Science.gov

Sample records for ahr signaling pathway

  1. AHR signaling in prostate growth, morphogenesis, and disease

    PubMed Central

    Vezina, Chad M.; Lin, Tien-Min; Peterson, Richard E.

    2010-01-01

    Most evidence of aryl hydrocarbon receptor (AHR) signaling in prostate growth, morphogenesis, and disease stems from research using 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) to pharmacologically activate the AHR at various stages of development. This review discusses effects of TCDD on prostate morphogenesis and highlights interactions between AHR and other signaling pathways during normal and aberrant prostate growth. Although AHR signaling modulates estrogen and androgen signaling in other tissues, crosstalk between these steroid hormone receptors and AHR signaling cannot account for actions of TCDD on prostate morphogenesis. Instead, the AHR appears to act within a cooperative framework of developmental signals to regulate timing and patterning of prostate growth. Inappropriate activation of AHR signaling as a result of early life TCDD exposure disrupts the balance of these signals, impairs prostate morphogenesis, and has an imprinting effect on the developing prostate that predisposes to prostate disease in adulthood. Mechanisms of AHR signaling in prostate growth and disease are only beginning to be unraveled and recent studies have revealed its interactions with WNT5A, retinoic acid, fibroblast growth factor 10, and vascular endothelial growth factor signaling pathways. PMID:18977204

  2. Disruption of period gene expression alters the inductive effects of dioxin on the AhR signaling pathway in the mouse liver

    SciTech Connect

    Qu Xiaoyu; Metz, Richard P.; Porter, Weston W.; Cassone, Vincent M.; Earnest, David J.

    2009-02-01

    The aryl hydrocarbon receptor (AhR) and AhR nuclear translocator (ARNT) are transcription factors that express Per-Arnt-Sim (PAS) DNA-binding motifs and mediate the metabolism of drugs and environmental toxins in the liver. Because these transcription factors interact with other PAS genes in molecular feedback loops forming the mammalian circadian clockworks, we determined whether targeted disruption or siRNA inhibition of Per1 and Per2 expression alters toxin-mediated regulation of the AhR signaling pathway in the mouse liver and Hepa1c1c7 hepatoma cells in vitro. Treatment with the prototypical Ahr ligand, 2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD), had inductive effects on the primary targets of AhR signaling, Cyp1A1 and Cyp1B1, in the liver of all animals, but genotype-based differences were evident such that the toxin-mediated induction of Cyp1A1 expression was significantly greater (2-fold) in mice with targeted disruption of Per1 (Per1{sup ldc} and Per1{sup ldc}/Per2{sup ldc}). In vitro experiments yielded similar results demonstrating that siRNA inhibition of Per1 significantly increases the TCDD-induced expression of Cyp1A1 and Cyp1B1 in Hepa1c1c7 cells. Per2 inhibition in siRNA-infected Hepa1c1c7 cells had the opposite effect and significantly decreased both the induction of these p450 genes as well as AhR and Arnt expression in response to TCDD treatment. These findings suggest that Per1 may play a distinctive role in modulating AhR-regulated responses to TCDD in the liver.

  3. The aryl hydrocarbon receptor-mediated disruption of vitellogenin synthesis in the fish liver: Cross-talk between AHR- and ERα-signalling pathways

    PubMed Central

    Bemanian, Vahid; Male, Rune; Goksøyr, Anders

    2004-01-01

    that activation of the AHR signalling pathway caused a marked decrease in the number of the nuclear ERα or that activated AHR blocked the ability of ERα to bind to its target DNA sequence. Finally, our results from Northern hybridizations indicated that E2 treatment of the cells did not cause any significant effect on the TCDD-induced levels of CYP1A mRNA. Conclusion In fish hepatocytes E2 induces ERα and VTG gene expression. The presence of dioxin (TCDD) abolishes this induction, probably through the action of AHR in complex with AHR nuclear translocator, and possibly by direct interference with the auto-regulatory transcriptional loop of ERα. Furthermore, E2 does not interfere with TCDD induced CYP1A gene expression, suggesting that cross-talk between the ERα- and AHR-signalling pathways is unidirectional. PMID:15119955

  4. TCDD and omeprazole prime platelets through the aryl hydrocarbon receptor (AhR) non-genomic pathway.

    PubMed

    Pombo, Mónica; Lamé, Michael W; Walker, Naomi J; Huynh, Danh H; Tablin, Fern

    2015-05-19

    The role of the aryl hydrocarbon receptor (AhR) in hemostasis has recently gained increased attention. Here, we demonstrate, by qRT-PCR and western blot, that human platelets express both AhR mRNA and AhR protein. AhR protein levels increase in a dose dependent manner when incubated with either 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) or omeprazole. Treatment of platelets with puromycin blocks increased AhR protein synthesis in the presence of AhR activators. Additionally, treatment of platelets with either activator results in phosphorylation of p38MAPK and cPLA2, two key signaling molecules in platelet activation pathways. Using the AhR competitive inhibitors alpha naphthoflavone and CH-223191, we show that phosphorylation of p38MAPK is AhR dependent. Further, inhibition of p38MAPK blocks downstream cPLA2 phosphorylation induced by TCDD or omeprazole. Treatment with AhR activators results in platelet priming, as demonstrated by increased platelet aggregation, which is inhibited by AhR antagonists. Our data support a model of the platelet AhR non-genomic pathway in which treatment with AhR activators results in increased expression of the AhR, phosphorylation of p38MAPK and cPLA2, leading to platelet priming in response to agonist. PMID:25797602

  5. AhR signalling and dioxin toxicity.

    PubMed

    Sorg, Olivier

    2014-10-15

    Dioxins are a family of molecules associated to several industrial accidents such as Ludwigshafen in 1953 or Seveso in 1976, to the Agent Orange used during the war of Vietnam, and more recently to the poisoning of the former president of Ukraine, Victor Yushchenko. These persistent organic pollutants are by-products of industrial activity and bind to an intracellular receptor, AhR, with a high potency. In humans, exposure to dioxins, in particular 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) induces a cutaneous syndrome known as chloracne, consisting in the development of many small skin lesions (hamartoma), lasting for 2-5 years. Although TCDD has been classified by the WHO as a human carcinogen, its carcinogenic potential to humans is not clearly demonstrated. It was first believed that AhR activation accounted for most, if not all, biological properties of dioxins. However, certain AhR agonists found in vegetables do not induce chloracne, and other chemicals, in particular certain therapeutic agents, may induce a chloracne-like syndrome without activating AhR. It is time to rethink the mechanism of dioxin toxicity and analyse in more details the biological events following exposure to these compounds and other AhR agonists, some of which have a very different chemical structure than TCDD. In particular various food-containing AhR agonists are non-toxic and may on the contrary have beneficial properties to human health. PMID:24239782

  6. A constitutive active MAPK/ERK pathway due to BRAFV600E positively regulates AHR pathway in PTC.

    PubMed

    Occhi, Gianluca; Barollo, Susi; Regazzo, Daniela; Bertazza, Loris; Galuppini, Francesca; Guzzardo, Vincenza; Jaffrain-Rea, Marie Lise; Vianello, Federica; Ciato, Denis; Ceccato, Filippo; Watutantrige-Fernando, Sara; Bisognin, Andrea; Bortoluzzi, Stefania; Pennelli, Gianmaria; Boscaro, Marco; Scaroni, Carla; Mian, Caterina

    2015-10-13

    The aryl hydrocarbon receptor (AHR) is a ligand-activated transcription factor mediating the toxicity and tumor-promoting properties of dioxin. AHR has been reported to be overexpressed and constitutively active in a variety of solid tumors, but few data are currently available concerning its role in thyroid cancer. In this study we quantitatively explored a series of 51 paired-normal and papillary thyroid carcinoma (PTC) tissues for AHR-related genes. We identified an increased AHR expression/activity in PTC, independently from its nuclear dimerization partner and repressor but strictly related to a constitutive active MAPK/ERK pathway. The AHR up-regulation followed by an increased expression of AHR target genes was confirmed by a meta-analysis of published microarray data, suggesting a ligand-independent active AHR pathway in PTC. In-vitro studies using a PTC-derived cell line (BCPAP) and HEK293 cells showed that BRAFV600E may directly modulate AHR localization, induce AHR expression and activity in an exogenous ligand-independent manner. The AHR pathway might represent a potential novel therapeutic target for PTC in the clinical practice. PMID:26392334

  7. Potential protective mechanisms of aryl hydrocarbon receptor (AHR) signaling in benign prostatic hyperplasia.

    PubMed

    Mehta, Vatsal; Vezina, Chad M

    2011-01-01

    The aryl hydrocarbon receptor (AHR) is an evolutionarily conserved ligand activated transcription factor best known for its role in mediating toxic responses to dioxin-like environmental contaminants. However, AHR signaling has also emerged as an active participant in processes of normal development and disease progression. Here, we review the role of AHR signaling in prostate development and disease processes, with a particular emphasis on benign prostatic hyperplasia (BPH). Inappropriate AHR activation has recently been associated with a decreased risk of symptomatic BPH in humans and has been shown to impair prostate development and disrupt endocrine signaling in rodents. We highlight known physiological responses to AHR activation in prostate and other tissues and discuss potential mechanisms by which it may act in adult human prostate to protect against symptomatic BPH. PMID:21684673

  8. Constitutive IDO expression in human cancer is sustained by an autocrine signaling loop involving IL-6, STAT3 and the AHR.

    PubMed

    Litzenburger, Ulrike M; Opitz, Christiane A; Sahm, Felix; Rauschenbach, Katharina J; Trump, Saskia; Winter, Marcus; Ott, Martina; Ochs, Katharina; Lutz, Christian; Liu, Xiangdong; Anastasov, Natasa; Lehmann, Irina; Höfer, Thomas; von Deimling, Andreas; Wick, Wolfgang; Platten, Michael

    2014-02-28

    Indoleamine-2,3-dioxygenase (IDO) inhibitors have entered clinical trials based on their ability to restore anti-tumor immunity in preclinical studies. However, the mechanisms leading to constitutive expression of IDO in human tumors are largely unknown. Here we analyzed the pathways mediating constitutive IDO expression in human cancer. IDO-positive tumor cells and tissues showed basal phosphorylation and acetylation of STAT3 as evidenced by western blotting and immunoprecipitation. Inhibition of IL-6 or STAT3 using siRNA and/or pharmacological inhibitors reduced IDO mRNA and protein expression as well as kynurenine formation. In turn, IDO enzymatic activity activated the AHR as shown by the induction of AHR target genes. IDO-mediated AHR activation induced IL-6 expression, while inhibition or knockdown of the AHR reduced IL-6 expression. IDO activity thus sustains its own expression via an autocrine AHR-IL-6-STAT3 signaling loop. Inhibition of the AHR-IL-6-STAT3 signaling loop restored T-cell proliferation in mixed leukocyte reactions performed in the presence of IDO-expressing human cancer cells. Identification of the IDO-AHR-IL-6-STAT3 signaling loop maintaining IDO expression in human cancers reveals novel therapeutic targets for the inhibition of this core pathway promoting immunosuppression of human cancers. The relevance of the IDO-AHR-IL-6-STAT3 transcriptional circuit is underscored by the finding that high expression of its members IDO, STAT3 and the AHR target gene CYP1B1 is associated with reduced relapse-free survival in lung cancer patients. PMID:24657910

  9. The Effects of Chronic Lifelong Activation of the AHR Pathway by Industrial Chemical Pollutants on Female Human Reproduction

    PubMed Central

    Vacca, Margherita; Nardelli, Claudia; Castegna, Alessandra; Arnesano, Fabio; Carella, Nicola; Depalo, Raffaella

    2016-01-01

    Environmental chemicals, such as heavy metals, affect female reproductive function. A biological sensor of the signals of many toxic chemical compounds seems to be the aryl hydrocarbon receptor (AHR). Previous studies demonstrated the environmental of heavy metals in Taranto city (Italy), an area that has been influenced by anthropogenic factors such as industrial activities and waste treatments since 1986. However, the impact of these elements on female fertility in this geographic area has never been analyzed. Thus, in the present study, we evaluated the AHR pathway, sex steroid receptor pattern and apoptotic process in granulosa cells (GCs) retrieved from 30 women, born and living in Taranto, and 30 women who are living in non-contaminated areas (control group), who were undergoing in vitro fertilization (IVF) protocol. In follicular fluids (FFs) of both groups the toxic and essential heavy metals, such as chromiun (Cr), Manganese (Mn), iron (Fe), cobalt (Co), nickel (Ni), copper (Cu), zinc (Zn), cadmium (Cd) and lead (Pb), were also analyzed. Higher levels of Cr, Fe, Zn and Pb were found in the FFs of the women from Taranto as compared to the control group, as were the levels of AHR and AHR-dependent cytochrome P450 1A1 and 1B1; while CYP19A1 expression was decreased. The anti-apoptotic process found in the GCs of women fromTaranto was associated with the highest levels of progesterone receptor membrane component 1 (PGRMC1), a novel progesterone receptor, the expression of which is subjected to AHR activated by its highest affinity ligands (e.g., dioxins) or indirectly by other environmental pollutants, such as heavy metals. In conclusion, decreased production of estradiol and decreased number of retrieved mature oocytes found in women from Taranto could be due to chronic exposure to heavy metals, in particular to Cr and Pb. PMID:27008165

  10. Differential Proteomics Analysis Reveals a Role for E2F2 in the Regulation of the Ahr Pathway in T Lymphocytes§

    PubMed Central

    Azkargorta, Mikel; Fullaondo, Asier; Laresgoiti, Usua; Aloria, Kerman; Infante, Arantza; Arizmendi, Jesus M.; Zubiaga, Ana M.

    2010-01-01

    E2F transcription factors (E2F1-8) are best known for their role in cell proliferation, although it is clear that they regulate many other biological processes through the transcriptional modulation of distinct target genes. However, the specific set of genes regulated by each E2F remains to be characterized. To gain insight into the molecular pathways regulated by E2F2, we have analyzed the proteome of antigen receptor–activated T cells lacking E2F2. We report that loss of E2F2 results in a deregulated Aryl-hydrocarbon-receptor pathway. Proliferating E2F2−/− T lymphocytes expressed significantly higher levels of Aip, Ahr, and Arnt relative to wild-type (WT)1 controls. The mechanism for increased levels of Aip appears straightforward, involving direct regulation of the Aip gene promoter by E2F2. Although the Ahr and Arnt promoters also bind E2F2, their regulation appears to be more complex. Nevertheless, exposure to the environmental xenobiotic 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), a well-known exogenous ligand of the Ahr pathway, led to overexpression of the Ahr target gene Cyp1a1, and to increased sensitivity to TCDD-triggered apoptosis in E2F2−/− T cells compared with WT controls. These results suggest that E2F2 modulates cellular sensitivity to xenobiotic signals through the negative regulation of the Ahr pathway. PMID:20573986

  11. Musashi-2 attenuates AHR signalling to expand human haematopoietic stem cells.

    PubMed

    Rentas, Stefan; Holzapfel, Nicholas T; Belew, Muluken S; Pratt, Gabriel A; Voisin, Veronique; Wilhelm, Brian T; Bader, Gary D; Yeo, Gene W; Hope, Kristin J

    2016-04-28

    Umbilical cord blood-derived haematopoietic stem cells (HSCs) are essential for many life-saving regenerative therapies. However, despite their advantages for transplantation, their clinical use is restricted because HSCs in cord blood are found only in small numbers. Small molecules that enhance haematopoietic stem and progenitor cell (HSPC) expansion in culture have been identified, but in many cases their mechanisms of action or the nature of the pathways they impinge on are poorly understood. A greater understanding of the molecular circuitry that underpins the self-renewal of human HSCs will facilitate the development of targeted strategies that expand HSCs for regenerative therapies. Whereas transcription factor networks have been shown to influence the self-renewal and lineage decisions of human HSCs, the post-transcriptional mechanisms that guide HSC fate have not been closely investigated. Here we show that overexpression of the RNA-binding protein Musashi-2 (MSI2) induces multiple pro-self-renewal phenotypes, including a 17-fold increase in short-term repopulating cells and a net 23-fold ex vivo expansion of long-term repopulating HSCs. By performing a global analysis of MSI2-RNA interactions, we show that MSI2 directly attenuates aryl hydrocarbon receptor (AHR) signalling through post-transcriptional downregulation of canonical AHR pathway components in cord blood HSPCs. Our study gives mechanistic insight into RNA networks controlled by RNA-binding proteins that underlie self-renewal and provides evidence that manipulating such networks ex vivo can enhance the regenerative potential of human HSCs. PMID:27121842

  12. Tryptamine serves as a proligand of the AhR transcriptional pathway whose activation is dependent of monoamine oxidases.

    PubMed

    Vikström Bergander, Linda; Cai, Wen; Klocke, Bernward; Seifert, Martin; Pongratz, Ingemar

    2012-09-01

    The function of the aryl hydrocarbon receptor (AhR) in mediating the biological effect to environmental pollutants is well established. However, accumulated evidence indicates a wide range of physiological and pathological functions mediated by the AhR, suggesting the existence of endogenous AhR ligand(s). The nature of an AhR ligand remain elusive; however, it is known that the AhR is activated by several compounds, such as 2,3,7,8-tetrachlorodibenzo-p-dioxin or the tryptophan photoproduct 6-formylindolo[3,2-b]carbazole. In this study, we show that physiological concentrations of tryptamine (TA) lead to induction of cytochrome P4501A1 transcription through an AhR-dependent mechanism. In addition, we show that activation of the AhR by TA requires a functional monoamino oxidase system, suggesting that TA acts as an AhR proligand possibly by converting to a high-affinity AhR ligand. Taken together, we show a possible mechanism, through which AhR signaling is activated by endogenous conversion of TA involving monoamine oxidases. PMID:22865928

  13. TCDD promoted EMT of hFPECs via AhR, which involved the activation of EGFR/ERK signaling.

    PubMed

    Gao, Zhan; Bu, Yongjun; Liu, Xiaozhuan; Wang, Xugang; Zhang, Guofu; Wang, Erhui; Ding, Shibin; Liu, Yongfeng; Shi, Ruling; Li, Qiaoyun; Fu, Jianhong; Yu, Zengli

    2016-05-01

    One critical step of second palatal fusion is the newly formed medial epithelia seam (MES) disintegration, which involves apoptosis, epithelial to mesenchymal transition (EMT), and cell migration. Although the environmental toxicant 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) produces cleft palate at high rates, little is known about the effects of TCDD exposure on the fate of palatal epithelial cells. By using primary epithelial cells isolated from human fetal palatal shelves (hFPECs), we show that TCDD increased cell proliferation and EMT, as demonstrated by increased the epithelial markers (E-cadherin and cytokeratin14) and enhanced the mesenchymal markers (vimentin and fibronectin), but had no effect on cell migration and apoptosis. TCDD exposure led to a dose-dependent increase in Slug protein expression. Coimmunoprecipitation revealed that TCDD promoted AhR to form a protein complex with Slug. ChIP assay confirmed that TCDD exposure recruited AhR to the xenobiotic responsive element of Slug promoter. Knockdown of AhR by siRNA remarkably weakened TCDD-induced binding of AhR to the XRE promoter of slug, thereby suppressed TCDD-induced vimentin. Further experiment showed that TCDD stimulated EGFR phosphorylation did not influence the TGFβ3/Smad signaling; whereas TCDD increased phosphorylation of ERK1/2 and p38 with no effect on activation of JNK. By using varieties of inhibitors, we confirmed that TCDD promoted proliferation and EMT of hFPECs via activation of EGFR/ERK pathway. These data make a novel contribution to the molecular mechanism of cleft palate by TCDD. PMID:26971374

  14. Malformation of certain brain blood vessels caused by TCDD activation of Ahr2/Arnt1 signaling in developing zebrafish

    PubMed Central

    Teraoka, Hiroki; Ogawa, Akira; Kubota, Akira; Stegeman, John J.; Peterson, Richard E.; Hiraga, Takeo

    2011-01-01

    2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) causes various signs of toxicity in early life stages of vertebrates through activation of the aryl hydrocarbon receptor (AHR). The AHR also plays important roles in normal development in mice, and AHR-/- mice show abnormal development of vascular structures in various blood vessels. Our previous studies revealed that Ahr type 2 (Ahr2) activation by TCDD and β-naphthoflavone (BNF) caused a significant decrease in blood flow in the dorsal midbrain of zebrafish embryos. Here we report effects of TCDD exposure on the morphology of some blood vessels in the head of developing zebrafish. TCDD caused concentration-dependent anatomical rearrangements in the shape of the prosencephalic artery in zebrafish larvae. In contrast, no major vascular defects were recognized in the trunk and tail regions following exposure to TCDD at least at the concentrations used. Essentially, the same observations were also confirmed in BNF-exposed larvae. Knock-down of either Ahr2 or Ahr nuclear translocator type 1 (Arnt1) by morpholino oligonucleotides (MOs) protected larvae against abnormal shape of the prosencephalic artery caused by TCDD and BNF. On the other hand, knock-down of Ahr2 or Arnt1 in vehicle-exposed zebrafish larvae had no clear effect on morphology of the prosencephalic artery or trunk vessels. Ascorbic acid, an antioxidant, protected against the TCDD-induced decrease in blood flow through the prosencephalic artery, but not the abnormal morphological changes in the shape of this artery. These results indicate that activation of Ahr2/Arnt1 pathway by TCDD and BNF affects the shape of certain blood vessels in the brain of developing zebrafish. PMID:20554057

  15. A TDO2-AhR signaling axis facilitates anoikis resistance and metastasis in triple-negative breast cancer.

    PubMed

    D'Amato, Nicholas C; Rogers, Thomas J; Gordon, Michael A; Greene, Lisa I; Cochrane, Dawn R; Spoelstra, Nicole S; Nemkov, Travis G; D'Alessandro, Angelo; Hansen, Kirk C; Richer, Jennifer K

    2015-11-01

    The ability of a cancer cell to develop resistance to anoikis, a programmed cell death process triggered by substratum detachment, is a critical step in the metastatic cascade. Triple-negative breast cancers (TNBC) exhibit higher rates of metastasis after diagnosis, relative to estrogen-positive breast cancers, but while TNBC cells are relatively more resistant to anoikis, the mechanisms involved are unclear. Through gene expression and metabolomic profiling of TNBC cells in forced suspension culture, we identified a molecular pathway critical for anchorage-independent cell survival. TNBC cells in suspension upregulated multiple genes in the kynurenine pathway of tryptophan catabolism, including the enzyme tryptophan 2,3-dioxygenase (TDO2), in an NF-κB-dependent manner. Kynurenine production mediated by TDO2 in TNBC cells was sufficient to activate aryl hydrocarbon receptor (AhR), an endogenous kynurenine receptor. Notably, pharmacologic inhibition or genetic attenuation of TDO2 or AhR increased cellular sensitivity to anoikis, and also reduced proliferation, migration, and invasion of TNBC cells. In vivo, TDO2 inhibitor-treated TNBC cells inhibited colonization of the lung, suggesting that TDO2 enhanced metastatic capacity. In clinical specimens of TNBC, elevated expression of TDO2 was associated with increased disease grade, estrogen receptor-negative status, and shorter overall survival. Our results define an NF-κB-regulated signaling axis that promotes anoikis resistance, suggest functional connections with inflammatory modulation by the kynurenine pathway, and highlight TDO2 as an attractive target for treatment of this aggressive breast cancer subtype. PMID:26363006

  16. Benzo[ghi]perylene activates the AHR pathway to exert biological effects on the NL-20 human bronchial cell line.

    PubMed

    Zaragoza-Ojeda, Montserrat; Eguía-Aguilar, Pilar; Perezpeña-Díazconti, Mario; Arenas-Huertero, Francisco

    2016-08-10

    Polycyclic aromatic hydrocarbons (PAH) are produced by incomplete combustion of organic material. In the Mexico City atmosphere, the most abundant PAH is benzo[ghi]perylene (BghiP), a gasoline combustion marker. At present, there are no reports of the effects of BghiP on human bronchial cells, so the aim of the study was to evaluate the effects in vitro of BghiP on the NL-20 cell line. Results showed that BghiP induced the formation of small vesicles throughout the cytoplasm, with absence of nuclear fragmentation. At 48h exposition, damage in cell membrane increased significantly at 1.24μg/mL of BghiP (p<0.05). Immunocytochemistry revealed that BghiP provokes nuclear translocation of AhR receptor, which indicates that this compound can induce transcription of genes via receptor binding (AhR pathway activation). BghiP induced a two-fold increase (p<0.05) in the expression of AhR and CYP4B1 (a lung-specific pathway effector). In the presence of the receptor antagonist CH-223191, the loss of viability, the nuclear translocation and the overexpression of genes decreased, though this did not prevent the formation of vesicles. BghiP induced oxidative stress and in presence of the receptor antagonist this increased significantly. In conclusion, BghiP can activate the overexpression of AhR and CYP4B1, and the effects are abated by the AhR receptor antagonist. This is the first report to prove that BghiP utilizes the AhR pathway to exert its toxic effects on the NL-20 human bronchial cell line . PMID:27234499

  17. The aryl hydrocarbon receptor suppresses osteoblast proliferation and differentiation through the activation of the ERK signaling pathway

    SciTech Connect

    Yu, Haitao; Du, Yuxuan; Zhang, Xulong; Sun, Ying; Li, Shentao; Dou, Yunpeng; Li, Zhanguo; Yuan, Huihui; Zhao, Wenming

    2014-11-01

    Ahr activation is known to be associated with synovitis and exacerbated rheumatoid arthritis (RA), but its contributions to bone loss have not been completely elucidated. Osteoblast proliferation and differentiation are abnormal at the erosion site in RA. Here, we reported that the expression of Ahr was increased in the hind paws' bone upon collagen-induced arthritis (CIA) in mice, and the levels of Ahr were negatively correlated with bone mineral density (BMD). In addition, immunofluorescent staining showed that the high expression of Ahr was mainly localized in osteoblasts from the CIA mice compared to normal controls. Moreover, the luciferase intensity of Ahr in the nucleus increased by 12.5% in CIA osteoblasts compared to that in normal controls. In addition, 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) activation of the Ahr inhibited pre-osteoblast MC3T3-E1 cellular proliferation and differentiation in a dose-dependent manner. Interestingly, the levels of alkaline phosphatase (ALP) mRNA expression in the osteoblasts of CIA mice were reduced compared to normal controls. In contrast, decreased ALP expression by activated Ahr was completely reversed after pretreatment with an Ahr inhibitor (CH-223191) in MC3T3-E1 cell lines and primary osteoblasts on day 5. Our data further showed that activation of Ahr promoted the phosphorylation of ERK after 5 days. Moreover, Ahr-dependent activation of the ERK signaling pathway decreased the levels of proliferation cells and inhibited ALP activity in MC3T3-E1 cells. These results demonstrated that the high expression of Ahr may suppress osteoblast proliferation and differentiation through activation of the ERK signaling pathway, further enabling bone erosion in CIA mice. - Highlights: • The upregulation of Ahr was localized in osteoblasts of CIA mice. • The overexpression of Ahr suppressed osteoblast development. • The Ahr activated ERK signaling pathway to exacerbate bone erosion.

  18. Molecular and functional characterization of a novel aryl hydrocarbon receptor isoform, AHR1β, in the chicken (Gallus gallus).

    PubMed

    Lee, Jin-Seon; Iwabuchi, Kohei; Nomaru, Koji; Nagahama, Nobumasa; Kim, Eun-Young; Iwata, Hisato

    2013-12-01

    Dioxins including 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) cause toxic effects through activation of the aryl hydrocarbon receptor (AHR)-mediated signaling pathway. Our previous studies have investigated the function of 2 AHR isoforms (AHR1 and AHR2) in avian species and identified a third AHR in the chicken (Gallus gallus) genome. Knowledge of multiple avian AHRs is indispensable to understand molecular mechanisms of AHR-mediated toxic effects and establish risk assessment framework for environmental AHR ligands in avian species. In this study, we successfully isolated a third novel AHR1-like cDNA from chicken and designated it as chicken AHR1 beta (ckAHR1β). The mRNA expression of ckAHR1β was primarily detected in the liver, and the hepatic protein expression was confirmed by Western blotting. Although mRNA expression of ckAHR1β was not altered by in ovo TCDD exposure, ckAHR1β exhibited specific binding to [(3)H]TCDD, TCDD-dependent nuclear translocation, and interaction with xenobiotic responsive elements (XREs) and AHR nuclear translocators (ARNTs). In vitro XRE-driven reporter gene assays revealed ckAHR1β-mediated transactivation of TCDD in a dose-dependent manner, showing a 10-fold reduced sensitivity (high EC50) compared with that mediated by ckAHR1. The mutation of Val(371) to Ser(371) in the ligand-binding domain of ckAHR1β shifted the TCDD-EC50 toward the value observed in ckAHR1, indicating the critical roles of the amino acid in sensitivity. Furthermore, ckAHR1β-mediated transactivation of TCDD was enhanced by 17β-estradiol (E2)-activated chicken estrogen receptor α (ckERα), suggesting a positive cross talk between ckERα and ckAHRsignaling pathway. Both TCDD-induced and its enhanced activities by E2 were suppressed by the ckAHR repressor in a manner similar to ckAHR1. Collectively, our findings discover the role of ckAHR1β in dioxin toxicity and give an insight into the evolutionary history of the AHR signaling pathway. PMID:23997109

  19. Hexachlorobenzene induces cell proliferation, and aryl hydrocarbon receptor expression (AhR) in rat liver preneoplastic foci, and in the human hepatoma cell line HepG2. AhR is a mediator of ERK1/2 signaling, and cell cycle regulation in HCB-treated HepG2 cells.

    PubMed

    de Tomaso Portaz, Ana Clara; Caimi, Giselle Romero; Sánchez, Marcela; Chiappini, Florencia; Randi, Andrea S; Kleiman de Pisarev, Diana L; Alvarez, Laura

    2015-10-01

    Hexachlorobenzene (HCB) is a widespread environmental pollutant, and a liver tumor promoter in rodents. Depending on the particular cell lines studied, exposure to these compounds may lead to cell proliferation, terminal differentiation, or apoptosis. The aryl hydrocarbon receptor (AhR) is a ligand-activated transcription factor that is involved in drug and xenobiotic metabolism. AhR can also modulate a variety of cellular and physiological processes that can affect cell proliferation and cell fate determination. The mechanisms by which AhR ligands, both exogenous and endogenous, affect these processes involve multiple interactions between AhR and other signaling pathways. In the present study, we examined the effect of HCB on cell proliferation and AhR expression, using an initiation-promotion hepatocarcinogenesis protocol in rat liver and in the human-derived hepatoma cell line, HepG2. Female Wistar rats were initiated with a single dose of 100 mg/kg of diethylnitrosamine (DEN) at the start of the experiment. Two weeks later, daily dosing of 100 mg/kg HCB was maintained for 10 weeks. Partial hepatectomy was performed 3 weeks after initiation. The number and area of glutathione S-transferase-P (GST-P)-positive foci, in the rat liver were used as biomarkers of liver precancerous lesions. Immunohistochemical staining showed an increase in proliferating cell nuclear antigen (PCNA)-positive cells, along with enhanced AhR protein expression in hepatocytes within GST-P-positive foci of (DEN HCB) group, when compared to DEN. In a similar manner, Western blot analysis demonstrated that HCB induced PCNA and AhR protein expression in HepG2 cells. Flow cytometry assay indicated that the cells were accumulated at S and G2/M phases of the cell cycle. HCB increased cyclin D1 protein levels and ERK1/2 phosphorylation in a dose-dependent manner. Treatment of cells with a selective MEK1 inhibitor, prevented HCB-stimulatory effect on PCNA and cyclinD1, indicating that these effects

  20. AhR signaling activation disrupts migration and dendritic growth of olfactory interneurons in the developing mouse.

    PubMed

    Kimura, Eiki; Ding, Yunjie; Tohyama, Chiharu

    2016-01-01

    Perinatal exposure to a low level of dioxin, a ubiquitous environmental pollutant, has been shown to induce abnormalities in learning and memory, emotion, and sociality in laboratory animals later in adulthood. However, how aryl hydrocarbon receptor (AhR) signaling activation disrupts the higher brain function remains unclear. Therefore, we studied the possible effects of excessive activation of AhR signaling on neurodevelopmental processes, such as cellular migration and neurite growth, in mice. To this end, we transfected a constitutively active-AhR plasmid into stem cells in the lateral ventricle by in vivo electroporation on postnatal day 1. Transfection was found to induce tangential migration delay and morphological abnormalities in neuronal precursors in the rostral migratory stream at 6 days post-electroporation (dpe) as well as disrupt radial migration in the olfactory bulb and apical and basal dendritic growth of the olfactory interneurons in the granule cell layer at 13 and 20 dpe. These results suggest that the retarded development of interneurons by the excessive AhR signaling may at least in part explain the dioxin-induced abnormal behavioral alterations previously reported in laboratory animals. PMID:27197834

  1. AhR signaling activation disrupts migration and dendritic growth of olfactory interneurons in the developing mouse

    PubMed Central

    Kimura, Eiki; Ding, Yunjie; Tohyama, Chiharu

    2016-01-01

    Perinatal exposure to a low level of dioxin, a ubiquitous environmental pollutant, has been shown to induce abnormalities in learning and memory, emotion, and sociality in laboratory animals later in adulthood. However, how aryl hydrocarbon receptor (AhR) signaling activation disrupts the higher brain function remains unclear. Therefore, we studied the possible effects of excessive activation of AhR signaling on neurodevelopmental processes, such as cellular migration and neurite growth, in mice. To this end, we transfected a constitutively active-AhR plasmid into stem cells in the lateral ventricle by in vivo electroporation on postnatal day 1. Transfection was found to induce tangential migration delay and morphological abnormalities in neuronal precursors in the rostral migratory stream at 6 days post-electroporation (dpe) as well as disrupt radial migration in the olfactory bulb and apical and basal dendritic growth of the olfactory interneurons in the granule cell layer at 13 and 20 dpe. These results suggest that the retarded development of interneurons by the excessive AhR signaling may at least in part explain the dioxin-induced abnormal behavioral alterations previously reported in laboratory animals. PMID:27197834

  2. Benzo[a]pyrene, 3-methylcholanthrene and beta-naphthoflavone induce oxidative stress in hepatoma hepa 1c1c7 Cells by an AHR-dependent pathway.

    PubMed

    Elbekai, Reem H; Korashy, Hesham M; Wills, Kelly; Gharavi, Negar; El-Kadi, Ayman O S

    2004-11-01

    Polycyclic aromatic hydrocarbons have been shown to cause oxidative stress in vitro and in vivo in various animal models but the mechanisms by which these compounds produce oxidative stress are unknown. In the current study we have investigated the role of the aryl hydrocarbon receptor (AHR) in the production of reactive oxygen species (ROS) by its cognate ligands and the consequent effect on cyp1a1 activity, mRNA and protein expressions. For this purpose, Hepa 1c1c7 cells wild-type (WT) and C12 mutant cells, which are AHR-deficient, were incubated with increasing concentrations of the AHR-ligands, benzo[a]pyrene (B[a]P, 0.25-25 microM), 3-methylcholanthrene (3MC, 0.1-10 microM) and beta-naphthoflavone (betaNF, 1-50 microM). The studied AHR-ligands dose-dependently increased lipid peroxidation in WT but not in C12 cells. However, only B[a]P and betaNF, at the highest concentrations tested, significantly increased H2O2 production in WT but not C12 cells. The increase in lipid peroxidation and H2O2 production by AHR-ligands were accompanied by a decrease in the cyp1a1 catalytic activity but not mRNA or protein expressions, which were significantly induced in a dose-dependent manner by all AHR-ligands, suggesting a post-translational mechanism is involved in the decrease of cyp1a1 activity. The AHR-ligand-mediated decrease in cyp1a1 activity was reversed by the antioxidant N-acetylcysteine. Our results show that the AHR-ligands induce oxidative stress by an AHR-dependent pathway. PMID:15621696

  3. Khellin and Visnagin Differentially Modulate AHR Signaling and Downstream CYP1A Activity in Human Liver Cells

    PubMed Central

    Proksch, Peter; Abel, Josef; Dvorak, Zdenek; Haarmann-Stemmann, Thomas

    2013-01-01

    Khellin and visnagin are two furanochromones that can be frequently found in ethnomedical formulations in Asia and the Middle East. Both compounds possess anti-inflammatory and analgesic properties, therefore modern medicine uses these compounds or structurally related derivatives for treatment of vitiligo, bronchial asthma and renal colics. Despite their frequent usage, the potential toxic properties of visnagin and khellin are not well characterized up-to-now. Many natural compounds modulate the expression and activity of cytochrome P450 1A1 (CYP1A1), which is well-known to bioactivate pro-carcinogens. The expression of this enzyme is controlled by the aryl hydrocarbon receptor (AHR), a ligand-activated transcription factor and regulator of drug metabolism. Here, we investigated the influence of both furanochromones on AHR signaling in human HepG2 hepatocarcinoma cells and primary human hepatocytes. Both compounds transactivated xenobiotic response element (XRE)-driven reporter gene activity in a dose-dependent manner and induced CYP1A1 transcription in HepG2 cells and primary hepatocytes. The latter was abolished in presence of a specific AHR antagonist. CYP1A enzyme activity assays done in HepG2 cells and primary hepatocytes revealed an inhibition of enzyme activity by both furanochromones, which may become relevant regarding the metabolism of xenobiotics and co-administered therapeutic drugs. The observed induction of several other members of the AHR gene battery, whose gene products are involved in regulation of cell growth, differentiation and migration, indicates that a further toxicological characterization of visnagin and khelllin is urgently required in order to minimize potential drug-drug interactions and other toxic side-effects that may occur during therapeutic usage of these furanochromones. PMID:24069365

  4. The aryl hydrocarbon receptor links integrin signaling to the TGF-β pathway.

    PubMed

    Silginer, M; Burghardt, I; Gramatzki, D; Bunse, L; Leske, H; Rushing, E J; Hao, N; Platten, M; Weller, M; Roth, P

    2016-06-23

    Glioblastoma is the most common and aggressive form of intrinsic brain tumor. Transforming growth factor (TGF)-β represents a central mediator of the malignant phenotype of these tumors by promoting invasiveness and angiogenesis, maintaining tumor cell stemness and inducing profound immunosuppression. Integrins, which are highly expressed in glioma cells, interact with the TGF-β pathway. Furthermore, a link has been described between activity of the transcription factor aryl hydrocarbon receptor (AhR) and TGF-β expression. Here we demonstrate that integrin inhibition, using αv, β3 or β5 neutralizing antibodies, RNA interference-mediated integrin gene silencing or pharmacological inhibition by the cyclic RGD peptide EMD 121974 (cilengitide) or the non-peptidic molecule GLPG0187, inhibits AhR activity. These effects are independent of cell detachment or cell density. While AhR mRNA expression was not affected by integrin inhibition, AhR total and nuclear protein levels were reduced, suggesting that integrin inhibition-mediated regulation of AhR may occur at a post-transcriptional level. AhR-null astrocytes, AhR-null hepatocytes or glioblastoma cells with a transiently silenced AhR gene showed reduced sensitivity to integrin inhibition-mediated alterations in TGF-β signaling, indicating that AhR mediates integrin control of the TGF-β pathway. Accordingly, there was a significant correlation of αv integrin levels with nuclear AhR and pSmad2 levels as determined by immunohistochemistry in human glioblastoma in vivo. In summary, this study identifies a signaling network comprising integrins, AhR and TGF-β and validates integrin inhibition as a promising strategy not only to inhibit angiogenesis, but also to block AhR- and TGF-β-controlled features of malignancy in human glioblastoma. PMID:26500056

  5. Growth hormone signaling pathways.

    PubMed

    Carter-Su, Christin; Schwartz, Jessica; Argetsinger, Lawrence S

    2016-06-01

    Over 20years ago, our laboratory showed that growth hormone (GH) signals through the GH receptor-associated tyrosine kinase JAK2. We showed that GH binding to its membrane-bound receptor enhances binding of JAK2 to the GHR, activates JAK2, and stimulates tyrosyl phosphorylation of both JAK2 and GHR. The activated JAK2/GHR complex recruits a variety of signaling proteins, thereby initiating multiple signaling pathways and cellular responses. These proteins and pathways include: 1) Stat transcription factors implicated in the expression of multiple genes, including the gene encoding insulin-like growth factor 1; 2) Shc adapter proteins that lead to activation of the grb2-SOS-Ras-Raf-MEK-ERK1,2 pathway; 3) insulin receptor substrate proteins implicated in the phosphatidylinositol-3-kinase and Akt pathway; 4) signal regulatory protein α, a transmembrane scaffold protein that recruits proteins including the tyrosine phosphatase SHP2; and 5) SH2B1, a scaffold protein that can activate JAK2 and enhance GH regulation of the actin cytoskeleton. Our recent work has focused on the function of SH2B1. We have shown that SH2B1β is recruited to and phosphorylated by JAK2 in response to GH. SH2B1 localizes to the plasma membrane, cytoplasm and focal adhesions; it also cycles through the nucleus. SH2B1 regulates the actin cytoskeleton and promotes GH-dependent motility of RAW264.7 macrophages. Mutations in SH2B1 have been found in humans exhibiting severe early-onset childhood obesity and insulin resistance. These mutations impair SH2B1 enhancement of GH-induced macrophage motility. As SH2B1 is expressed ubiquitously and is also recruited to a variety of receptor tyrosine kinases, our results raise the possibility that effects of SH2B1 on the actin cytoskeleton in various cell types, including neurons, may play a role in regulating body weight. PMID:26421979

  6. The aryl hydrocarbon receptor (AhR) mediates resistance to apoptosis induced in breast cancer cells.

    PubMed

    Bekki, Kanae; Vogel, Helena; Li, Wen; Ito, Tomohiro; Sweeney, Colleen; Haarmann-Stemmann, Thomas; Matsumura, Fumio; Vogel, Christoph F A

    2015-05-01

    The aryl hydrocarbon receptor (AhR) is well known as a ligand binding transcription factor regulating various biological effects. Previously we have shown that long-term exposure to estrogen in breast cancer cells caused not only down regulation of estrogen receptor (ER) but also overexpression of AhR. The AhR interacts with several cell signaling pathways associated with induction of tyrosine kinases, cytokines and growth factors which may support the survival roles of AhR escaping from apoptosis elicited by a variety of apoptosis inducing agents in breast cancer. In this study, we studied the anti-apoptotic role of AhR in different breast cancer cells when apoptosis was induced by exposure to UV light and chemotherapeutic agents. Activation of AhR by 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) in AhR overexpressing breast cancer cells effectively suppressed the apoptotic response induced by UV-irradiation, doxorubicin, lapatinib and paclitaxel. The anti-apoptotic response of TCDD was uniformly antagonized by the treatment with 3'methoxy-4'nitroflavone (MNF), a specific antagonist of AhR. TCDD's survival action of apoptosis was accompanied with the induction of well-known inflammatory genes, such as cyclooxygenase-2 (COX-2) and NF-κB subunit RelB. Moreover, TCDD increased the activity of the immunosuppressive enzyme indoleamine 2, 3-dioxygenase (IDO), which metabolizes tryptophan to kynurenine (Kyn) and mediates tumor immunity. Kyn also acts as an AhR ligand like TCDD, and kyn induced an anti-apoptotic response in breast cancer cells. Accordingly, our present study suggests that AhR plays a pivotal role in the development of breast cancer via the suppression of apoptosis, and provides an idea that the use of AhR antagonists with chemotherapeutic agents may effectively synergize the elimination of breast cancer cells. PMID:25987214

  7. Use of natural AhR ligands as potential therapeutic modalities against inflammatory disorders.

    PubMed

    Busbee, Philip B; Rouse, Michael; Nagarkatti, Mitzi; Nagarkatti, Prakash S

    2013-06-01

    The aim of this review is to discuss research involving ligands for the aryl hydrocarbon receptor (AhR) and their role in immunomodulation. While activation of the AhR is well known for its ability to regulate the biochemical and toxic effects of environmental chemicals, more recently an exciting discovery has been made indicating that AhR ligation can also regulate T-cell differentiation, specifically through activation of Foxp3(+) regulatory T cells (Tregs) and downregulation of the proinflammatory Th17 cells. Such findings have opened new avenues of research on the possibility of targeting the AhR to treat inflammatory and autoimmune diseases. Specifically, this review will discuss the current research involving natural and dietary AhR ligands. In addition, evidence indicating the potential use of these ligands in regulating inflammation in various diseases will be highlighted. The importance of the AhR in immunological processes can be illustrated by expression of this receptor on a majority of immune cell types. In addition, AhR signaling pathways have been reported to influence a number of genes responsible for mediating inflammation and other immune responses. As interest in the AhR and its ligands increases, it seems prudent to consolidate current research on the contributions of these ligands to immune regulation during the course of inflammatory diseases. PMID:23731446

  8. Use of natural AhR ligands as potential therapeutic modalities against inflammatory disorders

    PubMed Central

    Busbee, Philip B; Rouse, Michael; Nagarkatti, Mitzi; Nagarkatti, Prakash S

    2014-01-01

    The aim of this review is to discuss research involving ligands for the aryl hydrocarbon receptor (AhR) and their role in immunomodulation. While activation of the AhR is well known for its ability to regulate the biochemical and toxic effects of environmental chemicals, more recently an exciting discovery has been made indicating that AhR ligation can also regulate T-cell differentiation, specifically through activation of Foxp3+ regulatory T cells (Tregs) and downregulation of the proinflammatory Th17 cells. Such findings have opened new avenues of research on the possibility of targeting the AhR to treat inflammatory and autoimmune diseases. Specifically, this review will discuss the current research involving natural and dietary AhR ligands. In addition, evidence indicating the potential use of these ligands in regulating inflammation in various diseases will be highlighted. The importance of the AhR in immunological processes can be illustrated by expression of this receptor on a majority of immune cell types. In addition, AhR signaling pathways have been reported to influence a number of genes responsible for mediating inflammation and other immune responses. As interest in the AhR and its ligands increases, it seems prudent to consolidate current research on the contributions of these ligands to immune regulation during the course of inflammatory diseases. PMID:23731446

  9. Regulatory crosstalk and interference between the xenobiotic and hypoxia sensing pathways at the AhR-ARNT-HIF1α signaling node

    PubMed Central

    Vorrink, Sabine U.; Domann, Frederick E.

