Sample records for aiaa guidance navigation

  1. Contributions to the AIAA Guidance, Navigation and Control Conference

    NASA Technical Reports Server (NTRS)

    Campbell, S. D. (Editor)

    2002-01-01

    This report contains six papers presented by the Lincoln Laboratory Air Traffic Control Systems Group at the American Institute of Aeronautics & Astronautics (AIAA) Guidance, Navigation and Control (GNC) conference on 6-9 August 2001 in Montreal, Canada. The work reported was sponsored by the NASA Advanced Air Transportation Technologies (AATT) program and the FAA Free Flight Phase 1 (FFP1) program. The papers are based on studies completed at Lincoln Laboratory in collaboration with staff at NASA Ames Research Center. These papers were presented in the Air Traffic Automation Session of the conference and fall into three major areas: Traffic Analysis & Benefits Studies, Weather/Automation Integration and Surface Surveillance. In the first area, a paper by Andrews & Robinson presents an analysis of the efficiency of runway operations at Dallas/Ft. Worth using a tool called PARO, and a paper by Welch, Andrews & Robinson presents a delay benefit results for the Final Approach Spacing Tool (FAST). In the second area, a paper by Campbell, et al describes a new weather distribution systems for the Center/TRACON Automation System (CTAS) that allows ingestion of multiple weather sources, and a paper by Vandevenne, Lloyd & Hogaboom describes the use of the NOAA Eta model as a backup wind data source for CTAS. Also in this area, a paper by Murphy & Campbell presents initial steps towards integrating weather impacted routes into FAST. In the third area, a paper by Welch, Bussolari and Atkins presents an initial operational concept for using surface surveillance to reduce taxi delays.

  2. Framework Based Guidance Navigation and Control Flight Software Development

    NASA Technical Reports Server (NTRS)

    McComas, David

    2007-01-01

    This viewgraph presentation describes NASA's guidance navigation and control flight software development background. The contents include: 1) NASA/Goddard Guidance Navigation and Control (GN&C) Flight Software (FSW) Development Background; 2) GN&C FSW Development Improvement Concepts; and 3) GN&C FSW Application Framework.

  3. Analysis of navigation and guidance requirements for commercial VTOL operations

    NASA Technical Reports Server (NTRS)

    Hoffman, W. C.; Zvara, J.; Hollister, W. M.

    1975-01-01

    The paper presents some results of a program undertaken to define navigation and guidance requirements for commercial VTOL operations in the takeoff, cruise, terminal and landing phases of flight in weather conditions up to and including Category III. Quantitative navigation requirements are given for the parameters range, coverage, operation near obstacles, horizontal accuracy, multiple landing aircraft, multiple pad requirements, inertial/radio-inertial requirements, reliability/redundancy, update rate, and data link requirements in all flight phases. A multi-configuration straw-man navigation and guidance system for commercial VTOL operations is presented. Operation of the system is keyed to a fully automatic approach for navigation, guidance and control, with pilot as monitor-manager. The system is a hybrid navigator using a relatively low-cost inertial sensor with DME updates and MLS in the approach/departure phases.

  4. Space shuttle guidance, navigation, and control design equations. Volume 3: Guidance

    NASA Technical Reports Server (NTRS)

    1973-01-01

    Space shuttle guidance, navigation, and control design equations are presented. The space-shuttle mission includes three relatively distinct guidance phases which are discussed; atmospheric boost, which is characterized by an adaptive guidance law; extra-atmospheric activities; and re-entry activities, where aerodynamic surfaces are the principal effectors. Guidance tasks include pre-maneuver targeting and powered flight guidance, where powered flight is defined to include the application of aerodynamic forces as well as thruster forces. A flow chart which follows guidance activities throughout the mission from the pre-launch phase through touchdown is presented. The main guidance programs and subroutines used in each phase of a typical rendezvous mission are listed. Detailed software requirements are also presented.

  5. Navigational Guidance and Ablation Planning Tools for Interventional Radiology.

    PubMed

    Sánchez, Yadiel; Anvari, Arash; Samir, Anthony E; Arellano, Ronald S; Prabhakar, Anand M; Uppot, Raul N

    Image-guided biopsy and ablation relies on successful identification and targeting of lesions. Currently, image-guided procedures are routinely performed under ultrasound, fluoroscopy, magnetic resonance imaging, or computed tomography (CT) guidance. However, these modalities have their limitations including inadequate visibility of the lesion, lesion or organ or patient motion, compatibility of instruments in an magnetic resonance imaging field, and, for CT and fluoroscopy cases, radiation exposure. Recent advances in technology have resulted in the development of a new generation of navigational guidance tools that can aid in targeting lesions for biopsy or ablations. These navigational guidance tools have evolved from simple hand-held trajectory guidance tools, to electronic needle visualization, to image fusion, to the development of a body global positioning system, to growth in cone-beam CT, and to ablation volume planning. These navigational systems are promising technologies that not only have the potential to improve lesion targeting (thereby increasing diagnostic yield of a biopsy or increasing success of tumor ablation) but also have the potential to decrease radiation exposure to the patient and staff, decrease procedure time, decrease the sedation requirements, and improve patient safety. The purpose of this article is to describe the challenges in current standard image-guided techniques, provide a definition and overview for these next-generation navigational devices, and describe the current limitations of these, still evolving, next-generation navigational guidance tools. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Apollo experience report guidance and control systems: Primary guidance, navigation, and control system development

    NASA Technical Reports Server (NTRS)

    Holley, M. D.; Swingle, W. L.; Bachman, S. L.; Leblanc, C. J.; Howard, H. T.; Biggs, H. M.

    1976-01-01

    The primary guidance, navigation, and control systems for both the lunar module and the command module are described. Development of the Apollo primary guidance systems is traced from adaptation of the Polaris Mark II system through evolution from Block I to Block II configurations; the discussion includes design concepts used, test and qualification programs performed, and major problems encountered. The major subsystems (inertial, computer, and optical) are covered. Separate sections on the inertial components (gyroscopes and accelerometers) are presented because these components represent a major contribution to the success of the primary guidance, navigation, and control system.

  7. Navigating through 'a labyrinth' of guidance.

    PubMed

    Pearson, Susan

    2014-09-01

    Devising a strategy to deliver safe water to thousands of outlets spread across numerous buildings is always going to be a challenge, so how do you navigate your way through a bewildering labyrinth of sometimes contradictory guidance documents? Is there, in fact, simply too much guidance? Posing this question at a recent one-day conference on waterborne infections in healthcare facilities, Paul Nolan, authorised water engineer (AE), and operations manager for PFI provider, Lend Lease, took delegates through a review of the latest guidance and regulations, as Susan Pearson reports.

  8. AIAA spacecraft GN&C interface standards initiative: Overview

    NASA Technical Reports Server (NTRS)

    Challoner, A. Dorian

    1995-01-01

    The American Institute of Aeronautics and Astronautics (AIAA) has undertaken an important standards initiative in the area of spacecraft guidance, navigation, and control (GN&C) subsystem interfaces. The objective of this effort is to establish standards that will promote interchangeability of major GN&C components, thus enabling substantially lower spacecraft development costs. Although initiated by developers of conventional spacecraft GN&C, it is anticipated that interface standards will also be of value in reducing the development costs of micro-engineered spacecraft. The standardization targets are specifically limited to interfaces only, including information (i.e. data and signal), power, mechanical, thermal, and environmental interfaces between various GN&C components and between GN&C subsystems and other subsystems. The current emphasis is on information interfaces between various hardware elements (e.g., between star trackers and flight computers). The poster presentation will briefly describe the program, including the mechanics and schedule, and will publicize the technical products as they exist at the time of the conference. In particular, the rationale for the adoption of the AS1773 fiber-optic serial data bus and the status of data interface standards at the application layer will be presented.

  9. Hazardous Waste Cleanup: Kearfott Guidance & Navigation Corporation in Little Falls, New Jersey

    EPA Pesticide Factsheets

    Kearfott Guidance & Navigation Corp. manufactures navigation and guidance systems, gyroscopes, and other electro-mechanical products for the aerospace industry at its Little Falls, New Jersey facility. The facility is located in a mixed industrial

  10. Navigation and guidance requirements for commercial VTOL operations

    NASA Technical Reports Server (NTRS)

    Hoffman, W. C.; Hollister, W. M.; Howell, J. D.

    1974-01-01

    The NASA Langley Research Center (LaRC) has undertaken a research program to develop the navigation, guidance, control, and flight management technology base needed by Government and industry in establishing systems design concepts and operating procedures for VTOL short-haul transportation systems in the 1980s time period. The VALT (VTOL Automatic Landing Technology) Program encompasses the investigation of operating systems and piloting techniques associated with VTOL operations under all-weather conditions from downtown vertiports; the definition of terminal air traffic and airspace requirements; and the development of avionics including navigation, guidance, controls, and displays for automated takeoff, cruise, and landing operations. The program includes requirements analyses, design studies, systems development, ground simulation, and flight validation efforts.

  11. Guidance, Navigation and Control Innovations at the NASA Goddard Space Flight Center

    NASA Technical Reports Server (NTRS)

    Ericsson, Aprille Joy

    2002-01-01

    A viewgraph presentation on guidance navigation and control innovations at the NASA Goddard Space Flight Center is presented. The topics include: 1) NASA's vision; 2) NASA's Mission; 3) Earth Science Enterprise (ESE); 4) Guidance, Navigation and Control Division (GN&C); 5) Landsat-7 Earth Observer-1 Co-observing Program; and 6) NASA ESE Vision.

  12. Development of STOLAND, a versatile navigation, guidance and control system

    NASA Technical Reports Server (NTRS)

    Young, L. S.; Hansen, Q. M.; Rouse, W. E.; Osder, S. S.

    1972-01-01

    STOLAND has been developed to perform navigation, guidance, control, and flight management experiments in advanced V/STOL aircraft. The experiments have broad requirements and have dictated that STOLAND be capable of providing performance that would be realistic and equivalent to a wide range of current and future avionics systems. An integrated digital concept using modern avionics components was selected as the simplest approach to maximizing versatility and growth potential. Unique flexibility has been obtained by use of a single, general-purpose digital computer for all navigation, guidance, control, and displays computation.

  13. An onboard navigation system which fulfills Mars aerocapture guidance requirements

    NASA Technical Reports Server (NTRS)

    Brand, Timothy J.; Fuhry, Douglas P.; Shepperd, Stanley W.

    1989-01-01

    The development of a candidate autonomous onboard Mars approach navigation scheme capable of supporting aerocapture into Mars orbit is discussed. An aerocapture guidance and navigation system which can run independently of the preaerocapture navigation was used to define a preliminary set of accuracy requirements at entry interface. These requirements are used to evaluate the proposed preaerocapture navigation scheme. This scheme uses optical sightings on Deimos with a star tracker and an inertial measurement unit for instrumentation as a source for navigation nformation. Preliminary results suggest that the approach will adequately support aerocaputre into Mars orbit.

  14. Guidance and navigation for rendezvous with an uncooperative target

    NASA Astrophysics Data System (ADS)

    Telaar, J.; Schlaile, C.; Sommer, J.

    2018-06-01

    This paper presents a guidance strategy for a rendezvous with an uncooperative target. In the applied design reference mission, a spiral approach is commanded ensuring a collision-free relative orbit due to e/i-vector separation. The dimensions of the relative orbit are successively reduced by Δv commands which at the same time improve the observability of the relative state. The navigation is based on line-of-sight measurements. The relative state is estimated by an extended Kalman filter (EKF). The performance of this guidance and navigation strategy is demonstrated by extensive Monte Carlo simulations taking into account all major uncertainties like measurement errors, Δv execution errors, and differential drag.

  15. Evaluation of the navigation performance of shipboard-VTOL-landing guidance systems

    NASA Technical Reports Server (NTRS)

    Mcgee, L. A.; Paulk, C. H., Jr.; Steck, S. A.; Schmidt, S. F.; Merz, A. W.

    1979-01-01

    The objective of this study was to explore the performance of a VTOL aircraft landing approach navigation system that receives data (1) from either a microwave scanning beam (MSB) or a radar-transponder (R-T) landing guidance system, and (2) information data-linked from an aviation facility ship. State-of-the-art low-cost-aided inertial techniques and variable gain filters were used in the assumed navigation system. Compensation for ship motion was accomplished by a landing pad deviation vector concept that is a measure of the landing pad's deviation from its calm sea location. The results show that the landing guidance concepts were successful in meeting all of the current Navy navigation error specifications, provided that vector magnitude of the allowable error, rather than the error in each axis, is a permissible interpretation of acceptable performance. The success of these concepts, however, is strongly dependent on the distance measuring equipment bias. In addition, the 'best possible' closed-loop tracking performance achievable with the assumed point-mass VTOL aircraft guidance concept is demonstrated.

  16. A Design Study of Onboard Navigation and Guidance During Aerocapture at Mars. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Fuhry, Douglas Paul

    1988-01-01

    The navigation and guidance of a high lift-to-drag ratio sample return vehicle during aerocapture at Mars are investigated. Emphasis is placed on integrated systems design, with guidance algorithm synthesis and analysis based on vehicle state and atmospheric density uncertainty estimates provided by the navigation system. The latter utilizes a Kalman filter for state vector estimation, with useful update information obtained through radar altimeter measurements and density altitude measurements based on IMU-measured drag acceleration. A three-phase guidance algorithm, featuring constant bank numeric predictor/corrector atmospheric capture and exit phases and an extended constant altitude cruise phase, is developed to provide controlled capture and depletion of orbital energy, orbital plane control, and exit apoapsis control. Integrated navigation and guidance systems performance are analyzed using a four degree-of-freedom computer simulation. The simulation environment includes an atmospheric density model with spatially correlated perturbations to provide realistic variations over the vehicle trajectory. Navigation filter initial conditions for the analysis are based on planetary approach optical navigation results. Results from a selection of test cases are presented to give insight into systems performance.

  17. Flexible Multi agent Algorithm for Distributed Decision Making

    DTIC Science & Technology

    2015-01-01

    How, J. P. Consensus - Based Auction Approaches for Decentralized task Assignment. Proceedings of the AIAA Guidance, Navigation, and Control...G. ; Kim, Y. Market- based Decentralized Task Assignment for Cooperative UA V Mission Including Rendezvous. Proceedings of the AIAA Guidance...scalable and adaptable to a variety of specific mission tasks . Additionally, the algorithm could easily be adapted for use on land or sea- based systems

  18. Development of an integrated spacecraft Guidance, Navigation, & Control subsystem for automated proximity operations

    NASA Astrophysics Data System (ADS)

    Schulte, Peter Z.; Spencer, David A.

    2016-01-01

    This paper describes the development and validation process of a highly automated Guidance, Navigation, & Control subsystem for a small satellite on-orbit inspection application, enabling proximity operations without human-in-the-loop interaction. The paper focuses on the integration and testing of Guidance, Navigation, & Control software and the development of decision logic to address the question of how such a system can be effectively implemented for full automation. This process is unique because a multitude of operational scenarios must be considered and a set of complex interactions between subsystem algorithms must be defined to achieve the automation goal. The Prox-1 mission is currently under development within the Space Systems Design Laboratory at the Georgia Institute of Technology. The mission involves the characterization of new small satellite component technologies, deployment of the LightSail 3U CubeSat, entering into a trailing orbit relative to LightSail using ground-in-the-loop commands, and demonstration of automated proximity operations through formation flight and natural motion circumnavigation maneuvers. Operations such as these may be utilized for many scenarios including on-orbit inspection, refueling, repair, construction, reconnaissance, docking, and debris mitigation activities. Prox-1 uses onboard sensors and imaging instruments to perform Guidance, Navigation, & Control operations during on-orbit inspection of LightSail. Navigation filters perform relative orbit determination based on images of the target spacecraft, and guidance algorithms conduct automated maneuver planning. A slew and tracking controller sends attitude actuation commands to a set of control moment gyroscopes, and other controllers manage desaturation, detumble, thruster firing, and target acquisition/recovery. All Guidance, Navigation, & Control algorithms are developed in a MATLAB/Simulink six degree-of-freedom simulation environment and are integrated using

  19. Space shuttle guidance, navigation and control design equations. Volume 4: Deorbit and atmospheric operations

    NASA Technical Reports Server (NTRS)

    Cox, K. J.

    1971-01-01

    A baseline set of equations which fulfill the computation requirements for guidance, navigation, and control of the space shuttle orbiter vehicle is presented. All shuttle mission phases are covered from prelaunch through landing/rollout. The spacecraft flight mode and the aircraft flight mode are addressed. The baseline equations may be implemented in a single guidance, navigation, and control computer or may be distributed among several subsystem computers.

  20. Flight assessment of a data-link-based navigation-guidance concept

    NASA Technical Reports Server (NTRS)

    Abbott, T. S.

    1983-01-01

    With the proposed introduction of a data-link provision into the Air-Traffic-control (ATC) system, the capability will exist to supplement the ground-air, voice (radio) link with digital, data-link information. Additionally, ATC computers could provide, via the data link guidance and navigation information to the pilot which could then be presented in much the same manner as conventional navigation information. The primary objective of this study was to assess the feasibility and acceptability of using 4-sec and 12-sec information updating to drive conventional cockpit-navigation-instrument formats for path-tracking guidance. A flight test, consisting of 19 tracking tasks, was conducted and, through the use of pilot questionnaires and performance data, the following results were obtained. From a performance standpoint, the 4-sec and 12-sec updating led to a slight degradation in path-tracking performance, relative to continuous updating. From the pilot's viewpoint, the 12-sec data interval was suitable for long path segments (greater than 2 min of flight time), but it was difficult to use on shorter segments because of higher work load and insufficient stabilization time. Overall, it was determined that the utilization of noncontinuous data for navigation was both feasible and acceptable for the prescribed task.

  1. Guidance and Navigation Software Architecture Design for the Autonomous Multi-Agent Physically Interacting Spacecraft (AMPHIS) Test Bed

    DTIC Science & Technology

    2006-12-01

    NAVIGATION SOFTWARE ARCHITECTURE DESIGN FOR THE AUTONOMOUS MULTI-AGENT PHYSICALLY INTERACTING SPACECRAFT (AMPHIS) TEST BED by Blake D. Eikenberry...Engineer Degree 4. TITLE AND SUBTITLE Guidance and Navigation Software Architecture Design for the Autonomous Multi- Agent Physically Interacting...iii Approved for public release; distribution is unlimited GUIDANCE AND NAVIGATION SOFTWARE ARCHITECTURE DESIGN FOR THE AUTONOMOUS MULTI

  2. Guidance, navigation, and control systems performance analysis: Apollo 13 mission report

    NASA Technical Reports Server (NTRS)

    1970-01-01

    The conclusions of the analyses of the inflight performance of the Apollo 13 spacecraft guidance, navigation, and control equipment are presented. The subjects discussed are: (1) the command module systems, (2) the lunar module inertial measurement unit, (3) the lunar module digital autopilot, (4) the lunar module abort guidance system, (5) lunar module optical alignment checks, and (6) spacecraft component separation procedures.

  3. Three-dimensional virtual navigation versus conventional image guidance: A randomized controlled trial.

    PubMed

    Dixon, Benjamin J; Chan, Harley; Daly, Michael J; Qiu, Jimmy; Vescan, Allan; Witterick, Ian J; Irish, Jonathan C

    2016-07-01

    Providing image guidance in a 3-dimensional (3D) format, visually more in keeping with the operative field, could potentially reduce workload and lead to faster and more accurate navigation. We wished to assess a 3D virtual-view surgical navigation prototype in comparison to a traditional 2D system. Thirty-seven otolaryngology surgeons and trainees completed a randomized crossover navigation exercise on a cadaver model. Each subject identified three sinonasal landmarks with 3D virtual (3DV) image guidance and three landmarks with conventional cross-sectional computed tomography (CT) image guidance. Subjects were randomized with regard to which side and display type was tested initially. Accuracy, task completion time, and task workload were recorded. Display type did not influence accuracy (P > 0.2) or efficiency (P > 0.3) for any of the six landmarks investigated. Pooled landmark data revealed a trend of improved accuracy in the 3DV group by 0.44 millimeters (95% confidence interval [0.00-0.88]). High-volume surgeons were significantly faster (P < 0.01) and had reduced workload scores in all domains (P < 0.01), but they were no more accurate (P > 0.28). Real-time 3D image guidance did not influence accuracy, efficiency, or task workload when compared to conventional triplanar image guidance. The subtle pooled accuracy advantage for the 3DV view is unlikely to be of clinical significance. Experience level was strongly correlated to task completion time and workload but did not influence accuracy. N/A. Laryngoscope, 126:1510-1515, 2016. © 2016 The American Laryngological, Rhinological and Otological Society, Inc.

  4. NASA LaRC Workshop on Guidance, Navigation, Controls, and Dynamics for Atmospheric Flight, 1993

    NASA Technical Reports Server (NTRS)

    Buttrill, Carey S. (Editor)

    1993-01-01

    This publication is a collection of materials presented at a NASA workshop on guidance, navigation, controls, and dynamics (GNC&D) for atmospheric flight. The workshop was held at the NASA Langley Research Center on March 18-19, 1993. The workshop presentations describe the status of current research in the GNC&D area at Langley over a broad spectrum of research branches. The workshop was organized in eight sessions: overviews, general, controls, military aircraft, dynamics, guidance, systems, and a panel discussion. A highlight of the workshop was the panel discussion which addressed the following issue: 'Direction of guidance, navigation, and controls research to ensure U.S. competitiveness and leadership in aerospace technologies.'

  5. Spacecraft Guidance, Navigation, and Control Visualization Tool

    NASA Technical Reports Server (NTRS)

    Mandic, Milan; Acikmese, Behcet; Blackmore, Lars

    2011-01-01

    G-View is a 3D visualization tool for supporting spacecraft guidance, navigation, and control (GN&C) simulations relevant to small-body exploration and sampling (see figure). The tool is developed in MATLAB using Virtual Reality Toolbox and provides users with the ability to visualize the behavior of their simulations, regardless of which programming language (or machine) is used to generate simulation results. The only requirement is that multi-body simulation data is generated and placed in the proper format before applying G-View.

  6. Integrated navigation, flight guidance, and synthetic vision system for low-level flight

    NASA Astrophysics Data System (ADS)

    Mehler, Felix E.

    2000-06-01

    Future military transport aircraft will require a new approach with respect to the avionics suite to fulfill an ever-changing variety of missions. The most demanding phases of these mission are typically the low level flight segments, including tactical terrain following/avoidance,payload drop and/or board autonomous landing at forward operating strips without ground-based infrastructure. As a consequence, individual components and systems must become more integrated to offer a higher degree of reliability, integrity, flexibility and autonomy over existing systems while reducing crew workload. The integration of digital terrain data not only introduces synthetic vision into the cockpit, but also enhances navigation and guidance capabilities. At DaimlerChrysler Aerospace AG Military Aircraft Division (Dasa-M), an integrated navigation, flight guidance and synthetic vision system, based on digital terrain data, has been developed to fulfill the requirements of the Future Transport Aircraft (FTA). The fusion of three independent navigation sensors provides a more reliable and precise solution to both the 4D-flight guidance and the display components, which is comprised of a Head-up and a Head-down Display with synthetic vision. This paper will present the system, its integration into the DLR's VFW 614 Advanced Technology Testing Aircraft System (ATTAS) and the results of the flight-test campaign.

  7. Guidance, navigation, and control subsystem for the EOS-AM spacecraft

    NASA Technical Reports Server (NTRS)

    Linder, David M.; Tolek, Joseph T.; Lombardo, John

    1992-01-01

    This paper presents the preliminary design of the Guidance, Navigation, and Control (GN&C) subsystem for the EOS-AM spacecraft and specifically focuses on the GN&C Normal Mode design. First, a brief description of the EOS-AM science mission, instruments, and system-level spacecraft design is provided. Next, an overview of the GN&C subsystem functional and performance requirements, hardware, and operating modes is presented. Then, the GN&C Normal Mode attitude determination, attitude control, and navigation systems are detailed. Finally, descriptions of the spacecraft's overall jitter performance and Safe Mode are provided.

  8. Neural guidance molecules regulate vascular remodeling and vessel navigation.

    PubMed

    Eichmann, Anne; Makinen, Taija; Alitalo, Kari

    2005-05-01

    The development of the embryonic blood vascular and lymphatic systems requires the coordinated action of several transcription factors and growth factors that target endothelial and periendothelial cells. However, according to recent studies, the precise "wiring" of the vascular system does not occur without an ordered series of guidance decisions involving several molecules initially discovered for axons in the nervous system, including ephrins, netrins, slits, and semaphorins. Here, we summarize the new advances in our understanding of the roles of these axonal pathfinding molecules in vascular remodeling and vessel guidance, indicating that neuronal axons and vessel sprouts use common molecular mechanisms for navigation in the body.

  9. AIAA designates Stennis as historic aerospace site

    NASA Image and Video Library

    2008-04-10

    Picured (left to right) American Institute of Aeronautics and Astronautics (AIAA) representative David Throckmorton presents a plaque designating NASA's John C. Stennis Space Center as a historical aerospace site during an April 10 ceremony. Joining Throckmorton for the presentation were AIAA Greater New Orleans Chapter Chair Mark Hughes, Stennis Space Center Director Bob Cabana and Pratt & Whitney Rocketdyne Vice President John Plowden.

  10. Integration of a synthetic vision system with airborne laser range scanner-based terrain referenced navigation for precision approach guidance

    NASA Astrophysics Data System (ADS)

    Uijt de Haag, Maarten; Campbell, Jacob; van Graas, Frank

    2005-05-01

    Synthetic Vision Systems (SVS) provide pilots with a virtual visual depiction of the external environment. When using SVS for aircraft precision approach guidance systems accurate positioning relative to the runway with a high level of integrity is required. Precision approach guidance systems in use today require ground-based electronic navigation components with at least one installation at each airport, and in many cases multiple installations to service approaches to all qualifying runways. A terrain-referenced approach guidance system is envisioned to provide precision guidance to an aircraft without the use of ground-based electronic navigation components installed at the airport. This autonomy makes it a good candidate for integration with an SVS. At the Ohio University Avionics Engineering Center (AEC), work has been underway in the development of such a terrain referenced navigation system. When used in conjunction with an Inertial Measurement Unit (IMU) and a high accuracy/resolution terrain database, this terrain referenced navigation system can provide navigation and guidance information to the pilot on a SVS or conventional instruments. The terrain referenced navigation system, under development at AEC, operates on similar principles as other terrain navigation systems: a ground sensing sensor (in this case an airborne laser scanner) gathers range measurements to the terrain; this data is then matched in some fashion with an onboard terrain database to find the most likely position solution and used to update an inertial sensor-based navigator. AEC's system design differs from today's common terrain navigators in its use of a high resolution terrain database (~1 meter post spacing) in conjunction with an airborne laser scanner which is capable of providing tens of thousands independent terrain elevation measurements per second with centimeter-level accuracies. When combined with data from an inertial navigator the high resolution terrain database and

  11. Orion Integrated Guidance, Navigation, and Control [GN and C

    NASA Technical Reports Server (NTRS)

    Chevray, Kay

    2009-01-01

    This slide presentation reviews the integrated Guidance, Navigation and Control (iGN&C) system in the design for the Orion spacecraft. Included in the review are the plans for the design and development of the external interfaces, the functional architecture, the iGN&C software, the development and validation process, and the key challenges that are involved in the development of the iGN&C system

  12. Project Management Using Modern Guidance, Navigation and Control Theory

    NASA Technical Reports Server (NTRS)

    Hill, Terry

    2010-01-01

    The idea of control theory and its application to project management is not new, however literature on the topic and real-world applications is not as readily available and comprehensive in how all the principals of Guidance, Navigation and Control (GN&C) apply. This paper will address how the fundamental principals of modern GN&C Theory have been applied to NASA's Constellation Space Suit project and the results in the ability to manage the project within cost, schedule and budget. A s with physical systems, projects can be modeled and managed with the same guiding principles of GN&C as if it were a complex vehicle, system or software with time-varying processes, at times non-linear responses, multiple data inputs of varying accuracy and a range of operating points. With such systems the classic approach could be applied to small and well-defined projects; however with larger, multi-year projects involving multiple organizational structures, external influences and a multitude of diverse resources, then modern control theory is required to model and control the project. The fundamental principals of G N&C stated that a system is comprised of these basic core concepts: State, Behavior, Control system, Navigation system, Guidance and Planning Logic, Feedback systems. The state of a system is a definition of the aspects of the dynamics of the system that can change, such as position, velocity, acceleration, coordinate-based attitude, temperature, etc. The behavior of the system is more of what changes are possible rather than what can change, which is captured in the state of the system. The behavior of a system is captured in the system modeling and if properly done, will aid in accurate system performance prediction in the future. The Control system understands the state and behavior of the system and feedback systems to adjust the control inputs into the system. The Navigation system takes the multiple data inputs and based upon a priori knowledge of the input

  13. An analysis of approach navigation accuracy and guidance requirements for the grand tour mission to the outer planets

    NASA Technical Reports Server (NTRS)

    Jones, D. W.

    1971-01-01

    The navigation and guidance process for the Jupiter, Saturn and Uranus planetary encounter phases of the 1977 Grand Tour interior mission was simulated. Reference approach navigation accuracies were defined and the relative information content of the various observation types were evaluated. Reference encounter guidance requirements were defined, sensitivities to assumed simulation model parameters were determined and the adequacy of the linear estimation theory was assessed. A linear sequential estimator was used to provide an estimate of the augmented state vector, consisting of the six state variables of position and velocity plus the three components of a planet position bias. The guidance process was simulated using a nonspherical model of the execution errors. Computation algorithms which simulate the navigation and guidance process were derived from theory and implemented into two research-oriented computer programs, written in FORTRAN.

  14. ASTRONAUT LOVELL, JAMES A., JR. - APOLLO VIII (GUIDANCE & NAVIGATION [G&N])

    NASA Image and Video Library

    1969-05-25

    S69-35099 (21-27 Dec. 1968) --- Astronaut James A. Lovell Jr., Apollo 8 command module pilot, is seen at the Apollo 8 Spacecraft Command Module's Guidance and Navigation station during the Apollo 8 lunar orbit mission. This picture was taken from 16mm motion picture film.

  15. The real-world navigator

    NASA Technical Reports Server (NTRS)

    Balabanovic, Marko; Becker, Craig; Morse, Sarah K.; Nourbakhsh, Illah R.

    1994-01-01

    The success of every mobile robot application hinges on the ability to navigate robustly in the real world. The problem of robust navigation is separable from the challenges faced by any particular robot application. We offer the Real-World Navigator as a solution architecture that includes a path planner, a map-based localizer, and a motion control loop that combines reactive avoidance modules with deliberate goal-based motion. Our architecture achieves a high degree of reliability by maintaining and reasoning about an explicit description of positional uncertainty. We provide two implementations of real-world robot systems that incorporate the Real-World Navigator. The Vagabond Project culminated in a robot that successfully navigated a portion of the Stanford University campus. The Scimmer project developed successful entries for the AIAA 1993 Robotics Competition, placing first in one of the two contests entered.

  16. Sensors and sensor systems for guidance and navigation II; Proceedings of the Meeting, Orlando, FL, Apr. 22, 23, 1992

    NASA Astrophysics Data System (ADS)

    Welch, Sharon S.

    Topics discussed in this volume include aircraft guidance and navigation, optics for visual guidance of aircraft, spacecraft and missile guidance and navigation, lidar and ladar systems, microdevices, gyroscopes, cockpit displays, and automotive displays. Papers are presented on optical processing for range and attitude determination, aircraft collision avoidance using a statistical decision theory, a scanning laser aircraft surveillance system for carrier flight operations, star sensor simulation for astroinertial guidance and navigation, autonomous millimeter-wave radar guidance systems, and a 1.32-micron long-range solid state imaging ladar. Attention is also given to a microfabricated magnetometer using Young's modulus changes in magnetoelastic materials, an integrated microgyroscope, a pulsed diode ring laser gyroscope, self-scanned polysilicon active-matrix liquid-crystal displays, the history and development of coated contrast enhancement filters for cockpit displays, and the effect of the display configuration on the attentional sampling performance. (For individual items see A93-28152 to A93-28176, A93-28178 to A93-28180)

  17. Technology initiatives for the autonomous guidance, navigation, and control of single and multiple satellites

    NASA Astrophysics Data System (ADS)

    Croft, John; Deily, John; Hartman, Kathy; Weidow, David

    1998-01-01

    In the twenty-first century, NASA envisions frequent low-cost missions to explore the solar system, observe the universe, and study our planet. To realize NASA's goal, the Guidance, Navigation, and Control Center (GNCC) at the Goddard Space Flight Center sponsors technology programs that enhance spacecraft performance, streamline processes and ultimately enable cheaper science. Our technology programs encompass control system architectures, sensor and actuator components, electronic systems, design and development of algorithms, embedded systems and space vehicle autonomy. Through collaboration with government, universities, non-profit organizations, and industry, the GNCC incrementally develops key technologies that conquer NASA's challenges. This paper presents an overview of several innovative technology initiatives for the autonomous guidance, navigation, and control (GN&C) of satellites.

  18. A guide to onboard checkout. Volume 1: Guidance, navigation and control

    NASA Technical Reports Server (NTRS)

    1971-01-01

    The results are presented of a study of onboard checkout techniques, as they relate to space station subsystems, as a guide to those who may need to implement onboard checkout in similar subsystems. Guidance, navigation, and control subsystems, and their reliability and failure analyses are presented. Software and testing procedures are also given.

  19. Blended Homing Guidance Law Using Fuzzy Logic

    DTIC Science & Technology

    1998-01-01

    President, Associate Fellow AIAA + Research Scientist Report Documentation Page Form ApprovedOMB No. 0704-0188 Public reporting burden for the collection...mixed-strategy guidance strategies discussed in References 3 and 4. According to that research , mixed strategy guidance strategies are found to be...for an advanced missile is the focus of present paper. The present research employs the missile  Copyright 1998 by Optimal Synthesis Inc. All Rights

  20. Guidance and navigation for automatic landing, rollout, and turnoff using MLS and magnetic cable sensors

    NASA Technical Reports Server (NTRS)

    Pines, S.; Hueschen, R. M.

    1978-01-01

    This paper describes the navigation and guidance system developed for the TCV B-737, a Langley Field NASA research aircraft, and presents the results of an evaluation during final approach, landing, rollout and turnoff obtained through a nonlinear digital simulation. A Kalman filter (implemented in square root form) and a third order complementary filter were developed and compared for navigation. The Microwave Landing Systems (MLS) is used for all phases of the flight for navigation and guidance. In addition, for rollout and turnoff, a three coil sensor which detects the magnetic field induced by a buried wire in the runway (magnetic leader cable) is used. The outputs of the sensor are processed into measurements of position and heading deviation from the wire. The results show the concept to be both feasible and practical for commercial type aircraft terminal area control.

  1. A Functional Description of a Digital Flight Test System for Navigation and Guidance Research in the Terminal Area

    NASA Technical Reports Server (NTRS)

    Hegarty, D. M.

    1974-01-01

    A guidance, navigation, and control system, the Simulated Shuttle Flight Test System (SS-FTS), when interfaced with existing aircraft systems, provides a research facility for studying concepts for landing the space shuttle orbiter and conventional jet aircraft. The SS-FTS, which includes a general-purpose computer, performs all computations for precisely following a prescribed approach trajectory while properly managing the vehicle energy to allow safe arrival at the runway and landing within prescribed dispersions. The system contains hardware and software provisions for navigation with several combinations of possible navigation aids that have been suggested for the shuttle. The SS-FTS can be reconfigured to study different guidance and navigation concepts by changing only the computer software, and adapted to receive different radio navigation information through minimum hardware changes. All control laws, logic, and mode interlocks reside solely in the computer software.

  2. Guidance, Navigation, and Control Techniques and Technologies for Active Satellite Removal

    NASA Astrophysics Data System (ADS)

    Ortega Hernando, Guillermo; Erb, Sven; Cropp, Alexander; Voirin, Thomas; Dubois-Matra, Olivier; Rinalducci, Antonio; Visentin, Gianfranco; Innocenti, Luisa; Raposo, Ana

    2013-09-01

    This paper shows an internal feasibility analysis to de- orbit a non-functional satellite of big dimensions by the Technical Directorate of the European Space Agency ESA. The paper focuses specifically on the design of the techniques and technologies for the Guidance, Navigation, and Control (GNC) system of the spacecraft mission that will capture the satellite and ultimately will de-orbit it on a controlled re-entry.The paper explains the guidance strategies to launch, rendezvous, close-approach, and capture the target satellite. The guidance strategy uses chaser manoeuvres, hold points, and collision avoidance trajectories to ensure a safe capture. It also details the guidance profile to de-orbit it in a controlled re-entry.The paper continues with an analysis of the required sensing suite and the navigation algorithms to allow the homing, fly-around, and capture of the target satellite. The emphasis is placed around the design of a system to allow the rendezvous with an un-cooperative target, including the autonomous acquisition of both the orbital elements and the attitude of the target satellite.Analysing the capture phase, the paper provides a trade- off between two selected capture systems: the net and the tentacles. Both are studied from the point of view of the GNC system.The paper analyses as well the advanced algorithms proposed to control the final compound after the capture that will allow the controlled de-orbiting of the assembly in a safe place in the Earth.The paper ends proposing the continuation of this work with the extension to the analysis of the destruction process of the compound in consecutive segments starting from the entry gate to the rupture and break up.

  3. Guidance and Navigation Requirements for Unmanned Flyby and Swingby Missions to the Outer Planets. Volume 3; Low Thrust Missions, Phase B

    NASA Technical Reports Server (NTRS)

    1970-01-01

    The guidance and navigation requirements for unmanned missions to the outer planets, assuming constant, low thrust, ion propulsion are discussed. The navigational capability of the ground based Deep Space Network is compared to the improvements in navigational capability brought about by the addition of guidance and navigation related onboard sensors. Relevant onboard sensors include: (1) the optical onboard navigation sensor, (2) the attitude reference sensors, and (3) highly sensitive accelerometers. The totally ground based, and the combination ground based and onboard sensor systems are compared by means of the estimated errors in target planet ephemeris, and the spacecraft position with respect to the planet.

  4. Guidance and navigation requirements for unmanned flyby and swingby missions to the outer planets. Volume 2: impulsive high thrust missions, phase A

    NASA Technical Reports Server (NTRS)

    1969-01-01

    The impulsive, high thrust missions portion of a study on guidance and navigation requirements for unmanned flyby and swingby missions to the outer planet is presented. The proper balance between groundbased navigational capability, using the deep space network (DSN) alone, and an onboard navigational capability with and without supplemental use of DSN tracking, for unmanned missions to the outer planets of the solar system is defined. A general guidance and navigation requirements program is used to survey parametrically the characteristics associated with three types of navigation systems: (1) totally onboard, (2) totally Earth-based, and (3) a combination of these two.

  5. Apollo Guidance, Navigation, and Control (GNC) Hardware Overview

    NASA Technical Reports Server (NTRS)

    Interbartolo, Michael

    2009-01-01

    This viewgraph presentation reviews basic guidance, navigation and control (GNC) concepts, examines the Command and Service Module (CSM) and Lunar Module (LM) GNC organization and discusses the primary GNC and the CSM Stabilization and Control System (SCS), as well as other CSM-specific hardware. The LM Abort Guidance System (AGS), Control Electronics System (CES) and other LM-specific hardware are also addressed. Three subsystems exist on each vehicle: the computer subsystem (CSS), the inertial subsystem (ISS) and the optical subsystem (OSS). The CSS and ISS are almost identical between CSM and LM and each is designed to operate independently. CSM SCS hardware are highlighted, including translation control, rotation controls, gyro assemblies, a gyro display coupler and flight director attitude indicators. The LM AGS hardware are also highlighted and include the abort electronics assembly and the abort sensor assembly; while the LM CES hardware includes the attitude controller assembly, thrust/translation controller assemblies and the ascent engine arming assemble. Other common hardware including the Orbital Rate Display - Earth and Lunar (ORDEAL) and the Crewman Optical Alignment Sight (COAS), a docking aid, are also highlighted.

  6. Navigation errors encountered using weather-mapping radar for helicopter IFR guidance to oil rigs

    NASA Technical Reports Server (NTRS)

    Phillips, J. D.; Bull, J. S.; Hegarty, D. M.; Dugan, D. C.

    1980-01-01

    In 1978 a joint NASA-FAA helicopter flight test was conducted to examine the use of weather-mapping radar for IFR guidance during landing approaches to oil rig helipads. The following navigation errors were measured: total system error, radar-range error, radar-bearing error, and flight technical error. Three problem areas were identified: (1) operational problems leading to pilot blunders, (2) poor navigation to the downwind final approach point, and (3) pure homing on final approach. Analysis of these problem areas suggests improvement in the radar equipment, approach procedure, and pilot training, and gives valuable insight into the development of future navigation aids to serve the off-shore oil industry.

  7. Terminal attack trajectories of peregrine falcons are described by the proportional navigation guidance law of missiles

    PubMed Central

    Brighton, Caroline H.; Thomas, Adrian L. R.

    2017-01-01

    The ability to intercept uncooperative targets is key to many diverse flight behaviors, from courtship to predation. Previous research has looked for simple geometric rules describing the attack trajectories of animals, but the underlying feedback laws have remained obscure. Here, we use GPS loggers and onboard video cameras to study peregrine falcons, Falco peregrinus, attacking stationary targets, maneuvering targets, and live prey. We show that the terminal attack trajectories of peregrines are not described by any simple geometric rule as previously claimed, and instead use system identification techniques to fit a phenomenological model of the dynamical system generating the observed trajectories. We find that these trajectories are best—and exceedingly well—modeled by the proportional navigation (PN) guidance law used by most guided missiles. Under this guidance law, turning is commanded at a rate proportional to the angular rate of the line-of-sight between the attacker and its target, with a constant of proportionality (i.e., feedback gain) called the navigation constant (N). Whereas most guided missiles use navigation constants falling on the interval 3 ≤ N ≤ 5, peregrine attack trajectories are best fitted by lower navigation constants (median N < 3). This lower feedback gain is appropriate at the lower flight speed of a biological system, given its presumably higher error and longer delay. This same guidance law could find use in small visually guided drones designed to remove other drones from protected airspace. PMID:29203660

  8. Terminal attack trajectories of peregrine falcons are described by the proportional navigation guidance law of missiles.

    PubMed

    Brighton, Caroline H; Thomas, Adrian L R; Taylor, Graham K

    2017-12-19

    The ability to intercept uncooperative targets is key to many diverse flight behaviors, from courtship to predation. Previous research has looked for simple geometric rules describing the attack trajectories of animals, but the underlying feedback laws have remained obscure. Here, we use GPS loggers and onboard video cameras to study peregrine falcons, Falco peregrinus , attacking stationary targets, maneuvering targets, and live prey. We show that the terminal attack trajectories of peregrines are not described by any simple geometric rule as previously claimed, and instead use system identification techniques to fit a phenomenological model of the dynamical system generating the observed trajectories. We find that these trajectories are best-and exceedingly well-modeled by the proportional navigation (PN) guidance law used by most guided missiles. Under this guidance law, turning is commanded at a rate proportional to the angular rate of the line-of-sight between the attacker and its target, with a constant of proportionality (i.e., feedback gain) called the navigation constant ( N ). Whereas most guided missiles use navigation constants falling on the interval 3 ≤ N ≤ 5, peregrine attack trajectories are best fitted by lower navigation constants (median N < 3). This lower feedback gain is appropriate at the lower flight speed of a biological system, given its presumably higher error and longer delay. This same guidance law could find use in small visually guided drones designed to remove other drones from protected airspace. Copyright © 2017 the Author(s). Published by PNAS.

  9. Computed intraoperative navigation guidance--a preliminary report on a new technique.

    PubMed

    Enislidis, G; Wagner, A; Ploder, O; Ewers, R

    1997-08-01

    To assess the value of a computer-assisted three-dimensional guidance system (Virtual Patient System) in maxillofacial operations. Laboratory and open clinical study. Teaching Hospital, Austria. 6 patients undergoing various procedures including removal of foreign body (n=3) and biopsy, maxillary advancement, and insertion of implants (n=1 each). Storage of computed tomographic (CT) pictures on an optical disc, and imposition of intraoperative video images on to these. The resulting display is shown to the surgeon on a micromonitor in his head-up display for guidance during the operations. To improve orientation during complex or minimally invasive maxillofacial procedures and to make such operations easier and less traumatic. Successful transferral of computed navigation technology into an operation room environment and positive evaluation of the method by the surgeons involved. Computer-assisted three-dimensional guidance systems have the potential for making complex or minimally invasive procedures easier to do, thereby reducing postoperative morbidity.

  10. Vehicle health management for guidance, navigation and control systems

    NASA Technical Reports Server (NTRS)

    Radke, Kathleen; Frazzini, Ron; Bursch, Paul; Wald, Jerry; Brown, Don

    1993-01-01

    The objective of the program was to architect a vehicle health management (VHM) system for space systems avionics that assures system readiness for launch vehicles and for space-based dormant vehicles. The platforms which were studied and considered for application of VHM for guidance, navigation and control (GN&C) included the Advanced Manned Launch System (AMLS), the Horizontal Landing-20/Personnel Launch System (HL-20/PLS), the Assured Crew Return Vehicle (ACRV) and the Extended Duration Orbiter (EDO). This set was selected because dormancy and/or availability requirements are driving the designs of these future systems.

  11. Preliminary Design of the Guidance, Navigation, and Control System of the Altair Lunar Lander

    NASA Technical Reports Server (NTRS)

    Lee, Allan Y.; Ely, Todd; Sostaric, Ronald; Strahan, Alan; Riedel, Joseph E.; Ingham, Mitch; Wincentsen, James; Sarani, Siamak

    2010-01-01

    Guidance, Navigation, and Control (GN&C) is the measurement and control of spacecraft position, velocity, and attitude in support of mission objectives. This paper provides an overview of a preliminary design of the GN&C system of the Lunar Lander Altair. Key functions performed by the GN&C system in various mission phases will first be described. A set of placeholder GN&C sensors that is needed to support these functions is next described. To meet Crew safety requirements, there must be high degrees of redundancy in the selected sensor configuration. Two sets of thrusters, one on the Ascent Module (AM) and the other on the Descent Module (DM), will be used by the GN&C system. The DM thrusters will be used, among other purposes, to perform course correction burns during the Trans-lunar Coast. The AM thrusters will be used, among other purposes, to perform precise angular and translational controls of the ascent module in order to dock the ascent module with Orion. Navigation is the process of measurement and control of the spacecraft's "state" (both the position and velocity vectors of the spacecraft). Tracking data from the Earth-Based Ground System (tracking antennas) as well as data from onboard optical sensors will be used to estimate the vehicle state. A driving navigation requirement is to land Altair on the Moon with a landing accuracy that is better than 1 km (radial 95%). Preliminary performance of the Altair GN&C design, relative to this and other navigation requirements, will be given. Guidance is the onboard process that uses the estimated state vector, crew inputs, and pre-computed reference trajectories to guide both the rotational and the translational motions of the spacecraft during powered flight phases. Design objectives of reference trajectories for various mission phases vary. For example, the reference trajectory for the descent "approach" phase (the last 3-4 minutes before touchdown) will sacrifice fuel utilization efficiency in order to

  12. Recent Events in Guidance, Navigation and Control

    NASA Technical Reports Server (NTRS)

    Polites, Michael E.; Bullman, Jack (Technical Monitor)

    2001-01-01

    This article summarizes recent events in Guidance, Navigation, and Control (GN&C) in space, weapons and missiles, and aircraft. The section on space includes recent developments with the following NASA spacecraft and space vehicles: Near Earth Asteroid Rendezvous, Deep Space 1, Microwave Anisotropy Probe, Earth Observer-1, Compton Gamma Ray Observatory, the International Space Station, X-38, and X-40A. The section on weapons and missiles includes recent developments with the following missiles: Joint Air-to-Surface Standoff Missile, Storm Shadow/Scalp EG precision standoff missile, Hellfire missile, AIM-120C Advanced medium-range air-to-air missile, Derby missile, Arrow 2, and the Standard Missile SM-3. The section on aircraft includes recent developments with the following aircraft: Joint Strike Fighter, X-31, V-22, Couger/SUDer Puma Mk. 2, Predator B 001, and the Unmanned Combat Air Vehicle.

  13. Integrated guidance, navigation and control verification plan primary flight system. [space shuttle avionics integration

    NASA Technical Reports Server (NTRS)

    1978-01-01

    The verification process and requirements for the ascent guidance interfaces and the ascent integrated guidance, navigation and control system for the space shuttle orbiter are defined as well as portions of supporting systems which directly interface with the system. The ascent phase of verification covers the normal and ATO ascent through the final OMS-2 circularization burn (all of OPS-1), the AOA ascent through the OMS-1 burn, and the RTLS ascent through ET separation (all of MM 601). In addition, OPS translation verification is defined. Verification trees and roadmaps are given.

  14. Navigation and flight director guidance for the NASA/FAA helicopter MLS curved approach flight test program

    NASA Technical Reports Server (NTRS)

    Phatak, A. V.; Lee, M. G.

    1985-01-01

    The navigation and flight director guidance systems implemented in the NASA/FAA helicopter microwave landing system (MLS) curved approach flight test program is described. Flight test were conducted at the U.S. Navy's Crows Landing facility, using the NASA Ames UH-lH helicopter equipped with the V/STOLAND avionics system. The purpose of these tests was to investigate the feasibility of flying complex, curved and descending approaches to a landing using MLS flight director guidance. A description of the navigation aids used, the avionics system, cockpit instrumentation and on-board navigation equipment used for the flight test is provided. Three generic reference flight paths were developed and flown during the test. They were as follows: U-Turn, S-turn and Straight-In flight profiles. These profiles and their geometries are described in detail. A 3-cue flight director was implemented on the helicopter. A description of the formulation and implementation of the flight director laws is also presented. Performance data and analysis is presented for one pilot conducting the flight director approaches.

  15. Apollo Onboard Navigation Techniques

    NASA Technical Reports Server (NTRS)

    Interbartolo, Michael

    2009-01-01

    This viewgraph presentation reviews basic navigation concepts, describes coordinate systems and identifies attitude determination techniques including Primary Guidance, Navigation and Control System (PGNCS) IMU management and Command and Service Module Stabilization and Control System/Lunar Module (LM) Abort Guidance System (AGS) attitude management. The presentation also identifies state vector determination techniques, including PGNCS coasting flight navigation, PGNCS powered flight navigation and LM AGS navigation.

  16. Economics of image guidance and navigation in spine surgery.

    PubMed

    Al-Khouja, Lutfi; Shweikeh, Faris; Pashman, Robert; Johnson, J Patrick; Kim, Terrence T; Drazin, Doniel

    2015-01-01

    Image-guidance and navigation in spinal surgery is becoming more widely utilized. Several studies have shown the use of this technology to increase accuracy of pedicle screw placement, decrease the rates of revision surgery, and minimize radiation exposure. In this paper, the authors analyze the economics of image-guided surgery (IGS) and navigation in spine surgery. A literature review was performed using PubMed, the CEA Registry, and the National Health Service Economic Evaluation Database. Each article was screened for inclusion and exclusion criteria, including costs, reoperation, readmission rates, operating room time, and length of stay. Thirteen studies were included in the analysis. Six studies were identified to meet the inclusion criteria for reporting costs and seven met the criteria for analysis of efficacy. Average costs ranged from $17,650 to $39,643. Pedicle screw misplacement rates using IGS ranged from 1.20% to 15.07% while reoperation rates ranged from 0% to 7.42%. There is currently an insufficient amount of studies reporting on the economics of spinal navigation to accurately conclude on its cost-effectiveness in clinical practice. Although a few of these studies showed less costs associated with intraoperative imaging, none were able to establish a statistically significant difference. Preliminary findings drawn from this study indicate a possible cost-effectiveness advantage with IGS, but more comprehensive data on costs need to be reported in order to validate its utilization.

  17. Summary of Propagation Cases of the Second AIAA Sonic Boom Prediction Workshop

    NASA Technical Reports Server (NTRS)

    Rallabhandi, Sriram; Loubeau, Alexandra

    2017-01-01

    A summary is provided for the propagation portion of the second AIAA Sonic Boom Workshop held January 8, 2017 in conjunction with the AIAA SciTech 2017 conference. Near-field pressure waveforms for two cases were supplied and ground signatures at multiple azimuthal angles as well as their corresponding loudness metrics were requested from 10 participants, representing 3 countries. Each case had some required runs, as well as some optional runs. The required cases included atmospheric profiles with measured data including winds, using Radiosonde balloon data at multiple geographically spread locations, while the optional cases included temperature and pressure profiles from the US Standard atmosphere. The humidity profiles provided for the optional cases were taken from ANSI guidance, as the authors were unaware of an accepted standard at the time the cases were released to the participants. Participants provided ground signatures along with the requested data, including some loudness metrics using their best practices, which included lossy as well as lossless schemes. All the participants' submissions, for each case, are compared and discussed. Noise or loudness measures are calculated and detailed comparisons and statistical analyses are performed and presented. It has been observed that the variation in the loudness measures and spread between participants' submissions increased as the computation proceeded from under-track locations towards the lateral cut-off. Lessons learned during this workshop are discussed and recommendations are made for potential improvements and possible subsequent workshops as we collectively attempt to refine our analysis methods.

  18. Terminal area automatic navigation, guidance, and control research using the Microwave Landing System (MLS). Part 2: RNAV/MLS transition problems for aircraft

    NASA Technical Reports Server (NTRS)

    Pines, S.

    1982-01-01

    The problems in navigation and guidance encountered by aircraft in the initial transition period in changing from distance measuring equipment, VORTAC, and barometric instruments to the more precise microwave landing system data type navaids in the terminal area are investigated. The effects of the resulting discontinuities on the estimates of position and velocity for both optimal (Kalman type navigation schemes) and fixed gain (complementary type) navigation filters, and the effects of the errors in cross track, track angle, and altitude on the guidance equation and control commands during the critical landing phase are discussed. A method is presented to remove the discontinuities from the navigation loop and to reconstruct an RNAV path designed to land the aircraft with minimal turns and altitude changes.

  19. Navigation for space shuttle approach and landing using an inertial navigation system augmented by data from a precision ranging system or a microwave scan beam landing guidance system

    NASA Technical Reports Server (NTRS)

    Mcgee, L. A.; Smith, G. L.; Hegarty, D. M.; Merrick, R. B.; Carson, T. M.; Schmidt, S. F.

    1970-01-01

    A preliminary study has been made of the navigation performance which might be achieved for the high cross-range space shuttle orbiter during final approach and landing by using an optimally augmented inertial navigation system. Computed navigation accuracies are presented for an on-board inertial navigation system augmented (by means of an optimal filter algorithm) with data from two different ground navigation aids; a precision ranging system and a microwave scanning beam landing guidance system. These results show that augmentation with either type of ground navigation aid is capable of providing a navigation performance at touchdown which should be adequate for the space shuttle. In addition, adequate navigation performance for space shuttle landing is obtainable from the precision ranging system even with a complete dropout of precision range measurements as much as 100 seconds before touchdown.

  20. A guidance and navigation system for continuous low thrust vehicles. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Tse, C. J. C.

    1973-01-01

    A midcourse guidance and navigation system for continuous low thrust vehicles is described. A set of orbit elements, known as the equinoctial elements, are selected as the state variables. The uncertainties are modelled statistically by random vector and stochastic processes. The motion of the vehicle and the measurements are described by nonlinear stochastic differential and difference equations respectively. A minimum time nominal trajectory is defined and the equation of motion and the measurement equation are linearized about this nominal trajectory. An exponential cost criterion is constructed and a linear feedback guidance law is derived to control the thrusting direction of the engine. Using this guidance law, the vehicle will fly in a trajectory neighboring the nominal trajectory. The extended Kalman filter is used for state estimation. Finally a short mission using this system is simulated. The results indicate that this system is very efficient for short missions.

  1. Guidance, Navigation, and Control Considerations for Nuclear Thermal Propulsion

    NASA Technical Reports Server (NTRS)

    Houts, Michael G.; Mitchell, Doyce P.; Kim, Tony

    2015-01-01

    The fundamental capability of Nuclear Thermal Propulsion (NTP) is game changing for space exploration. A first generation NTP system could provide high thrust at a specific impulse above 900 s, roughly double that of state of the art chemical engines. Characteristics of fission and NTP indicate that useful first generation systems will provide a foundation for future systems with extremely high performance. The role of a first generation NTP in the development of advanced nuclear propulsion systems could be analogous to the role of the DC-3 in the development of advanced aviation. Progress made under the NTP project could also help enable high performance fission power systems and Nuclear Electric Propulsion (NEP). Guidance, navigation, and control of NTP may have some unique but manageable characteristics.

  2. Independent Orbiter Assessment (IOA): Analysis of the guidance, navigation, and control subsystem

    NASA Technical Reports Server (NTRS)

    Trahan, W. H.; Odonnell, R. A.; Pietz, K. C.; Hiott, J. M.

    1986-01-01

    The results of the Independent Orbiter Assessment (IOA) of the Failure Modes and Effects Analysis (FMEA) and Critical Items List (CIL) is presented. The IOA approach features a top-down analysis of the hardware to determine failure modes, criticality, and potential critical items. To preserve independence, this analysis was accomplished without reliance upon the results contained within the NASA FMEA/CIL documentation. The independent analysis results corresponding to the Orbiter Guidance, Navigation, and Control (GNC) Subsystem hardware are documented. The function of the GNC hardware is to respond to guidance, navigation, and control software commands to effect vehicle control and to provide sensor and controller data to GNC software. Some of the GNC hardware for which failure modes analysis was performed includes: hand controllers; Rudder Pedal Transducer Assembly (RPTA); Speed Brake Thrust Controller (SBTC); Inertial Measurement Unit (IMU); Star Tracker (ST); Crew Optical Alignment Site (COAS); Air Data Transducer Assembly (ADTA); Rate Gyro Assemblies; Accelerometer Assembly (AA); Aerosurface Servo Amplifier (ASA); and Ascent Thrust Vector Control (ATVC). The IOA analysis process utilized available GNC hardware drawings, workbooks, specifications, schematics, and systems briefs for defining hardware assemblies, components, and circuits. Each hardware item was evaluated and analyzed for possible failure modes and effects. Criticality was assigned based upon the severity of the effect for each failure mode.

  3. Terminal area automatic navigation, guidance, and control 1: Automatic rollout, turnoff, and taxis

    NASA Technical Reports Server (NTRS)

    Pines, S.

    1981-01-01

    A study developed for the TCV B-737, designed to apply existing navigation aids plus magnetic leader cable signals and develop breaking and reverse thrust guidance laws to provide for rapid automated rollout, turnoff, and taxi to reduce runway occupation time for a wide variety of landing conditions for conventional commercial-type aircraft, is described. Closed loop guidance laws for braking and reverse thrust are derived for rollout, turnoff, and taxi, as functions of the landing speed, the desired taxi speed and the distance to go. Brake limitations for wet runway conditions and reverse thrust limitations are taken into account to provide decision rules to avoid tire skid and to choose an alternate turnoff point, farther down the runway, to accommodate extreme landing conditions.

  4. Apollo 13 Guidance, Navigation, and Control Challenges

    NASA Technical Reports Server (NTRS)

    Goodman, John L.

    2009-01-01

    Combustion and rupture of a liquid oxygen tank during the Apollo 13 mission provides lessons and insights for future spacecraft designers and operations personnel who may never, during their careers, have participated in saving a vehicle and crew during a spacecraft emergency. Guidance, Navigation, and Control (GNC) challenges were the reestablishment of attitude control after the oxygen tank incident, re-establishment of a free return trajectory, resolution of a ground tracking conflict between the LM and the Saturn V S-IVB stage, Inertial Measurement Unit (IMU) alignments, maneuvering to burn attitudes, attitude control during burns, and performing manual GNC tasks with most vehicle systems powered down. Debris illuminated by the Sun and gaseous venting from the Service Module (SM) complicated crew attempts to identify stars and prevented execution of nominal IMU alignment procedures. Sightings on the Sun, Moon, and Earth were used instead. Near continuous communications with Mission Control enabled the crew to quickly perform time critical procedures. Overcoming these challenges required the modification of existing contingency procedures.

  5. Organization's Orderly Interest Exploration: Inception, Development and Insights of AIAA's Topics Database

    NASA Technical Reports Server (NTRS)

    Marshall, Jospeh R.; Morris, Allan T.

    2007-01-01

    Since 2003, AIAA's Computer Systems and Software Systems Technical Committees (TCs) have developed a database that aids technical committee management to map technical topics to their members. This Topics/Interest (T/I) database grew out of a collection of charts and spreadsheets maintained by the TCs. Since its inception, the tool has evolved into a multi-dimensional database whose dimensions include the importance, interest and expertise of TC members and whether or not a member and/or a TC is actively involved with the topic. In 2005, the database was expanded to include the TCs in AIAA s Information Systems Group and then expanded further to include all AIAA TCs. It was field tested at an AIAA Technical Activities Committee (TAC) Workshop in early 2006 through live access by over 80 users. Through the use of the topics database, TC and program committee (PC) members can accomplish relevant tasks such as: to identify topic experts (for Aerospace America articles or external contacts), to determine the interest of its members, to identify overlapping topics between diverse TCs and PCs, to guide new member drives and to reveal emerging topics. This paper will describe the origins, inception, initial development, field test and current version of the tool as well as elucidate the benefits and insights gained by using the database to aid the management of various TC functions. Suggestions will be provided to guide future development of the database for the purpose of providing dynamics and system level benefits to AIAA that currently do not exist in any technical organization.

  6. Statistical Analysis of the AIAA Drag Prediction Workshop CFD Solutions

    NASA Technical Reports Server (NTRS)

    Morrison, Joseph H.; Hemsch, Michael J.

    2007-01-01

    The first AIAA Drag Prediction Workshop (DPW), held in June 2001, evaluated the results from an extensive N-version test of a collection of Reynolds-Averaged Navier-Stokes CFD codes. The code-to-code scatter was more than an order of magnitude larger than desired for design and experimental validation of cruise conditions for a subsonic transport configuration. The second AIAA Drag Prediction Workshop, held in June 2003, emphasized the determination of installed pylon-nacelle drag increments and grid refinement studies. The code-to-code scatter was significantly reduced compared to the first DPW, but still larger than desired. However, grid refinement studies showed no significant improvement in code-to-code scatter with increasing grid refinement. The third AIAA Drag Prediction Workshop, held in June 2006, focused on the determination of installed side-of-body fairing drag increments and grid refinement studies for clean attached flow on wing alone configurations and for separated flow on the DLR-F6 subsonic transport model. This report compares the transonic cruise prediction results of the second and third workshops using statistical analysis.

  7. Project Management Using Modern Guidance, Navigation and Control Theory

    NASA Technical Reports Server (NTRS)

    Hill, Terry R.

    2011-01-01

    Implementing guidance, navigation, and control (GN&C) theory principles and applying them to the human element of project management and control is not a new concept. As both the literature on the subject and the real-world applications are neither readily available nor comprehensive with regard to how such principles might be applied, this paper has been written to educate the project manager on the "laws of physics" of his or her project (not to teach a GN&C engineer how to become a project manager) and to provide an intuitive, mathematical explanation as to the control and behavior of projects. This paper will also address how the fundamental principles of modern GN&C were applied to the National Aeronautics and Space Administration's (NASA) Constellation Program (CxP) space suit project, ensuring the project was managed within cost, schedule, and budget. A project that is akin to a physical system can be modeled and managed using the same over arching principles of GN&C that would be used if that project were a complex vehicle, a complex system(s), or complex software with time-varying processes (at times nonlinear) containing multiple data inputs of varying accuracy and a range of operating points. The classic GN&C theory approach could thus be applied to small, well-defined projects; yet when working with larger, multiyear projects necessitating multiple organizational structures, numerous external influences, and a multitude of diverse resources, modern GN&C principles are required to model and manage the project. The fundamental principles of a GN&C system incorporate these basic concepts: State, Behavior, Feedback Control, Navigation, Guidance and Planning Logic systems. The State of a system defines the aspects of the system that can change over time; e.g., position, velocity, acceleration, coordinate-based attitude, and temperature, etc. The Behavior of the system focuses more on what changes are possible within the system; this is denoted in the state

  8. Guidance, Navigation, and Control Performance for the GOES-R Spacecraft

    NASA Technical Reports Server (NTRS)

    Chapel, Jim; Stancliffe, Devin; Bevacqua, TIm; Winkler, Stephen; Clapp, Brian; Rood, Tim; Gaylor, David; Freesland, Doug; Krimchansky, Alexander

    2014-01-01

    The Geostationary Operational Environmental Satellite-R Series (GOES-R) is the first of the next generation geostationary weather satellites. The series represents a dramatic increase in Earth observation capabilities, with 4 times the resolution, 5 times the observation rate, and 3 times the number of spectral bands. GOES-R also provides unprecedented availability, with less than 120 minutes per year of lost observation time. This paper presents the Guidance Navigation & Control (GN&C) requirements necessary to realize the ambitious pointing, knowledge, and Image Navigation and Registration (INR) objectives of GOES-R. Because the suite of instruments is sensitive to disturbances over a broad spectral range, a high fidelity simulation of the vehicle has been created with modal content over 500 Hz to assess the pointing stability requirements. Simulation results are presented showing acceleration, shock response spectra (SRS), and line of sight (LOS) responses for various disturbances from 0 Hz to 512 Hz. Simulation results demonstrate excellent performance relative to the pointing and pointing stability requirements, with LOS jitter for the isolated instrument platform of approximately 1 micro-rad. Attitude and attitude rate knowledge are provided directly to the instrument with an accuracy defined by the Integrated Rate Error (IRE) requirements. The data are used internally for motion compensation. The final piece of the INR performance is orbit knowledge, which GOES-R achieves with GPS navigation. Performance results are shown demonstrating compliance with the 50 to 75 m orbit position accuracy requirements. As presented in this paper, the GN&C performance supports the challenging mission objectives of GOES-R.

