Science.gov

Sample records for aharonov-bohm em cristais

  1. Aharonov-bohm paradox.

    NASA Technical Reports Server (NTRS)

    Trammel, G. T.

    1964-01-01

    Aharonov-bohm paradox involving charge particle interaction with stationary current distribution showing that vector potential term in canonical momenta expression represents electromagnetic field momentum

  2. Aharonov-Bohm radiation

    SciTech Connect

    Jones-Smith, Katherine; Mathur, Harsh; Vachaspati, Tanmay

    2010-02-15

    A solenoid oscillating in vacuum will pair produce charged particles due to the Aharonov-Bohm (AB) interaction. We calculate the radiation pattern and power emitted for charged scalar particles. We extend the solenoid analysis to cosmic strings and find enhanced radiation from cusps and kinks on loops. We argue by analogy with the electromagnetic AB interaction that cosmic strings should emit photons due to the gravitational AB interaction of fields in the conical spacetime of a cosmic string. We calculate the emission from a kink and find that it is of similar order as emission from a cusp, but kinks are vastly more numerous than cusps and may provide a more interesting observational signature.

  3. Aharonov-Bohm radiation

    NASA Astrophysics Data System (ADS)

    Jones-Smith, Katherine; Mathur, Harsh; Vachaspati, Tanmay

    2010-02-01

    A solenoid oscillating in vacuum will pair produce charged particles due to the Aharonov-Bohm (AB) interaction. We calculate the radiation pattern and power emitted for charged scalar particles. We extend the solenoid analysis to cosmic strings and find enhanced radiation from cusps and kinks on loops. We argue by analogy with the electromagnetic AB interaction that cosmic strings should emit photons due to the gravitational AB interaction of fields in the conical spacetime of a cosmic string. We calculate the emission from a kink and find that it is of similar order as emission from a cusp, but kinks are vastly more numerous than cusps and may provide a more interesting observational signature.

  4. Aharonov-Bohm effect revisited

    NASA Astrophysics Data System (ADS)

    Eskin, Gregory

    2015-04-01

    Aharonov-Bohm effect is a quantum mechanical phenomenon that attracted the attention of many physicists and mathematicians since the publication of the seminal paper of Aharonov and Bohm [1] in 1959. We consider different types of Aharonov-Bohm effects such as the magnetic AB effect, electric AB effect, combined electromagnetic AB effect, AB effect for the Schrödinger equations with Yang-Mills potentials, and the gravitational analog of AB effect. We shall describe different approaches to prove the AB effect based on the inverse scattering problems, the inverse boundary value problems in the presence of obstacles, spectral asymptotics, and the direct proofs of the AB effect.

  5. Nonlocality of the Aharonov-Bohm effect

    NASA Astrophysics Data System (ADS)

    Aharonov, Yakir; Cohen, Eliahu; Rohrlich, Daniel

    2016-04-01

    Although the Aharonov-Bohm and related effects are familiar in solid-state and high-energy physics, the nonlocality of these effects has been questioned. Here we show that the Aharonov-Bohm effect has two very different aspects. One aspect is instantaneous and nonlocal; the other aspect, which depends on entanglement, unfolds continuously over time. While local, gauge-invariant variables may occasionally suffice for explaining the continuous aspect, we argue that they cannot explain the instantaneous aspect. Thus the Aharonov-Bohm effect is, in general, nonlocal.

  6. Aharonov-Bohm Constraint for Fusion

    NASA Astrophysics Data System (ADS)

    Yahalom, Asher

    It was shown that an Aharonov-Bohm (AB) effect exists in magnetohydrodynamics (MHD). This effect is best described in terms of the MHD variational variables. If a MHD flow has a non trivial topology some of the functions appearing in the MHD Lagrangian are non-single valued. Some of those functions are analogue to the phases in the AB celebrated effect. While the manifestation of the quantum AB effect is in interference fringe patterns, the manifestation of the MHD Aharonov-Bohm effect is through a new dynamical conservation law. This local conservation law will be shown to constrain the dynamics of MHD flows including fusion scenarios. Bibliography

  7. Aharonov-Bohm effect versus causality?

    NASA Astrophysics Data System (ADS)

    Troudet, T.

    1985-09-01

    There has been recent interest in the nonlocality of the Aharonov-Bohm effect and its compatibility with the relativistic requirement that no signal can be transmitted faster than light. In the present paper, this compatibility is examined through the use of Feynman's path integral representation of the wavefunction to interpret van Kampen's (1984) thought experiment.

  8. Tests of the Aharonov-Bohm effect

    NASA Astrophysics Data System (ADS)

    Caprez, Adam Preston

    The Aharonov-Bohm effect was first proposed in 1959, and has stimulated discussion and controversy since the start. Seen by many as a purely quantum mechanical effect, it nevertheless involves such issues as gauge invariance and relativistic dynamics. This multi-faceted nature has led it to be considered a keystone of modern quantum theory. Over the past half-century, interest has remained strong in what many believe is still an open debate as to the purely quantum nature. Additionally, discovery of similar effects for particles other than electrons has further driven curiosity. To better understand the issues such as electromagnetic mass and relativistic effects involved in the Aharonov-Bohm effect, a theoretical study of a simpler two particle system was done. The goal was to understand the manner in which mass of the system behaved strictly classically as compared to a relativistically. As a result of this, a Gedanken experiment is presented which serves as a test for covariance. The two particle system was extended to a spherical shell interacting with a single particle, and a second thought experiment put forth to explore a coupling between electromagnetism and gravitation. In the course of searching for simpler systems which involved the same issues as the Aharonov-Bohm effect, a system presented in the Feynman Lectures of Physics was found to be appropriate. We conduct a complete relativistic analysis of this system as a step towards a full relativistic analysis of the Aharonov-Bohm effect. Given the history and significance of the Aharonov-Bohm effect, it is perhaps surprising that relevant experimental tests had not been completed. For the first time, we searched for time delays as an electron passes a macroscopic solenoid. Such time delays are characteristic of classical forces acting on the electron. No such delays were found, seemingly confirming the standard viewpoint. It is still possible a classical explanation may exist for microscopic solenoids, though our experiment has served to place an upper limit for any such explanation. The definitive experiment concerning the Aharonov-Bohm Effect has yet to be completed. Proposed by Zeilinger, it consists of showing the dispersionless nature of the effect. To accomplish this requires an electron interferometer capable of enclosing a larger area and operating at lower energies than any which currently exist. We are attempting to construct such an interferometer using a hybrid approach with a nanofabricated grating and electron bi-prism. We have shown that experimentally that this combination can produce a large beam separation and still retain sufficient coherence to function as an interferometer.

  9. The electric Aharonov-Bohm effect

    SciTech Connect

    Weder, Ricardo

    2011-05-15

    The seminal paper of Aharonov and Bohm [Phys. Rev. 115, 485 (1959)] is at the origin of a very extensive literature in some of the more fundamental issues in physics. They claimed that electromagnetic fields can act at a distance on charged particles even if they are identically zero in the region of space where the particles propagate, that the fundamental electromagnetic quantities in quantum physics are not only the electromagnetic fields but also the circulations of the electromagnetic potentials; what gives them a real physical significance. They proposed two experiments to verify their theoretical conclusions. The magnetic Aharonov-Bohm effect, where an electron is influenced by a magnetic field that is zero in the region of space accessible to the electron, and the electric Aharonov-Bohm effect where an electron is affected by a time-dependent electric potential that is constant in the region where the electron is propagating, i.e., such that the electric field vanishes along its trajectory. The Aharonov-Bohm effects imply such a strong departure from the physical intuition coming from classical physics that it is no wonder that they remain a highly controversial issue after more than fifty years, in spite of the fact that they are discussed in most of the text books in quantum mechanics. The magnetic case has been studied extensively. The experimental issues were settled by the remarkable experiments of Tonomura et al. [Phys. Rev. Lett. 48, 1443 (1982); Phys. Rev. Lett. 56, 792 (1986)] with toroidal magnets, that gave a strong evidence of the existence of the effect, and by the recent experiment of Caprez et al. [Phys. Rev. Lett. 99, 210401 (2007)] that shows that the results of the Tonomura et al. experiments cannot be explained by the action of a force. The theoretical issues were settled by Ballesteros and Weder [Commun. Math. Phys. 285, 345 (2009); J. Math. Phys. 50, 122108 (2009); Commun. Math. Phys. 303, 175 (2011)] who rigorously proved that quantum mechanics predicts the experimental results of Tonomura et al. and of Caprez et al. The electric Aharonov-Bohm effect has been much less studied. Actually, its existence, that has not been confirmed experimentally, is a very controversial issue. In their 1959 paper Aharonov and Bohm proposed an ansatz for the solution to the Schroedinger equation in regions where there is a time-dependent electric potential that is constant in space. It consists in multiplying the free evolution by a phase given by the integral in time of the potential. The validity of this ansatz predicts interference fringes between parts of a coherent electron beam that are subjected to different potentials. In this paper we prove that the exact solution to the Schroedinger equation is given by the Aharonov-Bohm ansatz up to an error bound in norm that is uniform in time and that decays as a constant divided by the velocity. Our results give, for the first time, a rigorous proof that quantum mechanics predicts the existence of the electric Aharonov-Bohm effect, under conditions that we provide. We hope that our results will stimulate the experimental research on the electric Aharonov-Bohm effect.

  10. Photonic Aharonov-Bohm effect in photon-phonon interactions

    NASA Astrophysics Data System (ADS)

    Li, Enbang; Eggleton, Benjamin J.; Fang, Kejie; Fan, Shanhui

    2014-01-01

    The Aharonov-Bohm effect is one of the most intriguing phenomena in both classical and quantum physics, and associates with a number of important and fundamental issues in quantum mechanics. The Aharonov-Bohm effects of charged particles have been experimentally demonstrated and found applications in various fields. Recently, attention has also focused on the Aharonov-Bohm effect for neutral particles, such as photons. Here we propose to utilize the photon-phonon interactions to demonstrate that photonic Aharonov-Bohm effects do exist for photons. By introducing nonreciprocal phases for photons, we observe experimentally a gauge potential for photons in the visible range based on the photon-phonon interactions in acousto-optic crystals, and demonstrate the photonic Aharonov-Bohm effect. The results presented here point to new possibilities to control and manipulate photons by designing an effective gauge potential.

  11. Quantum chaos in Aharonov-Bohm oscillations

    SciTech Connect

    Berman, G.P.; Campbell, D.K.; Bulgakov, E.N.; Krive, I.V.

    1995-10-01

    Aharonov-Bohm oscillations in a mesoscopic ballistic ring are considered under the influence of a resonant magnetic field with one and two frequencies. The authors investigate the oscillations of the time-averaged electron energy at zero temperature in the regime of an isolated quantum nonlinear resonance and at the transition to quantum chaos, when two quantum nonlinear resonances overlap. It is shown that the time-averaged energy exhibits resonant behavior as a function of the magnetic flux, and has a ``staircase`` dependence on the amplitude of the external field. The delocalization of the quasi-energy eigenfunctions is analyzed.

  12. Aharonov-Bohm radiation of fermions

    SciTech Connect

    Chu Yizen; Mathur, Harsh; Vachaspati, Tanmay

    2010-09-15

    We analyze Aharonov-Bohm radiation of charged fermions from oscillating solenoids and cosmic strings. We find that the angular pattern of the radiation has features that differ significantly from that for bosons. For example, fermionic radiation in the lowest harmonic is approximately isotropically distributed around an oscillating solenoid, whereas for bosons the radiation is dipolar. We also investigate the spin polarization of the emitted fermion-antifermion pair. Fermionic radiation from kinks and cusps on cosmic strings is shown to depend linearly on the ultraviolet cutoff, suggesting strong emission at an energy scale comparable to the string energy scale.

  13. Aharonov-Bohm radiation of fermions

    NASA Astrophysics Data System (ADS)

    Chu, Yi-Zen; Mathur, Harsh; Vachaspati, Tanmay

    2010-09-01

    We analyze Aharonov-Bohm radiation of charged fermions from oscillating solenoids and cosmic strings. We find that the angular pattern of the radiation has features that differ significantly from that for bosons. For example, fermionic radiation in the lowest harmonic is approximately isotropically distributed around an oscillating solenoid, whereas for bosons the radiation is dipolar. We also investigate the spin polarization of the emitted fermion-antifermion pair. Fermionic radiation from kinks and cusps on cosmic strings is shown to depend linearly on the ultraviolet cutoff, suggesting strong emission at an energy scale comparable to the string energy scale.

  14. Locality of the Aharonov-Bohm-Casher effect

    NASA Astrophysics Data System (ADS)

    Kang, Kicheon

    2015-05-01

    We address the question of locality versus nonlocality in the Aharonov-Bohm and the Aharonov-Casher effects. For this purpose, we investigate all possible configurations of ideal shielding of the overlap between the electromagnetic fields generated by a charge and by a magnetic flux and analyze their consequences on the Aharonov-Bohm-Casher interference. In a classical treatment of shielding, the Aharonov-Bohm-Casher effect vanishes regardless of the geometry of shielding when the local overlap of electromagnetic fields is completely eliminated. On the other hand, the result depends on the configuration of shielding if the charge quantization in the superconducting shield is taken into account. It is shown that our results are fully understood in terms of the fluctuating local-field interaction. Our analysis strongly supports the alternative view on the Aharonov-Bohm-Casher interference that the effects originate from the local action of electromagnetic fields.

  15. Aharonov-Bohm effect in optical activity

    NASA Astrophysics Data System (ADS)

    Tan, C. Z.

    2010-09-01

    Optically active media have the helical and dissymmetric crystal structure, which constrains the motions of the electrons to a helical path under the influence of the incident electric field. The charge flow along the helices induces a magnetic field in the direction of the axis of helices. The helical structure hence acts as natural micro-solenoids for the electromagnetic waves passing through them. Optical rotation is related to the difference in the accumulative Aharonov-Bohm (AB) phase between the right- and the left-circularly polarized waves. The AB phase is proportional to the angular momentum of an electron moving around the micro-solenoid. Originally the AB phase is shown to be a continuous function of the magnetic flux. However, quantization of the geometrical angular momentum leads to the quantized AB phase. The rotatory power and the Verdet constant are proportional to the refractive index of the medium. The quantized current in the micro-solenoid is proportional to the Bohr magneton and inversely proportional to the area of the helices.

  16. Feynman's Relativistic Electrodynamics Paradox and the Aharonov-Bohm Effect

    NASA Astrophysics Data System (ADS)

    Caprez, Adam; Batelaan, Herman

    2009-03-01

    An analysis is done of a relativistic paradox posed in the Feynman Lectures of Physics involving two interacting charges. The physical system presented is compared with similar systems that also lead to relativistic paradoxes. The momentum conservation problem for these systems is presented. The relation between the presented analysis and the ongoing debates on momentum conservation in the Aharonov-Bohm problem is discussed.

  17. Group-theoretical derivation of Aharonov-Bohm phase shifts

    SciTech Connect

    Hagen, C. R.

    2013-02-15

    The phase shifts of the Aharonov-Bohm effect are generally determined by means of the partial wave decomposition of the underlying Schroedinger equation. It is shown here that they readily emerge from an o(2,1) calculation of the energy levels employing an added harmonic oscillator potential which discretizes the spectrum.

  18. Group-theoretical derivation of Aharonov-Bohm phase shifts

    NASA Astrophysics Data System (ADS)

    Hagen, C. R.

    2013-02-01

    The phase shifts of the Aharonov-Bohm effect are generally determined by means of the partial wave decomposition of the underlying Schrödinger equation. It is shown here that they readily emerge from an {o} (2,1) calculation of the energy levels employing an added harmonic oscillator potential which discretizes the spectrum.

  19. How quantum impenetrability affects Aharonov-Bohm scattering?

    NASA Astrophysics Data System (ADS)

    Afanasev, G. N.; Shilov, V. M.

    It is shown that different forms of quantum impenetrability lead to different physical consequences. This should be kept in mind in analyzing experimental data. The relativistic impenetrability conditions are considered and the corresponding relativistic Aharonov-Bohm cross-sections are obtained. The possibility of the AB effect occurrence in simply-connected space regions is discussed.

  20. Effects of external radiation on biased Aharonov-Bohm rings

    NASA Astrophysics Data System (ADS)

    Entin-Wohlman, O.; Imry, Y.; Aharony, A.

    2004-08-01

    We consider the currents flowing in a solid-state interferometer under the effect of both an Aharonov-Bohm phase and a bias potential. Expressions are obtained for these currents, allowing for electronic or electron-boson interactions, which may take place solely on a quantum dot placed on one of the interferometer arms. The boson system can be out of equilibrium. The results are used to obtain the transport current through the interferometer, and the current circulating around it under the effect of the Aharonov-Bohm flux. The modifications of both currents, brought about by coupling the quantum dot to an incoherent sonic or electromagnetic source, are then analyzed. By choosing the appropriate range of the boson source intensity and its frequency, the magnitude of the interference-related terms of both currents can be controlled.

  1. Aharonov-Bohm effect in cyclotron and synchrotron radiations

    NASA Astrophysics Data System (ADS)

    Bagrov, V. G.; Gitman, D. M.; Levin, A.; Tlyachev, V. B.

    2001-07-01

    We study the impact of Aharonov-Bohm solenoid on the radiation of a charged particle moving in a constant uniform magnetic field. With this aim in view, exact solutions of Klein-Gordon and Dirac equations are found in the magnetic-solenoid field. Using such solutions, we calculate exactly all the characteristics of one-photon spontaneous radiation both for spinless and spinning particle. Considering non-relativistic and relativistic approximations, we analyze cyclotron and synchrotron radiations in detail. Radiation peculiarities caused by the presence of the solenoid may be considered as a manifestation of Aharonov-Bohm effect in the radiation. In particular, it is shown that new spectral lines appear in the radiation spectrum. Due to angular distribution peculiarities of the radiation intensity, these lines can in principle be isolated from basic cyclotron and synchrotron radiation spectra.

  2. Time-dependent non-Abelian Aharonov-Bohm effect

    NASA Astrophysics Data System (ADS)

    Bright, Max; Singleton, Douglas

    2015-04-01

    In this article, we study the time-dependent Aharonov-Bohm effect for non-Abelian gauge fields. We use two well-known time-dependent solutions to the Yang-Mills field equations to investigate the Aharonov-Bohm phase shift. For both of the solutions, we find a cancellation between the phase shift coming from the non-Abelian "magnetic" field and the phase shift coming from the non-Abelian "electric" field, which inevitably arises in time-dependent cases. We compare and contrast this cancellation for the time-dependent non-Abelian case to a similar cancellation which occurs in the time-dependent Abelian case. We postulate that this cancellation occurs generally in time-dependent situations for both Abelian and non-Abelian fields.

  3. Electric dipole moment oscillations in Aharonov-Bohm quantum rings

    NASA Astrophysics Data System (ADS)

    Alexeev, A. M.; Portnoi, M. E.

    2012-06-01

    Magneto-oscillations of the electric dipole moment are predicted and analyzed for a single-electron nanoscale ring pierced by a magnetic flux (an Aharonov-Bohm ring) and subjected to an electric field in the ring's plane. These oscillations are accompanied by periodic changes in the selection rules for interlevel optical transitions in the ring allowing control of polarization properties of the associated terahertz radiation.

  4. Aharonov-Bohm oscillations in the Coulomb blockade regime

    NASA Astrophysics Data System (ADS)

    Taylor, R. P.; Sachrajda, A. S.; Zawadzki, P.; Coleridge, P. T.; Adams, J. A.

    1992-09-01

    We discuss the electronic transmission through lateral dots, featuring both the Aharonov-Bohm-type oscillations observed in high magnetic field sweeps and Coulomb blockade oscillations detected as a function of electron density. We focus on the interplay of these two effects and demonstrate two intrinsic features of submicron dot behavior-the manifestation of the Aharonov-Bohn oscillations in a resonant reflection mode and a novel regime characterized by the simultaneous observation and a commensurate relationship of the two effects.

  5. Discrete gauge symmetry and Aharonov-Bohm radiation in string theory

    NASA Astrophysics Data System (ADS)

    Ookouchi, Yutaka

    2014-01-01

    We investigate cosmological constraints on phenomenological models with discrete gauge symmetries by discussing the radiation of standard model particles from Aharonov-Bohm strings. Using intersecting D-brane models in Type IIA string theory, we demonstrate that Aharonov-Bohm radiation, when combined with cosmological observations, imposes constraints on the compactification scales.

  6. Aharonov-Bohm detection of two-dimensional magnetostatic cloaks

    NASA Astrophysics Data System (ADS)

    Valagiannopoulos, Constantinos A.; Askarpour, Amir Nader; Alù, Andrea

    2015-12-01

    Two-dimensional magnetostatic cloaks, even when perfectly designed to mitigate the magnetic field disturbance of a scatterer, may be still detectable with Aharonov-Bohm (AB) measurements, and therefore may affect quantum interactions and experiments with elongated objects. We explore a multilayered cylindrical cloak whose permeability profile is tailored to nullify the magnetic-flux perturbation of the system, neutralizing its effect on AB measurements, and simultaneously optimally suppress the overall scattering. In this way, our improved magnetostatic cloak combines substantial mitigation of the magnetostatic scattering response with zero detectability by AB experiments.

  7. Spectroscopic detectability of the molecular Aharonov-Bohm effect

    NASA Astrophysics Data System (ADS)

    Englman, R.

    2016-01-01

    It is theoretically shown that the emission spectra from an excited Jahn-Teller state in which the ions undergo a forced periodic trajectory have an M-shaped form, directly due to the sign change by the Berry-phase factor. The presence of a weak spectral sideline is noted and the effects of a nonlinear vibronic coupling are calculated. Experimental verifications of the results, e.g., on R'-centers in LiF, are proposed. The dip in the M-shaped emission line is a novel, and perhaps unique, spectroscopic manifestation of the "molecular Aharonov-Bohm effect."

  8. Analogue Aharonov-Bohm effect in neo-Newtonian theory

    NASA Astrophysics Data System (ADS)

    Anacleto, M. A.; Salako, I. G.; Brito, F. A.; Passos, E.

    2015-12-01

    We address the issues of the scattering of massless planar scalar waves by an acoustic black hole in neo-Newtonian hydrodynamics. We then compute the differential cross section through the use of the partial wave approach in the neo-Newtonian theory which is a modification of the usual Newtonian theory that correctly incorporates the effects of pressure. We mainly show that the scattering of planar waves leads to a modified analogue Aharonov-Bohm effect due to a nontrivial response of the parameters defining the equation of state.

  9. Conservation of momentum and the Aharonov-Bohm Effect

    NASA Astrophysics Data System (ADS)

    Caprez, Adam; Batelaan, Herman

    2008-05-01

    The Aharonov-Bohm Effect serves as an example of a purely quantum mechanical phenomenon in which classical forces on the electron are thought to vanish. The presence of forces is still an ongoing debate [1,2]. Surprisingly, a complete special relativistic treatment of the forces in the electron-solenoid system has never been done [3]. We present our ongoing theoretical work on the issue, and explore a connection between Feynman's well-known example [3] of two moving point charges and the Aharonov-Bohm Effect. The relation between this theoretical work and our earlier experimental results [4] is also discussed. [1] T.H. Boyer, J. Phys. A. 39, 3455 (2006). [2] G.C. Hegerfeldt and J.T. Neumann, [quant-ph] arXiv:0801.0799v1 (2008). [3] Y. Aharonov and D. Rohrlich, Quantum Paradoxes: Quantum Theory for the Perplexed (Wiley-VCH, Weinheim, 2005). [4] The Feynman Lectures on Physics. Vol. II, pp. 26-2-26-5 (1964). [5] A. Caprez, B. Barwick, and H. Batelaan. Phys. Rev. Lett. 99, 210401 (2007).

  10. L-Dependence of Particle Radiation in Magnetic-Solenoid Field as Aharonov-Bohm Effect

    NASA Astrophysics Data System (ADS)

    Bagrov, V. G.; Gitman, D. M.; Tlyachev, V. B.

    Aharonov-Bohm solenoid changes the energy spectrum of charge particles in pure magnetic field. In particular, the degeneracy with respect to azimuthal quantum number l is partially lifted. In turn, this complicates the radiation spectrum of a charged particle in magnetic field in the presence of the solenoid (Aharonov-Bohm effect). In particular, the degeneracy of the radiation intensity with respect to the azimuthal quantum number is lifted completely. In the present work we study l-dependence (induced by Aharonov-Bohm solenoid) of synchrotron radiation intensity in semiclassical approximation.

  11. Aharonov-Bohm effect in a mesoscopic metallic ring with a microwave induced superstructure

    NASA Astrophysics Data System (ADS)

    Aronov, I. E.; Bogachek, E. N.; Krive, I. V.

    1992-04-01

    Aharonov-Bohm oscillations in a mesoscopic metallic ring exposed to a microwave electromagnetic field are considered. It is shown that the oscillation amplitude decreases periodically with the radiation intensity.

  12. Revisiting the Marton, Simpson, and Suddeth experimental confirmation of the Aharonov-Bohm effect

    NASA Astrophysics Data System (ADS)

    Macdougall, James; Singleton, Douglas; Vagenas, Elias C.

    2015-09-01

    We perform an "archeological" study of one of the original experiments used as evidence for the static, time-independent Aharonov-Bohm effect. Since the experiment in question [1] involved a time varying magnetic field we show that there are problems with the explanation of this experiment as a confirmation of the static Aharonov-Bohm effect - specifically the previous analysis ignored the electric field which arises in conjunction with a time-varying magnetic flux. We further argue that the results of this experiment do in fact conform exactly to the recent prediction [2,3] of a cancellation between the magnetic and electric phase shifts for the time-dependent Aharonov-Bohm effect. To resolve this issue a new time-dependent Aharonov-Bohm experiment is called for.

  13. Non-Aharonov-Bohm coupling and weak localization

    NASA Astrophysics Data System (ADS)

    Jacobs, T. M.; Giordano, N.

    1998-03-01

    We have studied weak localization (WL) and electron-electron interaction effects in Au films deposited on top of Ni/SiO coated substrates. The interest here is in observing the effect, if any, of a nearby ferromagnet (the Ni) on the behavior of the Au, even when the two are separated by an insulating layer (the SiO). We find that the presence of the Ni does indeed have an effect on the WL behavior of the Au. Such samples exhibit smaller phase breaking lengths, and a larger WL contribution to the conductance, than Au films without the Ni underlayer. This effect does not appear to be due to conventional Aharonov-Bohm flux coupling.

  14. An Aharonov-Bohm interferometer for determining Bloch band topology.

    PubMed

    Duca, L; Li, T; Reitter, M; Bloch, I; Schleier-Smith, M; Schneider, U

    2015-01-16

    The geometric structure of a single-particle energy band in a solid is fundamental for a wide range of many-body phenomena and is uniquely characterized by the distribution of Berry curvature over the Brillouin zone. We realize an atomic interferometer to measure Berry flux in momentum space, in analogy to an Aharonov-Bohm interferometer that measures magnetic flux in real space. We demonstrate the interferometer for a graphene-type hexagonal optical lattice loaded with bosonic atoms. By detecting the singular π Berry flux localized at each Dirac point, we establish the high momentum resolution of this interferometric technique. Our work forms the basis for a general framework to fully characterize topological band structures. PMID:25525160

  15. Thermoelectric effects in a rectangular Aharonov-Bohm geometry

    NASA Astrophysics Data System (ADS)

    Pye, A. J.; Faux, D. A.; Kearney, M. J.

    2016-04-01

    The thermoelectric transport properties of a rectangular Aharonov-Bohm ring at low temperature are investigated using a theoretical approach based on Green's functions. The oscillations in the transmission coefficient as the field is varied can be used to tune the thermoelectric response of the ring. Large magnitude thermopowers are obtainable which, in conjunction with low conductance, can result in a high thermoelectric figure of merit. The effects of single site impurities and more general Anderson disorder are considered explicitly in the context of evaluating their effect on the Fano-type resonances in the transmission coefficient. Importantly, it is shown that even for moderate levels of disorder, the thermoelectric figure of merit can remain significant, increasing the appeal of such structures from the perspective of specialist thermoelectric applications.

  16. Aharonov-Bohm interferences from local deformations in graphene

    NASA Astrophysics Data System (ADS)

    de Juan, Fernando; Cortijo, Alberto; Vozmediano, Mara A. H.; Cano, Andrs

    2011-10-01

    One of the most interesting aspects of graphene is the close relation between its structural and electronic properties. The observation of ripples both in free-standing graphene and in samples on a substrate has given rise to active investigation of the membrane-like properties of graphene, and the origin of the ripples remains one of the most interesting open problems concerning this system. The interplay of structural and electronic properties is successfully described by the modelling of curvature and elastic deformations by fictitious gauge fields. These fields have become an experimental reality after the observation of the Landau levels that can form in graphene due to strain. Here we propose a device to detect microstresses in graphene based on a scanning-tunnelling-microscopy set-up able to measure Aharonov-Bohm interferences at the nanometre scale. The predicted interferences in the local density of states are created by the fictitious magnetic field associated with elastic deformations of the sample.

  17. Electrostatically defined heterojunction rings and the Aharonov-Bohm effect

    NASA Astrophysics Data System (ADS)

    Ford, C. J. B.; Thornton, T. J.; Newbury, R.; Pepper, M.; Ahmed, H.

    1989-01-01

    Micron-sized loops of high-mobility two-dimensional electron gas have been made on GaAs-AlGaAs heterostructures using a novel split-gate technique. Aharonov-Bohm oscillations of amplitude up to 20 percent of the device resistance have been observed at very low temperatures (T less than 100 mK), together with h/2e oscillations which appear to be due to interference between pairs of time-reversed paths near B = 0. The h/e period is found to vary by about 25 percent with magnetic field, possibly as a result of the formation of edge states. In the quantum Hall effect, plateaus in Rxx are seen at high B due to variations in carrier concentration across the ring, which may cause backscattering of some edge states.

  18. Radiation of supersymmetric particles from Aharonov-Bohm R-string

    NASA Astrophysics Data System (ADS)

    Ookouchi, Yutaka; Yonemoto, Takahiro

    2015-02-01

    We study radiation of supersymmetric particles from an Aharonov-Bohm string associated with a discrete R-symmetry. Radiation of the lightest supersymmetric particle, when combined with the observed dark matter density, imposes constraints on the string tension or the freeze-out temperature of the particle. We also calculate the amplitude for Aharonov-Bohm radiation of massive spin 3/2 particles.

  19. Impact of Aharonov-Bohm Solenoid on Particle Radiation in Magnetic Field

    NASA Astrophysics Data System (ADS)

    Bagrov, V. G.; Gitman, D. M.; Levin, A. D.; Tlyachev, V. B.

    We study the impact of Aharonov-Bohm solenoid on the radiation of a charged particle moving in a constant uniform magnetic field. Radiation peculiarities caused by the presence of the solenoid may be considered as a manifestation of Aharonov-Bohm effect in the radiation. In particular, new spectral lines appear in the radiation spectrum. Due to angular distribution peculiarities of the radiation intensity, these lines can in principle be isolated from basic cyclotron and synchrotron radiation spectra.

  20. A Gravitational Aharonov-Bohm Effect, and Its Connection to Parametric Oscillators and Gravitational Radiation

    NASA Astrophysics Data System (ADS)

    Chiao, Raymond Y.; Haun, Robert W.; Inan, Nader A.; Kang, Bong-Soo; Martinez, Luis A.; Minter, Stephen J.; Munoz, Gerardo A.; Singleton, Douglas A.

    A thought experiment is proposed to demonstrate the existence of a gravitational, vector Aharonov-Bohm effect. We begin the analysis starting from four Maxwell-like equations for weak gravitational fields interacting with slowly moving matter. A connection is made between the gravitational, vector Aharonov-Bohm effect and the principle of local gauge invariance for nonrelativistic quantum matter interacting with weak gravitational fields. The compensating vector fields that are necessitated by this local gauge principle are shown to be incorporated by the DeWitt minimal coupling rule. The nonrelativistic Hamiltonian for weak, time-independent fields interacting with quantum matter is then extended to time-dependent fields, and applied to the problem of the interaction of radiation with macroscopically coherent quantum systems, including the problem of gravitational radiation interacting with superconductors. But first we examine the interaction of EM radiation with superconductors in a parametric oscillator consisting of a superconducting wire placed at the center of a high Q superconducting cavity driven by pump microwaves. Some room-temperature data will be presented demonstrating the splitting of a single microwave cavity resonance into a spectral doublet due to the insertion of a central wire. This would represent an unseparated kind of parametric oscillator, in which the signal and idler waves would occupy the same volume of space. We then propose a separated parametric oscillator experiment, in which the signal and idler waves are generated in two disjoint regions of space, which are separated from each other by means of an impermeable superconducting membrane. We find that the threshold for parametric oscillation for EM microwave generation is much lower for the separated configuration than the unseparated one, which then leads to an observable dynamical Casimir effect. We speculate that a separated parametric oscillator for generating coherent GR microwaves could also be built. [Editor's note: for a video of the talk given by Prof. Chiao at the Aharonov-80 conference in 2012 at Chapman University, see http://quantum.chapman.edu/talk-20.

  1. Fingerprints of Majorana Bound States in Aharonov-Bohm Geometry

    NASA Astrophysics Data System (ADS)

    Tripathi, Krashna Mohan; Das, Sourin; Rao, Sumathi

    2016-04-01

    We study a ring geometry, coupled to two normal metallic leads, which has a Majorana bound state (MBS) embedded in one of its arms and is threaded by Aharonov-Bohm (A B ) flux ϕ . We show that by varying the A B flux, the two leads go through resonance in an anticorrelated fashion while the resonance conductance is quantized to 2 e2/h . We further show that such anticorrelation is completely absent when the MBS is replaced by an Andreev bound state (ABS). Hence this anti-correlation in conductance when studied as a function of ϕ provides a unique signature of the MBS which cannot be faked by an ABS. We contrast the phase sensitivity of the MBS and ABS in terms of tunneling conductances. We argue that the relative phase between the tunneling amplitude of the electrons and holes from either lead to the level (MBS or ABS), which is constrained to 0 ,π for the MBS and unconstrained for the ABS, is responsible for this interesting contrast in the A B effect between the MBS and ABS.

  2. Aharonov-Bohm phases in a quantum LC circuit

    NASA Astrophysics Data System (ADS)

    Cao, ChunJun; Yao, Yuan; Zhitnitsky, Ariel R.

    2016-03-01

    We study novel types of contributions to the partition function of the Maxwell system defined on a small compact manifold. These contributions, often not addressed in the perturbative treatment with physical photons, emerge as a result of tunneling transitions between topologically distinct but physically identical vacuum winding states. These new terms give an extra contribution to the Casimir pressure, yet to be measured. We argue that this effect is highly sensitive to a small external electric field, which should be contrasted with the conventional Casimir effect, where the vacuum photons are essentially unaffected by any external field. Furthermore, photons will be emitted from the vacuum in response to a time-dependent electric field, similar to the dynamical Casimir effect in which real particles are radiated from the vacuum due to the time-dependent boundary conditions. We also propose an experimental setup using a quantum LC circuit to detect this novel effect. We expect physical electric charges to appear on the capacitor plates when the system dimension is such that coherent Aharonov-Bohm phases can be maintained over macroscopically large distances.

  3. Paradoxes of the Aharonov-Bohm and the Aharonov-Casher Effects

    NASA Astrophysics Data System (ADS)

    Vaidman, Lev

    For a believer in locality of Nature, the Aharonov-Bohm effect and the Aharonov-Casher effect are paradoxes. I discuss these and other Aharonov's paradoxes and propose a local explanation of these effects. If the solenoid in the Aharonov-Bohm effect is treated quantum mechanically, the effect can be explained via local interaction between the field of the electron and the solenoid. I argue that the core of the Aharonov-Bohm and the Aharonov-Casher effects is that of quantum entanglement: the quantum wave function describes all systems together. [Editor's note: for a video of the talk given by Prof. Vaidman at the Aharonov-80 conference in 2012 at Chapman University, see http://quantum.chapman.edu/talk-21.

  4. Quantum motion in superposition of Aharonov-Bohm with some additional electromagnetic fields

    NASA Astrophysics Data System (ADS)

    Bagrov, V. G.; Gitman, D. M.; Levin, A. D.

    2012-05-01

    The structure of additional electromagnetic fields to the Aharonov-Bohm field, for which the Schrödinger, Klein-Gordon, and Dirac equations can be solved exactly are described and the corresponding exact solutions are found. It is demonstrated that aside from the known cases (a constant and uniform magnetic field that is parallel to the Aharonov-Bohm solenoid, a static spherically symmetrical electric field, and the field of a magnetic monopole), there are broad classes of additional fields. Among these new additional fields we have physically interesting electric fields acting during a finite time or localized in a restricted region of space. There are additional time-dependent uniform and isotropic electric fields that allow exact solutions of the Schrödinger equation. In the relativistic case there are additional electric fields propagating along the Aharonov-Bohm solenoid with arbitrary electric pulse shape.

  5. Aharonov-Bohm interferometry with a tunnel-coupled wire

    NASA Astrophysics Data System (ADS)

    Aharony, A.; Takada, S.; Entin-Wohlman, O.; Yamamoto, M.; Tarucha, S.

    2014-08-01

    Recent experiments (Yamamoto et al 2012 Nature Nanotechnology 7 247) used the transport of electrons through an Aharonov-Bohm (AB) interferometer and two coupled channels (at both ends of the interferometer) to demonstrate a manipulable flying qubit. Results included in-phase and anti-phase (AB) oscillations of the two outgoing currents as a function of the magnetic flux, for strong and weak inter-channel coupling, respectively. Here we present new experimental results for a three terminal interferometer, with a tunnel coupling between the two outgoing wires. We show that in some limits, this system is an even simpler realization of the ‘two-slit’ experiment. We also present a simple tight-binding theoretical model which imitates the experimental setup. For weak inter-channel coupling, the AB oscillations in the current which is reflected from the device are very small, and therefore the oscillations in the two outgoing currents must cancel each other, yielding the anti-phase behavior, independent of the length of the coupling regime. Technically, the tight binding equations within the two coupled wires have four solutions for each electronic energy. In the ‘anti-phase’ region all of these solutions are wave-like, oscillating with the distance along the wires. As the coupling between the wires increases, two of these solutions become evanescent, and their amplitudes decay as the electron moves in the wires. In this regime, the amplitudes of the two remaining ‘running’ waves are proportional to each other, with a ratio which is practically flux-independent. As a result, the two outgoing currents are proportional to each other, yielding the ‘in phase’ behavior. For larger coupling all the solutions are evanescent, and the outgoing currents become very small.

  6. Exotic Dirac Wavepackets Accumulating Aharonov-Bohm-type Phase in Free Space

    NASA Astrophysics Data System (ADS)

    Kaminer, Ido; Nemirovsky, Jonathan; Rechtsman, Mikael; Bekenstein, Rivka; Segev, Mordechai

    2013-05-01

    Following the seminal 1958 paper by Aharonov-Bohm (AB), it is expected that two parts of the wavefunction of an electron can accumulate phase difference even when they are confined to a region in space with zero EM field. The AB effect was groundbreaking: the EM vector potential is a physical quantity affecting the outcome of experiments directly, not only through the fields extracted from it. But is the EM potential a real necessity for an AB-type effect? Can such effect exist in a potential-free system such as free-space? Here, we find self-accelerating solutions of the potential-free Dirac equation, for massive/massless fermions/bosons. These exotic Dirac particles mimic the dynamics of a free-charge moving under a ``virtual'' EM field. They accelerate even though no field is acting on them (and no charge is defined): the entire dynamics is a direct result of the initial conditions. We show that such particles display an effective AB effect that can be explained by a ``virtual'' potential that ``causes'' the exact same acceleration. We prove that one can create all effects induced by EM fields by only controlling the initial conditions of a wave pattern. Altogether, measurements taken along the trajectory cannot distinguish between a real force and this virtual force: self-induced by the wavepacket itself. The measurable effects of this virtual force are real by all measurable quantities. These phenomena can be observed in various settings: e.g., optical waves in hyperbolic metamaterials, and matter waves in honeycomb interference structures.

  7. On the solution of a "2D Coulomb + Aharonov-Bohm" problem: oscillator strengths in the discrete spectrum and scattering

    NASA Astrophysics Data System (ADS)

    Nguyen, H. T. T.; Meleshenko, P. A.; Dolgikh, A. V.; Klinskikh, A. F.

    2011-05-01

    In this paper we present an exact analytic solution of the Schrödinger equation both in the discrete and continuous spectra for the combination of a 2D Coulomb potential and the Aharonov-Bohm flux. We analyze the influence of the Aharonov-Bohm flux on the energy spectrum of such a system and show that its presence leads to the broadening of the electron density in the bound states with the given value of the principal quantum number. We have shown that the scattering phase shift, which determines the S-matrix, can be represented as a sum of the Aharonov-Bohm scattering phase, first obtained by Henneberger, and a "modified" 2D Coulomb phase. We have noticed, that the Aharonov-Bohm scattering phase has a full analogy with the "quantum defect" for such a system. We have shown also, that the presence of the Aharonov-Bohm flux affects the radiation spectrum of the electron in this case, and this fact is demonstrated by calculations of the corresponding oscillator strengths. The explicit analytic expression for the scattering cross section on such a system is found in the frame of the eikonal approach. Obtained formula contains the two exact limiting cases, namely, the "pure" 2D Coulomb scattering as well as the "pure" Aharonov-Bohm effect. The mutual influence of a 2D Coulomb potential and the Aharonov-Bohm flux is also discussed.

  8. Nucleon statistics in holographic QCD: Aharonov-Bohm effect in a matrix model

    NASA Astrophysics Data System (ADS)

    Hashimoto, Koji; Iizuka, Norihiro

    2010-11-01

    We show that the Aharonov-Bohm effect in the nuclear matrix model [K. Hashimoto, N. Iizuka, and P. Yi, J. High Energy Phys.JHEPFG1029-8479 10 (2010), 3.10.1007/JHEP10(2010)003] derives the statistical nature of nucleons in holographic QCD. For Nc=odd (even), the nucleon is shown to be a fermion (boson).

  9. Nucleon statistics in holographic QCD: Aharonov-Bohm effect in a matrix model

    SciTech Connect

    Hashimoto, Koji; Iizuka, Norihiro

    2010-11-15

    We show that the Aharonov-Bohm effect in the nuclear matrix model [K. Hashimoto, N. Iizuka, and P. Yi, J. High Energy Phys. 10 (2010), 3.] derives the statistical nature of nucleons in holographic QCD. For N{sub c}=odd (even), the nucleon is shown to be a fermion (boson).

  10. Stokes' theorem, gauge symmetry and the time-dependent Aharonov-Bohm effect

    SciTech Connect

    Macdougall, James Singleton, Douglas

    2014-04-15

    Stokes' theorem is investigated in the context of the time-dependent Aharonov-Bohm effect—the two-slit quantum interference experiment with a time varying solenoid between the slits. The time varying solenoid produces an electric field which leads to an additional phase shift which is found to exactly cancel the time-dependent part of the usual magnetic Aharonov-Bohm phase shift. This electric field arises from a combination of a non-single valued scalar potential and/or a 3-vector potential. The gauge transformation which leads to the scalar and 3-vector potentials for the electric field is non-single valued. This feature is connected with the non-simply connected topology of the Aharonov-Bohm set-up. The non-single valued nature of the gauge transformation function has interesting consequences for the 4-dimensional Stokes' theorem for the time-dependent Aharonov-Bohm effect. An experimental test of these conclusions is proposed.

  11. Stokes' theorem, gauge symmetry and the time-dependent Aharonov-Bohm effect

    NASA Astrophysics Data System (ADS)

    Macdougall, James; Singleton, Douglas

    2014-04-01

    Stokes' theorem is investigated in the context of the time-dependent Aharonov-Bohm effect—the two-slit quantum interference experiment with a time varying solenoid between the slits. The time varying solenoid produces an electric field which leads to an additional phase shift which is found to exactly cancel the time-dependent part of the usual magnetic Aharonov-Bohm phase shift. This electric field arises from a combination of a non-single valued scalar potential and/or a 3-vector potential. The gauge transformation which leads to the scalar and 3-vector potentials for the electric field is non-single valued. This feature is connected with the non-simply connected topology of the Aharonov-Bohm set-up. The non-single valued nature of the gauge transformation function has interesting consequences for the 4-dimensional Stokes' theorem for the time-dependent Aharonov-Bohm effect. An experimental test of these conclusions is proposed.

  12. Stokes' theorem, gauge symmetry and the time-dependent Aharonov-Bohm effect

    NASA Astrophysics Data System (ADS)

    MacDougall, James; Singleton, Douglas

    2014-03-01

    Stokes' theorem is investigated in the context of the time-dependent Aharonov-Bohm effect - the two-slit quantum interference experiment with a time varying solenoid between the slits. The time varying solenoid produces an electric field which leads to an additional phase shift which is found to exactly cancel the time-dependent part of the usual magnetic Aharonov-Bohm phase shift. This electric field arises from a combination of a non-single valued scalar potential and/or a 3-vector potential. The gauge transformation which leads to the scalar and 3-vector potentials for the electric field is non-single valued. This feature is connected with the non-simply connected topology of the Aharonov-Bohm set-up. The non-single valued nature of the gauge transformation function has interesting consequences for the 4-dimensional Stokes' theorem for the time-dependent Aharonov-Bohm effect. An experimental test of these conclusions is proposed.

  13. The Aharonov-Bohm effect and its applications to electron phase microscopy

    PubMed Central

    Tonomura, Akira

    2006-01-01

    The Aharonov-Bohm effect was conclusively established by a series of our electron interference experiments, with the help of some advanced techniques, such as coherent field-emission electron beams and microlithography. Using this fundamental principle behind the interaction of an electron wave with electromagnetic fields, new observation techniques were developed to directly observe microscopic objects and quantum phenomena previously unobservable. PMID:25792772

  14. The Aharonov-Bohm effect and Tonomura et al. experiments: Rigorous results

    SciTech Connect

    Ballesteros, Miguel; Weder, Ricardo

    2009-12-15

    The Aharonov-Bohm effect is a fundamental issue in physics. It describes the physically important electromagnetic quantities in quantum mechanics. Its experimental verification constitutes a test of the theory of quantum mechanics itself. The remarkable experiments of Tonomura et al. ['Observation of Aharonov-Bohm effect by electron holography', Phys. Rev. Lett 48, 1443 (1982) and 'Evidence for Aharonov-Bohm effect with magnetic field completely shielded from electron wave', Phys. Rev. Lett 56, 792 (1986)] are widely considered as the only experimental evidence of the physical existence of the Aharonov-Bohm effect. Here we give the first rigorous proof that the classical ansatz of Aharonov and Bohm of 1959 ['Significance of electromagnetic potentials in the quantum theory', Phys. Rev. 115, 485 (1959)], that was tested by Tonomura et al., is a good approximation to the exact solution to the Schroedinger equation. This also proves that the electron, that is, represented by the exact solution, is not accelerated, in agreement with the recent experiment of Caprez et al. in 2007 ['Macroscopic test of the Aharonov-Bohm effect', Phys. Rev. Lett. 99, 210401 (2007)], that shows that the results of the Tonomura et al. experiments can not be explained by the action of a force. Under the assumption that the incoming free electron is a Gaussian wave packet, we estimate the exact solution to the Schroedinger equation for all times. We provide a rigorous, quantitative error bound for the difference in norm between the exact solution and the Aharonov-Bohm Ansatz. Our bound is uniform in time. We also prove that on the Gaussian asymptotic state the scattering operator is given by a constant phase shift, up to a quantitative error bound that we provide. Our results show that for intermediate size electron wave packets, smaller than the ones used in the Tonomura et al. experiments, quantum mechanics predicts the results observed by Tonomura et al. with an error bound smaller than 10{sup -99}. It would be quite interesting to perform experiments with electron wave packets of intermediate size. Furthermore, we provide a physical interpretation of our error bound.

  15. The Berry phase and the Aharonov-Bohm effect on optical activity.

    PubMed

    Tan, C Z

    2008-09-15

    The helical crystal structure in optically active media acts as the natural micro-solenoids for the electromagnetic waves passing through them, producing the longitudinal magnetic field in the direction of the axis of helices. Magnetic flux through the helical structure is quantized. The Berry phase is induced by rotation of the electrons around the helical structure. Optical rotation is related to the difference in the accumulative Berry phase between the right-, and the left-circularly polarized waves, which is proportional to the magnetic flux through the helical structure, according to the Aharonov-Bohm effect. The optical activity is the natural Faraday effect and the natural Aharonov-Bohm effect. PMID:18795005

  16. Noncommutative correction to Aharonov-Bohm scattering: A field theory approach

    SciTech Connect

    Anacleto, M.A.; Gomes, M.; Silva, A.J. da; Spehler, D.

    2004-10-15

    We study a noncommutative nonrelativistic theory in 2+1 dimensions of a scalar field coupled to the Chern-Simons field. In the commutative situation this model has been used to simulate the Aharonov-Bohm effect in the field theory context. We verified that, contrary to the commutative result, the inclusion of a quartic self-interaction of the scalar field is not necessary to secure the ultraviolet renormalizability of the model. However, to obtain a smooth commutative limit the presence of a quartic gauge invariant self-interaction is required. For small noncommutativity we fix the corrections to the Aharonov-Bohm scattering and prove that up to one loop the model is free from dangerous infrared/ultraviolet divergences.

  17. Aharonov-Bohm effect in quantum-to-classical correspondence of the Heisenberg principle

    SciTech Connect

    Lin, D.-H.; Chang, J.-G.; Hwang, C.-C.

    2003-04-01

    The exact energy spectrum and wave function of a charged particle moving in the Coulomb field and Aharonov-Bohm's magnetic flux are solved by the nonintegrable phase factor. The universal formula for the matrix elements of the radial operator r{sup {alpha}} of arbitrary power {alpha} is given by an analytical solution. The difference between the classical limit of matrix elements of inverse radius in quantum mechanics and the Fourier components of the corresponding quantity for the pure Coulomb system in classical mechanics is examined in reference to the correspondence principle of Heisenberg. Explicit calculation shows that the influence of nonlocal Aharonov-Bohm effect exists even in the classical limit. The semiclassical quantization rule for systems containing the topological effect is presented in the light of Heisenberg's corresponding principle.

  18. Reply to "Comment on `Role of potentials in the Aharonov-Bohm effect' "

    NASA Astrophysics Data System (ADS)

    Vaidman, Lev

    2015-08-01

    The preceding Comment challenged my claim that potentials might be just auxiliary mathematical tools and that they are not necessary for explaining physical phenomena. The Comment did not confront my explanation without the potentials of the Aharonov-Bohm effects that appeared in the original article, but stated that I cannot apply this explanation for seven other examples. In my reply, using my method, I provide explanations of one of the examples, show that two other examples are not relevant, and agree that the remaining examples require further analysis. However, I argue that none of the examples provides robust counterexamples to my claim, similar to the original Aharonov-Bohm setups which were explained in my article, so the Comment does not refute my claim.

  19. Time-dependent Pauli equation in the presence of the Aharonov-Bohm effect

    SciTech Connect

    Bouguerra, Y.; Bounames, A.; Maamache, M.; Saadi, Y.

    2008-04-15

    We use the Lewis-Riesenfeld theory to determine the exact form of the wavefunctions of a two-dimensional Pauli equation of a charged spin 1/2 particle with time-dependent mass and frequency in the presence of the Aharonov-Bohm effect and a two-dimensional time-dependent harmonic oscillator. We find that the irregular solution at the origin as well as the regular one contributes to the phase of the wavefunction.

  20. Gravitational Aharonov-Bohm radiation in string-generated conical space-time.

    NASA Astrophysics Data System (ADS)

    Aliev, A. N.; Gal'Tsov, D. V.

    1989-07-01

    The scalar, electromagnetic, gravitational radiation in a conical space-time generated by an infinite straight cosmic string is considered. It is shown that freely moving particles in a conical space emit radiation. Though there is no local force acting upon particles, radiation arises due to the topological properties of space-time and it can be interpreted as the radiative gravitational Aharonov-Bohm effect. The string-modified magnetobremsstrahlung is also discussed.

  1. Aharonov-Bohm-Type Electron Interference in a Two-Mode Squeezed Vacuum Field

    NASA Astrophysics Data System (ADS)

    Shao, Bin; Zou, Jian

    1998-06-01

    Electron interference related to Aharonov-Bohm effect in the presence of the two-mode quantized radiation field is investigated. Characteristics of the temporal behavior of electron interference are discussed. It is shown that for the two-mode squeezed vacuum field the time evolution of the intensity of electron interference can exhibit very interesting periodic spontaneous collapse and revival (CR). In addition, the relation between CR and the quantum fluctuation in electron interference is also discussed.

  2. Atomic multiple-wave interferometer phase-shifted by the scalar Aharonov-Bohm effect

    SciTech Connect

    Aoki, Takatoshi; Yasuhara, Makoto; Morinaga, Atsuo

    2003-05-01

    A time-domain atomic multiple-wave interferometer using laser-cooled and trapped sodium atoms has been developed under pulsed magnetic fields. Each atomic phase was shifted due to the scalar Aharonov-Bohm effect by applying spatially homogeneous pulsed magnetic fields between numerous Raman excitation laser pulses. Interference fringes with a finesse of 11 were demonstrated for 11 successive Raman pulses and ten magnetic-field pulses.

  3. Gravitational Aharonov-Bohm radiation in string-generated conical space-time

    SciTech Connect

    Aliev, A.N. ); Gal'tsov, D.V.

    1989-07-01

    The scalar, electromagnetic, gravitational radiation in conical space-time generated by an infinite straight cosmic string is considered. It is shown that freely moving particles in conical space emit radiation. Though there is no local force acting upon particles, radiation arises due to the topological properties of space-time and it can be interpreted as the radiative gravitational Aharonov-Bohm effect. The string-modified magnetobremsstrahlung is also discussed. {copyright} 1989 Academic Press, Inc.

  4. Observation of a Biexciton Wigner Molecule by Fractional Optical Aharonov-Bohm Oscillations in a Single Quantum Ring.

    PubMed

    Kim, Hee Dae; Okuyama, Rin; Kyhm, Kwangseuk; Eto, Mikio; Taylor, Robert A; Nicolet, Aurelien L; Potemski, Marek; Nogues, Gilles; Dang, Le Si; Je, Ku-Chul; Kim, Jongsu; Kyhm, Ji-Hoon; Yoen, Kyu Hyoek; Lee, Eun Hye; Kim, Jun Young; Han, Il Ki; Choi, Wonjun; Song, Jindong

    2016-01-13

    The Aharonov-Bohm effect in ring structures in the presence of electronic correlation and disorder is an open issue. We report novel oscillations of a strongly correlated exciton pair, similar to a Wigner molecule, in a single nanoquantum ring, where the emission energy changes abruptly at the transition magnetic field with a fractional oscillation period compared to that of the exciton, a so-called fractional optical Aharonov-Bohm oscillation. We have also observed modulated optical Aharonov-Bohm oscillations of an electron-hole pair and an anticrossing of the photoluminescence spectrum at the transition magnetic field, which are associated with disorder effects such as localization, built-in electric field, and impurities. PMID:26648477

  5. Aharonov-Bohm interferometer based on n -p junctions in graphene nanoribbons

    NASA Astrophysics Data System (ADS)

    Mreńca-Kolasińska, A.; Heun, S.; Szafran, B.

    2016-03-01

    We demonstrate that the phenomenon of current confinement along graphene n -p junctions at high magnetic fields can be used to form an Aharonov-Bohm interferometer. The interference system exploits a closed n -p junction that can be induced by a floating gate within the sample, and coupling of the junction currents with the edge currents in the quantum Hall regime. Operation of the device requires current splitting at the edge and the n -p junction contacts which is found for armchair ribbons at low Fermi energy.

  6. Force-Free Gravitational Redshift: Proposed Gravitational Aharonov-Bohm Experiment

    NASA Astrophysics Data System (ADS)

    Hohensee, Michael A.; Estey, Brian; Hamilton, Paul; Zeilinger, Anton; Mller, Holger

    2012-06-01

    We propose a feasible laboratory interferometry experiment with matter waves in a gravitational potential caused by a pair of artificial field-generating masses. It will demonstrate that the presence of these masses (and, for moving atoms, time dilation) induces a phase shift, even if it does not cause any classical force. The phase shift is identical to that produced by the gravitational redshift (or time dilation) of clocks ticking at the atoms Compton frequency. In analogy to the Aharonov-Bohm effect in electromagnetism, the quantum mechanical phase is a function of the gravitational potential and not the classical forces.

  7. Force-free gravitational redshift: proposed gravitational Aharonov-Bohm experiment.

    PubMed

    Hohensee, Michael A; Estey, Brian; Hamilton, Paul; Zeilinger, Anton; Müller, Holger

    2012-06-01

    We propose a feasible laboratory interferometry experiment with matter waves in a gravitational potential caused by a pair of artificial field-generating masses. It will demonstrate that the presence of these masses (and, for moving atoms, time dilation) induces a phase shift, even if it does not cause any classical force. The phase shift is identical to that produced by the gravitational redshift (or time dilation) of clocks ticking at the atom's Compton frequency. In analogy to the Aharonov-Bohm effect in electromagnetism, the quantum mechanical phase is a function of the gravitational potential and not the classical forces. PMID:23003927

  8. Absence of the Electric Aharonov-Bohm Effect due to Induced Charges

    PubMed Central

    Wang, Rui-Feng

    2015-01-01

    This paper states that the induced charge should not be neglected in the electric Aharonov-Bohm (A-B) effect. If the induced charge is taken into account, the interference pattern of the moving charge will not change with the potential difference between the two metal tubes. It means that the scalar potential itself can not affect the phase of the moving charge, and the true factor affecting the phase of the moving charge is the energy of the system including the moving charge and the induced charge. PMID:26392302

  9. Persistent Currents in Interacting Aharonov-Bohm Interferometers and Their Enhancement by Acoustic Radiation

    NASA Astrophysics Data System (ADS)

    Entin-Wohlman, O.; Imry, Y.; Aharony, A.

    2003-07-01

    We consider an Aharonov-Bohm interferometer, connected to two electronic reservoirs, with a quantum dot embedded on one of its arms. We find a general expression for the persistent current at steady state, valid for the case where the electronic system is free of interactions except on the dot. The result is used to derive the modification in the persistent current brought about by coupling the quantum dot to a phonon source. The magnitude of the persistent current is found to be enhanced in an appropriate range of the intensity of the acoustic source.

  10. Persistent currents in interacting Aharonov-Bohm interferometers and their enhancement by acoustic radiation.

    PubMed

    Entin-Wohlman, O; Imry, Y; Aharony, A

    2003-07-25

    We consider an Aharonov-Bohm interferometer, connected to two electronic reservoirs, with a quantum dot embedded on one of its arms. We find a general expression for the persistent current at steady state, valid for the case where the electronic system is free of interactions except on the dot. The result is used to derive the modification in the persistent current brought about by coupling the quantum dot to a phonon source. The magnitude of the persistent current is found to be enhanced in an appropriate range of the intensity of the acoustic source. PMID:12906684

  11. On the possibility of transmitting signals by means of the Aharonov-Bohm effect

    NASA Astrophysics Data System (ADS)

    Ageev, A. N.; Chirkov, A. G.; Shalaev, B. N.; Markova, L. A.

    2010-12-01

    A mental experiment on the possible effect of an alternating current flowing along generating lines of an infinitely long cylinder on the interference diffraction pattern of microparticles has been considered. The possibility of exciting and detecting electromagnetic waves, which correspond to a zero electromagnetic field, and transmitting signals by means of the Aharonov-Bohm effect changing the phase of the electron wave function has been discussed. The results can be used in the design of a detector of an electromagnetic field that does not absorb photons of the detected radiation.

  12. Aharonov-Bohm effects of radiative noise in linear dispersive media

    NASA Astrophysics Data System (ADS)

    Kurizki, G.

    1991-05-01

    It is suggested that the quantum uncertainty of cavity radiation is measurable via Aharonov-Bohm effects for electrons in a ring which is threaded by the magnetic cavity flux. When the electrons follow this oscillatory flux nearly adiabatically, and dissipation is negligible, the noise in the ring current should provide a quantum-nondemolition measure of the flux uncertainty. Unlike standard photodetection, such measurements should reveal the scaling of the flux uncertainty with the diamagnetic or dielectric index of the cavity medium, depending on the dimensions of the electron ring.

  13. Dephasing of electrons in the Aharonov-Bohm interferometer with a single-molecular vibrational junction

    NASA Astrophysics Data System (ADS)

    Lai, Wenxi; Xing, Yunhui; Ma, Zhongshui

    2013-05-01

    Phase relaxation of electrons transferring through an electromechanical transistor is studied using the Aharonov-Bohm interferometer. Using the quantum master equation approach, the phase properties of an electron are numerically analyzed based on the interference fringes. The coherence of the electron is partially destroyed by its scattering on excited levels of the local nanomechanical oscillator. The transmission amplitudes with respect to two adjacent mechanical vibrational levels have a phase difference of π. The character of the π phase shift depends on the oscillator frequency only and is robust over a wide range of values of the applied voltage, tunneling length and damping rate of the mechanical oscillator.

  14. Quantum measurement and the Aharonov-Bohm effect with superposed magnetic fluxes

    NASA Astrophysics Data System (ADS)

    Bradonjić, Kaća; Swain, John D.

    2013-10-01

    We consider the magnetic flux in a quantum mechanical superposition of two values and find that the Aharonov-Bohm effect interference pattern contains information about the nature of the superposition, allowing information about the state of the flux to be extracted without disturbance. The information is obtained without transfer of energy or momentum and by accumulated nonlocal interactions of the vector potential \\varvec{A} with many charged particles forming the interference pattern, rather than with a single particle. We suggest an experimental test using already experimentally realized superposed currents in a superconducting ring and discuss broader implications.

  15. Higher-order topological phase: generalizations of the Aharonov-Bohm and Josephson effects

    NASA Astrophysics Data System (ADS)

    Buniy, Roman V.; Kephart, Thomas W.

    2014-10-01

    In the magnetic Aharonov-Bohm effect a semiclassical path of a charged particle is gaussian linked with a magnetic flux tube and one observes an interference phase angle proportional to the magnitude of the enclosed flux. We first generalize to the case of knotted paths. Then we argue that quantum mechanical wave functions with semiclassical paths that have higher order linking to multiple magnetic flux tubes have interference angle proportional to the product of the fluxes. Similar results hold for generalizing the Josephson effect.

  16. Aharonov-Bohm effect in the non-Abelian quantum Hall fluid

    NASA Astrophysics Data System (ADS)

    Georgiev, Lachezar S.; Geller, Michael R.