    2014-01-01

    The aryl hydrocarbon receptor (AhR) is a ligand-activated transcription factor that mediates many of the responses to toxic environmental chemicals such as TCDD or dioxin-like PCBs. To regulate gene expression, the AhR requires its binding partner, the aryl hydrocarbon receptor nuclear translocator (ARNT). ARNT is also required by the hypoxia-inducible factor-1α (HIF-1α), a crucial regulator of responses to conditions of reduced oxygen. The important role of ARNT in both the AhR and HIF-1α signaling pathways establishes a meaningful foundation for a possible crosstalk between these two vitally important signaling pathways. This crosstalk might lead to interference between the two signaling pathways and thus might play a role in the variety of cellular responses after exposure to AhR ligands and reduced oxygen availability. This review focuses on studies that have analyzed the effect of low oxygen environments and hypoxiamimetic agents on AhR signaling and conversely, the effect of AhR ligands, with a special emphasis on PCBs, on HIF-1α signaling. We highlight studies that assess the role of ARNT, elucidate the mechanism of the crosstalk, and discuss the physiological implications for exposure to AhR-inducing compounds in the context of hypoxia. PMID:24824450

  10. Plant polyphenols differentially modulate inflammatory responses of human keratinocytes by interfering with activation of transcription factors NF{kappa}B and AhR and EGFR-ERK pathway

    SciTech Connect

    Potapovich, Alla I.; Lulli, Daniela; Fidanza, Paolo; Kostyuk, Vladimir A.; De Luca, Chiara; Pastore, Saveria; Korkina, Liudmila G.

    2011-09-01

    Molecular mechanisms underlying modulation of inflammatory responses in primary human keratinocytes by plant polyphenols (PPs), namely the glycosylated phenylpropanoid verbascoside, the stilbenoid resveratrol and its glycoside polydatin, and the flavonoid quercetin and its glycoside rutin were evaluated. As non-lethal stimuli, the prototypic ligand for epidermal growth factor receptor (EGFR) transforming growth factor alpha (TGFalpha), the combination of tumor necrosis factor (TNFalpha) and interferon (IFNgamma) (T/I), UVA + UVB irradiation, and bacterial lipopolysaccharide (LPS) were used. We demonstrated differential modulation of inflammatory responses in keratinocytes at signal transduction, gene transcription, and protein synthesis levels as a function of PP chemical structure, the pro-inflammatory trigger used, and PP interaction with intracellular detoxifying systems. The PPs remarkably inhibited constitutive, LPS- and T/I-induced but not TGFalpha-induced ERK phosphorylation. They also suppressed NFkappaB activation by LPS and T/I. Verbascoside and quercetin invariably impaired EGFR phosphorylation and UV-associated aryl hydrocarbon receptor (AhR)-mediated signaling, while rutin, polydatin and resveratrol did not affect EGFR phosphorylation and further activated AhR machinery in UV-exposed keratinocytes. In general, PPs down-regulated gene expression of pro-inflammatory cytokines/enzymes, except significant up-regulation of IL-8 observed under stimulation with TGFalpha. Both spontaneous and T/I-induced release of IL-8 and IP-10 was suppressed, although 50 {mu}M resveratrol and polydatin up-regulated IL-8. At this concentration, resveratrol activated both gene expression and de novo synthesis of IL-8 and AhR-mediated mechanisms were involved. We conclude that PPs differentially modulate the inflammatory response of human keratinocytes through distinct signal transduction pathways, including AhR and EGFR. - Graphical abstract: Display Omitted Highlights

  11. Retroactive Signaling in Short Signaling Pathways

    PubMed Central

    Sepulchre, Jacques-Alexandre; Merajver, Sofía D.; Ventura, Alejandra C.

    2012-01-01

    In biochemical signaling pathways without explicit feedback connections, the core signal transduction is usually described as a one-way communication, going from upstream to downstream in a feedforward chain or network of covalent modification cycles. In this paper we explore the possibility of a new type of signaling called retroactive signaling, offered by the recently demonstrated property of retroactivity in signaling cascades. The possibility of retroactive signaling is analysed in the simplest case of the stationary states of a bicyclic cascade of signaling cycles. In this case, we work out the conditions for which variables of the upstream cycle are affected by a change of the total amount of protein in the downstream cycle, or by a variation of the phosphatase deactivating the same protein. Particularly, we predict the characteristic ranges of the downstream protein, or of the downstream phosphatase, for which a retroactive effect can be observed on the upstream cycle variables. Next, we extend the possibility of retroactive signaling in short but nonlinear signaling pathways involving a few covalent modification cycles. PMID:22848403

  12. Signaling on the endocytic pathway.

    PubMed

    McPherson, P S; Kay, B K; Hussain, N K

    2001-06-01

    Ligand binding to receptor tyrosine kinases and G-protein-coupled receptors initiates signal transduction events and induces receptor endocytosis via clathrin-coated pits and vesicles. While receptor-mediated endocytosis has been traditionally considered an effective mechanism to attenuate ligand-activated responses, more recent studies demonstrate that signaling continues on the endocytic pathway. In fact, certain signaling events, such as the activation of the extracellular signal-regulated kinases, appear to require endocytosis. Protein components of signal transduction cascades can assemble at clathrin coated pits and remain associated with endocytic vesicles following their dynamin-dependent release from the plasma membrane. Thus, endocytic vesicles can function as a signaling compartment distinct from the plasma membrane. These observations demonstrate that endocytosis plays an important role in the activation and propagation of signaling pathways. PMID:11389765

  13. Signaling Pathways in Melanogenesis.

    PubMed

    D'Mello, Stacey A N; Finlay, Graeme J; Baguley, Bruce C; Askarian-Amiri, Marjan E

    2016-01-01

    Melanocytes are melanin-producing cells found in skin, hair follicles, eyes, inner ear, bones, heart and brain of humans. They arise from pluripotent neural crest cells and differentiate in response to a complex network of interacting regulatory pathways. Melanins are pigment molecules that are endogenously synthesized by melanocytes. The light absorption of melanin in skin and hair leads to photoreceptor shielding, thermoregulation, photoprotection, camouflage and display coloring. Melanins are also powerful cation chelators and may act as free radical sinks. Melanin formation is a product of complex biochemical events that starts from amino acid tyrosine and its metabolite, dopa. The types and amounts of melanin produced by melanocytes are determined genetically and are influenced by a variety of extrinsic and intrinsic factors such as hormonal changes, inflammation, age and exposure to UV light. These stimuli affect the different pathways in melanogenesis. In this review we will discuss the regulatory mechanisms involved in melanogenesis and explain how intrinsic and extrinsic factors regulate melanin production. We will also explain the regulatory roles of different proteins involved in melanogenesis. PMID:27428965

  14. Signaling Pathways in Melanogenesis

    PubMed Central

    D’Mello, Stacey A. N.; Finlay, Graeme J.; Baguley, Bruce C.; Askarian-Amiri, Marjan E.

    2016-01-01

    Melanocytes are melanin-producing cells found in skin, hair follicles, eyes, inner ear, bones, heart and brain of humans. They arise from pluripotent neural crest cells and differentiate in response to a complex network of interacting regulatory pathways. Melanins are pigment molecules that are endogenously synthesized by melanocytes. The light absorption of melanin in skin and hair leads to photoreceptor shielding, thermoregulation, photoprotection, camouflage and display coloring. Melanins are also powerful cation chelators and may act as free radical sinks. Melanin formation is a product of complex biochemical events that starts from amino acid tyrosine and its metabolite, dopa. The types and amounts of melanin produced by melanocytes are determined genetically and are influenced by a variety of extrinsic and intrinsic factors such as hormonal changes, inflammation, age and exposure to UV light. These stimuli affect the different pathways in melanogenesis. In this review we will discuss the regulatory mechanisms involved in melanogenesis and explain how intrinsic and extrinsic factors regulate melanin production. We will also explain the regulatory roles of different proteins involved in melanogenesis. PMID:27428965

  15. Signaling Pathways in Osteoclast Differentiation.

    PubMed

    Kim, Jung Ha; Kim, Nacksung

    2016-01-01

    Osteoclasts are multinucleated cells of hematopoietic origin that are responsible for the degradation of old bone matrix. Osteoclast differentiation and activity are controlled by two essential cytokines, macrophage colony-stimulating factor (M-CSF) and the receptor activator of nuclear factor-κB ligand (RANKL). M-CSF and RANKL bind to their respective receptors c-Fms and RANK to stimulate osteoclast differentiation through regulation of delicate signaling systems. Here, we summarize the critical or essential signaling pathways for osteoclast differentiation including M-CSF-c-Fms signaling, RANKL-RANK signaling, and costimulatory signaling for RANK. PMID:26865996

  16. Genetic variation at aryl hydrocarbon receptor (AHR) loci in populations of Atlantic killifish (Fundulus heteroclitus) inhabiting polluted and reference habitats

    PubMed Central

    2014-01-01

    Background The non-migratory killifish Fundulus heteroclitus inhabits clean and polluted environments interspersed throughout its range along the Atlantic coast of North America. Several populations of this species have successfully adapted to environments contaminated with toxic aromatic hydrocarbon pollutants such as polychlorinated biphenyls (PCBs). Previous studies suggest that the mechanism of resistance to these and other “dioxin-like compounds” (DLCs) may involve reduced signaling through the aryl hydrocarbon receptor (AHR) pathway. Here we investigated gene diversity and evidence for positive selection at three AHR-related loci (AHR1, AHR2, AHRR) in F. heteroclitus by comparing alleles from seven locations ranging over 600 km along the northeastern US, including extremely polluted and reference estuaries, with a focus on New Bedford Harbor (MA, USA), a PCB Superfund site, and nearby reference sites. Results We identified 98 single nucleotide polymorphisms within three AHR-related loci among all populations, including synonymous and nonsynonymous substitutions. Haplotype distributions were spatially segregated and F-statistics suggested strong population genetic structure at these loci, consistent with previous studies showing strong population genetic structure at other F. heteroclitus loci. Genetic diversity at these three loci was not significantly different in contaminated sites as compared to reference sites. However, for AHR2 the New Bedford Harbor population had significant FST values in comparison to the nearest reference populations. Tests for positive selection revealed ten nonsynonymous polymorphisms in AHR1 and four in AHR2. Four nonsynonymous SNPs in AHR1 and three in AHR2 showed large differences in base frequency between New Bedford Harbor and its reference site. Tests for isolation-by-distance revealed evidence for non-neutral change at the AHR2 locus. Conclusion Together, these data suggest that F. heteroclitus populations in reference

  17. Progesterone, as well as 17β-estradiol, is important for regulating AHR battery homoeostasis in the rat uterus.

    PubMed

    Rataj, Felicitas; Möller, Frank Josef; Jähne, Maria; Hönscheid, Pia; Zierau, Oliver; Vollmer, Günter; Kretzschmar, Georg

    2015-03-01

    Several studies indicate that the aryl hydrocarbon receptor (AHR), which plays an important role in mediating the toxicity of many industrial chemicals, plays an important role in the physiology of female reproductive tract organs. This makes it likely that the AHR and additional components of the AHR signalling pathway are under the control of female sex steroids. In a previous study, we could already demonstrate the regulation of many members of the AHR battery by 17β-estradiol (E2) in the uterus of rats. In this study, we addressed the potential role of progesterone (P4) in this context. In a comparative approach using ovariectomized rats which were treated for 3 days with either vehicle control, E2, progesterone (P4) or the combination of both hormones in addition to sham-operated animals, we could demonstrate that in addition to E2, P4 is also an important factor in regulating AHR signalling in the rat uterus. P4 has effects similar to E2 on uterine Ahr, Arnt and Arnt2 mRNA levels, resulting in a downregulation of these genes, while the E2-mediated downregulation of key AHR response genes Cyp1a1, Gsta2 and Ugt1 is completely antagonized by P4. As with E2, P4 leads to an increase in uterine AHR levels, especially in the endometrial epithelium despite the decrease in corresponding mRNA levels. This indicates a complex gene-specific regulatory network involving E2, P4 and possibly AHR itself to maintain all components of the AHR signalling cascade at the required levels during all stages of the oestrous cycle and pregnancy. PMID:24777823

  18. Cancer stem cell signaling pathways.

    PubMed

    Matsui, William H

    2016-09-01

    Tissue development and homeostasis are governed by the actions of stem cells. Multipotent cells are capable of self-renewal during the course of one's lifetime. The accurate and appropriate regulation of stem cell functions is absolutely critical for normal biological activity. Several key developmental or signaling pathways have been shown to play essential roles in this regulatory capacity. Specifically, the Janus-activated kinase/signal transducer and activator of transcription, Hedgehog, Wnt, Notch, phosphatidylinositol 3-kinase/phosphatase and tensin homolog, and nuclear factor-κB signaling pathways have all been shown experimentally to mediate various stem cell properties, such as self-renewal, cell fate decisions, survival, proliferation, and differentiation. Unsurprisingly, many of these crucial signaling pathways are dysregulated in cancer. Growing evidence suggests that overactive or abnormal signaling within and among these pathways may contribute to the survival of cancer stem cells (CSCs). CSCs are a relatively rare population of cancer cells capable of self-renewal, differentiation, and generation of serially transplantable heterogeneous tumors of several types of cancer. PMID:27611937

  19. Selective Aryl Hydrocarbon Receptor Modulator 3,3'-Diindolylmethane Impairs AhR and ARNT Signaling and Protects Mouse Neuronal Cells Against Hypoxia.

    PubMed

    Rzemieniec, J; Litwa, E; Wnuk, A; Lason, W; Krzeptowski, W; Kajta, M

    2016-10-01

    The neuroprotective potential of 3,3'-diindolylmethane (DIM), which is a selective aryl hydrocarbon receptor modulator, has recently been shown in cellular and animal models of Parkinson's disease and lipopolysaccharide-induced inflammation. However, there are no data concerning the protective capacity and mechanisms of DIM action in neuronal cells exposed to hypoxia. The aim of the present study was to investigate the neuroprotective potential of DIM against the hypoxia-induced damage in mouse hippocampal cells in primary cultures, with a particular focus on DIM interactions with the aryl hydrocarbon receptor (AhR), its nuclear translocator ARNT, and estrogen receptor β (ERβ). In the present study, 18 h of hypoxia induced apoptotic processes, in terms of the mitochondrial membrane potential, activation of caspase-3, and fragmentation of cell nuclei. These effects were accompanied by substantial lactate dehydrogenase release and neuronal cell death. The results of the present study demonstrated strong neuroprotective and anti-apoptotic actions of DIM in hippocampal cells exposed to hypoxia. In addition, DIM decreased the Ahr and Arnt mRNA expression and stimulated Erβ mRNA expression level. DIM-induced mRNA alterations were mirrored by changes in protein levels, except for ERβ, as detected by ELISA, Western blotting, and immunofluorescence labeling. We also demonstrated that DIM decreased the expression of AhR-regulated CYP1A1. Using specific siRNAs, we provided evidence that impairment of AhR and ARNT, but not ERβ plays a key role in the neuroprotective action of DIM against hypoxia-induced cell damage. This study may have implication for identifying new agents that could protect neurons against hypoxia by targeting AhR/ARNT signaling. PMID:26476840

  20. Signaling pathways in diabetic nephropathy.

    PubMed

    Kawanami, Daiji; Matoba, Keiichiro; Utsunomiya, Kazunori

    2016-10-01

    Diabetic nephropathy (DN) is a major cause of end-stage renal disease (ESRD), however, specific treatment for DN has not yet been elucidated. Therefore, it is critically important to understand the molecular mechanism underlying DN to develop cause-related therapeutic strategy. To date, various factors such as hemodynamic changes and metabolic pathways have been shown to be involved in the pathogenesis of DN. Excessive glucose influx activates cellular signaling pathways, including the diacylglycerol (DAG)-protein kinase C (PKC) pathway, advanced glycation end-products (AGE), polyol pathway, hexosamine pathway and oxidative stress. These factors interact with one another, thereby facilitating inflammatory processes, leading to the development of glomerulosclerosis under diabetic conditions. In addition to metabolic pathways, Rho-kinase, an effector of small-GTPase binding protein Rho, has been implicated as an important factor in the pathogenesis of DN. A number of studies have demonstrated that Rho-kinase plays key roles in the development of DN by inducing endothelial dysfunction, mesangial excessive extracellular matrix (ECM) production, podocyte abnormality, and tubulointerstitial fibrosis. In this review article, we describe our current understanding of the signaling pathways in DN. PMID:27094540

  1. Signaling pathways mediating alcohol effects.

    PubMed

    Ron, Dorit; Messing, Robert O

    2013-01-01

    Ethanol's effects on intracellular signaling pathways contribute to acute effects of ethanol as well as to neuroadaptive responses to repeated ethanol exposure. In this chapter we review recent discoveries that demonstrate how ethanol alters signaling pathways involving several receptor tyrosine kinases and intracellular tyrosine and serine-threonine kinases, with consequences for regulation of cell surface receptor function, gene expression, protein translation, neuronal excitability and animal behavior. We also describe recent work that demonstrates a key role for ethanol in regulating the function of scaffolding proteins that organize signaling complexes into functional units. Finally, we review recent exciting studies demonstrating ethanol modulation of DNA and histone modification and the expression of microRNAs, indicating epigenetic mechanisms by which ethanol regulates neuronal gene expression and addictive behaviors. PMID:21877259

  2. Pharmacology of intracellular signalling pathways

    PubMed Central

    Nahorski, Stefan R

    2006-01-01

    This article provides a brief and somewhat personalized review of the dramatic developments that have occurred over the last 45 years in our understanding of intracellular signalling pathways associated with G-protein-coupled receptor activation. Signalling via cyclic AMP, the phosphoinositides and Ca2+ is emphasized and these systems have already been revealed as new pharmacological targets. The therapeutic benefits of most of such targets are, however, yet to be realized, but it is certain that the discipline of pharmacology needs to widen its boundaries to meet these challenges in the future. PMID:16402119

  3. Signaling Pathways in Cartilage Repair

    PubMed Central

    Mariani, Erminia; Pulsatelli, Lia; Facchini, Andrea

    2014-01-01

    In adult healthy cartilage, chondrocytes are in a quiescent phase characterized by a fine balance between anabolic and catabolic activities. In ageing, degenerative joint diseases and traumatic injuries of cartilage, a loss of homeostatic conditions and an up-regulation of catabolic pathways occur. Since cartilage differentiation and maintenance of homeostasis are finely tuned by a complex network of signaling molecules and biophysical factors, shedding light on these mechanisms appears to be extremely relevant for both the identification of pathogenic key factors, as specific therapeutic targets, and the development of biological approaches for cartilage regeneration. This review will focus on the main signaling pathways that can activate cellular and molecular processes, regulating the functional behavior of cartilage in both physiological and pathological conditions. These networks may be relevant in the crosstalk among joint compartments and increased knowledge in this field may lead to the development of more effective strategies for inducing cartilage repair. PMID:24837833

  4. Signalling pathways in endometrial cancer.

    PubMed

    Markowska, Anna; Pawałowska, Monika; Lubin, Jolanta; Markowska, Janina

    2014-01-01

    Carcinogenesis is a multistage process, during which the activity of signalling pathways responsible for cell cycle regulation and division is disrupted which leads to inhibition of apoptosis and enhanced proliferation. Improper activation of Wnt/β-catenin and PI3K. Akt pathways play essential role in endometrial cancers (EC), mainly type I. Mutations in APC, axin or CTNBB1 may lead to β-catenin overactivation leading to excessive gene expression. PTEN inactivation, mutations in the PIK3CA or Akt result in increased transmission in the PI3K/Akt pathway, apoptosis inhibition, intensive cell division, mTOR excitation. In non-endometrioid cancers, key mutations include suppressor gene TP53 responsible for repairing damaged DNA or apoptosis initiation. Irregularities in gene P16, encoding a protein forming the p16-cyclinD/CDK-pRb have also been described. Understanding the complex relations between specific proteins taking part in signal transduction of the abovementioned pathways is key to research on drugs used in targeted therapy. PMID:25520571

  5. The Evolving Role of the Aryl Hydrocarbon Receptor (AHR) in the Normophysiology of Hematopoiesis

    PubMed Central

    Lindsey, Stephan; Papoutsakis, Eleftherios T.

    2012-01-01

    In addition to its role as a toxicological signal mediator, the Aryl Hydrocarbon Receptor (AHR) is also a transcription factor known to regulate cellular responses to oxidative stress and inflammation through transcriptional regulation of molecules involved in the signaling of nucear factor-erythroid 2-related factor-2 (Nrf2), p53 (TRP53), retinoblastoma (RB1), and NFκB. Recent research suggests that AHR activation of these signaling pathways may provide the molecular basis for understanding AHR’s evolving role in endogenous developmental functions during hematopoietic stem-cell maintenance and differentiation. Recent developments into the hematopoietic roles for AHR are reviewed, aiming to reconcile divergent findings as to the endogenous function of AHR in hematopoiesis. Potential mechanistic explanations for AHR’s involvement in hematopoietic differentiation are discussed, focusing on its known role as a cell cycle mediator and its interactions with Hypoxia-inducible transcription factor-1 alpha (HIF1-α). Understanding the physiological mechanisms of AHR activation and signaling have far reaching implications ranging from explaining the action of various toxicological agents to providing novel ways to expand stem cell populations ex vivo for use in transplant therapies. PMID:22628113

  6. Identification of aryl hydrocarbon receptor signaling pathways altered in TCDD-treated red seabream embryos by transcriptome analysis.

    PubMed

    Iida, Midori; Fujii, Satoshi; Uchida, Masaya; Nakamura, Hiroshi; Kagami, Yoshihiro; Agusa, Tetsuro; Hirano, Masashi; Bak, Su-Min; Kim, Eun-Young; Iwata, Hisato

    2016-08-01

    2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) induces a broad spectrum of toxic effects including craniofacial malformation and neural damage in fish embryos. These effects are mainly mediated by the aryl hydrocarbon receptor (AHR). However, the mode of action between TCDD-induced AHR activation and adverse outcomes is not yet understood. To provide a comprehensive picture of the AHR signaling pathway in fish embryos exposed to TCDD, red seabream (Pagrus major) embryos were treated with graded concentrations of TCDD (0.3-37nM) in seawater, or with a mixture of TCDD and 500nM CH223191, an AHR-specific antagonist. The transcriptome of red seabream embryos was analyzed using a custom-made microarray with 6000 probes specifically prepared for this species. A Jonckheere-Terpstra test was performed to screen for genes that demonstrated altered mRNA expression levels following TCDD exposure. The signals of 1217 genes (as human homologs) were significantly altered in a TCDD concentration-dependent manner (q-value<0.2). Notably, the TCDD-induced alteration in mRNA expression was alleviated by co-exposure to CH223191, suggesting that the mRNA expression level of these genes was regulated by AHR. To identify TCDD-activated pathways, the microarray data were further subjected to gene set enrichment analysis (GSEA) and functional protein-protein interaction (PPI) network analysis. GSEA demonstrated that the effects of TCDD on sets of genes involved calcium, mitogen-activated protein kinase (MAPK), actin cytoskeleton, chemokine, T cell receptor, melanoma, vascular endothelial growth factor (VEGF), axon guidance, and renal cell carcinoma signaling pathways. These results suggest the hypotheses that TCDD induces immunosuppression via the calcium, MAPK, chemokine, and T cell receptor signaling pathways, neurotoxicity via VEGF signaling, and axon guidance alterations and teratogenicity via the dysregulation of the actin cytoskeleton and melanoma and renal cell carcinoma signaling

  7. Ablating the aryl hydrocarbon receptor (AhR) in CD11c+ cells perturbs intestinal epithelium development and intestinal immunity.

    PubMed

    Chng, Song Hui; Kundu, Parag; Dominguez-Brauer, Carmen; Teo, Wei Ling; Kawajiri, Kaname; Fujii-Kuriyama, Yoshiaki; Mak, Tak Wah; Pettersson, Sven

    2016-01-01

    Diet and microbiome derived indole derivatives are known to activate the ligand induced transcription factor, the Aryl hydrocarbon Receptor (AhR). While the current understanding of AhR biology has confirmed its role in mucosal lymphocytes, its function in intestinal antigen presenting cells (APCs) is poorly understood. Here, we report that Cre-mediated deletion of AhR in CD11c-expressing cells in C57/BL6 mice is associated with altered intestinal epithelial morphogenesis in vivo. Moreover, when co-cultured with AhR-deficient DCs ex vivo, intestinal organoids showed reduced SRY (sex determining region Y)-box 9 and increased Mucin 2 expression, which correlates with reduced Paneth cells and increased goblet cell differentiation, similar to the data obtained in vivo. Further, characterization of intestinal APC subsets, devoid of AhR, revealed an expression pattern associated with aberrant intrinsic Wnt pathway regulation. At a functional level, the loss of AhR in APCs resulted in a dysfunctional epithelial barrier, associated with a more aggressive chemically induced colitis compared to wild type animals. Our results are consistent with a model whereby the AhR signalling pathway may participate in the regulation of innate immunity through intestinal epithelium development and mucosal immunity. PMID:27068235

  8. Ablating the aryl hydrocarbon receptor (AhR) in CD11c+ cells perturbs intestinal epithelium development and intestinal immunity

    PubMed Central

    Chng, Song Hui; Kundu, Parag; Dominguez-Brauer, Carmen; Teo, Wei Ling; Kawajiri, Kaname; Fujii-Kuriyama, Yoshiaki; Mak, Tak Wah; Pettersson, Sven

    2016-01-01

    Diet and microbiome derived indole derivatives are known to activate the ligand induced transcription factor, the Aryl hydrocarbon Receptor (AhR). While the current understanding of AhR biology has confirmed its role in mucosal lymphocytes, its function in intestinal antigen presenting cells (APCs) is poorly understood. Here, we report that Cre-mediated deletion of AhR in CD11c-expressing cells in C57/BL6 mice is associated with altered intestinal epithelial morphogenesis in vivo. Moreover, when co-cultured with AhR-deficient DCs ex vivo, intestinal organoids showed reduced SRY (sex determining region Y)-box 9 and increased Mucin 2 expression, which correlates with reduced Paneth cells and increased goblet cell differentiation, similar to the data obtained in vivo. Further, characterization of intestinal APC subsets, devoid of AhR, revealed an expression pattern associated with aberrant intrinsic Wnt pathway regulation. At a functional level, the loss of AhR in APCs resulted in a dysfunctional epithelial barrier, associated with a more aggressive chemically induced colitis compared to wild type animals. Our results are consistent with a model whereby the AhR signalling pathway may participate in the regulation of innate immunity through intestinal epithelium development and mucosal immunity. PMID:27068235

  9. Toxic effects of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) in developing red seabream (Pagrus major) embryo: an association of morphological deformities with AHR1, AHR2 and CYP1A expressions.

    PubMed

    Yamauchi, Masanobu; Kim, Eun-Young; Iwata, Hisato; Shima, Yasuhiro; Tanabe, Shinsuke

    2006-11-16

    temporal trends of TCDD-induced AHRs and CYP1A expression, and developmental toxicities, the highest expression of rsAHR2 and CYP1A mRNA were detected prior to the appearance of maximal incidence of TCDD toxic manifestations. These results suggest that rsAHR2 may be dominantly involved in the transcriptional regulation of CYP1A, and several TCDD defects are dependent on the alteration of rsAHR2 and/or rsAHR2-CYP1A signaling pathway that is controlled through their expression levels. PMID:16987556

  10. Signalling pathways: jack of all cascades.

    PubMed

    Cahill, M A; Janknecht, R; Nordheim, A

    1996-01-01

    The transcription factors that bind the c-fos promoter element SRE are targeted by multiple, independent signalling cascades; the identities of these signalling pathways and their modes of activation are being elucidated. PMID:8805215

  11. Genetic and pharmacological analysis identifies a physiological role for the AHR in epidermal differentiation

    PubMed Central

    van den Bogaard, Ellen; Podolsky, Michael; Smits, Jos; Cui, Xiao; John, Christian; Gowda, Krishne; Desai, Dhimant; Amin, Shantu; Schalkwijk, Joost; Perdew, Gary H.

    2015-01-01

    Stimulation of the aryl hydrocarbon receptor (AHR) by xenobiotics is known to affect epidermal differentiation and skin barrier formation. The physiological role of endogenous AHR signaling in keratinocyte differentiation is not known. We used murine and human skin models to address the hypothesis that AHR activation is required for normal keratinocyte differentiation. Using transcriptome analysis of Ahr-/- and Ahr+/+ murine keratinocytes, we found significant enrichment of differentially expressed genes linked to epidermal differentiation. Primary Ahr-/- keratinocytes showed a significant reduction in terminal differentiation gene and protein expression, similar to Ahr+/+ keratinocytes treated with AHR antagonists GNF351 and CH223191, or the selective AHR modulator (SAhRM), SGA360. In vitro keratinocyte differentiation led to increased AHR levels and subsequent nuclear translocation, followed by induced CYP1A1 gene expression. Monolayer cultured primary human keratinocytes treated with AHR antagonists also showed an impaired terminal differentiation program. Inactivation of AHR activity during human skin equivalent development severely impaired epidermal stratification, terminal differentiation protein expression and stratum corneum formation. As disturbed epidermal differentiation is a main feature of many skin diseases, pharmacological agents targeting AHR signaling or future identification of endogenous keratinocyte-derived AHR ligands should be considered as potential new drugs in dermatology. PMID:25602157

  12. Leptin signalling pathways in hypothalamic neurons.

    PubMed

    Kwon, Obin; Kim, Ki Woo; Kim, Min-Seon

    2016-04-01

    Leptin is the most critical hormone in the homeostatic regulation of energy balance among those so far discovered. Leptin primarily acts on the neurons of the mediobasal part of hypothalamus to regulate food intake, thermogenesis, and the blood glucose level. In the hypothalamic neurons, leptin binding to the long form leptin receptors on the plasma membrane initiates multiple signaling cascades. The signaling pathways known to mediate the actions of leptin include JAK-STAT signaling, PI3K-Akt-FoxO1 signaling, SHP2-ERK signaling, AMPK signaling, and mTOR-S6K signaling. Recent evidence suggests that leptin signaling in hypothalamic neurons is also linked to primary cilia function. On the other hand, signaling molecules/pathways mitigating leptin actions in hypothalamic neurons have been extensively investigated in an effort to treat leptin resistance observed in obesity. These include SOCS3, tyrosine phosphatase PTP1B, and inflammatory signaling pathways such as IKK-NFκB and JNK signaling, and ER stress-mitochondrial signaling. In this review, we discuss leptin signaling pathways in the hypothalamus, with a particular focus on the most recently discovered pathways. PMID:26786898

  13. [Hedgehog signaling pathway and human disorders].

    PubMed

    Fujii, Katsunori; Miyashita, Toshiyuki

    2009-07-01

    The hedgehog signaling pathway plays pivotal roles in embryonic development and cancer formation. This pathway in mammals consists of multiple molecules such as Sonic Hedgehog, PTCH, SMO, and GLI. Mutations of these components result in various human malformations or tumors, i.e., holoprosencephaly, Gorlin syndrome, Greig encephalopolysyndactyly, Pallister-Hall syndrome, Rubinstein-Taybi syndrome, basal cell carcinomas, and medulloblastomas. Recently, small molecules that inhibit this signaling pathway were developed, and clinically applied to cancer therapy. Thus, understanding of these molecular relationships may facilitate the development of new therapies and treatments for diseases caused by hedgehog signaling disorders. PMID:19618878

  14. Function and Regulation in MAPK Signaling Pathways

    PubMed Central

    Chen, Raymond E.; Thorner, Jeremy

    2007-01-01

    Signaling pathways that activate different mitogen-activated protein kinases (MAPKs) elicit many of the responses that are evoked in cells by changes in certain environmental conditions and upon exposure to a variety of hormonal and other stimuli. These pathways were first elucidated in the unicellular eukaryote Saccharomyces cerevisiae (budding yeast). Studies of MAPK pathways in this organism continue to be especially informative in revealing the molecular mechanisms by which MAPK cascades operate, propagate signals, modulate cellular processes, and are controlled by regulatory factors both internal to and external to the pathways. Here we highlight recent advances and new insights about MAPK-based signaling that have been made through studies in yeast, which provide lessons directly applicable to, and that enhance our understanding of, MAPK-mediated signaling in mammalian cells. PMID:17604854

  15. Modularized TGFbeta-Smad Signaling Pathway

    NASA Technical Reports Server (NTRS)

    Li, Yongfeng; Wang, M.; Carra, C.; Cucinotta, F. A.

    2011-01-01

    The Transforming Growth Factor beta (TGFbeta) signaling pathway is a prominent regulatory signaling pathway controlling various important cellular processes. It can be induced by several factors, including ionizing radiation. It is regulated by Smads in a negative feedback loop through promoting increases in the regulatory Smads in the cell nucleus, and subsequent expression of inhibitory Smad, Smad7 to form a ubiquitin ligase with Smurf targeting active TGF receptors for degradation. In this work, we proposed a mathematical model to study the radiation-induced Smad-regulated TGF signaling pathway. By modularization, we are able to analyze each module (subsystem) and recover the nonlinear dynamics of the entire network system. Meanwhile the excitability, a common feature observed in the biological systems, along the TGF signaling pathway is discussed by mathematical analysis and numerical simulation.

  16. Premetazoan origin of the Hippo signaling pathway

    PubMed Central

    Sebé-Pedrós, Arnau; Zheng, Yonggang; Ruiz-Trillo, Iñaki; Pan, Duojia

    2012-01-01

    Summary Non-aggregative multicellularity requires strict control of cell number. The Hippo signaling pathway coordinates cell proliferation and apoptosis and is a central regulator of organ size in animals. Recent studies have shown the presence of key members of the Hippo pathway in non-bilaterian animals, but failed to identify this pathway outside Metazoa. Through comparative analyses of recently sequenced holozoan genomes, we show that Hippo pathway components, such as the kinases Hippo and Warts, the co-activator Yorkie and the transcription factor Scalloped, were already present in the unicellular ancestors of animals. Remarkably, functional analysis of Hippo components of the amoeboid holozoan Capsaspora owczarzaki, performed in Drosophila, demonstrate that the growth-regulatory activity of the Hippo pathway is conserved in this unicellular lineage. Our findings show that the Hippo pathway evolved well before the origin of Metazoa and highlight the importance of Hippo signaling as a key developmental mechanism pre-dating the origin of Metazoa. PMID:22832104

  17. Optogenetic control of intracellular signaling pathways

    PubMed Central

    Zhang, Kai; Cui, Bianxiao

    2014-01-01

    Cells employ a plethora of signaling pathways to make their life-and-death decisions. Extensive genetic, biochemical, and physiological studies have led to the accumulation of knowledge about signaling components and their interactions within signaling networks. These conventional approaches, though useful, lack the ability to control the spatial and temporal aspects of signaling processes. The recently emerged optogenetic tools open up exciting opportunities by enabling signaling regulation with superior temporal and spatial resolution, easy delivery, rapid reversibility, fewer off-target side effects, and the ability to dissect complex signaling networks. Here we review recent achievements in using light to control intracellular signaling pathways, and discuss future prospects for the field, including integration of new genetic approaches into optogenetics. PMID:25529484

  18. Dioxin mediates downregulation of the reduced folate carrier transport activity via the arylhydrocarbon receptor signalling pathway

    SciTech Connect

    Halwachs, Sandra; Lakoma, Cathleen; Gebhardt, Rolf; Schaefer, Ingo; Seibel, Peter; Honscha, Walther

    2010-07-15

    Dioxins such as 2,3,7,8-tetrachlordibenzo-p-dioxin (TCDD) are common environmental contaminants known to regulate several genes via activation of the transcription factor aryl hydrocarbon receptor (AhR) associated with the development of numerous adverse biological effects. However, comparatively little is known about the molecular mechanisms by which dioxins display their toxic effects in vertebrates. The 5' untranslated region of the hepatocellular Reduced folate carrier (Rfc1; Slc19a1) exhibits AhR binding sites termed dioxin responsive elements (DRE) that have as yet only been found in the promoter region of prototypical TCDD target genes. Rfc1 mediated transport of reduced folates and antifolate drugs such as methotrexate (MTX) plays an essential role in physiological folate homeostasis and MTX cancer chemotherapy. In order to determine whether this carrier represents a target gene of dioxins we have investigated the influence of TCDD on functional Rfc1 activity in rat liver. Pre-treatment of rats with TCDD significantly diminished hepatocellular Rfc1 uptake activity in a time- and dose-dependent manner. In further mechanistic studies we demonstrated that this reduction was due to TCDD-dependent activation of the AhR signalling pathway. We additionally showed that binding of the activated receptor to DRE motifs in the Rfc1 promoter resulted in downregulation of Rfc1 gene expression and reduced carrier protein levels. As downregulation of pivotal Rfc1 activity results in functional folate deficiency associated with an elevated risk of cardiovascular diseases or carcinogenesis, our results indicate that deregulation of this essential transport pathway represents a novel regulatory mechanism how dioxins display their toxic effects through the Ah receptor.

  19. Advances in Targeting Signal Transduction Pathways

    PubMed Central

    McCubrey, James A.; Steelman, Linda S.; Chappell, William H.; Sun, Lin; Davis, Nicole M.; Abrams, Stephen L.; Franklin, Richard A.; Cocco, Lucio; Evangelisti, Camilla; Chiarini, Francesca; Martelli, Alberto M.; Libra, Massimo; Candido, Saverio; Ligresti, Giovanni; Malaponte, Grazia; Mazzarino, Maria C.; Fagone, Paolo; Donia, Marco; Nicoletti, Ferdinando; Polesel, Jerry; Talamini, Renato; Bäsecke, Jörg; Mijatovic, Sanja; Maksimovic-Ivanic, Danijela; Milella, Michele; Tafuri, Agostino; Dulińska-Litewka, Joanna; Laidler, Piotr; D'Assoro, Antonio B.; Drobot, Lyudmyla; Umezawa, Kazuo; Montalto, Giuseppe; Cervello, Melchiorre; Demidenko, Zoya N.