  9. Dissociation of spatial navigation and visual guidance performance in Purkinje cell degeneration (pcd) mutant mice.

    PubMed

    Goodlett, C R; Hamre, K M; West, J R

    1992-04-10

    Spatial learning in rodents requires normal functioning of hippocampal and cortical structures. Recent data suggest that the cerebellum may also be essential. Neurological mutant mice with dysgenesis of the cerebellum provide useful models to examine the effects of abnormal cerebellar function. Mice with one such mutation, Purkinje cell degeneration (pcd), in which Purkinje cells degenerate between the third and fourth postnatal weeks, were evaluated for performance of spatial navigation learning and visual guidance learning in the Morris maze swim-escape task. Unaffected littermates and C57BL/6J mice served as controls. Separate groups of pcd and control mice were tested at 30, 50 and 110 days of age. At all ages, pcd mice had severe deficits in distal-cue (spatial) navigation, failing to decrease path lengths over training and failing to express appropriate spatial biases on probe trials. On the proximal-cue (visual guidance) task, whenever performance differences between groups did occur, they were limited to the initial trials. The ability of the pcd mice to perform the proximal-cue but not the distal-cue task indicates that the massive spatial navigation deficit was not due simply to motor dysfunction. Histological evaluations confirmed that the pcd mutation resulted in Purkinje cell loss without significant depletion of cells in the hippocampal formation. These data provide further evidence that the cerebellum is vital for the expression of behavior directed by spatial cognitive processes.

  10. Administrator Bolden Speaks at AIAA and WIA Luncheon

    NASA Image and Video Library

    2009-12-09

    NASA Administrator Charles Bolden speaks during a luncheon co-hosted by the American Institute of Aeronautics and Astronautics (AIAA) and Women In Aerospace (WIA) Wednesday, Dec., 9, 2009 at the Ritz-Carlton in Arlington, Va. Photo Credit: (NASA/Bill Ingalls)

  11. Post-Flight Analysis of the Guidance, Navigation, and Control Performance During Orion Exploration Flight Test 1

    NASA Technical Reports Server (NTRS)

    Barth, Andrew; Mamich, Harvey; Hoelscher, Brian

    2015-01-01

    The first test flight of the Orion Multi-Purpose Crew Vehicle presented additional challenges for guidance, navigation and control as compared to a typical re-entry from the International Space Station or other Low Earth Orbit. An elevated re-entry velocity and steeper flight path angle were chosen to achieve aero-thermal flight test objectives. New IMU's, a GPS receiver, and baro altimeters were flight qualified to provide the redundant navigation needed for human space flight. The guidance and control systems must manage the vehicle lift vector in order to deliver the vehicle to a precision, coastal, water landing, while operating within aerodynamic load, reaction control system, and propellant constraints. Extensive pre-flight six degree-of-freedom analysis was performed that showed mission success for the nominal mission as well as in the presence of sensor and effector failures. Post-flight reconstruction analysis of the test flight is presented in this paper to show whether that all performance metrics were met and establish how well the pre-flight analysis predicted the in-flight performance.

  12. Conic state extrapolation. [computer program for space shuttle navigation and guidance requirements

    NASA Technical Reports Server (NTRS)

    Shepperd, S. W.; Robertson, W. M.

    1973-01-01

    The Conic State Extrapolation Routine provides the capability to conically extrapolate any spacecraft inertial state vector either backwards or forwards as a function of time or as a function of transfer angle. It is merely the coded form of two versions of the solution of the two-body differential equations of motion of the spacecraft center of mass. Because of its relatively fast computation speed and moderate accuracy, it serves as a preliminary navigation tool and as a method of obtaining quick solutions for targeting and guidance functions. More accurate (but slower) results are provided by the Precision State Extrapolation Routine.

  13. Assessment of the Draft AIAA S-119 Flight Dynamic Model Exchange Standard

    NASA Technical Reports Server (NTRS)

    Jackson, E. Bruce; Murri, Daniel G.; Hill, Melissa A.; Jessick, Matthew V.; Penn, John M.; Hasan, David A.; Crues, Edwin Z.; Falck, Robert D.; McCarthy, Thomas G.; Vuong, Nghia; hide

    2011-01-01

    An assessment of a draft AIAA standard for flight dynamics model exchange, ANSI/AIAA S-119-2011, was conducted on behalf of NASA by a team from the NASA Engineering and Safety Center. The assessment included adding the capability of importing standard models into real-time simulation facilities at several NASA Centers as well as into analysis simulation tools. All participants were successful at importing two example models into their respective simulation frameworks by using existing software libraries or by writing new import tools. Deficiencies in the libraries and format documentation were identified and fixed; suggestions for improvements to the standard were provided to the AIAA. An innovative tool to generate C code directly from such a model was developed. Performance of the software libraries compared favorably with compiled code. As a result of this assessment, several NASA Centers can now import standard models directly into their simulations. NASA is considering adopting the now-published S-119 standard as an internal recommended practice.

  14. Guidance and control, 1993; Annual Rocky Mountain Guidance and Control Conference, 16th, Keystone, CO, Feb. 6-10, 1993

    NASA Technical Reports Server (NTRS)

    Culp, Robert D. (Editor); Bickley, George (Editor)

    1993-01-01

    Papers from the sixteenth annual American Astronautical Society Rocky Mountain Guidance and Control Conference are presented. The topics covered include the following: advances in guidance, navigation, and control; control system videos; guidance, navigation and control embedded flight control systems; recent experiences; guidance and control storyboard displays; and applications of modern control, featuring the Hubble Space Telescope (HST) performance enhancement study.

  15. NASA Office of Aeronautics and Space Technology Summer Workshop. Volume 3: Navigation, guidance and control panel

    NASA Technical Reports Server (NTRS)

    1975-01-01

    User technology requirements are identified in relation to needed technology advancement for future space missions in the areas of navigation, guidance, and control. Emphasis is placed on: reduction of mission support cost by 50% through autonomous operation, a ten-fold increase in mission output through improved pointing and control, and a hundred-fold increase in human productivity in space through large-scale teleoperator applications.

  16. Guidance, Navigation, and Control Technology Assessment for Future Planetary Science Missions

    NASA Technical Reports Server (NTRS)

    Beauchamp, Pat; Cutts, James; Quadrelli, Marco B.; Wood, Lincoln J.; Riedel, Joseph E.; McHenry, Mike; Aung, MiMi; Cangahuala, Laureano A.; Volpe, Rich

    2013-01-01

    Future planetary explorations envisioned by the National Research Council's (NRC's) report titled Vision and Voyages for Planetary Science in the Decade 2013-2022, developed for NASA Science Mission Directorate (SMD) Planetary Science Division (PSD), seek to reach targets of broad scientific interest across the solar system. This goal requires new capabilities such as innovative interplanetary trajectories, precision landing, operation in close proximity to targets, precision pointing, multiple collaborating spacecraft, multiple target tours, and advanced robotic surface exploration. Advancements in Guidance, Navigation, and Control (GN&C) and Mission Design in the areas of software, algorithm development and sensors will be necessary to accomplish these future missions. This paper summarizes the key GN&C and mission design capabilities and technologies needed for future missions pursuing SMD PSD's scientific goals.

  17. Guidance and control, 1993; Annual Rocky Mountain Guidance and Control Conference, 16th, Keystone, CO, Feb. 6-10, 1993

    NASA Astrophysics Data System (ADS)

    Culp, Robert D.; Bickley, George

    Papers from the sixteenth annual American Astronautical Society Rocky Mountain Guidance and Control Conference are presented. The topics covered include the following: advances in guidance, navigation, and control; control system videos; guidance, navigation and control embedded flight control systems; recent experiences; guidance and control storyboard displays; and applications of modern control, featuring the Hubble Space Telescope (HST) performance enhancement study. For individual titles, see A95-80390 through A95-80436.

  18. Development of a breast navigation program.

    PubMed

    Shockney, Lillie D; Haylock, Pamela J; Cantril, Cynthia

    2013-05-01

    To review the development of a navigation program in a major US academic health care institution, and provide guidance for navigation programmatic development in other settings. The Johns Hopkins Breast Center Steering Committee minutes, Hospital Cancer Registry; administrative data, and literature. Incorporating navigation services throughout the cancer continuum, from diagnosis to survivorship, provides guidance for patients with cancer. Navigation processes and programs must remain dynamic, reflecting patient and community needs. Oncology nurses have traditionally performed many tasks associated with navigation, including patient education, psychosocial support, and addressing barriers to care. This article provides an exemplar for nurses developing or enhancing comprehensive breast programs. Copyright © 2013 Elsevier Inc. All rights reserved.

  19. Guidance, navigation, and control trades for an Electric Orbit Transfer Vehicle

    NASA Astrophysics Data System (ADS)

    Zondervan, K. P.; Bauer, T. A.; Jenkin, A. B.; Metzler, R. A.; Shieh, R. A.

    The USAF Space Division initiated the Electric Insertion Transfer Experiment (ELITE) in the fall of 1988. The ELITE space mission is planned for the mid 1990s and will demonstrate technological readiness for the development of operational solar-powered electric orbit transfer vehicles (EOTVs). To minimize the cost of ground operations, autonomous flight is desirable. Thus, the guidance, navigation, and control (GNC) functions of an EOTV should reside on board. In order to define GNC requirements for ELITE, parametric trades must be performed for an operational solar-powered EOTV so that a clearer understanding of the performance aspects is obtained. Parametric trades for the GNC subsystems have provided insight into the relationship between pointing accuracy, transfer time, and propellant utilization. Additional trades need to be performed, taking into account weight, cost, and degree of autonomy.

  20. Towards a new approach to model guidance laws

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Borne, P.; Duflos, E.; Vanheeghe, P.

    1994-12-31

    Proportional navigation laws have been widely used and studied. Nevertheless very few publications explain rigorously the origin of all these laws. For researchers who are starting to work on guidance laws, a feeling of confusion can result. For others, this lack of explanation can be, for example, the source of the difficulties to make the true proportional navigation become equivalent to the pure proportional navigation. The authors propose here a way to model guidance laws in order to fill this lack of explanation. The first consequence is a better exploration of the kinematic behaviors arising during the guidance process. Themore » second consequence is the definition of a new 3D guidance law which can be seen as a generalization of the true proportional navigation. Moreover, this generalization allow this last law to become equivalent to the pure proportional navigation in terms of initial conditions which allow the object to reach its target.« less

  1. Real-time fluoroscopic needle guidance in the interventional radiology suite using navigational software for percutaneous bone biopsies in children.

    PubMed

    Shellikeri, Sphoorti; Setser, Randolph M; Hwang, Tiffany J; Srinivasan, Abhay; Krishnamurthy, Ganesh; Vatsky, Seth; Girard, Erin; Zhu, Xiaowei; Keller, Marc S; Cahill, Anne Marie

    2017-07-01

    Navigational software provides real-time fluoroscopic needle guidance for percutaneous procedures in the Interventional Radiology (IR) suite. We describe our experience with navigational software for pediatric percutaneous bone biopsies in the IR suite and compare technical success, diagnostic accuracy, radiation dose and procedure time with that of CT-guided biopsies. Pediatric bone biopsies performed using navigational software (Syngo iGuide, Siemens Healthcare) from 2011 to 2016 were prospectively included and anatomically matched CT-guided bone biopsies from 2008 to 2016 were retrospectively reviewed with institutional review board approval. C-arm CT protocols used for navigational software-assisted cases included institution-developed low-dose (0.1/0.17 μGy/projection), regular-dose (0.36 μGy/projection), or a combination of low-dose/regular-dose protocols. Estimated effective radiation dose and procedure times were compared between software-assisted and CT-guided biopsies. Twenty-six patients (15 male; mean age: 10 years) underwent software-assisted biopsies (15 pelvic, 7 lumbar and 4 lower extremity) and 33 patients (13 male; mean age: 9 years) underwent CT-guided biopsies (22 pelvic, 7 lumbar and 4 lower extremity). Both modality biopsies resulted in a 100% technical success rate. Twenty-five of 26 (96%) software-assisted and 29/33 (88%) CT-guided biopsies were diagnostic. Overall, the effective radiation dose was significantly lower in software-assisted than CT-guided cases (3.0±3.4 vs. 6.6±7.7 mSv, P=0.02). The effective dose difference was most dramatic in software-assisted cases using low-dose C-arm CT (1.2±1.8 vs. 6.6±7.7 mSv, P=0.001) or combined low-dose/regular-dose C-arm CT (1.9±2.4 vs. 6.6±7.7 mSv, P=0.04), whereas effective dose was comparable in software-assisted cases using regular-dose C-arm CT (6.0±3.5 vs. 6.6±7.7 mSv, P=0.7). Mean procedure time was significantly lower for software-assisted cases (91±54 vs. 141±68 min, P=0

  2. Integrated software health management for aerospace guidance, navigation, and control systems: A probabilistic reasoning approach

    NASA Astrophysics Data System (ADS)

    Mbaya, Timmy

    Embedded Aerospace Systems have to perform safety and mission critical operations in a real-time environment where timing and functional correctness are extremely important. Guidance, Navigation, and Control (GN&C) systems substantially rely on complex software interfacing with hardware in real-time; any faults in software or hardware, or their interaction could result in fatal consequences. Integrated Software Health Management (ISWHM) provides an approach for detection and diagnosis of software failures while the software is in operation. The ISWHM approach is based on probabilistic modeling of software and hardware sensors using a Bayesian network. To meet memory and timing constraints of real-time embedded execution, the Bayesian network is compiled into an Arithmetic Circuit, which is used for on-line monitoring. This type of system monitoring, using an ISWHM, provides automated reasoning capabilities that compute diagnoses in a timely manner when failures occur. This reasoning capability enables time-critical mitigating decisions and relieves the human agent from the time-consuming and arduous task of foraging through a multitude of isolated---and often contradictory---diagnosis data. For the purpose of demonstrating the relevance of ISWHM, modeling and reasoning is performed on a simple simulated aerospace system running on a real-time operating system emulator, the OSEK/Trampoline platform. Models for a small satellite and an F-16 fighter jet GN&C (Guidance, Navigation, and Control) system have been implemented. Analysis of the ISWHM is then performed by injecting faults and analyzing the ISWHM's diagnoses.

  3. Stereotaxy, navigation and the temporal concatenation.

    PubMed

    Apuzzo, M L; Chen, J C

    1999-01-01

    Nautical and cerebral navigation share similar elements of functional need and similar developmental pathways. The need for orientation necessitates the development of appropriate concepts, and such concepts are dependent on technology for practical realization. Occasionally, a concept precedes technology in time and requires periods of delay for appropriate development. A temporal concatenation exists where time allows the additive as need, concept and technology ultimately provide an endpoint of elegant solution. Nautical navigation has proceeded through periods of dead reckoning and celestial navigation to satellite orientation with associated refinements of instrumentation and charts for guidance. Cerebral navigation has progressed from craniometric orientation and burr hole mounted guidance systems to simple rectolinear and arc-centered devices based on radiographs to guidance by complex anatomical and functional maps provided as an amalgam of modern imaging modes. These maps are now augmented by complex frame and frameless systems which allow not only precise orientation, but also point and volumetric action. These complex technical modalities required and developed in part from elements of maritime navigation that have been translated to cerebral navigation in a temporal concatenation. Copyright 2000 S. Karger AG, Basel

  4. Analysis of the Effects of Thermal Environment on Optical Systems for Navigation Guidance and Control in Supersonic Aircraft Based on Empirical Equations.

    PubMed

    Cheng, Xuemin; Yang, Yikang; Hao, Qun

    2016-10-17

    The thermal environment is an important factor in the design of optical systems. This study investigated the thermal analysis technology of optical systems for navigation guidance and control in supersonic aircraft by developing empirical equations for the front temperature gradient and rear thermal diffusion distance, and for basic factors such as flying parameters and the structure of the optical system. Finite element analysis (FEA) was used to study the relationship between flying and front dome parameters and the system temperature field. Systematic deduction was then conducted based on the effects of the temperature field on the physical geometry and ray tracing performance of the front dome and rear optical lenses, by deriving the relational expressions between the system temperature field and the spot size and positioning precision of the rear optical lens. The optical systems used for navigation guidance and control in supersonic aircraft when the flight speed is in the range of 1-5 Ma were analysed using the derived equations. Using this new method it was possible to control the precision within 10% when considering the light spot received by the four-quadrant detector, and computation time was reduced compared with the traditional method of separately analysing the temperature field of the front dome and rear optical lens using FEA. Thus, the method can effectively increase the efficiency of parameter analysis and computation in an airborne optical system, facilitating the systematic, effective and integrated thermal analysis of airborne optical systems for navigation guidance and control.

  5. A Computing based Simulation Model for Missile Guidance in Planar Domain

    NASA Astrophysics Data System (ADS)

    Chauhan, Deepak Singh; Sharma, Rajiv

    2017-10-01

    This paper presents the design, development and implementation of a computing based simulation model for interceptor missile guidance for countering an anti-ship missile through a navigation law. It investigates the possibility of deriving, testing and implementing an efficient variation of the PN and RPN laws. A new guidance law [true combined proportional navigation (TCPN) guidance law] that combines the strengths of both the PN and RPN and has a superior capturability in a specified zone of interest is presented in this paper. The presented proportional navigation (PN) guidance law is modeled in a two dimensional planar engagement model and its performance is studied with respect to a varying navigation ratio (N) that is dependent on the `heading error (HE)' and missile lead angle. The advantage of varying navigation ratio is: if N' > 2, Vc > 0, Vm > 0, then the sign of navigation ratio is determined by cos (ɛ + HE) and for cos (ɛ + HE) ≥ 0 and N > 0, the formulation reduces to that of PN and for cos (ɛ + HE) < 0 and N < 0, the formulation reduces to that of RPN. Hence, depending upon the values of cos (ɛ + HE) the presented navigation guidance strategy is shuffled between the PN navigation ratio and the RPN navigation ratio. The theoretical framework of TCPN guidance law is implemented in two dimensional setting of parameters. An important feature of TCPN is the HE and the aim is to achieve lower values of the heading error in simulation. The presented results in this paper show the efficiency of simulation model and also establish that TCPN can be an accurate guidance strategy that has its own range of application and suitability.

  6. A guidance and navigation system for continuous low-thrust vehicles. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Jack-Chingtse, C.

    1973-01-01

    A midcourse guidance and navigation system for continuous low thrust vehicles was developed. The equinoctial elements are the state variables. Uncertainties are modelled statistically by random vector and stochastic processes. The motion of the vehicle and the measurements are described by nonlinear stochastic differential and difference equations respectively. A minimum time trajectory is defined; equations of motion and measurements are linearized about this trajectory. An exponential cost criterion is constructed and a linear feedback quidance law is derived. An extended Kalman filter is used for state estimation. A short mission using this system is simulated. It is indicated that this system is efficient for short missions, but longer missions require accurate trajectory and ground based measurements.

  7. Observations on CFD Verification and Validation from the AIAA Drag Prediction Workshops

    NASA Technical Reports Server (NTRS)

    Morrison, Joseph H.; Kleb, Bil; Vassberg, John C.

    2014-01-01

    The authors provide observations from the AIAA Drag Prediction Workshops that have spanned over a decade and from a recent validation experiment at NASA Langley. These workshops provide an assessment of the predictive capability of forces and moments, focused on drag, for transonic transports. It is very difficult to manage the consistency of results in a workshop setting to perform verification and validation at the scientific level, but it may be sufficient to assess it at the level of practice. Observations thus far: 1) due to simplifications in the workshop test cases, wind tunnel data are not necessarily the “correct” results that CFD should match, 2) an average of core CFD data are not necessarily a better estimate of the true solution as it is merely an average of other solutions and has many coupled sources of variation, 3) outlier solutions should be investigated and understood, and 4) the DPW series does not have the systematic build up and definition on both the computational and experimental side that is required for detailed verification and validation. Several observations regarding the importance of the grid, effects of physical modeling, benefits of open forums, and guidance for validation experiments are discussed. The increased variation in results when predicting regions of flow separation and increased variation due to interaction effects, e.g., fuselage and horizontal tail, point out the need for validation data sets for these important flow phenomena. Experiences with a recent validation experiment at NASA Langley are included to provide guidance on validation experiments.

  8. Guidance and navigation requirements for unmanned flyby and swingby missions to the outer planets. Volume 4: High thrust mission, part 2, phase C

    NASA Technical Reports Server (NTRS)

    1971-01-01

    The guidance and navigation requirements for a set of impulsive thrust missions involving one or more outer planets or comets. Specific missions considered include two Jupiter entry missions of 800 and 1200 day duration, two multiple swingby missions with the sequences Jupiter-Uranus-Neptune and Jupiter-Saturn-Pluto, and two comets rendezvous missions involving the short period comets P/Tempel 2 and P/Tuttle-Giacobini-Kresak. Results show the relative utility of onboard and Earth-based DSN navigation. The effects of parametric variations in navigation accuracy, measurement rate, and miscellaneous constraints are determined. The utility of a TV type onboard navigation sensor - sighting on planetary satellites and comets - is examined. Velocity corrections required for the nominal and parametrically varied cases are tabulated.

  9. Guidance and navigation requirements for unmanned flyby and swingby missions to the outer planets. Volume 1: Summary report

    NASA Technical Reports Server (NTRS)

    1971-01-01

    Unmanned spacecraft missions to the outer planets are of current interest to planetary scientists, and are being studied for the post 1970 time period. Flyby, entry and orbiter missions are all being considered using both direct and planetary swingby trajectory modes. The navigation and guidance requirements for a variety of missions to the outer planets and comets including both the three and four planet Grand Tours, are summarized.

  10. Analysis of the Effects of Thermal Environment on Optical Systems for Navigation Guidance and Control in Supersonic Aircraft Based on Empirical Equations

    PubMed Central

    Cheng, Xuemin; Yang, Yikang; Hao, Qun

    2016-01-01

    The thermal environment is an important factor in the design of optical systems. This study investigated the thermal analysis technology of optical systems for navigation guidance and control in supersonic aircraft by developing empirical equations for the front temperature gradient and rear thermal diffusion distance, and for basic factors such as flying parameters and the structure of the optical system. Finite element analysis (FEA) was used to study the relationship between flying and front dome parameters and the system temperature field. Systematic deduction was then conducted based on the effects of the temperature field on the physical geometry and ray tracing performance of the front dome and rear optical lenses, by deriving the relational expressions between the system temperature field and the spot size and positioning precision of the rear optical lens. The optical systems used for navigation guidance and control in supersonic aircraft when the flight speed is in the range of 1–5 Ma were analysed using the derived equations. Using this new method it was possible to control the precision within 10% when considering the light spot received by the four-quadrant detector, and computation time was reduced compared with the traditional method of separately analysing the temperature field of the front dome and rear optical lens using FEA. Thus, the method can effectively increase the efficiency of parameter analysis and computation in an airborne optical system, facilitating the systematic, effective and integrated thermal analysis of airborne optical systems for navigation guidance and control. PMID:27763515

  11. Magnetic navigation for thoracic aortic stent-graft deployment using ultrasound image guidance.

    PubMed

    Luo, Zhe; Cai, Junfeng; Wang, Su; Zhao, Qiang; Peters, Terry M; Gu, Lixu

    2013-03-01

    We propose a system for thoracic aortic stent-graft deployment that employs a magnetic tracking system (MTS) and intraoperative ultrasound (US). A preoperative plan is first performed using a general public utilities-accelerated cardiac modeling method to determine the target position of the stent-graft. During the surgery, an MTS is employed to track sensors embedded in the catheter, cannula, and the US probe, while a fiducial landmark based registration is used to map the patient's coordinate to the image coordinate. The surgical target is tracked in real time via a calibrated intraoperative US image. Under the guidance of the MTS integrated with the real-time US images, the stent-graft can be deployed to the target position without the use of ionizing radiation. This navigation approach was validated using both phantom and animal studies. In the phantom study, we demonstrate a US calibration accuracy of 1.5 ± 0.47 mm, and a deployment error of 1.4 ± 0.16 mm. In the animal study, we performed experiments on five porcine subjects and recorded fiducial, target, and deployment errors of 2.5 ± 0.32, 4.2 ± 0.78, and 2.43 ± 0.69 mm, respectively. These results demonstrate that delivery and deployment of thoracic stent-graft under MTS-guided navigation using US imaging is feasible and appropriate for clinical application.

  12. AIAA Educator Academy: The Space Weather Balloon Module

    NASA Astrophysics Data System (ADS)

    Longmier, B.; Henriquez, E.; Bering, E. A.; Slagle, E.

    2013-12-01

    Educator Academy is a K-12 STEM curriculum developed by the STEM K-12 Outreach Committee of the American Institute of Aeronautics and Astronautics (AIAA). Consisting of three independent curriculum modules, K-12 students participate in inquiry-based science and engineering challenges to improve critical thinking skills and enhance problem solving skills. The Space Weather Balloon Curriculum Module is designed for students in grades 9-12. Throughout this module, students learn and refine physics concepts as well as experimental research skills. Students participate in project-based learning that is experimental in nature. Students are engaged with the world around them as they collaborate to launch a high altitude balloon equipped with HD cameras.The program leaders launch high altitude weather balloons in collaboration with schools and students to teach physics concepts, experimental research skills, and to make space exploration accessible to students. A weather balloon lifts a specially designed payload package that is composed of HD cameras, GPS tracking devices, and other science equipment. The payload is constructed and attached to the balloon by the students with low-cost materials. The balloon and payload are launched with FAA clearance from a site chosen based on wind patterns and predicted landing locations. The balloon ascends over 2 hours to a maximum altitude of 100,000 feet where it bursts and allows the payload to slowly descend using a built-in parachute. The payload is located using the GPS device. In April 2012, the Space Weather Balloon team conducted a prototype field campaign near Fairbanks Alaska, sending several student-built experiments to an altitude of 30km, underneath several strong auroral displays. To better assist teachers in implementing one or more of these Curriculum Modules, teacher workshops are held to give teachers a hands-on look at how this curriculum is used in the classroom. And, to provide further support, teachers are each

  13. Guidance and control 1989; Proceedings of the Annual Rocky Mountain Guidance and Control Conference, Keystone, CO, Feb. 4-8, 1989

    NASA Astrophysics Data System (ADS)

    Culp, Robert D.; Lewis, Robert A.

    1989-05-01

    Papers are presented on advances in guidance, navigation, and control; guidance and control storyboard displays; attitude referenced pointing systems; guidance, navigation, and control for specialized missions; and recent experiences. Other topics of importance to support the application of guidance and control to the space community include concept design and performance test of a magnetically suspended single-gimbal control moment gyro; design, fabrication and test of a prototype double gimbal control moment gyroscope for the NASA Space Station; the Circumstellar Imaging Telescope Image Motion Compensation System providing ultra-precise control on the Space Station platform; pinpointing landing concepts for the Mars Rover Sample Return mission; and space missile guidance and control simulation and flight testing.

  14. Guidance Of A Mobile Robot Using An Omnidirectional Vision Navigation System

    NASA Astrophysics Data System (ADS)

    Oh, Sung J.; Hall, Ernest L.

    1987-01-01

    Navigation and visual guidance are key topics in the design of a mobile robot. Omnidirectional vision using a very wide angle or fisheye lens provides a hemispherical view at a single instant that permits target location without mechanical scanning. The inherent image distortion with this view and the numerical errors accumulated from vision components can be corrected to provide accurate position determination for navigation and path control. The purpose of this paper is to present the experimental results and analyses of the imaging characteristics of the omnivision system including the design of robot-oriented experiments and the calibration of raw results. Errors less than one picture element on each axis were observed by testing the accuracy and repeatability of the experimental setup and the alignment between the robot and the sensor. Similar results were obtained for four different locations using corrected results of the linearity test between zenith angle and image location. Angular error of less than one degree and radial error of less than one Y picture element were observed at moderate relative speed. The significance of this work is that the experimental information and the test of coordinated operation of the equipment provide a greater understanding of the dynamic omnivision system characteristics, as well as insight into the evaluation and improvement of the prototype sensor for a mobile robot. Also, the calibration of the sensor is important, since the results provide a cornerstone for future developments. This sensor system is currently being developed for a robot lawn mower.

  15. Autonomous RPRV Navigation, Guidance and Control

    NASA Technical Reports Server (NTRS)

    Johnston, Donald E.; Myers, Thomas T.; Zellner, John W.

    1983-01-01

    Dryden Flight Research Center has the responsibility for flight testing of advanced remotely piloted research vehicles (RPRV) to explore highly maneuverable aircraft technology, and to test advanced structural concepts, and related aeronautical technologies which can yield important research results with significant cost benefits. The primary purpose is to provide the preliminary design of an upgraded automatic approach and landing control system and flight director display to improve landing performance and reduce pilot workload. A secondary purpose is to determine the feasibility of an onboard autonomous navigation, orbit, and landing capability for safe vehicle recovery in the event of loss of telemetry uplink communication with the vehicles. The current RPRV approach and landing method, the proposed automatic and manual approach and autoland system, and an autonomous navigation, orbit, and landing system concept which is based on existing operational technology are described.

  16. Guidance, Navigation, and Control Performance for the GOES-R Spacecraft

    NASA Technical Reports Server (NTRS)

    Chapel, Jim D.; Stancliffe, Devin; Bevacqua, Tim; Winkler, Stephen; Clapp, Brian; Rood, Tim; Gaylor, David; Freesland, Douglas C.; Krimchansky, Alexander

    2014-01-01

    The Geostationary Operational Environmental Satellite-R Series (GOES-R) is the first of the next generation geostationary weather satellites, scheduled for delivery in late 2015 and launch in early 2016. Relative to the current generation of GOES satellites, GOES-R represents a dramatic increase in Earth and solar weather observation capabilities, with 4 times the resolution, 5 times the observation rate, and 3 times the number of spectral bands for Earth observations. GOES-R will also provide unprecedented availability, with less than 120 minutes per year of lost observation time. The Guidance Navigation & Control (GN&C) design requirements to achieve these expanded capabilities are extremely demanding. This paper first presents the pointing control, pointing stability, attitude knowledge, and orbit knowledge requirements necessary to realize the ambitious Image Navigation and Registration (INR) objectives of GOES-R. Because the GOES-R suite of instruments is sensitive to disturbances over a broad spectral range, a high fidelity simulation of the vehicle has been created with modal content over 500 Hz to assess the pointing stability requirements. Simulation results are presented showing acceleration, shock response spectrum (SRS), and line of sight responses for various disturbances from 0 Hz to 512 Hz. These disturbances include gimbal motion, reaction wheel disturbances, thruster firings for station keeping and momentum management, and internal instrument disturbances. Simulation results demonstrate excellent performance relative to the pointing and pointing stability requirements, with line of sight jitter of the isolated instrument platform of approximately 1 micro-rad. Low frequency motion of the isolated instrument platform is internally compensated within the primary instrument. Attitude knowledge and rate are provided directly to the instrument with an accuracy defined by the Integrated Rate Error (IRE) requirements. The allowable IRE ranges from 1 to 18

  17. Guidance strategies and analysis for low thrust navigation

    NASA Technical Reports Server (NTRS)

    Jacobson, R. A.

    1973-01-01

    A low-thrust guidance algorithm suitable for operational use was formulated. A constrained linear feedback control law was obtained using a minimum terminal miss criterion and restricting control corrections to constant changes for specified time periods. Both fixed- and variable-time-of-arrival guidance were considered. The performance of the guidance law was evaluated by applying it to the approach phase of the 1980 rendezvous mission with the comet Encke.

  18. Description of the attitude control, guidance and navigation space replaceable units for automated space servicing of selected NASA missions

    NASA Technical Reports Server (NTRS)

    Chobotov, V. A.

    1974-01-01

    Control elements such as sensors, momentum exchange devices, and thrusters are described which can be used to define space replaceable units (SRU), in accordance with attitude control, guidance, and navigation performance requirements selected for NASA space serviceable mission spacecraft. A number of SRU's are developed, and their reliability block diagrams are presented. An SRU assignment is given in order to define a set of feasible space serviceable spacecraft for the missions of interest.

  19. Flight evaluation of two-segment approaches using area navigation guidance equipment

    NASA Technical Reports Server (NTRS)

    Schwind, G. K.; Morrison, J. A.; Nylen, W. E.; Anderson, E. B.

    1976-01-01

    A two-segment noise abatement approach procedure for use on DC-8-61 aircraft in air carrier service was developed and evaluated. The approach profile and procedures were developed in a flight simulator. Full guidance is provided throughout the approach by a Collins Radio Company three-dimensional area navigation (RNAV) system which was modified to provide the two-segment approach capabilities. Modifications to the basic RNAV software included safety protection logic considered necessary for an operationally acceptable two-segment system. With an aircraft out of revenue service, the system was refined and extensively flight tested, and the profile and procedures were evaluated by representatives of the airlines, airframe manufacturers, the Air Line Pilots Association, and the Federal Aviation Adminstration. The system was determined to be safe and operationally acceptable. It was then placed into scheduled airline service for an evaluation during which 180 approaches were flown by 48 airline pilots. The approach was determined to be compatible with the airline operational environment, although operation of the RNAV system in the existing terminal area air traffic control environment was difficult.

  20. Guidance, navigation, and control subsystem equipment selection algorithm using expert system methods

    NASA Technical Reports Server (NTRS)

    Allen, Cheryl L.

    1991-01-01

    Enhanced engineering tools can be obtained through the integration of expert system methodologies and existing design software. The application of these methodologies to the spacecraft design and cost model (SDCM) software provides an improved technique for the selection of hardware for unmanned spacecraft subsystem design. The knowledge engineering system (KES) expert system development tool was used to implement a smarter equipment section algorithm than that which is currently achievable through the use of a standard data base system. The guidance, navigation, and control subsystems of the SDCM software was chosen as the initial subsystem for implementation. The portions of the SDCM code which compute the selection criteria and constraints remain intact, and the expert system equipment selection algorithm is embedded within this existing code. The architecture of this new methodology is described and its implementation is reported. The project background and a brief overview of the expert system is described, and once the details of the design are characterized, an example of its implementation is demonstrated.

  1. Observability-Based Guidance and Sensor Placement

    NASA Astrophysics Data System (ADS)

    Hinson, Brian T.

    Control system performance is highly dependent on the quality of sensor information available. In a growing number of applications, however, the control task must be accomplished with limited sensing capabilities. This thesis addresses these types of problems from a control-theoretic point-of-view, leveraging system nonlinearities to improve sensing performance. Using measures of observability as an information quality metric, guidance trajectories and sensor distributions are designed to improve the quality of sensor information. An observability-based sensor placement algorithm is developed to compute optimal sensor configurations for a general nonlinear system. The algorithm utilizes a simulation of the nonlinear system as the source of input data, and convex optimization provides a scalable solution method. The sensor placement algorithm is applied to a study of gyroscopic sensing in insect wings. The sensor placement algorithm reveals information-rich areas on flexible insect wings, and a comparison to biological data suggests that insect wings are capable of acting as gyroscopic sensors. An observability-based guidance framework is developed for robotic navigation with limited inertial sensing. Guidance trajectories and algorithms are developed for range-only and bearing-only navigation that improve navigation accuracy. Simulations and experiments with an underwater vehicle demonstrate that the observability measure allows tuning of the navigation uncertainty.

  2. Flight Testing of Terrain-Relative Navigation and Large-Divert Guidance on a VTVL Rocket

    NASA Technical Reports Server (NTRS)

    Trawny, Nikolas; Benito, Joel; Tweddle, Brent; Bergh, Charles F.; Khanoyan, Garen; Vaughan, Geoffrey M.; Zheng, Jason X.; Villalpando, Carlos Y.; Cheng, Yang; Scharf, Daniel P.; hide

    2015-01-01

    Since 2011, the Autonomous Descent and Ascent Powered-Flight Testbed (ADAPT) has been used to demonstrate advanced descent and landing technologies onboard the Masten Space Systems (MSS) Xombie vertical-takeoff, vertical-landing suborbital rocket. The current instantiation of ADAPT is a stand-alone payload comprising sensing and avionics for terrain-relative navigation and fuel-optimal onboard planning of large divert trajectories, thus providing complete pin-point landing capabilities needed for planetary landers. To this end, ADAPT combines two technologies developed at JPL, the Lander Vision System (LVS), and the Guidance for Fuel Optimal Large Diverts (G-FOLD) software. This paper describes the integration and testing of LVS and G-FOLD in the ADAPT payload, culminating in two successful free flight demonstrations on the Xombie vehicle conducted in December 2014.

  3. Acoustic Sensors for Air and Surface Navigation Applications

    PubMed Central

    Kapoor, Rohan; Ramasamy, Subramanian; Schyndel, Ron Van

    2018-01-01

    This paper presents the state-of-the-art and reviews the state-of-research of acoustic sensors used for a variety of navigation and guidance applications on air and surface vehicles. In particular, this paper focuses on echolocation, which is widely utilized in nature by certain mammals (e.g., cetaceans and bats). Although acoustic sensors have been extensively adopted in various engineering applications, their use in navigation and guidance systems is yet to be fully exploited. This technology has clear potential for applications in air and surface navigation/guidance for intelligent transport systems (ITS), especially considering air and surface operations indoors and in other environments where satellite positioning is not available. Propagation of sound in the atmosphere is discussed in detail, with all potential attenuation sources taken into account. The errors introduced in echolocation measurements due to Doppler, multipath and atmospheric effects are discussed, and an uncertainty analysis method is presented for ranging error budget prediction in acoustic navigation applications. Considering the design challenges associated with monostatic and multi-static sensor implementations and looking at the performance predictions for different possible configurations, acoustic sensors show clear promises in navigation, proximity sensing, as well as obstacle detection and tracking. The integration of acoustic sensors in multi-sensor navigation systems is also considered towards the end of the paper and a low Size, Weight and Power, and Cost (SWaP-C) sensor integration architecture is presented for possible introduction in air and surface navigation systems. PMID:29414894

  4. Navigation and EDL for the Mars Exploration Rovers

    NASA Technical Reports Server (NTRS)

    Watkins, Michael M.; Han, Dongsuk

    2006-01-01

    A viewgraph presentation on Deep Space Navigation, and Entry, Decent, and Landing (EDL) for Mars Exploration Rovers is shown. The contents include: 1) JPL Spacecraft Operating across the Solar System; 2) 2003 - 2004: The Busiest Period in JPL's History; 3) Deep Space Navigation Will Enable Many of the New NASA Missions; 4) What Exactly is Navigation vs. GNC for Deep Space?; 5) Cruise and Approach: Why is Deep Space Navigation So Difficult?; 6) Project Importance of GNC: Landing Site Selection; 7) Planetary Communications and Tracking; 8) Tracking Data Types; 9) Delta Differential One-Way Range (deltaDOR); 10) All Solutions Leading up to TCM-4 Design; 11) Entry Flight Path Sensitivities; 12) MER Navigation Results; 13) Atmospheric Entry Targeting and Delivery; 14) Landing Ellipse Orientation; 15) MER Landing Site Trade Example; 16) Entry, Descent and Landing: Entry Guidance or What Things Do We NOT do for MER Landings (but we will later...); 17) Entering Martian Space 8:29 p.m. PST (ERT); 18) Entry, Descent and Landing; 19) Entry, Descent and Landing: Terminal Guidance; 20) The Challenge Going from 12,000 mph to Zero in Less Than Six Minutes; 21) Spirit Landing Location; 22) Entry, Descent and Landing: The Future; 23) Powered Descent Time-Line; and 24) Updated Sky Crane Maneuver Description. A short summary is also given on planetary guidance, navigation and control as it pertains to EDL systems

  5. Real-time FDG PET Guidance during Biopsies and Radiofrequency Ablation Using Multimodality Fusion with Electromagnetic Navigation

    PubMed Central

    Kadoury, Samuel; Abi-Jaoudeh, Nadine; Levy, Elliot B.; Maass-Moreno, Roberto; Krücker, Jochen; Dalal, Sandeep; Xu, Sheng; Glossop, Neil; Wood, Bradford J.

    2011-01-01

    Purpose: To assess the feasibility of combined electromagnetic device tracking and computed tomography (CT)/ultrasonography (US)/fluorine 18 fluorodeoxyglucose (FDG) positron emission tomography (PET) fusion for real-time feedback during percutaneous and intraoperative biopsies and hepatic radiofrequency (RF) ablation. Materials and Methods: In this HIPAA-compliant, institutional review board–approved prospective study with written informed consent, 25 patients (17 men, eight women) underwent 33 percutaneous and three intraoperative biopsies of 36 FDG-avid targets between November 2007 and August 2010. One patient underwent biopsy and RF ablation of an FDG-avid hepatic focus. Targets demonstrated heterogeneous FDG uptake or were not well seen or were totally inapparent at conventional imaging. Preprocedural FDG PET scans were rigidly registered through a semiautomatic method to intraprocedural CT scans. Coaxial biopsy needle introducer tips and RF ablation electrode guider needle tips containing electromagnetic sensor coils were spatially tracked through an electromagnetic field generator. Real-time US scans were registered through a fiducial-based method, allowing US scans to be fused with intraprocedural CT and preacquired FDG PET scans. A visual display of US/CT image fusion with overlaid coregistered FDG PET targets was used for guidance; navigation software enabled real-time biopsy needle and needle electrode navigation and feedback. Results: Successful fusion of real-time US to coregistered CT and FDG PET scans was achieved in all patients. Thirty-one of 36 biopsies were diagnostic (malignancy in 18 cases, benign processes in 13 cases). RF ablation resulted in resolution of targeted FDG avidity, with no local treatment failure during short follow-up (56 days). Conclusion: Combined electromagnetic device tracking and image fusion with real-time feedback may facilitate biopsies and ablations of focal FDG PET abnormalities that would be challenging with

  6. Design and flight evaluation of an integrated navigation and near-terrain helicopter guidance system for night-time and adverse weather operations

    NASA Technical Reports Server (NTRS)

    Swenson, Harry N.; Zelenka, Richard E.; Dearing, Munro G.; Hardy, Gordon H.; Clark, Raymond; Davis, Tom; Amatrudo, Gary; Zirkler, Andre

    1994-01-01

    NASA and the U.S. Army have designed, developed, and flight evaluated a Computer Aiding for Low Altitude Helicopter Flight (CALAHF) guidance system. This system provides guidance to the pilot for near terrain covert helicopter operations. It automates the processing of precision navigation information, helicopter mission requirements, and terrain flight guidance. The automation is presented to the pilot through symbology on a helmet-mounted display. The symbology is a 'pilot-centered' design which preserves pilot flexibility and authority over the CALAHF system's automation. An extensive flight evaluation of the system has been conducted using the U.S. Army's NUH-60 STAR (Systems Testbed for Avionics Research) research helicopter. The evaluations were flown over a multiwaypoint helicopter mission in rugged mountainous terrain, at terrain clearance altitudes from 300 to 125 ft and airspeeds from 40 to 110 knots. The results of these evaluations showed that the pilots could precisely follow the automation symbology while maintaining a high degree of situational awareness.

  7. Stellar Inertial Navigation Workstation

    NASA Technical Reports Server (NTRS)

    Johnson, W.; Johnson, B.; Swaminathan, N.

    1989-01-01

    Software and hardware assembled to support specific engineering activities. Stellar Inertial Navigation Workstation (SINW) is integrated computer workstation providing systems and engineering support functions for Space Shuttle guidance and navigation-system logistics, repair, and procurement activities. Consists of personal-computer hardware, packaged software, and custom software integrated together into user-friendly, menu-driven system. Designed to operate on IBM PC XT. Applied in business and industry to develop similar workstations.

  8. OAST Space Theme Workshop. Volume 3: Working group summary. 1: Navigation, guidance, control (E-1) A. Statement. B. Technology needs (form 1). C. Priority assessment (form 2)

    NASA Technical Reports Server (NTRS)

    1976-01-01

    The six themes identified by the Workshop have many common navigation guidance and control needs. All the earth orbit themes have a strong requirement for attitude, figure and stabilization control of large space structures, a requirement not currently being supported. All but the space transportation theme have need for precision pointing of spacecraft and instruments. In addition all the themes have requirements for increasing autonomous operations for such activities as spacecraft and experiment operations, onboard mission modification, rendezvous and docking, spacecraft assembly and maintenance, navigation and guidance, and self-checkout, test and repair. Major new efforts are required to conceptualize new approaches to large space antennas and arrays that are lightweight, readily deployable, and capable of precise attitude and figure control. Conventional approaches offer little hope of meeting these requirements. Functions that can benefit from increasing automation or autonomous operations are listed.

  9. Solar electric propulsion for terminal flight to rendezvous with comets and asteroids. [using guidance algorithm

    NASA Technical Reports Server (NTRS)

    Bennett, A.

    1973-01-01

    A guidance algorithm that provides precise rendezvous in the deterministic case while requiring only relative state information is developed. A navigation scheme employing only onboard relative measurements is built around a Kalman filter set in measurement coordinates. The overall guidance and navigation procedure is evaluated in the face of measurement errors by a detailed numerical simulation. Results indicate that onboard guidance and navigation for the terminal phase of rendezvous is possible with reasonable limits on measurement errors.

  10. Statistical Analysis of CFD Solutions from the 6th AIAA CFD Drag Prediction Workshop

    NASA Technical Reports Server (NTRS)

    Derlaga, Joseph M.; Morrison, Joseph H.

    2017-01-01

    A graphical framework is used for statistical analysis of the results from an extensive N- version test of a collection of Reynolds-averaged Navier-Stokes computational uid dynam- ics codes. The solutions were obtained by code developers and users from North America, Europe, Asia, and South America using both common and custom grid sequencees as well as multiple turbulence models for the June 2016 6th AIAA CFD Drag Prediction Workshop sponsored by the AIAA Applied Aerodynamics Technical Committee. The aerodynamic con guration for this workshop was the Common Research Model subsonic transport wing- body previously used for both the 4th and 5th Drag Prediction Workshops. This work continues the statistical analysis begun in the earlier workshops and compares the results from the grid convergence study of the most recent workshop with previous workshops.

  11. Statistical methods for launch vehicle guidance, navigation, and control (GN&C) system design and analysis

    NASA Astrophysics Data System (ADS)

    Rose, Michael Benjamin

    A novel trajectory and attitude control and navigation analysis tool for powered ascent is developed. The tool is capable of rapid trade-space analysis and is designed to ultimately reduce turnaround time for launch vehicle design, mission planning, and redesign work. It is streamlined to quickly determine trajectory and attitude control dispersions, propellant dispersions, orbit insertion dispersions, and navigation errors and their sensitivities to sensor errors, actuator execution uncertainties, and random disturbances. The tool is developed by applying both Monte Carlo and linear covariance analysis techniques to a closed-loop, launch vehicle guidance, navigation, and control (GN&C) system. The nonlinear dynamics and flight GN&C software models of a closed-loop, six-degree-of-freedom (6-DOF), Monte Carlo simulation are formulated and developed. The nominal reference trajectory (NRT) for the proposed lunar ascent trajectory is defined and generated. The Monte Carlo truth models and GN&C algorithms are linearized about the NRT, the linear covariance equations are formulated, and the linear covariance simulation is developed. The performance of the launch vehicle GN&C system is evaluated using both Monte Carlo and linear covariance techniques and their trajectory and attitude control dispersion, propellant dispersion, orbit insertion dispersion, and navigation error results are validated and compared. Statistical results from linear covariance analysis are generally within 10% of Monte Carlo results, and in most cases the differences are less than 5%. This is an excellent result given the many complex nonlinearities that are embedded in the ascent GN&C problem. Moreover, the real value of this tool lies in its speed, where the linear covariance simulation is 1036.62 times faster than the Monte Carlo simulation. Although the application and results presented are for a lunar, single-stage-to-orbit (SSTO), ascent vehicle, the tools, techniques, and mathematical

  12. Optical guidance vidicon test program

    NASA Technical Reports Server (NTRS)

    Eiseman, A. R.; Stanton, R. H.; Voge, C. C.

    1976-01-01

    A laboratory and field test program was conducted to quantify the optical navigation parameters of the Mariner vidicons. A scene simulator and a camera were designed and built for vidicon tests under a wide variety of conditions. Laboratory tests characterized error sources important to the optical navigation process and field tests verified star sensitivity and characterized comet optical guidance parameters. The equipment, tests and data reduction techniques used are described. Key test results are listed. A substantial increase in the understanding of the use of selenium vidicons as detectors for spacecraft optical guidance was achieved, indicating a reduction in residual offset errors by a factor of two to four to the single pixel level.

  13. Application of Exactly Linearized Error Transport Equations to AIAA CFD Prediction Workshops

    NASA Technical Reports Server (NTRS)

    Derlaga, Joseph M.; Park, Michael A.; Rallabhandi, Sriram

    2017-01-01

    The computational fluid dynamics (CFD) prediction workshops sponsored by the AIAA have created invaluable opportunities in which to discuss the predictive capabilities of CFD in areas in which it has struggled, e.g., cruise drag, high-lift, and sonic boom pre diction. While there are many factors that contribute to disagreement between simulated and experimental results, such as modeling or discretization error, quantifying the errors contained in a simulation is important for those who make decisions based on the computational results. The linearized error transport equations (ETE) combined with a truncation error estimate is a method to quantify one source of errors. The ETE are implemented with a complex-step method to provide an exact linearization with minimal source code modifications to CFD and multidisciplinary analysis methods. The equivalency of adjoint and linearized ETE functional error correction is demonstrated. Uniformly refined grids from a series of AIAA prediction workshops demonstrate the utility of ETE for multidisciplinary analysis with a connection between estimated discretization error and (resolved or under-resolved) flow features.

  14. Statistical Analysis of CFD Solutions from the Third AIAA Drag Prediction Workshop

    NASA Technical Reports Server (NTRS)

    Morrison, Joseph H.; Hemsch, Michael J.

    2007-01-01

    The first AIAA Drag Prediction Workshop, held in June 2001, evaluated the results from an extensive N-version test of a collection of Reynolds-Averaged Navier-Stokes CFD codes. The code-to-code scatter was more than an order of magnitude larger than desired for design and experimental validation of cruise conditions for a subsonic transport configuration. The second AIAA Drag Prediction Workshop, held in June 2003, emphasized the determination of installed pylon-nacelle drag increments and grid refinement studies. The code-to-code scatter was significantly reduced compared to the first DPW, but still larger than desired. However, grid refinement studies showed no significant improvement in code-to-code scatter with increasing grid refinement. The third Drag Prediction Workshop focused on the determination of installed side-of-body fairing drag increments and grid refinement studies for clean attached flow on wing alone configurations and for separated flow on the DLR-F6 subsonic transport model. This work evaluated the effect of grid refinement on the code-to-code scatter for the clean attached flow test cases and the separated flow test cases.

  15. Magnetic navigation in ultrasound-guided interventional radiology procedures.

    PubMed

    Xu, H-X; Lu, M-D; Liu, L-N; Guo, L-H

    2012-05-01

    To evaluate the usefulness of magnetic navigation in ultrasound (US)-guided interventional procedures. Thirty-seven patients who were scheduled for US-guided interventional procedures (20 liver cancer ablation procedures and 17 other procedures) were included. Magnetic navigation with three-dimensional (3D) computed tomography (CT), magnetic resonance imaging (MRI), 3D US, and position-marking magnetic navigation were used for guidance. The influence on clinical outcome was also evaluated. Magnetic navigation facilitated applicator placement in 15 of 20 ablation procedures for liver cancer in which multiple ablations were performed; enhanced guidance in two small liver cancers invisible on conventional US but visible at CT or MRI; and depicted the residual viable tumour after transcatheter arterial chemoembolization for liver cancer in one procedure. In four of 17 other interventional procedures, position-marking magnetic navigation increased the visualization of the needle tip. Magnetic navigation was beneficial in 11 (55%) of 20 ablation procedures; increased confidence but did not change management in five (25%); added some information but did not change management in two (10%); and made no change in two (10%). In the other 17 interventional procedures, the corresponding numbers were 1 (5.9%), 2 (11.7%), 7 (41.2%), and 7 (41.2%), respectively (p=0.002). Magnetic navigation in US-guided interventional procedure provides solutions in some difficult cases in which conventional US guidance is not suitable. It is especially useful in complicated interventional procedures such as ablation for liver cancer. Copyright © 2011 The Royal College of Radiologists. Published by Elsevier Ltd. All rights reserved.

  16. LAVA Simulations for the AIAA Sonic Boom Prediction Workshop

    NASA Technical Reports Server (NTRS)

    Housman, Jeffrey A.; Sozer, Emre; Moini-Yekta , Shayan; Kiris, Cetin C.

    2014-01-01

    Computational simulations using the Launch Ascent and Vehicle Aerodynamics (LAVA) framework are presented for the First AIAA Sonic Boom Prediction Workshop test cases. The framework is utilized with both structured overset and unstructured meshing approaches. The three workshop test cases include an axisymmetric body, a Delta Wing-Body model, and a complete low-boom supersonic transport concept. Solution sensitivity to mesh type and sizing, and several numerical convective flux discretization choices are presented and discussed. Favorable comparison between the computational simulations and experimental data of nearand mid-field pressure signatures were obtained.

  17. AIAA Employment Workshops (September 1, 1970-December 31, 1971). Volume III, Workshop Handbook.

    ERIC Educational Resources Information Center

    American Inst. of Aeronautics and Astronautics, New York, NY.

    In response to growing unemployment among professional personnel in the aerospace industry, a series of 175 workshops were conducted by the American Institute of Aeronautics and Astronautics (AIAA) in 43 cities. Nearly 15,000 unemployed engineers and scientists attended the workshops and reviewed job counseling and placement services from…

  18. AIAA Employment Workshops (September 1, 1970-December 31, 1971). Volume 1, Final Report.

    ERIC Educational Resources Information Center

    American Inst. of Aeronautics and Astronautics, New York, NY.

    In response to growing unemployment among professional personnel in the aerospace industry, a series of 175 workshops were conducted by the American Institute of Aeronautics and Astronautics (AIAA) in 43 cities. Nearly 15,000 unemployed engineers and scientists attended the workshops and reviewed job counseling and placement services from…

  19. A Content Analysis of AIAA/ITEA/ITEEA Conference Special Interest Sessions: 1978-2014

    ERIC Educational Resources Information Center

    Reed, Philip A.; LaPorte, James E.

    2015-01-01

    Associations routinely hold annual conferences to aid with professional development and actively promote the ideals of their membership and the profession they represent. The American Industrial Arts Association (AIAA) was created in 1939 and has held an annual conference the past 76 years to further these goals (Starkweather, 1995). Throughout…

  20. NAVO MSRC Navigator. Spring 2008

    DTIC Science & Technology

    2008-01-01

    EINSTEIN and DAVINCI Come to the MSRC The Porthole 19 Visitors to the Naval Oceanographic Office Major Shared Resource Center Navigator Tools and...traditionally considered one of the leading track guidance tools for forecasters. As an example, we consider the case of Hurricane Figure 2. The...MSRC NAVIGATOR EINSTEIN and DAVINCI Come to the MSRC Christine Cuicchi, Computational Science and Applications Lead, NAVO MSRC The Technology

  1. A Multi-Function Guidance, Navigation and Control System for Future Earth and Space Missions

    NASA Technical Reports Server (NTRS)

    Gambino, Joel; Dennehy, Neil; Bauer, Frank H. (Technical Monitor)

    2002-01-01

    Over the past several years the Guidance, Navigation and Control Center (GNCC) at NASA's Goddard Space Flight Center (GSFC) has actively engaged in the development of advanced GN&C technology to enable future Earth and Space science missions. The Multi-Function GN&C System (MFGS) design presented in this paper represents the successful coalescence of several discrete GNCC hardware and software technology innovations into one single highly integrated, compact, low power and low cost unit that simultaneously provides autonomous real time on-board attitude determination solutions and navigation solutions with accuracies that satisfy many future GSFC mission requirements. The MFGS is intended to operate as a single self-contained multifunction unit combining the functions now typically performed by a number of hardware units on a spacecraft. However, recognizing the need to satisfy a variety of future mission requirements, design provisions have been included to permit the unit to interface with a number of external remotely mounted sensors and actuators such as magnetometers, sun sensors, star cameras, reaction wheels and thrusters. The result is a highly versatile MFGS that can be configured in multiple ways to suit a realm of mission-specific GN&C requirements. It is envisioned that the MFGS will perform a mission enabling role by filling the microsat GN&C technology gap. In addition, GSFC believes that the MFGS could be employed to significantly reduce volume, power and mass requirements on conventional satellites.

  2. Visual map and instruction-based bicycle navigation: a comparison of effects on behaviour.

    PubMed

    de Waard, Dick; Westerhuis, Frank; Joling, Danielle; Weiland, Stella; Stadtbäumer, Ronja; Kaltofen, Leonie

    2017-09-01

    Cycling with a classic paper map was compared with navigating with a moving map displayed on a smartphone, and with auditory, and visual turn-by-turn route guidance. Spatial skills were found to be related to navigation performance, however only when navigating from a paper or electronic map, not with turn-by-turn (instruction based) navigation. While navigating, 25% of the time cyclists fixated at the devices that present visual information. Navigating from a paper map required most mental effort and both young and older cyclists preferred electronic over paper map navigation. In particular a turn-by-turn dedicated guidance device was favoured. Visual maps are in particular useful for cyclists with higher spatial skills. Turn-by-turn information is used by all cyclists, and it is useful to make these directions available in all devices. Practitioner Summary: Electronic navigation devices are preferred over a paper map. People with lower spatial skills benefit most from turn-by-turn guidance information, presented either auditory or on a dedicated device. People with higher spatial skills perform well with all devices. It is advised to keep in mind that all users benefit from turn-by-turn information when developing a navigation device for cyclists.

  3. Automated low-thrust guidance for the orbital maneuvering vehicle

    NASA Technical Reports Server (NTRS)

    Rose, Richard E.; Schmeichel, Harry; Shortwell, Charles P.; Werner, Ronald A.

    1988-01-01

    This paper describes the highly autonomous OMV Guidance Navigation and Control system. Emphasis is placed on a key feature of the design, the low thrust guidance algorithm. The two guidance modes, orbit change guidance and rendezvous guidance, are discussed in detail. It is shown how OMV will automatically transfer from its initial orbit to an arbitrary target orbit and reach a specified rendezvous position relative to the target vehicle.

  4. Design, Development and Testing of the Miniature Autonomous Extravehicular Robotic Camera (Mini AERCam) Guidance, Navigation and Control System

    NASA Technical Reports Server (NTRS)

    Wagenknecht, J.; Fredrickson, S.; Manning, T.; Jones, B.

    2003-01-01

    Engineers at NASA Johnson Space Center have designed, developed, and tested a nanosatellite-class free-flyer intended for future external inspection and remote viewing of human spaceflight activities. The technology demonstration system, known as the Miniature Autonomous Extravehicular Robotic Camera (Mini AERCam), has been integrated into the approximate form and function of a flight system. The primary focus has been to develop a system capable of providing external views of the International Space Station. The Mini AERCam system is spherical-shaped and less than eight inches in diameter. It has a full suite of guidance, navigation, and control hardware and software, and is equipped with two digital video cameras and a high resolution still image camera. The vehicle is designed for either remotely piloted operations or supervised autonomous operations. Tests have been performed in both a six degree-of-freedom closed-loop orbital simulation and on an air-bearing table. The Mini AERCam system can also be used as a test platform for evaluating algorithms and relative navigation for autonomous proximity operations and docking around the Space Shuttle Orbiter or the ISS.

  5. Optimal multiguidance integration in insect navigation.

    PubMed

    Hoinville, Thierry; Wehner, Rüdiger

    2018-03-13

    In the last decades, desert ants have become model organisms for the study of insect navigation. In finding their way, they use two major navigational routines: path integration using a celestial compass and landmark guidance based on sets of panoramic views of the terrestrial environment. It has been claimed that this information would enable the insect to acquire and use a centralized cognitive map of its foraging terrain. Here, we present a decentralized architecture, in which the concurrently operating path integration and landmark guidance routines contribute optimally to the directions to be steered, with "optimal" meaning maximizing the certainty (reliability) of the combined information. At any one time during its journey, the animal computes a path integration (global) vector and landmark guidance (local) vector, in which the length of each vector is proportional to the certainty of the individual estimates. Hence, these vectors represent the limited knowledge that the navigator has at any one place about the direction of the goal. The sum of the global and local vectors indicates the navigator's optimal directional estimate. Wherever applied, this decentralized model architecture is sufficient to simulate the results of quite a number of diverse cue-conflict experiments, which have recently been performed in various behavioral contexts by different authors in both desert ants and honeybees. They include even those experiments that have deliberately been designed by former authors to strengthen the evidence for a metric cognitive map in bees.

  6. Summary and Statistical Analysis of the First AIAA Sonic Boom Prediction Workshop

    NASA Technical Reports Server (NTRS)

    Park, Michael A.; Morgenstern, John M.

    2014-01-01

    A summary is provided for the First AIAA Sonic Boom Workshop held 11 January 2014 in conjunction with AIAA SciTech 2014. Near-field pressure signatures extracted from computational fluid dynamics solutions are gathered from nineteen participants representing three countries for the two required cases, an axisymmetric body and simple delta wing body. Structured multiblock, unstructured mixed-element, unstructured tetrahedral, overset, and Cartesian cut-cell methods are used by the participants. Participants provided signatures computed on participant generated and solution adapted grids. Signatures are also provided for a series of uniformly refined workshop provided grids. These submissions are propagated to the ground and loudness measures are computed. This allows the grid convergence of a loudness measure and a validation metric (dfference norm between computed and wind tunnel measured near-field signatures) to be studied for the first time. Statistical analysis is also presented for these measures. An optional configuration includes fuselage, wing, tail, flow-through nacelles, and blade sting. This full configuration exhibits more variation in eleven submissions than the sixty submissions provided for each required case. Recommendations are provided for potential improvements to the analysis methods and a possible subsequent workshop.

  7. Guidance and control 1991; Proceedings of the Annual Rocky Mountain Guidance and Control Conference, Keystone, CO, Feb. 2-6, 1991

    NASA Astrophysics Data System (ADS)

    Culp, Robert D.; McQuerry, James P.

    1991-07-01

    The present conference on guidance and control encompasses advances in guidance, navigation, and control, storyboard displays, approaches to space-borne pointing control, international space programs, recent experiences with systems, and issues regarding navigation in the low-earth-orbit space environment. Specific issues addressed include a scalable architecture for an operational spaceborne autonavigation system, the mitigation of multipath error in GPS-based attitude determination, microgravity flight testing of a laboratory robot, and the application of neural networks. Other issues addressed include image navigation with second-generation Meteosat, Magellan star-scanner experiences, high-precision control systems for telescopes and interferometers, gravitational effects on low-earth orbiters, experimental verification of nanometer-level optical pathlengths, and a flight telerobotic servicer prototype simulator. (For individual items see A93-15577 to A93-15613)

  8. Spacecraft guidance, navigation, and control requirements for an intelligent plug-n-play avionics (PAPA) architecture

    NASA Technical Reports Server (NTRS)

    Kulkarni, Nilesh; Krishnakumar, Kalmaje

    2005-01-01

    The objective of this research is to design an intelligent plug-n-play avionics system that provides a reconfigurable platform for supporting the guidance, navigation and control (GN&C) requirements for different elements of the space exploration mission. The focus of this study is to look at the specific requirements for a spacecraft that needs to go from earth to moon and back. In this regard we will identify the different GN&C problems in various phases of flight that need to be addressed for designing such a plug-n-play avionics system. The Apollo and the Space Shuttle programs provide rich literature in terms of understanding some of the general GN&C requirements for a space vehicle. The relevant literature is reviewed which helps in narrowing down the different GN&C algorithms that need to be supported along with their individual requirements.