    2006-05-01

    The ν=5/2 fractional quantum Hall effect state has attracted great interest recently, both as an arena to explore the physics of non-Abelian quasiparticle excitations and as a possible architecture for topological quantum information processing. Here we use a conformal field theoretic description of the Moore-Read state to provide clear tunneling signatures of this state in an Aharonov-Bohm geometry. While not probing statistics directly, the measurements proposed here would provide a first, experimentally tractable step towards a full characterization of the 5/2 state.

  17. Kondo correlations and the Fano effect in closed Aharonov-Bohm interferometers.

    PubMed

    Hofstetter, W; Knig, J; Schoeller, H

    2001-10-01

    We study the Fano-Kondo effect in a closed Aharonov-Bohm (AB) interferometer which contains a single-level quantum dot and predict a frequency doubling of the AB oscillations as a signature of Kondo-correlated states. Using the Keldysh formalism, the Friedel sum rule, and the numerical renormalization group, we calculate the exact zero-temperature linear conductance G as a function of the AB phase phi and level position epsilon. In the unitary limit, G(phi) reaches its maximum 2e(2)/h at phi = pi/2. We find a Fano-suppressed Kondo plateau for G(epsilon) similar to recent experiments. PMID:11580718

  18. Use of Aharonov-Bohm effect and chirality control in magnetic phase plates for transmission microscopy

    NASA Astrophysics Data System (ADS)

    Edgcombe, C. J.; Loudon, J. C.

    2012-07-01

    Initial holographic tests on thin rings of cobalt have demonstrated both onion (O) and vortex (V) states of magnetization, and show that the vortex state provides a uniform phase difference between inside and outside the ring as expected from the Aharonov-Bohm effect. Simple circular rings show a relatively small difference between the in-plane switching fields O?V and V?O and have unpredictable chirality (sense of flux rotation in the vortex mode). Simulations suggest that D-shaped rings provide both predictable chirality and a wider range between switching fields.

  19. Non-Abelian Aharonov-Bohm effect with the time-dependent gauge fields

    NASA Astrophysics Data System (ADS)

    Hosseini Mansoori, Seyed Ali; Mirza, Behrouz

    2016-04-01

    We investigate the non-Abelian Aharonov-Bohm (AB) effect for time-dependent gauge fields. We prove that the non-Abelian AB phase shift related to time-dependent gauge fields, in which the electric and magnetic fields are written in the adjoint representation of SU (N) generators, vanishes up to the first order expansion of the phase factor. Therefore, the flux quantization in a superconductor ring does not appear in the time-dependent Abelian or non-Abelian AB effect.

  20. Electron Interferometry in the Quantum Hall Regime: Aharonov-Bohm Effect of Interacting Electrons

    SciTech Connect

    Lin, P.V.; Camino, F.; Goldman, V.J.

    2009-09-01

    An apparent h/fe Aharonov-Bohm flux period, where f is an integer, has been reported in coherent quantum Hall devices. Such subperiod is not expected for noninteracting electrons and thus is thought to result from interelectron Coulomb interaction. Here we report experiments in a Fabry-Perot interferometer comprised of two wide constrictions enclosing an electron island. By carefully tuning the constriction front gates, we find a regime where interference oscillations with period h/2e persist throughout the transition between the integer quantum Hall plateaus 2 and 3, including half-filling. In a large quantum Hall sample, a transition between integer plateaus occurs near half-filling, where the bulk of the sample becomes delocalized and thus dissipative bulk current flows between the counterpropagating edges ('backscattering'). In a quantum Hall constriction, where conductance is due to electron tunneling, a transition between forward and backscattering is expected near the half-filling. In our experiment, neither period nor amplitude of the oscillations show a discontinuity at half-filling, indicating that only one interference path exists throughout the transition. We also present experiments and an analysis of the front-gate dependence of the phase of the oscillations. The results point to a single physical mechanism of the observed conductance oscillations: Aharonov-Bohm interference of interacting electrons in quantum Hall regime.

  1. The Aharonov-Bohm Effect in a 3D topological insulator nanowire

    NASA Astrophysics Data System (ADS)

    Cho, Sungjae; Dellabetta, Brian; Yang, Alina; Schneeloch, John; Xu, Zhijun; Gu, Genda; Gilbert, Matthew; Mason, Nadya

    2014-03-01

    The three dimensional topological insulator (3D TI) is a new class of material having metallic surface states characterized by gapless Dirac dispersions and novel properties such as momentum-spin locking. A TI nanowire with an insulating bulk can be described as a hollow metallic cylinder, showing Aharonov-Bohm oscillations when a magnetic flux is threaded through the axis. The magneto-conductance of a TI nanowire near the Dirac point is expected to have a minimum at zero magnetic field and an oscillation period of one magnetic flux quantum, Φ (due to a Berry phase of π acquired by electron waves upon 2 π rotation of electron spin around the surface of the nanowire). In this talk, we discuss magneto-conductance measurements of TI (Bi2Se3) nanowires, measured as the gate voltage is tuned through the Dirac point. The Aharonov-Bohm oscillations switch from a conductance maximum to a minimum at zero field as the Dirac point is approached, consistent with the existence of a Berry phase in the nanowire.

  2. Aharonov-Bohm oscillations in a quasi-ballistic three-dimensional topological insulator nanowire.

    PubMed

    Cho, Sungjae; Dellabetta, Brian; Zhong, Ruidan; Schneeloch, John; Liu, Tiansheng; Gu, Genda; Gilbert, Matthew J; Mason, Nadya

    2015-01-01

    Aharonov-Bohm oscillations effectively demonstrate coherent, ballistic transport in mesoscopic rings and tubes. In three-dimensional topological insulator nanowires, they can be used to not only characterize surface states but also to test predictions of unique topological behaviour. Here we report measurements of Aharonov-Bohm oscillations in (Bi1.33Sb0.67)Se3 that demonstrate salient features of topological nanowires. By fabricating quasi-ballistic three-dimensional topological insulator nanowire devices that are gate-tunable through the Dirac point, we are able to observe alternations of conductance maxima and minima with gate voltage. Near the Dirac point, we observe conductance minima for zero magnetic flux through the nanowire and corresponding maxima (having magnitudes of almost a conductance quantum) at magnetic flux equal to half a flux quantum; this is consistent with the presence of a low-energy topological mode. The observation of this mode is a necessary step towards utilizing topological properties at the nanoscale in post-CMOS applications. PMID:26158768

  3. Enhanced spin figure of merit in an Aharonov-Bohm ring with a double quantum dot

    SciTech Connect

    Zhou, Xingfei; Qi, Fenghua; Jin, Guojun

    2014-04-21

    We theoretically investigate the thermoelectric effects in an Aharonov-Bohm ring with a serially coupled double quantum dot embedded in one arm. An external magnetic field is perpendicularly applied to the two dots. Using the nonequilibrium Green's function method in the linear-response regime, we calculate the charge and spin figures of merit. When the energy levels of the two quantum dots are equal and the system is connected to two normal leads, a large spin figure of merit (Z{sub s}T ≈ 4.5) accompanying with a small charge figure of merit (Z{sub c}T ≈ 0) can be generated due to the remarkable bipolar effect. Further, when the system is connected to two ferromagnetic leads, the spin figure of merit can reach even a higher value about 9. Afterwards, we find that Z{sub s}T is enhanced while Z{sub c}T is reduced in the coaction of the Aharonov-Bohm flux and Rashba spin-orbit coupling. It is argued that the bipolar effect is positive (negative) to spin (charge) figure of merit in the presence of level detuning of the two quantum dots and intradot Coulomb interactions, respectively. Also, we propose a possible experiment to verify our results.

  4. Transmission through a quantum dot molecule embedded in an Aharonov-Bohm interferometer.

    PubMed

    Lovey, Daniel A; Gomez, Sergio S; Romero, Rodolfo H

    2011-10-26

    We study theoretically the transmission through a quantum dot molecule embedded in the arms of an Aharonov-Bohm four quantum dot ring threaded by a magnetic flux. The tunable molecular coupling provides a transmission pathway between the interferometer arms in addition to those along the arms. From a decomposition of the transmission in terms of contributions from paths, we show that antiresonances in the transmission arise from the interference of the self-energy along different paths and that application of a magnetic flux can produce the suppression of such antiresonances. The occurrence of a period of twice the quantum of flux arises at the opening of the transmission pathway through the dot molecule. Two different connections of the device to the leads are considered and their spectra of conductance are compared as a function of the tunable parameters of the model. PMID:21970845

  5. Topological phases reviewed: The Aharonov Bohm, Aharonov Casher, and He McKellar Wilkens phases

    SciTech Connect

    McKellar, B. H. J.; He, X-G.; Klein, A. G.

    2014-03-05

    There are three topological phases related to electromagnetic interactions in quantum mechanics: 1. The Aharonov Bohm phase acquired when a charged particle encircles a magnetic field but travels through a field free region. 2. The Aharonov Casher phase acquired when a magnetic dipole encircles electric charges but travels through a charge free region. 3. The He McKellar Wilkens phase acquired when an electric dipole encircles magnetic charges but travels through a charge free region. We review the conditions under which these phases are indeed topological and their experimental realisation. Because the He McKellar Wilkens phase has been recently observed we pay particular attention to how the basic concept of 'an electric dipole encircles magnetic charges' was realised experimentally, and discuss possible future experimental realisations.

  6. Mode Dependency of Quantum Decoherence Studied via an Aharonov-Bohm Interferometer.

    PubMed

    Lo, Tung-Sheng; Lin, Yiping; Wu, Phillip M; Ling, Dah-Chin; Chi, C C; Chen, Jeng-Chung

    2016-02-26

    We investigate the dependence of decoherence on the mode number M in a multiple-mode Aharonov-Bohm (AB) interferometer. The design of the AB interferometer allows us to precisely determine M by the additivity rule of ballistic conductors; meanwhile, the decoherence rate is simultaneously deduced by the variance of the AB oscillation amplitude. The AB amplitude decreases and fluctuates with depopulating M. Moreover, the normalized amplitude exhibits a maximum at a specific M (∼9). Data analysis reveals that the charge-fluctuation-induced dephasing, which depends on the geometry and the charge relaxation resistance of the system, could play an essential role in the decoherence process. Our results suggest that the phase coherence, in principle, can be optimized using a deliberated design and pave one of the ways toward the engineering of quantum coherence. PMID:26967397

  7. Aharonov-Bohm oscillations in Dirac semimetal Cd3As2 nanowires.

    PubMed

    Wang, Li-Xian; Li, Cai-Zhen; Yu, Da-Peng; Liao, Zhi-Min

    2016-01-01

    Three-dimensional Dirac semimetals, three-dimensional analogues of graphene, are unusual quantum materials with massless Dirac fermions, which can be further converted to Weyl fermions by breaking time reversal or inversion symmetry. Topological surface states with Fermi arcs are predicted on the surface and have been observed by angle-resolved photoemission spectroscopy experiments. Although the exotic transport properties of the bulk Dirac cones have been demonstrated, it is still a challenge to reveal the surface states via transport measurements due to the highly conductive bulk states. Here, we show Aharonov-Bohm oscillations in individual single-crystal Cd3As2 nanowires with low carrier concentration and large surface-to-volume ratio, providing transport evidence of the surface state in three-dimensional Dirac semimetals. Moreover, the quantum transport can be modulated by tuning the Fermi level using a gate voltage, enabling a deeper understanding of the rich physics residing in Dirac semimetals. PMID:26902716

  8. Vacuum polarization of planar charged fermions with Coulomb and Aharonov-Bohm potentials

    NASA Astrophysics Data System (ADS)

    Khalilov, V. R.; Mamsurov, I. V.

    2016-02-01

    Vacuum polarization of charged massless fermions is investigated in the superposition of Coulomb and Aharonov-Bohm (AB) potentials in 2 + 1 dimensions. For this purpose, we construct the Green function of the two-dimensional Dirac equation with Coulomb and AB potentials (via the regular and irregular solutions of the radial Dirac equation) and then calculate the vacuum polarization charge density in the so-called subcritical and supercritical regimes. In the supercritical regime, the Green function has a discontinuity in the complex plane of “energy” due to the singularities on the negative energy axis; these singularities are situated on the unphysical sheet and related to the creation of infinitely many quasistationary fermionic states with negative energies. We expect that our results will be helpful in gaining deeper understanding of the fundamental problem of quantum electrodynamics which can be applied to the problems of charged impurity screening in graphene taking into consideration the electron spin.

  9. Mode Dependency of Quantum Decoherence Studied via an Aharonov-Bohm Interferometer

    NASA Astrophysics Data System (ADS)

    Lo, Tung-Sheng; Lin, Yiping; Wu, Phillip M.; Ling, Dah-Chin; Chi, C. C.; Chen, Jeng-Chung

    2016-02-01

    We investigate the dependence of decoherence on the mode number M in a multiple-mode Aharonov-Bohm (AB) interferometer. The design of the AB interferometer allows us to precisely determine M by the additivity rule of ballistic conductors; meanwhile, the decoherence rate is simultaneously deduced by the variance of the AB oscillation amplitude. The AB amplitude decreases and fluctuates with depopulating M . Moreover, the normalized amplitude exhibits a maximum at a specific M (˜9 ). Data analysis reveals that the charge-fluctuation-induced dephasing, which depends on the geometry and the charge relaxation resistance of the system, could play an essential role in the decoherence process. Our results suggest that the phase coherence, in principle, can be optimized using a deliberated design and pave one of the ways toward the engineering of quantum coherence.

  10. Aharonov-Bohm oscillations in Dirac semimetal Cd3As2 nanowires

    NASA Astrophysics Data System (ADS)

    Wang, Li-Xian; Li, Cai-Zhen; Yu, Da-Peng; Liao, Zhi-Min

    2016-02-01

    Three-dimensional Dirac semimetals, three-dimensional analogues of graphene, are unusual quantum materials with massless Dirac fermions, which can be further converted to Weyl fermions by breaking time reversal or inversion symmetry. Topological surface states with Fermi arcs are predicted on the surface and have been observed by angle-resolved photoemission spectroscopy experiments. Although the exotic transport properties of the bulk Dirac cones have been demonstrated, it is still a challenge to reveal the surface states via transport measurements due to the highly conductive bulk states. Here, we show Aharonov-Bohm oscillations in individual single-crystal Cd3As2 nanowires with low carrier concentration and large surface-to-volume ratio, providing transport evidence of the surface state in three-dimensional Dirac semimetals. Moreover, the quantum transport can be modulated by tuning the Fermi level using a gate voltage, enabling a deeper understanding of the rich physics residing in Dirac semimetals.

  11. The interplay between the Aharonov-Bohm interference and parity selective tunneling in graphene nanoribbon rings.

    PubMed

    Nguyen, V Hung; Niquet, Y-M; Dollfus, P

    2014-05-21

    We report on a numerical study of the Aharonov-Bohm (AB) effect and parity selective tunneling in pn junctions based on rectangular graphene rings where the contacts and ring arms are all made of zigzag nanoribbons. We find that when applying a magnetic field to the ring, the AB interference can reverse the parity symmetry of incoming waves and hence can strongly modulate the parity selective transmission through the system. Therefore, the transmission between two states of different parity exhibits the AB oscillations with a π-phase shift, compared to the case of states of the same parity. On this basis, it is shown that interesting effects, such as giant (both positive and negative) magnetoresistance and strong negative differential conductance, can be achieved in this structure. Our study thus presents a new property of the AB interference in graphene nanorings, which could be helpful for further understanding the transport properties of graphene mesoscopic systems. PMID:24785639

  12. h/e Aharonov-Bohm photovoltaic oscillations in mesoscopic Au rings

    NASA Astrophysics Data System (ADS)

    Bartolo, R. E.; Giordano, N.; Huang, X.; Bernstein, G. H.

    1997-01-01

    We have investigated a mesoscopic photovoltaic (PV) effect in micrometer-size Au rings in which a dc voltage Vdc is generated in response to microwave radiation. The effect is due to the lack of inversion symmetry in a disordered system. Aharonov-Bohm PV oscillations with flux period h/e have been observed at low microwave intensities for temperatures ranging from 1.4 to 13 K. For moderate microwave intensities the h/e PV oscillations are completely quenched, providing evidence that the microwaves act to randomize the phase of the electrons. Studies of the temperature dependence of Vdc also provide evidence of the dephasing nature of the microwave field. A complete theoretical explanation of the observed behavior seems to require a theory for the PV effect in a ring geometry.

  13. Fractional Aharonov-Bohm oscillation of a two-layer ring with two electrons

    NASA Astrophysics Data System (ADS)

    He, Y. Z.; Bao, C. G.

    2008-04-01

    When a circular ring suffers a special topological transformation, it becomes a two-layer ring. Due to the special topology of the two-layer ring, orbital angular momenta are allowed to be a half-integer. This would affect the traditional Aharonov-Bohm oscillation (ABO). In this paper, the fractional ABO (FABO) of the ground state energy, persistent current and dipole transition of a two-layer ring with two electrons has been studied. Collective and internal coordinates (θC, ϕ) have been introduced. Based on them, a very simple formula for the current has been obtained, the symmetry constraint imposed on the dipole transition has been clarified and a strict relation between the photon energies of the dipole radiation and the persistent current of the ground state has been found. Comparing with the one-layer ring, the period of the fractional ABO of the two-layer ring becomes much shorter.

  14. Characteristics of Aharonov-Bohm Electron Interference in Two-Mode Squeezed Vacuum

    NASA Astrophysics Data System (ADS)

    Shao, Bin; Zou, Jian

    Electron interference related to Aharonov-Bohm effect in the presence of the two-mode quantized radiation field is investigated. Characteristics of Shapiro steps, the visibility of the interference fringe and the temporal behavior of electron interference in correlated and uncorrelated two-mode radiation field are discussed. It is shown that for the correlated two-mode squeezed vacuum the integer Shapiro steps are obtained and the time evolution of the intensity of electron interference can exhibit very interesting periodic spontaneous collapse and revival (CR), while for the uncorrelated two-mode coherent state the fractional Shapiro steps are obtained and the CR phenomenon does not occur. In addition, the relation between CR and the quantum fluctuation in electron interference is also discussed.

  15. Two-Slit and Aharonov-Bohm Experiments in Magnetic Field

    NASA Astrophysics Data System (ADS)

    Pardy, Miroslav

    2008-12-01

    We discuss the two-slit experiment and the Aharonov-Bohm (AB) experiment in the magnetic field. In such a case the electron moving in the magnetic field produces so called synchrotron radiation. In other words the photons are emitted from the points of the electron trajectory and it means that the trajectory of electron is visible in the synchrotron radiation spectrum. The axiomatic system of quantum mechanics does not enable to define the trajectory of the elementary particle. The two-slit experiment and AB experiment in a magnetic field was never performed and it means that they are the missing experiments of quantum mechanics. The extension of the discussion to the cosmical rays moving in the magnetic field of the Saturn magnetosphere and its rings is mentioned. It is related to the probe CASSINI. The solution of the problem in the framework of the hydrodynamical model of quantum mechanics and the nonlinear quantum mechanics is also mentioned.

  16. Wave-packet rectification in nonlinear electronic systems: A tunable Aharonov-Bohm diode

    PubMed Central

    Li, Yunyun; Zhou, Jun; Marchesoni, Fabio; Li, Baowen

    2014-01-01

    Rectification of electron wave-packets propagating along a quasi-one dimensional chain is commonly achieved via the simultaneous action of nonlinearity and longitudinal asymmetry, both confined to a limited portion of the chain termed wave diode. However, it is conceivable that, in the presence of an external magnetic field, spatial asymmetry perpendicular to the direction of propagation suffices to ensure rectification. This is the case of a nonlinear ring-shaped lattice with different upper and lower halves (diode), which is attached to two elastic chains (leads). The resulting device is mirror symmetric with respect to the ring vertical axis, but mirror asymmetric with respect to the chain direction. Wave propagation along the two diode paths can be modeled for simplicity by a discrete Schrödinger equation with cubic nonlinearities. Numerical simulations demonstrate that, thanks to the Aharonov-Bohm effect, such a diode can be operated by tuning the magnetic flux across the ring. PMID:24691462

  17. Topological phases reviewed: The Aharonov Bohm, Aharonov Casher, and He McKellar Wilkens phases

    NASA Astrophysics Data System (ADS)

    McKellar, B. H. J.; He, X.-G.; Klein, A. G.

    2014-03-01

    There are three topological phases related to electromagnetic interactions in quantum mechanics: 1. The Aharonov Bohm phase acquired when a charged particle encircles a magnetic field but travels through a field free region. 2. The Aharonov Casher phase acquired when a magnetic dipole encircles electric charges but travels through a charge free region. 3. The He McKellar Wilkens phase acquired when an electric dipole encircles magnetic charges but travels through a charge free region. We review the conditions under which these phases are indeed topological and their experimental realisation. Because the He McKellar Wilkens phase has been recently observed we pay particular attention to how the basic concept of "an electric dipole encircles magnetic charges" was realised experimentally, and discuss possible future experimental realisations.

  18. Aharonov-Bohm effect in the tunnelling of a quantum rotor in a linear Paul trap

    NASA Astrophysics Data System (ADS)

    Noguchi, Atsushi; Shikano, Yutaka; Toyoda, Kenji; Urabe, Shinji

    2014-05-01

    Quantum tunnelling is a common fundamental quantum mechanical phenomenon that originates from the wave-like characteristics of quantum particles. Although the quantum tunnelling effect was first observed 85 years ago, some questions regarding the dynamics of quantum tunnelling remain unresolved. Here we realize a quantum tunnelling system using two-dimensional ionic structures in a linear Paul trap. We demonstrate that the charged particles in this quantum tunnelling system are coupled to the vector potential of a magnetic field throughout the entire process, even during quantum tunnelling, as indicated by the manifestation of the Aharonov-Bohm effect in this system. The tunnelling rate of the structures periodically depends on the strength of the magnetic field, whose period is the same as the magnetic flux quantum φ0 through the rotor [(0.99±0.07) × φ0].

  19. Electromagnetism, Local Covariance, the Aharonov-Bohm Effect and Gauss' Law

    NASA Astrophysics Data System (ADS)

    Sanders, Ko; Dappiaggi, Claudio; Hack, Thomas-Paul

    2014-06-01

    We quantise the massless vector potential A of electromagnetism in the presence of a classical electromagnetic (background) current, j, in a generally covariant way on arbitrary globally hyperbolic spacetimes M. By carefully following general principles and procedures we clarify a number of topological issues. First we combine the interpretation of A as a connection on a principal U(1)-bundle with the perspective of general covariance to deduce a physical gauge equivalence relation, which is intimately related to the Aharonov-Bohm effect. By Peierls' method we subsequently find a Poisson bracket on the space of local, affine observables of the theory. This Poisson bracket is in general degenerate, leading to a quantum theory with non-local behaviour. We show that this non-local behaviour can be fully explained in terms of Gauss' law. Thus our analysis establishes a relationship, via the Poisson bracket, between the Aharonov-Bohm effect and Gauss' law - a relationship which seems to have gone unnoticed so far. Furthermore, we find a formula for the space of electric monopole charges in terms of the topology of the underlying spacetime. Because it costs little extra effort, we emphasise the cohomological perspective and derive our results for general p-form fields A ( p < dim( M)), modulo exact fields, for the Lagrangian density . In conclusion we note that the theory is not locally covariant, in the sense of Brunetti-Fredenhagen-Verch. It is not possible to obtain such a theory by dividing out the centre of the algebras, nor is it physically desirable to do so. Instead we argue that electromagnetism forces us to weaken the axioms of the framework of local covariance, because the failure of locality is physically well-understood and should be accommodated.

  20. Vector solutions of the Laplace equation and the influence of helicity on the Aharonov-Bohm scattering

    NASA Astrophysics Data System (ADS)

    Afanasiev, G. N.

    1994-09-01

    Vector solutions of the Laplace equation are obtained. Their properties and possible applications are discussed. The multipole toroidal moments appear naturally in this vector basis. This removes the mystery of their origin. Conditions are found for the non-radiation of charge and current densities periodically changing with time. Electromagnetic properties of the toroidal solenoid with non-zero helicity, the influence of the latter on the Aharonov-Bohm scattering and alternative viewpoint on the toroidal solenoid with nontrivial helicity are studied.

  1. Quantum nonlinear resonance and quantum chaos in Aharonov-Bohm oscillations in mesoscopic semiconductor rings

    SciTech Connect

    Berman, G.P.; Bulgakov, E.N.; Campbell, D.K.; Krive, I.V.

    1997-10-01

    We consider Aharonov-Bohm oscillations in a mesoscopic semiconductor ring threaded by both a constant magnetic flux and a time-dependent, resonant magnetic field with one or two frequencies. Working in the ballistic regime, we establish that the theory of {open_quotes}quantum nonlinear resonance{close_quotes} applies, and thus that this system represents a possible solid-state realization of {open_quotes}quantum nonlinear resonance{close_quotes} and {open_quotes}quantum chaos.{close_quotes} In particular, we investigate the behavior of the time-averaged electron energy at zero temperature in the regimes of (i) an isolated quantum nonlinear resonance and (ii) the transition to quantum chaos, when two quantum nonlinear resonances overlap. The time-averaged energy exhibits sharp resonant behavior as a function of the applied constant magnetic flux, and has a staircase dependence on the amplitude of the external time-dependent field. In the chaotic regime, the resonant behavior exhibits complex structure as a function of flux and frequency. We compare and contrast the quantum chaos expected in these mesoscopic {open_quotes}solid-state atoms{close_quotes} with that observed in Rydberg atoms in microwave fields, and discuss the prospects for experimental observation of the effects we predict. {copyright} {ital 1997} {ital The American Physical Society}

  2. Observation of Optical Signature of the Aharonov-Bohm Phase in Type-II Quantum Dots

    NASA Astrophysics Data System (ADS)

    Kuskovsky, Igor; MacDonald, W.; Tamargo, M. C.; Govorov, A. O.; Wei, X.; Tadic, M.; Peeters, F. M.

    2006-03-01

    Recent theoretical studies^1,2 on the optical response of type-II excitons in the magnetic field have shown that the excitons will acquire the Aharonov-Bohm (AB) phase as the electrical dipole, formed due to carrier separation, interacts with the field, resulting in the field dependent exciton energy and the emission intensity. Experimentally, the former has been reported^3; however, the behavior of the intensity is still not fully understood. We present results of magneto-photoluminescence studies on type-II ZnTe/ZnSe quantum dots (QDs) formed in Zn-Se-Te multilayer systems^4; this ensures that electron move within the x-y plane. The observed strong oscillations in the intensity is explained in terms of the AB effect^1,2,5 due to the electron motion around a stack of QDs, when the hole is strongly localized in one them. This is in qualitative agreement with the theoretical predictions^2. 1. Kalameitsev, et al., JETP Lett. 68, 669 (1998); Govorov, et al., PRB R66, 081309 (2002); Janssens, et al., PRB 67, 235325 (2003). 2. Janssens, et al., PRB 69, 235320 (2004). 3. Ribeiro, et al., PRL 92, 126402 (2004). 4. Gu, et al.., PRB 71 045340 (2005). 5. Dias da Silva, et al., PRB 70, 155318 (2004).

  3. Nonradiating sources, the Aharonov-Bohm effect, and the question of measurability of electromagnetic potentials

    NASA Astrophysics Data System (ADS)

    Marengo, Edwin A.; Ziolkowski, Richard W.

    2002-12-01

    A new characterization of nonradiating (NR) sources is derived that is based on electromagnetic potentials. In the new description a hierarchy of NR sources is systematically created that includes certain nonlocalized NR sources having the property that their curl is localized. The important class of spatially localized NR sources, whose fields vanish everywhere in the exterior of the source, corresponds to a special case of the general theory. The new NR source developments are discussed in connection with the question of measurability of electromagnetic potentials as enabled by the Aharonov-Bohm (A-B) effect, whereby quantum mechanical effects of the potentials can be observed in regions of vanishing electromagnetic fields but nonvanishing electromagnetic potentials. A necessary condition is derived for an electrodynamic A-B effect in the exterior of a spatially localized NR source. By exploring this condition, it is concluded that for time-varying, information-carrying fields (as required, e.g., in communications and remote sensing applications) the required A-B conditions of vanishing fields and nonvanishing potentials are not possible in the exterior of a NR source; i.e., electrodynamically, if the fields vanish everywhere outside the source, then the potentials also vanish there. This does not necessarily hold under static conditions in which nontrivial potentials with physically observable quantum effects can exist in the exterior of a source having zero external fields.

  4. Creation of planar charged fermions in Coulomb and Aharonov-Bohm potentials

    NASA Astrophysics Data System (ADS)

    Khalilov, V. R.

    2013-08-01

    The creation of charged fermions from the vacuum by a Coulomb field in the presence of an Aharonov-Bohm (AB) potential are studied in 2+1 dimensions. The process is governed by a (singular) Dirac Hamiltonian that requires the supplementary definition in order for it to be treated as a self-adjoint quantum-mechanical operator. By constructing a one-parameter self-adjoint extension of the Dirac Hamiltonian, specified by boundary conditions, we describe the (virtual bound) quasistationary states with "complex energy" emerging in an attractive Coulomb potential, derive for the first time, complex equations (depending upon the electron spin and the extension parameter) for the quasistationary state "complex energy". The constructed self-adjoint Dirac Hamiltonians in Coulomb and AB potentials are applied to provide a correct description to the low-energy electron excitations, as well as the creation of charged quasiparticles from the vacuum in graphene by the Coulomb impurity in the presence of AB potential. It is shown that the strong Coulomb field can create charged fermions for some range of the extension parameter.

  5. Valley Zeeman energy in monolayer MoS2 quantum rings: Aharonov-Bohm effect

    NASA Astrophysics Data System (ADS)

    Oliveira, D.; Fu, Jiyong; Villegas-Lelovsky, L.; Dias, A. C.; Qu, Fanyao

    2016-05-01

    We investigate the valley Zeeman energy (VZE) in monolayer MoS2 quantum rings, subjected to a magnetic flux Φ only passing through a hole region enclosed by the inner circle of the ring. To gain insight on our numerical outcomes for finite two-dimensional rings, an analytic solution in the one-dimensional limit (zero ring width) is also presented. Although no magnetic field is applied inside the ring region, we observe finite VZEs. Interestingly, in contrast to the usual linear scenario, the VZE of the rings exhibits an oscillatory dependence on Φ with possible vanishing valley Zeeman effect even in a nonzero magnetic flux due to Aharonov-Bohm type effect. On the other hand, within one period of oscillations the VZE increases linearly with Φ . Furthermore, for a given magnetic flux, the valley Zeeman effect is more pronounced in a ring with a stronger quantum confinement. Thus the VZE can be tuned by either magnetic flux or ring confinement or both of them. This opens a new route for controlling the valley Zeeman effect using a nonmagnetic means.

  6. Aharonov-Bohm oscillations in a hydrogen atom in a radiation field through electron self-interference

    NASA Astrophysics Data System (ADS)

    Kalinski, Maciej

    1998-03-01

    We study the influence of a weak magnetic field on time evolution of a quantum state that is a coherent superposition of two counter-rotating Trojan wave packets in a linearly polarized electromagnetic field. We demonstrate that both the interference pattern of the electron probability density and differential cross section for half-cycle pulse ionization exhibit periodic modulation as a function of magnetic flux cutting the plane of packet motion. The shift is proportional to the magnetic flux in a way characteristic for the Aharonov-Bohm effect.

  7. Schrödinger and Dirac operators with the Aharonov-Bohm and magnetic-solenoid fields

    NASA Astrophysics Data System (ADS)

    Gitman, D. M.; Tyutin, I. V.; Voronov, B. L.

    2012-04-01

    We construct all self-adjoint Schrödinger and Dirac operators (Hamiltonians) with both the pure Aharonov-Bohm (AB) field and the so-called magnetic-solenoid field (a collinear superposition of the AB field and a constant magnetic field). We perform a spectral analysis for these operators, which includes finding spectra and spectral decompositions, or inversion formulae. In constructing the Hamiltonians and performing their spectral analysis, we follow, respectively, the von Neumann theory of self-adjoint extensions of symmetric operators and the Krein method of guiding functionals.

  8. On the Aharonov-Bohm Operators with Varying Poles: The Boundary Behavior of Eigenvalues

    NASA Astrophysics Data System (ADS)

    Noris, Benedetta; Nys, Manon; Terracini, Susanna

    2015-11-01

    We consider a magnetic Schrödinger operator with magnetic field concentrated at one point (the pole) of a domain and half integer circulation, and we focus on the behavior of Dirichlet eigenvalues as functions of the pole. Although the magnetic field vanishes almost everywhere, it is well known that it affects the operator at the spectral level (the Aharonov-Bohm effect, Phys Rev (2) 115:485-491, 1959). Moreover, the numerical computations performed in (Bonnaillie-Noël et al., Anal PDE 7(6):1365-1395, 2014; Noris and Terracini, Indiana Univ Math J 59(4):1361-1403, 2010) show a rather complex behavior of the eigenvalues as the pole varies in a planar domain. In this paper, in continuation of the analysis started in (Bonnaillie-Noël et al., Anal PDE 7(6):1365-1395, 2014; Noris and Terracini, Indiana Univ Math J 59(4):1361-1403, 2010), we analyze the relation between the variation of the eigenvalue and the nodal structure of the associated eigenfunctions. We deal with planar domains with Dirichlet boundary conditions and we focus on the case when the singular pole approaches the boundary of the domain: then, the operator loses its singular character and the k-th magnetic eigenvalue converges to that of the standard Laplacian. We can predict both the rate of convergence and whether the convergence happens from above or from below, in relation with the number of nodal lines of the k-th eigenfunction of the Laplacian. The proof relies on the variational characterization of eigenvalues, together with a detailed asymptotic analysis of the eigenfunctions, based on an Almgren-type frequency formula for magnetic eigenfunctions and on the blow-up technique.

  9. Reduction by symmetries in singular quantum-mechanical problems: General scheme and application to Aharonov-Bohm model

    SciTech Connect

    Smirnov, A. G.

    2015-12-15

    We develop a general technique for finding self-adjoint extensions of a symmetric operator that respects a given set of its symmetries. Problems of this type naturally arise when considering two- and three-dimensional Schrödinger operators with singular potentials. The approach is based on constructing a unitary transformation diagonalizing the symmetries and reducing the initial operator to the direct integral of a suitable family of partial operators. We prove that symmetry preserving self-adjoint extensions of the initial operator are in a one-to-one correspondence with measurable families of self-adjoint extensions of partial operators obtained by reduction. The general scheme is applied to the three-dimensional Aharonov-Bohm Hamiltonian describing the electron in the magnetic field of an infinitely thin solenoid. We construct all self-adjoint extensions of this Hamiltonian, invariant under translations along the solenoid and rotations around it, and explicitly find their eigenfunction expansions.

  10. Hydrogen atom in a quantum plasma environment under the influence of Aharonov-Bohm flux and electric and magnetic fields

    NASA Astrophysics Data System (ADS)

    Falaye, Babatunde James; Sun, Guo-Hua; Silva-Ortigoza, Ramón; Dong, Shi-Hai

    2016-05-01

    This study presents the confinement influences of Aharonov-Bohm (AB) flux and electric and magnetic fields directed along the z axis and encircled by quantum plasmas on the hydrogen atom. The all-inclusive effects result in a strongly attractive system while the localizations of quantum levels change and the eigenvalues decrease. We find that the combined effect of the fields is stronger than a solitary effect and consequently there is a substantial shift in the bound state energy of the system. We also find that to perpetuate a low-energy medium for the hydrogen atom in quantum plasmas, a strong electric field and weak magnetic field are required, whereas the AB flux field can be used as a regulator. The application of the perturbation technique utilized in this paper is not restricted to plasma physics; it can also be applied in molecular physics.

  11. Pauli isotonic oscillatorwith an anomalous magnetic moment in the presence of the Aharonov-Bohm effect: Laplace transform approach

    NASA Astrophysics Data System (ADS)

    Roshanzamir-Nikou, M.; Goudarzi, H.

    2016-02-01

    A strong magnetic field significantly affects the intrinsic magnetic moment of fermions. In quantum electrodynamics, it was shown that the anomalous magnetic moment of an electron arises kinematically, while it results from a dynamical interaction with an external magnetic field for hadrons (proton). Taking the anomalous magnetic moment of a fermion into account, we find an exact expression for the boundstate energy and the corresponding eigenfunctions of a two-dimensional nonrelativistic spin-1/2 harmonic oscillator with a centripetal barrier (known as the isotonic oscillator) including an Aharonov-Bohm term in the presence of a strong magnetic field. We use the Laplace transform method in the calculations. We find that the singular solution contributes to the phase of the wave function at the origin and the phase depends on the spin and magnetic flux.

  12. Spin-dependent Seebeck effect in Aharonov-Bohm rings with Rashba and Dresselhaus spin-orbit interactions

    NASA Astrophysics Data System (ADS)

    Liu, Bin; Li, Yunyun; Zhou, Jun; Nakayama, Tsuneyoshi; Li, Baowen

    2016-06-01

    We theoretically investigate the spin-dependent Seebeck effect in an Aharonov-Bohm mesoscopic ring in the presence of both Rashba and Dresselhaus spin-orbit interactions under magnetic flux perpendicular to the ring. We apply the Green's function method to calculate the spin Seebeck coefficient employing the tight-binding Hamiltonian. It is found that the spin Seebeck coefficient is proportional to the slope of the energy-dependent transmission coefficients. We study the strong dependence of spin Seebeck coefficient on the Fermi energy, magnetic flux, strength of spin-orbit coupling, and temperature. Maximum spin Seebeck coefficients can be obtained when the strengths of Rashba and Dresselhaus spin-orbit couplings are slightly different. The spin Seebeck coefficient can be reduced by increasing temperature and disorder.

  13. Quantum geometric phase in Majorana's stellar representation: mapping onto a many-body Aharonov-Bohm phase.

    PubMed

    Bruno, Patrick

    2012-06-15

    The (Berry-Aharonov-Anandan) geometric phase acquired during a cyclic quantum evolution of finite-dimensional quantum systems is studied. It is shown that a pure quantum state in a (2J+1)-dimensional Hilbert space (or, equivalently, of a spin-J system) can be mapped onto the partition function of a gas of independent Dirac strings moving on a sphere and subject to the Coulomb repulsion of 2J fixed test charges (the Majorana stars) characterizing the quantum state. The geometric phase may be viewed as the Aharonov-Bohm phase acquired by the Majorana stars as they move through the gas of Dirac strings. Expressions for the geometric connection and curvature, for the metric tensor, as well as for the multipole moments (dipole, quadrupole, etc.), are given in terms of the Majorana stars. Finally, the geometric formulation of the quantum dynamics is presented and its application to systems with exotic ordering such as spin nematics is outlined. PMID:23004240

  14. Mesoscopic photovoltaic effect in GaAs/Ga1-xAlxAs Aharonov-Bohm rings

    NASA Astrophysics Data System (ADS)

    Angers, L.; Chepelianskii, A.; Deblock, R.; Reulet, B.; Bouchiat, H.

    2007-08-01

    When submitted to a high-frequency radiation at low temperature, a mesoscopic conductor develops a sample specific dc voltage. We have investigated this photovoltaic (PV) effect on GaAs/Ga1-xAlxAs Aharonov-Bohm rings at temperatures varying between 30mK and 1K . The rf induced PV voltage is a purely mesoscopic effect which exhibits both periodic and aperiodic magnetic flux dependences with zero average value. The harmonics content and symmetry of this flux dependent PV voltage close to zero field depend on the radiation frequency compared to the inverse diffusion time around the sample. The frequency dependence also exhibits sharp resonances which position sign and amplitude strongly depend on magnetic field. We attribute these resonances to the presence of two level systems at resonance with the frequency of the electromagnetic field.

  15. Improving the efficiency of hierarchical equations of motion approach and application to coherent dynamics in Aharonov-Bohm interferometers.

    PubMed

    Hou, Dong; Wang, Shikuan; Wang, Rulin; Ye, LvZhou; Xu, RuiXue; Zheng, Xiao; Yan, YiJing

    2015-03-14

    Several recent advancements for the hierarchical equations of motion (HEOM) approach are reported. First, we propose an a priori estimate for the optimal number of basis functions for the reservoir memory decomposition. Second, we make use of the sparsity of auxiliary density operators (ADOs) and propose two ansatzs to screen out all the intrinsic zero ADO elements. Third, we propose a new truncation scheme by utilizing the time derivatives of higher-tier ADOs. These novel techniques greatly reduce the memory cost of the HEOM approach, and thus enhance its efficiency and applicability. The improved HEOM approach is applied to simulate the coherent dynamics of Aharonov-Bohm double quantum dot interferometers. Quantitatively accurate dynamics is obtained for both noninteracting and interacting quantum dots. The crucial role of the quantum phase for the magnitude of quantum coherence and quantum entanglement is revealed. PMID:25770531

  16. Reduction by symmetries in singular quantum-mechanical problems: General scheme and application to Aharonov-Bohm model

    NASA Astrophysics Data System (ADS)

    Smirnov, A. G.

    2015-12-01

    We develop a general technique for finding self-adjoint extensions of a symmetric operator that respects a given set of its symmetries. Problems of this type naturally arise when considering two- and three-dimensional Schrödinger operators with singular potentials. The approach is based on constructing a unitary transformation diagonalizing the symmetries and reducing the initial operator to the direct integral of a suitable family of partial operators. We prove that symmetry preserving self-adjoint extensions of the initial operator are in a one-to-one correspondence with measurable families of self-adjoint extensions of partial operators obtained by reduction. The general scheme is applied to the three-dimensional Aharonov-Bohm Hamiltonian describing the electron in the magnetic field of an infinitely thin solenoid. We construct all self-adjoint extensions of this Hamiltonian, invariant under translations along the solenoid and rotations around it, and explicitly find their eigenfunction expansions.

  17. Path integral action of a particle in a magnetic field in the noncommutative plane and the Aharonov-Bohm effect

    NASA Astrophysics Data System (ADS)

    Gangopadhyay, Sunandan; Scholtz, Frederik G.

    2014-02-01

    The formulation of noncommutative quantum mechanics as a quantum system represented in the space of Hilbert-Schmidt operators is used to systematically derive, using the standard time slicing procedure, the path integral action for a particle moving in the noncommutative plane and in the presence of a magnetic field and an arbitrary potential. Using this action, the equation of motion and the ground state energy for the particle are obtained explicitly. The Aharonov-Bohm phase is derived using a variety of methods and several dualities between this system and other commutative and noncommutative systems are demonstrated. Finally, the equivalence of the path integral formulation with the noncommutative Schrödinger equation is also established.

  18. Single-slit electron diffraction with Aharonov-Bohm phase: Feynman's thought experiment with quantum point contacts.

    PubMed

    Khatua, Pradip; Bansal, Bhavtosh; Shahar, Dan

    2014-01-10

    In a "thought experiment," now a classic in physics pedagogy, Feynman visualizes Young's double-slit interference experiment with electrons in magnetic field. He shows that the addition of an Aharonov-Bohm phase is equivalent to shifting the zero-field wave interference pattern by an angle expected from the Lorentz force calculation for classical particles. We have performed this experiment with one slit, instead of two, where ballistic electrons within two-dimensional electron gas diffract through a small orifice formed by a quantum point contact (QPC). As the QPC width is comparable to the electron wavelength, the observed intensity profile is further modulated by the transverse waveguide modes present at the injector QPC. Our experiments open the way to realizing diffraction-based ideas in mesoscopic physics. PMID:24483873

  19. Single-Slit Electron Diffraction with Aharonov-Bohm Phase: Feynman's Thought Experiment with Quantum Point Contacts

    NASA Astrophysics Data System (ADS)

    Khatua, Pradip; Bansal, Bhavtosh; Shahar, Dan

    2014-01-01

    In a "thought experiment," now a classic in physics pedagogy, Feynman visualizes Young's double-slit interference experiment with electrons in magnetic field. He shows that the addition of an Aharonov-Bohm phase is equivalent to shifting the zero-field wave interference pattern by an angle expected from the Lorentz force calculation for classical particles. We have performed this experiment with one slit, instead of two, where ballistic electrons within two-dimensional electron gas diffract through a small orifice formed by a quantum point contact (QPC). As the QPC width is comparable to the electron wavelength, the observed intensity profile is further modulated by the transverse waveguide modes present at the injector QPC. Our experiments open the way to realizing diffraction-based ideas in mesoscopic physics.

  20. Spin-dependent quantum interference in Aharonov-Bohm ring embedded with two double-quantum-dot molecules.

    PubMed

    Wang, Xiaofei; Liu, Xiaojie; Zhao, Xueyang; Yin, Haitao; Wan, Weilong; Feng, Li

    2014-03-01

    The spin polarized transport properties through an Aharonov-Bohm ring embedded with a double quantum dot-molecule in each arm with Rashba spin-orbit (RSO) interaction is theoretically studied in the framework of the equation of motion of Green's function. Based on molecular state representation, the anti-resonance phenomenon in the conductance spectrum is readily explained. We found that the position of antiresonant peaks in conductance spectrum is determined by the interdot coupling strengths. Moreover, the magnitude of conductance of each spin component can be manipulated by the Rashba spin orbit interaction strength. Especially only one spin component electron can be allowed to transport through this structure by modulating the strength of RSO interaction properly. PMID:24745284

  1. Quantum pump in an Aharonov-Bohm interferometer with a quantum dot driven by an ac field

    NASA Astrophysics Data System (ADS)

    Pan, H.; Xu, H.-Z.; Lü, R.

    2010-12-01

    With the help of the nonequilibrium Green's function method, the quantum pump in an Aharonov-Bohm interferometer with a quantum dot driven by an ac field are studied theoretically. The ac field applied to the quantum dot may give rise to a pumped charge current at zero-bias voltage in the presence of a nonzero magnetic flux. The possibility of manipulating the pumped charge current is explored by tuning the dot level, the magnetic flux, the coupling strength and the ac field. By making use of various tunings, the magnitude and direction of the pumped charge current can be well controlled. Furthermore, the possibility to generate a pure spin current in the presence of the Rashba spin-orbit interaction has been discussed, which provides an idea for the design of a spin pump electrically.

  2. Persistent current in a correlated quantum ring with electron-phonon interaction in the presence of Rashba interaction and Aharonov-Bohm flux

    PubMed Central

    Monisha, P. J.; Sankar, I. V.; Sil, Shreekantha; Chatterjee, Ashok

    2016-01-01

    Persistent current in a correlated quantum ring threaded by an Aharonov-Bohm flux is studied in the presence of electron-phonon interactions and Rashba spin-orbit coupling. The quantum ring is modeled by the Holstein-Hubbard-Rashba Hamiltonian and the energy is calculated by performing the conventional Lang-Firsov transformation followed by the diagonalization of the effective Hamiltonian within a mean-field approximation. The effects of Aharonov-Bohm flux, temperature, spin-orbit and electron-phonon interactions on the persistent current are investigated. It is shown that the electron-phonon interactions reduce the persistent current, while the Rashba coupling enhances it. It is also shown that temperature smoothens the persistent current curve. The effect of chemical potential on the persistent current is also studied. PMID:26831831

  3. Persistent current in a correlated quantum ring with electron-phonon interaction in the presence of Rashba interaction and Aharonov-Bohm flux

    NASA Astrophysics Data System (ADS)

    Monisha, P. J.; Sankar, I. V.; Sil, Shreekantha; Chatterjee, Ashok

    2016-02-01

    Persistent current in a correlated quantum ring threaded by an Aharonov-Bohm flux is studied in the presence of electron-phonon interactions and Rashba spin-orbit coupling. The quantum ring is modeled by the Holstein-Hubbard-Rashba Hamiltonian and the energy is calculated by performing the conventional Lang-Firsov transformation followed by the diagonalization of the effective Hamiltonian within a mean-field approximation. The effects of Aharonov-Bohm flux, temperature, spin-orbit and electron-phonon interactions on the persistent current are investigated. It is shown that the electron-phonon interactions reduce the persistent current, while the Rashba coupling enhances it. It is also shown that temperature smoothens the persistent current curve. The effect of chemical potential on the persistent current is also studied.

  4. Measurement of the second-order Zeeman effect on the sodium clock transition in the weak-magnetic-field region using the scalar Aharonov-Bohm phase

    SciTech Connect

    Numazaki, Kazuya; Imai, Hiromitsu; Morinaga, Atsuo

    2010-03-15

    The second-order Zeeman effect of the sodium clock transition in a weak magnetic field of less than 50 {mu}T was measured as the scalar Aharonov-Bohm phase by two-photon stimulated Raman atom interferometry. The ac Stark effect of the Raman pulse was canceled out by adopting an appropriate intensity ratio of two photons in the Raman pulse. The Ramsey fringes for the pulse separation of 7 ms were obtained with a phase uncertainty of {pi}/200 rad. The nondispersive feature of the scalar Aharonov-Bohm phase was clearly demonstrated through 18 fringes with constant amplitude. The Breit-Rabi formula of the sodium clock transition was verified to be {Delta}{nu}=(0.222{+-}0.003)x10{sup 12}xB{sup 1.998{+-}0.004} in a magnetic field of less than 50 {mu}T.

  5. Persistent current in a correlated quantum ring with electron-phonon interaction in the presence of Rashba interaction and Aharonov-Bohm flux.

    PubMed

    Monisha, P J; Sankar, I V; Sil, Shreekantha; Chatterjee, Ashok

    2016-01-01

    Persistent current in a correlated quantum ring threaded by an Aharonov-Bohm flux is studied in the presence of electron-phonon interactions and Rashba spin-orbit coupling. The quantum ring is modeled by the Holstein-Hubbard-Rashba Hamiltonian and the energy is calculated by performing the conventional Lang-Firsov transformation followed by the diagonalization of the effective Hamiltonian within a mean-field approximation. The effects of Aharonov-Bohm flux, temperature, spin-orbit and electron-phonon interactions on the persistent current are investigated. It is shown that the electron-phonon interactions reduce the persistent current, while the Rashba coupling enhances it. It is also shown that temperature smoothens the persistent current curve. The effect of chemical potential on the persistent current is also studied. PMID:26831831

  6. The optical Aharonov-Bohm effect and magneto-optical properties in type-II quantum dots

    NASA Astrophysics Data System (ADS)

    Whiteside, Vincent Ryan

    We present a detailed experimental study of the magneto-optical properties of type-II quantum dots (QDs) in: (1) ZnTe/ZnSe superlattices grown by Molecular Beam Epitaxy (MBE)---these Zn(SeTe) QDs evolve from Te-clustering in the ZnSe matrix during growth; and (2) diluted magnetic semiconductor, (ZnMn)Se, QDs in a ZnSe matrix produced by migration enhanced epitaxy. In case (1) the Zn(SeTe) QDs display large and robust (with temperature) oscillations as a function of magnetic field in both the photoluminescence energy and intensity as a result of the optical Aharonov-Bohm effect. The large strength of these oscillations is attributed to a combination of the type-II symmetry and the columnar geometry of the structures; the oscillations persist until 180K. The type-II diluted magnetic semiconductor, (ZnMn)Te quantum dots display similar oscillatory effects in the emission intensity. Interestingly, the coherence of the Aharonov-Bohm phase in these magnetic dots is strongly related to the spin polarization of the system due to the Mn-exciton exchange interaction as shown by the disappearance of the oscillations at low magnetic fields. The enhanced coherence at high fields, which leads to strong oscillations in intensity, is attributed to removal of magnetic disorder by the applied magnetic field. While the magnetic nature of the QDs is clear from the polarization measurements there is the seemingly contradictory behavior of a very small Zeeman shift for material that has a corresponding large Zeeman shift for the comparable composition of bulk (ZnMn)Te. More importantly, a red shift greater than 30 meV is observed in the peak energy of the PL as function of time after excitation with a picosecond pulse. These results can be explained by postulating formation of bound magnetic polarons in the QDs. The overall red shift is identified as the magnetic polaron binding energy, EMP; it is roughly independent of temperature, persisting up to 150K. The large MP binding energy is apparently contradictory to the small observed Zeeman splitting and the temperature dependence of the optical polarization in the steady state. These apparently contradictory properties are interpreted in terms of a model that explains the temperature dependence as well as the polarization and Zeeman energy splitting, while fully taking into account the polaron formation energy. The model is based on the hole-Mn and the Mn-Mn exchange coupling and their role in the magnetic polaron formation with a crucial aspect being the formation of an antiferromagnetically ordered state of the Mn spin system in each of the QDs in the absence of photoinjected holes.

  7. CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES: Nonlocal Andreev reflection and spin current in a three-terminal Aharonov-Bohm interferometer

    NASA Astrophysics Data System (ADS)

    Peng, Ju; Yu, Hua-Ling; Wang, Zhi-Guo

    2009-12-01

    This paper theoretically reports the nonlocal Andreev reflection and spin current in a normal metal-ferromagnetic metal-superconducting Aharonov-Bohm interferometer. It is found that the electronic current and spin current are sensitive to systematic parameters, such as the gate voltage of quantum dots and the external magnetic flux. The electronic current in the normal metal lead results from two competing processes: quasiparticle transmission and nonlocal Andreev reflection. The appearance of zero spin-up electronic current (or spin-down electronic current) signals the existence of nonlocal Andreev reflection, and the presence of zero electronic current results in the appearance of pure spin current.

  8. Spin filter effects in an Aharonov-Bohm ring with double quantum dots under general Rashba spin-orbit interactions

    NASA Astrophysics Data System (ADS)

    Kondo, Kenji

    2016-01-01

    Many researchers have reported on spin filters using linear Rashba spin-orbit interactions (SOI). However, spin filters using square and cubic Rashba SOIs have not yet been reported. We consider that this is because the Aharonov-Casher (AC) phases acquired under square and cubic Rashba SOIs are ambiguous. In this study, we try to derive the AC phases acquired under square and cubic Rashba SOIs from the viewpoint of non-Abelian SU(2) gauge theory. These AC phases can be derived successfully from the non-Abelian SU(2) gauge theory without the completing square methods. Using the results, we investigate the spin filtering in a double quantum dot (QD) Aharonov-Bohm (AB) ring under linear, square, and cubic Rashba SOIs. This AB ring consists of elongated QDs and quasi-one-dimensional quantum nanowires under an external magnetic field. The spin transport is investigated from the left nanowire to the right nanowire in the above structure within the tight-binding approximation. In particular, we focus on the difference of spin filtering among linear, square, and cubic Rashba SOIs. The calculation is performed for the spin polarization by changing the penetrating magnetic flux for the AB ring subject to linear, square, and cubic Rashba SOIs. It is found that perfect spin filtering is achieved for all of the Rashba SOIs. This result indicates that this AB ring under general Rashba SOIs can be a promising device for spin current generation. Moreover, the AB rings under general Rashba SOIs behave in totally different ways in response to penetrating magnetic flux, which is attributed to linear, square, and cubic behaviors in the in-plane momentum. This result enables us to make a clear distinction between linear, square, and cubic Rashba SOIs according to the peak position of the perfect spin filtering.

  9. Strain and band-mixing effects on the excitonic Aharonov-Bohm effect in In(Ga)As/GaAs ringlike quantum dots

    NASA Astrophysics Data System (ADS)

    Arsoski, Vladimir V.; Tadić, Milan Ž.; Peeters, François M.

    2013-02-01

    Neutral excitons in strained axially symmetric In(Ga)As/GaAs quantum dots with a ringlike shape are investigated. Similar to experimental self-assembled quantum rings, the analyzed quantum dots have volcano-like shapes. The continuum mechanical model is employed to determine the strain distribution, and the single-band envelope function approach is adopted to compute the electron states. The hole states are determined by the axially symmetric multiband Luttinger-Kohn Hamiltonian, and the exciton states are obtained from an exact diagonalization. We found that the presence of the inner layer covering the ring opening enhances the excitonic Aharonov-Bohm (AB) oscillations. The reason is that the hole becomes mainly localized in the inner part of the quantum dot due to strain, whereas the electron resides mainly inside the ring-shaped rim. Interestingly, larger AB oscillations are found in the analyzed quantum dot than in a fully opened quantum ring of the same width. Comparison with the unstrained ringlike quantum dot shows that the amplitude of the excitonic Aharonov-Bohm oscillations are almost doubled in the presence of strain. The computed oscillations of the exciton energy levels are comparable in magnitude to the oscillations measured in recent experiments.

  10. Coulomb blockade of tunnelling through compressible rings formed around an antidot: an explanation for h/2e Aharonov-Bohm oscillations

    NASA Astrophysics Data System (ADS)

    Ford, C. J. B.; Kataoka, M.; Simmons, M.; Ritchie, D. A.; Faini, G.; Mailly, D.

    2000-03-01

    We consider the detailed charging mechanism of an antidot and give a full explanation for the h/2e Aharonov-Bohm oscillations observed when both spin orientations of the lowest Landau level form bound states around the antidot(C. J. B. Ford et al., Phys. Rev. B 49), 17456 (1994).. Experimental data show that the resonance is only through states of one spin. An incompressible region forms between the compressible regions corresponding to each spin direction. Simple electrostatics coupled with screening in the compressible states, and Coulomb blockade(M. Kataoka et al., Phys. Rev. Lett. 83), 160 (1999)., can explain the h/2e oscillations. At lower fields, the oscillations show complicated behaviour, which we interpret in the terms of the gradual breakdown of the incompressible strip and dynamical screening.

  11. Edges states and anomalous Aharonov-Bohm-type oscillation in anti-dot lattice graphenes formed by nanoporous alumina template mask

    NASA Astrophysics Data System (ADS)

    Haruyama, J.; Shimizu, T.; Nakamura, J.; Matsui, T.; Fukuyama, H.

    2011-03-01

    Edge states of graphene with a zigzag structure theoretically have extremely high electronic density of states (EDOS), electron localization, and polarized spin transport as well. However, few studies have reported on the experimental observation of edge states and related quantum phenomena. Here, we report on the nonlithographic and low-damage fabrication of honeycomb-like nanopore arrays (anti-dot lattice) on thin multilayered graphenes utilizing nanoporous alumina template masks. We confirm the presence of high EDOS at the edges of the nanopores using STM observation. We find periodic magnetoresistance oscillations with two different periods over a wide magnetic field range (anomalous Aharonov-Bohm-type effect) (e.g., high fields at where the diameter of cyclotron-motion electrons is smaller than diameter of the nanopore). These findings clearly suggest the presence of localized electrons and edge states at the nanopore edges of graphene.

  12. CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES: Anomalous Kondo-Switching Effect of a Spin-Flip Quantum Dot Embedded in an Aharonov-Bohm Ring

    NASA Astrophysics Data System (ADS)

    Chen, Xiong-Wen; Shi, Zhen-Gang; Song, Ke-Hui

    2009-11-01

    We theoretically investigate the Kondo effect of a quantum dot embedded in a mesoscopic Aharonov-Bohm (AB) ring in the presence of the spin flip processes by means of the one-impurity Anderson Hamiltonian. Based on the slave-boson mean-field theory, we find that in this system the persistent current (PC) sensitively depends on the parity and size of the AB ring and can be tuned by the spin-flip scattering (R). In the small AB ring, the PC is suppressed due to the enhancing R weakening the Kondo resonance. On the contrary, in the large AB ring, with R increasing, the peak of PC firstly moves up to max-peak and then down. Especially, the PC phase shift of π appears suddenly with the proper value of R, implying the existence of the anomalous Kondo effect in this system. Thus this system may be a candidate for quantum switch.

  13. Observation of Aharonov-Bohm and Al'tshuler-Aronov-Spivak oscillations in the background of universal conductance fluctuations in silicon nanowires

    NASA Astrophysics Data System (ADS)

    Mtsuko, Davie; Aslan, Tahir; Ncube, Siphephile; Coleman, Christopher; Wamwangi, Daniel; Bhattacharyya, Somnath

    2016-02-01

    Magnetoresistance (MR) oscillations of multiple periodicities are recorded in singly connected silicon nanowires of diameter ≈50 \\text{nm} . At 100 K we observe oscillations of periodicity ≈1.78 \\text{T} and 0.444 T corresponding to h/e and h/4e Aharonov-Bohm (AB) oscillations, whereas at 10 K we record periodicities of 0.98 T, 0.49 T and 0.25 T corresponding to h/e, h/2e (Al'tshuler-Aronov-Spivak (AAS)) and h/4e oscillations. At 2.5 K we find magnetoresistance oscillations with multiple periodicities of 1.3 T, 0.52 T, and 0.325 T corresponding to AB and AAS oscillations. The h/2e and h/4e peaks can be attributed to the interference of time-reversed paths originating from the core orbits that scatter coherently on the surface of the nanowires multiple times. We also observed 20 mT and 60 mT oscillations of small amplitude superimposed on a quasi-periodic background which we attribute to the quantum interference of special surface states associated with skipping orbits that propagate quasi-ballistically. The aperiodic fluctuations in the MR at all temperatures are universal conductance fluctuations (UCF) originating from randomly spaced impurity scattering in the core of the nanowire.

  14. Tunable spin-dependent Andreev reflection in a four-terminal Aharonov-Bohm interferometer with coherent indirect coupling and Rashba spin-orbit interaction

    PubMed Central

    2012-01-01

    Using the nonequilibrium Green’s function method, we theoretically study the Andreev reflection(AR) in a four-terminal Aharonov-Bohm interferometer containing a coupled double quantum dot with the Rashba spin-orbit interaction (RSOI) and the coherent indirect coupling via two ferromagnetic leads. When two ferromagnetic electrodes are in the parallel configuration, the spin-up conductance is equal to the spin-down conductance due to the absence of the RSOI. However, for the antiparallel alignment, the spin-polarized AR occurs resulting from the crossed AR (CAR) and the RSOI. The effects of the coherent indirect coupling, RSOI, and magnetic flux on the Andreev-reflected tunneling magnetoresistance are analyzed at length. The spin-related current is calculated, and a distinct swap effect emerges. Furthermore, the pure spin current can be generated due to the CAR when two ferromagnets become two half metals. It is found that the strong RSOI and the large indirect coupling are in favor of the CAR and the production of the strong spin current. The properties of the spin-related current are tunable in terms of the external parameters. Our results offer new ways to manipulate the spin-dependent transport. PMID:23228047

  15. Properties of Type-II ZnTe/ZnSe Submonolayer Quantum Dots Studied via Excitonic Aharonov- Bohm Effect and Polarized Optical Spectroscopy

    NASA Astrophysics Data System (ADS)

    Ji, Haojie

    In this thesis I develop understanding of the fundamental physical and material properties of type-II ZnTe/ZnSe submonolayer quantum dots (QDs), grown via combination of molecular beam epitaxy (MBE) and migration enhanced epitaxy (MEE). I use magneto-photoluminescence, including excitonic Aharonov-Bohm (AB) effect and polarized optical spectroscopy as the primary tools in this work. I present previous studies as well as the background of optical and magneto-optical processes in semiconductor nanostructures and introduce the experimental methods in Chapters 1 - 3. In Chapter 4 I focus on the excitonic AB effect in the type-II QDs. I develop a lateral tightly-bound exciton model for ZnTe/ZnSe type-II QDs, using analytical methods and numerical calculations. This explained the magneto-PL observation and allowed for establishing the size and density of the QDs in each sample based on the results of PL and magneto-PL measurements. For samples with larger QDs, I observe behaviors that fall between properties of quantum-dot and quantum-well-like systems due to increased QD densities and their type-II nature. Finally, the decoherence mechanisms of the AB excitons are investigated via the temperature dependent studies of the magneto-PL. It is determined that the AB exciton decoherence is due to transport-like (acoustic phonon) scattering of the electrons moving in the ZnSe barriers, but with substantially smaller magnitude of electron-phonon coupling constant due to relatively strong electron-hole coupling within these type-II QDs. In Chapter 5 I discuss the results of circularly polarized magneto-PL measurements. A model with ultra-long spin-flip time of holes confined to submonolayer QDs is proposed. The g-factor of type-II excitons was extracted from the Zeeman splitting and the g-factor of electrons was obtained by fitting the temperature dependence of the degree of circular polarization (DCP), from which g-factor of holes confined within ZnTe QDs was found. It is shown that it is about three times larger than that of bulk ZnTe. In Chapter 6 I study the optical anisotropy in QDs. I show that all samples exhibit such an effect, and explain it based on non-spherical shape of the QDs. Numerical calculation is applied to calculate degree of linear polarization, and estimate the aspect ratio. The exciton anisotropic exchange splitting is calculated from the magnetic field dependence of the DCP. In the last two chapters I show my achievement on the growth of ZnO nanorods as a core for type-II 1D systems and propose an outlook for future research on the type-II semiconductor heterostructures.

