns generated upon differential ligand activation and phosphatase-mediated deactivation. The data demonstrate that insulin, IGF1 and IGF2 elicit different insulin receptor phosphorylation kinetics and potencies that translate to downstream signaling. Furthermore, we show that insulin receptor deactivation, regulated by tyrosine phosphatases, occurs distinctively across specific tyrosine residues. In summary, we present a novel, quantitative and high-throughput assay that has uncovered differential ligand activation and site-specific deactivation of the insulin receptor. These results may help elucidate some of the insulin signaling mechanisms, discriminate ligand activity and contribute to a better understanding of insulin receptor signaling. We propose this methodology as a powerful approach to characterize

  1. Metabotropic glutamatergic receptors and their ligands in drug addiction.

    PubMed

    Pomierny-Chamioło, Lucyna; Rup, Kinga; Pomierny, Bartosz; Niedzielska, Ewa; Kalivas, Peter W; Filip, Małgorzata

    2014-06-01

    Glutamatergic excitatory transmission is implicated in physiological and pathological conditions like learning, memory, neuronal plasticity and emotions, while glutamatergic abnormalities are reported in numerous neurological and psychiatric disorders, including neurodegenerative diseases, epilepsy, stroke, traumatic brain injury, depression, anxiety, schizophrenia and pain. Also, several lines of evidence have accumulated indicating a pivotal role for glutamatergic neurotransmission in mediating addictive behaviors. Among the proteins regulating glutamatergic transmission, the metabotropic glutamate receptors (mGluR) are being developed as pharmacological targets for treating many neuropsychiatric disorders, including drug addiction. In this review we describe the molecular structure of mGluRs and their distribution, physiology and pharmacology in the central nervous system, as well as their use as targets in preclinical studies of drug addiction. PMID:24362085

  2. A novel contact assay for testing aryl hydrocarbon receptor (AhR)-mediated toxicity of chemicals and whole sediments in zebrafish (Danio rerio) embryos.

    PubMed

    Schiwy, Sabrina; Bräunig, Jennifer; Alert, Henriette; Hollert, Henner; Keiter, Steffen H

    2015-11-01

    The European Water Framework Directive aims to achieve a good ecological and chemical status in surface waters until 2015. Sediment toxicology plays a major role in this intention as sediments can act as a secondary source of pollution. In order to fulfill this legal obligation, there is an urgent need to develop whole-sediment exposure protocols, since sediment contact assays represent the most realistic scenario to simulate in situ exposure conditions. Therefore, in the present study, a vertebrate sediment contact assay to determine aryl hydrocarbon receptor (AhR)-mediated activity of particle-bound pollutants was developed. Furthermore, the activity and the expression of the CYP1 family in early life stages of zebrafish after exposure to freeze-dried sediment samples were investigated. In order to validate the developed protocol, effects of β-naphthoflavone and three selected sediment on zebrafish embryos were investigated. Results documented clearly AhR-mediated toxicity after exposure to β-naphthoflavone (β-NF) and to the sediment from the Vering canal. Upregulation of mRNA levels was observed for all investigated sediment samples. The highest levels of all investigated cyp genes (cyp1a, cyp1b1, cyp1c1, and cyp1c2) were recorded after exposure to the sediment sample of the Vering canal. In conclusion, the newly developed sediment contact assay can be recommended for the investigation of dioxin-like activities of single substances and the bioavailable fraction of complex environmental samples. Moreover, the exposure of whole zebrafish embryos to native (freeze-dried) sediment samples represents a highly realistic and ecologically relevant exposure scenario. PMID:24958532

  3. Investigation on critical structural motifs of ligands for triggering glucocorticoid receptor nuclear migration through molecular docking simulations.

    PubMed

    Liu, Ya-Lin; Jang, Soonmin; Wang, Shih-Min; Chen, Chiu-Hao; Li, Feng-Yin

    2016-06-01

    The glucocorticoid receptor (GR), a transcription factor regulating gene expression in a ligand-dependent fashion, is known for flexibility in adapting various ligands with their structures ranging from steroid to non-steroid. However, in our previous study, GR shows a stringent discrimination against a set of steroid ligands with highly similar structures for triggering its nuclear migration. In order to resolve this puzzle, we employed molecular docking simulations to investigate the origin of this structural discrimination. By analyzing the docking orientations and the related ligand-GR interaction patterns, we found that the hydrophilicity mismatch between the docking ligand and the GR ligand-binding site is the main cause combined with the steric hindrance and structural rigidness of these steroid ligands. Furthermore, we utilized this knowledge to rationalize how the structure-binding interaction of non-steroid ligands triggers GR nuclear migration with their structures available in Protein Data Bank. PMID:26198481

  4. ONRLDB—manually curated database of experimentally validated ligands for orphan nuclear receptors: insights into new drug discovery

    PubMed Central

    Nanduri, Ravikanth; Bhutani, Isha; Somavarapu, Arun Kumar; Mahajan, Sahil; Parkesh, Raman; Gupta, Pawan

    2015-01-01

    Orphan nuclear receptors are potential therapeutic targets. The Orphan Nuclear Receptor Ligand Binding Database (ONRLDB) is an interactive, comprehensive and manually curated database of small molecule ligands targeting orphan nuclear receptors. Currently, ONRLDB consists of ∼11 000 ligands, of which ∼6500 are unique. All entries include information for the ligand, such as EC50 and IC50, number of aromatic rings and rotatable bonds, XlogP, hydrogen donor and acceptor count, molecular weight (MW) and structure. ONRLDB is a cross-platform database, where either the cognate small molecule modulators of a receptor or the cognate receptors to a ligand can be searched. The database can be searched using three methods: text search, advanced search or similarity search. Substructure search, cataloguing tools, and clustering tools can be used to perform advanced analysis of the ligand based on chemical similarity fingerprints, hierarchical clustering, binning partition and multidimensional scaling. These tools, together with the Tree function provided, deliver an interactive platform and a comprehensive resource for identification of common and unique scaffolds. As demonstrated, ONRLDB is designed to allow selection of ligands based on various properties and for designing novel ligands or to improve the existing ones. Database URL: http://www.onrldb.org/ PMID:26637529

  5. WScore: A Flexible and Accurate Treatment of Explicit Water Molecules in Ligand-Receptor Docking.

    PubMed

    Murphy, Robert B; Repasky, Matthew P; Greenwood, Jeremy R; Tubert-Brohman, Ivan; Jerome, Steven; Annabhimoju, Ramakrishna; Boyles, Nicholas A; Schmitz, Christopher D; Abel, Robert; Farid, Ramy; Friesner, Richard A

    2016-05-12

    We have developed a new methodology for protein-ligand docking and scoring, WScore, incorporating a flexible description of explicit water molecules. The locations and thermodynamics of the waters are derived from a WaterMap molecular dynamics simulation. The water structure is employed to provide an atomic level description of ligand and protein desolvation. WScore also contains a detailed model for localized ligand and protein strain energy and integrates an MM-GBSA scoring component with these terms to assess delocalized strain of the complex. Ensemble docking is used to take into account induced fit effects on the receptor conformation, and protein reorganization free energies are assigned via fitting to experimental data. The performance of the method is evaluated for pose prediction, rank ordering of self-docked complexes, and enrichment in virtual screening, using a large data set of PDB complexes and compared with the Glide SP and Glide XP models; significant improvements are obtained. PMID:27054459

  6. The Potential Applications of Peroxisome Proliferator-Activated Receptor δ Ligands in Assisted Reproductive Technology

    PubMed Central

    Huang, Jaou-Chen

    2008-01-01

    Peroxisome proliferator-activated receptor δ (PPARδ, also known as PPARβ) has ubiquitous distribution and extensive biological functions. The reproductive function of PPARδ was first revealed in the uterus at the implantation site. Since then, PPARδ and its ligand have been discovered in all reproductive tissues, including the gametes and the preimplantation embryos. PPARδ in preimplantation embryos is normally activated by oviduct-derived PPARδ ligand. PPARδ activation is associated with an increase in embryonic cell proliferation and a decrease in programmed cell death (apoptosis). On the other hand, the role of PPARδ and its ligand in gamete formation and function is less well understood. This review will summarize the reproductive functions of PPARδ and project its potential applications in assisted reproductive technology. PMID:19096716

  7. Novel Chalcone-Based Fluorescent Human Histamine H3 Receptor Ligands as Pharmacological Tools

    PubMed Central

    Tomasch, Miriam; Schwed, J. Stephan; Weizel, Lilia; Stark, Holger

    2012-01-01

    Novel fluorescent chalcone-based ligands at human histamine H3 receptors (hH3R) have been designed, synthesized, and characterized. Compounds described are non-imidazole analogs of ciproxifan with a tetralone motif. Tetralones as chemical precursors and related fluorescent chalcones exhibit affinities at hH3R in the same concentration range like the reference antagonist ciproxifan (hH3R pKi value of 7.2). Fluorescence characterization of our novel ligands shows emission maxima about 570 nm for yellow fluorescent chalcones and ≥600 nm for the red fluorescent derivatives. Interferences to cellular autofluorescence could be excluded. All synthesized chalcone compounds could be used to visualize hH3R proteins in stably transfected HEK-293 cells using confocal laser scanning fluorescence microscopy. These novel fluorescent ligands possess high potential to be used as pharmacological tools for hH3R visualization in different tissues. PMID:22470321

  8. Ligand-mediated autophosphorylation activity of the epidermal growth factor receptor during internalization

    SciTech Connect

    Lai, W.H.; Cameron, P.H.; Doherty, J.J. II; Posner, B.I.; Bergeron, J.J. )

    1989-12-01

    The association of EGF with its receptor in endosomes isolated from rat liver homogenates was assessed biochemically by polyethylene glycol precipitation and morphologically by electron microscope radioautography. The proportion of receptor-bound ligand in endosomes at 15 min after the injection of doses of 0.1 and 1 microgram EGF/100 g body weight was 57%. This value increased to 77% for the dose of 10 micrograms EGF injected. Quantitative electron microscope radioautography carried out on endosomes isolated at 15 min after the injection of 10 micrograms 125I-EGF demonstrated that most radiolabel was over the endosomal periphery thereby indicating that ligand-receptor complexes were in the bounding membrane but not in intraluminal vesicles of the content. EGF receptor autophosphorylation activity during internalization was evaluated in plasmalemma and endosome fractions. This activity was markedly but transiently reduced on the cell surface shortly after the administration of saturating doses of EGF. The same activity, however, was augmented and prolonged in endosomes for up to 30 min after EGF injection. The transient desensitization of cell surface activity was not due to prior in vivo phosphorylation since receptor dephosphorylation in vitro failed to restore autophosphorylation activity. Transient desensitization of cell surface autophosphorylation activity coincided with a diminished capacity for endocytosis of 125I-EGF with endocytosis returning to normal after the restoration of cell surface autophosphorylation activity. The inhibition of cell surface autophosphorylation activity and the activation of endosomal autophosphorylation activity coincident with downregulation suggest that EGF receptor traffic is governed by ligand-regulated phosphorylation activity.

  9. The genuine ligand of a jasmonic acid receptor

    PubMed Central

    Xie, Daoxin

    2010-01-01

    Jasmonic acid (JA), its metabolites, such as the methyl ester or amino acid conjugates as well as its precursor 12-oxophytodienoic acid (OPDA) are lipid-derived signals. JA, OPDA and JA-amino acid conjugates are known to function as signals in plant stress responses and development. More recently, formation of JA-amino acid conjugates and high biological activity of JA-Isoleucine (JA-Ile) were found to be essential in JA signaling. A breakthrough was the identification of JAZ proteins which interact with the F-box protein COI1 if JA-Ile is bound. This interaction leads to proteasomal degradation of JAZs being negative regulators of JA-induced transcription. Surprisingly, a distinct stereoisomer of JA-Ile, the (+)-7-iso-JA-Ile [(3R,7S) form] is most active. Coronatine, a bacterial phytotoxine with an identical stereochemistry at the cyclopentanone ring, has a similar bioactivity. This was explained by the recent identification of COI1 as the JA receptor and accords well with molecular modeling studies. Whereas over the last two decades JA was quantified to describe any JA dependent process, now we have to take into account a distinct stereoisomer of JA-Ile. Until recently a quantitative analysis of (+)-7-iso-JA-Ile was missing presumable due to its equilibration to (−)-JA-Ile. Now such an analysis was achieved. These aspects will be discussed based on our new knowledge on JA perception and signaling. PMID:20404483

  10. Evolutionary diversification of retinoic acid receptor ligand-binding pocket structure by molecular tinkering

    PubMed Central

    Gutierrez-Mazariegos, Juliana; Nadendla, Eswar Kumar; Studer, Romain A.; Alvarez, Susana; de Lera, Angel R.; Kuraku, Shigehiro; Bourguet, William; Laudet, Vincent

    2016-01-01

    Whole genome duplications (WGDs) have been classically associated with the origin of evolutionary novelties and the so-called duplication–degeneration–complementation model describes the possible fates of genes after duplication. However, how sequence divergence effectively allows functional changes between gene duplicates is still unclear. In the vertebrate lineage, two rounds of WGDs took place, giving rise to paralogous gene copies observed for many gene families. For the retinoic acid receptors (RARs), for example, which are members of the nuclear hormone receptor (NR) superfamily, a unique ancestral gene has been duplicated resulting in three vertebrate paralogues: RARα, RARβ and RARγ. It has previously been shown that this single ancestral RAR was neofunctionalized to give rise to a larger substrate specificity range in the RARs of extant jawed vertebrates (also called gnathostomes). To understand RAR diversification, the members of the cyclostomes (lamprey and hagfish), jawless vertebrates representing the extant sister group of gnathostomes, provide an intermediate situation and thus allow the characterization of the evolutionary steps that shaped RAR ligand-binding properties following the WGDs. In this study, we assessed the ligand-binding specificity of cyclostome RARs and found that their ligand-binding pockets resemble those of gnathostome RARα and RARβ. In contrast, none of the cyclostome receptors studied showed any RARγ-like specificity. Together, our results suggest that cyclostome RARs cover only a portion of the specificity repertoire of the ancestral gnathostome RARs and indicate that the establishment of ligand-binding specificity was a stepwise event. This iterative process thus provides a rare example for the diversification of receptor–ligand interactions of NRs following WGDs. PMID:27069642

  11. PEGylated Dendritic Unimolecular Micelles as Versatile Carriers for Ligands of G Protein-Coupled Receptors

    PubMed Central

    Kim, Yoonkyung; Hechler, Béatrice; Gao, Zhan-Guo; Gachet, Christian; Jacobson, Kenneth A.