    2012-01-01

    Over the past few years, significant advances have occurred in both our understanding of the complexity of signal transduction pathways as well as the isolation of specific inhibitors which target key components in those pathways. Furthermore critical information is being accrued regarding how genetic mutations can affect the sensitivity of various types of patients to targeted therapy. Finally, genetic mechanisms responsible for the development of resistance after targeted therapy are being discovered which may allow the creation of alternative therapies to overcome resistance. This review will discuss some of the highlights over the past few years on the roles of key signaling pathways in various diseases, the targeting of signal transduction pathways and the genetic mechanisms governing sensitivity and resistance to targeted therapies. PMID:23455493

  20. Bisphenol A inhibits cultured mouse ovarian follicle growth partially via the aryl hydrocarbon receptor signaling pathway

    PubMed Central

    Ziv-Gal, Ayelet; Craig, Zelieann R.; Wang, Wei; Flaws, Jodi A.

    2013-01-01

    Bisphenol A (BPA) is an endocrine disruptor that inhibits growth of mouse ovarian follicles and disrupts steroidogenesis at a dose of 438 μM. However, the effects of lower doses of BPA and its mechanism of action in ovarian follicles are unknown. We hypothesized that low doses of BPA inhibit follicular growth and decrease estradiol levels through the aryl hydrocarbon receptor (AHR) pathway. Antral follicles from wild-type and Ahr knock-out (AhrKO) mice were cultured for 96 hours. Follicle diameters and estradiol levels then were compared in wild-type and AhrKO follicles ± BPA (0.004 - 438 μM). BPA inhibited follicle growth (110 - 438 μM) and decreased estradiol levels (43.8 - 438 μM) in wild-type and AhrKO follicles. However, at BPA 110 μM, inhibition of growth in AhrKO follicles was attenuated compared to wild-type follicles. These data suggest that BPA may inhibit follicle growth partially via the AHR pathway, whereas its effects on estradiol synthesis likely involve other mechanisms. PMID:23928317

  1. Metabolic control of type 1 regulatory (Tr1) cell differentiation by AHR and HIF1-α

    PubMed Central

    Mascanfroni, Ivan D.; Takenaka, Maisa C.; Yeste, Ada; Patel, Bonny; Wu, Yan; Kenison, Jessica E.; Siddiqui, Shafiuddin; Basso, Alexandre S.; Otterbein, Leo E.; Pardoll, Drew M.; Pan, Fan; Priel, Avner; Clish, Clary B.; Robson, Simon C.; Quintana, Francisco J.

    2015-01-01

    Our understanding of the pathways that regulate lymphocyte metabolism, as well as the effects of metabolism and its products on the immune response, is still limited. We report that a metabolic program controlled by the transcription factors hypoxia inducible factor-1α (HIF1-α) and aryl hydrocarbon receptor (AHR) supports the differentiation of type 1 regulatory (Tr1) cells. HIF1-α controls the early metabolic reprograming of Tr1 cells. At later time points, AHR promotes HIF1-α degradation and takes control of Tr1 cell metabolism. Extracellular adenosine triphosphate (eATP) and hypoxia, linked to inflammation, trigger AHR inactivation by HIF1-α and inhibit Tr1 cell differentiation. Conversely, CD39 promotes Tr1 cell differentiation by depleting eATP. CD39 also contributes to Tr1 suppressive activity by generating adenosine in cooperation with CD73 expressed by responder T cells and antigen presenting cells. These results suggest that HIF1-α and AHR integrate immunological, metabolic and environmental signals to regulate the immune response. PMID:26005855

  2. The Hedgehog signalling pathway in bone formation

    PubMed Central

    Yang, Jing; Andre, Philipp; Ye, Ling; Yang, Ying-Zi

    2015-01-01

    The Hedgehog (Hh) signalling pathway plays many important roles in development, homeostasis and tumorigenesis. The critical function of Hh signalling in bone formation has been identified in the past two decades. Here, we review the evolutionarily conserved Hh signalling mechanisms with an emphasis on the functions of the Hh signalling pathway in bone development, homeostasis and diseases. In the early stages of embryonic limb development, Sonic Hedgehog (Shh) acts as a major morphogen in patterning the limb buds. Indian Hedgehog (Ihh) has an essential function in endochondral ossification and induces osteoblast differentiation in the perichondrium. Hh signalling is also involved intramembrane ossification. Interactions between Hh and Wnt signalling regulate cartilage development, endochondral bone formation and synovial joint formation. Hh also plays an important role in bone homeostasis, and reducing Hh signalling protects against age-related bone loss. Disruption of Hh signalling regulation leads to multiple bone diseases, such as progressive osseous heteroplasia. Therefore, understanding the signalling mechanisms and functions of Hh signalling in bone development, homeostasis and diseases will provide important insights into bone disease prevention, diagnoses and therapeutics. PMID:26023726

  3. Inhibition of the aryl hydrocarbon receptor prevents Western diet-induced obesity. Model for AHR activation by kynurenine via oxidized-LDL, TLR2/4, TGFβ, and IDO1.

    PubMed

    Moyer, Benjamin J; Rojas, Itzel Y; Kerley-Hamilton, Joanna S; Hazlett, Haley F; Nemani, Krishnamurthy V; Trask, Heidi W; West, Rachel J; Lupien, Leslie E; Collins, Alan J; Ringelberg, Carol S; Gimi, Barjor; Kinlaw, William B; Tomlinson, Craig R

    2016-06-01

    Obesity is an increasingly urgent global problem, yet, little is known about its causes and less is known how obesity can be effectively treated. We showed previously that the aryl hydrocarbon receptor (AHR) plays a role in the regulation of body mass in mice fed Western diet. The AHR is a ligand-activated nuclear receptor that regulates genes involved in a number of biological pathways, including xenobiotic metabolism and T cell polarization. This study was an investigation into whether inhibition of the AHR prevents Western diet-based obesity. Male C57Bl/6J mice were fed control and Western diets with and without the AHR antagonist α-naphthoflavone or CH-223191, and a mouse hepatocyte cell line was used to delineate relevant cellular pathways. Studies are presented showing that the AHR antagonists α-naphthoflavone and CH-223191 significantly reduce obesity and adiposity and ameliorates liver steatosis in male C57Bl/6J mice fed a Western diet. Mice deficient in the tryptophan metabolizing enzyme indoleamine 2,3-dioxygenase 1 (IDO1) were also resistant to obesity. Using an AHR-directed, luciferase-expressing mouse hepatocyte cell line, we show that the transforming growth factor β1 (TGFβ1) signaling pathway via PI3K and NF-κB and the toll-like receptor 2/4 (TLR2/4) signaling pathway stimulated by oxidized low-density lipoproteins via NF-κB, each induce luciferase expression; however, TLR2/4 signaling was significantly reduced by inhibition of IDO1. At physiological levels, kynurenine but not kynurenic acid (both tryptophan metabolites and known AHR agonists) activated AHR-directed luciferase expression. We propose a hepatocyte-based model, in which kynurenine production is increased by enhanced IDO1 activity stimulated by TGFβ1 and TLR2/4 signaling, via PI3K and NF-κB, to perpetuate a cycle of AHR activation to cause obesity; and inhibition of the AHR, in turn, blocks the cycle's output to prevent obesity. The AHR with its broad ligand binding specificity

  4. GPCR signaling along the endocytic pathway

    PubMed Central

    Irannejad, Roshanak; von Zastrow, Mark

    2016-01-01

    Many G protein-coupled receptors (GPCRs) internalize after agonist-induced activation. While endocytosis has long been associated with homeostatic attenuation of cellular responsiveness, accumulating evidence from study of a wide range of eukaryotes reveals that the endocytic pathway also contributes to generating receptor-initiated signals themselves. Here we review recent progress in this area, discussing primarily but not exclusively GPCR signaling in mammalian cells. PMID:24680436

  5. The Fibroblast Growth Factor signaling pathway

    PubMed Central

    Ornitz, David M; Itoh, Nobuyuki

    2015-01-01

    The signaling component of the mammalian Fibroblast Growth Factor (FGF) family is comprised of eighteen secreted proteins that interact with four signaling tyrosine kinase FGF receptors (FGFRs). Interaction of FGF ligands with their signaling receptors is regulated by protein or proteoglycan cofactors and by extracellular binding proteins. Activated FGFRs phosphorylate specific tyrosine residues that mediate interaction with cytosolic adaptor proteins and the RAS-MAPK, PI3K-AKT, PLCγ, and STAT intracellular signaling pathways. Four structurally related intracellular non-signaling FGFs interact with and regulate the family of voltage gated sodium channels. Members of the FGF family function in the earliest stages of embryonic development and during organogenesis to maintain progenitor cells and mediate their growth, differentiation, survival, and patterning. FGFs also have roles in adult tissues where they mediate metabolic functions, tissue repair, and regeneration, often by reactivating developmental signaling pathways. Consistent with the presence of FGFs in almost all tissues and organs, aberrant activity of the pathway is associated with developmental defects that disrupt organogenesis, impair the response to injury, and result in metabolic disorders, and cancer. © 2015 Wiley Periodicals, Inc. PMID:25772309

  6. GA signalling and cross-talk with other signalling pathways.

    PubMed

    Lor, Vai S; Olszewski, Neil E

    2015-01-01

    Gibberellins (GAs) are phytohormones that regulate growth and development. DELLA proteins repress GA responses. GA binding to its receptor triggers a series of events that culminate in the destruction of DELLA proteins by the 26S proteasome, which removes the repression of GA signalling. DELLA proteins are transcription co-activators that induce the expression of genes which encode products that inhibit GA responses. In addition to repressing GA responses, DELLA proteins influence the activity of other signalling pathways and serve as a central hub from which other pathways influence GA signalling. In this role, DELLA proteins bind to and inhibit proteins, including transcription factors that act in the signalling pathways of other hormones and light. The binding of these proteins to DELLA proteins also inhibits DELLA activity. GA signalling is subject to homoeostatic regulation through GA-induced repression of GA biosynthesis gene expression, and increased production of the GA receptor and enzymes that catabolize bioactive GAs. This review also discusses the nature of mutant DELLA alleles that are used to produce high-yielding 'Green Revolution' cereal varieties, and highlights important gaps in our knowledge of GA signalling. PMID:26374886

  7. Research Resources for Nuclear Receptor Signaling Pathways.

    PubMed

    McKenna, Neil J

    2016-08-01

    Nuclear receptor (NR) signaling pathways impact cellular function in a broad variety of tissues in both normal physiology and disease states. The complex tissue-specific biology of these pathways is an enduring impediment to the development of clinical NR small-molecule modulators that combine therapeutically desirable effects in specific target tissues with suppression of off-target effects in other tissues. Supporting the important primary research in this area is a variety of web-based resources that assist researchers in gaining an appreciation of the molecular determinants of the pharmacology of a NR pathway in a given tissue. In this study, selected representative examples of these tools are reviewed, along with discussions on how current and future generations of tools might optimally adapt to the future of NR signaling research. PMID:27216565

  8. Targeting RTK Signaling Pathways in Cancer

    PubMed Central

    Regad, Tarik

    2015-01-01

    The RAS/MAP kinase and the RAS/PI3K/AKT pathways play a key role in the regulation of proliferation, differentiation and survival. The induction of these pathways depends on Receptor Tyrosine Kinases (RTKs) that are activated upon ligand binding. In cancer, constitutive and aberrant activations of components of those pathways result in increased proliferation, survival and metastasis. For instance, mutations affecting RTKs, Ras, B-Raf, PI3K and AKT are common in perpetuating the malignancy of several types of cancers and from different tissue origins. Therefore, these signaling pathways became prime targets for cancer therapy. This review aims to provide an overview about the most frequently encountered mutations, the pathogenesis that results from such mutations and the known therapeutic strategies developed to counteract their aberrant functions. PMID:26404379

  9. Targeting Apoptosis Signaling Pathways for Anticancer Therapy

    PubMed Central

    Fulda, Simone

    2011-01-01

    Treatment approaches for cancer, for example chemotherapy, radiotherapy, or immunotherapy, primarily act by inducing cell death in cancer cells. Consequently, the inability to trigger cell death pathways or alternatively, evasion of cancer cells to the induction of cell death pathways can result in resistance of cancers to current treatment protocols. Therefore, in order to overcome treatment resistance a better understanding of the underlying mechanisms that regulate cell death and survival pathways in cancers and in response to cancer therapy is necessary to develop molecular-targeted therapies. This strategy should lead to more effective and individualized treatment strategies that selectively target deregulated signaling pathways in a tumor type- and patient-specific manner. PMID:22655234

  10. ROLE OF THE ARYL HYDROCARBON RECEPTOR (AHR) IN LUNG INFLAMMATION1

    PubMed Central

    Beamer, Celine A.; Shepherd, David M.

    2013-01-01

    Millions of individuals worldwide are afflicted with acute and chronic respiratory diseases, causing temporary and permanent disabilities and even death. Oftentimes, these diseases occur as a result of altered immune responses. The aryl hydrocarbon receptor (AhR), a ligand-activated transcription factor, acts as a regulator of mucosal barrier function and may influence immune responsiveness in the lungs through changes in gene expression, cell-cell adhesion, mucin production, and cytokine expression. This review updates the basic immunobiology of the AhR signaling pathway with regards to inflammatory lung diseases such as asthma, chronic obstructive pulmonary disorder, and silicosis following data in rodent models and humans. Finally, we address the therapeutic potential of targeting the in regulating inflammation during acute and chronic respiratory diseases. PMID:23963493

  11. Targeting Signaling Transduction Pathways in Bladder Cancer.

    PubMed

    Abbosh, Phillip H; McConkey, David J; Plimack, Elizabeth R

    2015-12-01

    Systemic therapy for urothelial carcinoma (UC) of the bladder has largely revolved around cytotoxic chemotherapy regimens. However, several recent clinical trials have explored the roles of targeted therapies which specifically inhibit signal transduction pathways. Simultaneously, a rationale for such therapies has come to the forefront of management of this disease because an overabundance of signaling pathways are genetically deranged as a result of point mutation or copy number alteration (CNA) as identified by several recent next generation sequencing (NGS) studies. Importantly, these derangements are found in all stages of disease, and therefore targeted therapies hold promise as a next step in the evolution of the medical management of both localized and metastatic UCC. We review the rationale for and progress in studying inhibition of signal transduction as a means of treatment of UCC. PMID:26472299

  12. The Fog signaling pathway: insights into signaling in morphogenesis.

    PubMed

    Manning, Alyssa J; Rogers, Stephen L

    2014-10-01

    Epithelia form the building blocks of many tissue and organ types. Epithelial cells often form a contiguous 2-dimensional sheet that is held together by strong adhesions. The mechanical properties conferred by these adhesions allow the cells to undergo dramatic three-dimensional morphogenetic movements while maintaining cell-cell contacts during embryogenesis and post-embryonic development. The Drosophila Folded gastrulation pathway triggers epithelial cell shape changes that drive gastrulation and tissue folding and is one of the most extensively studied examples of epithelial morphogenesis. This pathway has yielded key insights into the signaling mechanisms and cellular machinery involved in epithelial remodeling. In this review, we discuss principles of morphogenesis and signaling that have been discovered through genetic and cell biological examination of this pathway. We also consider various regulatory mechanisms and the system׳s relevance to mammalian development. We propose future directions that will continue to broaden our knowledge of morphogenesis across taxa. PMID:25127992

  13. The Fog signaling pathway: Insights into signaling in morphogenesis

    PubMed Central

    Manning, Alyssa J.; Rogers, Stephen L.

    2014-01-01

    Epithelia form the building blocks of many tissue and organ types. Epithelial cells often form a contiguous 2-dimensional sheet that is held together by strong adhesions. The mechanical properties conferred by these adhesions allow the cells to undergo dramatic three-dimensional morphogenetic movements while maintaining cell–cell contacts during embryogenesis and post-embryonic development. The Drosophila Folded gastrulation pathway triggers epithelial cell shape changes that drive gastrulation and tissue folding and is one of the most extensively studied examples of epithelial morphogenesis. This pathway has yielded key insights into the signaling mechanisms and cellular machinery involved in epithelial remodeling. In this review, we discuss principles of morphogenesis and signaling that have been discovered through genetic and cell biological examination of this pathway. We also consider various regulatory mechanisms and the system's relevance to mammalian development. We propose future directions that will continue to broaden our knowledge of morphogenesis across taxa. PMID:25127992

  14. Deficiency in Aryl Hydrocarbon Receptor (AHR) Expression throughout Aging Alters Gene Expression Profiles in Murine Long-Term Hematopoietic Stem Cells

    PubMed Central

    Bennett, John A.; Singh, Kameshwar P.; Unnisa, Zeenath; Welle, Stephen L.; Gasiewicz, Thomas A.

    2015-01-01

    Dysregulation of hematopoietic stem cell (HSC) signaling can contribute to the development of diseases of the blood system. Lack of aryl hydrocarbon receptor (AhR) has been associated with alterations in gene expression related to HSC function and the subsequent development of a myeloproliferative disorder in aging female mice. We sorted the most primitive population of HSCs with the highest stem cell potential (Long-term, or LT-HSCs) from 18-month-old AhR-null-allele (AhR-KO) and WT mice and analyzed gene expression using microarray to determine alterations in gene expression and cell signaling networks in HSCs that could potentially contribute to the aging phenotype of AhR-KO mice. Comparisons with previous array data from 8-week old mice indicated that aging alone is sufficient to alter gene expression. In addition, a significant number of gene expression differences were observed in aged LT-HSCs that are dependent on both aging and lack of AhR. Pathway analysis of these genes revealed networks related to hematopoietic stem cell activity or function. qPCR was used to confirm the differential expression of a subset of these genes, focusing on genes that may represent novel AhR targets due to the presence of a putative AhR binding site in their upstream regulatory region. We verified differential expression of PDGF-D, Smo, Wdfy1, Zbtb37 and Zfp382. Pathway analysis of this subset of genes revealed overlap between cellular functions of the novel AhR targets and AhR itself. Lentiviral-mediated knockdown of AhR in lineage-negative hematopoietic cells was sufficient to induce changes in all five of the candidate AhR targets identified. Taken together, these data suggest a role for AhR in HSC functional regulation, and identify novel HSC AhR target genes that may contribute to the phenotypes observed in AhR-KO mice. PMID:26208102

  15. Wnt signalling pathway parameters for mammalian cells.

    PubMed

    Tan, Chin Wee; Gardiner, Bruce S; Hirokawa, Yumiko; Layton, Meredith J; Smith, David W; Burgess, Antony W

    2012-01-01

    Wnt/β-catenin signalling regulates cell fate, survival, proliferation and differentiation at many stages of mammalian development and pathology. Mutations of two key proteins in the pathway, APC and β-catenin, have been implicated in a range of cancers, including colorectal cancer. Activation of Wnt signalling has been associated with the stabilization and nuclear accumulation of β-catenin and consequential up-regulation of β-catenin/TCF gene transcription. In 2003, Lee et al. constructed a computational model of Wnt signalling supported by experimental data from analysis of time-dependent concentration of Wnt signalling proteins in Xenopus egg extracts. Subsequent studies have used the Xenopus quantitative data to infer Wnt pathway dynamics in other systems. As a basis for understanding Wnt signalling in mammalian cells, a confocal live cell imaging measurement technique is developed to measure the cell and nuclear volumes of MDCK, HEK293T cells and 3 human colorectal cancer cell lines and the concentrations of Wnt signalling proteins β-catenin, Axin, APC, GSK3β and E-cadherin. These parameters provide the basis for formulating Wnt signalling models for kidney/intestinal epithelial mammalian cells. There are significant differences in concentrations of key proteins between Xenopus extracts and mammalian whole cell lysates. Higher concentrations of Axin and lower concentrations of APC are present in mammalian cells. Axin concentrations are greater than APC in kidney epithelial cells, whereas in intestinal epithelial cells the APC concentration is higher than Axin. Computational simulations based on Lee's model, with this new data, suggest a need for a recalibration of the model.A quantitative understanding of Wnt signalling in mammalian cells, in particular human colorectal cancers requires a detailed understanding of the concentrations of key protein complexes over time. Simulations of Wnt signalling in mammalian cells can be initiated with the parameters

  16. The aryl hydrocarbon receptor: a molecular pathway for the environmental control of the immune response.

    PubMed

    Quintana, Francisco J

    2013-03-01

    Environmental factors have significant effects on the development of autoimmune diseases. The ligand-activated transcription factor aryl hydrocarbon receptor (AHR) is controlled by endogenous and environmental small molecules. Hence, AHR provides a molecular pathway by which endogenous and environmental signals can influence the immune response and the development of autoimmune diseases. AHR also provides a target for therapeutic intervention in immune-mediated disorders. In this review, we discuss the role of AHR in the regulation of T-cell differentiation and autoimmunity. PMID:23190340

  17. The ethylene signal transduction pathway in Arabidopsis

    NASA Technical Reports Server (NTRS)

    Kieber, J. J.; Evans, M. L. (Principal Investigator)

    1997-01-01

    The gaseous hormone ethylene is an important regulator of plant growth and development. Using a simple response of etiolated seedlings to ethylene as a genetic screen, genes involved in ethylene signal transduction have been identified in Arabidopsis. Analysis of two of these genes that have been cloned reveals that ethylene signalling involves a combination of a protein (ETR1) with similarity to bacterial histidine kinases and a protein (CTR1) with similarity to Raf-1, a protein kinase involved in multiple signalling cascades in eukaryotic cells. Several lines of investigation provide compelling evidence that ETR1 encodes an ethylene receptor. For the first time there is a glimpse of the molecular circuitry underlying the signal transduction pathway for a plant hormone.

  18. Resistance to teratogenesis by F1 and F2 embryos of PAH-adapted Fundulus heteroclitus is strongly inherited despite reduced recalcitrance of the AHR pathway.

    PubMed

    Clark, Bryan W; Bone, A J; Di Giulio, R T

    2014-12-01

    Atlantic killifish (Fundulus heteroclitus) inhabiting the Atlantic Wood Superfund site on the Elizabeth River (Portsmouth, VA, USA) are exposed to a complex mixture of polycyclic aromatic hydrocarbons (PAHs) from former creosote operations, but are resistant to the acute toxicity and cardiac teratogenesis caused by PAHs. The resistance is associated with a dramatic recalcitrance to induction of cytochrome P450 (CYP1) metabolism enzymes following exposure to aryl hydrocarbon receptor (AHR) agonists, along with an elevated antioxidant response and increased expression of several other xenobiotic metabolism and excretion enzymes. However, the heritability of the resistance in the absence of chemical stressors has been inconsistently demonstrated. Understanding the heritability of this resistance will help clarify the nature of population-level responses to chronic exposure to PAH mixtures and aid in identifying the important mechanistic components of resistance to aryl hydrocarbons. We compared the response of Atlantic Wood F1 and F2 embryos to benzo[k]fluoranthene (BkF), benzo[a]pyrene (BaP), 3,3',4,4',5-pentachlorobiphenyl (PCB-126), and a mixture of BkF and fluoranthene (Fl) to that of F1 embryos of reference site killifish. Resistance to cardiac teratogenesis and induction of CYP mRNA expression and CYP activity was determined. We found that both Atlantic Wood F1 and F2 embryos were highly resistance to cardiac teratogenesis. However, the resistance by Atlantic Wood F2 embryos to induction of CYP mRNA expression and enzyme activity was intermediate between that of Atlantic Wood F1 embryos and reference embryos. These results suggest that resistance to cardiac teratogenesis in Atlantic Wood fish is conferred by multiple factors, not all of which appear to be fully genetically heritable. PMID:24374617

  19. Resistance to teratogenesis by F1 and F2 embryos of PAH-adapted Fundulus heteroclitus is strongly inherited despite reduced recalcitrance of the AHR pathway

    PubMed Central

    Clark, B. W.; Bone, A. J.; Di Giulio, R. T.

    2014-01-01

    Atlantic killifish (Fundulus heteroclitus) inhabiting the Atlantic Wood Superfund site on the Elizabeth River (Portsmouth, VA, USA) are exposed to a complex mixture of polycyclic aromatic hydrocarbons (PAHs) from former creosote operations, but are resistant to the acute toxicity and cardiac teratogenesis caused by PAHs. The resistance is associated with a dramatic recalcitrance to induction of cytochrome P450 (CYP1) metabolism enzymes following exposure to aryl hydrocarbon receptor (AHR) agonists, along with an elevated antioxidant response and increased expression of several other xenobiotic metabolism and excretion enzymes. However, the heritability of the resistance in the absence of chemical stressors has been inconsistently demonstrated. Understanding the heritability of this resistance will help clarify the nature of population-level responses to chronic exposure to PAH mixtures and aid in identifying the important mechanistic components of resistance to aryl hydrocarbons. We compared the response of Atlantic Wood F1 and F2 embryos to benzo[k]fluoranthene (BkF), benzo[a]pyrene (BaP), 3,3’,4,4’,5-pentachlorobiphenyl (PCB-126), and a mixture of BkF and fluoranthene (Fl) to that of F1 embryos of reference site killifish. Resistance to cardiac teratogenesis and induction of CYP mRNA expression and CYP activity was determined. We found that both Atlantic Wood F1 and F2 embryos were highly resistance to cardiac teratogenesis. However, the resistance by Atlantic Wood F2 embryos to induction of CYP mRNA expression and enzyme activity was intermediate between that of Atlantic Wood F1 embryos and reference embryos. These results suggest that resistance to cardiac teratogenesis in Atlantic Wood fish is conferred by multiple factors, not all of which appear to be fully genetically heritable. PMID:24374617

  20. Obesity-Induced Hypertension: Brain Signaling Pathways.

    PubMed

    do Carmo, Jussara M; da Silva, Alexandre A; Wang, Zhen; Fang, Taolin; Aberdein, Nicola; de Lara Rodriguez, Cecilia E P; Hall, John E

    2016-07-01

    Obesity greatly increases the risk for cardiovascular, metabolic, and renal diseases and is one of the most significant and preventable causes of increased blood pressure (BP) in patients with essential hypertension. This review highlights recent advances in our understanding of central nervous system (CNS) signaling pathways that contribute to the etiology and pathogenesis of obesity-induced hypertension. We discuss the role of excess adiposity and activation of the brain leptin-melanocortin system in causing increased sympathetic activity in obesity. In addition, we highlight other potential brain mechanisms by which increased weight gain modulates metabolic and cardiovascular functions. Unraveling the CNS mechanisms responsible for increased sympathetic activation and hypertension and how circulating hormones activate brain signaling pathways to control BP offer potentially important therapeutic targets for obesity and hypertension. PMID:27262997

  1. Aminoflavone, a ligand of the Aryl Hydrocarbon Receptor (AhR), inhibits HIF-1α expression in an AhR-independent fashion

    PubMed Central

    Terzuoli, Erika; Puppo, Maura; Rapisarda, Annamaria; Uranchimeg, Badarch; Cao, Liang; Burger, Angelika M.; Ziche, Marina; Melillo, Giovanni

    2010-01-01

    Aminoflavone (AF), the active component of a novel anticancer agent (AFP464) in phase I clinical trials, is a ligand of the aryl hydrocarbon receptor (AhR). AhR dimerizes with HIF-1β/ARNT, which is shared with HIF-1α, a transcription factor critical for the response of cells to oxygen deprivation. To address whether pharmacological activation of the AhR pathway might be a potential mechanism for inhibition of HIF-1, we tested the effects of AF on HIF-1 expression. AF inhibited HIF-1α transcriptional activity and protein accumulation in MCF-7 cells. However, inhibition of HIF-1α by AF was independent from a functional AhR pathway. Indeed, AF inhibited HIF-1α expression in AhR100 cells, in which the AhR pathway is functionally impaired, yet did not induce cytotoxicity, providing evidence that these effects are mediated by distinct signaling pathways. Moreover, AF was inactive in MDA-MB-231 cells, yet inhibited HIF-1α in MDA-MB-231 cells transfected with the SULT1A1 gene. AF inhibited HIF-1α mRNA expression by approximately 50%. Notably, actinomycin-D completely abrogated the ability of AF to down-regulate HIF-1α mRNA, indicating that active transcription was required for the inhibition of HIF-1α expression. Finally, AF inhibited HIF-1α protein accumulation and the expression of HIF-1-target genes in MCF-7 xenografts. These results demonstrate that AF inhibits HIF-1α in an AhR-independent fashion and they unveil additional activities of AF that may be relevant for its further clinical development. PMID:20736373

  2. Nongenomic Signaling Pathways of Estrogen Toxicity

    PubMed Central

    Watson, Cheryl S.; Jeng, Yow-Jiun; Kochukov, Mikhail Y.

    2010-01-01

    Xenoestrogens can affect the healthy functioning of a variety of tissues by acting as potent estrogens via nongenomic signaling pathways or by interfering with those actions of multiple physiological estrogens. Collectively, our and other studies have compared a wide range of estrogenic compounds, including some closely structurally related subgroups. The estrogens that have been studied include environmental contaminants of different subclasses, dietary estrogens, and several prominent physiological metabolites. By comparing the nongenomic signaling and functional responses to these compounds, we have begun to address the structural requirements for their actions through membrane estrogen receptors in the pituitary, in comparison to other tissues, and to gain insights into their typical non-monotonic dose-response behavior. Their multiple inputs into cellular signaling begin processes that eventually integrate at the level of mitogen-activated protein kinase activities to coordinately regulate broad cellular destinies, such as proliferation, apoptosis, or differentiation. PMID:19955490

  3. Modulation of neurotrophic signaling pathways by polyphenols

    PubMed Central

    Moosavi, Fatemeh; Hosseini, Razieh; Saso, Luciano; Firuzi, Omidreza

    2016-01-01

    Polyphenols are an important class of phytochemicals, and several lines of evidence have demonstrated their beneficial effects in the context of a number of pathologies including neurodegenerative disorders such as Alzheimer’s and Parkinson’s disease. In this report, we review the studies on the effects of polyphenols on neuronal survival, growth, proliferation and differentiation, and the signaling pathways involved in these neurotrophic actions. Several polyphenols including flavonoids such as baicalein, daidzein, luteolin, and nobiletin as well as nonflavonoid polyphenols such as auraptene, carnosic acid, curcuminoids, and hydroxycinnamic acid derivatives including caffeic acid phentyl ester enhance neuronal survival and promote neurite outgrowth in vitro, a hallmark of neuronal differentiation. Assessment of underlying mechanisms, especially in PC12 neuronal-like cells, reveals that direct agonistic effect on tropomyosin receptor kinase (Trk) receptors, the main receptors of neurotrophic factors including nerve growth factor (NGF) and brain-derived neurotrophic factor (BDNF) explains the action of few polyphenols such as 7,8-dihydroxyflavone. However, several other polyphenolic compounds activate extracellular signal-regulated kinase (ERK) and phosphoinositide 3-kinase (PI3K)/Akt pathways. Increased expression of neurotrophic factors in vitro and in vivo is the mechanism of neurotrophic action of flavonoids such as scutellarin, daidzein, genistein, and fisetin, while compounds like apigenin and ferulic acid increase cyclic adenosine monophosphate response element-binding protein (CREB) phosphorylation. Finally, the antioxidant activity of polyphenols reflected in the activation of Nrf2 pathway and the consequent upregulation of detoxification enzymes such as heme oxygenase-1 as well as the contribution of these effects to the neurotrophic activity have also been discussed. In conclusion, a better understanding of the neurotrophic effects of polyphenols and

  4. Insulin signaling pathways in lepidopteran ecdysone secretion

    PubMed Central

    Smith, Wendy A.; Lamattina, Anthony; Collins, McKensie

    2014-01-01

    Molting and metamorphosis are stimulated by the secretion of ecdysteroid hormones from the prothoracic glands. Insulin-like hormones have been found to enhance prothoracic gland activity, providing a mechanism to link molting to nutritional state. In silk moths (Bombyx mori), the prothoracic glands are directly stimulated by insulin and the insulin-like hormone bombyxin. Further, in Bombyx, the neuropeptide prothoracicotropic hormone (PTTH) appears to act at least in part through the insulin-signaling pathway. In the prothoracic glands of Manduca sexta, while insulin stimulates the phosphorylation of the insulin receptor and Akt, neither insulin nor bombyxin II stimulate ecdysone secretion. Involvement of the insulin-signaling pathway in Manduca prothoracic glands was explored using two inhibitors of phosphatidylinositol-3-kinase (PI3K), LY294002 and wortmannin. PI3K inhibitors block the phosphorylation of Akt and 4EBP but have no effect on ecdysone secretion, or on the phosphorylation of the MAPkinase, ERK. Inhibitors that block phosphorylation of ERK, including the MEK inhibitor U0126, and high doses of the RSK inhibitor SL0101, effectively inhibit ecdysone secretion. The results highlight differences between the two lepidopteran insects most commonly used to directly study ecdysteroid secretion. In Bombyx, the PTTH and insulin-signaling pathways intersect; both insulin and PTTH enhance the phosphorylation of Akt and stimulate ecdysteroid secretion, and inhibition of PI3K reduces ecdysteroid secretion. By contrast, in Manduca, the action of PTTH is distinct from insulin. The results highlight species differences in the roles of translational regulators such as 4EBP, and members of the MAPkinase pathway such as ERK and RSK, in the regulation of insect ecdysone secretion, and in the impact of nutritionally-sensitive hormones such as insulin in the control of ecdysone secretion and molting. PMID:24550835

  5. Subpathway Analysis based on Signaling-Pathway Impact Analysis of Signaling Pathway

    PubMed Central

    Li, Xianbin; Shen, Liangzhong; Shang, Xuequn; Liu, Wenbin

    2015-01-01

    Pathway analysis is a common approach to gain insight from biological experiments. Signaling-pathway impact analysis (SPIA) is one such method and combines both the classical enrichment analysis and the actual perturbation on a given pathway. Because this method focuses on a single pathway, its resolution generally is not very high because the differentially expressed genes may be enriched in a local region of the pathway. In the present work, to identify cancer-related pathways, we incorporated a recent subpathway analysis method into the SPIA method to form the “sub-SPIA method.” The original subpathway analysis uses the k-clique structure to define a subpathway. However, it is not sufficiently flexible to capture subpathways with complex structure and usually results in many overlapping subpathways. We therefore propose using the minimal-spanning-tree structure to find a subpathway. We apply this approach to colorectal cancer and lung cancer datasets, and our results show that sub-SPIA can identify many significant pathways associated with each specific cancer that other methods miss. Based on the entire pathway network in the Kyoto Encyclopedia of Genes and Genomes, we find that the pathways identified by sub-SPIA not only have the largest average degree, but also are more closely connected than those identified by other methods. This result suggests that the abnormality signal propagating through them might be responsible for the specific cancer or disease. PMID:26207919

  6. The immune signaling pathways of Manduca sexta

    PubMed Central

    Cao, Xiaolong; He, Yan; Hu, Yingxia; Wang, Yang; Chen, Yun-Ru; Bryant, Bart; Clem, Rollie J.; Schwartz, Lawrence M.; Blissard, Gary; Jiang, Haobo

    2015-01-01

    Signal transduction pathways and their coordination are critically important for proper functioning of animal immune systems. Our knowledge of the constituents of the intracellular signaling network in insects mainly comes from genetic analyses in Drosophila melanogaster. To facilitate future studies of similar systems in the tobacco hornworm and other lepidopteran insects, we have identified and examined the homologous genes in the genome of Manduca sexta. Based on 1:1 orthologous relationships in most cases, we hypothesize that the Toll, Imd, MAPK-JNK-p38 and JAK-STAT pathways are intact and operative in this species, as are most of the regulatory mechanisms. Similarly, cellular processes such as autophagy, apoptosis and RNA interference probably function in similar ways, because their mediators and modulators are mostly conserved in this lepidopteran species. We have annotated a total of 186 genes encoding 199 proteins, studied their domain structures and evolution, and examined their mRNA levels in tissues at different life stages. Such information provides a genomic perspective of the intricate signaling system in a non-drosophiline insect. PMID:25858029

  7. The immune signaling pathways of Manduca sexta.

    PubMed

    Cao, Xiaolong; He, Yan; Hu, Yingxia; Wang, Yang; Chen, Yun-Ru; Bryant, Bart; Clem, Rollie J; Schwartz, Lawrence M; Blissard, Gary; Jiang, Haobo

    2015-07-01

    Signal transduction pathways and their coordination are critically important for proper functioning of animal immune systems. Our knowledge of the constituents of the intracellular signaling network in insects mainly comes from genetic analyses in Drosophila melanogaster. To facilitate future studies of similar systems in the tobacco hornworm and other lepidopteran insects, we have identified and examined the homologous genes in the genome of Manduca sexta. Based on 1:1 orthologous relationships in most cases, we hypothesize that the Toll, Imd, MAPK-JNK-p38 and JAK-STAT pathways are intact and operative in this species, as are most of the regulatory mechanisms. Similarly, cellular processes such as autophagy, apoptosis and RNA interference probably function in similar ways, because their mediators and modulators are mostly conserved in this lepidopteran species. We have annotated a total of 186 genes encoding 199 proteins, studied their domain structures and evolution, and examined their mRNA levels in tissues at different life stages. Such information provides a genomic perspective of the intricate signaling system in a non-drosophiline insect. PMID:25858029

  8. Parameter estimate of signal transduction pathways

    PubMed Central

    Arisi, Ivan; Cattaneo, Antonino; Rosato, Vittorio

    2006-01-01

    Background The "inverse" problem is related to the determination of unknown causes on the bases of the observation of their effects. This is the opposite of the corresponding "direct" problem, which relates to the prediction of the effects generated by a complete description of some agencies. The solution of an inverse problem entails the construction of a mathematical model and takes the moves from a number of experimental data. In this respect, inverse problems are often ill-conditioned as the amount of experimental conditions available are often insufficient to unambiguously solve the mathematical model. Several approaches to solving inverse problems are possible, both computational and experimental, some of which are mentioned in this article. In this work, we will describe in details the attempt to solve an inverse problem which arose in the study of an intracellular signaling pathway. Results Using the Genetic Algorithm to find the sub-optimal solution to the optimization problem, we have estimated a set of unknown parameters describing a kinetic model of a signaling pathway in the neuronal cell. The model is composed of mass action ordinary differential equations, where the kinetic parameters describe protein-protein interactions, protein synthesis and degradation. The algorithm has been implemented on a parallel platform. Several potential solutions of the problem have been computed, each solution being a set of model parameters. A sub-set of parameters has been selected on the basis on their small coefficient of variation across the ensemble of solutions. Conclusion Despite the lack of sufficiently reliable and homogeneous experimental data, the genetic algorithm approach has allowed to estimate the approximate value of a number of model parameters in a kinetic model of a signaling pathway: these parameters have been assessed to be relevant for the reproduction of the available experimental data. PMID:17118160

  9. Mitochondrial Retrograde Signaling: Triggers, Pathways, and Outcomes

    PubMed Central

    da Cunha, Fernanda Marques; Torelli, Nicole Quesada; Kowaltowski, Alicia J.