  16. CALL FOR PAPERS: Special issue on Quantum Phases: 50 Years of the Aharonov-Bohm Effect and 25 Years of the Berry Phase Special issue on Quantum Phases: 50 Years of the Aharonov-Bohm Effect and 25 Years of the Berry Phase

    NASA Astrophysics Data System (ADS)

    Vaidman, Lev; Dennis, Mark; Popescu, Sandu

    2010-01-01

    This is a call for contributions to a special issue of Journal of Physics A: Mathematical and Theoretical dedicated to the subject of quantum phases and highlighting the impact of the discovery of the Aharonov--Bohm effect and of the Berry phase across physics. Researchers working in the area are invited to submit papers of original research to this issue. Editorial policy The Editorial Board has invited Lev Vaidman, Mark Dennis and Sandu Popescu to serve as Guest Editors for the special issue. The criteria for acceptance of contributions are as follows: Contributions will be refereed and processed according to the usual procedure and high standards of the journal. Papers should be original and should contain substantial new results. All contributions will be refereed and processed according to the usual procedure of the journal. Papers should report original and significant research that has not already been published. Guidelines for preparation of contributions The DEADLINE for contributed papers will be 1 February 2010. This deadline will allow the special issue to appear in September 2010. Advice on publishing your work in Journal of Physics A: Mathematical and Theoretical www.iop.org/Journals/jphysa. Contributions to the special issue should be submitted electronically, if possible, by web upload at www.iop.org/Journals/jphysa, or by email to jphysa@iop.org, quoting 'JPhysA Special Issue— Quantum Phases'. Submissions should ideally be in standard LaTeX form. Please see the website for further information on electronic submissions. Authors unable to submit electronically may send hard-copy contributions to: Publishing Administrators, Journal of Physics A, IOP Publishing, Dirac House, Temple Back, Bristol BS1 6BE, UK. Please quote 'JPhysA Special Issue— Quantum Phases'. All contributions should be accompanied by a read-me file or covering letter giving the postal and e-mail addresses for correspondence. The Publishing Office should be notified of any subsequent change of address. This special issue will be published in the paper and online version of the journal.

  17. Aharonov-Bohm Effect in Perturbation Theory.

    ERIC Educational Resources Information Center

    Purcell, Kay M.; Henneberger, Walter C.

    1978-01-01

    The Aharonov-Bohn effect is obtained in first-order perturbation theory. It is shown that the effect occurs only when the initial state is a superposition of eigenstates of Lz corresponding to eigenvalues having opposite sign. (Author/GA)

  18. Quantum Computation with Aharonov-Bohm Qubits

    NASA Astrophysics Data System (ADS)

    Kulik, I. O.

    2003-03-01

    We mention a problem related to the intrinsic decoherence in superconducting qubits made on basis of point-contact or normal-metal barrier junctions. We analyze the possibility of employing the persistent-current normal-state mesoscopic loops in crossed magnetic and electric fields as a prototype of qubit and qugates with the radiation free couplings.

  19. Aharonov-Bohm phase in high density quark matter

    NASA Astrophysics Data System (ADS)

    Chatterjee, Chandrasekhar; Nitta, Muneto

    2016-03-01

    Stable non-Abelian vortices, which are color magnetic flux tubes as well as superfluid vortices, are present in the color-flavor locked phase of dense quark matter with diquark condensations. We calculate the Aharanov-Bohm phases of charged particles, that is, electrons, muons, and color-flavor locked mesons made of tetraquarks around a non-Abelian vortex.

  20. The Aharonov-Bohm effect for an exciton

    NASA Astrophysics Data System (ADS)

    Römer, R. A.; Raikh, M. E.

    2000-03-01

    We study theoretically the exciton absorption (luminescence) of a ring-like quantum dot shreded by a magnetic flux. We consider the limit when the width of the ring is smaller than the excitonic Bohr radius a_B. We demonstrate that, despite the electrical neutrality of the exciton, both the spectral position of the exciton peak in the absorption (luminescence), and the corresponding oscillator strength oscillate with magnetic flux with a period Φ0 --- the universal flux quantum. Assuming that the attraction between electron and hole is short-ranged we find analytically the functional form of these oscillations for both quantities.^1 This enables us to trace the magnitude of the effect with changing the ratio 2 π R/aB where R is the radius of the ring. Physically, the origin of the oscillations is the finite probability for electron and hole, created by a photon at the same point, to tunnel in the opposite directions and meet each other on the opposite side of the ring. Possible candidates for the experimental observation of the effect are recently discovered self-assembled quantum ring-like structures of InAs embedded in GaAs.^2,3 ^1R.A. Römer and M.E. Raikh, preprint cond-mat/9906314. ^2A. Lorke et al., Microelectronic Engeneering 47, 95 (1999). ^3H. Petterson et al., Proceedings of EP2DS-13, to be published in Physica E, (1999).

  1. Topological Charge Screening in Disordered Aharonov-Bohm Wavefunctions

    NASA Astrophysics Data System (ADS)

    Houston, Alexander; Hannay, John; Taylor, Alexander; Dennis, Mark

    Free electrical charges are typically subject to screening relations. For example, in ionic fluids and Coulomb gases there is screening (both global and local) of the electrical charges, described by the first and second Stillinger-Lovett sum rules. A topological analogy governs the statistical behaviour of the nodal points in Gaussian random superpositions of plane waves. These nodal points are integer topological charges, i.e. vortices and antivortices of the complex wavefunction, whose sign is that of the phase circulation. Such superpositions are known to model high energy eigenfunctions in the presence of wave chaos, and display topological charge screening in the bulk. We investigate how these screening relations are affected by the introduction of a magnetic flux line, which may be fractional in strength. We find that the global screening relation is broken, with the average total topological charge of the vortices given by the flux strength, and that the local screening of the flux itself shows unexpected features.

  2. Aharonov-Bohm effect in absorption of electromagnetic wave

    NASA Astrophysics Data System (ADS)

    Bakanas, R.

    1984-09-01

    The possibility of the wave function and of the energy spectrum of an electron moving outside a magnetic field depending on the magnetic vector potential, called the Aharanov-Bohm effect, is examined relative to absorption of an electromagnetic wave in a solid body. A circularly polarized electromagnetic wave is assumed to propagate without space dispersion in the axial direction along a thin hollow cylinder surrounding a point source of a magnetic field such as a narrow solenoid with negligible flux leakage. The absorption coefficient is calculated in the lowest-order approximation of wave-electron interaction. In a nondegenerate electron gas with an infinite sequence of o-form absorption peaks, their magnitudes and frequencies are found to depend on the magnetic flux, as are the intensities and locations of absorption lines in a degenerate electron gas subject to the Pauli principle. This is demonstrated by numerical estimates on the basis of typical data. The absorption anomaly occurs also in thick bodies.

  3. Induced current and Aharonov-Bohm effect in graphene

    NASA Astrophysics Data System (ADS)

    Jackiw, R.; Milstein, A. I.; Pi, S.-Y.; Terekhov, I. S.

    2009-07-01

    The effect of vacuum polarization in the field of an infinitesimally thin solenoid at distances much larger than the radius of solenoid is investigated. The induced charge density and induced current are calculated. Though the induced charge density turned out to be zero, the induced current is a finite periodical function of the magnetic flux ? . The expression for this function is found exactly in a value of the flux. The induced current is equal to zero at the integer values of ?/?0 as well as at half-integer values of this ratio, where ?0=2??c/e is the elementary magnetic flux. The latter is a consequence of the Furry theorem and periodicity of the induced current with respect to magnetic flux. As an example we consider the graphene in the field of solenoid perpendicular to the plane of a sample.

  4. AZO DYES ARE MAJOR CONTRIBUTORS TO THE MUTAGENIC ACTIVITY DETECTED IN THE CRISTAIS RIVER WATERS

    EPA Science Inventory

    To determine if compounds from a dye processing plant were contributing to the mutagenicity repeatedly found in the Cristais River, Sao Paulo, Brazil, we chemically characterized the treated industrial effluent, raw and treated water, and the sludge produced by a Drinking Water T...

  5. THE CONTRIBUTION OF AZO DYES TO THE MUTAGENIC ACTIVITY OF THE CRISTAIS RIVER

    EPA Science Inventory

    To verify if compounds within the discharge of a dye processing plant were contributing to the mutagenicity repeatedly found in the Cristais River, Sao Paulo, Brazil, we chemically characterized the treated industrial effluent, raw and treated water, and the sludge produced by a ...

  6. Exciton storage in type-II quantum dots using the optical Aharonov-Bohm effect

    SciTech Connect

    Climente, Juan I.; Planelles, Josep

    2014-05-12

    We investigate the bright-to-dark exciton conversion efficiency in type-II quantum dots subject to a perpendicular magnetic field. To this end, we take the exciton storage protocol recently proposed by Simonin and co-workers [Phys. Rev. B 89, 075304 (2014)] and simulate its coherent dynamics. We confirm the storage is efficient in perfectly circular structures subject to weak external electric fields, where adiabatic evolution is dominant. In practice, however, the efficiency rapidly degrades with symmetry lowering. Besides, the use of excited states is likely unfeasible owing to the fast decay rates. We then propose an adaptation of the protocol which does not suffer from these limitations.

  7. Aharonov-Bohm Beats in Excitonic Luminescence from Quantum Rings and Type-II Quantum Dots

    NASA Astrophysics Data System (ADS)

    Dias da Silva, Luis; Shahbazyan, Tigran

    2005-03-01

    We study the absorption spectrum of neutral magnetoexcitons confined in ring-like structures. Despite their neutral character, excitons exhibit strong modulation effects on the energy and oscillator strength in the presence of magnetic fields [1] that have been recently observed [2]. We calculate the absorption coefficient α for neutral excitons confined in circular ring geometries with radii Re for electrons and Rh for holes. A particularly interesting situation comes about when Re!=Rh and a net radial charge polarization arises. In this case, we consider an attractive Coulomb interaction proportional to (Re- Rh)-1 and the excitonic absorption peak shows oscillatory behavior as function of the applied magnetic field both in position and amplitude. Such oscillations strongly depend on the dipole moment P=e(Rh-Re) of the exciton and on the dielectric constant of the system. Such intensity changes could in principle be experimentally observed with single dot spectroscopy in quantum rings [3]. Supported by the NSF-IMC and NSF-RUI [1] A.O. Govorov et al. Phys. Rev. B 66 081309 (2002); A.O. Govorov et al. Physica E 13, 297 (2002). [2] E. Ribeiro et al. Phys Rev. Lett. 92 126402 (2004). [3] R.J. Warburton et al. Nature 405 (6789) 926 (2000).

  8. The Aharonov-Bohm Effect and Transport Properties in Graphene Nanostructures

    NASA Astrophysics Data System (ADS)

    Lungu, Mihai; Giugiulan, Raluca; Lungu, Antoanetta; Bunoiu, Madalin; Neculae, Adrian

    2013-12-01

    This paper investigates the possibility to improve the filtering process of flue gas by separation of suspended nanoparticle using dielectrophoresis. The study focuses on the particles having an average radius of about 50-150 nm, that cannot be filtrated by classical techniques but have a harmful effect for environment and human health. The size distribution nanoparticles collected from the flue gas filters of a hazardous waste incinerator plant were evaluated. Based on obtained experimental data and a proposed mathematical model, the concentration distribution of nanoparticle suspended in flue gas inside a microfluidic separation device was analyzed by numerical simulations, using the finite element method. The performances of the device were described in terms of three new specific quantities related to the separation process, namely Recovery, Purity and Separation Efficiency. The simulations could provide the optimal values of control parameters for separation process, and aim to be a useful tool in designing microfluidic devices for separating nanoparticle from combustion gases.

  9. Single electron bipolar conductance switch driven by the molecular Aharonov-Bohm effect.

    PubMed

    Lee, Joonhee; Tallarida, Nicholas; Rios, Laura; Perdue, Shawn M; Apkarian, Vartkess Ara

    2014-06-24

    We demonstrate a conductance switch controlled by the spin-vibronic density of an odd electron on a single molecule. The junction current is modulated by the spin-flip bistability of the electron. Functional images are provided as wiring diagrams for control of the switch's frequency, amplitude, polarity, and duty-cycle. The principle of operation relies on the quantum mechanical phase associated with the adiabatic circulation of a spin-aligned electron around a conical intersection. The functional images quantify the governing vibronic Hamiltonian. PMID:24824563

  10. Acoustical indication of Aharonov-Bohm phase in metal oxide-A theoretical approach

    NASA Astrophysics Data System (ADS)

    Brojabasi, Priyanka; Kumar, Anish; Jayakumar, T.

    2013-06-01

    Phase of electron wave plays essential roles in quantum mechanical phenomena such as interference, absorption, and conductivity. Propagation of acoustical waves through materials with high free electron density causes absorption of acoustic waves by electron, phonon, coupled electron-phonon wave etc. Change of electron characteristics in material in presence of external stimuli such as temperature and magnetic field modifies the acoustic absorption coefficient. Here, we theoretically analyze the change of ultrasound attenuation due to absorption in aluminium oxide in presence of external magnetic field due to the evolution of 'Aharonov-Bohmphase' in electrons. This field induced variation of ultrasound attenuation in metal oxide utilizes to develop novel acoustic meta-material.

  11. Comment on "Role of potentials in the Aharonov-Bohm effect"

    NASA Astrophysics Data System (ADS)

    Aharonov, Yakir; Cohen, Eliahu; Rohrlich, Daniel

    2015-08-01

    Are the electromagnetic scalar and vector potentials dispensable? Vaidman [Phys. Rev. A 86, 040101(R) (2012)], 10.1103/PhysRevA.86.040101 has suggested that local interactions of gauge-invariant quantities, e.g., magnetic torques, suffice for the description of all quantum electromagnetic phenomena. We analyze six thought experiments that challenge this suggestion. All of them have explanations in terms of local interactions of gauge-dependent quantities, and, in addition, some have explanations in terms of nonlocal interactions of gauge-invariant quantities. We claim, however, that two of our examples have no gauge-invariant formal description and that, in general, no local description can dispense with electromagnetic potentials.

  12. THE CASE FOR THE CONTRIBUTION OF CRISTAIS RIVER NITRO-AMINOBENZENE DYES TO THE MUTAGENICITY OF AMBIENT SAMPLES

    EPA Science Inventory

    In order to verify if dyestuffs within an effluent of a textile industry was contributing to the systematic mutagenicity detected in the Cristais River, within the metropolitan region of Sao Paulo, mutagenic samples of the industrial effluent, crude water, and treated silt of the...

  13. Roles of local classical acceleration and spatial separation in the neutral particle analogs of the Aharonov-Bohm phases

    SciTech Connect

    Casella, R.C. )

    1994-11-28

    I show that neither local nonuniform classical acceleration nor spatial separation of the quantized spin components plays an essential role in a number of neutron interferometer experiments designed to detect phases [phi][sub [plus minus

  14. Coherent and semiclassical states in a magnetic field in the presence of the Aharonov-Bohm solenoid

    NASA Astrophysics Data System (ADS)

    Bagrov, V. G.; Gavrilov, S. P.; Gitman, D. M.; Meira Filho, D. P.

    2011-02-01

    A new approach to constructing coherent states (CS) and semiclassical states (SS) in a magnetic-solenoid field is proposed. The main idea is based on the fact that the AB solenoid breaks the translational symmetry in the xy-plane; this has a topological effect such that there appear two types of trajectories which embrace and do not embrace the solenoid. Due to this fact, one has to construct two different kinds of CS/SS which correspond to such trajectories in the semiclassical limit. Following this idea, we construct CS in two steps, first the instantaneous CS (ICS) and then the time-dependent CS/SS as an evolution of the ICS. The construction is realized for nonrelativistic and relativistic spinning particles both in (2 + 1) and (3 + 1) dimensions and gives a non-trivial example of SS/CS for systems with a nonquadratic Hamiltonian. It is stressed that CS depending on their parameters (quantum numbers) describe both pure quantum and semiclassical states. An analysis is represented that classifies parameters of the CS in such respect. Such a classification is used for the semiclassical decompositions of various physical quantities.

  15. Can Real Forces Be Induced by Interference of Quantum Wavefunctions?

    NASA Astrophysics Data System (ADS)

    Kaminer, Ido; Nemirovsky, Jonathan; Rechtsman, Mikael; Bekenstein, Rivka; Segev, Mordechai

    2013-04-01

    In 1958, a revolutionary paper by Aharonov and Bohm predicted a phase difference between two parts of an electron wavefunction even when being confined to a regime with no EM field. The Aharonov-Bohm effect was groundbreaking: proving that the EM vector potential is a real physical quantity, affecting the outcome of experiments not only through the EM fields extracted from it. But is the EM potential a real necessity for an Aharonov-Bohm-type effect? Can it exist in a potential-free system such as free-space? Here, we find self-accelerating wavepackets that are solutions of the free Dirac equation, for massive/massless fermions/bosons. These accelerating Dirac particles mimic the dynamics of a free-charge moving under a ``virtual'' EM field, even though no field is acting and there is no charge: the entire dynamics is a direct result of the initial conditions. We show that such particles display an effective Aharonov-Bohm effect caused by exactly the same ``virtual'' potential that also ``causes'' the acceleration. Altogether, along the trajectory, there is no way to distinguish between a real force and the self-induced force - it is real by all measurable quantities. This proves that one can create all effects induced by EM fields by only controlling the initial conditions of a wave pattern, while the dynamics is in free-space. These phenomena can be observed in various settings: e.g., optical waves in honeycomb photonic lattices or in hyperbolic metamaterials, and matter waves in honeycomb interference structures.

  16. Optical analog of the Iordanskii force in a Bose-Einstein condensate

    SciTech Connect

    Leonhardt, U.; Oehberg, P.

    2003-05-01

    A vortex in a Bose-Einstein condensate generates the optical analog of the Aharonov-Bohm effect when illuminated with slow light. In contrast to the original Aharonov-Bohm effect the vortex will exchange forces with the light that leads to a measurable motion of the vortex.

  17. Maxwell Duality, Lorentz Invariance, and Topological Phase

    NASA Technical Reports Server (NTRS)

    Dowling, J.; Williams, C.; Franson, J.

    1999-01-01

    We discuss the Maxwell electromagnetic duality relations between the Aharonov-Bohm, Aharonov-Casher, and He-McKellar-Wilkens topological phases, which allows a unified description of all three phenomena.

  18. Two Further Experiments on Electron Interference

    ERIC Educational Resources Information Center

    Matteucci, G.; Pozzi, G.

    1978-01-01

    Presents the results of two experiments concerning the phenomena of the interference of probabilities and of the so called Aharonov-Bohm effect. An electron biprism and a standard electron microscope have been used for the experiments. (Author/GA)

  19. Topology, Holes and Sources

    NASA Astrophysics Data System (ADS)

    Afriat, Alexander

    2013-03-01

    The Aharonov-Bohm effect is often called "topological." But it seems no more topological than magnetostatics, electrostatics or Newton-Poisson gravity (or just about any radiation, propagation from a source). I distinguish between two senses of "topological."

  20. Gauge invariance and the detection of gravitational radiation

    NASA Astrophysics Data System (ADS)

    Garfinkle, David

    2006-03-01

    The detection of gravitational radiation raises some subtle issues concerning the coordinate invariance of general relativity. This paper explains these issues and their resolution by using an analogy with the Aharonov-Bohm effect of quantum mechanics.

  1. Local geometric phase and quantum-state tomography for a superconducting qubit threaded by a magnetic flux

    NASA Astrophysics Data System (ADS)

    Kang, Kicheon

    2014-02-01

    We investigate the local geometric phase induced by Faraday's law of induction in a superconducting charge qubit threaded by an Aharonov-Bohm flux. A quantum-state reconstruction scheme, which is based on measurement of three complementary quantities, that is, the extra charge and two local currents, is introduced. We find that, while the variation of the local phase with magnetic field is determined by Faraday's law, incorporation of the time-reversal symmetry enables complete determination of the local phase. This procedure clearly demonstrates that the local geometric phase is a physical quantity (aside from a global phase factor), in contrast to the standard description of the Aharonov-Bohm effect.

  2. Topological quantum scattering under the influence of a nontrivial boundary condition

    NASA Astrophysics Data System (ADS)

    Mota, Herondy

    2016-04-01

    We consider the quantum scattering problem of a relativistic particle in (2 + 1)-dimensional cosmic string spacetime under the influence of a nontrivial boundary condition imposed on the solution of the Klein-Gordon equation. The solution is then shifted as consequence of the nontrivial boundary condition and the role of the phase shift is to produce an Aharonov-Bohm-like effect. We examine the connection between this phase shift and the electromagnetic and gravitational analogous of the Aharonov-Bohm effect and compare the present results with previous ones obtained in the literature, also considering non-relativistic cases.

  3. Charge-fluctuation-induced dephasing in a gated mesoscopic interferometer

    NASA Astrophysics Data System (ADS)

    Seelig, Georg; Büttiker, Markus

    2001-12-01

    The reduction of the amplitude of Aharonov-Bohm oscillations in a ballistic one-channel mesoscopic interferometer due to charge fluctuations is investigated. In the arrangement considered the interferometer has four terminals and is coupled to macroscopic metallic side gates. The Aharonov-Bohm oscillation amplitude is calculated as a function of temperature and the strength of coupling between the ring and the side gates. The resulting dephasing rate is linear in temperature in agreement with recent experiments. Our derivation emphasizes the relationship between dephasing, ac-transport, and charge fluctuations.

  4. EM International. Volume 1

    SciTech Connect

    Not Available

    1993-07-01

    It is the intent of EM International to describe the Office of Environmental Restoration and Waste Management`s (EM`s) various roles and responsibilities within the international community. Cooperative agreements and programs, descriptions of projects and technologies, and synopses of visits to international sites are all highlighted in this semiannual journal. Focus on EM programs in this issue is on international collaboration in vitrification projects. Technology highlights covers: in situ sealing for contaminated sites; and remote sensors for toxic pollutants. Section on profiles of countries includes: Arctic contamination by the former Soviet Union, and EM activities with Germany--cooperative arrangements.

  5. Suppression of decoherence in a graphene monolayer ring

    SciTech Connect

    Smirnov, D. Rode, J. C.; Haug, R. J.

    2014-08-25

    The influence of high magnetic fields on coherent transport is investigated. A monolayer graphene quantum ring is fabricated and the Aharonov-Bohm effect is observed. For increased magnitude of the magnetic field, higher harmonics appear. This phenomenon is attributed to an increase of the phase coherence length due to reduction of spin flip scattering.

  6. Energy levels and far-infrared spectra of oval-shaped nanorings

    SciTech Connect

    Gutiérrez, W.; García, L. F.; Mikhailov, I. D.

    2014-05-15

    The evolution of the Aharonov-Bohm oscillation of low-lying states and far infrared spectrum associated to variation of the path curvature for electron motion along nanorings with centerlines in a form of a set of Cassini ovals, whose shape is changed continuously from a single elongated loop to two separated loops is theoretically investigated.

  7. Quantum mechanical effects of topological origin

    NASA Technical Reports Server (NTRS)

    Duru, I. H.

    1993-01-01

    Following a brief review of the original Casimir and Aharonov-Bohm effects, some other effects of similar natures are mentioned. A Casimir interaction between AB fluxes is presented. Possible realizations of the Casimir effects for massive charged fields in solid state structures and a new AB effect for photons are suggested.

  8. Quantum Phenomena Observed Using Electrons

    SciTech Connect

    Tonomura, Akira

    2011-05-06

    Electron phase microscopy based on the Aharonov-Bohm (AB) effect principle has been used to illuminate fundamental phenomena concerning magnetism and superconductivity by visualizing quantitative magnetic lines of force. This paper deals with confirmation experiments on the AB effect, the magnetization process of tiny magnetic heads for perpendicular recording, and vortex behaviors in high-Tc superconductors.

  9. Quantum Effects of Electric Fields and Potentials on Electron Motion: An Introduction to Theoretical and Practical Aspects

    ERIC Educational Resources Information Center

    Matteucci, G.

    2007-01-01

    In the so-called electric Aharonov-Bohm effect, a quantum interference pattern shift is produced when electrons move in an electric field free region but, at the same time, in the presence of a time-dependent electric potential. Analogous fringe shifts are observed in interference experiments where electrons, travelling through an electrostatic…

  10. Experimental observation of time-delays associated with electric Matteucci-Pozzi phase shifts

    NASA Astrophysics Data System (ADS)

    Hilbert, Shawn A.; Caprez, Adam; Batelaan, Herman

    2011-09-01

    In 1985, Matteucci and Pozzi (1985 Phys. Rev. Lett. 54 2469) demonstrated the presence of a quantum mechanical phase shift for electrons passing a pair of oppositely charged biprism wires. For this experimental arrangement no forces deflect the electrons. Consequently, the result was reported as a non-local type-2 Aharonov-Bohm effect. Boyer (2002 Found. Phys. 32 41-50 1987 Nuovo Cimento B 100 685-701) showed theoretically that the Matteucci-Pozzi effect could be associated with a time delay caused by a classical force. We present experimental data that confirm the presence of a time delay. This result is in contrast to the situation for the original magnetic Aharonov-Bohm effect. On similar theoretical grounds, Boyer has also associated classical forces and time delays with the magnetic Aharonov-Bohm effect. Recently, we reported the absence of such observable time delays. The contrast with our current work illustrates the subtle nature of Aharonov-Bohm effects.

  11. The EM Earthquake Precursor

    NASA Astrophysics Data System (ADS)

    Jones, K. B., II; Saxton, P. T.

    2013-12-01

    Many attempts have been made to determine a sound forecasting method regarding earthquakes and warn the public in turn. Presently, the animal kingdom leads the precursor list alluding to a transmission related source. By applying the animal-based model to an electromagnetic (EM) wave model, various hypotheses were formed, but the most interesting one required the use of a magnetometer with a differing design and geometry. To date, numerous, high-end magnetometers have been in use in close proximity to fault zones for potential earthquake forecasting; however, something is still amiss. The problem still resides with what exactly is forecastable and the investigating direction of EM. After the 1989 Loma Prieta Earthquake, American earthquake investigators predetermined magnetometer use and a minimum earthquake magnitude necessary for EM detection. This action was set in motion, due to the extensive damage incurred and public outrage concerning earthquake forecasting; however, the magnetometers employed, grounded or buried, are completely subject to static and electric fields and have yet to correlate to an identifiable precursor. Secondly, there is neither a networked array for finding any epicentral locations, nor have there been any attempts to find even one. This methodology needs dismissal, because it is overly complicated, subject to continuous change, and provides no response time. As for the minimum magnitude threshold, which was set at M5, this is simply higher than what modern technological advances have gained. Detection can now be achieved at approximately M1, which greatly improves forecasting chances. A propagating precursor has now been detected in both the field and laboratory. Field antenna testing conducted outside the NE Texas town of Timpson in February, 2013, detected three strong EM sources along with numerous weaker signals. The antenna had mobility, and observations were noted for recurrence, duration, and frequency response. Next, two directional techniques were employed, resulting in three mapped, potential epicenters. The remaining, weaker signals presented similar directionality results to more epicentral locations. In addition, the directional results of the Timpson field tests lead to the design and construction of a third prototype antenna. In a laboratory setting, experiments were created to fail igneous rock types within a custom-designed Faraday Cage. An antenna emplaced within the cage detected EM emissions, which were both reproducible and distinct, and the laboratory results paralleled field results. With a viable system and continuous monitoring, a fracture cycle could be established and observed in real-time. Sequentially, field data would be reviewed quickly for assessment; thus, leading to a much improved earthquake forecasting capability. The EM precursor determined by this method may surpass all prior precursor claims, and the general public will finally receive long overdue forecasting.

  12. Everyday EMS leadership.

    PubMed

    Porter, Warren J

    2004-06-01

    As EMS professionals, you influence others every day by your actions, knowledge and the way you communicate. You lead teams in critical moments in people's lives; you make a difference. Your attitude, the manner and effect of your communication and your actions will determine whether you will influence people and become a true leader. Become a better paramedic/EMT and leader by ensuring that your influence on others is positive rather than negative. No matter who you are or your position, start today to build your team, put others first and follow your vision. PMID:15216602

  13. Identified EM Earthquake Precursors

    NASA Astrophysics Data System (ADS)

    Jones, Kenneth, II; Saxton, Patrick

    2014-05-01

    Many attempts have been made to determine a sound forecasting method regarding earthquakes and warn the public in turn. Presently, the animal kingdom leads the precursor list alluding to a transmission related source. By applying the animal-based model to an electromagnetic (EM) wave model, various hypotheses were formed, but the most interesting one required the use of a magnetometer with a differing design and geometry. To date, numerous, high-end magnetometers have been in use in close proximity to fault zones for potential earthquake forecasting; however, something is still amiss. The problem still resides with what exactly is forecastable and the investigating direction of EM. After a number of custom rock experiments, two hypotheses were formed which could answer the EM wave model. The first hypothesis concerned a sufficient and continuous electron movement either by surface or penetrative flow, and the second regarded a novel approach to radio transmission. Electron flow along fracture surfaces was determined to be inadequate in creating strong EM fields, because rock has a very high electrical resistance making it a high quality insulator. Penetrative flow could not be corroborated as well, because it was discovered that rock was absorbing and confining electrons to a very thin skin depth. Radio wave transmission and detection worked with every single test administered. This hypothesis was reviewed for propagating, long-wave generation with sufficient amplitude, and the capability of penetrating solid rock. Additionally, fracture spaces, either air or ion-filled, can facilitate this concept from great depths and allow for surficial detection. A few propagating precursor signals have been detected in the field occurring with associated phases using custom-built loop antennae. Field testing was conducted in Southern California from 2006-2011, and outside the NE Texas town of Timpson in February, 2013. The antennae have mobility and observations were noted for recurrence, duration, and frequency response. At the Southern California field sites, one loop antenna was positioned for omni-directional reception and also detected a strong First Schumann Resonance; however, additional Schumann Resonances were absent. At the Timpson, TX field sites, loop antennae were positioned for directional reception, due to earthquake-induced, hydraulic fracturing activity currently conducted by the oil and gas industry. Two strong signals, one moderately strong signal, and approximately 6-8 weaker signals were detected in the immediate vicinity. The three stronger signals were mapped by a biangulation technique, followed by a triangulation technique for confirmation. This was the first antenna mapping technique ever performed for determining possible earthquake epicenters. Six and a half months later, Timpson experienced two M4 (M4.1 and M4.3) earthquakes on September 2, 2013 followed by a M2.4 earthquake three days later, all occurring at a depth of five kilometers. The Timpson earthquake activity now has a cyclical rate and a forecast was given to the proper authorities. As a result, the Southern California and Timpson, TX field results led to an improved design and construction of a third prototype antenna. With a loop antenna array, a viable communication system, and continuous monitoring, a full fracture cycle can be established and observed in real-time. In addition, field data could be reviewed quickly for assessment and lead to a much more improved earthquake forecasting capability. The EM precursors determined by this method appear to surpass all prior precursor claims, and the general public will finally receive long overdue forecasting.

  14. Fulde-Ferrell-Larkin-Ovchinnikov states in a superconducting ring with magnetic fields: Phase diagram and the first-order phase transitions

    NASA Astrophysics Data System (ADS)

    Yoshii, Ryosuke; Takada, Satoshi; Tsuchiya, Shunji; Marmorini, Giacomo; Hayakawa, Hisao; Nitta, Muneto

    2015-12-01

    We find the angular Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) states (or the twisted kink crystals) in which a phase and an amplitude of a pair potential modulate simultaneously in a quasi-one-dimensional superconducting ring with a static Zeeman magnetic field applied on the ring and static Aharonov-Bohm magnetic flux penetrating the ring. The superconducting ring with magnetic flux produces a persistent current, whereas the Zeeman split of Fermi energy results in the spatial modulation of the pair potential. We show that these two magnetic fields stabilize the FFLO phase in a large parameter region of the magnetic fields. We further draw the phase diagram with the two kinds of first-order phase transitions; one corresponds to phase slips separating the Aharonov-Bohm magnetic flux, and the other separates the number of peaks of the pair amplitude for the Zeeman magnetic field.

  15. EPA LABORATORIES IMPLEMENT EMS PROGRAM

    EPA Science Inventory

    This paper highlights the breadth and magnitude of carrying out an effective Environmental Management System (EMS) program at the U.S. EPA's research and development laboratories. Federal research laboratories have unique operating challenges compared to more centralized industr...

  16. Robust surface states in epitaxial Bi(111) thin films

    NASA Astrophysics Data System (ADS)

    Zhu, Kai; Jin, Xiaofeng

    Bulk Bi a prototype semimetal with trivial electronic band topology. Unanticipatedly, we show the Altshuler-Aronov-Spivak and Aharonov-Bohm effects in epitaxial Bi(111) thin films. Meanwhile, we clearly identify the interaction of the top and bottom surface states via quantum tunneling by the electrical conductance and weak anti-localization measurements. These results have significantly enriched our understanding about the electronic structure of Bi, which might be helpful for clearing up some of its longstanding subtle issues.

  17. Solution of the Dirac equation with magnetic monopole and pseudoscalar potentials

    NASA Astrophysics Data System (ADS)

    Aghaei, Sohrab; Chenaghlou, Alireza

    2014-04-01

    The Dirac equation in the presence of the Dirac magnetic monopole potential, the Aharonov-Bohm potential, a Coulomb potential and a pseudo-scalar potential, is solved by separation of variables using the spinweighted spherical harmonics. The energy spectrum and the form of the spinor functions are obtained. It is shown that the number j in spin-weighted spherical harmonics must be greater than left| q right| - tfrac{1} {2}.

  18. Solution of the Dirac equation with magnetic monopole and pseudoscalar potentials

    NASA Astrophysics Data System (ADS)

    Aghaei, Sohrab; Chenaghlou, Alireza

    2014-04-01

    The Dirac equation in the presence of the Dirac magnetic monopole potential, the Aharonov-Bohm potential, a Coulomb potential and a pseudo-scalar potential, is solved by separation of variables using the spinweighted spherical harmonics. The energy spectrum and the form of the spinor functions are obtained. It is shown that the number j in spin-weighted spherical harmonics must be greater than.

  19. Persistent current with fractional period in a multichannel Wigner crystal ring

    NASA Astrophysics Data System (ADS)

    Krokhin, A. A.; Krive, I. V.

    1998-02-01

    We calculate the persistent current in a multichannel semiconductor ring with strongly correlated electrons when they form a Wigner crystal (WC). Pinning this crystal with a smooth gate potential leads to the suppression of the amplitude of the Aharonov-Bohm oscillations and to the fractionalization of the period. A fractional period Φ0/w (w = 2,3,…,6) appears because of the strong coupling between channels in the tunneling process of the WC through the pinning barrier.

  20. Bound on the Photon Charge from the Phase Coherence of Extragalactic Radiation

    NASA Astrophysics Data System (ADS)

    Altschul, Brett

    2007-06-01

    If the photon possessed a nonzero charge, then electromagnetic waves traveling along different paths would acquire Aharonov-Bohm phase differences. The fact that such an effect has not hindered interferometric astronomy places a bound on the photon charge estimated to be at the 10-32e level if all photons have the same charge and 10-46e if different photons can carry different charges.

  1. Gravitationally induced interference of gravitational waves by a rotating massive object

    NASA Astrophysics Data System (ADS)

    Baraldo, Christian; Hosoya, Akio; Nakamura, Takahiro T.

    1999-04-01

    We discuss an interesting effect induced by the rotation of a massive object acting as a lens for coherent gravitational radiation. We show that the result is a concentric interference pattern which is shifted due to the effect of the angular momentum on the phase of radiation, an effect analogous to the Aharonov-Bohm effect. The possibility of detecting lensed gravitational waves is discussed in the context of upcoming gravitational wave detectors.

  2. Interaction of surface waves with vorticity in shallow water

    NASA Astrophysics Data System (ADS)

    Cerda, Enrique; Lund, Fernando

    1993-06-01

    Vortical flows in shallow water interact with long surface waves by virtue of the nonlinear terms of the fluid equations. Analytical formulas are derived that quantify the spontaneous generation of such waves by unsteady vorticity as well as the scattering of surface waves by vorticity. In the first Born approximation the radiated surface elevation is linearly related to the Fourier transform of the vorticity. The ``dislocated'' wave fronts that are analogous to the Aharonov-Bohm effect are obtained as a special case.

  3. Bound on the Photon Charge from the Phase Coherence of Extragalactic Radiation

    SciTech Connect

    Altschul, Brett

    2007-06-29

    If the photon possessed a nonzero charge, then electromagnetic waves traveling along different paths would acquire Aharonov-Bohm phase differences. The fact that such an effect has not hindered interferometric astronomy places a bound on the photon charge estimated to be at the 10{sup -32}e level if all photons have the same charge and 10{sup -46}e if different photons can carry different charges.

  4. Bound on the photon charge from the phase coherence of extragalactic radiation.

    PubMed

    Altschul, Brett

    2007-06-29

    If the photon possessed a nonzero charge, then electromagnetic waves traveling along different paths would acquire Aharonov-Bohm phase differences. The fact that such an effect has not hindered interferometric astronomy places a bound on the photon charge estimated to be at the 10(-32)e level if all photons have the same charge and 10(-46)e if different photons can carry different charges. PMID:17678080

  5. Gravitationally induced interference of gravitational waves by a rotating black hole

    NASA Astrophysics Data System (ADS)

    Baraldo, C.; Hosoya, A.; Nakamura, T. T.

    1998-12-01

    We discuss an interesting effect induced by the rotation of a black hole acting as a lens for coherent gravitational radiation. We shall show that the result is a concentric interference pattern which is shifted due to the effect of the angular momentum on the phase of radiation, an effect analogous to the Aharonov-Bohm effect. The possibility of detecting lensed gravitational waves is discussed in the context of upcoming gravitational wave detectors.

  6. Probe-configuration-dependent dephasing in a mesoscopic interferometer

    NASA Astrophysics Data System (ADS)

    Seelig, G.; Pilgram, S.; Jordan, A. N.; Büttiker, M.

    2003-10-01

    Dephasing in a ballistic four-terminal Aharonov-Bohm geometry due to charge and voltage fluctuations is investigated. Treating two terminals as voltage probes, we find a strong dependence of the dephasing rate on the probe configuration in agreement with a recent experiment by Kobayashi, Aikawa, Katsumoto, and Iye [J. Phys. Soc. Jpn. 71, 2094 (2002)]. Voltage fluctuations in the measurement circuit are shown to be the source of the configuration dependence.

  7. Decoherence in Ballistic Mesoscopic Interferometers

    NASA Astrophysics Data System (ADS)

    Seelig, Georg; Pilgram, Sebastian; Büttiker, Markus

    2003-09-01

    We provide a theoretical explanation for two recent experiments on decoherence of Aharonov-Bohm oscillations in two- and multi-terminal ballistic rings. We consider decoherence due to charge fluctuations and emphasize the role of charge exchange between the system and the reservoir or nearby gates. A time-dependent scattering matrix approach is shown to be a convenient tool for the discussion of decoherence in ballistic conductors.

  8. Busca de estruturas em grandes escalas em altos redshifts

    NASA Astrophysics Data System (ADS)

    Boris, N. V.; Sodrã©, L., Jr.; Cypriano, E.

    2003-08-01

    A busca por estruturas em grandes escalas (aglomerados de galáxias, por exemplo) é um ativo tópico de pesquisas hoje em dia, pois a detecção de um único aglomerado em altos redshifts pode por vínculos fortes sobre os modelos cosmológicos. Neste projeto estamos fazendo uma busca de estruturas distantes em campos contendo pares de quasares próximos entre si em z Â3 0.9. Os pares de quasares foram extraídos do catálogo de Véron-Cetty & Véron (2001) e estão sendo observados com os telescópios: 2,2m da University of Hawaii (UH), 2,5m do Observatório de Las Campanas e com o GEMINI. Apresentamos aqui a análise preliminar de um par de quasares observado nos filtros i'(7800 Å) e z'(9500 Å) com o GEMINI. A cor (i'-z') mostrou-se útil para detectar objetos "early-type" em redshifts menores que 1.1. No estudo do par 131046+0006/J131055+0008, com redshift ~ 0.9, o uso deste método possibilitou a detecção de sete objetos candidatos a galáxias "early-type". Num mapa da distribuição projetada dos objetos para 22 < i' < 25 observou-se que estas galáxias estão localizadas próximas a um dos quasares e há indícios de que estejam aglomeradas dentro de um área de ~ 6 arcmin2. Se esse for o caso, estes objetos seriam membros de uma estrutura em grande escala. Um outro argumento em favor dessa hipótese é que eles obedecem uma relação do tipo Kormendy (raio equivalente X brilho superficial dentro desse raio), como a apresentada pelas galáxias elípticas em z = 0.

  9. The Mesoscopic Photovoltaic Effect

    NASA Astrophysics Data System (ADS)

    Bartolo, Robert Ernest

    1995-01-01

    We have studied a photovoltaic (PV) effect in submicron Au wires and rings in which a dc voltage, V _{dc}, is generated in response to microwave radiation. The lack of inversion symmetry in these small disordered systems allows for a non-linear response, analogous to a small rectifier, in which V _{dc} is proportional to the microwave power. At low temperatures the PV effect exhibits oscillations similar to the quantum interference effects present in the now extensively studied conductance measurements. We have observed pronounced Aharonov-Bohm oscillations of the mesoscopic PV effect in Au rings with diameters ranging from d = 3300-5700 A for temperatures T~ 4 K. The effects of dephasing due to the high frequency (microwave) field have also been observed, where the Aharonov-Bohm oscillations are quenched for microwave field strengths E_{ac}~ 5.0 V/m. The suppression of the Aharonov-Bohm oscillations as a function of temperature (T = 14-15 K) was also studied and found to be much weaker than expected. We also report the observation of an anomalous PV signal due to the presence of superconducting contacts which has been attributed to the inverse Josephson effect.

  10. Persistent Currents in Mesoscopic Loops and Networks

    NASA Astrophysics Data System (ADS)

    Kulik, Igor O.

    2003-09-01

    The paper describes persistent (also termed ``permanent", or ``non-decaying") currents in mesoscopic metallic and macromolecular rings, cylinders and networks. The current arises as a response of system to Aharonov-Bohm flux threading the conducting loop and does not require external voltage to support the current. Magnitude of the current is periodic function of magnetic flux with a period of normal-metal flux quantum F0 = hc/e. Spontaneous persistent currents arise in regular macromolecular structure without the Aharonov-Bohm flux provided the azimuthal periodicity of the ring is insured by strong coupling to periodic background (a ``substrate"), otherwise the system will undergo the Peierls transition arrested at certain flux value smaller than F0. Extremely small (nanoscopic, macromolecular) loop with three localization sites at flux F = F0/2 develops a L-shaped energy configuration suitable to serve as a qubit, as well as at the same time as a ``qugate" (quantum logic gate) supporting full set of quantum transitions required for universal quantum computation. The difference of the Aharonov-Bohm qubit from another suggested condensed-matter quantum computational tools is in the radiation free couplings in a qubit supporting the scalable, long-lived quantum computation.

  11. Alveolar Echinococcosis: Characterization of Diagnostic Antigen Em18 and Serological Evaluation of Recombinant Em18

    PubMed Central

    Sako, Yasuhito; Nakao, Minoru; Nakaya, Kazuhiro; Yamasaki, Hiroshi; Gottstein, Bruno; Lightowers, Marshall W.; Schantz, Peter M.; Ito, Akira

    2002-01-01

    The Echinococcus multilocularis protein Em18 is one of the most promising antigens for use in serodiagnosis of alveolar echinococcosis in human patients. Here we identify an antigenic relationship between Em18 and a 65-kDa immunodominant E. multilocularis surface protein previously identified as either EM10 or EmII/3. The NH2-terminal sequence of native Em18 was determined, revealing it to be a fragment of EM10. Experiments were undertaken to investigate the effect of proteinase inhibitors on the degradation of EM10 in crude extracts of E. multilocularis protoscoleces. Em18 was found to be the product of degradation of EM10 by cysteine proteinase. A recombinant Em18 (RecEm18, derived from 349K to 508K of EM10) was successfully expressed by using Escherichia coli expression system and then evaluated for use in serodiagnosis of alveolar echinococcosis. RecEm18 was recognized by 27 (87.1%) and 28 (90.3%) of 31 serum samples from clinically and/or pathologically confirmed alveolar echinococcosis patients by enzyme-linked immunosorbent assay and immunoblotting, respectively. Of 33 serum samples from cystic echinococcosis patients, 1 was recorded as having a weak positive reaction to RecEm18; however, none of the serum samples which were tested from neurocysticercosis patients (n = 10) or healthy people (n = 15) showed positive reactions. RecEm18 has the potential for use in the differential serodiagnosis of alveolar echinococcosis. PMID:12149326

  12. The European Mobile System (EMS)

    NASA Technical Reports Server (NTRS)

    Jongejans, A.; Rogard, R.; Mistretta, I.; Ananasso, F.

    1993-01-01

    The European Space Agency is presently procuring an L band payload in order to promote a regional European L band system coping with the specific needs of the European market. The payload, and the two communications systems to be supported, are described below. The potential market for EMS in Europe is discussed.

  13. Correlation of the NBME Advanced Clinical Examination in EM and the National EM M4 exams

    PubMed Central

    Hiller, Katherine; Miller, Emily S.; Lawson, Luan; Wald, David; Beeson, Michael; Heitz, Corey; Morrissey, Thomas; House, Joseph; Poznanski, Stacey

    2015-01-01

    Introduction Since 2011 two online, validated exams for fourth-year emergency medicine (EM) students have been available (National EM M4 Exams). In 2013 the National Board of Medical Examiners offered the Advanced Clinical Examination in Emergency Medicine (EM-ACE). All of these exams are now in widespread use; however, there are no data on how they correlate. This study evaluated the correlation between the EM-ACE exam and the National EM M4 Exams. Methods From May 2013 to April 2014 the EM-ACE and one version of the EM M4 exam were administered sequentially to fourth-year EM students at five U.S. medical schools. Data collected included institution, gross and scaled scores and version of the EM M4 exam. We performed Pearson’s correlation and random effects linear regression. Results 303 students took the EM-ACE and versions 1 (V1) or 2 (V2) of the EM M4 exams (279 and 24, respectively). The mean percent correct for the exams were as follows: EM-ACE 74.8 (SD-8.83), V1 83.0 (SD-6.41), V2 78.5 (SD-7.70). Pearson’s correlation coefficient for the V1/EM-ACE was 0.51 (0.42 scaled) and for the V2/EM-ACE was 0.59 (0.41 scaled). The coefficient of determination for V1/EM-ACE was 0.72 and for V2/EM-ACE = 0.71 (0.86 and 0.49 for scaled scores). The R-squared values were 0.25 and 0.30 (0.18 and 0.13, scaled), respectively. There was significant cluster effect by institution. Conclusion There was moderate positive correlation of student scores on the EM-ACE exam and the National EM M4 Exams. PMID:25671023

  14. Complaints against an EMS system.

    PubMed

    Colwell, Christopher B; Pons, Peter T; Pi, Randy

    2003-11-01

    Complaints against Emergency Medical Services (EMS) agencies represent a concerning and potentially time-consuming problem for all involved in the delivery of prehospital emergency medical care. The objective of this study was to identify the source of complaints against an EMS system to help focus quality and performance improvement and customer service efforts. We conducted a retrospective review of complaints filed against a busy urban EMS agency over a 6-year period. All complaints were included, totaled by season and by year, and categorized by originator and nature of the complaint. A total of 286 complaints were registered during the 6-year period, with an average of 48 per year and 9.3 per 10,000 responses. The most common originators of complaints were patients (53%) followed by medical personnel (19%) and family members or friends (12%). Rude behavior accounted for 23% of the complaints registered, followed by technical skills (20%), transport problems (18%), and loss of belongings (13%). The identification of areas of dissatisfaction will allow focused quality and performance improvement programs directed at customer service and risk management. PMID:14654181

  15. DOE/EM Criticality Safety Needs Assessment

    SciTech Connect

    Westfall, Robert Michael; Hopper, Calvin Mitchell

    2011-02-01

    The issue of nuclear criticality safety (NCS) in Department of Energy Environmental Management (DOE/EM) fissionable material operations presents challenges because of the large quantities of material present in the facilities and equipment that are committed to storage and/or material conditioning and dispositioning processes. Given the uncertainty associated with the material and conditions for many DOE/EM fissionable material operations, ensuring safety while maintaining operational efficiency requires the application of the most-effective criticality safety practices. In turn, more-efficient implementation of these practices can be achieved if the best NCS technologies are utilized. In 2002, DOE/EM-1 commissioned a survey of criticality safety technical needs at the major EM sites. These needs were documented in the report Analysis of Nuclear Criticality Safety Technology Supporting the Environmental Management Program, issued May 2002. Subsequent to this study, EM safety management personnel made a commitment to applying the best and latest criticality safety technology, as described by the DOE Nuclear Criticality Safety Program (NCSP). Over the past 7 years, this commitment has enabled the transfer of several new technologies to EM operations. In 2008, it was decided to broaden the basis of the EM NCS needs assessment to include not only current needs for technologies but also NCS operational areas with potential for improvements in controls, analysis, and regulations. A series of NCS workshops has been conducted over the past years, and needs have been identified and addressed by EM staff and contractor personnel. These workshops were organized and conducted by the EM Criticality Safety Program Manager with administrative and technical support by staff at Oak Ridge National Laboratory (ORNL). This report records the progress made in identifying the needs, determining the approaches for addressing these needs, and assimilating new NCS technologies into EM fissionable material operations. In addition, the report includes projections of future EM needs and associted recommendations.

  16. EM international activities. February 1997 highlights

    SciTech Connect

    1997-02-01

    EM International Highlights is a brief summary of on-going international projects within the Department of Energy`s Office of Environmental Management (EM). This document contains sections on: Global Issues, activities in Western Europe, activities in central and Eastern Europe, activities in Russia, activities in Asia and the Pacific Rim, activities in South America, activities in North America, and International Organizations.

  17. School Budget Hold'em Facilitator's Guide

    ERIC Educational Resources Information Center

    Education Resource Strategies, 2012

    2012-01-01

    "School Budget Hold'em" is a game designed to help school districts rethink their budgeting process. It evolved out of Education Resource Strategies' (ERS) experience working with large urban districts around the country. "School Budget Hold'em" offers a completely new approach--one that can turn the budgeting process into a long-term visioning…

  18. EM International, July 1994, Volume 2

    SciTech Connect

    Not Available

    1994-10-01

    The Office of Environmental Management (EM) at the Department of Energy (DOE) is seeking out and leveraging foreign technology, data, and resources in keeping with EM`s mandate to protect public health and the environment through the safe and cost-effective remediation of the Department`s nuclear weapons sites. EM works closely with foreign governments, industry, and universities to obtain innovative environmental technologies, scientific and engineering expertise, and operations experience that will support EM`s objectives. Where appropriate, these international resources are used to manage the more urgent risks at our sites, secure a safe workplace, help build consensus on critical issues, and strengthen our technology development program. Through international agreements EM engages in cooperative exchange of information, technology, and individuals. Currently, we are managing agreements with a dozen countries in Europe, Latin America, and Asia. These agreements focus on environmental restoration, waste management, transportation of radioactive wastes, and decontamination and decommissioning. This publication contains the following articles: in situ remediation integrated program; in-situ characterization and inspection of tanks; multimedia environmental pollutant assessment system (MEPAS); LLNL wet oxidation -- AEA technology. Besides these articles, this publication covers: EU activities with Russia; technology transfer activities; and international organization activities.

  19. EMS offshore. A new horizon for paramedics.

    PubMed

    Mallard, A S

    1991-10-01

    The difficulty in getting medical aid to offshore drilling platforms can be a source of life-threatening delays. Recently, some companies have charted new waters by actually stationing EMS crews on their rigs. PMID:10116023

  20. EMS adaptation for climate change

    NASA Astrophysics Data System (ADS)

    Pan, C.; Chang, Y.; Wen, J.; Tsai, M.

    2010-12-01

    The purpose of this study was to find an appropriate scenario of pre-hospital transportation of an emergency medical service (EMS) system for burdensome casualties resulting from extreme climate events. A case of natural catastrophic events in Taiwan, 88 wind-caused disasters, was reviewed and analyzed. A sequential-conveyance method was designed to shorten the casualty transportation time and to promote the efficiency of ambulance services. A proposed mobile emergency medical center was first constructed in a safe area, but nearby the disaster area. The Center consists of professional medical personnel who process the triage of incoming patients and take care of casualties with minor injuries. Ambulances in the Center were ready to sequentially convey the casualties with severer conditions to an assigned hospital that is distant from the disaster area for further treatment. The study suggests that if we could construct a spacious and well-equipped mobile emergency medical center, only a small portion of casualties would need to be transferred to distant hospitals. This would reduce the over-crowding problem in hospital ERs. First-line ambulances only reciprocated between the mobile emergency medical center and the disaster area, saving time and shortening the working distances. Second-line ambulances were highly regulated between the mobile emergency medical center and requested hospitals. The ambulance service of the sequential-conveyance method was found to be more efficient than the conventional method and was concluded to be more profitable and reasonable on paper in adapting to climate change. Therefore, additional practical work should be launched to collect more precise quantitative data.

  1. 10 CFR Appendixes E-M to Part 52 - [Reserved

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 2 2010-01-01 2010-01-01 false E Appendixes E-M to Part 52 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) LICENSES, CERTIFICATIONS, AND APPROVALS FOR NUCLEAR POWER PLANTS Appendixes E-M to Part 52...

  2. 10 CFR Appendixes E-M to Part 52 - [Reserved

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 2 2012-01-01 2012-01-01 false E Appendixes E-M to Part 52 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) LICENSES, CERTIFICATIONS, AND APPROVALS FOR NUCLEAR POWER PLANTS Appendixes E-M to Part 52...

  3. 10 CFR Appendixes E-M to Part 52 - [Reserved

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 2 2013-01-01 2013-01-01 false E Appendixes E-M to Part 52 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) LICENSES, CERTIFICATIONS, AND APPROVALS FOR NUCLEAR POWER PLANTS Appendixes E-M to Part 52...

  4. 10 CFR Appendixes E-M to Part 52 - [Reserved

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 2 2014-01-01 2014-01-01 false E Appendixes E-M to Part 52 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) LICENSES, CERTIFICATIONS, AND APPROVALS FOR NUCLEAR POWER PLANTS Appendixes E-M to Part 52...

  5. 10 CFR Appendixes E-M to Part 52 - [Reserved

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 2 2011-01-01 2011-01-01 false E Appendixes E-M to Part 52 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) LICENSES, CERTIFICATIONS, AND APPROVALS FOR NUCLEAR POWER PLANTS Appendixes E-M to Part 52...

  6. EMS in the Sultanate of Oman.

    PubMed

    Al-Shaqsi, Sultan Zayed Khalifah

    2009-07-01

    The Emergency Medical Services (EMS) in Oman is a relatively new project in the country. It has been developed based on the Anglo-American system of EMS. Currently, it is run by trained Omani Advanced Emergency Medical Technicians (AEMT) under the auspices of the Royal Oman Police (ROP) Ambulance Division. The system covers most of the country and responds to medical and trauma emergencies. It is state-funded and free of charge for all people in Oman. There are plans to incorporate aero-medical services into the system, to support the land ambulance service, and there are also plans to expand its coverage to the whole country by 2012. The EMS in Oman has hard challenges ahead but there are also promising plans in place to improve the system. PMID:19467757

  7. Risk Communication Within the EM Program

    SciTech Connect

    Edelson, M.

    2003-02-26

    The U.S. Department of Energy Environmental Management program (EM) conducts the most extensive environmental remediation effort in the world. The annual EM budgets have exceeded $6,000,000,000 for approximately ten years and EM has assumed responsibility for the cleanup of the largest DOE reservations (i.e., at Hanford, Washington, Aiken, South Carolina, and Idaho Falls, Idaho) as well as the facilities at Rocky Flats, Colorado and in Ohio. Each of these sites has areas of extensive radioactive and chemical contamination, numerous surplus facilities that require decontamination and removal, while some have special nuclear material that requires secure storage. The EM program has been criticized for being ineffective (1) and has been repeatedly reorganized to address perceived shortcomings. The most recent reorganization was announced in 2001 to become effective at the beginning of the 2003 Federal Fiscal Year (i.e., October 2002). It was preceded by a ''top to bottom'' review (TTBR) of the program (2) that identified several deficiencies that were to be corrected as a result of the reorganization. One prominent outcome of the TTBR was the identification of ''risk reduction'' as an organizing principle to prioritize the activities of the new EM program. The new program also sought to accelerate progress by identifying a set of critical activities at each site that could be accelerated and result in more rapid site closure, with attendant risk, cost, and schedule benefits. This paper investigates how the new emphasis on risk reduction in the EM program has been communicated to EM stakeholders and regulators. It focuses on the Rocky Flats Environmental Technology Site (RFETS) as a case study and finds that there is little evidence for a new emphasis on risk reduction in EM communications with RFETS stakeholders. Discussions between DOE and RFETS stakeholders often refer to ''risk,'' but the word serves as a placeholder for other concepts. Thus ''risk'' communication at RFETS is lively and involves important issues, but often does not inform participants about true ''risk reduction.''

  8. College surprised by shortened EMS payback

    SciTech Connect

    Hume, M.

    1984-02-20

    The staff's close work with the energy management system (EMS) will enable Broward Community College, in Fort Lauderdale to recover its $590,000 investment in only 1.7 years instead of the projected 2.7 years. The college lowered electricity use by 24% with an Andover Controls Corporation AC 256 Master and Slave. Operating ease, careful planning, and staff involvement enhanced the system's efficiency at the nearly all-electric college. The EMS controls 400 point and monitors 800, primarily chillers, air handlers and other heating, ventilating, and air conditioning equipment, as well as outdoor lighting.

  9. Berry's phase in rotating systems

    NASA Astrophysics Data System (ADS)

    Cui, Shi-Min; Xu, Hong-Hua

    1991-09-01

    It is shown that, in addition to the Aharonov-Bohm-like phase studied previously [M. V. Berry, Proc. R. Soc. London Ser. A 392, 45 (1984); Y. Aharakov and J. Anandan, Phys. Rev. Lett. 58, 1593 (1987); C. H. Tsai and D. Neilson, Phys. Rev. A 37, 619 (1988)], Berry's topological phase also appears for purely mechanical reasons in systems rotating at slowly-time-varying angular velocity about a fixed center. A possible experiment to probe this manifestation of Berry's phase is discussed.

  10. Weak localization in mesoscopic hole transport: berry phases and classical correlations.

    PubMed

    Krueckl, Viktor; Wimmer, Michael; Adagideli, İnanç; Kuipers, Jack; Richter, Klaus

    2011-04-01

    We consider phase-coherent transport through ballistic and diffusive two-dimensional hole systems based on the Kohn-Luttinger Hamiltonian. We show that intrinsic heavy-hole-light-hole coupling gives rise to clear-cut signatures of an associated Berry phase in the weak localization which renders the magnetoconductance profile distinctly different from electron transport. Nonuniversal classical correlations determine the strength of these Berry phase effects and the effective symmetry class, leading even to antilocalization-type features for circular quantum dots and Aharonov-Bohm rings in the absence of additional spin-orbit interaction. Our semiclassical predictions are confirmed by numerical calculations. PMID:21561209

  11. Aharonov-casher effect in Bi2Se3 square-ring interferometers.

    PubMed

    Qu, Fanming; Yang, Fan; Chen, Jun; Shen, Jie; Ding, Yue; Lu, Jiangbo; Song, Yuanjun; Yang, Huaixin; Liu, Guangtong; Fan, Jie; Li, Yongqing; Ji, Zhongqing; Yang, Changli; Lu, Li

    2011-07-01

    Electrical control of spin dynamics in Bi(2)Se(3) was investigated in ring-type interferometers. Aharonov-Bohm and Altshuler-Aronov-Spivak resistance oscillations against a magnetic field, and Aharonov-Casher resistance oscillations against the gate voltage were observed in the presence of a Berry phase of π. A very large tunability of spin precession angle by the gate voltage has been obtained, indicating that Bi(2)Se(3)-related materials with strong spin-orbit coupling are promising candidates for constructing novel spintronic devices. PMID:21797562

  12. Topological feature and phase structure of QCD at complex chemical potential

    NASA Astrophysics Data System (ADS)

    Kashiwa, Kouji; Ohnishi, Akira

    2015-11-01

    The pseudo-critical temperature of the confinement-deconfinement transition and the phase transition surface are investigated by using the complex chemical potential. We can interpret the imaginary chemical potential as the Aharonov-Bohm phase, then the analogy of the topological order suggests that the Roberge-Weiss endpoint would define the pseudo-critical temperature. The behavior of the Roberge-Weiss endpoint at small real quark chemical potential is investigated with the perturbative expansion. The expected QCD phase diagram at complex chemical potential is presented.

  13. Electromagnetic potential vectors and the Lagrangian of a charged particle

    NASA Technical Reports Server (NTRS)

    Shebalin, John V.

    1992-01-01

    Maxwell's equations can be shown to imply the existence of two independent three-dimensional potential vectors. A comparison between the potential vectors and the electric and magnetic field vectors, using a spatial Fourier transformation, reveals six independent potential components but only four independent electromagnetic field components for each mode. Although the electromagnetic fields determined by Maxwell's equations give a complete description of all possible classical electromagnetic phenomena, potential vectors contains more information and allow for a description of such quantum mechanical phenomena as the Aharonov-Bohm effect. A new result is that a charged particle Lagrangian written in terms of potential vectors automatically contains a 'spontaneous symmetry breaking' potential.