    2009-01-01

    Despite its widespread application in nanomedicine, poly(ethylene glycol) (PEG) is seldom used for covalent modification of ligands for G protein-coupled receptors (GPCRs) due to potential steric complications. In order to study the influence of PEG chains on the biological activity of GPCR ligands bound to a common macromolecular carrier, we prepared a series of G3 polyamidoamine (PAMAM) dendrimers derivatized with Alexa Fluor 488, varying numbers of PEG550/PEG750/PEG2000, and nucleoside moieties derived from the A2A adenosine receptor (AR) agonist CGS21680 (2-[4-(2-carboxylethyl)phenylethylamino]-5′-N-ethylcarboxamidoadenosine). These dendrimer conjugates were purified by size exclusion chromatography and characterized by 1H NMR and MALDI MS. In radioligand binding assays, some PAMAM-PEG conjugates showed enhanced subtype-selectivity at the human A2A AR compared to monomeric ligands of comparable affinity. The functional potency was measured in the A2A AR-mediated activation of adenylate cyclase and inhibition of ADP-induced platelet aggregation. Interestingly, the dendrimer conjugate 10c bearing 11 PEG750 chains (out of theo. 32 amino end groups) and 14 nucleoside moieties was 5-fold more potent in A2A AR–mediated stimulation of cyclic AMP formation than 10d with four PEG2000 chains and 21 nucleosides, although the binding affinities of these two compounds were similar. Thus, a relatively small (≤10 nm) multivalent ligand 10c modified for water solubility maintained high potency and displayed increased A2A AR binding selectivity over the monomeric nucleosides. Longer PEG chains reduced affinity at the A2A AR. The current study demonstrates the feasiblity of using short PEG chains in the design of carriers that target ligand-receptor interactions. PMID:19785401

  12. PEGylated dendritic unimolecular micelles as versatile carriers for ligands of G protein-coupled receptors.

    PubMed

    Kim, Yoonkyung; Hechler, Béatrice; Gao, Zhan-Guo; Gachet, Christian; Jacobson, Kenneth A

    2009-10-21

    Despite its widespread application in nanomedicine, poly(ethylene glycol) (PEG) is seldom used for covalent modification of ligands for G protein-coupled receptors (GPCRs) due to potential steric complications. In order to study the influence of PEG chains on the biological activity of GPCR ligands bound to a common macromolecular carrier, we prepared a series of G3 polyamidoamine (PAMAM) dendrimers derivatized with Alexa Fluor 488, varying numbers of PEG(550)/PEG(750)/PEG(2000), and nucleoside moieties derived from the A(2A) adenosine receptor (AR) agonist CGS21680 (2-[4-(2-carboxylethyl)phenylethylamino]-5'-N-ethylcarboxamidoadenosine). These dendrimer conjugates were purified by size exclusion chromatography and characterized by (1)H NMR and MALDI MS. In radioligand binding assays, some PAMAM-PEG conjugates showed enhanced subtype-selectivity at the human A(2A) AR compared to monomeric ligands of comparable affinity. The functional potency was measured in the A(2A) AR-mediated activation of adenylate cyclase and inhibition of ADP-induced platelet aggregation. Interestingly, the dendrimer conjugate 10c bearing 11 PEG(750) chains (out of theoretical 32 amino end groups) and 14 nucleoside moieties was 5-fold more potent in A(2A) AR-mediated stimulation of cyclic AMP formation than 10d with 4 PEG(2000) chains and 21 nucleosides, although the binding affinities of these 2 compounds were similar. Thus, a relatively small (≤10 nm) multivalent ligand 10c modified for water solubility maintained high potency and displayed increased A(2A) AR binding selectivity over the monomeric nucleosides. The current study demonstrates the feasibility of using short PEG chains in the design of carriers that target ligand-receptor interactions. PMID:19785401

  13. A Structural Switch between Agonist and Antagonist Bound Conformations for a Ligand-Optimized Model of the Human Aryl Hydrocarbon Receptor Ligand Binding Domain

    PubMed Central

    Perkins, Arden; Phillips, Jessica L.; Kerkvliet, Nancy I.; Tanguay, Robert L.; Perdew, Gary H.; Kolluri, Siva K.; Bisson, William H.

    2014-01-01

    The aryl hydrocarbon receptor (AHR) is a ligand-activated transcription factor that regulates the expression of a diverse group of genes. Exogenous AHR ligands include the environmental contaminant 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), which is a potent agonist, and the synthetic AHR antagonist N-2-(1H-indol-3yl)ethyl)-9-isopropyl-2-(5-methylpyridin-3-yl)-9H-purin-6-amine (GNF351). As no experimentally determined structure of the ligand binding domain exists, homology models have been utilized for virtual ligand screening (VLS) to search for novel ligands. Here, we have developed an “agonist-optimized” homology model of the human AHR ligand binding domain, and this model aided in the discovery of two human AHR agonists by VLS. In addition, we performed molecular dynamics simulations of an agonist TCDD-bound and antagonist GNF351-bound version of this model in order to gain insights into the mechanics of the AHR ligand-binding pocket. These simulations identified residues 307–329 as a flexible segment of the AHR ligand pocket that adopts discrete conformations upon agonist or antagonist binding. This flexible segment of the AHR may act as a structural switch that determines the agonist or antagonist activity of a given AHR ligand. PMID:25329374

  14. Diversity-oriented approaches for interrogating T-cell receptor repertoire, ligand recognition, and function

    PubMed Central

    Birnbaum, Michael E.; Dong, Shen; Garcia, K. Christopher

    2012-01-01

    Summary Molecular diversity lies at the heart of adaptive immunity. T-cell receptors and peptide-major histocompatibility complex molecules utilize and rely upon an enormous degree of diversity at the levels of genetics, chemistry, and structure to engage one another and carry out their functions. This high level of diversity complicates the systematic study of important aspects of T-cell biology, but recent technical advances have allowed for the ability to study diversity in a comprehensive manner. In this review, we assess insights gained into T-cell receptor function and biology from our increasingly precise ability to assess the T-cell repertoire as a whole or to perturb individual receptors with engineered reagents. We conclude with a perspective on a new class of high-affinity, non-stimulatory peptide ligands we have recently discovered using diversity-oriented techniques that challenges notions for how we think about T-cell receptor signaling. PMID:23046124

  15. Synthesis of new ligands for targeting the S1P1 receptor.

    PubMed

    Schilson, Stefanie S; Keul, Petra; Shaikh, Rizwan S; Schäfers, Michael; Levkau, Bodo; Haufe, Günter

    2015-03-01

    Sphingosine-1-phosphate (S1P) influences various fundamental biological processes by interacting with a family of five G protein-coupled receptors (S1P1-5). FTY720, a sphingosine analogue, which was approved for treatment of relapsing forms of multiple sclerosis, is phosphorylated in vivo and acts as an agonist of four of the five S1P receptor subtypes. Starting from these lead structures we developed new agonists for the S1P1 receptor. The biological activity was tested in vivo and promising ligands were fluorinated at different positions to identify candidates for positron emission tomography (PET) imaging after [(18)F]-labelling. The radioligands shall enable the imaging of S1P1 receptor expression in vivo and thus may serve as novel imaging markers of S1P-related diseases. PMID:25656338

  16. Molecular Basis of Ligand Dissociation from the Adenosine A2A Receptor.

    PubMed

    Guo, Dong; Pan, Albert C; Dror, Ron O; Mocking, Tamara; Liu, Rongfang; Heitman, Laura H; Shaw, David E; IJzerman, Adriaan P

    2016-05-01

    How drugs dissociate from their targets is largely unknown. We investigated the molecular basis of this process in the adenosine A2Areceptor (A2AR), a prototypical G protein-coupled receptor (GPCR). Through kinetic radioligand binding experiments, we characterized mutant receptors selected based on molecular dynamic simulations of the antagonist ZM241385 dissociating from the A2AR. We discovered mutations that dramatically altered the ligand's dissociation rate despite only marginally influencing its binding affinity, demonstrating that even receptor features with little contribution to affinity may prove critical to the dissociation process. Our results also suggest that ZM241385 follows a multistep dissociation pathway, consecutively interacting with distinct receptor regions, a mechanism that may also be common to many other GPCRs. PMID:26873858

  17. Communication: Free energy of ligand-receptor systems forming multimeric complexes.

    PubMed

    Di Michele, Lorenzo; Bachmann, Stephan J; Parolini, Lucia; Mognetti, Bortolo M

    2016-04-28

    Ligand-receptor interactions are ubiquitous in biology and have become popular in materials in view of their applications to programmable self-assembly. Although complex functionalities often emerge from the simultaneous interaction of more than just two linker molecules, state of the art theoretical frameworks enable the calculation of the free energy only in systems featuring one-to-one ligand/receptor binding. In this Communication, we derive a general formula to calculate the free energy of systems featuring simultaneous direct interaction between an arbitrary number of linkers. To exemplify the potential and generality of our approach, we apply it to the systems recently introduced by Parolini et al. [ACS Nano 10, 2392 (2016)] and Halverson and Tkachenko [J. Chem. Phys. 144, 094903 (2016)], both featuring functionalized Brownian particles interacting via three-linker complexes. PMID:27131522

  18. Vascular ligand-receptor mapping by direct combinatorial selection in cancer patients

    PubMed Central

    Staquicini, Fernanda I.; Cardó-Vila, Marina; Kolonin, Mikhail G.; Trepel, Martin; Edwards, Julianna K.; Nunes, Diana N.; Sergeeva, Anna; Efstathiou, Eleni; Sun, Jessica; Almeida, Nalvo F.; Tu, Shi-Ming; Botz, Gregory H.; Wallace, Michael J.; O’Connell, David J.; Krajewski, Stan; Gershenwald, Jeffrey E.; Molldrem, Jeffrey J.; Flamm, Anne L.; Koivunen, Erkki; Pentz, Rebecca D.; Dias-Neto, Emmanuel; Setubal, João C.; Cahill, Dolores J.; Troncoso, Patricia; Do, Kim-Ahn; Logothetis, Christopher J.; Sidman, Richard L.; Pasqualini, Renata; Arap, Wadih

    2011-01-01

    Molecules differentially expressed in blood vessels among organs or between damaged and normal tissues, are attractive therapy targets; however, their identification within the human vasculature is challenging. Here we screened a peptide library in cancer patients to uncover ligand-receptors common or specific to certain vascular beds. Surveying ∼2.35 × 106 motifs recovered from biopsies yielded a nonrandom distribution, indicating that systemic tissue targeting is feasible. High-throughput analysis by similarity search, protein arrays, and affinity chromatography revealed four native ligand-receptors, three of which were previously unrecognized. Two are shared among multiple tissues (integrin α4/annexin A4 and cathepsin B/apolipoprotein E3) and the other two have a restricted and specific distribution in normal tissue (prohibitin/annexin A2 in white adipose tissue) or cancer (RAGE/leukocyte proteinase-3 in bone metastases). These findings provide vascular molecular markers for biotechnology and medical applications. PMID:22049339

  19. Delineating biased ligand efficacy at 7TM receptors from an experimental perspective.

    PubMed

    Galandrin, Ségolène; Onfroy, Lauriane; Poirot, Mathias Charles; Sénard, Jean-Michel; Galés, Céline

    2016-08-01

    During the last 10 years, the concept of "biased agonism" also called "functional selectivity" swamped the pharmacology of 7 transmembrane receptors and paved the way for developing signaling pathway-selective drugs with increased efficacy and less adverse effects. Initially thought to select the activation of only a subset of the signaling pathways by the reference agonist, bias ligands revealed higher complexity as they have been shown to stabilize variable receptor conformations that associate with distinct signaling events from the reference. Today, one major challenge relies on the in vitro determination of the bias and classification of these ligands, as a prerequisite for future in vivo and clinical translation. In this review, current experimental considerations for the bias evaluation related to choice of the cellular model, of the signaling pathway as well as of the assays are presented and discussed. PMID:27107932

  20. Bond formation of surface-tethered receptor-ligand pairs in relative separation

    NASA Astrophysics Data System (ADS)

    Qian, Jin; Lin, Yuan; Jiang, Hongyuan; Yao, Haimin

    2013-11-01

    We theoretically and numerically investigate the interplay between diffusion of a surface-bound receptor and its reaction with an opposing ligand. Special attention has been paid to the mechanical regulation of bond association by varying the initial gap distance and relative separation speed between the protein-bearing surfaces. Such diffusion-reaction coupling effects can cause the apparent on-rate or reciprocal of the average waiting time for bond formation, to be not constant, but instead a function sensitive to the system parameters that affect the transport of proteins. The results provide a quantitative understanding of how significantly the transport mechanism can affect overall binding behavior of molecular interactions and call for a paradigm shift in modeling receptor-ligand bond association when the protein-bearing surfaces are in relative separation.