    2015-01-01

    Mitochondria are essential organelles for eukaryotic homeostasis. Although these organelles possess their own DNA, the vast majority (>99%) of mitochondrial proteins are encoded in the nucleus. This situation makes systems that allow the communication between mitochondria and the nucleus a requirement not only to coordinate mitochondrial protein synthesis during biogenesis but also to communicate eventual mitochondrial malfunctions, triggering compensatory responses in the nucleus. Mitochondria-to-nucleus retrograde signaling has been described in various organisms, albeit with differences in effector pathways, molecules, and outcomes, as discussed in this review. PMID:26583058

  10. The TAK1-TRAF6 signalling pathway.

    PubMed

    Landström, Marene

    2010-05-01

    Cellular responses to pathogens, growth factors, cytokines, extra- or intra-cellular stress, is a prerequisite for the cell to adapt to novel and potentially dangerous situations. If the changes in the extra- or intra-cellular milieu causes DNA-damage or revoke a signalling pathway utilized during morphogenesis, the epithelial cells might be forced to undergo programmed cell death (apoptosis) in the benefit for the whole organism or transform to a mesenchymal cell type (epithelial to mesenchymal transition; EMT), in respond to a specific stimuli. An overview is presented over the current knowledge for the key components in signal transduction in homeostasis, inflammation and cancer. A handful of transcription factors are crucial for the determination of the specific cellular responses, where the transforming growth factor-beta (TGF-beta) is an important factor as discussed in this review. PMID:20060931

  11. MAPKs in development: insights from Dictyostelium signaling pathways

    PubMed Central

    Hadwiger, Jeffrey A.; Nguyen, Hoai-Nghia

    2011-01-01

    Mitogen activated protein kinases (MAPKs) play important roles in the development of eukaryotic organisms through the regulation of signal transduction pathways stimulated by external signals. MAPK signaling pathways have been associated with the regulation of cell growth, differentiation, and chemotaxis, indicating MAPKs contribute to a diverse set of developmental processes. In most eukaryotes, the diversity of external signals is likely to far exceed the diversity of MAPKs, suggesting that multiple signaling pathways might share MAPKs. Do different signaling pathways converge before MAPK function or can MAPKs maintain signaling specificity through interactions with specific proteins? The genetic and biochemical analysis of MAPK pathways in simple eukaryotes such as Dictyostelium offers opportunities to investigate functional specificity of MAPKs in G protein-mediated signal transduction pathways. This review considers the regulation and specificity of MAPK function in pathways that control Dictyostelium growth and development. PMID:21666837

  12. Cell signaling pathways elicited by asbestos.

    PubMed Central

    Mossman, B T; Faux, S; Janssen, Y; Jimenez, L A; Timblin, C; Zanella, C; Goldberg, J; Walsh, E; Barchowsky, A; Driscoll, K

    1997-01-01

    In recent years, it has become apparent that minerals can trigger alterations in gene expression by initiating signaling events upstream of gene transactivation. These cascades may be initiated at the cell surface after interaction of minerals with the plasma membrane either through receptorlike mechanisms or integrins. Alternatively, signaling pathways may be stimulated by active oxygen species generated both during phagocytosis of minerals and by redox reactions on the mineral surface. At least two signaling cascades linked to activation of transcription factors, i.e., DNA-binding proteins involved in modulating gene expression and DNA replication, are stimulated after exposure of lung cells to asbestos fibers in vitro. These include nuclear factor kappa B (NF kappa B) and the mitogen-activated protein kinase (MAPK) cascade important in regulation of the transcription factor, activator protein-1 (AP-1). Both NF kappa B and AP-1 bind to specific DNA sequences within the regulatory or promoter regions of genes that are critical to cell proliferation and inflammation. Unraveling the cell signaling cascades initiated by mineral dusts and pharmacologic inhibition of these events may be important for the control and treatment of mineral-associated occupational diseases. Images Figure 2. B Figure 3. A Figure 3. B PMID:9400710

  13. The role of endogenous aryl hydrocarbon receptor signaling in cardiovascular physiology

    PubMed Central

    Zhang, Nan

    2011-01-01

    The aryl hydrocarbon receptor (AHR) is an orphan nuclear receptor with a primary function of mediating xenobiotic metabolism through transcriptional activation of Phase I and Phase II drug-metabolizing enzymes. Although no high-affinity physiological activators of AHR have been discovered, the endogenous signaling of the AHR pathway is believed to play an important role in the development and function of the cardiovascular system, based on the observations on ahr gene-deficient mice. The AHR knockout mice develop cardiac hypertrophy, abnormal vascular structure in multiple organs and altered blood pressure depending on their host environment. In this review, the endogenous role of AHR in cardiovascular physiology, including heart function, vascular development and blood pressure regulation has been summarized and discussed. PMID:21814412

  14. Exercise for the heart: signaling pathways.

    PubMed

    Tao, Lichan; Bei, Yihua; Zhang, Haifeng; Xiao, Junjie; Li, Xinli

    2015-08-28

    Physical exercise, a potent functional intervention in protecting against cardiovascular diseases, is a hot topic in recent years. Exercise has been shown to reduce cardiac risk factors, protect against myocardial damage, and increase cardiac function. This improves quality of life and decreases mortality and morbidity in a variety of cardiovascular diseases, including myocardial infarction, cardiac ischemia/reperfusion injury, diabetic cardiomyopathy, cardiac aging, and pulmonary hypertension. The cellular adaptation to exercise can be associated with both endogenous and exogenous factors: (1) exercise induces cardiac growth via hypertrophy and renewal of cardiomyocytes, and (2) exercise induces endothelial progenitor cells to proliferate, migrate and differentiate into mature endothelial cells, giving rise to endothelial regeneration and angiogenesis. The cellular adaptations associated with exercise are due to the activation of several signaling pathways, in particular, the growth factor neuregulin1 (NRG1)-ErbB4-C/EBPβ and insulin-like growth factor (IGF)-1-PI3k-Akt signaling pathways. Of interest, microRNAs (miRNAs, miRs) such as miR-222 also play a major role in the beneficial effects of exercise. Thus, exploring the mechanisms mediating exercise-induced benefits will be instrumental for devising new effective therapies against cardiovascular diseases. PMID:26318584

  15. Exercise for the heart: signaling pathways

    PubMed Central

    Zhang, Haifeng; Xiao, Junjie; Li, Xinli

    2015-01-01

    Physical exercise, a potent functional intervention in protecting against cardiovascular diseases, is a hot topic in recent years. Exercise has been shown to reduce cardiac risk factors, protect against myocardial damage, and increase cardiac function. This improves quality of life and decreases mortality and morbidity in a variety of cardiovascular diseases, including myocardial infarction, cardiac ischemia/reperfusion injury, diabetic cardiomyopathy, cardiac aging, and pulmonary hypertension. The cellular adaptation to exercise can be associated with both endogenous and exogenous factors: 1) exercise induces cardiac growth via hypertrophy and renewal of cardiomyocytes, and 2) exercise induces endothelial progenitor cells to proliferate, migrate and differentiate into mature endothelial cells, giving rise to endothelial regeneration and angiogenesis. The cellular adaptations associated with exercise are due to the activation of several signaling pathways, in particular, the growth factor neuregulin1 (NRG1)-ErbB4-C/EBPβ and insulin-like growth factor (IGF)-1-PI3k-Akt signaling pathways. Of interest, microRNAs (miRNAs, miRs) such as miR-222 also play a major role in the beneficial effects of exercise. Thus, exploring the mechanisms mediating exercise-induced benefits will be instrumental for devising new effective therapies against cardiovascular diseases. PMID:26318584

  16. PSFC: a Pathway Signal Flow Calculator App for Cytoscape

    PubMed Central

    Nersisyan, Lilit; Johnson, Graham; Riel-Mehan, Megan; Pico, Alexander; Arakelyan, Arsen

    2015-01-01

    Cell signaling pathways are sequences of biochemical reactions that propagate an input signal, such as a hormone binding to a cell-surface receptor, into the cell to trigger a reactive process. Assessment of pathway activities is crucial for determining which pathways play roles in disease versus normal conditions. To date various pathway flow/perturbation assessment tools are available, however they are constrained to specific algorithms and specific data types. There are no accepted standards for evaluation of pathway activities or simulation of flow propagation events in pathways, and the results of different software are difficult to compare. Here we present Pathway Signal Flow Calculator (PSFC), a Cytoscape app for calculation of a pathway signal flow based on the pathway topology and node input data. The app provides a rich framework for customization of different signal flow algorithms to allow users to apply various approaches within a single computational framework. PMID:26834984

  17. SIGNALING PATHWAYS IN MELANOSOME BIOGENESIS AND PATHOLOGY

    PubMed Central

    Schiaffino, Maria Vittoria

    2010-01-01

    Melanosomes are the specialized intracellular organelles of pigment cells devoted to the synthesis, storage and transport of melanin pigments, which are responsible for most visible pigmentation in mammals and other vertebrates. As a direct consequence, any genetic mutation resulting in alteration of melanosomal function, either because affecting pigment cell survival, migration and differentiation, or because interfering with melanosome biogenesis, transport and transfer to keratinocytes, is immediately translated into color variations of skin, fur, hair or eyes. Thus, over one hundred genes and proteins have been identified as pigmentary determinants in mammals, providing us with a deep understanding of this biological system, which functions by using mechanisms and processes that have parallels in other tissues and organs. In particular, many genes implicated in melanosome biogenesis have been characterized, so that melanosomes represent an incredible source of information and a model for organelles belonging to the secretory pathway. Furthermore, the function of melanosomes can be associated with common physiological phenotypes, such as variation of pigmentation among individuals, and with rare pathological conditions, such as albinism, characterized by severe visual defects. Among the most relevant mechanisms operating in melanosome biogenesis are the signal transduction pathways mediated by two peculiar G protein-coupled receptors: the melanocortin-1 receptor (MC1R), involved in the fair skin/red hair phenotype and skin cancer; and OA1 (GPR143), whose loss-of-function results in X-linked ocular albinism. This review will focus on the most recent novelties regarding the functioning of these two receptors, by highlighting emerging signaling mechanisms and general implications for cell biology and pathology. PMID:20381640

  18. [Sphingolipid-mediated apoptotic signaling pathways].

    PubMed

    Cuvillier, Olivier; Andrieu-Abadie, Nathalie; Ségui, Bruno; Malagarie-Cazenave, Sophie; Tardy, Claudine; Bonhoure, Elisabeth; Levade, Thierry

    2003-01-01

    Various sphingolipids are being viewed as bioactive molecules and/or second messengers. Among them, ceramide (or N-acylsphingosine) and sphingosine generally behave as pro-apoptotic mediators. Indeed, ceramide mediates the death signal initiated by numerous stress agents which either stimulate its de novo synthesis or activate sphingomyelinases that release ceramide from sphingomyelin. For instance, the early generation of ceramide promoted by TNF is mediated by a neutral sphingomyelinase the activity of which is regulated by the FAN adaptor protein, thereby controlling caspase activation and the cell death programme. In addition, the activity of this neutral sphingomyelinase is negatively modulated by caveolin, a major constituent of some membrane microdomains. The enzyme sphingosine kinase also plays a crucial role in apoptosis signalling by regulating the intracellular levels of two sphingolipids having opposite effects, namely the pro-apoptotic sphingosine and the anti-apoptotic sphingosine 1-phosphate molecule. Ceramide and sphingosine metabolism therefore appears as a pivotal regulatory pathway in the determination of cell fate. PMID:14708343

  19. Interactions Between Estrogen- and Ah-Receptor Signalling Pathways in Primary Culture of Salmon Hepatocytes Exposed to Nonylphenol and 3,3',4,4'-Tetrachlorobiphenyl (Congener 77)

    PubMed Central

    Mortensen, Anne S; Arukwe, Augustine

    2007-01-01

    Background The estrogenic and xenobiotic biotransformation gene expressions are receptor-mediated processes that are ligand structure-dependent interactions with estrogen-receptor (ER) and aryl hydrocarbon receptor (AhR), probably involving all subtypes and other co-factors. The anti-estrogenic activities of AhR agonists have been reported. In teleost fish, exposure to AhR agonists has been associated with reduced Vtg synthesis or impaired gonadal development in both in vivo- and in vitro studies. Inhibitory AhR and ER cross-talk have also been demonstrated in breast cancer cells, rodent uterus and mammary tumors. Previous studies have shown that AhR-agonists potentiate xenoestrogen-induced responses in fish in vivo system. Recently, several studies have shown that AhR-agonists directly activate ERα and induce estrogenic responses in mammalian in vitro systems. In this study, two separate experiments were performed to study the molecular interactions between ER and AhR signalling pathways using different concentration of PCB-77 (an AhR-agonist) and time factor, respectively. Firstly, primary Atlantic salmon hepatocytes were exposed to nonylphenol (NP: 5 μM – an ER agonist) singly or in combination with 0.001, 0.01 and 1 μM PCB-77 and sampled at 48 h post-exposure. Secondly, hepatocytes were exposed to NP (5 μM) or PCB-77 (1 μM) singly or in combination for 12, 24, 48 and 72 h. Samples were analyzed using a validated real-time PCR for genes in the ER pathway or known to be NP-responsive and AhR pathway or known to be PCB-77 responsive. Results Our data showed a reciprocal inhibitory interaction between NP and PCB-77. PCB-77 produced anti-NP-mediated effect by decreasing the mRNA expression of ER-responsive genes. NP produced anti-AhR mediated effect or as inhibitor of AhRα, AhRR, ARNT, CYP1A1 and UDPGT expression. A novel aspect of the present study is that low (0.001 μM) and medium (0.01 μM) PCB-77 concentrations increased ERα mRNA expression above

  20. The Aryl Hydrocarbon Receptor: A Key Bridging Molecule of External and Internal Chemical Signals

    PubMed Central

    Tian, Jijing; Feng, Yu; Fu, Hualing; Xie, Heidi Qunhui; Jiang, Joy Xiaosong; Zhao, Bin

    2015-01-01

    The aryl hydrocarbon receptor (AhR) is a highly evolutionary conserved, ligand-activated transcription factor that is best known to mediate the toxicities of dioxins and dioxin-like compounds. Phenotype of AhR-null mice, together with the recent discovery of a variety of endogenous and plant-derived ligands, point to the integral roles of AhR in normal cell physiology, in addition to its roles in sensing the environmental chemicals. Here, we summarize the current knowledge about AhR signaling pathways, its ligands and AhR-mediated effects on cell specialization, host defense and detoxification. AhR-mediated health effects particularly in liver, immune, and nervous systems, as well as in tumorgenesis are discussed. Dioxin-initiated embryotoxicity and immunosuppressive effects in fish and birds are reviewed. Recent data demonstrate that AhR is a convergence point of multiple signaling pathways that inform the cell of its external and internal environments. As such, AhR pathway is a promising potential target for therapeutics targeting nervous, liver, and autoimmune diseases through AhR ligand-mediated interventions and other perturbations of AhR signaling. Additionally, using available laboratory data obtained on animal models, AhR-centered adverse outcome pathway analysis is useful in reexamining known and potential adverse outcomes of specific or mixed compounds on wildlife. PMID:26079192

  1. Canonical WNT signaling pathway and human AREG.

    PubMed

    Katoh, Yuriko; Katoh, Masaru

    2006-06-01

    AREG (Amphiregulin), BTC (beta-cellulin), EGF, EPGN (Epigen), EREG (Epiregulin), HBEGF, NRG1, NRG2, NRG3, NRG4 and TGFA (TGFalpha) constitute EGF family ligands for ERBB family receptors. Cetuximab (Erbitux), Pertuzumab (Omnitarg) and Trastuzumab (Herceptin) are anti-cancer drugs targeted to EGF family ligands, while Gefitinib (Iressa), Erlotinib (Tarceva) and Lapatinib (GW572016) are anti-cancer drugs targeted to ERBB family receptors. AREG and TGFA are biomarkers for Gefitinib non-responders. The TCF/LEF binding sites within the promoter region of human EGF family members were searched for by using bioinformatics and human intelligence (Humint). Because three TCF/LEF-binding sites were identified within the 5'-promoter region of human AREG gene, comparative genomics analyses on AREG orthologs were further performed. The EPGN-EREG-AREG-BTC cluster at human chromosome 4q13.3 was linked to the PPBP-CXCL segmental duplicons. AREG was the paralog of HBEGF at human chromosome 5q31.2. Chimpanzee AREG gene, consisting of six exons, was located within NW_105918.1 genome sequence. Chimpanzee AREG was a type I transmembrane protein showing 98.0% and 71.4% total amino-acid identity with human AREG and mouse Areg, respectively. Three TCF/LEF-binding sites within human AREG promoter were conserved in chimpanzee AREG promoter, but not in rodent Areg promoters. Primate AREG promoters were significantly divergent from rodent Areg promoters. AREG mRNA was expressed in a variety of human tumors, such as colorectal cancer, liver cancer, gastric cancer, breast cancer, prostate cancer, esophageal cancer and myeloma. Because human AREG was characterized as potent target gene of WNT/beta-catenin signaling pathway, WNT signaling activation could lead to Gefitinib resistance through AREG upregulation. AREG is a target of systems medicine in the field of oncology. PMID:16685431

  2. Notch -- a goldilocks signaling pathway in disease and cancer therapy.

    PubMed

    Braune, Eike-Benjamin; Lendahl, Urban

    2016-03-01

    The Notch signaling pathway is a fundamental signaling mechanism operating in most, if not all, multicellular organisms and in most cell types in the body. Like other "ivy league" pathways such as Wnt, PI3K, Sonic Hedgehog, Receptor Tyrosine Kinases (RTKs), and JAK/STAT signaling, the Notch pathway is a linear signaling mechanism, i.e., an extracellular ligand activates a receptor, which ultimately leads to transcriptional alterations in the cell nucleus, but Notch signaling is a strict cell-cell communication mechanism and lacks built-in amplification steps in the signaling pathway. Dysregulated Notch signaling, either by direct mutations in the pathway or by altered signaling output, is increasingly linked to disease, and Notch can act as an oncogene or tumor suppressor depending on the cellular context. This underscores that appropriate level of Notch signaling is important for differentiation and tissue homeostasis, a notion supported also by genetic data indicating that Notch signaling is very gene dosage-sensitive. Thus, too much or too little signaling can lead to disease and Notch can therefore be considered a Goldilocks signaling pathway. Given the emerging role of dysregulated Notch signaling in disease, there is increasing interest in developing therapeutic approaches to modulate Notch signaling. In this review we discuss recent findings on how signal transduction is tuned in the Notch pathway and how Notch signaling is dysregulated in disease. We also discuss different strategies to modulate Notch signaling for clinical use, for example by novel antibody-based tools and by taking advantage of the cross-talk between Notch and other signaling mechanisms. PMID:27115169

  3. Combination effects of AHR agonists and Wnt/β-catenin modulators in zebrafish embryos: Implications for physiological and toxicological AHR functions

    SciTech Connect

    Wincent, Emma; Stegeman, John J.; Jönsson, Maria E.

    2015-04-15

    Wnt/β-catenin signaling regulates essential biological functions and acts in developmental toxicity of some chemicals. The aryl hydrocarbon receptor (AHR) is well-known to mediate developmental toxicity of persistent dioxin-like compounds (DLCs). Recent studies indicate a crosstalk between β-catenin and the AHR in some tissues. However the nature of this crosstalk in embryos is poorly known. We observed that zebrafish embryos exposed to the β-catenin inhibitor XAV939 display effects phenocopying those of the dioxin-like 3,3′,4,4′,5-pentachlorobiphenyl (PCB126). This led us to investigate the AHR interaction with β-catenin during development and ask whether developmental toxicity of DLCs involves antagonism of β-catenin signaling. We examined phenotypes and transcriptional responses in zebrafish embryos exposed to XAV939 or to a β-catenin activator, 1-azakenpaullone, alone or with AHR agonists, either PCB126 or 6-formylindolo[3,2-b]carbazole (FICZ). Alone 1-azakenpaullone and XAV939 both were embryo-toxic, and we found that in the presence of FICZ, the toxicity of 1-azakenpaullone decreased while the toxicity of XAV939 increased. This rescue of 1-azakenpaullone effects occurred in the time window of Ahr2-mediated toxicity and was reversed by morpholino-oligonucleotide knockdown of Ahr2. Regarding PCB126, addition of either 1-azakenpaullone or XAV939 led to lower mortality than with PCB126 alone but surviving embryos showed severe edemas. 1-Azakenpaullone induced transcription of β-catenin-associated genes, while PCB126 and FICZ blocked this induction. The data indicate a stage-dependent antagonism of β-catenin by Ahr2 in zebrafish embryos. We propose that the AHR has a physiological role in regulating β-catenin during development, and that this is one point of intersection linking toxicological and physiological AHR-governed processes.

  4. Toxic and chemopreventive ligands preferentially activate distinct aryl hydrocarbon receptor pathways: implications for cancer prevention.

    PubMed

    Okino, Steven T; Pookot, Deepa; Basak, Shashwati; Dahiya, Rajvir

    2009-03-01

    The aryl hydrocarbon receptor (AhR) is a ligand-activated regulatory protein that controls estrogen action through two distinct pathways. In one pathway, AhR acts as a transcription factor that induces the expression of the CYP1 family of estrogen-metabolizing genes; in the other pathway, AhR initiates the degradation of the estrogen receptor and suppresses estrogen signaling. The AhR ligand 3,3'-diindolylmethane (DIM) is a beneficial dietary constituent that prevents breast tumors in rodents and is associated with decreased breast cancer risk in humans. 2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) is a toxic AhR ligand that is implicated in birth defects, infertility, and cancer. We analyzed MCF-7 cells to gain insight into how two AhR ligands can exert such fundamentally different health effects. We find that DIM and TCDD have differing abilities to activate the distinct AhR-controlled pathways. TCDD strongly induces AhR-dependent CYP1 gene expression, whereas DIM is a relatively weak CYP1 inducer. DIM strongly inhibits estrogen receptor-alpha expression and estrogen signaling, whereas TCDD has a notably weaker effect on these processes. Small interfering RNA knockdown of AhR confirms that the effects of DIM and TCDD are indeed AhR dependent. Our findings reveal that DIM and TCDD each elicit a unique pattern of change in pathways that control estrogen action; such patterns may determine if an AhR ligand has beneficial or adverse health effects. PMID:19223575

  5. The Aryl Hydrocarbon Receptor Relays Metabolic Signals to Promote Cellular Regeneration

    PubMed Central

    2016-01-01

    While sensing the cell environment, the aryl hydrocarbon receptor (AHR) interacts with different pathways involved in cellular homeostasis. This review summarizes evidence suggesting that cellular regeneration in the context of aging and diseases can be modulated by AHR signaling on stem cells. New insights connect orphaned observations into AHR interactions with critical signaling pathways such as WNT to propose a role of this ligand-activated transcription factor in the modulation of cellular regeneration by altering pathways that nurture cellular expansion such as changes in the metabolic efficiency rather than by directly altering cell cycling, proliferation, or cell death. Targeting the AHR to promote regeneration might prove to be a useful strategy to avoid unbalanced disruptions of homeostasis that may promote disease and also provide biological rationale for potential regenerative medicine approaches. PMID:27563312

  6. The Aryl Hydrocarbon Receptor Relays Metabolic Signals to Promote Cellular Regeneration.

    PubMed

    Casado, Fanny L

    2016-01-01

    While sensing the cell environment, the aryl hydrocarbon receptor (AHR) interacts with different pathways involved in cellular homeostasis. This review summarizes evidence suggesting that cellular regeneration in the context of aging and diseases can be modulated by AHR signaling on stem cells. New insights connect orphaned observations into AHR interactions with critical signaling pathways such as WNT to propose a role of this ligand-activated transcription factor in the modulation of cellular regeneration by altering pathways that nurture cellular expansion such as changes in the metabolic efficiency rather than by directly altering cell cycling, proliferation, or cell death. Targeting the AHR to promote regeneration might prove to be a useful strategy to avoid unbalanced disruptions of homeostasis that may promote disease and also provide biological rationale for potential regenerative medicine approaches. PMID:27563312

  7. Signaling Pathways in Thyroid Cancer and Their Therapeutic Implications

    PubMed Central

    Jin, Shan; Borkhuu, Oyungerel; Bao, Wuyuntu; Yang, Yun-Tian

    2016-01-01

    Thyroid cancer is a common malignancy of endocrine system, and has now become the fastest increasing cancer among all the malignancies. The development, progression, invasion, and metastasis are closely associated with multiple signaling pathways and the functions of related molecules, such as Src, Janus kinase (JAK)-signal transducers and activators of transcription (STAT), mitogen-activated protein kinase (MAPK), phosphoinositide 3-kinase (PI3K)/Akt, NF-κB, thyroid stimulating hormone receptor (TSHR), Wnt-β-catenin and Notch signaling pathways. Each of the signaling pathways could exert its function singly or through network with other pathways. These pathways could cooperate, promote, antagonize, or interact with each other to form a complex network for the regulation. Dysfunction of this network could increase the development, progression, invasion, and metastasis of thyroid cancer. Inoperable thyroid cancer still has a poor prognosis. However, signaling pathway-related targeted therapies offer the hope of longer quality of meaningful life for this small group of patients. Signaling pathway-related targets provide unprecedented opportunities for further research and clinical development of novel treatment strategies for this cancer. In the present work, the advances in these signaling pathways and targeted treatments of thyroid cancer were reviewed. PMID:26985248

  8. Targeting the PI3K signaling pathway in cancer

    PubMed Central

    Wong, Kwok-Kin; Engelman, Jeffrey A; Cantley, Lewis C

    2009-01-01

    The PI3K pathway is activated in a variety of different human cancers, and inhibitors of this pathway are under active development as anti-cancer therapeutics. In this review, we discuss the data supporting the use of PI3K pathway inhibitors in genetically and clinically defined cancers. This review focuses on their efficacy as single-agents and in combination with other targeted therapies, specifically those targeting the MEK-ERK signaling pathway. PMID:20006486

  9. Cross talk between signaling pathways in pathogen defense.

    PubMed

    Kunkel, Barbara N; Brooks, David M

    2002-08-01

    Plant defense in response to microbial attack is regulated through a complex network of signaling pathways that involve three signaling molecules: salicylic acid (SA), jasmonic acid (JA) and ethylene. The SA and JA signaling pathways are mutually antagonistic. This regulatory cross talk may have evolved to allow plants to fine-tune the induction of their defenses in response to different plant pathogens. PMID:12179966

  10. Death and dessert: Nutrient signalling pathways and ageing

    PubMed Central

    Alic, Nazif; Partridge, Linda

    2015-01-01

    Reduction in nutrient intake without malnutrition can delay ageing and extend healthy life in diverse organisms from yeast to primates. This effect can be recapitulated by genetic or pharmacological dampening of the signal through nutrient signalling pathways, making them a promising target for intervention into human ageing and age-related diseases. Here we review the current knowledge of the interactions between nutrient signalling pathways and ageing, focusing on the findings emerged in the last few years. PMID:21835601

  11. Information processing in multi-step signaling pathways

    NASA Astrophysics Data System (ADS)

    Ganesan, Ambhi; Hamidzadeh, Archer; Zhang, Jin; Levchenko, Andre

    Information processing in complex signaling networks is limited by a high degree of variability in the abundance and activity of biochemical reactions (biological noise) operating in living cells. In this context, it is particularly surprising that many signaling pathways found in eukaryotic cells are composed of long chains of biochemical reactions, which are expected to be subject to accumulating noise and delayed signal processing. Here, we challenge the notion that signaling pathways are insulated chains, and rather view them as parts of extensively branched networks, which can benefit from a low degree of interference between signaling components. We further establish conditions under which this pathway organization would limit noise accumulation, and provide evidence for this type of signal processing in an experimental model of a calcium-activated MAPK cascade. These results address the long-standing problem of diverse organization and structure of signaling networks in live cells.

  12. Baicalein induces G1 arrest in oral cancer cells by enhancing the degradation of cyclin D1 and activating AhR to decrease Rb phosphorylation

    SciTech Connect

    Cheng, Ya-Hsin; Li, Lih-Ann; Lin, Pinpin; Cheng, Li-Chuan; Hung, Chein-Hui; Chang, Nai Wen; Lin, Chingju

    2012-09-15

    Baicalein is a flavonoid, known to have anti-inflammatory and anti-cancer effects. As an aryl hydrocarbon receptor (AhR) ligand, baicalein at high concentrations blocks AhR-mediated dioxin toxicity. Because AhR had been reported to play a role in regulating the cell cycle, we suspected that the anti-cancer effect of baicalein is associated with AhR. This study investigated the molecular mechanism involved in the anti-cancer effect of baicalein in oral cancer cells HSC-3, including whether such effect would be AhR-mediated. Results revealed that baicalein inhibited cell proliferation and increased AhR activity in a dose-dependent manner. Cell cycle was arrested at the G1 phase and the expression of CDK4, cyclin D1, and phosphorylated retinoblastoma (pRb) was decreased. When the AhR was suppressed by siRNA, the reduction of pRb was partially reversed, accompanied by a decrease of cell population at G1 phase and an increase at S phase, while the reduction of cyclin D1 and CDK4 did not change. This finding suggests that the baicalein activation of AhR is indeed associated with the reduction of pRb, but is independent of the reduction of cyclin D1 and CDK4. When cells were pre-treated with LiCl, the inhibitor of GSK-3β, the decrease of cyclin D1 was blocked and the reduction of pRb was recovered. The data indicates that in HSC-3 the reduction of pRb is both mediated by baicalein through activation of AhR and facilitation of cyclin D1 degradation, which causes cell cycle arrest at the G1 phase, and results in the inhibition of cell proliferation. -- Highlights: ► Baicalein causes the G1 phase arrest by decreasing Rb phosphorylation. ► Baicalein modulates AhR-mediated cell proliferation. ► Both AhR activation and cyclin D1 degradation results in hypophosphorylation of Rb. ► Baicalein facilitates cyclin D1 degradation by signalling the GSK-3β pathway.

  13. Evolutionary conservation of plant gibberellin signalling pathway components

    PubMed Central

    Vandenbussche, Filip; Fierro, Ana C; Wiedemann, Gertrud; Reski, Ralf; Van Der Straeten, Dominique

    2007-01-01

    Background: Gibberellins (GA) are plant hormones that can regulate germination, elongation growth, and sex determination. They ubiquitously occur in seed plants. The discovery of gibberellin receptors, together with advances in understanding the function of key components of GA signalling in Arabidopsis and rice, reveal a fairly short GA signal transduction route. The pathway essentially consists of GID1 gibberellin receptors that interact with F-box proteins, which in turn regulate degradation of downstream DELLA proteins, suppressors of GA-controlled responses. Results: Arabidopsis sequences of the gibberellin signalling compounds were used to screen databases from a variety of plants, including protists, for homologues, providing indications for the degree of conservation of the pathway. The pathway as such appears completely absent in protists, the moss Physcomitrella patens shares only a limited homology with the Arabidopsis proteins, thus lacking essential characteristics of the classical GA signalling pathway, while the lycophyte Selaginella moellendorffii contains a possible ortholog for each component. The occurrence of classical GA responses can as yet not be linked with the presence of homologues of the signalling pathway. Alignments and display in neighbour joining trees of the GA signalling components confirm the close relationship of gymnosperms, monocotyledonous and dicotyledonous plants, as suggested from previous studies. Conclusion: Homologues of the GA-signalling pathway were mainly found in vascular plants. The GA signalling system may have its evolutionary molecular onset in Physcomitrella patens, where GAs at higher concentrations affect gravitropism and elongation growth. PMID:18047669

  14. Neurotrophin signalling pathways regulating neuronal apoptosis.

    PubMed

    Miller, F D; Kaplan, D R

    2001-07-01

    Recent evidence indicates that naturally occurring neuronal death in mammals is regulated by the interplay between receptor-mediated prosurvival and proapoptotic signals. The neurotrophins, a family of growth factors best known for their positive effects on neuronal biology, have now been shown to mediate both positive and negative survival signals, by signalling through the Trk and p75 neurotrophin receptors, respectively. The mechanisms whereby these two neurotrophin receptors interact to determine neuronal survival have been difficult to decipher, largely because both can signal independently or coincidentally, depending upon the cell or developmental context. Nonetheless, the past several years have seen significant advances in our understanding of this receptor signalling system. In this review, we focus on the proapoptotic actions of the p75 neurotrophin receptor (p75NTR), and on the interplay between Trk and p75NTR that determines neuronal survival. PMID:11529497

  15. Intricacies of hedgehog signaling pathways: A perspective in tumorigenesis

    SciTech Connect

    Kar, Swayamsiddha; Deb, Moonmoon; Sengupta, Dipta; Shilpi, Arunima; Bhutia, Sujit Kumar; Patra, Samir Kumar

    2012-10-01

    The hedgehog (HH) signaling pathway is a crucial negotiator of developmental proceedings in the embryo governing a diverse array of processes including cell proliferation, differentiation, and tissue patterning. The overall activity of the pathway is significantly curtailed after embryogenesis as well as in adults, yet it retains many of its functional capacities. However, aberration in HH signaling mediates the initiation, proliferation and continued sustenance of malignancy in different tissues to varying degrees through different mechanisms. In this review, we provide an overview of the role of constitutively active aberrant HH signaling pathway in different types of human cancer and the underlying molecular and genetic mechanisms that drive tumorigenesis in that particular tissue. An insight into the various modes of anomalous HH signaling in different organs will provide a comprehensive knowledge of the pathway in these tissues and open a window for individually tailored, tissue-specific therapeutic interventions. The synergistic cross talking of HH pathway with many other regulatory molecules and developmentally inclined signaling pathways may offer many avenues for pharmacological advances. Understanding the molecular basis of abnormal HH signaling in cancer will provide an opportunity to inhibit the deregulated pathway in many aggressive and therapeutically challenging cancers where promising options are not available.

  16. UV signaling pathways within the skin

    PubMed Central

    Chen, Hongxiang; Weng, Qing Yu; Fisher, David E.

    2014-01-01

    The effects of UVR on the skin include tanning, carcinogenesis, immunomodulation, and synthesis of vitamin D, among others. Melanocortin 1 receptor polymorphisms correlate with skin pigmentation, UV sensitivity, and skin cancer risk. This article reviews pathways through which UVR induces cutaneous stress and the pigmentation response. Modulators of the UV tanning pathway include sunscreen agents, MC1R activators, adenylate cyclase activators, phosphodiesterase 4D3 inhibitors, T oligos, and MITF regulators such as histone deacetylase (HDAC)-inhibitors. UVR, as one of the most ubiquitous carcinogens, represents both a challenge and enormous opportunity in skin cancer prevention. PMID:24759085

  17. Toll-Like Receptor Signaling Pathways

    PubMed Central

    Kawasaki, Takumi; Kawai, Taro

    2014-01-01

    Toll-like receptors (TLRs) play crucial roles in the innate immune system by recognizing pathogen-associated molecular patterns derived from various microbes. TLRs signal through the recruitment of specific adaptor molecules, leading to activation of the transcription factors NF-κB and IRFs, which dictate the outcome of innate immune responses. During the past decade, the precise mechanisms underlying TLR signaling have been clarified by various approaches involving genetic, biochemical, structural, cell biological, and bioinformatics studies. TLR signaling appears to be divergent and to play important roles in many aspects of the innate immune responses to given pathogens. In this review, we describe recent progress in our understanding of TLR signaling regulation and its contributions to host defense. PMID:25309543

  18. UNDERSTANDING PATHWAYS OF TOXICITY: MAKING SENSE OF CHANGING SIGNALS

    EPA Science Inventory

    Title:
    Understanding Pathways of Toxicity: Making sense of changing signals
    Authors & affiliations:
    Sid Hunter, Maria Blanton, Edward Karoly, Ellen Rogers, Leonard Mole, Phillip Hartig, James Andrews. Reproductive Toxicology Division, National Health and Environmental Ef...

  19. Mechanical Regulation of Signaling Pathways in Bone

    PubMed Central

    Thompson, William R.; Rubin, Clinton T.; Rubin, Janet

    2012-01-01

    A wide range of cell types depend on mechanically induced signals to enable appropriate physiological responses. The skeleton is particularly dependent on mechanical information to guide the resident cell population towards adaptation, maintenance and repair. Research at the organ, tissue, cell and molecular levels has improved our understanding of how the skeleton can recognize the functional environment, and how these challenges are translated into cellular information that can site-specifically alter phenotype. This review first considers those cells within the skeleton that are responsive to mechanical signals, including osteoblasts, osteoclasts, osteocytes and osteoprogenitors. This is discussed in light of a range of experimental approaches that can vary parameters such as strain, fluid shear stress, and pressure. The identity of mechanoreceptor candidates is approached, with consideration of integrins, pericellular tethers, focal adhesions, ion channels, cadherins, connexins, and the plasma membrane including caveolar and non-caveolar lipid rafts and their influence on integral signaling protein interactions. Several mechanically regulated intracellular signaling cascades are detailed including activation of kinases (Akt, MAPK, FAK), β-catenin, GTPases, and calcium signaling events. While the interaction of bone cells with their mechanical environment is complex, an understanding of mechanical regulation of bone signaling is crucial to understanding bone physiology, the etiology of diseases such as osteoporosis, and to the development of interventions to improve bone strength. PMID:22575727

  20. Linear effects models of signaling pathways from combinatorial perturbation data

    PubMed Central

    Szczurek, Ewa; Beerenwinkel, Niko

    2016-01-01

    Motivation: Perturbations constitute the central means to study signaling pathways. Interrupting components of the pathway and analyzing observed effects of those interruptions can give insight into unknown connections within the signaling pathway itself, as well as the link from the pathway to the effects. Different pathway components may have different individual contributions to the measured perturbation effects, such as gene expression changes. Those effects will be observed in combination when the pathway components are perturbed. Extant approaches focus either on the reconstruction of pathway structure or on resolving how the pathway components control the downstream effects. Results: Here, we propose a linear effects model, which can be applied to solve both these problems from combinatorial perturbation data. We use simulated data to demonstrate the accuracy of learning the pathway structure as well as estimation of the individual contributions of pathway components to the perturbation effects. The practical utility of our approach is illustrated by an application to perturbations of the mitogen-activated protein kinase pathway in Saccharomyces cerevisiae. Availability and Implementation: lem is available as a R package at http://www.mimuw.edu.pl/∼szczurek/lem. Contact: szczurek@mimuw.edu.pl; niko.beerenwinkel@bsse.ethz.ch Supplementary information: Supplementary data are available at Bioinformatics online. PMID:27307630

  1. Temporal and evolutionary dynamics of two-component signaling pathways.

    PubMed

    Salazar, Michael E; Laub, Michael T

    2015-04-01

    Bacteria sense and respond to numerous environmental signals through two-component signaling pathways. Typically, a given stimulus will activate a sensor histidine kinase to autophosphorylate and then phosphotransfer to a cognate response regulator, which can mount an appropriate response. Although these signaling pathways often appear to be simple switches, they can also orchestrate surprisingly sophisticated and complex responses. These temporal dynamics arise from several key regulatory features, including the bifunctionality of histidine kinases as well as positive and negative feedback loops. Two-component signaling pathways are also dynamic on evolutionary time-scales, expanding dramatically in many species through gene duplication and divergence. Here, we review recent work probing the temporal and evolutionary dynamics of two-component signaling systems. PMID:25589045

  2. Temporal and Evolutionary Dynamics of Two-Component Signaling Pathways

    PubMed Central

    Salazar, Michael E.; Laub, Michael T.