  14. An experimental proposal to test the physical effect of the vector potential

    NASA Astrophysics Data System (ADS)

    Wang, Rui-Feng

    2016-01-01

    There are two interpretations of the Aharonov-Bohm (A-B) effect. One interpretation asserts that the A-B effect demonstrates that the vector potential is a physical reality that can result in the phase shift of a moving charge in quantum mechanics. The other interpretation asserts that the phase shift of the moving charge results from the interaction energy between the electromagnetic field of the moving charge and external electromagnetic fields. This paper briefly reviews these two interpretations and analyzes their differences. In addition, a new experimental scheme is proposed to determine which interpretation is correct.

  15. Topological dephasing in the ν =2 /3 fractional quantum Hall regime

    NASA Astrophysics Data System (ADS)

    Park, Jinhong; Gefen, Yuval; Sim, H.-S.

    2015-12-01

    We study dephasing in electron transport through a large quantum dot (a Fabry-Perot interferometer) in the fractional quantum Hall regime with filling factor 2 /3 . In the regime of sequential tunneling, dephasing occurs due to electron fractionalization into counterpropagating charge and neutral edge modes on the dot. In particular, when the charge mode moves much faster than the neutral mode, and at temperatures higher than the level spacing of the dot, electron fractionalization combined with the fractional statistics of the charge mode leads to the dephasing selectively suppressing h /e Aharonov-Bohm oscillations but not h /(2 e ) oscillations, resulting in oscillation-period halving.

  16. On the Landau system in noncommutative phase-space

    NASA Astrophysics Data System (ADS)

    Gangopadhyay, Sunandan; Saha, Anirban; Halder, Aslam

    2015-12-01

    We consider the Landau system in a canonically noncommutative phase-space. A set of generalized transformations containing scaling parameters is derived which maps the NC problem to an equivalent commutative problem. The energy spectrum admits NC corrections which are computed using the explicit NC variables as well as the commutative-equivalent variables. Their exact matching solidifies the evidence of the equivalence of the two approaches. We also obtain the magnetic length and level degeneracy, which admit NC corrections. We further study the Aharonov-Bohm effect where the phase-shift is found to alter due to noncommutativity and also depends on the scaling parameters.

  17. Kondo-induced electric polarization modulated by magnetic flux through a triangular triple quantum dot

    NASA Astrophysics Data System (ADS)

    Koga, M.; Matsumoto, M.; Kusunose, H.

    2015-03-01

    The Kondo effect plays an important role in emergence of electric polarization in a triangular triple-quantum-dot system, where one of the three dots is point-contacted with a single lead, and a magnetic flux penetrates through the triangular loop. The Kondo-induced electric polarization exhibits an Aharonov-Bohm type oscillation as a function of the magnetic flux. Our theoretical study shows various oscillation patterns associated with the field-dependent mixing of twofold orbitally degenerate ground states and their sensitivity to the point contact.

  18. Dirac oscillator interacting with a topological defect

    SciTech Connect

    Carvalho, J.; Furtado, C.; Moraes, F.

    2011-09-15

    In this work we study the interaction problem of a Dirac oscillator with gravitational fields produced by topological defects. The energy levels of the relativistic oscillator in the cosmic string and in the cosmic dislocation space-times are sensible to curvature and torsion associated to these defects and are important evidence of the influence of the topology on this system. In the presence of a localized magnetic field the energy levels acquire a term associated with the Aharonov-Bohm effect. We obtain the eigenfunctions and eigenvalues and see that in the nonrelativistic limit some results known in standard quantum mechanics are reached.

  19. Cloaking two-dimensional fermions

    SciTech Connect

    Lin, De-Hone

    2011-09-15

    A cloaking theory for a two-dimensional spin-(1/2) fermion is proposed. It is shown that the spinor of the two-dimensional fermion can be cloaked perfectly through controlling the fermion's energy and mass in a specific manner moving in an effective vector potential inside a cloaking shell. Different from the cloaking of three-dimensional fermions, the scaling function that determines the invisible region is uniquely determined by a nonlinear equation. It is also shown that the efficiency of the cloaking shell is unaltered under the Aharonov-Bohm effect.

  20. Cold Atoms in Non-Abelian Gauge Potentials: From the Hofstadter Moth to Lattice Gauge Theory

    SciTech Connect

    Osterloh, K.; Baig, M.; Santos, L.; Zoller, P.; Lewenstein, M.

    2005-07-01

    We demonstrate how to create artificial external non-Abelian gauge potentials acting on cold atoms in optical lattices. The method employs atoms with k internal states, and laser assisted state sensitive tunneling, described by unitary kxk matrices. The single-particle dynamics in the case of intense U(2) vector potentials lead to a generalized Hofstadter butterfly spectrum which shows a complex mothlike structure. We discuss the possibility to realize non-Abelian interferometry (Aharonov-Bohm effect) and to study many-body dynamics of ultracold matter in external lattice gauge fields.

  1. Quantum Electronic Transport of Topological Surface States in β-Ag2Se Nanowire.

    PubMed

    Kim, Jihwan; Hwang, Ahreum; Lee, Sang-Hoon; Jhi, Seung-Hoon; Lee, Sunghun; Park, Yun Chang; Kim, Si-In; Kim, Hong-Seok; Doh, Yong-Joo; Kim, Jinhee; Kim, Bongsoo

    2016-04-26

    Single-crystalline β-Ag2Se nanostructures, a new class of 3D topological insulators (TIs), were synthesized using the chemical vapor transport method. The topological surface states were verified by measuring electronic transport properties including the weak antilocalization effect, Aharonov-Bohm oscillations, and Shubnikov-de Haas oscillations. First-principles band calculations revealed that the band inversion in β-Ag2Se is caused by strong spin-orbit coupling and Ag-Se bonding hybridization. These investigations provide evidence of nontrivial surface state about β-Ag2Se TIs that have anisotropic Dirac cones. PMID:27018892

  2. Parametric evolution of eigenstates: beyond perturbation theory and semiclassics.

    PubMed

    Méndez-Bermúdez, J A; Kottos, Tsampikos; Cohen, Doron

    2005-08-01

    Considering a quantized chaotic system, we analyze the evolution of its eigenstates as a result of varying a control parameter. As the induced perturbation becomes larger, there is a crossover from a perturbative to a non-perturbative regime, which is reflected in the structural changes of the local density of states. The full scenario is explored for a physical system: an Aharonov-Bohm cylindrical billiard. As we vary the magnetic flux, we discover an intermediate twilight regime where perturbative and semiclassical features coexist. This is in contrast with the simple crossover from a Lorentzian to a semicircle line shape which is found in random-matrix models. PMID:16196755

  3. Interference due to coherence swapping

    NASA Astrophysics Data System (ADS)

    Pati, Arun Kumar; Zukowski, Marek

    2001-02-01

    We propose a method called `coherence swapping' which enables us to create superposition of a particle in two distinct paths, which is fed with initially incoherent, independent radiation. This phenomenon is also present for the charged particles, and can be used to swap the effect of flux line due to the Aharonov--Bohm effect. We propose an optical version of experimental set-up to test the coherence swapping. The phenomenon, which is simpler than entanglement swapping or teleportation, raises some fundamental questions about the true nature of wave-particle duality, and also opens up the possibility of studying the quantum erasure from a new angle.

  4. Magnetic brightening of carbon nanotube photoluminescence through symmetry breaking.

    PubMed

    Shaver, Jonah; Kono, Junichiro; Portugall, Oliver; Krstić, Vojislav; Rikken, Geert L J A; Miyauchi, Yuhei; Maruyama, Shigeo; Perebeinos, Vasili

    2007-07-01

    We report that symmetry breaking by a magnetic field can drastically increase the photoluminescence quantum yield of single-walled carbon nanotubes, by as much as a factor of 6, at low temperatures. To explain this we have developed a theoretical model based on field-dependent exciton band structure and the interplay of Coulomb interactions and the Aharonov-Bohm effect. This conclusively explains our data as the first experimental observation of dark excitons 5-10 meV below the bright excitons. PMID:17542638

  5. Radiation of scalar waves by the discontinuities in the antenna geometries

    NASA Astrophysics Data System (ADS)

    Umul, Y. Z.

    2010-10-01

    The electrical scalar potential satisfies the Helmholtz equation for time-harmonic waves and Aharonov-Bohm showed that the electromagnetic potentials have physical reality. For these reasons, the scalar potential represents scalar wave propagation in space. The gradient of the scalar wave leads to the electric field intensity, but it does not create the magnetic field. The criteria for the radiation of the scalar waves are studied on various linear antennas. The radiation integrals of the antennas are evaluated asymptotically by taking into account the edge effects. The radiation diagrams are plotted numerically and the phase velocities of the scalar waves are investigated in the near field.

  6. Nonlocal Pancharatnam phase in two-photon interferometry

    SciTech Connect

    Mehta, Poonam; Samuel, Joseph; Sinha, Supurna

    2010-09-15

    We propose a polarized intensity interferometry experiment, which measures the nonlocal Pancharatnam phase acquired by a pair of Hanbury-Brown-Twiss photons. The setup involves two polarized thermal sources illuminating two polarized detectors. Varying the relative polarization angle of the detectors introduces a two-photon geometric phase. Local measurements at either detector do not reveal the effects of the phase, which is an optical analog of the multiparticle Aharonov-Bohm effect. The geometric phase sheds light on the three-slit experiment and suggests ways of tuning entanglement.

  7. Time-resolved detection of single-electron interference.

    PubMed

    Gustavsson, S; Leturcq, R; Studer, M; Ihn, T; Ensslin, K; Driscoll, D C; Gossard, A C

    2008-08-01

    We demonstrate real-time detection of self-interfering electrons in a double quantum dot embedded in an Aharonov-Bohm interferometer, with visibility approaching unity. We use a quantum point contact as a charge detector to perform time-resolved measurements of single-electron tunneling. With increased bias voltage, the quantum point contact exerts a back-action on the interferometer leading to decoherence. We attribute this to emission of radiation from the quantum point contact, which drives noncoherent electronic transitions in the quantum dots. PMID:18611057

  8. Theoretical analysis of the transmission phase shift of a quantum dot in the presence of Kondo correlations.

    PubMed

    Jerez, A; Vitushinsky, P; Lavagna, M

    2005-09-16

    We study the effects of Kondo correlations on the transmission phase shift of a quantum dot coupled to two leads in comparison with the experimental determinations made by Aharonov-Bohm (AB) quantum interferometry. We propose here a theoretical interpretation of these results based on scattering theory combined with Bethe ansatz calculations. We show that there is a factor of 2 difference between the phase of the S-matrix responsible for the shift in the AB oscillations and the one controlling the conductance. Quantitative agreement is obtained with experimental results for two different values of the coupling to the leads. PMID:16197103

  9. Classical and quantum effects in electrodynamics

    NASA Astrophysics Data System (ADS)

    Komar, A. A.

    The papers presented in this volume provide an overview of recent research in the theory of classical and quantum effects in electrodynamics. Topics discussed include radiation from uniformly moving sources, the physics of superhigh-energy neutrinos, the Aharonov-Bohm effect for stationary and coherent states in a homogeneous magnetic field, and correlated coherent states. Papers are also presented on nondegenerate calibration and a generalized canonic formalism, evolution equations for the density matrices of linear open quantum systems, and a quantum particle in a nonstationary Coulomb potential.

  10. Two Approaches to Fractional Statistics in the Quantum Hall Effect: Idealizations and the Curious Case of the Anyon

    NASA Astrophysics Data System (ADS)

    Shech, Elay

    2015-09-01

    This paper looks at the nature of idealizations and representational structures appealed to in the context of the fractional quantum Hall effect, specifically, with respect to the emergence of anyons and fractional statistics. Drawing on an analogy with the Aharonov-Bohm effect, it is suggested that the standard approach to the effects—(what we may call) the topological approach to fractional statistics—relies essentially on problematic idealizations that need to be revised in order for the theory to be explanatory. An alternative geometric approach is outlined and endorsed. Roles for idealizations in science, as well as consequences for the debate revolving around so-called essential idealizations, are discussed.

  11. Magnetic nanostructures.

    PubMed

    Bennemann, K

    2010-06-23

    Characteristic results of magnetism in small particles, thin films and tunnel junctions are presented. As a consequence of the reduced atomic coordination in small clusters and thin films the electronic states and density of states are modified. Thus, magnetic moments and magnetization are affected. Generally, in clusters and thin films magnetic anisotropy plays a special role. In tunnel junctions the interplay of magnetism, spin currents and superconductivity are of particular interest. In ring-like mesoscopic systems Aharonov-Bohm-induced currents are studied. Results are given for single transition metal clusters, cluster ensembles, thin films, mesoscopic structures and tunnel systems. PMID:21393778

  12. Persistent currents in diffusive metallic cavities: Large values and anomalous scaling with disorder

    NASA Astrophysics Data System (ADS)

    Chiappe, G.; Sánchez, M. J.

    2002-04-01

    The effect of disorder on confined metallic cavities with an Aharonov-Bohm flux line is addressed. We find that, even deep in the diffusive regime, large values of persistent currents may arise for a wide variety of geometries. We present numerical results supporting an anomalous scaling law of the average typical current with the strength of disorder w, ~w-γ with γ<2. This is contrasted with previously reported results obtained for cylindrical samples where a scaling ~w-2 has been found. Possible links to, up to date, unexplained experimental data are finally discussed.

  13. Thévenin equivalence in disorderless quantum networks

    SciTech Connect

    Cain, C. A.; Wu, C. H.

    2015-01-14

    We outline the procedure of extending the Thévenin equivalence principle for classical electric circuits to reducing Aharonov-Bohm-based quantum networks into equivalent models. With examples, we show from first principles how the requirements are related to the electron band structure's Fermi level and the lattice spacing of the network. Quantum networks of varying degrees of coupling strength from four basic classifications of single and double entangled loops sharing symmetry and highly correlated band structures are used to demonstrate the concept. We show the limitations of how the principle may be applied. Several classes of examples are given and their equivalent forms are shown.

  14. Pure phase decoherence in a ring geometry

    SciTech Connect

    Zhu, Z.; Aharony, A.; Entin-Wohlman, O.; Stamp, P. C. E.

    2010-06-15

    We study the dynamics of pure phase decoherence for a particle hopping around an N-site ring, coupled both to a spin bath and to an Aharonov-Bohm flux which threads the ring. Analytic results are found for the dynamics of the influence functional and of the reduced density matrix of the particle, both for initial single wave-packet states, and for states split initially into two separate wave packets moving at different velocities. We also give results for the dynamics of the current as a function of time.

  15. A general method for deriving vector potentials produced by knotted solenoids

    NASA Astrophysics Data System (ADS)

    Sreedhar, V. V.

    2014-10-01

    A general method for deriving exact expressions for vector potentials produced by arbitrarily knotted solenoids is presented. It consists of using simple physics ideas from magnetostatics to evaluate the magnetic field in a surrogate problem. The latter is obtained by modeling the knot with wire segments carrying steady currents on a cubical lattice. The expressions for a 31 (trefoil) and a 41 (figure-eight) knot are explicitly worked out. The results are of some importance in the study of the Aharonov-Bohm effect generalized to a situation in which charged particles moving through force-free regions are scattered by fluxes confined to the interior of knotted impenetrable tubes.

  16. Geometric-phase atom optics and interferometry

    NASA Astrophysics Data System (ADS)

    Zygelman, B.

    2015-10-01

    We illustrate how geometric gauge forces and topological phase effects emerge in atomic and molecular systems without employing assumptions that rely on adiabaticity. We show how geometric magnetism may be harnessed to engineer novel quantum devices including a velocity sieve, a component in mass spectrometers, for neutral atoms. We introduce and outline a possible experimental setup that demonstrates topological interferometry for neutral spin-1/2 systems. For that two-level system, we study the transition from Abelian to non-Abelian behavior and explore its relation to the molecular Aharonov-Bohm effect.

  17. CORRIGENDUM: Light-induced fractal energy spectrum of ultracold fermions on the two-dimensional optical lattice with Script T3 symmetry Light-induced fractal energy spectrum of ultracold fermions on the two-dimensional optical lattice with Script T3 symmetry

    NASA Astrophysics Data System (ADS)

    Hou, J. M.

    2010-01-01

    The reference list should be extended to cite two additional references [22] and [23] in which the Aharonov-Bohm cages of magnetic flux in the two-dimensional Script T3 and Script T4 lattices were investigated by Vidal et al. The Script T3 butterfly-like energy spectrum was first obtained in reference [22]. References [22] Vidal J, Mosseri R and Douçot B 1998 Phys. Rev. Lett. 81 5888 [23] Vidal J, Butaud P, Douçot B and Mosseri R 2001 Phys. Rev. B 64 155306

  18. An experimental proposal to test the physical effect of the vector potential.

    PubMed

    Wang, Rui-Feng

    2016-01-01

    There are two interpretations of the Aharonov-Bohm (A-B) effect. One interpretation asserts that the A-B effect demonstrates that the vector potential is a physical reality that can result in the phase shift of a moving charge in quantum mechanics. The other interpretation asserts that the phase shift of the moving charge results from the interaction energy between the electromagnetic field of the moving charge and external electromagnetic fields. This paper briefly reviews these two interpretations and analyzes their differences. In addition, a new experimental scheme is proposed to determine which interpretation is correct. PMID:26822526

  19. Surface state dominated transport in topological insulator Bi{sub 2}Te{sub 3} nanowires

    SciTech Connect

    Hamdou, Bacel Gooth, Johannes; Dorn, August; Nielsch, Kornelius; Pippel, Eckhard

    2013-11-04

    We report on low temperature magnetoresistance measurements on single-crystalline Bi{sub 2}Te{sub 3} nanowires synthesized via catalytic growth and post-annealing in a Te-rich atmosphere. The observation of Aharonov-Bohm oscillations indicates the presence of topological surface states. Analyses of Subnikov-de Haas oscillations in perpendicular magnetoresistance yield extremely low two-dimensional carrier concentrations and effective electron masses, and very high carrier mobilities. All our findings are in excellent agreement with theoretical predictions of massless Dirac fermions at the surfaces of topological insulators.

  20. EMS response to an airliner crash.

    PubMed

    Dasgupta, Shuvra; French, Simone; Williams-Johnson, Jean; Hutson, Rhonda; Hart, Nicole; Wong, Mark; Williams, Eric; Espinosa, Kurdell; Maycock, Celeste; Edwards, Romayne; McCartney, Trevor; Cawich, Shamir; Crandon, Ivor

    2012-06-01

    This report of an aircraft crash at a major airport in Kingston, Jamaica examines the response of the local Emergency Medical Services (EMS). Factors that impacted the response are discussed, and the need for more disaster simulation exercises is highlighted. The objective of this case report was to document the response of EMS personnel to the crash of American Airlines Flight 331, and to utilize the information to examine and improve the present protocol. While multiple errors can occur during a mass-casualty event, these can be reduced by frequent simulation exercises during which various personnel practice and learn designated roles. Efficient triage, proper communication, and knowledge of the roles are important in ensuring the best possible outcome. While the triage system and response of the EMS personnel were effective for this magnitude of catastrophe, more work is needed in order to meet predetermined standards. Ways in which this can be overcome include: (1) hosting more disaster simulation exercises; (2) encouraging more involvement with first responders; and (3) strengthening the links in the local EMS system. Vigorous public education must be instituted and maintained. PMID:22853919

  1. Mercury pollution in the Ems estuary

    NASA Astrophysics Data System (ADS)

    Essink, K.

    1980-03-01

    From approximately 1960 to 1975 the Ems estuary received several tons of mercury per year from a chlor-alkali plant, a pesticide factory and some minor sources. The discharge has been reduced drastically from 1976 onwards. In 1975 and 1976 measurements were made on the distribution of mercury in the sediment. The horizontal distribution revealed a strong local enrichment of the sediment near the point of discharge. The vertical distribution was found to be in accordance with the local deposition rates. In the water phase no significant change in mercury content from 1975 to 1978/79 could be demonstrated. In 1978/79 a difference between Ems estuary and Dutch Wadden Sea was not significant. In 1978 mercury contents of eelpout Zoarces viviparus in the Ems estuary were about twice as high as in the Wadden Sea. In the Ems estuary a decrease of these contents was found between 1974/75 and 1978. A similar decline in the Wadden Sea may be related to a decreased mercury discharge by the River Rhine.

  2. Do earthquakes generate EM signals?

    NASA Astrophysics Data System (ADS)

    Walter, Christina; Onacha, Stephen; Malin, Peter; Shalev, Eylon; Lucas, Alan

    2010-05-01

    In recent years there has been significant interest in the seismoelectric effect which is the conversion of acoustic energy into electromagnetic energy. At the onset of the earthquake and at layer interfaces, it is postulated that the seismoelectric signal propagates at the speed of light and thus travels much faster than the acoustic wave. The focus has mainly been to use this method as a tool of predicting earthquakes. Our main objective is to study the possibility of using the seismoelectric effect to determine the origin time of an earthquake, establish an accurate velocity model and accurately locate microearthquakes. Another aspect of this research is to evaluate the possibility of detecting porous zones where seismic activity is postulated to generate fluid movement through porous medium. The displacement of pore fluid relative to the porous medium solid grains generates electromagnetic signals. The Institute of Earth Science and Engineering (IESE) has installed electromagnetic coils in 3 different areas to investigate the seismoelectric effect. Two of the research areas (Krafla in Iceland and Wairakei in New Zealand) are in active geothermal fields where high microearthquake activity has been recorded. The other area of research is at the site of the San Andreas Fault Observatory at Depth (SAFOD) at Parkfield area on the active San Andreas Fault which is associated with repeating earthquakes. In the Wairakei and Parkfield cases a single borehole electromagnetic coil close to borehole seismometers has been used whereas in the Krafla study area, 3 borehole electromagnetic coils coupled to borehole seismometers have been used. The technical difficulties of working in the borehole environment mean that some of these deployments had a short life span. Nevertheless in all cases data was gathered and is being analysed. At the SAFOD site, the electromagnetic coil recorded seismoelectric signals very close to a magnitude 2 earthquake. In the Wairakei and Krafla study areas, large swarms of earthquakes were located very close to the electromagnetic coils. This abstract focuses on the data from the Wairakei area. Preliminary data analysis has been carried out by band pass filtering and removing of the harmonics of the 50 Hz power line frequency. The initial results clearly show that electromagnetic signals accompany the seismic P and S waves (coseismic signal). Further data analysis involves the extraction of the seismoelectric signal generated at the onset of the earthquake and at interfaces from the coseismic signal and other ‘noise' sources. This processing step exhibits a major challenge in seismoelectric data processing. Unlike in other studies we measured the EM field and the seismic field at one location. Therefore the seismoelectric wave travelling at the speed of light cannot be determined as easily in the arrival times as when an array of coils is used. This makes the determination of the origin time much more difficult. Hence other processing techniques need to be explored.

  3. Modelling and design for PM/EM magnetic bearings

    NASA Technical Reports Server (NTRS)

    Pang, D.; Kirk, J. A.; Anand, D. K.; Johnson, R. G.; Zmood, R. B.

    1992-01-01

    A mathematical model of a permanent magnet/electromagnet (PM/EM) radially active bearing is presented. The bearing is represented by both a reluctance model and a stiffness model. The reluctance model analyzes the magnetic circuit of the PM/EM bearings. By combining the two models, the performance of the bearing can be predicted given geometric dimensions, permanent magnet strength, and the parameters of the EM coils. The overall bearing design including the PM and EM design is subject to the performance requirement and physical constraints. A study of these requirements and constraints is discussed. The PM design is based on the required magnetic flux for proper geometric dimensions and magnet strength. The EM design is based on the stability and force slew rate consideration, and dictates the number of turns for the EM coils and the voltage and current of the power amplifier. An overall PM/EM bearing design methodology is proposed and a case study is also demonstrated.

  4. The association between EMS workplace safety culture and safety outcomes

    PubMed Central

    Weaver, Matthew D.; Wang, Henry E.; Fairbanks, Rollin J.; Patterson, Daniel

    2012-01-01

    Objective Prior studies have highlighted wide variation in EMS workplace safety culture across agencies. We sought to determine the association between EMS workplace safety culture scores and patient or provider safety outcomes. Methods We administered a cross-sectional survey to EMS workers affiliated with a convenience sample of agencies. We recruited these agencies from a national EMS management organization. We used the EMS Safety Attitudes Questionnaire (EMS-SAQ) to measure workplace safety culture and the EMS Safety Inventory (EMS-SI), a tool developed to capture self-reported safety outcomes from EMS workers. The EMS-SAQ provides reliable and valid measures of six domains: safety climate, teamwork climate, perceptions of management, perceptions of working conditions, stress recognition, and job satisfaction. A panel of medical directors, paramedics, and occupational epidemiologists developed the EMS-SI to measure self-reported injury, medical errors and adverse events, and safety-compromising behaviors. We used hierarchical linear models to evaluate the association between EMS-SAQ scores and EMS-SI safety outcome measures. Results Sixteen percent of all respondents reported experiencing an injury in the past 3 months, four of every 10 respondents reported an error or adverse event (AE), and 90% reported safety-compromising behaviors. Respondents reporting injury scored lower on 5 of the 6 domains of safety culture. Respondents reporting an error or AE scored lower for 4 of the 6 domains, while respondents reporting safety-compromising behavior had lower safety culture scores for 5 of 6 domains. Conclusions Individual EMS worker perceptions of workplace safety culture are associated with composite measures of patient and provider safety outcomes. This study is preliminary evidence of the association between safety culture and patient or provider safety outcomes. PMID:21950463

  5. Crosshole EM in steel-cased boreholes

    SciTech Connect

    Wilt, M.; Lee, K.H.; Becker, A.; Spies, B.; Wang, B.

    1996-07-01

    The application of crosshole EM methods through steel well-casing was investigated in theoretical, laboratory and field studies. A numerical code was developed that calculates the attenuation and phase delay of an EM dipole signal propagated through a steel well casing lodged in a homogeneous medium. The code was validated with a scale model and used for sensitivity studies of casing and formation properties. Finally, field measurements were made in an oil field undergoing waterflooding. Our most important findings are that (1) crosshole surveys are feasible using a well pair with one metallic and one non-metallic casing. (2) The casing effect seems be localized within the pipe section that includes the sensor. (3) The effects of the casing can be corrected using simple means and (4) crosshole field data that are sensitive to both formation and casing were acquired in a working environment.

  6. TandEM: Titan and Enceladus mission

    USGS Publications Warehouse

    Coustenis, A.; Atreya, S.K.; Balint, T.; Brown, R.H.; Dougherty, M.K.; Ferri, F.; Fulchignoni, M.; Gautier, D.; Gowen, R.A.; Griffith, C.A.; Gurvits, L.I.; Jaumann, R.; Langevin, Y.; Leese, M.R.; Lunine, J.I.; McKay, C.P.; Moussas, X.; Muller-Wodarg, I.; Neubauer, F.; Owen, T.C.; Raulin, F.; Sittler, E.C.; Sohl, F.; Sotin, C.; Tobie, G.; Tokano, T.; Turtle, E.P.; Wahlund, J.-E.; Waite, J.H.; Baines, K.H.; Blamont, J.; Coates, A.J.; Dandouras, I.; Krimigis, T.; Lellouch, E.; Lorenz, R.D.; Morse, A.; Porco, C.C.; Hirtzig, M.; Saur, J.; Spilker, T.; Zarnecki, J.C.; Choi, E.; Achilleos, N.; Amils, R.; Annan, P.; Atkinson, D.H.; Benilan, Y.; Bertucci, C.; Bezard, B.; Bjoraker, G.L.; Blanc, M.; Boireau, L.; Bouman, J.; Cabane, M.; Capria, M.T.; Chassefiere, E.; Coll, P.; Combes, M.; Cooper, J.F.; Coradini, A.; Crary, F.; Cravens, T.; Daglis, I.A.; de Angelis, E.; De Bergh, C.; de Pater, I.; Dunford, C.; Durry, G.; Dutuit, O.; Fairbrother, D.; Flasar, F.M.; Fortes, A.D.; Frampton, R.; Fujimoto, M.; Galand, M.; Grasset, O.; Grott, M.; Haltigin, T.; Herique, A.; Hersant, F.; Hussmann, H.; Ip, W.; Johnson, R.; Kallio, E.; Kempf, S.; Knapmeyer, M.; Kofman, W.; Koop, R.; Kostiuk, T.; Krupp, N.; Kuppers, M.; Lammer, H.; Lara, L.-M.; Lavvas, P.; Le, Mouelic S.; Lebonnois, S.; Ledvina, S.; Li, J.; Livengood, T.A.; Lopes, R.M.; Lopez-Moreno, J. -J.; Luz, D.; Mahaffy, P.R.; Mall, U.; Martinez-Frias, J.; Marty, B.; McCord, T.; Salvan, C.M.; Milillo, A.; Mitchell, D.G.; Modolo, R.; Mousis, O.; Nakamura, M.; Neish, C.D.; Nixon, C.A.; Mvondo, D.N.; Orton, G.; Paetzold, M.; Pitman, J.; Pogrebenko, S.; Pollard, W.; Prieto-Ballesteros, O.; Rannou, P.; Reh, K.; Richter, L.; Robb, F.T.; Rodrigo, R.; Rodriguez, S.; Romani, P.; Bermejo, M.R.; Sarris, E.T.; Schenk, P.; Schmitt, B.; Schmitz, N.; Schulze-Makuch, D.; Schwingenschuh, K.; Selig, A.; Sicardy, B.; Soderblom, L.; Spilker, L.J.; Stam, D.; Steele, A.; Stephan, K.; Strobel, D.F.; Szego, K.; Szopa

    2009-01-01

    TandEM was proposed as an L-class (large) mission in response to ESA's Cosmic Vision 2015-2025 Call, and accepted for further studies, with the goal of exploring Titan and Enceladus. The mission concept is to perform in situ investigations of two worlds tied together by location and properties, whose remarkable natures have been partly revealed by the ongoing Cassini-Huygens mission. These bodies still hold mysteries requiring a complete exploration using a variety of vehicles and instruments. TandEM is an ambitious mission because its targets are two of the most exciting and challenging bodies in the Solar System. It is designed to build on but exceed the scientific and technological accomplishments of the Cassini-Huygens mission, exploring Titan and Enceladus in ways that are not currently possible (full close-up and in situ coverage over long periods of time). In the current mission architecture, TandEM proposes to deliver two medium-sized spacecraft to the Saturnian system. One spacecraft would be an orbiter with a large host of instruments which would perform several Enceladus flybys and deliver penetrators to its surface before going into a dedicated orbit around Titan alone, while the other spacecraft would carry the Titan in situ investigation components, i.e. a hot-air balloon (Montgolfi??re) and possibly several landing probes to be delivered through the atmosphere. ?? Springer Science + Business Media B.V. 2008.

  7. Helicopter EMS: Research Endpoints and Potential Benefits

    PubMed Central

    Thomas, Stephen H.; Arthur, Annette O.

    2012-01-01

    Patients, EMS systems, and healthcare regions benefit from Helicopter EMS (HEMS) utilization. This article discusses these benefits in terms of specific endpoints utilized in research projects. The endpoint of interest, be it primary, secondary, or surrogate, is important to understand in the deployment of HEMS resources or in planning further HEMS outcomes research. The most important outcomes are those which show potential benefits to the patients, such as functional survival, pain relief, and earlier ALS care. Case reports are also important “outcomes” publications. The benefits of HEMS in the rural setting is the ability to provide timely access to Level I or Level II trauma centers and in nontrauma, interfacility transport of cardiac, stroke, and even sepsis patients. Many HEMS crews have pharmacologic and procedural capabilities that bring a different level of care to a trauma scene or small referring hospital, especially in the rural setting. Regional healthcare and EMS system's benefit from HEMS by their capability to extend the advanced level of care throughout a region, provide a “backup” for areas with limited ALS coverage, minimize transport times, make available direct transport to specialized centers, and offer flexibility of transport in overloaded hospital systems. PMID:22203905

  8. 2. HI PAR (ACQUISITION RADAR) TOWER AND ENLISTED MEN (EM) ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. HI PAR (ACQUISITION RADAR) TOWER AND ENLISTED MEN (EM) BARRACKS WITH RADAR ATTACHED. - Nike Hercules Missile Battery Summit Site, Battery Control Administration & Barracks Building, Anchorage, Anchorage, AK

  9. A monoclonal antibody against Echinococcus multilocularis Em2 antigen.

    PubMed

    Deplazes, P; Gottstein, B

    1991-08-01

    A monoclonal antibody (MAb G11) species-specific to the Em2 antigen of Echinococcus multilocularis was generated for (i) further biological characterization of the Em2 antigen, (ii) easy affinity-purification of Em2 antigen for immunodiagnostic and immunological investigations and (iii) development of a sandwich-ELISA for the detection of Em2 antigen in diagnostic samples and thus species-specific identification of E. multilocularis metacestode material. The MAb G11 was used in an antibody sandwich-ELISA to detect soluble Em2 antigen with a methodical sensitivity of 80 ng E. multilocularis antigen/ml of solution. MAb G11 specifically detected Em2 antigen in all of 15 E. multilocularis-isolates originating from various geographical areas and in none of other helminth isolates (e.g. Echinococcus granulosus, E. vogeli, and others). Further biological analysis by FITC-labelled MAb G11 demonstrated unique binding activity to the laminated layer of the metacestode. Also, oncospheres were binding FITC-labelled MAb G11 on an outer layer synthesized during cultivation in vitro for 13 days after hatching. Application of the MAb G11 antibody sandwich-ELISA for investigation of solubilized oncospheres confirmed the in vitro synthesis of Em2 antigen by oncospheres on day 13 p.i. Adult stages (somatic antigens) and freshly hatched oncospheres were always MAb G11 negative. Solid-phase MAb G11 was used for purification of the corresponding Em2 antigen by affinity chromatography. A preliminary serological evaluation of the Em2(G11) antigen by ELISA revealed identical immunodiagnostic characteristics, compared to Em2 obtained by classical means, thus suggesting the presented method for future isolation of large-scale Em2 antigen. PMID:1945524

  10. e/m Experiment Analysis Refinement

    NASA Astrophysics Data System (ADS)

    Harmon, Michael; Pruitt, Bryce; Velasquez, Kevin; Schelp, Rich

    2011-10-01

    Thomson's e/m experiment is widely popular in undergraduate courses to help gain an understanding of the properties of the electron. Our results using a standard apparatus, however, reveal significant systematic errors. We examine possible reasons for the discrepancy with the aim of modeling effects that were not included in the original analysis. We conclude that the energy loss of the electron beam as it travels through the helium and the distortion of the beam radius measurement by the curved glass of the tube are the two factors which dominate the discrepancy.

  11. EM threat analysis for wireless systems.

    SciTech Connect

    Burkholder, R. J. (Ohio State University Electroscience Laboratory); Mariano, Robert J.; Schniter, P. (Ohio State University Electroscience Laboratory); Gupta, I. J. (Ohio State University Electroscience Laboratory)

    2006-06-01

    Modern digital radio systems are complex and must be carefully designed, especially when expected to operate in harsh propagation environments. The ability to accurately predict the effects of propagation on wireless radio performance could lead to more efficient radio designs as well as the ability to perform vulnerability analyses before and after system deployment. In this report, the authors--experts in electromagnetic (EM) modeling and wireless communication theory--describe the construction of a simulation environment that is capable of quantifying the effects of wireless propagation on the performance of digital communication.

  12. CryoEM at IUCrJ: a new era

    PubMed Central

    Subramaniam, Sriram; Kühlbrandt, Werner; Henderson, Richard

    2016-01-01

    In this overview, we briefly outline recent advances in electron cryomicroscopy (cryoEM) and explain why the journal IUCrJ, published by the International Union of Crystallography, could provide a natural home for publications covering many present and future developments in the cryoEM field. PMID:26870375

  13. 7 CFR 759.6 - EM to be made available.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... natural disaster has occurred in a county, resulting in severe physical losses. If the FSA Administrator determines that such a natural disaster has occurred, then EM can be made available to eligible farmers for... AGRICULTURE SPECIAL PROGRAMS DISASTER DESIGNATIONS AND NOTIFICATIONS § 759.6 EM to be made available. (a)...

  14. 7 CFR 759.6 - EM to be made available.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... natural disaster has occurred in a county, resulting in severe physical losses. If the FSA Administrator determines that such a natural disaster has occurred, then EM can be made available to eligible farmers for... AGRICULTURE SPECIAL PROGRAMS DISASTER DESIGNATIONS AND NOTIFICATIONS § 759.6 EM to be made available. (a)...

  15. 7 CFR 1945.20 - Making EM loans available.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... name(s) of the county(ies) determined eligible for Federal disaster assistance; (C) The type of... disaster declaration date to explain the purpose and the assistance available under the EM loan program...) Appropriate County Supervisor(s) to commence processing EM loan applications in appropriate county(ies)....

  16. Shrunk loop theorem for the topology probabilities of closed Brownian (or Feynman) paths on the twice punctured plane

    NASA Astrophysics Data System (ADS)

    Giraud, O.; Thain, A.; Hannay, J. H.

    2004-02-01

    The shrunk loop theorem proved here is an integral identity which facilitates the calculation of the relative probability (or probability amplitude) of any given topology that a free, closed Brownian (or Feynman) path of a given 'duration' might have on the twice punctured plane (plane with two marked points). The result is expressed as a 'scattering' series of integrals of increasing dimensionality based on the maximally shrunk version of the path. Physically, this applies in different contexts: (i) the topology probability of a closed ideal polymer chain on a plane with two impassable points, (ii) the trace of the Schrödinger Green function, and thence spectral information, in the presence of two Aharonov-Bohm fluxes and (iii) the same with two branch points of a Riemann surface instead of fluxes. Our theorem starts from the Stovicek scattering expansion for the Green function in the presence of two Aharonov-Bohm flux lines, which itself is based on the famous Sommerfeld one puncture point solution of 1896 (the one puncture case has much easier topology, just one winding number). Stovicek's expansion itself can supply the results at the expense of choosing a base point on the loop and then integrating it away. The shrunk loop theorem eliminates this extra two-dimensional integration, distilling the topology from the geometry.

  17. Self-accelerating Dirac particles and prolonging the lifetime of relativistic fermions

    NASA Astrophysics Data System (ADS)

    Kaminer, Ido; Nemirovsky, Jonathan; Rechtsman, Mikael; Bekenstein, Rivka; Segev, Mordechai

    2015-03-01

    The Aharonov-Bohm effect predicts that two parts of the electron wavefunction can accumulate a phase difference even when they are confined to a region in space with zero electromagnetic field. Here we show that engineering the wavefunction of electrons, as accelerating shape-invariant solutions of the potential-free Dirac equation, fundamentally acts as a force and the electrons accumulate an Aharonov-Bohm-type phase--which is equivalent to a change in the proper time and is related to the twin-paradox gedanken experiment. This implies that fundamental relativistic effects such as length contraction and time dilation can be engineered by properly tailoring the initial conditions. As an example, we suggest the possibility of extending the lifetime of decaying particles, such as an unstable hydrogen isotope, or altering other decay processes. We find these shape-preserving Dirac wavefunctions to be part of a family of accelerating quantum particles, which includes massive/massless fermions/bosons of any spin.

  18. Nonradiating sources and the electromagnetic potentials

    NASA Astrophysics Data System (ADS)

    Marengo, Edwin A.; Ziolkowski, Richard W.

    2000-03-01

    We report a new description of monochromatic nonradiating current distributions that is based on the electromagnetic potentials. This enables us to address the question whether the potentials associated with a spatially localized nonradiating source can possess (or not) a measurable physical significance outside the source region. In particular, it is well known that, under electrodynamic conditions, the electromagnetic fields produced by a localized nonradiating source vanish everywhere outside the source's support. We address here the question of physical observability of the associated external potentials in connection with the Aharonov-Bohm effect. We consider, in particular, the Coulomb gauge, although a physically equivalent description holds in other gauges. It is shown that, under electrodynamic conditions, the potentials in the exterior of a localized nonradiating source necessarily vanish if one makes a particular gauge choice, i.e., they are there as unobservable as the corresponding nonradiating fields. This does not necessarily hold under static conditions in which one can have non-trivial potentials with physically observable effects in regions where the fields vanish, e.g., in the Aharonov-Bohm effect. We also report a previously unknown hierarchy of nonradiating current distributions, both spatially localized and non-localized ones.

  19. Magnetosymmetries of nonlinear transport in dissipative conductors

    NASA Astrophysics Data System (ADS)

    Bedkihal, Salil; Segal, Dvira

    2014-03-01

    We demonstrate with numerically exact simulations that nonlinear transport coefficients obey certain magnetic field symmetries. Our model includes a two terminal Aharonov-Bohm interferometer with a quantum dot located at each of its arms. One quantum dot is interacting electrostatically with a reservoir, a fermionic environment made of a quantum dot coupled to one or more leads. We study the dynamics and steady state properties of this many-body out of equilibrium setup, by using a numerically exact influence functional path integral technique (Phys. Rev.B 82, 205323 (2010)). We show that, in agreement with phenomenological treatments of dephasing and mean field approaches, even (odd) conductance terms obey odd (even) symmetry with threading magnetic flux, as long as system acquires spatial inversion symmetry. When spatial asymmetry is introduced, magnetic field symmetries are broken, but more general symmetries with respect to left-right interchange are obeyed. Finally we also numerically demonstrate that double quantum dot Aharonov-Bohm interferometer coupled electrostatically to a fermionic environment can act as a charge current rectifier when two conditions are met simultaneously (I)broken time reversal and (II) many body effects. Authors acknowledge funding from NSERC, University of Toronto Department of Chemistry, Queen Elizabeth II graduate scholarship, Gilchrist fellowship.

  20. Chaos, coherence, and the double-slit experiment.

    PubMed

    Jacquod, Philippe

    2005-11-01

    We investigate the influence that classical dynamics has on interference patterns in coherence experiments. We calculate the time-integrated probability current through an absorbing screen and the conductance through a doubly connected ballistic cavity, both in an Aharonov-Bohm geometry with forward scattering only. We show how interference fringes in the probability current generically disappear in the case of a chaotic system with small openings, and how they may persist in the case of an integrable cavity. Simultaneously, the typical, sample dependent amplitude of the flux-sensitive g(phi) part of the conductance survives in all cases, and becomes universal in the case of a chaotic cavity. In the presence of dephasing by fluctuations of the electric potential in one arm of the Aharonov-Bohm loop, we find an exponential damping of the flux-dependent part of the conductance, g(phi) proportional exp[-tauL/tauphi, in term of the traversal time tauL through the arm and the dephasing time tauphi. This extends previous works on dephasing in ballistic systems to the case of many conducting channels. PMID:16383723

  1. Click-EM for imaging metabolically tagged nonprotein biomolecules.

    PubMed

    Ngo, John T; Adams, Stephen R; Deerinck, Thomas J; Boassa, Daniela; Rodriguez-Rivera, Frances; Palida, Sakina F; Bertozzi, Carolyn R; Ellisman, Mark H; Tsien, Roger Y

    2016-06-01

    EM has long been the main technique for imaging cell structures with nanometer resolution but has lagged behind light microscopy in the crucial ability to make specific molecules stand out. Here we introduce click-EM, a labeling technique for correlative light microscopy and EM imaging of nonprotein biomolecules. In this approach, metabolic labeling substrates containing bioorthogonal functional groups are provided to cells for incorporation into biopolymers by endogenous biosynthetic machinery. The unique chemical functionality of these analogs is exploited for selective attachment of singlet oxygen-generating fluorescent dyes via bioorthogonal 'click chemistry' ligations. Illumination of dye-labeled structures generates singlet oxygen to locally catalyze the polymerization of diaminobenzidine into an osmiophilic reaction product that is readily imaged by EM. We describe the application of click-EM in imaging metabolically tagged DNA, RNA and lipids in cultured cells and neurons and highlight its use in tracking peptidoglycan synthesis in the Gram-positive bacterium Listeria monocytogenes. PMID:27110681

  2. Evaluation of Fracture Azimuth by EM Wave and Elastic Wave

    NASA Astrophysics Data System (ADS)

    Feng, X.; Wang, Q.; Liu, C.; Lu, Q.; Zeng, Z.; Liang, W.; Yu, Y.; Ren, Q.

    2013-12-01

    Fracture system plays an important role in the development of underground energy, for example enhanced geothermal system (EGS), oil shale and shale gas, etc. Therefore, it becomes more and more important to detect and evaluate the fracture system. Geophysical prospecting is an useful method to evaluate the characteristics of the subsurface fractures. Currently, micro-seismology, multi-wave seismic exploration, and electromagnetic (EM) survey are reported to be used for the purpose. We are studying a method using both elastic wave and EM wave to detect and evaluate the fracture azimuth in laboratory. First, we build a 3D horizontal transverse isotropy (HTI) model, shown in the figure 1, by dry parallel fractures system, which was constructed by plexiglass plates and papers. Then, we used the ultrasonic system to obtain reflected S-wave data. Depending on the shear wave splitting, we evaluated the fracture azimuth by the algorithm of Pearson correlation coefficient. In addition, we used the full Polarimetric ultra wide band electromagnetic (FP-UWB-EM) wave System, shown in the figure 2, to obtain full polarimetric reflected EM-wave data. Depending on the rotation of the EM wave polarimetry, we evaluated the fracture azimuth by the the ration between maximum amplitude of co-polarimetric EM wave and maximum amplitude of cross-polarimetric EM wave. Finally, we used both EM-wave data and S-wave data to evaluate the fracture azimuth by the method of cross plot and statistical mathematics. To sum up, we found that FP-UWB-EM wave can be used to evaluated the fracture azimuth and is more accurate than ultrasound wave. Also joint evaluation using both data could improve the precision.

  3. Refinement of atomic models in high resolution EM reconstructions using Flex-EM and local assessment.

    PubMed

    Joseph, Agnel Praveen; Malhotra, Sony; Burnley, Tom; Wood, Chris; Clare, Daniel K; Winn, Martyn; Topf, Maya

    2016-05-01

    As the resolutions of Three Dimensional Electron Microscopic reconstructions of biological macromolecules are being improved, there is a need for better fitting and refinement methods at high resolutions and robust approaches for model assessment. Flex-EM/MODELLER has been used for flexible fitting of atomic models in intermediate-to-low resolution density maps of different biological systems. Here, we demonstrate the suitability of the method to successfully refine structures at higher resolutions (2.5-4.5Å) using both simulated and experimental data, including a newly processed map of Apo-GroEL. A hierarchical refinement protocol was adopted where the rigid body definitions are relaxed and atom displacement steps are reduced progressively at successive stages of refinement. For the assessment of local fit, we used the SMOC (segment-based Manders' overlap coefficient) score, while the model quality was checked using the Qmean score. Comparison of SMOC profiles at different stages of refinement helped in detecting regions that are poorly fitted. We also show how initial model errors can have significant impact on the goodness-of-fit. Finally, we discuss the implementation of Flex-EM in the CCP-EM software suite. PMID:26988127

  4. Refinement of atomic models in high resolution EM reconstructions using Flex-EM and local assessment

    PubMed Central

    Joseph, Agnel Praveen; Malhotra, Sony; Burnley, Tom; Wood, Chris; Clare, Daniel K.; Winn, Martyn; Topf, Maya

    2016-01-01

    As the resolutions of Three Dimensional Electron Microscopic reconstructions of biological macromolecules are being improved, there is a need for better fitting and refinement methods at high resolutions and robust approaches for model assessment. Flex-EM/MODELLER has been used for flexible fitting of atomic models in intermediate-to-low resolution density maps of different biological systems. Here, we demonstrate the suitability of the method to successfully refine structures at higher resolutions (2.5–4.5 Å) using both simulated and experimental data, including a newly processed map of Apo-GroEL. A hierarchical refinement protocol was adopted where the rigid body definitions are relaxed and atom displacement steps are reduced progressively at successive stages of refinement. For the assessment of local fit, we used the SMOC (segment-based Manders’ overlap coefficient) score, while the model quality was checked using the Qmean score. Comparison of SMOC profiles at different stages of refinement helped in detecting regions that are poorly fitted. We also show how initial model errors can have significant impact on the goodness-of-fit. Finally, we discuss the implementation of Flex-EM in the CCP-EM software suite. PMID:26988127

  5. Online EM with weight-based forgetting.

    PubMed

    Celaya, Enric; Agostini, Alejandro

    2015-05-01

    In the online version of the EM algorithm introduced by Sato and Ishii ( 2000 ), a time-dependent discount factor is introduced for forgetting the effect of the old estimated values obtained with an earlier, inaccurate estimator. In their approach, forgetting is uniformly applied to the estimators of each mixture component depending exclusively on time, irrespective of the weight attributed to each unit for the observed sample. This causes an excessive forgetting in the less frequently sampled regions. To address this problem, we propose a modification of the algorithm that involves a weight-dependent forgetting, different for each mixture component, in which old observations are forgotten according to the actual weight of the new samples used to replace older values. A comparison of the time-dependent versus the weight-dependent approach shows that the latter improves the accuracy of the approximation and exhibits much greater stability. PMID:25710091

  6. Energy use held steady without EMS

    SciTech Connect

    Ponczak, G.

    1986-03-17

    A Chicago bank was able to maintain energy efficiency despite a computer breakdown of its energy management system. Plans to install a digital EMS will limit demand but will leave some equipment for manual control because of skepticism over the effectiveness of digital over pneumatic systems. The bank plans to operate the old and new controls in parallel to compare their cost effectiveness. The energy manager argues that they can make a good estimate of the most efficient time to start equipment, although they will not be as accurate as the computer in optimal start and stop functions. The new system should lower electricity cost in the all-electric building by $10,000 a month, mostly from savings in demand charges.

  7. Electromagnetic optimization of EMS-MAGLEV systems

    SciTech Connect

    Andriollo, M.; Martinelli, G.; Morini, A.; Tortella, A.

    1998-07-01

    In EMS-MAGLEV high-speed transport systems, devices for propulsion, levitation and contactless on-board electric power transfer are combined in a single electromagnetic structure. The strong coupling among the windings affects the performance of each device and requires the utilization of numerical codes. The paper describes an overall optimization procedure, based on a suitable mathematical model of the system, which takes into account several items of the system performance. The parameters of the model are calculated by an automated sequence of FEM analyses of the configuration. Both the linear generator output characteristics and the propulsion force ripple are improved applying the procedure to a reference configuration. The results are compared with the results obtained by a sequence of partial optimizations operating separately on two different subsets of the geometric parameters.

  8. Environmental Education and Development Division (EM-522). Annual report, Fiscal year 1993

    SciTech Connect

    Not Available

    1993-12-31

    The Environmental Education and Development Division (EM-522) is one of three divisions within the Office of Technology Integration and Environmental Education and Development (EM-52) in Environmental Restoration and Waste Management`s (EM`s) Office of Technology Development (EM-50). The primary design criterion for EM-522 education activities is directly related to meeting EM`s goal of environmental compliance on an accelerated basis and cleanup of the 1989 inventory of inactive sites and facilities by the year 2019. Therefore, EM-522`s efforts are directed specifically toward stimulating knowledge and capabilities to achieve the goals of EM while contributing to DOE`s overall goal of increasing scientific, mathematical, and technical literacy and competency. This report discusses fiscal year 1993 activities.

  9. E.M. and Hadronic Shower Simulation with FLUKA

    SciTech Connect

    Battistoni, G.; Fasso, A.; Ferrari, A.; Ranft, J.; Rubbia, A.; Sala, P.R.; /INFN, Milan /SLAC /CERN /Siegen U. /Zurich, ETH

    2005-10-03

    A description of the main features of e.m. and hadronic shower simulation models used in the FLUKA code is summarized and some recent applications are discussed. The general status of the FLUKA project is also reported.

  10. NASA EM Followup of LIGO-Virgo Candidate Events

    NASA Technical Reports Server (NTRS)

    Blackburn, Lindy L.

    2011-01-01

    We present a strategy for a follow-up of LIGO-Virgo candidate events using offline survey data from several NASA high-energy photon instruments aboard RXTE, Swift, and Fermi. Time and sky-location information provided by the GW trigger allows for a targeted search for prompt and afterglow EM signals. In doing so, we expect to be sensitive to signals which are too weak to be publicly reported as astrophysical EM events.

  11. EM Telemetry Tool for Deep Well Drilling Applications

    SciTech Connect

    Jeffrey M. Gabelmann

    2005-11-15

    This final report discusses the successful development and testing of a deep operational electromagnetic (EM) telemetry system, produced under a cooperative agreement with the United States Department of Energy's National Energy Technology Laboratory. This new electromagnetic telemetry system provides a wireless communication link between sensors deployed deep within oil and gas wells and data acquisition equipment located on the earth's surface. EM based wireless telemetry is a highly appropriate technology for oil and gas exploration in that it avoids the need for thousands of feet of wired connections. In order to achieve the project performance objectives, significant improvements over existing EM telemetry systems were made. These improvements included the development of new technologies that have improved the reliability of the communications link while extending operational depth. A key element of the new design is the incorporation of a data-fusion methodology which enhances the communication receiver's ability to extract very weak signals from large amounts of ambient environmental noise. This innovative data-fusion receiver based system adapts advanced technologies, not normally associated with low-frequency communications, and makes them work within the harsh drilling environments associated with the energy exploration market. Every element of a traditional EM telemetry system design, from power efficiency to reliability, has been addressed. The data fusion based EM telemetry system developed during this project is anticipated to provide an EM tool capability that will impact both onshore and offshore oil and gas exploration operations, for conventional and underbalanced drilling applications.

  12. Estimation of multiple sound sources with data and model uncertainties using the EM and evidential EM algorithms

    NASA Astrophysics Data System (ADS)

    Wang, Xun; Quost, Benjamin; Chazot, Jean-Daniel; Antoni, Jérôme

    2016-01-01

    This paper considers the problem of identifying multiple sound sources from acoustical measurements obtained by an array of microphones. The problem is solved via maximum likelihood. In particular, an expectation-maximization (EM) approach is used to estimate the sound source locations and strengths, the pressure measured by a microphone being interpreted as a mixture of latent signals emitted by the sources. This work also considers two kinds of uncertainties pervading the sound propagation and measurement process: uncertain microphone locations and uncertain wavenumber. These uncertainties are transposed to the data in the belief functions framework. Then, the source locations and strengths can be estimated using a variant of the EM algorithm, known as the Evidential EM (E2M) algorithm. Eventually, both simulation and real experiments are shown to illustrate the advantage of using the EM in the case without uncertainty and the E2M in the case of uncertain measurement.

  13. Emergency medical services information systems and a future EMS national database.

    PubMed

    Mears, Gregory; Ornato, Joseph P; Dawson, Drew E

    2002-01-01

    Since the early 1970s, various publications and legislation have contributed to the development of emergency medical services (EMS) information systems and databases. Yet, even today, EMS systems vary in their ability to collect patient and systems data and to put these data to use. In addition, no means currently exists to easily link disparate EMS databases to allow analysis at local, state, and national levels. For this reason, the National Association of State EMS Directors is working with its federal partners at the National Highway Traffic Safety Administration (NHTSA) and the Trauma and EMS program of the Health Resources and Services Administration's (HRSA's) Maternal and Child Health Bureau to develop a national EMS database. Such a database would be useful in developing nationwide EMS training curricula, evaluating patient and EMS system outcomes, facilitating research efforts, determining national fee schedules and reimbursement rates, and providing valuable information on other issues related to EMS care. PMID:11789641

  14. A History and Informal Assessment of the <em>Slacker Astronomyem> Podcast

    NASA Astrophysics Data System (ADS)

    Price, Aaron; Gay, Pamela; Searle, Travis; Brissenden, Gina

    Slacker Astronomyem> is a weekly podcast that covers a recent astronomical news event or discovery. The show has a unique style consisting of irreverent, over-the-top humor combined with a healthy dose of hard science. According to our demographic analysis, the combination of this style and the unique podcasting distribution mechanism allows the show to reach audiences younger and busier than those reached via traditional channels. We report on the successes and challenges of the first year of the show, and provide an informal assessment of its role as a source for astronomical news and concepts for its approximately 15,500 weekly listeners.

  15. Image segmentation by EM-based adaptive pulse coupled neural networks in brain magnetic resonance imaging.

    PubMed

    Fu, J C; Chen, C C; Chai, J W; Wong, S T C; Li, I C

    2010-06-01

    We propose an automatic hybrid image segmentation model that integrates the statistical expectation maximization (EM) model and the spatial pulse coupled neural network (PCNN) for brain magnetic resonance imaging (MRI) segmentation. In addition, an adaptive mechanism is developed to fine tune the PCNN parameters. The EM model serves two functions: evaluation of the PCNN image segmentation and adaptive adjustment of the PCNN parameters for optimal segmentation. To evaluate the performance of the adaptive EM-PCNN, we use it to segment MR brain image into gray matter (GM), white matter (WM) and cerebrospinal fluid (CSF). The performance of the adaptive EM-PCNN is compared with that of the non-adaptive EM-PCNN, EM, and Bias Corrected Fuzzy C-Means (BCFCM) algorithms. The result is four sets of boundaries for the GM and the brain parenchyma (GM+WM), the two regions of most interest in medical research and clinical applications. Each set of boundaries is compared with the golden standard to evaluate the segmentation performance. The adaptive EM-PCNN significantly outperforms the non-adaptive EM-PCNN, EM, and BCFCM algorithms in gray mater segmentation. In brain parenchyma segmentation, the adaptive EM-PCNN significantly outperforms the BCFCM only. However, the adaptive EM-PCNN is better than the non-adaptive EM-PCNN and EM on average. We conclude that of the three approaches, the adaptive EM-PCNN yields the best results for gray matter and brain parenchyma segmentation. PMID:20042313

  16. DOE EM industry programs robotics development

    SciTech Connect

    Staubly, R.; Kothari, V.

    1998-12-31

    The Office of Science and Technology (OST) manages an aggressive program for RD and D, as well as testing and evaluation for the Department of Energy`s (DOE`s) Environmental Management (EM) organization. The goal is to develop new and improved environmental restoration and waste management technologies to clean up the inventory of the DOE weapons complex faster, safer, and cheaper than is possible with currently available technologies. Robotic systems reduce worker exposure to the absolute minimum, while providing proven, cost-effective, and, for some applications, the only acceptable technique for addressing challenging problems. Development of robotic systems for remote operations occurs in three main categories: tank waste characterization and retrieval; decontamination and dismantlement; and characterization, mapping, and inspection systems. In addition, the Federal Energy Technology Center (FETC) has some other projects which fall under the heading of supporting R and D. The central objective of all FETC robotic projects is to make robotic systems more attractive by reducing costs and health risks associated with the deployment of robotic technologies in the cleanup of the nuclear weapons complex. This will be accomplished through development of robots that are cheaper, faster, safer, and more reliable, as well as more straightforward to modify/adapt and more intuitive to operate with autonomous capabilities and intelligent controls that prevent accidents and optimize task execution.

  17. Degradation of Benzodiazepines after 120 Days of EMS Deployment

    PubMed Central

    McMullan, Jason T.; Jones, Elizabeth; Barnhart, Bruce; Denninghoff, Kurt; Spaite, Daniel; Zaleski, Erin; Silbergleit, Robert

    2014-01-01

    Introduction EMS treatment of status epilepticus improves outcomes, but the benzodiazepine best suited for EMS use is unclear, given potential high environmental temperature exposures. Objective To describe the degradation of diazepam, lorazepam, and midazolam as a function of temperature exposure and time over 120 days of storage on active EMS units. Methods Study boxes containing vials of diazepam, lorazepam, and midazolam were distributed to 4 active EMS units in each of 2 EMS systems in the southwestern United States during May–August 2011. The boxes logged temperature every minute and were stored in EMS units per local agency policy. Two vials of each drug were removed from each box at 30-day intervals and underwent high-performance liquid chromatography to determine drug concentration. Concentration was analyzed as mean (and 95%CI) percent of initial labeled concentration as a function of time and mean kinetic temperature (MKT). Results 192 samples were collected (2 samples of each drug from each of 4 units per city at 4 time-points). After 120 days, the mean relative concentration (95%CI) of diazepam was 97.0% (95.7–98.2%) and of midazolam was 99.0% (97.7–100.2%). Lorazepam experienced modest degradation by 60 days (95.6% [91.6–99.5%]) and substantial degradation at 90 days (90.3% [85.2-95.4%]) and 120 days (86.5% [80.7–92.3%]). Mean MKT was 31.6°C (95%CI 27.1–36.1). Increasing MKT was associated with greater degradation of lorazepam, but not midazolam or diazepam. Conclusions Midazolam and diazepam experienced minimal degradation throughout 120 days of EMS deployment in high-heat environments. Lorazepam experienced significant degradation over 120 days and appeared especially sensitive to higher MKT exposure. PMID:24548058

  18. Emergency medical service (EMS): A unique flight environment

    NASA Technical Reports Server (NTRS)

    Shively, R. Jay

    1993-01-01

    The EMS flight environment is unique in today's aviation. The pilots must respond quickly to emergency events and often fly to landing zones where they have never been before . The time from initially receiving a call to being airborne can be as little as two to three minutes. Often the EMS pilot is the only aviation professional on site, they have no operations people or other pilots to aid them in making decisons. Further, since they are often flying to accident scenes, not airports, there is often complete weather and condition information. Therefore, the initial decision that the pilot must make, accepting or declining a flight, can become very difficult. The accident rate of EMS helicopters has been relatively high over the past years. NASA-Ames research center has taken several steps in an attempt to aid EMS pilots in their decision making and situational awareness. A preflight risk assessment system (SAFE) was developed to aid pilots in their decision making, and was tested at an EMS service. The resutls of the study were promising and a second version incorporating the lessons learned is under development. A second line of research was the development of a low cost electronic chart display (ECD). This is a digital map display to help pilots maintain geographical orientation. Another thrust was undertaken in conjunction with the Aviation Safety Reporting System (ASRS). This involved publicizing the ASRS to EMS pilots and personnel, and calling each of the reporters back to gather additional information. This paper will discuss these efforts and how they may positively impact the safety of EMS operations.