  9. AIAA Educator Academy: Enriching STEM Education for K-12 Students

    NASA Astrophysics Data System (ADS)

    Slagle, E.; Bering, E. A.; Longmier, B. W.; Henriquez, E.; Milnes, T.; Wiedorn, P.; Bacon, L.

    2012-12-01

    Educator Academy is a K-12 STEM curriculum developed by the STEM K-12 Outreach Committee of the American Institute of Aeronautics and Astronautics (AIAA). Consisting of three independent curriculum modules, K-12 students participate in inquiry-based engineering challenges to improve critical thinking skills and enhance problem solving skills. The Mars Rover Celebration Curriculum Module is designed for students in grades 3-8. Throughout this module, students learn about Mars and the solar system. Working with given design criteria, students work in teams to do basic research about Mars that will determine the operational objectives and structural features of their rover. Then, students participate in the design and construction of a model of a mock-up Mars Rover to carry out a specific science mission on the surface of Mars. At the end of this project, students have the opportunity to participate in a regional capstone event where students share their rover designs and what they have learned. The Electric Cargo Plan Curriculum Module is designed for students in grades 6-12. Throughout this module, students learn about aerodynamics and the four forces of flight. Working individually or in teams, students design and construct an electrically-powered model aircraft to fly a tethered flight of at least one lap without cargo, followed by a second tethered flight of one lap carrying as much cargo as possible. At the end of this project, students have the opportunity to participate in a regional capstone event where students share what they have learned and compete with their different cargo plane designs. The Space Weather Balloon Curriculum Module is designed for students in grades 9-12. Throughout this module, students learn and refine physics concepts as well as experimental research skills. Students participate in project-based learning that is experimental in nature. Students are engaged with the world around them as they collaborate to launch a high altitude

  10. Independent Orbiter Assessment (IOA): Assessment of the guidance, navigation, and control subsystem FMEA/CIL

    NASA Technical Reports Server (NTRS)

    Trahan, W. H.; Odonnell, R. A.; Pietz, K. C.; Drapela, L. J.

    1988-01-01

    The results of the Independent Orbiter Assessment (IOA) of the Failure Modes and Effects Analysis (FMEA) and Critical Items List (CIL) are presented. The IOA effort first completed an analysis of the Guidance, Navigation, and Control System (GNC) hardware, generating draft failure modes and potential critical items. To preserve independence, this analysis was accomplished without reliance upon the results contained within the NASA FMEA/CIL documentation. The IOA results were then compared to the NASA FMEA/CIL baseline with proposed Post 51-L updates included. A resolution of each discrepancy from the comparison is provided through additional analysis as required. The results of that comparison for the Orbiter GNC hardware is documented. The IOA product for the GNC analysis consisted of 141 failure mode worksheets that resulted in 24 potential critical items being identified. Comparison was made to the NASA baseline which consisted of 148 FMEAs and 36 CIL items. This comparison produced agreement on all but 56 FMEAs which caused differences in zero CIL items.

  11. Navigating surgical fluorescence cameras using near-infrared optical tracking.

    PubMed

    van Oosterom, Matthias; den Houting, David; van de Velde, Cornelis; van Leeuwen, Fijs

    2018-05-01

    Fluorescence guidance facilitates real-time intraoperative visualization of the tissue of interest. However, due to attenuation, the application of fluorescence guidance is restricted to superficial lesions. To overcome this shortcoming, we have previously applied three-dimensional surgical navigation to position the fluorescence camera in reach of the superficial fluorescent signal. Unfortunately, in open surgery, the near-infrared (NIR) optical tracking system (OTS) used for navigation also induced an interference during NIR fluorescence imaging. In an attempt to support future implementation of navigated fluorescence cameras, different aspects of this interference were characterized and solutions were sought after. Two commercial fluorescence cameras for open surgery were studied in (surgical) phantom and human tissue setups using two different NIR OTSs and one OTS simulating light-emitting diode setup. Following the outcome of these measurements, OTS settings were optimized. Measurements indicated the OTS interference was caused by: (1) spectral overlap between the OTS light and camera, (2) OTS light intensity, (3) OTS duty cycle, (4) OTS frequency, (5) fluorescence camera frequency, and (6) fluorescence camera sensitivity. By optimizing points 2 to 4, navigation of fluorescence cameras during open surgery could be facilitated. Optimization of the OTS and camera compatibility can be used to support navigated fluorescence guidance concepts. (2018) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE).

  12. Terminal navigation analysis for the 1980 comet Encke slow flyby mission

    NASA Technical Reports Server (NTRS)

    Jacobson, R. A.; Mcdanell, J. P.; Rinker, G. C.

    1973-01-01

    The initial results of a terminal navigation analysis for the proposed 1980 solar electric slow flyby mission to the comet Encke are presented. The navigation technique employs onboard optical measurements with the scientific television camera, groundbased observations of the spacecraft and comet, and groundbased orbit determination and thrust vector update computation. The knowledge and delivery accuracies of the spacecraft are evaluated as a function of the important parameters affecting the terminal navigation. These include optical measurement accuracy, thruster noise level, duration of the planned terminal coast period, comet ephemeris uncertainty, guidance initiation time, guidance update frequency, and optical data rate.

  13. Navigation and Guidance for Low-Thrust Trajectories, LOTNAV

    NASA Astrophysics Data System (ADS)

    Cano, J. L.; Bello, M.; Rodriguez-Canabal, J.

    A number of interplanetary low-thrust missions have already been flown by many space agencies. Examples of already flown missions based on the use of electric propulsion are Deep Space 1, Hayabusa and SMART-1. Many others are already in the assessment phase or in the development phase itself. In such perspective, it is required by the space agencies the procurement and utilisation of assessment tools for fast prototyping in the areas of mission design and navigation. The Low-Thrust Interplanetary Navigation Tool, which is the subject of this paper, allows the mission analyst performing such type of quick assessment studies for the early phases in the development of low-thrust missions. A number of test cases on low-thrust missions are also presented along with the utilities composing the LOTNAV tool.

  14. Advanced information processing system: Hosting of advanced guidance, navigation and control algorithms on AIPS using ASTER

    NASA Technical Reports Server (NTRS)

    Brenner, Richard; Lala, Jaynarayan H.; Nagle, Gail A.; Schor, Andrei; Turkovich, John

    1994-01-01

    This program demonstrated the integration of a number of technologies that can increase the availability and reliability of launch vehicles while lowering costs. Availability is increased with an advanced guidance algorithm that adapts trajectories in real-time. Reliability is increased with fault-tolerant computers and communication protocols. Costs are reduced by automatically generating code and documentation. This program was realized through the cooperative efforts of academia, industry, and government. The NASA-LaRC coordinated the effort, while Draper performed the integration. Georgia Institute of Technology supplied a weak Hamiltonian finite element method for optimal control problems. Martin Marietta used MATLAB to apply this method to a launch vehicle (FENOC). Draper supplied the fault-tolerant computing and software automation technology. The fault-tolerant technology includes sequential and parallel fault-tolerant processors (FTP & FTPP) and authentication protocols (AP) for communication. Fault-tolerant technology was incrementally incorporated. Development culminated with a heterogeneous network of workstations and fault-tolerant computers using AP. Draper's software automation system, ASTER, was used to specify a static guidance system based on FENOC, navigation, flight control (GN&C), models, and the interface to a user interface for mission control. ASTER generated Ada code for GN&C and C code for models. An algebraic transform engine (ATE) was developed to automatically translate MATLAB scripts into ASTER.

  15. Marine and Hydrokinetic Renewable Energy Technologies: Potential Navigational Impacts and Mitigation Measures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cool, Richard, M.; Hudon, Thomas, J.; Basco, David, R.

    2009-12-10

    On April 15, 2008, the Department of Energy (DOE) issued a Funding Opportunity Announcement for Advanced Water Power Projects which included a Topic Area for Marine and Hydrokinetic Renewable Energy Market Acceleration Projects. Within this Topic Area, DOE identified potential navigational impacts of marine and hydrokinetic renewable energy technologies and measures to prevent adverse impacts on navigation as a sub-topic area. DOE defines marine and hydrokinetic technologies as those capable of utilizing one or more of the following resource categories for energy generation: ocean waves; tides or ocean currents; free flowing water in rivers or streams; and energy generation frommore » the differentials in ocean temperature. PCCI was awarded Cooperative Agreement DE-FC36-08GO18177 from the DOE to identify the potential navigational impacts and mitigation measures for marine hydrokinetic technologies, as summarized herein. The contract also required cooperation with the U.S. Coast Guard (USCG) and two recipients of awards (Pacific Energy Ventures and reVision) in a sub-topic area to develop a protocol to identify streamlined, best-siting practices. Over the period of this contract, PCCI and our sub-consultants, David Basco, Ph.D., and Neil Rondorf of Science Applications International Corporation, met with USCG headquarters personnel, with U.S. Army Corps of Engineers headquarters and regional personnel, with U.S. Navy regional personnel and other ocean users in order to develop an understanding of existing practices for the identification of navigational impacts that might occur during construction, operation, maintenance, and decommissioning. At these same meetings, “standard” and potential mitigation measures were discussed so that guidance could be prepared for project developers. Concurrently, PCCI reviewed navigation guidance published by the USCG and international community. This report summarizes the results of this effort, provides guidance in the form

  16. Theory, Guidance, and Flight Control for High Maneuverability Projectiles

    DTIC Science & Technology

    2014-01-01

    estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining...2.8 Linear System Modeling with Time Delay ...................................................................22 2.9 Linear System Modeling Without... Time Delay .............................................................23 3. Guidance and Flight Control 24 3.1 Proportional Navigation Guidance Law

  17. D/B/F 98: Final Report Of the AIAA Student Aircraft Design, Build & Fly Competition

    DTIC Science & Technology

    1998-01-17

    Jason Nichol Configuration, Materials (Leader) Greg Mondeau Aerodynamics (Leader) April Register Configuration Sung-LiehLin Aerodynamics Jefferson...and Astronautics Team Members: Aruni Athuada Lashan Athuada Jason Bachelor Sebastian Echinique Shelly Ellis Wayne Fulford Benjamin Goff...hierarchy of our design team: AIAA OFFICERS Jennifer Huddle - President Benjamin Goff- Vice President Cheree Kiernan - Secretary Jason Bachelor

  18. Nearfield Summary and Statistical Analysis of the Second AIAA Sonic Boom Prediction Workshop

    NASA Technical Reports Server (NTRS)

    Park, Michael A.; Nemec, Marian

    2017-01-01

    A summary is provided for the Second AIAA Sonic Boom Workshop held 8-9 January 2017 in conjunction with AIAA SciTech 2017. The workshop used three required models of increasing complexity: an axisymmetric body, a wing body, and a complete configuration with flow-through nacelle. An optional complete configuration with propulsion boundary conditions is also provided. These models are designed with similar nearfield signatures to isolate geometry and shock/expansion interaction effects. Eleven international participant groups submitted nearfield signatures with forces, pitching moment, and iterative convergence norms. Statistics and grid convergence of these nearfield signatures are presented. These submissions are propagated to the ground, and noise levels are computed. This allows the grid convergence and the statistical distribution of a noise level to be computed. While progress is documented since the first workshop, improvement to the analysis methods for a possible subsequent workshop are provided. The complete configuration with flow-through nacelle showed the most dramatic improvement between the two workshops. The current workshop cases are more relevant to vehicles with lower loudness and have the potential for lower annoyance than the first workshop cases. The models for this workshop with quieter ground noise levels than the first workshop exposed weaknesses in analysis, particularly in convective discretization.

  19. Cell-Cell Interactions during pollen tube guidance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Daphne Preuss

    The long-term goal of this research is to identify the signaling molecules that mediate plant cell-cell interactions during pollination. The immediate goals of this project are to perform genetic and molecular analysis of pollen tube guidance. Specifically, we proposed to: 1. Characterize the pistil components that direct pollen tube navigation using the Arabidopsis thaliana in vitro pollen tube guidance system 2. Identify pistil signals that direct pollen tube guidance by a) using microarrays to profile gene expression in developing pistils, and b) employing proteomics and metabolomics to isolate pollen tube guidance signals. 3. Explore the genetic basis of natural variationmore » in guidance signals, comparing the in vitro interactions between pollen and pistils from A. thaliana and its close relatives.« less

  20. Autonomous Deep-Space Optical Navigation Project

    NASA Technical Reports Server (NTRS)

    D'Souza, Christopher

    2014-01-01

    This project will advance the Autonomous Deep-space navigation capability applied to Autonomous Rendezvous and Docking (AR&D) Guidance, Navigation and Control (GNC) system by testing it on hardware, particularly in a flight processor, with a goal of limited testing in the Integrated Power, Avionics and Software (IPAS) with the ARCM (Asteroid Retrieval Crewed Mission) DRO (Distant Retrograde Orbit) Autonomous Rendezvous and Docking (AR&D) scenario. The technology, which will be harnessed, is called 'optical flow', also known as 'visual odometry'. It is being matured in the automotive and SLAM (Simultaneous Localization and Mapping) applications but has yet to be applied to spacecraft navigation. In light of the tremendous potential of this technique, we believe that NASA needs to design a optical navigation architecture that will use this technique. It is flexible enough to be applicable to navigating around planetary bodies, such as asteroids.

  1. Motion-adapted catheter navigation with real-time instantiation and improved visualisation

    PubMed Central

    Kwok, Ka-Wai; Wang, Lichao; Riga, Celia; Bicknell, Colin; Cheshire, Nicholas; Yang, Guang-Zhong

    2014-01-01

    The improvements to catheter manipulation by the use of robot-assisted catheter navigation for endovascular procedures include increased precision, stability of motion and operator comfort. However, navigation through the vasculature under fluoroscopic guidance is still challenging, mostly due to physiological motion and when tortuous vessels are involved. In this paper, we propose a motion-adaptive catheter navigation scheme based on shape modelling to compensate for these dynamic effects, permitting predictive and dynamic navigations. This allows for timed manipulations synchronised with the vascular motion. The technical contribution of the paper includes the following two aspects. Firstly, a dynamic shape modelling and real-time instantiation scheme based on sparse data obtained intra-operatively is proposed for improved visualisation of the 3D vasculature during endovascular intervention. Secondly, a reconstructed frontal view from the catheter tip using the derived dynamic model is used as an interventional aid to user guidance. To demonstrate the practical value of the proposed framework, a simulated aortic branch cannulation procedure is used with detailed user validation to demonstrate the improvement in navigation quality and efficiency. PMID:24744817

  2. Evaluation of Mars Entry Reconstructured Trajectories Based on Hypothetical 'Quick-Look' Entry Navigation Data

    NASA Technical Reports Server (NTRS)

    Pastor, P. Rick; Bishop, Robert H.; Striepe, Scott A.

    2000-01-01

    A first order simulation analysis of the navigation accuracy expected from various Navigation Quick-Look data sets is performed. Here quick-look navigation data are observations obtained by hypothetical telemetried data transmitted on the fly during a Mars probe's atmospheric entry. In this simulation study, navigation data consists of 3-axis accelerometer sensor and attitude information data. Three entry vehicle guidance types are studied: I. a Maneuvering entry vehicle (as with Mars 01 guidance where angle of attack and bank angle are controlled); II. Zero angle-of-attack controlled entry vehicle (as with Mars 98); and III. Ballistic, or spin stabilized entry vehicle (as with Mars Pathfinder);. For each type, sensitivity to progressively under sampled navigation data and inclusion of sensor errors are characterized. Attempts to mitigate the reconstructed trajectory errors, including smoothing, interpolation and changing integrator characteristics are also studied.

  3. Experimental determination of the navigation error of the 4-D navigation, guidance, and control systems on the NASA B-737 airplane

    NASA Technical Reports Server (NTRS)

    Knox, C. E.

    1978-01-01

    Navigation error data from these flights are presented in a format utilizing three independent axes - horizontal, vertical, and time. The navigation position estimate error term and the autopilot flight technical error term are combined to form the total navigation error in each axis. This method of error presentation allows comparisons to be made between other 2-, 3-, or 4-D navigation systems and allows experimental or theoretical determination of the navigation error terms. Position estimate error data are presented with the navigation system position estimate based on dual DME radio updates that are smoothed with inertial velocities, dual DME radio updates that are smoothed with true airspeed and magnetic heading, and inertial velocity updates only. The normal mode of navigation with dual DME updates that are smoothed with inertial velocities resulted in a mean error of 390 m with a standard deviation of 150 m in the horizontal axis; a mean error of 1.5 m low with a standard deviation of less than 11 m in the vertical axis; and a mean error as low as 252 m with a standard deviation of 123 m in the time axis.

  4. Remote controlled robot assisted cardiac navigation: feasibility assessment and validation in a porcine model.

    PubMed

    Ganji, Yusof; Janabi-Sharifi, Farrokh; Cheema, Asim N

    2011-12-01

    Despite the recent advances in catheter design and technology, intra-cardiac navigation during electrophysiology procedures remains challenging. Incorporation of imaging along with magnetic or robotic guidance may improve navigation accuracy and procedural safety. In the present study, the in vivo performance of a novel remote controlled Robot Assisted Cardiac Navigation System (RACN) was evaluated in a porcine model. The navigation catheter and target sensor were advanced to the right atrium using fluoroscopic and intra-cardiac echo guidance. The target sensor was positioned at three target locations in the right atrium (RA) and the navigation task was completed by an experienced physician using both manual and RACN guidance. The navigation time, final distance between the catheter tip and target sensor, and variability in final catheter tip position were determined and compared for manual and RACN guided navigation. The experiments were completed in three animals and five measurements recorded for each target location. The mean distance (mm) between catheter tip and target sensor at the end of the navigation task was significantly less using RACN guidance compared with manual navigation (5.02 ± 0.31 vs. 9.66 ± 2.88, p = 0.050 for high RA, 9.19 ± 1.13 vs. 13.0 ± 1.00, p = 0.011 for low RA and 6.77 ± 0.59 vs. 15.66 ± 2.51, p = 0.003 for tricuspid valve annulus). The average time (s) needed to complete the navigation task was significantly longer by RACN guided navigation compared with manual navigation (43.31 ± 18.19 vs. 13.54 ± 1.36, p = 0.047 for high RA, 43.71 ± 11.93 vs. 22.71 ± 3.79, p = 0.043 for low RA and 37.84 ± 3.71 vs. 16.13 ± 4.92, p = 0.003 for tricuspid valve annulus. RACN guided navigation resulted in greater consistency in performance compared with manual navigation as evidenced by lower variability in final distance measurements (0.41 vs. 0.99 mm, p = 0

  5. Application of image guidance in pituitary surgery

    PubMed Central

    de Lara, Danielle; Filho, Leo F. S. Ditzel; Prevedello, Daniel M.; Otto, Bradley A.; Carrau, Ricardo L.

    2012-01-01

    Background: Surgical treatment of pituitary pathologies has evolved along the years, adding safety and decreasing morbidity related to the procedure. Advances in the field of radiology, coupled with stereotactic technology and computer modeling, have culminated in the contemporary and widespread use of image guidance systems, as we know them today. Image guidance navigation has become a frequently used technology that provides continuous three-dimensional information for the accurate performance of neurosurgical procedures. We present a discussion about the application of image guidance in pituitary surgeries. Methods: Major indications for image guidance neuronavigation application in pituitary surgery are presented and demonstrated with illustrative cases. Limitations of this technology are also presented. Results: Patients presenting a history of previous transsphenoidal surgeries, anatomical variances of the sphenoid sinus, tumors with a close relation to the internal carotid arteries, and extrasellar tumors are the most important indications for image guidance in pituitary surgeries. The high cost of the equipment, increased time of surgery due to setup time, and registration and the need of specific training for the operating room personnel could be pointed as limitations of this technology. Conclusion: Intraoperative image guidance systems provide real-time images, increasing surgical accuracy and enabling safe, minimally invasive interventions. However, the use of intraoperative navigation is not a replacement for surgical experience and a systematic knowledge of regional anatomy. It must be recognized as a tool by which the neurosurgeon can reduce the risk associated with surgical approach and treatment of pituitary pathologies. PMID:22826819

  6. Situationally driven local navigation for mobile robots. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Slack, Marc Glenn

    1990-01-01

    For mobile robots to autonomously accommodate dynamically changing navigation tasks in a goal-directed fashion, they must employ navigation plans. Any such plan must provide for the robot's immediate and continuous need for guidance while remaining highly flexible in order to avoid costly computation each time the robot's perception of the world changes. Due to the world's uncertainties, creation and maintenance of navigation plans cannot involve arbitrarily complex processes, as the robot's perception of the world will be in constant flux, requiring modifications to be made quickly if they are to be of any use. This work introduces navigation templates (NaT's) which are building blocks for the construction and maintenance of rough navigation plans which capture the relationship that objects in the world have to the current navigation task. By encoding only the critical relationship between the objects in the world and the navigation task, a NaT-based navigation plan is highly flexible; allowing new constraints to be quickly incorporated into the plan and existing constraints to be updated or deleted from the plan. To satisfy the robot's need for immediate local guidance, the NaT's forming the current navigation plan are passed to a transformation function. The transformation function analyzes the plan with respect to the robot's current location to quickly determine (a few times a second) the locally preferred direction of travel. This dissertation presents NaT's and the transformation function as well as the needed support systems to demonstrate the usefulness of the technique for controlling the actions of a mobile robot operating in an uncertain world.

  7. AIAA/AFOSR Workshop on Microgravity Simulation in Ground Validation Testing of Large Space Structures

    DTIC Science & Technology

    1990-10-15

    Hyatt Regency Hotel in Denver, Colorado. Invited participants from the Government, universities and private industry offered state-of-the-art...N1AME O MONITORiNG QROR IZATIVN Engineering Mechanics W (W/tb) Air Force Office of Associates, Inc. Scientific Research ISe. ADCRESS (Ctry. Swot &Ad...AFOSR, is also appreciated. Ms. Ellen Marzulio, Meeting Coordinator for the AIAA, handled the pre-workshop publicity and hotel arrangements, as well as

  8. An assessment of patient navigator activities in breast cancer patient navigation programs using a nine-principle framework.

    PubMed

    Gunn, Christine M; Clark, Jack A; Battaglia, Tracy A; Freund, Karen M; Parker, Victoria A

    2014-10-01

    To determine how closely a published model of navigation reflects the practice of navigation in breast cancer patient navigation programs. Observational field notes describing patient navigator activities collected from 10 purposefully sampled, foundation-funded breast cancer navigation programs in 2008-2009. An exploratory study evaluated a model framework for patient navigation published by Harold Freeman by using an a priori coding scheme based on model domains. Field notes were compiled and coded. Inductive codes were added during analysis to characterize activities not included in the original model. Programs were consistent with individual-level principles representing tasks focused on individual patients. There was variation with respect to program-level principles that related to program organization and structure. Program characteristics such as the use of volunteer or clinical navigators were identified as contributors to patterns of model concordance. This research provides a framework for defining the navigator role as focused on eliminating barriers through the provision of individual-level interventions. The diversity observed at the program level in these programs was a reflection of implementation according to target population. Further guidance may be required to assist patient navigation programs to define and tailor goals and measurement to community needs. © Health Research and Educational Trust.

  9. An Assessment of Patient Navigator Activities in Breast Cancer Patient Navigation Programs Using a Nine-Principle Framework

    PubMed Central

    Gunn, Christine M; Clark, Jack A; Battaglia, Tracy A; Freund, Karen M; Parker, Victoria A

    2014-01-01

    Objective To determine how closely a published model of navigation reflects the practice of navigation in breast cancer patient navigation programs. Data Source Observational field notes describing patient navigator activities collected from 10 purposefully sampled, foundation-funded breast cancer navigation programs in 2008–2009. Study Design An exploratory study evaluated a model framework for patient navigation published by Harold Freeman by using an a priori coding scheme based on model domains. Data Collection Field notes were compiled and coded. Inductive codes were added during analysis to characterize activities not included in the original model. Principal Findings Programs were consistent with individual-level principles representing tasks focused on individual patients. There was variation with respect to program-level principles that related to program organization and structure. Program characteristics such as the use of volunteer or clinical navigators were identified as contributors to patterns of model concordance. Conclusions This research provides a framework for defining the navigator role as focused on eliminating barriers through the provision of individual-level interventions. The diversity observed at the program level in these programs was a reflection of implementation according to target population. Further guidance may be required to assist patient navigation programs to define and tailor goals and measurement to community needs. PMID:24820445

  10. Indoor magnetic navigation for the blind.

    PubMed

    Riehle, Timothy H; Anderson, Shane M; Lichter, Patrick A; Giudice, Nicholas A; Sheikh, Suneel I; Knuesel, Robert J; Kollmann, Daniel T; Hedin, Daniel S

    2012-01-01

    Indoor navigation technology is needed to support seamless mobility for the visually impaired. This paper describes the construction of and evaluation of a navigation system that infers the users' location using only magnetic sensing. It is well known that the environments within steel frame structures are subject to significant magnetic distortions. Many of these distortions are persistent and have sufficient strength and spatial characteristics to allow their use as the basis for a location technology. This paper describes the development and evaluation of a prototype magnetic navigation system consisting of a wireless magnetometer placed at the users' hip streaming magnetic readings to a smartphone processing location algorithms. Human trials were conducted to assess the efficacy of the system by studying route-following performance with blind and sighted subjects using the navigation system for real-time guidance.

  11. SU-F-P-42: “To Navigate, Or Not to Navigate: HDR BT in Recurrent Spine Lesions”

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Voros, L; Cohen, G; Zaider, M

    Purpose: We compare the accuracy of HDR catheter placement for paraspinal lesions using O-arm CBCT imaging combined with StealthStation navigation and traditional fluoroscopically guided catheter placement. Methods: CT and MRI scans were acquired pre-treatment to outline the lesions and design treatment plans (pre-plans) to meet dosimetric constrains. The pre-planned catheter trajectories were transferred into the StealthStation Navigation system prior to the surgery. The StealthStation is an infra red (IR) optical navigation system used for guidance of surgical instruments. An intraoperative CBCT scan (O-arm) was acquired with reference IR optical fiducials anchored onto the patient and registered with the preplan imagemore » study to guide surgical instruments in relation to the patients’ anatomy and to place the brachytherapy catheters along the pre-planned trajectories. The final treatment plan was generated based on a 2nd intraoperative CBCT scan reflecting achieved implant geometry. The 2nd CBCT was later registered with the initial CT scan to compare the preplanned dwell positions with actual dwell positions (catheter placements). Similar workflow was used in placement of 8 catheters (1 patient) without navigation, but under fluoroscopy guidance in an interventional radiology suite. Results: A total of 18 catheters (3 patients) were placed using navigation assisted surgery. Average displacement of 0.66 cm (STD=0.37cm) was observed between the pre-plan source positions and actual source positions in the 3 dimensional space. This translates into an average 0.38 cm positioning error in one direction including registration errors, digitization errors, and the surgeons ability to follow the planned trajectory. In comparison, average displacement of non-navigated catheters was 0.50 cm (STD=0.22cm). Conclusion: Spinal lesion HDR brachytherapy planning is a difficult task. Catheter placement has a direct impact on target coverage and dose to critical structures

  12. Outer planet mission guidance and navigation for spinning spacecraft

    NASA Technical Reports Server (NTRS)

    Paul, C. K.; Russell, R. K.; Ellis, J.

    1974-01-01

    The orbit determination accuracies, maneuver results, and navigation system specification for spinning Pioneer planetary probe missions are analyzed to aid in determining the feasibility of deploying probes into the atmospheres of the outer planets. Radio-only navigation suffices for a direct Saturn mission and the Jupiter flyby of a Jupiter/Uranus mission. Saturn ephemeris errors (1000 km) plus rigid entry constraints at Uranus result in very high velocity requirements (140 m/sec) on the final legs of the Saturn/Uranus and Jupiter/Uranus missions if only Earth-based tracking is employed. The capabilities of a conceptual V-slit sensor are assessed to supplement radio tracking by star/satellite observations. By processing the optical measurements with a batch filter, entry conditions at Uranus can be controlled to acceptable mission-defined levels (+ or - 3 deg) and the Saturn-Uranus leg velocity requirements can be reduced by a factor of 6 (from 139 to 23 m/sec) if nominal specified accuracies of the sensor can be realized.

  13. Relative Navigation of Formation Flying Satellites

    NASA Technical Reports Server (NTRS)

    Long, Anne; Kelbel, David; Lee, Taesul; Leung, Dominic; Carpenter, Russell; Gramling, Cheryl; Bauer, Frank (Technical Monitor)

    2002-01-01

    The Guidance, Navigation, and Control Center (GNCC) at Goddard Space Flight Center (GSFC) has successfully developed high-accuracy autonomous satellite navigation systems using the National Aeronautics and Space Administration's (NASA's) space and ground communications systems and the Global Positioning System (GPS). In addition, an autonomous navigation system that uses celestial object sensor measurements is currently under development and has been successfully tested using real Sun and Earth horizon measurements.The GNCC has developed advanced spacecraft systems that provide autonomous navigation and control of formation flyers in near-Earth, high-Earth, and libration point orbits. To support this effort, the GNCC is assessing the relative navigation accuracy achievable for proposed formations using GPS, intersatellite crosslink, ground-to-satellite Doppler, and celestial object sensor measurements. This paper evaluates the performance of these relative navigation approaches for three proposed missions with two or more vehicles maintaining relatively tight formations. High-fidelity simulations were performed to quantify the absolute and relative navigation accuracy as a function of navigation algorithm and measurement type. Realistically-simulated measurements were processed using the extended Kalman filter implemented in the GPS Enhanced Inboard Navigation System (GEONS) flight software developed by GSFC GNCC. Solutions obtained by simultaneously estimating all satellites in the formation were compared with the results obtained using a simpler approach based on differencing independently estimated state vectors.

  14. Mission Design, Guidance, and Navigation of a Callisto-Io-Ganymede Triple Flyby Jovian Capture

    NASA Astrophysics Data System (ADS)

    Didion, Alan M.

    Use of a triple-satellite-aided capture maneuver to enter Jovian orbit reduces insertion DeltaV and provides close flyby science opportunities at three of Jupiter's four large Galilean moons. This capture can be performed while maintaining appropriate Jupiter standoff distance and setting up a suitable apojove for plotting an extended tour. This paper has three main chapters, the first of which discusses the design and optimization of a triple-flyby capture trajectory. A novel triple-satellite-aided capture uses sequential flybys of Callisto, Io, and Ganymede to reduce the DeltaV required to capture into orbit about Jupiter. An optimal broken-plane maneuver is added between Earth and Jupiter to form a complete chemical/impulsive interplanetary trajectory from Earth to Jupiter. Such a trajectory can yield significant fuel savings over single and double-flyby capture schemes while maintaining a brief and simple interplanetary transfer phase. The second chapter focuses on the guidance and navigation of such trajectories in the presence of spacecraft navigation errors, ephemeris errors, and maneuver execution errors. A powered-flyby trajectory correction maneuver (TCM) is added to the nominal trajectory at Callisto and the nominal Jupiter orbit insertion (JOI) maneuver is modified to both complete the capture and target the Ganymede flyby. A third TCM is employed after all the flybys to act as a JOI cleanup maneuver. A Monte Carlo simulation shows that the statistical DeltaV required to correct the trajectory is quite manageable and the flyby characteristics are very consistent. The developed methods maintain flexibility for adaptation to similar launch, cruise, and capture conditions. The third chapter details the methodology and results behind a completely separate project to design and optimize an Earth-orbiting three satellite constellation to perform very long baseline interferometry (VLBI) as part of the 8th annual Global Trajectory Optimisation Competition (GTOC

  15. The Model of Domain Learning as a Framework for Understanding Internet Navigation

    ERIC Educational Resources Information Center

    Schrader, P. G.; Lawless, Kimberly; Mayall, Hayley

    2008-01-01

    When examined across studies and fields, navigation research is fragmented and inconsistent. In this article, we argue that this is the result of navigation research having generally been conducted without guidance from an overarching theoretical framework. In order to illustrate our position, we have included results from a very simple…

  16. SLS Model Based Design: A Navigation Perspective

    NASA Technical Reports Server (NTRS)

    Oliver, T. Emerson; Anzalone, Evan; Park, Thomas; Geohagan, Kevin

    2018-01-01

    The SLS Program has implemented a Model-based Design (MBD) and Model-based Requirements approach for managing component design information and system requirements. This approach differs from previous large-scale design efforts at Marshall Space Flight Center where design documentation alone conveyed information required for vehicle design and analysis and where extensive requirements sets were used to scope and constrain the design. The SLS Navigation Team is responsible for the Program-controlled Design Math Models (DMMs) which describe and represent the performance of the Inertial Navigation System (INS) and the Rate Gyro Assemblies (RGAs) used by Guidance, Navigation, and Controls (GN&C). The SLS Navigation Team is also responsible for navigation algorithms. The navigation algorithms are delivered for implementation on the flight hardware as a DMM. For the SLS Block 1B design, the additional GPS Receiver hardware model is managed as a DMM at the vehicle design level. This paper describes the models, and discusses the processes and methods used to engineer, design, and coordinate engineering trades and performance assessments using SLS practices as applied to the GN&C system, with a particular focus on the navigation components.

  17. National Airspace System : persistent problems in FAA's new navigation system highlight need for periodic reevaluation

    DOT National Transportation Integrated Search

    2000-06-01

    Currently, the Federal Aviation Administration (FAA) relies principally on a ground-based navigation system that uses various types of equipment to assist pilots in navigating their assigned routes and to provide them with guidance for landing their ...

  18. Navigation and guidance of Japanese deepspace probes encountering Halley's comet

    NASA Astrophysics Data System (ADS)

    Nishimura, T.; Matsuo, H.; Takano, T.; Kawaguchi, J.

    The techniques used by ISAS in the guidance of the Sakigake and Suisei probes, which encountered Comet Halley in March 1986, are reviewed. Consideration is given to the guidance of the last rocket stage in the direct ascent phase, midcourse maneuvers, tracking systems and communication links, the tracking strategy, trajectory-generation and orbit-determination software, and orbit-determination accuracy. Diagrams, drawings, graphs, photographs, and tables of numerical data are provided, and the ISAS positions of both probes during the first 10 days after launch are shown to be within 100 km in distance and 1 m/sec in velocity of NASA coordinate estimates.

  19. Insect navigation: do ants live in the now?

    PubMed

    Graham, Paul; Mangan, Michael

    2015-03-01

    Visual navigation is a critical behaviour for many animals, and it has been particularly well studied in ants. Decades of ant navigation research have uncovered many ways in which efficient navigation can be implemented in small brains. For example, ants show us how visual information can drive navigation via procedural rather than map-like instructions. Two recent behavioural observations highlight interesting adaptive ways in which ants implement visual guidance. Firstly, it has been shown that the systematic nest searches of ants can be biased by recent experience of familiar scenes. Secondly, ants have been observed to show temporary periods of confusion when asked to repeat a route segment, even if that route segment is very familiar. Taken together, these results indicate that the navigational decisions of ants take into account their recent experiences as well as the currently perceived environment. © 2015. Published by The Company of Biologists Ltd.

  20. An adaptive reentry guidance method considering the influence of blackout zone

    NASA Astrophysics Data System (ADS)

    Wu, Yu; Yao, Jianyao; Qu, Xiangju

    2018-01-01

    Reentry guidance has been researched as a popular topic because it is critical for a successful flight. In view that the existing guidance methods do not take into account the accumulated navigation error of Inertial Navigation System (INS) in the blackout zone, in this paper, an adaptive reentry guidance method is proposed to obtain the optimal reentry trajectory quickly with the target of minimum aerodynamic heating rate. The terminal error in position and attitude can be also reduced with the proposed method. In this method, the whole reentry guidance task is divided into two phases, i.e., the trajectory updating phase and the trajectory planning phase. In the first phase, the idea of model predictive control (MPC) is used, and the receding optimization procedure ensures the optimal trajectory in the next few seconds. In the trajectory planning phase, after the vehicle has flown out of the blackout zone, the optimal reentry trajectory is obtained by online planning to adapt to the navigation information. An effective swarm intelligence algorithm, i.e. pigeon inspired optimization (PIO) algorithm, is applied to obtain the optimal reentry trajectory in both of the two phases. Compared to the trajectory updating method, the proposed method can reduce the terminal error by about 30% considering both the position and attitude, especially, the terminal error of height has almost been eliminated. Besides, the PIO algorithm performs better than the particle swarm optimization (PSO) algorithm both in the trajectory updating phase and the trajectory planning phases.

  1. AIAA Survivability Technical Committee Draft

    NASA Technical Reports Server (NTRS)

    Shipman, Jim; Williamson, Joel

    1997-01-01

    A relatively new area of interest in aerospace systems survivability is the growing threat of spacecraft penetration by orbital debris. Orbital debris, or "space junk", is composed of the man-made remnants of non-functioning spacecraft still orbiting the Earth. NASA estimates that there are currently over 100,000 orbital debris particles 1 centimeter in diameter or larger that cannot be tracked by existing radar, with the population growing at approximately 4% per year in low earth orbits. With an average velocity of over 8.7 km/sec, these projectiles can penetrate and disable many vulnerable spacecraft systems. Since the likelihood of spacecraft penetration increases with spacecraft surface area, large spacecraft (such as the International Space Station) and communication satellite fleets (such as Iridium) have begun to adopt survivability enhancement strategies similar to those employed by combat aircraft. Collision avoidance maneuvers are commonly practiced by the Space Shuttle and are planned by the International Space Station to decrease their susceptibility to impact by trackable orbital debris; likewise, improved shielding, internal equipment placement, and improved crew operations following penetration can reduce the vulnerability of spacecraft to loss following orbital debris impact. Computer simulations such as the Manned Spacecraft and Crew Survivability (MSCSurv) program at the NASA-Marshall Space Flight Center have recently been developed to quantify and reduce the likelihood of crew or spacecraft loss following orbital debris penetration. The AIAA Survivability Technical Committee is working to enable the transfer of military-developed survivability technologies to help the aerospace industry cope with this growing threat.

  2. Enabling technologies for Chinese Mars lander guidance system

    NASA Astrophysics Data System (ADS)

    Jiang, Xiuqiang; Li, Shuang

    2017-04-01

    Chinese first Mars exploration activity, orbiting landing and roaming collaborative mission, has been programmed and started. As a key technology, Mars lander guidance system is intended to serve atmospheric entry, descent and landing (EDL) phases. This paper is to report the formation process of enabling technology road map for Chinese Mars lander guidance system. First, two scenarios of the first-stage of the Chinese Mars exploration project are disclosed in detail. Second, mission challenges and engineering needs of EDL guidance, navigation, and control (GNC) are presented systematically for Chinese Mars exploration program. Third, some useful related technologies developed in China's current aerospace projects are pertinently summarized, especially on entry guidance, parachute descent, autonomous hazard avoidance and safe landing. Finally, an enabling technology road map of Chinese Mars lander guidance is given through technological inheriting and improving.

  3. Image-based global registration system for bronchoscopy guidance

    NASA Astrophysics Data System (ADS)

    Khare, Rahul; Higgins, William E.

    2011-03-01

    Previous studies have shown that bronchoscopy guidance systems improve accuracy and reduce skill variation among physicians during bronchoscopy. In the past, we presented an image-based bronchoscopy guidance system that has been extensively validated in live bronchoscopic procedures. However, this system cannot actively recover from adverse events, such as patient coughing or dynamic airway collapses. After such events, the bronchoscope position is recovered only by moving back to a previously seen and easily identifiable bifurcation such as the main carina. Furthermore, the system requires an attending technician to closely follow the physician's movement of the bronchoscope to avoid misguidance. Also, when the physician is forced to advance the bronchoscope across multiple bifurcations, the system is not able to detect faulty maneuvers. We propose two system-level solutions. The first solution is a system-level guidance strategy that incorporates a global-registration algorithm to provide the physician with updated navigational and guidance information during bronchoscopy. The system can handle general navigation to a region of interest (ROI), as well as adverse events, and it requires minimal commands so that it can be directly controlled by the physician. The second solution visualizes the global picture of all the bifurcations and their relative orientations in advance and suggests the maneuvers needed by the bronchoscope to approach the ROI. Guided bronchoscopy results using human airway-tree phantoms demonstrate the potential of the two solutions.

  4. Field evaluation of a wearable multimodal soldier navigation system.

    PubMed

    Aaltonen, Iina; Laarni, Jari

    2017-09-01

    Challenging environments pose difficulties for terrain navigation, and therefore wearable and multimodal navigation systems have been proposed to overcome these difficulties. Few such navigation systems, however, have been evaluated in field conditions. We evaluated how a multimodal system can aid in navigating in a forest in the context of a military exercise. The system included a head-mounted display, headphones, and a tactile vibrating vest. Visual, auditory, and tactile modalities were tested and evaluated using unimodal, bimodal, and trimodal conditions. Questionnaires, interviews and observations were used to evaluate the advantages and disadvantages of each modality and their multimodal use. The guidance was considered easy to interpret and helpful in navigation. Simplicity of the displayed information was required, which was partially conflicting with the request for having both distance and directional information available. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Image navigation as a means to expand the boundaries of fluorescence-guided surgery

    NASA Astrophysics Data System (ADS)

    Brouwer, Oscar R.; Buckle, Tessa; Bunschoten, Anton; Kuil, Joeri; Vahrmeijer, Alexander L.; Wendler, Thomas; Valdés-Olmos, Renato A.; van der Poel, Henk G.; van Leeuwen, Fijs W. B.

    2012-05-01

    Hybrid tracers that are both radioactive and fluorescent help extend the use of fluorescence-guided surgery to deeper structures. Such hybrid tracers facilitate preoperative surgical planning using (3D) scintigraphic images and enable synchronous intraoperative radio- and fluorescence guidance. Nevertheless, we previously found that improved orientation during laparoscopic surgery remains desirable. Here we illustrate how intraoperative navigation based on optical tracking of a fluorescence endoscope may help further improve the accuracy of hybrid surgical guidance. After feeding SPECT/CT images with an optical fiducial as a reference target to the navigation system, optical tracking could be used to position the tip of the fluorescence endoscope relative to the preoperative 3D imaging data. This hybrid navigation approach allowed us to accurately identify marker seeds in a phantom setup. The multispectral nature of the fluorescence endoscope enabled stepwise visualization of the two clinically approved fluorescent dyes, fluorescein and indocyanine green. In addition, the approach was used to navigate toward the prostate in a patient undergoing robot-assisted prostatectomy. Navigation of the tracked fluorescence endoscope toward the target identified on SPECT/CT resulted in real-time gradual visualization of the fluorescent signal in the prostate, thus providing an intraoperative confirmation of the navigation accuracy.

  6. System Architectural Considerations on Reliable Guidance, Navigation, and Control (GN and C) for Constellation Program (CxP) Spacecraft

    NASA Technical Reports Server (NTRS)

    Dennehy, Cornelius J.

    2010-01-01

    This final report summarizes the results of a comparative assessment of the fault tolerance and reliability of different Guidance, Navigation and Control (GN&C) architectural approaches. This study was proactively performed by a combined Massachusetts Institute of Technology (MIT) and Draper Laboratory team as a GN&C "Discipline-Advancing" activity sponsored by the NASA Engineering and Safety Center (NESC). This systematic comparative assessment of GN&C system architectural approaches was undertaken as a fundamental step towards understanding the opportunities for, and limitations of, architecting highly reliable and fault tolerant GN&C systems composed of common avionic components. The primary goal of this study was to obtain architectural 'rules of thumb' that could positively influence future designs in the direction of an optimized (i.e., most reliable and cost-efficient) GN&C system. A secondary goal was to demonstrate the application and the utility of a systematic modeling approach that maps the entire possible architecture solution space.

  7. Navigators for motion detection during real-time MRI-guided radiotherapy

    NASA Astrophysics Data System (ADS)

    Stam, Mette K.; Crijns, Sjoerd P. M.; Zonnenberg, Bernard A.; Barendrecht, Maurits M.; van Vulpen, Marco; Lagendijk, Jan J. W.; Raaymakers, Bas W.

    2012-11-01

    An MRI-linac system provides direct MRI feedback and with that the possibility of adapting radiation treatments to the actual tumour position. This paper addresses the use of fast 1D MRI, pencil-beam navigators, for this feedback. The accuracy of using navigators was determined on a moving phantom. The possibility of organ tracking and breath-hold monitoring based on navigator guidance was shown for the kidney. Navigators are accurate within 0.5 mm and the analysis has a minimal time lag smaller than 30 ms as shown for the phantom measurements. The correlation of 2D kidney images and navigators shows the possibility of complete organ tracking. Furthermore the breath-hold monitoring of the kidney is accurate within 1.5 mm, allowing gated radiotherapy based on navigator feedback. Navigators are a fast and precise method for monitoring and real-time tracking of anatomical landmarks. As such, they provide direct MRI feedback on anatomical changes for more precise radiation delivery.

  8. Advanced Endoscopic Navigation: Surgical Big Data, Methodology, and Applications.

    PubMed

    Luo, Xiongbiao; Mori, Kensaku; Peters, Terry M

    2018-06-04

    Interventional endoscopy (e.g., bronchoscopy, colonoscopy, laparoscopy, cystoscopy) is a widely performed procedure that involves either diagnosis of suspicious lesions or guidance for minimally invasive surgery in a variety of organs within the body cavity. Endoscopy may also be used to guide the introduction of certain items (e.g., stents) into the body. Endoscopic navigation systems seek to integrate big data with multimodal information (e.g., computed tomography, magnetic resonance images, endoscopic video sequences, ultrasound images, external trackers) relative to the patient's anatomy, control the movement of medical endoscopes and surgical tools, and guide the surgeon's actions during endoscopic interventions. Nevertheless, it remains challenging to realize the next generation of context-aware navigated endoscopy. This review presents a broad survey of various aspects of endoscopic navigation, particularly with respect to the development of endoscopic navigation techniques. First, we investigate big data with multimodal information involved in endoscopic navigation. Next, we focus on numerous methodologies used for endoscopic navigation. We then review different endoscopic procedures in clinical applications. Finally, we discuss novel techniques and promising directions for the development of endoscopic navigation.

  9. Interactive knowledge networks for interdisciplinary course navigation within Moodle.

    PubMed

    Scherl, Andre; Dethleffsen, Kathrin; Meyer, Michael

    2012-12-01

    Web-based hypermedia learning environments are widely used in modern education and seem particularly well suited for interdisciplinary learning. Previous work has identified guidance through these complex environments as a crucial problem of their acceptance and efficiency. We reasoned that map-based navigation might provide straightforward and effortless orientation. To achieve this, we developed a clickable and user-oriented concept map-based navigation plugin. This tool is implemented as an extension of Moodle, a widely used learning management system. It visualizes inner and interdisciplinary relations between learning objects and is generated dynamically depending on user set parameters and interactions. This plugin leaves the choice of navigation type to the user and supports direct guidance. Previously developed and evaluated face-to-face interdisciplinary learning materials bridging physiology and physics courses of a medical curriculum were integrated as learning objects, the relations of which were defined by metadata. Learning objects included text pages, self-assessments, videos, animations, and simulations. In a field study, we analyzed the effects of this learning environment on physiology and physics knowledge as well as the transfer ability of third-term medical students. Data were generated from pre- and posttest questionnaires and from tracking student navigation. Use of the hypermedia environment resulted in a significant increase of knowledge and transfer capability. Furthermore, the efficiency of learning was enhanced. We conclude that hypermedia environments based on Moodle and enriched by concept map-based navigation tools can significantly support interdisciplinary learning. Implementation of adaptivity may further strengthen this approach.

  10. Advanced approach for intraoperative MRI guidance and potential benefit for neurosurgical applications.

    PubMed

    Busse, Harald; Schmitgen, Arno; Trantakis, Christos; Schober, Ralf; Kahn, Thomas; Moche, Michael

    2006-07-01

    To present an advanced approach for intraoperative image guidance in an open 0.5 T MRI and to evaluate its effectiveness for neurosurgical interventions by comparison with a dynamic scan-guided localization technique. The built-in scan guidance mode relied on successive interactive MRI scans. The additional advanced mode provided real-time navigation based on reformatted high-quality, intraoperatively acquired MR reference data, allowed multimodal image fusion, and used the successive scans of the built-in mode for quick verification of the position only. Analysis involved tumor resections and biopsies in either scan guidance (N = 36) or advanced mode (N = 59) by the same three neurosurgeons. Technical, surgical, and workflow aspects were compared. The image quality and hand-eye coordination of the advanced approach were improved. While the average extent of resection, neurologic outcome after functional MRI (fMRI) integration, and diagnostic yield appeared to be slightly better under advanced guidance, particularly for the main surgeon, statistical analysis revealed no significant differences. Resection times were comparable, while biopsies took around 30 minutes longer. The presented approach is safe and provides more detailed images and higher navigation speed at the expense of actuality. The surgical outcome achieved with advanced guidance is (at least) as good as that obtained with dynamic scan guidance. (c) 2006 Wiley-Liss, Inc.

  11. Mission planning, mission analysis and software formulation. Level C requirements for the shuttle mission control center orbital guidance software

    NASA Technical Reports Server (NTRS)

    Langston, L. J.

    1976-01-01

    The formulation of Level C requirements for guidance software was reported. Requirements for a PEG supervisor which controls all input/output interfaces with other processors and determines which PEG mode is to be utilized were studied in detail. A description of the two guidance modes for which Level C requirements have been formulated was presented. Functions required for proper execution of the guidance software were defined. The requirements for a navigation function that is used in the prediction logic of PEG mode 4 were discussed. It is concluded that this function is extracted from the current navigation FSSR.

  12. Radio/FADS/IMU integrated navigation for Mars entry

    NASA Astrophysics Data System (ADS)

    Jiang, Xiuqiang; Li, Shuang; Huang, Xiangyu

    2018-03-01

    Supposing future orbiting and landing collaborative exploration mission as the potential project background, this paper addresses the issue of Mars entry integrated navigation using radio beacon, flush air data sensing system (FADS), and inertial measurement unit (IMU). The range and Doppler information sensed from an orbiting radio beacon, the dynamic pressure and heating data sensed from flush air data sensing system, and acceleration and attitude angular rate outputs from an inertial measurement unit are integrated in an unscented Kalman filter to perform state estimation and suppress the system and measurement noise. Computer simulations show that the proposed integrated navigation scheme can enhance the navigation accuracy, which enables precise entry guidance for the given Mars orbiting and landing collaborative exploration mission.

  13. Magnetically Assisted Remote-controlled Endovascular Catheter for Interventional MR Imaging: In Vitro Navigation at 1.5 T versus X-ray Fluoroscopy

    PubMed Central

    Losey, Aaron D.; Lillaney, Prasheel; Martin, Alastair J.; Cooke, Daniel L.; Wilson, Mark W.; Thorne, Bradford R. H.; Sincic, Ryan S.; Arenson, Ronald L.; Saeed, Maythem

    2014-01-01

    Purpose To compare in vitro navigation of a magnetically assisted remote-controlled (MARC) catheter under real-time magnetic resonance (MR) imaging with manual navigation under MR imaging and standard x-ray guidance in endovascular catheterization procedures in an abdominal aortic phantom. Materials and Methods The 2-mm-diameter custom clinical-grade microcatheter prototype with a solenoid coil at the distal tip was deflected with a foot pedal actuator used to deliver 300 mA of positive or negative current. Investigators navigated the catheter into branch vessels in a custom cryogel abdominal aortic phantom. This was repeated under MR imaging guidance without magnetic assistance and under conventional x-ray fluoroscopy. MR experiments were performed at 1.5 T by using a balanced steady-state free precession sequence. The mean procedure times and percentage success data were determined and analyzed with a linear mixed-effects regression analysis. Results The catheter was clearly visible under real-time MR imaging. One hundred ninety-two (80%) of 240 turns were successfully completed with magnetically assisted guidance versus 144 (60%) of 240 turns with nonassisted guidance (P < .001) and 119 (74%) of 160 turns with standard x-ray guidance (P = .028). Overall mean procedure time was shorter with magnetically assisted than with nonassisted guidance under MR imaging (37 seconds ± 6 [standard error of the mean] vs 55 seconds ± 3, P < .001), and time was comparable between magnetically assisted and standard x-ray guidance (37 seconds ± 6 vs 44 seconds ± 3, P = .045). When stratified by angle of branch vessel, magnetic assistance was faster than nonassisted MR guidance at turns of 45°, 60°, and 75°. Conclusion In this study, a MARC catheter for endovascular navigation under real-time MR imaging guidance was developed and tested. For catheterization of branch vessels arising at large angles, magnetically assisted catheterization was faster than manual catheterization

  14. Magnetically assisted remote-controlled endovascular catheter for interventional MR imaging: in vitro navigation at 1.5 T versus X-ray fluoroscopy.

    PubMed

    Losey, Aaron D; Lillaney, Prasheel; Martin, Alastair J; Cooke, Daniel L; Wilson, Mark W; Thorne, Bradford R H; Sincic, Ryan S; Arenson, Ronald L; Saeed, Maythem; Hetts, Steven W

    2014-06-01

    To compare in vitro navigation of a magnetically assisted remote-controlled (MARC) catheter under real-time magnetic resonance (MR) imaging with manual navigation under MR imaging and standard x-ray guidance in endovascular catheterization procedures in an abdominal aortic phantom. The 2-mm-diameter custom clinical-grade microcatheter prototype with a solenoid coil at the distal tip was deflected with a foot pedal actuator used to deliver 300 mA of positive or negative current. Investigators navigated the catheter into branch vessels in a custom cryogel abdominal aortic phantom. This was repeated under MR imaging guidance without magnetic assistance and under conventional x-ray fluoroscopy. MR experiments were performed at 1.5 T by using a balanced steady-state free precession sequence. The mean procedure times and percentage success data were determined and analyzed with a linear mixed-effects regression analysis. The catheter was clearly visible under real-time MR imaging. One hundred ninety-two (80%) of 240 turns were successfully completed with magnetically assisted guidance versus 144 (60%) of 240 turns with nonassisted guidance (P < .001) and 119 (74%) of 160 turns with standard x-ray guidance (P = .028). Overall mean procedure time was shorter with magnetically assisted than with nonassisted guidance under MR imaging (37 seconds ± 6 [standard error of the mean] vs 55 seconds ± 3, P < .001), and time was comparable between magnetically assisted and standard x-ray guidance (37 seconds ± 6 vs 44 seconds ± 3, P = .045). When stratified by angle of branch vessel, magnetic assistance was faster than nonassisted MR guidance at turns of 45°, 60°, and 75°. In this study, a MARC catheter for endovascular navigation under real-time MR imaging guidance was developed and tested. For catheterization of branch vessels arising at large angles, magnetically assisted catheterization was faster than manual catheterization under MR imaging guidance and was comparable to

  15. Bio-robots automatic navigation with electrical reward stimulation.

    PubMed

    Sun, Chao; Zhang, Xinlu; Zheng, Nenggan; Chen, Weidong; Zheng, Xiaoxiang

    2012-01-01

    Bio-robots that controlled by outer stimulation through brain computer interface (BCI) suffer from the dependence on realtime guidance of human operators. Current automatic navigation methods for bio-robots focus on the controlling rules to force animals to obey man-made commands, with animals' intelligence ignored. This paper proposes a new method to realize the automatic navigation for bio-robots with electrical micro-stimulation as real-time rewards. Due to the reward-seeking instinct and trial-and-error capability, bio-robot can be steered to keep walking along the right route with rewards and correct its direction spontaneously when rewards are deprived. In navigation experiments, rat-robots learn the controlling methods in short time. The results show that our method simplifies the controlling logic and realizes the automatic navigation for rat-robots successfully. Our work might have significant implication for the further development of bio-robots with hybrid intelligence.

  16. Trajectory optimization for the National aerospace plane

    NASA Technical Reports Server (NTRS)

    Lu, Ping

    1993-01-01

    While continuing the application of the inverse dynamics approach in obtaining the optimal numerical solutions, the research during the past six months has been focused on the formulation and derivation of closed-form solutions for constrained hypersonic flight trajectories. Since it was found in the research of the first year that a dominant portion of the optimal ascent trajectory of the aerospace plane is constrained by dynamic pressure and heating constraints, the application of the analytical solutions significantly enhances the efficiency in trajectory optimization, provides a better insight to understanding of the trajectory and conceivably has great potential in guidance of the vehicle. Work of this period has been reported in four technical papers. Two of the papers were presented in the AIAA Guidance, Navigation, and Control Conference (Hilton Head, SC, August, 1992) and Fourth International Aerospace Planes Conference (Orlando, FL, December, 1992). The other two papers have been accepted for publication by Journal of Guidance, Control, and Dynamics, and will appear in 1993. This report briefly summarizes the work done in the past six months and work currently underway.

  17. International perspectives on social media guidance for nurses: a content analysis.

    PubMed

    Ryan, Gemma

    2016-12-01

    Aim This article reports the results of an analysis of the content of national and international professional guidance on social media for the nursing profession. The aim was to consolidate good practice examples of social media guidelines, and inform the development of comprehensive guidance. Method A scoping search of professional nursing bodies' and organisations' social media guidance documents was undertaken using google search. Results 34 guidance documents were located, and a content analysis of these was conducted. Conclusion The results, combined with a review of competency hearings and literature, indicate that guidance should cover the context of social media, and support nurses to navigate and negotiate the differences between the real and online domains to help them translate awareness into actions.

  18. USAF Development Of Optical Correlation Missile Guidance

    NASA Astrophysics Data System (ADS)

    Kaehr, Ronald; Spector, Marvin

    1980-12-01

    In 1965, the Advanced Development Program (ADP)-679A of the Avionics Laboratory initiated development of guidance systems for stand-off tactical missiles. Employing project engineering support from the Aeronautical Systems Division, WPAFB, the Avionics Laboratory funded multiple terminal guidance concepts and related midcourse navigation technology. Optical correlation techniques which utilize prestored reference information for autonomous target acquisition offered the best near-term opportunity for meeting mission goals. From among the systems studied and flight tested, Aimpoint* optical area guidance provided the best and most consistent performance. Funded development by the Air Force ended in 1974 with a MK-84 guided bomb drop test demonstration at White Sands Missile Range and the subsequent transfer of the tactical missile guidance development charter to the Air Force Armament Laboratory, Eglin AFB. A historical review of optical correlation development within the Avionics Laboratory is presented. Evolution of the Aimpoint system is specifically addressed. Finally, a brief discussion of trends in scene matching technology is presented.

  19. Evaluation of the clinical benefit of an electromagnetic navigation system for CT-guided interventional radiology procedures in the thoraco-abdominal region compared with conventional CT guidance (CTNAV II): study protocol for a randomised controlled trial.

    PubMed

    Rouchy, R C; Moreau-Gaudry, A; Chipon, E; Aubry, S; Pazart, L; Lapuyade, B; Durand, M; Hajjam, M; Pottier, S; Renard, B; Logier, R; Orry, X; Cherifi, A; Quehen, E; Kervio, G; Favelle, O; Patat, F; De Kerviler, E; Hughes, C; Medici, M; Ghelfi, J; Mounier, A; Bricault, I

    2017-07-06

    Interventional radiology includes a range of minimally invasive image-guided diagnostic and therapeutic procedures that have become routine clinical practice. Each procedure involves a percutaneous needle insertion, often guided using computed tomography (CT) because of its availability and usability. However, procedures remain complicated, in particular when an obstacle must be avoided, meaning that an oblique trajectory is required. Navigation systems track the operator's instruments, meaning the position and progression of the instruments are visualised in real time on the patient's images. A novel electromagnetic navigation system for CT-guided interventional procedures (IMACTIS-CT®) has been developed, and a previous clinical trial demonstrated improved needle placement accuracy in navigation-assisted procedures. In the present trial, we are evaluating the clinical benefit of the navigation system during the needle insertion step of CT-guided procedures in the thoraco-abdominal region. This study is designed as an open, multicentre, prospective, randomised, controlled interventional clinical trial and is structured as a standard two-arm, parallel-design, individually randomised trial. A maximum of 500 patients will be enrolled. In the experimental arm (navigation system), the procedures are carried out using navigation assistance, and in the active comparator arm (CT), the procedures are carried out with conventional CT guidance. The randomisation is stratified by centre and by the expected difficulty of the procedure. The primary outcome of the trial is a combined criterion to assess the safety (number of serious adverse events), efficacy (number of targets reached) and performance (number of control scans acquired) of navigation-assisted, CT-guided procedures as evaluated by a blinded radiologist and confirmed by an expert committee in case of discordance. The secondary outcomes are (1) the duration of the procedure, (2) the satisfaction of the operator and

  20. Configuring the Orion Guidance, Navigation, and Control Flight Software for Automated Sequencing

    NASA Technical Reports Server (NTRS)

    Odegard, Ryan G.; Siliwinski, Tomasz K.; King, Ellis T.; Hart, Jeremy J.

    2010-01-01

    The Orion Crew Exploration Vehicle is being designed with greater automation capabilities than any other crewed spacecraft in NASA s history. The Guidance, Navigation, and Control (GN&C) flight software architecture is designed to provide a flexible and evolvable framework that accommodates increasing levels of automation over time. Within the GN&C flight software, a data-driven approach is used to configure software. This approach allows data reconfiguration and updates to automated sequences without requiring recompilation of the software. Because of the great dependency of the automation and the flight software on the configuration data, the data management is a vital component of the processes for software certification, mission design, and flight operations. To enable the automated sequencing and data configuration of the GN&C subsystem on Orion, a desktop database configuration tool has been developed. The database tool allows the specification of the GN&C activity sequences, the automated transitions in the software, and the corresponding parameter reconfigurations. These aspects of the GN&C automation on Orion are all coordinated via data management, and the database tool provides the ability to test the automation capabilities during the development of the GN&C software. In addition to providing the infrastructure to manage the GN&C automation, the database tool has been designed with capabilities to import and export artifacts for simulation analysis and documentation purposes. Furthermore, the database configuration tool, currently used to manage simulation data, is envisioned to evolve into a mission planning tool for generating and testing GN&C software sequences and configurations. A key enabler of the GN&C automation design, the database tool allows both the creation and maintenance of the data artifacts, as well as serving the critical role of helping to manage, visualize, and understand the data-driven parameters both during software development

  1. Flight evaluation of differential GPS aided inertial navigation systems

    NASA Technical Reports Server (NTRS)

    Mcnally, B. David; Paielli, Russell A.; Bach, Ralph E., Jr.; Warner, David N., Jr.

    1992-01-01

    Algorithms are described for integration of Differential Global Positioning System (DGPS) data with Inertial Navigation System (INS) data to provide an integrated DGPS/INS navigation system. The objective is to establish the benefits that can be achieved through various levels of integration of DGPS with INS for precision navigation. An eight state Kalman filter integration was implemented in real-time on a twin turbo-prop transport aircraft to evaluate system performance during terminal approach and landing operations. A fully integrated DGPS/INS system is also presented which models accelerometer and rate-gyro measurement errors plus position, velocity, and attitude errors. The fully integrated system was implemented off-line using range-domain (seventeen-state) and position domain (fifteen-state) Kalman filters. Both filter integration approaches were evaluated using data collected during the flight test. Flight-test data consisted of measurements from a 5 channel Precision Code GPS receiver, a strap-down Inertial Navigation Unit (INU), and GPS satellite differential range corrections from a ground reference station. The aircraft was laser tracked to determine its true position. Results indicate that there is no significant improvement in positioning accuracy with the higher levels of DGPS/INS integration. All three systems provided high-frequency (e.g., 20 Hz) estimates of position and velocity. The fully integrated system provided estimates of inertial sensor errors which may be used to improve INS navigation accuracy should GPS become unavailable, and improved estimates of acceleration, attitude, and body rates which can be used for guidance and control. Precision Code DGPS/INS positioning accuracy (root-mean-square) was 1.0 m cross-track and 3.0 m vertical. (This AGARDograph was sponsored by the Guidance and Control Panel.)