    2015-01-01

    Bacteria sense and respond to numerous environmental signals through two-component signaling pathways. Typically, a given stimulus will activate a sensor histidine kinase to autophosphorylate and then phosphotransfer to a cognate response regulator, which can mount an appropriate response. Although these signaling pathways often appear to be simple switches, they can also orchestrate surprisingly sophisticated and complex responses. These temporal dynamics arise from several key regulatory features, including the bifunctionality of histidine kinases as well as positive and negative feedback loops. Two-component signaling pathways are also dynamic on evolutionary time-scales, expanding dramatically in many species through gene duplication and divergence. Here, we review recent work probing the temporal and evolutionary dynamics of two-component signaling systems. PMID:25589045

  3. Role of Hedgehog Signaling Pathway in NASH.

    PubMed

    Verdelho Machado, Mariana; Diehl, Anna Mae

    2016-01-01

    Non-alcoholic fatty liver disease (NAFLD) is the number one cause of chronic liver disease in the Western world. Although only a minority of patients will ultimately develop end-stage liver disease, it is not yet possible to efficiently predict who will progress and, most importantly, effective treatments are still unavailable. Better understanding of the pathophysiology of this disease is necessary to improve the clinical management of NAFLD patients. Epidemiological data indicate that NAFLD prognosis is determined by an individual's response to lipotoxic injury, rather than either the severity of exposure to lipotoxins, or the intensity of liver injury. The liver responds to injury with a synchronized wound-healing response. When this response is abnormal, it leads to pathological scarring, resulting in progressive fibrosis and cirrhosis, rather than repair. The hedgehog pathway is a crucial player in the wound-healing response. In this review, we summarize the pre-clinical and clinical evidence, which demonstrate the role of hedgehog pathway dysregulation in NAFLD pathogenesis, and the preliminary data that place the hedgehog pathway as a potential target for the treatment of this disease. PMID:27258259

  4. Modeling Protein Expression and Protein Signaling Pathways

    PubMed Central

    Telesca, Donatello; Müller, Peter; Kornblau, Steven M.; Suchard, Marc A.; Ji, Yuan

    2015-01-01

    High-throughput functional proteomic technologies provide a way to quantify the expression of proteins of interest. Statistical inference centers on identifying the activation state of proteins and their patterns of molecular interaction formalized as dependence structure. Inference on dependence structure is particularly important when proteins are selected because they are part of a common molecular pathway. In that case, inference on dependence structure reveals properties of the underlying pathway. We propose a probability model that represents molecular interactions at the level of hidden binary latent variables that can be interpreted as indicators for active versus inactive states of the proteins. The proposed approach exploits available expert knowledge about the target pathway to define an informative prior on the hidden conditional dependence structure. An important feature of this prior is that it provides an instrument to explicitly anchor the model space to a set of interactions of interest, favoring a local search approach to model determination. We apply our model to reverse-phase protein array data from a study on acute myeloid leukemia. Our inference identifies relevant subpathways in relation to the unfolding of the biological process under study. PMID:26246646

  5. Role of Hedgehog Signaling Pathway in NASH

    PubMed Central

    Verdelho Machado, Mariana; Diehl, Anna Mae

    2016-01-01

    Non-alcoholic fatty liver disease (NAFLD) is the number one cause of chronic liver disease in the Western world. Although only a minority of patients will ultimately develop end-stage liver disease, it is not yet possible to efficiently predict who will progress and, most importantly, effective treatments are still unavailable. Better understanding of the pathophysiology of this disease is necessary to improve the clinical management of NAFLD patients. Epidemiological data indicate that NAFLD prognosis is determined by an individual’s response to lipotoxic injury, rather than either the severity of exposure to lipotoxins, or the intensity of liver injury. The liver responds to injury with a synchronized wound-healing response. When this response is abnormal, it leads to pathological scarring, resulting in progressive fibrosis and cirrhosis, rather than repair. The hedgehog pathway is a crucial player in the wound-healing response. In this review, we summarize the pre-clinical and clinical evidence, which demonstrate the role of hedgehog pathway dysregulation in NAFLD pathogenesis, and the preliminary data that place the hedgehog pathway as a potential target for the treatment of this disease. PMID:27258259

  6. Molecular pathways mediating mechanical signaling in bone

    PubMed Central

    Rubin, Janet; Rubin, Clinton; Jacobs, Christopher Rae

    2013-01-01

    Bone tissue has the capacity to adapt to its functional environment such that its morphology is “optimized” for the mechanical demand. The adaptive nature of the skeleton poses an interesting set of biological questions (e.g., how does bone sense mechanical signals, what cells are the sensing system, what are the mechanical signals that drive the system, what receptors are responsible for transducing the mechanical signal, what are the molecular responses to the mechanical stimuli). Studies of the characteristics of the mechanical environment at the cellular level, the forces that bone cells recognize, and the integrated cellular responses are providing new information at an accelerating speed. This review first considers the mechanical factors that are generated by loading in the skeleton, including strain, stress and pressure. Mechanosensitive cells placed to recognize these forces in the skeleton, osteoblasts, osteoclasts, osteocytes and cells of the vasculature are reviewed. The identity of the mechanoreceptor(s) is approached, with consideration of ion channels, integrins, connexins, the lipid membrane including caveolar and noncaveolar lipid rafts and the possibility that altering cell shape at the membrane or cytoskeleton alters integral signaling protein associations. The distal intracellular signaling systems on-line after the mechanoreceptor is activated are reviewed, including those emanating from G-proteins (e.g., intracellular calcium shifts), MAPKs, and nitric oxide. The ability to harness mechanical signals to improve bone health through devices and exercise is broached. Increased appreciation of the importance of the mechanical environment in regulating and determining the structural efficacy of the skeleton makes this an exciting time for further exploration of this area. PMID:16361069

  7. Species-Specific Differential AhR Expression Protects Human Neural Progenitor Cells against Developmental Neurotoxicity of PAHs

    PubMed Central

    Gassmann, Kathrin; Abel, Josef; Bothe, Hanno; Haarmann-Stemmann, Thomas; Merk, Hans F.; Quasthoff, Kim N.; Rockel, Thomas Dino; Schreiber, Timm; Fritsche, Ellen

    2010-01-01

    Background Because of their lipophilicity, persistent organic pollutants (POPs) cross the human placenta, possibly affecting central nervous system development. Most POPs are known aryl hydrocarbon receptor (AhR) ligands and activators of AhR signaling. Therefore, AhR activation has been suggested to cause developmental neurotoxicity (DNT). Objective We studied the effects of AhR ligands on basic processes of brain development in two comparative in vitro systems to determine whether AhR-activation is the underlying mechanism for reported DNT of POPs in humans. Methods We employed neurosphere cultures based on human neural progenitor cells (hNPCs) and wild-type and AhR-deficient mouse NPCs (mNPCs) and studied the effects of different AhR agonists [3-methylcholanthrene (3-MC), benzo(a)pyrene [B(a)P], and 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD)] and an antagonist [3′-methoxy-4′-nitroflavone (MNF)] on neurosphere development. Moreover, we analyzed expression of AhR and genes involved in AhR signaling. Results In contrast to wild-type mNPCs, hNPCs and AhR-deficient mNPCs were insensitive to AhR agonism or antagonism. Although AhR modulation attenuated wild-type mNPC proliferation and migration, hNPCs and AhR-deficient mNPCs remained unaffected. Results also suggest that species-specific differences resulted from nonfunctional AhR signaling in hNPCs. Conclusion Our findings suggest that in contrast to wild-type mNPCs, hNPCs were protected against polycyclic aromatic hydrocarbon–induced DNT because of an absence of AhR. This difference may contribute to species-specific differences in sensitivity to POPs. PMID:20570779

  8. WNT/PCP signaling pathway and human cancer (review).

    PubMed

    Katoh, Masaru

    2005-12-01

    WNT/planar cell polarity (PCP) signaling pathway controls tissue polarity and cell movement through the activation of RHOA, c-Jun N-terminal kinase (JNK), and nemo-like kinase (NLK) signaling cascades. PCP is induced in Drosophila by the asymmetrical localization of Frizzled-Dishevelled-Diego-Starry night (Flamingo) complex and Van Gogh (Strabismus)-Prickle complex. Here, WNT/PCP signaling pathway implicated in human carcinogenesis is reviewed. Human WNT5A, WNT5B, and WNT11 are representative non-canonical WNTs transducing PCP signals through FZD3 or FZD6 receptors, and ROR1, ROR2 or PTK7 co-receptors. Human VANGL1, VANGL2 (Van Gogh homologs), CELSR1, CELSR2, CELSR3 (Starry night homologs), DVL1, DVL2, DVL3 (Dishevelled homologs), PRICKLE1, PRICKLE2 (Prickle homologs), and ANKRD6 (Diego homolog) are core PCP signaling molecules. MAGI3 assembles FZD, VANGL, PTEN, and adhesion molecules. Dishevelled-dependent WNT/PCP signals are transduced to the RHOA signaling cascade through Formin homology proteins DAAM1 and DAAM2, and to the JNK signaling cascade through MAPKKKs and MAPKK4/7. Dishevelled-independent WNT/ PCP signals are transduced to the NLK signaling cascade through MAP3K7 (TAK1). ANKRD6, NKD1 and NKD2 induce class switch from the WNT/GSK3beta signaling pathway to the WNT/PCP signaling pathway. WNT5A is up-regulated in various types of human cancer, such as gastric cancer, lung cancer, and melanoma. FZD3/FZD6 receptor and ROR2 co-receptor transduce WNT5A signal in gastric cancer. Aberrant activation of WNT/PCP signaling pathway in human cancer leads to more malignant phenotypes, such as abnormal tissue polarity, invasion, and metastasis. cDNA-PCR, microarray or ELISA reflecting aberrant activation of WNT/PCP signaling pathway could be developed as novel cancer prognostics. Single nucleotide polymorphism (SNP) and copy number polymorphism (CNP) of WNT/PCP signaling molecules mentioned above are suitable for use in screening of cancer predisposition, especially

  9. Piperazic acid derivatives inhibit Gli1 in Hedgehog signaling pathway.

    PubMed

    Khatra, Harleen; Kundu, Jayanta; Khan, Pragya Paramita; Duttagupta, Indranil; Pattanayak, Sankha; Sinha, Surajit

    2016-09-15

    Piperazic acid, a non-proteinogenic amino acid, found in complex secondary metabolites and peptide natural substances, has shown down regulation of Gli1 expression in Hedgehog signaling pathway in cell based assays. Further structure activity relationship study indicated that amide derivatives of piperazic acid are more potent than piperazic acid itself, with little to no toxicity. However, other cellular components involved in the pathway were not affected. To the best of our knowledge, this is the first report on the inhibitory property of piperazic acid in this pathway. Hence, this molecule could serve as a useful tool for studying Hedgehog signaling. PMID:27528433

  10. Sonic Hedgehog Signalling Pathway and Ameloblastoma - A Review.

    PubMed

    Mishra, Pallavi; Panda, Abikshyeet; Bandyopadhyay, Alokenath; Kumar, Harish; Mohiddin, Gouse

    2015-11-01

    Ameloblastoma is a benign but aggressive odontogenic neoplasm arising from odontogenic epithelium. Many theories have been proposed to explain the pathogenesis of ameloblatoma. Numerous signalling pathways have been implicated to be associated in the development and progression of this neoplasm. Studies have found association of various signalling molecules of Sonic Hedgehog Pathway, namely SHH, PTCH1, SMO, Gli 1, Gli 2, Gli 3, with ameloblastoma. Knowledge about this pathway will help us to understand the nature and behaviour of this neoplasm. This will open the door towards new treatment modalities. PMID:26674664

  11. Sonic Hedgehog Signalling Pathway and Ameloblastoma – A Review

    PubMed Central

    Mishra, Pallavi; Bandyopadhyay, Alokenath; Kumar, Harish; Mohiddin, Gouse

    2015-01-01

    Ameloblastoma is a benign but aggressive odontogenic neoplasm arising from odontogenic epithelium. Many theories have been proposed to explain the pathogenesis of ameloblatoma. Numerous signalling pathways have been implicated to be associated in the development and progression of this neoplasm. Studies have found association of various signalling molecules of Sonic Hedgehog Pathway, namely SHH, PTCH1, SMO, Gli 1, Gli 2, Gli 3, with ameloblastoma. Knowledge about this pathway will help us to understand the nature and behaviour of this neoplasm. This will open the door towards new treatment modalities. PMID:26674664

  12. Signal Transduction Pathways that Regulate CAB Gene Expression

    SciTech Connect

    Chory, Joanne

    2006-01-16

    The process of chloroplast differentiation, involves the coordinate regulation of many nuclear and chloroplast genes. The cues for the initiation of this developmental program are both extrinsic (e.g., light) and intrinsic (cell-type and plastid signals). During this project period, we utilized a molecular genetic approach to select for Arabidopsis mutants that did not respond properly to environmental light conditions, as well as mutants that were unable to perceive plastid damage. These latter mutants, called gun mutants, define two retrograde signaling pathways that regulate nuclear gene expression in response to chloroplasts. A major finding was to identify a signal from chloroplasts that regulates nuclear gene transcription. This signal is the build-up of Mg-Protoporphyrin IX, a key intermediate of the chlorophyll biosynthetic pathway. The signaling pathways downstream of this signal are currently being studied. Completion of this project has provided an increased understanding of the input signals and retrograde signaling pathways that control nuclear gene expression in response to the functional state of chloroplasts. These studies should ultimately influence our abilities to manipulate plant growth and development, and will aid in the understanding of the developmental control of photosynthesis.

  13. Signal Transduction Pathways that Regulate CAB Gene Expression

    SciTech Connect

    Chory, Joanne

    2004-12-31

    The process of chloroplast differentiation, involves the coordinate regulation of many nuclear and chloroplast genes. The cues for the initiation of this developmental program are both extrinsic (e.g., light) and intrinsic (cell-type and plastid signals). During this project period, we utilized a molecular genetic approach to select for Arabidopsis mutants that did not respond properly to environmental light conditions, as well as mutants that were unable to perceive plastid damage. These latter mutants, called gun mutants, define two retrograde signaling pathways that regulate nuclear gene expression in response to chloroplasts. A major finding was to identify a signal from chloroplasts that regulates nuclear gene transcription. This signal is the build-up of Mg-Protoporphyrin IX, a key intermediate of the chlorophyll biosynthetic pathway. The signaling pathways downstream of this signal are currently being studied. Completion of this project has provided an increased understanding of the input signals and retrograde signaling pathways that control nuclear gene expression in response to the functional state of chloroplasts. These studies should ultimately influence our abilities to manipulate plant growth and development, and will aid in the understanding of the developmental control of photosynthesis.

  14. Oscillatory Dynamics of the Extracellular Signal-regulated Kinase Pathway

    SciTech Connect

    Shankaran, Harish; Wiley, H. S.

    2010-12-01

    The extracellular signal-regulated kinase (ERK) pathway is a central signaling pathway in development and disease and is regulated by multiple negative and positive feedback loops. Recent studies have shown negative feedback from ERK to upstream regulators can give rise to biochemical oscillations with a periodicity of between 15-30 minutes. Feedback due to the stimulated transcription of negative regulators of the ERK pathway can also give rise to transcriptional oscillations with a periodicity of 1-2h. The biological significance of these oscillations is not clear, but recent evidence suggests that transcriptional oscillations participate in developmental processes, such as somite formation. Biochemical oscillations are more enigmatic, but could provide a mechanism for encoding different types of inputs into a common signaling pathway.

  15. Frontier of Epilepsy Research - mTOR signaling pathway

    PubMed Central

    2011-01-01

    Studies of epilepsy have mainly focused on the membrane proteins that control neuronal excitability. Recently, attention has been shifting to intracellular proteins and their interactions, signaling cascades and feedback regulation as they relate to epilepsy. The mTOR (mammalian target of rapamycin) signal transduction pathway, especially, has been suggested to play an important role in this regard. These pathways are involved in major physiological processes as well as in numerous pathological conditions. Here, involvement of the mTOR pathway in epilepsy will be reviewed by presenting; an overview of the pathway, a brief description of key signaling molecules, a summary of independent reports and possible implications of abnormalities of those molecules in epilepsy, a discussion of the lack of experimental data, and questions raised for the understanding its epileptogenic mechanism. PMID:21467839

  16. Targeting Signaling Pathways in Epithelial Ovarian Cancer

    PubMed Central

    Smolle, Elisabeth; Taucher, Valentin; Pichler, Martin; Petru, Edgar; Lax, Sigurd; Haybaeck, Johannes

    2013-01-01

    Ovarian carcinoma (OC) is the most lethal gynecological malignancy. Response to platinum-based chemotherapy is poor in some patients and, thus, current research is focusing on new therapy options. The various histological types of OC are characterized by distinctive molecular genetic alterations that are relevant for ovarian tumorigenesis. The understanding of these molecular pathways is essential for the development of novel therapeutic strategies. Purpose We want to give an overview on the molecular genetic changes of the histopathological types of OC and their role as putative therapeutic targets. In Depth Review of Existing Data In 2012, the vascular endothelial growth factor (VEGF) inhibitor, bevacizumab, was approved for OC treatment. Bevacizumab has shown promising results as single agent and in combination with conventional chemotherapy, but its target is not distinctive when analyzed before treatment. At present, mammalian target of rapamycin (mTOR) inhibitors, poly-ADP-ribose polymerase (PARP) inhibitors and components of the EGFR pathway are in the focus of clinical research. Interestingly, some phytochemical substances show good synergistic effects when used in combination with chemotherapy. Conclusion Ongoing studies of targeted agents in conjunction with chemotherapy will show whether there are alternative options to bevacizumab available for OC patients. Novel targets which can be assessed before therapy to predict efficacy are needed. The assessment of therapeutic targets is continuously improved by molecular pathological analyses on tumor tissue. A careful selection of patients for personalized treatment will help to reduce putative side effects and toxicity. PMID:23644885

  17. TSLP signaling pathway map: a platform for analysis of TSLP-mediated signaling.

    PubMed

    Zhong, Jun; Sharma, Jyoti; Raju, Rajesh; Palapetta, Shyam Mohan; Prasad, T S Keshava; Huang, Tai-Chung; Yoda, Akinori; Tyner, Jeffrey W; van Bodegom, Diederik; Weinstock, David M; Ziegler, Steven F; Pandey, Akhilesh

    2014-01-01

    Thymic stromal lymphopoietin (TSLP) is a four-helix bundle cytokine that plays a critical role in the regulation of immune responses and in the differentiation of hematopoietic cells. TSLP signals through a heterodimeric receptor complex consisting of an interleukin-7 receptor α chain and a unique TSLP receptor (TSLPR) [also known as cytokine receptor-like factor 2 (CRLF2)]. Cellular targets of TSLP include dendritic cells, B cells, mast cells, regulatory T (Treg) cells and CD4+ and CD8+ T cells. The TSLP/TSLPR axis can activate multiple signaling transduction pathways including the JAK/STAT pathway and the PI-3 kinase pathway. Aberrant TSLP/TSLPR signaling has been associated with a variety of human diseases including asthma, atopic dermatitis, nasal polyposis, inflammatory bowel disease, eosinophilic eosophagitis and, most recently, acute lymphoblastic leukemia. A centralized resource of the TSLP signaling pathway cataloging signaling events is not yet available. In this study, we present a literature-annotated resource of reactions in the TSLP signaling pathway. This pathway map is publicly available through NetPath (http://www.netpath.org/), an open access signal transduction pathway resource developed previously by our group. This map includes 236 molecules and 252 reactions that are involved in TSLP/TSLPR signaling pathway. We expect that the TSLP signaling pathway map will provide a rich resource to study the biology of this important cytokine as well as to identify novel therapeutic targets for diseases associated with dysregulated TSLP/TSLPR signaling. Database URL: http://www.netpath.org/pathways?path_id=NetPath_24. PMID:24573880

  18. TSLP signaling pathway map: a platform for analysis of TSLP-mediated signaling

    PubMed Central

    Zhong, Jun; Sharma, Jyoti; Raju, Rajesh; Palapetta, Shyam Mohan; Prasad, T. S. Keshava; Huang, Tai-Chung; Yoda, Akinori; Tyner, Jeffrey W.; van Bodegom, Diederik; Weinstock, David M.; Ziegler, Steven F.; Pandey, Akhilesh

    2014-01-01

    Thymic stromal lymphopoietin (TSLP) is a four-helix bundle cytokine that plays a critical role in the regulation of immune responses and in the differentiation of hematopoietic cells. TSLP signals through a heterodimeric receptor complex consisting of an interleukin-7 receptor α chain and a unique TSLP receptor (TSLPR) [also known as cytokine receptor-like factor 2 (CRLF2)]. Cellular targets of TSLP include dendritic cells, B cells, mast cells, regulatory T (Treg) cells and CD4+ and CD8+ T cells. The TSLP/TSLPR axis can activate multiple signaling transduction pathways including the JAK/STAT pathway and the PI-3 kinase pathway. Aberrant TSLP/TSLPR signaling has been associated with a variety of human diseases including asthma, atopic dermatitis, nasal polyposis, inflammatory bowel disease, eosinophilic eosophagitis and, most recently, acute lymphoblastic leukemia. A centralized resource of the TSLP signaling pathway cataloging signaling events is not yet available. In this study, we present a literature-annotated resource of reactions in the TSLP signaling pathway. This pathway map is publicly available through NetPath (http://www.netpath.org/), an open access signal transduction pathway resource developed previously by our group. This map includes 236 molecules and 252 reactions that are involved in TSLP/TSLPR signaling pathway. We expect that the TSLP signaling pathway map will provide a rich resource to study the biology of this important cytokine as well as to identify novel therapeutic targets for diseases associated with dysregulated TSLP/TSLPR signaling. Database URL: http://www.netpath.org/pathways?path_id=NetPath_24 PMID:24573880

  19. Fanconi Anemia: A Signal Transduction and DNA Repair Pathway

    PubMed Central

    Kupfer, Gary M.

    2013-01-01

    Fanconi anemia (FA) is a fascinating, rare genetic disorder marked by congenital defects, bone marrow failure, and cancer susceptibility. Research in recent years has led to the elucidation of FA as a DNA repair disorder and involved multiple pathways as well as having wide applicability to common cancers, including breast, ovarian, and head and neck. This review will describe the clinical aspects of FA as well as the current state of its molecular pathophysiology. In particular, work from the Kupfer laboratory will be described that demonstrates how the FA pathway interacts with multiple DNA repair pathways, including the mismatch repair system and signal transduction pathway of the DNA damage response. PMID:24348213

  20. Predicting resistance by selection of signaling pathways

    PubMed Central

    Rosell, Rafael; Molina, Miguel Angel; Viteri, Santiago

    2014-01-01

    Epidermal growth factor receptor (EGFR) mutations occur in 17% of non-small-cell lung cancer (NSCLC) patients with notable response to single agent therapy but with low complete remission rate and, eventually, disease progression. Priming BIM, a pro-apoptotic signaling BH3-only protein, induces sensitivity to erlotinib in EGFR-mutant cell lines. Synthetic lethal approaches and preemptive therapies based on the initial expression of BIM may significantly improve the treatment outcome. EGFR mutations result in transient pro-death imbalance of survival and apoptotic signaling in response to EGFR inhibition. SHP2 is essential to the balance between ERK and the phosphoinositide-3-kinase (PI3K)/AKT and signal transducer activator of transcription (STAT) activity, while mTOR can be an additional marker for patients with high BIM expression. Furthermore, stromal hepatocyte growth factor (HGF) confers EGFR tyrosine kinase inhibitor (TKI) resistance and induces interreceptor crosstalk with integrin-b4, Eph2, CUB domain-containing protein-1 (CDCP1), AXL and JAK1. Only by understanding better, and in more depth, complex cancer molecular biology will we have the information that will help us to design strategies to augment efficacy of EGFR TKIs and offer our patients the best, most correct therapeutic option. PMID:25806289

  1. Dissecting Abscisic Acid Signaling Pathways Involved in Cuticle Formation.

    PubMed

    Cui, Fuqiang; Brosché, Mikael; Lehtonen, Mikko T; Amiryousefi, Ali; Xu, Enjun; Punkkinen, Matleena; Valkonen, Jari P T; Fujii, Hiroaki; Overmyer, Kirk

    2016-06-01

    The cuticle is the outer physical barrier of aerial plant surfaces and an important interaction point between plants and the environment. Many environmental stresses affect cuticle formation, yet the regulatory pathways involved remain undefined. We used a genetics and gene expression analysis in Arabidopsis thaliana to define an abscisic acid (ABA) signaling loop that positively regulates cuticle formation via the core ABA signaling pathway, including the PYR/PYL receptors, PP2C phosphatase, and SNF1-Related Protein Kinase (SnRK) 2.2/SnRK2.3/SnRK2.6. Downstream of the SnRK2 kinases, cuticle formation was not regulated by the ABA-responsive element-binding transcription factors but rather by DEWAX, MYB16, MYB94, and MYB96. Additionally, low air humidity increased cuticle formation independent of the core ABA pathway and cell death/reactive oxygen species signaling attenuated expression of cuticle-biosynthesis genes. In Physcomitrella patens, exogenous ABA suppressed expression of cuticle-related genes, whose Arabidopsis orthologs were ABA-induced. Hence, the mechanisms regulating cuticle formation are conserved but sophisticated in land plants. Signaling specifically related to cuticle deficiency was identified to play a major role in the adaptation of ABA signaling pathway mutants to increased humidity and in modulating their immunity to Botrytis cinerea in Arabidopsis. These results define a cuticle-specific downstream branch in the ABA signaling pathway that regulates responses to the external environment. PMID:27060495

  2. SOCS Regulation of the JAK/STAT Signalling Pathway

    PubMed Central

    Croker, Ben A.; Kiu, Hiu; Nicholson, Sandra E.

    2008-01-01

    The Suppressor Of Cytokine Signalling (SOCS) proteins were, as their name suggests, first described as inhibitors of cytokine signalling. While their actions clearly now extend to other intracellular pathways, they remain key negative regulators of cytokine and growth factor signalling. In this review we focus on the mechanics of SOCS action and the complexities of the mouse models that have underpinned our current understanding of SOCS biology. PMID:18708154

  3. ERβ induces the differentiation of cultured osteoblasts by both Wnt/β-catenin signaling pathway and estrogen signaling pathways

    SciTech Connect

    Yin, Xinhua; Wang, Xiaoyuan; Hu, Xiongke; Chen, Yong; Zeng, Kefeng; Zhang, Hongqi

    2015-07-01

    Although 17β-estradial (E2) is known to stimulate bone formation, the underlying mechanisms are not fully understood. Recent studies have implicated the Wnt/β-catenin pathway as a major signaling cascade in bone biology. The interactions between Wnt/β-catenin signaling pathway and estrogen signaling pathways have been reported in many tissues. In this study, E2 significantly increased the expression of β-catenin by inducing phosphorylations of GSK3β at serine 9. ERβ siRNAs were transfected into MC3T3-E1 cells and revealed that ERβ involved E2-induced osteoblasts proliferation and differentiation via Wnt/β-catenin signaling. The osteoblast differentiation genes (BGP, ALP and OPN) and proliferation related gene (cyclin D1) expression were significantly induced by E2-mediated ERβ. Furthermore immunofluorescence and immunoprecipitation analysis demonstrated that E2 induced the accumulation of β-catenin protein in the nucleus which leads to interaction with T-cell-specific transcription factor/lymphoid enhancer binding factor (TCF/LEF) transcription factors. Taken together, these findings suggest that E2 promotes osteoblastic proliferation and differentiation by inducing proliferation-related and differentiation-related gene expression via ERβ/GSK-3β-dependent Wnt/β-catenin signaling pathway. Our findings provide novel insights into the mechanisms of action of E2 in osteoblastogenesis. - Highlights: • 17β-estradial (E2) promotes GSK3-β phosphorylation. • E2 activates the Wnt/β-catenin signaling pathway. • The Wnt/β-catenin signaling pathway interacts with estrogen signaling pathways. • E2-mediated ER induced osteoblast differentiation and proliferation related genes expression.

  4. AHR-11797: a novel benzodiazepine antagonist

    SciTech Connect

    Johnson, D.N.; Kilpatrick, B.F.; Hannaman, P.K.

    1986-03-01

    AHR-11797(5,6-dihydro-6-methyl-1-phenyl-/sup 3/H-pyrrolo(3,2,1-ij)quinazolin-3-one) displaced /sup 3/H-flunitrazepam (IC/sub 50/ = 82 nM) and /sup 3/H-Ro 15-1877 (IC/sub 50/ = 104 nM) from rat brain synaptosomes. AHR-11797 did not protect mice from seizures induced by maximal electroshock or subcutaneous Metrazol (scMET), nor did it induce seizures in doses up to the lethal dose. However, at 31.6 mg/kg, IP, it significantly increased the anticonvulsant ED/sub 50/ of chlordiazepoxide (CDPX) from 1.9 to 31.6 mg/kg, IP. With 56.7 mg/kg, IP, of AHR-11797, CDPX was inactive in doses up to 100 mg/kg, IP. AHR-11797 did not significantly increase punished responding in the Geller and Seifter conflict procedure, but it did attenuate the effects of diazepam. Although the compound is without anticonvulsant or anxiolytic activity, it did have muscle relaxant properties. AHR-11797 blocked morphine-induced Straub tail in mice (ED/sub 50/ = 31 mg/kg, IP) and it selectively suppressed the polysnaptic linguomandibular reflex in barbiturate-anesthetized cats. The apparent muscle relaxant activity of AHR-11797 suggests that different receptor sites are involved for muscle relaxant vs. anxiolytic/anticonvulsant activities of the benzodiazepines.

  5. Hypoxia signaling pathways in cancer metabolism: the importance of co-selecting interconnected physiological pathways

    PubMed Central

    2014-01-01

    Both tumor hypoxia and dysregulated metabolism are classical features of cancer. Recent analyses have revealed complex interconnections between oncogenic activation, hypoxia signaling systems and metabolic pathways that are dysregulated in cancer. These studies have demonstrated that rather than responding simply to error signals arising from energy depletion or tumor hypoxia, metabolic and hypoxia signaling pathways are also directly connected to oncogenic signaling mechanisms at many points. This review will summarize current understanding of the role of hypoxia inducible factor (HIF) in these networks. It will also discuss the role of these interconnected pathways in generating the cancer phenotype; in particular, the implications of switching massive pathways that are physiologically 'hard-wired’ to oncogenic mechanisms driving cancer. PMID:24491179

  6. Interaction of TGFβ and BMP Signaling Pathways during Chondrogenesis

    PubMed Central

    Keller, Bettina; Yang, Tao; Chen, Yuqing; Munivez, Elda; Bertin, Terry; Zabel, Bernhard; Lee, Brendan

    2011-01-01

    TGFβ and BMP signaling pathways exhibit antagonistic activities during the development of many tissues. Although the crosstalk between BMP and TGFβ signaling pathways is well established in bone development, the relationship between these two pathways is less well defined during cartilage development and postnatal homeostasis. We generated hypomorphic mouse models of cartilage-specific loss of BMP and TGFβ signaling to assess the interaction of these pathways in postnatal growth plate homeostasis. We further used the chondrogenic ATDC5 cell line to test effects of BMP and TGFβ signaling on each other's downstream targets. We found that conditional deletion of Smad1 in chondrocytes resulted in a shortening of the growth plate. The addition of Smad5 haploinsufficiency led to a more severe phenotype with shorter prehypertrophic and hypertrophic zones and decreased chondrocyte proliferation. The opposite growth plate phenotype was observed in a transgenic mouse model of decreased chondrocytic TGFβ signaling that was generated by expressing a dominant negative form of the TGFβ receptor I (ΔTβRI) in cartilage. Histological analysis demonstrated elongated growth plates with enhanced Ihh expression, as well as an increased proliferation rate with altered production of extracellular matrix components. In contrast, in chondrogenic ATDC5 cells, TGFβ was able to enhance BMP signaling, while BMP2 significantly reduces levels of TGF signaling. In summary, our data demonstrate that during endochondral ossification, BMP and TGFβ signaling can have antagonistic effects on chondrocyte proliferation and differentiation in vivo. We also found evidence of direct interaction between the two signaling pathways in a cell model of chondrogenesis in vitro. PMID:21297990

  7. Engineering key components in a synthetic eukaryotic signal transduction pathway

    PubMed Central

    Antunes, Mauricio S; Morey, Kevin J; Tewari-Singh, Neera; Bowen, Tessa A; Smith, J Jeff; Webb, Colleen T; Hellinga, Homme W; Medford, June I

    2009-01-01

    Signal transduction underlies how living organisms detect and respond to stimuli. A goal of synthetic biology is to rewire natural signal transduction systems. Bacteria, yeast, and plants sense environmental aspects through conserved histidine kinase (HK) signal transduction systems. HK protein components are typically comprised of multiple, relatively modular, and conserved domains. Phosphate transfer between these components may exhibit considerable cross talk between the otherwise apparently linear pathways, thereby establishing networks that integrate multiple signals. We show that sequence conservation and cross talk can extend across kingdoms and can be exploited to produce a synthetic plant signal transduction system. In response to HK cross talk, heterologously expressed bacterial response regulators, PhoB and OmpR, translocate to the nucleus on HK activation. Using this discovery, combined with modification of PhoB (PhoB-VP64), we produced a key component of a eukaryotic synthetic signal transduction pathway. In response to exogenous cytokinin, PhoB-VP64 translocates to the nucleus, binds a synthetic PlantPho promoter, and activates gene expression. These results show that conserved-signaling components can be used across kingdoms and adapted to produce synthetic eukaryotic signal transduction pathways. PMID:19455134

  8. A multi-pathway hypothesis for human visual fear signaling

    PubMed Central

    Silverstein, David N.; Ingvar, Martin

    2015-01-01

    A hypothesis is proposed for five visual fear signaling pathways in humans, based on an analysis of anatomical connectivity from primate studies and human functional connectvity and tractography from brain imaging studies. Earlier work has identified possible subcortical and cortical fear pathways known as the “low road” and “high road,” which arrive at the amygdala independently. In addition to a subcortical pathway, we propose four cortical signaling pathways in humans along the visual ventral stream. All four of these traverse through the LGN to the visual cortex (VC) and branching off at the inferior temporal area, with one projection directly to the amygdala; another traversing the orbitofrontal cortex; and two others passing through the parietal and then prefrontal cortex, one excitatory pathway via the ventral-medial area and one regulatory pathway via the ventral-lateral area. These pathways have progressively longer propagation latencies and may have progressively evolved with brain development to take advantage of higher-level processing. Using the anatomical path lengths and latency estimates for each of these five pathways, predictions are made for the relative processing times at selective ROIs and arrival at the amygdala, based on the presentation of a fear-relevant visual stimulus. Partial verification of the temporal dynamics of this hypothesis might be accomplished using experimental MEG analysis. Possible experimental protocols are suggested. PMID:26379513

  9. In vitro and in silico evaluation of transactivation potencies of avian AHR1 and AHR2 by endogenous ligands: Implications for the physiological role of avian AHR2.

    PubMed

    Kim, In-Sung; Hwang, Ji-Hee; Hirano, Masashi; Iwata, Hisato; Kim, Eun-Young

    2016-09-01

    Aryl hydrocarbon receptor (AHR) is well conserved from invertebrates to vertebrates, and it mediates the toxic effects of exogenous ligands, including dioxins. Recent studies reported that AHRs activated by endogenous ligands play critical roles in mammalian physiological homeostasis. Avian species possess at least two AHR isoforms (AHR1 and AHR2), which exhibit species- and isoform-specific transactivation potencies to exogenous ligands, whereas mammals possess a single AHR. To delineate the profiles and roles of endogenous ligands for avian AHR isoforms, we investigated in vitro transactivation potencies of avian AHRs (AHR1 and AHR2 from the jungle crow, Corvus macrorhynchos; common cormorant, Phalacrocorax carbo; and black-footed albatross, Phoebastria nigripes) treated with the endogenous tryptophan metabolites 6-formylindolo [3,2-b] carbazole (FICZ), l-kynurenine (l-Kyn), kynurenic acid (KYNA), and indoxyl sulfate (IS). Furthermore, we analyzed the binding mode of these ligands to each avian AHR isoform by in silico docking simulations. The EC50 of FICZ (0.009-0.032nM) was similar regardless of the species or isoform of AHR. The estimated in silico binding mode of FICZ to AHRs was well conserved in both isoforms. The transactivation potencies of avian AHRs to other tryptophan metabolites were 10(5)-10(7) fold lower than those for FICZ, and EC50 values varied in a species- and isoform-specific manner. This was consistent with poor conservation of the binding mode of l-Kyn, KYNA, and IS predicted in in silico docking simulations. Our results suggest that in avian species, FICZ is the most potent endogenous AHR ligand, and that AHR1 and AHR2 are physiologically functional. PMID:27060260

  10. Modeling of cell signaling pathways in macrophages by semantic networks

    PubMed Central

    Hsing, Michael; Bellenson, Joel L; Shankey, Conor; Cherkasov, Artem

    2004-01-01

    Background Substantial amounts of data on cell signaling, metabolic, gene regulatory and other biological pathways have been accumulated in literature and electronic databases. Conventionally, this information is stored in the form of pathway diagrams and can be characterized as highly "compartmental" (i.e. individual pathways are not connected into more general networks). Current approaches for representing pathways are limited in their capacity to model molecular interactions in their spatial and temporal context. Moreover, the critical knowledge of cause-effect relationships among signaling events is not reflected by most conventional approaches for manipulating pathways. Results We have applied a semantic network (SN) approach to develop and implement a model for cell signaling pathways. The semantic model has mapped biological concepts to a set of semantic agents and relationships, and characterized cell signaling events and their participants in the hierarchical and spatial context. In particular, the available information on the behaviors and interactions of the PI3K enzyme family has been integrated into the SN environment and a cell signaling network in human macrophages has been constructed. A SN-application has been developed to manipulate the locations and the states of molecules and to observe their actions under different biological scenarios. The approach allowed qualitative simulation of cell signaling events involving PI3Ks and identified pathways of molecular interactions that led to known cellular responses as well as other potential responses during bacterial invasions in macrophages. Conclusions We concluded from our results that the semantic network is an effective method to model cell signaling pathways. The semantic model allows proper representation and integration of information on biological structures and their interactions at different levels. The reconstruction of the cell signaling network in the macrophage allowed detailed

  11. Cancer stem cells and signaling pathways in radioresistance

    PubMed Central

    Chang, Lei; Graham, Peter; Hao, Jingli; Ni, Jie; Deng, Junli; Bucci, Joseph; Malouf, David; Gillatt, David; Li, Yong

    2016-01-01

    Radiation therapy (RT) is one of the most important strategies in cancer treatment. Radioresistance (the failure to RT) results in locoregional recurrence and metastasis. Therefore, it is critically important to investigate the mechanisms leading to cancer radioresistance to overcome this problem and increase patients' survival. Currently, the majority of the radioresistance-associated researches have focused on preclinical studies. Although the exact mechanisms of cancer radioresistance have not been fully uncovered, accumulating evidence supports that cancer stem cells (CSCs) and different signaling pathways play important roles in regulating radiation response and radioresistance. Therefore, targeting CSCs or signaling pathway proteins may hold promise for developing novel combination modalities and overcoming radioresistance. The present review focuses on the key evidence of CSC markers and several important signaling pathways in cancer radioresistance and explores innovative approaches for future radiation treatment. PMID:26716904

  12. Notch-regulated miR-223 targets the aryl hydrocarbon receptor pathway and increases cytokine production in macrophages from rheumatoid arthritis patients

    PubMed Central

    Ogando, Jesús; Tardáguila, Manuel; Díaz-Alderete, Andrea; Usategui, Alicia; Miranda-Ramos, Vanessa; Martínez-Herrera, Dannys Jorge; de la Fuente, Lorena; García-León, María J.; Moreno, María C.; Escudero, Sara; Cañete, Juan D.; Toribio, María L.; Cases, Ildefonso; Pascual-Montano, Alberto; Pablos, José Luis; Mañes, Santos

    2016-01-01

    Evidence links aryl hydrocarbon receptor (AHR) activation to rheumatoid arthritis (RA) pathogenesis, although results are inconsistent. AHR agonists inhibit pro-inflammatory cytokine expression in macrophages, pivotal cells in RA aetiopathogenesis, which hints at specific circuits that regulate the AHR pathway in RA macrophages. We compared microRNA (miR) expression in CD14+ cells from patients with active RA or with osteoarthritis (OA). Seven miR were downregulated and one (miR-223) upregulated in RA compared to OA cells. miR-223 upregulation correlated with reduced Notch3 and Notch effector expression in RA patients. Overexpression of the Notch-induced repressor HEY-1 and co-culture of healthy donor monocytes with Notch ligand-expressing cells showed direct Notch-mediated downregulation of miR-223. Bioinformatics predicted the AHR regulator ARNT (AHR nuclear translocator) as a miR-223 target. Pre-miR-223 overexpression silenced ARNT 3’UTR-driven reporter expression, reduced ARNT (but not AHR) protein levels and prevented AHR/ARNT-mediated inhibition of pro-inflammatory cytokine expression. miR-223 counteracted AHR/ARNT-induced Notch3 upregulation in monocytes. Levels of ARNT and of CYP1B1, an AHR/ARNT signalling effector, were reduced in RA compared to OA synovial tissue, which correlated with miR-223 levels. Our results associate Notch signalling to miR-223 downregulation in RA macrophages, and identify miR-223 as a negative regulator of the AHR/ARNT pathway through ARNT targeting. PMID:26838552

  13. AHR2 mediates cardiac teratogenesis of polycyclic aromatic hydrocarbons and PCB-126 in Atlantic killifish (Fundulus heteroclitus)

    PubMed Central

    Clark, Bryan W.; Matson, Cole W.; Jung, Dawoon; Di Giulio, Richard T.

    2010-01-01

    Exposure of developing fish to polycyclic aromatic hydrocarbons (PAHs) and halogenated aromatic hydrocarbons (HAHs) results in a suite of defects including cardiac malformation, pericardial and yolk sac edema, craniofacial defects, and hemorrhaging. Several populations of Atlantic killifish or mummichog (Fundulus heteroclitus) on the Atlantic coast of the United States are resistant to the developmental and acute toxicity caused by PAHs and HAHs; this has made Fundulus a valuable model for studying aryl hydrocarbon sensitivity and adaptation. In order to further increase the utility of Fundulus, better understanding of the components of the molecular pathways governing aryl hydrocarbon response in Fundulus is required. The aryl hydrocarbon receptor (AHR) is known to mediate many of the toxic responses to PAHs and HAHs. A single AHR has been identified in mammals, but Fundulus has two AHRs and their relative roles are not clear. In the current study, translation-blocking and splice-junction morpholino gene knockdown was used to determine the roles of AHR1 and AHR2 in mediating cardiac teratogenesis induced by β-naphthoflavone (BNF), benzo[k]fluoranthene (BkF), and 3, 3′, 4, 4′, 5-pentachlorobiphenyl (PCB-126). Here we report that AHR2 and not AHR1 knockdown resulted in rescue of teratogenicity induced by BNF, BkF, and PCB-126. These data demonstrate that AHR2 is the primary mediator of cardiac teratogenesis caused by multiple aryl hydrocarbons in Fundulus and suggest that suppression of the AHR pathway through modulation of AHR2 is a plausible mechanism for PAH resistance in adapted fish. Additionally, this is the first reported use of splice-junction morpholinos in Fundulus. PMID:20605646

  14. Dissecting Major Signaling Pathways throughout the Development of Prostate Cancer

    PubMed Central

    da Silva, Henrique B.; Amaral, Eduardo P.; Nolasco, Eduardo L.; de Victo, Nathalia C.; Atique, Rodrigo; Jank, Carina C.; Anschau, Valesca; Zerbini, Luiz F.; Correa, Ricardo G.

    2013-01-01

    Prostate cancer (PCa) is one of the most common malignancies found in males. The development of PCa involves several mutations in prostate epithelial cells, usually linked to developmental changes, such as enhanced resistance to apoptotic death, constitutive proliferation, and, in some cases, to differentiation into an androgen deprivation-resistant phenotype, leading to the appearance of castration-resistant PCa (CRPCa), which leads to a poor prognosis in patients. In this review, we summarize recent findings concerning the main deregulations into signaling pathways that will lead to the development of PCa and/or CRPCa. Key mutations in some pathway molecules are often linked to a higher prevalence of PCa, by directly affecting the respective cascade and, in some cases, by deregulating a cross-talk node or junction along the pathways. We also discuss the possible environmental and nonenvironmental inducers for these mutations, as well as the potential therapeutic strategies targeting these signaling pathways. A better understanding of how some risk factors induce deregulation of these signaling pathways, as well as how these deregulated pathways affect the development of PCa and CRPCa, will further help in the development of new treatments and prevention strategies for this disease. PMID:23738079

  15. The Hippo Signaling Pathway in Development and Cancer

    PubMed Central

    Pan, Duojia

    2011-01-01

    First discovered in Drosophila, the Hippo signaling pathway is a conserved regulator of organ size. Central to this pathway is a kinase cascade leading from the tumor suppressor Hippo (Mst1 and Mst2 in mammals) to the oncoprotein Yki (YAP and TAZ in mammals), a transcriptional coactivator of target genes involved in cell proliferation and survival. Here, I review recent progress in elucidating the molecular mechanism and physiological function of Hippo signaling in Drosophila and mammals. These studies suggest that the core Hippo kinase cascade integrates multiple upstream inputs, enabling dynamic regulation of tissue homeostasis in animal development and physiology. PMID:20951342

  16. POSTRANSLATIONAL MODIFICATIONS OF P53: UPSTREAM SIGNALING PATHWAYS.

    SciTech Connect

    ANDERSON,C.W.APPELLA,E.

    2003-10-23

    The p53 tumor suppressor is a tetrameric transcription factor that is posttranslational modified at >20 different sites by phosphorylation, acetylation, or sumoylation in response to various cellular stress conditions. Specific posttranslational modifications, or groups of modifications, that result from the activation of different stress-induced signaling pathways are thought to modulate p53 activity to regulate cell fate by inducing cell cycle arrest, apoptosis, or cellular senescence. Here we review recent progress in characterizing the upstream signaling pathways whose activation in response to various genotoxic and non-genotoxic stresses result in p53 posttranslational modifications.

  17. The Notch signaling pathway as a mediator of tumor survival

    PubMed Central

    Pine, Sharon R.