  1. Communication: Free energy of ligand-receptor systems forming multimeric complexes

    NASA Astrophysics Data System (ADS)

    Di Michele, Lorenzo; Bachmann, Stephan J.; Parolini, Lucia; Mognetti, Bortolo M.

    2016-04-01

    Ligand-receptor interactions are ubiquitous in biology and have become popular in materials in view of their applications to programmable self-assembly. Although complex functionalities often emerge from the simultaneous interaction of more than just two linker molecules, state of the art theoretical frameworks enable the calculation of the free energy only in systems featuring one-to-one ligand/receptor binding. In this Communication, we derive a general formula to calculate the free energy of systems featuring simultaneous direct interaction between an arbitrary number of linkers. To exemplify the potential and generality of our approach, we apply it to the systems recently introduced by Parolini et al. [ACS Nano 10, 2392 (2016)] and Halverson and Tkachenko [J. Chem. Phys. 144, 094903 (2016)], both featuring functionalized Brownian particles interacting via three-linker complexes.

  2. Homology Model and Docking-Based Virtual Screening for Ligands of the σ1 Receptor

    PubMed Central

    2011-01-01

    This study presents for the first time the 3D model of the σ1 receptor protein as obtained from homology modeling techniques, shows the applicability of this structure to docking-based virtual screening, defines a computational strategy to optimize the results based on a combination of 3D pharmacophore-based docking and MM/PBSA free energy of binding scoring, and provides evidence that these in silico models and recipes are powerful tools on which virtual screening of new σ1 ligands can be based. In particular, the validation of the applicability of docking-based virtual screening to homology models is of utmost importance, since no crystal structure is available to date for the σ1 receptor, and this missing information still constitutes a major hurdle for a rational ligand design for this important protein target. PMID:24900272

  3. Somatostatin receptor subtype 2 sensitizes human pancreatic cancer cells to death ligand-induced apoptosis.

    PubMed

    Guillermet, Julie; Saint-Laurent, Nathalie; Rochaix, Philippe; Cuvillier, Olivier; Levade, Thierry; Schally, Andrew V; Pradayrol, Lucien; Buscail, Louis; Susini, Christiane; Bousquet, Corinne

    2003-01-01

    Somatostatin receptor subtype 2 (sst2) gene expression is lost in 90% of human pancreatic adenocarcinomas. We previously demonstrated that stable sst2 transfection of human pancreatic BxPC-3 cells, which do not endogenously express sst2, inhibits cell proliferation, tumorigenicity, and metastasis. These sst2 effects occur as a consequence of an autocrine sst2-dependent loop, whereby sst2 induces expression of its own ligand, somatostatin. Here we investigated whether sst2 induces apoptosis in sst2-transfected BxPC-3 cells. Expression of sst2 induced a 4.4- +/- 0.05-fold stimulation of apoptosis in BxPC-3 through the activation of tyrosine phosphatase SHP-1. sst2 also sensitized these cells to apoptosis induced by tumor necrosis factor alpha (TNFalpha), enhancing it 4.1- +/- 1.5-fold. Apoptosis in BxPC-3 cells mediated by TNF-related apoptosis-inducing ligand (TRAIL) and CD95L was likewise increased 2.3- +/- 0.5-fold and 7.4- +/- 2.5-fold, respectively. sst2-dependent activation and cell sensitization to death ligand-induced apoptosis involved activation of the executioner caspases, key factors in both death ligand- or mitochondria-mediated apoptosis. sst2 affected both pathways: first, by up-regulating expression of TRAIL and TNFalpha receptors, DR4 and TNFRI, respectively, and sensitizing the cells to death ligand-induced initiator capase-8 activation, and, second, by down-regulating expression of the antiapoptotic mitochondrial Bcl-2 protein. These results are of interest for the clinical management of chemoresistant pancreatic adenocarcinoma by using a combined gene therapy based on the cotransfer of genes for both the sst2 and a nontoxic death ligand. PMID:12490654

  4. Peripheral-type benzodiazepine receptor: a protein of mitochondrial outer membranes utilizing porphyrins as endogenous ligands

    SciTech Connect

    Snyder, S.H.; Verma, A.; Trifiletti, R.R.

    1987-10-01

    The peripheral-type benzodiazepine receptor is a site identified by its nanomolar affinity for (/sup 3/H)diazepam, similar to the affinity of diazepam for the central-type benzodiazepine receptor in the brain. The peripheral type benzodiazepine receptor occurs in many peripheral tissues but has discrete localizations as indicated by autoradiographic studies showing uniquely high densities of the receptors in the adrenal cortex and in Leydig cells of the testes. Subcellular localization studies reveal a selective association of the receptors with the outer membrane of mitochondria. Photoaffinity labeling of the mitochondrial receptor with (/sup 3/H)flunitrazepam reveals two discrete labeled protein bands of 30 and 35 kDa, respectively. The 35-kDa band appears to be identical with the voltage-dependent anion channel protein porin. Fractionation of numerous peripheral tissues reveals a single principal endogenous ligand for the receptor, consisting of porphyrins, which display nanomolar affinity. Interactions of porphyrins with the mitochondrial receptor may clarify its physiological role and account for many pharmacological actions of benzodiazepines.

  5. Effects of coumestrol on lipid and glucose metabolism as a farnesoid X receptor ligand

    SciTech Connect

    Takahashi, Miki; Kanayama, Tomohiko; Yashiro, Takuya; Kondo, Hidehiko; Murase, Takatoshi; Hase, Tadashi; Tokimitsu, Ichiro; Nishikawa, Jun-ichi; Sato, Ryuichiro

    2008-08-01

    In the course of an effort to identify novel agonists of the farnesoid X receptor (FXR), coumestrol was determined to be one such ligand. Reporter and in vitro coactivator interaction assays revealed that coumestrol bound and activated FXR. Treatment of Hep G2 cells with coumestrol stimulated the expression of FXR target genes, thereby regulating the expression of target genes of the liver X receptor and hepatocyte nuclear factor-4{alpha}. Through these actions, coumestrol is expected to exert beneficial effects on lipid and glucose metabolism.

  6. Peroxisome proliferator-activated receptor ligands as antiatherogenic agents: panacea or another Pandora's box?

    PubMed

    Molavi, Behzad; Rasouli, Neda; Mehta, Jawahar L

    2002-01-01

    Peroxisome proliferator activated receptors (PPARs) are members of the nuclear receptor super family that modulate gene expression upon ligand activation. They are 3 major subtypes of PPARs: alpha, delta (also called beta), and gamma. PPAR-gamma is widely expressed in the cardiovascular system and is involved in the regulation of tissue inflammation and smooth muscle cell growth pathways as well as in lipoprotein metabolism and coagulation cascades. PPAR-gamma ligands of (e.g., rosigitazone and pioglitazone) have been shown to exert antiatherogenic effects both in vitro and in vivo. PPAR-alpha ligands (e.g., clofibrate and benzofibrate) modulate lipoprotein metabolism, and affect inflammation and coagulation cascade. These effects may be helpful in resolving the dilemma arising from studies that showed significant mortality and morbidity benefits of fibrates in the face of minimal changes in HDL-cholesterol levels. The role of PPAR-delta in atherogenesis remains largely unknown, although it appears that PPAR-delta activation affects lipoprotein metabolism. PPAR ligands appear to be promising agents in limiting atherosclerosis; however, large-scale clinical trials are required to assess their safety and efficacy before they can be added to the clinicians' arsenal of antiatherosclerotic agents. PMID:12000972

  7. The oligomeric states of the purified sigma-1 receptor are stabilized by ligands.

    PubMed

    Gromek, Katarzyna A; Suchy, Fabian P; Meddaugh, Hannah R; Wrobel, Russell L; LaPointe, Loren M; Chu, Uyen B; Primm, John G; Ruoho, Arnold E; Senes, Alessandro; Fox, Brian G

    2014-07-18

    Sigma-1 receptor (S1R) is a mammalian member of the ERG2 and sigma-1 receptor-like protein family (pfam04622). It has been implicated in drug addiction and many human neurological disorders, including Alzheimer and Parkinson diseases and amyotrophic lateral sclerosis. A broad range of synthetic small molecules, including cocaine, (+)-pentazocine, haloperidol, and small endogenous molecules such as N,N-dimethyltryptamine, sphingosine, and steroids, have been identified as regulators of S1R. However, the mechanism of activation of S1R remains obscure. Here, we provide evidence in vitro that S1R has ligand binding activity only in an oligomeric state. The oligomeric state is prone to decay into an apparent monomeric form when exposed to elevated temperature, with loss of ligand binding activity. This decay is suppressed in the presence of the known S1R ligands such as haloperidol, BD-1047, and sphingosine. S1R has a GXXXG motif in its second transmembrane region, and these motifs are often involved in oligomerization of membrane proteins. Disrupting mutations within the GXXXG motif shifted the fraction of the higher oligomeric states toward smaller states and resulted in a significant decrease in specific (+)-[(3)H]pentazocine binding. Results presented here support the proposal that S1R function may be regulated by its oligomeric state. Possible mechanisms of molecular regulation of interacting protein partners by S1R in the presence of small molecule ligands are discussed. PMID:24847081

  8. The Oligomeric States of the Purified Sigma-1 Receptor Are Stabilized by Ligands*

    PubMed Central

    Gromek, Katarzyna A.; Suchy, Fabian P.; Meddaugh, Hannah R.; Wrobel, Russell L.; LaPointe, Loren M.; Chu, Uyen B.; Primm, John G.; Ruoho, Arnold E.; Senes, Alessandro; Fox, Brian G.

    2014-01-01

    Sigma-1 receptor (S1R) is a mammalian member of the ERG2 and sigma-1 receptor-like protein family (pfam04622). It has been implicated in drug addiction and many human neurological disorders, including Alzheimer and Parkinson diseases and amyotrophic lateral sclerosis. A broad range of synthetic small molecules, including cocaine, (+)-pentazocine, haloperidol, and small endogenous molecules such as N,N-dimethyltryptamine, sphingosine, and steroids, have been identified as regulators of S1R. However, the mechanism of activation of S1R remains obscure. Here, we provide evidence in vitro that S1R has ligand binding activity only in an oligomeric state. The oligomeric state is prone to decay into an apparent monomeric form when exposed to elevated temperature, with loss of ligand binding activity. This decay is suppressed in the presence of the known S1R ligands such as haloperidol, BD-1047, and sphingosine. S1R has a GXXXG motif in its second transmembrane region, and these motifs are often involved in oligomerization of membrane proteins. Disrupting mutations within the GXXXG motif shifted the fraction of the higher oligomeric states toward smaller states and resulted in a significant decrease in specific (+)-[3H]pentazocine binding. Results presented here support the proposal that S1R function may be regulated by its oligomeric state. Possible mechanisms of molecular regulation of interacting protein partners by S1R in the presence of small molecule ligands are discussed. PMID:24847081

  9. Effects of different ligands on epidermal growth factor receptor (EGFR) nuclear translocation.

    PubMed

    Faria, Jerusa A Q A; de Andrade, Carolina; Goes, Alfredo M; Rodrigues, Michele A; Gomes, Dawidson A

    2016-09-01

    The epidermal growth factor receptor (EGFR) is activated through binding to specific ligands and generates signals for proliferation, differentiation, migration, and cell survival. Recent data show the role of nuclear EGFR in tumors. Although many EGFR ligands are upregulated in cancers, little is known about their effects on EGFR nuclear translocation. We have compared the effects of six EGFR ligands (EGF, HB-EGF, TGF-α, β-Cellulin, amphiregulin, and epiregulin) on nuclear translocation of EGFR, receptor phosphorylation, migration, and proliferation. Cell fractionation and confocal immunofluorescence detected EGFR in the nucleus after EGF, HB-EGF, TGF-α and β-Cellulin stimulation in a dose-dependent manner. In contrast, amphiregulin and epiregulin did not generate nuclear translocation of EGFR. EGF, HB-EGF, TGF-α and β-Cellulin showed correlations between a higher rate of wound closure and increased phosphorylation of residues in the carboxy-terminus of EGFR, compared to amphiregulin and epiregulin. The data indicate that EGFR is translocated to the nucleus after stimulation with EGF, HB-EGF, TGF-α and β-Cellulin, and that these ligands are related to increased phosphorylation of EGFR tyrosine residues, inducing migration of SkHep-1 cells. PMID:27462018