  2. U.S. space-based positioning, navigation, and timing policy : fact sheet.

    DOT National Transportation Integrated Search

    2004-12-04

    The President authorized a new national policy on December 8, 2004 that establishes guidance and implementation actions for space-based positioning, navigation, and timing programs, augmentations, and activities for U.S. national and homeland securit...

  3. Preserving the nuclear option: The AIAA position paper on space nuclear power

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Allen, D.M.; Bennett, G.L.; El-Genk, M.S.

    1996-03-01

    In response to published reports about the decline in funding for space nuclear power, the Board of Directors of the American Institute of Aeronautics and Astronautics (AIAA) approved a position paper in March 1995 that recommends (1) development and support of an integrated space nuclear power program by DOE, NASA and DoD; (2) Congressional support for the program; (3) advocacy of the program by government and industry leaders; and (4) continuation of cooperation between the U.S. and other countries to advance nuclear power source technology and to promote safety. This position paper has been distributed to various people having oversightmore » of the U.S. space nuclear power program. {copyright} {ital 1996 American Institute of Physics.}« less

  4. Statistical Analysis of CFD Solutions From the Fifth AIAA Drag Prediction Workshop

    NASA Technical Reports Server (NTRS)

    Morrison, Joseph H.

    2013-01-01

    A graphical framework is used for statistical analysis of the results from an extensive N-version test of a collection of Reynolds-averaged Navier-Stokes computational fluid dynamics codes. The solutions were obtained by code developers and users from North America, Europe, Asia, and South America using a common grid sequence and multiple turbulence models for the June 2012 fifth Drag Prediction Workshop sponsored by the AIAA Applied Aerodynamics Technical Committee. The aerodynamic configuration for this workshop was the Common Research Model subsonic transport wing-body previously used for the 4th Drag Prediction Workshop. This work continues the statistical analysis begun in the earlier workshops and compares the results from the grid convergence study of the most recent workshop with previous workshops.

  5. Plans and Example Results for the 2nd AIAA Aeroelastic Prediction Workshop

    NASA Technical Reports Server (NTRS)

    Heeg, Jennifer; Chwalowski, Pawel; Schuster, David M.; Raveh, Daniella; Jirasek, Adam; Dalenbring, Mats

    2015-01-01

    This paper summarizes the plans for the second AIAA Aeroelastic Prediction Workshop. The workshop is designed to assess the state-of-the-art of computational methods for predicting unsteady flow fields and aeroelastic response. The goals are to provide an impartial forum to evaluate the effectiveness of existing computer codes and modeling techniques, and to identify computational and experimental areas needing additional research and development. This paper provides guidelines and instructions for participants including the computational aerodynamic model, the structural dynamic properties, the experimental comparison data and the expected output data from simulations. The Benchmark Supercritical Wing (BSCW) has been chosen as the configuration for this workshop. The analyses to be performed will include aeroelastic flutter solutions of the wing mounted on a pitch-and-plunge apparatus.

  6. Implementation of an optimum profile guidance system on STOLAND

    NASA Technical Reports Server (NTRS)

    Flanagan, P. F.

    1978-01-01

    The implementation on the STOLAND airborne digital computer of an optimum profile guidance system for the augmentor wing jet STOL research aircraft is described. Major tasks were to implement the guidance and control logic to airborne computer software and to integrate the module with the existing STOLAND navigation, display, and autopilot routines. The optimum profile guidance system comprises an algorithm for synthesizing mimimum fuel trajectories for a wide range of starting positions in the terminal area and a control law for flying the aircraft automatically along the trajectory. The avionics software developed is described along with a FORTRAN program that was constructed to reflect the modular nature and algorthms implemented in the avionics software.

  7. Blindness enhances auditory obstacle circumvention: Assessing echolocation, sensory substitution, and visual-based navigation

    PubMed Central

    Scarfe, Amy C.; Moore, Brian C. J.; Pardhan, Shahina

    2017-01-01

    Performance for an obstacle circumvention task was assessed under conditions of visual, auditory only (using echolocation) and tactile (using a sensory substitution device, SSD) guidance. A Vicon motion capture system was used to measure human movement kinematics objectively. Ten normally sighted participants, 8 blind non-echolocators, and 1 blind expert echolocator navigated around a 0.6 x 2 m obstacle that was varied in position across trials, at the midline of the participant or 25 cm to the right or left. Although visual guidance was the most effective, participants successfully circumvented the obstacle in the majority of trials under auditory or SSD guidance. Using audition, blind non-echolocators navigated more effectively than blindfolded sighted individuals with fewer collisions, lower movement times, fewer velocity corrections and greater obstacle detection ranges. The blind expert echolocator displayed performance similar to or better than that for the other groups using audition, but was comparable to that for the other groups using the SSD. The generally better performance of blind than of sighted participants is consistent with the perceptual enhancement hypothesis that individuals with severe visual deficits develop improved auditory abilities to compensate for visual loss, here shown by faster, more fluid, and more accurate navigation around obstacles using sound. PMID:28407000

  8. Blindness enhances auditory obstacle circumvention: Assessing echolocation, sensory substitution, and visual-based navigation.

    PubMed

    Kolarik, Andrew J; Scarfe, Amy C; Moore, Brian C J; Pardhan, Shahina

    2017-01-01

    Performance for an obstacle circumvention task was assessed under conditions of visual, auditory only (using echolocation) and tactile (using a sensory substitution device, SSD) guidance. A Vicon motion capture system was used to measure human movement kinematics objectively. Ten normally sighted participants, 8 blind non-echolocators, and 1 blind expert echolocator navigated around a 0.6 x 2 m obstacle that was varied in position across trials, at the midline of the participant or 25 cm to the right or left. Although visual guidance was the most effective, participants successfully circumvented the obstacle in the majority of trials under auditory or SSD guidance. Using audition, blind non-echolocators navigated more effectively than blindfolded sighted individuals with fewer collisions, lower movement times, fewer velocity corrections and greater obstacle detection ranges. The blind expert echolocator displayed performance similar to or better than that for the other groups using audition, but was comparable to that for the other groups using the SSD. The generally better performance of blind than of sighted participants is consistent with the perceptual enhancement hypothesis that individuals with severe visual deficits develop improved auditory abilities to compensate for visual loss, here shown by faster, more fluid, and more accurate navigation around obstacles using sound.

  9. A goggle navigation system for cancer resection surgery

    NASA Astrophysics Data System (ADS)

    Xu, Junbin; Shao, Pengfei; Yue, Ting; Zhang, Shiwu; Ding, Houzhu; Wang, Jinkun; Xu, Ronald

    2014-02-01

    We describe a portable fluorescence goggle navigation system for cancer margin assessment during oncologic surgeries. The system consists of a computer, a head mount display (HMD) device, a near infrared (NIR) CCD camera, a miniature CMOS camera, and a 780 nm laser diode excitation light source. The fluorescence and the background images of the surgical scene are acquired by the CCD camera and the CMOS camera respectively, co-registered, and displayed on the HMD device in real-time. The spatial resolution and the co-registration deviation of the goggle navigation system are evaluated quantitatively. The technical feasibility of the proposed goggle system is tested in an ex vivo tumor model. Our experiments demonstrate the feasibility of using a goggle navigation system for intraoperative margin detection and surgical guidance.

  10. Cognitive load of navigating without vision when guided by virtual sound versus spatial language.

    PubMed

    Klatzky, Roberta L; Marston, James R; Giudice, Nicholas A; Golledge, Reginald G; Loomis, Jack M

    2006-12-01

    A vibrotactile N-back task was used to generate cognitive load while participants were guided along virtual paths without vision. As participants stepped in place, they moved along a virtual path of linear segments. Information was provided en route about the direction of the next turning point, by spatial language ("left," "right," or "straight") or virtual sound (i.e., the perceived azimuth of the sound indicated the target direction). The authors hypothesized that virtual sound, being processed at direct perceptual levels, would have lower load than even simple language commands, which require cognitive mediation. As predicted, whereas the guidance modes did not differ significantly in the no-load condition, participants showed shorter distance traveled and less time to complete a path when performing the N-back task while navigating with virtual sound as guidance. Virtual sound also produced better N-back performance than spatial language. By indicating the superiority of virtual sound for guidance when cognitive load is present, as is characteristic of everyday navigation, these results have implications for guidance systems for the visually impaired and others.

  11. Autonomous Navigation Using Celestial Objects

    NASA Technical Reports Server (NTRS)

    Folta, David; Gramling, Cheryl; Leung, Dominic; Belur, Sheela; Long, Anne

    1999-01-01

    In the twenty-first century, National Aeronautics and Space Administration (NASA) Enterprises envision frequent low-cost missions to explore the solar system, observe the universe, and study our planet. Satellite autonomy is a key technology required to reduce satellite operating costs. The Guidance, Navigation, and Control Center (GNCC) at the Goddard Space Flight Center (GSFC) currently sponsors several initiatives associated with the development of advanced spacecraft systems to provide autonomous navigation and control. Autonomous navigation has the potential both to increase spacecraft navigation system performance and to reduce total mission cost. By eliminating the need for routine ground-based orbit determination and special tracking services, autonomous navigation can streamline spacecraft ground systems. Autonomous navigation products can be included in the science telemetry and forwarded directly to the scientific investigators. In addition, autonomous navigation products are available onboard to enable other autonomous capabilities, such as attitude control, maneuver planning and orbit control, and communications signal acquisition. Autonomous navigation is required to support advanced mission concepts such as satellite formation flying. GNCC has successfully developed high-accuracy autonomous navigation systems for near-Earth spacecraft using NASA's space and ground communications systems and the Global Positioning System (GPS). Recently, GNCC has expanded its autonomous navigation initiative to include satellite orbits that are beyond the regime in which use of GPS is possible. Currently, GNCC is assessing the feasibility of using standard spacecraft attitude sensors and communication components to provide autonomous navigation for missions including: libration point, gravity assist, high-Earth, and interplanetary orbits. The concept being evaluated uses a combination of star, Sun, and Earth sensor measurements along with forward-link Doppler

  12. CFL3D Contribution to the AIAA Supersonic Shock Boundary Layer Interaction Workshop

    NASA Technical Reports Server (NTRS)

    Rumsey, Christopher L.

    2010-01-01

    This paper documents the CFL3D contribution to the AIAA Supersonic Shock Boundary Layer Interaction Workshop, held in Orlando, Florida in January 2010. CFL3D is a Reynolds-averaged Navier-Stokes code. Four shock boundary layer interaction cases are computed using a one-equation turbulence model widely used for other aerodynamic problems of interest. Two of the cases have experimental data available at the workshop, and two of the cases do not. The effect of grid, flux scheme, and thin-layer approximation are investigated. Comparisons are made to the available experimental data. All four cases exhibit strong three-dimensional behavior in and near the interaction regions, resulting from influences of the tunnel side-walls.

  13. Post-Flight EDL Entry Guidance Performance of the 2011 Mars Science Laboratory Mission

    NASA Technical Reports Server (NTRS)

    Mendeck, Gavin F.; McGrew, Lynn Craig

    2012-01-01

    The 2011 Mars Science Laboratory was the first successful Mars mission to attempt a guided entry which safely delivered the rover to a final position approximately 2 km from its target within a touchdown ellipse of 19.1 km x 6.9 km. The Entry Terminal Point Controller guidance algorithm is derived from the final phase Apollo Command Module guidance and, like Apollo, modulates the bank angle to control the range flown. For application to Mars landers which must make use of the tenuous Martian atmosphere, it is critical to balance the lift of the vehicle to minimize the range error while still ensuring a safe deploy altitude. An overview of the process to generate optimized guidance settings is presented, discussing improvements made over the last nine years. Key dispersions driving deploy ellipse and altitude performance are identified. Performance sensitivities including attitude initialization error and the velocity of transition from range control to heading alignment are presented. Just prior to the entry and landing of MSL in August 2012, the EDL team examined minute tuning of the reference trajectory for the selected landing site, analyzed whether adjustment of bank reversal deadbands were necessary, the heading alignment velocity trigger was in union with other parameters to balance the EDL risks, and the vertical L/D command limits. This paper details a preliminary postflight assessment of the telemetry and trajectory reconstruction that is being performed, and updates the information presented in the former paper Entry Guidance for the 2011 Mars Science Laboratory Mission (AIAA Atmospheric Flight Mechanics Conference; 8-11 Aug. 2011; Portland, OR; United States)

  14. Optimization of Closed Loop Eigenvalues: Maneuvering, Vibration Control, and Structure/Control Design Iteration for Flexible Spacecraft.

    DTIC Science & Technology

    1986-05-31

    Nonlinear Feedback Control 8-16 for Spacecraft Attitude Maneuvers" 2. " Spacecraft Attitude Control Using 17-35... nonlinear state feedback control laws are developed for space- craft attitude control using the Euler parameters and conjugate angular momenta. Time... Nonlinear Feedback Control for Spacecraft Attitude Maneuvers," to appear in AIAA J. of Guidance, Control, and Dynamics, (AIAA Paper No. 83-2230-CP,

  15. Sensitivity analysis of helicopter IMC decelerating steep approach and landing performance to navigation system parameters

    NASA Technical Reports Server (NTRS)

    Karmali, M. S.; Phatak, A. V.

    1982-01-01

    Results of a study to investigate, by means of a computer simulation, the performance sensitivity of helicopter IMC DSAL operations as a function of navigation system parameters are presented. A mathematical model representing generically a navigation system is formulated. The scenario simulated consists of a straight in helicopter approach to landing along a 6 deg glideslope. The deceleration magnitude chosen is 03g. The navigation model parameters are varied and the statistics of the total system errors (TSE) computed. These statistics are used to determine the critical navigation system parameters that affect the performance of the closed-loop navigation, guidance and control system of a UH-1H helicopter.

  16. Real Time Navigation-Assisted Orbital Wall Reconstruction in Blowout Fractures.

    PubMed

    Shin, Ho Seong; Kim, Se Young; Cha, Han Gyu; Han, Ba Leun; Nam, Seung Min

    2016-03-01

    Limitation in performing restoration of orbital structures is the narrow, deep, and dark surgical field, which makes it difficult to view the operative site directly. To avoid perioperative complications from this limitation, the authors have evaluated the usefulness of computer-assisted navigation techniques in surgical treatment of blowout fracture. Total 37 patients (14 medial orbital wall fractures and 23 inferior orbital wall fractures) with facial deformities had surgical treatment under the guide of navigation system between September 2012 and January 2015. All 37 patients were treated successfully and safely with navigation-assisted surgery without any complications, including diplopia, retrobulbar hematoma, globe injury, implant migration, and blindness. Blowout fracture can be treated safely under guidance of a surgical navigation system. In orbital surgery, navigation-assisted technology could give rise to improvements in the functional and aesthetic outcome and checking the position of the instruments on the surgical site in real time, without injuring important anatomic structures.

  17. A open loop guidance architecture for navigationally robust on-orbit docking

    NASA Technical Reports Server (NTRS)

    Chern, Hung-Sheng

    1995-01-01

    The development of an open-hop guidance architecture is outlined for autonomous rendezvous and docking (AR&D) missions to determine whether the Global Positioning System (GPS) can be used in place of optical sensors for relative initial position determination of the chase vehicle. Feasible command trajectories for one, two, and three impulse AR&D maneuvers are determined using constrained trajectory optimization. Early AR&D command trajectory results suggest that docking accuracies are most sensitive to vertical position errors at the initial conduction of the chase vehicle. Thus, a feasible command trajectory is based on maximizing the size of the locus of initial vertical positions for which a fixed sequence of impulses will translate the chase vehicle into the target while satisfying docking accuracy requirements. Documented accuracies are used to determine whether relative GPS can achieve the vertical position error requirements of the impulsive command trajectories. Preliminary development of a thruster management system for the Cargo Transfer Vehicle (CTV) based on optimal throttle settings is presented to complete the guidance architecture. Results show that a guidance architecture based on a two impulse maneuvers generated the best performance in terms of initial position error and total velocity change for the chase vehicle.

  18. Guidance/Navigation Requirements Study Final Report. Volume III. Appendices

    DTIC Science & Technology

    1978-04-30

    shown Figure G-2. The free-flight simulation program FFSIM uses quaternions to calculate the body attitude as a function of time. To calculate the...the lack of open-loop damping, the existence of a feedback controller which will stabilize the closed-loon system depends upon the satisfaction of a...re-entry vehicle has dynamic pecularitles which tend to discourage the use of "linear-quadratic" feedback regulators in guidance. The disadvantageous

  19. Guidance, Navigation and Control (GN and C) Design Overview and Flight Test Results from NASA's Max Launch Abort System (MLAS)

    NASA Technical Reports Server (NTRS)

    Dennehy, Cornelius J.; Lanzi, Raymond J.; Ward, Philip R.

    2010-01-01

    The National Aeronautics and Space Administration Engineering and Safety Center designed, developed and flew the alternative Max Launch Abort System (MLAS) as risk mitigation for the baseline Orion spacecraft launch abort system already in development. The NESC was tasked with both formulating a conceptual objective system design of this alternative MLAS as well as demonstrating this concept with a simulated pad abort flight test. Less than 2 years after Project start the MLAS simulated pad abort flight test was successfully conducted from Wallops Island on July 8, 2009. The entire flight test duration was 88 seconds during which time multiple staging events were performed and nine separate critically timed parachute deployments occurred as scheduled. This paper provides an overview of the guidance navigation and control technical approaches employed on this rapid prototyping activity; describes the methodology used to design the MLAS flight test vehicle; and lessons that were learned during this rapid prototyping project are also summarized.

  20. Flight evaluation of a computer aided low-altitude helicopter flight guidance system

    NASA Technical Reports Server (NTRS)

    Swenson, Harry N.; Jones, Raymond D.; Clark, Raymond

    1993-01-01

    The Flight Systems Development branch of the U.S. Army's Avionics Research and Development Activity (AVRADA) and NASA Ames Research Center developed for flight testing a Computer Aided Low-Altitude Helicopter Flight (CALAHF) guidance system. The system includes a trajectory-generation algorithm which uses dynamic programming and a helmet-mounted display (HMD) presentation of a pathway-in-the-sky, a phantom aircraft, and flight-path vector/predictor guidance symbology. The trajectory-generation algorithm uses knowledge of the global mission requirements, a digital terrain map, aircraft performance capabilities, and precision navigation information to determine a trajectory between mission waypoints that seeks valleys to minimize threat exposure. This system was developed and evaluated through extensive use of piloted simulation and has demonstrated a 'pilot centered' concept of automated and integrated navigation and terrain mission planning flight guidance. This system has shown a significant improvement in pilot situational awareness, and mission effectiveness as well as a decrease in training and proficiency time required for a near terrain, nighttime, adverse weather system.

  1. Guidance and control for unmanned ground vehicles

    NASA Astrophysics Data System (ADS)

    Bateman, Peter J.

    1994-06-01

    Techniques for the guidance, control, and navigation of unmanned ground vehicles are described in terms of the communication bandwidth requirements for driving and control of a vehicle remote from the human operator. Modes of operation are conveniently classified as conventional teleoperation, supervisory control, and fully autonomous control. The fundamental problem of maintaining a robust non-line-of-sight communications link between the human controller and the remote vehicle is discussed, as this provides the impetus for greater autonomy in the control system and the greatest scope for innovation. While supervisory control still requires the man to be providing the primary navigational intelligence, fully autonomous operation requires that mission navigation is provided solely by on-board machine intelligence. Methods directed at achieving this performance are described using various active and passive sensing of the terrain for route navigation and obstacle detection. Emphasis is given to TV imagery and signal processing techniques for image understanding. Reference is made to the limitations of current microprocessor technology and suitable computer architectures. Some of the more recent control techniques involve the use of neural networks, fuzzy logic, and data fusion and these are discussed in the context of road following and cross country navigation. Examples of autonomous vehicle testbeds operated at various laboratories around the world are given.

  2. Spacecraft intercept guidance using zero effort miss steering

    NASA Astrophysics Data System (ADS)

    Newman, Brett

    The suitability of proportional navigation, or an equivalent zero effort miss formulation, for spacecraft intercepts during midcourse guidance, followed by a ballistic coast to the endgame, is addressed. The problem is formulated in terms of relative motion in a general 3D framework. The proposed guidance law for the commanded thrust vector orientation consists of the sum of two terms: (1) along the line of sight unit direction and (2) along the zero effort miss component perpendicular to the line of sight and proportional to the miss itself and a guidance gain. If the guidance law is to be suitable for longer range targeting applications with significant ballistic coasting after burnout, determination of the zero effort miss must account for the different gravitational accelerations experienced by each vehicle. The proposed miss determination techniques employ approximations for the true differential gravity effect. Theoretical results are applied to a numerical engagement scenario and the resulting performance is evaluated in terms of the miss distances determined from nonlinear simulation.

  3. Neuroendovascular magnetic navigation: clinical experience in ten patients.

    PubMed

    Dabus, Guilherme; Gerstle, Ronald J; Cross, Dewitte T; Derdeyn, Colin P; Moran, Christopher J

    2007-04-01

    The magnetic navigation system consists of an externally generated magnetic field that is used to control and steer a magnetically tipped microguidewire. The goal of this study was to demonstrate that the use of the magnetic navigation system and its magnetic microguidewire is feasible and safe in all types of neuroendovascular procedures. A magnetic navigation system is an interventional workstation that combines a biplanar fluoroscopy system with a computer-controlled magnetic field generator to provide both visualization and control of a magnetically activated endovascular microguidewire. Ten consecutive patients underwent a variety of neuroendovascular procedures using the magnetic guidance system and magnetic microguidewire. All patients presented with a neurovascular disease that was suitable for endovascular treatment. Multiple different devices and embolic agents were used. Of the ten patients, three were male and seven female. Their mean age was 53.9 years. The predominant neurovascular condition was the presence of intracranial aneurysm (nine patients). One patient had a left mandibular arteriovenous malformation. All treatments were successfully performed on the magnetic navigation system suite. The magnetic navigation system and the magnetic microguidewire allowed safe and accurate endovascular navigation allowing placement of the microcatheters in the desired location. There were no neurological complications or death in our series. The use of the magnetic navigation system and the magnetic microguidewire in the endovascular treatment of patients with neurovascular diseases is feasible and safe.

  4. Evaluation of the Shuttle GN&C during powered ascent flight phase. [Guidance Navigation and Control equipment system design and flight tests

    NASA Technical Reports Server (NTRS)

    Olson, L.; Sunkel, J. W.

    1982-01-01

    An overview of the ascent trajectory and GN&C (guidance, navigation, and control) system design is followed by a summary of flight test results for the ascent phase of STS-1. The most notable variance from nominal pre-flight predictions was the lofted trajectory observed in first stage due to an unanticipated shift in pitch aerodynamic characteristics from those predicted by wind tunnel tests. The GN&C systems performed as expected on STS-1 throughout powered flight. Following a discussion of the software constants changed for Flight 2 to provide adequate performance margin, a summary of test results from STS-2 and STS-3 is presented. Vehicle trajectory response and GN&C system behavior were very similar to STS-1. Ascent aerodynamic characteristics extracted from the first two test flights were included in the data base used to design the first stage steering and pitch trim profiles for STS-3.

  5. Navigating the National Qualifications Framework (NQF): The Role of Career Guidance

    ERIC Educational Resources Information Center

    Walters, S.; Watts, A. G.; Flederman, P.

    2009-01-01

    The South African Qualifications Authority (SAQA) recently commissioned a review of the career development field in South Africa. The review was designed to clarify what SAQA's role might be in assisting learners throughout life to navigate their ways through the complex array of education, training and work opportunities (including, but not…

  6. Integration of radar altimeter, precision navigation, and digital terrain data for low-altitude flight

    NASA Technical Reports Server (NTRS)

    Zelenka, Richard E.

    1992-01-01

    Avionic systems that depend on digitized terrain elevation data for guidance generation or navigational reference require accurate absolute and relative distance measurements to the terrain, especially as they approach lower altitudes. This is particularly exacting in low-altitude helicopter missions, where aggressive terrain hugging maneuvers create minimal horizontal and vertical clearances and demand precise terrain positioning. Sole reliance on airborne precision navigation and stored terrain elevation data for above-ground-level (AGL) positioning severely limits the operational altitude of such systems. A Kalman filter is presented which blends radar altimeter returns, precision navigation, and stored terrain elevation data for AGL positioning. The filter is evaluated using low-altitude helicopter flight test data acquired over moderately rugged terrain. The proposed Kalman filter is found to remove large disparities in predicted AGL altitude (i.e., from airborne navigation and terrain elevation data) in the presence of measurement anomalies and dropouts. Previous work suggested a minimum clearance altitude of 220 ft AGL for a near-terrain guidance system; integration of a radar altimeter allows for operation of that system below 50 ft, subject to obstacle-avoidance limitations.

  7. Overview and Summary of the Second AIAA High Lift Prediction Workshop

    NASA Technical Reports Server (NTRS)

    Rumsey, Christopher L.; Slotnick, Jeffrey P.

    2014-01-01

    The second AIAA CFD High-Lift Prediction Workshop was held in San Diego, California, in June 2013. The goals of the workshop continued in the tradition of the first high-lift workshop: to assess the numerical prediction capability of current-generation computational fluid dynamics (CFD) technology for swept, medium/high-aspect-ratio wings in landing/takeoff (high-lift) configurations. This workshop analyzed the flow over the DLR-F11 model in landing configuration at two different Reynolds numbers. Twenty-six participants submitted a total of 48 data sets of CFD results. A variety of grid systems (both structured and unstructured) were used. Trends due to grid density and Reynolds number were analyzed, and effects of support brackets were also included. This paper analyzes the combined results from all workshop participants. Comparisons with experimental data are made. A statistical summary of the CFD results is also included.

  8. Summary of the First AIAA CFD High Lift Prediction Workshop (invited)

    NASA Technical Reports Server (NTRS)

    Rumsey, C. L.; Long, M.; Stuever, R. A.; Wayman, T. R.

    2011-01-01

    The 1st AIAA CFD High Lift Prediction Workshop was held in Chicago in June 2010. The goals of the workshop included an assessment of the numerical prediction capability of current-generation CFD technology/ codes for swept, medium/high-aspect ratio wings in landing/take-off (high lift) configurations. 21 participants from 8 countries and 18 organizations, submitted a total of 39 datasets of CFD results. A variety of grid systems (both structured and unstructured) were used. Trends due to flap angle were analyzed, and effects of grid family, grid density, solver, and turbulence model were addressed. Some participants also assessed the effects of support brackets used to attach the flap and slat to the main wing. This invited paper describes the combined results from all workshop participants. Comparisons with experimental data are made. A statistical summary of the CFD results is also included.

  9. Path changing methods applied to the 4-D guidance of STOL aircraft.

    DOT National Transportation Integrated Search

    1971-11-01

    Prior to the advent of large-scale commercial STOL service, some challenging navigation and guidance problems must be solved. Proposed terminal area operations may require that these aircraft be capable of accurately flying complex flight paths, and ...

  10. Endovascular Catheter for Magnetic Navigation under MR Imaging Guidance: Evaluation of Safety in Vivo at 1.5T

    PubMed Central

    Hetts, S.W.; Saeed, M.; Martin, A.J.; Evans, L.; Bernhardt, A.F.; Malba, V.; Settecase, F.; Do, L.; Yee, E.J.; Losey, A.; Sincic, R.; Roy, S.; Arenson, R.L.; Wilson, M.W.

    2013-01-01

    BACKGROUND AND PURPOSE: Endovascular navigation under MR imaging guidance can be facilitated by a catheter with steerable microcoils on the tip. Not only do microcoils create visible artifacts allowing catheter tracking, but also they create a small magnetic moment permitting remote-controlled catheter tip deflection. A side product of catheter tip electrical currents, however, is the heat that might damage blood vessels. We sought to determine the upper boundary of electrical currents safely usable at 1.5T in a coil-tipped microcatheter system. MATERIALS AND METHODS: Alumina tubes with solenoid copper coils were attached to neurovascular microcatheters with heat shrink-wrap. Catheters were tested in carotid arteries of 8 pigs. The catheters were advanced under x-ray fluoroscopy and MR imaging. Currents from 0 mA to 700 mA were applied to test heating and potential vascular damage. Postmortem histologic analysis was the primary endpoint. RESULTS: Several heat-mitigation strategies demonstrated negligible vascular damage compared with control arteries. Coil currents ≤300 mA resulted in no damage (0/58 samples) compared with 9 (25%) of 36 samples for > 300-mA activations (P = .0001). Tip coil activation ≤1 minute and a proximal carotid guide catheter saline drip > 2 mL/minute also had a nonsignificantly lower likelihood of vascular damage. For catheter tip coil activations ≤300 mA for ≤1 minute in normal carotid flow, 0 of 43 samples had tissue damage. CONCLUSIONS: Activations of copper coils at the tip of microcatheters at low currents in 1.5T MR scanners can be achieved without significant damage to blood vessel walls in a controlled experimental setting. Further optimization of catheter design and procedure protocols is necessary for safe remote control magnetic catheter guidance. PMID:23846795

  11. Robust Feedback Control of Reconfigurable Multi-Agent Systems in Uncertain Adversarial Environments

    DTIC Science & Technology

    2015-07-09

    R. G., Optimal Lunar Landing and Retargeting using a Hybrid Control Strategy. Proceedings of the 2013 AAS/AIAA Space Flight Mechanics Meeting (AAS...Furfaro, R. & Sanfelice, R. G., Switching System Model for Pinpoint Lunar Landing Guidance Using a Hybrid Control Strategy. Proceedings of the AIAA...methods in distributed settings and the design of numerical methods to properly compute their trajectories . We have generate results showing that

  12. Quantifying navigational information: The catchment volumes of panoramic snapshots in outdoor scenes.

    PubMed

    Murray, Trevor; Zeil, Jochen

    2017-01-01

    Panoramic views of natural environments provide visually navigating animals with two kinds of information: they define locations because image differences increase smoothly with distance from a reference location and they provide compass information, because image differences increase smoothly with rotation away from a reference orientation. The range over which a given reference image can provide navigational guidance (its 'catchment area') has to date been quantified from the perspective of walking animals by determining how image differences develop across the ground plane of natural habitats. However, to understand the information available to flying animals there is a need to characterize the 'catchment volumes' within which panoramic snapshots can provide navigational guidance. We used recently developed camera-based methods for constructing 3D models of natural environments and rendered panoramic views at defined locations within these models with the aim of mapping navigational information in three dimensions. We find that in relatively open woodland habitats, catchment volumes are surprisingly large extending for metres depending on the sensitivity of the viewer to image differences. The size and the shape of catchment volumes depend on the distance of visual features in the environment. Catchment volumes are smaller for reference images close to the ground and become larger for reference images at some distance from the ground and in more open environments. Interestingly, catchment volumes become smaller when only above horizon views are used and also when views include a 1 km distant panorama. We discuss the current limitations of mapping navigational information in natural environments and the relevance of our findings for our understanding of visual navigation in animals and autonomous robots.

  13. Quantifying navigational information: The catchment volumes of panoramic snapshots in outdoor scenes

    PubMed Central

    Zeil, Jochen

    2017-01-01

    Panoramic views of natural environments provide visually navigating animals with two kinds of information: they define locations because image differences increase smoothly with distance from a reference location and they provide compass information, because image differences increase smoothly with rotation away from a reference orientation. The range over which a given reference image can provide navigational guidance (its ‘catchment area’) has to date been quantified from the perspective of walking animals by determining how image differences develop across the ground plane of natural habitats. However, to understand the information available to flying animals there is a need to characterize the ‘catchment volumes’ within which panoramic snapshots can provide navigational guidance. We used recently developed camera-based methods for constructing 3D models of natural environments and rendered panoramic views at defined locations within these models with the aim of mapping navigational information in three dimensions. We find that in relatively open woodland habitats, catchment volumes are surprisingly large extending for metres depending on the sensitivity of the viewer to image differences. The size and the shape of catchment volumes depend on the distance of visual features in the environment. Catchment volumes are smaller for reference images close to the ground and become larger for reference images at some distance from the ground and in more open environments. Interestingly, catchment volumes become smaller when only above horizon views are used and also when views include a 1 km distant panorama. We discuss the current limitations of mapping navigational information in natural environments and the relevance of our findings for our understanding of visual navigation in animals and autonomous robots. PMID:29088300

  14. Status of the AIAA Modeling and Simulation Format Standard

    NASA Technical Reports Server (NTRS)

    Jackson, E. Bruce; Hildreth, Bruce L.

    2008-01-01

    The current draft AIAA Standard for flight simulation models represents an on-going effort to improve the productivity of practitioners of the art of digital flight simulation (one of the original digital computer applications). This initial release provides the capability for the efficient representation and exchange of an aerodynamic model in full fidelity; the DAVE-ML format can be easily imported (with development of site-specific import tools) in an unambiguous way with automatic verification. An attractive feature of the standard is the ability to coexist with existing legacy software or tools. The draft Standard is currently limited in scope to static elements of dynamic flight simulations; however, these static elements represent the bulk of typical flight simulation mathematical models. It is already seeing application within U.S. and Australian government agencies in an effort to improve productivity and reduce model rehosting overhead. An existing tool allows import of DAVE-ML models into a popular simulation modeling and analysis tool, and other community-contributed tools and libraries can simplify the use of DAVE-ML compliant models at compile- or run-time of high-fidelity flight simulation.

  15. Interactive MR image guidance for neurosurgical and minimally invasive procedures

    NASA Astrophysics Data System (ADS)

    Wong, Terence Z.; Schwartz, Richard B.; Pergolizzi, Richard S., Jr.; Black, Peter M.; Kacher, Daniel F.; Morrison, Paul R.; Jolesz, Ferenc A.

    1999-05-01

    Advantages of MR imaging for guidance of minimally invasive procedures include exceptional soft tissue contrast, intrinsic multiplanar imaging capability, and absence of exposure to ionizing radiation. Specialized imaging sequences are available and under development which can further enhance diagnosis and therapy. Flow-sensitive imaging techniques can be used to identify vascular structures. Temperature-sensitive imaging is possible which can provide interactive feedback prior to, during, and following the delivery of thermal energy. Functional MR imaging and dynamic contrast-enhanced MRI sequences can provide additional information for guidance in neurosurgical applications. Functional MR allows mapping of eloquent areas in the brain, so that these areas may be avoided during therapy. Dynamic contrast enhancement techniques can be useful for distinguishing active tumor from tumor necrosis caused by previous radiation therapy. An open-configuration 0.5T MRI system (GE Signa SP) developed at Brigham and Women's Hospital in collaboration with General Electric Medical Systems is described. Interactive navigation systems have been integrated into the MRI system. The imaging system is sited in an operating room environment, and used for image guided neurosurgical procedures (biopsies and tumor excision), as well as minimally invasive thermal therapies. Examples of MR imaging guidance, navigational techniques, and clinical applications are presented.

  16. Design, Implementation and Evaluation of an Indoor Navigation System for Visually Impaired People

    PubMed Central

    Martinez-Sala, Alejandro Santos; Losilla, Fernando; Sánchez-Aarnoutse, Juan Carlos; García-Haro, Joan

    2015-01-01

    Indoor navigation is a challenging task for visually impaired people. Although there are guidance systems available for such purposes, they have some drawbacks that hamper their direct application in real-life situations. These systems are either too complex, inaccurate, or require very special conditions (i.e., rare in everyday life) to operate. In this regard, Ultra-Wideband (UWB) technology has been shown to be effective for indoor positioning, providing a high level of accuracy and low installation complexity. This paper presents SUGAR, an indoor navigation system for visually impaired people which uses UWB for positioning, a spatial database of the environment for pathfinding through the application of the A* algorithm, and a guidance module. The interaction with the user takes place using acoustic signals and voice commands played through headphones. The suitability of the system for indoor navigation has been verified by means of a functional and usable prototype through a field test with a blind person. In addition, other tests have been conducted in order to show the accuracy of different relevant parts of the system. PMID:26703610

  17. Robot-assisted endoscope guidance versus manual endoscope guidance in functional endonasal sinus surgery (FESS).

    PubMed

    Eichhorn, Klaus Wolfgang; Westphal, Ralf; Rilk, Markus; Last, Carsten; Bootz, Friedrich; Wahl, Friedrich; Jakob, Mark; Send, Thorsten

    2017-10-01

    Having one hand occupied with the endoscope is the major disadvantage for the surgeon when it comes to functional endoscopic sinus surgery (FESS). Only the other hand is free to use the surgical instruments. Tiredness or frequent instrument changes can thus lead to shaky endoscopic images. We collected the pose data (position and orientation) of the rigid 0° endoscope and all the instruments used in 16 FESS procedures with manual endoscope guidance as well as robot-assisted endoscope guidance. In combination with the DICOM CT data, we tracked the endoscope poses and workspaces using self-developed tracking markers. All surgeries were performed once with the robot and once with the surgeon holding the endoscope. Looking at the durations required, we observed a decrease in the operating time because one surgeon doing all the procedures and so a learning curve occurred what we expected. The visual inspection of the specimens showed no damages to any of the structures outside the paranasal sinuses. Robot-assisted endoscope guidance in sinus surgery is possible. Further CT data, however, are desirable for the surgical analysis of a tracker-based navigation within the anatomic borders. Our marker-based tracking of the endoscope as well as the instruments makes an automated endoscope guidance feasible. On the subjective side, we see that RASS brings a relief for the surgeon.

  18. Effects of Optical Artifacts in a Laser-Based Spacecraft Navigation Sensor

    NASA Technical Reports Server (NTRS)

    LeCroy, Jerry E.; Howard, Richard T.; Hallmark, Dean S.

    2007-01-01

    Testing of the Advanced Video Guidance Sensor (AVGS) used for proximity operations navigation on the Orbital Express ASTRO spacecraft exposed several unanticipated imaging system artifacts and aberrations that required correction to meet critical navigation performance requirements. Mitigation actions are described for a number of system error sources, including lens aberration, optical train misalignment, laser speckle, target image defects, and detector nonlinearity/noise characteristics. Sensor test requirements and protocols are described, along with a summary of test results from sensor confidence tests and system performance testing.

  19. Effects of Optical Artifacts in a Laser-Based Spacecraft Navigation Sensor

    NASA Technical Reports Server (NTRS)

    LeCroy, Jerry E.; Hallmark, Dean S.; Howard, Richard T.

    2007-01-01

    Testing Of the Advanced Video Guidance Sensor (AVGS) used for proximity operations navigation on the Orbital Express ASTRO spacecraft exposed several unanticipated imaging system artifacts and aberrations that required correction, to meet critical navigation performance requirements. Mitigation actions are described for a number of system error sources, including lens aberration, optical train misalignment, laser speckle, target image defects, and detector nonlinearity/noise characteristics. Sensor test requirements and protocols are described, along with a summary ,of test results from sensor confidence tests and system performance testing.

  20. Modeling and controlling a robotic convoy using guidance laws strategies.

    PubMed

    Belkhouche, Fethi; Belkhouche, Boumediene

    2005-08-01

    This paper deals with the problem of modeling and controlling a robotic convoy. Guidance laws techniques are used to provide a mathematical formulation of the problem. The guidance laws used for this purpose are the velocity pursuit, the deviated pursuit, and the proportional navigation. The velocity pursuit equations model the robot's path under various sensors based control laws. A systematic study of the tracking problem based on this technique is undertaken. These guidance laws are applied to derive decentralized control laws for the angular and linear velocities. For the angular velocity, the control law is directly derived from the guidance laws after considering the relative kinematics equations between successive robots. The second control law maintains the distance between successive robots constant by controlling the linear velocity. This control law is derived by considering the kinematics equations between successive robots under the considered guidance law. Properties of the method are discussed and proven. Simulation results confirm the validity of our approach, as well as the validity of the properties of the method. Index Terms-Guidance laws, relative kinematics equations, robotic convoy, tracking.

  1. Biased optimal guidance for a bank-to-turn missile

    NASA Astrophysics Data System (ADS)

    Stallard, D. V.

    A practical terminal-phase guidance law for controlling the pitch acceleration and roll rate of a bank-to-turn missile with zero autopilot lags was derived and tested, so as to minimize squared miss distance without requiring overly large commands. An acceleration bias is introduced to prevent excessive roll commands due to noise. The Separation Theorem is invoked and the guidance (control) law is derived by applying optimal control theory, linearizing the nonlinear plant equation around the present missile orientation, and obtaining a closed-form solution. The optimal pitch-acceleration and roll-rate commands are respectively proportional to two components of the projected, constant-bias, miss distance, with a resemblance to earlier derivations and proportional navigation. Simulaiation results and other related work confirm the suitability of the guidance law.

  2. Recent Experiences of the NASA Engineering and Safety Center (NESC) Guidance Navigation and Control (GN and C) Technical Discipline Team (TDT)

    NASA Technical Reports Server (NTRS)

    Dennehy, Cornelius J.

    2011-01-01

    The NASA Engineering and Safety Center (NESC) is an independently funded NASA Program whose dedicated team of technical experts provides objective engineering and safety assessments of critical, high risk projects. NESC's strength is rooted in the diverse perspectives and broad knowledge base that add value to its products, affording customers a responsive, alternate path for assessing and preventing technical problems while protecting vital human and national resources. The Guidance Navigation and Control (GN&C) Technical Discipline Team (TDT) is one of fifteen such discipline-focused teams within the NESC organization. The TDT membership is composed of GN&C specialists from across NASA and its partner organizations in other government agencies, industry, national laboratories, and universities. This paper will briefly define the vision, mission, and purpose of the NESC organization. The role of the GN&C TDT will then be described in detail along with an overview of how this team operates and engages in its objective engineering and safety assessments of critical NASA.

  3. Hybrid Guidance Control for a Hypervelocity Small Size Asteroid Interceptor Vehicle

    NASA Technical Reports Server (NTRS)

    Zebenay, Melak M.; Lyzhoft, Joshua R.; Barbee, Brent W.

    2017-01-01

    Near-Earth Objects (NEOs) are comets and/or asteroids that have orbits in proximity with Earth's own orbit. NEOs have collided with the Earth in the past, which can be seen at such places as Chicxulub crater, Barringer crater, and Manson crater, and will continue in the future with potentially significant and devastating results. Fortunately such NEO collisions with Earth are infrequent, but can happen at any time. Therefore it is necessary to develop and validate techniques as well as technologies necessary to prevent them. One approach to mitigate future NEO impacts is the concept of high-speed interceptor. This concept is to alter the NEO's trajectory via momentum exchange by using kinetic impactors as well as nuclear penetration devices. The interceptor has to hit a target NEO at relative velocity which imparts a sufficient change in NEO velocity. NASA's Deep Impact mission has demonstrated this scenario by intercepting Comet Temple 1, 5 km in diameter, with an impact relative speed of approximately 10 km/s. This paper focuses on the development of hybrid guidance navigation and control (GNC) algorithms for precision hypervelocity intercept of small sized NEOs. The spacecraft's hypervelocity and the NEO's small size are critical challenges for a successful mission as the NEO will not fill the field of view until a few seconds before intercept. The investigation needs to consider the error sources modeled in the navigation simulation such as spacecraft initial state uncertainties in position and velocity. Furthermore, the paper presents three selected spacecraft guidance algorithms for asteroid intercept and rendezvous missions. The selected algorithms are classical Proportional Navigation (PN) based guidance that use a first order difference to compute the derivatives, Three Plane Proportional Navigation (TPPN), and the Kinematic Impulse (KI). A manipulated Bennu orbit that has been changed to impact Earth will be used as a demonstrative example to compare the

  4. Three-dimensional Cross-Platform Planning for Complex Spinal Procedures: A New Method Adaptive to Different Navigation Systems.

    PubMed

    Kosterhon, Michael; Gutenberg, Angelika; Kantelhardt, Sven R; Conrad, Jens; Nimer Amr, Amr; Gawehn, Joachim; Giese, Alf

    2017-08-01

    A feasibility study. To develop a method based on the DICOM standard which transfers complex 3-dimensional (3D) trajectories and objects from external planning software to any navigation system for planning and intraoperative guidance of complex spinal procedures. There have been many reports about navigation systems with embedded planning solutions but only few on how to transfer planning data generated in external software. Patients computerized tomography and/or magnetic resonance volume data sets of the affected spinal segments were imported to Amira software, reconstructed to 3D images and fused with magnetic resonance data for soft-tissue visualization, resulting in a virtual patient model. Objects needed for surgical plans or surgical procedures such as trajectories, implants or surgical instruments were either digitally constructed or computerized tomography scanned and virtually positioned within the 3D model as required. As crucial step of this method these objects were fused with the patient's original diagnostic image data, resulting in a single DICOM sequence, containing all preplanned information necessary for the operation. By this step it was possible to import complex surgical plans into any navigation system. We applied this method not only to intraoperatively adjustable implants and objects under experimental settings, but also planned and successfully performed surgical procedures, such as the percutaneous lateral approach to the lumbar spine following preplanned trajectories and a thoracic tumor resection including intervertebral body replacement using an optical navigation system. To demonstrate the versatility and compatibility of the method with an entirely different navigation system, virtually preplanned lumbar transpedicular screw placement was performed with a robotic guidance system. The presented method not only allows virtual planning of complex surgical procedures, but to export objects and surgical plans to any navigation or

  5. Evaluation of a mobile augmented reality application for image guidance of neurosurgical interventions.

    PubMed

    Kramers, Matthew; Armstrong, Ryan; Bakhshmand, Saeed M; Fenster, Aaron; de Ribaupierre, Sandrine; Eagleson, Roy

    2014-01-01

    Image guidance can provide surgeons with valuable contextual information during a medical intervention. Often, image guidance systems require considerable infrastructure, setup-time, and operator experience to be utilized. Certain procedures performed at bedside are susceptible to navigational errors that can lead to complications. We present an application for mobile devices that can provide image guidance using augmented reality to assist in performing neurosurgical tasks. A methodology is outlined that evaluates this mode of visualization from the standpoint of perceptual localization, depth estimation, and pointing performance, in scenarios derived from a neurosurgical targeting task. By measuring user variability and speed we can report objective metrics of performance for our augmented reality guidance system.

  6. Development of guidance laws for a variable-speed missile

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gazit, R.; Gutman, S.

    1991-05-01

    The most used guidance law for short-range homing missiles is proportional navigation (PN). In PN, the acceleration command is proportional to the line-of-sight (LOS) angular velocity. Indeed, if a missile and a target move on a collision course with constant speeds, the LOS rate is zero. The speed of a highly maneuverable modern missile varies considerably during flight. The performance of PN is far from being satisfactory in that case. In this article the collision course for a variable-speed missile is analyzed and a guidance law that steers the heading of the missile to the collision course is defined. Guidancemore » laws based on optimal control and differential game formulations are developed, and note that both optimal laws coincide with the Guidance to Collision law at impact. The performance improvement of the missile using the new guidance law as compared to PN is demonstrated. 19 refs.« less

  7. Performance of magnetic field‐guided navigation system for interventional neurosurgical and cardiac procedures

    PubMed Central

    Chu, James C.H.; Hsi, Wen Chien; Hubbard, Lincoln; Zhang, Yunkai; Bernard, Damian; Reeder, Pamela; Lopes, Demetrius

    2005-01-01

    A hospital‐based magnetic guidance system (MGS) was installed to assist a physician in navigating catheters and guide wires during interventional cardiac and neurosurgical procedures. The objective of this study is to examine the performance of this magnetic field‐guided navigation system. Our results show that the system's radiological imaging components produce images with quality similar to that produced by other modern fluoroscopic devices. The system's magnetic navigation components also deflect the wire and catheter tips toward the intended direction. The physician, however, will have to oversteer the wire or catheter when defining the steering angle during the procedure. The MGS could be clinically useful in device navigation deflection and vessel access. PACS numbers: 07.55.Db, 07.85.‐m PMID:16143799

  8. Hybrid surgical guidance based on the integration of radionuclear and optical technologies

    PubMed Central

    Valdés-Olmos, Renato; Buckle, Tessa; Vidal-Sicart, Sergi

    2016-01-01

    With the evolution of imaging technologies and tracers, the applications for nuclear molecular imaging are growing rapidly. For example, nuclear medicine is increasingly being used to guide surgical resections in complex anatomical locations. Here, a future workflow is envisioned that uses a combination of pre-operative diagnostics, navigation and intraoperative guidance. Radioguidance can provide means for pre-operative and intraoperative identification of “hot” lesions, forming the basis of a virtual data set that can be used for navigation. Luminescence guidance has shown great potential in the intraoperative setting by providing optical feedback, in some cases even in real time. Both of these techniques have distinct drawbacks, which include inaccuracy in areas that contain a background signal (radioactivity) or a limited degree of signal penetration (luminescence). We, and others, have reasoned that hybrid/multimodal approaches that integrate the use of these complementary modalities may help overcome their individual weaknesses. Ultimately, this will lead to advancement of the field of interventional molecular imaging/image-guided surgery. In this review, an overview of clinically applied hybrid surgical guidance technologies is given, whereby the focus is placed on tracers and hardware. PMID:26943463

  9. Navigational Efficiency of Nocturnal Myrmecia Ants Suffers at Low Light Levels

    PubMed Central

    Narendra, Ajay; Reid, Samuel F.; Raderschall, Chloé A.

    2013-01-01

    Insects face the challenge of navigating to specific goals in both bright sun-lit and dim-lit environments. Both diurnal and nocturnal insects use quite similar navigation strategies. This is despite the signal-to-noise ratio of the navigational cues being poor at low light conditions. To better understand the evolution of nocturnal life, we investigated the navigational efficiency of a nocturnal ant, Myrmecia pyriformis, at different light levels. Workers of M. pyriformis leave the nest individually in a narrow light-window in the evening twilight to forage on nest-specific Eucalyptus trees. The majority of foragers return to the nest in the morning twilight, while few attempt to return to the nest throughout the night. We found that as light levels dropped, ants paused for longer, walked more slowly, the success in finding the nest reduced and their paths became less straight. We found that in both bright and dark conditions ants relied predominantly on visual landmark information for navigation and that landmark guidance became less reliable at low light conditions. It is perhaps due to the poor navigational efficiency at low light levels that the majority of foragers restrict navigational tasks to the twilight periods, where sufficient navigational information is still available. PMID:23484052

  10. Advancements in Orthopedic Intervention: Retrograde Drilling and Bone Grafting of Osteochondral Lesions of the Knee Using Magnetic Resonance Imaging Guidance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seebauer, Christian J., E-mail: christian.seebauer@charite.d; Bail, Hermann J., E-mail: hermann-josef.bail@klinikum-nuernberg.d; Rump, Jens C., E-mail: jens.rump@charite.de

    Computer-assisted surgery is currently a novel challenge for surgeons and interventional radiologists. Magnetic resonance imaging (MRI)-guided procedures are still evolving. In this experimental study, we describe and assess an innovative passive-navigation method for MRI-guided treatment of osteochondritis dissecans of the knee. A navigation principle using a passive-navigation device was evaluated in six cadaveric knee joint specimens for potential applicability in retrograde drilling and bone grafting of osteochondral lesions using MRI guidance. Feasibility and accuracy were evaluated in an open MRI scanner (1.0 T Philips Panorama HFO MRI System). Interactive MRI navigation allowed precise drilling and bone grafting of osteochondral lesionsmore » of the knee. All lesions were hit with an accuracy of 1.86 mm in the coronal plane and 1.4 mm the sagittal plane. Targeting of all lesions was possible with a single drilling. MRI allowed excellent assessment of correct positioning of the cancellous bone cylinder during bone grafting. The navigation device and anatomic structures could be clearly identified and distinguished throughout the entire drilling procedure. MRI-assisted navigation method using a passive navigation device is feasible for the treatment of osteochondral lesions of the knee under MRI guidance and allows precise and safe drilling without exposure to ionizing radiation. This method may be a viable alternative to other navigation principles, especially for pediatric and adolescent patients. This MRI-navigated method is also potentially applicable in many other MRI-guided interventions.« less

  11. Intraoperative 3-Dimensional Computed Tomography and Navigation in Foot and Ankle Surgery.

    PubMed

    Chowdhary, Ashwin; Drittenbass, Lisca; Dubois-Ferrière, Victor; Stern, Richard; Assal, Mathieu

    2016-09-01

    Computer-assisted orthopedic surgery has developed dramatically during the past 2 decades. This article describes the use of intraoperative 3-dimensional computed tomography and navigation in foot and ankle surgery. Traditional imaging based on serial radiography or C-arm-based fluoroscopy does not provide simultaneous real-time 3-dimensional imaging, and thus leads to suboptimal visualization and guidance. Three-dimensional computed tomography allows for accurate intraoperative visualization of the position of bones and/or navigation implants. Such imaging and navigation helps to further reduce intraoperative complications, leads to improved surgical outcomes, and may become the gold standard in foot and ankle surgery. [Orthopedics.2016; 39(5):e1005-e1010.]. Copyright 2016, SLACK Incorporated.

  12. Posterior tibial slope in medial opening-wedge high tibial osteotomy: 2-D versus 3-D navigation.

    PubMed

    Yim, Ji Hyeon; Seon, Jong Keun; Song, Eun Kyoo

    2012-10-01

    Although opening-wedge high tibial osteotomy (HTO) is used to correct deformities, it can simultaneously alter tibial slope in the sagittal plane because of the triangular configuration of the proximal tibia, and this undesired change in tibial slope can influence knee kinematics, stability, and joint contact pressure. Therefore, medial opening-wedge HTO is a technically demanding procedure despite the use of 2-dimensional (2-D) navigation. The authors evaluated the posterior tibial slope pre- and postoperatively in patients who underwent navigation-assisted opening-wedge HTO and compared posterior slope changes for 2-D and 3-dimensional (3-D) navigation versions. Patients were randomly divided into 2 groups based on the navigation system used: group A (2-D guidance for coronal alignment; 17 patients) and group B (3-D guidance for coronal and sagittal alignments; 17 patients). Postoperatively, the mechanical axis was corrected to a mean valgus of 2.81° (range, 1°-5.4°) in group A and 3.15° (range, 1.5°-5.6°) in group B. A significant intergroup difference existed for the amount of posterior tibial slope change (Δ slope) pre- and postoperatively (P=.04).Opening-wedge HTO using navigation offers accurate alignment of the lower limb. In particular, the use of 3-D navigation results in significantly less change in the posterior tibial slope postoperatively than does the use of 2-D navigation. Accordingly, the authors recommend the use of 3-D navigation systems because they provide real-time intraoperative information about coronal, sagittal, and transverse axes and guide the maintenance of the native posterior tibial slope. Copyright 2012, SLACK Incorporated.

  13. Experimental and simulation study results of an Adaptive Video Guidance System /AVGS/

    NASA Technical Reports Server (NTRS)

    Schappell, R. T.; Knickerbocker, R. L.

    1975-01-01

    Studies relating to stellar-body exploration programs have pointed out the need for an adaptive guidance scheme capable of providing automatic real-time guidance and site selection capability. For the case of a planetary lander, without such guidance, targeting is limited to what are believed to be generally benign areas in order to ensure a reasonable landing-success probability. Typically, the Mars Viking Lander will be jeopardized by obstacles exceeding 22 centimers in diameter. The benefits of on-board navigation and real-time selection of a landing site and obstacle avoidance have been demonstrated by the Apollo lunar landings, in which man performed the surface sensing and steering functions. Therefore, an Adaptive Video Guidance System (AVGS) has been developed, bread-boarded, and flown on a six-degree-of-freedom simulator.

  14. Summary of the Fourth AIAA CFD Drag Prediction Workshop

    NASA Technical Reports Server (NTRS)

    Vassberg, John C.; Tinoco, Edward N.; Mani, Mori; Rider, Ben; Zickuhr, Tom; Levy, David W.; Brodersen, Olaf P.; Eisfeld, Bernhard; Crippa, Simone; Wahls, Richard A.; hide

    2010-01-01

    Results from the Fourth AIAA Drag Prediction Workshop (DPW-IV) are summarized. The workshop focused on the prediction of both absolute and differential drag levels for wing-body and wing-body-horizontal-tail configurations that are representative of transonic transport air- craft. Numerical calculations are performed using industry-relevant test cases that include lift- specific flight conditions, trimmed drag polars, downwash variations, dragrises and Reynolds- number effects. Drag, lift and pitching moment predictions from numerous Reynolds-Averaged Navier-Stokes computational fluid dynamics methods are presented. Solutions are performed on structured, unstructured and hybrid grid systems. The structured-grid sets include point- matched multi-block meshes and over-set grid systems. The unstructured and hybrid grid sets are comprised of tetrahedral, pyramid, prismatic, and hexahedral elements. Effort is made to provide a high-quality and parametrically consistent family of grids for each grid type about each configuration under study. The wing-body-horizontal families are comprised of a coarse, medium and fine grid; an optional extra-fine grid augments several of the grid families. These mesh sequences are utilized to determine asymptotic grid-convergence characteristics of the solution sets, and to estimate grid-converged absolute drag levels of the wing-body-horizontal configuration using Richardson extrapolation.

  15. Energy Navigation: Simulation Evaluation and Benefit Analysis

    NASA Technical Reports Server (NTRS)

    Williams, David H.; Oseguera-Lohr, Rosa M.; Lewis, Elliot T.

    2011-01-01

    This paper presents results from two simulation studies investigating the use of advanced flight-deck-based energy navigation (ENAV) and conventional transport-category vertical navigation (VNAV) for conducting a descent through a busy terminal area, using Continuous Descent Arrival (CDA) procedures. This research was part of the Low Noise Flight Procedures (LNFP) element within the Quiet Aircraft Technology (QAT) Project, and the subsequent Airspace Super Density Operations (ASDO) research focus area of the Airspace Project. A piloted simulation study addressed development of flight guidance, and supporting pilot and Air Traffic Control (ATC) procedures for high density terminal operations. The procedures and charts were designed to be easy to understand, and to make it easy for the crew to make changes via the Flight Management Computer Control-Display Unit (FMC-CDU) to accommodate changes from ATC.

  16. Visual tracking for multi-modality computer-assisted image guidance

    NASA Astrophysics Data System (ADS)

    Basafa, Ehsan; Foroughi, Pezhman; Hossbach, Martin; Bhanushali, Jasmine; Stolka, Philipp

    2017-03-01

    With optical cameras, many interventional navigation tasks previously relying on EM, optical, or mechanical guidance can be performed robustly, quickly, and conveniently. We developed a family of novel guidance systems based on wide-spectrum cameras and vision algorithms for real-time tracking of interventional instruments and multi-modality markers. These navigation systems support the localization of anatomical targets, support placement of imaging probe and instruments, and provide fusion imaging. The unique architecture - low-cost, miniature, in-hand stereo vision cameras fitted directly to imaging probes - allows for an intuitive workflow that fits a wide variety of specialties such as anesthesiology, interventional radiology, interventional oncology, emergency medicine, urology, and others, many of which see increasing pressure to utilize medical imaging and especially ultrasound, but have yet to develop the requisite skills for reliable success. We developed a modular system, consisting of hardware (the Optical Head containing the mini cameras) and software (components for visual instrument tracking with or without specialized visual features, fully automated marker segmentation from a variety of 3D imaging modalities, visual observation of meshes of widely separated markers, instant automatic registration, and target tracking and guidance on real-time multi-modality fusion views). From these components, we implemented a family of distinct clinical and pre-clinical systems (for combinations of ultrasound, CT, CBCT, and MRI), most of which have international regulatory clearance for clinical use. We present technical and clinical results on phantoms, ex- and in-vivo animals, and patients.

  17. Relative navigation for spacecraft formation flying

    NASA Technical Reports Server (NTRS)

    Hartman, Kate R.; Gramling, Cheryl J.; Lee, Taesul; Kelbel, David A.; Long, Anne C.

    1998-01-01

    The Goddard Space Flight Center Guidance, Navigation, and Control Center (GNCC) is currently developing and implementing advanced satellite systems to provide autonomous control of formation flyers. The initial formation maintenance capability will be flight-demonstrated on the Earth-Orbiter-1 (EO-1) satellite, which is planned under the National Aeronautics and Space Administration New Millennium Program to be a coflight with the Landsat-7 (L-7) satellite. Formation flying imposes relative navigation accuracy requirements in addition to the orbit accuracy requirements for the individual satellites. In the case of EO-1 and L-7, the two satellites are in nearly coplanar orbits, with a small difference in the longitude of the ascending node to compensate for the Earth's rotation. The GNCC has performed trajectory error analysis for the relative navigation of the EO-1/L-7 formation, as well as for a more advanced tracking configuration using cross-link satellite communications. This paper discusses the orbit determination and prediction accuracy achievable for EO-1 and L-7 under various tracking and orbit determination scenarios and discusses the expected relative separation errors in their formation flying configuration.

  18. Relative Navigation for Spacecraft Formation Flying

    NASA Technical Reports Server (NTRS)

    Hartman, Kate R.; Gramling, Cheryl J.; Lee, Taesul; Kelbel, David A.; Long, Anne C.

    1998-01-01

    The Goddard Space Flight Center Guidance, Navigation, and Control Center (GNCC) is currently developing and implementing advanced satellite systems to provide autonomous control of formation flyers. The initial formation maintenance capability will be flight-demonstrated on the Earth-Orbiter-1 (EO-l) satellite, which is planned under the National Aeronautics and Space Administration New Millennium Program to be a coflight with the Landsat-7 (L-7) satellite. Formation flying imposes relative navigation accuracy requirements in addition to the orbit accuracy requirements for the individual satellites. In the case of EO-1 and L-7, the two satellites are in nearly coplanar orbits, with a small difference in the longitude of the ascending node to compensate for the Earth's rotation. The GNCC has performed trajectory error analysis for the relative navigation of the EO-1/L-7 formation, as well as for a more advanced tracking configuration using cross- link satellite communications. This paper discusses the orbit determination and prediction accuracy achievable for EO-1 and L-7 under various tracking and orbit determination scenarios and discusses the expected relative separation errors in their formation flying configuration.

  19. Interactive navigation-guided ophthalmic plastic surgery: the techniques and utility of 3-dimensional navigation.

    PubMed

    Ali, Mohammad Javed; Naik, Milind N; Kaliki, Swathi; Dave, Tarjani Vivek; Dendukuri, Gautam

    2017-06-01

    To demonstrate the techniques and utility of 3-dimensional reconstruction (3DR) of the target pathologies for subsequent navigation guidance in ophthalmic plastic surgery. Prospective interventional case series. Stereotactic surgeries using 3D reconstruction of target lesions as the intraoperative image-guiding tool were performed in 5 patients with varied etiopathologies. All the surgeries were performed using the intraoperative image-guided StealthStation system in the electromagnetic mode. 3DR was performed using StealthStation 3D model software. The utility of 3D reconstruction for extensive orbital mass lesions, large orbital fractures, intraconal foreign body, and delineation of perilesional intricate structures was studied. The intraoperative ease and usefulness for the navigation of a 3D lesion at crucial phases of the surgery were noted. Intraoperative geometric localization of the 3D lesions was found to be enhanced and precise. 3D reconstruction of the lesion along with the major vessels and nerves in the vicinity helped the surgeon to prevent potential injuries to these structures. The fracture defects could be navigated in a 3D plane and this helped in moderate customization of the implants intraoperatively. Foreign body located in difficult access positions could be accurately targeted for geometric localization before safe retrieval. Detailed preoperative 3D reconstruction by the surgeon was found to be beneficial for successful outcomes. Three-dimensional navigation is very useful in providing detailed anatomical delineation of the targets and enhances the precision in certain complex cases in ophthalmic plastic surgery. Copyright © 2017 Canadian Ophthalmological Society. Published by Elsevier Inc. All rights reserved.

  20. Image guidance improves localization of sonographically occult colorectal liver metastases

    NASA Astrophysics Data System (ADS)

    Leung, Universe; Simpson, Amber L.; Adams, Lauryn B.; Jarnagin, William R.; Miga, Michael I.; Kingham, T. Peter

    2015-03-01

    Assessing the therapeutic benefit of surgical navigation systems is a challenging problem in image-guided surgery. The exact clinical indications for patients that may benefit from these systems is not always clear, particularly for abdominal surgery where image-guidance systems have failed to take hold in the same way as orthopedic and neurosurgical applications. We report interim analysis of a prospective clinical trial for localizing small colorectal liver metastases using the Explorer system (Path Finder Technologies, Nashville, TN). Colorectal liver metastases are small lesions that can be difficult to identify with conventional intraoperative ultrasound due to echogeneity changes in the liver as a result of chemotherapy and other preoperative treatments. Interim analysis with eighteen patients shows that 9 of 15 (60%) of these occult lesions could be detected with image guidance. Image guidance changed intraoperative management in 3 (17%) cases. These results suggest that image guidance is a promising tool for localization of small occult liver metastases and that the indications for image-guided surgery are expanding.