  19. FitEM2EM--tools for low resolution study of macromolecular assembly and dynamics.

    PubMed

    Frankenstein, Ziv; Sperling, Joseph; Sperling, Ruth; Eisenstein, Miriam

    2008-01-01

    Studies of the structure and dynamics of macromolecular assemblies often involve comparison of low resolution models obtained using different techniques such as electron microscopy or atomic force microscopy. We present new computational tools for comparing (matching) and docking of low resolution structures, based on shape complementarity. The matched or docked objects are represented by three dimensional grids where the value of each grid point depends on its position with regard to the interior, surface or exterior of the object. The grids are correlated using fast Fourier transformations producing either matches of related objects or docking models depending on the details of the grid representations. The procedures incorporate thickening and smoothing of the surfaces of the objects which effectively compensates for differences in the resolution of the matched/docked objects, circumventing the need for resolution modification. The presented matching tool FitEM2EMin successfully fitted electron microscopy structures obtained at different resolutions, different conformers of the same structure and partial structures, ranking correct matches at the top in every case. The differences between the grid representations of the matched objects can be used to study conformation differences or to characterize the size and shape of substructures. The presented low-to-low docking tool FitEM2EMout ranked the expected models at the top. PMID:18974836

  20. Learning when to Hold'em and When to Fold'em: ERS's Budget Hold'em Game Facilitates the Budget Development Process in Memphis

    ERIC Educational Resources Information Center

    Education Resource Strategies, 2010

    2010-01-01

    If your school district is facing a budget issue, it might surprise you to learn that the solution might very well lie in a game of cards. That certainly was the case earlier this year for the city schools of Memphis, Tennessee. The game is called Budget Hold'em, and it was developed by Education Resource Strategies (ERS) of Watertown,…

  1. Do EMS Professionals Think They Should Participate in Disease Prevention?

    PubMed Central

    Lerner, E. Brooke; Fernandez, Antonio R.; Shah, Manish N.

    2009-01-01

    Objective To determine EMS professionals’ opinions regarding participation in disease and injury prevention programs. A secondary objective was to determine the proportion of EMS professionals who had participated in disease prevention programs. Methods As part of National Registry of Emergency Medical Technician’s biennial re-registration process, EMS professionals re-registering in 2006 were asked to complete an optional survey regarding their opinions on and participation in disease and injury prevention. Demographic characteristics were also collected. Data were analyzed using descriptive statistics and 99% confidence intervals. The chi square test was used to compare differences by responder demographics (α=0.01). A 10% difference between groups was determined to be clinically significant. Results The survey was completed by 27,233 EMS professionals. 82.7% (99%CI: 82.1 – 83.3) felt that EMS professionals should participate in disease prevention, with those working 20 to 29 hours per week being the least likely to think they should participate (67.4%, p<0.001). 33.8% (99% CI: 33.1 – 34.6) of respondents reported having provided prevention services, with those having a graduate degree (43.5%, p<0.001), those working in EMS for more than 21 years (44%, p<0.001), those working for the military (57%, p<0.001), those working 60 to 69 hours per week (41%, P<.001), and those responding to 0 emergency calls in a typical week (43%, P<0.001) being the most likely to report having provided prevention services. 51.1% (99%CI: 50.4 – 51.9) of respondents agreed that prevention services should be provided during emergency calls and 7.7% (99%CI: 7.3 – 8.1) of respondents reported providing prevention services during emergency calls. No demographic differences existed. Those who had participated in prevention programs were more likely to respond that EMS professionals should participate in prevention (92% versus 82%, p<0.001). Further, those who had provided prevention services during emergency calls were more likely to think EMS professionals should provide prevention services during emergency calls (81% versus 51%, p<0.001). Conclusion The majority of EMS professionals thought that they should participate in disease and injury prevention programs. The respondents were mixed as to whether prevention services should be provided while on emergency calls, but those with experience providing these services were more likely to agree with providing them during emergency calls. PMID:19145527

  2. International Space Station (ISS) Emergency Mask (EM) Development

    NASA Technical Reports Server (NTRS)

    Toon, Katherine P.; Hahn, Jeffrey; Fowler, Michael; Young, Kevin

    2011-01-01

    The Emergency Mask (EM) is considered a secondary response emergency Personal Protective Equipment (PPE) designed to provide respiratory protection to the International Space Station (ISS) crewmembers in response to a post-fire event or ammonia leak. The EM is planned to be delivered to ISS in 2012 to replace the current air purifying respirator (APR) onboard ISS called the Ammonia Respirator (AR). The EM is a one ]size ]fits ]all model designed to fit any size crewmember, unlike the APR on ISS, and uses either two Fire Cartridges (FCs) or two Commercial Off-the-Shelf (COTS) 3M(Trademark). Ammonia Cartridges (ACs) to provide the crew with a minimum of 8 hours of respiratory protection with appropriate cartridge swap ]out. The EM is designed for a single exposure event, for either post ]fire or ammonia, and is a passive device that cannot help crewmembers who cannot breathe on their own. The EM fs primary and only seal is around the wearer fs neck to prevent a crewmember from inhaling contaminants. During the development of the ISS Emergency Mask, several design challenges were faced that focused around manufacturing a leak free mask. The description of those challenges are broadly discussed but focuses on one key design challenge area: bonding EPDM gasket material to Gore(Registered Trademark) fabric hood.

  3. A Computerized Evaluation Methodology for Pre-Hospital EMS Cardiac Care

    PubMed Central

    Nagurney, Frank K.

    1980-01-01

    The computerized application of cardiac care protocols for pre-hospital EMS care is presented. The program logic is reviewed and an example of its application is provided. Uses of the results of the program in EMS management are suggested.

  4. Influence of PCB and Attached Line of Hardware on Electromagnetic (EM) Information Leakage

    NASA Astrophysics Data System (ADS)

    Hayashi, Yu-Ichi; Ohmura, Kouhei; Mizuki, Takaaki; Sone, Hideaki

    Electromagnetic (EM) radiation from information hardware under normal operating conditions can compromise secret information (EM information leakage), for example, operations or processed data contained in the hardware. Methods for analyzing EM radiation with the intention of extracting secret information have been proposed, and EM side-channel attacks on cryptographic hardware are a major concern. This paper investigates how EM information leakage changes with the configuration of information hardware, focusing on the frequency characteristics of the hardware. We assume that frequency characteristics of the EM radiation correspond to physical aspects of the hardware configuration. To address the issue of information leakage, this paper presents a novel analysis of EM radiation from information hardware by using a model circuit board. Through this model we show that the intensity of EM emission can be related to the layout of the hardware.

  5. Recent technical advancements enabled atomic resolution CryoEM

    NASA Astrophysics Data System (ADS)

    Xueming, Li

    2016-01-01

    With recent breakthroughs in camera and image processing technologies single-particle electron cryo-microscopy (CryoEM) has suddenly gained the attention of structural biologists as a powerful tool able to solve the atomic structures of biological complexes and assemblies. Compared with x-ray crystallography, CryoEM can be applied to partially flexible structures in solution and without the necessity of crystallization, which is especially important for large complexes and assemblies. This review briefly explains several key bottlenecks for atomic resolution CryoEM, and describes the corresponding solutions for these bottlenecks based on the recent technical advancements. The review also aims to provide an overview about the technical differences between its applications in biology and those in material science. Project supported by Tsinghua-Peking Joint Center for Life Sciences, China.

  6. Developments in the EM-CCD camera for OGRE

    NASA Astrophysics Data System (ADS)

    Tutt, James H.; McEntaffer, Randall L.; DeRoo, Casey; Schultz, Ted; Miles, Drew M.; Zhang, William; Murray, Neil J.; Holland, Andrew D.; Cash, Webster; Rogers, Thomas; O'Dell, Steve; Gaskin, Jessica; Kolodziejczak, Jeff; Evagora, Anthony M.; Holland, Karen; Colebrook, David

    2014-07-01

    The Off-plane Grating Rocket Experiment (OGRE) is a sub-orbital rocket payload designed to advance the development of several emerging technologies for use on space missions. The payload consists of a high resolution soft X-ray spectrometer based around an optic made from precision cut and ground, single crystal silicon mirrors, a module of off-plane gratings and a camera array based around Electron Multiplying CCD (EM-CCD) technology. This paper gives an overview of OGRE with emphasis on the detector array; specifically this paper will address the reasons that EM-CCDs are the detector of choice and the advantages and disadvantages that this technology offers.

  7. The photon: EM fields, electrical potentials, and AC charge

    NASA Astrophysics Data System (ADS)

    Meulenberg, A.; Hudgins, W. R.; Penland, R. F.

    2015-09-01

    Photons are here considered to be resonant oscillations (solitons) in four dimensions (space/time) of an undefined `field' otherwise generally existing at a local energy minimum. The photons' constituent EM fields result in elevated energy, and therefore potentials, within that field. It is in the context of the standing waves of and between photons that the EM fields and potentials lead to a description of alternating (AC) `currents' (of some form) of unquantized alternating `charge' (of some sort). The main topic of this paper is the alternating charge.

  8. Waste fuel, EMS may save plant $1M yearly

    SciTech Connect

    Barber, J.

    1982-05-24

    A mixture of paper trash and coal ash fueling an Erie, Pa. General Electric plant and a Network 90 microprocessor-based energy-management system (EMS) to optimize boiler efficiency will cost about $3 million and have a three-to-four-year payback. Over half the savings will come from the avoided costs of burning plant-generated trash. The EMS system will monitor fuel requirements in the boiler and compensate for changes in steam demand. It will also monitor plant electrical needs and control the steam diverted for cogeneration. (DCK)

  9. Speaker verification using combined acoustic and EM sensor signal processing

    SciTech Connect

    Ng, L C; Gable, T J; Holzrichter, J F

    2000-11-10

    Low Power EM radar-like sensors have made it possible to measure properties of the human speech production system in real-time, without acoustic interference. This greatly enhances the quality and quantity of information for many speech related applications. See Holzrichter, Burnett, Ng, and Lea, J. Acoustic. SOC. Am . 103 ( 1) 622 (1998). By combining the Glottal-EM-Sensor (GEMS) with the Acoustic-signals, we've demonstrated an almost 10 fold reduction in error rates from a speaker verification system experiment under a moderate noisy environment (-10dB).

  10. Low Bandwidth Vocoding using EM Sensor and Acoustic Signal Processing

    SciTech Connect

    Ng, L C; Holzrichter, J F; Larson, P E

    2001-10-25

    Low-power EM radar-like sensors have made it possible to measure properties of the human speech production system in real-time, without acoustic interference [1]. By combining these data with the corresponding acoustic signal, we've demonstrated an almost 10-fold bandwidth reduction in speech compression, compared to a standard 2.4 kbps LPC10 protocol used in the STU-III (Secure Terminal Unit, third generation) telephone. This paper describes a potential EM sensor/acoustic based vocoder implementation.

  11. Item Parameter Estimation via Marginal Maximum Likelihood and an EM Algorithm: A Didactic.

    ERIC Educational Resources Information Center

    Harwell, Michael R.; And Others

    1988-01-01

    The Bock and Aitkin Marginal Maximum Likelihood/EM (MML/EM) approach to item parameter estimation is an alternative to the classical joint maximum likelihood procedure of item response theory. This paper provides the essential mathematical details of a MML/EM solution and shows its use in obtaining consistent item parameter estimates. (TJH)

  12. A emissão em 8mm e as bandas de Merrill-Sanford em estrelas carbonadas

    NASA Astrophysics Data System (ADS)

    de Mello, A. B.; Lorenz-Martins, S.

    2003-08-01

    Estrelas carbonadas possuem bandas moleculares em absorção no visível e, no infravermelho (IR) as principais características espectrais se devem a emissão de grãos. Recentemente foi detectada a presença de bandas de SiC2 (Merrill-Sanford, MS) em emissão sendo atribuída à presença de um disco rico em poeira. Neste trabalho analisamos uma amostra de 14 estrelas carbonadas, observadas no telescópio de 1.52 m do ESO em 4 regiões espectrais diferentes, a fim de detectar as bandas de MS em emissão. Nossa amostra é composta de estrelas que apresentam além da emissão em 11.3 mm, outra em 8 mm. Esta última emissão, não usual nestes objetos, tem sido atribuída ou a moléculas de C2H2, ou a um composto sólido ainda indefinido. A detecção de emissões de MS e aquelas no IR, simultaneamente, revelaria um cenário mais complexo que o habitualmente esperado para os ventos destes objetos. No entanto como primeiro resultado, verificamos que as bandas de Merrill-Sanford encontram-se em absorção, não revelando nenhuma conexão com a emissão a 8 mm. Assim, temos duas hipóteses: (a) a emissão a 8 mm se deve à molécula C2H2 ou (b) essa emissão é resultado da emissão térmica de grãos. Testamos a segunda hipótese modelando a amostra com grãos não-homogêneos de SiC e quartzo, o qual emite em aproximadamente 8mm. Este grão seria produzido em uma fase evolutiva anterior a das carbonadas (estrelas S) e por terem uma estrutura cristalina são destruídos apenas na presença de campos de radiação ultravioleta muito intensos. Os modelos para os envoltórios utilizam o método de Monte Carlo para descrever o problema do transporte da radiação. As conclusões deste trabalho são: (1) as bandas de Merrill-Sanford se encontram em absorção, sugerindo um cenário usual para os ventos das estrelas da amostra; (2) neste cenário, a emissão em 8 mm seria resultado de grãos de quartzo com mantos de SiC, indicando que o quartzo poderia sobreviver a fase evolutiva S.

  13. Signs and Guides: Wayfinding Alternatives for the EMS Library.

    ERIC Educational Resources Information Center

    Johnson, Johanna H.

    Concerned with increasing the accessibility of the collection of the Engineering/Math Sciences (EMS) Library at the University of California at Los Angeles through the use of self guidance systems, this practical study focused on the problem context, general library guides, and library signage in reviewing the literature, and conducted a survey of

  14. A shape constrained MAP-EM algorithm for colorectal segmentation

    NASA Astrophysics Data System (ADS)

    Wang, Huafeng; Li, Lihong; Song, Bowen; Han, Fangfang; Liang, Zhengrong

    2013-02-01

    The task of effectively segmenting colon areas in CT images is an important area of interest in medical imaging field. The ability to distinguish the colon wall in an image from the background is a critical step in several approaches for achieving larger goals in automated computer-aided diagnosis (CAD). The related task of polyp detection, the ability to determine which objects or classes of polyps are present in a scene, also relies on colon wall segmentation. When modeling each tissue type as a conditionally independent Gaussian distribution, the tissue mixture fractions in each voxel via the modeled unobservable random processes of the underlying tissue types can be estimated by maximum a posteriori expectation-maximization (MAP-EM) algorithm in an iterative manner. This paper presents, based on the assumption that the partial volume effect (PVE) could be fully described by a tissue mixture model, a theoretical solution to the MAP-EM segmentation algorithm. However, the MAP-EM algorithm may miss some small regions which also belong to the colon wall. Combining with the shape constrained model, we present an improved algorithm which is able to merge similar regions and reserve fine structures. Experiment results show that the new approach can refine the jagged-like boundaries and achieve better results than merely exploited our previously presented MAP-EM algorithm.

  15. Reservoir characterization and steam flood monitoring with crosshole EM

    SciTech Connect

    Wilt, M.; Torres-Verdin, C.

    1995-06-01

    Crosshole electromagnetic (EM) imaging is applied to reservoir characterization and steam flood monitoring in a central California oil field. Steam was injected into three stacked eastward-dipping, unconsolidated oil sands within the upper 200 m. The steam plume is expected to develop as an ellipse aligned with the regional northwest-southeast strike. EM measurements were made from two fiberglass-cased observation wells straddling the steam injector on a northeast-southwest profile using the LLNL frequency domain crosshole EM system. Field data were collected before the initiation of a steam drive to map the distribution of the oil sands and then 6 and 12 months later to monitor the progress of the steam chest. Resistivity images derived from the EM data before steam injection clearly delineate the distribution and dipping structure on the target oil sands. Difference images, from data collected before and after steam flooding, show resistivity changes that indicate that the steam chest has developed only in the deeper oil sands although steam injection occurred in all three sand layers.

  16. Texas Hold 'em Online Poker: A Further Examination

    ERIC Educational Resources Information Center

    Hopley, Anthony A. B.; Dempsey, Kevin; Nicki, Richard

    2012-01-01

    Playing Texas Hold 'em Online Poker (THOP) is on the rise. However, there is relatively little research examining factors that contribute to problem gambling in poker players. The aim of this study was to extend the research findings of Hopley and Nicki (2010). The negative mood states of depression, anxiety and stress were found to be linked to

  17. Texas Hold 'em Online Poker: A Further Examination

    ERIC Educational Resources Information Center

    Hopley, Anthony A. B.; Dempsey, Kevin; Nicki, Richard

    2012-01-01

    Playing Texas Hold 'em Online Poker (THOP) is on the rise. However, there is relatively little research examining factors that contribute to problem gambling in poker players. The aim of this study was to extend the research findings of Hopley and Nicki (2010). The negative mood states of depression, anxiety and stress were found to be linked to…

  18. Airborne EM for geothermal and hydrogeological mapping

    NASA Astrophysics Data System (ADS)

    Menghini, A.; Manzella, A.; Viezzoli, A.; Montanari, D.; Maggi, S.

    2012-12-01

    Within the "VIGOR" project, aimed at assessing the geothermal potential of four regions in southern Italy, Airborne EM data have been acquired, modeled and interpreted. The system deployed was SkyTEM, a time-domain helicopter electromagnetic system designed for hydrogeophysical, environmental and mineral investigations. The AEM data provide, after data acquisition, analysis, processing, and modeling, a distribution volume of electrical resistivity, spanning an investigation depth from ground surface of few hundred meters, depending on resistivity condition. Resistivity is an important physical parameter for geothermal investigation, since it proved to be very effective in mapping anomalies due to hydrothermal fluid circulation, which usually has high salt content and produces clayey alteration minerals. Since the project required, among other issues, to define geothermal resources at shallow level, it was decided to perform a test with an airborne electromagnetic geophysical survey, to verify the advantages offered by the system in covering large areas in a short time. The geophysical survey was carried out in Sicily, Italy, in late 2011, over two test sites named "Termini" and "Western Sicily". The two areas were chosen on different basis. "Termini" area is covered by extensive geological surveys, and was going to be investigated also by means of electrical tomography in its northern part. Since geological condition of Sicily, even at shallow depth, is very complex, this area provided a good place for defining the resistivity values of the main geological units outcropping in the region. "Termini" survey has been also an occasion to define relations between resistivity distribution, lithological units and thermal conductivity. The "Western Sicily" area cover the main thermal manifestations of western Sicily, and the research target was to establish whether they are characterized by common hydrogeological or tectonic features that could be mapped by resistivity. SkyTEM data have been acquired in a series of flight lines and were then processed and inverted. In the "Termini" area the flight line spacing had 150 m separation. In the "Western Sicily" area two different line spacing were used: the 1 km spacing was used for the regional mapping, whereas for infill areas, around the main hydrothermal springs, the flight lines had 100 m spacing. The total number of flight line was 4580 km, and the explored surface was in excess of 2000 km2. After acquisition, data were processed to eliminate coupling with infrastructures, and noise. Inversions was then carried out using the quasi 3-D Spatially Constrained Inversion. The obtained resistivity volume has then been the base for a detailed lithological and geothermal interpretation. Lithological and geological maps were used to constrain surface condition and to understand the resistivity ranges of the different lithological units. On the base of resistivity values, lithological units were combined to establish the main litho-resistive units, then modeled at depth, down to achievable investigation depth. This detailed interpretative modeling was also the occasion of recognizing resistivity anomalies within carbonate units, which may possibly represent hydrogeological or hydrothermal bodies. The litho-resitive 3D model is now under investigation to verify how it can represent a viable way to image thermal conductivity variations at depth.

  19. Composting of rice straw with effective microorganisms (EM) and its influence on compost quality

    PubMed Central

    2013-01-01

    This study aims to assess the effect of EM application on the composting process of rice straw with goat manure and green waste and to evaluate the quality of both compost treatments. There are two treatment piles in this study, in which one pile was applied with EM and another pile without EM. Each treatment was replicated three times with 90 days of composting duration. The parameters for the temperature, pH, TOC and C/N ratio, show that decomposition of organic matter occurs during the 90-day period. The t-test conducted shows that there is a significant difference between compost with EM and compost without EM. The application of EM in compost increases the macro and micronutrient content. The following parameters support this conclusion: compost applied with EM has more N, P and K content (P < 0.05) compared to compost without EM. Although the Fe in compost with EM is much higher (P < 0.05) than in the compost without EM, for Zn and Cu, there is no significant difference between treatments. This study suggests that the application of EM is suitable to increase the mineralization in the composting process. The final resultant compost indicated that it was in the range of the matured level and can be used without any restriction. PMID:23390930

  20. Application of Electromagnetic (EM) Separation Technology to Metal Refining Processes: A Review

    NASA Astrophysics Data System (ADS)

    Zhang, Lifeng; Wang, Shengqian; Dong, Anping; Gao, Jianwei; Damoah, Lucas Nana Wiredu

    2014-12-01

    Application of electromagnetic (EM) force to metal processing has been considered as an emerging technology for the production of clean metals and other advanced materials. In the current paper, the principle of EM separation was introduced and several schemes of imposing EM field, such as DC electric field with a crossed steady magnetic field, AC electric field, AC magnetic field, and traveling magnetic field were reviewed. The force around a single particle or multi-particles and their trajectories in the conductive liquid under EM field were discussed. Applications of EM technique to the purification of different liquid metals such as aluminum, zinc, magnesium, silicon, copper, and steel were summarized. Effects of EM processing parameters, such as the frequency of imposed field, imposed magnetic flux density, processing time, particle size, and the EM unit size on the EM purification efficiency were discussed. Experimental and theoretical investigations have showed that the separation efficiency of inclusions from the molten aluminum using EM purification could as high as over 90 pct. Meanwhile, the EM purification was also applied to separate intermetallic compounds from metal melt, such as α-AlFeMnSi-phase from the molten aluminum. And then the potential industrial application of EM technique was proposed.

  1. ATTRACT-EM: A New Method for the Computational Assembly of Large Molecular Machines Using Cryo-EM Maps

    PubMed Central

    de Vries, Sjoerd J.; Zacharias, Martin

    2012-01-01

    Many of the most important functions in the cell are carried out by proteins organized in large molecular machines. Cryo-electron microscopy (cryo-EM) is increasingly being used to obtain low resolution density maps of these large assemblies. A new method, ATTRACT-EM, for the computational assembly of molecular assemblies from their components has been developed. Based on concepts from the protein-protein docking field, it utilizes cryo-EM density maps to assemble molecular subunits at near atomic detail, starting from millions of initial subunit configurations. The search efficiency was further enhanced by recombining partial solutions, the inclusion of symmetry information, and refinement using a molecular force field. The approach was tested on the GroES-GroEL system, using an experimental cryo-EM map at 23.5 Å resolution, and on several smaller complexes. Inclusion of experimental information on the symmetry of the systems and the application of a new gradient vector matching algorithm allowed the efficient identification of docked assemblies in close agreement with experiment. Application to the GroES-GroEL complex resulted in a top ranked model with a deviation of 4.6 Å (and a 2.8 Å model within the top 10) from the GroES-GroEL crystal structure, a significant improvement over existing methods. PMID:23251350

  2. EMS Providers and Exception From Informed Consent Research: Benefits, Ethics, and Community Consultation

    PubMed Central

    Ripley, Elizabeth; Ramsey, Cornelia; Prorock-Ernest, Amy; Foco, Rebecca; Luckett, Solomon; Ornato, Joseph P.

    2013-01-01

    As attention to, and motivation for, EMS-related research continues to grow, particularly exception from informed consent (EFIC) research, it is important to understand the thoughts, beliefs, and experiences of EMS providers who are actively engaged in the research. Study Objective We explored the attitudes, beliefs, and experiences of EMS providers regarding their involvement in prehospital emergency research, particularly EFIC research. Method Using a qualitative design, 24 participants were interviewed including Nationally Registered Paramedics and Virginia certified Emergency Medical Technicians employed at Richmond Ambulance Authority, the participating EMS agency. At the time of our interviews, the EMS agency was involved in an exception from informed consent trial. Transcribed interview data were coded and analyzed for themes. Findings were presented back to the EMS agency for validation. Results Overall, there appeared to be support for prehospital emergency research. Participants viewed research as necessary for the advancement of the field of EMS. Improvement in patient care was identified as one of the most important benefits. A number of ethical considerations were identified: individual risk versus public good and consent. EMS providers in our study were open to working with EMS researchers throughout the community consultation and public disclosure process. Conclusions EMS providers in our study value research and are willing to participate in studies. Support for research was balanced with concerns and challenges regarding the role of providers in the research process. PMID:22823963

  3. Effect of the nuclear factors EmBP1 and viviparous1 on the transcription of the Em gene in HeLa nuclear extracts.

    PubMed

    Razik, M A; Quatrano, R S

    1997-10-01

    Templates constructed from the wheat Em and maize rab28 promoters are efficiently and accurately transcribed in the well-characterized cell-free transcription system prepared from HeLa nuclei. Deletion analysis of the Em promoter indicates that a G-box (CACGTG) element (Em1b) is required for transcription. USF, a Myc transcription factor in HeLa nuclear extracts, activates transcription by binding to Em1b, as shown by the ability of an antibody raised against USF to inhibit transcription and to interfere with Em1b complex formation in an electrophoretic mobility shift assay. The addition of the recombinant Viviparous1 protein from maize to HeLa nuclear extracts specifically stimulated transcription of the Em promoter but was dependent on the presence of USF in the extract. In USF-depleted extracts, the addition of recombinant EmBP1, a basic leucine zipper transcription factor from wheat, activated transcription through Em1b as well as from a similar G-box in the adenovirus major late promoter. Our study demonstrates that the basic transcriptional apparatus in HeLa nuclear extract supports transcription from plant promoters and can be used to assay the function of certain plant nuclear proteins, thereby helping to determine their effects on transcription. PMID:9368416

  4. Translation of EMS: clinical practice and system oversight from core content study guide to best practices implementation in an Urban EMS system.

    PubMed

    Tataris, Katie; Mercer, Mary; Brown, John

    2015-01-01

    Since 2009, the seminal text in emergency medical services (EMS) medicine has been used to guide the academic development of the new subspecialty but direct application of the material into EMS oversight has not been previously described. The EMS/Disaster Medicine fellowship program at our institution scheduled a monthly meeting to systematically review the text and develop a study guide to assist the fellow and affiliated faculty in preparation for the board examination. In addition to the summary of chapter content, the review included an assessment of areas from each chapter subject where our EMS system did not exhibit recommended characteristics. A matrix was developed in the form of a gap analysis to include specific recommendations based on each perceived gap. Initial review and completion dates for each identified gap enable tracking and a responsible party. This matrix assisted the fellow with development of projects for EMS system improvement in addition to focusing and prioritizing the work of other interested physicians working in the system. By discussing expert recommendations in the setting of an actual EMS system, the faculty can teach the fellow how to approach system improvements based on prior experiences and current stakeholders. This collaborative environment facilitates system-based practice and practice-based learning, aligning with ACGME core competencies. Our educational model has demonstrated the success of translating the text into action items for EMS systems. This model may be useful in other systems and could contribute to the development of EMS system standards nationwide. PMID:25290737

  5. Superconducting Electromagnetic Suspension (EMS) system for Grumman Maglev concept

    NASA Astrophysics Data System (ADS)

    Kalsi, Swarn S.

    1994-05-01

    The Grumman developed Electromagnetic Suspension (EMS) Maglev system has the following key characteristics: a large operating airgap--40 mm; levitation at all speeds; both high speed and low speed applications; no deleterious effects on SC coils at low vehicle speeds; low magnetic field at the SC coil--less than 0.35 T; no need to use non-magnetic/non-metallic rebar in the guideway structure; low magnetic field in passenger cabin--approximately 1 G; low forces on the SC coil; employs state-of-the-art NbTi wire; no need for an active magnet quench protection system; and lower weight than a magnet system with copper coils. The EMS Maglev described in this paper does not require development of any new technologies. The system could be built with the existing SC magnet technology.

  6. Environmental Restoration and Waste Management (EM) program: An introduction

    SciTech Connect

    Not Available

    1990-12-01

    This booklet introduces the reader to the mission and functions of a major new unit within the US Department of Energy (DOE): the Office of Environmental Restoration and Waste Management (EM). The Secretary of Energy established EM in November 1989, implementing a central purpose of DOE's first annual Environmental Restoration and Waste Management Five-Year Plan, which had appeared three months earlier. The contents of this booklet, and their arrangement, reflect the annual update of the Five-Year Plan. The Five-Year Plan supports DOE's strategy for meeting its 30-year compliance and cleanup goal. This strategy involves: focusing DOE's activities on eliminating or reducing known or recognized potential risks to worker and public health and the environment, containing or isolating, removing, or detoxifying onsite and offsite contamination, and developing technology to achieve DOE's environmental goals.

  7. Superconducting Electromagnetic Suspension (EMS) system for Grumman Maglev concept

    NASA Technical Reports Server (NTRS)

    Kalsi, Swarn S.

    1994-01-01

    The Grumman developed Electromagnetic Suspension (EMS) Maglev system has the following key characteristics: a large operating airgap--40 mm; levitation at all speeds; both high speed and low speed applications; no deleterious effects on SC coils at low vehicle speeds; low magnetic field at the SC coil--less than 0.35 T; no need to use non-magnetic/non-metallic rebar in the guideway structure; low magnetic field in passenger cabin--approximately 1 G; low forces on the SC coil; employs state-of-the-art NbTi wire; no need for an active magnet quench protection system; and lower weight than a magnet system with copper coils. The EMS Maglev described in this paper does not require development of any new technologies. The system could be built with the existing SC magnet technology.

  8. Advanced communication infrastructure for pre-hospital EMS care.

    PubMed

    Orthner, Helmuth; Mazza, Giovanni; Mazza, Giovanni Giorgio; Shenvi, Rohit; Battles, Marcie

    2008-01-01

    The traditional communication infrastructure of the pre-hospital Emergency Medical System (EMS) is limited to voice communication using radio or cell phone technologies. With the emergence of 3rd Generation wireless networks (3G) and enhanced mobile devices capable of data communication (e.g., mobile tablets, PDAs with cell phones, or cell phones with PDA capabilities), the voice communication can be enhanced with interactive data messaging and perhaps even with interactive video communication. However, video requires substantially more bandwidth which 4th Generation (4G) systems are promising. However, their availability is limited. We present an infrastructure that allows dynamic selection of the best data transport mode in the pre-hospital EMS environment. PMID:18999315

  9. Small sample learning of superpixel classifiers for EM segmentation.

    PubMed

    Parag, Toufiq; Plaza, Stephen; Scheffer, Louis

    2014-01-01

    Pixel and superpixel classifiers have become essential tools for EM segmentation algorithms. Training these classifiers remains a major bottleneck primarily due to the requirement of completely annotating the dataset which is tedious, error-prone and costly. In this paper, we propose an interactive learning scheme for the superpixel classifier for EM segmentation. Our algorithm is 'active semi-supervised' because it requests the labels of a small number of examples from user and applies label propagation technique to generate these queries. Using only a small set (< 20%) of all datapoints, the proposed algorithm consistently generates a classifier almost as accurate as that estimated from a complete groundtruth. We provide segmentation results on multiple datasets to show the strength of these classifiers. PMID:25333142

  10. EM susceptibility studies and measurements on electro explosive devices

    NASA Astrophysics Data System (ADS)

    Deb, G. K.; Mukherjee, M.

    Electroexplosive devices (EEDs) are susceptible to stray electromagnetic (EM) fields near high-power communications and radar transmitters. Experiments have been carried out to measure the exact susceptibility of EED resistive squibs in pulsed and continuous EM environments, respectively. The susceptibility test procedure consisted of individual measurements of direct current sensitivity (mA); impulse sensitivity; RF impedance measurements; and safety margin calculations. A stray energy monitor was used to evaluate the safe performance of a hybrid weapons system. It is found that the RF sensitivity of the squib was influenced by the transmission characteristics of the transmission line connected to it. RF absorption peaks were observed above the EED sensitivity threshold of 120 MHz. Methods of EMI control are discussed, including: low-pass pin filters; lossy line filters for all dc power line interconnections; and twisting and shielding of the wires.

  11. Magen David Adom--the EMS in Israel.

    PubMed

    Ellis, Daniel Y; Sorene, Eliot

    2008-01-01

    Israel is a small country with a population of around 7 million. The sole EMS provider for Israel is Magen David Adom (MDA) (translated as 'Red Shield of David'). MDA also carries out the functions of a National Society (similar to the Red Cross) and provides all the blood and blood product services for the country. Nationwide, the organisation responds to over 1000 emergency calls a day and uses doctors, paramedics, emergency medical technicians and volunteers. Local geopolitics has meant that MDA has to be prepared for anything from everyday emergency calls to suicide bombings and regional wars. MDA also prides itself in being able to rapidly assemble and dispatch mobile aid teams to scenes of international disasters. Such a broad range of activities is unusual for a single EMS organisation. PMID:17767990

  12. EMS users find solutions to voltage-surge problems

    SciTech Connect

    Galvin, C.

    1983-01-24

    The microchips in energy-management systems (EMS) are especially vulnerable to damage due to voltage surges, but the addition of surge suppressors to cut off the peak of spikes at a certain level or the use of fiber-optic cable that transmits light signals instead of electricity can overcome the problem. Users are often unaware that lightning, utility-grid switching, or the shutting down of large equipment can cause surges that garble computer information. (DCK)

  13. Principles of cryo-EM single-particle image processing.

    PubMed

    Sigworth, Fred J

    2016-02-01

    Single-particle reconstruction is the process by which 3D density maps are obtained from a set of low-dose cryo-EM images of individual macromolecules. This review considers the fundamental principles of this process and the steps in the overall workflow for single-particle image processing. Also considered are the limits that image signal-to-noise ratio places on resolution and the distinguishing of heterogeneous particle populations. PMID:26705325

  14. Improving EM&V for Energy Efficiency Programs (Fact Sheet)

    SciTech Connect

    Not Available

    2012-07-01

    This fact sheet describes the objectives of the U.S. Department of Energy Uniform Methods Project to bring consistency to energy savings calculations in U.S. energy efficiency programs. The U.S. Department of Energy (DOE) is developing a framework and a set of protocols for determining gross energy savings from energy efficiency measures and programs. The protocols represent a refinement of the body of knowledge supporting energy efficiency evaluation, measurement, and verification (EM&V) activities. They have been written by technical experts within the field and reviewed by industry experts. Current EM&V practice allows for multiple methods for calculating energy savings. These methods were developed to meet the needs of energy efficiency program administrators and regulators. Although they served their original objectives well, they have resulted in inconsistent and incomparable savings results - even for identical measures. The goal of the Uniform Methods Project is to strengthen the credibility of energy savings determinations by improving EM&V, increasing the consistency and transparency of how energy savings are determined.

  15. Conjoined Use of EM and NMR in RNA Structure Refinement

    PubMed Central

    Gong, Zhou; Schwieters, Charles D.; Tang, Chun

    2015-01-01

    More than 40% of the RNA structures have been determined using nuclear magnetic resonance (NMR) technique. NMR mainly provides local structural information of protons and works most effectively on relatively small biomacromolecules. Hence structural characterization of large RNAs can be difficult for NMR alone. Electron microscopy (EM) provides global shape information of macromolecules at nanometer resolution, which should be complementary to NMR for RNA structure determination. Here we developed a new energy term in Xplor-NIH against the density map obtained by EM. We conjointly used NMR and map restraints for the structure refinement of three RNA systems — U2/U6 small-nuclear RNA, genome-packing motif (ΨCD)2 from Moloney murine leukemia virus, and ribosome-binding element from turnip crinkle virus. In all three systems, we showed that the incorporation of a map restraint, either experimental or generated from known PDB structure, greatly improves structural precision and accuracy. Importantly, our method does not rely on an initial model assembled from RNA duplexes, and allows full torsional freedom for each nucleotide in the torsion angle simulated annealing refinement. As increasing number of macromolecules can be characterized by both NMR and EM, the marriage between the two techniques would enable better characterization of RNA three-dimensional structures. PMID:25798848

  16. Debris Avalanche Formation at Kick'em Jenny Submarine Volcano

    NASA Astrophysics Data System (ADS)

    Sigurdsson, H.; Carey, S. N.; Wilson, D.

    2005-12-01

    Kick'em Jenny submarine volcano near Grenada is the most active volcanic center in the Lesser Antilles arc. Multibeam surveys of the volcano by NOAA in 2002 revealed an arcuate fault scarp east of the active cone, suggesting flank collapse. More extensive NOAA surveys in 2003 demonstrated the presence of an associated debris avalanche deposit, judging from their surface morphologic expression on the sea floor, extending at least 15 km and possibly as much as 30 km from the volcano, into the Grenada Basin to the west. Seismic air-gun profiles of the region show that these are lobate deposits, that range in thickness from tens to hundreds of meters. The debris avalanche deposit is contained within two marginal levees, that extend symmetrically from the volcano to the west. A conservative estimate of the volume of the smaller debris avalanche deposit is about 10 km3. Age dating of the deposits and the flank failure events is in progress, by analysis of gravity cores collected during the 2003 survey. Reconstruction of the pre-collapse volcanic edifice suggests that the ancestral Kick'em Jenny volcano might have been at or above sea level. Kick'em Jenny is dominantly supplied by basalt to basaltic andesite magmas, that are extruded now as submarine pillow lavas and domes or ejected as tephra in relatively minor phreatomagmatic explosions. Geochemical evolution of this volcano has not, however, reached the stage of generation of volatile-rich silicic magmas that might form highly explosive eruptions.

  17. The US DOE-EM International Program - 13004

    SciTech Connect

    Elmetti, Rosa R.; Han, Ana M.; Williams, Alice C.

    2013-07-01

    The U.S. Department of Energy (DOE) Office of Environmental Management (EM) conducts international collaboration activities in support of U.S. policies and objectives regarding the accelerated risk reduction and remediation of environmental legacy of the nations' nuclear weapons program and government sponsored nuclear energy research. The EM International Program supported out of the EM Office of the Associate Principal Deputy Assistant Secretary pursues collaborations with foreign government organizations, educational institutions and private industry to assist in identifying technologies and promote international collaborations that leverage resources and link international experience and expertise. In fiscal year (FY) 2012, the International Program awarded eight international collaborative projects for work scope spanning waste processing, groundwater and soil remediation, deactivation and decommissioning (D and D) and nuclear materials disposition initiatives to seven foreign organizations. Additionally, the International Program's scope and collaboration opportunities were expanded to include technical as well as non-technical areas. This paper will present an overview of the on-going tasks awarded in FY 2012 and an update of upcoming international activities and opportunities for expansion into FY 2013 and beyond. (authors)

  18. A Bayesian View on Cryo-EM Structure Determination

    PubMed Central

    Scheres, Sjors H.W.

    2012-01-01

    Three-dimensional (3D) structure determination by single-particle analysis of cryo-electron microscopy (cryo-EM) images requires many parameters to be determined from extremely noisy data. This makes the method prone to overfitting, that is, when structures describe noise rather than signal, in particular near their resolution limit where noise levels are highest. Cryo-EM structures are typically filtered using ad hoc procedures to prevent overfitting, but the tuning of arbitrary parameters may lead to subjectivity in the results. I describe a Bayesian interpretation of cryo-EM structure determination, where smoothness in the reconstructed density is imposed through a Gaussian prior in the Fourier domain. The statistical framework dictates how data and prior knowledge should be combined, so that the optimal 3D linear filter is obtained without the need for arbitrariness and objective resolution estimates may be obtained. Application to experimental data indicates that the statistical approach yields more reliable structures than existing methods and is capable of detecting smaller classes in data sets that contain multiple different structures. PMID:22100448

  19. Integrated GW-EM Follow-up Analysis

    NASA Astrophysics Data System (ADS)

    Ackley, Kendall; Eikenberry, Stephen; Klimenko, Sergey; LSC Collaboration

    2015-04-01

    Advanced Gravitational-Wave (GW) detectors such as Advanced LIGO and Advanced Virgo are expected to become operational for observation runs in 2015, with an expected ultimate improvement in sensitivity over previous configurations by a factor of 10 by 2019. There are many potential electromagnetic (EM) counterparts to GWs including short and long gamma-ray bursts (GRBs) and kilonovae. While SGRBs and LGRBs predominantly emit in the X-ray, and the recently-observed kilonova primarily in the infrared, all three sources are expected to have detectable traces in the optical band, albeit requiring very sensitive optical telescopes. In order to aid in the optimization of GW trigger follow-up procedures, we perform an end-to-end analysis feasibility study using synthesized Advanced detector data simulating a GW detection with a theoretical EM counterpart injected into archival optical images. We use images from Robotic Optical Transient Search Experiment (ROTSE) and Palomar Transient Factory (PTF), and inject candidate events following observed lightcurves of SGRBs, LGRBs, and kilonovae. The use of Zernike PSF decomposition on candidate objects offers a fast way to identify point sources, speeding up the automated identification of transient sources in the images. We present our method of transient recovery and the latest results of our feasibility study of a joint GW-EM observation.

  20. Surface to Borehole EM for Shallow site Investigations

    NASA Astrophysics Data System (ADS)

    Wilt, M.; Alumbaugh, D.; Tseng, H.

    2005-12-01

    Surface to borehole EM is a promising but seldom used tool for shallow site investigations and clean-up monitoring. Boreholes offer improved site access and field systems, adapted from geophysical mineral exploration instruments, offer effective range and sensitivity for near surface applications. With the abundance of plastic cased wells at many sites high frequency field data collection is possible and this can provide good sensitivity to subsurface geology and the potential capability of imaging 3D structures. In addition the 3D numerical tools necessary for this type of imaging are now becoming available. Unfortunately shallow sites are often situated in geologically complex vadose zone environments. In addition, interesting sites are often located in urban environments, with a lot of surface clutter and high levels of external electrical noise. These attributes makes collection of high quality data problematic and interpreting these data challenging. In this talk we will examine the state of the art in near surface to well EM focusing our attention on a recently collected data set in an urban environment in northern California. In particular we will discuss a field survey in the San Francisco Bay area where repeated surface to borehole measurements made over a 6-month period were used to track salt-water injection. The surveys overcame noise problems due to grounded fences, and resistivity changes due to an unexpected rainfall, to provide a 3D image of the injected salt-water plume consistent with hydrologic model and a second crosswell EM survey.

  1. Essential ethics for EMS: cardinal virtues and core principles.

    PubMed

    Larkin, Gregory Luke; Fowler, Raymond Logan

    2002-11-01

    Dutiful attention to virtue, teamwork, beneficence, justice, and respect for patient autonomy provides a coherent approach to addressing many ethical dilemmas in the out-of-hospital setting. Most of the great risks of EMS--abandonment, competence, and safe-driving skills--lie at the ethike or character of those who ply the prehospital art. Proactively fostering the personal and professional virtue of team members may be a kind of moral vaccination against the ethical pitfalls inherent in emergency medical service provision. Future training, education, disaster preparedness drills, and related exercises must include opportunities for character and team building before optimal performance and accountability can be assured. In the steady, almost glacial, maturation of the specialty of EMS medicine, truly the character of those who serve in the "line of fire" of evaluation, management, and transport in the out-of-hospital arena must be girded with more than the armor and shields of technology. Since September 11, 2001, it has become increasingly clear that EMS workers must strengthen their ability to bear the "slings and arrows of outrageous fortune," armed with swords of discipline, virtue, and character to provide the breadth of care that only a well orchestrated team can deliver. Ultimately, humans perform best when they share themselves unselfconsciously, surrendering to an enterprise and cause far greater than themselves. Our citizens, patients, and heroic colleagues deserve no less. PMID:12476886

  2. Quantum oscillations and wave packet revival in conical graphene structure

    NASA Astrophysics Data System (ADS)

    Sinha, Debabrata; Berche, Bertrand

    2016-03-01

    We present analytical expressions for the eigenstates and eigenvalues of electrons confined in a graphene monolayer in which the crystal symmetry is locally modified by replacing a hexagon by a pentagon, square or heptagon. The calculations are performed in the continuum limit approximation in the vicinity of the Dirac points, solving Dirac equation by freezing out the carrier radial motion. We include the effect of an external magnetic field and show the appearance of Aharonov-Bohm oscillations and find out the conditions of gapped and gapless states in the spectrum. We show that the gauge field due to a disclination lifts the orbital degeneracy originating from the existence of two valleys. The broken valley degeneracy has a clear signature on quantum oscillations and wave packet dynamics.

  3. Edge-channel interferometer at the graphene quantum Hall pn junction

    SciTech Connect

    Morikawa, Sei; Moriya, Rai; Masubuchi, Satoru Machida, Tomoki; Watanabe, Kenji; Taniguchi, Takashi

    2015-05-04

    We demonstrate a quantum Hall edge-channel interferometer in a high-quality graphene pn junction under a high magnetic field. The co-propagating p and n quantum Hall edge channels traveling along the pn interface functions as a built-in Aharonov-Bohm-type interferometer, the interferences in which are sensitive to both the external magnetic field and the carrier concentration. The trajectories of peak and dip in the observed resistance oscillation are well reproduced by our numerical calculation that assumes magnetic flux quantization in the area enclosed by the co-propagating edge channels. Coherent nature of the co-propagating edge channels is confirmed by the checkerboard-like pattern in the dc-bias and magnetic-field dependences of the resistance oscillations.

  4. Resonant magnetic vortices

    SciTech Connect

    Decanini, Yves; Folacci, Antoine

    2003-04-01

    By using the complex angular momentum method, we provide a semiclassical analysis of electron scattering by a magnetic vortex of Aharonov-Bohm type. Regge poles of the S matrix are associated with surface waves orbiting around the vortex and supported by a magnetic field discontinuity. Rapid variations of sharp characteristic shapes can be observed on scattering cross sections. They correspond to quasibound states which are Breit-Wigner-type resonances associated with surface waves and which can be considered as quantum analogues of acoustic whispering-gallery modes. Such a resonant magnetic vortex could provide a different kind of artificial atom while the semiclassical approach developed here could be profitably extended in various areas of the physics of vortices.

  5. Is Quantum Mechanics Incompatible with Newton's First Law?

    NASA Astrophysics Data System (ADS)

    Rabinowitz, Mario

    2008-04-01

    Quantum mechanics (QM) clearly violates Newton’s First Law of Motion (NFLM) in the quantum domain for one of the simplest problems, yielding an effect in a force-free region much like the Aharonov-Bohm effect. In addition, there is an incompatibility between the predictions of QM in the classical limit, and that of classical mechanics (CM) with respect to NFLM. A general argument is made that such a disparity may be found commonly for a wide variety of quantum predictions in the classical limit. Alternatives to the Schrödinger equation are considered that might avoid this problem. The meaning of the classical limit is examined. Critical views regarding QM by Schrödinger, Bohm, Bell, Clauser, and others are presented to provide a more complete perspective.

  6. Controlling the magnetic susceptibility in an artificial elliptical quantum ring by magnetic flux and external Rashba effect

    SciTech Connect

    Omidi, Mahboubeh Faizabadi, Edris

    2015-03-21

    Magnetic susceptibility is investigated in a man-made elliptical quantum ring in the presence of Rashba spin-orbit interactions and the magnetic flux. It is shown that magnetic susceptibility as a function of magnetic flux changes between negative and positive signs periodically. The periodicity of the Aharonov-Bohm oscillations depends on the geometry of the region where magnetic field is applied, the eccentricity, and number of sites in each chain ring (the elliptical ring is composed of chain rings). The magnetic susceptibility sign can be reversed by tuning the Rashba spin-orbit strength as well. Both the magnetic susceptibility strength and sign can be controlled via external spin-orbit interactions, which can be exploited in spintronics and nanoelectronics.

  7. Breakdown of electron-pairs in the presence of an electric field of a superconducting ring.

    PubMed

    Pandey, Bradraj; Dutta, Sudipta; Pati, Swapan K

    2016-05-18

    The quantum dynamics of quasi-one-dimensional ring with varying electron filling factors is investigated in the presence of an external electric field. The system is modeled within a Hubbard Hamiltonian with attractive Coulomb correlation, which results in a superconducting ground state when away from half-filling. The electric field is induced by applying time-dependent Aharonov-Bohm flux in the perpendicular direction. To explore the non-equilibrium phenomena arising from the field, we adopt exact diagonalization and the Crank-Nicolson numerical method. With an increase in electric field strength, the electron pairs, a signature of the superconducting phase, start breaking and the system enters into a metallic phase. However, the strength of the electric field for this quantum phase transition depends on the electronic correlation. This phenomenon has been confirmed by flux-quantization of time-dependent current and pair correlation functions. PMID:27089910

  8. Dynamical features of interference phenomena in the presence of entanglement

    SciTech Connect

    Kaufherr, T.; Aharonov, Y.; Nussinov, S.; Popescu, S.; Tollaksen, J.

    2011-05-15

    A strongly interacting, and entangling, heavy nonrecoiling external particle effects a significant change of the environment. Described locally, the corresponding entanglement event is a generalized electric Aharonov-Bohm effect, which differs from the original one in a crucial way. We propose a gedanken interference experiment. The predicted shift of the interference pattern is due to a self-induced or ''private'' potential difference experienced while the particle is in vacuum. We show that all nontrivial Born-Oppenheimer potentials are ''private'' potentials. We apply the Born-Oppenheimer approximation to interference states. Using our approach, we calculate the relative phase of the external heavy particle as well as its uncertainty throughout an interference experiment or entanglement event. We thus complement the Born-Oppenheimer approximation for interference states.

  9. Thermodynamic properties of a quantum Hall anti-dot interferometer

    NASA Astrophysics Data System (ADS)

    Levy Schreier, Sarah; Stern, Ady; Rosenow, Bernd; Halperin, Bertrand I.

    2016-02-01

    We study quantum Hall interferometers in which the interference loop encircles a quantum anti-dot. We base our study on thermodynamic considerations, which we believe reflect the essential aspects of interference transport phenomena. We find that similar to the more conventional Fabry-Perot quantum Hall interferometers, in which the interference loop forms a quantum dot, the anti-dot interferometer is affected by the electro-static Coulomb interaction between the edge modes defining the loop. We show that in the Aharonov-Bohm regime, in which effects of fractional statistics should be visible, is easier to access in interferometers based on anti-dots than in those based on dots. We discuss the relevance of our results to recent measurements on anti-dots interferometers.

  10. Alternative Expression for the Electromagnetic Lagrangian

    NASA Astrophysics Data System (ADS)

    Saldanha, Pablo L.

    2016-04-01

    We reintroduce an alternative expression for the Lagrangian density that governs the interaction of a charged particle with external electromagnetic fields, proposed by Livens about one century ago. This Lagrangian is written in terms of the local superposition of the particle fields with the applied electromagnetic fields, not in terms of the particle charge and of the electromagnetic potentials as is usual. Here, we show that the total Lagrangian for a set of charged particles assumes a simple elegant form with the alternative formulation, giving an aesthetic support for it. We also show that the alternative Lagrangian is equivalent to the traditional one in their domain of validity and that it provides an interesting description of the Aharonov-Bohm effect.

  11. From Berry's Phase to Wilson Lines in a Honeycomb Optical Lattice

    NASA Astrophysics Data System (ADS)

    Schleier-Smith, Monika

    I will report on methods for fully characterizing the topology and geometry of Bloch bands in optical lattices. Using a Bose-Einstein condensate as a momentum-resolved probe, we study a paradigmatic model system, the honeycomb lattice. Its salient features are two Dirac points, each producing a half-quantum of Berry flux similar to the magnetic flux of an infinitesimally narrow solenoid. We have detected this singular Berry flux by forming an Aharonov-Bohm-type interferometer in momentum space. Our technique is broadly applicable to mapping out the Berry curvature or directly measuring the Chern number of a single band. I will furthermore show how interband dynamics can reveal the matrix-valued Wilson line, the generalization of Berry's phase to the multi-band setting. In the simple case where the Wilson line is path-independent and Abelian, it serves as a powerful tool for tomographic reconstruction of the band eigenstates.

  12. Aharonov-Anandan quantum phases and Landau quantization associated with a magnetic quadrupole moment

    NASA Astrophysics Data System (ADS)

    Fonseca, I. C.; Bakke, K.

    2015-12-01

    The arising of geometric quantum phases in the wave function of a moving particle possessing a magnetic quadrupole moment is investigated. It is shown that an Aharonov-Anandan quantum phase (Aharonov and Anandan, 1987) can be obtained in the quantum dynamics of a moving particle with a magnetic quadrupole moment. In particular, it is obtained as an analogue of the scalar Aharonov-Bohm effect for a neutral particle (Anandan, 1989). Besides, by confining the quantum particle to a hard-wall confining potential, the dependence of the energy levels on the geometric quantum phase is discussed and, as a consequence, persistent currents can arise from this dependence. Finally, an analogue of the Landau quantization is discussed.

  13. Flux sensitivity of quantum spin Hall rings

    NASA Astrophysics Data System (ADS)

    Crépin, F.; Trauzettel, B.

    2016-01-01

    We analyze the periodicity of persistent currents in quantum spin Hall loops, partly covered with an s-wave superconductor, in the presence of a flux tube. Much like in normal (non-helical) metals, the periodicity of the single-particle spectrum goes from Φ0 = h / e to Φ0 / 2 as the length of the superconductor is increased past the coherence length of the superconductor. We further analyze the periodicity of the persistent current, which is a many-body effect. Interestingly, time reversal symmetry and parity conservation can significantly change the period. We find a 2Φ0-periodic persistent current in two distinct regimes, where one corresponds to a Josephson junction and the other one to an Aharonov-Bohm setup.

  14. Experimental Demonstration of a Synthetic Lorentz Force by Using Radiation Pressure

    PubMed Central

    Šantić, N.; Dubček, T.; Aumiler, D.; Buljan, H.; Ban, T.

    2015-01-01

    Synthetic magnetism in cold atomic gases opened the doors to many exciting novel physical systems and phenomena. Ubiquitous are the methods used for the creation of synthetic magnetic fields. They include rapidly rotating Bose-Einstein condensates employing the analogy between the Coriolis and the Lorentz force, and laser-atom interactions employing the analogy between the Berry phase and the Aharonov-Bohm phase. Interestingly, radiation pressure - being one of the most common forces induced by light - has not yet been used for synthetic magnetism. We experimentally demonstrate a synthetic Lorentz force, based on the radiation pressure and the Doppler effect, by observing the centre-of-mass motion of a cold atomic cloud. The force is perpendicular to the velocity of the cold atomic cloud, and zero for the cloud at rest. Our novel concept is straightforward to implement in a large volume, for a broad range of velocities, and can be extended to different geometries. PMID:26330327

  15. Experimental Demonstration of a Synthetic Lorentz Force by Using Radiation Pressure.

    PubMed

    Šantić, N; Dubček, T; Aumiler, D; Buljan, H; Ban, T

    2015-01-01

    Synthetic magnetism in cold atomic gases opened the doors to many exciting novel physical systems and phenomena. Ubiquitous are the methods used for the creation of synthetic magnetic fields. They include rapidly rotating Bose-Einstein condensates employing the analogy between the Coriolis and the Lorentz force, and laser-atom interactions employing the analogy between the Berry phase and the Aharonov-Bohm phase. Interestingly, radiation pressure - being one of the most common forces induced by light - has not yet been used for synthetic magnetism. We experimentally demonstrate a synthetic Lorentz force, based on the radiation pressure and the Doppler effect, by observing the centre-of-mass motion of a cold atomic cloud. The force is perpendicular to the velocity of the cold atomic cloud, and zero for the cloud at rest. Our novel concept is straightforward to implement in a large volume, for a broad range of velocities, and can be extended to different geometries. PMID:26330327

  16. Fifty not out

    NASA Astrophysics Data System (ADS)

    2009-12-01

    What have the DESY laboratory in Germany, Richard Feynman's visionary lecture on nanotechnology, the discovery of the Aharonov-Bohm effect and the "two cultures" debate got in common? The answer is that they are all half a century old this year. The DESY lab was officially launched on 18 December 1959 and is marking its 50th anniversary with a series of events that included the official opening of the PETRA III synchrotron last month. Initially a particle-physics lab pure and simple, DESY is now changing its focus to accelerator science and is set to open its massive new 1bn European X-ray Free Electron Laser in 2014 (p12).

  17. Asymmetric transmission through a flux-controlled non-Hermitian scattering center

    NASA Astrophysics Data System (ADS)

    Li, X. Q.; Zhang, X. Z.; Zhang, G.; Song, Z.

    2015-03-01

    We study the possibility of asymmetric transmission induced by a non-Hermitian scattering center embedded in a one-dimensional waveguide, motivated by the aim of realizing quantum diodes in a non-Hermitian system. It is shown that a PT -symmetric non-Hermitian scattering center always has symmetric transmission although the dynamics within the isolated center can be unidirectional, especially at its exceptional point. We propose a concrete scheme based on a flux-controlled non-Hermitian scattering center, which comprises a non-Hermitian triangular ring threaded by an Aharonov-Bohm flux. The analytical solution shows that such a complex scattering center acts as a diode at the resonant energy level of the spectral singularity, exhibiting perfect unidirectionality of the transmission. The connections between the phenomena of the asymmetric transmission and reflectionless absorption are also discussed.

  18. Geometric phase in Bohmian mechanics

    SciTech Connect

    Chou, Chia-Chun; Wyatt, Robert E.

    2010-10-15

    Using the quantum kinematic approach of Mukunda and Simon, we propose a geometric phase in Bohmian mechanics. A reparametrization and gauge invariant geometric phase is derived along an arbitrary path in configuration space. The single valuedness of the wave function implies that the geometric phase along a path must be equal to an integer multiple of 2{pi}. The nonzero geometric phase indicates that we go through the branch cut of the action function from one Riemann sheet to another when we locally travel along the path. For stationary states, quantum vortices exhibiting the quantized circulation integral can be regarded as a manifestation of the geometric phase. The bound-state Aharonov-Bohm effect demonstrates that the geometric phase along a closed path contains not only the circulation integral term but also an additional term associated with the magnetic flux. In addition, it is shown that the geometric phase proposed previously from the ensemble theory is not gauge invariant.

  19. Theory of quadruple plasmon in doped carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Sasaki, Ken-Ichi; Murakami, Shuichi

    A single-wall carbon nanotube possesses two different types of plasmons specified by wavenumbers in the azimuthal and axial directions. In this presentation we show that the azimuthal plasmons consist of underdamped oscillations forming electric dipoles inside a nanotube and overdamped oscillations forming magnetic dipoles. These, originating from the surface plasmons of graphene, are of prime importance in the optical properties of doped ''metallic'' tubes, such as depolarization effect and relaxation of photo-excited carriers. The axial plasmons also consist of underdamped and overdamped oscillations which are inherent in the cylindrical waveguide-structures of nanotubes and relevant to optics and transport. We discuss the exact configurations of the electromagnetic fields in connection with Aharonov-Bohm effect and point out a possibility of the generation of transient energy band gaps in metallic nanotubes.

  20. (Research in the theory of condensed matter and elementary particles. ) Progress report

    SciTech Connect

    Not Available

    1986-01-01

    Progress is summarized in these areas: a new formulation of two dimensional critical phenomena and string theory, supersymmetric critical phenomena and string compactification, conformal field theory on orbifolds, Gaussian models with twisted boundary conditions, modular invariance and supersymmetric critical phenomena, critical indices, conformal invariance, and current algebra, renormalization group fixed points and the string equation of motion, fermionic string field theory, N = 2 super Riemann surfaces, the spinor field in covariant superstring theory, covariant quantization of superstrings, models of aggregation, and quasi-supersymmetry in the BCS mechanism. Further work is proposed in the areas of two dimensional critical phenomena, two dimensional conformal field theory and string theory, the physics of computation, models of aggregation, and the many vortex Aharonov-Bohm problem. 57 refs. (LEW)

  1. Black holes with quantum massive spin-2 hair

    SciTech Connect

    Dvali, Gia

    2006-08-15

    We show that black holes can posses a long range quantum-mechanical hair associated with a massive spin-2 field, which can be detected by a stringy generalization of the Aharovon-Bohm effect, in which a string loop lassoes the black hole. The long distance effect persist for arbitrarily high mass of the spin-2 field. An analogous effect is exhibited by a massive antisymmetric two-form field. We make a close parallel between the two and the ordinary Aharonov-Bohm phenomenon, and also show that in the latter case the effect can be experienced even by the electrically-neutral particles, provided some boundary terms are added to the action.

  2. Observation of a topological phase by means of a nonplanar Mach-Zehnder interferometer

    SciTech Connect

    Chiao, R.Y.; Antaramian, A.; Ganga, K.M.; Jiao, H.; Wilkinson, S.R.; Nathel, H.

    1988-03-28

    We report the direct observation of a topological phase, i.e., an Aharonov-Bohm-type phase, as a fringe shift in an optical interferometer, which consisted of a modified Mach-Zehnder interferometer, in which the light traveled along nonplanar paths in its two arms. These arms were arranged symmetrically so as to have nearly equal path lengths, but opposite senses of handedness. The relationship between the phase acquired by a circularly polarized light beam and the solid angle subtended by the circuit of the spin vector of a photon in this beam was found to be a linear one with a slope of unity. The sign of the fringe shift also agreed with theory.

  3. Cosmic strings in hidden sectors: 1. Radiation of standard model particles

    SciTech Connect

    Long, Andrew J.; Hyde, Jeffrey M.; Vachaspati, Tanmay E-mail: jmhyde@asu.edu

    2014-09-01

    In hidden sector models with an extra U(1) gauge group, new fields can interact with the Standard Model only through gauge kinetic mixing and the Higgs portal. After the U(1) is spontaneously broken, these interactions couple the resultant cosmic strings to Standard Model particles. We calculate the spectrum of radiation emitted by these ''dark strings'' in the form of Higgs bosons, Z bosons, and Standard Model fermions assuming that string tension is above the TeV scale. We also calculate the scattering cross sections of Standard Model fermions on dark strings due to the Aharonov-Bohm interaction. These radiation and scattering calculations will be applied in a subsequent paper to study the cosmological evolution and observational signatures of dark strings.

  4. Nonradiating anapole modes in dielectric nanoparticles

    NASA Astrophysics Data System (ADS)

    Miroshnichenko, Andrey E.; Evlyukhin, Andrey B.; Yu, Ye Feng; Bakker, Reuben M.; Chipouline, Arkadi; Kuznetsov, Arseniy I.; Luk'yanchuk, Boris; Chichkov, Boris N.; Kivshar, Yuri S.

    2015-08-01

    Nonradiating current configurations attract attention of physicists for many years as possible models of stable atoms. One intriguing example of such a nonradiating source is known as `anapole'. An anapole mode can be viewed as a composition of electric and toroidal dipole moments, resulting in destructive interference of the radiation fields due to similarity of their far-field scattering patterns. Here we demonstrate experimentally that dielectric nanoparticles can exhibit a radiationless anapole mode in visible. We achieve the spectral overlap of the toroidal and electric dipole modes through a geometry tuning, and observe a highly pronounced dip in the far-field scattering accompanied by the specific near-field distribution associated with the anapole mode. The anapole physics provides a unique playground for the study of electromagnetic properties of nontrivial excitations of complex fields, reciprocity violation and Aharonov-Bohm like phenomena at optical frequencies.

  5. Formation of optical flux lattices for ultra cold atoms

    NASA Astrophysics Data System (ADS)

    Juzeliunas, G.; Spielman, I. B.