    2013-01-01

    The Notch signaling pathway is evolutionarily conserved and responsible for cell fate determination in the developing embryo and mature tissue. At the molecular level, ligand binding activates Notch signaling by liberating the Notch intracellular domain, which then translocates into the nucleus and activates gene transcription. Despite the elegant simplicity of this pathway, which lacks secondary messengers or a signaling cascade, Notch regulates gene expression in a highly context- and cell-type-dependent manner. Notch signaling is frequently dysregulated, most commonly by overactivation, across many cancers and confers a survival advantage on tumors, leading to poorer outcomes for patients. Recent studies demonstrate how Notch signaling increases tumor cell proliferation and provide evidence that active Notch signaling maintains the cancer stem-cell pool, induces epithelial–mesenchymal transition and promotes chemoresistance. These studies imply that pharmacological inhibition of Notch signaling may refine control of cancer therapy and improve patient survival. Gamma secretase inhibitors (GSIs) are drugs that inhibit Notch signaling and may be successful in controlling cancer cell growth in conjunction with standard chemotherapy, but substantial side effects have hampered their widespread use. Recent efforts have been aimed at the development of antibodies against specific Notch receptors and ligands with the hope of limiting side effects while providing the same therapeutic benefit as GSIs. Together, studies characterizing Notch signaling and modulation have offered hope that refined methods targeting Notch may become powerful tools in anticancer therapeutics. PMID:23585460

  18. Uniform curation protocol of metazoan signaling pathways to predict novel signaling components.

    PubMed

    Pálfy, Máté; Farkas, Illés J; Vellai, Tibor; Korcsmáros, Tamás

    2013-01-01

    A relatively large number of signaling databases available today have strongly contributed to our understanding of signaling pathway properties. However, pathway comparisons both within and across databases are currently severely hampered by the large variety of data sources and the different levels of detail of their information content (on proteins and interactions). In this chapter, we present a protocol for a uniform curation method of signaling pathways, which intends to overcome this insufficiency. This uniformly curated database called SignaLink ( http://signalink.org ) allows us to systematically transfer pathway annotations between different species, based on orthology, and thereby to predict novel signaling pathway components. Thus, this method enables the compilation of a comprehensive signaling map of a given species and identification of new potential drug targets in humans. We strongly believe that the strict curation protocol we have established to compile a signaling pathway database can also be applied for the compilation of other (e.g., metabolic) databases. Similarly, the detailed guide to the orthology-based prediction of novel signaling components across species may also be utilized for predicting components of other biological processes. PMID:23715991

  19. A network map of Interleukin-10 signaling pathway.

    PubMed

    Verma, Renu; Balakrishnan, Lavanya; Sharma, Kusum; Khan, Aafaque Ahmad; Advani, Jayshree; Gowda, Harsha; Tripathy, Srikanth Prasad; Suar, Mrutyunjay; Pandey, Akhilesh; Gandotra, Sheetal; Prasad, T S Keshava; Shankar, Subramanian

    2016-03-01

    Interleukin-10 (IL-10) is an anti-inflammatory cytokine with important immunoregulatory functions. It is primarily secreted by antigen-presenting cells such as activated T-cells, monocytes, B-cells and macrophages. In biologically functional form, it exists as a homodimer that binds to tetrameric heterodimer IL-10 receptor and induces downstream signaling. IL-10 is associated with survival, proliferation and anti-apoptotic activities of various cancers such as Burkitt lymphoma, non-Hodgkins lymphoma and non-small scell lung cancer. In addition, it plays a central role in survival and persistence of intracellular pathogens such as Leishmania donovani, Mycobacterium tuberculosis and Trypanosoma cruzi inside the host. The signaling mechanisms of IL-10 cytokine are not well explored and a well annotated pathway map has been lacking. To this end, we developed a pathway resource by manually annotating the IL-10 induced signaling molecules derived from literature. The reactions were categorized under molecular associations, activation/inhibition, catalysis, transport and gene regulation. In all, 37 molecules and 76 reactions were annotated. The IL-10 signaling pathway can be freely accessed through NetPath, a resource of signal transduction pathways previously developed by our group. PMID:26253919

  20. A lateral signalling pathway coordinates shape volatility during cell migration.

    PubMed

    Zhang, Liang; Luga, Valbona; Armitage, Sarah K; Musiol, Martin; Won, Amy; Yip, Christopher M; Plotnikov, Sergey V; Wrana, Jeffrey L

    2016-01-01

    Cell migration is fundamental for both physiological and pathological processes. Migrating cells usually display high dynamics in morphology, which is orchestrated by an integrative array of signalling pathways. Here we identify a novel pathway, we term lateral signalling, comprised of the planar cell polarity (PCP) protein Pk1 and the RhoGAPs, Arhgap21/23. We show that the Pk1-Arhgap21/23 complex inhibits RhoA, is localized on the non-protrusive lateral membrane cortex and its disruption leads to the disorganization of the actomyosin network and altered focal adhesion dynamics. Pk1-mediated lateral signalling confines protrusive activity and is regulated by Smurf2, an E3 ubiquitin ligase in the PCP pathway. Furthermore, we demonstrate that dynamic interplay between lateral and protrusive signalling generates cyclical fluctuations in cell shape that we quantify here as shape volatility, which strongly correlates with migration speed. These studies uncover a previously unrecognized lateral signalling pathway that coordinates shape volatility during productive cell migration. PMID:27226243

  1. A lateral signalling pathway coordinates shape volatility during cell migration

    PubMed Central

    Zhang, Liang; Luga, Valbona; Armitage, Sarah K.; Musiol, Martin; Won, Amy; Yip, Christopher M.; Plotnikov, Sergey V.; Wrana, Jeffrey L.

    2016-01-01

    Cell migration is fundamental for both physiological and pathological processes. Migrating cells usually display high dynamics in morphology, which is orchestrated by an integrative array of signalling pathways. Here we identify a novel pathway, we term lateral signalling, comprised of the planar cell polarity (PCP) protein Pk1 and the RhoGAPs, Arhgap21/23. We show that the Pk1–Arhgap21/23 complex inhibits RhoA, is localized on the non-protrusive lateral membrane cortex and its disruption leads to the disorganization of the actomyosin network and altered focal adhesion dynamics. Pk1-mediated lateral signalling confines protrusive activity and is regulated by Smurf2, an E3 ubiquitin ligase in the PCP pathway. Furthermore, we demonstrate that dynamic interplay between lateral and protrusive signalling generates cyclical fluctuations in cell shape that we quantify here as shape volatility, which strongly correlates with migration speed. These studies uncover a previously unrecognized lateral signalling pathway that coordinates shape volatility during productive cell migration. PMID:27226243

  2. Redefining Signaling Pathways with an Expanding Single-Cell Toolbox.

    PubMed

    Gaudet, Suzanne; Miller-Jensen, Kathryn

    2016-06-01

    Genetically identical cells respond heterogeneously to uniform environmental stimuli. Consequently, investigating the signaling networks that control these cell responses using 'average' bulk cell measurements can obscure underlying mechanisms and misses information emerging from cell-to-cell variability. Here we review recent technological advances including live-cell fluorescence imaging-based approaches and microfluidic devices that enable measurements of signaling networks, dynamics, and responses in single cells. We discuss how these single-cell tools have uncovered novel mechanistic insights for canonical signaling pathways that control cell proliferation (ERK), DNA-damage responses (p53), and innate immune and stress responses (NF-κB). Future improvements in throughput and multiplexing, analytical pipelines, and in vivo applicability will all significantly expand the biological information gained from single-cell measurements of signaling pathways. PMID:26968612

  3. Phylogenetic diversity of stress signalling pathways in fungi

    PubMed Central

    Nikolaou, Elissavet; Agrafioti, Ino; Stumpf, Michael; Quinn, Janet; Stansfield, Ian; Brown, Alistair JP

    2009-01-01

    Background Microbes must sense environmental stresses, transduce these signals and mount protective responses to survive in hostile environments. In this study we have tested the hypothesis that fungal stress signalling pathways have evolved rapidly in a niche-specific fashion that is independent of phylogeny. To test this hypothesis we have compared the conservation of stress signalling molecules in diverse fungal species with their stress resistance. These fungi, which include ascomycetes, basidiomycetes and microsporidia, occupy highly divergent niches from saline environments to plant or mammalian hosts. Results The fungi displayed significant variation in their resistance to osmotic (NaCl and sorbitol), oxidative (H2O2 and menadione) and cell wall stresses (Calcofluor White and Congo Red). There was no strict correlation between fungal phylogeny and stress resistance. Rather, the human pathogens tended to be more resistant to all three types of stress, an exception being the sensitivity of Candida albicans to the cell wall stress, Calcofluor White. In contrast, the plant pathogens were relatively sensitive to oxidative stress. The degree of conservation of osmotic, oxidative and cell wall stress signalling pathways amongst the eighteen fungal species was examined. Putative orthologues of functionally defined signalling components in Saccharomyces cerevisiae were identified by performing reciprocal BLASTP searches, and the percent amino acid identities of these orthologues recorded. This revealed that in general, central components of the osmotic, oxidative and cell wall stress signalling pathways are relatively well conserved, whereas the sensors lying upstream and transcriptional regulators lying downstream of these modules have diverged significantly. There was no obvious correlation between the degree of conservation of stress signalling pathways and the resistance of a particular fungus to the corresponding stress. Conclusion Our data are consistent with

  4. Wnt pathway in Dupuytren disease: connecting profibrotic signals.

    PubMed

    van Beuge, Marike M; Ten Dam, Evert-Jan P M; Werker, Paul M N; Bank, Ruud A

    2015-12-01

    A role of Wnt signaling in Dupuytren disease, a fibroproliferative disease of the hand and fingers, has not been fully elucidated. We examined a large set of Wnt pathway components and signaling targets and found significant dysregulation of 41 Wnt-related genes in tissue from the Dupuytren nodules compared with patient-matched control tissue. A large proportion of genes coding for Wnt proteins themselves was downregulated. However, both canonical Wnt targets and components of the noncanonical signaling pathway were upregulated. Immunohistochemical analysis revealed that protein expression of Wnt1-inducible secreted protein 1 (WISP1), a known Wnt target, was increased in nodules compared with control tissue, but knockdown of WISP1 using small interfering RNA (siRNA) in the Dupuytren myofibroblasts did not confirm a functional role. The protein expression of noncanonical pathway components Wnt5A and VANGL2 as well as noncanonical coreceptors Ror2 and Ryk was increased in nodules. On the contrary, the strongest downregulated genes in this study were 4 antagonists of Wnt signaling (DKK1, FRZB, SFRP1, and WIF1). Downregulation of these genes in the Dupuytren tissue was mimicked in vitro by treating normal fibroblasts with transforming growth factor β1 (TGF-β1), suggesting cross talk between different profibrotic pathways. Furthermore, siRNA-mediated knockdown of these antagonists in normal fibroblasts led to increased nuclear translocation of Wnt target β-catenin in response to TGF-β1 treatment. In conclusion, we have shown extensive dysregulation of Wnt signaling in affected tissue from Dupuytren disease patients. Components of both the canonical and the noncanonical pathways are upregulated, whereas endogenous antagonists are downregulated, possibly via interaction with other profibrotic pathways. PMID:26470681

  5. Hypoxia perturbs aryl hydrocarbon receptor signaling and CYP1A1 expression induced by PCB 126 in human skin and liver-derived cell lines

    SciTech Connect

    Vorrink, Sabine U.; Severson, Paul L.; Kulak, Mikhail V.; Futscher, Bernard W.; Domann, Frederick E.

    2014-02-01

    The aryl hydrocarbon receptor (AhR) is an important mediator of toxic responses after exposure to xenobiotics including 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) and dioxin-like polychlorinated biphenyls (PCBs). Activation of AhR responsive genes requires AhR dimerization with the aryl hydrocarbon receptor nuclear translocator (ARNT), a heterodimeric partner also shared by the hypoxia-inducible factor-1α (HIF-1α) protein. TCDD-stimulated AhR transcriptional activity can be influenced by hypoxia; however, it less well known whether hypoxia interferes with AhR transcriptional transactivation in the context of PCB-mediated AhR activation in human cells. Elucidation of this interaction is important in liver hepatocytes which extensively metabolize ingested PCBs and experience varying degrees of oxygen tension during normal physiologic function. This study was designed to assess the effect of hypoxia on AhR transcriptional responses after exposure to 3,3′,4,4′,5-pentachlorobiphenyl (PCB 126). Exposure to 1% O{sub 2} prior to PCB 126 treatment significantly inhibited CYP1A1 mRNA and protein expression in human HepG2 and HaCaT cells. CYP1A1 transcriptional activation was significantly decreased upon PCB 126 stimulation under conditions of hypoxia. Additionally, hypoxia pre-treatment reduced PCB 126 induced AhR binding to CYP1 target gene promoters. Importantly, ARNT overexpression rescued cells from the inhibitory effect of hypoxia on XRE-luciferase reporter activity. Therefore, the mechanism of interference of the signaling crosstalk between the AhR and hypoxia pathways appears to be at least in part dependent on ARNT availability. Our results show that AhR activation and CYP1A1 expression induced by PCB 126 were significantly inhibited by hypoxia and hypoxia might therefore play an important role in PCB metabolism and toxicity. - Highlights: • Significant crosstalk exists between AhR and HIF-1α signaling. • Hypoxia perturbs PCB 126 induced AhR function and

  6. YAP regulates neuronal differentiation through Sonic hedgehog signaling pathway

    SciTech Connect

    Lin, Yi-Ting; Ding, Jing-Ya; Li, Ming-Yang; Yeh, Tien-Shun; Wang, Tsu-Wei; Yu, Jenn-Yah

    2012-09-10

    Tight regulation of cell numbers by controlling cell proliferation and apoptosis is important during development. Recently, the Hippo pathway has been shown to regulate tissue growth and organ size in Drosophila. In mammalian cells, it also affects cell proliferation and differentiation in various tissues, including the nervous system. Interplay of several signaling cascades, such as Notch, Wnt, and Sonic Hedgehog (Shh) pathways, control cell proliferation during neuronal differentiation. However, it remains unclear whether the Hippo pathway coordinates with other signaling cascades in regulating neuronal differentiation. Here, we used P19 cells, a mouse embryonic carcinoma cell line, as a model to study roles of YAP, a core component of the Hippo pathway, in neuronal differentiation. P19 cells can be induced to differentiate into neurons by expressing a neural bHLH transcription factor gene Ascl1. Our results showed that YAP promoted cell proliferation and inhibited neuronal differentiation. Expression of Yap activated Shh but not Wnt or Notch signaling activity during neuronal differentiation. Furthermore, expression of Yap increased the expression of Patched homolog 1 (Ptch1), a downstream target of the Shh signaling. Knockdown of Gli2, a transcription factor of the Shh pathway, promoted neuronal differentiation even when Yap was over-expressed. We further demonstrated that over-expression of Yap inhibited neuronal differentiation in primary mouse cortical progenitors and Gli2 knockdown rescued the differentiation defect in Yap over-expressing cells. In conclusion, our study reveals that Shh signaling acts downstream of YAP in regulating neuronal differentiation. -- Highlights: Black-Right-Pointing-Pointer YAP promotes cell proliferation and inhibits neuronal differentiation in P19 cells. Black-Right-Pointing-Pointer YAP promotes Sonic hedgehog signaling activity during neuronal differentiation. Black-Right-Pointing-Pointer Knockdown of Gli2 rescues the Yap

  7. Network Features and Pathway Analyses of a Signal Transduction Cascade

    PubMed Central

    Yanashima, Ryoji; Kitagawa, Noriyuki; Matsubara, Yoshiya; Weatheritt, Robert; Oka, Kotaro; Kikuchi, Shinichi; Tomita, Masaru; Ishizaki, Shun

    2008-01-01

    The scale-free and small-world network models reflect the functional units of networks. However, when we investigated the network properties of a signaling pathway using these models, no significant differences were found between the original undirected graphs and the graphs in which inactive proteins were eliminated from the gene expression data. We analyzed signaling networks by focusing on those pathways that best reflected cellular function. Therefore, our analysis of pathways started from the ligands and progressed to transcription factors and cytoskeletal proteins. We employed the Python module to assess the target network. This involved comparing the original and restricted signaling cascades as a directed graph using microarray gene expression profiles of late onset Alzheimer's disease. The most commonly used method of shortest-path analysis neglects to consider the influences of alternative pathways that can affect the activation of transcription factors or cytoskeletal proteins. We therefore introduced included k-shortest paths and k-cycles in our network analysis using the Python modules, which allowed us to attain a reasonable computational time and identify k-shortest paths. This technique reflected results found in vivo and identified pathways not found when shortest path or degree analysis was applied. Our module enabled us to comprehensively analyse the characteristics of biomolecular networks and also enabled analysis of the effects of diseases considering the feedback loop and feedforward loop control structures as an alternative path. PMID:19543432

  8. Beyond microarrays: Finding key transcription factors controlling signal transduction pathways

    PubMed Central

    Kel, Alexdander; Voss, Nico; Jauregui, Ruy; Kel-Margoulis, Olga; Wingender, Edgar

    2006-01-01

    Background Massive gene expression changes in different cellular states measured by microarrays, in fact, reflect just an "echo" of real molecular processes in the cells. Transcription factors constitute a class of the regulatory molecules that typically require posttranscriptional modifications or ligand binding in order to exert their function. Therefore, such important functional changes of transcription factors are not directly visible in the microarray experiments. Results We developed a novel approach to find key transcription factors that may explain concerted expression changes of specific components of the signal transduction network. The approach aims at revealing evidence of positive feedback loops in the signal transduction circuits through activation of pathway-specific transcription factors. We demonstrate that promoters of genes encoding components of many known signal transduction pathways are enriched by binding sites of those transcription factors that are endpoints of the considered pathways. Application of the approach to the microarray gene expression data on TNF-alpha stimulated primary human endothelial cells helped to reveal novel key transcription factors potentially involved in the regulation of the signal transduction pathways of the cells. Conclusion We developed a novel computational approach for revealing key transcription factors by knowledge-based analysis of gene expression data with the help of databases on gene regulatory networks (TRANSFAC® and TRANSPATH®). The corresponding software and databases are available at . PMID:17118134

  9. Hedgehog signaling pathway in small bovine ovarian follicles

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The hedgehog signaling pathway is involved in the regulation of cell proliferation, differentiation, and turnover in a variety of mammalian embryonic and adult tissues including bovine ovarian granulosa and theca cells. Binding of hedgehog to the patch receptor derepresses smoothened resulting in t...

  10. New Insights into Reelin-Mediated Signaling Pathways

    PubMed Central

    Lee, Gum Hwa; D’Arcangelo, Gabriella

    2016-01-01

    Reelin, a multifunctional extracellular protein that is important for mammalian brain development and function, is secreted by different cell types in the prenatal or postnatal brain. The spatiotemporal regulation of Reelin expression and distribution during development relates to its multifaceted function in the brain. Prenatally Reelin controls neuronal radial migration and proper positioning in cortical layers, whereas postnatally Reelin promotes neuronal maturation, synaptic formation and plasticity. The molecular mechanisms underlying the distinct biological functions of Reelin during and after brain development involve unique and overlapping signaling pathways that are activated following Reelin binding to its cell surface receptors. Distinct Reelin ligand isoforms, such as the full-length protein or fragments generated by proteolytic cleavage differentially affect the activity of downstream signaling pathways. In this review, we discuss recent advances in our understanding of the signaling transduction pathways activated by Reelin that regulate different aspects of brain development and function. A core signaling machinery, including ApoER2/VLDLR receptors, Src/Fyn kinases, and the adaptor protein Dab1, participates in all known aspects of Reelin biology. However, distinct downstream mechanisms, such as the Crk/Rap1 pathway and cell adhesion molecules, play crucial roles in the control of neuronal migration, whereas the PI3K/Akt/mTOR pathway appears to be more important for dendrite and spine development. Finally, the NMDA receptor (NMDAR) and an unidentified receptor contribute to the activation of the MEK/Erk1/2 pathway leading to the upregulation of genes involved in synaptic plasticity and learning. This knowledge may provide new insight into neurodevelopmental or neurodegenerative disorders that are associated with Reelin dysfunction. PMID:27242434

  11. Convergent, RIC-8-Dependent Gα Signaling Pathways in the Caenorhabditis elegans Synaptic Signaling Network

    PubMed Central

    Reynolds, Nicole K.; Schade, Michael A.; Miller, Kenneth G.

    2005-01-01

    We used gain-of-function and null synaptic signaling network mutants to investigate the relationship of the Gαq and Gαs pathways to synaptic vesicle priming and to each other. Genetic epistasis studies using Gαq gain-of-function and null mutations, along with a mutation that blocks synaptic vesicle priming and the synaptic vesicle priming stimulator phorbol ester, suggest that the Gαq pathway generates the core, obligatory signals for synaptic vesicle priming. In contrast, the Gαs pathway is not required for the core priming function, because steady-state levels of neurotransmitter release are not significantly altered in animals lacking a neuronal Gαs pathway, even though these animals are strongly paralyzed as a result of functional (nondevelopmental) defects. However, our genetic analysis indicates that these two functionally distinct pathways converge and that they do so downstream of DAG production. Further linking the two pathways, our epistasis analysis of a ric-8 null mutant suggests that RIC-8 (a receptor-independent Gα guanine nucleotide exchange factor) is required to maintain both the Gαq vesicle priming pathway and the neuronal Gαs pathway in a functional state. We propose that the neuronal Gαs pathway transduces critical positional information onto the core Gαq pathway to stabilize the priming of selected synapses that are optimal for locomotion. PMID:15489511

  12. Integration of Shh and Wnt Signaling Pathways Regulating Hematopoiesis.

    PubMed

    Zhou, Zhigang; Wan, Liping; Wang, Chun; Zhou, Kun

    2015-12-01

    To investigate the spatial and temporal programmed expression of Shh and Wnt members during key stages of definitive hematopoiesis and the possible mechanism of Shh and Wnt signaling pathways regulating the proliferation of hematopoietic progenitor cells (HPCs). Spatial and temporal programmed gene expression of Shh and Wnt signaling during hematopoiesis corresponded with c-kit(+)lin(-) HPCs proliferation. C-kit(+)Lin(-) populations derived from aorta-gonad-mesonephros (AGM) of Balb/c mice at E10.5 with increased expression of Shh and Wnt3a demonstrated a greater potential for proliferation. Additionally, supplementation with soluble Shh N-terminal peptide promoted the proliferation of c-kit(+)Lin(-) populations by activating the Wnt signaling pathway, an effect which was inhibited by blocking Shh signaling. A specific inhibitor of wnt signaling was capable of inhibiting Shh-induced proliferation in a similar manner to shh inhibitor. Our results provide valuable information on Shh and Wnt signaling involved in hematopoiesis and highlight the importance of interaction of Shh and Wnt signaling in regulating HPCs proliferation. PMID:26378473

  13. Pentoxifylline inhibits liver fibrosis via hedgehog signaling pathway.

    PubMed

    Li, Hui; Hua, Juan; Guo, Chun-Xia; Wang, Wei-Xian; Wang, Bao-Ju; Yang, Dong-Liang; Wei, Ping; Lu, Yin-Ping

    2016-06-01

    Infection of schistosomiasis japonica may eventually lead to liver fibrosis, and no effective antifibrotic therapies are available but liver transplantation. Hedgehog (HH) signaling pathway has been involved in the process and is a promising target for treating liver fibrosis. This study aimed to explore the effects of pentoxifylline (PTX) on liver fibrosis induced by schistosoma japonicum infection by inhibiting the HH signaling pathway. Phorbol12-myristate13-acetate (PMA) was used to induce human acute mononuclear leukemia cells THP-1 to differentiate into macrophages. The THP-1-derived macrophages were stimulated by soluble egg antigen (SEA), and the culture supernatants were collected for detection of activation of macrophages. Cell Counting Kit-8 (CCK-8) was used to detect the cytotoxicity of the culture supernatant and PTX on the LX-2 cells. The LX-2 cells were administered with activated culture supernatant from macrophages and(or) PTX to detect the transforming growth factor-β gene expression. The mRNA expression of shh and gli-1, key parts in HH signaling pathway, was detected. The mRNA expression of shh and gli-1 was increased in LX-2 cells treated with activated macrophages-derived culture supernatant, suggesting HH signaling pathway may play a key role in the activation process of hepatic stellate cells (HSCs). The expression of these genes decreased in LX-2 cells co-cultured with both activated macrophages-derived culture supernatant and PTX, indicating PTX could suppress the activation process of HSCs. In conclusion, these data provide evidence that PTX prevents liver fibrogenesis in vitro by the suppression of HH signaling pathway. PMID:27376806

  14. Current perspectives of the signaling pathways directing neural crest induction.

    PubMed

    Stuhlmiller, Timothy J; García-Castro, Martín I

    2012-11-01

    The neural crest is a migratory population of embryonic cells with a tremendous potential to differentiate and contribute to nearly every organ system in the adult body. Over the past two decades, an incredible amount of research has given us a reasonable understanding of how these cells are generated. Neural crest induction involves the combinatorial input of multiple signaling pathways and transcription factors, and is thought to occur in two phases from gastrulation to neurulation. In the first phase, FGF and Wnt signaling induce NC progenitors at the border of the neural plate, activating the expression of members of the Msx, Pax, and Zic families, among others. In the second phase, BMP, Wnt, and Notch signaling maintain these progenitors and bring about the expression of definitive NC markers including Snail2, FoxD3, and Sox9/10. In recent years, additional signaling molecules and modulators of these pathways have been uncovered, creating an increasingly complex regulatory network. In this work, we provide a comprehensive review of the major signaling pathways that participate in neural crest induction, with a focus on recent developments and current perspectives. We provide a simplified model of early neural crest development and stress similarities and differences between four major model organisms: Xenopus, chick, zebrafish, and mouse. PMID:22547091

  15. Asymptotic Analysis of the Wnt/β Signaling Pathway

    NASA Astrophysics Data System (ADS)

    Maris, D. T.; Goussis, D. A.

    2015-01-01

    The Wnt/β-catenin pathway is a signal transduction pathway made of proteins, which plays an important role in oncogenesis. Ethan Lee and and co-workers introduced in 2003 a detailed mathematical model of this pathway, incorporating the kinetics of protein-protein interactions, protein synthesis/degradation and phosphorylation/dephosphorylation. The fast/slow dynamics of Lee's system are examined here, by employing the Computational Singular Perturbation (CSP) algorithm. CSP reproduces the results of the classical singular perturbation analysis in an algorithmic fashion, producing an approximation of (i) the low dimensional Slow Invariant Manifold (SIM), where the solution evolves and (ii) the reduced model that governs the flow there. The temporal variation of the dimensions of the SIM will be presented and the components of the pathway that are responsible (i) for the generation of the SIM and (ii) for driving the system on it will be identified.

  16. Mitogen Activated Protein kinase signal transduction pathways in the prostate

    PubMed Central

    Maroni, Paul D; Koul, Sweaty; Meacham, Randall B; Koul, Hari K

    2004-01-01

    The biochemistry of the mitogen activated protein kinases ERK, JNK, and p38 have been studied in prostate physiology in an attempt to elucidate novel mechanisms and pathways for the treatment of prostatic disease. We reviewed articles examining mitogen-activated protein kinases using prostate tissue or cell lines. As with other tissue types, these signaling modules are links/transmitters for important pathways in prostate cells that can result in cellular survival or apoptosis. While the activation of the ERK pathway appears to primarily result in survival, the roles of JNK and p38 are less clear. Manipulation of these pathways could have important implications for the treatment of prostate cancer and benign prostatic hypertrophy. PMID:15219238

  17. Signaling Pathways That Control mRNA Turnover

    PubMed Central

    Thapar, Roopa; Denmon, Andria P.

    2013-01-01

    Cells regulate their genomes mainly at the level of transcription and at the level of mRNA decay. While regulation at the level of transcription is clearly important, the regulation of mRNA turnover by signaling networks is essential for a rapid response to external stimuli. Signaling pathways result in posttranslational modification of RNA binding proteins by phosphorylation, ubiquitination, methylation, acetylation etc. These modifications are important for rapid remodeling of dynamic ribonucleoprotein complexes and triggering mRNA decay. Understanding how these posttranslational modifications alter gene expression is therefore a fundamental question in biology. In this review we highlight recent findings on how signaling pathways and cell cycle checkpoints involving phosphorylation, ubiquitination, and arginine methylation affect mRNA turnover. PMID:23602935

  18. Stress Signaling Pathways for the Pathogenicity of Cryptococcus

    PubMed Central

    Jung, Kwang-Woo

    2013-01-01

    Sensing, responding, and adapting to the surrounding environment are crucial for all living organisms to survive, proliferate, and differentiate in their biological niches. This ability is also essential for Cryptococcus neoformans and its sibling species Cryptococcus gattii, as these pathogens have saprobic and parasitic life cycles in natural and animal host environments. The ability of Cryptococcus to cause fatal meningoencephalitis is highly related to its capability to remodel and optimize its metabolic and physiological status according to external cues. These cues act through multiple stress signaling pathways through a panoply of signaling components, including receptors/sensors, small GTPases, secondary messengers, kinases, transcription factors, and other miscellaneous adaptors or regulators. In this minireview, we summarize and highlight the importance of several stress signaling pathways that influence the pathogenicity of Cryptococcus and discuss future challenges in these areas. PMID:24078305

  19. Feedback Regulation of Kinase Signaling Pathways by AREs and GREs.

    PubMed

    Vlasova-St Louis, Irina; Bohjanen, Paul R

    2016-01-01

    In response to environmental signals, kinases phosphorylate numerous proteins, including RNA-binding proteins such as the AU-rich element (ARE) binding proteins, and the GU-rich element (GRE) binding proteins. Posttranslational modifications of these proteins lead to a significant changes in the abundance of target mRNAs, and affect gene expression during cellular activation, proliferation, and stress responses. In this review, we summarize the effect of phosphorylation on the function of ARE-binding proteins ZFP36 and ELAVL1 and the GRE-binding protein CELF1. The networks of target mRNAs that these proteins bind and regulate include transcripts encoding kinases and kinase signaling pathways (KSP) components. Thus, kinase signaling pathways are involved in feedback regulation, whereby kinases regulate RNA-binding proteins that subsequently regulate mRNA stability of ARE- or GRE-containing transcripts that encode components of KSP. PMID:26821046

  20. Feedback Regulation of Kinase Signaling Pathways by AREs and GREs

    PubMed Central

    Vlasova-St. Louis, Irina; Bohjanen, Paul R.

    2016-01-01

    In response to environmental signals, kinases phosphorylate numerous proteins, including RNA-binding proteins such as the AU-rich element (ARE) binding proteins, and the GU-rich element (GRE) binding proteins. Posttranslational modifications of these proteins lead to a significant changes in the abundance of target mRNAs, and affect gene expression during cellular activation, proliferation, and stress responses. In this review, we summarize the effect of phosphorylation on the function of ARE-binding proteins ZFP36 and ELAVL1 and the GRE-binding protein CELF1. The networks of target mRNAs that these proteins bind and regulate include transcripts encoding kinases and kinase signaling pathways (KSP) components. Thus, kinase signaling pathways are involved in feedback regulation, whereby kinases regulate RNA-binding proteins that subsequently regulate mRNA stability of ARE- or GRE-containing transcripts that encode components of KSP. PMID:26821046

  1. Chemical modulation of glycerolipid signaling and metabolic pathways

    PubMed Central

    Scott, Sarah A.; Mathews, Thomas P.; Ivanova, Pavlina T.; Lindsley, Craig W.; Brown, H. Alex

    2014-01-01

    Thirty years ago, glycerolipids captured the attention of biochemical researchers as novel cellular signaling entities. We now recognize that these biomolecules occupy signaling nodes critical to a number of physiological and pathological processes. Thus, glycerolipid-metabolizing enzymes present attractive targets for new therapies. A number of fields—ranging from neuroscience and cancer to diabetes and obesity—have elucidated the signaling properties of glycerolipids. The biochemical literature teems with newly emerging small molecule inhibitors capable of manipulating glycerolipid metabolism and signaling. This ever-expanding pool of chemical modulators appears daunting to those interested in exploiting glycerolipid-signaling pathways in their model system of choice. This review distills the current body of literature surrounding glycerolipid metabolism into a more approachable format, facilitating the application of small molecule inhibitors to novel systems. PMID:24440821

  2. The Aspergillus fumigatus cell wall integrity signaling pathway: drug target, compensatory pathways, and virulence

    PubMed Central

    Valiante, Vito; Macheleidt, Juliane; Föge, Martin; Brakhage, Axel A.

    2015-01-01

    Aspergillus fumigatus is the most important airborne fungal pathogen, causing severe infections with invasive growth in immunocompromised patients. The fungal cell wall (CW) prevents the cell from lysing and protects the fungus against environmental stress conditions. Because it is absent in humans and because of its essentiality, the fungal CW is a promising target for antifungal drugs. Nowadays, compounds acting on the CW, i.e., echinocandin derivatives, are used to treat A. fumigatus infections. However, studies demonstrating the clinical effectiveness of echinocandins in comparison with antifungals currently recommended for first-line treatment of invasive aspergillosis are still lacking. Therefore, it is important to elucidate CW biosynthesis pathways and their signal transduction cascades, which potentially compensate the inhibition caused by CW- perturbing compounds. Like in other fungi, the central core of the cell wall integrity (CWI) signaling pathway in A. fumigatus is composed of three mitogen activated protein kinases. Deletion of these genes resulted in severely enhanced sensitivity of the mutants against CW-disturbing compounds and in drastic alterations of the fungal morphology. Additionally, several cross-talk interactions between the CWI pathways and other signaling pathways are emerging, raising the question about their role in the CW compensatory mechanisms. In this review we focused on recent advances in understanding the CWI signaling pathway in A. fumigatus and its role during drug stress response and virulence. PMID:25932027

  3. Targeting signaling pathways with small molecules to treat autoimmune disorders.

    PubMed

    Kaminska, Bozena; Swiatek-Machado, Karolina

    2008-01-01

    Chronic activation of immune responses, mediated by inflammatory mediators and involving different effector cells of the innate and acquired immune system characterizes autoimmune disorders, such as rheumatoid arthritis, inflammatory bowel disease, psoriasis and septic shock syndrome. MAPKs are crucial intracellular mediators of inflammation. MAPK inhibitors are attractive anti-inflammatory drugs, because they are capable of reducing the synthesis of inflammation mediators at multiple levels and are effective in blocking proinflammatory cytokine signaling. Janus kinase (JAK)/signal transducers and activators of transcription (STAT) pathway converts cytokine signals into genomic responses regulating proliferation and differentiation of the immune cells. JAK inhibitors are a new class of immunomodulatory agents with immunosuppressive, anti-inflammatory and antiallergic properties. This review discusses the rationale behind current strategies of targeting MAPK and JAK/STAT signaling pathways, and the overall effects of signal transduction inhibitors in animal models of inflammatory disorders. Signal transduction inhibitors are small molecules that can be administered orally, and initial results of clinical trials have shown clinical benefits in patients with chronic inflammatory disorders. PMID:20477590

  4. Activation of the Canonical Wnt Signaling Pathway Induces Cementum Regeneration.

    PubMed

    Han, Pingping; Ivanovski, Saso; Crawford, Ross; Xiao, Yin

    2015-07-01

    Canonical Wnt signaling is important in tooth development but it is unclear whether it can induce cementogenesis and promote the regeneration of periodontal tissues lost because of disease. Therefore, the aim of this study is to investigate the influence of canonical Wnt signaling enhancers on human periodontal ligament cell (hPDLCs) cementogenic differentiation in vitro and cementum repair in a rat periodontal defect model. Canonical Wnt signaling was induced by (1) local injection of lithium chloride; (2) local injection of sclerostin antibody; and (3) local injection of a lentiviral construct overexpressing β-catenin. The results showed that the local activation of canonical Wnt signaling resulted in significant new cellular cementum deposition and the formation of well-organized periodontal ligament fibers, which was absent in the control group. In vitro experiments using hPDLCs showed that the Wnt signaling pathway activators significantly increased mineralization, alkaline phosphatase (ALP) activity, and gene and protein expression of the bone and cementum markers osteocalcin (OCN), osteopontin (OPN), cementum protein 1 (CEMP1), and cementum attachment protein (CAP). Our results show that the activation of the canonical Wnt signaling pathway can induce in vivo cementum regeneration and in vitro cementogenic differentiation of hPDLCs. PMID:25556853

  5. The mTOR Signalling Pathway in Human Cancer

    PubMed Central

    Pópulo, Helena; Lopes, José Manuel; Soares, Paula

    2012-01-01

    The conserved serine/threonine kinase mTOR (the mammalian target of rapamycin), a downstream effector of the PI3K/AKT pathway, forms two distinct multiprotein complexes: mTORC1 and mTORC2. mTORC1 is sensitive to rapamycin, activates S6K1 and 4EBP1, which are involved in mRNA translation. It is activated by diverse stimuli, such as growth factors, nutrients, energy and stress signals, and essential signalling pathways, such as PI3K, MAPK and AMPK, in order to control cell growth, proliferation and survival. mTORC2 is considered resistant to rapamycin and is generally insensitive to nutrients and energy signals. It activates PKC-α and AKT and regulates the actin cytoskeleton. Deregulation of multiple elements of the mTOR pathway (PI3K amplification/mutation, PTEN loss of function, AKT overexpression, and S6K1, 4EBP1 and eIF4E overexpression) has been reported in many types of cancers, particularly in melanoma, where alterations in major components of the mTOR pathway were reported to have significant effects on tumour progression. Therefore, mTOR is an appealing therapeutic target and mTOR inhibitors, including the rapamycin analogues deforolimus, everolimus and temsirolimus, are submitted to clinical trials for treating multiple cancers, alone or in combination with inhibitors of other pathways. Importantly, temsirolimus and everolimus were recently approved by the FDA for the treatment of renal cell carcinoma, PNET and giant cell astrocytoma. Small molecules that inhibit mTOR kinase activity and dual PI3K-mTOR inhibitors are also being developed. In this review, we aim to survey relevant research, the molecular mechanisms of signalling, including upstream activation and downstream effectors, and the role of mTOR in cancer, mainly in melanoma. PMID:22408430

  6. Wnt-/-β-catenin pathway signaling in human hepatocellular carcinoma

    PubMed Central

    Waisberg, Jaques; Saba, Gabriela Tognini

    2015-01-01

    The molecular basis of the carcinogenesis of hepatocellular carcinoma (HCC) has not been adequately clarified, which negatively impacts the development of targeted therapy protocols for this overwhelming neoplasia. The aberrant activation of signaling in the HCC is primarily due to the deregulated expression of the components of the Wnt-/-β-catenin. This leads to the activation of β-catenin/T-cell factor-dependent target genes that control cell proliferation, cell cycle, apoptosis, and cell motility. The deregulation of the Wnt pathway is an early event in hepatocarcinogenesis. An aggressive phenotype was associated with HCC, since this pathway is implicated in the proliferation, migration, and invasiveness of cancer cells, regarding the cell’s own survival. The disruption of the signaling cascade Wnt-/-β-catenin has shown anticancer properties in HCC’s clinical evaluations of therapeutic molecules targeted for blocking the Wnt signaling pathway for the treatment of HCC, and it represents a promising perspective. The key to bringing this strategy in to clinical practice is to identify new molecules that would be effective only in tumor cells with aberrant signaling β-catenin. PMID:26609340

  7. Wnt-/-β-catenin pathway signaling in human hepatocellular carcinoma.

    PubMed

    Waisberg, Jaques; Saba, Gabriela Tognini

    2015-11-18

    The molecular basis of the carcinogenesis of hepatocellular carcinoma (HCC) has not been adequately clarified, which negatively impacts the development of targeted therapy protocols for this overwhelming neoplasia. The aberrant activation of signaling in the HCC is primarily due to the deregulated expression of the components of the Wnt-/-β-catenin. This leads to the activation of β-catenin/T-cell factor-dependent target genes that control cell proliferation, cell cycle, apoptosis, and cell motility. The deregulation of the Wnt pathway is an early event in hepatocarcinogenesis. An aggressive phenotype was associated with HCC, since this pathway is implicated in the proliferation, migration, and invasiveness of cancer cells, regarding the cell's own survival. The disruption of the signaling cascade Wnt-/-β-catenin has shown anticancer properties in HCC's clinical evaluations of therapeutic molecules targeted for blocking the Wnt signaling pathway for the treatment of HCC, and it represents a promising perspective. The key to bringing this strategy in to clinical practice is to identify new molecules that would be effective only in tumor cells with aberrant signaling β-catenin. PMID:26609340

  8. The Hippo-Salvador signaling pathway regulates renal tubulointerstitial fibrosis

    PubMed Central

    Seo, Eunjeong; Kim, Wan-Young; Hur, Jeongmi; Kim, Hanbyul; Nam, Sun Ah; Choi, Arum; Kim, Yu-Mi; Park, Sang Hee; Chung, Chaeuk; Kim, Jin; Min, Soohong; Myung, Seung-Jae; Lim, Dae-Sik; Kim, Yong Kyun

    2016-01-01

    Renal tubulointerstitial fibrosis (TIF) is the final pathway of various renal injuries that result in chronic kidney disease. The mammalian Hippo-Salvador signaling pathway has been implicated in the regulation of cell proliferation, cell death, tissue regeneration, and tumorigenesis. Here, we report that the Hippo-Salvador pathway plays a role in disease development in patients with TIF and in a mouse model of TIF. Mice with tubular epithelial cell (TEC)-specific deletions of Sav1 (Salvador homolog 1) exhibited aggravated renal TIF, enhanced epithelial-mesenchymal transition-like phenotypic changes, apoptosis, and proliferation after unilateral ureteral obstruction (UUO). Moreover, Sav1 depletion in TECs increased transforming growth factor (TGF)-β and activated β-catenin expression after UUO, which likely accounts for the abovementioned enhanced TEC fibrotic phenotype. In addition, TAZ (transcriptional coactivator with PDZ-binding motif), a major downstream effector of the Hippo pathway, was significantly activated in Sav1-knockout mice in vivo. An in vitro study showed that TAZ directly regulates TGF-β and TGF-β receptor II expression. Collectively, our data indicate that the Hippo-Salvador pathway plays a role in the pathogenesis of TIF and that regulating this pathway may be a therapeutic strategy for reducing TIF. PMID:27550469

  9. The Hippo-Salvador signaling pathway regulates renal tubulointerstitial fibrosis.

    PubMed

    Seo, Eunjeong; Kim, Wan-Young; Hur, Jeongmi; Kim, Hanbyul; Nam, Sun Ah; Choi, Arum; Kim, Yu-Mi; Park, Sang Hee; Chung, Chaeuk; Kim, Jin; Min, Soohong; Myung, Seung-Jae; Lim, Dae-Sik; Kim, Yong Kyun

    2016-01-01

    Renal tubulointerstitial fibrosis (TIF) is the final pathway of various renal injuries that result in chronic kidney disease. The mammalian Hippo-Salvador signaling pathway has been implicated in the regulation of cell proliferation, cell death, tissue regeneration, and tumorigenesis. Here, we report that the Hippo-Salvador pathway plays a role in disease development in patients with TIF and in a mouse model of TIF. Mice with tubular epithelial cell (TEC)-specific deletions of Sav1 (Salvador homolog 1) exhibited aggravated renal TIF, enhanced epithelial-mesenchymal transition-like phenotypic changes, apoptosis, and proliferation after unilateral ureteral obstruction (UUO). Moreover, Sav1 depletion in TECs increased transforming growth factor (TGF)-β and activated β-catenin expression after UUO, which likely accounts for the abovementioned enhanced TEC fibrotic phenotype. In addition, TAZ (transcriptional coactivator with PDZ-binding motif), a major downstream effector of the Hippo pathway, was significantly activated in Sav1-knockout mice in vivo. An in vitro study showed that TAZ directly regulates TGF-β and TGF-β receptor II expression. Collectively, our data indicate that the Hippo-Salvador pathway plays a role in the pathogenesis of TIF and that regulating this pathway may be a therapeutic strategy for reducing TIF. PMID:27550469