  1. The Role of Guidance, Navigation, and Control in Hypersonic Vehicle Multidisciplinary Design and Optimization

    NASA Technical Reports Server (NTRS)

    Ouzts, Peter J.; Soloway, Donald I.; Moerder, Daniel D.; Wolpert, David H.; Benavides, Jose Victor

    2009-01-01

    Airbreathing hypersonic systems offer distinct performance advantages over rocket-based systems for space access vehicles. However, these performance advantages are dependent upon advances in current state-of-the-art technologies in many areas such as ram/scramjet propulsion integration, high temperature materials, aero-elastic structures, thermal protection systems, transition to hypersonics and hypersonic control elements within the framework of complex physics and new design methods. The complex interactions between elements of an airbreathing hypersonic vehicle represent a new paradigm in vehicle design to achieve the optimal performance necessary to meet space access mission objectives. In the past, guidance, navigation, and control (GNC) analysis often follows completion of the vehicle conceptual design process. Individual component groups design subsystems which are then integrated into a vehicle configuration. GNC is presented the task of developing control approaches to meet vehicle performance objectives given that configuration. This approach may be sufficient for vehicles where significant performance margins exist. However, for higher performance vehicles engaging the GNC discipline too late in the design cycle has been costly. For example, the X-29 experimental flight vehicle was built as a technology demonstrator. One of the many technologies to be demonstrated was the use of light-weight material composites for structural components. The use of light-weight materials increased the flexibility of the X- 29 beyond that of conventional metal alloy constructed aircraft. This effect was not considered when the vehicle control system was designed and built. The impact of this is that the control system did not have enough control authority to compensate for the effects of the first fundamental structural mode of the vehicle. As a result, the resulting pitch rate response of the vehicle was below specification and no post-design changes could recover the

  2. How I do it-optimizing radiofrequency ablation in spinal metastases using iCT and navigation.

    PubMed

    Kavakebi, Pujan; Freyschlag, C F; Thomé, C

    2017-10-01

    Exact positioning of the radiofrequency ablation (RFA) probe for tumor treatment under fluoroscopic guidance can be difficult because of potentially small inaccessible lesions and the radiation dose to the medical staff in RFA. In addition, vertebroplasty (VP) can be significantly high. Description and workflow of RFA in spinal metastasis using iCT (intraoperative computed tomography) and 3D-navigation-based probe placement followed by VP. RFA and VP can be successfully combined with iCT-based navigation, which leads to a reduction of radiation to the staff and optimal probe positioning due to 3D navigation.

  3. Novel Three-Dimensional Image Fusion Software to Facilitate Guidance of Complex Cardiac Catheterization : 3D image fusion for interventions in CHD.

    PubMed

    Goreczny, Sebastian; Dryzek, Pawel; Morgan, Gareth J; Lukaszewski, Maciej; Moll, Jadwiga A; Moszura, Tomasz

    2017-08-01

    We report initial experience with novel three-dimensional (3D) image fusion software for guidance of transcatheter interventions in congenital heart disease. Developments in fusion imaging have facilitated the integration of 3D roadmaps from computed tomography or magnetic resonance imaging datasets. The latest software allows live fusion of two-dimensional (2D) fluoroscopy with pre-registered 3D roadmaps. We reviewed all cardiac catheterizations guided with this software (Philips VesselNavigator). Pre-catheterization imaging and catheterization data were collected focusing on fusion of 3D roadmap, intervention guidance, contrast and radiation exposure. From 09/2015 until 06/2016, VesselNavigator was applied in 34 patients for guidance (n = 28) or planning (n = 6) of cardiac catheterization. In all 28 patients successful 2D-3D registration was performed. Bony structures combined with the cardiovascular silhouette were used for fusion in 26 patients (93%), calcifications in 9 (32%), previously implanted devices in 8 (29%) and low-volume contrast injection in 7 patients (25%). Accurate initial 3D roadmap alignment was achieved in 25 patients (89%). Six patients (22%) required realignment during the procedure due to distortion of the anatomy after introduction of stiff equipment. Overall, VesselNavigator was applied successfully in 27 patients (96%) without any complications related to 3D image overlay. VesselNavigator was useful in guidance of nearly all of cardiac catheterizations. The combination of anatomical markers and low-volume contrast injections allowed reliable 2D-3D registration in the vast majority of patients.

  4. The use of computerized image guidance in lumbar disk arthroplasty.

    PubMed

    Smith, Harvey E; Vaccaro, Alexander R; Yuan, Philip S; Papadopoulos, Stephen; Sasso, Rick

    2006-02-01

    Surgical navigation systems have been increasingly studied and applied in the application of spinal instrumentation. Successful disk arthroplasty requires accurate midline and rotational positioning for optimal function and longevity. A surgical simulation study in human cadaver specimens was done to evaluate and compare the accuracy of standard fluoroscopy, computer-assisted fluoroscopic image guidance, and Iso-C3D image guidance in the placement of lumbar intervertebral disk replacements. Lumbar intervertebral disk prostheses were placed using three different image guidance techniques in three human cadaver spine specimens at multiple levels. Postinstrumentation accuracy was assessed with thin-cut computed tomography scans. Intervertebral disk replacements placed using the StealthStation with Iso-C3D were more accurately centered than those placed using the StealthStation with FluoroNav and standard fluoroscopy. Intervertebral disk replacements placed with Iso-C3D and FluoroNav had improved rotational divergence compared with standard fluoroscopy. Iso-C3D and FluoroNav had a smaller interprocedure variance than standard fluoroscopy. These results did not approach statistical significance. Relative to both virtual and standard fluoroscopy, use of the StealthStation with Iso-C3D resulted in improved accuracy in centering the lumbar disk prosthesis in the coronal midline. The StealthStation with FluoroNav appears to be at least equivalent to standard fluoroscopy and may offer improved accuracy with rotational alignment while minimizing radiation exposure to the surgeon. Surgical guidance systems may offer improved accuracy and less interprocedure variation in the placement of intervertebral disk replacements than standard fluoroscopy. Further study regarding surgical navigation systems for intervertebral disk replacement is warranted.

  5. Statistical Analysis of CFD Solutions from the Fourth AIAA Drag Prediction Workshop

    NASA Technical Reports Server (NTRS)

    Morrison, Joseph H.

    2010-01-01

    A graphical framework is used for statistical analysis of the results from an extensive N-version test of a collection of Reynolds-averaged Navier-Stokes computational fluid dynamics codes. The solutions were obtained by code developers and users from the U.S., Europe, Asia, and Russia using a variety of grid systems and turbulence models for the June 2009 4th Drag Prediction Workshop sponsored by the AIAA Applied Aerodynamics Technical Committee. The aerodynamic configuration for this workshop was a new subsonic transport model, the Common Research Model, designed using a modern approach for the wing and included a horizontal tail. The fourth workshop focused on the prediction of both absolute and incremental drag levels for wing-body and wing-body-horizontal tail configurations. This work continues the statistical analysis begun in the earlier workshops and compares the results from the grid convergence study of the most recent workshop with earlier workshops using the statistical framework.

  6. Cart3D Simulations for the First AIAA Sonic Boom Prediction Workshop

    NASA Technical Reports Server (NTRS)

    Aftosmis, Michael J.; Nemec, Marian

    2014-01-01

    Simulation results for the First AIAA Sonic Boom Prediction Workshop (LBW1) are presented using an inviscid, embedded-boundary Cartesian mesh method. The method employs adjoint-based error estimation and adaptive meshing to automatically determine resolution requirements of the computational domain. Results are presented for both mandatory and optional test cases. These include an axisymmetric body of revolution, a 69deg delta wing model and a complete model of the Lockheed N+2 supersonic tri-jet with V-tail and flow through nacelles. In addition to formal mesh refinement studies and examination of the adjoint-based error estimates, mesh convergence is assessed by presenting simulation results for meshes at several resolutions which are comparable in size to the unstructured grids distributed by the workshop organizers. Data provided includes both the pressure signals required by the workshop and information on code performance in both memory and processing time. Various enhanced techniques offering improved simulation efficiency will be demonstrated and discussed.

  7. Stated Preferences for Components of a Personal Guidance System for Nonvisual Navigation

    ERIC Educational Resources Information Center

    Golledge, Reginald G.; Marston, James R.; Loomis, Jack M.; Klatzky, Roberta L.

    2004-01-01

    This article reports on a survey of the preferences of visually impaired persons for a possible personal navigation device. The results showed that the majority of participants preferred speech input and output interfaces, were willing to use such a product, thought that they would make more trips with such a device, and had some concerns about…

  8. Video guidance, landing, and imaging systems

    NASA Technical Reports Server (NTRS)

    Schappell, R. T.; Knickerbocker, R. L.; Tietz, J. C.; Grant, C.; Rice, R. B.; Moog, R. D.

    1975-01-01

    The adaptive potential of video guidance technology for earth orbital and interplanetary missions was explored. The application of video acquisition, pointing, tracking, and navigation technology was considered to three primary missions: planetary landing, earth resources satellite, and spacecraft rendezvous and docking. It was found that an imaging system can be mechanized to provide a spacecraft or satellite with a considerable amount of adaptability with respect to its environment. It also provides a level of autonomy essential to many future missions and enhances their data gathering ability. The feasibility of an autonomous video guidance system capable of observing a planetary surface during terminal descent and selecting the most acceptable landing site was successfully demonstrated in the laboratory. The techniques developed for acquisition, pointing, and tracking show promise for recognizing and tracking coastlines, rivers, and other constituents of interest. Routines were written and checked for rendezvous, docking, and station-keeping functions.

  9. Development of a GPS/INS/MAG navigation system and waypoint navigator for a VTOL UAV

    NASA Astrophysics Data System (ADS)

    Meister, Oliver; Mönikes, Ralf; Wendel, Jan; Frietsch, Natalie; Schlaile, Christian; Trommer, Gert F.

    2007-04-01

    Unmanned aerial vehicles (UAV) can be used for versatile surveillance and reconnaissance missions. If a UAV is capable of flying automatically on a predefined path the range of possible applications is widened significantly. This paper addresses the development of the integrated GPS/INS/MAG navigation system and a waypoint navigator for a small vertical take-off and landing (VTOL) unmanned four-rotor helicopter with a take-off weight below 1 kg. The core of the navigation system consists of low cost inertial sensors which are continuously aided with GPS, magnetometer compass, and a barometric height information. Due to the fact, that the yaw angle becomes unobservable during hovering flight, the integration with a magnetic compass is mandatory. This integration must be robust with respect to errors caused by the terrestrial magnetic field deviation and interferences from surrounding electronic devices as well as ferrite metals. The described integration concept with a Kalman filter overcomes the problem that erroneous magnetic measurements yield to an attitude error in the roll and pitch axis. The algorithm provides long-term stable navigation information even during GPS outages which is mandatory for the flight control of the UAV. In the second part of the paper the guidance algorithms are discussed in detail. These algorithms allow the UAV to operate in a semi-autonomous mode position hold as well an complete autonomous waypoint mode. In the position hold mode the helicopter maintains its position regardless of wind disturbances which ease the pilot job during hold-and-stare missions. The autonomous waypoint navigator enable the flight outside the range of vision and beyond the range of the radio link. Flight test results of the implemented modes of operation are shown.

  10. A comparison of CT-based navigation techniques for minimally invasive lumbar pedicle screw placement.

    PubMed

    Wood, Martin; Mannion, Richard

    2011-02-01

    A comparison of 2 surgical techniques. To determine the relative accuracy of minimally invasive lumbar pedicle screw placement using 2 different CT-based image-guided techniques. Three-dimensional intraoperative fluoroscopy systems have recently become available that provide the ability to use CT-quality images for navigation during image-guided minimally invasive spinal surgery. However, the cost of this equipment may negate any potential benefit in navigational accuracy. We therefore assess the accuracy of pedicle screw placement using an intraoperative 3-dimensional fluoroscope for guidance compared with a technique using preoperative CT images merged to intraoperative 2-dimensional fluoroscopy. Sixty-seven patients undergoing minimally invasive placement of lumbar pedicle screws (296 screws) using a navigated, image-guided technique were studied and the accuracy of pedicle screw placement assessed. Electromyography (EMG) monitoring of lumbar nerve roots was used in all. Group 1: 24 patients in whom a preoperative CT scan was merged with intraoperative 2-dimensional fluoroscopy images on the image-guidance system. Group 2: 43 patients using intraoperative 3-dimensional fluoroscopy images as the source for the image guidance system. The frequencies of pedicle breach and EMG warnings (indicating potentially unsafe screw placement) in each group were recorded. The rate of pedicle screw misplacement was 6.4% in group 1 vs 1.6% in group 2 (P=0.03). There were no cases of neurologic injury from suboptimal placement of screws. Additionally, the incidence of EMG warnings was significantly lower in group 2 (3.7% vs. 10% (P=0.03). The use of an intraoperative 3-dimensional fluoroscopy system with an image-guidance system results in greater accuracy of pedicle screw placement than the use of preoperative CT scans, although potentially dangerous placement of pedicle screws can be prevented by the use of EMG monitoring of lumbar nerve roots.

  11. MR imaging guidance for minimally invasive procedures

    NASA Astrophysics Data System (ADS)

    Wong, Terence Z.; Kettenbach, Joachim; Silverman, Stuart G.; Schwartz, Richard B.; Morrison, Paul R.; Kacher, Daniel F.; Jolesz, Ferenc A.

    1998-04-01

    Image guidance is one of the major challenges common to all minimally invasive procedures including biopsy, thermal ablation, endoscopy, and laparoscopy. This is essential for (1) identifying the target lesion, (2) planning the minimally invasive approach, and (3) monitoring the therapy as it progresses. MRI is an ideal imaging modality for this purpose, providing high soft tissue contrast and multiplanar imaging, capability with no ionizing radiation. An interventional/surgical MRI suite has been developed at Brigham and Women's Hospital which provides multiplanar imaging guidance during surgery, biopsy, and thermal ablation procedures. The 0.5T MRI system (General Electric Signa SP) features open vertical access, allowing intraoperative imaging to be performed. An integrated navigational system permits near real-time control of imaging planes, and provides interactive guidance for positioning various diagnostic and therapeutic probes. MR imaging can also be used to monitor cryotherapy as well as high temperature thermal ablation procedures sing RF, laser, microwave, or focused ultrasound. Design features of the interventional MRI system will be discussed, and techniques will be described for interactive image acquisition and tracking of interventional instruments. Applications for interactive and near-real-time imaging will be presented as well as examples of specific procedures performed using MRI guidance.

  12. Electromagnetic navigation technology for more precise electrode placement in the foramen ovale: a technical report.

    PubMed

    Van Buyten, Jean-Pierre; Smet, Iris; Van de Kelft, Erik

    2009-07-01

    Introduction. Interventional pain management techniques require precise positioning of needles or electrodes, therefore fluoroscopic control is mandatory. This imaging technique does however not visualize soft tissues such as blood vessels. Moreover, patient and physician are exposed to a considerable dose of radiation. Computed tomography (CT)-scans give a better view of soft tissues, but there use requires presence of a radiologist and has proven to be laborious and time consuming. Objectives. This study is to develop a technique using electromagnetic (EM) navigation as a guidance technique for interventional pain management, using CT and/or magnetic resonance (MRI) images uploaded on the navigation station. Methods. One of the best documented interventional procedures for the management of trigeminal neuralgia is percutaneous radiofrequency treatment of the Gasserian ganglion. EM navigation software for intracranial applications already exists. We developed a technique using a stylet with two magnetic coils suitable for EM navigation. The procedure is followed in real time on a computer screen where the patient's multislice CT-scan images and three-dimensional reconstruction of his face are uploaded. Virtual landmarks on the screen are matched with those on the patient's face, calculating the precision of the needle placement. Discussion. The experience with EM navigation acquired with the radiofrequency technique can be transferred to other interventional pain management techniques, for instance, for the placement of a neuromodulation electrode close to the Gasserian ganglion. Currently, research is ongoing to extend the software of the navigation station for spinal application, and to adapt neurostimulation hardware to the EM navigation technology. This technology will allow neuromodulation techniques to be performed without x-ray exposure for the patient and the physician, and this with the precision of CT/MR imaging guidance. © 2009 International

  13. 3D Reconfigurable MPSoC for Unmanned Spacecraft Navigation

    NASA Astrophysics Data System (ADS)

    Dekoulis, George

    2016-07-01

    This paper describes the design of a new lightweight spacecraft navigation system for unmanned space missions. The system addresses the demands for more efficient autonomous navigation in the near-Earth environment or deep space. The proposed instrumentation is directly suitable for unmanned systems operation and testing of new airborne prototypes for remote sensing applications. The system features a new sensor technology and significant improvements over existing solutions. Fluxgate type sensors have been traditionally used in unmanned defense systems such as target drones, guided missiles, rockets and satellites, however, the guidance sensors' configurations exhibit lower specifications than the presented solution. The current implementation is based on a recently developed material in a reengineered optimum sensor configuration for unprecedented low-power consumption. The new sensor's performance characteristics qualify it for spacecraft navigation applications. A major advantage of the system is the efficiency in redundancy reduction achieved in terms of both hardware and software requirements.

  14. Computer-assisted neurosurgical navigational system for transsphenoidal surgery--technical note.

    PubMed

    Onizuka, M; Tokunaga, Y; Shibayama, A; Miyazaki, H

    2001-11-01

    Transsphenoidal surgery carries the risk of carotid artery injury even for very experienced neurosurgeons. The computer-assisted neurosurgical (CANS) navigational system was used to obtain more precise guidance, based on the axial and coronal images during the transsphenoidal approach for nine pituitary adenomas. The CANS navigator consists of a three-dimensional digitizer, a computer, and a graphic unit, which utilizes electromagnetic coupling technology to detect the spatial position of a suction tube attached to a magnetic sensor. Preoperatively, the magnetic resonance images are transferred and stored in the computer and the tip of the suction tube is shown on a real-time basis superimposed on the preoperative images. The CANS navigation system correctly displayed the surgical orientation and provided localization in all nine patients. No intraoperative complications were associated with the use of this system. However, outflow of cerebrospinal fluid during tumor removal may affect the accuracy, so the position of the probe when the tumor is removed must be accurately determined. The CANS navigator enables precise localization of the suction tube during the transsphenoidal approach and allows safer and less-invasive surgery.

  15. [Clinical study on the coronary artery interventions guided by the magnetic navigation system].

    PubMed

    Li, Chun-jian; Wang, Hui; Wang, Lian-sheng; Zhu, Tie-bing; Yang, Zhi-jian; Cao, Ke-jiang

    2010-03-01

    To investigate the efficacy and safety of the magnetic navigation system used in the real world percutaneous coronary artery intervention. All lesions detected by the coronary artery angiography in the magnetic-navigation catheter lab indicated for percutaneous coronary artery intervention (PCI) were included and treated under the guidance of the magnetic navigation system. The characteristics of the target lesion, process of the procedure, time and dosage of the X-ray exposure, and procedure-related complication were recorded and analyzed. One hundred and twenty one patients with 138 lesions were recruited and intervened by PCI during the period from April 2006 to June 2008. Thirty lesions were classified as type A, 50 as type B1, 36 as type B2, 22 as type C (including seven total occlusions). The average stenosis of the target lesions was (85.3 +/- 10.0)%, mean length was (21.1 +/- 10.0) mm. Under the guidance of the magnetic navigation system, 134 target lesions were passed by the magnetic guide-wires, the lesion passing ratio was 97.1%. The X-ray exposure time, X-ray dosage and the contrast volume used during the period of the wire placement were (55.9 +/- 35.4) seconds, (98.0 +/- 86.1) mGy/(490.0 +/- 422.2) microGym(2) and (8.0 +/- 5.4) ml, respectively. A total of 164 stents were implanted in the vessels where the target lesions were passed by the magnetic wires. There was no magnetic navigation system associated complication. Magnetic guide-wires failed to pass four target lesions, two of which were chronic total occlusions (CTOs), and the other two were calcified subtotal occlusions. It is feasible and safe to adopt the magnetic navigation system for the real-world coronary artery intervention. The magnetic guide-wire possesses a high lesion-passing ratio. The CTOs and calcified subtotal occlusions are not ideal lesions for use of the magnetic navigation system.

  16. Guidance and Control of a Man-Portable Precision Munition Concept

    DTIC Science & Technology

    2014-06-01

    challenges posed by characteristics of spin-stabilized flight dynamics such as limit cycles, center -of- gravity swerve, instability, and practical...Control Line-of-sight rate and closing velocity estimates are used to form proportional navigation commands in classical guidance schemes...Accelerometers and gyroscopes often supply additional necessary feedback. The accelerometers ensure that the airframe is maneuvering the center of gravity

  17. Saint Lawrence Seaway Navigation-Aid System Study : Volume I - Text and Appendixes A and D

    DOT National Transportation Integrated Search

    1978-09-01

    The requirements for a navigation guidance system which will effect an increase in the ship processing capacity of the Saint Lawrence Seaway (Lake Ontario to Montreal, Quebec) are developed. The requirements include a specification of system position...

  18. The Application of Surgical Navigation in the Treatment of Temporomandibular Joint Ankylosis.

    PubMed

    Sun, Guowen; Lu, Mingxing; Hu, Qingang

    2015-11-01

    The purpose of this study was to assess the safety and the accuracy of surgical navigation technology in the resection of severe ankylosis of the mandibular condyle with the middle cranial fossa. The computed tomography scan data were transferred to a Windows-based computer workstation, and the patient's individual anatomy was assessed in multiplanar views at the workstation. In the operation, the patient and the virtual image were matched by individual registration with the reference points which were set on the skull bone surface and the teeth. Then, the real-time navigation can be performed. The acquisition of the data sets was uncomplicated, and image quality was sufficient to assess the operative result in 2 cases. Both of the operations were performed successfully with the guidance of real-time navigation. The application of surgical navigation has enhanced the safety and the accuracy of the surgery for bony ankylosis of temporomandibular joint. The use of surgical navigation resulted in the promotion of accurate and safe surgical excision of the ankylosed skull base tissue.

  19. Development of Navigation Doppler Lidar for Future Landing Mission

    NASA Technical Reports Server (NTRS)

    Amzajerdian, Farzin; Hines, Glenn D.; Petway, Larry B.; Barnes, Bruce W.; Pierrottet, Diego F.; Carson, John M., III

    2016-01-01

    A coherent Navigation Doppler Lidar (NDL) sensor has been developed under the Autonomous precision Landing and Hazard Avoidance Technology (ALHAT) project to support future NASA missions to planetary bodies. This lidar sensor provides accurate surface-relative altitude and vector velocity data during the descent phase that can be used by an autonomous Guidance, Navigation, and Control (GN&C) system to precisely navigate the vehicle from a few kilometers above the ground to a designated location and execute a controlled soft touchdown. The operation and performance of the NDL was demonstrated through closed-loop flights onboard the rocket-propelled Morpheus vehicle in 2014. In Morpheus flights, conducted at the NASA Kennedy Space Center, the NDL data was used by an autonomous GN&C system to navigate and land the vehicle precisely at the selected location surrounded by hazardous rocks and craters. Since then, development efforts for the NDL have shifted toward enhancing performance, optimizing design, and addressing spaceflight size and mass constraints and environmental and reliability requirements. The next generation NDL, with expanded operational envelope and significantly reduced size, will be demonstrated in 2017 through a new flight test campaign onboard a commercial rocketpropelled test vehicle.

  20. Vision for navigation: What can we learn from ants?

    PubMed

    Graham, Paul; Philippides, Andrew

    2017-09-01

    The visual systems of all animals are used to provide information that can guide behaviour. In some cases insects demonstrate particularly impressive visually-guided behaviour and then we might reasonably ask how the low-resolution vision and limited neural resources of insects are tuned to particular behavioural strategies. Such questions are of interest to both biologists and to engineers seeking to emulate insect-level performance with lightweight hardware. One behaviour that insects share with many animals is the use of learnt visual information for navigation. Desert ants, in particular, are expert visual navigators. Across their foraging life, ants can learn long idiosyncratic foraging routes. What's more, these routes are learnt quickly and the visual cues that define them can be implemented for guidance independently of other social or personal information. Here we review the style of visual navigation in solitary foraging ants and consider the physiological mechanisms that underpin it. Our perspective is to consider that robust navigation comes from the optimal interaction between behavioural strategy, visual mechanisms and neural hardware. We consider each of these in turn, highlighting the value of ant-like mechanisms in biomimetic endeavours. Crown Copyright © 2017. Published by Elsevier Ltd. All rights reserved.

  1. Coherent Doppler Lidar for Precision Navigation of Spacecrafts

    NASA Technical Reports Server (NTRS)

    Amzajerdian, Farzin; Pierrottet, Diego; Petway, Larry; Hines, Glenn; Lockhard, George; Barnes, Bruce

    2011-01-01

    A fiber-based coherent Doppler lidar, utilizing an FMCW technique, has been developed and its capabilities demonstrated through two successful helicopter flight test campaigns. This Doppler lidar is expected to play a critical role in future planetary exploration missions because of its ability in providing the necessary data for soft landing on the planetary bodies and for landing missions requiring precision navigation to the designated location on the ground. Compared with radars, the Doppler lidar can provide significantly higher precision velocity and altitude data at a much higher rate without concerns for measurement ambiguity or target clutter. Future work calls for testing the Doppler lidar onboard a rocket-powered free-flyer platform operating in a closed-loop with the vehicle s guidance, navigation, and control (GN&C) unit.

  2. CEAS/AIAA/ICASE/NASA Langley International Forum on Aeroelasticity and Structural Dynamics 1999. Pt. 2

    NASA Technical Reports Server (NTRS)

    Whitlow, Jr., Woodrow (Editor); Todd, Emily N. (Editor)

    1999-01-01

    The proceedings of a workshop sponsored by the Confederation of European Aerospace Societies (CEAS), the American Institute of Aeronautics and Astronautics (AIAA), the National Aeronautics and Space Administration (NASA), Washington, D.C., and the Institute for Computer Applications in Science and Engineering (ICASE), Hampton, Virginia, and held in Williamsburg, Virginia June 22-25, 1999 represent a collection of the latest advances in aeroelasticity and structural dynamics from the world community. Research in the areas of unsteady aerodynamics and aeroelasticity, structural modeling and optimization, active control and adaptive structures, landing dynamics, certification and qualification, and validation testing are highlighted in the collection of papers. The wide range of results will lead to advances in the prediction and control of the structural response of aircraft and spacecraft.

  3. Designation and verification of road markings detection and guidance method

    NASA Astrophysics Data System (ADS)

    Wang, Runze; Jian, Yabin; Li, Xiyuan; Shang, Yonghong; Wang, Jing; Zhang, JingChuan

    2018-01-01

    With the rapid development of China's space industry, digitization and intelligent is the tendency of the future. This report is present a foundation research about guidance system which based on the HSV color space. With the help of these research which will help to design the automatic navigation and parking system for the frock transport car and the infrared lamp homogeneity intelligent test equipment. The drive mode, steer mode as well as the navigation method was selected. In consideration of the practicability, it was determined to use the front-wheel-steering chassis. The steering mechanism was controlled by the stepping motors, and it is guided by Machine Vision. The optimization and calibration of the steering mechanism was made. A mathematical model was built and the objective functions was constructed for the steering mechanism. The extraction method of the steering line was studied and the motion controller was designed and optimized. The theory of HSV, RGB color space and analysis of the testing result will be discussed Using the function library OPENCV on the Linux system to fulfill the camera calibration. Based on the HSV color space to design the guidance algorithm.

  4. Vision Based Navigation for Autonomous Cooperative Docking of CubeSats

    NASA Astrophysics Data System (ADS)

    Pirat, Camille; Ankersen, Finn; Walker, Roger; Gass, Volker

    2018-05-01

    A realistic rendezvous and docking navigation solution applicable to CubeSats is investigated. The scalability analysis of the ESA Autonomous Transfer Vehicle Guidance, Navigation & Control (GNC) performances and the Russian docking system, shows that the docking of two CubeSats would require a lateral control performance of the order of 1 cm. Line of sight constraints and multipath effects affecting Global Navigation Satellite System (GNSS) measurements in close proximity prevent the use of this sensor for the final approach. This consideration and the high control accuracy requirement led to the use of vision sensors for the final 10 m of the rendezvous and docking sequence. A single monocular camera on the chaser satellite and various sets of Light-Emitting Diodes (LEDs) on the target vehicle ensure the observability of the system throughout the approach trajectory. The simple and novel formulation of the measurement equations allows differentiating unambiguously rotations from translations between the target and chaser docking port and allows a navigation performance better than 1 mm at docking. Furthermore, the non-linear measurement equations can be solved in order to provide an analytic navigation solution. This solution can be used to monitor the navigation filter solution and ensure its stability, adding an extra layer of robustness for autonomous rendezvous and docking. The navigation filter initialization is addressed in detail. The proposed method is able to differentiate LEDs signals from Sun reflections as demonstrated by experimental data. The navigation filter uses a comprehensive linearised coupled rotation/translation dynamics, describing the chaser to target docking port motion. The handover, between GNSS and vision sensor measurements, is assessed. The performances of the navigation function along the approach trajectory is discussed.

  5. Space Shuttle Guidance, Navigation, and Rendezvous Knowledge Capture Reports. Revision 1

    NASA Technical Reports Server (NTRS)

    Goodman, John L.

    2011-01-01

    This document is a catalog and readers guide to lessons learned, experience, and technical history reports, as well as compilation volumes prepared by United Space Alliance personnel for the NASA/Johnson Space Center (JSC) Flight Dynamics Division.1 It is intended to make it easier for future generations of engineers to locate knowledge capture documentation from the Shuttle Program. The first chapter covers observations on documentation quality and research challenges encountered during the Space Shuttle and Orion programs. The second chapter covers the knowledge capture approach used to create many of the reports covered in this document. These chapters are intended to provide future flight programs with insight that could be used to formulate knowledge capture and management strategies. The following chapters contain descriptions of each knowledge capture report. The majority of the reports concern the Space Shuttle. Three are included that were written in support of the Orion Program. Most of the reports were written from the years 2001 to 2011. Lessons learned reports concern primarily the shuttle Global Positioning System (GPS) upgrade and the knowledge capture process. Experience reports on navigation and rendezvous provide examples of how challenges were overcome and how best practices were identified and applied. Some reports are of a more technical history nature covering navigation and rendezvous. They provide an overview of mission activities and the evolution of operations concepts and trajectory design. The lessons learned, experience, and history reports would be considered secondary sources by historians and archivists.

  6. Intraoperative magnetic resonance imaging to update interactive navigation in neurosurgery: method and preliminary experience.

    PubMed

    Wirtz, C R; Bonsanto, M M; Knauth, M; Tronnier, V M; Albert, F K; Staubert, A; Kunze, S

    1997-01-01

    We report on the first successful intraoperative update of interactive image guidance based on an intraoperatively acquired magnetic resonance imaging (MRI) date set. To date, intraoperative imaging methods such as ultrasound, computerized tomography (CT), or MRI have not been successfully used to update interactive navigation. We developed a method of imaging patients intraoperatively with the surgical field exposed in an MRI scanner (Magnetom Open; Siemens Corp., Erlangen, Germany). In 12 patients, intraoperatively acquired 3D data sets were used for successful recalibration of neuronavigation, accounting for any anatomical changes caused by surgical manipulations. The MKM Microscope (Zeiss Corp., Oberkochen, Germany) was used as navigational system. With implantable fiducial markers, an accuracy of 0.84 +/- 0.4 mm for intraoperative reregistration was achieved. Residual tumor detected on MRI was consequently resected using navigation with the intraoperative data. No adverse effects were observed from intraoperative imaging or the use of navigation with intraoperative images, demonstrating the feasibility of recalibrating navigation with intraoperative MRI.

  7. Guidance system operations plan for manned CM earth orbital missions using program SKYLARK 1. Section 4: Operational modes

    NASA Technical Reports Server (NTRS)

    Dunbar, J. C.

    1972-01-01

    The operational modes for the guidance system operations plan for Program SKYLARK 1 are presented. The procedures control the guidance and navigation system interfaces with the flight crew and the mission control center. The guidance operational concept is designed to comprise a set of manually initiated programs and functions which may be arranged by the flight crew to implement a large class of flight plans. This concept will permit both a late flight plan definition and a capability for real time flight plan changes.

  8. WHAMII - An enumeration and insertion procedure with binomial bounds for the stochastic time-constrained traveling salesman problem

    NASA Technical Reports Server (NTRS)

    Dahl, Roy W.; Keating, Karen; Salamone, Daryl J.; Levy, Laurence; Nag, Barindra; Sanborn, Joan A.

    1987-01-01

    This paper presents an algorithm (WHAMII) designed to solve the Artificial Intelligence Design Challenge at the 1987 AIAA Guidance, Navigation and Control Conference. The problem under consideration is a stochastic generalization of the traveling salesman problem in which travel costs can incur a penalty with a given probability. The variability in travel costs leads to a probability constraint with respect to violating the budget allocation. Given the small size of the problem (eleven cities), an approach is considered that combines partial tour enumeration with a heuristic city insertion procedure. For computational efficiency during both the enumeration and insertion procedures, precalculated binomial probabilities are used to determine an upper bound on the actual probability of violating the budget constraint for each tour. The actual probability is calculated for the final best tour, and additional insertions are attempted until the actual probability exceeds the bound.

  9. National Cancer Institute Patient Navigation Research Program: methods, protocol, and measures.

    PubMed

    Freund, Karen M; Battaglia, Tracy A; Calhoun, Elizabeth; Dudley, Donald J; Fiscella, Kevin; Paskett, Electra; Raich, Peter C; Roetzheim, Richard G

    2008-12-15

    Patient, provider, and systems barriers contribute to delays in cancer care, a lower quality of care, and poorer outcomes in vulnerable populations, including low-income, underinsured, and racial/ethnic minority populations. Patient navigation is emerging as an intervention to address this problem, but navigation requires a clear definition and a rigorous testing of its effectiveness. Pilot programs have provided some evidence of benefit, but have been limited by evaluation of single-site interventions and varying definitions of navigation. To overcome these limitations, a 9-site National Cancer Institute Patient Navigation Research Program (PNRP) was initiated. The PNRP is charged with designing, implementing, and evaluating a generalizable patient navigation program targeting vulnerable populations. Through a formal committee structure, the PNRP has developed a definition of patient navigation and metrics to assess the process and outcomes of patient navigation in diverse settings, compared with concurrent continuous control groups. The PNRP defines patient navigation as support and guidance offered to vulnerable persons with abnormal cancer screening or a cancer diagnosis, with the goal of overcoming barriers to timely, quality care. Primary outcomes of the PNRP are 1) time to diagnostic resolution; 2) time to initiation of cancer treatment; 3) patient satisfaction with care; and 4) cost effectiveness, for breast, cervical, colon/rectum, and/or prostate cancer. The metrics to assess the processes and outcomes of patient navigation have been developed for the NCI-sponsored PNRP. If the metrics are found to be valid and reliable, they may prove useful to other investigators.

  10. Autonomous vision-based navigation for proximity operations around binary asteroids

    NASA Astrophysics Data System (ADS)

    Gil-Fernandez, Jesus; Ortega-Hernando, Guillermo

    2018-02-01

    Future missions to small bodies demand higher level of autonomy in the Guidance, Navigation and Control system for higher scientific return and lower operational costs. Different navigation strategies have been assessed for ESA's asteroid impact mission (AIM). The main objective of AIM is the detailed characterization of binary asteroid Didymos. The trajectories for the proximity operations shall be intrinsically safe, i.e., no collision in presence of failures (e.g., spacecraft entering safe mode), perturbations (e.g., non-spherical gravity field), and errors (e.g., maneuver execution error). Hyperbolic arcs with sufficient hyperbolic excess velocity are designed to fulfil the safety, scientific, and operational requirements. The trajectory relative to the asteroid is determined using visual camera images. The ground-based trajectory prediction error at some points is comparable to the camera Field Of View (FOV). Therefore, some images do not contain the entire asteroid. Autonomous navigation can update the state of the spacecraft relative to the asteroid at higher frequency. The objective of the autonomous navigation is to improve the on-board knowledge compared to the ground prediction. The algorithms shall fit in off-the-shelf, space-qualified avionics. This note presents suitable image processing and relative-state filter algorithms for autonomous navigation in proximity operations around binary asteroids.

  11. Autonomous vision-based navigation for proximity operations around binary asteroids

    NASA Astrophysics Data System (ADS)

    Gil-Fernandez, Jesus; Ortega-Hernando, Guillermo

    2018-06-01

    Future missions to small bodies demand higher level of autonomy in the Guidance, Navigation and Control system for higher scientific return and lower operational costs. Different navigation strategies have been assessed for ESA's asteroid impact mission (AIM). The main objective of AIM is the detailed characterization of binary asteroid Didymos. The trajectories for the proximity operations shall be intrinsically safe, i.e., no collision in presence of failures (e.g., spacecraft entering safe mode), perturbations (e.g., non-spherical gravity field), and errors (e.g., maneuver execution error). Hyperbolic arcs with sufficient hyperbolic excess velocity are designed to fulfil the safety, scientific, and operational requirements. The trajectory relative to the asteroid is determined using visual camera images. The ground-based trajectory prediction error at some points is comparable to the camera Field Of View (FOV). Therefore, some images do not contain the entire asteroid. Autonomous navigation can update the state of the spacecraft relative to the asteroid at higher frequency. The objective of the autonomous navigation is to improve the on-board knowledge compared to the ground prediction. The algorithms shall fit in off-the-shelf, space-qualified avionics. This note presents suitable image processing and relative-state filter algorithms for autonomous navigation in proximity operations around binary asteroids.

  12. Improved image guidance technique for minimally invasive mitral valve repair using real-time tracked 3D ultrasound

    NASA Astrophysics Data System (ADS)

    Rankin, Adam; Moore, John; Bainbridge, Daniel; Peters, Terry

    2016-03-01

    In the past ten years, numerous new surgical and interventional techniques have been developed for treating heart valve disease without the need for cardiopulmonary bypass. Heart valve repair is now being performed in a blood-filled environment, reinforcing the need for accurate and intuitive imaging techniques. Previous work has demonstrated how augmenting ultrasound with virtual representations of specific anatomical landmarks can greatly simplify interventional navigation challenges and increase patient safety. These techniques often complicate interventions by requiring additional steps taken to manually define and initialize virtual models. Furthermore, overlaying virtual elements into real-time image data can also obstruct the view of salient image information. To address these limitations, a system was developed that uses real-time volumetric ultrasound alongside magnetically tracked tools presented in an augmented virtuality environment to provide a streamlined navigation guidance platform. In phantom studies simulating a beating-heart navigation task, procedure duration and tool path metrics have achieved comparable performance to previous work in augmented virtuality techniques, and considerable improvement over standard of care ultrasound guidance.

  13. Study of industry information requirements for flight control and navigation systems of STOL aircraft

    NASA Technical Reports Server (NTRS)

    Gorham, J. A.

    1976-01-01

    Answers to specific study questions are used to ascertain the data requirements associated with a guidance, navigation and control system for a future civil STOL airplane. Results of the study were used to recommend changes for improving the outputs of the STOLAND flight experiments program.

  14. Comparison of free-hand fluoroscopic guidance and electromagnetic navigation in distal locking of femoral intramedullary nails.

    PubMed

    Han, Bing; Shi, Zhigang; Fu, Yu; Ye, Yong; Jing, Juehua; Li, Jun

    2017-07-01

    Although the method has been used widely, one of the greatest challenges for intramedullary nailing is to position the distal locking screw. A new technology, the electromagnetic navigation system, is a radiation-free way to locate the position of the drill bit and provide 3-dimensional real-time feedback of location and orientation of the drill bit relative to the locking holes. The purpose of our study was to evaluate the reliability and efficiency of the free-hand technique compared to the new electromagnetic navigation system. Fifty-four patients with femoral fracture who needed treatment with intramedullary nails were divided into 2 groups. One group including 26 patients underwent distal locking using the standard free-hand method, whereas the electromagnetic navigation system was used with the other 29 patients. Intraoperative fluoroscopy exposure times, screw insertion times, and healing times were recorded; these parameters were used for comparison between the 2 groups. There were 17 males and 9 females who had femoral intramedullary nails using the free-hand technique, whereas 21 males and 8 females received intramedullary nails using the electromagnetic navigation system. The mean time of distal locking was 19.5 ± 6.0 minutes in the free-hand (FH) group, whereas the time was 6.1 ± 1.4 minutes in the electromagnetic (ET) group. The exposure time for the FH group was 26.8 ± 13.3 seconds and 2.2 ± 1.1 seconds for the ET group. Healing time proved to be comparable in the FH and ET groups (16.4 ± 3.7 weeks vs 15.1 ± 2.8 weeks). Under the premise of achieving the same effect, the electromagnetic navigation system has the advantage of less distal locking time and less radiation dose.

  15. Targetting and guidance program documentation. [a user's manual

    NASA Technical Reports Server (NTRS)

    Harrold, E. F.; Neyhard, J. F.

    1974-01-01

    A FORTRAN computer program was developed which automatically targets two and three burn rendezvous missions and performs feedback guidance using the GUIDE algorithm. The program was designed to accept a large class of orbit specifications and to automatically choose a two or three burn mission depending upon the time alignment of the vehicle and target. The orbits may be specified as any combination of circular and elliptical orbits and may be coplanar or inclined, but must be aligned coaxially with their perigees in the same direction. The program accomplishes the required targeting by repeatedly converging successively more complex missions. It solves the coplanar impulsive version of the mission, then the finite burn coplanar mission, and finally, the full plane change mission. The GUIDE algorithm is exercised in a feedback guidance mode by taking the targeted solution and moving the vehicle state step by step ahead in time, adding acceleration and navigational errors, and reconverging from the perturbed states at fixed guidance update intervals. A program overview is presented, along with a user's guide which details input, output, and the various subroutines.

  16. Electromagnetic-Optical Coherence Tomography Guidance of Transbronchial Solitary Pulmonary Nodule Biopsy

    DTIC Science & Technology

    2016-04-01

    6 1. INTRODUCTION Lung cancer is the leading cause of cancer related death accounting for more deaths than breast , prostate and colon...the cancer has spread, at which time patients have little chance of cure. Macroscopic imaging modalities including CT and bronchoscopy have made...Electromagnetic Navigation , Biopsy Guidance, Optical Microscopy, Optical Coherence Tomography, Lung Cancer , Optical needle. 3. OVERALL PROJECT SUMMARY

  17. Reliability history of the Apollo guidance computer

    NASA Technical Reports Server (NTRS)

    Hall, E. C.

    1972-01-01

    The Apollo guidance computer was designed to provide the computation necessary for guidance, navigation and control of the command module and the lunar landing module of the Apollo spacecraft. The computer was designed using the technology of the early 1960's and the production was completed by 1969. During the development, production, and operational phase of the program, the computer has accumulated a very interesting history which is valuable for evaluating the technology, production methods, system integration, and the reliability of the hardware. The operational experience in the Apollo guidance systems includes 17 computers which flew missions and another 26 flight type computers which are still in various phases of prelaunch activity including storage, system checkout, prelaunch spacecraft checkout, etc. These computers were manufactured and maintained under very strict quality control procedures with requirements for reporting and analyzing all indications of failure. Probably no other computer or electronic equipment with equivalent complexity has been as well documented and monitored. Since it has demonstrated a unique reliability history, it is important to evaluate the techniques and methods which have contributed to the high reliability of this computer.

  18. Roadrunner: a novel radar guidance concept

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kelsey, J.R.

    1979-01-01

    Soviet breakthrough tactics require the movement of a large number of vehicles from assembly areas to the forward edge of the battle area. The time requirements of this tactic indicate that the road network must be used extensively, if not exclusively. This paper describes an exploratory development (technology demonstration) program aimed at demonstrating a novel radar navigation/guidance scheme which enables a small unmanned aircraft (drone) to follow roads. Since vehicles on the road can be easily detected, this aircraft could be used as either a strike vehicle itself or as a reconnaissance adjunct to another strike system. The guidance schememore » involves on-board radar measurements of the backscatter response of the terrain beneath the aircraft. The differences in reflectivity between road and roadside surfaces are processed by a small on-board computer to generate guidance commands to keep the vehicle over the road. Preliminary system definition includes a 17-GHz radar aboard a subsonic, propeller-driven unmanned aircraft. Estimated operational altitude and speed are 30 m and 100 km/h, respectively. The drone could be either ground or air launched, and would be expendable. Payload capabilities of 50 to 100 kg are envisioned, with an operational range of 50 to 100 km. 5 figures, 1 table.« less

  19. Optimizing MR imaging-guided navigation for focused ultrasound interventions in the brain

    NASA Astrophysics Data System (ADS)

    Werner, B.; Martin, E.; Bauer, R.; O'Gorman, R.

    2017-03-01

    MR imaging during transcranial MR imaging-guided Focused Ultrasound surgery (tcMRIgFUS) is challenging due to the complex ultrasound transducer setup and the water bolus used for acoustic coupling. Achievable image quality in the tcMRIgFUS setup using the standard body coil is significantly inferior to current neuroradiologic standards. As a consequence, MR image guidance for precise navigation in functional neurosurgical interventions using tcMRIgFUS is basically limited to the acquisition of MR coordinates of salient landmarks such as the anterior and posterior commissure for aligning a stereotactic atlas. Here, we show how improved MR image quality provided by a custom built MR coil and optimized MR imaging sequences can support imaging-guided navigation for functional tcMRIgFUS neurosurgery by visualizing anatomical landmarks that can be integrated into the navigation process to accommodate for patient specific anatomy.

  20. Instrument-mounted displays for reducing cognitive load during surgical navigation.

    PubMed

    Herrlich, Marc; Tavakol, Parnian; Black, David; Wenig, Dirk; Rieder, Christian; Malaka, Rainer; Kikinis, Ron

    2017-09-01

    Surgical navigation systems rely on a monitor placed in the operating room to relay information. Optimal monitor placement can be challenging in crowded rooms, and it is often not possible to place the monitor directly beside the situs. The operator must split attention between the navigation system and the situs. We present an approach for needle-based interventions to provide navigational feedback directly on the instrument and close to the situs by mounting a small display onto the needle. By mounting a small and lightweight smartwatch display directly onto the instrument, we are able to provide navigational guidance close to the situs and directly in the operator's field of view, thereby reducing the need to switch the focus of view between the situs and the navigation system. We devise a specific variant of the established crosshair metaphor suitable for the very limited screen space. We conduct an empirical user study comparing our approach to using a monitor and a combination of both. Results from the empirical user study show significant benefits for cognitive load, user preference, and general usability for the instrument-mounted display, while achieving the same level of performance in terms of time and accuracy compared to using a monitor. We successfully demonstrate the feasibility of our approach and potential benefits. With ongoing technological advancements, instrument-mounted displays might complement standard monitor setups for surgical navigation in order to lower cognitive demands and for improved usability of such systems.

  1. 76 FR 77939 - Proposed Provision of Navigation Services for the Next Generation Air Transportation System...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-15

    ... navigation for en route through non-precision instrument approaches. GPS is an internationally accepted... Localizer Performance with Vertical guidance (LPV). These approaches are equivalent to Category I ILS, but... approach procedures with LPV or localizer performance (LP) non-precision lines of minima to all qualified...

  2. Comparison of free-hand fluoroscopic guidance and electromagnetic navigation in distal locking of femoral intramedullary nails

    PubMed Central

    Han, Bing; Shi, Zhigang; Fu, Yu; Ye, Yong; Jing, Juehua; Li, Jun

    2017-01-01

    Abstract Background: Although the method has been used widely, one of the greatest challenges for intramedullary nailing is to position the distal locking screw. A new technology, the electromagnetic navigation system, is a radiation-free way to locate the position of the drill bit and provide 3-dimensional real-time feedback of location and orientation of the drill bit relative to the locking holes. The purpose of our study was to evaluate the reliability and efficiency of the free-hand technique compared to the new electromagnetic navigation system. Methods: Fifty-four patients with femoral fracture who needed treatment with intramedullary nails were divided into 2 groups. One group including 26 patients underwent distal locking using the standard free-hand method, whereas the electromagnetic navigation system was used with the other 29 patients. Intraoperative fluoroscopy exposure times, screw insertion times, and healing times were recorded; these parameters were used for comparison between the 2 groups. Results: There were 17 males and 9 females who had femoral intramedullary nails using the free-hand technique, whereas 21 males and 8 females received intramedullary nails using the electromagnetic navigation system. The mean time of distal locking was 19.5 ± 6.0 minutes in the free-hand (FH) group, whereas the time was 6.1 ± 1.4 minutes in the electromagnetic (ET) group. The exposure time for the FH group was 26.8 ± 13.3 seconds and 2.2 ± 1.1 seconds for the ET group. Healing time proved to be comparable in the FH and ET groups (16.4 ± 3.7 weeks vs 15.1 ± 2.8 weeks). Conclusion: Under the premise of achieving the same effect, the electromagnetic navigation system has the advantage of less distal locking time and less radiation dose. PMID:28723755

  3. Electromagnetic-Optical Coherence Tomography Guidance of Transbronchial Solitary Pulmonary Nodule Biopsy

    DTIC Science & Technology

    2017-12-01

    AD_________________ (Leave blank) Award Number: W81XWH-13-1-0155 TITLE: Electromagnetic -Optical Coherence Tomography Guidance of Transbronchial...2. REPORT TYPE Final 3. DATES COVERED (From - To) 1 July 2013 - 30 Sep 2016 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER Electromagnetic -Optical...SUPPLEMENTARY NOTES 14. ABSTRACT We present a novel high-resolution multimodality imaging platform utilizing CT and electromagnetic (EM) navigation for spatial

  4. Electromagnetic-Optical Coherence Tomography Guidance of Transbronchial Solitary Pulmonary Nodule Biopsy

    DTIC Science & Technology

    2015-07-01

    death accounting for more deaths than breast , prostate and colon combined. Early diagnosis is critical to patient survival, however the vast majority...of lung malignancies are detected only once symptoms arise and the cancer has spread, at which time patients have little chance of cure...and electromagnetic (EM) navigation for spatial guidance to targeted lung nodules, and OCT for microscopic volumetric imaging. The OCT optic fiber

  5. Honeybees as a model for the study of visually guided flight, navigation, and biologically inspired robotics.

    PubMed

    Srinivasan, Mandyam V

    2011-04-01

    Research over the past century has revealed the impressive capacities of the honeybee, Apis mellifera, in relation to visual perception, flight guidance, navigation, and learning and memory. These observations, coupled with the relative ease with which these creatures can be trained, and the relative simplicity of their nervous systems, have made honeybees an attractive model in which to pursue general principles of sensorimotor function in a variety of contexts, many of which pertain not just to honeybees, but several other animal species, including humans. This review begins by describing the principles of visual guidance that underlie perception of the world in three dimensions, obstacle avoidance, control of flight speed, and orchestrating smooth landings. We then consider how navigation over long distances is accomplished, with particular reference to how bees use information from the celestial compass to determine their flight bearing, and information from the movement of the environment in their eyes to gauge how far they have flown. Finally, we illustrate how some of the principles gleaned from these studies are now being used to design novel, biologically inspired algorithms for the guidance of unmanned aerial vehicles.

  6. TIPsy tour guides: how microtubule plus-end tracking proteins (+TIPs) facilitate axon guidance

    PubMed Central

    Bearce, Elizabeth A.; Erdogan, Burcu; Lowery, Laura Anne

    2015-01-01

    The growth cone is a dynamic cytoskeletal vehicle, which drives the end of a developing axon. It serves to interpret and navigate through the complex landscape and guidance cues of the early nervous system. The growth cone’s distinctive cytoskeletal organization offers a fascinating platform to study how extracellular cues can be translated into mechanical outgrowth and turning behaviors. While many studies of cell motility highlight the importance of actin networks in signaling, adhesion, and propulsion, both seminal and emerging works in the field have highlighted a unique and necessary role for microtubules (MTs) in growth cone navigation. Here, we focus on the role of singular pioneer MTs, which extend into the growth cone periphery and are regulated by a diverse family of microtubule plus-end tracking proteins (+TIPs). These +TIPs accumulate at the dynamic ends of MTs, where they are well-positioned to encounter and respond to key signaling events downstream of guidance receptors, catalyzing immediate changes in microtubule stability and actin cross-talk, that facilitate both axonal outgrowth and turning events. PMID:26175669

  7. Apollo experience report: Guidance and control systems. Engineering simulation program

    NASA Technical Reports Server (NTRS)

    Gilbert, D. W.

    1973-01-01

    The Apollo Program experience from early 1962 to July 1969 with respect to the engineering-simulation support and the problems encountered is summarized in this report. Engineering simulation in support of the Apollo guidance and control system is discussed in terms of design analysis and verification, certification of hardware in closed-loop operation, verification of hardware/software compatibility, and verification of both software and procedures for each mission. The magnitude, time, and cost of the engineering simulations are described with respect to hardware availability, NASA and contractor facilities (for verification of the command module, the lunar module, and the primary guidance, navigation, and control system), and scheduling and planning considerations. Recommendations are made regarding implementation of similar, large-scale simulations for future programs.

  8. Robust Planning for Autonomous Navigation of Mobile Robots in Unstructured, Dynamic Environments: An LDRD Final Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    EISLER, G. RICHARD

    This report summarizes the analytical and experimental efforts for the Laboratory Directed Research and Development (LDRD) project entitled ''Robust Planning for Autonomous Navigation of Mobile Robots In Unstructured, Dynamic Environments (AutoNav)''. The project goal was to develop an algorithmic-driven, multi-spectral approach to point-to-point navigation characterized by: segmented on-board trajectory planning, self-contained operation without human support for mission duration, and the development of appropriate sensors and algorithms to navigate unattended. The project was partially successful in achieving gains in sensing, path planning, navigation, and guidance. One of three experimental platforms, the Minimalist Autonomous Testbed, used a repetitive sense-and-re-plan combination to demonstratemore » the majority of elements necessary for autonomous navigation. However, a critical goal for overall success in arbitrary terrain, that of developing a sensor that is able to distinguish true obstacles that need to be avoided as a function of vehicle scale, still needs substantial research to bring to fruition.« less

  9. 1.5 T augmented reality navigated interventional MRI: paravertebral sympathetic plexus injections

    PubMed Central

    Marker, David R.; U-Thainual, Paweena; Ungi, Tamas; Flammang, Aaron J.; Fichtinger, Gabor; Iordachita, Iulian I.; Carrino, John A.; Fritz, Jan

    2017-01-01

    PURPOSE The high contrast resolution and absent ionizing radiation of interventional magnetic resonance imaging (MRI) can be advantageous for paravertebral sympathetic nerve plexus injections. We assessed the feasibility and technical performance of MRI-guided paravertebral sympathetic injections utilizing augmented reality navigation and 1.5 T MRI scanner. METHODS A total of 23 bilateral injections of the thoracic (8/23, 35%), lumbar (8/23, 35%), and hypogastric (7/23, 30%) paravertebral sympathetic plexus were prospectively planned in twelve human cadavers using a 1.5 Tesla (T) MRI scanner and augmented reality navigation system. MRI-conditional needles were used. Gadolinium-DTPA-enhanced saline was injected. Outcome variables included the number of control magnetic resonance images, target error of the needle tip, punctures of critical nontarget structures, distribution of the injected fluid, and procedure length. RESULTS Augmented-reality navigated MRI guidance at 1.5 T provided detailed anatomical visualization for successful targeting of the paravertebral space, needle placement, and perineural paravertebral injections in 46 of 46 targets (100%). A mean of 2 images (range, 1–5 images) were required to control needle placement. Changes of the needle trajectory occurred in 9 of 46 targets (20%) and changes of needle advancement occurred in 6 of 46 targets (13%), which were statistically not related to spinal regions (P = 0.728 and P = 0.86, respectively) and cadaver sizes (P = 0.893 and P = 0.859, respectively). The mean error of the needle tip was 3.9±1.7 mm. There were no punctures of critical nontarget structures. The mean procedure length was 33±12 min. CONCLUSION 1.5 T augmented reality-navigated interventional MRI can provide accurate imaging guidance for perineural injections of the thoracic, lumbar, and hypogastric sympathetic plexus. PMID:28420598

  10. 1.5 T augmented reality navigated interventional MRI: paravertebral sympathetic plexus injections.

    PubMed

    Marker, David R; U Thainual, Paweena; Ungi, Tamas; Flammang, Aaron J; Fichtinger, Gabor; Iordachita, Iulian I; Carrino, John A; Fritz, Jan

    2017-01-01

    The high contrast resolution and absent ionizing radiation of interventional magnetic resonance imaging (MRI) can be advantageous for paravertebral sympathetic nerve plexus injections. We assessed the feasibility and technical performance of MRI-guided paravertebral sympathetic injections utilizing augmented reality navigation and 1.5 T MRI scanner. A total of 23 bilateral injections of the thoracic (8/23, 35%), lumbar (8/23, 35%), and hypogastric (7/23, 30%) paravertebral sympathetic plexus were prospectively planned in twelve human cadavers using a 1.5 Tesla (T) MRI scanner and augmented reality navigation system. MRI-conditional needles were used. Gadolinium-DTPA-enhanced saline was injected. Outcome variables included the number of control magnetic resonance images, target error of the needle tip, punctures of critical nontarget structures, distribution of the injected fluid, and procedure length. Augmented-reality navigated MRI guidance at 1.5 T provided detailed anatomical visualization for successful targeting of the paravertebral space, needle placement, and perineural paravertebral injections in 46 of 46 targets (100%). A mean of 2 images (range, 1-5 images) were required to control needle placement. Changes of the needle trajectory occurred in 9 of 46 targets (20%) and changes of needle advancement occurred in 6 of 46 targets (13%), which were statistically not related to spinal regions (P = 0.728 and P = 0.86, respectively) and cadaver sizes (P = 0.893 and P = 0.859, respectively). The mean error of the needle tip was 3.9±1.7 mm. There were no punctures of critical nontarget structures. The mean procedure length was 33±12 min. 1.5 T augmented reality-navigated interventional MRI can provide accurate imaging guidance for perineural injections of the thoracic, lumbar, and hypogastric sympathetic plexus.

  11. Optimal Geometric Deployment of a Ground Based Pseudolite Navigation System to Track a Landing Aircraft

    DTIC Science & Technology

    2006-06-01

    Machine Guidance Using LocataNet In this pilot study [3], conducted at the BlueScope Steel warehouse in Port Kembla, Australia, the LocataNet system...Study at BlueScope Steel”. Proceedings of the 2004 Annual Meeting of the Institute of Navigation. Dayton, OH, June 2004. 4. Barnes, Joel, Chris

  12. Space micro-guidance and control - Applications and architectures

    NASA Technical Reports Server (NTRS)

    Mettler, Edward; Hadaegh, Fred Y.

    1992-01-01

    The features and the components of a new microscale guidance, navigation, and control (GN&C) system for future space systems are discussed. An approach is described for the utilization of new microengineering technologies for achieving major reductions in the GN&C system's mass, size, power, and costs. The micro-GN&C system and the component concepts include microactuated adaptive optics, micromachined inertial sensors, fiberoptic data nets with light-power transmission, and VLSI microcomputers. The GN&C system will be applied in microspacecraft, microlanders, microrovers, remote sensing platforms, interferometers, and deployable reflectors.

  13. Space micro-guidance and control - Applications and architectures

    NASA Astrophysics Data System (ADS)

    Mettler, Edward; Hadaegh, Fred Y.

    1992-07-01

    The features and the components of a new microscale guidance, navigation, and control (GN&C) system for future space systems are discussed. An approach is described for the utilization of new microengineering technologies for achieving major reductions in the GN&C system's mass, size, power, and costs. The micro-GN&C system and the component concepts include microactuated adaptive optics, micromachined inertial sensors, fiberoptic data nets with light-power transmission, and VLSI microcomputers. The GN&C system will be applied in microspacecraft, microlanders, microrovers, remote sensing platforms, interferometers, and deployable reflectors.

  14. Comparative Prospective Study Reporting Intraoperative Parameters, Pedicle Screw Perforation, and Radiation Exposure in Navigation-Guided versus Non-navigated Fluoroscopy-Assisted Minimal Invasive Transforaminal Lumbar Interbody Fusion

    PubMed Central

    Kundnani, Vishal; Dutta, Shumayou; Patel, Ankit; Mehta, Gaurav; Singh, Mahendra

    2018-01-01

    guidance in MIS TLIF reduced radiation exposure, but the perforation status was not statistically different than that for the fluoroscopy-based technique. Thus, navigation in nondeformity cases is useful for significantly reducing the radiation exposure, but its ability to reduce pedicle screw perforation in nondeformity cases remains to be proven. PMID:29713413

  15. Bioinspired polarization navigation sensor for autonomous munitions systems

    NASA Astrophysics Data System (ADS)

    Giakos, G. C.; Quang, T.; Farrahi, T.; Deshpande, A.; Narayan, C.; Shrestha, S.; Li, Y.; Agarwal, M.

    2013-05-01

    Small unmanned aerial vehicles UAVs (SUAVs), micro air vehicles (MAVs), Automated Target Recognition (ATR), and munitions guidance, require extreme operational agility and robustness which can be partially offset by efficient bioinspired imaging sensor designs capable to provide enhanced guidance, navigation and control capabilities (GNC). Bioinspired-based imaging technology can be proved useful either for long-distance surveillance of targets in a cluttered environment, or at close distances limited by space surroundings and obstructions. The purpose of this study is to explore the phenomenology of image formation by different insect eye architectures, which would directly benefit the areas of defense and security, on the following four distinct areas: a) fabrication of the bioinspired sensor b) optical architecture, c) topology, and d) artificial intelligence. The outcome of this study indicates that bioinspired imaging can impact the areas of defense and security significantly by dedicated designs fitting into different combat scenarios and applications.

  16. Wind-US Code Contributions to the First AIAA Shock Boundary Layer Interaction Prediction Workshop

    NASA Technical Reports Server (NTRS)

    Georgiadis, Nicholas J.; Vyas, Manan A.; Yoder, Dennis A.

    2013-01-01

    This report discusses the computations of a set of shock wave/turbulent boundary layer interaction (SWTBLI) test cases using the Wind-US code, as part of the 2010 American Institute of Aeronautics and Astronautics (AIAA) shock/boundary layer interaction workshop. The experiments involve supersonic flows in wind tunnels with a shock generator that directs an oblique shock wave toward the boundary layer along one of the walls of the wind tunnel. The Wind-US calculations utilized structured grid computations performed in Reynolds-averaged Navier-Stokes mode. Four turbulence models were investigated: the Spalart-Allmaras one-equation model, the Menter Baseline and Shear Stress Transport k-omega two-equation models, and an explicit algebraic stress k-omega formulation. Effects of grid resolution and upwinding scheme were also considered. The results from the CFD calculations are compared to particle image velocimetry (PIV) data from the experiments. As expected, turbulence model effects dominated the accuracy of the solutions with upwinding scheme selection indicating minimal effects.

  17. An investigation of automatic guidance concepts to steer a VTOL aircraft to a small aviation facility ship

    NASA Technical Reports Server (NTRS)

    Sorensen, J. A.; Goka, T.; Phatak, A. V.; Schmidt, S. F.

    1980-01-01

    A detailed system model of a VTOL aircraft approaching a small aviation facility ship was developed and used to investigate several approach guidance concepts. A preliminary anaysis of the aircraft-vessel landing guidance requirements was conducted. The various subelements and constraints of the flight system are described including the landing scenario, lift fan aircraft, state rate feedback flight control, MLS-based navigation, sea state induced ship motion, and wake turbulence due to wind-over-deck effects. These elements are integrated into a systems model with various guidance concepts. Guidance is described in terms of lateral, vertical, and longitudinal axes steering modes and approach and landing phases divided by a nominal hover (or stationkeeping) point defined with respect to the landing pad. The approach guidance methods are evaluated, and the two better steering concepts are studied by both single pass and Monte Carlo statistical simulation runs. Four different guidance concepts are defined for further analysis for the landing phase of flight.