    2012-03-01

    We explore the optical flux lattices produced for ultra-cold atoms in the radiation field when both the atom-light coupling and the detuning exhibit an oscillatory behavior. We analyze not only the magnetic flux but also the geometric vector potential generating the flux, as well as the accompanying geometric scalar potential. We show how to deal with the gauge-dependent singularities of the Aharonov-Bohm (AB) type appearing in the vector potentials for the optical flux lattices. We present a way to calculate the continuous magnetic flux through the elementary cell via the singularities of the vector potential inside the cell. The analysis is illustrated with a square optical flux lattice. We present a way of creating such a lattice using the Raman transitions induced by a set of properly chosen polarization-dependent standing waves propagating at a right angle and containing a time-phase difference.

  6. Control of tripod-scheme cold-atom wavepackets by manipulating a non-Abelian vector potential

    SciTech Connect

    Zhang Qi; Gong Jiangbin; Oh, C.H.

    2010-06-15

    Tripod-scheme cold atoms interacting with laser beams have attracted considerable interest for their role in synthesizing effective non-Abelian vector potentials. Such effective vector potentials can be exploited to realize an all-optical imprinting of geometric phases onto matter waves. By working on carefully designed extensions of our previous work, we show that coherent lattice structure of cold-atom sub-wavepackets can be formed and that the non-Abelian Aharonov-Bohm effect can be easily manifested via the translational motion of cold atoms. We also show that by changing the frame of reference, effects due to a non-Abelian vector potential may be connected with a simple dynamical phase effect, and that under certain conditions it can be understood as an Abelian geometric phase in a different frame of reference. Results should help design better schemes for the control of cold-atom matter waves.

  7. Phase imaging with thermal neutrons

    NASA Astrophysics Data System (ADS)

    Allman, Brendan E.; Nugent, Keith A.

    2006-11-01

    Across four decades, Sam Werner has built and performed elegant neutron interferometry experiments to measure a variety of quantum mechanical phases. These experiments have stringent requirements on experimental conditions and neutron beam conditioning. However, since refractive variations within a sample redistribute neutron intensity transverse to the propagation direction, a simple experimental geometry permits non-interferometric phase measurement and relaxes beam-conditioning requirements. This phase imaging technique, based on the transport of intensity equation, has advantages of allowing weakly absorbing samples to be radiographed at greatly reduced radiation doses, and enabling the use of polychromatic neutrons to increase flux and speed imaging. Furthermore, using other radiations, phase vortices like those of the Aharonov-Bohm effects have been observed.

  8. Nonradiating anapole modes in dielectric nanoparticles.

    PubMed

    Miroshnichenko, Andrey E; Evlyukhin, Andrey B; Yu, Ye Feng; Bakker, Reuben M; Chipouline, Arkadi; Kuznetsov, Arseniy I; Luk'yanchuk, Boris; Chichkov, Boris N; Kivshar, Yuri S

    2015-01-01

    Nonradiating current configurations attract attention of physicists for many years as possible models of stable atoms. One intriguing example of such a nonradiating source is known as 'anapole'. An anapole mode can be viewed as a composition of electric and toroidal dipole moments, resulting in destructive interference of the radiation fields due to similarity of their far-field scattering patterns. Here we demonstrate experimentally that dielectric nanoparticles can exhibit a radiationless anapole mode in visible. We achieve the spectral overlap of the toroidal and electric dipole modes through a geometry tuning, and observe a highly pronounced dip in the far-field scattering accompanied by the specific near-field distribution associated with the anapole mode. The anapole physics provides a unique playground for the study of electromagnetic properties of nontrivial excitations of complex fields, reciprocity violation and Aharonov-Bohm like phenomena at optical frequencies. PMID:26311109

  9. Theoretical studies of the lifetime of metastable H3. Final report, 1 Aug 86-30 Nov 89

    SciTech Connect

    Kuppermann, A.

    1990-11-01

    In this report, the major steps toward the ab initio determination of the lifetime (via both the radiation and the predissociation decay mechanisms) for the H3 metastable states have been identified and analyzed. Some results on the ab initio calculation of the lowest four electronic potential energy surfaces of the H3 system are presented, as well as the electric transition dipole moments between them. The ro-vibrational eigenstates of H3 (for total angular momentum J=0 and J=1) on the upper sheet of the Double Many Body Expansion (DMBE) surfaces have been calculated. A new hypershperical coordinate propagation method has been developed and applied to the similar calculation of the ro-vibrational motion of H3 with inclusion of the nuclear permutation symmetry and the Molecular Aharonov-Bohm (MAB) effect (or Berry's geometric phase). This effect has a profound influence on both the bound and scattering states of this system.

  10. Experimental Demonstration of a Synthetic Lorentz Force by Using Radiation Pressure

    NASA Astrophysics Data System (ADS)

    Šantić, N.; Dubček, T.; Aumiler, D.; Buljan, H.; Ban, T.

    2015-09-01

    Synthetic magnetism in cold atomic gases opened the doors to many exciting novel physical systems and phenomena. Ubiquitous are the methods used for the creation of synthetic magnetic fields. They include rapidly rotating Bose-Einstein condensates employing the analogy between the Coriolis and the Lorentz force, and laser-atom interactions employing the analogy between the Berry phase and the Aharonov-Bohm phase. Interestingly, radiation pressure - being one of the most common forces induced by light - has not yet been used for synthetic magnetism. We experimentally demonstrate a synthetic Lorentz force, based on the radiation pressure and the Doppler effect, by observing the centre-of-mass motion of a cold atomic cloud. The force is perpendicular to the velocity of the cold atomic cloud, and zero for the cloud at rest. Our novel concept is straightforward to implement in a large volume, for a broad range of velocities, and can be extended to different geometries.

  11. Exciton states and optical properties of carbon nanotubes.

    PubMed

    Ajiki, Hiroshi

    2012-12-01

    Exciton states and related optical properties of a single-walled carbon nanotube are reviewed, primarily from a theoretical viewpoint. The energies and wavefunctions of excitons are discussed using a screened Hartree-Fock approximation with an effective-mass or k·p approximation. The close relationship between a long-range electron-hole exchange interaction and a depolarization effect is clarified. I discuss optical properties including the radiative lifetime of excitons, absorption spectra and radiation force. To describe these properties in a unified scheme, a self-consistent method is introduced for calculating the scattering light and induced current density due to excitons. I also briefly review experimental results on the Aharonov-Bohm effect in excitons and quasi-dark excitons excited by light polarized perpendicular to the tube axis. PMID:23139202

  12. Quantum computational gates with radiation free couplings

    NASA Astrophysics Data System (ADS)

    Kulik, I. O.; Hakioğlu, T.; Barone, A.

    2002-11-01

    We examine a generic three level mechanism of quantum computation in which all fundamental single and double qubit quantum logic gates are operating under the effect of adiabatically controllable static (radiation free) bias couplings between the states. Under the time evolution imposed by these bias couplings the quantum state cycles between the two degenerate levels in the ground state and the quantum gates are realized by changing Hamiltonian at certain time intervals when the system collapses to a two state subspace. We propose a physical implementation of the mechanism using Aharonov-Bohm persistent-current loops in crossed electric and magnetic fields, with the output of the loop read out by using a quantum Hall effect aided mechanism.

  13. Light from cosmic strings

    SciTech Connect

    Steer, Daniele A.; Vachaspati, Tanmay

    2011-02-15

    The time-dependent metric of a cosmic string leads to an effective interaction between the string and photons--the ''gravitational Aharonov-Bohm'' effect--and causes cosmic strings to emit light. We evaluate the radiation of pairs of photons from cosmic strings and find that the emission from cusps, kinks and kink-kink collisions occurs with a flat spectrum at all frequencies up to the string scale. Further, cusps emit a beam of photons, kinks emit along a curve, and the emission at a kink-kink collision is in all directions. The emission of light from cosmic strings could provide an important new observational signature of cosmic strings that is within reach of current experiments for a range of string tensions.

  14. Time-resolved detection of single-electron interference

    NASA Astrophysics Data System (ADS)

    Gustavsson, Simon; Studer, Matthias; Leturcq, Renaud; Ihn, Thomas; Ensslin, Klaus; Driscoll, D. C.; Gossard, A. C.

    2009-03-01

    We demonstrate real-time detection of single electron interference in a double quantum dot embedded in an Aharonov-Bohm interferometer, with visibility approaching unity [1]. We use a quantum point contact as a charge detector to perform time-resolved measurements of single-electron tunneling. With increased bias voltage across the quantum point contact a back-action is exerted on the interferometer leading to decoherence. We attribute this to emission of radiation from the quantum point contact, which drives electronic transitions in the quantum dots [2]. Surprisingly, the efficiency of this process depends strongly on external magnetic field, with variations occurring on a small fraction of the magnetic field scale associated with one flux quantum penetrating the ring. The unexpected features demonstrate the complex interplay between radiation, absorption and coherence in mesoscopic systems. [1] S. Gustavsson et al., Nano Lett. 8, 2547 (2008). [2] S. Gustavsson et al., PRL 99, 206804 (2007)

  15. Exciton states and optical properties of carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Ajiki, Hiroshi

    2012-12-01

    Exciton states and related optical properties of a single-walled carbon nanotube are reviewed, primarily from a theoretical viewpoint. The energies and wavefunctions of excitons are discussed using a screened Hartree-Fock approximation with an effective-mass or k ṡp approximation. The close relationship between a long-range electron-hole exchange interaction and a depolarization effect is clarified. I discuss optical properties including the radiative lifetime of excitons, absorption spectra and radiation force. To describe these properties in a unified scheme, a self-consistent method is introduced for calculating the scattering light and induced current density due to excitons. I also briefly review experimental results on the Aharonov-Bohm effect in excitons and quasi-dark excitons excited by light polarized perpendicular to the tube axis.

  16. Cosmic strings in hidden sectors: 1. Radiation of standard model particles

    NASA Astrophysics Data System (ADS)

    Long, Andrew J.; Hyde, Jeffrey M.; Vachaspati, Tanmay

    2014-09-01

    In hidden sector models with an extra U(1) gauge group, new fields can interact with the Standard Model only through gauge kinetic mixing and the Higgs portal. After the U(1) is spontaneously broken, these interactions couple the resultant cosmic strings to Standard Model particles. We calculate the spectrum of radiation emitted by these ``dark strings'' in the form of Higgs bosons, Z bosons, and Standard Model fermions assuming that string tension is above the TeV scale. We also calculate the scattering cross sections of Standard Model fermions on dark strings due to the Aharonov-Bohm interaction. These radiation and scattering calculations will be applied in a subsequent paper to study the cosmological evolution and observational signatures of dark strings.

  17. Gravitationally coupled electromagnetic systems and quantum interference

    NASA Astrophysics Data System (ADS)

    Anandan, J.

    1984-09-01

    A general-relativistic generalization of Ohm's law is used to obtain the modification of a solenoid magnetic field due to the relativistic coupling of this field and its constant-EMF battery feed current to the gravitational field. The corresponding phase shift in the Aharonov-Bohm effect due to the magnetic flux in the quantum interference of two coherent beams and in a superconducting interferometer which uses the dc Josephson effect is computed. The effect of the gravitational field on the ac Josephson effect is also studied. It is shown that the ratio of emision frequencies of radiation from two Josephson junctions in parallel, separated by a height X, is (1-gX/c2).

  18. Colloquium: Artificial gauge potentials for neutral atoms

    SciTech Connect

    Dalibard, Jean; Gerbier, Fabrice; Juzeliunas, Gediminas; Oehberg, Patrik

    2011-10-01

    When a neutral atom moves in a properly designed laser field, its center-of-mass motion may mimic the dynamics of a charged particle in a magnetic field, with the emergence of a Lorentz-like force. In this Colloquium the physical principles at the basis of this artificial (synthetic) magnetism are presented. The corresponding Aharonov-Bohm phase is related to the Berry's phase that emerges when the atom adiabatically follows one of the dressed states of the atom-laser interaction. Some manifestations of artificial magnetism for a cold quantum gas, in particular, in terms of vortex nucleation are discussed. The analysis is then generalized to the simulation of non-Abelian gauge potentials and some striking consequences are presented, such as the emergence of an effective spin-orbit coupling. Both the cases of bulk gases and discrete systems, where atoms are trapped in an optical lattice, are addressed.

  19. Low temperature and neutron physics studies. Progress report, June 1980-July 1981

    SciTech Connect

    Not Available

    1981-07-01

    Experimental research work with the neutron diffraction spectrometers at the MIT Research Reactor has concentrated during the past year on neutron interferometry developments and on interferometer applications to fundamental neutron physics. Technical improvements in the interferometer system are described. Preliminary experiments in which the phase difference between two coherent beams caused by interferometer angular motion are reported and theoretical work leading to the interpretation of these motion studies is noted. Calibration studies relating intensity effects to phase gradients introduced into the interferometer have been performed with a novel continuously-variable prism assembly. These have indicated the presence of anomalous phase effects whose origin is being explored. An Aharonov-Bohm experiment with neutrons is reported in which the coupling between a neutron and the magnetic vector potential is explored. Single and double slit diffraction patterns with neutrons are described.

  20. Topological properties of linear circuit lattices.

    PubMed

    Albert, Victor V; Glazman, Leonid I; Jiang, Liang

    2015-05-01

    Motivated by the topologically insulating circuit of capacitors and inductors proposed and tested by Jia et al. [arXiv:1309.0878], we present a related circuit with fewer elements per site. The normal mode frequency matrix of our circuit is unitarily equivalent to the hopping matrix of a quantum spin Hall insulator, and we identify perturbations that do not backscatter the circuit's edge modes. The idea behind these models is generalized, providing a platform to simulate tunable and locally accessible lattices with arbitrary complex spin-dependent hopping of any range. A simulation of a non-Abelian Aharonov-Bohm effect using such linear circuit designs is discussed. PMID:25978235

  1. Signatures of a noise-induced quantum phase transition in a mesoscopic metal ring.

    PubMed

    Tong, Ning-Hua; Vojta, Matthias

    2006-07-01

    We study a mesoscopic ring with an inline quantum dot threaded by an Aharonov-Bohm flux. Zero-point fluctuations of the electromagnetic environment capacitively coupled to the ring, with omega(s) spectral density, can suppress tunneling through the dot, resulting in a quantum phase transition from an unpolarized to a polarized phase. We show that robust signatures of such a transition can be found in the response of the persistent current in the ring to the external flux as well as to the bias between the dot and the arm. Particular attention is paid to the experimentally relevant cases of Ohmic (s = 1) and sub-Ohmic (s = 1/2) noise. PMID:16907395

  2. Quantum Phase Coherence in Mesoscopic Transport Devices with Two-Particle Interaction

    PubMed Central

    Wang, Zhimei; Guo, Xiaofang; Xue, Haibin; Xue, Naitao; Liang, J.-Q.

    2015-01-01

    In this paper we demonstrate a new type of quantum phase coherence (QPC), which is generated by the two-body interaction. This conclusion is based on quantum master equation analysis for the full counting statistics of electron transport through two parallel quantum-dots with antiparallel magnetic fluxes in order to eliminate the Aharonov-Bohm interference of either single-particle or non-interacting two-particle wave functions. The interacting two-particle QPC is realized by the flux-dependent oscillation of the zero-frequency cumulants including the shot noise and skewness with a characteristic period. The accurately quantized peaks of cumulant spectrum may have technical applications to probe the two-body Coulomb interaction. PMID:26255858

  3. Vortex dynamics in self-dual Chern-Simons-Higgs systems

    SciTech Connect

    Kim, Y. ); Lee, K. )

    1994-02-15

    We consider vortex dynamics in self-dual Chern-Simons-Higgs systems. We show that the naive Aharonov-Bohm phase is the inverse of the statistical phase expected from the vortex spin, and that the self-dual configurations of vortices are degenerate in energy but not in angular momentum. We also use the path integral formalism to derive the dual formulation of Chern-Simons-Higgs systems in which vortices appear as charged particles. We argue that in addition to the electromagnetic interaction, there is an additional interaction between vortices, the so-called Magnus force, and that these forces can be put together into a single dual electromagnetic'' interaction. This dual electromagnetic interaction leads to the right statistical phase. We also derive and study the effective action for slowly moving vortices, which contains terms both linear and quadratic in the vortex velocity. We show that vortices can be bounded to each other by the Magnus force.

  4. Transport of Massless Dirac Fermions in Non-topological Type Edge States

    PubMed Central

    Latyshev, Yu I.; Orlov, A. P.; Volkov, V. A.; Enaldiev, V. V.; Zagorodnev, I. V.; Vyvenko, O. F.; Petrov, Yu V.; Monceau, P.

    2014-01-01

    There are two types of intrinsic surface states in solids. The first type is formed on the surface of topological insulators. Recently, transport of massless Dirac fermions in the band of “topological” states has been demonstrated. States of the second type were predicted by Tamm and Shockley long ago. They do not have a topological background and are therefore strongly dependent on the properties of the surface. We study the problem of the conductivity of Tamm-Shockley edge states through direct transport experiments. Aharonov-Bohm magneto-oscillations of resistance are found on graphene samples that contain a single nanohole. The effect is explained by the conductivity of the massless Dirac fermions in the edge states cycling around the nanohole. The results demonstrate the deep connection between topological and non-topological edge states in 2D systems of massless Dirac fermions. PMID:25524881

  5. Low-dimensional nanostructures and a semiclassical approach for teaching Feynman's sum-over-paths quantum theory

    NASA Astrophysics Data System (ADS)

    Onorato, P.

    2011-03-01

    An introduction to quantum mechanics based on the sum-over-paths (SOP) method originated by Richard P Feynman and developed by E F Taylor and coworkers is presented. The Einstein-Brillouin-Keller (EBK) semiclassical quantization rules are obtained following the SOP approach for bounded systems, and a general approach to the calculation of propagation amplitude is discussed for unbounded systems. These semiclassical results are obtained when the SOP is limited to the trajectories classically allowed. EBK semiclassical quantization and the topological Maslov index are used to deduce the correct quantum mechanical results for systems which live in a two-dimensional world as quantum dots and quantum rings. In the latter systems, the semiclassical propagation amplitude is used to discuss the Aharonov-Bohm effect. The development involves only elementary calculus and also provides a theoretical introduction to the quantum nature of low-dimensional nanostructures.

  6. Josephson frequency singularity in the noise of normal-metal-superconductor junctions

    NASA Astrophysics Data System (ADS)

    Lesovik, Gordey B.; Martin, Thierry; Torrès, Julien

    1999-11-01

    A singularity at the Josephson frequency in the noise spectral density of a disordered normal-metal-superconductor junction is predicted for bias voltages below the superconducting gap. The nonstationary Aharonov-Bohm effect, recently introduced for normal metals [G. B. Lesovik and L. S. Levitov, Phys. Rev. Lett. 72, 538 (1994)], is proposed as a tool for detecting this singularity. In the presence of a harmonic external field, the derivative of the noise with respect to the voltage bias reveals jumps when the applied frequency is commensurate with the Josephson frequency associated with this bias. The height of these jumps is nonmonotonic in the amplitude of the periodic field. The superconducting flux quantum enters this dependence. Additional singularities in the frequency dependent noise are predicted above gap.

  7. Influence of External Fields on the Killingbeck Potential: Quasi Exact Solution

    NASA Astrophysics Data System (ADS)

    Hamzavi, M.; Ikhdair, S. M.

    2013-09-01

    The Killingbeck potential consists of oscillator potential plus Cornell potential, i.e. ar2+ br - c/r, that it has received a great deal of attention in particle physics. In this paper, we study the energy levels and wave function for arbitrary m-state in two-dimensional (2D) Schrödinger equation (SE) with a Killingbeck potential under the influence of strong external uniform magnetic and Aharonov-Bohm (AB) flux fields perpendicular to the plane where the interacting particles are confined. We use the wave function ansatz method to solve the radial problem of the Schrödinger equation with Killingbeck potential. We obtain the energy levels in the absence of external fields and also find the energy levels of the familiar Coulomb and harmonic oscillator potentials.

  8. The effects of electric and magnetic fields on charge density wave solitons: Possible collective quantum behavior

    NASA Astrophysics Data System (ADS)

    Miller, J. H.; Wijesinghe, A. I.

    2013-07-01

    Aharonov-Bohm oscillations of period h/2 e in the charge density wave (CDW) magneto-conductance of TaS3 rings strongly support the hypothesis that CDW electron transport is a cooperative quantum phenomenon. In the picture discussed here, droplets or aggregates of solitons and antisolitons quantum-mechanically nucleate and carry current above a Coulomb blockade threshold for CDW transport. The Schrödinger equation is treated as a "classical" description of emerging order parameters, as in Feynman's description of Josephson tunneling. However, one key distinction of the proposed CDW model is that both the amplitudes and relative phases of the soliton droplet order parameters can vary with time. This ability to vary both amplitudes and phases of wave-function-like order parameters may prove critical to any viable quantum information processing strategies robust against decoherence.

  9. Ergodic versus diffusive decoherence in mesoscopic devices

    NASA Astrophysics Data System (ADS)

    Capron, Thibaut; Texier, Christophe; Montambaux, Gilles; Mailly, Dominique; Wieck, Andreas D.; Saminadayar, Laurent

    2013-01-01

    We report on the measurement of phase coherence length in a high-mobility two-dimensional electron gas patterned in two different geometries, a wire and a ring. The phase coherence length is extracted both from the weak localization correction in long wires and from the amplitude of the Aharonov-Bohm oscillations in a single ring, in a low-temperature regime when decoherence is dominated by electronic interactions. We show that these two measurements lead to different phase coherence lengths, namely LΦwire∝T-1/3 and LΦring∝T-1/2. This difference reflects the fact that the electrons winding around the ring necessarily explore the whole sample (ergodic trajectories), while in a long wire the electrons lose their phase coherence before reaching the edges of the sample (diffusive regime).

  10. Magnetic flux tuning of Fano-Kondo interplay in a parallel double quantum dot system

    NASA Astrophysics Data System (ADS)

    Agundez, R. R.; Verduijn, J.; Rogge, S.; Blaauboer, M.

    2013-06-01

    We investigate the Fano-Kondo interplay in an Aharonov-Bohm ring with an embedded noninteracting quantum dot and a Coulomb interacting quantum dot. Using a slave-boson mean-field approximation we diagonalize the Hamiltonian via scattering matrix theory and derive the conductance in the form of a Fano expression, which depends on the mean-field parameters. We predict that in the Kondo regime the magnetic field leads to a gapped energy level spectrum due to hybridization of the noninteracting QD state and the Kondo state, and can quantum-mechanically alter the electron's path preference. We demonstrate that an abrupt symmetry change in the Fano resonance, as seen experimentally, could be a consequence of an underlying Kondo channel.

  11. Coherent states of non-relativistic electron in the magnetic-solenoid field

    NASA Astrophysics Data System (ADS)

    Bagrov, V. G.; Gavrilov, S. P.; Gitman, D. M.; Meira Filho, D. P.

    2010-09-01

    In the present work we construct coherent states in the magnetic-solenoid field, which is a superposition of the Aharonov-Bohm field and a collinear uniform magnetic field. In the problem under consideration there are two kinds of coherent states, those which correspond to classical trajectories which embrace the solenoid and those which do not. The constructed coherent states reproduce exactly classical trajectories, maintain their form under the time evolution and form a complete set of functions, which can be useful in semiclassical calculations. In the absence of the solenoid field these states are reduced to the well known in the case of uniform magnetic field Malkin-Man'ko coherent states.

  12. Completeness for coherent states in a magnetic-solenoid field

    NASA Astrophysics Data System (ADS)

    Bagrov, V. G.; Gavrilov, S. P.; Gitman, D. M.; Górska, K.

    2012-06-01

    This paper completes our study of coherent states in the so-called magnetic-solenoid field (a collinear combination of a constant uniform magnetic field and Aharonov-Bohm solenoid field) presented in Bagrov et al (2010 J. Phys. A: Math. Theor. 43 354016, 2011 J. Phys. A: Math. Theor. 44 055301). Here, we succeeded in proving nontrivial completeness relations for non-relativistic and relativistic coherent states in such a field. In addition, we solve here the relevant Stieltjes moment problem and present a comparative analysis of our coherent states and the well-known, in the case of pure uniform magnetic field, Malkin-Man’ko coherent states. This article is part of a special issue of Journal of Physics A: Mathematical and Theoretical devoted to ‘Coherent states: mathematical and physical aspects’.

  13. Angle-dependent magnetotransport in GaAs/InAs core/shell nanowires.

    PubMed

    Haas, Fabian; Wenz, Tobias; Zellekens, Patrick; Demarina, Nataliya; Rieger, Torsten; Lepsa, Mihail; Grützmacher, Detlev; Lüth, Hans; Schäpers, Thomas

    2016-01-01

    We study the impact of the direction of magnetic flux on the electron motion in GaAs/InAs core/shell nanowires. At small tilt angles, when the magnetic field is aligned nearly parallel to the nanowire axis, we observe Aharonov-Bohm type h/e flux periodic magnetoconductance oscillations. These are attributed to transport via angular momentum states, formed by electron waves within the InAs shell. With increasing tilt of the nanowire in the magnetic field, the flux periodic magnetoconductance oscillations disappear. Universal conductance fluctuations are observed for all tilt angles, however with increasing amplitudes for large tilt angles. We record this evolution of the electron propagation from a circling motion around the core to a diffusive transport through scattering loops and give explanations for the observed different transport regimes separated by the magnetic field orientation. PMID:27091000

  14. On Painleve VI transcendents related to the Dirac operator on the hyperbolic disk

    SciTech Connect

    Lisovyy, O.

    2008-09-15

    Dirac Hamiltonian on the Poincare disk in the presence of an Aharonov-Bohm flux and a uniform magnetic field admits a one-parameter family of self-adjoint extensions. We determine the spectrum and calculate the resolvent for each element of this family. Explicit expressions for Green's functions are then used to find Fredholm determinant representations for the tau function of the Dirac operator with two branch points on the Poincare disk. Isomonodromic deformation theory for the Dirac equation relates this tau function to a one-parameter class of solutions of the Painleve VI equation with {gamma}=0. We analyze long-distance behavior of the tau function, as well as the asymptotics of the corresponding Painleve VI transcendents as s{yields}1. Considering the limit of flat space, we also obtain a class of solutions of the Painleve V equation with {beta}=0.

  15. Magneto Transport of Graphene Monolayer with Antidot Arrays

    NASA Astrophysics Data System (ADS)

    Wang, Lei; Yin, Ming; Datta, Timir; Mbamalu, Godwin; Alameri, Dheyaa

    Graphene has a significant potential for electronics application as well as in high precision resistive metrological standard. Here we report magneto transport studies of monolayer graphene with antidot in hexagonal arrays on SiO2/Si substrate. The choice of antidot array was motivated by the potential to enhance quantum interference effect amongst charge carriers. The graphene-antidot arrays were fabricated by electron beam lithography followed by reactive ion etching. In our samples the dc magnetic field (B) was applied continuously up to 18 Tesla while the measurement temperature (T) was held steady at desired set points, ranging from 200 mK to 20 K. The effect of nanoarrays on the temperature and field dependence of the electrical properties (MR) and quantum hall effect with particular attention to Aharonov-Bohm oscillations will be reported.

  16. Effect of Coulomb correlation on electron transport through a concentric quantum ring-quantum dot structure

    NASA Astrophysics Data System (ADS)

    Chwiej, T.; Kutorasiński, K.

    2010-04-01

    We study transfer of a single-electron through a quantum ring capacitively coupled to the charged quantum dot placed in its center. For this purpose we solve the time-dependent Schrödinger equation for the pair of particles: the electron traveling through the ring and the other carrier confined within the quantum dot. The correlation effects due to the interaction between the charge carriers are described in a numerically exact manner. We find that the amplitude of Aharonov-Bohm oscillations of the transfer probability is significantly affected by the presence of the dot-confined carrier. In particular the Coulomb correlation leads to inelastic scattering. When the inelastic scattering is strong the transmission of electron through the ring is not completely blocked for (n+1/2) magnetic flux quanta.

  17. Perfect spin polarization in symmetric two-terminal mesoscopic rings

    NASA Astrophysics Data System (ADS)

    Heidari Semiromi, Ebrahim

    2014-02-01

    Spin-polarized transport through an Aharonov-Bohm (AB) semiconductor mesoscopic ring is investigated in the presence of both the Rashba spin-orbit interaction (RSOI) and the Dresselhaus spin-orbit interaction (DSOI). The ring symmetrically bridges two input and output electrodes. Based on tight-binding model and Green's function formalism, we find that for AB fluxes other than integer or half-integer multiples of the flux quanta the ring acts as a spin selective device with unit efficiency only when the difference between strengths of RSOI and DSOI is nonzero and small. Results of this study can be used to design a nonmagnetic-material-based perfect spin filter.

  18. H →Z γ in the gauge-Higgs unification

    NASA Astrophysics Data System (ADS)

    Funatsu, Shuichiro; Hatanaka, Hisaki; Hosotani, Yutaka

    2015-12-01

    The decay rate of the Higgs decay H →Z γ is evaluated at the one-loop level in the S O (5 )×U (1 ) gauge-Higgs unification. Although an infinite number of loops with Kaluza-Klein states contribute to the decay amplitude, there appears the cancellation among the loops, and the decay rate is found to be finite and nonzero. It is found that the decay rate is well approximated by the decay rate in the standard model multiplied by cos2θH, where θH is the Aharonov-Bohm phase induced by the vacuum expectation value of an extra-dimensional component of the gauge field.

  19. CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES: Spin-Dependent Electron Properties of a Triple-Terminal Quantum Dot Structure

    NASA Astrophysics Data System (ADS)

    Han, Yu; Gong, Wei-Jiang; Wei, Guo-Zhu

    2009-12-01

    Electron transport properties of a triple-terminal Aharonov-Bohm interferometer are theoretically studied. By applying a Rashba spin-orbit coupling to a quantum dot locally, we find that remarkable spin polarization comes about in the electron transport process with tuning the structure parameters, i.e., the magnetic flux or quantum dot levels. When the quantum dot levels are aligned with the Fermi level, there only appear spin polarization in this structure by the presence of an appropriate magnetic flux. However, in absence of magnetic flux spin polarization and spin separation can be simultaneously realized with the adjustment of quantum dot levels, namely, an incident electron from one terminal can select a specific terminal to depart from the quantum dots according to its spin state.

  20. Induced vacuum current and magnetic field in the background of a vortex

    NASA Astrophysics Data System (ADS)

    Gorkavenko, Volodymyr M.; Ivanchenko, Iryna V.; Sitenko, Yurii A.

    2016-02-01

    A topological defect in the form of the Abrikosov-Nielsen-Olesen vortex is considered as a gauge-flux-carrying tube that is impenetrable for quantum matter. Charged scalar matter field is quantized in the vortex background with the perfectly reflecting (Dirichlet) boundary condition imposed at the side surface of the vortex. We show that a current circulating around the vortex and a magnetic field directed along the vortex are induced in the vacuum, if the Compton wavelength of the matter field exceeds considerably the transverse size of the vortex. The vacuum current and magnetic field are periodic in the value of the gauge flux of the vortex, providing a quantum-field-theoretical manifestation of the Aharonov-Bohm effect. The total flux of the induced vacuum magnetic field attains notable finite values even for the Compton wavelength of the matter field exceeding the transverse size of the vortex by just three orders of magnitude.

  1. Topology and Gauge Theory in Physics

    NASA Astrophysics Data System (ADS)

    Yang, Chen Ning

    2013-05-01

    I am deeply touched by the short message that Tonomura recorded for all of us today. It reminded me of my first visit to his laboratory in the early 1980s and the many conferences that I attended that he had organized in Japan. It also recalled for me the many discussions that he and I had, not only about the Aharonov-Bohm effect, but also about flux movement in superconductors, especially after the 1987 discovery of high-temperature superconductors. He and I had in these years many warm and fruitful meetings in Japan, in China, and in the United States. Last winter I was very happy to have received a photograph of him standing in a garden a few months after his operation. I thought he was on his way to full recovery. But that was not to be...

  2. Inhomogeneous Media 3D EM Modeling with Integral Equation Method

    NASA Astrophysics Data System (ADS)

    di, Q.; Wang, R.; An, Z.; Fu, C.; Xu, C.

    2010-12-01

    In general, only the half space of earth is considered in electromagnetic exploration. However, for the long bipole source, because the length is close to the height of ionosphere and also most offsets between source and receivers are equal or larger than the height of ionosphere, the effect of ionosphere on the electromagnetic (EM) field should be considered when observation is carried at a very far (about several thousands kilometers) location away from the source. At this point the problem becomes one which should contain ionosphere, atmosphere and earth that is “earth-ionosphere” case. There are a few of literatures to report the electromagnetic field results which is including ionosphere, atmosphere and earth media at the same time. We firstly calculate the electromagnetic fields with the traditional controlled source (CSEM) configuration using integral equation (IE) method for a three layers earth-ionosphere model. The modeling results agree well with the half space analytical results because the effect of ionosphere for this small scale bipole source can be ignorable. The comparison of small scale three layers earth-ionosphere modeling and half space analytical resolution shows that the IE method can be used to modeling the EM fields for long bipole large offset configuration. In order to discuss EM fields’ characteristics for complicate earth-ionosphere media excited by long bipole source in the far-field and wave-guide zones, we first modeled the decay characters of electromagnetic fields for three layers earth-ionosphere model. Because of the effect of ionosphere, the earth-ionosphere electromagnetic fields’ decay curves with given frequency show that there should be an extra wave guide zone for long bipole artificial source, and there are many different characters between this extra zone and far field zone. They are: 1) the amplitudes of EM fields decay much slower; 2) the polarization patterns change; 3) the positions better to measure Zxy and Zyx change; 4) there exits the polarization ellipse of electric and magnetic fields; 5) the long axis direction of the polarization ellipse in wave guide zone changes comparing to quasi static EM fields. In order to further model the EM fields for complex inhomogeneous media, we conducted the EM fields modeling for Biyang depressed basin of China. The bottom depth of the oil basin is about 8km. We added one ionosphere layer with thickness 100km and resistivity 104 Ohm-m and one atmosphere layer with thickness 100km and resistivity 1014 Ohm-m over the solid earth surface during the forward modeling. For easily to compare with the 2D seismic exploration result, we conducted the apparent resistivity modeling of equatorial array for the same survey line as seismic did for an 50km long bipole source with offset 400km and the same frequencies as that used for above three layers model. The modeling apparent resistivity pseudo-section has clearly shown the oil basin geology structure.

  3. Standard errors for EM estimates in generalized linear models with random effects.

    PubMed

    Friedl, H; Kauermann, G

    2000-09-01

    A procedure is derived for computing standard errors of EM estimates in generalized linear models with random effects. Quadrature formulas are used to approximate the integrals in the EM algorithm, where two different approaches are pursued, i.e., Gauss-Hermite quadrature in the case of Gaussian random effects and nonparametric maximum likelihood estimation for an unspecified random effect distribution. An approximation of the expected Fisher information matrix is derived from an expansion of the EM estimating equations. This allows for inferential arguments based on EM estimates, as demonstrated by an example and simulations. PMID:10985213

  4. Volta phase plate cryo-EM of the small protein complex Prx3.

    PubMed

    Khoshouei, Maryam; Radjainia, Mazdak; Phillips, Amy J; Gerrard, Juliet A; Mitra, Alok K; Plitzko, Jürgen M; Baumeister, Wolfgang; Danev, Radostin

    2016-01-01

    Cryo-EM of large, macromolecular assemblies has seen a significant increase in the numbers of high-resolution structures since the arrival of direct electron detectors. However, sub-nanometre resolution cryo-EM structures are rare compared with crystal structure depositions, particularly for relatively small particles (<400 kDa). Here we demonstrate the benefits of Volta phase plates for single-particle analysis by time-efficient cryo-EM structure determination of 257 kDa human peroxiredoxin-3 dodecamers at 4.4 Å resolution. The Volta phase plate improves the applicability of cryo-EM for small molecules and accelerates structure determination. PMID:26817416

  5. Volta phase plate cryo-EM of the small protein complex Prx3

    NASA Astrophysics Data System (ADS)

    Khoshouei, Maryam; Radjainia, Mazdak; Phillips, Amy J.; Gerrard, Juliet A.; Mitra, Alok K.; Plitzko, Jürgen M.; Baumeister, Wolfgang; Danev, Radostin

    2016-01-01

    Cryo-EM of large, macromolecular assemblies has seen a significant increase in the numbers of high-resolution structures since the arrival of direct electron detectors. However, sub-nanometre resolution cryo-EM structures are rare compared with crystal structure depositions, particularly for relatively small particles (<400 kDa). Here we demonstrate the benefits of Volta phase plates for single-particle analysis by time-efficient cryo-EM structure determination of 257 kDa human peroxiredoxin-3 dodecamers at 4.4 Å resolution. The Volta phase plate improves the applicability of cryo-EM for small molecules and accelerates structure determination.

  6. Electron Quantum Interference in Small Metal Wires and Loops.

    NASA Astrophysics Data System (ADS)

    Chandrasekhar, Venkat

    The interference of electron waves scattered off impurities in a disordered metal gives rise to quantum corrections to the classical Drude resistance. These quantum corrections have been investigated in thin film samples whose dimensions are on the order of the electron phase coherence length l_{phi } which can be a few microns at 1 K. The films were prepared by thermal evaporation onto substrates previously patterned by electron-beam lithography, and were measured using a four-point bridge technique in a perpendicular magnetic field at liquid He^4 temperatures. Quantum interference effects in these samples are strongly influenced by the measurement probes. In experiments on short Ag wires with different probe configurations, both the shape and the magnitude of the weak localisation magnetoresistance are found to be dependent on the specific probe configuration. Similar effects are seen on conductance fluctuations in these samples. The theory of weak localisation has been extended to incorporate the effects of the measurement probes, and excellent quantitative agreement with experiment is obtained. Measurements of single normal metal loops have been performed in search of Aharonov-Bohm magnetoresistance oscillations. Oscillations of period hc/2e and hc/e are observed in single rings of Al, Ag and Au. Quantum interference effects in these loops are also found to be strongly affected by the measurement probes. In addition, the effect of magnetic scattering on the Aharonov-Bohm oscillations in single Ag loops has been investigated. It is found that a small amount of surface Co impurities suppresses the hc/2e oscillations, but leaves the hc/e oscillations unaffected. These results are discussed in terms of the current understanding of electron dephasing in disordered metals.

  7. Phase diagram of the Bose-Hubbard model with T{sub 3} symmetry

    SciTech Connect

    Rizzi, Matteo; Fazio, Rosario; Cataudella, Vittorio

    2006-04-01

    We study the quantum phase transition between the insulating and the globally coherent superfluid phases in the Bose-Hubbard model with T{sub 3} structure, the 'dice lattice'. Even in the absence of any frustration the superfluid phase is characterized by modulation of the order parameter on the different sublattices of the T{sub 3} structure. The zero-temperature critical point as a function of magnetic field shows the characteristic 'butterfly' form. At full frustration the superfluid region is strongly suppressed. In addition, due to the existence of the Aharonov-Bohm cages at f=1/2, we find some evidence for the existence of an intermediate insulating phase characterized by a zero superfluid stiffness but finite compressibility. In this intermediate phase bosons are localized due to the external frustration and the topology of the T{sub 3} lattice. We name this new phase the Aharonov-Bohm insulator. In the presence of charge frustration the phase diagram acquires the typical lobe structure. The form and hierarchy of the Mott insulating states with fractional fillings are dictated by the particular topology of the T{sub 3} lattice. The results presented were obtained by a variety of analytical methods: mean-field and variational techniques to approach the phase boundary from the superconducting side and a strongly coupled expansion appropriate for the Mott insulating region. In addition we performed quantum Monte Carlo simulations of the corresponding (2+1)-dimensional XY model to corroborate the analytical calculations with a more accurate quantitative analysis. We finally discuss experimental realization of the T{sub 3} lattice both with optical lattices and with Josephson junction arrays.

  8. Magneto-optical studies of quantum dots

    NASA Astrophysics Data System (ADS)

    Russ, Andreas Hans

    Significant effort in condensed matter physics has recently been devoted to the field of "spintronics" which seeks to utilize the spin degree of freedom of electrons. Unlike conventional electronics that rely on the electron charge, devices exploiting their spin have the potential to yield new and novel technological applications, including spin transistors, spin filters, and spin-based memory devices. Any such application has the following essential requirements: 1) Efficient electrical injection of spin-polarized carriers; 2) Long spin lifetimes; 3) Ability to control and manipulate electron spins; 4) Effective detection of spin-polarized carriers. Recent work has demonstrated efficient electrical injection from ferromagnetic contacts such as Fe and MnAs, utilizing a spin-Light Emitting Diode (spin-LED) as a method of detection. Semiconductor quantum dots (QDs) are attractive candidates for satisfying requirements 2 and 3 as their zero dimensionality significantly suppresses many spin-flip mechanisms leading to long spin coherence times, as well as enabling the localization and manipulation of a controlled number of electrons and holes. This thesis is composed of three projects that are all based on the optical properties of QD structures including: I) Intershell exchange between spin-polarized electrons occupying adjacent shells in InAs QDs; II) Spin-polarized multiexitons in InAs QDs in the presence of spin-orbit interactions; III) The optical Aharonov-Bohm effect in AlxGa1-xAs/AlyGa1-yAs quantum wells (QWs). In the following we introduce some of the basic optical properties of quantum dots, describe the main tool (spin-LED) employed in this thesis to inject and detect spins in these QDs, and conclude with the optical Aharonov-Bohm effect (OAB) in type-II QDs.

  9. Accuracy of EMS-Reported Last Known Normal Times in Suspected Acute Stroke Patients

    PubMed Central

    Curfman, David; Connor, Lisa Tabor; Moy, Hawnwan Philip; Heitsch, Laura; Panagos, Peter; Lee, Jin-Moo; Tan, David K.; Ford, Andria L.

    2014-01-01

    Background and Purpose The last known normal (LKN) time is a critical determinant of IV tPA eligibility; however, the accuracy of EMS-reported LKN times is unknown. We determined the congruence between EMS-reported and neurologist-determined LKN times and identified predictors of incongruent LKN times. Methods We prospectively collected EMS-reported LKN times for patients brought into the ED with suspected acute stroke and calculated the absolute difference between the EMS-reported and neurologist-determined LKN times (|ΔLKN|). We determined the rate of inappropriate IV tPA use if EMS-reported times had been used in place of neurologist-determined times. Univariate and multivariable linear regression assessed for any predictors of prolonged |ΔLKN|. Results Of 251 patients, mean and median |ΔLKN| were 28 and 0 minutes, respectively. |ΔLKN| was <15 min in 91% of the entire cohort and was <15 min in 80% of patients with a diagnosis of stroke (n=86). Of patients who received IV tPA, none would have been incorrectly excluded from IV tPA if the EMS LKN time had been used. Conversely, of patients who did not receive IV tPA, 6% would have been incorrectly included for IV tPA consideration had the EMS time been used. In patients with wake-up stroke symptoms, EMS underestimated LKN times: mean EMS LKN time - neurologist LKN time = −208 minutes. The presence of wake-up stroke symptoms (p<0.0001) and older age (p=0.019) were independent predictors of prolonged |ΔLKN|. Conclusions EMS-reported LKN times were largely congruent with neurologist-determined times. Focused EMS training regarding wake-up stroke symptoms may further improve accuracy. PMID:24643409

  10. General 4-week toxicity study with EMS in the rat.

    PubMed

    Pfister, Thomas; Eichinger-Chapelon, Anne

    2009-11-12

    In this subacute toxicity study, ethyl methanesulfonate (EMS) was administered daily by oral gavage to SPF-bred Wistar rats of both sexes at dose levels of 20, 60 and 180/120 mg/kg body weight (bw)/day for a period of 28 days (for 19 days in the high-dose group). A control group was treated similarly with the vehicle, bidistilled water, only. The groups comprised 10 animals per sex, which were sacrificed after 28 days, respectively 19 days in the high-dose group, of treatment. Additional five rats per sex and group were treated accordingly and then allowed a 14 days treatment-free recovery period. Additional six rats per sex and group (three rats per sex in the control group) were treated accordingly and used for hemoglobin adduct analysis after EMS exposure. All animals survived until their scheduled necropsy. Treatment with EMS had a direct dose-dependent effect on food consumption and consequently on body weight at doses > or =20mg/kgbw/day in male rats and at > or =60 mg/kgbw/day in females rats. Hence, treatment with the high dose of 180 mg/kgbw/day had to be interrupted for 9 days after which, the animals were re-dosed at 120 mg/kgbw/day. This dose was also poorly tolerated over the remaining two treatment weeks causing again a marked reduction in food consumption and body weight. A dose of 60 mg/kgbw/day was moderately tolerated over 4 weeks treatment with mean daily food consumption and body weight distinctly lower than in controls. Primary targets of systemic toxicity were the hematopoietic system, thymolymphatic system and sexual organs. Characteristic changes in hematology parameters were decreased red blood cell counts, hematocrit, and hemoglobin concentration. White blood cell counts were also decreased due to reduced lymphocyte and granulocyte populations of each fraction. The corresponding histopathology findings were fatty atrophy of bone marrow and minimal hypocellularity of the white pulp of the spleen. Similarly, treatment with EMS caused an involution of the thymolymphatic system characterized by decreased organ weight of thymus, lymph nodes, and spleen microscopically associated with atrophy of the thymus and hypocellularity of Peyer's patches, lymph nodes and the white pulp of the spleen. The effects on sexual organs included lower organ weight/reduced size for testes, epididymides, seminal vesicles, prostate, and uterus. Tubular atrophy, single cell necrosis of the germ cells and in epididymides reduced spermatozoa were recorded microscopically. The described findings occurred at doses of 60 and 180/120 mg/kgbw/day and were dose-dependent with regard to incidence and severity. Other target organs were the pancreas (acinar cell vacuolation), thyroid gland (follicular cell hypertrophy), and salivary gland (secretory depletion of convoluted ducts). The systemic exposure to EMS was monitored by hemoglobin ethylvaline adduct measurement. The concentration of hemoglobin ethylvaline adducts was linear with the dose and accumulated 11-26-fold over the treatment period. In summary, decreases in food consumption and body weight were the dose-limiting effects of treatment with EMS. Organ toxicity was characterized by depression of cell proliferation (hematopoiesis and spermatogenesis) and changes suggestive of reduced metabolism and/or physiological imbalances (e.g. thymolymphatic system and thyroid gland) without signs of inflammatory or necrotic lesions. For some findings, especially the effects on the thymolymphatic system and sexual organs, it cannot be excluded that starvation-like condition contributed to the occurrence of such changes. The low dose of 20 mg/kgbw/day was basically free of adverse effects despite of a clear evidence for hemoglobin adducts. PMID:19442710

  11. Long Term Monitoring of EM signals near Parkfield CA

    NASA Astrophysics Data System (ADS)

    Kappler, K.; Morrison, H. F.; Egbert, G. D.

    2006-12-01

    Fluctuations of resistivity and anomalous electromagnetic (EM) signals have often been reported as precursors to earthquakes. There has been considerable controversy about the reliability of the reported EM precursory phenomena. In an attempt to assess the validity of these reports, and to understand how such signals might be generated, anomalous EM signals and resistivity have been monitored since 1995 using magnetotelluric (MT) instruments at Parkfield, CA. This EM monitoring array was fully operational and producing high quality data when the long awaited 28 Sept Mw=6.0 Parkfield earthquake occured. The Parkfield MT site provided unprecedented observations of EM signals at a well calibrated site in very close proximity to a moderate (M~6) earthquake. A calibrated remote reference (RR) MT site at Hollister, CA was also functioning well before, during, and after the earthquake. Previously a crude analysis of these data was presented using all data from a four-year time window about the earthquake [2002-2005]. These data have been found to be highly contaminated by cultural sources and instrument malfunctions. We have carefully hand editted a four-year time window of data resulting in a refined dataset. Although the refined dataset does not show any unambiguos precursors to the 28 September Earthquake, there is clear evidence for a seasonal effect in Electric field SNR which is not mirrored by Magnetic SNR. This suggests increased noise levels rather than decreased signal strength. We analyse the seasonal variations in electric and magnetic field strength independantly, and compare these with local rainfall records. The seasonal Electric field SNR variation appears to be site dependant, which suggests that the local geology is a factor in controlling the noise levels. It is possible that ions being liberated into solution by rainfall are resulting in local chemical gradients and hence streaming potentials active at the Parkfield site. Also ionic liberation in a heterogenoeus near surface layer would be a likely cause for conductivity anomalies which appear and disappear over seasonal timescales. We analyse the seasonal effect in the apparent resistivity data using a Groom and Bailey distortion decomposition in order to gain a better understanding of the geometery of the seasonal effect. The distortion effect appears rapidly at the onset of the wet season. It is nearly frequency independantand shows no obvious variation in character unitl after the ground starts drying out. This strengthens the case for conductivity anomalies in the near surface, while weakening the argument that chemical potentials are causing the increased noise, as chemical potentials ought to equilibriate over time. We perform an MA-index averaging of the 40Hz data for a 120 day window around the earthquake for all magnetic channels in the refined dataset. We also examine the RR residual E and B fields for several frequencies over the year 2004 using the refined data. We also include an analysis of coseismically observed magnetic fields which we model as being attributed to the motion of induction coils in the dipole field. Multivariate statistical analysis, including principal components and canonical coherence analysis have also been applited to the refined data, allowing alternate views of temporal variations of signal and noise characteristics. Although there are some anomalous signals deserving more careful study, there is no evidence from this analysis for significant anomalous EM signals preceeding the Parkfield earthquake.

  12. Epidemiology of major incidents: an EMS study from Pakistan

    PubMed Central

    2011-01-01

    Background A major incident is defined as an event that owing to the number of casualties has the potential to overwhelm the available resources. This paper attempts to describe the incidence and epidemiology of major incidents dealt with by a government-run emergency medical service (EMS) in the Punjab province of Pakistan, a developing country in South Asia. A major incident in this EMS is defined as any incident that produces three or more patients, or any incident in which extraordinary resources are needed. Methods All the calls received by an EMS Rescue 1122 were studied over a 6-month period. Calls that were defined as major incidents were identified, and further details were sought from the districts regarding these incidents. Questions specifically asked were the type of incident, time of the incident, response time for the incident, the resources needed, and the number of dead and injured casualties. Retrospective data were collected from the submitted written reports. Results Road traffic crashes (RTCs) emerged as the leading cause of a major incident in the province of Punjab and also led to the greatest number of casualties, followed by fire incidents. The total number of casualties was 3,380, out of which 73.7% were RTC victims. There was a high rate of death on the scene (10.4%). Certain other causes of major incidents also emerged, including violence, gas explosions and drowning. Conclusion Road traffic crashes are the most common cause of a major incident in developing countries such as Pakistan. Injury prevention initiatives need to focus on RTCs. PMID:21798011

  13. Perda de massa em ventos empoeirados de estrelas supergigantes

    NASA Astrophysics Data System (ADS)

    Vidotto, A. A.; Jatenco-Pereira, V.

    2003-08-01

    Em praticamente todas as regiões do diagrama HR, as estrelas apresentam evidências observacionais de perda de massa. Na literatura, pode-se encontrar trabalhos que tratam tanto do diagnóstico da perda de massa como da construção de modelos que visam explicá-la. O amortecimento de ondas Alfvén tem sido utilizado como mecanismo de aceleração de ventos homogêneos. Entretanto, sabe-se que os envelopes de estrelas frias contêm grãos sólidos e moléculas. Com o intuito de estudar a interação entre as ondas Alfvén e a poeira e a sua conseqüência na aceleração do vento estelar, Falceta-Gonçalves & Jatenco-Pereira (2002) desenvolveram um modelo de perda de massa para estrelas supergigantes. Neste trabalho, apresentamos um estudo do modelo acima proposto para avaliar a dependência da taxa de perda de massa com alguns parâmetros iniciais como, por exemplo, a densidade r0, o campo magnético B0, o comprimento de amortecimento da onda L0, seu fluxo f0, entre outros. Sendo assim, aumentando f0 de 10% a partir de valores de referência, vimos que aumenta consideravelmente, enquanto que um aumento de mesmo valor em r0, B0 e L0 acarreta uma diminuição em .

  14. EM-21 Retrieval Knowledge Center: Waste Retrieval Challenges

    SciTech Connect

    Fellinger, Andrew P.; Rinker, Michael W.; Berglin, Eric J.; Minichan, Richard L.; Poirier, Micheal R.; Gauglitz, Phillip A.; Martin, Bruce A.; Hatchell, Brian K.; Saldivar, Eloy; Mullen, O Dennis; Chapman, Noel F.; Wells, Beric E.; Gibbons, Peter W.

    2009-04-10

    EM-21 is the Waste Processing Division of the Office of Engineering and Technology, within the U.S. Department of Energy’s (DOE) Office of Environmental Management (EM). In August of 2008, EM-21 began an initiative to develop a Retrieval Knowledge Center (RKC) to provide the DOE, high level waste retrieval operators, and technology developers with centralized and focused location to share knowledge and expertise that will be used to address retrieval challenges across the DOE complex. The RKC is also designed to facilitate information sharing across the DOE Waste Site Complex through workshops, and a searchable database of waste retrieval technology information. The database may be used to research effective technology approaches for specific retrieval tasks and to take advantage of the lessons learned from previous operations. It is also expected to be effective for remaining current with state-of-the-art of retrieval technologies and ongoing development within the DOE Complex. To encourage collaboration of DOE sites with waste retrieval issues, the RKC team is co-led by the Savannah River National Laboratory (SRNL) and the Pacific Northwest National Laboratory (PNNL). Two RKC workshops were held in the Fall of 2008. The purpose of these workshops was to define top level waste retrieval functional areas, exchange lessons learned, and develop a path forward to support a strategic business plan focused on technology needs for retrieval. The primary participants involved in these workshops included retrieval personnel and laboratory staff that are associated with Hanford and Savannah River Sites since the majority of remaining DOE waste tanks are located at these sites. This report summarizes and documents the results of the initial RKC workshops. Technology challenges identified from these workshops and presented here are expected to be a key component to defining future RKC-directed tasks designed to facilitate tank waste retrieval solutions.

  15. Covariance Matrix Estimation for the Cryo-EM Heterogeneity Problem*

    PubMed Central

    Katsevich, E.; Katsevich, A.; Singer, A.

    2015-01-01

    In cryo-electron microscopy (cryo-EM), a microscope generates a top view of a sample of randomly oriented copies of a molecule. The problem of single particle reconstruction (SPR) from cryo-EM is to use the resulting set of noisy two-dimensional projection images taken at unknown directions to reconstruct the three-dimensional (3D) structure of the molecule. In some situations, the molecule under examination exhibits structural variability, which poses a fundamental challenge in SPR. The heterogeneity problem is the task of mapping the space of conformational states of a molecule. It has been previously suggested that the leading eigenvectors of the covariance matrix of the 3D molecules can be used to solve the heterogeneity problem. Estimating the covariance matrix is challenging, since only projections of the molecules are observed, but not the molecules themselves. In this paper, we formulate a general problem of covariance estimation from noisy projections of samples. This problem has intimate connections with matrix completion problems and high-dimensional principal component analysis. We propose an estimator and prove its consistency. When there are finitely many heterogeneity classes, the spectrum of the estimated covariance matrix reveals the number of classes. The estimator can be found as the solution to a certain linear system. In the cryo-EM case, the linear operator to be inverted, which we term the projection covariance transform, is an important object in covariance estimation for tomographic problems involving structural variation. Inverting it involves applying a filter akin to the ramp filter in tomography. We design a basis in which this linear operator is sparse and thus can be tractably inverted despite its large size. We demonstrate via numerical experiments on synthetic datasets the robustness of our algorithm to high levels of noise. PMID:25699132

  16. Nasopharyngeal carcinoma segmentation via HMRF-EM with maximum entropy.

    PubMed

    Kai-Wei Huang; Zhe-Yi Zhao; Qian Gong; Juan Zha; Liu Chen; Ran Yang

    2015-08-01

    This paper presents a novel automatic nasopharyngeal carcinoma segmentation approach used in magnetic resonance images. Adaptive calculation of the nasopharyngeal region location is first performed. The contour of the tumor is determined through distance regularized level set evolution with the initial contour obtained by the nearest neighbor graph model. To further refine the segmentation, a hidden Markov random field model with maximum entropy (HMRF-EM) is introduced to model the spatial information with prior knowledge. The proposed method is tested on magnetic resonance images of 26 nasopharyngeal carcinoma patients, and achieves good results. PMID:26736915

  17. State of the Art in EM Field Computation

    SciTech Connect

    Ng, C.; Akcelik, V.; Candel, A.; Chen, S.; Folwell, N.; Ge, L.; Guetz, A.; Jiang, H.; Kabel, A.; Lee, L.-Q.; Li, Z.; Prudencio, E.; Schussman, G.; Uplenchwar, R.; Xiao, L.; Ko, K.; /SLAC

    2006-09-25

    This paper presents the advances in electromagnetic (EM) field computation that have been enabled by the US DOE SciDAC Accelerator Science and Technology project which supports the development and application of a suite of electromagnetic codes based on the higher-order finite element method. Implemented on distributed memory supercomputers, this state of the art simulation capability has produced results which are of great interest to accelerator designers and with realism previously not possible with standard codes. Examples from work on the International Linear Collider (ILC) project are described.

  18. Single-particle cryo-EM at crystallographic resolution

    PubMed Central

    Cheng, Yifan

    2015-01-01

    Until only a few years ago, single-particle electron cryo-microscopy (cryo-EM) was usually not the first choice for many structural biologists due to its limited resolution in the range of nanometer to subnanometer. Now, this method rivals X-ray crystallography in terms of resolution and can be used to determine atomic structures of macromolecules that are either refractory to crystallization or difficult to crystallize in specific functional states. In this review, I discuss the recent breakthroughs in both hardware and software that transformed cryo-microscopy, enabling understanding of complex biomolecules and their functions at atomic level. PMID:25910205

  19. A compulsator driven rapid-fire EM-gun

    SciTech Connect

    Pratap, S.B.; Bird, W.L.

    1984-03-01

    A compulsator-driven railgun is an attractive alternative to the homopolar generator-inductor-switch configuration, especially for repetitive duty. A conceptual design of a rapid-fire EM-gun system is presented. The generator is sized to accelerate a 0.08-kg projectile to 2 to 3 km/s at a 60 pulse-per-second repetition rate. Initial design parameters are discussed, and example current and velocity waveforms are given. The generator is discharged at the proper phase angle to provide a current zero just as the projectile exits the muzzle of the railgun.

  20. Developing State and National Evaluation Infrastructures- Guidance for the Challenges and Opportunities of EM&V

    SciTech Connect

    Schiller, Steven R.; Goldman, Charles A.

    2011-06-24

    Evaluating the impacts and effectiveness of energy efficiency programs is likely to become increasingly important for state policymakers and program administrators given legislative mandates and regulatory goals and increasing reliance on energy efficiency as a resource. In this paper, we summarize three activities that the authors have conducted that highlight the expanded role of evaluation, measurement and verification (EM&V): a study that identified and analyzed challenges in improving and scaling up EM&V activities; a scoping study that identified issues involved in developing a national efficiency EM&V standard; and lessons learned from providing technical assistance on EM&V issues to states that are ramping up energy efficiency programs. The lessons learned are summarized in 13 EM&V issues that policy makers should address in each jurisdiction and which are listed and briefly described. The paper also discusses how improving the effectiveness and reliability of EM&V will require additional capacity building, better access to existing EM&V resources, new methods to address emerging issues and technologies, and perhaps foundational documents and approaches to improving the credibility and cross jurisdictional comparability of efficiency investments. Two of the potential foundational documents discussed are a national EM&V standard or resource guide and regional deemed savings and algorithm databases.

  1. Covariance Structure Model Fit Testing under Missing Data: An Application of the Supplemented EM Algorithm

    ERIC Educational Resources Information Center

    Cai, Li; Lee, Taehun

    2009-01-01

    We apply the Supplemented EM algorithm (Meng & Rubin, 1991) to address a chronic problem with the "two-stage" fitting of covariance structure models in the presence of ignorable missing data: the lack of an asymptotically chi-square distributed goodness-of-fit statistic. We show that the Supplemented EM algorithm provides a convenient…

  2. Global Convergence of the EM Algorithm for Unconstrained Latent Variable Models with Categorical Indicators

    ERIC Educational Resources Information Center

    Weissman, Alexander

    2013-01-01

    Convergence of the expectation-maximization (EM) algorithm to a global optimum of the marginal log likelihood function for unconstrained latent variable models with categorical indicators is presented. The sufficient conditions under which global convergence of the EM algorithm is attainable are provided in an information-theoretic context by…

  3. Method for evaluating compatibility of commercial electromagnetic (EM) microsensor tracking systems with surgical and imaging tables

    NASA Astrophysics Data System (ADS)

    Nafis, Christopher; Jensen, Vern; von Jako, Ron

    2008-03-01

    Electromagnetic (EM) tracking systems have been successfully used for Surgical Navigation in ENT, cranial, and spine applications for several years. Catheter sized micro EM sensors have also been used in tightly controlled cardiac mapping and pulmonary applications. EM systems have the benefit over optical navigation systems of not requiring a line-of-sight between devices. Ferrous metals or conductive materials that are transient within the EM working volume may impact tracking performance. Effective methods for detecting and reporting EM field distortions are generally well known. Distortion compensation can be achieved for objects that have a static spatial relationship to a tracking sensor. New commercially available micro EM tracking systems offer opportunities for expanded image-guided navigation procedures. It is important to know and understand how well these systems perform with different surgical tables and ancillary equipment. By their design and intended use, micro EM sensors will be located at the distal tip of tracked devices and therefore be in closer proximity to the tables. Our goal was to define a simple and portable process that could be used to estimate the EM tracker accuracy, and to vet a large number of popular general surgery and imaging tables that are used in the United States and abroad.

  4. EMS Instructor Training Program. National Standard Curriculum. Instructor Guide. Student Guide.

    ERIC Educational Resources Information Center

    National Highway Traffic Safety Administration (DOT), Washington, DC.

    This guide for teaching a course to prepare emergency medical service (EMS) trainers focuses on the skills necessary to present any of the Department of Transportation (DOT), National Highway Traffic Safety Administration (NHTSA) EMS courses. Course topics are as follows: (1) introduction; (2) instructor roles and responsibilities; (3) legal…

  5. A Generalized Fast Frequency Sweep Algorithm for Coupled Circuit-EM Simulations

    SciTech Connect

    Rockway, J D; Champagne, N J; Sharpe, R M; Fasenfest, B

    2004-01-14

    Frequency domain techniques are popular for analyzing electromagnetics (EM) and coupled circuit-EM problems. These techniques, such as the method of moments (MoM) and the finite element method (FEM), are used to determine the response of the EM portion of the problem at a single frequency. Since only one frequency is solved at a time, it may take a long time to calculate the parameters for wideband devices. In this paper, a fast frequency sweep based on the Asymptotic Wave Expansion (AWE) method is developed and applied to generalized mixed circuit-EM problems. The AWE method, which was originally developed for lumped-load circuit simulations, has recently been shown to be effective at quasi-static and low frequency full-wave simulations. Here it is applied to a full-wave MoM solver, capable of solving for metals, dielectrics, and coupled circuit-EM problems.