  10. Concordant Signaling Pathways Produced by Pesticide Exposure in Mice Correspond to Pathways Identified in Human Parkinson's Disease

    PubMed Central

    Gollamudi, Seema; Johri, Ashu; Calingasan, Noel Y.; Yang, Lichuan; Elemento, Olivier; Beal, M. Flint

    2012-01-01

    Parkinson's disease (PD) is a neurodegenerative disease in which the etiology of 90 percent of the patients is unknown. Pesticide exposure is a major risk factor for PD, and paraquat (PQ), pyridaben (PY) and maneb (MN) are amongst the most widely used pesticides. We studied mRNA expression using transcriptome sequencing (RNA-Seq) in the ventral midbrain (VMB) and striatum (STR) of PQ, PY and paraquat+maneb (MNPQ) treated mice, followed by pathway analysis. We found concordance of signaling pathways between the three pesticide models in both the VMB and STR as well as concordance in these two brain areas. The concordant signaling pathways with relevance to PD pathogenesis were e.g. axonal guidance signaling, Wnt/β-catenin signaling, as well as pathways not previously linked to PD, e.g. basal cell carcinoma, human embryonic stem cell pluripotency and role of macrophages, fibroblasts and endothelial cells in rheumatoid arthritis. Human PD pathways previously identified by expression analysis, concordant with VMB pathways identified in our study were axonal guidance signaling, Wnt/β-catenin signaling, IL-6 signaling, ephrin receptor signaling, TGF-β signaling, PPAR signaling and G-protein coupled receptor signaling. Human PD pathways concordant with the STR pathways in our study were Wnt/β-catenin signaling, axonal guidance signaling and G-protein coupled receptor signaling. Peroxisome proliferator activated receptor delta (Ppard) and G-Protein Coupled Receptors (GPCRs) were common genes in VMB and STR identified by network analysis. In conclusion, the pesticides PQ, PY and MNPQ elicit common signaling pathways in the VMB and STR in mice, which are concordant with known signaling pathways identified in human PD, suggesting that these pathways contribute to the pathogenesis of idiopathic PD. The analysis of these networks and pathways may therefore lead to improved understanding of disease pathogenesis, and potential novel therapeutic targets. PMID:22563483

  11. Parameter sensitivity analysis of IL-6 signalling pathways.

    PubMed

    Chu, Y; Jayaraman, A; Hahn, J

    2007-11-01

    Signal transduction pathways generally consist of a large number of individual components and have an even greater number of parameters describing their reaction kinetics. Although the structure of some signalling pathways can be found in the literature, many of the parameters are not well known and they would need to be re-estimated from experimental data for each specific case. However it is not feasible to estimate hundreds of parameters because of the cost of the experiments associated with generating data. Parameter sensitivity analysis can address this situation as it investigates how the system behaviour is changed by variations of parameters and the analysis identifies which parameters play a key role in signal transduction. Only these important parameters need then be re-estimated using data from further experiments. This article presents a detailed parameter sensitivity analysis of the JAK/STAT and MAPK signal transduction pathway that is used for signalling by the cytokine IL-6. As no parameter sensitivity analysis technique is known to work best for all situations, a comparison of the results returned by four techniques is presented: differential analysis, the Morris method, a sampling-based approach and the Fourier amplitude sensitivity test. The recruitment of the transcription factor STAT3 to the dimer of the phosphorylated receptor complex is determined as the most important step by the sensitivity analysis. Additionally, the desphosphorylation of the nuclear STAT3 dimer by PP2 as well as feedback inhibition by SOCS3 are found to play an important role for signal transduction. PMID:18203580

  12. Expression pattern of the Hedgehog signaling pathway in pituitary adenomas.

    PubMed

    Yavropoulou, Maria P; Maladaki, Anna; Topouridou, Konstantina; Kotoula, Vasiliki; Poulios, Chris; Daskalaki, Emily; Foroglou, Nikolaos; Karkavelas, George; Yovos, John G

    2016-01-12

    Several studies have demonstrated the role of Wnt and Notch signaling in the pathogenesis of pituitary adenomas, but data are scarce regarding the role of Hedgehog signaling. In this study we investigated the differential expression of gene targets of the Hedgehog signaling pathway. Formalin-fixed, paraffin-embedded specimens from adult patients who underwent transphenoidal resection and normal human pituitary tissues that were obtained from autopsies were used. Clinical information and data from pre-operative MRI scan (extracellular tumor extension, tumor size, displacement of the optic chiasm) were retrieved from the Hospital's database. We used a customized RT(2) Profiler PCR Array, to investigate the expression of genes related to Notch and Hedgehog signaling pathways (PTCH1, PTCH2, GLI1, GLI3, NOTCH3, JAG1, HES1, and HIP). A total of 52 pituitary adenomas (32 non-functioning adenomas, 15 somatotropinomas and 5 prolactinomas) were used in the final analysis. In non-functioning pituitary adenomas there was a significant decrease (approximately 75%) in expression of all Hedgehog related genes that were tested, while Notch3 and Jagged-1 expression was found significantly increased, compared with normal pituitary tissue controls. In contrast, somatotropinomas demonstrated a significant increase in expression of all Hedgehog related genes and a decrease in the expression of Notch3 and Jagged-1. There was no significant difference in the expression of Hedgehog and Notch related genes between prolactinomas and healthy pituitary tissues. Hedgehog signalling appears to be activated in somatotropinomas but not in non-functioning pituitary adenomas in contrast to the expression pattern of Notch signalling pathway. PMID:26620835

  13. Signaling pathways implicated in hematopoietic progenitor cell proliferation and differentiation.

    PubMed

    Bugarski, Diana; Krstic, Aleksandra; Mojsilovic, Slavko; Vlaski, Marija; Petakov, Marijana; Jovcic, Gordana; Stojanovic, Nevenka; Milenkovic, Pavle

    2007-01-01

    The objective of this study was to investigate the signal transduction pathways associated with the clonal development of myeloid and erythroid progenitor cells. The contribution of particular signaling molecules of protein tyrosine kinases (PTKs), mitogen-activated protein (MAP) kinase, and PI-3 kinase signaling to the growth of murine bone marrow colony forming unit-granulocyte-macrophage (CFU-GM) and erythroid (burst forming unit-erythroid [BFU-E] and colony forming unit-erythroid [CFU-E]) progenitors was examined in studies performed in the presence or absence of specific signal transduction inhibitors. The results clearly pointed to different signal transducing intermediates that are involved in cell proliferation and differentiation depending on the cell lineage, as well as on the progenitors' maturity. Lineage-specific differences were obtained when chemical inhibitors specific for receptor- or nonreceptor-PTKs, as well as for the main groups of distinctly regulated MAPK cascades, were used because all of these compounds suppressed the growth of erythroid progenitors, with no major effects on myeloid progenitors. At the same time, differential involvement of MEK/extracellular signal-regulated kinase (ERK) MAPK transduction pathway was observed in the proliferation and/or differentiation of early, BFU-E, and late, CFU-E, erythroid progenitor cells. The results also demonstrated that phosphatydylinositol (PI)-3 kinase and nuclear factor kappaB (NF-kappaB) transcriptional factor were required for maintenance of both myeloid and erythroid progenitor cell function. Overall, the data obtained indicated that committed hematopoietic progenitors express a certain level of constitutive signaling activity that participates in the regulation of normal steady-state hematopoiesis and point to the importance of evaluating the impact of signal transduction inhibitors on normal bone marrow when used as potential therapeutic agents. PMID:17202596

  14. In Vivo Detection of Intracellular Signaling Pathways in Developing Thymocytes

    PubMed Central

    Zúñiga-Pflücker, Juan Carlos

    2000-01-01

    Information regarding the intracellular signaling processes that occur during the development of T cells has largely been obtained with the use of transgenic mouse models, which although providing invaluable information are time consuming and costly. To this end, we have developed a novel system that facilitates the In Vivo analysis of signal transduction pathways during T-lymphocyte development. This approach uses reporter-plasmids for the detection of intracellular signals mediated by the mitogen-activated protein kinase or cyclic AMP-dependent protein kinase. Reporter-plasmids are transfected into thymocytes in fetal thymic organ culture by accelerated DNA/particle bombardment (gene gun), and the activation of a signaling pathway is determined in the form of a standard luciferase assay. Importantly, this powerful technique preserves the structural integrity of the thymus, and will provide an invaluable tool to study how thymocytes respond to normal environmental stimuli encountered during differentiation within the thymic milieu. Thus, this method allows for the monitoring of signals that occur in a biological time frame, such as during differentiation, and within the natural environment of differentiating cells. PMID:11293810

  15. Molecular Pathways: Interleukin-15 Signaling in Health and in Cancer

    PubMed Central

    Mishra, Anjali; Sullivan, Laura; Caligiuri, Michael A.

    2014-01-01

    Interleukin-15 (IL-15) is a pro-inflammatory cytokine involved in the development, survival, proliferation and activation of multiple lymphocyte lineages utilizing a variety of signaling pathways. IL-15 utilizes three distinct receptor chains in at least two different combinations to signal and exert its effects on the immune system. The binding of IL-15 to its receptor complex activates an ‘immune-enhancing’ signaling cascade in natural killer cells and subsets of T cells, as well as the induction of a number of proto-oncogenes. Additional studies have explored the role of IL-15 in the development and progression of cancer, notably leukemia of large granular lymphocytes, cutaneous T-cell lymphoma and multiple myeloma. This review provides an overview of the molecular events in the IL-15 signaling pathway and the aberrancies in its regulation that are associated with chronic inflammation and cancer. We briefly explore the potential therapeutic opportunities that have arisen as a result of these studies to further the treatment of cancer. These involve both targeting the disruption of IL-15 signaling as well as IL-15-mediated enhancement of innate and antigen specific immunity. PMID:24737791

  16. Calcineurin Signaling Regulates Neural Induction Through Antagonizing the BMP Pathway

    PubMed Central

    Cho, Ahryon; Deng, Suhua; Chen, Lei; Miller, Erik; Wernig, Marius; Graef, Isabella A

    2014-01-01

    Summary Development of the nervous system begins with neural induction, which is controlled by complex signaling networks functioning in concert with one another. Fine-tuning of the bone morphogenetic protein (BMP) pathway is essential for neural induction in the developing embryo. However, the molecular mechanisms by which cells integrate the signaling pathways that contribute to neural induction have remained unclear. We find that neural induction is dependent on the Ca2+-activated phosphatase calcineurin (CaN). FGF-regulated Ca2+ entry activates CaN, which directly and specifically dephosphorylates BMP-regulated Smad1/5 proteins. Genetic and biochemical analyses revealed that CaN adjusts the strength and transcriptional output of BMP signaling and that a reduction of CaN activity leads to an increase of Smad1/5-regulated transcription. As a result, FGF-activated CaN signaling opposes BMP signaling during gastrulation, thereby promoting neural induction and the development of anterior structures. PMID:24698271

  17. Signal transduction pathways involved in mechanotransduction in bone cells

    SciTech Connect

    Liedert, Astrid . E-mail: astrid.liedert@uni-ulm.de; Kaspar, Daniela; Blakytny, Robert; Claes, Lutz; Ignatius, Anita

    2006-10-13

    Several in vivo and in vitro studies with different loading regimens showed that mechanical stimuli have an influence on proliferation and differentiation of bone cells. Prerequisite for this influence is the transduction of mechanical signals into the cell, a phenomenon that is termed mechanotransduction, which is essential for the maintenance of skeletal homeostasis in adults. Mechanoreceptors, such as the integrins, cadherins, and stretch-activated Ca{sup 2+} channels, together with various signal transduction pathways, are involved in the mechanotransduction process that ultimately regulates gene expression in the nucleus. Mechanotransduction itself is considered to be regulated by hormones, the extracellular matrix of the osteoblastic cells and the mode of the mechanical stimulus.

  18. Fibroblast growth factor (Fgf) 21 is a novel target gene of the aryl hydrocarbon receptor (AhR).

    PubMed

    Cheng, Xingguo; Vispute, Saurabh G; Liu, Jie; Cheng, Christine; Kharitonenkov, Alexei; Klaassen, Curtis D

    2014-07-01

    The toxic effects of dioxins, such as 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), mainly through activation of the aryl hydrocarbon receptor (AhR) are well documented. Fibroblast growth factor (Fgf) 21 plays critical roles in metabolic adaptation to fasting by increasing lipid oxidation and ketogenesis in the liver. The present study was performed to determine whether activation of the AhR induces Fgf21 expression. In mouse liver, TCDD increased Fgf21 mRNA in both dose- and time-dependent manners. In addition, TCDD markedly increased Fgf21 mRNA expression in cultured mouse and human hepatocytes. Moreover, TCDD increased mRNA (in liver) and protein levels (in both liver and serum) of Fgf21 in wild-type mice, but not in AhR-null mice. Chromatin immunoprecipitation assays showed that TCDD increased AhR protein binding to the Fgf21 promoter (-105/+1 base pair). Fgf21-null mice administered 200μg/kg of TCDD died within 20days, whereas wild-type mice receiving the same treatment were still alive at one month after administration. This indicates that TCDD-induced Fgf21 expression protects against TCDD toxicity. Diethylhexylphthalate (DEHP) pretreatment attenuated TCDD-induced Fgf21 expression in mouse liver and white adipose tissue, which may explain a previous report that DEHP pretreatment decreases TCDD-induced wasting. In conclusion, Fgf21 appears to be a target gene of AhR-signaling pathway in mouse and human liver. PMID:24769090

  19. Fibroblast growth factor (Fgf) 21 is a novel target gene of the aryl hydrocarbon receptor (AhR)

    SciTech Connect

    Cheng, Xingguo; Vispute, Saurabh G.; Liu, Jie; Cheng, Christine; Kharitonenkov, Alexei; Klaassen, Curtis D.

    2014-07-01

    The toxic effects of dioxins, such as 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), mainly through activation of the aryl hydrocarbon receptor (AhR) are well documented. Fibroblast growth factor (Fgf) 21 plays critical roles in metabolic adaptation to fasting by increasing lipid oxidation and ketogenesis in the liver. The present study was performed to determine whether activation of the AhR induces Fgf21 expression. In mouse liver, TCDD increased Fgf21 mRNA in both dose- and time-dependent manners. In addition, TCDD markedly increased Fgf21 mRNA expression in cultured mouse and human hepatocytes. Moreover, TCDD increased mRNA (in liver) and protein levels (in both liver and serum) of Fgf21 in wild-type mice, but not in AhR-null mice. Chromatin immunoprecipitation assays showed that TCDD increased AhR protein binding to the Fgf21 promoter (− 105/+ 1 base pair). Fgf21-null mice administered 200 μg/kg of TCDD died within 20 days, whereas wild-type mice receiving the same treatment were still alive at one month after administration. This indicates that TCDD-induced Fgf21 expression protects against TCDD toxicity. Diethylhexylphthalate (DEHP) pretreatment attenuated TCDD-induced Fgf21 expression in mouse liver and white adipose tissue, which may explain a previous report that DEHP pretreatment decreases TCDD-induced wasting. In conclusion, Fgf21 appears to be a target gene of AhR-signaling pathway in mouse and human liver. - Highlights: • TCDD induced Fgf21 expression at both mRNA and protein levels. • Fgf21 induction by TCDD is AhR-dependent. • DEHP attenuated TCDD-induced Fgf21 expression.

  20. Gene expression analysis of aberrant signaling pathways in meningiomas

    PubMed Central

    TORRES-MARTÍN, MIGUEL; MARTINEZ-GLEZ, VICTOR; PEÑA-GRANERO, CAROLINA; ISLA, ALBERTO; LASSALETTA, LUIS; DE CAMPOS, JOSE M.; PINTO, GIOVANNY R.; BURBANO, ROMMEL R.; MELÉNDEZ, BÁRBARA; CASTRESANA, JAVIER S.; REY, JUAN A.

    2013-01-01

    Examining aberrant pathway alterations is one method for understanding the abnormal signals that are involved in tumorigenesis and tumor progression. In the present study, expression arrays were performed on tumor-related genes in meningiomas. The GE Array Q Series HS-006 was used to determine the expression levels of 96 genes that corresponded to six primary biological regulatory pathways in a series of 42 meningiomas, including 32 grade I, four recurrent grade I and six grade II tumors, in addition to three normal tissue controls. Results showed that 25 genes that were primarily associated with apoptosis and angiogenesis functions were downregulated and 13 genes frequently involving DNA damage repair functions were upregulated. In addition to the inactivation of the neurofibromin gene, NF2, which is considered to be an early step in tumorigenesis, variations of other biological regulatory pathways may play a significant role in the development of meningioma. PMID:23946817

  1. Gene expression analysis of aberrant signaling pathways in meningiomas.

    PubMed

    Torres-Martín, Miguel; Martinez-Glez, Victor; Peña-Granero, Carolina; Isla, Alberto; Lassaletta, Luis; DE Campos, Jose M; Pinto, Giovanny R; Burbano, Rommel R; Meléndez, Bárbara; Castresana, Javier S; Rey, Juan A

    2013-07-01

    Examining aberrant pathway alterations is one method for understanding the abnormal signals that are involved in tumorigenesis and tumor progression. In the present study, expression arrays were performed on tumor-related genes in meningiomas. The GE Array Q Series HS-006 was used to determine the expression levels of 96 genes that corresponded to six primary biological regulatory pathways in a series of 42 meningiomas, including 32 grade I, four recurrent grade I and six grade II tumors, in addition to three normal tissue controls. Results showed that 25 genes that were primarily associated with apoptosis and angiogenesis functions were downregulated and 13 genes frequently involving DNA damage repair functions were upregulated. In addition to the inactivation of the neurofibromin gene, NF2, which is considered to be an early step in tumorigenesis, variations of other biological regulatory pathways may play a significant role in the development of meningioma. PMID:23946817

  2. PI3K/Akt signalling pathway and cancer.

    PubMed

    Fresno Vara, Juan Angel; Casado, Enrique; de Castro, Javier; Cejas, Paloma; Belda-Iniesta, Cristóbal; González-Barón, Manuel

    2004-04-01

    Phosphatidylinositol-3 kinases, PI3Ks, constitute a lipid kinase family characterized by their ability to phosphorylate inositol ring 3'-OH group in inositol phospholipids to generate the second messenger phosphatidylinositol-3,4,5-trisphosphate (PI-3,4,5-P(3)). RPTK activation results in PI(3,4,5)P(3) and PI(3,4)P(2) production by PI3K at the inner side of the plasma membrane. Akt interacts with these phospholipids, causing its translocation to the inner membrane, where it is phosphorylated and activated by PDK1 and PDK2. Activated Akt modulates the function of numerous substrates involved in the regulation of cell survival, cell cycle progression and cellular growth. In recent years, it has been shown that PI3K/Akt signalling pathway components are frequently altered in human cancers. Cancer treatment by chemotherapy and gamma-irradiation kills target cells primarily by the induction of apoptosis. However, the development of resistance to therapy is an important clinical problem. Failure to activate the apoptotic programme represents an important mode of drug resistance in tumor cells. Survival signals induced by several receptors are mediated mainly by PI3K/Akt, hence this pathway may decisively contribute to the resistant phenotype. Many of the signalling pathways involved in cellular transformation have been elucidated and efforts are underway to develop treatment strategies that target these specific signalling molecules or their downstream effectors. The PI3K/Akt pathway is involved in many of the mechanisms targeted by these new drugs, thus a better understanding of this crossroad can help to fully exploit the potential benefits of these new agents. PMID:15023437

  3. Nutrient shortage triggers the hexosamine biosynthetic pathway via the GCN2-ATF4 signalling pathway

    PubMed Central

    Chaveroux, Cédric; Sarcinelli, Carmen; Barbet, Virginie; Belfeki, Sofiane; Barthelaix, Audrey; Ferraro-Peyret, Carole; Lebecque, Serge; Renno, Toufic; Bruhat, Alain; Fafournoux, Pierre; Manié, Serge N.

    2016-01-01

    The hexosamine biosynthetic pathway (HBP) is a nutrient-sensing metabolic pathway that produces the activated amino sugar UDP-N-acetylglucosamine, a critical substrate for protein glycosylation. Despite its biological significance, little is known about the regulation of HBP flux during nutrient limitation. Here, we report that amino acid or glucose shortage increase GFAT1 production, the first and rate-limiting enzyme of the HBP. GFAT1 is a transcriptional target of the activating transcription factor 4 (ATF4) induced by the GCN2-eIF2α signalling pathway. The increased production of GFAT1 stimulates HBP flux and results in an increase in O-linked β-N-acetylglucosamine protein modifications. Taken together, these findings demonstrate that ATF4 provides a link between nutritional stress and the HBP for the regulation of the O-GlcNAcylation-dependent cellular signalling. PMID:27255611

  4. Nutrient shortage triggers the hexosamine biosynthetic pathway via the GCN2-ATF4 signalling pathway.

    PubMed

    Chaveroux, Cédric; Sarcinelli, Carmen; Barbet, Virginie; Belfeki, Sofiane; Barthelaix, Audrey; Ferraro-Peyret, Carole; Lebecque, Serge; Renno, Toufic; Bruhat, Alain; Fafournoux, Pierre; Manié, Serge N

    2016-01-01

    The hexosamine biosynthetic pathway (HBP) is a nutrient-sensing metabolic pathway that produces the activated amino sugar UDP-N-acetylglucosamine, a critical substrate for protein glycosylation. Despite its biological significance, little is known about the regulation of HBP flux during nutrient limitation. Here, we report that amino acid or glucose shortage increase GFAT1 production, the first and rate-limiting enzyme of the HBP. GFAT1 is a transcriptional target of the activating transcription factor 4 (ATF4) induced by the GCN2-eIF2α signalling pathway. The increased production of GFAT1 stimulates HBP flux and results in an increase in O-linked β-N-acetylglucosamine protein modifications. Taken together, these findings demonstrate that ATF4 provides a link between nutritional stress and the HBP for the regulation of the O-GlcNAcylation-dependent cellular signalling. PMID:27255611

  5. The sphingolipid salvage pathway in ceramide metabolism and signaling

    PubMed Central

    Kitatani, Kazuyuki; Idkowiak-Baldys, Jolanta; Hannun, Yusuf A.

    2008-01-01

    Sphingolipids are important components of eukaryotic cells, many of which function as bioactive signaling molecules. Of these, ceramide is a central metabolite and plays key roles in a variety of cellular responses, including regulation of cell growth, viability, differentiation, and senescence. Ceramide is composed of the long-chain sphingoid base, sphingosine, in N-linkage to a variety of acyl groups. Sphingosine serves as the product of sphingolipid catabolism, and it is mostly salvaged through re-acylation, resulting in the generation of ceramide or its derivatives. This recycling of sphingosine is termed the “salvage pathway”, and recent evidence points to important roles for this pathway in ceramide metabolism and function. A number of enzymes are involved in the salvage pathway, and these include sphingomyelinases, cerebrosidases, ceramidases, and ceramide synthases. Recent studies suggest that the salvage pathway is not only subject to regulation, but it also modulates the formation of ceramide and subsequent ceramide-dependent cellular signals. This review focuses on the salvage pathway in ceramide metabolism, its regulation, its experimental analysis, and emerging biological functions. PMID:18191382

  6. Anti-metastatic treatment in colorectal cancer: targeting signaling pathways.

    PubMed

    Lemos, Clara; Sack, Ulrike; Schmid, Felicitas; Juneja, Manisha; Stein, Ulrike

    2013-01-01

    Colorectal cancer is one of the most common cancers worldwide and one of the leading causes of cancer-related death in the Western world. Tumor progression towards metastasis affects a large number of patients with colorectal cancer and seriously affects their clinical outcome. Therefore, considerable effort has been made towards the development of therapeutic strategies that can decrease or prevent colorectal cancer metastasis. Standard treatment of metastatic colorectal cancer with chemotherapy has been improved in the last 10 years by the addition of new targeted agents. The currently used antibodies bevacizumab, cetuximab and panitumumab target the VEGF and EGFR signaling pathways, which are crucial for tumor progression and metastasis. These antibodies have shown relevant efficacy in both first- and second-line treatment of metastatic colorectal cancer. Additionally, other signaling pathways, including the Wnt and HGF/Met pathways, have a well-established role in colorectal cancer progression and metastasis and constitute, therefore, promising targets for new therapeutic approaches. Several new drugs targeting these pathways, including different antibodies and small-molecule tyrosine kinase inhibitors, are currently being developed and tested in clinical trials. In this review, we summarize the new developments in this field, focusing on the inhibitors that show more promising results for use in colorectal cancer patients. PMID:22973955

  7. Rho-signaling pathways in chronic myelogenous leukemia.

    PubMed

    Kuzelová, Katerina; Hrkal, Zbynēk

    2008-12-01

    Chronic myelogenous leukemia (CML) is a hematological malignancy that is characteristic by as expansion of myeloid cells and their premature release into the circulation. The molecular cause of CML is the fusion oncoprotein Bcr-Abl whose constitutive tyrosine-kinase (TK) activity maintains enhanced signaling through multiple signal transduction pathways and confers proliferative and survival advantage to CML cells. These effects can be largely suppressed by TK inhibitor Imatinib mesylate, currently the leading drug in CML treatment. However, Bcr-Abl contains also additional functional domains, in particular a DBL homology (DH) domain with guanine-exchange function (GEF) which can activate small GTPases of Rho family and a Src-homology3 (SH3) domain which recruits other proteins with GEF activity. Bcr-Abl affects among others the RhoA/ROCK/LIM/cofilin pathway that regulates the actin cytoskeleton assembly and thereby the cellular adhesion and migration. This review deals in detail with the known points of interference between Bcr-Abl and Rho kinase pathways and with the effects of Imatinib mesylate on Rho signaling and cell adhesion to the extracellular matrix (ECM) components. The potential protein targets related to Bcr-Abl non-kinase activity are discussed. PMID:19075636

  8. Targeting the Hedgehog signaling pathway in cancer: beyond Smoothened

    PubMed Central

    Gonnissen, Annelies; Isebaert, Sofie; Haustermans, Karin

    2015-01-01

    An essential role for Hedgehog (Hh) signaling in human cancer has been established beyond doubt. At present, targeting Hh signaling has mainly been investigated with SMO inhibitors. Unfortunately, resistance against currently used SMO inhibitors has already been observed in basal cell carcinoma (BCC) patients. Therefore, the use of Hh inhibitors targeting the signaling cascade more downstream of SMO could represent a more promising strategy. Furthermore, besides the classical canonical way of Hh signaling activation, non-canonical activation of the GLI transcription factors by multiple important signaling pathways (e.g. MAPK, PI3K, TGFβ) has also been described, pinpointing the importance of targeting the transcription factors GLI1/2. The most promising agent in this context is probably the GLI1/2 inhibitor GANT61 which has been investigated preclinically in numerous tumor types in the last few years. In this review, the emerging role of Hh signaling in cancer is critically evaluated focusing on the potential of targeting Hh signaling more downstream of SMO, i.e. at the level of the GLI transcription factors. Furthermore, the working mechanism and therapeutic potential of the most extensively studied GLI inhibitor in human cancer, i.e. GANT61, is discussed in detail. In conclusion, GANT61 appears to be highly effective against human cancer cells and in xenograft mouse models, targeting almost all of the classical hallmarks of cancer and could hence represent a promising treatment option for human cancer. PMID:26053182

  9. Color signals through dorsal and ventral visual pathways

    PubMed Central

    Conway, Bevil R.

    2014-01-01

    Explanations for color phenomena are often sought in the retina, LGN and V1, yet it is becoming increasingly clear that a complete account will take us further along the visual-processing pathway. Working out which areas are involved is not trivial. Responses to S-cone activation are often assumed to indicate that an area or neuron is involved in color perception. However, work tracing S-cone signals into extrastriate cortex has challenged this assumption: S-cone responses have been found in brain regions, such as MT, not thought to play a major role in color perception. Here we review the processing of S-cone signals across cortex and present original data on S-cone responses measured with fMRI in alert macaque, focusing on one area in which S-cone signals seem likely to contribute to color (V4/posterior inferior temporal cortex), and on one area in which S signals are unlikely to play a role in color (MT). We advance a hypothesis that the S-cone signals in color-computing areas are required to achieve a balanced neural representation of perceptual color space, while the S-cone signals in non-color-areas provide a cue to illumination (not luminance) and confer sensitivity to the chromatic contrast generated by natural daylight (shadows, illuminated by ambient sky, surrounded by direct sunlight). This sensitivity would facilitate the extraction of shape-from-shadow signals to benefit global scene analysis and motion perception. PMID:24103417

  10. The aryl hydrocarbon receptor (AHR) transcription factor regulates megakaryocytic polyploidization

    PubMed Central

    Lindsey, Stephan; T. Papoutsakis, Eleftherios

    2012-01-01

    Summary We propose that the aryl hydrocarbon receptor (AHR) is a novel transcriptional regulator of megakaryopoietic polyploidization. Functional evidence was obtained that AHR impacts in vivo megakaryocytic differentiation and maturation; compared to wild-type mice, AHR-null mice had lower platelet counts, fewer numbers of newly synthesized platelets, increased bleeding times and lower-ploidy megakaryocytes (Mks). AHR mRNA increased 3·6-fold during ex vivo megakaryocytic differentiation, but reduced or remained constant during parallel isogenic granulocytic or erythroid differentiation. We interrogated the role of AHR in megakaryopoiesis using a validated Mk model of megakaryopoiesis, the human megakaryoblastic leukaemia CHRF cell line. Upon CHRF Mk differentiation, AHR mRNA and protein levels increased, AHR protein shifted from the cytoplasm to the nucleus and AHR binding to its consensus DNA binding sequence increased. Protein and mRNA levels of the AHR transcriptional target HES1 also increased. Mk differentiation of CHRF cells where AHR or HES1 was knocked-down using RNAi resulted in lower ploidy distributions and cells that were incapable of reaching ploidy classes ≥16n. AHR knockdown also resulted in increased DNA synthesis of lower ploidy cells, without impacting apoptosis. Together, these data support a role for AHR in Mk polyploidization and in vivo platelet function, and warrant further detailed investigations. PMID:21226706

  11. The AhR agonist VAF347 augments retinoic acid-induced differentiation in leukemia cells.

    PubMed

    Ibabao, Christopher N; Bunaciu, Rodica P; Schaefer, Deanna M W; Yen, Andrew

    2015-01-01

    In binary cell-fate decisions, driving one lineage and suppressing the other are conjoined. We have previously reported that aryl hydrocarbon receptor (AhR) promotes retinoic acid (RA)-induced granulocytic differentiation of lineage bipotent HL-60 myeloblastic leukemia cells. VAF347, an AhR agonist, impairs the development of CD14(+)CD11b(+) monocytes from granulo-monocytic (GM) stage precursors. We thus hypothesized that VAF347 propels RA-induced granulocytic differentiation and impairs D3-induced monocytic differentiation of HL-60 cells. Our results show that VAF347 enhanced RA-induced cell cycle arrest, CD11b integrin expression and neutrophil respiratory burst. Granulocytic differentiation is known to be driven by MAPK signaling events regulated by Fgr and Lyn Src-family kinases, the CD38 cell membrane receptor, the Vav1 GEF, the c-Cbl adaptor, as well as AhR, all of which are embodied in a putative signalsome. We found that the VAF347 AhR ligand regulates the signalsome. VAF347 augments RA-induced expression of AhR, Lyn, Vav1, and c-Cbl as well as p47(phox). Several interactions of partners in the signalsome appear to be enhanced: Fgr interaction with c-Cbl, CD38, and with pS259c-Raf and AhR interaction with c-Cbl and Lyn. Thus, we report that, while VAF347 impedes monocytic differentiation induced by 1,25-dihydroxyvitamin D3, VAF347 promotes RA-induced differentiation. This effect seems to involve but not to be limited to Lyn, Vav1, c-Cbl, AhR, and Fgr. PMID:25941627

  12. Multiplicity and plasticity of natural killer cell signaling pathways

    PubMed Central

    Chiesa, Sabrina; Mingueneau, Michael; Fuseri, Nicolas; Malissen, Bernard; Raulet, David H.; Malissen, Marie; Vivier, Eric; Tomasello, Elena

    2006-01-01

    Natural killer (NK) cells express an array of activating receptors that associate with DAP12 (KARAP), CD3ζ, and/or FcRγ ITAM (immunoreceptor tyrosine-based activation motif)–bearing signaling subunits. In T and mast cells, ITAM-dependent signals are integrated by critical scaffolding elements such as LAT (linker for activation of T cells) and NTAL (non–T-cell activation linker). Using mice that are deficient for ITAM-bearing molecules, LAT or NTAL, we show that NK cell cytotoxicity and interferon-γ secretion are initiated by ITAM-dependent and -independent as well as LAT/NTAL-dependent and -independent pathways. The role of these various signaling circuits depends on the target cell as well as on the activation status of the NK cell. The multiplicity and the plasticity of the pathways that initiate NK cell effector functions contrast with the situation in T cells and B cells and provide an explanation for the resiliency of NK cell effector functions to various pharmacologic inhibitors and genetic mutations in signaling molecules. PMID:16291591

  13. [Sonic Hedgehog signaling pathway and regulation of inner ear development].

    PubMed

    Chen, Zhi-Qiang; Han, Xin-Huan; Cao, Xin

    2013-09-01

    During inner ear development, Sonic Hedgehog (Shh) signaling pathway is involved in the ventral otic identity, cell fate determination of statoacoustic ganglion neurons and hair cell development. Shh protein, secreted from floor plate, antagonizes Wnt protein from roof plate, which refines and maintains dorsoventral axial patterning in the ear. Shh, served as a mitogen during neurogenesis, directly promotes the development of spiral ganglion neuron. After Shh signaling pathway is activated, Ngn1 is freed from Tbx1 repression. As a result, Shh indirectly upregulates the expression of Ngn1, thus regulating neurogenic patterning of inner ear. In addition, Shh regulates the differentiation of hair cells by influencing cell cycle of the progenitor cells located in the cochlea. The basal-to-apical wave of Shh decline ensures the normal devel- opment pattern of hair cells. It is confirmed by a quantity of researches conducted in both animals and patients with hereditary hearing impairment that abnormal Shh signaling results in aberrant transcription of target genes, disturbance of the proper development of inner ear, and human hearing impairment. In humans, diseases accompanied by hearing disorders caused by abnormal Shh signaling include Greig cephalopolysyndactyly syndrome (GCPS), Pallister-Hall syndrome (PHS), Waardenburg syndrome (WS) and medulloblastoma, etc. This review would provide a theoretical basis for further study of molecular mechanisms and clinical use of inner ear development. PMID:24400478

  14. SEPT4 is regulated by the Notch signaling pathway.

    PubMed

    Liu, Wenbin

    2012-04-01

    Notch receptor-mediated signaling is an evolutionarily conserved pathway that regulates diverse developmental processes and its dysregulation has been implicated in a variety of developmental disorders and cancers. Notch functions in these processes by activating expression of its target genes. Septin 4 (SEPT4) is a polymerizing GTP-binding protein that serves as scaffold for diverse molecules and is involved in cell proliferation and apoptosis. After activation of the Notch signal, the expression of SEPT4 is up-regulated and cell proliferation is inhibited. When the Notch signal is inhibited by the CSL (CBF1/Su(H)/Lag-1)-binding-domain-negative Mastermind-like protein 1, the expression of SEPT4 is down-regulated, proliferation and colony formation of cells are promoted, but cell adhesion ability is decreased. Nevertheless, the SEPT4 expression is not affected after knock-down of CSL. Meanwhile, if SEPT4 activity is inhibited through RNA interference, the protein level and activity of NOTCH1 remains unchanged, but cell proliferation is dysregulated. This indicates that SEPT4 is a Notch target gene. This relationship between Notch signaling pathway and SEPT4 offers a potential basis for further study of developmental control and carcinogenesis. PMID:21938432

  15. Purmorphamine induces osteogenesis by activation of the hedgehog signaling pathway.

    PubMed

    Wu, Xu; Walker, John; Zhang, Jie; Ding, Sheng; Schultz, Peter G

    2004-09-01

    Previously, a small molecule, purmorphamine, was identified that selectively induces osteogenesis in multipotent mesenchymal progenitor cells. In order to gain insights into the mechanism of action of purmorphamine, high-density oligonucleotide microarrays were used to profile gene expression in multipotent mesenchymal progenitor cells treated with either purmorphamine or bone morphogenetic protein-4 (BMP-4). In contrast to BMP-4 treatment, purmorphamine activates the Hedgehog (Hh) signaling pathway, resulting in the up- and downregulation of its downstream target genes, including Gli1 and Patched. Moreover, the known Hh signaling antagonists, cyclopamine and forskolin, completely block the osteogenesis and Glimediated transcription induced by purmorphamine. These results demonstrate that purmorphamine is a small molecule agonist of Hedgehog signaling, and it may ultimately be useful in the treatment of bone-related disease and neurodegenerative disease. PMID:15380183

  16. Pentagone internalises glypicans to fine-tune multiple signalling pathways

    PubMed Central

    Norman, Mark; Vuilleumier, Robin; Springhorn, Alexander; Gawlik, Jennifer; Pyrowolakis, George

    2016-01-01

    Tight regulation of signalling activity is crucial for proper tissue patterning and growth. Here we investigate the function of Pentagone (Pent), a secreted protein that acts in a regulatory feedback during establishment and maintenance of BMP/Dpp morphogen signalling during Drosophila wing development. We show that Pent internalises the Dpp co-receptors, the glypicans Dally and Dally-like protein (Dlp), and propose that this internalisation is important in the establishment of a long range Dpp gradient. Pent-induced endocytosis and degradation of glypicans requires dynamin- and Rab5, but not clathrin or active BMP signalling. Thus, Pent modifies the ability of cells to trap and transduce BMP by fine-tuning the levels of the BMP reception system at the plasma membrane. In addition, and in accordance with the role of glypicans in multiple signalling pathways, we establish a requirement of Pent for Wg signalling. Our data propose a novel mechanism by which morphogen signalling is regulated. DOI: http://dx.doi.org/10.7554/eLife.13301.001 PMID:27269283

  17. Targeting the HGF/MET signalling pathway in cancer therapy

    PubMed Central

    Cecchi, Fabiola; Rabe, Daniel C.; Bottaro, Donald P.

    2012-01-01

    Introduction Under normal conditions, hepatocyte growth factor (HGF)-induced activation of its cell surface receptor, the Met tyrosine kinase (TK), is tightly regulated by paracrine ligand delivery, ligand activation at the target cell surface, and ligand activated receptor internalization and degradation. Despite these controls, HGF/Met signaling contributes to oncogenesis and tumor progression in several cancers and promotes aggressive cellular invasiveness that is strongly linked to tumor metastasis. Area covered The prevalence of HGF/Met pathway activation in human malignancies has driven rapid growth in cancer drug development programs. The authors review Met structure and function, the basic properties of HGF/Met pathway antagonists now in preclinical and clinical development, as well as the latest clinical trial results. Expert opinion Clinical trials with HGF/Met pathway antagonists show that as a class these agents are well tolerated. Although widespread efficacy was not seen in several completed phase 2 studies, promising results have been reported in lung, gastric, prostate and papillary renal cancer patients treated with these agents. The main challenges facing the effective use of HGF/Met-targeted antagonists for cancer treatment are optimal patient selection, diagnostic and pharmacodynamic biomarker development, and the identification and testing of optimal therapy combinations. The wealth of basic information, analytical reagents and model systems available concerning HGF/Met oncogenic signaling will continue to be invaluable in meeting these challenges and moving expeditiously toward more effective disease control. PMID:22530990

  18. Signaling Pathways Involved in Lunar Dust Induced Cytotoxicity

    NASA Technical Reports Server (NTRS)

    Zhang, Ye; Lam, Chiu-Wing; Scully, Robert R.; Williams, Kyle; Zalesak, Selina; Wu, Honglu; James, John T.

    2014-01-01

    The Moon's surface is covered by a layer of fine, reactive dust. Lunar dust contain about 1-2% of very fine dust (< 3 micron), that is respirable. The habitable area of any lunar landing vehicle and outpost would inevitably be contaminated with lunar dust that could pose a health risk. The purpose of the study is to evaluate the toxicity of Apollo moon dust in rodents to assess the health risk of dust exposures to humans. One of the particular interests in the study is to evaluate dust-induced changes of the expression of fibrosis-related genes, and to identify specific signaling pathways involved in lunar dust-induced toxicity. F344 rats were exposed for 4 weeks (6h/d; 5d/wk) in nose-only inhalation chambers to concentrations of 0 (control air), 2.1, 6.1, 21, and 61 mg/m(exp 3) of lunar dust. Five rats per group were euthanized 1 day, 1 week, 1 month, and 3 months after the last inhalation exposure. The total RNAs were isolated from the blood or lung tissue after being lavaged, using the Qigen RNeasy kit. The Rat Fibrosis RT2 Profile PCR Array was used to profile the expression of 84 genes relevant to fibrosis. The genes with significant expression changes are identified and the gene expression data were further analyzed using IPA pathway analysis tool to determine the signaling pathways with significant changes.