  18. Electromagnetic navigation diagnostic bronchoscopy for small peripheral lung lesions.

    PubMed

    Makris, D; Scherpereel, A; Leroy, S; Bouchindhomme, B; Faivre, J-B; Remy, J; Ramon, P; Marquette, C-H

    2007-06-01

    The present study prospectively evaluated the diagnostic yield and safety of electromagnetic navigation-guided bronchoscopy biopsy, for small peripheral lung lesions in patients where standard techniques were nondiagnostic. The study was conducted in a tertiary medical centre on 40 consecutive patients considered unsuitable for straightforward surgery or computed tomography (CT)-guided transthoracic needle aspiration biopsy, due to comorbidities. The lung lesion diameter was mean+/-sem 23.5+/-1.5 mm and the depth from the visceral-costal pleura was 14.9+/-2 mm. Navigation was facilitated by an electromagnetic tracking system which could detect a position sensor incorporated into a flexible catheter advanced through a bronchoscope. Information obtained during bronchoscopy was superimposed on previously acquired CT data. Divergence between CT data and data obtained during bronchoscopy was calculated by the system's software as a measure of navigational accuracy. All but one of the target lesions was reached and the overall diagnostic yield was 62.5% (25-40). Diagnostic yield was significantly affected by CT-to-body divergence; yield was 77.2% when estimated divergence was navigation-guided bronchoscopy has the potential to improve the diagnostic yield of transbronchial biopsies without additional fluoroscopic guidance, and may be useful in the early diagnosis of lung cancer, particularly in nonoperable patients.

  19. ATON (Autonomous Terrain-based Optical Navigation) for exploration missions: recent flight test results

    NASA Astrophysics Data System (ADS)

    Theil, S.; Ammann, N.; Andert, F.; Franz, T.; Krüger, H.; Lehner, H.; Lingenauber, M.; Lüdtke, D.; Maass, B.; Paproth, C.; Wohlfeil, J.

    2018-03-01

    Since 2010 the German Aerospace Center is working on the project Autonomous Terrain-based Optical Navigation (ATON). Its objective is the development of technologies which allow autonomous navigation of spacecraft in orbit around and during landing on celestial bodies like the Moon, planets, asteroids and comets. The project developed different image processing techniques and optical navigation methods as well as sensor data fusion. The setup—which is applicable to many exploration missions—consists of an inertial measurement unit, a laser altimeter, a star tracker and one or multiple navigation cameras. In the past years, several milestones have been achieved. It started with the setup of a simulation environment including the detailed simulation of camera images. This was continued by hardware-in-the-loop tests in the Testbed for Robotic Optical Navigation (TRON) where images were generated by real cameras in a simulated downscaled lunar landing scene. Data were recorded in helicopter flight tests and post-processed in real-time to increase maturity of the algorithms and to optimize the software. Recently, two more milestones have been achieved. In late 2016, the whole navigation system setup was flying on an unmanned helicopter while processing all sensor information onboard in real time. For the latest milestone the navigation system was tested in closed-loop on the unmanned helicopter. For that purpose the ATON navigation system provided the navigation state for the guidance and control of the unmanned helicopter replacing the GPS-based standard navigation system. The paper will give an introduction to the ATON project and its concept. The methods and algorithms of ATON are briefly described. The flight test results of the latest two milestones are presented and discussed.

  20. Radiation- and reference base-free navigation procedure for placement of instruments and implants: application to retrograde drilling of osteochondral lesions of the knee joint.

    PubMed

    Müller, Matthias; Gras, Florian; Marintschev, Ivan; Mückley, Thomas; Hofmann, Gunter O

    2009-01-01

    A novel, radiation- and reference base-free procedure for placement of navigated instruments and implants was developed and its practicability and precision in retrograde drillings evaluated in an experimental setting. Two different guidance techniques were used: One experimental group was operated on using the radiation- and reference base-free navigation technique (Fluoro Free), and the control group was operated on using standard fluoroscopy for guidance. For each group, 12 core decompressions were simulated by retrograde drillings in different artificial femurs following arthroscopic determination of the osteochondral lesions. The final guide-wire position was evaluated by postoperative CT analysis using vector calculation. High precision was achieved in both groups, but operating time was significantly reduced in the navigated group as compared to the control group. This was due to a 100% first-pass accuracy of drilling in the navigated group; in the control group a mean of 2.5 correction maneuvers per drilling were necessary. Additionally, the procedure was free of radiation in the navigated group, whereas 17.2 seconds of radiation exposure time were measured in the fluoroscopy-guided group. The developed Fluoro Free procedure is a promising and simplified approach to navigating different instruments as well as implants in relation to visually or tactilely placed pointers or objects without the need for radiation exposure or invasive fixation of a dynamic reference base in the bone.

  1. Cart3D Simulations for the Second AIAA Sonic Boom Prediction Workshop

    NASA Technical Reports Server (NTRS)

    Anderson, George R.; Aftosmis, Michael J.; Nemec, Marian

    2017-01-01

    Simulation results are presented for all test cases prescribed in the Second AIAA Sonic Boom Prediction Workshop. For each of the four nearfield test cases, we compute pressure signatures at specified distances and off-track angles, using an inviscid, embedded-boundary Cartesian-mesh flow solver with output-based mesh adaptation. The cases range in complexity from an axisymmetric body to a full low-boom aircraft configuration with a powered nacelle. For efficiency, boom carpets are decomposed into sets of independent meshes and computed in parallel. This also facilitates the use of more effective meshing strategies - each off-track angle is computed on a mesh with good azimuthal alignment, higher aspect ratio cells, and more tailored adaptation. The nearfield signatures generally exhibit good convergence with mesh refinement. We introduce a local error estimation procedure to highlight regions of the signatures most sensitive to mesh refinement. Results are also presented for the two propagation test cases, which investigate the effects of atmospheric profiles on ground noise. Propagation is handled with an augmented Burgers' equation method (NASA's sBOOM), and ground noise metrics are computed with LCASB.

  2. Glia initiate brain assembly through non-canonical Chimaerin/Furin axon guidance in C. elegans

    PubMed Central

    Rapti, Georgia; Li, Chang; Shan, Alan; Lu, Yun; Shaham, Shai

    2017-01-01

    Brain assembly is hypothesized to begin when pioneer axons extend over non-neuronal cells, forming tracts guiding follower axons. Yet pioneer-neuron identities, their guidance substrates, and their interactions, are not well understood. Here, using time-lapse embryonic imaging, genetics, protein-interaction, and functional studies, we uncover the early events of C. elegans brain assembly. We demonstrate that C. elegans glia are key for assembly initiation, guiding pioneer and follower axons using distinct signals. Pioneer sublateral neurons, with unique growth properties, anatomy, and innervation, cooperate with glia to mediate follower-axon guidance. We further identify a CHIN-1/Chimaerin-KPC-1/Furin double mutant that severely disrupts assembly. CHIN-1/Chimaerin and KPC-1/Furin function non-canonically in glia and pioneer neurons for guidance-cue trafficking. We exploit this bottleneck to define roles for glial Netrin and Semaphorin in pioneer- and follower-axon guidance, respectively, and for glial and pioneer-neuron Flamingo/CELSR in follower-axon navigation. Altogether, our studies reveal previously-unknown glial roles in pioneer-axon guidance, suggesting conserved brain-assembly principles. PMID:28846083

  3. 78 FR 9709 - Draft Guidance Regarding Voluntary Inspection of Vessels for Compliance With the Maritime Labour...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-11

    ... availability of a draft Navigation and Vessel Inspection Circular (NVIC) that sets forth the Coast Guard's... guidance to the maritime industry, Coast Guard marine inspectors, and other affected parties on how the... and Coast Guard marine inspectors on how the Coast Guard intends to implement this new voluntary...

  4. Narrowing the College Opportunity Gap: Helping Students and Families Navigate the Financial Aid Process

    ERIC Educational Resources Information Center

    Owen, Laura

    2012-01-01

    The number of students enrolling in post-secondary institutions in the U.S. has slowly been rising over the last 10 years, yet gaps continue to exist in terms of who attends college and persists through graduation. Minority and low income students often lack the guidance needed to navigate the college enrollment process and as a result, remain…

  5. Mars Science Laboratory Navigation Results

    NASA Technical Reports Server (NTRS)

    Martin-Mur, Tomas J.; Kruizingas, Gerhard L.; Burkhart, P. Daniel; Wong, Mau C.; Abilleira, Fernando

    2012-01-01

    The Mars Science Laboratory (MSL), carrying the Curiosity rover to Mars, was launched on November 26, 2011, from Cape Canaveral, Florida. The target for MSL was selected to be Gale Crater, near the equator of Mars, with an arrival date in early August 2012. The two main interplanetary navigation tasks for the mission were to deliver the spacecraft to an entry interface point that would allow the rover to safely reach the landing area, and to tell the spacecraft where it entered the atmosphere of Mars, so it could guide itself accurately to close proximity of the landing target. MSL used entry guidance as it slowed down from the entry speed to a speed low enough to allow for a successful parachute deployment, and this guidance allowed shrinking the landing ellipse to a 99% conservative estimate of 7 by 20 kilometers. Since there is no global positioning system in Mars, achieving this accuracy was predicated on flying a trajectory that closely matched the reference trajectory used to design the guidance algorithm, and on initializing the guidance system with an accurate Mars-relative entry state that could be used as the starting point to integrate the inertial measurement unit data during entry and descent. The pre-launch entry flight path angle (EFPA) delivery requirement was +/- 0.20 deg, but after launch a smaller threshold of +/- 0.05 deg was used as the criteria for late trajectory correction maneuver (TCM) decisions. The pre-launch requirement for entry state knowledge was 2.8 kilometers in position error and 2 meters per second in velocity error, but also smaller thresholds were defined after launch to evaluate entry state update opportunities. The biggest challenge for the navigation team was to accurately predict the trajectory of the spacecraft, so the estimates of the entry conditions could be stable, and late trajectory correction maneuvers or entry parameter updates could be waved off. As a matter of fact, the prediction accuracy was such that the last

  6. Magnetic resonance imaging compatible remote catheter navigation system with 3 degrees of freedom.

    PubMed

    Tavallaei, M A; Lavdas, M K; Gelman, D; Drangova, M

    2016-08-01

    To facilitate MRI-guided catheterization procedures, we present an MRI-compatible remote catheter navigation system that allows remote navigation of steerable catheters with 3 degrees of freedom. The system consists of a user interface (master), a robot (slave), and an ultrasonic motor control servomechanism. The interventionalist applies conventional motions (axial, radial and plunger manipulations) on an input catheter in the master unit; this user input is measured and used by the servomechanism to control a compact catheter manipulating robot, such that it replicates the interventionalist's input motion on the patient catheter. The performance of the system was evaluated in terms of MRI compatibility (SNR and artifact), feasibility of remote navigation under real-time MRI guidance, and motion replication accuracy. Real-time MRI experiments demonstrated that catheter was successfully navigated remotely to desired target references in all 3 degrees of freedom. The system had an absolute value error of [Formula: see text]1 mm in axial catheter motion replication over 30 mm of travel and [Formula: see text] for radial catheter motion replication over [Formula: see text]. The worst case SNR drop was observed to be [Formula: see text]3 %; the robot did not introduce any artifacts in the MR images. An MRI-compatible compact remote catheter navigation system has been developed that allows remote navigation of steerable catheters with 3 degrees of freedom. The proposed system allows for safe and accurate remote catheter navigation, within conventional closed-bore scanners, without degrading MR image quality.

  7. Exoatmospheric intercepts using zero effort miss steering for midcourse guidance

    NASA Astrophysics Data System (ADS)

    Newman, Brett

    The suitability of proportional navigation, or an equivalent zero effort miss formulation, for exatmospheric intercepts during midcourse guidance, followed by a ballistic coast to the endgame, is addressed. The problem is formulated in terms of relative motion in a general, three dimensional framework. The proposed guidance law for the commanded thrust vector orientation consists of the sum of two terms: (1) along the line of sight unit direction and (2) along the zero effort miss component perpendicular to the line of sight and proportional to the miss itself and a guidance gain. If the guidance law is to be suitable for longer range targeting applications with significant ballistic coasting after burnout, determination of the zero effort miss must account for the different gravitational accelerations experienced by each vehicle. The proposed miss determination techniques employ approximations for the true differential gravity effect and thus, are less accurate than a direct numerical propagation of the governing equations, but more accurate than a baseline determination, which assumes equal accelerations for both vehicles. Approximations considered are constant, linear, quadratic, and linearized inverse square models. Theoretical results are applied to a numerical engagement scenario and the resulting performance is evaluated in terms of the miss distances determined from nonlinear simulation.

  8. Navigation and Robotics in Spinal Surgery: Where Are We Now?

    PubMed

    Overley, Samuel C; Cho, Samuel K; Mehta, Ankit I; Arnold, Paul M

    2017-03-01

    Spine surgery has experienced much technological innovation over the past several decades. The field has seen advancements in operative techniques, implants and biologics, and equipment such as computer-assisted navigation and surgical robotics. With the arrival of real-time image guidance and navigation capabilities along with the computing ability to process and reconstruct these data into an interactive three-dimensional spinal "map", so too have the applications of surgical robotic technology. While spinal robotics and navigation represent promising potential for improving modern spinal surgery, it remains paramount to demonstrate its superiority as compared to traditional techniques prior to assimilation of its use amongst surgeons.The applications for intraoperative navigation and image-guided robotics have expanded to surgical resection of spinal column and intradural tumors, revision procedures on arthrodesed spines, and deformity cases with distorted anatomy. Additionally, these platforms may mitigate much of the harmful radiation exposure in minimally invasive surgery to which the patient, surgeon, and ancillary operating room staff are subjected.Spine surgery relies upon meticulous fine motor skills to manipulate neural elements and a steady hand while doing so, often exploiting small working corridors utilizing exposures that minimize collateral damage. Additionally, the procedures may be long and arduous, predisposing the surgeon to both mental and physical fatigue. In light of these characteristics, spine surgery may actually be an ideal candidate for the integration of navigation and robotic-assisted procedures.With this paper, we aim to critically evaluate the current literature and explore the options available for intraoperative navigation and robotic-assisted spine surgery. Copyright © 2016 by the Congress of Neurological Surgeons.

  9. The Rockefeller University Navigation Program: A Structured Multidisciplinary Protocol Development and Educational Program to Advance Translational Research

    PubMed Central

    Kost, Rhonda G.; Dowd, Kathleen A.; Hurley, Arlene M.; Rainer, Tyler‐Lauren; Coller, Barry S.

    2014-01-01

    Abstract The development of translational clinical research protocols is complex. To assist investigators, we developed a structured supportive guidance process (Navigation) to expedite protocol development to the standards of good clinical practice (GCP), focusing on research ethics and integrity. Navigation consists of experienced research coordinators leading investigators through a concerted multistep protocol development process from concept initiation to submission of the final protocol. To assess the effectiveness of Navigation, we collect data on the experience of investigators, the intensity of support required for protocol development, IRB review outcomes, and protocol start and completion dates. One hundred forty‐four protocols underwent Navigation and achieved IRB approval since the program began in 2007, including 37 led by trainee investigators, 26 led by MDs, 9 by MD/PhDs, 57 by PhDs, and 12 by investigators with other credentials (e.g., RN, MPH). In every year, more than 50% of Navigated protocols were approved by the IRB within 30 days. For trainees who had more than one protocol navigated, the intensity of Navigation support required decreased over time. Navigation can increase access to translational studies for basic scientists, facilitate GCP training for investigators, and accelerate development and approval of protocols of high ethical and scientific quality. PMID:24405608

  10. Sperm as microswimmers - navigation and sensing at the physical limit

    NASA Astrophysics Data System (ADS)

    Kaupp, Ulrich B.; Alvarez, Luis

    2016-11-01

    Many cells and microorganisms have evolved a motility apparatus to explore their surroundings. For guidance, these biological microswimmers rely on physical and chemical cues that are transduced by cellular pathways into directed movement - a process called taxis. Only few biological microswimmers have been studied as detailed as sperm from sea urchins. Sperm and eggs are released into the seawater. To enhance the chances of fertilization, eggs release chemical factors - called chemoattractants - that establish a chemical gradient and, thereby, guide sperm to the egg. Sea urchin sperm constitute a unique model system for understanding cell navigation at every level: from molecules to cell behaviours. We will outline the chemotactic signalling pathway of sperm from the sea urchin Arbacia punctulata and discuss how signalling controls navigation in a chemical gradient. Finally, we discuss recent insights into sperm chemotaxis in three dimensions (3D).

  11. A BLE-Based Pedestrian Navigation System for Car Searching in Indoor Parking Garages

    PubMed Central

    Wang, Sheng-Shih

    2018-01-01

    The continuous global increase in the number of cars has led to an increase in parking issues, particularly with respect to the search for available parking spaces and finding cars. In this paper, we propose a navigation system for car owners to find their cars in indoor parking garages. The proposed system comprises a car-searching mobile app and a positioning-assisting subsystem. The app guides car owners to their cars based on a “turn-by-turn” navigation strategy, and has the ability to correct the user’s heading orientation. The subsystem uses beacon technology for indoor positioning, supporting self-guidance of the car-searching mobile app. This study also designed a local coordinate system to support the identification of the locations of parking spaces and beacon devices. We used Android as the platform to implement the proposed car-searching mobile app, and used Bytereal HiBeacon devices to implement the proposed positioning-assisting subsystem. We also deployed the system in a parking lot in our campus for testing. The experimental results verified that the proposed system not only works well, but also provides the car owner with the correct route guidance information. PMID:29734753

  12. Robust approximate optimal guidance strategies for aeroassisted orbital transfer missions

    NASA Astrophysics Data System (ADS)

    Ilgen, Marc R.

    This thesis presents the application of game theoretic and regular perturbation methods to the problem of determining robust approximate optimal guidance laws for aeroassisted orbital transfer missions with atmospheric density and navigated state uncertainties. The optimal guidance problem is reformulated as a differential game problem with the guidance law designer and Nature as opposing players. The resulting equations comprise the necessary conditions for the optimal closed loop guidance strategy in the presence of worst case parameter variations. While these equations are nonlinear and cannot be solved analytically, the presence of a small parameter in the equations of motion allows the method of regular perturbations to be used to solve the equations approximately. This thesis is divided into five parts. The first part introduces the class of problems to be considered and presents results of previous research. The second part then presents explicit semianalytical guidance law techniques for the aerodynamically dominated region of flight. These guidance techniques are applied to unconstrained and control constrained aeroassisted plane change missions and Mars aerocapture missions, all subject to significant atmospheric density variations. The third part presents a guidance technique for aeroassisted orbital transfer problems in the gravitationally dominated region of flight. Regular perturbations are used to design an implicit guidance technique similar to the second variation technique but that removes the need for numerically computing an optimal trajectory prior to flight. This methodology is then applied to a set of aeroassisted inclination change missions. In the fourth part, the explicit regular perturbation solution technique is extended to include the class of guidance laws with partial state information. This methodology is then applied to an aeroassisted plane change mission using inertial measurements and subject to uncertainties in the initial value

  13. Flight demonstrations of curved, descending approaches and automatic landings using time referenced scanning beam guidance

    NASA Technical Reports Server (NTRS)

    White, W. F. (Compiler)

    1978-01-01

    The Terminal Configured Vehicle (TCV) program operates a Boeing 737 modified to include a second cockpit and a large amount of experimental navigation, guidance and control equipment for research on advanced avionics systems. Demonstration flights to include curved approaches and automatic landings were tracked by a phototheodolite system. For 50 approaches during the demonstration flights, the following results were obtained: the navigation system, using TRSB guidance, delivered the aircraft onto the 3 nautical mile final approach leg with an average overshoot of 25 feet past centerline, subjet to a 2-sigma dispersion of 90 feet. Lateral tracking data showed a mean error of 4.6 feet left of centerline at the category 1 decision height (200 feet) and 2.7 feet left of centerline at the category 2 decision height (100 feet). These values were subject to a sigma dispersion of about 10 feet. Finally, the glidepath tracking errors were 2.5 feet and 3.0 feet high at the category 1 and 2 decision heights, respectively, with a 2 sigma value of 6 feet.

  14. IPS - a vision aided navigation system

    NASA Astrophysics Data System (ADS)

    Börner, Anko; Baumbach, Dirk; Buder, Maximilian; Choinowski, Andre; Ernst, Ines; Funk, Eugen; Grießbach, Denis; Schischmanow, Adrian; Wohlfeil, Jürgen; Zuev, Sergey

    2017-04-01

    Ego localization is an important prerequisite for several scientific, commercial, and statutory tasks. Only by knowing one's own position, can guidance be provided, inspections be executed, and autonomous vehicles be operated. Localization becomes challenging if satellite-based navigation systems are not available, or data quality is not sufficient. To overcome this problem, a team of the German Aerospace Center (DLR) developed a multi-sensor system based on the human head and its navigation sensors - the eyes and the vestibular system. This system is called integrated positioning system (IPS) and contains a stereo camera and an inertial measurement unit for determining an ego pose in six degrees of freedom in a local coordinate system. IPS is able to operate in real time and can be applied for indoor and outdoor scenarios without any external reference or prior knowledge. In this paper, the system and its key hardware and software components are introduced. The main issues during the development of such complex multi-sensor measurement systems are identified and discussed, and the performance of this technology is demonstrated. The developer team started from scratch and transfers this technology into a commercial product right now. The paper finishes with an outlook.

  15. Spatial Navigation and the Central Complex: Sensory Acquisition, Orientation, and Motor Control

    PubMed Central

    Varga, Adrienn G.; Kathman, Nicholas D.; Martin, Joshua P.; Guo, Peiyuan; Ritzmann, Roy E.

    2017-01-01

    Cockroaches are scavengers that forage through dark, maze-like environments. Like other foraging animals, for instance rats, they must continually asses their situation to keep track of targets and negotiate barriers. While navigating a complex environment, all animals need to integrate sensory information in order to produce appropriate motor commands. The integrated sensory cues can be used to provide the animal with an environmental and contextual reference frame for the behavior. To successfully reach a goal location, navigational cues continuously derived from sensory inputs have to be utilized in the spatial guidance of motor commands. The sensory processes, contextual and spatial mechanisms, and motor outputs contributing to navigation have been heavily studied in rats. In contrast, many insect studies focused on the sensory and/or motor components of navigation, and our knowledge of the abstract representation of environmental context and spatial information in the insect brain is relatively limited. Recent reports from several laboratories have explored the role of the central complex (CX), a sensorimotor region of the insect brain, in navigational processes by recording the activity of CX neurons in freely-moving insects and in more constrained, experimenter-controlled situations. The results of these studies indicate that the CX participates in processing the temporal and spatial components of sensory cues, and utilizes these cues in creating an internal representation of orientation and context, while also directing motor control. Although these studies led to a better understanding of the CX's role in insect navigation, there are still major voids in the literature regarding the underlying mechanisms and brain regions involved in spatial navigation. The main goal of this review is to place the above listed findings in the wider context of animal navigation by providing an overview of the neural mechanisms of navigation in rats and summarizing and

  16. The Taxiway Navigation and Situation Awareness (T-NASA) System

    NASA Technical Reports Server (NTRS)

    Foyle, David C.; Sridhar, Banavar (Technical Monitor)

    1997-01-01

    The goal of NASA's Terminal Area Productivity (TAP) Low-Visibility Landing and Surface Operations (LVLASO) subelement is to improve the efficiency of airport surface operations for commercial aircraft operating in weather conditions to Category IIIB while maintaining a high degree of safety. Currently, surface operations are one of the least technologically sophisticated components of the air transport system, being conducted in the 1990's with the same basic technology as in the 1930's. Pilots are given little or no explicit information about their current position, and routing information is limited to ATC communications and airport charts. In TAP/LVLASO, advanced technologies such as satellite navigation systems, digital data communications, advanced information presentation technology, and ground surveillance systems will be integrated into flight deck displays to enable expeditious and safe traffic movement on the airport surface. The cockpit display suite is called the T-NASA (Taxiway Navigation and Situation Awareness) System. This system has three integrated components: 1) Moving Map track-up airport surface display with own-ship, traffic and graphical route guidance 2) Scene-Linked Symbology - route/taxi information virtually projected via a Head-up Display (HUD) onto the forward scene; and, 3) 3-D Audio Ground Collision Avoidance and Navigation system - spatially-localized auditory traffic and navigation alerts. In the current paper, the design philosophy of the T-NASA system will be presented, and the T-NASA system display components described.

  17. Navigating neurites utilize cellular topography of Schwann cell somas and processes for optimal guidance

    PubMed Central

    Lopez-Fagundo, Cristina; Mitchel, Jennifer A.; Ramchal, Talisha D.; Dingle, Yu-Ting L.; Hoffman-Kim, Diane

    2013-01-01

    The path created by aligned Schwann cells (SCs) after nerve injury underlies peripheral nerve regeneration. We developed geometric bioinspired substrates to extract key information needed for axon guidance by deconstructing the topographical cues presented by SCs. We have previously reported materials that directly replicate SC topography with micro- and nanoscale resolution, but a detailed explanation of the means of directed axon extension on SC topography has not yet been described. Here, using neurite tracing and time-lapse microscopy, we analyzed the SC features that influence axon guidance. Novel poly(dimethylsiloxane) materials, fabricated via photolithography, incorporated bioinspired topographical components with the shapes and sizes of aligned SCs, namely somas and processes, where the length of the processes were varied but the soma geometry and dimensions were kept constant. Rat dorsal root ganglia neurites aligned to all materials presenting bioinspired topography after a 5 days in culture and to bioinspired materials presenting soma and process features after only 17 hours in culture. Key findings of this study were: Neurite response to underlying bioinspired topographical features was time dependent, where at 5 days, neurites aligned most strongly to materials presenting combinations of soma and process features, with higher than average density of either process or soma features; but at 17 hours they aligned more strongly to materials presenting average densities of soma and process features and to materials presenting process features only. These studies elucidate the influence of SC topography on axon guidance in a time-dependent setting and have implications for the optimization of nerve regeneration strategies. PMID:23557939

  18. Image fusion and navigation platforms for percutaneous image-guided interventions.

    PubMed

    Rajagopal, Manoj; Venkatesan, Aradhana M

    2016-04-01

    Image-guided interventional procedures, particularly image guided biopsy and ablation, serve an important role in the care of the oncology patient. The need for tumor genomic and proteomic profiling, early tumor response assessment and confirmation of early recurrence are common scenarios that may necessitate successful biopsies of targets, including those that are small, anatomically unfavorable or inconspicuous. As image-guided ablation is increasingly incorporated into interventional oncology practice, similar obstacles are posed for the ablation of technically challenging tumor targets. Navigation tools, including image fusion and device tracking, can enable abdominal interventionalists to more accurately target challenging biopsy and ablation targets. Image fusion technologies enable multimodality fusion and real-time co-displays of US, CT, MRI, and PET/CT data, with navigational technologies including electromagnetic tracking, robotic, cone beam CT, optical, and laser guidance of interventional devices. Image fusion and navigational platform technology is reviewed in this article, including the results of studies implementing their use for interventional procedures. Pre-clinical and clinical experiences to date suggest these technologies have the potential to reduce procedure risk, time, and radiation dose to both the patient and the operator, with a valuable role to play for complex image-guided interventions.

  19. Guidance, Navigation, and Control System Design in a Mass Reduction Exercise

    NASA Technical Reports Server (NTRS)

    Crain, Timothy; Begly, Michael; Jackson, Mark; Broome, Joel

    2008-01-01

    Early Orion GN&C system designs optimized for robustness, simplicity, and utilization of commercially available components. During the System Definition Review (SDR), all subsystems on Orion were asked to re-optimize with component mass and steady state power as primary design metrics. The objective was to create a mass reserve in the Orion point of departure vehicle design prior to beginning the PDR analysis cycle. The Orion GN&C subsystem team transitioned from a philosophy of absolute 2 fault tolerance for crew safety and 1 fault tolerance for mission success to an approach of 1 fault tolerance for crew safety and risk based redundancy to meet probability allocations of loss of mission and loss of crew. This paper will discuss the analyses, rationale, and end results of this activity regarding Orion navigation sensor hardware, control effectors, and trajectory design.

  20. Lunar Reconnaissance Orbiter (LRO) Guidance, Navigation and Control (GN&C) Overview

    NASA Technical Reports Server (NTRS)

    Garrick, Joseph; Simpson, James; Shah, Neerav

    2010-01-01

    The National Aeronautics and Space Administration s (NASA) Lunar Reconnaissance Orbiter (LRO) launched on June 18, 2009 from the Cape Canaveral Air Force Station aboard an Atlas V launch vehicle and into a direct insertion trajectory to the oon. LRO, which was designed, built, and operated by the NASA Goddard Space Flight Center in Greenbelt, MD, is gathering crucial data on the lunar environment that will help astronauts prepare for long-duration lunar expeditions. The mission has a nominal life of 1 year as its seven instruments find safe landing sites, locate potential resources, characterize the radiation environment, and test new technology. To date, LRO has been operating well within the bounds of its requirements and has been collecting excellent science data images taken from the LRO Camera Narrow Angle Camera of the Apollo landing sites appeared on cable news networks. A significant amount of information on LRO s science instruments is provided at the LRO mission webpage. LRO s Guidance, Navigation and Control (GN&C) subsystem is made up of an onboard attitude control system (ACS) and a hardware suite of sensors and actuators. The LRO onboard ACS is a collection of algorithms based on high level and derived requirements, and reflect the science and operational events throughout the mission lifetime. The primary control mode is the Observing mode, which maintains the lunar pointing orientation and any offset pointing from this baseline. It is within this mode that all science instrument calibrations, slews and science data is collected. Because of a high accuracy requirement for knowledge and pointing, the Observing mode makes use of star tracker (ST) measurement data to determine an instantaneous attitude pointing. But even the star trackers alone do not meet the tight requirements, so a six-state Kalman Filter is employed to improve the noisy measurement data. The Observing mode obtains its rate information from an inertial reference unit (IRU) and in the

  1. Navigated MRI-guided liver biopsies in a closed-bore scanner: experience in 52 patients.

    PubMed

    Moche, Michael; Heinig, Susann; Garnov, Nikita; Fuchs, Jochen; Petersen, Tim-Ole; Seider, Daniel; Brandmaier, Philipp; Kahn, Thomas; Busse, Harald

    2016-08-01

    To evaluate clinical effectiveness and diagnostic efficiency of a navigation device for MR-guided biopsies of focal liver lesions in a closed-bore scanner. In 52 patients, 55 biopsies were performed. An add-on MR navigation system with optical instrument tracking was used for image guidance and biopsy device insertion outside the bore. Fast control imaging allowed visualization of the true needle position at any time. The biopsy workflow and procedure duration were recorded. Histological analysis and clinical course/outcome were used to calculate sensitivity, specificity and diagnostic accuracy. Fifty-four of 55 liver biopsies were performed successfully with the system. No major and four minor complications occurred. Mean tumour size was 23 ± 14 mm and the skin-to-target length ranged from 22 to 177 mm. In 39 cases, access path was double oblique. Sensitivity, specificity and diagnostic accuracy were 88 %, 100 % and 92 %, respectively. The mean procedure time was 51 ± 12 min, whereas the puncture itself lasted 16 ± 6 min. On average, four control scans were taken. Using this navigation device, biopsies of poorly visible and difficult accessible liver lesions could be performed safely and reliably in a closed-bore MRI scanner. The system can be easily implemented in clinical routine workflow. • Targeted liver biopsies could be reliably performed in a closed-bore MRI. • The navigation system allows for image guidance outside of the scanner bore. • Assisted MRI-guided biopsies are helpful for focal lesions with a difficult access. • Successful integration of the method in clinical workflow was shown. • Subsequent system installation in an existing MRI environment is feasible.

  2. Error Analysis System for Spacecraft Navigation Using the Global Positioning System (GPS)

    NASA Technical Reports Server (NTRS)

    Truong, S. H.; Hart, R. C.; Hartman, K. R.; Tomcsik, T. L.; Searl, J. E.; Bernstein, A.

    1997-01-01

    The Flight Dynamics Division (FDD) at the National Aeronautics and Space Administration (NASA) Goddard Space Flight Center (GSFC) is currently developing improved space-navigation filtering algorithms to use the Global Positioning System (GPS) for autonomous real-time onboard orbit determination. In connection with a GPS technology demonstration on the Small Satellite Technology Initiative (SSTI)/Lewis spacecraft, FDD analysts and programmers have teamed with the GSFC Guidance, Navigation, and Control Branch to develop the GPS Enhanced Orbit Determination Experiment (GEODE) system. The GEODE system consists of a Kalman filter operating as a navigation tool for estimating the position, velocity, and additional states required to accurately navigate the orbiting Lewis spacecraft by using astrodynamic modeling and GPS measurements from the receiver. A parallel effort at the FDD is the development of a GPS Error Analysis System (GEAS) that will be used to analyze and improve navigation filtering algorithms during development phases and during in-flight calibration. For GEAS, the Kalman filter theory is extended to estimate the errors in position, velocity, and other error states of interest. The estimation of errors in physical variables at regular intervals will allow the time, cause, and effect of navigation system weaknesses to be identified. In addition, by modeling a sufficient set of navigation system errors, a system failure that causes an observed error anomaly can be traced and accounted for. The GEAS software is formulated using Object Oriented Design (OOD) techniques implemented in the C++ programming language on a Sun SPARC workstation. The Phase 1 of this effort is the development of a basic system to be used to evaluate navigation algorithms implemented in the GEODE system. This paper presents the GEAS mathematical methodology, systems and operations concepts, and software design and implementation. Results from the use of the basic system to evaluate

  3. Effectiveness of a Novel Augmented Reality-Based Navigation System in Treatment of Orbital Hypertelorism.

    PubMed

    Zhu, Ming; Chai, Gang; Lin, Li; Xin, Yu; Tan, Andy; Bogari, Melia; Zhang, Yan; Li, Qingfeng

    2016-12-01

    Augmented reality (AR) technology can superimpose the virtual image generated by computer onto the real operating field to present an integral image to enhance surgical safety. The purpose of our study is to develop a novel AR-based navigation system for craniofacial surgery. We focus on orbital hypertelorism correction, because the surgery requires high preciseness and is considered tough even for senior craniofacial surgeon. Twelve patients with orbital hypertelorism were selected. The preoperative computed tomography data were imported into 3-dimensional platform for preoperational design. The position and orientation of virtual information and real world were adjusted by image registration process. The AR toolkits were used to realize the integral image. Afterward, computed tomography was also performed after operation for comparing the difference between preoperational plan and actual operational outcome. Our AR-based navigation system was successfully used in these patients, directly displaying 3-dimensional navigational information onto the surgical field. They all achieved a better appearance by the guidance of navigation image. The difference in interdacryon distance and the dacryon point of each side appear no significant (P > 0.05) between preoperational plan and actual surgical outcome. This study reports on an effective visualized approach for guiding orbital hypertelorism correction. Our AR-based navigation system may lay a foundation for craniofacial surgery navigation. The AR technology could be considered as a helpful tool for precise osteotomy in craniofacial surgery.

  4. SLS Navigation Model-Based Design Approach

    NASA Technical Reports Server (NTRS)

    Oliver, T. Emerson; Anzalone, Evan; Geohagan, Kevin; Bernard, Bill; Park, Thomas

    2018-01-01

    The SLS Program chose to implement a Model-based Design and Model-based Requirements approach for managing component design information and system requirements. This approach differs from previous large-scale design efforts at Marshall Space Flight Center where design documentation alone conveyed information required for vehicle design and analysis and where extensive requirements sets were used to scope and constrain the design. The SLS Navigation Team has been responsible for the Program-controlled Design Math Models (DMMs) which describe and represent the performance of the Inertial Navigation System (INS) and the Rate Gyro Assemblies (RGAs) used by Guidance, Navigation, and Controls (GN&C). The SLS Navigation Team is also responsible for the navigation algorithms. The navigation algorithms are delivered for implementation on the flight hardware as a DMM. For the SLS Block 1-B design, the additional GPS Receiver hardware is managed as a DMM at the vehicle design level. This paper provides a discussion of the processes and methods used to engineer, design, and coordinate engineering trades and performance assessments using SLS practices as applied to the GN&C system, with a particular focus on the Navigation components. These include composing system requirements, requirements verification, model development, model verification and validation, and modeling and analysis approaches. The Model-based Design and Requirements approach does not reduce the effort associated with the design process versus previous processes used at Marshall Space Flight Center. Instead, the approach takes advantage of overlap between the requirements development and management process, and the design and analysis process by efficiently combining the control (i.e. the requirement) and the design mechanisms. The design mechanism is the representation of the component behavior and performance in design and analysis tools. The focus in the early design process shifts from the development and

  5. Guidance and Control for Tactical Guided Weapons with Emphasis on Simulation and Testing

    DTIC Science & Technology

    1979-05-01

    VELOCITY TARGET TRAJECTORY NA MORE DIRECT MISSILE PATH NOTE: IN THE DIRECT PATH. LINE OF SIGHT RATE IS POSITIVE BEFORE BURNOUT AND NEGATIVE...FOLLOWING BURNOUT FIGURE 3-1 PROPORTIONAL NAVIGATION GUIDANCE AND A MORE DIRECT APPROACH PATH In thi Studie small two, b Becaus the ga for ot...During the tests, the missile was suspended in low- frequency slings, and both launch and burnout flight conditions were tested. An active

  6. A projective surgical navigation system for cancer resection

    NASA Astrophysics Data System (ADS)

    Gan, Qi; Shao, Pengfei; Wang, Dong; Ye, Jian; Zhang, Zeshu; Wang, Xinrui; Xu, Ronald

    2016-03-01

    Near infrared (NIR) fluorescence imaging technique can provide precise and real-time information about tumor location during a cancer resection surgery. However, many intraoperative fluorescence imaging systems are based on wearable devices or stand-alone displays, leading to distraction of the surgeons and suboptimal outcome. To overcome these limitations, we design a projective fluorescence imaging system for surgical navigation. The system consists of a LED excitation light source, a monochromatic CCD camera, a host computer, a mini projector and a CMOS camera. A software program is written by C++ to call OpenCV functions for calibrating and correcting fluorescence images captured by the CCD camera upon excitation illumination of the LED source. The images are projected back to the surgical field by the mini projector. Imaging performance of this projective navigation system is characterized in a tumor simulating phantom. Image-guided surgical resection is demonstrated in an ex-vivo chicken tissue model. In all the experiments, the projected images by the projector match well with the locations of fluorescence emission. Our experimental results indicate that the proposed projective navigation system can be a powerful tool for pre-operative surgical planning, intraoperative surgical guidance, and postoperative assessment of surgical outcome. We have integrated the optoelectronic elements into a compact and miniaturized system in preparation for further clinical validation.

  7. Intraluminal laser atherectomy with ultrasound and electromagnetic guidance

    NASA Astrophysics Data System (ADS)

    Gregory, Kenton W.; Aretz, H. Thomas; Martinelli, Michael A.; LeDet, Earl G.; Hatch, G. F.; Gregg, Richard E.; Sedlacek, Tomas; Haase, Wayne C.

    1991-05-01

    The MagellanTM coronary laser atherectomy system is described. It uses high- resolution ultrasound imaging and electromagnetic sensing to provide real-time guidance and control of laser therapy in the coronary arteries. The system consists of a flexible catheter, an electromagnetic navigation antenna, a sensor signal processor and a computer for image processing and display. The small, flexible catheter combines an ultrasound transducer and laser delivery optics, aimed at the artery wall, and an electromagnetic receiving sensor. An extra-corporeal electromagnetic transmit antenna, in combination with catheter sensors, locates the position of the ultrasound and laser beams in the artery. Navigation and ultrasound data are processed electronically to produce real-time, transverse, and axial cross-section images of the artery wall at selected locations. By exploiting the ability of ultrasound to image beneath the surface of artery walls, it is possible to identify candidate treatment sites and perform safe radial laser debulking of atherosclerotic plaque with reduced danger of perforation. The utility of the system in plaque identification and ablation is demonstrated with imaging and experimental results.

  8. The accuracy of an electromagnetic navigation system in lateral skull base approaches.

    PubMed

    Komune, Noritaka; Matsushima, Ken; Matsuo, Satoshi; Safavi-Abbasi, Sam; Matsumoto, Nozomu; Rhoton, Albert L

    2017-02-01

    Image-guided optical tracking systems are being used with increased frequency in lateral skull base surgery. Recently, electromagnetic tracking systems have become available for use in this region. However, the clinical accuracy of the electromagnetic tracking system has not been examined in lateral skull base surgery. This study evaluates the accuracy of electromagnetic navigation in lateral skull base surgery. Cadaveric and radiographic study. Twenty cadaveric temporal bones were dissected in a surgical setting under a commercially available, electromagnetic surgical navigation system. The target registration error (TRE) was measured at 28 surgical landmarks during and after performing the standard translabyrinthine and middle cranial fossa surgical approaches to the internal acoustic canal. In addition, three demonstrative procedures that necessitate navigation with high accuracy were performed; that is, canalostomy of the superior semicircular canal from the middle cranial fossa, 1 cochleostomy from the middle cranial fossa, 2 and infralabyrinthine approach to the petrous apex. 3 RESULTS: Eleven of 17 (65%) of the targets in the translabyrinthine approach and five of 11 (45%) of the targets in the middle fossa approach could be identified in the navigation system with TRE of less than 0.5 mm. Three accuracy-dependent procedures were completed without anatomical injury of important anatomical structures. The electromagnetic navigation system had sufficient accuracy to be used in the surgical setting. It was possible to perform complex procedures in the lateral skull base under the guidance of the electromagnetically tracked navigation system. N/A. Laryngoscope, 2016 127:450-459, 2017. © 2016 The American Laryngological, Rhinological and Otological Society, Inc.

  9. Navigation.

    PubMed

    Wiltschko, Roswitha

    2017-07-01

    Experiments with migrating birds displaced during autumn migration outside their normal migration corridor reveal two different navigational strategies: adult migrants compensate for the displacement, and head towards their traditional wintering areas, whereas young first-time migrants continue in their migratory direction. Young birds are guided to their still unknown goal by a genetically coded migration program that indicates duration and direction(s) of the migratory flight by controlling the amount of migratory restlessness and the compass course(s) with respect to the geomagnetic field and celestial rotation. Adult migrants that have already wintered and are familiar with the goal area approach the goal by true navigation, specifically heading towards it and changing their course correspondingly after displacement. During their first journey, young birds experience the distribution of potential navigational factors en route and in their winter home, which allows them to truly navigate on their next migrations. The navigational factors used appear to include magnetic intensity as a component in their multi-modal navigational 'map'; olfactory input is also involved, even if it is not yet entirely clear in what way. The mechanisms of migratory birds for true navigation over long distances appear to be in principle similar to those discussed for by homing pigeons.

  10. BiopSee® - transperineal stereotactic navigated prostate biopsy.

    PubMed

    Zogal, Pawel; Sakas, Georgios; Rösch, Woerner; Baltas, Dimos

    2011-06-01

    In the recent years, prostate cancer was the most commonly diagnosed cancer in men. Currently secure diagnosis confirmation is done by a transrectal biopsy and following histopathological examination. Conventional transrectal biopsy success rates are rather low with ca. 30% detection upon the first and ca 20% after re-biopsy. The paper presents a novel system for stereotactic navigated prostate biopsy. The approach results into higher accuracy, reproducibility and unrestricted and effective access to all prostate regions. Custom designed ultrasound, new template design and integrated 2-axes stepper allows superior 2D and 3D prostate imaging quality and precise needle navigation. DICOM functionality and image fusion enable to import pre-operative datasets (e.g. multiparametric MRI, targets etc.) and overlay all available radiological information into the biopsy planning and guiding procedure. The biopsy needle insertion itself is performed under augmented reality ultrasound guidance. Each procedure step is automatically documented in order to provide quality assurance and permit data re-usage for the further treatment. First clinical results indicates success rates of ca. 70% by first biopsies by our approach.

  11. Saint Lawrence Seaway Navigation-Aid System Study : Volume II - Appendix B - User's Manual and Documentation of Seaway Capacity and Capacity Analysis Programs

    DOT National Transportation Integrated Search

    1978-09-01

    The requirements for a navigation guidance system which will effect an increase in the ship processing capacity of the Saint Lawrence Seaway (Lake Ontario to Montreal, Quebec) are developed. The requirements include a specification of system position...

  12. Saint Lawrence Seaway Navigation-Aid System Study : Volume III - Appendix C - User's Manual and Documentation of the Ship Maneuvering Requirements Computer Program

    DOT National Transportation Integrated Search

    1978-09-01

    The requirements for a navigation guidance system which will effect an increase in the ship processing capacity of the Saint Lawrence Seaway (Lake Ontario to Montreal, Quebec) are developed. The requirements include a specification of system position...

  13. Computer-assisted surgery: virtual- and augmented-reality displays for navigation during urological interventions.

    PubMed

    van Oosterom, Matthias N; van der Poel, Henk G; Navab, Nassir; van de Velde, Cornelis J H; van Leeuwen, Fijs W B

    2018-03-01

    To provide an overview of the developments made for virtual- and augmented-reality navigation procedures in urological interventions/surgery. Navigation efforts have demonstrated potential in the field of urology by supporting guidance for various disorders. The navigation approaches differ between the individual indications, but seem interchangeable to a certain extent. An increasing number of pre- and intra-operative imaging modalities has been used to create detailed surgical roadmaps, namely: (cone-beam) computed tomography, MRI, ultrasound, and single-photon emission computed tomography. Registration of these surgical roadmaps with the real-life surgical view has occurred in different forms (e.g. electromagnetic, mechanical, vision, or near-infrared optical-based), whereby the combination of approaches was suggested to provide superior outcome. Soft-tissue deformations demand the use of confirmatory interventional (imaging) modalities. This has resulted in the introduction of new intraoperative modalities such as drop-in US, transurethral US, (drop-in) gamma probes and fluorescence cameras. These noninvasive modalities provide an alternative to invasive technologies that expose the patients to X-ray doses. Whereas some reports have indicated navigation setups provide equal or better results than conventional approaches, most trials have been performed in relatively small patient groups and clear follow-up data are missing. The reported computer-assisted surgery research concepts provide a glimpse in to the future application of navigation technologies in the field of urology.

  14. Development and Validation of a Controlled Virtual Environment for Guidance, Navigation and Control of Quadrotor UAV

    DTIC Science & Technology

    2013-09-01

    Width Modulation QuarC Quanser Real-time Control RC Remote Controlled RPV Remotely Piloted Vehicles SLAM Simultaneous Localization and Mapping UAV...development of the following systems: 1. Navigation (GPS, Lidar , etc.) 2. Communication (Datalink) 3. Ground Control Station (GUI, software programming

  15. Navigation system for a mobile robot with a visual sensor using a fish-eye lens

    NASA Astrophysics Data System (ADS)

    Kurata, Junichi; Grattan, Kenneth T. V.; Uchiyama, Hironobu

    1998-02-01

    Various position sensing and navigation systems have been proposed for the autonomous control of mobile robots. Some of these systems have been installed with an omnidirectional visual sensor system that proved very useful in obtaining information on the environment around the mobile robot for position reckoning. In this article, this type of navigation system is discussed. The sensor is composed of one TV camera with a fish-eye lens, using a reference target on a ceiling and hybrid image processing circuits. The position of the robot, with respect to the floor, is calculated by integrating the information obtained from a visual sensor and a gyroscope mounted in the mobile robot, and the use of a simple algorithm based on PTP control for guidance is discussed. An experimental trial showed that the proposed system was both valid and useful for the navigation of an indoor vehicle.

  16. Micro guidance and control synthesis: New components, architectures, and capabilities

    NASA Technical Reports Server (NTRS)

    Mettler, Edward; Hadaegh, Fred Y.

    1993-01-01

    New GN&C (guidance, navigation and control) system capabilities are shown to arise from component innovations that involve the synergistic use of microminiature sensors and actuators, microelectronics, and fiber optics. Micro-GN&C system and component concepts are defined that include micro-actuated adaptive optics, micromachined inertial sensors, fiber-optic data nets and light-power transmission, and VLSI microcomputers. The thesis is advanced that these micro-miniaturization products are capable of having a revolutionary impact on space missions and systems, and that GN&C is the pathfinder micro-technology application that can bring that about.

  17. Investigations of Fluid-Structure-Coupling and Turbulence Model Effects on the DLR Results of the Fifth AIAA CFD Drag Prediction Workshop

    NASA Technical Reports Server (NTRS)

    Keye, Stefan; Togiti, Vamish; Eisfeld, Bernhard; Brodersen, Olaf P.; Rivers, Melissa B.

    2013-01-01

    The accurate calculation of aerodynamic forces and moments is of significant importance during the design phase of an aircraft. Reynolds-averaged Navier-Stokes (RANS) based Computational Fluid Dynamics (CFD) has been strongly developed over the last two decades regarding robustness, efficiency, and capabilities for aerodynamically complex configurations. Incremental aerodynamic coefficients of different designs can be calculated with an acceptable reliability at the cruise design point of transonic aircraft for non-separated flows. But regarding absolute values as well as increments at off-design significant challenges still exist to compute aerodynamic data and the underlying flow physics with the accuracy required. In addition to drag, pitching moments are difficult to predict because small deviations of the pressure distributions, e.g. due to neglecting wing bending and twisting caused by the aerodynamic loads can result in large discrepancies compared to experimental data. Flow separations that start to develop at off-design conditions, e.g. in corner-flows, at trailing edges, or shock induced, can have a strong impact on the predictions of aerodynamic coefficients too. Based on these challenges faced by the CFD community a working group of the AIAA Applied Aerodynamics Technical Committee initiated in 2001 the CFD Drag Prediction Workshop (DPW) series resulting in five international workshops. The results of the participants and the committee are summarized in more than 120 papers. The latest, fifth workshop took place in June 2012 in conjunction with the 30th AIAA Applied Aerodynamics Conference. The results in this paper will evaluate the influence of static aeroelastic wing deformations onto pressure distributions and overall aerodynamic coefficients based on the NASA finite element structural model and the common grids.

  18. Gamma guidance of trajectories for coplanar, aeroassisted orbital transfer

    NASA Technical Reports Server (NTRS)

    Miele, A.; Wang, T.

    1990-01-01

    The optimization and guidance of trajectories for coplaner, aeroassisted orbital transfer (AOT) from high Earth orbit (HEO) to low Earth orbit (LEO) are examined. In particular, HEO can be a geosynchronous Earth orbit (GEO). It is assumed that the initial and final orbits are circular, that the gravitational field is central and is governed by the inverse square law, and that at most three impulses are employed: one at HEO exit, one at atmospheric exit, and one at LEO entry. It is also assumed that, during the atmospheric pass, the trajectory is controlled via the lift coefficient. The presence of upper and lower bounds on the lift coefficient is considered. First, optimal trajectories are computed by minimizing the total velocity impulse (hence, the propellant consumption) required for AOT transfer. The sequential gradient-restoration algorithm (SGRA) is used for optimal control problems. The optimal trajectory is shown to include two branches: a relatively short descending flight branch (branch 1) and a long ascending flight branch (branch 2). Next, attention is focused on guidance trajectories capable of approximating the optimal trajectories in real time, while retaining the essential characteristics of simplicity, ease of implementation, and reliability. For the atmospheric pass, a feedback control scheme is employed and the lift coefficient is adjusted according to a two-stage gamma guidance law. Further improvements are possible via a modified gamma guidance which is more stable with respect to dispersion effects arising from navigation errors, variations of the atmospheric density, and uncertainties in the aerodynamic coefficients than gamma guidance trajectory. A byproduct of the studies on dispersion effects is the following design concept. For coplaner aeroassisted orbital transfer, the lift-range-to-weight ratio appears to play a more important role than the lift-to-drag ratio. This is because the lift-range-to-weight ratio controls mainly the minimum

  19. Unmanned Vehicle Guidance Using Video Camera/Vehicle Model

    NASA Technical Reports Server (NTRS)

    Sutherland, T.

    1999-01-01

    A video guidance sensor (VGS) system has flown on both STS-87 and STS-95 to validate a single camera/target concept for vehicle navigation. The main part of the image algorithm was the subtraction of two consecutive images using software. For a nominal size image of 256 x 256 pixels this subtraction can take a large portion of the time between successive frames in standard rate video leaving very little time for other computations. The purpose of this project was to integrate the software subtraction into hardware to speed up the subtraction process and allow for more complex algorithms to be performed, both in hardware and software.

  20. Summary of Data from the First AIAA CFD Drag Prediction Workshop

    NASA Technical Reports Server (NTRS)

    Levy, David W.; Zickuhr, Tom; Vassberg, John; Agrawal, Shreekant; Wahls, Richard A.; Pirzadeh, Shahyar; Hemsch, Michael J.

    2002-01-01

    The results from the first AIAA CFD Drag Prediction Workshop are summarized. The workshop was designed specifically to assess the state-of-the-art of computational fluid dynamics methods for force and moment prediction. An impartial forum was provided to evaluate the effectiveness of existing computer codes and modeling techniques, and to identify areas needing additional research and development. The subject of the study was the DLR-F4 wing-body configuration, which is representative of transport aircraft designed for transonic flight. Specific test cases were required so that valid comparisons could be made. Optional test cases included constant-C(sub L) drag-rise predictions typically used in airplane design by industry. Results are compared to experimental data from three wind tunnel tests. A total of 18 international participants using 14 different codes submitted data to the workshop. No particular grid type or turbulence model was more accurate, when compared to each other, or to wind tunnel data. Most of the results overpredicted C(sub Lo) and C(sub Do), but induced drag (dC(sub D)/dC(sub L)(exp 2)) agreed fairly well. Drag rise at high Mach number was underpredicted, however, especially at high C(sub L). On average, the drag data were fairly accurate, but the scatter was greater than desired. The results show that well-validated Reynolds-Averaged Navier-Stokes CFD methods are sufficiently accurate to make design decisions based on predicted drag.

  1. Astrodynamics. Volume 1 - Orbit determination, space navigation, celestial mechanics.

    NASA Technical Reports Server (NTRS)

    Herrick, S.

    1971-01-01

    Essential navigational, physical, and mathematical problems of space exploration are covered. The introductory chapters dealing with conic sections, orientation, and the integration of the two-body problem are followed by an introduction to orbit determination and design. Systems of units and constants, as well as ephemerides, representations, reference systems, and data are then dealt with. A detailed attention is given to rendezvous problems and to differential processes in observational orbit correction, and in rendezvous or guidance correction. Finally, the Laplacian methods for determining preliminary orbits, and the orbit methods of Lagrange, Gauss, and Gibbs are reviewed.

  2. MEMS and FOG Technologies for Tactical and Navigation Grade Inertial Sensors—Recent Improvements and Comparison

    PubMed Central

    Deppe, Olaf; Dorner, Georg; König, Stefan; Martin, Tim; Voigt, Sven; Zimmermann, Steffen

    2017-01-01

    In the following paper, we present an industry perspective of inertial sensors for navigation purposes driven by applications and customer needs. Microelectromechanical system (MEMS) inertial sensors have revolutionized consumer, automotive, and industrial applications and they have started to fulfill the high end tactical grade performance requirements of hybrid navigation systems on a series production scale. The Fiber Optic Gyroscope (FOG) technology, on the other hand, is further pushed into the near navigation grade performance region and beyond. Each technology has its special pros and cons making it more or less suitable for specific applications. In our overview paper, we present latest improvements at NG LITEF in tactical and navigation grade MEMS accelerometers, MEMS gyroscopes, and Fiber Optic Gyroscopes, based on our long-term experience in the field. We demonstrate how accelerometer performance has improved by switching from wet etching to deep reactive ion etching (DRIE) technology. For MEMS gyroscopes, we show that better than 1°/h series production devices are within reach, and for FOGs we present how limitations in noise performance were overcome by signal processing. The paper also intends a comparison of the different technologies, emphasizing suitability for different navigation applications, thus providing guidance to system engineers. PMID:28287483

  3. Simple Sensitivity Analysis for Orion Guidance Navigation and Control

    NASA Technical Reports Server (NTRS)

    Pressburger, Tom; Hoelscher, Brian; Martin, Rodney; Sricharan, Kumar

    2013-01-01

    The performance of Orion flight software, especially its GNC software, is being analyzed by running Monte Carlo simulations of Orion spacecraft flights. The simulated performance is analyzed for conformance with flight requirements, expressed as performance constraints. Flight requirements include guidance (e.g. touchdown distance from target) and control (e.g., control saturation) as well as performance (e.g., heat load constraints). The Monte Carlo simulations disperse hundreds of simulation input variables, for everything from mass properties to date of launch. We describe in this paper a sensitivity analysis tool ("Critical Factors Tool" or CFT) developed to find the input variables or pairs of variables which by themselves significantly influence satisfaction of requirements or significantly affect key performance metrics (e.g., touchdown distance from target). Knowing these factors can inform robustness analysis, can inform where engineering resources are most needed, and could even affect operations. The contributions of this paper include the introduction of novel sensitivity measures, such as estimating success probability, and a technique for determining whether pairs of factors are interacting dependently or independently. The tool found that input variables such as moments, mass, thrust dispersions, and date of launch were found to be significant factors for success of various requirements. Examples are shown in this paper as well as a summary and physics discussion of EFT-1 driving factors that the tool found.

  4. Navigation of a robot-integrated fluorescence laparoscope in preoperative SPECT/CT and intraoperative freehand SPECT imaging data: a phantom study

    NASA Astrophysics Data System (ADS)

    van Oosterom, Matthias Nathanaël; Engelen, Myrthe Adriana; van den Berg, Nynke Sjoerdtje; KleinJan, Gijs Hendrik; van der Poel, Henk Gerrit; Wendler, Thomas; van de Velde, Cornelis Jan Hadde; Navab, Nassir; van Leeuwen, Fijs Willem Bernhard

    2016-08-01

    Robot-assisted laparoscopic surgery is becoming an established technique for prostatectomy and is increasingly being explored for other types of cancer. Linking intraoperative imaging techniques, such as fluorescence guidance, with the three-dimensional insights provided by preoperative imaging remains a challenge. Navigation technologies may provide a solution, especially when directly linked to both the robotic setup and the fluorescence laparoscope. We evaluated the feasibility of such a setup. Preoperative single-photon emission computed tomography/X-ray computed tomography (SPECT/CT) or intraoperative freehand SPECT (fhSPECT) scans were used to navigate an optically tracked robot-integrated fluorescence laparoscope via an augmented reality overlay in the laparoscopic video feed. The navigation accuracy was evaluated in soft tissue phantoms, followed by studies in a human-like torso phantom. Navigation accuracies found for SPECT/CT-based navigation were 2.25 mm (coronal) and 2.08 mm (sagittal). For fhSPECT-based navigation, these were 1.92 mm (coronal) and 2.83 mm (sagittal). All errors remained below the <1-cm detection limit for fluorescence imaging, allowing refinement of the navigation process using fluorescence findings. The phantom experiments performed suggest that SPECT-based navigation of the robot-integrated fluorescence laparoscope is feasible and may aid fluorescence-guided surgery procedures.

  5. Estimating Geometric Aspects of Relative Satellite Motion Using Angles-Only Measurements

    DTIC Science & Technology

    2008-08-01

    Clohessy - Wiltshire (HCW) equations2-3, the Cartesian states characterizing the deputy’s relative motion (i.e., its relative position and velocity...the AAS/AIAA Astrodynamics Specialist Conference, Mackinac Island, MI, Aug 19-23, 2007. 2Clohessy, W. H., and Wiltshire , R. S., “Terminal Guidance

  6. Supporting Development of Satellite's Guidance Navigation and Control Software: A Product Line Approach

    NASA Technical Reports Server (NTRS)

    McComas, David; Stark, Michael; Leake, Stephen; White, Michael; Morisio, Maurizio; Travassos, Guilherme H.; Powers, Edward I. (Technical Monitor)

    2000-01-01

    The NASA Goddard Space Flight Center Flight Software Branch (FSB) is developing a Guidance, Navigation, and Control (GNC) Flight Software (FSW) product line. The demand for increasingly more complex flight software in less time while maintaining the same level of quality has motivated us to look for better FSW development strategies. The GNC FSW product line has been planned to address the core GNC FSW functionality very similar on many recent low/near Earth missions in the last ten years. Unfortunately these missions have not accomplished significant drops in development cost since a systematic approach towards reuse has not been adopted. In addition, new demands are continually being placed upon the FSW which means the FSB must become more adept at providing GNC FSW functionality's core so it can accommodate additional requirements. These domain features together with engineering concepts are influencing the specification, description and evaluation of FSW product line. Domain engineering is the foundation for emerging product line software development approaches. A product line is 'A family of products designed to take advantage of their common aspects and predicted variabilities'. In our product line approach, domain engineering includes the engineering activities needed to produce reusable artifacts for a domain. Application engineering refers to developing an application in the domain starting from reusable artifacts. The focus of this paper is regarding the software process, lessons learned and on how the GNC FSW product line manages variability. Existing domain engineering approaches do not enforce any specific notation for domain analysis or commonality and variability analysis. Usually, natural language text is the preferred tool. The advantage is the flexibility and adapt ability of natural language. However, one has to be ready to accept also its well-known drawbacks, such as ambiguity, inconsistency, and contradictions. While most domain analysis

  7. Remote magnetic navigation for accurate, real-time catheter positioning and ablation in cardiac electrophysiology procedures.

    PubMed

    Filgueiras-Rama, David; Estrada, Alejandro; Shachar, Josh; Castrejón, Sergio; Doiny, David; Ortega, Marta; Gang, Eli; Merino, José L

    2013-04-21

    New remote navigation systems have been developed to improve current limitations of conventional manually guided catheter ablation in complex cardiac substrates such as left atrial flutter. This protocol describes all the clinical and invasive interventional steps performed during a human electrophysiological study and ablation to assess the accuracy, safety and real-time navigation of the Catheter Guidance, Control and Imaging (CGCI) system. Patients who underwent ablation of a right or left atrium flutter substrate were included. Specifically, data from three left atrial flutter and two counterclockwise right atrial flutter procedures are shown in this report. One representative left atrial flutter procedure is shown in the movie. This system is based on eight coil-core electromagnets, which generate a dynamic magnetic field focused on the heart. Remote navigation by rapid changes (msec) in the magnetic field magnitude and a very flexible magnetized catheter allow real-time closed-loop integration and accurate, stable positioning and ablation of the arrhythmogenic substrate.

  8. Remote Magnetic Navigation for Accurate, Real-time Catheter Positioning and Ablation in Cardiac Electrophysiology Procedures

    PubMed Central

    Filgueiras-Rama, David; Estrada, Alejandro; Shachar, Josh; Castrejón, Sergio; Doiny, David; Ortega, Marta; Gang, Eli; Merino, José L.

    2013-01-01

    New remote navigation systems have been developed to improve current limitations of conventional manually guided catheter ablation in complex cardiac substrates such as left atrial flutter. This protocol describes all the clinical and invasive interventional steps performed during a human electrophysiological study and ablation to assess the accuracy, safety and real-time navigation of the Catheter Guidance, Control and Imaging (CGCI) system. Patients who underwent ablation of a right or left atrium flutter substrate were included. Specifically, data from three left atrial flutter and two counterclockwise right atrial flutter procedures are shown in this report. One representative left atrial flutter procedure is shown in the movie. This system is based on eight coil-core electromagnets, which generate a dynamic magnetic field focused on the heart. Remote navigation by rapid changes (msec) in the magnetic field magnitude and a very flexible magnetized catheter allow real-time closed-loop integration and accurate, stable positioning and ablation of the arrhythmogenic substrate. PMID:23628883

  9. SURVIVORSHIP NAVIGATION OUTCOME MEASURES: A report from the ACS Patient Navigation Working Group on Survivorship Navigation

    PubMed Central

    Pratt-Chapman, Mandi; Simon, Melissa A.; Patterson, Angela; Risendal, Betsy C.; Patierno, Steven

    2013-01-01

    Survivorship navigation is a relatively new concept in the field of patient navigation, but an important one. This paper highlights the essential functions of the survivorship navigator and defines core outcomes and measures for navigation in the survivorship period. Barriers to access to care experienced by patients during active cancer treatment can continue into the post-treatment period, affecting quality follow-up care for survivors. These barriers to care can be particularly acute for non-English speakers, immigrants, the uninsured, the underinsured and other vulnerable populations. The survivorship navigator can help reduce barriers and facilitate access to survivorship care and services through communication and information exchange for patients. Survivorship navigation may improve appropriate health care utilization through education and care coordination, potentially improving health outcomes and quality of life of survivors while reducing cost to the health care system. Survivorship navigators can also educate survivors on how to improve their overall wellness, thereby directly impacting the health of a growing population of cancer survivors. PMID:21780092

  10. German Contribution to the X-38 CRV Demonstrator in the Field of Guidance, Navigation and Control (GNC)

    NASA Astrophysics Data System (ADS)

    Soppa, Uwe; Görlach, Thomas; Roenneke, Axel Justus

    2002-01-01

    As a solution to meet a safety requirement to the future full scale space station infrastructure, the Crew Return/Rescue Vehicle (CRV) was supposed to supply the return capability for the complete ISS crew of 7 astronauts back to earth in case of an emergency. A prototype of such a vehicle named X-38 has been developed and built by NASA with European partnership (ESA, DLR). An series of aerial demonstrators (V13x) for tests of the subsonic TAEM phase and the parafoil descent and landing system has been flown by NASA from 1998 to 2001. A full scale unmanned space flight demonstrator (V201) has been built at JSC Houston and although the project has been stopped for budgetary reasons in 2002, it will hopefully still be flown in near future. The X-38 is a lifting body with hypersonic lift to drag ratio about 0.9. In comparison to the Space Shuttle Orbiter, this design provides less aerodynamic maneuvrability and a different actuator layout (divided body flap and winglet rudders instead as combined aileron and elevon in addition to thrust- ers for the early re-entry phase). Hence, the guidance and control concepts used onboard the shuttle orbiter had to be adapted and further developed for the application on the new vehicle. In the frame of the European share of the X-38 project and also of the German TETRA (TEchnol- ogy for future space TRAnsportation) project different GNC related contributions have been made: First, the primary flight control software for the autonomous guidance and control of the X-38 para- foil descent and landing phase has been developed, integrated and successfully flown on multiple vehicles and missions during the aerial drop test campaign conducted by NASA. Second, a real time X-38 vehicle simulator was provided to NASA which has also been used for the validation of a European re-entry guidance and control software (see below). According to the NASA verification and validation plan this simulator is supposed to be used as an independent vali

  11. 14 CFR 121.389 - Flight navigator and specialized navigation equipment.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Flight navigator and specialized navigation equipment. 121.389 Section 121.389 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF....389 Flight navigator and specialized navigation equipment. (a) No certificate holder may operate an...