  10. Immunological Visibility: Posttranscriptional Regulation of Human NKG2D Ligands by the EGF Receptor Pathway

    PubMed Central

    Vantourout, Pierre; Willcox, Carrie; Turner, Andrea; Swanson, Chad; Haque, Yasmin; Sobolev, Olga; Grigoriadis, Anita; Tutt, Andrew; Hayday, Adrian

    2014-01-01

    Human cytolytic T lymphocytes and NK cells can limit tumor growth and are being increasingly harnessed for tumor immunotherapy. One way cytolytic lymphocytes recognize tumor cells is by engagement of their activating receptor, NKG2D, by stress-antigens of the MICA/B and ULBP families. This study shows that surface upregulation of NKG2D ligands by human epithelial cells in response to ultraviolet irradiation, osmotic shock, oxidative stress, and growth factor provision, is attributable to activation of the EGF-receptor (EGFR). EGFR activation causes intracellular re-localisation of AUF1 proteins that ordinarily destabilise NKG2D ligand mRNAs by targeting an AU-rich element conserved within the 3′ ends of most human but not murine NKG2D ligand genes. Consistent with these findings, NKG2D ligand expression by primary human carcinomas positively correlated with EGFR expression that is commonly hyper-activated in such tumours, and was reduced by clinical EGFR inhibitors. Thus, stress-induced activation of EGFR not only regulates cell growth but concomitantly regulates the cells’ immunological visibility. Thus, therapeutics designed to limit cancer cell growth should also be considered in terms of their impact on immunosurveillance. PMID:24718859

  11. Characterization of host responses induced by Toll-like receptor ligands in chicken cecal tonsil cells.

    PubMed

    Taha-Abdelaziz, Khaled; Alkie, Tamiru Negash; Hodgins, Douglas C; Shojadoost, Bahram; Sharif, Shayan

    2016-06-01

    The innate responses of cecal tonsils against invading microorganisms are mediated by conserved pattern recognition receptors (PRRs) such as the Toll-like receptors (TLRs). TLRs expressed by mammalian and avian immune system cells have the capability to recognize pathogen-associated molecular patterns (PAMPs). Although, the role of TLR ligands in innate and adaptive responses in chickens has been characterized in spleen and bursa of Fabricius, considerably less is known about responses in cecal tonsils. The aim of the current study was to assess responses of mononuclear cells from cecal tonsils to treatment with the TLR2, TLR4 and TLR21 ligands, Pam3CSK4, lipopolysaccharide (LPS), and CpG oligodeoxynucleotide (ODN), respectively. All three ligands induced significant up-regulation of interferon (IFN)-γ, interleukin (IL)-1β, IL-6 and CxCLi2/IL-8, whereas no significant changes were observed in expression of IL-13 or the antimicrobial peptides, avian β-defensin (AvBD) 1, AvBD2 and cathelicidin 3 (CATHL-3). In general, CpG ODN elicited the highest cytokine responses by cecal tonsil mononuclear cells, inducing significantly higher expression compared to LPS and Pam3CSK4, for IFNγ, IL-1β, IL-6 and CxCLi2 at various time points. These findings suggest the potential use of TLR21 ligands as mucosal vaccine adjuvants, especially in the context of pathogens of the intestinal tract. PMID:27185259

  12. Ligand-induced receptor-like kinase complex regulates floral organ abscission in Arabidopsis

    PubMed Central

    Meng, Xiangzong; Zhou, Jinggeng; Tang, Jiao; Li, Bo; de Oliveira, Marcos V. V.; Chai, Jijie; He, Ping; Shan, Libo

    2016-01-01

    SUMMARY Abscission is a developmental process that enables plants to shed unwanted organs. In Arabidopsis, the floral organ abscission is regulated by a signaling pathway consisting of the peptide ligand IDA, the receptor-like kinases (RLKs) HAE and HSL2, and a downstream MAP kinase (MAPK) cascade. However, little is known about the molecular link between ligand-receptor pairs and intracellular signaling. Here, we report that the SERK family RLKs function redundantly in regulating floral organ abscission downstream of IDA and upstream of the MAPK cascade. IDA induces heterodimerization of HAE/HSL2 and SERKs, which transphosphorylate each other. The SERK3 residues mediating its interaction with the immune receptor FLS2 and the brassinosteroid receptor BRI1 are also required for IDA-induced HAE/HSL2-SERK3 interaction, suggesting SERKs serve as co-receptors of HAE/HSL2 in perceiving IDA. Thus, our study reveals the signaling activation mechanism in floral organ abscission by IDA-induced HAE/HSL2-SERK complex formation accompanied by transphosphorylation. PMID:26854226

  13. Ligand-dependent recruitment of the Arnt coregulator determines DNA recognition by the dioxin receptor

    SciTech Connect

    Whitelaw, M.; Pongratz, I.; Wilhelmsson, A.; Gustafsson, J.; Poellinger, L. )

    1993-04-01

    Signal transduction by dioxins is mediated by the intracellular dioxin or aryl hydrocarbon receptor. This receptor binds dioxin and its planar aromatic congeners in a saturable manner with high affinity. The extreme toxicity of dioxin has been demonstrated in animals but not in humans. In animals, dioxin causes thymic wasting, immune suppression, severe epithelial disorders and tumor promotion. On a molecular level, dioxins are inducers of transcription of a battery of target genes encoding xenobiotic metabolizing enzymes. Dioxin also appears to transcriptionally regulate the expression of the growth modulatory genes for interleukin-1 Beta and plasminogen activator inhibitor-2. The dioxin induction response is mediated by single or multiple copies of dioxin-inducible transcriptional control elements in target promoters. The research data detailed in this paper examines the ligand-dependent recruitment of the Arnt coregulator which determines DNA recognition by the dioxin receptor. This data suggests that dioxin receptor activity is governed by a complex pattern of combinatorial regulation involving repression by hsp90 and then by ligand-dependent recruitment of the positive coregulator Arnt and that the dioxin receptor system provides the first example of signal-controlled dimerization of bHLH factors.

  14. Novel Bioluminescent Binding Assays for Ligand-Receptor Interaction Studies of the Fibroblast Growth Factor Family.

    PubMed

    Song, Ge; Shao, Xiao-Xia; Wu, Qing-Ping; Xu, Zeng-Guang; Liu, Ya-Li; Guo, Zhan-Yun

    2016-01-01

    We recently developed novel bioluminescent binding assays for several protein/peptide hormones to study their interactions with receptors using the so far brightest NanoLuc reporter. To validate the novel bioluminescent binding assay using a variety of protein/peptide hormones, in the present work we applied it to the fibroblast growth factor (FGF) family using the prototype member FGF2 as an example. A fully active recombinant FGF2 retaining a unique exposed cysteine (Cys) residue was chemically conjugated with an engineered NanoLuc carrying a unique exposed Cys residue at the C-terminus via formation of an intermolecular disulfide linkage. The NanoLuc-conjugated FGF2 (FGF2-Luc) retained high binding affinity to the overexpressed FGFR1 and the endogenous FGF receptor with the calculated dissociation constants of 161 ± 21 pM (n = 3) and 25 ± 4 pM (n = 3), respectively. In competition binding assays using FGF2-Luc as a tracer, receptor-binding potencies of wild-type or mutant FGF2s were accurately quantified. Thus, FGF2-Luc represents a novel non-radioactive tracer for the quantitative measurement of ligand-receptor interactions in the FGF family. These data suggest that the novel bioluminescent binding assay can be applied to a variety of protein/peptide hormones for ligand-receptor interaction studies. PMID:27414797

  15. The Prelude on Novel Receptor and Ligand Targets Involved in the Treatment of Diabetes Mellitus

    PubMed Central

    Jonnalagadda, Venu Gopal; Ram Raju, Allam Venkata Sita; Pittala, Srinivas; Shaik, Afsar; Selkar, Nilakash Annaji

    2014-01-01

    Metabolic disorders are a group of disorders, due to the disruption of the normal metabolic process at a cellular level. Diabetes Mellitus and Tyrosinaemia are the majorly reported metabolic disorders. Among them, Diabetes Mellitus is a one of the leading metabolic syndrome, affecting 5 to 7 % of the population worldwide and mainly characterised by elevated levels of glucose and is associated with two types of physiological event disturbances such as impaired insulin secretion and insulin resistance. Up to now, various treatment strategies are like insulin, alphaglucosidase inhibitors, biguanides, incretins were being followed. Concurrently, various novel therapeutic strategies are required to advance the therapy of Diabetes mellitus. For the last few decades, there has been an extensive research in understanding the metabolic pathways involved in Diabetes Mellitus at the cellular level and having the profound knowledge on cell-growth, cell-cycle, and apoptosis at a molecular level provides new targets for the treatment of Diabetes Mellitus. Receptor signalling has been involved in these mechanisms, to translate the information coming from outside. To understand the various receptors involved in these pathways, we must have a sound knowledge on receptors and ligands involved in it. This review mainly summarises the receptors and ligands which are involved the Diabetes Mellitus. Finally, researchers have to develop the alternative chemical moieties that retain their affinity to receptors and efficacy. Diabetes Mellitus being a metabolic disorder due to the glucose surfeit, demands the need for regular exercise along with dietary changes. PMID:24754003

  16. Dimeric Arrangement of the Parathyroid Hormone Receptor and a Structural Mechanism for Ligand-induced Dissociation

    SciTech Connect

    Pioszak, Augen A.; Harikumar, Kaleeckal G.; Parker, Naomi R.; Miller, Laurence J.; Xu, H. Eric

    2010-06-25

    The parathyroid hormone receptor (PTH1R) is a class B G protein-coupled receptor that is activated by parathyroid hormone (PTH) and PTH-related protein (PTHrP). Little is known about the oligomeric state of the receptor and its regulation by hormone. The crystal structure of the ligand-free PTH1R extracellular domain (ECD) reveals an unexpected dimer in which the C-terminal segment of both ECD protomers forms an {alpha}-helix that mimics PTH/PTHrP by occupying the peptide binding groove of the opposing protomer. ECD-mediated oligomerization of intact PTH1R was confirmed in living cells by bioluminescence and fluorescence resonance energy transfer experiments. As predicted by the structure, PTH binding disrupted receptor oligomerization. A receptor rendered monomeric by mutations in the ECD retained wild-type PTH binding and cAMP signaling ability. Our results are consistent with the hypothesis that PTH1R forms constitutive dimers that are dissociated by ligand binding and that monomeric PTH1R is capable of activating G protein.

  17. HER2-mediated anticancer drug delivery: strategies to prepare targeting ligands highly specific for the receptor.

    PubMed

    Calce, Enrica; Monfregola, Luca; Saviano, Michele; De Luca, Stefania

    2015-01-01

    HER2 receptor, for its involvement in tumorigenesis, has been largely studied as topic in cancer research. In particular, the employment of trastuzumab (Herceptin), a humanized anti-HER2 antibody, showed several clinical benefits in the therapy against the breast cancer. Moreover, for its accessible extracellular domain, this receptor is considered an ideal target to deliver anticancer drugs for the receptormediated anticancer therapy. By now, monoclonal antibody and its fragments, affibody, and some peptides have been employed as targeting agents in order to deliver various drugs to HER2 positive tumor cells. In particular, the ability to perform a fast and reliable screening of a large number of peptide molecules would make possible the selection of highly specific compounds to the receptor target. In this regard, the availability of preparing a simplified synthetic model which is a good mimetic of the receptor target and can be used in a reliable screening method of ligands would be of a strategic importance for the development of selective HER2-targeting peptide molecules. Herein, we illustrate the importance of HER2-targeted anticancer therapies. We also report on a synthetic and effective mimetic of the receptor, which revealed to be a useful tool for the selection of specific HER2 ligands. PMID:25994863

  18. Microchemical synthesis of the serotonin receptor ligand, /sup 125/I-LSD

    SciTech Connect

    Hartig, P.R.; Krohn, A.M.; Hirschman, S.A.

    1985-02-01

    The synthesis and properties of 2-(/sup 125/I)-lysergic acid diethylamide, the first /sup 125/I-labeled serotonin receptor ligand, are described. A novel microsynthesis apparatus was developed for this synthesis. The apparatus employs a micromanipulator and glass micro tools to handle microliter to nanoliter volumes on a microscope stage. This apparatus should be generally useful for the synthesis of radioligands and other compounds when limited amounts of material must be handled in small volumes.