  19. Muscle redox signalling pathways in exercise. Role of antioxidants.

    PubMed

    Mason, Shaun A; Morrison, Dale; McConell, Glenn K; Wadley, Glenn D

    2016-09-01

    Recent research highlights the importance of redox signalling pathway activation by contraction-induced reactive oxygen species (ROS) and nitric oxide (NO) in normal exercise-related cellular and molecular adaptations in skeletal muscle. In this review, we discuss some potentially important redox signalling pathways in skeletal muscle that are involved in acute and chronic responses to contraction and exercise. Specifically, we discuss redox signalling implicated in skeletal muscle contraction force, mitochondrial biogenesis and antioxidant enzyme induction, glucose uptake and muscle hypertrophy. Furthermore, we review evidence investigating the impact of major exogenous antioxidants on these acute and chronic responses to exercise. Redox signalling pathways involved in adaptive responses in skeletal muscle to exercise are not clearly elucidated at present, and further research is required to better define important signalling pathways involved. Evidence of beneficial or detrimental effects of specific antioxidant compounds on exercise adaptations in muscle is similarly limited, particularly in human subjects. Future research is required to not only investigate effects of specific antioxidant compounds on skeletal muscle exercise adaptations, but also to better establish mechanisms of action of specific antioxidants in vivo. Although we feel it remains somewhat premature to make clear recommendations in relation to application of specific antioxidant compounds in different exercise settings, a bulk of evidence suggests that N-acetylcysteine (NAC) is ergogenic through its effects on maintenance of muscle force production during sustained fatiguing events. Nevertheless, a current lack of evidence from studies using performance tests representative of athletic competition and a potential for adverse effects with high doses (>70mg/kg body mass) warrants caution in its use for performance enhancement. In addition, evidence implicates high dose vitamin C (1g/day) and E

  20. Key gravity-sensitive signaling pathways drive T cell activation.

    PubMed

    Boonyaratanakornkit, J B; Cogoli, A; Li, C-F; Schopper, T; Pippia, P; Galleri, G; Meloni, M A; Hughes-Fulford, M

    2005-12-01

    Returning astronauts have experienced altered immune function and increased vulnerability to infection during spaceflights dating back to Apollo and Skylab. Lack of immune response in microgravity occurs at the cellular level. We analyzed differential gene expression to find gravity-dependent genes and pathways. We found inhibited induction of 91 genes in the simulated freefall environment of the random positioning machine. Altered induction of 10 genes regulated by key signaling pathways was verified using real-time RT-PCR. We discovered that impaired induction of early genes regulated primarily by transcription factors NF-kappaB, CREB, ELK, AP-1, and STAT after crosslinking the T-cell receptor contributes to T-cell dysfunction in altered gravity environments. We have previously shown that PKA and PKC are key early regulators in T-cell activation. Since the majority of the genes were regulated by NF-kappaB, CREB, and AP-1, we studied the pathways that regulated these transcription factors. We found that the PKA pathway was down-regulated in vg. In contrast, PI3-K, PKC, and its upstream regulator pLAT were not significantly down-regulated by vectorless gravity. Since NF-kappaB, AP-1, and CREB are all regulated by PKA and are transcription factors predicted by microarray analysis to be involved in the altered gene expression in vectorless gravity, the data suggest that PKA is a key player in the loss of T-cell activation in altered gravity. PMID:16210397

  1. Integrative analyses reveal signaling pathways underlying familial breast cancer susceptibility.

    PubMed

    Piccolo, Stephen R; Hoffman, Laura M; Conner, Thomas; Shrestha, Gajendra; Cohen, Adam L; Marks, Jeffrey R; Neumayer, Leigh A; Agarwal, Cori A; Beckerle, Mary C; Andrulis, Irene L; Spira, Avrum E; Moos, Philip J; Buys, Saundra S; Johnson, William Evan; Bild, Andrea H

    2016-03-01

    The signaling events that drive familial breast cancer (FBC) risk remain poorly understood. While the majority of genomic studies have focused on genetic risk variants, known risk variants account for at most 30% of FBC cases. Considering that multiple genes may influence FBC risk, we hypothesized that a pathway-based strategy examining different data types from multiple tissues could elucidate the biological basis for FBC. In this study, we performed integrated analyses of gene expression and exome-sequencing data from peripheral blood mononuclear cells and showed that cell adhesion pathways are significantly and consistently dysregulated in women who develop FBC. The dysregulation of cell adhesion pathways in high-risk women was also identified by pathway-based profiling applied to normal breast tissue data from two independent cohorts. The results of our genomic analyses were validated in normal primary mammary epithelial cells from high-risk and control women, using cell-based functional assays, drug-response assays, fluorescence microscopy, and Western blotting assays. Both genomic and cell-based experiments indicate that cell-cell and cell-extracellular matrix adhesion processes seem to be disrupted in non-malignant cells of women at high risk for FBC and suggest a potential role for these processes in FBC development. PMID:26969729

  2. Wnt signaling pathway in non-small cell lung cancer.

    PubMed

    Stewart, David J

    2014-01-01

    Wnt/β-catenin alterations are prominent in human malignancies. In non-small cell lung cancer (NSCLC), β-catenin and APC mutations are uncommon, but Wnt signaling is important in NSCLC cell lines, and Wnt inhibition reduces proliferation. Overexpression of Wnt-1, -2, -3, and -5a and of Wnt-pathway components Frizzled-8, Dishevelled, Porcupine, and TCF-4 is common in resected NSCLC and is associated with poor prognosis. Conversely, noncanonical Wnt-7a suppresses NSCLC development and is often downregulated. Although β-catenin is often expressed in NSCLCs, it was paradoxically associated with improved prognosis in some series, possibly because of E-cadherin interactions. Downregulation of Wnt inhibitors (eg, by hypermethylation) is common in NSCLC tumor cell lines and resected samples; may be associated with high stage, dedifferentiation, and poor prognosis; and has been reported for AXIN, sFRPs 1-5, WIF-1, Dkk-1, Dkk-3, HDPR1, RUNX3, APC, CDX2, DACT2, TMEM88, Chibby, NKD1, EMX2, ING4, and miR-487b. AXIN is also destabilized by tankyrases, and GSK3β may be inactivated through phosphorylation by EGFR. Preclinically, restoration of Wnt inhibitor function is associated with reduced Wnt signaling, decreased cell proliferation, and increased apoptosis. Wnt signaling may also augment resistance to cisplatin, docetaxel, and radiotherapy, and Wnt inhibitors may restore sensitivity. Overall, available data indicate that Wnt signaling substantially impacts NSCLC tumorigenesis, prognosis, and resistance to therapy, with loss of Wnt signaling inhibitors by promoter hypermethylation or other mechanisms appearing to be particularly important. Wnt pathway antagonists warrant exploration clinically in NSCLC. Agents blocking selected specific β-catenin interactions and approaches to increase expression of downregulated Wnt inhibitors may be of particular interest. PMID:24309006

  3. Light-Mediated Remote Control of Signaling Pathways

    PubMed Central

    Priestman, Melanie A.; Lawrence, David S.

    2009-01-01

    Summary Cell signaling networks display an extraordinary range of temporal and spatial plasticity. Our programmatic approach focuses on the construction of intracellular probes, including sensors, inhibitors, and functionally unique proteins that can be temporally and spatially controlled by the investigator even after they have entered the cell. We have designed and evaluated protein kinase sensors that furnish a fluorescent readout upon phosphorylation. In addition, since the sensors are inert (i.e. cannot be phosphorylated) until activated by light, they can be carried through the various stages of any given cell-based behavior without being consumed. Using this strategy, we have shown that PKCβ is essential for nuclear envelope breakdown and thus the transition from prophase to metaphase in actively dividing cells. Photoactivatable proteins furnish the means to initiate cellular signaling pathways with a high degree of spatial and temporal control. We have used this approach to demonstrate that cofilin serves as a component of the steering apparatus of the cell. Finally, inhibitors are commonly used to assess the participation of specific enzymes in signaling pathways that control cellular behavior. We have constructed a photo-deactivatable inhibitor, an inhibitory species that can be switched off with light. In the absence of light, the target enzyme is inactive due to the presence of the potent inhibitory molecule. Upon photolysis, the inhibitory molecule is destroyed and enzymatic activity is released. PMID:19765679

  4. The Gq signalling pathway inhibits brown and beige adipose tissue

    PubMed Central

    Klepac, Katarina; Kilić, Ana; Gnad, Thorsten; Brown, Loren M.; Herrmann, Beate; Wilderman, Andrea; Balkow, Aileen; Glöde, Anja; Simon, Katharina; Lidell, Martin E.; Betz, Matthias J.; Enerbäck, Sven; Wess, Jürgen; Freichel, Marc; Blüher, Matthias; König, Gabi; Kostenis, Evi; Insel, Paul A.; Pfeifer, Alexander

    2016-01-01

    Brown adipose tissue (BAT) dissipates nutritional energy as heat via the uncoupling protein-1 (UCP1) and BAT activity correlates with leanness in human adults. Here we profile G protein-coupled receptors (GPCRs) in brown adipocytes to identify druggable regulators of BAT. Twenty-one per cent of the GPCRs link to the Gq family, and inhibition of Gq signalling enhances differentiation of human and murine brown adipocytes. In contrast, activation of Gq signalling abrogates brown adipogenesis. We further identify the endothelin/Ednra pathway as an autocrine activator of Gq signalling in brown adipocytes. Expression of a constitutively active Gq protein in mice reduces UCP1 expression in BAT, whole-body energy expenditure and the number of brown-like/beige cells in white adipose tissue (WAT). Furthermore, expression of Gq in human WAT inversely correlates with UCP1 expression. Thus, our data indicate that Gq signalling regulates brown/beige adipocytes and inhibition of Gq signalling may be a novel therapeutic approach to combat obesity. PMID:26955961

  5. Distinct purinergic signaling pathways in prepubescent mouse spermatogonia.

    PubMed

    Fleck, David; Mundt, Nadine; Bruentgens, Felicitas; Geilenkirchen, Petra; Machado, Patricia A; Veitinger, Thomas; Veitinger, Sophie; Lipartowski, Susanne M; Engelhardt, Corinna H; Oldiges, Marco; Spehr, Jennifer; Spehr, Marc

    2016-09-01

    Spermatogenesis ranks among the most complex, yet least understood, developmental processes. The physiological principles that control male germ cell development in mammals are notoriously difficult to unravel, given the intricate anatomy and complex endo- and paracrinology of the testis. Accordingly, we lack a conceptual understanding of the basic signaling mechanisms within the testis, which control the seminiferous epithelial cycle and thus govern spermatogenesis. Here, we address paracrine signal transduction in undifferentiated male germ cells from an electrophysiological perspective. We identify distinct purinergic signaling pathways in prepubescent mouse spermatogonia, both in vitro and in situ. ATP-a dynamic, widespread, and evolutionary conserved mediator of cell to cell communication in various developmental contexts-activates at least two different spermatogonial purinoceptor isoforms. Both receptors operate within nonoverlapping stimulus concentration ranges, display distinct response kinetics and, in the juvenile seminiferous cord, are uniquely expressed in spermatogonia. We further find that spermatogonia express Ca(2+)-activated large-conductance K(+) channels that appear to function as a safeguard against prolonged ATP-dependent depolarization. Quantitative purine measurements additionally suggest testicular ATP-induced ATP release, a mechanism that could increase the paracrine radius of initially localized signaling events. Moreover, we establish a novel seminiferous tubule slice preparation that allows targeted electrophysiological recordings from identified testicular cell types in an intact epithelial environment. This unique approach not only confirms our in vitro findings, but also supports the notion of purinergic signaling during the early stages of spermatogenesis. PMID:27574293

  6. Parallel quorum sensing signaling pathways in Vibrio cholerae.

    PubMed

    Jung, Sarah A; Hawver, Lisa A; Ng, Wai-Leung

    2016-05-01

    Quorum sensing (QS) is a microbial signaling process for monitoring population density and complexity. Communication among bacterial cells via QS relies on the production, secretion, and detection of small molecules called autoinducers. Many bacteria have evolved their QS systems with different network architectures to incorporate information from multiple signals. In the human pathogen Vibrio cholerae, at least four parallel signaling pathways converge to control the activity of a single regulator to modulate its QS response. By integrating multiple signal inputs, it is believed that Vibrio species can survey intra-species, intra-genus, and inter-species populations and program their gene expression accordingly. Our recent studies suggest that this "many-to-one" circuitry is also important for maintaining the integrity of the input-output relationship of the system and minimizes premature commitment to QS due to signal perturbation. Here we discuss the implications of this specific parallel network setup for V. cholerae intercellular communication and how this system arrangement affects our approach to manipulate the QS response of this clinically important pathogen. PMID:26545759

  7. The Lophotrochozoan TGF-β signalling cassette - diversification and conservation in a key signalling pathway.

    PubMed

    Kenny, Nathan J; Namigai, Erica K O; Dearden, Peter K; Hui, Jerome H L; Grande, Cristina; Shimeld, Sebastian M

    2014-01-01

    TGF-β signalling plays a key role in the patterning of metazoan body plans and growth. It is widely regarded as a 'module' capable of co-option into novel functions. The TGF-β pathway arose in the Metazoan lineage, and while it is generally regarded as well conserved across evolutionary time, its components have been largely studied in the Ecdysozoa and Deuterostomia. The recent discovery of the Nodal molecule in molluscs has underlined the necessity of untangling this signalling network in lophotrochozoans in order to truly comprehend the evolution, conservation and diversification of this key pathway. Three novel genome resources, the mollusc Patella vulgata, annelid Pomatoceros lamarcki and rotifer Brachionus plicatilis, along with other publicly available data, were searched for the presence of TGF-β pathway genes. Bayesian and Maximum Likelihood analyses, along with some consideration of conserved domain structure, was used to confirm gene identity. Analysis revealed conservation of key components within the canonical pathway, allied with extensive diversification of TGF-β ligands and partial loss of genes encoding pathway inhibitors in some lophotrochozoan lineages. We fully describe the TGF-β signalling cassette of a range of lophotrochozoans, allowing firm inference to be drawn as to the ancestral state of this pathway in this Superphylum. The TGF-β signalling cascade's reputation as being highly conserved across the Metazoa is reinforced. Diversification within the activin-like complement, as well as potential wide loss of regulatory steps in some Phyla, hint at specific evolutionary implications for aspects of this cascade's functionality in this Superphylum. PMID:25690968

  8. Assembling the Puzzle: Pathways of Oxytocin Signaling in the Brain.

    PubMed

    Grinevich, Valery; Knobloch-Bollmann, H Sophie; Eliava, Marina; Busnelli, Marta; Chini, Bice

    2016-02-01

    Oxytocin (OT) is a neuropeptide, which can be seen to be one of the molecules of the decade due to its profound prosocial effects in nonvertebrate and vertebrate species, including humans. Although OT can be detected in various physiological fluids (blood, saliva, urine, cerebrospinal fluid) and brain tissue, it is unclear whether peripheral and central OT releases match and synergize. Moreover, the pathways of OT delivery to brain regions involved in specific behaviors are far from clear. Here, we discuss the evolutionarily and ontogenetically determined pathways of OT delivery and OT signaling, which orchestrate activity of the mesolimbic social decision-making network. Furthermore, we speculate that both the alteration in OT delivery and OT receptor expression may cause behavioral abnormalities in patients afflicted with psychosocial diseases. PMID:26001309

  9. Defects in Cytoskeletal Signaling Pathways, Arrhythmia, and Sudden Cardiac Death

    PubMed Central

    Smith, Sakima; Curran, Jerry; Hund, Thomas J.; Mohler, Peter J.

    2012-01-01

    Ankyrin polypeptides are cellular adapter proteins that tether integral membrane proteins to the cytoskeleton in a host of human organs. Initially identified as integral components of the cytoskeleton in erythrocytes, a recent explosion in ankyrin research has demonstrated that these proteins play prominent roles in cytoskeletal signaling pathways and membrane protein trafficking/regulation in a variety of excitable and non-excitable cells including heart and brain. Importantly, ankyrin research has translated from bench to bedside with the discovery of human gene variants associated with ventricular arrhythmias that alter ankyrin–based pathways. Ankyrin polypeptides have also been found to play an instrumental role in various forms of sinus node disease and atrial fibrillation (AF). Mouse models of ankyrin-deficiency have played fundamental roles in the translation of ankyrin-based research to new clinical understanding of human sinus node disease, AF, and ventricular tachycardia. PMID:22586405

  10. Crosstalk between pathways enhances the controllability of signalling networks.

    PubMed

    Wang, Dingjie; Jin, Suoqin; Zou, Xiufen

    2016-02-01

    The control of complex networks is one of the most challenging problems in the fields of biology and engineering. In this study, the authors explored the controllability and control energy of several signalling networks, which consisted of many interconnected pathways, including networks with a bow-tie architecture. On the basis of the theory of structure controllability, they revealed that biological mechanisms, such as cross-pathway interactions, compartmentalisation and so on make the networks easier to fully control. Furthermore, using numerical simulations for two realistic examples, they demonstrated that the control energy of normal networks with crosstalk is lower than in networks without crosstalk. These results indicate that the biological networks are optimally designed to achieve their normal functions from the viewpoint of the control theory. The authors' work provides a comprehensive understanding of the impact of network structures and properties on controllability. PMID:26816393

  11. Biology and significance of the JAK/STAT signalling pathways

    PubMed Central

    Kiu, Hiu; Nicholson, Sandra E

    2013-01-01

    Since its discovery two decades ago, the activation of the JAK/STAT pathway by numerous cytokines and growth factors has resulted in it becoming one of the most well studied intracellular signalling networks. The field has progressed from the identification of the individual components, to high-resolution crystal structures of both JAK and STAT, and an understanding of the complexities of the molecular activation and deactivation cycle which results in a diverse, yet highly specific and regulated pattern of transcriptional responses. While there is still more to learn, we now appreciate how disruption and de-regulation of this pathway can result in clinical disease and look forward to adoption of the next generation of JAK inhibitors in routine clinical treatment. PMID:22339650

  12. Biphasic Role of Calcium in Mouse Sperm Capacitation Signaling Pathways

    PubMed Central

    Alvau, Antonio; Escoffier, Jessica; Krapf, Dario; Sánchez-Cárdenas, Claudia; Salicioni, Ana M.; Darszon, Alberto; Visconti, Pablo E.

    2016-01-01

    Mammalian sperm acquire fertilizing ability in the female tract in a process known as capacitation. At the molecular level, capacitation is associated with up-regulation of a cAMP-dependent pathway, changes in intracellular pH, intracellular Ca2+ and an increase in tyrosine phosphorylation. How these signaling systems interact during capacitation is not well understood. Results presented in this study indicate that Ca2+ ions have a biphasic role in the regulation of cAMP-dependent signaling. Media without added Ca2+ salts (nominal zero Ca2+) still contain micromolar concentrations of this ion. Sperm incubated in this medium did not undergo PKA activation or the increase in tyrosine phosphorylation suggesting that these phosphorylation pathways require Ca2+. However, chelation of the extracellular Ca2+ traces by EGTA induced both cAMP-dependent phosphorylation and the increase in tyrosine phosphorylation. The EGTA effect in nominal zero Ca2+ media was mimicked by two calmodulin antagonists, W7 and calmidazolium, and by the calcineurin inhibitor cyclosporine A. These results suggest that Ca2+ ions regulate sperm cAMP and tyrosine phosphorylation pathways in a biphasic manner and that some of its effects are mediated by calmodulin. Interestingly, contrary to wild type mouse sperm, sperm from CatSper1 KO mice underwent PKA activation and an increase in tyrosine phosphorylation upon incubation in nominal zero Ca2+ media. Therefore, sperm lacking Catsper Ca2+ channels behave as wild-type sperm incubated in the presence of EGTA. This latter result suggests that Catsper transports the Ca2+ involved in the regulation of cAMP-dependent and tyrosine phosphorylation pathways required for sperm capacitation. PMID:25597298

  13. [Low-dose radiation effects and intracellular signaling pathways].

    PubMed

    Suzuki, Keiji; Kodama, Seiji; Watanabe, Masami

    2006-10-01

    Accumulated evidence has shown that exposure to low-dose radiation, especially doses less than 0.1 Gy, induces observable effects on mammalian cells. However, the underlying molecular mechanisms have not yet been clarified. Recently, it has been shown that low-dose radiation stimulates growth factor receptor, which results in a sequential activation of the mitogen-activated protein kinase pathway. In addition to the activation of the membrane-bound pathways, it is becoming evident that nuclear pathways are also activated by low-dose radiation. Ionizing radiation has detrimental effects on chromatin structure, since radiation-induced DNA double-strand breaks result in discontinuity of nucleosomes. Recently, it has been shown that ATM protein, the product of the ATM gene mutated in ataxia-telangiectasia, recognizes alteration in the chromatin structure, and it is activated through intermolecular autophosphorylation at serine 1981. Using antibodies against phosphorylated ATM, we found that the activated and phosphorylated ATM protein is detected as discrete foci in the nucleus between doses of 10 mGy and 1 Gy. Interestingly, the size of the foci induced by low-dose radiation was equivalent to the foci induced by high-dose radiation. These results indicate that the initial signal is amplified through foci growth, and cells evolve a system by which they can respond to a small number of DNA double-strand breaks. From these results, it can be concluded that low-dose radiation is sensed both in the membrane and in the nucleus, and activation of multiple signal transduction pathways could be involved in manifestations of low-dose effects. PMID:17016017

  14. Signaling pathways mediating chemotaxis in the social amoeba, Dictyostelium discoideum.

    PubMed

    Willard, Stacey S; Devreotes, Peter N

    2006-09-01

    Chemotaxis, or cell migration guided by chemical cues, is critical for a multitude of biological processes in a diverse array of organisms. Dictyostelium discoideum amoebae rely on chemotaxis to find food and to survive starvation conditions, and we have taken advantage of this system to study the molecular regulation of this vital cell behavior. Previous work has identified phosphoinositide signaling as one mechanism which may contribute to directional sensing and actin polymerization during chemotaxis; a mechanism which is conserved in mammalian neutrophils. In this review, we will discuss recent data on genes and pathways governing directional sensing and actin polymerization, with a particular emphasis on contributions from our laboratory. PMID:16962888

  15. Multiparticle collision dynamics for diffusion-influenced signaling pathways

    NASA Astrophysics Data System (ADS)

    Strehl, R.; Rohlf, K.

    2016-08-01

    An efficient yet accurate simulation method for modeling diffusion-influenced reaction networks is presented. The method extends existing reactive multiparticle collision dynamics by incorporating species-dependent diffusion coefficients, and developing theoretical expressions for the reactant-dependent diffusion control. This off-lattice particle-based mesoscopic simulation tool is particularly suited for problems in which detailed descriptions of particle trajectories and local reactions are required. Numerical simulations of an intracellular signaling pathway for bacterial chemotaxis are carried out to validate our approach, and to demonstrate its efficiency.

  16. To build a synapse: signaling pathways in neuromuscular junction assembly

    PubMed Central

    Wu, Haitao; Xiong, Wen C.; Mei, Lin

    2010-01-01

    Synapses, as fundamental units of the neural circuitry, enable complex behaviors. The neuromuscular junction (NMJ) is a synapse type that forms between motoneurons and skeletal muscle fibers and that exhibits a high degree of subcellular specialization. Aided by genetic techniques and suitable animal models, studies in the past decade have brought significant progress in identifying NMJ components and assembly mechanisms. This review highlights recent advances in the study of NMJ development, focusing on signaling pathways that are activated by diffusible cues, which shed light on synaptogenesis in the brain and contribute to a better understanding of muscular dystrophy. PMID:20215342

  17. Pericytes of the neurovascular unit: key functions and signaling pathways.

    PubMed

    Sweeney, Melanie D; Ayyadurai, Shiva; Zlokovic, Berislav V

    2016-05-26

    Pericytes are vascular mural cells embedded in the basement membrane of blood microvessels. They extend their processes along capillaries, pre-capillary arterioles and post-capillary venules. CNS pericytes are uniquely positioned in the neurovascular unit between endothelial cells, astrocytes and neurons. They integrate, coordinate and process signals from their neighboring cells to generate diverse functional responses that are critical for CNS functions in health and disease, including regulation of the blood-brain barrier permeability, angiogenesis, clearance of toxic metabolites, capillary hemodynamic responses, neuroinflammation and stem cell activity. Here we examine the key signaling pathways between pericytes and their neighboring endothelial cells, astrocytes and neurons that control neurovascular functions. We also review the role of pericytes in CNS disorders including rare monogenic diseases and complex neurological disorders such as Alzheimer's disease and brain tumors. Finally, we discuss directions for future studies. PMID:27227366

  18. Signalling pathways mediating inflammatory responses in brain ischaemia.

    PubMed

    Planas, A M; Gorina, R; Chamorro, A

    2006-12-01

    Stroke causes neuronal necrosis and generates inflammation. Pro-inflammatory molecules intervene in this process by triggering glial cell activation and leucocyte infiltration to the injured tissue. Cytokines are major mediators of the inflammatory response. Pro-inflammatory and anti-inflammatory cytokines are released in the ischaemic brain. Anti-inflammatory cytokines, such as interleukin-10, promote cell survival, whereas pro-inflammatory cytokines, such as TNFalpha (tumour necrosis factor alpha), can induce cell death. However, deleterious effects of certain cytokines can turn to beneficial actions, depending on particular features such as the concentration, time point and the very intricate network of intracellular signals that become activated and interact. A key player in the intracellular response to cytokines is the JAK (Janus kinase)/STAT (signal transducer and activator of transcription) pathway that induces alterations in the pattern of gene transcription. These changes are associated either with cell death or survival depending, among other things, on the specific proteins involved. STAT1 activation is related to cell death, whereas STAT3 activation is often associated with survival. Yet, it is clear that STAT activation must be tightly controlled, and for this reason the function of JAK/STAT modulators, such as SOCS (suppressors of cytokine signalling) and PIAS (protein inhibitor of activated STAT), and phosphatases is most relevant. Besides local effects in the ischaemic brain, cytokines are released to the circulation and affect the immune system. Unbalanced pro-inflammatory and anti-inflammatory plasma cytokine concentrations favouring an 'anti-inflammatory' state can decrease the immune response. Robust evidence now supports that stroke can induce an immunodepression syndrome, increasing the risk of infection. The contribution of individual cytokines and their intracellular signalling pathways to this response needs to be further investigated

  19. Hypergravity Stimulates Osteoblast Proliferation Via Matrix-Integrin-Signaling Pathways

    NASA Technical Reports Server (NTRS)

    Vercoutere, W.; Parra, M.; Roden, C.; DaCosta, M.; Wing, A.; Damsky, C.; Holton, E.; Searby, N.; Globus, R.; Almeida, E.

    2003-01-01

    Extensive characterizations of the physiologic consequences of microgravity and gravity indicate that lack of weight-bearing may cause tissue atrophy through cellular and subcellular level mechanisms. We hypothesize that gravity is needed for the efficient transduction of cell growth and survival signals from the extra-cellular matrix (ECM) in mechanosensitive tissues. Recent work from our laboratory and from others shows that an increase of gravity increases bone cell growth and survival. We found that 50-g hypergravity stimulation increased osteoblast proliferation for cells grown on Collagen Type I and Fibronectin, but not on Laminin or uncoated plastic. This may be a tissue-specific response, because 50-g hypergravity stimulation caused no increase in proliferation for primary rat fibroblasts. These results combined with RT-PCR for all possible integrins indicate that beta1 integrin subunit may be involved. The osteoblast proliferation response on Collagen Type I was greater at 25-g than at 10-g or 50-g; 24-h duration of hypergravity was necessary to see an increase in proliferation. Survival was enhanced during hypergravity stimulation by the presence of matrix. Flow cytometry analysis indicated that cell cycle may be altered; BrdU incorporation in proliferating cells showed an increase in the number of actively dividing cells from about 60% at 1-g to over 90% at 25-g. To further investigate the molecular components involved, we applied fluorescence labeling of cytoskeletal and signaling molecules to cells after 2 to 30 minutes of hypergravity stimulation. While structural components did not appear to be altered, phosphorylation increased, indicating that signaling pathways may be activated. These data indicate that gravity mechanostimulation of osteoblast proliferation involves specific matrix-integrin signaling pathways which are sensitive to duration and g-level.

  20. Elucidation of functional consequences of signalling pathway interactions

    PubMed Central

    2009-01-01

    Background A great deal of data has accumulated on signalling pathways. These large datasets are thought to contain much implicit information on their molecular structure, interaction and activity information, which provides a picture of intricate molecular networks believed to underlie biological functions. While tremendous advances have been made in trying to understand these systems, how information is transmitted within them is still poorly understood. This ever growing amount of data demands we adopt powerful computational techniques that will play a pivotal role in the conversion of mined data to knowledge, and in elucidating the topological and functional properties of protein - protein interactions. Results A computational framework is presented which allows for the description of embedded networks, and identification of common shared components thought to assist in the transmission of information within the systems studied. By employing the graph theories of network biology - such as degree distribution, clustering coefficient, vertex betweenness and shortest path measures - topological features of protein-protein interactions for published datasets of the p53, nuclear factor kappa B (NF-κB) and G1/S phase of the cell cycle systems were ascertained. Highly ranked nodes which in some cases were identified as connecting proteins most likely responsible for propagation of transduction signals across the networks were determined. The functional consequences of these nodes in the context of their network environment were also determined. These findings highlight the usefulness of the framework in identifying possible combination or links as targets for therapeutic responses; and put forward the idea of using retrieved knowledge on the shared components in constructing better organised and structured models of signalling networks. Conclusion It is hoped that through the data mined reconstructed signal transduction networks, well developed models of the

  1. From uncertainty to reward: BOLD characteristics differentiate signaling pathways

    PubMed Central

    2009-01-01

    Background Reward value and uncertainty are represented by dopamine neurons in monkeys by distinct phasic and tonic firing rates. Knowledge about the underlying differential dopaminergic pathways is crucial for a better understanding of dopamine-related processes. Using functional magnetic resonance blood-oxygen level dependent (BOLD) imaging we analyzed brain activation in 15 healthy, male subjects performing a gambling task, upon expectation of potential monetary rewards at different reward values and levels of uncertainty. Results Consistent with previous studies, ventral striatal activation was related to both reward magnitudes and values. Activation in medial and lateral orbitofrontal brain areas was best predicted by reward uncertainty. Moreover, late BOLD responses relative to trial onset were due to expectation of different reward values and likely to represent phasic dopaminergic signaling. Early BOLD responses were due to different levels of reward uncertainty and likely to represent tonic dopaminergic signals. Conclusions We conclude that differential dopaminergic signaling as revealed in animal studies is not only represented locally by involvement of distinct brain regions but also by distinct BOLD signal characteristics. PMID:20028546

  2. Liver Stem Cells and Molecular Signaling Pathways in Hepatocellular Carcinoma

    PubMed Central

    Kitisin, Krit; Pishvaian, Michael J.

    2007-01-01

    Hepatocellular carcinoma (HCC) is one of the most lethal cancers. Surgical intervention is the only curative option, with only a small fraction of patients being eligible. Conventional chemotherapy and radiotherapy have not been effective in treating this disease, thus leaving patients with an extremely poor prognosis. In viral, alcoholic, and other chronic hepatitis, it has been shown that there is an activation of the progenitor/stem cell population, which has been found to reside in the canals of Hering. In fact, the degree of inflammation and the disease stage have been correlated with the degree of activation. Dysregulation of key regulatory signaling pathways such as transforming growth factor-beta/transforming growth factor-beta receptor (TGF-β/TBR), insulin-like growth factor/IGF-1 receptor (IGF/IGF-1R), hepatocyte growth factor (HGF/MET), Wnt/β-catenin/FZD, and transforming growth factor-α/epidermal growth factor receptor (TGF-α/EGFR) in this progenitor/stem cell population could give rise to HCC. Further understanding of these key signaling pathways and the molecular and genetic alterations associated with HCC could provide major advances in new therapeutic and diagnostic modalities. PMID:19360142

  3. Early signalling pathways in rice roots under vanadate stress.

    PubMed

    Lin, Chung-Wen; Lin, Chung-Yi; Chang, Ching-Chun; Lee, Ruey-Hua; Tsai, Tsung-Mu; Chen, Po-Yu; Chi, Wen-Chang; Huang, Hao-Jen

    2009-05-01

    Vanadate is beneficial to plant growth at low concentration. However, plant exposure to high concentrations of vanadate has been shown to arrest cell growth and lead to cell death. We are interested in understanding the signalling pathways of rice roots in response to vanadate stress. In this study, we demonstrated that vanadate induced rice root cell death and suppressed root growth. In addition, we found that vanadate induced ROS accumulation, increased lipid peroxidation and elicited a remarkable increase of MAPKs and CDPKs activities in rice roots. In contrast, pre-treatment of rice roots with ROS scavenger (sodium benzoate), serine/threonine protein phosphatase inhibitor (endothall), and CDPK antagonist (W7), reduced the vanadate-induced MAPKs activation. Furthermore, the expression of a MAPK gene (OsMPK3) and four tyrosine phosphatase genes (OsDSP3, OsDSP5, OsDSP6, and OsDSP10) were regulated by vanadate in rice roots. Collectively, these results strongly suggest that ROS, protein phosphatase, and CDPK may function in the vanadate-triggered MAPK signalling pathway cause cell death and retarded growth in rice roots. PMID:19250836

  4. Aspirin Promotes Oligodendroglial Differentiation Through Inhibition of Wnt Signaling Pathway.

    PubMed

    Huang, Nanxin; Chen, Dong; Wu, Xiyan; Chen, Xianjun; Zhang, Xuesi; Niu, Jianqin; Shen, Hai-Ying; Xiao, Lan

    2016-07-01

    Aspirin, one of the most commonly used anti-inflammatory drugs, has been recently reported to display multiple effects in the central nervous system (CNS), including neuroprotection and upregulation of ciliary neurotrophic factor (CNTF) expression in astrocytes. Although it was most recently reported that aspirin could promote the proliferation and differentiation of oligodendrocyte precursor cells (OPCs) after white matter lesion, the underlying mechanisms remain unclear. To dissect the effects of aspirin on oligodendroglial development and explore possible mechanisms, we here demonstrated the following: (i) in vitro treatment of aspirin on OPC cultures significantly increased the number of differentiated oligodendrocytes (OLs) but had no effect on the number of proliferative OPCs, indicating that aspirin can promote OPC differentiation but not proliferation; (ii) in vivo treatment of aspirin on neonatal (P3) rats for 4 days led to a nearly twofold increase in the expression of myelin basic protein (MBP), devoid of change in OPC proliferaion, in the corpus callosum (CC); (iii) finally, aspirin treatment increased the phosphorylation level of β-catenin and counteracted Wnt signaling pathway synergist QS11-induced suppression on OPC differentiation. Together, our data show that aspirin can directly target oligodendroglial lineage cells and promote their differentiation through inhibition of Wnt/β-catenin signaling pathway. These findings suggest that aspirin may be a novel candidate for the treatment of demyelinating diseases. PMID:26059811

  5. Signaling pathway cross talk in Alzheimer’s disease

    PubMed Central

    2014-01-01

    Numerous studies suggest energy failure and accumulative intracellular waste play a causal role in the pathogenesis of several neurodegenerative disorders and Alzheimer’s disease (AD) in particular. AD is characterized by extracellular amyloid deposits, intracellular neurofibrillary tangles, cholinergic deficits, synaptic loss, inflammation and extensive oxidative stress. These pathobiological changes are accompanied by significant behavioral, motor, and cognitive impairment leading to accelerated mortality. Currently, the potential role of several metabolic pathways associated with AD, including Wnt signaling, 5' adenosine monophosphate-activated protein kinase (AMPK), mammalian target of rapamycin (mTOR), Sirtuin 1 (Sirt1, silent mating-type information regulator 2 homolog 1), and peroxisome proliferator-activated receptor gamma co-activator 1-α (PGC-1α) have widened, with recent discoveries that they are able to modulate several pathological events in AD. These include reduction of amyloid-β aggregation and inflammation, regulation of mitochondrial dynamics, and increased availability of neuronal energy. This review aims to highlight the involvement of these new set of signaling pathways, which we have collectively termed “anti-ageing pathways”, for their potentiality in multi-target therapies against AD where cellular metabolic processes are severely impaired. PMID:24679124

  6. Text mining for metabolic pathways, signaling cascades, and protein networks.

    PubMed

    Hoffmann, Robert; Krallinger, Martin; Andres, Eduardo; Tamames, Javier; Blaschke, Christian; Valencia, Alfonso

    2005-05-10

    The complexity of the information stored in databases and publications on metabolic and signaling pathways, the high throughput of experimental data, and the growing number of publications make it imperative to provide systems to help the researcher navigate through these interrelated information resources. Text-mining methods have started to play a key role in the creation and maintenance of links between the information stored in biological databases and its original sources in the literature. These links will be extremely useful for database updating and curation, especially if a number of technical problems can be solved satisfactorily, including the identification of protein and gene names (entities in general) and the characterization of their types of interactions. The first generation of openly accessible text-mining systems, such as iHOP (Information Hyperlinked over Proteins), provides additional functions to facilitate the reconstruction of protein interaction networks, combine database and text information, and support the scientist in the formulation of novel hypotheses. The next challenge is the generation of comprehensive information regarding the general function of signaling pathways and protein interaction networks. PMID:15886388

  7. Glycogen synthase kinase 3 in Wnt signaling pathway and cancer.

    PubMed

    Tejeda-Muñoz, Nydia; Robles-Flores, Martha

    2015-12-01

    Glycogen synthase kinase 3 (GSK-3) was first discovered in 1980 as one of the key enzymes of glycogen metabolism. Since then, GSK-3 has been revealed as one of the master regulators of a diverse range of signaling pathways, including those activated by Wnts, participating in the regulation of numerous cellular functions, suggesting that its activity is tightly regulated. Numerous studies have pointed to an association of GSK-3 dysregulation with the onset and progression of human diseases, including diabetes mellitus, obesity, inflammation, neurological illnesses, and cancer. Therefore, GSK-3 is recognized as an attractive therapeutic target in multiple disorders. However, the great number of substrates that are phosphorylated by GSK-3 has raised the question of whether this limits its feasibility as a therapeutic target because of the potential disruption of many cellular processes and also by the fear that inhibition of GSK-3 may stimulate or aid in malignant transformation, as GSK-3 can phosphorylate pro-oncogenic factors. This mini review focuses on the role played by GSK-3 in Wnt signaling pathway and cancer using as model colon cancer. PMID:26600003

  8. A divergent canonical WNT-signaling pathway regulates microtubule dynamics

    PubMed Central

    Ciani, Lorenza; Krylova, Olga; Smalley, Matthew J.; Dale, Trevor C.; Salinas, Patricia C.

    2004-01-01

    Dishevelled (DVL) is associated with axonal microtubules and regulates microtubule stability through the inhibition of the serine/threonine kinase, glycogen synthase kinase 3β (GSK-3β). In the canonical WNT pathway, the negative regulator Axin forms a complex with β-catenin and GSK-3β, resulting in β-catenin degradation. Inhibition of GSK-3β by DVL increases β-catenin stability and TCF transcriptional activation. Here, we show that Axin associates with microtubules and unexpectedly stabilizes microtubules through DVL. In turn, DVL stabilizes microtubules by inhibiting GSK-3β through a transcription- and β-catenin–independent pathway. More importantly, axonal microtubules are stabilized after DVL localizes to axons. Increased microtubule stability is correlated with a decrease in GSK-3β–mediated phosphorylation of MAP-1B. We propose a model in which Axin, through DVL, stabilizes microtubules by inhibiting a pool of GSK-3β, resulting in local changes in the phosphorylation of cellular targets. Our data indicate a bifurcation in the so-called canonical WNT-signaling pathway to regulate microtubule stability. PMID:14734535

  9. Romidepsin targets multiple survival signaling pathways in malignant T cells

    PubMed Central

    Valdez, B C; Brammer, J E; Li, Y; Murray, D; Liu, Y; Hosing, C; Nieto, Y; Champlin, R E; Andersson, B S

    2015-01-01

    Romidepsin is a cyclic molecule that inhibits histone deacetylases. It is Food and Drug Administration-approved for treatment of cutaneous and peripheral T-cell lymphoma, but its precise mechanism of action against malignant T cells is unknown. To better understand the biological effects of romidepsin in these cells, we exposed PEER and SUPT1 T-cell lines, and a primary sample from T-cell lymphoma patient (Patient J) to romidepsin. We then examined the consequences in some key oncogenic signaling pathways. Romidepsin displayed IC50 values of 10.8, 7.9 and 7.0 nm in PEER, SUPT1 and Patient J cells, respectively. Strong inhibition of histone deacetylases and demethylases, increased production of reactive oxygen species and decreased mitochondrial membrane potential were observed, which may contribute to the observed DNA-damage response and apoptosis. The stress-activated protein kinase/c-Jun N-terminal kinase signaling pathway and unfolded protein response in the endoplasmic reticulum were activated, whereas the phosphatidylinositol 3-kinase/AKT/mammalian target of rapamycin (PI3K/AKT/mTOR) and β-catenin pro-survival pathways were inhibited. The decreased level of β-catenin correlated with the upregulation of its inhibitor SFRP1 through romidepsin-mediated hypomethylation of its gene promoter. Our results provide new insights into how romidepsin invokes malignant T-cell killing, show evidence of its associated DNA hypomethylating activity and offer a rationale for the development of romidepsin-containing combination therapies. PMID:26473529

  10. Romidepsin targets multiple survival signaling pathways in malignant T cells.

    PubMed

    Valdez, B C; Brammer, J E; Li, Y; Murray, D; Liu, Y; Hosing, C; Nieto, Y; Champlin, R E; Andersson, B S

    2015-01-01

    Romidepsin is a cyclic molecule that inhibits histone deacetylases. It is Food and Drug Administration-approved for treatment of cutaneous and peripheral T-cell lymphoma, but its precise mechanism of action against malignant T cells is unknown. To better understand the biological effects of romidepsin in these cells, we exposed PEER and SUPT1 T-cell lines, and a primary sample from T-cell lymphoma patient (Patient J) to romidepsin. We then examined the consequences in some key oncogenic signaling pathways. Romidepsin displayed IC50 values of 10.8, 7.9 and 7.0 nm in PEER, SUPT1 and Patient J cells, respectively. Strong inhibition of histone deacetylases and demethylases, increased production of reactive oxygen species and decreased mitochondrial membrane potential were observed, which may contribute to the observed DNA-damage response and apoptosis. The stress-activated protein kinase/c-Jun N-terminal kinase signaling pathway and unfolded protein response in the endoplasmic reticulum were activated, whereas the phosphatidylinositol 3-kinase/AKT/mammalian target of rapamycin (PI3K/AKT/mTOR) and β-catenin pro-survival pathways were inhibited. The decreased level of β-catenin correlated with the upregulation of its inhibitor SFRP1 through romidepsin-mediated hypomethylation of its gene promoter. Our results provide new insights into how romidepsin invokes malignant T-cell killing, show evidence of its associated DNA hypomethylating activity and offer a rationale for the development of romidepsin-containing combination therapies. PMID:26473529