  12. 14 CFR 121.389 - Flight navigator and specialized navigation equipment.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Flight navigator and specialized navigation equipment. 121.389 Section 121.389 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF....389 Flight navigator and specialized navigation equipment. (a) No certificate holder may operate an...

  13. PATIENT NAVIGATION

    PubMed Central

    Wells, Kristen J.; Battaglia, Tracy A.; Dudley, Donald J.; Garcia, Roland; Greene, Amanda; Calhoun, Elizabeth; Mandelblatt, Jeanne S.; Paskett, Electra D.; Raich, Peter C.

    2008-01-01

    Background First implemented in 1990, patient navigation interventions are emerging as an approach to reduce cancer disparities. However, there is lack of consensus about how patient navigation is defined, what patient navigators do, and what their qualifications should be. Little is known about the efficacy and cost effectiveness of patient navigation. Methods We conducted a qualitative synthesis of published literature on cancer patient navigation. Using the keywords “navigator” or “navigation” and “cancer,” we identified 45 articles from Pubmed and reference searches that were published or in press through October 2007. 16 provided data on efficacy of navigation in improving timeliness and receipt of cancer screening, diagnostic follow-up care, and treatment. Patient navigation services are defined and differentiated from other outreach services. Results Overall there is evidence for some degree of efficacy for patient navigation in increasing participation in cancer screening and adherence to diagnostic follow-up care following an abnormality, with increases in screening ranging from 10.8% to 17.1% and increases in adherence to diagnostic follow-up care ranging from 21% to 29.2%, when compared to control patients. There is less evidence regarding efficacy of patient navigation in reducing either late stage cancer diagnosis or delays in initiation of cancer treatment or improving outcomes during cancer survivorship. There were methodological limitations in most studies, such as lack of control groups, small sample sizes, and contamination with other interventions. Conclusions Although cancer-related patient navigation interventions are being increasingly adopted across the U.S. and Canada, further research is necessary to evaluate their efficacy and cost-effectiveness in improving cancer care. PMID:18780320

  14. Area navigation and required navigation performance procedures and depictions

    DOT National Transportation Integrated Search

    2012-09-30

    Area navigation (RNAV) and required navigation performance (RNP) procedures are fundamental to the implementation of a performance based navigation (PBN) system, which is a key enabling technology for the Next Generation Air Transportation System (Ne...

  15. Magnetic navigation behavior and the oceanic ecology of young loggerhead sea turtles.

    PubMed

    Putman, Nathan F; Verley, Philippe; Endres, Courtney S; Lohmann, Kenneth J

    2015-04-01

    During long-distance migrations, animals navigate using a variety of sensory cues, mechanisms and strategies. Although guidance mechanisms are usually studied under controlled laboratory conditions, such methods seldom allow for navigation behavior to be examined in an environmental context. Similarly, although realistic environmental models are often used to investigate the ecological implications of animal movement, explicit consideration of navigation mechanisms in such models is rare. Here, we used an interdisciplinary approach in which we first conducted lab-based experiments to determine how hatchling loggerhead sea turtles (Caretta caretta) respond to magnetic fields that exist at five widely separated locations along their migratory route, and then studied the consequences of the observed behavior by simulating it within an ocean circulation model. Magnetic fields associated with two geographic regions that pose risks to young turtles (due to cold wintertime temperatures or potential displacement from the migratory route) elicited oriented swimming, whereas fields from three locations where surface currents and temperature pose no such risk did not. Additionally, at locations with fields that elicited oriented swimming, simulations indicate that the observed behavior greatly increases the likelihood of turtles advancing along the migratory pathway. Our findings suggest that the magnetic navigation behavior of sea turtles is intimately tied to their oceanic ecology and is shaped by a complex interplay between ocean circulation and geomagnetic dynamics. © 2015. Published by The Company of Biologists Ltd.

  16. Design and Flight Evaluation of an Integrated Navigation and Near-Terrain Helicopter Guidance System for Nighttime and Adverse Weather Operations

    DOT National Transportation Integrated Search

    1994-08-01

    NASA and the U.S. Army have designed, developed, and flight evaluated a : Computer Aiding for Low-Altitude Helicopter Flight (CALAHF) guidance system. : This system provides guidance to the pilot for near-terrain covert helicopter : operations. It au...

  17. Limited variance control in statistical low thrust guidance analysis. [stochastic algorithm for SEP comet Encke flyby mission

    NASA Technical Reports Server (NTRS)

    Jacobson, R. A.

    1975-01-01

    Difficulties arise in guiding a solar electric propulsion spacecraft due to nongravitational accelerations caused by random fluctuations in the magnitude and direction of the thrust vector. These difficulties may be handled by using a low thrust guidance law based on the linear-quadratic-Gaussian problem of stochastic control theory with a minimum terminal miss performance criterion. Explicit constraints are imposed on the variances of the control parameters, and an algorithm based on the Hilbert space extension of a parameter optimization method is presented for calculation of gains in the guidance law. The terminal navigation of a 1980 flyby mission to the comet Encke is used as an example.

  18. Some data processing requirements for precision Nap-Of-the-Earth (NOE) guidance and control of rotorcraft

    NASA Technical Reports Server (NTRS)

    Clement, Warren F.; Mcruer, Duane T.; Magdeleno, Raymond E.

    1987-01-01

    Nap-Of-the-Earth (NOE) flight in a conventional helicopter is extremely taxing for two pilots under visual conditions. Developing a single pilot all-weather NOE capability will require a fully automatic NOE navigation and flight control capability for which innovative guidance and control concepts were examined. Constrained time-optimality provides a validated criterion for automatically controlled NOE maneuvers if the pilot is to have confidence in the automated maneuvering technique. A second focus was to organize the storage and real-time updating of NOE terrain profiles and obstacles in course-oriented coordinates indexed to the mission flight plan. A method is presented for using pre-flight geodetic parameter identification to establish guidance commands for planned flight profiles and alternates. A method is then suggested for interpolating this guidance command information with the aid of forward and side looking sensors within the resolution of the stored data base, enriching the data content with real-time display, guidance, and control purposes. A third focus defined a class of automatic anticipative guidance algorithms and necessary data preview requirements to follow the vertical, lateral, and longitudinal guidance commands dictated by the updated flight profiles and to address the effects of processing delays in digital guidance and control system candidates. The results of this three-fold research effort offer promising alternatives designed to gain pilot acceptance for automatic guidance and control of rotorcraft in NOE operations.

  19. Visual control of navigation in insects and its relevance for robotics.

    PubMed

    Srinivasan, Mandyam V

    2011-08-01

    Flying insects display remarkable agility, despite their diminutive eyes and brains. This review describes our growing understanding of how these creatures use visual information to stabilize flight, avoid collisions with objects, regulate flight speed, detect and intercept other flying insects such as mates or prey, navigate to a distant food source, and orchestrate flawless landings. It also outlines the ways in which these insights are now being used to develop novel, biologically inspired strategies for the guidance of autonomous, airborne vehicles. Copyright © 2011 Elsevier Ltd. All rights reserved.

  20. Development of voice navigation system for the visually impaired by using IC tags.

    PubMed

    Takatori, Norihiko; Nojima, Kengo; Matsumoto, Masashi; Yanashima, Kenji; Magatani, Kazushige

    2006-01-01

    There are about 300,000 visually impaired persons in Japan. Most of them are old persons and, cannot become skillful in using a white cane, even if they make effort to learn how to use a white cane. Therefore, some guiding system that supports the independent activities of the visually impaired are required. In this paper, we will describe about a developed white cane system that supports the independent walking of the visually impaired in the indoor space. This system is composed of colored navigation lines that include IC tags and an intelligent white cane that has a navigation computer. In our system colored navigation lines that are put on the floor of the target space from the start point to the destination and IC tags that are set at the landmark point are used for indication of the route to the destination. The white cane has a color sensor, an IC tag transceiver and a computer system that includes a voice processor. This white cane senses the navigation line that has target color by a color sensor. When a color sensor finds the target color, the white cane informs a white cane user that he/she is on the navigation line by vibration. So, only following this vibration, the user can reach the destination. However, at some landmark points, guidance is necessary. At these points, an IC tag is set under the navigation line. The cane makes communication with the tag and informs the user about the land mark pint by pre recorded voice. Ten normal subjects who were blindfolded were tested with our developed system. All of them could walk along navigation line. And the IC tag information system worked well. Therefore, we have concluded that our system will be a very valuable one to support activities of the visually impaired.

  1. Can electromagnetic-navigated maxillary positioning replace occlusional splints in orthognathic surgery? A clinical pilot study.

    PubMed

    Berger, Moritz; Nova, Igor; Kallus, Sebastian; Ristow, Oliver; Freudlsperger, Christian; Eisenmann, Urs; Dickhaus, Hartmut; Engel, Michael; Hoffmann, Jürgen; Seeberger, Robin

    2017-10-01

    Because of the inaccuracy of intermaxillary splints in orthognathic surgery, intraoperative guidance via a real time navigation system might represent a suitable method for enhancing the precision of maxillary positioning. Therefore, in this clinical trial, maxillary repositioning after Le Fort I osteotomy was guided splintless by an electromagnetic navigation system. Conservatively planned maxillary reposition in each of 5 patients was transferred to a novel software module of the electromagnetic navigation system. Intraoperatively, after Le Fort I osteotomy, the software guided the maxilla to the targeted position. Accuracy was evaluated by pre- and postoperative cone beam computer tomography imaging (the vectorial distance of the incisal marker points was measured in three dimensions) and compared with that of a splint transposed control group. The repositioning of the maxilla guided by the electromagnetic navigation system was intuitive and simple to accomplish. The achieved maxillary position with a deviation of 0.7 mm on average to the planned position was equally accurate compared with that of the splint transposed control group of 0.5 mm (p > 0.05). The data of this clinical study display good accuracy for splintless electromagnetic-navigated maxillary positioning. Nevertheless, this method does not surpass the splint-encoded gold standard with regard to accuracy. Future investigations will be necessary to show the full potential of electromagnetic navigation in orthognathic surgery. Copyright © 2017 European Association for Cranio-Maxillo-Facial Surgery. Published by Elsevier Ltd. All rights reserved.

  2. The utilization of cranial models created using rapid prototyping techniques in the development of models for navigation training.

    PubMed

    Waran, V; Pancharatnam, Devaraj; Thambinayagam, Hari Chandran; Raman, Rajagopal; Rathinam, Alwin Kumar; Balakrishnan, Yuwaraj Kumar; Tung, Tan Su; Rahman, Z A

    2014-01-01

    Navigation in neurosurgery has expanded rapidly; however, suitable models to train end users to use the myriad software and hardware that come with these systems are lacking. Utilizing three-dimensional (3D) industrial rapid prototyping processes, we have been able to create models using actual computed tomography (CT) data from patients with pathology and use these models to simulate a variety of commonly performed neurosurgical procedures with navigation systems. To assess the possibility of utilizing models created from CT scan dataset obtained from patients with cranial pathology to simulate common neurosurgical procedures using navigation systems. Three patients with pathology were selected (hydrocephalus, right frontal cortical lesion, and midline clival meningioma). CT scan data following an image-guidance surgery protocol in DIACOM format and a Rapid Prototyping Machine were taken to create the necessary printed model with the corresponding pathology embedded. The ability in registration, planning, and navigation of two navigation systems using a variety of software and hardware provided by these platforms was assessed. We were able to register all models accurately using both navigation systems and perform the necessary simulations as planned. Models with pathology utilizing 3D rapid prototyping techniques accurately reflect data of actual patients and can be used in the simulation of neurosurgical operations using navigation systems. Georg Thieme Verlag KG Stuttgart · New York.

  3. Cadaveric in-situ testing of optical coherence tomography system-based skull base surgery guidance

    NASA Astrophysics Data System (ADS)

    Sun, Cuiru; Khan, Osaama H.; Siegler, Peter; Jivraj, Jamil; Wong, Ronnie; Yang, Victor X. D.

    2015-03-01

    Optical Coherence Tomography (OCT) has extensive potential for producing clinical impact in the field of neurological diseases. A neurosurgical OCT hand-held forward viewing probe in Bayonet shape has been developed. In this study, we test the feasibility of integrating this imaging probe with modern navigation technology for guidance and monitoring of skull base surgery. Cadaver heads were used to simulate relevant surgical approaches for treatment of sellar, parasellar and skull base pathology. A high-resolution 3D CT scan was performed on the cadaver head to provide baseline data for navigation. The cadaver head was mounted on existing 3- or 4-point fixation systems. Tracking markers were attached to the OCT probe and the surgeon-probe-OCT interface was calibrated. 2D OCT images were shown in real time together with the optical tracking images to the surgeon during surgery. The intraoperative video and multimodality imaging data set, consisting of real time OCT images, OCT probe location registered to neurosurgical navigation were assessed. The integration of intraoperative OCT imaging with navigation technology provides the surgeon with updated image information, which is important to deal with tissue shifts and deformations during surgery. Preliminary results demonstrate that the clinical neurosurgical navigation system can provide the hand held OCT probe gross anatomical localization. The near-histological imaging resolution of intraoperative OCT can improve the identification of microstructural/morphology differences. The OCT imaging data, combined with the neurosurgical navigation tracking has the potential to improve image interpretation, precision and accuracy of the therapeutic procedure.

  4. Sex differences in virtual navigation influenced by scale and navigation experience.

    PubMed

    Padilla, Lace M; Creem-Regehr, Sarah H; Stefanucci, Jeanine K; Cashdan, Elizabeth A

    2017-04-01

    The Morris water maze is a spatial abilities test adapted from the animal spatial cognition literature and has been studied in the context of sex differences in humans. This is because its standard design, which manipulates proximal (close) and distal (far) cues, applies to human navigation. However, virtual Morris water mazes test navigation skills on a scale that is vastly smaller than natural human navigation. Many researchers have argued that navigating in large and small scales is fundamentally different, and small-scale navigation might not simulate natural human navigation. Other work has suggested that navigation experience could influence spatial skills. To address the question of how individual differences influence navigational abilities in differently scaled environments, we employed both a large- (146.4 m in diameter) and a traditional- (36.6 m in diameter) scaled virtual Morris water maze along with a novel measure of navigation experience (lifetime mobility). We found sex differences on the small maze in the distal cue condition only, but in both cue-conditions on the large maze. Also, individual differences in navigation experience modulated navigation performance on the virtual water maze, showing that higher mobility was related to better performance with proximal cues for only females on the small maze, but for both males and females on the large maze.

  5. Development of the navigation system for visually impaired.

    PubMed

    Harada, Tetsuya; Kaneko, Yuki; Hirahara, Yoshiaki; Yanashima, Kenji; Magatani, Kazushige

    2004-01-01

    A white cane is a typical support instrument for the visually impaired. They use a white cane for the detection of obstacles while walking. So, the area where they have a mental map, they can walk using white cane without the help of others. However, they cannot walk independently in the unknown area, even if they use a white cane. Because, a white cane is a detecting device for obstacles and not a navigation device for their correct route. Now, we are developing the navigation system for the visually impaired which uses indoor space. In Japan, sometimes colored guide lines to the destination is used for a normal person. These lines are attached on the floor, we can reach the destination, if we walk along one of these line. In our system, a developed new white cane senses one colored guide line, and make notice to an user by vibration. This system recognizes the line of the color stuck on the floor by the optical sensor attached in the white cane. And in order to guide still more smoothly, infrared beacons (optical beacon), which can perform voice guidance, are also used.

  6. Percutaneous needle placement using laser guidance: a practical solution

    NASA Astrophysics Data System (ADS)

    Xu, Sheng; Kapoor, Ankur; Abi-Jaoudeh, Nadine; Imbesi, Kimberly; Hong, Cheng William; Mazilu, Dumitru; Sharma, Karun; Venkatesan, Aradhana M.; Levy, Elliot; Wood, Bradford J.

    2013-03-01

    In interventional radiology, various navigation technologies have emerged aiming to improve the accuracy of device deployment and potentially the clinical outcomes of minimally invasive procedures. While these technologies' performance has been explored extensively, their impact on daily clinical practice remains undetermined due to the additional cost and complexity, modification of standard devices (e.g. electromagnetic tracking), and different levels of experience among physicians. Taking these factors into consideration, a robotic laser guidance system for percutaneous needle placement is developed. The laser guidance system projects a laser guide line onto the skin entry point of the patient, helping the physician to align the needle with the planned path of the preoperative CT scan. To minimize changes to the standard workflow, the robot is integrated with the CT scanner via optical tracking. As a result, no registration between the robot and CT is needed. The robot can compensate for the motion of the equipment and keep the laser guide line aligned with the biopsy path in real-time. Phantom experiments showed that the guidance system can benefit physicians at different skill levels, while clinical studies showed improved accuracy over conventional freehand needle insertion. The technology is safe, easy to use, and does not involve additional disposable costs. It is our expectation that this technology can be accepted by interventional radiologists for CT guided needle placement procedures.

  7. Guidance and control 1992; Proceedings of the 15th Annual AAS Rocky Mountain Conference, Keystone, CO, Feb. 8-12, 1992

    NASA Astrophysics Data System (ADS)

    Culp, Robert D.; Zietz, Richard P.

    The present volume on guidance and control discusses advances in guidance, navigation, and control, guidance and control storyboard displays, space robotic control, spacecraft control and flexible body interaction, and the Mission to Planet Earth. Attention is given to applications of Newton's method to attitude determination, a new family of low-cost momentum/reaction wheels, stellar attitude data handling, and satellite life prediction using propellant quantity measurements. Topics addressed include robust manipulator controller specification and design, implementations and applications of a manipulator control testbed, optimizing transparency in teleoperator architectures, and MIMO system identification using frequency response data. Also discussed are instrument configurations for the restructured Earth Observing System, the HIRIS instrument, clouds and the earth's radiant energy system, and large space-based systems for dealing with global change.

  8. Interplanetary navigation

    NASA Technical Reports Server (NTRS)

    Stuart, J. R.

    1984-01-01

    The evolution of NASA's planetary navigation techniques is traced, and radiometric and optical data types are described. Doppler navigation; the Deep Space Network; differenced two-way range techniques; differential very long base interferometry; and optical navigation are treated. The Doppler system enables a spacecraft in cruise at high absolute declination to be located within a total angular uncertainty of 1/4 microrad. The two-station range measurement provides a 1 microrad backup at low declinations. Optical data locate the spacecraft relative to the target to an angular accuracy of 5 microrad. Earth-based radio navigation and its less accurate but target-relative counterpart, optical navigation, thus form complementary measurement sources, which provide a powerful sensory system to produce high-precision orbit estimates.

  9. Feasibility Study of Needle Placement in Percutaneous Vertebroplasty: Cone-Beam Computed Tomography Guidance Versus Conventional Fluoroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Braak, Sicco J., E-mail: sjbraak@gmail.com; Zuurmond, Kirsten, E-mail: kirsten.zuurmond@philips.com; Aerts, Hans C. J., E-mail: hans.cj.aerts@philips.com

    2013-08-01

    ObjectiveTo investigate the accuracy, procedure time, fluoroscopy time, and dose area product (DAP) of needle placement during percutaneous vertebroplasty (PVP) using cone-beam computed tomography (CBCT) guidance versus fluoroscopy.Materials and MethodsOn 4 spine phantoms with 11 vertebrae (Th7-L5), 4 interventional radiologists (2 experienced with CBCT guidance and two inexperienced) punctured all vertebrae in a bipedicular fashion. Each side was randomization to either CBCT guidance or fluoroscopy. CBCT guidance is a sophisticated needle guidance technique using CBCT, navigation software, and real-time fluoroscopy. The placement of the needle had to be to a specific target point. After the procedure, CBCT was performed tomore » determine the accuracy, procedure time, fluoroscopy time, and DAP. Analysis of the difference between methods and experience level was performed.ResultsMean accuracy using CBCT guidance (2.61 mm) was significantly better compared with fluoroscopy (5.86 mm) (p < 0.0001). Procedure time was in favor of fluoroscopy (7.39 vs. 10.13 min; p = 0.001). Fluoroscopy time during CBCT guidance was lower, but this difference is not significant (71.3 vs. 95.8 s; p = 0.056). DAP values for CBCT guidance and fluoroscopy were 514 and 174 mGy cm{sup 2}, respectively (p < 0.0001). There was a significant difference in favor of experienced CBCT guidance users regarding accuracy for both methods, procedure time of CBCT guidance, and added DAP values for fluoroscopy.ConclusionCBCT guidance allows users to perform PVP more accurately at the cost of higher patient dose and longer procedure time. Because procedural complications (e.g., cement leakage) are related to the accuracy of the needle placement, improvements in accuracy are clinically relevant. Training in CBCT guidance is essential to achieve greater accuracy and decrease procedure time/dose values.« less

  10. Analytical Evaluation of a Method of Midcourse Guidance for Rendezvous with Earth Satellites

    NASA Technical Reports Server (NTRS)

    Eggleston, John M.; Dunning, Robert S.

    1961-01-01

    A digital-computer simulation was made of the midcourse or ascent phase of a rendezvous between a ferry vehicle and a space station. The simulation involved a closed-loop guidance system in which both the relative position and relative velocity between ferry and station are measured (by simulated radar) and the relative-velocity corrections required to null the miss distance are computed and applied. The results are used to study the effectiveness of a particular set of guidance equations and to study the effects of errors in the launch conditions and errors in the navigation data. A number of trajectories were investigated over a variety of initial conditions for cases in which the space station was in a circular orbit and also in an elliptic orbit. Trajectories are described in terms of a rotating coordinate system fixed in the station. As a result of this study the following conclusions are drawn. Successful rendezvous can be achieved even with launch conditions which are substantially less accurate than those obtained with present-day techniques. The average total-velocity correction required during the midcourse phase is directly proportional to the radar accuracy but the miss distance is not. Errors in the time of booster burnout or in the position of the ferry at booster burnout are less important than errors in the ferry velocity at booster burnout. The use of dead bands to account for errors in the navigational (radar) equipment appears to depend upon a compromise between the magnitude of the velocity corrections to be made and the allowable miss distance at the termination of the midcourse phase of the rendezvous. When approximate guidance equations are used, there are limits on their accuracy which are dependent on the angular distance about the earth to the expected point of rendezvous.

  11. Navigation system for robot-assisted intra-articular lower-limb fracture surgery.

    PubMed

    Dagnino, Giulio; Georgilas, Ioannis; Köhler, Paul; Morad, Samir; Atkins, Roger; Dogramadzi, Sanja

    2016-10-01

    In the surgical treatment for lower-leg intra-articular fractures, the fragments have to be positioned and aligned to reconstruct the fractured bone as precisely as possible, to allow the joint to function correctly again. Standard procedures use 2D radiographs to estimate the desired reduction position of bone fragments. However, optimal correction in a 3D space requires 3D imaging. This paper introduces a new navigation system that uses pre-operative planning based on 3D CT data and intra-operative 3D guidance to virtually reduce lower-limb intra-articular fractures. Physical reduction in the fractures is then performed by our robotic system based on the virtual reduction. 3D models of bone fragments are segmented from CT scan. Fragments are pre-operatively visualized on the screen and virtually manipulated by the surgeon through a dedicated GUI to achieve the virtual reduction in the fracture. Intra-operatively, the actual position of the bone fragments is provided by an optical tracker enabling real-time 3D guidance. The motion commands for the robot connected to the bone fragment are generated, and the fracture physically reduced based on the surgeon's virtual reduction. To test the system, four femur models were fractured to obtain four different distal femur fracture types. Each one of them was subsequently reduced 20 times by a surgeon using our system. The navigation system allowed an orthopaedic surgeon to virtually reduce the fracture with a maximum residual positioning error of [Formula: see text] (translational) and [Formula: see text] (rotational). Correspondent physical reductions resulted in an accuracy of 1.03 ± 0.2 mm and [Formula: see text], when the robot reduced the fracture. Experimental outcome demonstrates the accuracy and effectiveness of the proposed navigation system, presenting a fracture reduction accuracy of about 1 mm and [Formula: see text], and meeting the clinical requirements for distal femur fracture reduction procedures.

  12. Preliminary Operational Results of the TDRSS Onboard Navigation System (TONS) for the Terra Mission

    NASA Technical Reports Server (NTRS)

    Gramling, Cheryl; Lorah, John; Santoro, Ernest; Work, Kevin; Chambers, Robert; Bauer, Frank H. (Technical Monitor)

    2000-01-01

    The Earth Observing System Terra spacecraft was launched on December 18, 1999, to provide data for the characterization of the terrestrial and oceanic surfaces, clouds, radiation, aerosols, and radiative balance. The Tracking and Data Relay Satellite System (TDRSS) Onboard Navigation System (ONS) (TONS) flying on Terra provides the spacecraft with an operational real-time navigation solution. TONS is a passive system that makes judicious use of Terra's communication and computer subsystems. An objective of the ONS developed by NASA's Goddard Space Flight Center (GSFC) Guidance, Navigation and Control Center is to provide autonomous navigation with minimal power, weight, and volume impact on the user spacecraft. TONS relies on extracting tracking measurements onboard from a TDRSS forward-link communication signal and processing these measurements in an onboard extended Kalman filter to estimate Terra's current state. Terra is the first NASA low Earth orbiting mission to fly autonomous navigation which produces accurate results. The science orbital accuracy requirements for Terra are 150 meters (m) (3sigma) per axis with a goal of 5m (1 sigma) RSS which TONS is expected to meet. The TONS solutions are telemetered in real-time to the mission scientists along with their science data for immediate processing. Once set in the operational mode, TONS eliminates the need for ground orbit determination and allows for a smooth flow from the spacecraft telemetry to planning products for the mission team. This paper will present the preliminary results of the operational TONS solution available from Terra.

  13. Guidance of retinal axons in mammals.

    PubMed

    Herrera, Eloísa; Erskine, Lynda; Morenilla-Palao, Cruz

    2017-11-26

    In order to navigate through the surrounding environment many mammals, including humans, primarily rely on vision. The eye, composed of the choroid, sclera, retinal pigmented epithelium, cornea, lens, iris and retina, is the structure that receives the light and converts it into electrical impulses. The retina contains six major types of neurons involving in receiving and modifying visual information and passing it onto higher visual processing centres in the brain. Visual information is relayed to the brain via the axons of retinal ganglion cells (RGCs), a projection known as the optic pathway. The proper formation of this pathway during development is essential for normal vision in the adult individual. Along this pathway there are several points where visual axons face 'choices' in their direction of growth. Understanding how these choices are made has advanced significantly our knowledge of axon guidance mechanisms. Thus, the development of the visual pathway has served as an extremely useful model to reveal general principles of axon pathfinding throughout the nervous system. However, due to its particularities, some cellular and molecular mechanisms are specific for the visual circuit. Here we review both general and specific mechanisms involved in the guidance of mammalian RGC axons when they are traveling from the retina to the brain to establish precise and stereotyped connections that will sustain vision. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Three-dimensional analysis of the surface registration accuracy of electromagnetic navigation systems in live endoscopic sinus surgery.

    PubMed

    Chang, C M; Fang, K M; Huang, T W; Wang, C T; Cheng, P W

    2013-12-01

    Studies on the performance of surface registration with electromagnetic tracking systems are lacking in both live surgery and the laboratory setting. This study presents the efficiency in time of the system preparation as well as the navigational accuracy of surface registration using electromagnetic tracking systems. Forty patients with bilateral chronic paranasal pansinusitis underwent endoscopic sinus surgery after undergoing sinus computed tomography scans. The surgeries were performed under electromagnetic navigation guidance after the surface registration had been carried out on all of the patients. The intraoperative measurements indicate the time taken for equipment set-up, surface registration and surgical procedure, as well as the degree of navigation error along 3 axes. The time taken for equipment set-up, surface registration and the surgical procedure was 179 +- 23 seconds, 39 +- 4.8 seconds and 114 +- 36 minutes, respectively. A comparison of the navigation error along the 3 axes showed that the deviation in the medial-lateral direction was significantly less than that in the anterior-posterior and cranial-caudal directions. The procedures of equipment set-up and surface registration in electromagnetic navigation tracking are efficient, convenient and easy to manipulate. The system accuracy is within the acceptable ranges, especially on the medial-lateral axis.

  15. Accuracy of flat panel detector CT with integrated navigational software with and without MR fusion for single-pass needle placement.

    PubMed

    Mabray, Marc C; Datta, Sanjit; Lillaney, Prasheel V; Moore, Teri; Gehrisch, Sonja; Talbott, Jason F; Levitt, Michael R; Ghodke, Basavaraj V; Larson, Paul S; Cooke, Daniel L

    2016-07-01

    Fluoroscopic systems in modern interventional suites have the ability to perform flat panel detector CT (FDCT) with navigational guidance. Fusion with MR allows navigational guidance towards FDCT occult targets. We aim to evaluate the accuracy of this system using single-pass needle placement in a deep brain stimulation (DBS) phantom. MR was performed on a head phantom with DBS lead targets. The head phantom was placed into fixation and FDCT was performed. FDCT and MR datasets were automatically fused using the integrated guidance system (iGuide, Siemens). A DBS target was selected on the MR dataset. A 10 cm, 19 G needle was advanced by hand in a single pass using laser crosshair guidance. Radial error was visually assessed against measurement markers on the target and by a second FDCT. Ten needles were placed using CT-MR fusion and 10 needles were placed without MR fusion, with targeting based solely on FDCT and fusion steps repeated for every pass. Mean radial error was 2.75±1.39 mm as defined by visual assessment to the centre of the DBS target and 2.80±1.43 mm as defined by FDCT to the centre of the selected target point. There were no statistically significant differences in error between MR fusion and non-MR guided series. Single pass needle placement in a DBS phantom using FDCT guidance is associated with a radial error of approximately 2.5-3.0 mm at a depth of approximately 80 mm. This system could accurately target sub-centimetre intracranial lesions defined on MR. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  16. Mapping the navigational knowledge of individually foraging ants, Myrmecia croslandi

    PubMed Central

    Narendra, Ajay; Gourmaud, Sarah; Zeil, Jochen

    2013-01-01

    Ants are efficient navigators, guided by path integration and visual landmarks. Path integration is the primary strategy in landmark-poor habitats, but landmarks are readily used when available. The landmark panorama provides reliable information about heading direction, routes and specific location. Visual memories for guidance are often acquired along routes or near to significant places. Over what area can such locally acquired memories provide information for reaching a place? This question is unusually approachable in the solitary foraging Australian jack jumper ant, since individual foragers typically travel to one or two nest-specific foraging trees. We find that within 10 m from the nest, ants both with and without home vector information available from path integration return directly to the nest from all compass directions, after briefly scanning the panorama. By reconstructing panoramic views within the successful homing range, we show that in the open woodland habitat of these ants, snapshot memories acquired close to the nest provide sufficient navigational information to determine nest-directed heading direction over a surprisingly large area, including areas that animals may have not visited previously. PMID:23804615

  17. [Surgical Correction of Scoliosis: Does Intraoperative CT Navigation Prolong Operative Time?

    PubMed

    Skála-Rosenbaum, J; Ježek, M; Džupa, V; Kadeřábek, R; Douša, P; Rusnák, R; Krbec, M

    2016-01-01

    PURPOSE OF THE STUDY The aim of the study was to compare the duration of corrective surgery for scoliosis in relation to the intra-operative use of either fluoroscopic or CT navigation. MATERIAL AND METHODS The indication for surgery was adolescent idiopathic scoliosis in younger patients and degenerative scoliosis in middleage or elderly patients. In a retrospective study, treatment outcomes in 43 consecutive patients operated on between April 2011 and April 2014 were compared. Only patients undergoing surgical correction of five or more spinal segments (fixation of six and more vertebrae) were included. RESULTS Transpedicular screw fixation of six to 13 vertebrae was performed under C-arm fluoroscopy guidance in 22 patients, and transpedicular screws were inserted in six to 14 vertebrae using the O-arm imaging system in 21 patients. A total of 246 screws were placed using the C-arm system and 340 screws were inserted using the O-arm system (p < 0.001). The procedures with use of the O-arm system were more complicated and required an average operative time longer by 48% (measured from the first skin incision to the completion of skin suture). However, the mean time needed for one screw placement (the sum of all surgical procedures with the use of a navigation technique divided by the number of screws placed using this technique) was the same in both techniques (19 min). DISCUSSION With good teamwork (surgeons, anaesthesiologists and a radiologist attending to the O-arm system), the time required to obtain one intra-operative CT scan is 3 to 5 minutes. The study showed that the mean time for placement of one screw was identical in both techniques although the average operative time was longer in surgery with O-arm navigation. The 19- minute interval was not the real placement time per screw. It was the sum of all operative times of surgical procedures (from first incision to suture completion including the whole approach within the range of planned stabilization

  18. Navigation Strategy for the Mars 2001 Lander Mission

    NASA Technical Reports Server (NTRS)

    Mase, Robert A.; Spencer, David A.; Smith, John C.; Braun, Robert D.

    2000-01-01

    The Mars Surveyor Program (MSP) is an ongoing series of missions designed to robotically study, map and search for signs of life on the planet Mars. The MSP 2001 project will advance the effort by sending an orbiter, a lander and a rover to the red planet in the 2001 opportunity. Each vehicle will carry a science payload that will Investigate the Martian environment on both a global and on a local scale. Although this mission will not directly search for signs of life, or cache samples to be returned to Earth, it will demonstrate certain enabling technologies that will be utilized by the future Mars Sample Return missions. One technology that is needed for the Sample Return mission is the capability to place a vehicle on the surface within several kilometers of the targeted landing site. The MSP'01 Lander will take the first major step towards this type of precision landing at Mars. Significant reduction of the landed footprint will be achieved through two technology advances. The first, and most dramatic, is hypersonic aeromaneuvering; the second is improved approach navigation. As a result, the guided entry will produce in a footprint that is only tens of kilometers, which is an order of magnitude improvement over the Pathfinder and Mars Polar Lander ballistic entries. This reduction will significantly enhance scientific return by enabling the potential selection of otherwise unreachable landing sites with unique geologic interest and public appeal. A landed footprint reduction from hundreds to tens of kilometers is also a milestone on the path towards human exploration of Mars, where the desire is to place multiple vehicles within several hundred meters of the planned landing site. Hypersonic aeromaneuvering is an extension of the atmospheric flight goals of the previous landed missions, Pathfinder and Mars Polar Lander (MPL), that utilizes aerodynamic lift and an autonomous guidance algorithm while in the upper atmosphere. The onboard guidance algorithm will

  19. Space shuttle navigation analysis. Volume 2: Baseline system navigation

    NASA Technical Reports Server (NTRS)

    Jones, H. L.; Luders, G.; Matchett, G. A.; Rains, R. G.

    1980-01-01

    Studies related to the baseline navigation system for the orbiter are presented. The baseline navigation system studies include a covariance analysis of the Inertial Measurement Unit calibration and alignment procedures, postflight IMU error recovery for the approach and landing phases, on-orbit calibration of IMU instrument biases, and a covariance analysis of entry and prelaunch navigation system performance.

  20. Modified Navigation Instructions for Spatial Navigation Assistance Systems Lead to Incidental Spatial Learning

    PubMed Central

    Gramann, Klaus; Hoepner, Paul; Karrer-Gauss, Katja

    2017-01-01

    Spatial cognitive skills deteriorate with the increasing use of automated GPS navigation and a general decrease in the ability to orient in space might have further impact on independence, autonomy, and quality of life. In the present study we investigate whether modified navigation instructions support incidental spatial knowledge acquisition. A virtual driving environment was used to examine the impact of modified navigation instructions on spatial learning while using a GPS navigation assistance system. Participants navigated through a simulated urban and suburban environment, using navigation support to reach their destination. Driving performance as well as spatial learning was thereby assessed. Three navigation instruction conditions were tested: (i) a control group that was provided with classical navigation instructions at decision points, and two other groups that received navigation instructions at decision points including either (ii) additional irrelevant information about landmarks or (iii) additional personally relevant information (i.e., individual preferences regarding food, hobbies, etc.), associated with landmarks. Driving performance revealed no differences between navigation instructions. Significant improvements were observed in both modified navigation instruction conditions on three different measures of spatial learning and memory: subsequent navigation of the initial route without navigation assistance, landmark recognition, and sketch map drawing. Future navigation assistance systems could incorporate modified instructions to promote incidental spatial learning and to foster more general spatial cognitive abilities. Such systems might extend mobility across the lifespan. PMID:28243219

  1. The influence of ship's stability on safety of navigation

    NASA Astrophysics Data System (ADS)

    Hanzu-Pazara, R.; Duse; Varsami, C.; Andrei, C.; Dumitrache, R.

    2016-08-01

    Ship's stability is one of the most important and complex concept about safety of ship and safety of navigation and it is governed by maritime law as well as maritime codes. The paper presents the importance of ship's intact stability as part of the general concept of ship's seaworthiness. There is always a correlation between ship’ stability and safety of ship and safety of navigation. Loss of ship's stability is presented as a threat to safety of navigation. We are going to present the causes that lead to ship stability failure and their impact on safety of navigation. A study of various ship stability casualties in heavy weather conditions are going to be presented, the causes are going to be analyzed and the possible ways of stability failures are assessed. Vessel's intact stability is a fundamental component of seaworthiness so it is in the interest of all owners/operators to learn about this topic and ensure that their vessel possesses a satisfactory level of stability in order to ensure its safety as well as that of the people on board the ship. Understanding ship's stability, trim, stress, and the basics of ship's construction is a key to keeping a ship seaworthy. The findings of this study can be beneficial to the maritime safety administrations to adopt decision-making on maritime safety management, but it is also important to carry out statistics and analysis of marine casualties to help to adopt proper safety management measures. Moreover, the study can be a useful guidance for masters and officers on board vessel in order to understand the factors that contribute to ship stability failure during the voyage not only in port during loading operations and to take preventive measures to avoid to put the ship in such a dangerous situations.

  2. The navigation system of the JPL robot

    NASA Technical Reports Server (NTRS)

    Thompson, A. M.

    1977-01-01

    The control structure of the JPL research robot and the operations of the navigation subsystem are discussed. The robot functions as a network of interacting concurrent processes distributed among several computers and coordinated by a central executive. The results of scene analysis are used to create a segmented terrain model in which surface regions are classified by traversibility. The model is used by a path planning algorithm, PATH, which uses tree search methods to find the optimal path to a goal. In PATH, the search space is defined dynamically as a consequence of node testing. Maze-solving and the use of an associative data base for context dependent node generation are also discussed. Execution of a planned path is accomplished by a feedback guidance process with automatic error recovery.

  3. Aeronautic Instruments. Section VI : Aerial Navigation and Navigating Instruments

    NASA Technical Reports Server (NTRS)

    Eaton, H N

    1923-01-01

    This report outlines briefly the methods of aerial navigation which have been developed during the past few years, with a description of the different instruments used. Dead reckoning, the most universal method of aerial navigation, is first discussed. Then follows an outline of the principles of navigation by astronomical observation; a discussion of the practical use of natural horizons, such as sea, land, and cloud, in making extant observations; the use of artificial horizons, including the bubble, pendulum, and gyroscopic types. A description is given of the recent development of the radio direction finder and its application to navigation.

  4. Summary of Data from the Fifth AIAA CFD Drag Prediction Workshop

    NASA Technical Reports Server (NTRS)

    Levy, David W.; Laflin, Kelly R.; Tinoco, Edward N.; Vassberg, John C.; Mani, Mori; Rider, Ben; Rumsey, Chris; Wahls, Richard A.; Morrison, Joseph H.; Brodersen, Olaf P.; hide

    2013-01-01

    Results from the Fifth AIAA CFD Drag Prediction Workshop (DPW-V) are presented. As with past workshops, numerical calculations are performed using industry-relevant geometry, methodology, and test cases. This workshop focused on force/moment predictions for the NASA Common Research Model wing-body configuration, including a grid refinement study and an optional buffet study. The grid refinement study used a common grid sequence derived from a multiblock topology structured grid. Six levels of refinement were created resulting in grids ranging from 0.64x10(exp 6) to 138x10(exp 6) hexahedra - a much larger range than is typically seen. The grids were then transformed into structured overset and hexahedral, prismatic, tetrahedral, and hybrid unstructured formats all using the same basic cloud of points. This unique collection of grids was designed to isolate the effects of grid type and solution algorithm by using identical point distributions. This study showed reduced scatter and standard deviation from previous workshops. The second test case studied buffet onset at M=0.85 using the Medium grid (5.1x106 nodes) from the above described sequence. The prescribed alpha sweep used finely spaced intervals through the zone where wing separation was expected to begin. Some solutions exhibited a large side of body separation bubble that was not observed in the wind tunnel results. An optional third case used three sets of geometry, grids, and conditions from the Turbulence Model Resource website prepared by the Turbulence Model Benchmarking Working Group. These simple cases were intended to help identify potential differences in turbulence model implementation. Although a few outliers and issues affecting consistency were identified, the majority of participants produced consistent results.

  5. Heading-vector navigation based on head-direction cells and path integration.

    PubMed

    Kubie, John L; Fenton, André A

    2009-05-01

    Insect navigation is guided by heading vectors that are computed by path integration. Mammalian navigation models, on the other hand, are typically based on map-like place representations provided by hippocampal place cells. Such models compute optimal routes as a continuous series of locations that connect the current location to a goal. We propose a "heading-vector" model in which head-direction cells or their derivatives serve both as key elements in constructing the optimal route and as the straight-line guidance during route execution. The model is based on a memory structure termed the "shortcut matrix," which is constructed during the initial exploration of an environment when a set of shortcut vectors between sequential pairs of visited waypoint locations is stored. A mechanism is proposed for calculating and storing these vectors that relies on a hypothesized cell type termed an "accumulating head-direction cell." Following exploration, shortcut vectors connecting all pairs of waypoint locations are computed by vector arithmetic and stored in the shortcut matrix. On re-entry, when local view or place representations query the shortcut matrix with a current waypoint and goal, a shortcut trajectory is retrieved. Since the trajectory direction is in head-direction compass coordinates, navigation is accomplished by tracking the firing of head-direction cells that are tuned to the heading angle. Section 1 of the manuscript describes the properties of accumulating head-direction cells. It then shows how accumulating head-direction cells can store local vectors and perform vector arithmetic to perform path-integration-based homing. Section 2 describes the construction and use of the shortcut matrix for computing direct paths between any pair of locations that have been registered in the shortcut matrix. In the discussion, we analyze the advantages of heading-based navigation over map-based navigation. Finally, we survey behavioral evidence that nonhippocampal

  6. Electromagnetic navigation versus fluoroscopy in aortic endovascular procedures: a phantom study.

    PubMed

    Tystad Lund, Kjetil; Tangen, Geir Arne; Manstad-Hulaas, Frode

    2017-01-01

    To explore the possible benefits of electromagnetic (EM) navigation versus conventional fluoroscopy during abdominal aortic endovascular procedures. The study was performed on a phantom representing the abdominal aorta. Intraoperative cone beam computed tomography (CBCT) of the phantom was acquired and merged with a preoperative multidetector CT (MDCT). The CBCT was performed with a reference plate fixed to the phantom that, after merging the CBCT with the MDCT, facilitated registration of the MDCT volume with the EM space. An EM field generator was stationed near the phantom. Navigation software was used to display EM-tracked instruments within the 3D image volume. Fluoroscopy was performed using a C-arm system. Five operators performed a series of renal artery cannulations using modified instruments, alternatingly using fluoroscopy or EM navigation as the sole guidance method. Cannulation durations and associated radiation dosages were noted along with the number of cannulations complicated by loss of guidewire insertion. A total of 120 cannulations were performed. The median cannulation durations were 41.5 and 34.5 s for the fluoroscopy- and EM-guided cannulations, respectively. No significant difference in cannulation duration was found between the two modalities (p = 0.736). Only EM navigation showed a significant reduction in cannulation duration in the latter half of its cannulation series compared with the first half (p = 0.004). The median dose area product for fluoroscopy was 0.0836 [Formula: see text]. EM-guided cannulations required a one-time CBCT dosage of 3.0278 [Formula: see text]. Three EM-guided and zero fluoroscopy-guided cannulations experienced loss of guidewire insertion. Our findings indicate that EM navigation is not inferior to fluoroscopy in terms of the ability to guide endovascular interventions. Its utilization may be of particular interest in complex interventions where adequate visualization or minimal use of contrast agents is

  7. Spinal intra-operative three-dimensional navigation with infra-red tool tracking: correlation between clinical and absolute engineering accuracy

    NASA Astrophysics Data System (ADS)

    Guha, Daipayan; Jakubovic, Raphael; Gupta, Shaurya; Yang, Victor X. D.

    2017-02-01

    Computer-assisted navigation (CAN) may guide spinal surgeries, reliably reducing screw breach rates. Definitions of screw breach, if reported, vary widely across studies. Absolute quantitative error is theoretically a more precise and generalizable metric of navigation accuracy, but has been computed variably and reported in fewer than 25% of clinical studies of CAN-guided pedicle screw accuracy. We reviewed a prospectively-collected series of 209 pedicle screws placed with CAN guidance to characterize the correlation between clinical pedicle screw accuracy, based on postoperative imaging, and absolute quantitative navigation accuracy. We found that acceptable screw accuracy was achieved for significantly fewer screws based on 2mm grade vs. Heary grade, particularly in the lumbar spine. Inter-rater agreement was good for the Heary classification and moderate for the 2mm grade, significantly greater among radiologists than surgeon raters. Mean absolute translational/angular accuracies were 1.75mm/3.13° and 1.20mm/3.64° in the axial and sagittal planes, respectively. There was no correlation between clinical and absolute navigation accuracy, in part because surgeons appear to compensate for perceived translational navigation error by adjusting screw medialization angle. Future studies of navigation accuracy should therefore report absolute translational and angular errors. Clinical screw grades based on post-operative imaging, if reported, may be more reliable if performed in multiple by radiologist raters.

  8. Analysis of DGPS/INS and MLS/INS final approach navigation errors and control performance data

    NASA Technical Reports Server (NTRS)

    Hueschen, Richard M.; Spitzer, Cary R.

    1992-01-01

    Flight tests were conducted jointly by NASA Langley Research Center and Honeywell, Inc., on a B-737 research aircraft to record a data base for evaluating the performance of a differential DGPS/inertial navigation system (INS) which used GPS Course/Acquisition code receivers. Estimates from the DGPS/INS and a Microwave Landing System (MLS)/INS, and various aircraft parameter data were recorded in real time aboard the aircraft while flying along the final approach path to landing. This paper presents the mean and standard deviation of the DGPS/INS and MLS/INS navigation position errors computed relative to the laser tracker system and of the difference between the DGPS/INS and MLS/INS velocity estimates. RMS errors are presented for DGPS/INS and MLS/INS guidance errors (localizer and glideslope). The mean navigation position errors and standard deviation of the x position coordinate of the DGPS/INS and MLS/INS systems were found to be of similar magnitude while the standard deviation of the y and z position coordinate errors were significantly larger for DGPS/INS compared to MLS/INS.

  9. [Navigated drilling for femoral head necrosis. Experimental and clinical results].

    PubMed

    Beckmann, J; Tingart, M; Perlick, L; Lüring, C; Grifka, J; Anders, S

    2007-05-01

    In the early stages of osteonecrosis of the femoral head, core decompression by exact drilling into the ischemic areas can reduce pain and achieve reperfusion. Using computer aided surgery, the precision of the drilling can be improved while simultaneously lowering radiation exposure time for both staff and patients. We describe the experimental and clinical results of drilling under the guidance of the fluoroscopically-based VectorVision navigation system (BrainLAB, Munich, Germany). A total of 70 sawbones were prepared mimicking an osteonecrosis of the femoral head. In two experimental models, bone only and obesity, as well as in a clinical setting involving ten patients with osteonecrosis of the femoral head, the precision and the duration of radiation exposure were compared between the VectorVision system and conventional drilling. No target was missed. For both models, there was a statistically significant difference in terms of the precision, the number of drilling corrections as well as the radiation exposure time. The average distance to the desired midpoint of the lesion of both models was 0.48 mm for navigated drilling and 1.06 mm for conventional drilling, the average drilling corrections were 0.175 and 2.1, and the radiation exposure time less than 1 s and 3.6 s, respectively. In the clinical setting, the reduction of radiation exposure (below 1 s for navigation compared to 56 s for the conventional technique) as well as of drilling corrections (0.2 compared to 3.4) was also significant. Computer guided drilling using the fluoroscopically based VectorVision navigation system shows a clearly improved precision with a enormous simultaneous reduction in radiation exposure. It is therefore recommended for clinical routine.

  10. Flight tests of the 4D flight guidance display

    NASA Astrophysics Data System (ADS)

    Below, Christian; von Viebahn, Harro; Purpus, Matthias

    1997-06-01

    A perspective primary flight and a navigation display format were evaluated in a flying testbed. The flight tests comprised ILS- and standard approaches as well as low level operations utilizing the depiction of a spatial channel, and demonstrations of the inherent ground proximity warning function. In the cockpit of the VFW614, the left seat was equipped with a sidestick and a flat panel display, which showed both the 4D-display an the Navigation Display format. Airline and airforce pilots flew several missions each. Although most of the pilots criticizes that a typical flight director commanding the aircraft's attitude was missing, they could follow the channel precisely. However, some airline pilots stated a lack of vertical guidance information during the final approach. Leaving and re- entering the channel could be easily accomplished form any direction. In summary pilots' assessment of the display concept yielded an overall improvement of SA. In particular it was stated that displays are an appropriate means to avoid CFIT accidents. With the fist prototypes of 3D- graphics generators designed for avionics available the flight evaluation will continue including feasibility demonstrations of high-performance graphics for civil and military aircraft applications.

  11. A Wearable Goggle Navigation System for Dual-Mode Optical and Ultrasound Localization of Suspicious Lesions: Validation Studies Using Tissue-Simulating Phantoms and an Ex Vivo Human Breast Tissue Model.

    PubMed

    Zhang, Zeshu; Pei, Jing; Wang, Dong; Gan, Qi; Ye, Jian; Yue, Jian; Wang, Benzhong; Povoski, Stephen P; Martin, Edward W; Hitchcock, Charles L; Yilmaz, Alper; Tweedle, Michael F; Shao, Pengfei; Xu, Ronald X

    2016-01-01

    Surgical resection remains the primary curative treatment for many early-stage cancers, including breast cancer. The development of intraoperative guidance systems for identifying all sites of disease and improving the likelihood of complete surgical resection is an area of active ongoing research, as this can lead to a decrease in the need of subsequent additional surgical procedures. We develop a wearable goggle navigation system for dual-mode optical and ultrasound imaging of suspicious lesions. The system consists of a light source module, a monochromatic CCD camera, an ultrasound system, a Google Glass, and a host computer. It is tested in tissue-simulating phantoms and an ex vivo human breast tissue model. Our experiments demonstrate that the surgical navigation system provides useful guidance for localization and core needle biopsy of simulated tumor within the tissue-simulating phantom, as well as a core needle biopsy and subsequent excision of Indocyanine Green (ICG)-fluorescing sentinel lymph nodes. Our experiments support the contention that this wearable goggle navigation system can be potentially very useful and fully integrated by the surgeon for optimizing many aspects of oncologic surgery. Further engineering optimization and additional in vivo clinical validation work is necessary before such a surgical navigation system can be fully realized in the everyday clinical setting.

  12. A Wearable Goggle Navigation System for Dual-Mode Optical and Ultrasound Localization of Suspicious Lesions: Validation Studies Using Tissue-Simulating Phantoms and an Ex Vivo Human Breast Tissue Model

    PubMed Central

    Wang, Dong; Gan, Qi; Ye, Jian; Yue, Jian; Wang, Benzhong; Povoski, Stephen P.; Martin, Edward W.; Hitchcock, Charles L.; Yilmaz, Alper; Tweedle, Michael F.; Shao, Pengfei; Xu, Ronald X.

    2016-01-01

    Surgical resection remains the primary curative treatment for many early-stage cancers, including breast cancer. The development of intraoperative guidance systems for identifying all sites of disease and improving the likelihood of complete surgical resection is an area of active ongoing research, as this can lead to a decrease in the need of subsequent additional surgical procedures. We develop a wearable goggle navigation system for dual-mode optical and ultrasound imaging of suspicious lesions. The system consists of a light source module, a monochromatic CCD camera, an ultrasound system, a Google Glass, and a host computer. It is tested in tissue-simulating phantoms and an ex vivo human breast tissue model. Our experiments demonstrate that the surgical navigation system provides useful guidance for localization and core needle biopsy of simulated tumor within the tissue-simulating phantom, as well as a core needle biopsy and subsequent excision of Indocyanine Green (ICG)—fluorescing sentinel lymph nodes. Our experiments support the contention that this wearable goggle navigation system can be potentially very useful and fully integrated by the surgeon for optimizing many aspects of oncologic surgery. Further engineering optimization and additional in vivo clinical validation work is necessary before such a surgical navigation system can be fully realized in the everyday clinical setting. PMID:27367051

  13. Iliac screw fixation using computer-assisted computer tomographic image guidance: technical note.

    PubMed

    Shin, John H; Hoh, Daniel J; Kalfas, Iain H

    2012-03-01

    Iliac screw fixation is a powerful tool used by spine surgeons to achieve fusion across the lumbosacral junction for a number of indications, including deformity, tumor, and pseudarthrosis. Complications associated with screw placement are related to blind trajectory selection and excessive soft tissue dissection. To describe the technique of iliac screw fixation using computed tomographic (CT)-based image guidance. Intraoperative registration and verification of anatomic landmarks are performed with the use of a preoperatively acquired CT of the lumbosacral spine. With the navigation probe, the ideal starting point for screw placement is selected while visualizing the intended trajectory and target on a computer screen. Once the starting point is selected and marked with a burr, a drill guide is docked within this point and the navigation probe re-inserted, confirming the trajectory. The probe is then removed and the high-speed drill reinserted within the drill guide. Drilling is performed to a depth measured on the computer screen and a screw is placed. Confirmation of accurate placement of iliac screws can be performed with standard radiographs. CT-guided navigation allows for 3-dimensional visualization of the pelvis and minimizes complications associated with soft-tissue dissection and breach of the ilium during screw placement.

  14. Lessons for Interstellar Travel from the Guidance and Control Design of the Near Earth Asteroid Scout Solar Sail Mission

    NASA Technical Reports Server (NTRS)

    Diedrich, Benjamin; Heaton, Andrew

    2017-01-01

    NASA's Near Earth Asteroid Scout (NEA Scout) solar sail mission will fly by and image an asteroid. The team has experience characterizing the sail forces and torques used in guidance, navigation, and control to meet the scientific objectives. Interstellar and precursor sail missions similarly require understanding of beam riding dynamics to follow sufficiently accurate trajectories to perform their missions. Objective: Identify the driving factors required to implement a guidance and control system that meets mission requirements for a solar sail mission; Compare experience of an asteroid flyby mission to interstellar missions to flyby and observe other stars or precursor missions to study the extrasolar medium.

  15. Use of the Brainlab Disposable Stylet for endoscope and peel-away navigation.

    PubMed

    Halliday, Jane; Kamaly, Ian

    2016-12-01

    Neuronavigation, the ability to perform real-time intra-operative guidance during cranial and/or spinal surgery, has increased both accuracy and safety in neurosurgery [2]. Cranial navigation of existing surgical instruments using Brainlab requires the use of an instrument adapter and clamp, which in our experience renders an endoscope 'top-heavy', difficult to manipulate, and the process of registration of the adapter quite time-consuming. A Brainlab Disposable Stylet was used to navigate fenestration of an entrapped temporal horn in a pediatric case. Accuracy was determined by target visualization relative to neuronavigation targeting. Accuracy was also calculated using basic trigonometry to establish the maximum tool tip inaccuracy for the disposible stylet inserted into a peel-away (Codman) and endoscope. The Brainlab Disposable Stylet was easier to use, more versatile, and as accurate as use of an instrument adapter and clamp. The maximum tool-tip inaccuracy for the endoscope was 0.967 mm, and the Codman peel-away 0.489 mm. A literature review did not reveal any reports of use of the Brainlab Disposable Stylet in this way, and we are unaware of this being used in common neurosurgical practice. We would recommend this technique in endoscopic cases that require use of Brainlab navigation.

  16. Design and Evaluation of Shape-Changing Haptic Interfaces for Pedestrian Navigation Assistance.

    PubMed

    Spiers, Adam J; Dollar, Aaron M

    2017-01-01

    Shape-changing interfaces are a category of device capable of altering their form in order to facilitate communication of information. In this work, we present a shape-changing device that has been designed for navigation assistance. 'The Animotus' (previously, 'The Haptic Sandwich' ), resembles a cube with an articulated upper half that is able to rotate and extend (translate) relative to the bottom half, which is fixed in the user's grasp. This rotation and extension, generally felt via the user's fingers, is used to represent heading and proximity to navigational targets. The device is intended to provide an alternative to screen or audio based interfaces for visually impaired, hearing impaired, deafblind, and sighted pedestrians. The motivation and design of the haptic device is presented, followed by the results of a navigation experiment that aimed to determine the role of each device DOF, in terms of facilitating guidance. An additional device, 'The Haptic Taco', which modulated its volume in response to target proximity (negating directional feedback), was also compared. Results indicate that while the heading (rotational) DOF benefited motion efficiency, the proximity (translational) DOF benefited velocity. Combination of the two DOF improved overall performance. The volumetric Taco performed comparably to the Animotus' extension DOF.

  17. Intraluminal ultrasound guidance of transverse laser coronary atherectomy

    NASA Astrophysics Data System (ADS)

    Aretz, H. Thomas; Martinelli, Michael A.; LeDet, Earl G.; Sedlacek, Tomas; Hatch, G. F.; Gregg, Richard E.

    1990-07-01

    A coronary laser atherectomy system combining laser delivery and ultrasonic imaging capability is described. The system is being developed by Intra-Sonix, Inc. to treat severe stenoses. The imaging system provides the clinician with the guidance needed to remove substantial plaque without perforation. The ultrasound transducers and laser optics are mounted in a small (less than 4 F), flexible catheter, that is deliverable over a standard guidewire (0.016 inch). The laser and ultrasound beams are directed at the artery wall to permit debulking of lesions and ultrasonic depth profiling of the tissue structure throughout the thickness of the artery. This allows the physician to determine the level of therapy to be applied and to monitor the plaque removal as the therapy progresses. The precise location of the ultrasound and laser beams in the artery is determined by a navigation system. Navigation data are processed electronically in conjunction with ultrasound data to produce real-time cross-sectional and longitudinal images of the artery wall at selected locations, which are updated as the catheter progresses through the vessel lumen. Results of in vitro tests on human atherosclerotic arteries and early in vivo experiments in a canine-human xenograft model showing image construction and radial laser delivery are discussed.

  18. Powered Descent Guidance with General Thrust-Pointing Constraints

    NASA Technical Reports Server (NTRS)

    Carson, John M., III; Acikmese, Behcet; Blackmore, Lars

    2013-01-01

    The Powered Descent Guidance (PDG) algorithm and software for generating Mars pinpoint or precision landing guidance profiles has been enhanced to incorporate thrust-pointing constraints. Pointing constraints would typically be needed for onboard sensor and navigation systems that have specific field-of-view requirements to generate valid ground proximity and terrain-relative state measurements. The original PDG algorithm was designed to enforce both control and state constraints, including maximum and minimum thrust bounds, avoidance of the ground or descent within a glide slope cone, and maximum speed limits. The thrust-bound and thrust-pointing constraints within PDG are non-convex, which in general requires nonlinear optimization methods to generate solutions. The short duration of Mars powered descent requires guaranteed PDG convergence to a solution within a finite time; however, nonlinear optimization methods have no guarantees of convergence to the global optimal or convergence within finite computation time. A lossless convexification developed for the original PDG algorithm relaxed the non-convex thrust bound constraints. This relaxation was theoretically proven to provide valid and optimal solutions for the original, non-convex problem within a convex framework. As with the thrust bound constraint, a relaxation of the thrust-pointing constraint also provides a lossless convexification that ensures the enhanced relaxed PDG algorithm remains convex and retains validity for the original nonconvex problem. The enhanced PDG algorithm provides guidance profiles for pinpoint and precision landing that minimize fuel usage, minimize landing error to the target, and ensure satisfaction of all position and control constraints, including thrust bounds and now thrust-pointing constraints.

  19. INL Autonomous Navigation System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    2005-03-30

    The INL Autonomous Navigation System provides instructions for autonomously navigating a robot. The system permits high-speed autonomous navigation including obstacle avoidance, waypoing navigation and path planning in both indoor and outdoor environments.

  20. 33 CFR 207.185 - Taylors Bayou, Tex., Beaumont Navigation District Lock; use, administration, and navigation.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 3 2011-07-01 2011-07-01 false Taylors Bayou, Tex., Beaumont Navigation District Lock; use, administration, and navigation. 207.185 Section 207.185 Navigation and... § 207.185 Taylors Bayou, Tex., Beaumont Navigation District Lock; use, administration, and navigation...

  1. 33 CFR 207.185 - Taylors Bayou, Tex., Beaumont Navigation District Lock; use, administration, and navigation.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 3 2010-07-01 2010-07-01 false Taylors Bayou, Tex., Beaumont Navigation District Lock; use, administration, and navigation. 207.185 Section 207.185 Navigation and... § 207.185 Taylors Bayou, Tex., Beaumont Navigation District Lock; use, administration, and navigation...

  2. Maneuver Design for Fast Satellite Circumnavigation

    DTIC Science & Technology

    2004-03-01

    Storch, “∆v Requirements for Staring and Expedient Circular Circumnavigations”, AIAA 2001-4740. 5. Lovell , T. A. and S. G. Tragesser , “Analysis...Steven G. Tragesser (Chairman) date ________//Signed//____________________ William E...advisor, Dr. Steven Tragesser , for his support and insightful guidance; his dedication to his students is exemplary. I would, also, like to thank

  3. Multimodal system for the planning and guidance of bronchoscopy

    NASA Astrophysics Data System (ADS)

    Higgins, William E.; Cheirsilp, Ronnarit; Zang, Xiaonan; Byrnes, Patrick

    2015-03-01

    Many technical innovations in multimodal radiologic imaging and bronchoscopy have emerged recently in the effort against lung cancer. Modern X-ray computed-tomography (CT) scanners provide three-dimensional (3D) high-resolution chest images, positron emission tomography (PET) scanners give complementary molecular imaging data, and new integrated PET/CT scanners combine the strengths of both modalities. State-of-the-art bronchoscopes permit minimally invasive tissue sampling, with vivid endobronchial video enabling navigation deep into the airway-tree periphery, while complementary endobronchial ultrasound (EBUS) reveals local views of anatomical structures outside the airways. In addition, image-guided intervention (IGI) systems have proven their utility for CT-based planning and guidance of bronchoscopy. Unfortunately, no IGI system exists that integrates all sources effectively through the complete lung-cancer staging work flow. This paper presents a prototype of a computer-based multimodal IGI system that strives to fill this need. The system combines a wide range of automatic and semi-automatic image-processing tools for multimodal data fusion and procedure planning. It also provides a flexible graphical user interface for follow-on guidance of bronchoscopy/EBUS. Human-study results demonstrate the system's potential.