  19. Peptide and peptidomimetic ligands for CXC chemokine receptor 4 (CXCR4).

    PubMed

    Oishi, Shinya; Fujii, Nobutaka

    2012-08-14

    The development of novel peptide and peptidomimetic ligands for the CXC chemokine receptor 4 (CXCR4) as therapeutic agents for HIV-1 infection, cancer, and immune system diseases has grown over the last decade. In this perspective article, the design of CXCR4 agonists and antagonists from endogenous stromal cell-derived factor-1 (SDF-1)/CXCL12 and horseshoe crab-derived antimicrobial peptides and their therapeutic and diagnostic applications are described. PMID:22517031

  20. Dopamine D3 receptor ligands for drug addiction treatment: update on recent findings.

    PubMed

    Le Foll, Bernard; Collo, Ginetta; Rabiner, Eugenii A; Boileau, Isabelle; Merlo Pich, Emilio; Sokoloff, Pierre

    2014-01-01

    The dopamine D3 receptor is located in the limbic area and apparently mediates selective effects on motivation to take drugs and drug-seeking behaviors, so that there has been considerable interest on the possible use of D3 receptor ligands to treat drug addiction. However, only recently selective tools allowing studying this receptor have been developed. This chapter presents an overview of findings that were presented at a symposium on the conference Dopamine 2013 in Sardinia in May 2013. Novel neurobiological findings indicate that drugs of abuse can lead to significant structural plasticity in rodent brain and that this is dependent on the availability of functional dopamine D3 autoreceptor, whose activation increased phosphorylation in the ERK pathway and in the Akt/mTORC1 pathway indicating the parallel engagement of a series of intracellular signaling pathways all involved in cell growth and survival. Preclinical findings using animal models of drug-seeking behaviors confirm that D3 antagonists have a promising profile to treat drug addiction across drugs of abuse type. Imaging the D3 is now feasible in human subjects. Notably, the development of (+)-4-propyl-9-hydroxynaphthoxazine ligand used in positron emission tomography (PET) studies in humans allows to measure D3 and D2 receptors based on the area of the brain under study. This PET ligand has been used to confirm up-regulation of D3 sites in psychostimulant users and to reveal that tobacco smoking produces elevation of dopamine at the level of D3 sites. There are now novel antagonists being developed, but also old drugs such as buspirone, that are available to test the D3 hypothesis in humans. The first results of clinical investigations are now being provided. Overall, those recent findings support further exploration of D3 ligands to treat drug addiction. PMID:24968784

  1. Neuroprotective properties of peroxisome proliferator-activated receptor alpha (PPARα) and its lipid ligands.

    PubMed

    Fidaleo, Marco; Fanelli, Francesca; Ceru, Maria Paola; Moreno, Sandra

    2014-01-01

    Signalling lipids are known to control a wide array of cellular processes, including cell proliferation, apoptosis, migration, and energy metabolism. Fatty acids and their derivatives, eicosanoids, phosphoinositides, sphingolipids, some cannabinoid-like molecules bind and activate nuclear receptors, including peroxisome proliferator-activated receptors (PPARs). This subfamily of transcription factors comprises three isotypes - PPARα (NR1C1), PPAR β/δ (NR1C2), PPARγ (NR1C3) - which bind to specific DNA response elements, as heterodimers with retinoid X receptors. PPAR activity is modulated by post-translational modifications and cofactors, towards which they show differential affinity. The three PPARs mutually interact, being integrated in a complex system, leading to the concept of a "PPAR triad". Nevertheless, the isotypes also show distinct actions on cellular physiology and partially different tissue, ligand and target gene specificities. In the brain, while the functions of PPARγ and its ligands are being thoroughly investigated, the actual and potential roles of PPARα and β/δ are far from being clarified. PPARα appears especially intriguing, since it is selectively expressed in certain brain areas and neuronal/glial populations, and modulates antioxidant responses, neurotransmission, neuroinflammation, neurogenesis, and glial cell proliferation/differentiation. This receptor and its endogenous ligands, including oleoylethanoloamide (OEA) and palmitoylethanolamide (PEA), are involved in physiological and pathological responses, such as satiety, memory consolidation, and modulation of pain perception. The protective role of PPARα agonists in neurodegenerative diseases and in neuropsychiatric disorders makes manipulation of this pathway highly attractive as therapeutic strategy for neuropathological conditions. In this review, we focus on the pleiotropic functions of PPARα and its lipid ligands in the nervous tissue, devoting special attention to

  2. Receptor Tyrosine Kinases, TYRO3, AXL, and MER, Demonstrate Distinct Patterns and Complex Regulation of Ligand-induced Activation*

    PubMed Central

    Tsou, Wen-I; Nguyen, Khanh-Quynh N.; Calarese, Daniel A.; Garforth, Scott J.; Antes, Anita L.; Smirnov, Sergey V.; Almo, Steve C.; Birge, Raymond B.; Kotenko, Sergei V.

    2014-01-01

    TYRO3, AXL, and MER receptors (TAMs) are three homologous type I receptor-tyrosine kinases that are activated by endogenous ligands, protein S (PROS1) and growth arrest-specific gene 6 (GAS6). These ligands can either activate TAMs as soluble factors, or, in turn, opsonize phosphatidylserine (PS) on apoptotic cells (ACs) and serve as bridging molecules between ACs and TAMs. Abnormal expression and activation of TAMs have been implicated in promoting proliferation and survival of cancer cells, as well as in suppressing anti-tumor immunity. Despite the fact that TAM receptors share significant similarity, little is known about the specificity of interaction between TAM receptors and their ligands, particularly in the context of ACs, and about the functional diversity of TAM receptors. To study ligand-mediated activation of TAMs, we generated a series of reporter cell lines expressing chimeric TAM receptors. Using this system, we found that each TAM receptor has a unique pattern of interaction with and activation by GAS6 and PROS1, which is also differentially affected by the presence of ACs, PS-containing lipid vesicles and enveloped virus. We also demonstrated that γ-carboxylation of ligands is essential for the full activation of TAMs and that soluble immunoglobulin-like TAM domains act as specific ligand antagonists. These studies demonstrate that, despite their similarity, TYRO3, AXL, and MER are likely to perform distinct functions in both immunoregulation and the recognition and removal of ACs. PMID:25074926

  3. Search for an Endogenous Bombesin-Like Receptor 3 (BRS-3) Ligand Using Parabiotic Mice

    PubMed Central

    Lateef, Dalya M.; Xiao, Cuiying; Reitman, Marc L.

    2015-01-01

    Bombesin-like receptor 3 (BRS-3) is an X-linked G protein-coupled receptor involved in the regulation of energy homeostasis. Brs3 null (Brs3-/y) mice become obese. To date, no high affinity endogenous ligand has been identified. In an effort to detect a circulating endogenous BRS-3 ligand, we generated parabiotic pairs of mice between Brs3-/y and wild type (WT) mice or between WT controls. Successful parabiosis was demonstrated by circulatory dye exchange. The Brs3-/y-WT and WT-WT pairs lost similar weight immediately after surgery. After 9 weeks on a high fat diet, the Brs3-/y-WT pairs weighed more than the WT-WT pairs. Within the Brs3-/y-WT pairs, the Brs3-/y mice had greater adiposity than the WT mice, but comparable lean and liver weights. Compared to WT mice in WT-WT pairs, Brs3-/y and WT mice in Brs3-/y-WT pairs each had greater lean mass, and the Brs3-/y mice also had greater adiposity. These results contrast to those reported for parabiotic pairs of leptin receptor null (Leprdb/db) and WT mice, where high leptin levels in the Leprdb/db mice cause the WT parabiotic partners to lose weight. Our data demonstrate that a circulating endogenous BRS-3 ligand, if present, is not sufficient to reduce adiposity in parabiotic partners of Brs3-/y mice. PMID:26562312

  4. Multitarget-directed tricyclic pyridazinones as G protein-coupled receptor ligands and cholinesterase inhibitors.

    PubMed

    Pau, Amedeo; Catto, Marco; Pinna, Giovanni; Frau, Simona; Murineddu, Gabriele; Asproni, Battistina; Curzu, Maria M; Pisani, Leonardo; Leonetti, Francesco; Loza, Maria Isabel; Brea, José; Pinna, Gérard A; Carotti, Angelo

    2015-06-01

    By following a multitarget ligand design approach, a library of 47 compounds was prepared, and they were tested as binders of selected G protein-coupled receptors (GPCRs) and inhibitors of acetyl and/or butyryl cholinesterase. The newly designed ligands feature pyridazinone-based tricyclic scaffolds connected through alkyl chains of variable length to proper amine moieties (e.g., substituted piperazines or piperidines) for GPCR and cholinesterase (ChE) molecular recognition. The compounds were tested at three different GPCRs, namely serotoninergic 5-HT1A, adrenergic α1A, and dopaminergic D2 receptors. Our main goal was the discovery of compounds that exhibit, in addition to ChE inhibition, antagonist activity at 5-HT1A because of its involvement in neuronal deficits typical of Alzheimer's and other neurodegenerative diseases. Ligands with nanomolar affinity for the tested GPCRs were discovered, but most of them behaved as dual antagonists of α1A and 5-HT1A receptors. Nevertheless, several compounds displaying this GPCR affinity profile also showed moderate to good inhibition of AChE and BChE, thus deserving further investigations to exploit the therapeutic potential of such unusual biological profiles. PMID:25924828

  5. A novel role for Glucocorticoid-Induced TNF Receptor Ligand (Gitrl) in early embryonic zebrafish development.

    PubMed

    Poulton, Lynn D; Nolan, Kathleen F; Anastasaki, Corina; Waldmann, Herman; Patton, E Elizabeth

    2010-01-01

    Tumour necrosis factor ligand and receptor superfamily (TNFSF and TNFRSF) members have diverse and well-studied functions in the immune system. Additional, non-immunological roles, such as in the morphogenesis of bone, tooth, hair and skin have also been described for some members. GITRL and its receptor GITR are well-described as co-regulators of the mammalian immune response. Here, we describe the identification and cloning of their zebrafish homologues and demonstrate a novel role for the ligand, but not the receptor, in early vertebrate development. The assignment of zebrafish Gitrl and Gitr was supported by homology and phylogenetic analysis. The ligand exhibited an oscillating pattern of mRNA expression during the first 36 hours post fertilization, during which time gitr mRNA was not detected, and morpholino oligonucleotide-mediated knock-down of gitrl, but not of gitr, resulted in disruption of early embryogenesis, most clearly revealed during gastrulation, which corresponded to the earliest peak in gitrl mRNA expression (5.25-10 hpf). We found Stat3 signalling to be altered in the gitrl-morphants, suggesting that one possible role for Gitrl during embryogenesis may be modulation of Jak/Stat signalling. PMID:19598108

  6. Two disparate ligand binding sites in the human P2Y1 receptor

    PubMed Central

    Zhang, Dandan; Gao, Zhan-Guo; Zhang, Kaihua; Kiselev, Evgeny; Crane, Steven; Wang, Jiang; Paoletta, Silvia; Yi, Cuiying; Ma, Limin; Zhang, Wenru; Han, Gye Won; Liu, Hong; Cherezov, Vadim; Katritch, Vsevolod; Jiang, Hualiang; Stevens, Raymond C.; Jacobson, Kenneth A.; Zhao, Qiang; Wu, Beili

    2015-01-01

    In response to adenosine 5′-diphosphate, the P2Y1 receptor (P2Y1R) facilitates platelet aggregation, and thus serves as an important antithrombotic drug target. Here we report the crystal structures of the human P2Y1R in complex with a nucleotide antagonist MRS2500 at 2.7Å resolution, and with a non-nucleotide antagonist BPTU at 2.2Å resolution. The structures reveal two distinct ligand binding sites, providing atomic details of P2Y1R’s unique ligand binding modes. MRS2500 recognizes a binding site within the seven transmembrane bundle of P2Y1R, which, however, is different in shape and location from the nucleotide binding site in previously determined P2Y12R structure. BPTU binds to an allosteric pocket on the external receptor interface with the lipid bilayer, making it the first structurally characterized selective G protein-coupled receptor (GPCR) ligand located entirely outside of the helical bundle. These high-resolution insights into P2Y1R should enable discovery of new orthosteric and allosteric antithrombotic drugs with reduced adverse effects. PMID:25822790

  7. Crystal structure of the TRANCE/RANKL cytokine reveals determinants of receptor-ligand specificity

    PubMed Central

    Lam, Jonathan; Nelson, Christopher A.; Ross, F. Patrick; Teitelbaum, Steven L.; Fremont, Daved H.