  6. Fabrication and EM shielding properties of electrospining PANi/MWCNT/PEO fibrous membrane and its composite

    NASA Astrophysics Data System (ADS)

    Zhang, Zhichun; Jiang, Xueyong; Liu, Yanju; Leng, Jinsong

    2012-04-01

    In this paper, Polyaniline-based fibrous membranes were fabricated with multi-walled carbon nanotubes and polyethylene oxide (PEO) by the electrospinning method. And then PANi/PEO/MWCNT fibrous membranes reinforced epoxy based nanocomposite was then fabricated. The morphology and electrical properties of PANi /MWCNT /PEO fibrous membrane was characterized by scanning electron microscope (SEM). The morphologies of the membranes indicate that the electrospining method can fabricate well nano structures fibrous membrane. The EM properties of the composite reinforced with the electrospining fibrous membrane were measured by vector network analyzer. The results show that the permittivity real, image parts and permeability real part of the composite increase by filling with PANI/PEO and PANI/CNT/PEO membrane. The EM shielding and absorb performance is base on the dielectric dissipation. And different membranes made of different materials show different EM parameter, and different EM shielding performance, which can be used to the EM shielding and stealth material design and fabrication.

  7. Phase 2 cost quality management assessment report for the Office of Technology Development (EM-50)

    SciTech Connect

    Not Available

    1994-08-01

    The Office of Environmental Management (EM) Head quarters (HQ) Cost Quality Management Assessment (CQMA) evaluated the practices of the Office of Technology Development (EM-50). The CQMA reviewed EM-50 management documents and reported results in the HQ CQMA Phase 1 report (March 1993). In this Assessment Phase, EM-50 practices were determined through interviews with staff members. The interviews were conducted from the end of September through early December 1993. EM-50 management documents (Phase 1) and practices (Phase 2) were compared to the Performance Objectives and Criteria (POCs) contained in the DOE/HQ Cost Quality Management Assessment Handbook. More detail on the CQMA process is provided in section 2. Interviewees are listed in appendix A. Documents reviewed during Phase 2 are listed in appendix B. Section 3 contains detailed observations, discussions, and recommendations. A summary of observations and recommendations is presented.

  8. AVALIAÇÃO DA PRESENÇA DE ENDOSSIMBIONTES Cardinium em DIFERENTES ESPÉCIES DE ARTRÓPODES.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A presença de endossimbiontes do gênero Cardinium em alguns grupos de artrópodes foi recentemente relatada e relacionada com diversas alterações reprodutivas em seus hospedeiros, tais como feminilização de ácaros, partenogênese em parasitóides, incompatibilidade citoplasmática e aumento da fecundida...

  9. Contactless ultrasonic treatment of melts using EM induction

    NASA Astrophysics Data System (ADS)

    Bojarevics, V.; Djambazov, G.; Lebon, G. S. B.; Pericleous, K. A.

    2015-06-01

    Ultrasound Treatment (UT) is commonly used in light alloys during solidification to refine microstructure, or disperse immersed particles. A sonotrode probe introduced into the melt generates sound waves that are strong enough to produce cavitation of dissolved gases. The same method cannot be used in high temperature melts, or for highly reactive alloys, due to probe erosion and melt contamination. An alternative, contactless method of generating sound waves is proposed and investigated theoretically in this paper, using electromagnetic (EM) induction. In addition to strong vibration, the EM induction currents generate strong stirring in the melt that aids distribution of the UT effect to large volumes of material. In a typical application, the same induction coil surrounding the crucible used to melt the alloy may be adopted for UT with suitable frequency tuning. Alternatively - or in addition - a top coil may be used. For industrial use, instead of multiple sonotrodes as has been the practice in scaling up, modelling shows that one simply has to alter the coil geometry and current to suit. To reach sinusoidal pressure fluctuations suitable for cavitation it may be necessary to tune the induction coil frequency for resonance, given the crucible dimensions.

  10. The Search for Gravitational Wave EM Counterparts with Swift

    NASA Astrophysics Data System (ADS)

    Kennea, Jamie; Evans, Phil; Swift GW follow-up Team

    2016-04-01

    We present the plan to search for electromagnetic counterparts of Gravitational Waves (GWs) discovered during the current and upcoming runs of the LIGO and Virgo detectors. As we enter a period where the sensitivity of the current generation of GW detectors approaches a high probability of the first detection of a real GW signal, confirmation of the reality of these triggers will be greatly improved if an EM counterpart can be found. Swift’s ability to rapidly respond to high priority target-of-opportunity observations, it’s multi-wavelength capabilities and low overhead observing make it a seemingly ideal follow-up facility. However comparing the size of the expected GW error regions with the fields of view of the Swift XRT and UVOT telescopes, we find that covering the large GW error regions would require a unreasonably large number of pointings. We present our method of meeting this challenge, by both reducing the problem using Galaxy targeting, and by operating Swift in an entirely new way in order to cover the still large number of fields needed to chase down the EM counterpart before it disappears.

  11. Chapter 19: HVAC Controls (DDC/EMS/BAS) Evaluation Protocol

    SciTech Connect

    Romberger, J.

    2014-11-01

    The HVAC Controls Evaluation Protocol is designed to address evaluation issues for direct digital controls/energy management systems/building automation systems (DDC/EMS/BAS) that are installed to control heating, ventilation, and air-conditioning (HVAC) equipment in commercial and institutional buildings. (This chapter refers to the DDC/EMS/BAS measure as HVAC controls.) This protocol may also be applicable to industrial facilities such as clean rooms and labs, which have either significant HVAC equipment or spaces requiring special environmental conditions. This protocol addresses only HVAC-related equipment and the energy savings estimation methods associated with installing such control systems as an energy efficiency measure. The affected equipment includes: Air-side equipment (air handlers, direct expansion systems, furnaces, other heating- and cooling-related devices, terminal air distribution equipment, and fans); Central plant equipment (chillers, cooling towers, boilers, and pumps). These controls may also operate or affect other end uses, such as lighting, domestic hot water, irrigation systems, and life safety systems such as fire alarms and other security systems. Considerable nonenergy benefits, such as maintenance scheduling, system component troubleshooting, equipment failure alarms, and increased equipment lifetime, may also be associated with these systems. When connected to building utility meters, these systems can also be valuable demand-limiting control tools. However, this protocol does not evaluate any of these additional capabilities and benefits.

  12. A Strategy for Collecting and Analyzing Multiple Electromagnetic (EM) Data Sets for Pre- Earthquake Signal Investigations

    NASA Astrophysics Data System (ADS)

    Bleier, T. E.; Cutler, D.; Dunson, C.; Bortnik, D.; Calais, D.; Dautermann, T.; Maniscalco, M.

    2006-12-01

    There have been a number of reports of interesting electromagnetic (EM) signals detected prior to large earthquakes, but the subsequent analyses have been hampered by insufficient instrumentation to cover large geographical areas, and enough data history to allow statistical analyses of potential "earthquake signatures". The EM data analysis requires that several basic questions be addressed: "What are the "normal" background signatures (both natural and man-made) for each instrument during non-earthquake days?" and "What are the statistically "unique" signatures associated with large earthquakes?" Both ground and space sensors are subjected to a wide variety of non-earthquake EM noise (geomagnetic micropulsations, SRS, Schumann Resonance and man-made EM noise). We first show the top-level strategy developed by QuakeFinder and our partners to collect large volumes of satellite EM data (DEMETER and QuakeSat), and ground EM data (from QuakeFinder's CalMagNet and Berkeley's magnetometer network, and total electron content (TEC) data from both US and Japanese GPS networks). We show a wide variety of algorithms used to identify and characterize natural and man-made EM noise, and then compare the information from multiple instrument platforms and algorithms to help discriminate between "normal" EM noise sources and potentially "earthquake-generated" EM noise. This data collection, algorithm generation, and analysis processes are evolving from a simple "post quake" analysis, to a daily ingest, data fusion, and strategy refinement at our QuakeFinder Data Center. We also recognize that there may never be enough instrumentation located at the right place and at the right time, so we also include the strategy to use multiple, portable instruments to collect and measure potential post-quake EM signals near the epicenter area.

  13. Estudo em microondas do aprisionamento e precipitação de elétrons em explosões solares

    NASA Astrophysics Data System (ADS)

    Rosal, A. C.; Costa, J. E. R.

    2003-08-01

    Uma explosão solar é uma variação rápida e intensa do brilho que ocorre nas chamadas regiões ativas da atmosfera, constituídas por um plasma magnetizado com intensa indução magnética. Os modelos de explosões solares atuais, discutidos na literatura, apresentam características de aprisionamento e precipitação de elétrons em ambientes magnéticos simplificados. Neste trabalho, nos propusemos a separar a emissão dos elétrons aprisionados da emissão dos elétrons em precipitação apenas a partir da emissão em microondas, melhorando portanto o controle sobre o conjunto de parâmetros inferidos. A emissão em microondas da população em precipitação é bastante fraca e portanto da nossa base de dados de 130 explosões observadas pelo Rádio Polarímetro de Nobeyama, em sete freqüências, apenas para 32 foi possível separar as duas componentes de emissão com uma boa razão sinal/ruído. A partir de estudos das escalas de tempo das emissões devidas à variação gradual da emissão no aprisionamento e da variação rápida da emissão dos elétrons em precipitação foi possível obter a separação utilizando um filtro temporal nas emissões resultantes. Em nossa análise destas explosões estudamos os espectros girossincrotrônicos da emissão gradual, a qual associamos provir do topo dos arcos magnéticos e da emissão de variação rápida associada aos elétrons em precipitação. Estes espectros foram calculados e dos quais inferimos que a indução magnética efetiva do topo e dos pés foi em média, Btopo = 236 G e Bpés = 577 G, inferidas das freqüências de pico dos espectros em ntopo = 11,8 GHz e npés = 14,6 GHz com leve anisotropia (pequeno alargamento espectral). O índice espectral da distribuição não-térmica de elétrons d, inferido do índice espectral de fótons da emissão em regime opticamente fino, foi de dtopo = 3,3 e dpés = 3,9. Estes parâmetros são típicos da maioria das análises realizadas em ambiente único de emissão e a relação dos índices espectrais, dpés > dtopo prioriza as interpretações com difusão em ângulo de passo devida a colisões Coulombianas. Nesta difusão o déficit de elétrons energéticos na precipitação seria uma conseqüência natural da dependência em e-3/2 das colisões elétron-próton (onde e é a energia dos elétrons).

  14. The EM SSAB Annual Work Plan Process: Focusing Board Efforts and Resources - 13667

    SciTech Connect

    Young, Ralph

    2013-07-01

    One of the most daunting tasks for any new member of a local board of the Environmental Management Site Specific Advisory Board (EM SSAB) is to try to understand the scope of the clean-up activities going on at the site. In most cases, there are at least two or three major cleanup activities in progress as well as monitoring of past projects. When planning for future projects is added to the mix, the list of projects can be long. With the clean-up activities involving all major environmental media - air, water, soils, and groundwater, new EM SSAB members can find themselves totally overwhelmed and ineffective. Helping new members get over this initial hurdle is a major objective of EM and all local boards of the EM SSAB. Even as members start to understand the size and scope of the projects at a site, they can still be frustrated at the length of time it takes to see results and get projects completed. Many project and clean-up timelines for most of the sites go beyond 10 years, so it's not unusual for an EM SSAB member to see the completion of only 1 or 2 projects over the course of their 6-year term on the board. This paper explores the annual work planning process of the EM SSAB local boards, one tool that can be used to educate EM SSAB members into seeing the broader picture for the site. EM SSAB local work plans divide the site into projects focused on a specific environmental issue or media such as groundwater and/or waste disposal options. Projects are further broken down into smaller segments by highlighting major milestones. Using these metrics, local boards of the EM SSAB can start to quantify the effectiveness of the project in achieving the ultimate goal of site clean-up. These metrics can also trigger board advice and recommendations for EM. At the beginning of each fiscal year, the EM SSAB work plan provides a road map with quantifiable checkpoints for activities throughout the year. When the work plans are integrated with site-specific, enforceable regulatory milestones, they can provide a comprehensive work plan for not only the board, but also regulators, site contractors, and DOE. Because the work plans are reviewed and approved by DOE, they carry some weight in holding local boards of the EM SSAB accountable. This structure provides the basis for local boards to achieve their primary function, to provide DOE with information, advice, and recommendations concerning issues affecting the EM program at the site. (authors)

  15. Main error factors, affecting inversion of EM data

    NASA Astrophysics Data System (ADS)

    Zuev, M. A.; Magomedov, M.; Korneev, V. A.; Goloshubin, G.; Zuev, J.; Brovman, Y.

    2013-12-01

    Inversions of EM data are complicated by a number of factors that need to be taken into account. These factors might contribute by tens of percents in data values, concealing responses from target objects, which usually contribute at the level of few percents only. We developed the exact analytical solutions of the EM wave equations that properly incorporate the contributions of the following effects: 1) A finite source size effect, where conventional dipole (zero-size) approximation brings 10-40% error compare to a real size source, needed to provide adequate signal-to-noise ratio. 2) Complex topography. A three-parametrical approach allows to keep the data misfits in 0.5% corridor while topography effect might be up to 40%. 3) Grounding shadow effect, caused by return ground currents, when Tx-line vicinity is horizontally non-uniform. By keeping survey setup within some reasonable geometrical ratios, the shadow effect comes to just one frequency-independent coefficient, which can be excluded from processing by using logarithmical derivatives. 4) Layer's wide spectral range effect. This brings to multi-layer spectral overlapping, so each frequency is affected by many layers; that requires wide spectral range processing, making the typical 'few-frequency data acquisition' non-reliable. 5) Horizontal sensitivity effect. The typical view at the target signal, reflected from a Tx-Rx mid-point is valid only for a ray approximation, reliable in a far-field zone. Unlike this, the real EM surveys usually work in near-field zone. Thus Tx-Rx mid-point does not represent the layer, so a sensitivity distribution function must be computed for each layer for the following 3D-unification process. 6) Wide range Rx-directions from mid-line Tx. Survey terrain often prevents placing Rx perpendicular to Tx-line, and even small deviations without proper corrections cause a significant inaccuracy. A radical simplification of the effect's description becomes possible after applying a special Angular Theorem. 7) Apparent conductivity spectral splitting factor. For some of the inversion approaches an averaged Earth's conductivity σA(ω) is the first step for the inversion to stratified Earth. The related spectral response from the loop-source splits such σA onto two branches: σA(ωHigh) and σA(ωLow), similar to early and late resistivities in time domain processing. 8) Calibration factor. A manufacturer-based internal calibration often leads to many percents of non-controllable systematic error at low and high frequency ends, as well as temperature changes. A special approach allows an external pre-survey calibration to achieve the required accuracy.

  16. THE WHITE DWARF IN EM CYGNI: BEYOND THE VEIL

    SciTech Connect

    Godon, Patrick; Sion, Edward M.; Barrett, Paul E.; Linnell, Albert P. E-mail: edward.sion@villanova.edu E-mail: linnell@astro.washington.edu

    2009-07-10

    We present a spectral analysis of the Far Ultraviolet Spectroscopic Explorer (FUSE) spectra of the eclipsing double-line spectroscopic binary EM Cygni (EM Cyg), a Z Cam DN system. The FUSE spectrum, obtained in quiescence, consists of four individual exposures (orbits): two exposures, at orbital phases {phi} {approx} 0.65 and {phi} {approx} 0.90, have a lower flux; and two exposures, at orbital phases {phi} = 0.15 and 0.45, have a relatively higher flux. The change of flux level as a function of the orbital phase is consistent with the stream material (flowing over and below the disk from the hot spot region to smaller radii) partially masking the white dwarf. We carry out a spectral analysis of the FUSE data, obtained at phase 0.45 (when the flux is maximal), using synthetic spectra generated with the codes TLUSTY and SYNSPEC. Using a single white dwarf spectral component, we obtain a white dwarf temperature of 40, 000 K {+-} 1000 K, rotating at 100 km s{sup -1}. The white dwarf, or conceivably, the material overflowing the disk rim, shows suprasolar abundances of silicon, sulphur, and possibly nitrogen. Using a white dwarf+disk composite model, we obtain that the white dwarf temperature could be even as high as 50,000 K, contributing more than 90% of the FUV flux, and the disk contributing less than 10% must have a mass accretion rate reaching 10{sup -10} M{sub sun} yr{sup -1}. The single white dwarf model fits the absorption lines better than the white dwarf+disk model, but the white dwarf+disk model fits better the continuum in the shorter wavelengths. In both cases, however, we obtain that the white dwarf temperature is much higher than previously estimated. We emphasize the importance of modeling the spectra of EM Cyg around phase {phi} < 0.5, when the white dwarf and disk are facing the observer, and we suggest that the discrepancy between the present analysis and previous spectral analysis might be due to the occulting effect of the stream veiling the white dwarf and disk.

  17. Linear array implementation of the EM algorithm for PET image reconstruction

    SciTech Connect

    Rajan, K.; Patnaik, L.M.; Ramakrishna, J.

    1995-08-01

    The PET image reconstruction based on the EM algorithm has several attractive advantages over the conventional convolution back projection algorithms. However, the PET image reconstruction based on the EM algorithm is computationally burdensome for today`s single processor systems. In addition, a large memory is required for the storage of the image, projection data, and the probability matrix. Since the computations are easily divided into tasks executable in parallel, multiprocessor configurations are the ideal choice for fast execution of the EM algorithms. In tis study, the authors attempt to overcome these two problems by parallelizing the EM algorithm on a multiprocessor systems. The parallel EM algorithm on a linear array topology using the commercially available fast floating point digital signal processor (DSP) chips as the processing elements (PE`s) has been implemented. The performance of the EM algorithm on a 386/387 machine, IBM 6000 RISC workstation, and on the linear array system is discussed and compared. The results show that the computational speed performance of a linear array using 8 DSP chips as PE`s executing the EM image reconstruction algorithm is about 15.5 times better than that of the IBM 6000 RISC workstation. The novelty of the scheme is its simplicity. The linear array topology is expandable with a larger number of PE`s. The architecture is not dependant on the DSP chip chosen, and the substitution of the latest DSP chip is straightforward and could yield better speed performance.

  18. DOE-EM privatization and the 2006 Plan: Principles for procurement policies and risk management

    SciTech Connect

    Bjornstad, D.J.; Jones, D.W.; Duemmer, C.L.

    1997-08-01

    The Department of Energy`s Office of Environmental Remediation and Waste Management (EM) has recently set in place programs to restructure the strategic planning mechanism that will drive its clean-up schedule, The 2006 Plan, and to create a new set of business relationships with private contractors that will reduce costs--privatization. Taken together, the 2006 Plan and privatization will challenge EM to create new business practices to recast its risk management policies to support these initiatives while ensuring that its responsibilities toward the environment, human health, and worker safety (ES and H) are maintained. This paper argues that the 2006 Plan has transformed EM`s traditional, bottoms-up approach based on technical dictates to a top-down approach based on management goals--a transformation from an engineering problem to an economic problem. The 2006 Plan evolved from EM`s Ten-Year Plan, and seeks to convert the largely open-ended planning approach previously undertaken by EM to a plan bounded by time and dollars. The plan emphasizes making tradeoffs and choosing activities that deliver the most clean-up for the dollar. It also recognizes that each major player--stakeholders, DOE, OMB and Congress--has distinct interests that must be resolved if the process is to succeed. This, in turn, has created the need for a corresponding transformation in risk management practices from compliance-driven to benefit/cost-driven.

  19. Variation and covariation of seed weight and its components in wheat following irradiation, EMS, and hybridization.

    PubMed

    Khadr, F H

    1970-01-01

    Seeds from two hexaploid wheat varieties, 'Giza 150' and 'Sonora 64', and the F2 seeds of their hybrid were given two mutagenic treatments, gamma irradiation and ethyl methanesulfonate (EMS), to study the type of variation and covariation in seed weight, width, and length induced by irradiation, EMS, and hybridization. Measurements of seed weight and its components were taken on 30 replicated lines derived from each treated and non-treated material.Both irradiation and EMS produced significant variability in seed weight and its components in the pure genetic background. The hybrid genetic background somewhat depressed the expression of irradiation-induced variability. The variations resulting from EMS and hybridization were to a great extent independent and cumulative.Neither EMS nor irradiation caused any significant shift in the means of seed weight, width, and length. The positive association between inheritance of width and length in irradiation-derived materials did not increase the mean seed weight compared with the control.The magnitude of the genetic correlations in irradiation varieties was double that obtained from hybrid-or EMS-derived materials. It is suggested that EMS mainly produced mutations of genes and/or minute chromosomal aberrations, whereas the genetic variation produced by gamma irradiation was accompanied by the loss and/or gain of large segments of the chromosomes. PMID:24435849

  20. Surface-Constrained 3D Reconstruction in Cryo-EM.

    PubMed

    Barthel, Andrew C; Tagare, Hemant; Sigworth, Fred J

    2011-01-01

    Random spherically-constrained (RSC) reconstruction is a new form of single particle reconstruction (SPR) using cryo-EM images of membrane proteins embedded in spherical lipid vesicles to generate a 3D protein structure. The method has many advantages over conventional SPR, including a more native environment for protein particles and an initial estimate of the particle's angular orientation. These advances allow us to determine structures of membrane proteins such as ion channels and derive more reliable structure estimates. We present an algorithm that relates conventional SPR to the RSC model, and generally, to projection images of particles embedded with an axis parallel to the local normal of a general 2D manifold. We illustrate the performance of this algorithm in the spherical system using synthetic data. PMID:24477184

  1. EM Properties of Magnetic Minerals at RADAR Frequencies

    NASA Technical Reports Server (NTRS)

    Stillman, D. E.; Olhoeft, G. R.

    2005-01-01

    Previous missions to Mars have revealed that Mars surface is magnetic at DC frequency. Does this highly magnetic surface layer attenuate RADAR energy as it does in certain locations on Earth? It has been suggested that the active magnetic mineral on Mars is titanomaghemite and/or titanomagnetite. When titanium is incorporated into a maghemite or magnetite crystal, the Curie temperature can be significantly reduced. Mars has a wide range of daily temperature fluctuations (303K - 143K), which could allow for daily passes through the Curie temperature. Hence, the global dust layer on Mars could experience widely varying magnetic properties as a function of temperature, more specifically being ferromagnetic at night and paramagnetic during the day. Measurements of EM properties of magnetic minerals were made versus frequency and temperature (300K- 180K). Magnetic minerals and Martian analog samples were gathered from a number of different locations on Earth.

  2. Updated bathymetric survey of Kick-'em-Jenny submarine volcano

    NASA Astrophysics Data System (ADS)

    Watlington, R. A.; Wilson, W. D.; Johns, W. E.; Nelson, C.

    High-resolution bathymetric data obtained in July 1996 during a survey of the Kick-'em-Jenny submarine volcano north of Grenada in the Lesser Antilles revealed changes in the structure of the volcanic edifice compared to previously available surveys. The volcano's summit, at 178 m below sea level, was found to be approximately 18 m farther from the surface than was reported by Bouysse et al. (1988) and others. No dome was observed. Instead, an open crater, surrounded by walls that dropped significantly in elevation from one side to the opposite, suggest that eruptions, earthquakes, rockfalls or explosions may have altered the structure since the last detailed survey. The deepest contour of the volcano's crater was found 106 m below the summit.

  3. DOE-EM'S In-Situ Decommissioning Strategy

    SciTech Connect

    Negin, C.A.; Urland, C.S.; Szilagyi, A.P.

    2008-07-01

    This paper addressed the current status of decommissioning projects within the Department of Energy (DOE) that have an end state of permanent entombment, referred to as in-situ decommissioning (ISD). The substance of a Department of Energy, Office of Environmental Management (DOE-EM) review of ISD and the development of a strategy are summarized. The strategy first recognizes ISD as a viable decommissioning end state; secondly addresses the integration of this approach within the external and internal regulatory regimes; subsequently identifies tools that need developing; and finally presents guidance for implementation. The overall conclusion is that ISD is a viable mode of decommissioning that can be conducted within the existing structure of rules and regulations. (author)

  4. Suspended-Patch Antenna With Inverted, EM-Coupled Feed

    NASA Technical Reports Server (NTRS)

    Simons, Rainee N.

    2004-01-01

    An improved suspended-patch antenna has been designed to operate at a frequency of about 23 GHz with linear polarization and to be one of four identical antennas in a rectangular array. The antenna includes a parasitic patch on top of a suspended dielectric superstrate, an active patch on top of a suspended dielectric substrate, a microstrip on the bottom of the dielectric substrate, and a ground plane. The microstrip, the ground plane, the airgap between them, and the dielectric substrate together constitute a transmission line that has an impedance of 50 Ohm and is electromagnetically (EM) coupled to the active patch. The parasitic patch is, in turn, excited by the active patch. The microstrip feed is characterized as inverted because the microstrip is on the bottom of the substrate, whereas microstrips are usually placed on the tops of dielectric substrates

  5. Telescópio de patrulhamento solar em 12 GHz

    NASA Astrophysics Data System (ADS)

    Utsumi, F.; Costa, J. E. R.

    2003-08-01

    O telescópio de patrulhamento solar é um instrumento dedicado à observação de explosões solares com início de suas operações em janeiro de 2002, trabalhando próximo ao pico de emissão do espectro girossincrotrônico (12 GHz). Trata-se de um arranjo de três antenas concebido para a detecção de explosões e determinação em tempo real da localização da região emissora. Porém, desde sua implementação em uma montagem equatorial movimentada por um sistema de rotação constante (15 graus/hora) o rastreio apresentou pequenas variações de velocidade e folgas nas caixas de engrenagens. Assim, tornou-se necessária a construção de um sistema de correção automática do apontamento que era de fundamental importância para os objetivos do projeto. No segundo semestre de 2002 empreendemos uma série de tarefas com o objetivo de automatizar completamente o rastreio, a calibração, a aquisição de dados, controle de ganhos, offsets e transferência dos dados pela internet através de um projeto custeado pela FAPESP. O rastreio automático é realizado através de um inversor que controla a freqüência da rede de alimentação do motor de rastreio podendo fazer micro-correções na direção leste-oeste conforme os radiômetros desta direção detectem uma variação relativa do sinal. Foi adicionado também um motor na direção da declinação para correção automática da variação da direção norte-sul. Após a implementação deste sistema a precisão do rastreio melhorou para um desvio máximo de 30 segundos de arco, o que está muito bom para este projeto. O Telescópio se encontra em funcionamento automático desde março de 2003 e já conta com várias explosões observadas após a conclusão desta fase de automação. Estamos apresentando as explosões mais intensas do período e com as suas respectivas posições no disco solar.

  6. Detection of karst structures using airborne EM and VLF

    SciTech Connect

    Beard, L.P. Nyquist, J.E.; Carpenter, P.J.

    1994-12-31

    Through the combined use of multi-frequency helicopter electromagnetic and VLF data, it is possible to detect and delineate a wide variety of karst structures and possibly to assess their interconnectedness. Multi-frequency EM Can detect karst features if some element of the structure is conductive. This conductive aspect may derive from thick, moist soils in the depression commonly associated with a doline, from conductive fluids in the cavity, or from conductive sediments in the cavity if these occupy a significant portion of it. Multiple loop configurations may also increase the likelihood of detecting karst features. Preliminary evidence indicates total field VLF measurements may be able to detect interconnected karst pathways, so long as the pathways are water or sediment filled. Neither technique can effectively detect dry, resistive air-filled cavities.

  7. Making connections. Voice and data solutions for EMS.

    PubMed

    Careless, James; Erich, John

    2008-08-01

    Communications used to be so simple-1) grab the radio, 2) push and talk. Now we're besieged by a confusing assortment of technology and terms-wideband, broadband, VoIP, RoIP, ect.- and a constand thrumming imperative to achieve and improve and perfect some mystical state of full interoperability. Frankly, it can all be a bit much. With this supplement, we hope to clarify you options. We examine the importance of broadband for EMS, with its potential for larger data "pipes" between the hospital and the field; advances in the promising technologies of Voice over IP and Radio over IP; and how some systems are improving their interconnectedness and resulting operations. The jargon can be overwhelming, but the ideas are worth understanding. PMID:18814746

  8. EM modeling of RF drive in DTL tank 4

    SciTech Connect

    Kurennoy, Sergey S.

    2012-06-19

    A 3-D MicroWave Studio model for the RF drive in the LANSCE DTL tank 4 has been built. Both eigensolver and time-domain modeling are used to evaluate maximal fields in the drive module and RF coupling. The LANSCE DTL tank 4 has recently been experiencing RF problems, which may or may not be related to its replaced RF coupler. This situation stimulated a request by Dan Rees to provide EM modeling of the RF drive in the DTL tank 4 (T4). Jim O'Hara provided a CAD model that was imported into the CST Microwave Studio (MWS) and after some modifications became a part of a simplified MWS model of the T4 RF drive. This technical note describes the model and presents simulation results.

  9. Integrated EM & Thermal Simulations with Upgraded VORPAL Software

    SciTech Connect

    D.N. Smithe, D. Karipides, P. Stoltz, G. Cheng, H. Wang

    2011-03-01

    Nuclear physics accelerators are powered by microwaves which must travel in waveguides between room-temperature sources and the cryogenic accelerator structures. The ohmic heat load from the microwaves is affected by the temperature-dependent surface resistance and in turn affects the cryogenic thermal conduction problem. Integrated EM & thermal analysis of this difficult non-linear problem is now possible with the VORPAL finite-difference time-domain simulation tool. We highlight thermal benchmarking work with a complex HOM feed-through geometry, done in collaboration with researchers at the Thomas Jefferson National Accelerator Laboratory, and discuss upcoming design studies with this emerging tool. This work is part of an effort to generalize the VORPAL framework to include generalized PDE capabilities, for wider multi-physics capabilities in the accelerator, vacuum electronics, plasma processing and fusion R&D fields, and we will also discuss user interface and algorithmic upgrades which facilitate this emerging multiphysics capability.

  10. Speech articulator measurements using low power EM-wave sensors.

    PubMed

    Holzrichter, J F; Burnett, G C; Ng, L C; Lea, W A

    1998-01-01

    Very low power electromagnetic (EM) wave sensors are being used to measure speech articulator motions as speech is produced. Glottal tissue oscillations, jaw, tongue, soft palate, and other organs have been measured. Previously, microwave imaging (e.g., using radar sensors) appears not to have been considered for such monitoring. Glottal tissue movements detected by radar sensors correlate well with those obtained by established laboratory techniques, and have used to estimate a voiced excitation function for speech processing applications. The noninvasive access, coupled with the small size, low power, and high resolution of these new sensors, permit promising research and development applications in speech production, communication disorders, speech recognition and related topics. PMID:9440346

  11. Quantitative spectroscopic analysis of and distance to SN1999em

    NASA Astrophysics Data System (ADS)

    Dessart, L.; Hillier, D. J.

    2006-02-01

    Multi-epoch multi-wavelength spectroscopic observations of photospheric-phase type II supernovae (SN) provide information on massive-star progenitor properties, the core-collapse mechanism, and distances in the Universe. Following successes of recent endeavors (Dessart & Hillier 2005a, A&A, 437, 667; 2005b, A&A, 439, 671) with the non-LTE model atmosphere code CMFGEN (Hillier & Miller 1998, ApJ, 496, 407), we present a detailed quantitative spectroscopic analysis of the type II SN1999em and, using the Expanding Photosphere Method (EPM) or synthetic fits to observed spectra, à la Baron et al. (2004, ApJ, 616, 91), we estimate its distance. Selecting eight epochs, which cover the first 38 days after discovery, we obtain satisfactory fits to optical spectroscopic observations of SN1999em (including the UV and near-IR ranges when available). We use the same iron-group metal content for the ejecta, the same power-law density distribution (with exponent n = 10{-}12), and a Hubble-velocity law at all times. We adopt a H/He/C/N/O abundance pattern compatible with CNO-cycle equilibrium values for a RSG/BSG progenitor, with C/O enhanced and N depleted at later times. The overall evolution of the spectral energy distribution, whose peak shifts to longer wavelengths as time progresses, reflects the steady temperature/ionization-level decrease of the ejecta, associated non-linearly with a dramatic shift to ions with stronger line-blocking powers in the UV and optical (Fe ii, Tiii). In the parameter space investigated, CMFGEN is very sensitive and provides photospheric temperatures and velocities, reddenings, and the H/He abundance ratio with an accuracy of ±500 K, ±10%, 0.05 and 50%, respectively. Following Leonard et al. (2002, PASP, 114, 35), and their use of correction factors from Hamuy et al. (2001, ApJ, 558, 615), we estimate an EPM distance to SN1999em that also falls 30% short of the Cepheid distance of 11.7 Mpc to its host galaxy NGC 1637 (Leonard et al. 2003, ApJ, 594, 247). However, using the systematically higher correction factors of Dessart & Hillier (2005b) removes the discrepancy. A significant scatter, arising primarily from errors in the correction factors and derived temperatures, is seen in distances derived using different band passes. However, adopting both correction factors and corresponding color-temperatures from tailored models to each observation leads to a good agreement between distance estimates obtained from different band passes. The need for detailed model computations thus defeats the appeal and simplicity of the original EPM method, which uses tabulated correction factors and broadband fluxes, for distance determinations. However, detailed fits to SN optical spectra, based on tailored models for individual SN observations, offers a promising approach to obtaining accurate distances, either through the EPM or via the technique of Baron et al. (2004). Our best distance-estimate to SN1999em is 11.5 ± 1.0 Mpc. We note that to achieve 10-20% accuracy in such distance estimates requires multiple observations, covering preferentially a range of early epochs preceding the hydrogen-recombination phase.

  12. Speech articulator measurements using low power EM-wave sensors

    SciTech Connect

    Holzrichter, J.F.; Burnett, G.C.; Ng, L.C.; Lea, W.A.

    1998-01-01

    Very low power electromagnetic (EM) wave sensors are being used to measure speech articulator motions as speech is produced. Glottal tissue oscillations, jaw, tongue, soft palate, and other organs have been measured. Previously, microwave imaging (e.g., using radar sensors) appears not to have been considered for such monitoring. Glottal tissue movements detected by radar sensors correlate well with those obtained by established laboratory techniques, and have been used to estimate a voiced excitation function for speech processing applications. The noninvasive access, coupled with the small size, low power, and high resolution of these new sensors, permit promising research and development applications in speech production, communication disorders, speech recognition and related topics. {copyright} {ital 1998 Acoustical Society of America.}

  13. Tracking of Multiple Moving Sources Using Recursive EM Algorithm

    NASA Astrophysics Data System (ADS)

    Chung, Pei-Jung; Böhme, Johann F.; Hero, Alfred O.

    2005-12-01

    We deal with recursive direction-of-arrival (DOA) estimation of multiple moving sources. Based on the recursive EM algorithm, we develop two recursive procedures to estimate the time-varying DOA parameter for narrowband signals. The first procedure requires no prior knowledge about the source movement. The second procedure assumes that the motion of moving sources is described by a linear polynomial model. The proposed recursion updates the polynomial coefficients when a new data arrives. The suggested approaches have two major advantages: simple implementation and easy extension to wideband signals. Numerical experiments show that both procedures provide excellent results in a slowly changing environment. When the DOA parameter changes fast or two source directions cross with each other, the procedure designed for a linear polynomial model has a better performance than the general procedure. Compared to the beamforming technique based on the same parameterization, our approach is computationally favorable and has a wider range of applications.

  14. Development of MPD thruster EM for a space test. [Engineering model

    SciTech Connect

    Shiina, K.; Suzuki, H.; Uematsu, K.; Ohtsuka, T.; Toki, K. Institute of Space and Astronautical Science, Kanagawa )

    1990-01-01

    An engineering model (EM) of MPD thruster has been developed for a space test on board the first Space Flyer Unit (SFU-1). A thermal vacuum test was conducted, and the following results were obtained: (1) a thermal mathematical model of MPD thruster EM was established, (2) sizing data of thruster heaters were obtained, and (3) thermal characteristics of the MPD thruster EM were confirmed to meet the requirement. The data are going to be reflected in designing a protoflight model of MPD thruster. 8 refs.

  15. Analytical laboratory quality assurance guidance in support of EM environmental sampling and analysis activities

    SciTech Connect

    Not Available

    1994-05-01

    This document introduces QA guidance pertaining to design and implementation of laboratory procedures and processes for collecting DOE Environmental Restoration and Waste Management (EM) ESAA (environmental sampling and analysis activities) data. It addresses several goals: identifying key laboratory issues and program elements to EM HQ and field office managers; providing non-prescriptive guidance; and introducing environmental data collection program elements for EM-263 assessment documents and programs. The guidance describes the implementation of laboratory QA elements within a functional QA program (development of the QA program and data quality objectives are not covered here).

  16. DOE-EM-45 PACKAGING OPERATIONS AND MAINTENANCE COURSE

    SciTech Connect

    Watkins, R.; England, J.

    2010-05-28

    Savannah River National Laboratory - Savannah River Packaging Technology (SRNL-SRPT) delivered the inaugural offering of the Packaging Operations and Maintenance Course for DOE-EM-45's Packaging Certification Program (PCP) at the University of South Carolina Aiken on September 1 and 2, 2009. Twenty-nine students registered, attended, and completed this training. The DOE-EM-45 Packaging Certification Program (PCP) sponsored the presentation of a new training course, Packaging Maintenance and Operations, on September 1-2, 2009 at the University of South Carolina Aiken (USC-Aiken) campus in Aiken, SC. The premier offering of the course was developed and presented by the Savannah River National Laboratory, and attended by twenty-nine students across the DOE, NNSA and private industry. This training informed package users of the requirements associated with handling shipping containers at a facility (user) level and provided a basic overview of the requirements typically outlined in Safety Analysis Report for Packaging (SARP) Chapters 1, 7, and 8. The course taught packaging personnel about the regulatory nature of SARPs to help reduce associated and often costly packaging errors. Some of the topics covered were package contents, loading, unloading, storage, torque requirements, maintaining records, how to handle abnormal conditions, lessons learned, leakage testing (including demonstration), and replacement parts. The target audience for this course was facility operations personnel, facility maintenance personnel, and field quality assurance personnel who are directly involved in the handling of shipping containers. The training also aimed at writers of SARP Chapters 1, 7, and 8, package designers, and anyone else involved in radioactive material packaging and transportation safety. Student feedback and critiques of the training were very positive. SRNL will offer the course again at USC Aiken in September 2010.

  17. Investigating the source of contaminated plumes downstream of the Alborz Sharghi coal washing plant using EM34 conductivity data, VLF-EM and DC-resistivity geophysical methods

    NASA Astrophysics Data System (ADS)

    Shiraz, Farzin Amirkhani; Ardejani, Faramarz Doulati; Moradzadeh, Ali; Arab-Amiri, Ali Reza

    2013-01-01

    Coal washing factories may create serious environmental problems due to pyrite oxidation and acid mine drainage generation from coal waste piles on nearby land. Infiltration of pyrite oxidation products through the porous materials of the coal waste pile by rainwater cause changes in the conductivity of underground materials and groundwater downstream of the pile. Electromagnetic and electrical methods are effective for investigation and monitoring of the contaminated plumes caused by coal waste piles and tailings impoundments. In order to investigate the environmental impact from a coal waste pile at the Alborz Sharghi coal washing plant, an EM34 ground conductivity meter was used on seven parallel lines in an E-W direction, downstream of the waste pile. Two-dimensional resistivity models obtained by the inversion of EM34 conductivity data identified conductive leachate plumes. In addition, quasi-3D inversion of EM34 data has confirmed the decreasing resistivity at depth due to the contaminated plumes. Comparison between EM34, VLF and DC-resistivity datasets, which were acquired for similar survey lines, agree well in identifying changes in the resistivity trend. The EM34 and DC-resistivity sections have greater similarity and better smoothness rather than those of the VLF model. Two-dimensional inversion models of these methods have shown some contaminated plumes with low resistivity.

  18. Aquisição de Estreptococos Mutans e Desenvolvimento de Cárie Dental em Primogênitos

    PubMed Central

    NOCE, Erica; RUBIRA, Cassia Maria Fischer; da Silva ROSA, Odila Pereira; da SILVA, Salete Moura Bonifácio; BRETZ, Walter Antonio

    2011-01-01

    Objetivo Avaliar o momento de aquisição de estreptococos mutans (EM), desenvolvimento de cárie dental e as variáveis a eles associadas no decorrer de 23 meses, em primogênitos de famílias de baixo nível socioeconômico, desde os sete meses de idade. Método A amostra foi selecionada com base em mães densamente colonizadas por EM, incluindo todos os membros de 14 famílias que conviviam na mesma casa. Foram envolvidos no estudo 14 mães, pais e primogênitos e 8 parentes, na maioria avós. Exames clínicos e radiográficos iniciais determinaram os índices de cárie e condição periodontal dos adultos. Contagens de EM foram feitas em todos os adultos nas duas primeiras visitas. Nas crianças foram avaliados os níveis de EM, o número de dentes e de cáries, em quatro visitas. Resultados A prevalência de EM nos adultos foi alta, estando ausente em apenas um dos pais. EM foram detectados em 1, 2, 3 e 10 crianças, respectivamente nas visitas #1, 2, 3 e 4. A cárie dental foi detectada em apenas três crianças na última visita (aos 30 meses de idade), as quais apresentaram escores de EM significantemente maiores que as crianças sem cárie, na mesma visita. Conclusão Exclusivamente a condição social de baixa renda e mães densamente colonizadas por EM não são sinônimo de colonização precoce e alta atividade de cárie em crianças cuidadas em casa. O desenvolvimento de cárie está significantemente associado a escores elevados de EM nas crianças. PMID:22022218

  19. Volta phase plate cryo-EM of the small protein complex Prx3

    PubMed Central

    Khoshouei, Maryam; Radjainia, Mazdak; Phillips, Amy J.; Gerrard, Juliet A.; Mitra, Alok K.; Plitzko, Jürgen M.; Baumeister, Wolfgang; Danev, Radostin

    2016-01-01

    Cryo-EM of large, macromolecular assemblies has seen a significant increase in the numbers of high-resolution structures since the arrival of direct electron detectors. However, sub-nanometre resolution cryo-EM structures are rare compared with crystal structure depositions, particularly for relatively small particles (<400 kDa). Here we demonstrate the benefits of Volta phase plates for single-particle analysis by time-efficient cryo-EM structure determination of 257 kDa human peroxiredoxin-3 dodecamers at 4.4 Å resolution. The Volta phase plate improves the applicability of cryo-EM for small molecules and accelerates structure determination. PMID:26817416

  20. Analysis of the electrochemistry of hemes with Ems spanning 800 mV

    PubMed Central

    Zheng, Zhong; Gunner, M. R.

    2009-01-01

    The free energy of heme reduction in different proteins is found to vary over more than 18 kcal/mol. It is a challenge to determine how proteins manage to achieve this enormous range of Ems with a single type of redox cofactor. Proteins containing 141 unique hemes of a-, b-, and c-type, with bis-His, His-Met, and aquo-His ligation were calculated using Multi-Conformation Continuum Electrostatics (MCCE). The experimental Ems range over 800 mV from −350 mV in cytochrome c3 to 450 mV in cytochrome c peroxidase (vs. SHE). The quantitative analysis of the factors that modulate heme electrochemistry includes the interactions of the heme with its ligands, the solvent, the protein backbone, and sidechains. MCCE calculated Ems are in good agreement with measured values. Using no free parameters the slope of the line comparing calculated and experimental Ems is 0.73 (R2 = 0.90), showing the method accounts for 73% of the observed Em range. Adding a +160 mV correction to the His-Met c-type hemes yields a slope of 0.97 (R2 = 0.93). With the correction 65% of the hemes have an absolute error smaller than 60 mV and 92% are within 120 mV. The overview of heme proteins with known structures and Ems shows both the lowest and highest potential hemes are c-type, whereas the b-type hemes are found in the middle Em range. In solution, bis-His ligation lowers the Em by ≈205 mV relative to hemes with His-Met ligands. The bis-His, aquo-His, and His-Met ligated b-type hemes all cluster about Ems which are ≈200 mV more positive in protein than in water. In contrast, the low potential bis-His c-type hemes are shifted little from in solution, whereas the high potential His-Met c-type hemes are raised by ≈300 mV from solution. The analysis shows that no single type of interaction can be identified as the most important in setting heme electrochemistry in proteins. For example, the loss of solvation (reaction field) energy, which raises the Em, has been suggested to be a major factor in tuning in situ Ems. However, the calculated solvation energy vs. experimental Em shows a slope of 0.2 and R2 of 0.5 thus correlates weakly with Ems. All other individual interactions show even less correlation with Em. However the sum of these terms does reproduce the range of observed Ems. Therefore, different proteins use different aspects of their structures to modulate the in situ heme electrochemistry. This study also shows that the calculated Ems are relatively insensitive to different heme partial charges and to the protein dielectric constant used in the simulation. PMID:19003997

  1. Sampling quality assurance guidance in support of EM environmental sampling and analysis activities

    SciTech Connect

    Not Available

    1994-05-01

    This document introduces quality assurance guidance pertaining to the design and implementation of sampling procedures and processes for collecting environmental data for DOE`s Office of EM (Environmental Restoration and Waste Management).

  2. 7. PHOTOCOPY, ELEVATIONS FOR E.M. BARRACKS, N.C.O. AND OFFICERS QUARTERS. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    7. PHOTOCOPY, ELEVATIONS FOR E.M. BARRACKS, N.C.O. AND OFFICERS QUARTERS. - NIKE Missile Base SL-40, Barracks No. 1, North end of base, southest of Basketball Court & northwest of Barracks No. 2, Hecker, Monroe County, IL

  3. Factors that Influence the Formation and Stability of Thin, Cryo-EM Specimens.

    PubMed

    Glaeser, Robert M; Han, Bong-Gyoon; Csencsits, Roseann; Killilea, Alison; Pulk, Arto; Cate, Jamie H D

    2016-02-23

    Poor consistency of the ice thickness from one area of a cryo-electron microscope (cryo-EM) specimen grid to another, from one grid to the next, and from one type of specimen to another, motivates a reconsideration of how to best prepare suitably thin specimens. Here we first review the three related topics of wetting, thinning, and stability against dewetting of aqueous films spread over a hydrophilic substrate. We then suggest that the importance of there being a surfactant monolayer at the air-water interface of thin, cryo-EM specimens has been largely underappreciated. In fact, a surfactant layer (of uncontrolled composition and surface pressure) can hardly be avoided during standard cryo-EM specimen preparation. We thus suggest that better control over the composition and properties of the surfactant layer may result in more reliable production of cryo-EM specimens with the desired thickness. PMID:26386606

  4. Self-assembled monolayers improve protein distribution on holey carbon cryo-EM supports

    PubMed Central

    Meyerson, Joel R.; Rao, Prashant; Kumar, Janesh; Chittori, Sagar; Banerjee, Soojay; Pierson, Jason; Mayer, Mark L.; Subramaniam, Sriram

    2014-01-01

    Poor partitioning of macromolecules into the holes of holey carbon support grids frequently limits structural determination by single particle cryo-electron microscopy (cryo-EM). Here, we present a method to deposit, on gold-coated carbon grids, a self-assembled monolayer whose surface properties can be controlled by chemical modification. We demonstrate the utility of this approach to drive partitioning of ionotropic glutamate receptors into the holes, thereby enabling 3D structural analysis using cryo-EM methods. PMID:25403871

  5. EMS Provider Attitudes and Perceptions of Enrolling Patients without Consent in Prehospital Emergency Research.

    PubMed

    Jasti, Jamie; Fernandez, Antonio R; Schmidt, Terri A; Lerner, E Brooke

    2016-01-01

    The purpose of this study was to evaluate the attitudes and opinions of a broad population of EMS providers on enrolling patients in research without consent. A survey was conducted in 2010 of all EMS providers who participated in the National Registry of Emergency Medical Technicians (NREMT) reregistration process, which included half of all registered providers. Each reregistration packet included our optional survey, which had nine 6-point Likert scale questions concerning their opinion of research studies without consent as well as 8 demographic questions. Responses were collapsed to agree and disagree and then analyzed using descriptive statistics with 99% confidence intervals. A total of 65,993 EMS providers received the survey and 23,832 (36%) participated. Most respondents agreed (98.4%, 99%CI: 98.2-98.6) that EMS research is important, but only 30.9% (99%CI: 30.1-31.6) agreed with enrolling patients without their consent when it is important to learn about a new treatment. Only 46.6% (99%Cl: 45.7-47.4) were personally willing to be enrolled in a study without their consent. A majority (68.5% [99%Cl: 67.7-69.3]) of respondents believed that EMS providers should have the individual right to refuse to enroll patients in EMS research. While the majority of respondents agreed that EMS research is important, considerably less agree with enrolling patients without consent and less than half would be willing to be enrolled in a study without their consent. Prior to starting an Exception from Informed Consent (EFIC) study, researchers should discuss with EMS providers their perceptions of enrolling patients without consent and address their concerns. PMID:26270331

  6. Pre-flight risk assessment in emergency medical service (EMS) helicopters

    NASA Technical Reports Server (NTRS)

    Shively, Robert J.

    1990-01-01

    A preflight risk assessment system (SAFE) was developed at NASA-Ames Research Center for civil EMS operations to assist pilots in making a decision objectively to accept or decline a mission. The ability of the SAFE system to predict risk profiles was examined at an EMS operator. Results of this field study showed that the usefulness of SAFE was largely dependent on the type of mission flown.

  7. Effects of Loaded Squat Exercise with and without Application of Superimposed EMS on Physical Performance.

    PubMed

    Wirtz, Nicolas; Zinner, Christoph; Doermann, Ulrike; Kleinoeder, Heinz; Mester, Joachim

    2016-03-01

    The aim of the present study was to investigate the effects of a multiple set squat exercise training intervention with superimposed electromyostimulation (EMS) on strength and power, sprint and jump performance. Twenty athletes from different disciplines participated and were divided into two groups: strength training (S) or strength training with superimposed EMS (S+E). Both groups completed the same training program twice a week over a six week period consisting of four sets of the 10 repetition maximum of back squats. Additionally, the S+E group had EMS superimposed to the squat exercise with simultaneous stimulation of leg and trunk muscles. EMS intensity was adjusted to 70% of individual pain threshold to ensure dynamic movement. Strength and power of different muscle groups, sprint, and vertical jump performance were assessed one week before (pre), one week after (post) and three weeks (re) following the training period. Both groups showed improvements in leg press strength and power, countermovement and squat jump performance and pendulum sprint (p < 0.05), with no changes for linear sprint. Differences between groups were only evident at the leg curl machine with greater improvements for the S+E group (p < 0.05). Common squat exercise training and squat exercise with superimposed EMS improves maximum strength and power, as well as jumping abilities in athletes from different disciplines. The greater improvements in strength performance of leg curl muscles caused by superimposed EMS with improvements in strength of antagonistic hamstrings in the S+E group are suggesting the potential of EMS to unloaded (antagonistic) muscle groups. Key pointsSimilar strength adaptations occurred after a 6 week 10 RM back squat exercise program with superimposed EMS (S+E) and 10 RM back squat exercise (S) alone.Specific adaptations for S+E at the leg curl muscles were evident.S and S+E improved SJ, CMJ and pendulum sprint performance.No improvement occurred in linear sprint performance. PMID:26957923

  8. Effects of Loaded Squat Exercise with and without Application of Superimposed EMS on Physical Performance

    PubMed Central

    Wirtz, Nicolas; Zinner, Christoph; Doermann, Ulrike; Kleinoeder, Heinz; Mester, Joachim

    2016-01-01

    The aim of the present study was to investigate the effects of a multiple set squat exercise training intervention with superimposed electromyostimulation (EMS) on strength and power, sprint and jump performance. Twenty athletes from different disciplines participated and were divided into two groups: strength training (S) or strength training with superimposed EMS (S+E). Both groups completed the same training program twice a week over a six week period consisting of four sets of the 10 repetition maximum of back squats. Additionally, the S+E group had EMS superimposed to the squat exercise with simultaneous stimulation of leg and trunk muscles. EMS intensity was adjusted to 70% of individual pain threshold to ensure dynamic movement. Strength and power of different muscle groups, sprint, and vertical jump performance were assessed one week before (pre), one week after (post) and three weeks (re) following the training period. Both groups showed improvements in leg press strength and power, countermovement and squat jump performance and pendulum sprint (p < 0.05), with no changes for linear sprint. Differences between groups were only evident at the leg curl machine with greater improvements for the S+E group (p < 0.05). Common squat exercise training and squat exercise with superimposed EMS improves maximum strength and power, as well as jumping abilities in athletes from different disciplines. The greater improvements in strength performance of leg curl muscles caused by superimposed EMS with improvements in strength of antagonistic hamstrings in the S+E group are suggesting the potential of EMS to unloaded (antagonistic) muscle groups. Key points Similar strength adaptations occurred after a 6 week 10 RM back squat exercise program with superimposed EMS (S+E) and 10 RM back squat exercise (S) alone. Specific adaptations for S+E at the leg curl muscles were evident. S and S+E improved SJ, CMJ and pendulum sprint performance. No improvement occurred in linear sprint performance. PMID:26957923

  9. Single-particle cryo-EM data acquisition by using direct electron detection camera.

    PubMed

    Wu, Shenping; Armache, Jean-Paul; Cheng, Yifan

    2016-02-01

    Recent advances in single-particle electron cryo-microscopy (cryo-EM) were largely facilitated by the application of direct electron detection cameras. These cameras feature not only a significant improvement in detective quantum efficiency but also a high frame rate that enables images to be acquired as 'movies' made of stacks of many frames. In this review, we discuss how the applications of direct electron detection cameras in cryo-EM have changed the way the data are acquired. PMID:26546989

  10. Sobre o uso das séries de Puiseux em mecanica celeste

    NASA Astrophysics Data System (ADS)

    Miloni, O. I.

    2003-08-01

    Neste trabalho é apresentada uma demonstração do uso dos diferentes desenvolvimentos em séries para as equações de perturbação em Mecânica Celeste no marco Hamiltoniano. Em trabalhos clássicos como os de Poincaré (Poincaré, 1893) por exemplo, já esta planteado o uso de potências não inteiras no pequeno parâmetro, o que evidencia a não analiticidade das funções quando uma ressonância ocorre. Nestes trabalhos os desenvolvimentos são na raíz quadrada da massa de Júpiter (o pequeno parâmetro). Mais recentemente (Ferraz-Mello, 1985) outros tipos de desenvolvimentos foram aplicados modificando substancialmente as ordens de grandeza e a velocidade de convergência das séries. Com esta abordagem, os desenvolvimentos foram expressados em termos da raíz cúbica do pequeno parâmetro. Neste trabalho apresentamos um enfoque geral, onde os diferentes tipos de desenvolvimentos em séries de Puiseux (Valiron, 1950) são obtidos a partir da aplicação de Teorema de Preparação de Weierstrass (Goursat, 1916) considerando a equação de Hamilton-Jacobi como uma equação algébrica. Os resultados são aplicados ao problema restrito dos três corpos em ressonância de primeira ordem e, dependendo da grandeza da excentricidade do asteróide em relação à de Júpiter, obtemos os diferentes desenvolvimentos, em raíz quadrada ou raíz cúbica da massa de Júpiter.

  11. EM?IM: software for relating ion mobility mass spectrometry and electron microscopy data.

    PubMed

    Degiacomi, Matteo T; Benesch, Justin L P

    2016-01-01

    We present EM?IM, software that allows the calculation of collision cross-sections from electron density maps obtained for example by means of transmission electron microscopy. This allows the assessment of structures other than those described by atomic coordinates with ion mobility mass spectrometry data, and provides a new means for contouring and validating electron density maps. EM?IM thereby facilitates the use of data obtained in the gas phase within structural biology studies employing diverse experimental methodologies. PMID:26616427

  12. Estudo comparativo entre estrelas centrais de nebulosas planetárias deficientes em hidrogênio

    NASA Astrophysics Data System (ADS)

    Marcolino, W. L. F.; de Araújo, F. X.

    2003-08-01

    Apresentamos neste trabalho o resultado de um estudo das principais características espectrais das estrelas centrais de nebulosas planetárias (ECNP) deficientes em hidrogênio. A origem e a evolução dessas estrelas ainda constitui um problema em aberto na evolução estelar. Geralmente esses objetos são divididos em [WCE], [WCL] e [WELS]. Os tipos [WCE] e [WCL] apresentam um espectro típico de uma estrela Wolf-Rayet carbonada de população I e as [WELS] apresentam linhas fracas de carbono e oxigênio em emissão. Existem evidências que apontam a seguinte sequência evolutiva : [WCL] = > [WCE] = > [WELS] = > PG 1159 (pré anã-branca). No entanto, tal cenário apresenta falhas como por exemplo a falta de ECNP entre os tipos [WCL] e [WCE]. Baseados em uma amostra de 24 objetos obtida no telescópio de 1.52m em La Silla, Chile (acordo ESO/ON), ao longo do ano 2000, apresentamos os resultados da comparação das larguras equivalentes de diversas linhas relevantes entre os tipos [WCL], [WCE] e [WELS]. Verificamos que nossos dados estão de acordo com a sequência evolutiva. Baseado nas linhas de C IV, conseguimos dividir pela primeira vez as [WELS] em dois grupos principais. Além disso, os dados reforçam a afirmação de que as [WCE] são as estrelas que possuem a maior temperatura entre as ECNP deficientes em hidrogênio. Discutimos ainda, a escassez de dados disponíveis na literatura e a necessidade da obtenção de parametros físicos para estes objetos.

  13. The Soils and Groundwater – EM-20 S&T Roadmap Quality Assurance Project Plan

    SciTech Connect

    Fix, N. J.

    2008-02-11

    The Soils and Groundwater – EM-20 Science and Technology Roadmap Project is a U.S. Department of Energy, Office of Environmental Management-funded initiative designed to develop new methods, strategies and technology for characterizing, modeling, remediating, and monitoring soils and groundwater contaminated with metals, radionuclides, and chlorinated organics. This Quality Assurance Project Plan provides the quality assurance requirements and processes that will be followed by EM-20 Roadmap Project staff.

  14. High-speed computation of the EM algorithm for PET image reconstruction

    SciTech Connect

    Rajan, K.; Patnaik, L.M.; Ramakrishna, J. )

    1994-10-01

    The PET image reconstruction based on the EM algorithm has several attractive advantages over the conventional convolution backprojection algorithms. However, two major drawbacks have impeded the routine use of the EM algorithm, namely, the long computational time due to slow convergence and the large memory required for the storage of the image, projection data and the probability matrix. In this study, the authors attempts to solve these two problems by parallelizing the EM algorithm on a multiprocessor system. The authors have implemented an extended hypercube (EH) architecture for the high-speed computation of the EM algorithm using the commercially available fast floating point digital signal processor (DSP) chips as the processing elements (PEs). The authors discuss and compare the performance of the EM algorithm on a 386/387 machine, CD 4360 mainframe, and on the EH system. The results show that the computational speed performance of an EH using DSP chips as PEs executing the EM image reconstruction algorithm is about 130 times better than that of the CD 4360 mainframe. The EH topology is expandable with more number of PEs.

  15. Anisotropic 3D inversion of towed streamer EM data from the Troll West oil province (Invited)

    NASA Astrophysics Data System (ADS)

    Mattsson, J.; Midgley, J.; Zhdanov, M. S.; ENDO, M.

    2013-12-01

    Obviating the need for ocean bottom receivers, the towed streamer EM system enables CSEM data to be acquired simultaneously with seismic over very large areas in frontier and mature basins for higher production rates and more cost effective than conventional marine CSEM. The towed streamer EM data are currently processed and delivered as a spectrum of frequency-domain responses. We apply a 3D anisotropic inversion methodology for towed streamer EM data that includes a moving sensitivity domain. Our implementation is based on the 3D contraction integral equation method for computing the EM responses and Fréchet derivatives, and uses the re-weighted regularized conjugate gradient method for minimizing the objective functional with focusing regularization. We present an actual case study for the 3D anisotropic inversion of towed streamer EM data from the Troll West oil province in the North Sea, and demonstrate our ability to image the Troll West Oil and Gas Provinces. We conclude that 3D anisotropic inversion of the data from the current generation of towed streamer EM system can adequately recover both the vertical and horizontal resistivities in anisotropic hydrocarbon-bearing formations.

  16. Cryo-EM Data Are Superior to Contact and Interface Information in Integrative Modeling.

    PubMed

    de Vries, Sjoerd J; Chauvot de Beauchêne, Isaure; Schindler, Christina E M; Zacharias, Martin

    2016-02-23

    Protein-protein interactions carry out a large variety of essential cellular processes. Cryo-electron microscopy (cryo-EM) is a powerful technique for the modeling of protein-protein interactions at a wide range of resolutions, and recent developments have caused a revolution in the field. At low resolution, cryo-EM maps can drive integrative modeling of the interaction, assembling existing structures into the map. Other experimental techniques can provide information on the interface or on the contacts between the monomers in the complex. This inevitably raises the question regarding which type of data is best suited to drive integrative modeling approaches. Systematic comparison of the prediction accuracy and specificity of the different integrative modeling paradigms is unavailable to date. Here, we compare EM-driven, interface-driven, and contact-driven integrative modeling paradigms. Models were generated for the protein docking benchmark using the ATTRACT docking engine and evaluated using the CAPRI two-star criterion. At 20 Å resolution, EM-driven modeling achieved a success rate of 100%, outperforming the other paradigms even with perfect interface and contact information. Therefore, even very low resolution cryo-EM data is superior in predicting heterodimeric and heterotrimeric protein assemblies. Our study demonstrates that a force field is not necessary, cryo-EM data alone is sufficient to accurately guide the monomers into place. The resulting rigid models successfully identify regions of conformational change, opening up perspectives for targeted flexible remodeling. PMID:26846888

  17. Reservoir characterization and process monitoring with EM methods. 1994 Annual report

    SciTech Connect

    Wilt, M.

    1995-05-01

    During the past five years at Lawrence Livermore National Laboratory (LLNL) the authors have applied the EM induction method to the problem of petroleum reservoir characterization and enhanced oil recovery (EOR) monitoring. The goal is to develop practical tools for determining the electrical resistivity distribution between boreholes at a useful scale for reservoir characterization. During FY94 the authors conducted their largest field test to date. They applied crosshole and surface-to-borehole EM techniques to reservoir characterization at the Los Hills No. 3 oil field making three sets of measurements during the initial phase of the steam drive.From these data they were able to determine the resistivity and configuration of the oil sands, between the observation wells, and provide an image of the subsurface resistivity changes due to the steam drive. They also conducted a waterflood experiment at the Richmond Field Station facility using the borehole-to-surface EM technique. For this test they injected a small quantity of saltwater, and applied the Em technique to monitor the progress of the injected plume. Data collection for this experiment is complete but the results are yet to be interpreted. Finally, a project to understand EM propagation through steel casing was initiated in 1994. The goals of the experiment are to determine the limits and applications for crosswell EM surveys through steel well casing.