    2001-01-01

    RANK, the receptor activator of NF-κB, and its ligand RANKL (initially termed TRANCE, also termed ODF and OPGL), are a TNF superfamily receptor-ligand pair that govern the development and function of osteoclasts, lymphoid tissue, and mammary epithelium. While TNF family cytokines share a common structural scaffold, individual receptor-ligand pairs associate with high specificity. Given the low level of amino acid conservation among members of the TNF superfamily, the means by which these molecules achieve specificity cannot be completely understood without knowledge of their three-dimensional structures. To determine the elements of RANKL that mediate RANK activation, we have crystallized the ectodomain of murine RANKL and solved its structure to a resolution of 2.6 Å. RANKL self-associates as a homotrimer with four unique surface loops that distinguish it from other TNF family cytokines. Mutagenesis of selected residues in these loops significantly modulates RANK activation, as evidenced by in vitro osteoclastogenesis, thereby establishing their necessity in mediating the biological activities of RANKL. Such structural determinants of RANKL-RANK specificity may be of relevance in the pharmacologic design of compounds to ameliorate osteopenic disorders of bone. PMID:11581298

  8. Search for an Endogenous Bombesin-Like Receptor 3 (BRS-3) Ligand Using Parabiotic Mice.

    PubMed

    Lateef, Dalya M; Xiao, Cuiying; Reitman, Marc L

    2015-01-01

    Bombesin-like receptor 3 (BRS-3) is an X-linked G protein-coupled receptor involved in the regulation of energy homeostasis. Brs3 null (Brs3-/y) mice become obese. To date, no high affinity endogenous ligand has been identified. In an effort to detect a circulating endogenous BRS-3 ligand, we generated parabiotic pairs of mice between Brs3-/y and wild type (WT) mice or between WT controls. Successful parabiosis was demonstrated by circulatory dye exchange. The Brs3-/y-WT and WT-WT pairs lost similar weight immediately after surgery. After 9 weeks on a high fat diet, the Brs3-/y-WT pairs weighed more than the WT-WT pairs. Within the Brs3-/y-WT pairs, the Brs3-/y mice had greater adiposity than the WT mice, but comparable lean and liver weights. Compared to WT mice in WT-WT pairs, Brs3-/y and WT mice in Brs3-/y-WT pairs each had greater lean mass, and the Brs3-/y mice also had greater adiposity. These results contrast to those reported for parabiotic pairs of leptin receptor null (Leprdb/db) and WT mice, where high leptin levels in the Leprdb/db mice cause the WT parabiotic partners to lose weight. Our data demonstrate that a circulating endogenous BRS-3 ligand, if present, is not sufficient to reduce adiposity in parabiotic partners of Brs3-/y mice. PMID:26562312

  9. Non-Ligand-Induced Dimerization is Sufficient to Initiate the Signalling and Endocytosis of EGF Receptor

    PubMed Central

    Kourouniotis, George; Wang, Yi; Pennock, Steven; Chen, Xinmei; Wang, Zhixiang

    2016-01-01

    The binding of epidermal growth factor (EGF) to EGF receptor (EGFR) stimulates cell mitogenesis and survival through various signalling cascades. EGF also stimulates rapid EGFR endocytosis and its eventual degradation in lysosomes. The immediate events induced by ligand binding include receptor dimerization, activation of intrinsic tyrosine kinase and autophosphorylation. However, in spite of intensified efforts, the results regarding the roles of these events in EGFR signalling and internalization is still very controversial. In this study, we constructed a chimeric EGFR by replacing its extracellular domain with leucine zipper (LZ) and tagged a green fluorescent protein (GFP) at its C-terminus. We showed that the chimeric LZ-EGFR-GFP was constitutively dimerized. The LZ-EGFR-GFP dimer autophosphorylated each of its five well-defined C-terminal tyrosine residues as the ligand-induced EGFR dimer does. Phosphorylated LZ-EGFR-GFP was localized to both the plasma membrane and endosomes, suggesting it is capable of endocytosis. We also showed that LZ-EGFR-GFP activated major signalling proteins including Src homology collagen-like (Shc), extracellular signal-regulated kinase (ERK) and Akt. Moreover, LZ-EGFR-GFP was able to stimulate cell proliferation. These results indicate that non-ligand induced dimerization is sufficient to activate EGFR and initiate cell signalling and EGFR endocytosis. We conclude that receptor dimerization is a critical event in EGF-induced cell signalling and EGFR endocytosis. PMID:27463710

  10. BFCOD activity in fish cell lines and zebrafish embryos and its modulation by chemical ligands of human aryl hydrocarbon and nuclear receptors.

    PubMed

    Creusot, N; Brion, F; Piccini, B; Budzinski, H; Porcher, J M; Aït-Aïssa, S

    2015-11-01

    Assessment of exposure and effect of fish to pharmaceuticals that contaminate aquatic environment is a current major issue in ecotoxicology and there is a need to develop specific biological marker to achieve this goal. Benzyloxy-4-trifluoromethylcoumarin-O-debenzyloxylase (BFCOD) enzymatic activity has been commonly used to monitor CYP3A activity in fish. In this study, we assessed the capacity of a panel of toxicologically relevant chemicals to modulate BFCOD activity in fish, by using in vitro and in vivo bioassays based on fish liver cell lines (PLHC-1, ZFL, RTL-W1) and zebrafish embryos, respectively. Basal BFCOD activity was detectable in all biological models and was differently modulated by chemicals. Ligands of human androgens, glucocorticoids, or pregnanes X receptors (i.e., dexamethasone, RU486, rifampicin, SR12813, T0901317, clotrimazole, ketoconazole, testosterone, and dihydrotestosterone) moderately increased or inhibited BFCOD activity, with some variations between the models. No common feature could be drawn by regards to their capacity to bind to these receptors, which contrasts with their known effect on mammalian CYP3A. In contrast, dioxins and polycyclic aromatic hydrocarbons (PAHs) strongly induced BFCOD activity (up to 30-fold) in a time- and concentration-dependent manner, both in vitro in all cell lines and in vivo in zebrafish embryos. These effects were AhR dependent as indicated by suppression of induced BFCOD by the AhR pathway inhibitors 8-methoxypsoralen and α-naphthoflavone. Altogether our result further question the relevance of using liver BFCOD activity as a biomarker of fish exposure to CYP3A-active compounds such as pharmaceuticals. PMID:25471715

  11. 3D modeling, ligand binding and activation studies of the cloned mouse delta, mu; and kappa opioid receptors.

    PubMed

    Filizola, M; Laakkonen, L; Loew, G H

    1999-11-01

    Refined 3D models of the transmembrane domains of the cloned delta, mu and kappa opioid receptors belonging to the superfamily of G-protein coupled receptors (GPCRs) were constructed from a multiple sequence alignment using the alpha carbon template of rhodopsin recently reported. Other key steps in the procedure were relaxation of the 3D helix bundle by unconstrained energy optimization and assessment of the stability of the structure by performing unconstrained molecular dynamics simulations of the energy optimized structure. The results were stable ligand-free models of the TM domains of the three opioid receptors. The ligand-free delta receptor was then used to develop a systematic and reliable procedure to identify and assess putative binding sites that would be suitable for similar investigation of the other two receptors and GPCRs in general. To this end, a non-selective, 'universal' antagonist, naltrexone, and agonist, etorphine, were used as probes. These ligands were first docked in all sites of the model delta opioid receptor which were sterically accessible and to which the protonated amine of the ligands could be anchored to a complementary proton-accepting residue. Using these criteria, nine ligand-receptor complexes with different binding pockets were identified and refined by energy minimization. The properties of all these possible ligand-substrate complexes were then examined for consistency with known experimental results of mutations in both opioid and other GPCRs. Using this procedure, the lowest energy agonist-receptor and antagonist-receptor complexes consistent with these experimental results were identified. These complexes were then used to probe the mechanism of receptor activation by identifying differences in receptor conformation between the agonist and the antagonist complex during unconstrained dynamics simulation. The results lent support to a possible activation mechanism of the mouse delta opioid receptor similar to that recently

  12. Trafficking of epidermal growth factor receptor ligands in polarized epithelial cells.

    PubMed

    Singh, Bhuminder; Coffey, Robert J

    2014-01-01

    A largely unilamellar epithelial layer lines body cavities and organ ducts such as the digestive tract and kidney tubules. This polarized epithelium is composed of biochemically and functionally separate apical and basolateral surfaces. The epidermal growth factor receptor (EGFR) signaling pathway is a critical regulator of epithelial homeostasis and is perturbed in a number of epithelial disorders. It is underappreciated that in vivo EGFR signaling is most often initiated by cell-surface delivery and processing of one of seven transmembrane ligands, resulting in release of the soluble form that binds EGFR. In polarized epithelial cells, EGFR is restricted largely to the basolateral surface, and apical or basolateral ligand delivery therefore has important biological consequences. In vitro approaches have been used to study the biosynthesis, cell-surface delivery, proteolytic processing, and release of soluble EGFR ligands in polarized epithelial cells. We review these results, discuss their relevance to normal physiology, and demonstrate the pathophysiological consequences of aberrant trafficking. These studies have uncovered a rich diversity of apico-basolateral trafficking mechanisms among the EGFR ligands, provided insights into the pathogenesis of an inherited magnesium-wasting disorder of the kidney (isolated renal hypomagnesemia), and identified a new mode of EGFR ligand signaling via exosomes. PMID:24215440

  13. Trafficking of Epidermal Growth Factor Receptor Ligands in Polarized Epithelial Cells

    PubMed Central

    Singh, Bhuminder; Coffey, Robert J.

    2014-01-01

    A largely unilamellar epithelial layer lines body cavities and organ ducts such as the digestive tract and kidney tubules. This polarized epithelium is composed of biochemically and functionally separate apical and basolateral surfaces. The epidermal growth factor receptor (EGFR) signaling pathway is a critical regulator of epithelial homeostasis and is perturbed in a number of epithelial disorders. It is underappreciated that in vivo EGFR signaling is most often initiated by cell-surface delivery and processing of one of seven transmembrane ligands, resulting in release of the soluble form that binds EGFR. In polarized epithelial cells, EGFR is restricted largely to the basolateral surface, and apical or basolateral ligand delivery therefore has important biological consequences. In vitro approaches have been used to study the biosynthesis, cell-surface delivery, proteolytic processing, and release of soluble EGFR ligands in polarized epithelial cells. We review these results, discuss their relevance to normal physiology, and demonstrate the pathophysiological consequences of aberrant trafficking. These studies have uncovered a rich diversity of apico-basolateral trafficking mechanisms among the EGFR ligands, provided insights into the pathogenesis of an inherited magnesium-wasting disorder of the kidney (isolated renal hypomagnesemia), and identified a new mode of EGFR ligand signaling via exosomes. PMID:24215440

  14. Selective Induction of Apoptosis in Mature T Lymphocytes by Variant T Cell Receptor Ligands

    PubMed Central

    Combadière, Behazine; e Sousa, Caetano Reis; Germain, Ronald N.; Lenardo, Michael J.

    1998-01-01

    Activation, anergy, and apoptosis are all possible outcomes of T cell receptor (TCR) engagement. The first leads to proliferation and effector function, whereas the others can lead to partial or complete immunological tolerance. Structural variants of immunizing peptide–major histocompatibility complex molecule ligands that induce selective lymphokine secretion or anergy in mature T cells in association with altered intracellular signaling events have been described. Here we describe altered ligands for mature mouse CD4+ T helper 1 cells that lead to T cell apoptosis by the selective expression of Fas ligand (FasL) and tumor necrosis factor (TNF) without concomitant IL-2, IL-3, or interferon γ production. All ligands that stimulated cell death were found to induce FasL and TNF mRNA expression and TCR aggregation (“capping”) at the cell surface, but did not elicit a common pattern of tyrosine phosphorylation of the TCR-associated signal transduction chains. Thus, TCR ligands that uniquely trigger T cell apoptosis without inducing cytokines that are normally associated with activation can be identified. PMID:9449715

  15. MODELING THE BINDING OF THE METABOLITES OF SOME POLYCYCLIC AROMTIC HYDROCARBONS TO THE LIGAND BINDING DOMAIN OF THE ESTROGEN RECEPTOR

    EPA Science Inventory

    Modeling the binding of the metabolites of some Polycyclic Aromatic Hydrocarbons to the ligand binding domain of the estrogen receptor
    James Rabinowitz, Stephen Little, Katrina Brown, National Health and Environmental Effects Research Laboratory, Research Triangle Park, NC; Un...

  16. Aryl hydrocarbon receptor mediates both proinflammatory and anti-inflammatory effects in lipopolysaccharide-activated microglia.

    PubMed

    Lee, Yi-Hsuan; Lin, Chun-Hua; Hsu, Pei-Chien; Sun, Yu-Yo; Huang, Yu-Jie; Zhuo, Jiun-Horng; Wang, Chen-Yu; Gan, Yu-Ling; Hung, Chia-Chi; Kuan, Chia-Yi; Shie, Feng-Shiun

    2015-07-01

    The aryl hydrocarbon receptor (AhR) regulates peripheral immunity; but its role in microglia-mediated neuroinflammation in the brain remains unknown. Here, we demonstrate that AhR mediates both anti-inflammatory and proinflammatory effects in lipopolysaccharide (LPS)-activated microglia. Activation of AhR by its ligands, formylindolo[3,2-b]carbazole (FICZ) or 3-methylcholanthrene (3MC), attenuated LPS-induced microglial immune responses. AhR also showed proinflammatory effects, as evidenced by the findings that genetic silence of AhR ameliorated the LPS-induced microglial immune responses and LPS-activated microglia-mediated neurotoxicity. Similarly, LPS-induced expressions of tumor necrosis factor α (TNFα) and inducible nitric oxide synthase (iNOS) were reduced in the cerebral cortex of AhR-deficient mice. Intriguingly, LPS upregulated and activated AhR in the absence of AhR ligands via the MEK1/2 signaling pathway, which effects were associated with a transient inhibition of cytochrome P450 1A1 (CYP1A1). Although AhR ligands synergistically enhance LPS-induced AhR activation, leading to suppression of LPS-induced microglial immune responses, they cannot do so on their own in microglia. Chromatin immunoprecipitation results further revealed that LPS-FICZ co-treatment, but not LPS alone, not only resulted in co-recruitment of both AhR and NFκB onto the κB site of TNFα gene promoter but also reduced LPS-induced AhR binding to the DRE site of iNOS gene promoter. Together, we provide evidence showing that microglial AhR, which can be activated by LPS, exerts bi-directional effects on the regulation of LPS-induced neuroinflammation, depending on the availability of external AhR ligands. These findings confer further insights into the potential link between environmental factors and the inflammatory brain disorders. PMID:25690886

  17. Crystal structure of the ligand-binding domain of the promiscuous EphA4 receptor reveals two distinct conformations

    SciTech Connect

    Singla, Nikhil; Goldgur, Yehuda; Xu, Kai; Paavilainen, Sari; Nikolov, Dimitar B.; Himanen, Juha P.

    2010-09-08

    Eph receptors and their ephrin ligands are important mediators of cell-cell communication. They are divided in two subclasses based on their affinities for each other and on sequence conservation. Receptor-ligand binding within each subclass is fairly promiscuous, while binding cross the subclasses happens rarely. EphA4 is an exception to this general rule, since it has long been known to bind both A- and B-class ephrin ligands but the reason for this exceptional behavior has not been worked out at molecular level. Recent structural and biochemical studies on EphA4 ligand-binding domain alone and in complex with its ligands have addressed this question. However, the published structures of EphA4/ephrin complexes differ considerably from each other and strikingly different explanations for the exceptional promiscuity of EphA4 were proposed. To address these contradictory findings, we have determined a crystal structure of the EphA4 ligand-binding domain at 2.3 {angstrom} resolution and show that the receptor has an unprecedented ability to exist in two very different, well-ordered conformations even in the unbound state. Our results suggest that the ligand promiscuity of the Ephs is directly correlated with the structural flexibility of the ligand-binding surface of the receptor.

  18. Role of extracellular disulfide-bonded cysteines in the ligand binding function of the. beta. sub 2 -adrenergic receptor

    SciTech Connect

    Dohlman, H.G.; Caron, M.G.; DeBlasi, A.; Frielle, T.; Lefkowitz, R.J. )

    1990-03-06

    Evidence is presented for a role of disulfide bridging in forming the ligand binding site of the {beta}{sub 2}-adrenergic receptor ({beta}AR). The presence of disulfide bonds at the ligand binding site is indicated by competitive inhibition by dithiothreitol (DTT) in radioligand binding assays, by specific protection by {beta}-adrenergic ligands of these effects, and by the requirement of disulfide reduction for limit proteolysis of affinity ligand labeled receptor. The kinetics of binding inhibition by DTT suggest at least two pairs of disulfide-bonded cysteines essential for normal binding. Through site-directed mutagenesis, the authors indeed were able to identify four cysteines which are critical for normal binding affinities and for the proper expression of functional {beta}AR at the cell surface. Unexpectedly, the four cysteines required for normal ligand binding are not those located within the hydrophobic transmembrane domains of the receptor (where ligand binding is presumed to occur) but lie in the extracellular hydrophilic loops connecting these transmembrane segments. These findings indicate that in addition to the well-documented involvement of the membrane-spanning domains of the receptor in ligand binding, there is an important and previously unsuspected role of the hydrophilic extracellular domains in forming the ligand binding site.

  19. Diversity and Inter-Connections in the CXCR4 Chemokine Receptor/Ligand Family: Molecular Perspectives

    PubMed Central

    Pawig, Lukas; Klasen, Christina; Weber, Christian; Bernhagen, Jürgen; Noels, Heidi

    2015-01-01

    CXCR4 and its ligand CXCL12 mediate the homing of progenitor cells in the bone marrow and their recruitment to sites of injury, as well as affect processes such as cell arrest, survival, and angiogenesis. CXCL12 was long thought to be the sole CXCR4 ligand, but more recently the atypical chemokine macrophage migration inhibitory factor (MIF) was identified as an alternative, non-cognate ligand for CXCR4 and shown to mediate chemotaxis and arrest of CXCR4-expressing T-cells. This has complicated the understanding of CXCR4-mediated signaling and associated biological processes. Compared to CXCL12/CXCR4-induced signaling, only few details are known on MIF/CXCR4-mediated signaling and it remains unclear to which extent MIF and CXCL12 reciprocally influence CXCR4 binding and signaling. Furthermore, the atypical chemokine receptor 3 (ACKR3) (previously CXCR7) has added to the complexity of CXCR4 signaling due to its ability to bind CXCL12 and MIF, and to evoke CXCL12- and MIF-triggered signaling independently of CXCR4. Also, extracellular ubiquitin (eUb) and the viral protein gp120 (HIV) have been reported as CXCR4 ligands, whereas viral chemokine vMIP-II (Herpesvirus) and human β3-defensin (HBD-3) have been identified as CXCR4 antagonists. This review will provide insight into the diversity and inter-connections in the CXCR4 receptor/ligand family. We will discuss signaling pathways initiated by binding of CXCL12 vs. MIF to CXCR4, elaborate on how ACKR3 affects CXCR4 signaling, and summarize biological functions of CXCR4 signaling mediated by CXCL12 or MIF. Also, we will discuss eUb and gp120 as alternative ligands for CXCR4, and describe vMIP-II and HBD-3 as antagonists for CXCR4. Detailed insight into biological effects of CXCR4 signaling und underlying mechanisms, including diversity of CXCR4 ligands and inter-connections with other (chemokine) receptors, is clinically important, as the CXCR4 antagonist AMD3100 has been approved as stem cell mobilizer in specific

  20. Potential clinical relevance of Eph receptors and ephrin ligands expressed in prostate carcinoma cell lines.

    PubMed

    Fox, Brian P; Tabone, Christopher J; Kandpal, Raj P

    2006-04-21

    The family of Eph and ephrin receptors is involved in a variety of functions in normal cells, and the alterations in their expression profiles have been observed in several cancers. We have compared the transcripts for Eph receptors and ephrin ligands in cell lines established from normal prostate epithelium and several carcinoma cell lines isolated from prostate tumors of varying degree of metastasis. These cell lines included NPTX, CTPX, LNCaP, DU145, PC-3, and PC-3ML. The cell lines displayed characteristic pattern of expression for specific Eph receptors and ephrin ligands, thus allowing identification of Eph receptor signatures for a particular cell line. The sensitivity of these transcripts to genome methylation is also investigated by treating the cells with 5-aza-2'-deoxycytidine. The comparison of expression profiles revealed that normal prostate and primary prostate tumor cell lines differ in the expression of EphA3, EphB3, and ephrin A3 that are over-expressed in normal prostate. Furthermore, the transcript levels for EphA1 decrease progressively from normal prostate to primary prostate tumor cell line and metastatic tumor cells. A converse relationship was observed for ephrin B2. The treatment of cells with 5-aza-2'-deoxycytidine revealed the sensitivity of EphA3, EphA10, EphB3, and EphB6 to methylation status of genomic DNA. The utility of methylation specific PCR to identify prostate tumor cells and the importance of specific Eph receptors and ephrin ligands in initiation and progression of prostate tumor are discussed. PMID:16516143

  1. Data for amino acid alignment of Japanese stingray melanocortin receptors with other gnathostome melanocortin receptor sequences, and the ligand selectivity of Japanese stingray melanocortin receptors.

    PubMed

    Takahashi, Akiyoshi; Davis, Perry; Reinick, Christina; Mizusawa, Kanta; Sakamoto, Tatsuya; Dores, Robert M

    2016-06-01

    This article contains structure and pharmacological characteristics of melanocortin receptors (MCRs) related to research published in "Characterization of melanocortin receptors from stingray Dasyatis akajei, a cartilaginous fish" (Takahashi et al., 2016) [1]. The amino acid sequences of the stingray, D. akajei, MC1R, MC2R, MC3R, MC4R, and MC5R were aligned with the corresponding melanocortin receptor sequences from the elephant shark, Callorhinchus milii, the dogfish, Squalus acanthias, the goldfish, Carassius auratus, and the mouse, Mus musculus. These alignments provide the basis for phylogenetic analysis of these gnathostome melanocortin receptor sequences. In addition, the Japanese stingray melanocortin receptors were separately expressed in Chinese Hamster Ovary cells, and stimulated with stingray ACTH, α-MSH, β-MSH, γ-MSH, δ-MSH, and β-endorphin. The dose response curves reveal the order of ligand selectivity for each stingray MCR. PMID:27408924

  2. Binding kinetics and multi-bond: Finding correlations by synthesizing interactions between ligand-coated bionanoparticles and receptor surfaces.

    PubMed

    Wang, Wenjing; Voigt, Andreas; Wolff, Michael W; Reichl, Udo; Sundmacher, Kai

    2016-07-15

    The number of bonds formed between one single bionanoparticle and many surface receptors is an important subject to be studied but is seldom quantitatively investigated. A new evaluation of the correlation between binding kinetics and number of bonds is presented by varying ligand density and receptor density. An experimental system was developed using measurements with surface plasmon resonance spectroscopy. A corresponding multi-site adsorption model elucidated the correlation. The results show that with the increase of the receptor density, the adsorption rate first decreased when the number of bonds was below a maximum value and then increased when the number of bonds stayed at this maximum value. The investigation on ligand density variation suggests that the coating density on top of the bionanoparticle surface may have a particular value below which more ligand will accelerate the adsorption rate. The ratio of ligand amount bound by the receptors to the total ligand amount associated with a single bionanoparticle will remain constant even if one attaches more ligands to a bionanoparticle. We envision that the bionanoparticle desorption will not depend on density changes from either ligand or receptor when the number of bonds reaches a specific efficient value. PMID:27108189

  3. Initial receptor-ligand interactions modulate gene expression and phagosomal properties during both early and late stages of phagocytosis.

    PubMed

    Hoffmann, Eik; Marion, Sabrina; Mishra, Bibhuti Bhusan; John, Mathias; Kratzke, Ramona; Ahmad, Syed Furquan; Holzer, Daniela; Anand, Paras Kumar; Weiss, Dieter G; Griffiths, Gareth; Kuznetsov, Sergei A

    2010-09-01

    The receptors engaged during recognition and phagocytic uptake of microorganisms and particles influence signaling events and diverse subcellular responses that occur during phagosome formation and maturation. However, pathogens generally have multiple ligands on their surface, making it difficult to dissect the roles of individual receptors during phagocytosis. Moreover, it remains elusive to which extent receptor-ligand interactions and early binding events define the subsequent intracellular fate of phagosomes. Here, we used latex beads coupled to single ligands, focusing on immunoglobulin G, mannan, bacterial lipopolysaccharides and avidin, and monitored: (1) phagocytic uptake rates, (2) fusion of phagosomes with lysosomal compartments, (3) the gene expression profile during phagocytosis, (4) the protein composition of mature phagosomes and (5) time-dependent dynamics of protein association with phagosomes in J774.A1 mouse macrophages. The differently coated latex beads were internalized at different rates and exhibited different kinetics of phagolysosomal fusion events dependent on their specific ligand. Furthermore, less than 60% of identified phagosomal proteins and only 10-15% of changes in gene expression were common to all investigated ligands. These findings demonstrate that each single ligand induced a distinct pattern of genes and a different protein composition of phagosomes. Taken together, our data argue that phagocytic receptor-specific programs of signaling events direct phagosomes to different physiological states and support the existence of a specific receptor-ligand 'signature' during the whole process of phagocytosis. PMID:20579766

  4. Inhibition of Eph receptor-ephrin ligand interaction by tea polyphenols

    PubMed Central

    Noberini, Roberta; Koolpe, Mitchell; Lamberto, Ilaria; Pasquale, Elena B.