  18. An interactive program for computer-aided map design, display, and query: EM APKGS2

    NASA Astrophysics Data System (ADS)

    Pouch, Gregory W.

    1997-04-01

    EM APKGS2 is a user-friendly, PC-based electronic mapping tool for use in hydrogeologic exploration and appraisal. EM APKGS2 allows the analyst to construct maps interactively from data stored in a relational database, perform point-oriented spatial queries such as locating all wells within a specified radius, perform geographic overlays, and export the data to other programs for further analysis. EM APKGS2 runs under Microsoft R Windows 3.1 and compatible operating systems. EM APKGS2 is a public domain program available from the Kansas Geological Survey. EM APKGS2 is the centerpiece of WHEAT, the Windows-based Hydrogeologic Exploration and Appraisal Toolkit, a suite of user-friendly Microsoft R Windows programs for natural resource exploration and management. The principal goals in development of WHEAT have been ease of use, hardware independence, low cost, and end-user extensibility. WHEAT's native data format is a Microsoft R Access R database. WHEAT stores a feature's geographic coordinates as attributes so they can be accessed easily by the user. The WHEAT programs are designed to be used in conjunction with other Microsoft R Windows software to allow the natural resource scientist to perform work easily and effectively. WHEAT and EM APKGS have been used at several of Kansas' Groundwater Management Districts and the Kansas Geological Survey on groundwater management operations, groundwater modeling projects, and geologic exploration projects.

  19. New Developments in the Technology Readiness Assessment Process in US DOE-EM - 13247

    SciTech Connect

    Krahn, Steven; Sutter, Herbert; Johnson, Hoyt

    2013-07-01

    A Technology Readiness Assessment (TRA) is a systematic, metric-based process and accompanying report that evaluates the maturity of the technologies used in systems; it is designed to measure technology maturity using the Technology Readiness Level (TRL) scale pioneered by the National Aeronautics and Space Administration (NASA) in the 1980's. More recently, DoD has adopted and provided systematic guidance for performing TRAs and determining TRLs. In 2007 the GAO recommended that the DOE adopt the NASA/DoD methodology for evaluating technology maturity. Earlier, in 2006-2007, DOE-EM had conducted pilot TRAs on a number of projects at Hanford and Savannah River. In March 2008, DOE-EM issued a process guide, which established TRAs as an integral part of DOE-EM's Project Management Critical Decision Process. Since the development of its detailed TRA guidance in 2008, DOE-EM has continued to accumulate experience in the conduct of TRAs and the process for evaluating technology maturity. DOE has developed guidance on TRAs applicable department-wide. DOE-EM's experience with the TRA process, the evaluations that led to recently developed proposed revisions to the DOE-EM TRA/TMP Guide; the content of the proposed changes that incorporate the above lessons learned and insights are described. (authors)

  20. The Impact of the Geriatrics Education for EMS Training Program in a Rural Community

    PubMed Central

    Shah, Manish N.; Rajasekaran, Karthik; Sheahan, William D.; Wimbush, Tracy; Karuza, Jurgis

    2008-01-01

    The Geriatrics Education for EMS (GEMS) course provides continuing education for emergency medical service (EMS) providers. This study evaluates the impact of the course on EMS providers in a rural county by performing a prospective cohort study using a pre-/post- survey design. We used the Geriatric Attitude Scale, the GEMS knowledge post-test, a class satisfaction survey, and a survey evaluating EMS providers’ comfort in caring for older adults to measure the classes’ impact. Eighty-eight EMS providers participated. All passed the course and were very satisfied with the course. Follow up was completed on 77(80%). No significant change in attitude score was identified (p=0.09). Median comfort scores significantly increased for the following domains: communications, medical care, abuse evaluation, and falls evaluation. Providing the GEMS course to EMS providers in a rural community resulted in students achieving a pre-established level of knowledge regarding caring for older adults and an increase in their comfort level for the care of older adults. The impact of the training on patient outcomes needs to be identified. PMID:18482304

  1. EM techniques for archaeological laboratory experiments: preliminary results

    NASA Astrophysics Data System (ADS)

    Capozzoli, Luigi; De Martino, Gregory; Giampaolo, Valeria; Raffaele, Luongo; Perciante, Felice; Rizzo, Enzo

    2015-04-01

    The electromagnetic techniques (EM) are based on the investigation of subsoil geophysical parameters and in the archaeological framework they involve in studying contrasts between the buried cultural structures and the surrounding materials. Unfortunately, the geophysical contrast between archaeological features and surrounding soils sometimes are difficult to define due to problems of sensitivity and resolution both related on the characteristic of the subsoil and the geophysical methods. For this reason an experimental activity has been performed in the Hydrogeosite laboratory addressed on the assessment of the capability of geophysical techniques to detect archeological remains placed in the humid/saturated subsoil. At Hydrogeosite Laboratory of CNR-IMAA, a large scale sand-box is located, consisting on a pool shape structures of 230m3 where archaeological remains have been installed . The remains are relative to a living environment and burial of Roman times (walls, tombs, roads, harbour, etc.) covered by sediments. In order to simulate lacustrine and wetland condition and to simulate extreme events (for example underwater landslide, fast natural erosion coast, etc.) the phreatic level was varied and various acquisitions for the different scenarios were performed. In order to analyze the EM behavior of the buried small archaeological framework, ground penetrating radar (GPR) and electrical resistivity tomographies were performed. With GPR, analysis in time domain and frequency domain were performed and coupled to information obtained through resistivity analysis with the support of numerical simulations used to compare the real data with those modeled. A dense grid was adopted for 400 and 900 MHz e-m acquisitions in both the directions, the maximum depth of investigation was limited and less than 3 meters. The same approach was used for ERT acquisition where different array are employed, in particular 3D configuration was used to carry out a 3D resistivity model. The integration of electric and electromagnetic data allowed us to overcome the limits of each technique, especially in terms of resolution and depth, in humid/saturated conditions was investigated and the effectiveness of three-dimensional acquisitions was studied to better explore archeological sites and reduce the uncertainties related on the interpretation of geophysical analysis. The complexity of the relationship between archaeological features in the subsoil and their geophysical response requires efforts in the interpretation of resulting data. Reference Campana S. and Piro, S., (2009): Seeing the unseen - Geophysics and landscape archaeology., CRC Press, London, 2. No. of pages: 376. ISBN: 978-0-415-44721-8. Conyers, L. and Goodman, D., (1997): Ground-Penetrating Radar: An Introduction for Archaeologists. Walnut Creek, Calif.: AltaMira Press. Davis, J.L. and Annan, A.P. (1989): Ground-penetrating radar for high-resolution mapping of soil and rock stratigraphy. Geophysical Prospecting, 37, 531-551.

  2. Tide-driven fluid mud transport in the Ems estuary

    NASA Astrophysics Data System (ADS)

    Becker, Marius; Maushake, Christian; Winter, Christian

    2014-05-01

    The Ems estuary, located at the border between The Netherlands and Germany, experienced a significant change of the hydrodynamic regime during the past decades, as a result of extensive river engineering. With the net sediment transport now being flood-oriented, suspended sediment concentrations have increased dramatically, inducing siltation and formation of fluid mud layers, which, in turn, influence hydraulic flow properties, such as turbulence and the apparent bed roughness. Here, the process-based understanding of fluid mud is essential to model and predict mud accumulation, not only regarding the anthropogenic impact, but also in view of the expected changes of environmental boundary conditions, i.e., sea level rise. In the recent past, substantial progress has been made concerning the understanding of estuarine circulation and influence of tidal asymmetry on upstream sediment accumulation. While associated sediment transport formulations have been implemented in the framework of numerical modelling systems, in-situ data of fluid mud are scarce. This study presents results on tide-driven fluid mud dynamics, measured during four tidal cycles aside the navigation channel in the Ems estuary. Lutoclines, i.e., strong vertical density gradients, were detected by sediment echo sounder (SES). Acoustic Doppler current profiles (ADCP) of different acoustic frequencies were used to determine hydrodynamic parameters and the vertical distribution of suspended sediment concentrations in the upper part of the water column. These continuous profiling measurements were complemented by CTD, ADV, and OBS casts. SES and ADCP profiles show cycles of fluid mud entrainment during accelerating flow, and subsequent settling, and the reformation of a lutocline during decelerating flow and slack water. Significant differences are revealed between flood and ebb phase. Highest entrainment rates are measured at the beginning of the flood phase, associated with strong current shear and rapid vertical mixing, inducing the highest instantaneous suspended sediment flux measured during the tidal cycle. During decelerating flood currents a lutocline is again established at a certain distance above the consolidated river bed. During slack water after the flood phase the concentration gradient increases and the thickness of the fluid mud layer below is constant, also during a significant part of the ebb phase. As water depth decreases during ebb, entrainment occurs only at the upper part of the fluid mud layer. The suspended sediment flux is low compared to the flood phase. These observations are further elaborated using turbulence parameters obtained from ADV and ADCP, explaining the difference between ebb and flood concerning the vertical location of the maximum concentration gradient. This study is funded through DFG-Research Center / Excellence Cluster "The Ocean in the Earth System". The Senckenberg Institute and the Federal Waterways Engineering and Research Institute are acknowledged for technical support.

  3. Abundâncias em estrelas de Bário

    NASA Astrophysics Data System (ADS)

    Allen, D. M.

    2003-08-01

    Estrelas de Bário apresentam linhas intensas de elementos produzidos pelo processos (ex: Ba, Y, Sr, Zr) e bandas intensas de CN, C2 e CH. A hipótese mais aceita sobre a origem deste grupo peculiar é a de que essas estrelas façam parte de sistemas binários, tendo recebido material enriquecido em elementos pesados da companheira mais evoluída. Apresentamos neste trabalho uma análise detalhada de uma amostra de estrelas desta classe, incluindo determinação de parâmetros atmosféricos e cálculo de abundâncias. As temperaturas efetivas foram determinadas a partir de dados fotométricos obtidos com o Fotrap instalado no telescópio Zeiss do LNA (Laboratório Nacional de Astrofísica) (B-V, V-I, R-I, V-R), e coletados na literatura nos catálogos Hipparcos (B-V), 2MASS (Two Micron All Sky Survey) (V-K) e The General Catalogue Photometric Data (sistema Geneva). Obtivemos uma faixa de temperaturas de 4400 £ Tef £ 6500. As metalicidades foram determinadas a partir de linhas de Fe I e Fe II, estando os resultados no intervalo -1 £ [Fe/H] £ +0.1. O log g foi determinado pelo equilíbrio de ionização e pela relação com a magnitude bolométrica, a temperatura e a massa, sendo os resultados na faixa 1.5 £ log g £ 4.5. As distâncias utilizadas foram determinadas com o auxílio das paralaxes Hipparcos, e as massas determinadas por modelos de isócronas. Os espectros utilizados foram obtidos com o espectrógrafo FEROS no Telescópio de 1,5m do ESO (European Southern Observatory). As abundâncias foram calculadas por meio de síntese espectral de linhas individuais incluindo elementos alfa, pico do Fe, s e r. Encontramos um excesso de elementos pesados em relação ao Fe, como esperado para estrelas de Bário.

  4. PREFACE: EmQM13: Emergent Quantum Mechanics 2013

    NASA Astrophysics Data System (ADS)

    2014-04-01

    These proceedings comprise the invited lectures of the second international symposium on Emergent Quantum Mechanics (EmQM13), which was held at the premises of the Austrian Academy of Sciences in Vienna, Austria, 3-6 October 2013. The symposium was held at the ''Theatersaal'' of the Academy of Sciences, and was devoted to the open exploration of emergent quantum mechanics, a possible ''deeper level theory'' that interconnects three fields of knowledge: emergence, the quantum, and information. Could there appear a revised image of physical reality from recognizing new links between emergence, the quantum, and information? Could a novel synthesis pave the way towards a 21st century, ''superclassical'' physics? The symposium provided a forum for discussing (i) important obstacles which need to be overcome as well as (ii) promising developments and research opportunities on the way towards emergent quantum mechanics. Contributions were invited that presented current advances in both standard as well as unconventional approaches to quantum mechanics. The EmQM13 symposium was co-organized by Gerhard Grössing (Austrian Institute for Nonlinear Studies (AINS), Vienna), and by Jan Walleczek (Fetzer Franklin Fund, USA, and Phenoscience Laboratories, Berlin). After a very successful first conference on the same topic in 2011, the new partnership between AINS and the Fetzer Franklin Fund in producing the EmQM13 symposium was able to further expand interest in the promise of emergent quantum mechanics. The symposium consisted of two parts, an opening evening addressing the general public, and the scientific program of the conference proper. The opening evening took place at the Great Ceremonial Hall (Grosser Festsaal) of the Austrian Academy of Sciences, and it presented talks and a panel discussion on ''The Future of Quantum Mechanics'' with three distinguished speakers: Stephen Adler (Princeton), Gerard 't Hooft (Utrecht) and Masanao Ozawa (Nagoya). The articles contained in these proceedings represent the talks of the invited speakers as written immediately after the symposium. The volume starts with a contribution by organizers Jan Walleczek and Gerhard Grössing, essentially explaining why emergent quantum mechanics, and other deterministic approaches to quantum theory, must be considered viable approaches in quantum foundations today. This is followed by the exposition of Stephen Adler's talk who introduced to a general audience key questions at the current frontiers of quantum mechanics during the opening evening (with the contents of his conference talk appearing elsewhere). The conference proceedings then continues with the presentations as given in their chronological order i.e. starting with the opening talk of the scientific program by Gerard 't Hooft. While the page number was restricted for all invited speakers, the paper by Jeff Tollaksen was given more space, as his invited collaborator Yakir Aharonov was unable to deliver a separate talk, in order to represent both contributions in one paper. Note that the talks of all speakers, including the talks of those who could not be represented in this volume (M. Arndt, B. Braverman, C. Brukner, S. Colin, Y. Couder, B. Poirier, A. Steinberg, G. Weihs and H. Wiseman) are freely available on the conference website as video presentations (http://www.emqm13.org). The organizers wish to express their gratitude to Siegfried Fussy and Herbert Schwabl from AINS for the organizational support. The organizers also wish to thank Bruce Fetzer, President and CEO, John E. Fetzer Memorial Trust, and the Members of the Board of Trustees, for their strong support and for funding this symposium. We also wish to thank the Austrian Academy of Sciences for allowing the symposium to be held on their premises, and Anton Zeilinger, President of the Austrian Academy of Sciences, for his welcome address. The expertise of the Members of the Scientific Advisory Board of the EmQM13 symposium, Ana Maria Cetto (Mexico), Lajos Diósi (Budapest), Maurice de Gosson (Vienna), Edward Nelson (Princeton), Theo Nieuwenhuizen (Amsterdam) and Helmut Rauch (Vienna), is also gratefully acknowledged. Finally, it is a pleasure to again thank Sarah Toms and her team at IOP Publishing (Bristol) for their friendly advice and help during the preparation of these proceedings. Vienna, Pisa, Berlin, February 2014 Gerhard Grössing, Hans-Thomas Elze, Johannes Mesa Pascasio, Jan Walleczek The front cover image shows two bouncing oil droplets on an oscillating oil surface, as they are employed by Couder, Fort, Bush, and others to show macroscopic analogues of wave-particle complementarity (courtesy of Dan Harris and John Bush, MIT).

  5. The tidal asymmetries and residual flows in Ems Estuary

    NASA Astrophysics Data System (ADS)

    Pein, Johannes Ulrich; Stanev, Emil Vassilev; Zhang, Yinglong Joseph

    2014-12-01

    A 3D unstructured-grid numerical model of the Ems Estuary is presented. The simulated hydrodynamics are compared against tidal gauge data and observations from research cruises. A comparison with an idealized test reveals the capability of the model to reproduce the secondary circulation patterns known from theoretical results. The simulations prove to be accurate and realistic, confirming and extending findings from earlier observations and modeling studies. The basic characteristics of dominant physical processes in the estuary such as tidal amplification, tidal damping, overtide generation, baroclinicity and internal mixing asymmetry are quantified. The model demonstrates an overall dominance of the flood currents in most of the studied area. However, the hypsometric control in the vicinity of Dollart Bay reverses this asymmetry, with the ebb currents stronger than the flood ones. Small-scale bathymetric characteristics and baroclinicity result in a very complex interplay between dominant physical mechanisms in different parts of the tidal channels and over the tidal flats. Residual flow reveals a clear overturning circulation in some parts of the estuary which is related to a mixing asymmetry between flood and ebb currents. We demonstrate that while areas close to the tidal river exhibit overall similarity with density controlled estuarine conditions, in large areas of the outer estuary barotropic forcing and complex bathymetry together with the density distribution affect substantially the horizontal circulation.

  6. EM modeling for GPIR using 3D FDTD modeling codes

    SciTech Connect

    Nelson, S.D.

    1994-10-01

    An analysis of the one-, two-, and three-dimensional electrical characteristics of structural cement and concrete is presented. This work connects experimental efforts in characterizing cement and concrete in the frequency and time domains with the Finite Difference Time Domain (FDTD) modeling efforts of these substances. These efforts include Electromagnetic (EM) modeling of simple lossless homogeneous materials with aggregate and targets and the modeling dispersive and lossy materials with aggregate and complex target geometries for Ground Penetrating Imaging Radar (GPIR). Two- and three-dimensional FDTD codes (developed at LLNL) where used for the modeling efforts. Purpose of the experimental and modeling efforts is to gain knowledge about the electrical properties of concrete typically used in the construction industry for bridges and other load bearing structures. The goal is to optimize the performance of a high-sample-rate impulse radar and data acquisition system and to design an antenna system to match the characteristics of this material. Results show agreement to within 2 dB of the amplitudes of the experimental and modeled data while the frequency peaks correlate to within 10% the differences being due to the unknown exact nature of the aggregate placement.

  7. Quantitative variability in wheat following irradiation, EMS, and hybridization.

    PubMed

    Khadr, F H; Shukry, M W

    1972-01-01

    The effects of gamma irradiation and EMS seed treatment on the genetic properties of pure line and hybrid wheat populations were measured. Two hundred lines were derived from each mutagenic treatment of each genetic source and, together with their control materials, were assayed for heading date, plant height, spike length, and kernel weight in a replicated field experiment.Both mutagens induced significant genetic variability for the four traits in either 'Giza 150' or 'Sonora 64', two pure cultivars, but neither was effective in increasing the genetic variation in their hybrid background. The relative magnitude of induced variation compared with that from hybridization depended on the particular mutagen and attribute and averaged less than 50% of that from hybridization. Heritabilities and expected genetic gains were not much lower in mutagenic populations than in hybrid populations. The relative distributions of the variance components among families and within families, and the estimates of the genetic correlations in the various populations, indicated that induced mutations were somewhat similar in nature to the variation released from hybridization. The induced variation was not accompanied by any shift in the population mean and, in most cases, variation was equally distributed around the population mean. PMID:24430897

  8. Monitoring Survivability and Infectivity of Porcine Epidemic Diarrhea Virus (PEDv) in the Infected On-Farm Earthen Manure Storages (EMS)

    PubMed Central

    Tun, Hein M.; Cai, Zhangbin; Khafipour, Ehsan

    2016-01-01

    In recent years, porcine epidemic diarrhea virus (PEDv) has caused major epidemics, which has been a burden to North America’s swine industry. Low infectious dose and high viability in the environment are major challenges in eradication of this virus. To further understand the viability of PEDv in the infected manure, we longitudinally monitored survivability and infectivity of PEDv in two open earthen manure storages (EMS; previously referred to as lagoon) from two different infected swine farms identified in the province of Manitoba, Canada. Our study revealed that PEDv could survive up to 9 months in the infected EMS after the initial outbreak in the farm. The viral load varied among different layers of the EMS with an average of 1.1 × 105 copies/ml of EMS, independent of EMS temperature and pH. In both studied EMS, the evidence of viral replication was observed through increased viral load in the later weeks of the samplings while there was no new influx of infected manure into the EMS, which was suggestive of presence of potential alternative hosts for PEDv within the EMS. Decreasing infectivity of virus over time irrespective of increased viral load suggested the possibility of PEDv evolution within the EMS and perhaps in the new host that negatively impacted virus infectivity. Viral load in the top layer of the EMS was low and mostly non-infective suggesting that environmental factors, such as UV and sunlight, could diminish the replicability and infectivity of the virus. Thus, frequent agitation of the EMS that could expose virus to UV and sunlight might be a potential strategy for reduction of PEDv load and infectivity in the infected EMS. PMID:27014197

  9. Employee retention: applying hospital strategies to EMS. With increasing demand for and decreasing supply of EMTs and paramedics, retention strategies should be a priority for EMS organizations.

    PubMed

    Powers, Robert

    2007-10-01

    Retention strategies are a priority for EMS organizations. These strategies must be broad and varied to address the variety of reasons employees leave healthcare organizations. The value of creating these programs should manifest itself through increased employee satisfaction and an increased sense of belonging to the organization. PMID:17983102

  10. Immune protection of microneme 7 (EmMIC7) against Eimeria maxima challenge in chickens.

    PubMed

    Huang, Jingwei; Zhang, Zhenchao; Li, Menghui; Song, Xiaokai; Yan, Ruofeng; Xu, Lixin; Li, Xiangrui

    2015-10-01

    In the present study, the immune protective effects of recombinant microneme protein 7 of Eimeria maxima (rEmMIC7) and a DNA vaccine encoding this antigen (pVAX1-EmMIC7) on experimental challenge were evaluated. Two-week-old chickens were randomly divided into five groups. Experimental groups of chickens were immunized with 100 μg DNA vaccine pVAX1-MIC7 or 200 μg rEmMIC7, while control groups of chickens were injected with pVAX1 plasmid or sterile phosphate buffered saline (PBS). The results showed that the anti-EmMIC7 antibody titres in chickens of both rEmMIC7 and pVAX1-MIC7 groups were significantly higher as compared to PBS and pVAX1 control (P < .05). The splenocytes from both vaccinated groups of chickens displayed significantly greater proliferation response compared with the controls (P < .05). Serum from chickens immunized with pVAX1-MIC7 and rEmMIC7 displayed significantly high levels of interleukin-2, interferon-γ, IL-10, IL-17, tumour growth factor-β and IL-4 (P < .05) compared to those of negative controls. The challenge experiment results showed that both the recombinant antigen and the DNA vaccine could obviously alleviate jejunum lesions, body weight loss and enhance oocyst decrease ratio. The anti-coccidial index (ACI) of the pVAX1-MIC7 group was 167.84, higher than that of the recombinant MIC7 protein group, 167.10. Our data suggested that immunization with EmMIC7 was effective in imparting partial protection against E. maxima challenge in chickens and it could be an effective antigen candidate for the development of new vaccines against E. maxima. PMID:26181095

  11. EM-54 Technology Development In Situ Remediation Integrated Program. Annual report

    SciTech Connect

    Not Available

    1993-08-01

    The Department of Energy (DOE) established the Office of Technology Development (EM-50) as an element of Environmental Restoration and Waste Management (EM) in November 1989. EM manages remediation of all DOE sites as well as wastes from current operations. The goal of the EM program is to minimize risks to human health, safety and the environment, and to bring all DOE sites into compliance with Federal, state, and local regulations by 2019. EM-50 is charged with developing new technologies that are safer, more effective and less expensive than current methods. The In Situ Remediation Integrated Program (the subject of this report) is part of EM-541, the Environmental Restoration Research and Development Division of EM-54. The In Situ Remediation Integrated Program (ISR IP) was instituted out of recognition that in situ remediation could fulfill three important criteria: Significant cost reduction of cleanup by eliminating or minimizing excavation, transportation, and disposal of wastes; reduced health impacts on workers and the public by minimizing exposure to wastes during excavation and processing; and remediation of inaccessible sites, including: deep subsurfaces; in, under, and around buildings. Buried waste, contaminated soils and groundwater, and containerized wastes are all candidates for in situ remediation. Contaminants include radioactive wastes, volatile and non-volatile organics, heavy metals, nitrates, and explosive materials. The ISR IP tends to facilitate development of in situ remediation technologies for hazardous, radioactive, and mixed wastes in soils, groundwater, and storage tanks. Near-term focus is on containment of the wastes, with treatment receiving greater effort in future years.

  12. OV-Wav: um novo pacote para análise multiescalar em astronomia

    NASA Astrophysics Data System (ADS)

    Pereira, D. N. E.; Rabaça, C. R.

    2003-08-01

    Wavelets e outras formas de análise multiescalar têm sido amplamente empregadas em diversas áreas do conhecimento, sendo reconhecidamente superiores a técnicas mais tradicionais, como as análises de Fourier e de Gabor, em certas aplicações. Embora a teoria dos wavelets tenha começado a ser elaborada há quase trinta anos, seu impacto no estudo de imagens astronômicas tem sido pequeno até bem recentemente. Apresentamos um conjunto de programas desenvolvidos ao longo dos últimos três anos no Observatório do Valongo/UFRJ que possibilitam aplicar essa poderosa ferramenta a problemas comuns em astronomia, como a remoção de ruído, a detecção hierárquica de fontes e a modelagem de objetos com perfis de brilho arbitrários em condições não ideais. Este pacote, desenvolvido para execução em plataforma IDL, teve sua primeira versão concluída recentemente e está sendo disponibilizado à comunidade científica de forma aberta. Mostramos também resultados de testes controlados ao quais submetemos os programas, com a sua aplicação a imagens artificiais, com resultados satisfatórios. Algumas aplicações astrofísicas foram estudadas com o uso do pacote, em caráter experimental, incluindo a análise da componente de luz difusa em grupos compactos de galáxias de Hickson e o estudo de subestruturas de nebulosas planetárias no espaço multiescalar.

  13. Methicillin-resistant Staphylococcus aureus in Ohio EMS Providers: A Statewide Cross-sectional Study.

    PubMed

    Orellana, Robert C; Hoet, Armando E; Bell, Christopher; Kelley, Christina; Lu, Bo; Anderson, Sarah E; Stevenson, Kurt B

    2016-01-01

    The objective was to determine the nasal carriage prevalence of methicillin-resistant Staphylococcus aureus (MRSA) among emergency medical service (EMS) personnel and the associated risk factors. A cross-sectional study was conducted among Ohio EMS personnel randomly sampled from 84 urban and rural agencies. Surveys assessing demographics, occupational history, health, cohabitation status, and hygiene practice were collected with nasal swabs from those who enrolled. Survey weight adjusted analysis was performed (1) to estimate MRSA nasal carriage prevalence of Ohio EMS providers, and (2) to identify variables associated with MRSA. MRSA was detected in 4.6% (13/280) EMS personnel sampled. After employing a survey-weighted analysis the following risk factors associated with MRSA carriage were identified: those who did not practice frequent hand hygiene after glove use (OR, 10.51; 95% CI, 2.54-43.45; P = 0.0012), living with someone with a recent staphylococcal infection (OR, 9.02; 95% CI, 1.03-78.98; P = 0.0470), and individuals with low frequency of hand washing (< 8 times per shift) (OR, 4.20; 95% CI 1.02-17.27; P = 0.0468). An additional risk factor identified through the logistic regression analysis on the study population was EMS workers with an open wound or skin infection (OR, 6.75; 95% CI, 1.25-36.36; P = 0.0262). However, this was not significant in the survey-weighted analysis. The high prevalence of MRSA in Ohio EMS personnel is both an occupational hazard and patient safety concern. Implementing methods to reinforce CDC guidelines for proper hygiene could decrease MRSA found in the EMS setting. Previous literature suggests that a reduction in MRSA colonization can lead to decreases in transmission and improved health for both patients and personnel. PMID:26516797

  14. Prevention and Immunotherapy of Secondary Murine Alveolar Echinococcosis Employing Recombinant EmP29 Antigen

    PubMed Central

    Boubaker, Ghalia; Hemphill, Andrew; Huber, Cristina Olivia; Spiliotis, Markus; Babba, Hamouda; Gottstein, Bruno

    2015-01-01

    Alveolar echinococcosis (AE) is caused by infection with the larval stage of the tapeworm Echinococcus multilocularis. An increasing understanding of immunological events that account for the metacestode survival in human and murine AE infection prompted us to undertake explorative experiments tackling the potential of novel preventive and/or immunotherapeutic measures. In this study, the immunoprotective and immunotherapeutic ability of recombinant EmP29 antigen (rEmP29) was assessed in mice that were intraperitoneally infected with E. multilocularis metacestodes. For vaccination, three intraperitoneal injections with 20μg rEmP29 emulsified in saponin adjuvants were applied over 6 weeks. 2 weeks after the last boost, mice were infected, and at 90 days post-infection, rEmP29-vaccinated mice exhibited a median parasite weight that was reduced by 75% and 59% when compared to NaCl- or saponin–treated control mice, respectively. For immunotherapeutical application, the rEmP29 (20μg) vaccine was administered to experimentally infected mice, starting at 1 month post-infection, three times with 2 weeks intervals. Mice undergoing rEmP29 immunotherapy exhibited a median parasite load that was reduced by 53% and 49% when compared to NaCl- and saponin–treated control mice, respectively. Upon analysis of spleen cells, both, vaccination and treatment with rEmP29, resulted in low ratios of Th2/Th1 (IL-4/IFN-γ) cytokine mRNA and low levels of mRNA coding for IL-10 and IL-2. These results suggest that reduction of the immunosuppressive environment takes place in vaccinated as well as immunotreated mice, and a shift towards a Th1 type of immune response may be responsible for the observed increased restriction of parasite growth. The present study provides the first evidence that active immunotherapy may present a sustainable route for the control of AE. PMID:26053794

  15. National Prehospital Evidence-Based Guidelines Strategy: A Summary for EMS Stakeholders.

    PubMed

    Martin-Gill, Christian; Gaither, Joshua B; Bigham, Blair L; Myers, J Brent; Kupas, Douglas F; Spaite, Daniel W

    2016-01-01

    Multiple national organizations have recommended and supported a national investment to increase the scientific evidence available to guide patient care delivered by Emergency Medical Services (EMS) and incorporate that evidence directly into EMS systems. Ongoing efforts seek to develop, implement, and evaluate prehospital evidence-based guidelines (EBGs) using the National Model Process created by a multidisciplinary panel of experts convened by the Federal Interagency Committee on EMS (FICEMS) and the National EMS Advisory Council (NEMSAC). Yet, these and other EBG efforts have occurred in relative isolation, with limited direct collaboration between national projects, and have experienced challenges in implementation of individual guidelines. There is a need to develop sustainable relationships among stakeholders that facilitate a common vision that facilitates EBG efforts. Herein, we summarize a National Strategy on EBGs developed by the National Association of EMS Physicians (NAEMSP) with involvement of 57 stakeholder organizations, and with the financial support of the National Highway Traffic Safety Administration (NHTSA) and the EMS for Children program. The Strategy proposes seven action items that support collaborative efforts in advancing prehospital EBGs. The first proposed action is creation of a Prehospital Guidelines Consortium (PGC) representing national medical and EMS organizations that have an interest in prehospital EBGs and their benefits to patient outcomes. Other action items include promoting research that supports creation and evaluates the impact of EBGs, promoting the development of new EBGs through improved stakeholder collaboration, and improving education on evidence-based medicine for all prehospital providers. The Strategy intends to facilitate implementation of EBGs by improving guideline dissemination and incorporation into protocols, and seeks to establish standardized evaluation methods for prehospital EBGs. Finally, the Strategy proposes that key stakeholder organizations financially support the Prehospital Guidelines Consortium as a means of implementing the Strategy, while together promoting additional funding for continued EBG efforts. PMID:26808116

  16. Compositions of HIMU, EM1, and EM2 from global trends between radiogenic isotopes and major elements in ocean island basalts

    NASA Astrophysics Data System (ADS)

    Jackson, Matthew G.; Dasgupta, Rajdeep

    2008-11-01

    Sr and Pb isotopes exhibit global trends with the concentrations of major elements (SiO 2, TiO 2, FeO, Al 2O 3 and K 2O) and major elements ratios (CaO/Al 2O 3 and K 2O/TiO 2) in the shield-stage lavas from 18 oceanic hotspots (including Hawaii, Iceland, Galapagos, Cook-Australs, St. Helena, Cape Verde, Cameroon, Canary, Madeira, Comoros, Azores, Samoa, Society, Marquesas, Mascarene, Kerguelen, Pitcairn, and Selvagen). Based on the relationships between major elements and isotopes in ocean island basalts (OIBs), we find that the lavas derived from the mantle end members, HIMU (or high 'μ' = 238U/ 204Pb), EM1 (enriched mantle 1), EM2 (enriched mantle 2), and DMM (depleted MORB [mid-ocean ridge basalt] mantle) exhibit distinct major element characteristics: When compared to oceanic hotspots globally, the hotspots with a HIMU (radiogenic Pb-isotopes and low 87Sr/ 86Sr) component, such as St. Helena and Cook-Australs, exhibit high CaO/Al 2O 3, FeO T, and TiO 2 and low SiO 2 and Al 2O 3. EM1 (enriched mantle 1; intermediate 87Sr/ 86Sr and low 206Pb/ 204Pb; sampled by hotspots like Pitcairn and Kerguelen) and EM2 (enriched mantle 2; high 87Sr/ 86Sr and intermediate 206Pb/ 204Pb; sampled by hotspots like Samoa and Societies) exhibit higher K 2O concentrations and K 2O/TiO 2 weight ratios than HIMU lavas. EM1 lavas exhibit the lowest CaO/Al 2O 3 in the OIB dataset, and this sets EM1 apart from EM2. A plot of CaO/Al 2O 3 vs K 2O/TiO 2 perfectly resolves the four mantle end member lavas. Melting processes (pressure, temperature and degree of melting) fail to provide an explanation for the full spectrum of major element concentrations in OIBs. Such processes also fail to explain the correlations between major elements and radiogenic isotopes. Instead, a long, time integrated history of various parent-daughter elements appears to be coupled to major element and/or volatile heterogeneity in the mantle source. End member lava compositions are compared with experimental partial melt compositions to place constraints on the lithological characteristics of the mantle end members.

  17. Compositions of HIMU, EM1, and EM2 from Global Trends between Radiogenic Isotopes and Major Elements in Ocean Island Basalts

    NASA Astrophysics Data System (ADS)

    Jackson, M. G.; Dasgupta, R.

    2008-12-01

    Sr and Pb isotopes exhibit global trends with the concentrations of major elements (SiO2, TiO2, FeO, Al2O3 and K2O) and major elements ratios (CaO/Al2O3 and K2O/TiO2) in the shield-stage lavas from 18 oceanic hotspots (including Hawaii, Iceland, Galapagos, Cook-Australs, St. Helena, Cape Verde, Cameroon, Canary, Madeira, Comoros, Azores, Samoa, Society, Marquesas, Mascarene, Kerguelen, Pitcairn, and Selvagen). Based on the relationships between major elements and isotopes in ocean island basalts (OIBs), we find that the lavas derived from the mantle end members, HIMU (or high 'ì' = 238U/204Pb), EM1 (enriched mantle 1), EM2 (enriched mantle 2), and DMM (depleted MORB [mid-ocean ridge basalt] mantle) exhibit distinct major element characteristics: When compared to oceanic hotspots globally, the hotspots with a HIMU (radiogenic Pb-isotopes and low 87Sr/86Sr) component, such as St. Helena and Cook-Australs, exhibit high CaO/Al2O3, FeOT, and TiO2 and low SiO2 and Al2O3. EM1 (enriched mantle 1; intermediate 87Sr/86Sr and low 206Pb/204Pb; sampled by hotspots like Pitcairn and Kerguelen) and EM2 (enriched mantle 2; high 87Sr/86Sr and intermediate 206Pb/204Pb; sampled by hotspots like Samoa and Societies) exhibit higher K2O concentrations and K2O/TiO2 weight ratios than HIMU lavas. EM1 lavas exhibit the lowest CaO/Al2O3 in the OIB dataset, and this sets EM1 apart from EM2. A plot of CaO/Al2O3 vs K2O/TiO2 perfectly resolves the four mantle end member lavas. Melting processes (pressure, temperature and degree of melting) fail to provide an explanation for the full spectrum of major element concentrations in OIBs. Such processes also fail to explain the correlations between major elements and radiogenic isotopes. Instead, a long, time integrated history of various parent- daughter elements appears to be coupled to major element and/or volatile heterogeneity in the mantle source. End member lava compositions are compared with experimental partial melt compositions to place constraints on the lithological characteristics of the mantle end members.

  18. Pre-flight risk assessment in Emergency Medical Service (EMS) helicopters

    NASA Technical Reports Server (NTRS)

    Shively, R. J.

    1992-01-01

    The Emergency Medical Service (EMS) industry has been the subject of several television and newspaper articles (Harvey and Jensen, 1987) which emphasized the negative aspects, (e.g., fatalities and high accident rates), rather than the life saving services performed. Until recently, the accident rate of the EMS industry has been five times as high as that of other civil helicopters. This high accident rate has been coupled with the dramatic rise in the number of programs. The industry has built from a single service at its inception in 1972, to over 180 in 1987 (Spray, 1987), to the point that 93 percent of the contiguous U.S. is now covered by some type of EMS service. These factors prompted the National Transportation Safety Board (NTSB) to study the accidents that occurred between May 11, 1978 and December 3, 1986 (NTSB, 1988). The NTSB report concluded that 'Sound pilot judgment is central to safe flight operations.' They further stated that '... factors unique to EMS helicopter operations--such as the influence of the mission itself, program competition, and EMS program management perspectives--can drastically influence pilot judgment during the EMS mission.' One of the most difficult decisions that a pilot must make is whether to accept or decline a mission. A pre-flight risk assessment system (SAFE) was developed at NASA-Ames Research Center for civil EMS operations to aid pilots in making this decision objectively. The ability of the SAFE system to predict mission risk profiles was tested at an EMS facility. The results of this field study demonstrated that the usefulness of SAFE was highly dependent on the type of mission flown. SAFE is now being modified so that it can 'learn' with each mission flown. For example, after flying a mission to a particular site, an EMS pilot would input information about this mission into the system, such as new buildings, wires, or approach procedures. Then, the next time a pilot flew a similar mission or one to the same area, this additional information would be taken into account in computing a risk assessment.

  19. Rock 'Em, Sock 'Em!

    ERIC Educational Resources Information Center

    Waters, John K.

    2011-01-01

    K-12-level competitive robotics is growing in popularity around the country and worldwide. According to one of the leading organizers of these events, FIRST--For Inspiration and Recognition of Science and Technology--250,000 students from 56 countries take part in its competitions. FIRST Tech Challenge (FTC) is a yearly event the organization puts

  20. Rock 'Em, Sock 'Em!

    ERIC Educational Resources Information Center

    Waters, John K.

    2011-01-01

    K-12-level competitive robotics is growing in popularity around the country and worldwide. According to one of the leading organizers of these events, FIRST--For Inspiration and Recognition of Science and Technology--250,000 students from 56 countries take part in its competitions. FIRST Tech Challenge (FTC) is a yearly event the organization puts…

  1. Association of Disomic Chromosome Loss with Ems-Induced Conversion in Yeast

    PubMed Central

    Campbell, Douglas

    1980-01-01

    Experimental tests with the yeast Saccharomyces cerevisiae of a previously proposed model suggesting a causal relationship between disomic chromosome loss (n + 1 → n) and centromere-adjacent mitotic gene conversion were performed. Disomic haploid cells heteroallelic at two loci on the left arm of chromosome III were exposed to ethyl methanesulfonate (EMS) under nonlethal conditions; EMS-induced prototrophic gene convertants were selected and tested for coincident chromosome loss. The principal results are: (1) The frequency of chromosome loss among EMS-induced gene convertants selected to arise near the centromere is markedly enhanced over basal levels and remains constant, independent of EMS exposure. There is little such enhancement among EMS-induced convertants selected to arise far from the centromere. (2) Chromosome loss is almost completely associated with induced conversion of the centromere-proximal allele at the centromere-adjacent heteroallelic locus. This result is identical to (and confirms) results found previously for spontaneous loss-associated conversion. (3) The conversion polarity at the centromere-adjacent locus among unselected (nonloss-associated) induced or spontaneous mitotic convertants is identical to that among meiotic convertants and markedly favors the contromere-distal allele. These findings are wholly consistent with, and strengthen, the hypothesis that structural involvement of centromeric regions in nearby recombinational events may interfere with proper segregational function and lead to mitotic chromosome loss. PMID:7021313

  2. dbEM: A database of epigenetic modifiers curated from cancerous and normal genomes

    PubMed Central

    Singh Nanda, Jagpreet; Kumar, Rahul; Raghava, Gajendra P. S.

    2016-01-01

    We have developed a database called dbEM (database of Epigenetic Modifiers) to maintain the genomic information of about 167 epigenetic modifiers/proteins, which are considered as potential cancer targets. In dbEM, modifiers are classified on functional basis and comprise of 48 histone methyl transferases, 33 chromatin remodelers and 31 histone demethylases. dbEM maintains the genomic information like mutations, copy number variation and gene expression in thousands of tumor samples, cancer cell lines and healthy samples. This information is obtained from public resources viz. COSMIC, CCLE and 1000-genome project. Gene essentiality data retrieved from COLT database further highlights the importance of various epigenetic proteins for cancer survival. We have also reported the sequence profiles, tertiary structures and post-translational modifications of these epigenetic proteins in cancer. It also contains information of 54 drug molecules against different epigenetic proteins. A wide range of tools have been integrated in dbEM e.g. Search, BLAST, Alignment and Profile based prediction. In our analysis, we found that epigenetic proteins DNMT3A, HDAC2, KDM6A, and TET2 are highly mutated in variety of cancers. We are confident that dbEM will be very useful in cancer research particularly in the field of epigenetic proteins based cancer therapeutics. This database is available for public at URL: http://crdd.osdd.net/raghava/dbem. PMID:26777304

  3. dbEM: A database of epigenetic modifiers curated from cancerous and normal genomes.

    PubMed

    Singh Nanda, Jagpreet; Kumar, Rahul; Raghava, Gajendra P S

    2016-01-01

    We have developed a database called dbEM (database of Epigenetic Modifiers) to maintain the genomic information of about 167 epigenetic modifiers/proteins, which are considered as potential cancer targets. In dbEM, modifiers are classified on functional basis and comprise of 48 histone methyl transferases, 33 chromatin remodelers and 31 histone demethylases. dbEM maintains the genomic information like mutations, copy number variation and gene expression in thousands of tumor samples, cancer cell lines and healthy samples. This information is obtained from public resources viz. COSMIC, CCLE and 1000-genome project. Gene essentiality data retrieved from COLT database further highlights the importance of various epigenetic proteins for cancer survival. We have also reported the sequence profiles, tertiary structures and post-translational modifications of these epigenetic proteins in cancer. It also contains information of 54 drug molecules against different epigenetic proteins. A wide range of tools have been integrated in dbEM e.g. Search, BLAST, Alignment and Profile based prediction. In our analysis, we found that epigenetic proteins DNMT3A, HDAC2, KDM6A, and TET2 are highly mutated in variety of cancers. We are confident that dbEM will be very useful in cancer research particularly in the field of epigenetic proteins based cancer therapeutics. This database is available for public at URL: http://crdd.osdd.net/raghava/dbem. PMID:26777304

  4. New Advances for a joint 3D inversion of multiple EM methods

    NASA Astrophysics Data System (ADS)

    Meqbel, N. M.; Ritter, O.

    2013-12-01

    Electromagnetic (EM) methods are routinely applied to image the subsurface from shallow to regional structures. Individual EM methods differ in their sensitivities towards resistive and conductive structures as well as in their exploration depths. Joint 3D inversion of multiple EM data sets can result in significantly better resolution of subsurface structures than the individual inversions. Proper weighting between different EM data is essential, however. We present a recently developed weighting algorithm to combine magnetotelluric (MT), controlled source EM (CSEM) and DC-geoelectric (DC) data. It is well known that MT data are mostly sensible to regional conductive structures, whereas, CSEM and DC data are more suitable to recover more shallow and resistive structures. Our new scheme is based on weighting individual components of the total data gradient after each model update. Norms of each data residual are used to assess how much weight individual components of the total data gradient must have to achieve an equal contribution of all data sets in the inverse model. A numerically efficient way to search for appropriate weighting factors could be established by applying a bi-diagonalization procedure to the sensitivity matrix. Thereby, the original inverse problem can be projected onto a smaller dimension in which the search of weighting factors is numerically cheap. We demonstrate the efficiency of the proposed weighting schemes and explore the model domain with synthetic data sets.

  5. Single-Particle Cryo-EM of the Ryanodine Receptor Channel in an Aqueous Environment

    PubMed Central

    Baker, Mariah R.; Fan, Guizhen

    2015-01-01

    Ryanodine receptors (RyRs) are tetrameric ligand-gated Ca2+ release channels that are responsible for the increase of cytosolic Ca2+ concentration leading to muscle contraction. Our current understanding of RyR channel gating and regulation is greatly limited due to the lack of a high-resolution structure of the channel protein. The enormous size and unwieldy shape of Ca2+ release channels make X-ray or NMR methods difficult to apply for high-resolution structural analysis of the full-length functional channel. Single-particle electron cryo-microscopy (cryo-EM) is one of the only effective techniques for the study of such a large integral membrane protein and its molecular interactions. Despite recent developments in cryo-EM technologies and break-through single-particle cryo-EM studies of ion channels, cryospecimen preparation, particularly the presence of detergent in the buffer, remains the main impediment to obtaining atomic-resolution structures of ion channels and a multitude of other integral membrane protein complexes. In this review we will discuss properties of several detergents that have been successfully utilized in cryo-EM studies of ion channels and the emergence of the detergent alternative amphipol to stabilize ion channels for structure-function characterization. Future structural studies of challenging specimen like ion channels are likely to be facilitated by cryo-EM amenable detergents or alternative surfactants. PMID:26913144

  6. Single-particle cryo-EM of the ryanodine receptor channel in an aqueous environment

    PubMed Central

    Baker, Mariah R.; Fan, Guizhen; Serysheva, Irina I.

    2015-01-01

    Ryanodine receptors (RyRs) are tetrameric ligand-gated Ca2+ release channels that are responsible for the increase of cytosolic Ca2+ concentration leading to muscle contraction. Our current understanding of RyR channel gating and regulation is greatly limited due to the lack of a high-resolution structure of the channel protein. The enormous size and unwieldy shape of Ca2+ release channels make X-ray or NMR methods difficult to apply for high-resolution structural analysis of the full-length functional channel. Single-particle electron cryo-microscopy (cryo-EM) is one of the only effective techniques for the study of such a large integral membrane protein and its molecular interactions. Despite recent developments in cryo-EM technologies and break-through single-particle cryo-EM studies of ion channels, cryospecimen preparation, particularly the presence of detergent in the buffer, remains the main impediment to obtaining atomic-resolution structures of ion channels and a multitude of other integral membrane protein complexes. In this review we will discuss properties of several detergents that have been successfully utilized in cryo-EM studies of ion channels and the emergence of the detergent alternative amphipol to stabilize ion channels for structure-function characterization. Future structural studies of challenging specimen like ion channels are likely to be facilitated by cryo-EM amenable detergents or alternative surfactants. PMID:25844145

  7. Randomized controlled trial of a scoring aid to improve GCS scoring by EMS providers (Brief Report)

    PubMed Central

    Feldman, Amanda Lynn; Hart, Kimberly Ward; Lindsell, Christopher John; McMullan, Jason T.

    2014-01-01

    Objective Emergency medical services (EMS) personnel frequently use the Glasgow Coma Scale (GCS) to assess injured and critically ill patients. This study assessed the accuracy of EMS providers’ GCS scoring as well as the improvement in GCS assessment with the use of a scoring aid. Methods This randomized, controlled study was conducted in the emergency department (ED) of an urban, academic trauma center. Emergency medical technicians or paramedics who transported a patient to the ED were randomly assessed one of nine written scenarios, either with or without a GCS scoring aid. Scenarios were created by consensus of expert attending emergency medicine, EMS, and neurocritical care physicians with universal consensus agreement on GCS scores. Chi-square and student’s t-tests were used to compare groups. Results Of 180 participants, 178 completed the study. Overall, 73/178 (41%) participants gave a GCS score that matched the expert consensus score. GCS was correct in 22/88 (25%) of cases without the scoring aid. GCS was correct in 51/90 (57%) of cases with the scoring aid. Most (69%) of total GCS scores fell within one point of the expert consensus GCS score. Differences in accuracy were most pronounced in scenarios with a correct GCS of 12 or below. Sub-component accuracy was: eye 62%, verbal 70%, and motor 51%. Conclusion In this study, 60% of EMS participants provided inaccurate GCS estimates. Use of a GCS scoring aid improved accuracy of EMS GCS assessments. PMID:25199613

  8. Elimination of error factors, affecting EM and seismic inversions

    NASA Astrophysics Data System (ADS)

    Magomedov, M.; Zuev, M. A.; Korneev, V. A.; Goloshubin, G.; Zuev, J.; Brovman, Y.

    2013-12-01

    EM or seismic data inversions are affected by many factors, which may conceal the responses from target objects. We address here the contributions from the following effects: 1) Pre-survey spectral sensitivity factor. Preliminary information about a target layer can be used for a pre-survey estimation of the required frequency domain and signal level. A universal approach allows making such estimations in real time, helping the survey crew to optimize an acquisition process. 2) Preliminary velocities' identification and their dispersions for all the seismic waves, arising in a stratified media became a fast working tool, based on the exact analytical solution. 3) Vertical gradients effect. For most layers the log data scatter, requiring an averaging pattern. A linear gradient within each representative layer is a reasonable compromise between required inversion accuracy and forward modeling complexity. 4) An effect from the seismic source's radial component becomes comparable with vertical part for explosive sources. If this effect is not taken into account, a serious modeling error takes place. This problem has an algorithmic solution. 5) Seismic modeling is often based on different representations for a source formulated either for a force or to a potential. The wave amplitudes depend on the formulation, making an inversion result sensitive to it. 6) Asymmetrical seismic waves (modified Rayleigh) in symmetrical geometry around liquid fracture come from S-wave and merge with the modified Krauklis wave at high frequencies. A detail analysis of this feature allows a spectral range optimization for the proper wave's extraction. 7) An ultrasonic experiment was conducted to show different waves appearance for a super-thin water-saturated fracture between two Plexiglas plates, being confirmed by comparison with theoretical computations. 8) A 'sandwich effect' was detected by comparison with averaged layer's effect. This opens an opportunity of the shale gas direct identification from the surface measurements.

  9. An EM algorithm for mapping segregation distortion loci

    PubMed Central

    Zhu, Chengsong; Zhang, Yuan-Ming

    2007-01-01

    Background Chromosomal region that causes distorted segregation ratios is referred to as segregation distortion locus (SDL). The distortion is caused either by differential representation of SDL genotypes in gametes before fertilization or by viability differences of SDL genotypes after fertilization but before genotype scoring. In both cases, observable phenotypes are distorted for marker loci in the chromosomal region close to the SDL. Under the quantitative genetics model for viability selection by proposing a continuous liability controlling the viability of individual, a simplex algorithm has been used to search for the solution in SDL mapping. However, they did not consider the effects of SDL on the construction of linkage maps. Results We proposed a multipoint maximum-likelihood method to estimate the position and the effects of SDL under the liability model together with both selection coefficients of marker genotypes and recombination fractions. The method was implemented via an expectation and maximization (EM) algorithm. The superiority of the method proposed under the liability model over the previous methods was verified by a series of Monte Carlo simulation experiments, together with a working example derived from the MAPMAKER/QTL software. Conclusion Our results suggested that the new method can serve as a powerful alternative to existing methods for SDL mapping. Under the liability model, the new method can simultaneously estimate the position and the effects of SDL as well as the recombinant fractions between adjacent markers, and also be used to probe into the genetic mechanism for the bias of uncorrected map distance and to elucidate the relationship between the viability selection and genetic linkage. PMID:18047652

  10. Physics-based simulation of EM and SM in TSV-based 3D IC structures

    NASA Astrophysics Data System (ADS)

    Kteyan, Armen; Sukharev, Valeriy; Zschech, Ehrenfried

    2014-06-01

    Evolution of stresses in through-silicon-vias (TSVs) and in the TSV landing pad due to the stress migration (SM) and electromigration (EM) phenomena are considered. It is shown that an initial stress distribution existing in a TSV depends on its architecture and copper fill technology. We demonstrate that in the case of proper copper annealing the SM-induced redistribution of atoms results in uniform distributions of the hydrostatic stress and concentration of vacancies along each segment. In this case, applied EM stressing generates atom migration that is characterized by kinetics depending on the preexisting equilibrium concentration of vacancies. Stress-induced voiding in TSV is considered. EM induced voiding in TSV landing pad is analyzed in details.

  11. Physics-based simulation of EM and SM in TSV-based 3D IC structures

    SciTech Connect

    Kteyan, Armen; Sukharev, Valeriy; Zschech, Ehrenfried

    2014-06-19

    Evolution of stresses in through-silicon-vias (TSVs) and in the TSV landing pad due to the stress migration (SM) and electromigration (EM) phenomena are considered. It is shown that an initial stress distribution existing in a TSV depends on its architecture and copper fill technology. We demonstrate that in the case of proper copper annealing the SM-induced redistribution of atoms results in uniform distributions of the hydrostatic stress and concentration of vacancies along each segment. In this case, applied EM stressing generates atom migration that is characterized by kinetics depending on the preexisting equilibrium concentration of vacancies. Stress-induced voiding in TSV is considered. EM induced voiding in TSV landing pad is analyzed in details.

  12. EM algorithm applied for estimating non-stationary region boundaries using electrical impedance tomography

    NASA Astrophysics Data System (ADS)

    Khambampati, A. K.; Rashid, A.; Kim, B. S.; Liu, Dong; Kim, S.; Kim, K. Y.

    2010-04-01

    EIT has been used for the dynamic estimation of organ boundaries. One specific application in this context is the estimation of lung boundaries during pulmonary circulation. This would help track the size and shape of lungs of the patients suffering from diseases like pulmonary edema and acute respiratory failure (ARF). The dynamic boundary estimation of the lungs can also be utilized to set and control the air volume and pressure delivered to the patients during artificial ventilation. In this paper, the expectation-maximization (EM) algorithm is used as an inverse algorithm to estimate the non-stationary lung boundary. The uncertainties caused in Kalman-type filters due to inaccurate selection of model parameters are overcome using EM algorithm. Numerical experiments using chest shaped geometry are carried out with proposed method and the performance is compared with extended Kalman filter (EKF). Results show superior performance of EM in estimation of the lung boundary.

  13. Fabs enable single particle cryoEM studies of small proteins

    PubMed Central

    Wu, Shenping; Avila-Sakar, Agustin; Kim, JungMin; Booth, David S.; Greenberg, Charles H.; Rossi, Andrea; Liao, Maofu; Li, Xueming; Alian, Akram; Griner, Sarah L.; Juge, Narinobu; Yu, Yadong; Mergel, Claudia M.; Chaparro-Riggers, Javier; Strop, Pavel; Tampé, Robert; Edwards, Robert H.; Stroud, Robert M.; Craik, Charles S.; Cheng, Yifan

    2012-01-01

    Summary In spite of its recent achievements, the technique of single particle electron cryomicroscopy (cryoEM) has not been widely used to study proteins smaller than 100kDa, although it is a highly desirable application of this technique. One fundamental limitation is that images of small proteins embedded in vitreous ice do not contain adequate features for accurate image alignment. We describe a general strategy to overcome this limitation by selecting a fragment antigen binding (Fab) to form a stable and rigid complex with a target protein, thus providing a defined feature for accurate image alignment. Using this approach, we determined a three-dimensional structure of a ~65 kDa protein by single particle cryoEM. Because Fabs can be readily generated against a wide range of proteins by phage display, this approach is generally applicable to study many small proteins by single particle cryoEM. PMID:22483106

  14. Fabs enable single particle cryoEM studies of small proteins.

    PubMed

    Wu, Shenping; Avila-Sakar, Agustin; Kim, JungMin; Booth, David S; Greenberg, Charles H; Rossi, Andrea; Liao, Maofu; Li, Xueming; Alian, Akram; Griner, Sarah L; Juge, Narinobu; Yu, Yadong; Mergel, Claudia M; Chaparro-Riggers, Javier; Strop, Pavel; Tampé, Robert; Edwards, Robert H; Stroud, Robert M; Craik, Charles S; Cheng, Yifan

    2012-04-01

    In spite of its recent achievements, the technique of single particle electron cryomicroscopy (cryoEM) has not been widely used to study proteins smaller than 100 kDa, although it is a highly desirable application of this technique. One fundamental limitation is that images of small proteins embedded in vitreous ice do not contain adequate features for accurate image alignment. We describe a general strategy to overcome this limitation by selecting a fragment antigen binding (Fab) to form a stable and rigid complex with a target protein, thus providing a defined feature for accurate image alignment. Using this approach, we determined a three-dimensional structure of an ∼65 kDa protein by single particle cryoEM. Because Fabs can be readily generated against a wide range of proteins by phage display, this approach is generally applicable to study many small proteins by single particle cryoEM. PMID:22483106

  15. Direct and indirect measures of speech articulator motions using low power EM sensors

    SciTech Connect

    Barnes, T; Burnett, G; Gable, T; Holzrichter, J F; Ng, L

    1999-05-12

    Low power Electromagnetic (EM) Wave sensors can measure general properties of human speech articulator motions, as speech is produced. See Holzrichter, Burnett, Ng, and Lea, J.Acoust.Soc.Am. 103 (1) 622 (1998). Experiments have demonstrated extremely accurate pitch measurements (< 1 Hz per pitch cycle) and accurate onset of voiced speech. Recent measurements of pressure-induced tracheal motions enable very good spectra and amplitude estimates of a voiced excitation function. The use of the measured excitation functions and pitch synchronous processing enable the determination of each pitch cycle of an accurate transfer function and, indirectly, of the corresponding articulator motions. In addition, direct measurements have been made of EM wave reflections from articulator interfaces, including jaw, tongue, and palate, simultaneously with acoustic and glottal open/close signals. While several types of EM sensors are suitable for speech articulator measurements, the homodyne sensor has been found to provide good spatial and temporal resolution for several applications.

  16. IPEP: Laboratory performance evaluation reports for management of DOE EM programs

    SciTech Connect

    Hensley, J.E.; Lindahl, P.C.; Streets, W.E.

    1995-08-01

    Environmental restoration program/project managers at DOE`s Office of Environmental Management (EM) are making important decisions based on analytical data generated by contracted laboratories. The Analytical Services Division, EM-263, is developing the Integrated Performance Evaluation Program (IPEP) to assess the performance of those laboratories, based on results from Performance Evaluation (PE) programs. The IPEP reports will be used by the laboratories to foster self-assessment and improvement. In addition, IPEP will produce PE reports for three levels of EM management (Operations/Project Offices, Area Program Offices, and Deputy Assistant Secretary Office). These reports will be used to assess whether contracted analytical laboratories have the capability to produce environmental data of the quality necessary for making environmental restoration and waste management decisions.

  17. Experience with the EM-60 electromagnetic system for geothermal exploration in Nevada

    SciTech Connect

    Wilt, M.; Goldstein, N.E.; Stark, M.; Haught, J.R.; Morrison, H.F.

    1981-09-01

    Lawrence Berkeley Laboratory (LBL) conducted controlled-source electromagnetic (EM) surveys at three geothermal prospects in northern Nevada. Over 40 soundings were made in Panther Canyon (Grass Valley), near Winnemucca; Soda Lakes, near Fallon; and McCoy, west of Austin, to test and demonstrate the applicability of LBL's EM-60 system to geothermal exploration. The EM-60 is a frequency-domain system using three-component magnetic detection. Typically, +-65 A is applied to an 100-m-diameter four-turn horizontal loop, generating a dipole moment >10/sup 6/ MKS over the frequency range 10/sup -3/ to 10/sup -3/ Hz. With such a source loop, soundings were made, at transmitter-receiver separations of up to 4 km, providing a maximum depth of penetration of 4 km.

  18. An Introduction to Emergency Medical Services (EMS). Pre-Hospital Phase. Emergency Medical Services Orientation, Lesson Plan No. 9.

    ERIC Educational Resources Information Center

    Young, Derrick P.

    Designed for use with interested students at high schools, community colleges, and four-year colleges, this lesson plan was developed to provide an introduction to the pre-hospital phase of Emergency Medical Services (EMS) and to serve as a recruitment tool for the EMS Program at Kapiolani Community College (KCC) in Hawaii. The objectives of the…

  19. Factor Analysis with EM Algorithm Never Gives Improper Solutions when Sample Covariance and Initial Parameter Matrices Are Proper

    ERIC Educational Resources Information Center

    Adachi, Kohei

    2013-01-01

    Rubin and Thayer ("Psychometrika," 47:69-76, 1982) proposed the EM algorithm for exploratory and confirmatory maximum likelihood factor analysis. In this paper, we prove the following fact: the EM algorithm always gives a proper solution with positive unique variances and factor correlations with absolute values that do not exceed one, when the…

  20. EM-ML algorithm for track initialization with features using possibly noninformative data

    NASA Astrophysics Data System (ADS)

    Cai, Jie; Kirubarajan, Thiagalingam

    2004-01-01

    Initializing and maintaining a track for a low observable (low SNR, low target detection probability and high false alarm rate) target can be very challenging because of the low information content of measurements. In addition, in some scenarios, target-originated measurements might not be present in many consecutive scans because of mispointing, target maneuvers or erroneous preprocessing. That is, one might have a set of noninformative scans that could result in poor track initialization and maintenance. In this paper an algorithm based on the Expectation-Maximization (EM) algorithm combined with Maximum Likelihood (ML) estimation is presented for tracking slowly maneuvering targets in heavy clutter and possibly non-informative scans. The adaptive sliding-window EM-ML approach, which operates in batch mode, tries to reject or weight down non-informative scans using the Q-function in the M-step of the EM algorithm. A track validation technique is used to confirm the validity of the EM-ML estimates. It is shown that target features in the form of, for example, amplitude information, can also be used to improve the estimates. In addition, performance bounds based on the supplemented EM (SEM) technique are also presented. The effectiveness of new algorithm is first demonstrated on a 78-frame Long Wave Infrared (LWIR) data sequence consisting of an F1 Mirage fighter jet in heavy clutter. Previously, this scenario has been used as a benchmark for evaluating the performance of other track initialization algorithms. The new EM-ML estimator confirms the track by frame 20 while the ML-PDA (Maximum Likelihood estimator combined with Probabilistic Data Association) algorithm, the IMM-MHT (Interacting Multiple Model estimator combined with Multiple Hypothesis Tracking) and the IMM-PDA estimator previously required 28, 38 and 39 frames, respectively. The benefits of the new algorithm in terms of accuracy, early detection and computational load are illustrated using simulated scenarios as well.