    2013-01-01

    Tea contains a variety of bioactive chemicals, such as catechins and other polyphenols. These compounds are thought to be responsible for the health benefits of tea consumption by affecting the function of many cellular targets, not all of which have been identified. In a high-throughput screen for small molecule antagonists of the EphA4 receptor tyrosine kinase, we identified five tea polyphenols that substantially inhibit EphA4 binding to a synthetic peptide ligand. Further characterization of theaflavin monogallates from black tea and epigallocatechin-3,5-digallate from green tea revealed that these compounds at low micromolar concentrations also inhibit binding of the natural ephrin ligands to EphA4 and several other Eph receptors in in vitro assays. The compounds behave as competitive EphA4 antagonists, and their inhibitory activity is affected by amino acid mutations within the ephrin binding pocket of EphA4. In contrast, the major green tea catechin, epigallocatechin-3-gallate (EGCG), does not appear to be an effective Eph receptor antagonist. In cell culture assays, theaflavin monogallates and epigallocatechin-3,5-digallate inhibit ephrin-induced tyrosine phosphorylation (activation) of Eph receptors and endothelial capillary-like tube formation. However, the wider spectrum of Eph receptors affected by the tea derivatives in cells suggests additional mechanisms of inhibition besides interfering with ephrin binding. These results show that tea polyphenols derived from both black and green tea can suppress the biological activities of Eph receptors. Thus, the Eph receptor tyrosine kinase family represents an important class of targets for tea-derived phytochemicals. PMID:22750215

  5. The AhR agonist VAF347 augments retinoic acid-induced differentiation in leukemia cells.

    PubMed

    Ibabao, Christopher N; Bunaciu, Rodica P; Schaefer, Deanna M W; Yen, Andrew

    2015-01-01

    In binary cell-fate decisions, driving one lineage and suppressing the other are conjoined. We have previously reported that aryl hydrocarbon receptor (AhR) promotes retinoic acid (RA)-induced granulocytic differentiation of lineage bipotent HL-60 myeloblastic leukemia cells. VAF347, an AhR agonist, impairs the development of CD14(+)CD11b(+) monocytes from granulo-monocytic (GM) stage precursors. We thus hypothesized that VAF347 propels RA-induced granulocytic differentiation and impairs D3-induced monocytic differentiation of HL-60 cells. Our results show that VAF347 enhanced RA-induced cell cycle arrest, CD11b integrin expression and neutrophil respiratory burst. Granulocytic differentiation is known to be driven by MAPK signaling events regulated by Fgr and Lyn Src-family kinases, the CD38 cell membrane receptor, the Vav1 GEF, the c-Cbl adaptor, as well as AhR, all of which are embodied in a putative signalsome. We found that the VAF347 AhR ligand regulates the signalsome. VAF347 augments RA-induced expression of AhR, Lyn, Vav1, and c-Cbl as well as p47(phox). Several interactions of partners in the signalsome appear to be enhanced: Fgr interaction with c-Cbl, CD38, and with pS259c-Raf and AhR interaction with c-Cbl and Lyn. Thus, we report that, while VAF347 impedes monocytic differentiation induced by 1,25-dihydroxyvitamin D3, VAF347 promotes RA-induced differentiation. This effect seems to involve but not to be limited to Lyn, Vav1, c-Cbl, AhR, and Fgr. PMID:25941627

  6. Atypical Signaling and Functional Desensitization Response of MAS Receptor to Peptide Ligands

    PubMed Central

    Tirupula, Kalyan C.; Desnoyer, Russell; Speth, Robert C.; Karnik, Sadashiva S.

    2014-01-01

    MAS is a G protein-coupled receptor (GPCR) implicated in multiple physiological processes. Several physiological peptide ligands such as angiotensin-(1–7), angiotensin fragments and neuropeptide FF (NPFF) are reported to act on MAS. Studies of conventional G protein signaling and receptor desensitization upon stimulation of MAS with the peptide ligands are limited so far. Therefore, we systematically analyzed G protein signals activated by the peptide ligands. MAS-selective non-peptide ligands that were previously shown to activate G proteins were used as controls for comparison on a common cell based assay platform. Activation of MAS by the non-peptide agonist (1) increased intracellular calcium and D-myo-inositol-1-phosphate (IP1) levels which are indicative of the activation of classical Gαq-phospholipase C signaling pathways, (2) decreased Gαi mediated cAMP levels and (3) stimulated Gα12-dependent expression of luciferase reporter. In all these assays, MAS exhibited strong constitutive activity that was inhibited by the non-peptide inverse agonist. Further, in the calcium response assay, MAS was resistant to stimulation by a second dose of the non-peptide agonist after the first activation has waned suggesting functional desensitization. In contrast, activation of MAS by the peptide ligand NPFF initiated a rapid rise in intracellular calcium with very weak IP1 accumulation which is unlike classical Gαq-phospholipase C signaling pathway. NPFF only weakly stimulated MAS-mediated activation of Gα12 and Gαi signaling pathways. Furthermore, unlike non-peptide agonist-activated MAS, NPFF-activated MAS could be readily re-stimulated the second time by the agonists. Functional assays with key ligand binding MAS mutants suggest that NPFF and non-peptide ligands bind to overlapping regions. Angiotensin-(1–7) and other angiotensin fragments weakly potentiated an NPFF-like calcium response at non-physiological concentrations (≥100 µM). Overall, our data

  7. A Microbead Supported Membrane-Based Fluorescence Imaging Assay Reveals Intermembrane Receptor-Ligand Complex Dimension with Nanometer Precision.

    PubMed

    Biswas, Kabir H; Groves, Jay T

    2016-07-01

    Receptor-ligand complexes spanning a cell-cell interface inevitably establish a preferred intermembrane spacing based on the molecular dimensions and orientation of the complexes. This couples molecular binding events to membrane mechanics and large-scale spatial organization of receptors on the cell surface. Here, we describe a straightforward, epi-fluorescence-based method to precisely determine intermembrane receptor-ligand dimension at adhesions established by receptor-ligand binding between apposed membranes in vitro. Adhesions were reconstituted between planar and silica microbead supported membranes via specific interaction between cognate receptor/ligand pairs (EphA2/EphrinA1 and E-cadherin/anti-E-cadherin antibody). Epi-fluorescence imaging of the ligand enrichment zone in the supported membrane beneath the adhering microbead, combined with a simple geometrical interpretation, proves sufficient to estimate intermembrane receptor-ligand dimension with better than 1 nm precision. An advantage of this assay is that no specialized equipment or imaging methods are required. PMID:27264296

  8. New insights into the GABAA receptor structure and orthosteric ligand binding: Receptor modeling guided by experimental data

    PubMed Central

    Sander, Tommy; Frølund, Bente; Bruun, Anne Techau; Ivanov, Ivaylo; McCammon, J. Andrew; Balle, Thomas

    2011-01-01

    GABAA receptors (GABAARs) are ligand gated chloride ion channels that mediate overall inhibitory signaling in the CNS. A detailed understanding of their structure is important to gain insights in e.g. ligand binding and functional properties of this pharmaceutically important target. Homology modeling is a necessary tool in this regard because experimentally determined structures are lacking. Here we present an exhaustive approach for creating a high quality model of the α1β2γ2 subtype of the GABAAR ligand binding domain, and we demonstrate its usefulness in understanding details of orthosteric ligand binding. The model was constructed by using multiple templates and by incorporation of knowledge from biochemical/pharmacological experiments. It was validated on the basis of objective energy functions, its ability to account for available residue specific information, and its stability in molecular dynamics (MD) compared to that of two homologous crystal structures. We then combined the model with extensive structure-activity relationships available from two homologous series of orthosteric GABAAR antagonists to create a detailed hypothesis for their binding modes. Excellent agreement with key experimental data was found, including the ability of the model to accommodate and explain a previously developed pharmacophore model. A coupling to agonist binding was thereby established and discussed in relation to activation mechanisms. Our results highlight the importance of critical evaluation and optimization of each step in the homology modeling process. The approach taken here can greatly aid in increasing the understanding of GABAARs and related receptors where structural insight is limited and reliable models are difficult to obtain. PMID:21365676

  9. Dynamics of the Ligand Binding Domain Layer during AMPA Receptor Activation.

    PubMed

    Baranovic, Jelena; Chebli, Miriam; Salazar, Hector; Carbone, Anna L; Faelber, Katja; Lau, Albert Y; Daumke, Oliver; Plested, Andrew J R

    2016-02-23

    Ionotropic glutamate receptors are postsynaptic tetrameric ligand-gated channels whose activity mediates fast excitatory transmission. Glutamate binding to clamshell-shaped ligand binding domains (LBDs) triggers opening of the integral ion channel, but how the four LBDs orchestrate receptor activation is unknown. Here, we present a high-resolution x-ray crystal structure displaying two tetrameric LBD arrangements fully bound to glutamate. Using a series of engineered metal ion trapping mutants, we showed that the more compact of the two assemblies corresponds to an arrangement populated during activation of full-length receptors. State-dependent cross-linking of the mutants identified zinc bridges between the canonical active LBD dimers that formed when the tetramer was either fully or partially bound by glutamate. These bridges also stabilized the resting state, consistent with the recently published full-length apo structure. Our results provide insight into the activation mechanism of glutamate receptors and the complex conformational space that the LBD layer can sample. PMID:26910426

  10. Oxytocic plant cyclotides as templates for peptide G protein-coupled receptor ligand design

    PubMed Central

    Koehbach, Johannes; O’Brien, Margaret; Muttenthaler, Markus; Miazzo, Marion; Akcan, Muharrem; Elliott, Alysha G.; Daly, Norelle L.; Harvey, Peta J.; Arrowsmith, Sarah; Gunasekera, Sunithi; Smith, Terry J.; Wray, Susan; Göransson, Ulf; Dawson, Philip E.; Craik, David J.; Freissmuth, Michael; Gruber, Christian W.

    2013-01-01

    Cyclotides are plant peptides comprising a circular backbone and three conserved disulfide bonds that confer them with exceptional stability. They were originally discovered in Oldenlandia affinis based on their use in traditional African medicine to accelerate labor. Recently, cyclotides have been identified in numerous plant species of the coffee, violet, cucurbit, pea, potato, and grass families. Their unique structural topology, high stability, and tolerance to sequence variation make them promising templates for the development of peptide-based pharmaceuticals. However, the mechanisms underlying their biological activities remain largely unknown; specifically, a receptor for a native cyclotide has not been reported hitherto. Using bioactivity-guided fractionation of an herbal peptide extract known to indigenous healers as “kalata-kalata,” the cyclotide kalata B7 was found to induce strong contractility on human uterine smooth muscle cells. Radioligand displacement and second messenger-based reporter assays confirmed the oxytocin and vasopressin V1a receptors, members of the G protein-coupled receptor family, as molecular targets for this cyclotide. Furthermore, we show that cyclotides can serve as templates for the design of selective G protein-coupled receptor ligands by generating an oxytocin-like peptide with nanomolar affinity. This nonapeptide elicited dose-dependent contractions on human myometrium. These observations provide a proof of concept for the development of cyclotide-based peptide ligands. PMID:24248349

  11. Characterization of opiate receptor heterogeneity using affinity ligands and phospholipase A/sub 2/

    SciTech Connect

    Reichman, M.

    1985-01-01

    The primary aim of the dissertation was to study the heterogeneity of opiate receptors by utilizing affinity ligands, and by modification of the receptor lipid-microenvironment with phospholipase A/sub 2/ (PLA/sub 2/). The affinity ligands, 14-bromacetamidomorphine (BAM) and 14-chloroacetylnaltrexone (CAN), selectively inactivated high affinity dihydromorphine binding sites in an apparently irreversible manner (the inhibition was resistant to extensive washes of treated neural membrane homogenates). The inhibitory effect of PLA/sub 2/ (10 ng/ml) on opiate receptor subtypes was determined using (/sup 3/H)-dihydromorphine (..mu..-type agonist), (/sup 3/H)-enkephalin (delta agonist) and (/sup 3/H)-naloxone (..mu.. antagonist). PLA/sub 2/ abolished the high affinity antagonist binding site, whereas it inhibited high and low affinity agonist binding sites similarly. The results suggest that high affinity antagonist binding sites are different from high affinity agonist binding sites. Indirect binding assays demonstrated that the selectivities of ..mu..- and delta receptors are not affected significantly by PLA/sub 2/ treatment.

  12. Sub-millisecond ligand probing of cell receptors with multiple solution exchange

    PubMed Central

    Sylantyev, Sergiy; Rusakov, Dmitri A

    2013-01-01

    The accurate knowledge of receptor kinetics is crucial to our understanding of cell signal transduction in general and neural function in particular. The classical technique of probing membrane receptors on a millisecond scale involves placing a recording micropipette with a membrane patch in front of a double-barrel (θ-glass) application pipette mounted on a piezo actuator. Driven by electric pulses, the actuator can rapidly shift the θ-glass pipette tip, thus exposing the target receptors to alternating ligand solutions. However, membrane patches survive for only a few minutes, thus normally restricting such experiments to a single-application protocol. In order to overcome this deficiency, we have introduced pressurized supply microcircuits in the θ-glass channels, thus enabling repeated replacement of application solutions within 10–15 s. this protocol, which has been validated in our recent studies and takes 20–60 min to implement, allows the characterization of ligand-receptor interactions with high sensitivity, thereby also enabling a powerful paired-sample statistical design. PMID:23744290

  13. Ephrin Ligands and Eph Receptors Show Regionally Restricted Expression in the Developing Palate and Tongue

    PubMed Central

    Xavier, Guilherme M.; Miletich, Isabelle; Cobourne, Martyn T.

    2016-01-01

    The Eph family receptor-interacting (ephrin) ligands and erythropoietin-producing hepatocellular carcinoma (Eph) receptors constitute the largest known family of receptor tyrosine kinases. Ephrin ligands and their receptors form an important cell communication system with widespread roles in normal physiology and disease pathogenesis. In order to investigate potential roles of the ephrin-Eph system during palatogenesis and tongue development, we have characterized the cellular mRNA expression of family members EphrinA1-A3, EphA1–A8, and EphrinB2, EphB1, EphB4 during murine embryogenesis between embryonic day 13.5–16.5 using radioactive in situ hybridization. With the exception of EphA6 and ephrinA3, all genes were regionally expressed during the process of palatogenesis, with restricted and often overlapping domains. Transcripts were identified in the palate epithelium, localized at the tip of the palatal shelves, in the mesenchyme and also confined to the medial epithelium seam. Numerous Eph transcripts were also identified during tongue development. In particular, EphA1 and EphA2 demonstrated a highly restricted and specific expression in the tongue epithelium at all stages examined, whereas EphA3 was strongly expressed in the lateral tongue mesenchyme. These results suggest regulatory roles for ephrin-EphA signaling in development of the murine palate and tongue. PMID:26941654