  4. Development of an analytical guidance algorithm for lunar descent

    NASA Astrophysics Data System (ADS)

    Chomel, Christina Tvrdik

    In recent years, NASA has indicated a desire to return humans to the moon. With NASA planning manned missions within the next couple of decades, the concept development for these lunar vehicles has begun. The guidance, navigation, and control (GN&C) computer programs that will perform the function of safely landing a spacecraft on the moon are part of that development. The lunar descent guidance algorithm takes the horizontally oriented spacecraft from orbital speeds hundreds of kilometers from the desired landing point to the landing point at an almost vertical orientation and very low speed. Existing lunar descent GN&C algorithms date back to the Apollo era with little work available for implementation since then. Though these algorithms met the criteria of the 1960's, they are cumbersome today. At the basis of the lunar descent phase are two elements: the targeting, which generates a reference trajectory, and the real-time guidance, which forces the spacecraft to fly that trajectory. The Apollo algorithm utilizes a complex, iterative, numerical optimization scheme for developing the reference trajectory. The real-time guidance utilizes this reference trajectory in the form of a quartic rather than a more general format to force the real-time trajectory errors to converge to zero; however, there exist no guarantees under any conditions for this convergence. The proposed algorithm implements a purely analytical targeting algorithm used to generate two-dimensional trajectories "on-the-fly"' or to retarget the spacecraft to another landing site altogether. It is based on the analytical solutions to the equations for speed, downrange, and altitude as a function of flight path angle and assumes two constant thrust acceleration curves. The proposed real-time guidance algorithm has at its basis the three-dimensional non-linear equations of motion and a control law that is proven to converge under certain conditions through Lyapunov analysis to a reference trajectory

  5. Interactive navigation system for shock wave applications.

    PubMed

    Hagelauer, U; Russo, S; Gigliotti, S; de Durante, C; Corrado, E M

    2001-01-01

    The latest generation of shock wave lithotripters, with therapy heads mounted on articulated arms, have found widespread application in the treatment of orthopedic diseases. Currently, integration of an ultrasound probe in the therapy head is the dominant modality for positioning the shock wave focus on the treatment area. For orthopedic applications, however, X-ray imaging is often preferred. This article describes a new method to locate the therapy head of a lithotripter. In the first step, the surgeon positions the tissue to be treated at the isocenter of a C-arc. This is achieved using AP and 30-degree lateral projections, with corresponding horizontal and vertical movements of the patient under fluoroscopic guidance. These movements register the anatomic location in the coordinate system of the C-arc. In the second step, the therapy head is navigated to align the shock wave focus with the isocenter. Position data are reported from an optical tracker mounted on the X-ray system, which tracks an array of infrared LEDs on the therapy head. The accuracy of the tracking system was determined on a test bench, and was calculated to be 1.55 mm (RMS) for an angular movement of +/-15 degrees around a calibrated position. Free-hand navigation and precise alignment are performed with a single virtual reality display. The display is calculated by a computer system in real time, and uses graphical symbols to represent the shock wave path and isocenter. In an interactive process, the physician observes the display while navigating the therapy head towards the isocenter. Precise alignment is achieved by displaying an enlarged view of the intersecting graphical symbols. Results from the first tests on 100 patients demonstrate the feasibility of this approach in a clinical environment. Copyright 2001 Wiley-Liss, Inc.

  6. Design and flight test of a differential GPS/inertial navigation system for approach/landing guidance

    NASA Technical Reports Server (NTRS)

    Vallot, Lawrence; Snyder, Scott; Schipper, Brian; Parker, Nigel; Spitzer, Cary

    1991-01-01

    NASA-Langley has conducted a flight test program evaluating a differential GPS/inertial navigation system's (DGPS/INS) utility as an approach/landing aid. The DGPS/INS airborne and ground components are based on off-the-shelf transport aircraft avionics, namely a global positioning/inertial reference unit (GPIRU) and two GPS sensor units (GPSSUs). Systematic GPS errors are measured by the ground GPSSU and transmitted to the aircraft GPIRU, allowing the errors to be eliminated or greatly reduced in the airborne equipment. Over 120 landings were flown; 36 of these were fully automatic DGPS/INS landings.

  7. Navigable networks as Nash equilibria of navigation games.

    PubMed

    Gulyás, András; Bíró, József J; Kőrösi, Attila; Rétvári, Gábor; Krioukov, Dmitri

    2015-07-03

    Common sense suggests that networks are not random mazes of purposeless connections, but that these connections are organized so that networks can perform their functions well. One function common to many networks is targeted transport or navigation. Here, using game theory, we show that minimalistic networks designed to maximize the navigation efficiency at minimal cost share basic structural properties with real networks. These idealistic networks are Nash equilibria of a network construction game whose purpose is to find an optimal trade-off between the network cost and navigability. We show that these skeletons are present in the Internet, metabolic, English word, US airport, Hungarian road networks, and in a structural network of the human brain. The knowledge of these skeletons allows one to identify the minimal number of edges, by altering which one can efficiently improve or paralyse navigation in the network.

  8. Autonomous Navigation Above the GNSS Constellations and Beyond: GPS Navigation for the Magnetospheric Multiscale Mission and SEXTANT Pulsar Navigation Demonstration

    NASA Technical Reports Server (NTRS)

    Winternitz, Luke

    2017-01-01

    This talk will describe two first-of-their-kind technology demonstrations attached to ongoing NASA science missions, both of which aim to extend the range of autonomous spacecraft navigation far from the Earth. First, we will describe the onboard GPS navigation system for the Magnetospheric Multiscale (MMS) mission which is currently operating in elliptic orbits reaching nearly halfway to the Moon. The MMS navigation system is a key outgrowth of a larger effort at NASA Goddard Space Flight Center to advance high-altitude Global Navigation Satellite System (GNSS) navigation on multiple fronts, including developing Global Positioning System receivers and onboard navigation software, running simulation studies, and leading efforts to characterize and protect signals at high-altitude in the so-called GNSS Space-Service Volume (SSV). In the second part of the talk, we will describe the Station Explorer for X-ray Timing and Navigation Technology (SEXTANT) mission that aims to make the first in-space demonstration of X-ray pulsar navigation (XNAV). SEXTANT is attached to the NASA astrophysics mission Neutron-star Interior Composition ExploreR (NICER) whose International Space Station mounted X-ray telescope is investigating the fundamental physics of extremes in gravity, material density, and electromagnetic fields found in neutron stars, and whose instrument provides a nearly ideal navigation sensor for XNAV.

  9. Expanding Hardware-in-the-Loop Formation Navigation and Control with Radio Frequency Crosslink Ranging

    NASA Technical Reports Server (NTRS)

    Mitchell, Jason W.; Barbee, Brent W.; Baldwin, Philip J.; Luquette, Richard J.

    2007-01-01

    The Formation Flying Testbed (FFTB) at the National Aeronautics and Space Administration (NASA) Goddard Space Flight Center (GSFC) provides a hardware-in-the-loop test environment for formation navigation and control. The facility continues to evolve as a modular, hybrid, dynamic simulation facility for end-to-end guidance, navigation, and control (GN&C) design and analysis of formation flying spacecraft. The core capabilities of the FFTB, as a platform for testing critical hardware and software algorithms in-the-loop, are reviewed with a focus on recent improvements. With the most recent improvement, in support of Technology Readiness Level (TRL) 6 testing of the Inter-spacecraft Ranging and Alarm System (IRAS) for the Magnetospheric Multiscale (MMS) mission, the FFTB has significantly expanded its ability to perform realistic simulations that require Radio Frequency (RF) ranging sensors for relative navigation with the Path Emulator for RF Signals (PERFS). The PERFS, currently under development at NASA GSFC, modulates RF signals exchanged between spacecraft. The RF signals are modified to accurately reflect the dynamic environment through which they travel, including the effects of medium, moving platforms, and radiated power.

  10. Image-based ranging and guidance for rotorcraft

    NASA Technical Reports Server (NTRS)

    Menon, P. K. A.

    1991-01-01

    This report documents the research carried out under NASA Cooperative Agreement No. NCC2-575 during the period Oct. 1988 - Dec. 1991. Primary emphasis of this effort was on the development of vision based navigation methods for rotorcraft nap-of-the-earth flight regime. A family of field-based ranging algorithms were developed during this research period. These ranging schemes are capable of handling both stereo and motion image sequences, and permits both translational and rotational camera motion. The algorithms require minimal computational effort and appear to be implementable in real time. A series of papers were presented on these ranging schemes, some of which are included in this report. A small part of the research effort was expended on synthesizing a rotorcraft guidance law that directly uses the vision-based ranging data. This work is discussed in the last section.

  11. Recent Developments in Hardware-in-the-Loop Formation Navigation and Control

    NASA Technical Reports Server (NTRS)

    Mitchell, Jason W.; Luquette, Richard J.

    2005-01-01

    The Formation Flying Test-Bed (FFTB) at NASA Goddard Space Flight Center (GSFC) provides a hardware-in-the-loop test environment for formation navigation and control. The facility is evolving as a modular, hybrid, dynamic simulation facility for end-tc-end guidance, navigation, and control (GN&C) design and analysis of formation flying spacecraft. The core capabilities of the FFTB, as a platform for testing critical hardware and software algorithms in-the-loop, are reviewed with a focus on many recent improvements. Two significant upgrades to the FFTB are a message-oriented middleware (MOM) architecture, and a software crosslink for inter-spacecraft ranging. The MOM architecture provides a common messaging bus for software agents, easing integration, arid supporting the GSFC Mission Services Evolution Center (GMSEC) architecture via software bridge. Additionally, the FFTB s hardware capabilities are expanding. Recently, two Low-Power Transceivers (LPTs) with ranging capability have been introduced into the FFTB. The LPT crosslinks will be connected to a modified Crosslink Channel Simulator (CCS), which applies realistic space-environment effects to the Radio Frequency (RF) signals produced by the LPTs.

  12. 78 FR 68861 - Certain Navigation Products, Including GPS Devices, Navigation and Display Systems, Radar Systems...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-15

    ... Devices, Navigation and Display Systems, Radar Systems, Navigational Aids, Mapping Systems and Related... navigation products, including GPS devices, navigation and display systems, radar systems, navigational aids..., radar systems, navigational aids, mapping systems and related software by reason of infringement of one...

  13. The Independent Specialty Medical Advocate Model of Patient Navigation and Intermediate Health Outcomes in Newly Diagnosed Cancer Patients.

    PubMed

    Cobran, Ewan K; Merino, Yesenia; Roach, Beth; Bigelow, Sharon M; Godley, Paul A

    2017-10-01

    Navigation programs are generally characterized as providing patient-centered support and guidance intended to help patients and family members overcome barriers such as timely diagnosis resolution, patient satisfaction, coping with primary and adjuvant treatment, management of side effects, and patient engagement in the healthcare process. The aim of this study was to examine the associations between the Independent Specialty Medical Advocate (ISMA) model of patient navigation and intermediate patient health outcomes for newly diagnosed cancer patients. A pre-post intervention study was conducted in 26 newly diagnosed cancer patients recruited from a national partnership between the LIVE STRONG Cancer Navigation Service Program and the NavigateCancer Foundation between April 2013 and December 2015. Participants received a 1-hour initial telephone consultation, and then a navigation care plan was developed for the 6-week study period. A paired t test was conducted to assess changes in intermediate health outcomes at baseline and 6 weeks after study intervention. The majority of study participants were males (62%), married (50%), and Caucasian (69%). Overall, there was a statistically significant reduction in anxiety at 6 weeks postintervention (mean, 2.48; SD, 0.62; P <.05) compared with baseline (mean, 2.92; SD, 0.82) and in depression at 6 weeks postintervention (mean, 2.00; SD, 0.81; P <.05) compared with baseline (mean, 2.45; SD, 0.19). The ISMA model of patient navigation appears to be associated with significant reduction in anxiety and depression. Further studies are needed to evaluate the ISMA model of patient navigation on long-term patient outcomes.

  14. Navigable networks as Nash equilibria of navigation games

    PubMed Central

    Gulyás, András; Bíró, József J.; Kőrösi, Attila; Rétvári, Gábor; Krioukov, Dmitri

    2015-01-01

    Common sense suggests that networks are not random mazes of purposeless connections, but that these connections are organized so that networks can perform their functions well. One function common to many networks is targeted transport or navigation. Here, using game theory, we show that minimalistic networks designed to maximize the navigation efficiency at minimal cost share basic structural properties with real networks. These idealistic networks are Nash equilibria of a network construction game whose purpose is to find an optimal trade-off between the network cost and navigability. We show that these skeletons are present in the Internet, metabolic, English word, US airport, Hungarian road networks, and in a structural network of the human brain. The knowledge of these skeletons allows one to identify the minimal number of edges, by altering which one can efficiently improve or paralyse navigation in the network. PMID:26138277

  15. ULTOR(Registered TradeMark) Passive Pose and Position Engine For Spacecraft Relative Navigation

    NASA Technical Reports Server (NTRS)

    Hannah, S. Joel

    2008-01-01

    The ULTOR(Registered TradeMark) Passive Pose and Position Engine (P3E) technology, developed by Advanced Optical Systems, Inc (AOS), uses real-time image correlation to provide relative position and pose data for spacecraft guidance, navigation, and control. Potential data sources include a wide variety of sensors, including visible and infrared cameras. ULTOR(Registered TradeMark) P3E has been demonstrated on a number of host processing platforms. NASA is integrating ULTOR(Registerd TradeMark) P3E into its Relative Navigation System (RNS), which is being developed for the upcoming Hubble Space Telescope (HST) Servicing Mission 4 (SM4). During SM4 ULTOR(Registered TradeMark) P3E will perform realtime pose and position measurements during both the approach and departure phases of the mission. This paper describes the RNS implementation of ULTOR(Registered TradeMark) P3E, and presents results from NASA's hardware-in-the-loop simulation testing against the HST mockup.

  16. Comparison of NTF Experimental Data with CFD Predictions from the Third AIAA CFD Drag Prediction Workshop

    NASA Technical Reports Server (NTRS)

    Vassberg, John C.; Tinoco, Edward N.; Mani, Mori; Levy, David; Zickuhr, Tom; Mavriplis, Dimitri J.; Wahls, Richard A.; Morrison, Joseph H.; Brodersen, Olaf P.; Eisfeld, Bernhard; hide

    2008-01-01

    Recently acquired experimental data for the DLR-F6 wing-body transonic transport con figuration from the National Transonic Facility (NTF) are compared with the database of computational fluid dynamics (CFD) predictions generated for the Third AIAA CFD Drag Prediction Workshop (DPW-III). The NTF data were collected after the DPW-III, which was conducted with blind test cases. These data include both absolute drag levels and increments associated with this wing-body geometry. The baseline DLR-F6 wing-body geometry is also augmented with a side-of-body fairing which eliminates the flow separation in this juncture region. A comparison between computed and experimentally observed sizes of the side-of-body flow-separation bubble is included. The CFD results for the drag polars and separation bubble sizes are computed on grids which represent current engineering best practices for drag predictions. In addition to these data, a more rigorous attempt to predict absolute drag at the design point is provided. Here, a series of three grid densities are utilized to establish an asymptotic trend of computed drag with respect to grid convergence. This trend is then extrapolated to estimate a grid-converged absolute drag level.

  17. LAVA Simulations for the 3rd AIAA CFD High Lift Prediction Workshop with Body Fitted Grids

    NASA Technical Reports Server (NTRS)

    Jensen, James C.; Stich, Gerrit-Daniel; Housman, Jeffrey A.; Denison, Marie; Kiris, Cetin C.

    2018-01-01

    In response to the 3rd AIAA CFD High Lift Prediction Workshop, the workshop cases were analyzed using Reynolds-averaged Navier-Stokes flow solvers within the Launch Ascent and Vehicle Aerodynamics (LAVA) solver framework. For the workshop cases the advantages and limitations of both overset-structured an unstructured polyhedral meshes were assessed. The workshop included 3 cases: a 2D airfoil validation case, a mesh convergence study using the High Lift Common Research Model, and a nacelle/pylon integration study using the JAXA (Japan Aerospace Exploration Agency) Standard Model. The 2D airfoil case from the workshop is used to verify the implementation of the Spalart-Allmaras turbulence model along with some of its variants within the solver. The High Lift Common Research Model case is used to assess solver performance and accuracy at varying mesh resolutions, as well as identify the minimum mesh fidelity required for LAVA on this class of problem. The JAXA Standard Model case is used to assess the solver's sensitivity to the turbulence model and to compare the structured and unstructured mesh paradigms. These workshop cases have helped establish best practices for high lift flow configurations for the LAVA solver.

  18. Study for incorporating time-synchronized approach control into the CH-47/VALT digital navigation system

    NASA Technical Reports Server (NTRS)

    Mcconnell, W. J., Jr.

    1979-01-01

    Techniques for obtaining time synchronized (4D) approach control in the VALT research helicopter is described. Various 4D concepts and their compatibility with the existing VALT digital computer navigation and guidance system hardware and software are examined. Modifications to various techniques were investigated in order to take advantage of the unique operating characteristics of the helicopter in the terminal area. A 4D system is proposed, combining the direct to maneuver with the existing VALT curved path generation capability.

  19. Patient Navigation from the Paired Perspectives of Cancer Patients and Navigators: A Qualitative Analysis

    PubMed Central

    Yosha, Amanat M.; Carroll, Jennifer K.; Hendren, Samantha; Salamone, Charcy M.; Sanders, Mechelle; Fiscella, Kevin; Epstein, Ronald M.

    2011-01-01

    Objective Patient navigation for cancer care assesses and alleviates barriers to health care services. We examined paired perspectives of cancer patients and their navigators to examine the process of patient navigation. We explored the strengths, limitations, and our own lessons learned about adopting the novel methodology of multiperspective analysis. Methods As part of a larger RCT, patients and navigators were interviewed separately. We reviewed interviews with 18 patient-navigator dyads. Dyad summaries were created that explicitly incorporated both patient and navigator perspectives. Emerging themes and verbatim quotations were reflected in the summaries. Results Paired perspectives were valuable in identifying struggles that arose during navigation. These were represented as imbalanced investment and relational amelioration. Patients and navigators had general consensus about important patient needs for cancer care, but characterized these needs differently. Conclusion Our experience with multiperspective analysis revealed a methodology that delivers novel relational findings, but is best conducted de novo rather than as part of a larger study. Practice Implications Multiperspective analysis should be more widely adopted with clear aims and analytic strategy that strengthen the ability to reveal relational dynamics. Navigation training programs should anticipate navigator struggles and provide navigators with tools to manage them. PMID:21255958

  20. Progress on micromechanical inertial guidance system

    NASA Astrophysics Data System (ADS)

    Poth, Tim; Elwell, John

    1992-02-01

    The development of a lightweight inertial measurement units (IMUs) is described which uses micromechanical gyroscopes and accelerometers. The IMU concept is described in terms of the silicon components of the instrument and the projected size, cost, and accuracies. The gyroscopes and accelerometers are chemically etched from wafers of single-crystal silicon that can yield up to 4000 single instruments from one 4-inch wafer. Particular emphasis is placed on the control-loop analysis, designing the electronics, and increasing the instrument signal. Attention is given to the development of a buffer amplifier that is fabricated on the same substrate as the instrument to minimize readout noise. These advances are important for improving the signal-to-noise ratio, and 12 hrs of testing data show that the control and readout electronics are responsible for most of the residual walk. The IMUs have potential applications in automobile skid detectors and airbags, GPS navigation systems, and in aerospace guidance systems where weight is a primary concern.

  1. Variability and Reliabiltiy in Axon Growth Cone Navigation Decision Making

    NASA Astrophysics Data System (ADS)

    Garnelo, Marta; Ricoult, Sébastien G.; Juncker, David; Kennedy, Timothy E.; Faisal, Aldo A.

    2015-03-01

    The nervous system's wiring is a result of axon growth cones navigating through specific molecular environments during development. In order to reach their target, growth cones need to make decisions under uncertainty as they are faced with stochastic sensory information and probabilistic movements. The overall system therefore exhibits features of whole organisms (perception, decision making, action) in the subset of a single cell. We aim to characterise growth cone navigation in defined nano-dot guidance cue environments, by using the tools of computational neuroscience to conduct ``molecular psychophysics.'' We start with a generative model of growth cone behaviour and we 1. characterise sensory and internal sources of noise contributing to behavioural variables, by combining knowledge of the underlying stochastic dynamics in cue sensing and the growth of the cytoskeleton. This enables us to 2. produce bottom-up lower limit estimates of behavioural response reliability and visualise it as probability distributions over axon growth trajectories. Given this information we can match our in silico model's ``psychometric'' decision curves with empirical data. Finally we use a Monte-Carlo approach to predict response distributions of axon trajectories from our model.

  2. Guidance and Navigation for Rendezvous and Proximity Operations with a Non-Cooperative Spacecraft at Geosynchronous Orbit

    NASA Technical Reports Server (NTRS)

    Barbee, Brent William; Carpenter, J. Russell; Heatwole, Scott; Markley, F. Landis; Moreau, Michael; Naasz, Bo J.; VanEepoel, John

    2010-01-01

    The feasibility and benefits of various spacecraft servicing concepts are currently being assessed, and all require that the servicer spacecraft perform rendezvous, proximity, and capture operations with the target spacecraft to be serviced. Many high-value spacecraft, which would be logical targets for servicing from an economic point of view, are located in geosynchronous orbit, a regime in which autonomous rendezvous and capture operations are not commonplace. Furthermore, existing GEO spacecraft were not designed to be serviced. Most do not have cooperative relative navigation sensors or docking features, and some servicing applications, such as de-orbiting of a non-functional spacecraft, entail rendezvous and capture with a spacecraft that may be non-functional or un-controlled. Several of these challenges have been explored via the design of a notional mission in which a nonfunctional satellite in geosynchronous orbit is captured by a servicer spacecraft and boosted into super-synchronous orbit for safe disposal. A strategy for autonomous rendezvous, proximity operations, and capture is developed, and the Orbit Determination Toolbox (ODTBX) is used to perform a relative navigation simulation to assess the feasibility of performing the rendezvous using a combination of angles-only and range measurements. Additionally, a method for designing efficient orbital rendezvous sequences for multiple target spacecraft is utilized to examine the capabilities of a servicer spacecraft to service multiple targets during the course of a single mission.

  3. Applications of Computer-Assisted Navigation for the Minimally Invasive Reduction of Isolated Zygomatic Arch Fractures.

    PubMed

    Li, Zhi; Yang, Rong-Tao; Li, Zu-Bing

    2015-09-01

    Computer-assisted navigation has been widely used in oral and maxillofacial surgery. The purpose of this study was to describe the applications of computer-assisted navigation for the minimally invasive reduction of isolated zygomatic arch fractures. All patients identified as having isolated zygomatic arch fractures presenting to the authors' department from April 2013 through November 2014 were included in this prospective study. Minimally invasive reductions of isolated zygomatic arch fractures were performed on these patients under the guidance of computer-assisted navigation. The reduction status was evaluated by postoperative computed tomography (CT) 1 week after the operation. Postoperative complications and facial contours were evaluated during follow-up. Functional recovery was evaluated by the difference between the preoperative maximum interincisal mouth opening and that at the final follow-up. Twenty-three patients were included in this case series. The operation proceeded well in all patients. Postoperatively, all patients displayed uneventful healing without postoperative complication. Postoperative CT showed exact reduction in all cases. Satisfactory facial contour and functional recovery were observed in all patients. The preoperative maximal mouth opening ranged from 8 to 25 mm, and the maximal mouth opening at the final follow-up ranged from 36 to 42 mm. Computer-assisted navigation can be used not only for guiding zygomatic arch fracture reduction, but also for assessing reduction. Computer-assisted navigation is an effective and minimally invasive technique that can be applied in the reduction of isolated zygomatic arch fractures. Copyright © 2015 American Association of Oral and Maxillofacial Surgeons. Published by Elsevier Inc. All rights reserved.

  4. Sporophytic control of pollen tube growth and guidance in maize.

    PubMed

    Lausser, Andreas; Kliwer, Irina; Srilunchang, Kanok-orn; Dresselhaus, Thomas

    2010-03-01

    Pollen tube germination, growth, and guidance (progamic phase) culminating in sperm discharge is a multi-stage process including complex interactions between the male gametophyte as well as sporophytic tissues and the female gametophyte (embryo sac), respectively. Inter- and intra-specific crossing barriers in maize and Tripsacum have been studied and a precise description of progamic pollen tube development in maize is reported here. It was found that pollen germination and initial tube growth are rather unspecific, but an early, first crossing barrier was detected before arrival at the transmitting tract. Pollination of maize silks with Tripsacum pollen and incompatible pollination of Ga1s/Ga1s-maize silks with ga1-maize pollen revealed another two incompatibility barriers, namely transmitting tract mistargeting and insufficient growth support. Attraction and growth support by the transmitting tract seem to play key roles for progamic pollen tube growth. After leaving transmitting tracts, pollen tubes have to navigate across the ovule in the ovular cavity. Pollination of an embryo sac-less maize RNAi-line allowed the role of the female gametophyte for pollen tube guidance to be determined in maize. It was found that female gametophyte controlled guidance is restricted to a small region around the micropyle, approximately 50-100 microm in diameter. This area is comparable to the area of influence of previously described ZmEA1-based short-range female gametophyte signalling. In conclusion, the progamic phase is almost completely under sporophytic control in maize.

  5. Sporophytic control of pollen tube growth and guidance in maize

    PubMed Central

    Lausser, Andreas; Kliwer, Irina; Srilunchang, Kanok-orn; Dresselhaus, Thomas

    2010-01-01

    Pollen tube germination, growth, and guidance (progamic phase) culminating in sperm discharge is a multi-stage process including complex interactions between the male gametophyte as well as sporophytic tissues and the female gametophyte (embryo sac), respectively. Inter- and intra-specific crossing barriers in maize and Tripsacum have been studied and a precise description of progamic pollen tube development in maize is reported here. It was found that pollen germination and initial tube growth are rather unspecific, but an early, first crossing barrier was detected before arrival at the transmitting tract. Pollination of maize silks with Tripsacum pollen and incompatible pollination of Ga1s/Ga1s-maize silks with ga1-maize pollen revealed another two incompatibility barriers, namely transmitting tract mistargeting and insufficient growth support. Attraction and growth support by the transmitting tract seem to play key roles for progamic pollen tube growth. After leaving transmitting tracts, pollen tubes have to navigate across the ovule in the ovular cavity. Pollination of an embryo sac-less maize RNAi-line allowed the role of the female gametophyte for pollen tube guidance to be determined in maize. It was found that female gametophyte controlled guidance is restricted to a small region around the micropyle, approximately 50–100 μm in diameter. This area is comparable to the area of influence of previously described ZmEA1-based short-range female gametophyte signalling. In conclusion, the progamic phase is almost completely under sporophytic control in maize. PMID:19926683

  6. Real-time piloted simulation of fully automatic guidance and control for rotorcraft nap-of-the-earth (NOE) flight following planned profiles

    NASA Technical Reports Server (NTRS)

    Clement, Warren F.; Gorder, Pater J.; Jewell, Wayne F.; Coppenbarger, Richard

    1990-01-01

    Developing a single-pilot all-weather NOE capability requires fully automatic NOE navigation and flight control. Innovative guidance and control concepts are being investigated to (1) organize the onboard computer-based storage and real-time updating of NOE terrain profiles and obstacles; (2) define a class of automatic anticipative pursuit guidance algorithms to follow the vertical, lateral, and longitudinal guidance commands; (3) automate a decision-making process for unexpected obstacle avoidance; and (4) provide several rapid response maneuvers. Acquired knowledge from the sensed environment is correlated with the recorded environment which is then used to determine an appropriate evasive maneuver if a nonconformity is observed. This research effort has been evaluated in both fixed-base and moving-base real-time piloted simulations thereby evaluating pilot acceptance of the automated concepts, supervisory override, manual operation, and reengagement of the automatic system.

  7. Techniques for Interventional MRI Guidance in Closed-Bore Systems.

    PubMed

    Busse, Harald; Kahn, Thomas; Moche, Michael

    2018-02-01

    Efficient image guidance is the basis for minimally invasive interventions. In comparison with X-ray, computed tomography (CT), or ultrasound imaging, magnetic resonance imaging (MRI) provides the best soft tissue contrast without ionizing radiation and is therefore predestined for procedural control. But MRI is also characterized by spatial constraints, electromagnetic interactions, long imaging times, and resulting workflow issues. Although many technical requirements have been met over the years-most notably magnetic resonance (MR) compatibility of tools, interventional pulse sequences, and powerful processing hardware and software-there is still a large variety of stand-alone devices and systems for specific procedures only.Stereotactic guidance with the table outside the magnet is common and relies on proper registration of the guiding grids or manipulators to the MR images. Instrument tracking, often by optical sensing, can be added to provide the physicians with proper eye-hand coordination during their navigated approach. Only in very short wide-bore systems, needles can be advanced at the extended arm under near real-time imaging. In standard magnets, control and workflow may be improved by remote operation using robotic or manual driving elements.This work highlights a number of devices and techniques for different interventional settings with a focus on percutaneous, interstitial procedures in different organ regions. The goal is to identify technical and procedural elements that might be relevant for interventional guidance in a broader context, independent of the clinical application given here. Key challenges remain the seamless integration into the interventional workflow, safe clinical translation, and proper cost effectiveness.

  8. Application of Virtual Navigation with Multimodality Image Fusion in Foramen Ovale Cannulation.

    PubMed

    Qiu, Xixiong; Liu, Weizong; Zhang, Mingdong; Lin, Hengzhou; Zhou, Shoujun; Lei, Yi; Xia, Jun

    2017-11-01

    Idiopathic trigeminal neuralgia (ITN) can be effectively treated with radiofrequency thermocoagulation. However, this procedure requires cannulation of the foramen ovale, and conventional cannulation methods are associated with high failure rates. Multimodality imaging can improve the accuracy of cannulation because each imaging method can compensate for the drawbacks of the other. We aim to determine the feasibility and accuracy of percutaneous foramen ovale cannulation under the guidance of virtual navigation with multimodality image fusion in a self-designed anatomical model of human cadaveric heads. Five cadaveric head specimens were investigated in this study. Spiral computed tomography (CT) scanning clearly displayed the foramen ovale in all five specimens (10 foramina), which could not be visualized using two-dimensional ultrasound alone. The ultrasound and spiral CT images were fused, and percutaneous cannulation of the foramen ovale was performed under virtual navigation. After this, spiral CT scanning was immediately repeated to confirm the accuracy of the cannulation. Postprocedural spiral CT confirmed that the ultrasound and CT images had been successfully fused for all 10 foramina, which were accurately and successfully cannulated. The success rates of both image fusion and cannulation were 100%. Virtual navigation with multimodality image fusion can substantially facilitate foramen ovale cannulation and is worthy of clinical application. © 2017 American Academy of Pain Medicine. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com

  9. An exploration of the patient navigator role: perspectives of younger women with breast cancer.

    PubMed

    Pedersen, Allison E; Hack, Thomas F; McClement, Susan E; Taylor-Brown, Jill

    2014-01-01

    To delineate the role of the oncology patient navigator, drawing from the experiences and descriptions of younger women with breast cancer. Interpretive, descriptive, qualitative research design. Participants' homes, researcher's home, and via telephone, all in Winnipeg, Manitoba, Canada. 12 women aged 50 years or younger who were diagnosed with breast cancer within the last three years. Face-to-face semistructured interviews explored patient experiences with the cancer care system, including problems encountered, unmet needs, and opinions about the functions of the patient navigator role. The audio-recorded interviews were transcribed and data were broken down and inductively coded into four categories. Constant comparative techniques also were used during analysis. The role of the oncology patient navigator included two facets: "Processual facets," with the subthemes assigned to me at diagnosis, managing the connection, mapping the process, practical support, and quarterbacking my entire journey; and "Personal qualities: The essentials," with the subthemes empathetic care tenor, knowing the cancer system, and understanding the medical side of breast cancer. Despite the tremendous effort directed toward enhancing care for younger women undergoing treatment for breast cancer, gaps continue to exist. Younger women with breast cancer require a care approach providing ongoing dialogue, teaching, and emotional support from the point of diagnosis through treatment, including transitions of care within the oncology setting and back to their primary care practitioner. Oncology nurse navigators are well positioned to provide patients with anticipatory guidance from diagnosis to the end of treatment.

  10. Ethics of clinician communication in a changing communication landscape: guidance from professional societies.

    PubMed

    Gollust, Sarah E; Dwyer, Anne M

    2013-12-01

    Cancer experts engage in public communication whenever they promote their research or practice, respond to media inquiries, or use social media. In a changing communication landscape characterized by new technologies and heightened attention to cancer controversies, these activities may pose ethical challenges. This study was designed to evaluate existing resources to help clinicians navigate their public communication activities. We conducted a systematic, qualitative content analysis of codes of ethics, policy statements, and similar documents disseminated by professional medical and nursing societies for their members. We examined these documents for four types of content related to public communication: communication via traditional media; communication via social media; other communication to the public, policy, and legal spheres; and nonspecific language regarding public communication. We identified 46 documents from 23 professional societies for analysis. Five societies had language about traditional news media communication, five had guidance about social media, 11 had guidance about other communication domains, and 15 societies offered general language about public communication. The limited existing guidance focused on ethical issues related to patients (such as privacy violations) or clinicians (such as accuracy and professional boundaries), with less attention to population or policy impact of communication. Cancer-related professional societies might consider establishing more specific guidance for clinicians concerning their communication activities in light of changes to the communication landscape. Additional research is warranted to understand the extent to which clinicians face ethical challenges in public communication.

  11. Navigation concepts for magnetic resonance imaging-guided musculoskeletal interventions.

    PubMed

    Busse, Harald; Kahn, Thomas; Moche, Michael

    2011-08-01

    Image-guided musculoskeletal (MSK) interventions are a widely used alternative to open surgical procedures for various pathological findings in different body regions. They traditionally involve one of the established x-ray imaging techniques (radiography, fluoroscopy, computed tomography) or ultrasound scanning. Over the last decades, magnetic resonance imaging (MRI) has evolved into one of the most powerful diagnostic tools for nearly the whole body and has therefore been increasingly considered for interventional guidance as well.The strength of MRI for MSK applications is a combination of well-known general advantages, such as multiplanar and functional imaging capabilities, wide choice of tissue contrasts, and absence of ionizing radiation, as well as a number of MSK-specific factors, for example, the excellent depiction of soft-tissue tumors, nonosteolytic bone changes, and bone marrow lesions. On the downside, the magnetic resonance-compatible equipment needed, restricted space in the magnet, longer imaging times, and the more complex workflow have so far limited the number of MSK procedures under MRI guidance.Navigation solutions are generally a natural extension of any interventional imaging system, in particular, because powerful hardware and software for image processing have become routinely available. They help to identify proper access paths, provide accurate feedback on the instrument positions, facilitate the workflow in an MRI environment, and ultimately contribute to procedural safety and success.The purposes of this work were to describe some basic concepts and devices for MRI guidance of MSK procedures and to discuss technical and clinical achievements and challenges for some selected implementations.

  12. Simulation, guidance and navigation of the B-737 for rollout and turnoff using MLS measurements

    NASA Technical Reports Server (NTRS)

    Pines, S.; Schmidt, S. F.; Mann, F.

    1975-01-01

    A simulation program is described for the B-737 aircraft in landing approach, a touchdown, rollout and turnoff for normal and CAT III weather conditions. Preliminary results indicate that microwave landing systems can be used in place of instrument landing systems landing aids and that a single magnetic cable can be used for automated rollout and turnoff. Recommendations are made for further refinement of the model and additional testing to finalize a set of guidance laws for rollout and turnoff.

  13. The Aging Navigational System.

    PubMed

    Lester, Adam W; Moffat, Scott D; Wiener, Jan M; Barnes, Carol A; Wolbers, Thomas

    2017-08-30

    The discovery of neuronal systems dedicated to computing spatial information, composed of functionally distinct cell types such as place and grid cells, combined with an extensive body of human-based behavioral and neuroimaging research has provided us with a detailed understanding of the brain's navigation circuit. In this review, we discuss emerging evidence from rodents, non-human primates, and humans that demonstrates how cognitive aging affects the navigational computations supported by these systems. Critically, we show 1) that navigational deficits cannot solely be explained by general deficits in learning and memory, 2) that there is no uniform decline across different navigational computations, and 3) that navigational deficits might be sensitive markers for impending pathological decline. Following an introduction to the mechanisms underlying spatial navigation and how they relate to general processes of learning and memory, the review discusses how aging affects the perception and integration of spatial information, the creation and storage of memory traces for spatial information, and the use of spatial information during navigational behavior. The closing section highlights the clinical potential of behavioral and neural markers of spatial navigation, with a particular emphasis on neurodegenerative disorders. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Comparison of Mechanical Axis and Dynamic Range Assessed with Weight Bearing Radiographs and Navigation System in Closed Wedge High Tibial Osteotomy

    PubMed Central

    Bae, Dae Kyung; Lee, Jong Whan; Cho, Seong Jin; Song, Sang Jun

    2017-01-01

    Purpose To compare navigation and weight bearing radiographic measurements of mechanical axis (MA) before and after closed wedge high tibial osteotomy (HTO) and to evaluate post-osteotomy changes in MA assessed during application of external varus or valgus force. Materials and Methods Data from 30 consecutive patients (30 knees) who underwent computer-assisted closed-wedge HTO were prospectively analyzed. Pre- and postoperative weight bearing radiographic evaluation of MA was performed. Under navigation guidance, pre- and post-osteotomy MA values were measured in an unloaded position. Any change in the post-osteotomy MA in response to external varus or valgus force, which was named as dynamic range, was evaluated with the navigation system. The navigation and weight bearing radiographic measurements were compared. Results Although there was a positive correlation between navigation and radiographic measurements, the reliability of navigation measurements of coronal alignment was reduced after osteotomy and wedge closing. The mean post-osteotomy MA value measured with the navigation was 3.5°±0.8° valgus in an unloaded position. It was 1.3°±0.8° valgus under varus force and 5.8°±1.1° valgus under valgus force. The average dynamic range was >±2°. Conclusions Potential differences between the postoperative MAs assessed by weight bearing radiographs and the navigation system in unloaded position should be considered during computer-assisted closed wedge HTO. Care should be taken to keep the dynamic range within the permissible range of alignment goal in HTO. PMID:28854769

  15. Approach to intraoperative electromagnetic navigation in orthognathic surgery: A phantom skull based trial.

    PubMed

    Berger, Moritz; Kallus, Sebastian; Nova, Igor; Ristow, Oliver; Eisenmann, Urs; Dickhaus, Hartmut; Kuhle, Reinald; Hoffmann, Jürgen; Seeberger, Robin

    2015-11-01

    Intraoperative guidance using electromagnetic navigation is an upcoming method in maxillofacial surgery. However, due to their unwieldy structures, especially the line-of-sight problem, optical navigation devices are not used for daily orthognathic surgery. Therefore, orthognathic surgery was simulated on study phantom skulls, evaluating the accuracy and handling of a new electromagnetic tracking system. Le-Fort I osteotomies were performed on 10 plastic skulls. Orthognathic surgical planning was done in the conventional way using plaster models. Accuracy of the gold standard, splint-based model surgery versus an electromagnetic tracking system was evaluated by measuring the actual maxillary deviation using bimaxillary splints and preoperative and postoperative cone beam computer tomography imaging. The distance of five anatomical marker points were compared pre- and postoperatively. The electromagnetic tracking system was significantly more accurate in all measured parameters compared with the gold standard using bimaxillary splints (p < 0.01). The data shows a discrepancy between the model surgical plans and the actual correction of the upper jaw of 0.8 mm. Using the electromagnetic tracking, we could reduce the discrepancy of the maxillary transposition between the planned and actual orthognathic surgery to 0.3 mm on average. The data of this preliminary study shows a high level of accuracy in surgical orthognathic performance using electromagnetic navigation, and may offer greater precision than the conventional plaster model surgery with bimaxillary splints. This preliminary work shows great potential for the establishment of an intraoperative electromagnetic navigation system for maxillofacial surgery. Copyright © 2015 European Association for Cranio-Maxillo-Facial Surgery. Published by Elsevier Ltd. All rights reserved.

  16. A greedy-navigator approach to navigable city plans

    NASA Astrophysics Data System (ADS)

    Lee, Sang Hoon; Holme, Petter

    2013-01-01

    We use a set of four theoretical navigability indices for street maps to investigate the shape of the resulting street networks, if they are grown by optimizing these indices. The indices compare the performance of simulated navigators (having a partial information about the surroundings, like humans in many real situations) to the performance of optimally navigating individuals. We show that our simple greedy shortcut construction strategy generates the emerging structures that are different from real road network, but not inconceivable. The resulting city plans, for all navigation indices, share common qualitative properties such as the tendency for triangular blocks to appear, while the more quantitative features, such as degree distributions and clustering, are characteristically different depending on the type of metrics and routing strategies. We show that it is the type of metrics used which determines the overall shapes characterized by structural heterogeneity, but the routing schemes contribute to more subtle details of locality, which is more emphasized in case of unrestricted connections when the edge crossing is allowed.

  17. Targeting Accuracy, Procedure Times and User Experience of 240 Experimental MRI Biopsies Guided by a Clinical Add-On Navigation System.

    PubMed

    Busse, Harald; Riedel, Tim; Garnov, Nikita; Thörmer, Gregor; Kahn, Thomas; Moche, Michael

    2015-01-01

    MRI is of great clinical utility for the guidance of special diagnostic and therapeutic interventions. The majority of such procedures are performed iteratively ("in-and-out") in standard, closed-bore MRI systems with control imaging inside the bore and needle adjustments outside the bore. The fundamental limitations of such an approach have led to the development of various assistance techniques, from simple guidance tools to advanced navigation systems. The purpose of this work was to thoroughly assess the targeting accuracy, workflow and usability of a clinical add-on navigation solution on 240 simulated biopsies by different medical operators. Navigation relied on a virtual 3D MRI scene with real-time overlay of the optically tracked biopsy needle. Smart reference markers on a freely adjustable arm ensured proper registration. Twenty-four operators - attending (AR) and resident radiologists (RR) as well as medical students (MS) - performed well-controlled biopsies of 10 embedded model targets (mean diameter: 8.5 mm, insertion depths: 17-76 mm). Targeting accuracy, procedure times and 13 Likert scores on system performance were determined (strong agreement: 5.0). Differences in diagnostic success rates (AR: 93%, RR: 88%, MS: 81%) were not significant. In contrast, between-group differences in biopsy times (AR: 4:15, RR: 4:40, MS: 5:06 min:sec) differed significantly (p<0.01). Mean overall rating was 4.2. The average operator would use the system again (4.8) and stated that the outcome justifies the extra effort (4.4). Lowest agreement was reported for the robustness against external perturbations (2.8). The described combination of optical tracking technology with an automatic MRI registration appears to be sufficiently accurate for instrument guidance in a standard (closed-bore) MRI environment. High targeting accuracy and usability was demonstrated on a relatively large number of procedures and operators. Between groups with different expertise there were

  18. Targeting Accuracy, Procedure Times and User Experience of 240 Experimental MRI Biopsies Guided by a Clinical Add-On Navigation System

    PubMed Central

    Busse, Harald; Riedel, Tim; Garnov, Nikita; Thörmer, Gregor; Kahn, Thomas; Moche, Michael

    2015-01-01

    Objectives MRI is of great clinical utility for the guidance of special diagnostic and therapeutic interventions. The majority of such procedures are performed iteratively ("in-and-out") in standard, closed-bore MRI systems with control imaging inside the bore and needle adjustments outside the bore. The fundamental limitations of such an approach have led to the development of various assistance techniques, from simple guidance tools to advanced navigation systems. The purpose of this work was to thoroughly assess the targeting accuracy, workflow and usability of a clinical add-on navigation solution on 240 simulated biopsies by different medical operators. Methods Navigation relied on a virtual 3D MRI scene with real-time overlay of the optically tracked biopsy needle. Smart reference markers on a freely adjustable arm ensured proper registration. Twenty-four operators – attending (AR) and resident radiologists (RR) as well as medical students (MS) – performed well-controlled biopsies of 10 embedded model targets (mean diameter: 8.5 mm, insertion depths: 17-76 mm). Targeting accuracy, procedure times and 13 Likert scores on system performance were determined (strong agreement: 5.0). Results Differences in diagnostic success rates (AR: 93%, RR: 88%, MS: 81%) were not significant. In contrast, between-group differences in biopsy times (AR: 4:15, RR: 4:40, MS: 5:06 min:sec) differed significantly (p<0.01). Mean overall rating was 4.2. The average operator would use the system again (4.8) and stated that the outcome justifies the extra effort (4.4). Lowest agreement was reported for the robustness against external perturbations (2.8). Conclusions The described combination of optical tracking technology with an automatic MRI registration appears to be sufficiently accurate for instrument guidance in a standard (closed-bore) MRI environment. High targeting accuracy and usability was demonstrated on a relatively large number of procedures and operators. Between

  19. Navigation with Electromagnetic Tracking for Interventional Radiology Procedures

    PubMed Central

    Wood, Bradford J.; Zhang, Hui; Durrani, Amir; Glossop, Neil; Ranjan, Sohan; Lindisch, David; Levy, Eliott; Banovac, Filip; Borgert, Joern; Krueger, Sascha; Kruecker, Jochen; Viswanathan, Anand; Cleary, Kevin

    2008-01-01

    PURPOSE To assess the feasibility of the use of preprocedural imaging for guide wire, catheter, and needle navigation with electromagnetic tracking in phantom and animal models. MATERIALS AND METHODS An image-guided intervention software system was developed based on open-source software components. Catheters, needles, and guide wires were constructed with small position and orientation sensors in the tips. A tetrahedral-shaped weak electromagnetic field generator was placed in proximity to an abdominal vascular phantom or three pigs on the angiography table. Preprocedural computed tomographic (CT) images of the phantom or pig were loaded into custom-developed tracking, registration, navigation, and rendering software. Devices were manipulated within the phantom or pig with guidance from the previously acquired CT scan and simultaneous real-time angiography. Navigation within positron emission tomography (PET) and magnetic resonance (MR) volumetric datasets was also performed. External and endovascular fiducials were used for registration in the phantom, and registration error and tracking error were estimated. RESULTS The CT scan position of the devices within phantoms and pigs was accurately determined during angiography and biopsy procedures, with manageable error for some applications. Preprocedural CT depicted the anatomy in the region of the devices with real-time position updating and minimal registration error and tracking error (<5 mm). PET can also be used with this system to guide percutaneous biopsies to the most metabolically active region of a tumor. CONCLUSIONS Previously acquired CT, MR, or PET data can be accurately codisplayed during procedures with reconstructed imaging based on the position and orientation of catheters, guide wires, or needles. Multimodality interventions are feasible by allowing the real-time updated display of previously acquired functional or morphologic imaging during angiography, biopsy, and ablation. PMID:15802449

  20. New-Generation Laser-lithographed Dual-Axis Magnetically Assisted Remote-controlled Endovascular Catheter for Interventional MR Imaging: In Vitro Multiplanar Navigation at 1.5 T and 3 T versus X-ray Fluoroscopy.

    PubMed

    Moftakhar, Parham; Lillaney, Prasheel; Losey, Aaron D; Cooke, Daniel L; Martin, Alastair J; Thorne, Bradford R H; Arenson, Ronald L; Saeed, Maythem; Wilson, Mark W; Hetts, Steven W

    2015-12-01

    To assess the feasibility of multiplanar vascular navigation with a new magnetically assisted remote-controlled (MARC) catheter with real-time magnetic resonance (MR) imaging at 1.5 T and 3 T and to compare it with standard x-ray guidance in simulated endovascular catheterization procedures. A 1.6-mm-diameter custom clinical-grade microcatheter prototype with lithographed double-saddle coils at the distal tip was deflected with real-time MR imaging. Two inexperienced operators and two experienced operators catheterized anteroposterior (celiac, superior mesenteric, and inferior mesenteric arteries) and mediolateral (renal arteries) branch vessels in a cryogel abdominal aortic phantom. This was repeated with conventional x-ray fluoroscopy by using clinical catheters and guidewires. Mean procedure times and percentage success data were analyzed with linear mixed-effects regression. The MARC catheter tip was visible at 1.5 T and 3 T. Among inexperienced operators, MARC MR imaging guidance was not statistically different from x-ray guidance at 1.5 T (67% successful vessel selection turns with MR imaging vs 76% with x-ray guidance, P = .157) and at 3 T (75% successful turns with MR imaging vs 76% with x-ray guidance, P = .869). Experienced operators were more successful in catheterizing vessels with x-ray guidance (98% success within 60 seconds) than with 1.5-T (65%, P < .001) or 3-T (75%) MR imaging. Among inexperienced operators, mean procedure time was nearly equivalent by using MR imaging (31 seconds) and x-ray guidance (34 seconds, P = .436). Among experienced operators, catheterization was faster with x-ray guidance (20 seconds) compared with 1.5-T MR imaging (42 seconds, P < .001), but MARC guidance improved at 3 T (31 seconds). MARC MR imaging guidance at 3 T was not significantly different from x-ray guidance for the celiac (P = .755), superior mesenteric (P = .358), and inferior mesenteric (P = .065) arteries. Multiplanar navigation with a new MARC catheter

  1. New-Generation Laser-lithographed Dual-Axis Magnetically Assisted Remote-controlled Endovascular Catheter for Interventional MR Imaging: In Vitro Multiplanar Navigation at 1.5 T and 3 T versus X-ray Fluoroscopy

    PubMed Central

    Moftakhar, Parham; Lillaney, Prasheel; Losey, Aaron D.; Cooke, Daniel L.; Martin, Alastair J.; Thorne, Bradford R. H.; Arenson, Ronald L.; Saeed, Maythem; Wilson, Mark W.

    2015-01-01

    Purpose To assess the feasibility of multiplanar vascular navigation with a new magnetically assisted remote-controlled (MARC) catheter with real-time magnetic resonance (MR) imaging at 1.5 T and 3 T and to compare it with standard x-ray guidance in simulated endovascular catheterization procedures. Materials and Methods A 1.6-mm–diameter custom clinical-grade microcatheter prototype with lithographed double-saddle coils at the distal tip was deflected with real-time MR imaging. Two inexperienced operators and two experienced operators catheterized anteroposterior (celiac, superior mesenteric, and inferior mesenteric arteries) and mediolateral (renal arteries) branch vessels in a cryogel abdominal aortic phantom. This was repeated with conventional x-ray fluoroscopy by using clinical catheters and guidewires. Mean procedure times and percentage success data were analyzed with linear mixed-effects regression. Results The MARC catheter tip was visible at 1.5 T and 3 T. Among inexperienced operators, MARC MR imaging guidance was not statistically different from x-ray guidance at 1.5 T (67% successful vessel selection turns with MR imaging vs 76% with x-ray guidance, P = .157) and at 3 T (75% successful turns with MR imaging vs 76% with x-ray guidance, P = .869). Experienced operators were more successful in catheterizing vessels with x-ray guidance (98% success within 60 seconds) than with 1.5-T (65%, P < .001) or 3-T (75%) MR imaging. Among inexperienced operators, mean procedure time was nearly equivalent by using MR imaging (31 seconds) and x-ray guidance (34 seconds, P = .436). Among experienced operators, catheterization was faster with x-ray guidance (20 seconds) compared with 1.5-T MR imaging (42 seconds, P < .001), but MARC guidance improved at 3 T (31 seconds). MARC MR imaging guidance at 3 T was not significantly different from x-ray guidance for the celiac (P = .755), superior mesenteric (P = .358), and inferior mesenteric (P = .065) arteries. Conclusion

  2. Computational Simulations of Convergent Nozzles for the AIAA 1st Propulsion Aerodynamics Workshop

    NASA Technical Reports Server (NTRS)

    Dippold, Vance F., III

    2014-01-01

    Computational Fluid Dynamics (CFD) simulations were completed for a series of convergent nozzles in participation of the American Institute of Aeronautics and Astronautics (AIAA) 1st Propulsion Aerodynamics Workshop. The simulations were performed using the Wind-US flow solver. Discharge and thrust coefficients were computed for four axisymmetric nozzles with nozzle pressure ratios (NPR) ranging from 1.4 to 7.0. The computed discharge coefficients showed excellent agreement with available experimental data; the computed thrust coefficients captured trends observed in the experimental data, but over-predicted the thrust coefficient by 0.25 to 1.0 percent. Sonic lines were computed for cases with NPR >= 2.0 and agreed well with experimental data for NPR >= 2.5. Simulations were also performed for a 25 deg. conic nozzle bifurcated by a flat plate at NPR = 4.0. The jet plume shock structure was compared with and without the splitter plate to the experimental data. The Wind-US simulations predicted the shock structure well, though lack of grid resolution in the plume reduced the sharpness of the shock waves. Unsteady Reynolds-Averaged Navier-Stokes (URANS) simulations and Detached Eddy Simulations (DES) were performed at NPR = 1.6 for the 25 deg conic nozzle with splitter plate. The simulations predicted vortex shedding from the trailing edge of the splitter plate. However, the vortices of URANS and DES solutions appeared to dissipate earlier than observed experimentally. It is believed that a lack of grid resolution in the region of the vortex shedding may have caused the vortices to break down too soon

  3. In-Flight Guidance, Navigation, and Control Performance Results for the GOES-16 Spacecraft

    NASA Technical Reports Server (NTRS)

    Chapel, Jim; Stancliffe, Devin; Bevacqua, Tim; Winkler, Stephen; Clapp, Brian; Rood, Tim; Freesland, Doug; Reth, Alan; Early, Derrick; Walsh, Tim; hide

    2017-01-01

    The Geostationary Operational Environmental Satellite-R Series (GOES-R), which launched in November 2016, is the first of the next generation geostationary weather satellites. GOES-R provides 4 times the resolution, 5 times the observation rate, and 3 times the number of spectral bands for Earth observations compared with its predecessor spacecraft. Additionally, Earth relative and Sun-relative pointing and pointing stability requirements are maintained throughout reaction wheel desaturation events and station keeping activities, allowing GOES-R to provide continuous Earth and sun observations. This paper reviews the pointing control, pointing stability, attitude knowledge, and orbit knowledge requirements necessary to realize the ambitious Image Navigation and Registration (INR) objectives of GOES-R. This paper presents a comparison between low-frequency on-orbit pointing results and simulation predictions for both the Earth Pointed Platform (EPP) and Sun Pointed Platform (SPP). Results indicate excellent agreement between simulation predictions and observed on-orbit performance, and compliance with pointing performance requirements. The EPP instrument suite includes 6 seismic accelerometers sampled at 2 KHz, allowing in-flight verification of jitter responses and comparison back to simulation predictions. This paper presents flight results of acceleration, shock response spectrum (SRS), and instrument line of sight responses for various operational scenarios and instrument observation modes. The results demonstrate the effectiveness of the dual-isolation approach employed on GOES-R. The spacecraft provides attitude and rate data to the primary Earth-observing instrument at 100 Hz, which are used to adjust instrument scanning. The data must meet accuracy and latency numbers defined by the Integrated Rate Error (IRE) requirements. This paper discusses the on-orbit IRE results, showing compliance to these requirements with margin. During the spacecraft checkout

  4. Accuracy of computer-assisted navigation: significant augmentation by facial recognition software.

    PubMed

    Glicksman, Jordan T; Reger, Christine; Parasher, Arjun K; Kennedy, David W

    2017-09-01

    Over the past 20 years, image guidance navigation has been used with increasing frequency as an adjunct during sinus and skull base surgery. These devices commonly utilize surface registration, where varying pressure of the registration probe and loss of contact with the face during the skin tracing process can lead to registration inaccuracies, and the number of registration points incorporated is necessarily limited. The aim of this study was to evaluate the use of novel facial recognition software for image guidance registration. Consecutive adults undergoing endoscopic sinus surgery (ESS) were prospectively studied. Patients underwent image guidance registration via both conventional surface registration and facial recognition software. The accuracy of both registration processes were measured at the head of the middle turbinate (MTH), middle turbinate axilla (MTA), anterior wall of sphenoid sinus (SS), and nasal tip (NT). Forty-five patients were included in this investigation. Facial recognition was accurate to within a mean of 0.47 mm at the MTH, 0.33 mm at the MTA, 0.39 mm at the SS, and 0.36 mm at the NT. Facial recognition was more accurate than surface registration at the MTH by an average of 0.43 mm (p = 0.002), at the MTA by an average of 0.44 mm (p < 0.001), and at the SS by an average of 0.40 mm (p < 0.001). The integration of facial recognition software did not adversely affect registration time. In this prospective study, automated facial recognition software significantly improved the accuracy of image guidance registration when compared to conventional surface registration. © 2017 ARS-AAOA, LLC.

  5. Effects of mass transfer between Martian satellites on surface geology

    DTIC Science & Technology

    2015-12-21

    University Affiliated Research Center (UARC). Thanks to Bill Folkner (JPL/Caltech) for high-fidelity long-term Phobos/Deimos SPICE orbit propagations, and...created by JPL/Caltech to SPICE ephemeris information from NASA’s Navigation and Ancillary Information Facility (naif.jpl.nasa.gov) (Acton et al., 2002...References Acton, C. et al., 2002. Extending NASA’s SPICE ancillary information system to meet future mission needs. In: 2002 AIAA Space Operations

  6. A low-cost inertial smoothing system for landing approach guidance

    NASA Technical Reports Server (NTRS)

    Niessen, F. R.

    1973-01-01

    Accurate position and velocity information with low noise content for instrument approaches and landings is required for both control and display applications. In a current VTOL automatic instrument approach and landing research program, radar-derived landing guidance position reference signals, which are noisy, have been mixed with acceleration information derived from low-cost onboard sensors to provide high-quality position and velocity information. An in-flight comparison of signal quality and accuracy has shown good agreement between the low-cost inertial smoothing system and an aided inertial navigation system. Furthermore, the low-cost inertial smoothing system has been proven to be satisfactory in control and display system applications for both automatic and pilot-in-the-loop instrument approaches and landings.

  7. Dynamic multisensor fusion for mobile robot navigation in an indoor environment

    NASA Astrophysics Data System (ADS)

    Jin, Taeseok; Lee, Jang-Myung; Luk, Bing L.; Tso, Shiu K.

    2001-10-01

    In this study, as the preliminary step for developing a multi-purpose Autonomous robust carrier mobile robot to transport trolleys or heavy goods and serve as robotic nursing assistant in hospital wards. The aim of this paper is to present the use of multi-sensor data fusion such as sonar, CCD camera dn IR sensor for map-building mobile robot to navigate, and presents an experimental mobile robot designed to operate autonomously within both indoor and outdoor environments. Smart sensory systems are crucial for successful autonomous systems. We will give an explanation for the robot system architecture designed and implemented in this study and a short review of existing techniques, since there exist several recent thorough books and review paper on this paper. Instead we will focus on the main results with relevance to the intelligent service robot project at the Centre of Intelligent Design, Automation & Manufacturing (CIDAM). We will conclude by discussing some possible future extensions of the project. It is first dealt with the general principle of the navigation and guidance architecture, then the detailed functions recognizing environments updated, obstacle detection and motion assessment, with the first results form the simulations run.

  8. Risk-benefit analysis of navigation techniques for vertebral transpedicular instrumentation: a prospective study.

    PubMed

    Noriega, David C; Hernández-Ramajo, Rubén; Rodríguez-Monsalve Milano, Fiona; Sanchez-Lite, Israel; Toribio, Borja; Ardura, Francisco; Torres, Ricardo; Corredera, Raul; Kruger, Antonio

    2017-01-01

    navigation-assisted surgery group, whereas the effective dose was 10 µGy in the free-hand fluoroscopy-guided surgery group. Malposition rate, both symptomatic and asymptomatic, in spinal surgery is reduced when using CT-guided placement of transpedicular instrumentation compared with placement under fluoroscopic guidance, with radiation values within the safety limits for health. Larger studies are needed to determine risk-benefit in these patients. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. Implementation of Autonomous Navigation and Mapping using a Laser Line Scanner on a Tactical Unmanned Aerial Vehicle

    DTIC Science & Technology

    2011-12-01

    study new multi-agent algorithms to avoid collision and obstacles. Others, including Hanford et al. [2], have tried to build low-cost experimental...2007. [2] S. D. Hanford , L. N. Long, and J. F. Horn, “A Small Semi-Autonomous Rotary-Wing Unmanned Air Vehicle ( UAV ),” 2003 AIAA Atmospheric

  10. Intraoperative navigation-guided resection of anomalous transverse processes in patients with Bertolotti's syndrome

    PubMed Central

    Babu, Harish; Lagman, Carlito; Kim, Terrence T.; Grode, Marshall; Johnson, J. Patrick; Drazin, Doniel

    2017-01-01

    Background: Bertolotti's syndrome is characterized by enlargement of the transverse process at the most caudal lumbar vertebra with a pseudoarticulation between the transverse process and sacral ala. Here, we describe the use of intraoperative three-dimensional image-guided navigation in the resection of anomalous transverse processes in two patients with Bertolotti's syndrome. Case Descriptions: Two patients diagnosed with Bertolotti's syndrome who had undergone the above-mentioned procedure were identified. The patients were 17- and 38-years-old, and presented with severe, chronic low back pain that was resistant to conservative treatment. Imaging revealed lumbosacral transitional vertebrae at the level of L5-S1, which was consistent with Bertolotti's syndrome. Injections of the pseudoarticulations resulted in only temporary symptomatic relief. Thus, the patients subsequently underwent O-arm neuronavigational resection of the bony defects. Both patients experienced immediate pain resolution (documented on the postoperative notes) and remained asymptomatic 1 year later. Conclusion: Intraoperative three-dimensional imaging and navigation guidance facilitated the resection of anomalous transverse processes in two patients with Bertolotti's syndrome. Excellent outcomes were achieved in both patients. PMID:29026672

  11. Intraoperative navigation-guided resection of anomalous transverse processes in patients with Bertolotti's syndrome.

    PubMed

    Babu, Harish; Lagman, Carlito; Kim, Terrence T; Grode, Marshall; Johnson, J Patrick; Drazin, Doniel

    2017-01-01

    Bertolotti's syndrome is characterized by enlargement of the transverse process at the most caudal lumbar vertebra with a pseudoarticulation between the transverse process and sacral ala. Here, we describe the use of intraoperative three-dimensional image-guided navigation in the resection of anomalous transverse processes in two patients with Bertolotti's syndrome. Two patients diagnosed with Bertolotti's syndrome who had undergone the above-mentioned procedure were identified. The patients were 17- and 38-years-old, and presented with severe, chronic low back pain that was resistant to conservative treatment. Imaging revealed lumbosacral transitional vertebrae at the level of L5-S1, which was consistent with Bertolotti's syndrome. Injections of the pseudoarticulations resulted in only temporary symptomatic relief. Thus, the patients subsequently underwent O-arm neuronavigational resection of the bony defects. Both patients experienced immediate pain resolution (documented on the postoperative notes) and remained asymptomatic 1 year later. Intraoperative three-dimensional imaging and navigation guidance facilitated the resection of anomalous transverse processes in two patients with Bertolotti's syndrome. Excellent outcomes were achieved in both patients.

  12. Space shuttle navigation analysis. Volume 1: GPS aided navigation

    NASA Technical Reports Server (NTRS)

    Matchett, G. A.; Vogel, M. A.; Macdonald, T. J.

    1980-01-01

    Analytical studies related to space shuttle navigation are presented. Studies related to the addition of NAVSTAR Global Positioning System user equipment to the shuttle avionics suite are presented. The GPS studies center about navigation accuracy covariance analyses for both developmental and operational phases of GPS, as well as for various orbiter mission phases.

  13. Using Free Navigation Reference Points and Prefabricated Bone Plates for Zygoma Fracture Model Surgeries.

    PubMed

    Wang, Tien-Hsiang; Ma, Hsu; Tseng, Ching-Shiow; Chou, Yi-Hong; Cai, Kun-Lin

    Surgical navigation systems have been an important tool in maxillofacial surgery, helping surgeons create a presurgical plan, locate lesions, and provide guidance. For secondary facial bone reductions, a good presurgical plan and proper execution are the key to success. Previous studies used predetermined markers and screw holes as navigation references; however, unexpected situations may occur, making the predetermined surgical plan unreliable. Instead of determining positions preoperatively, this study proposes a method that surgeons can use intraoperatively to choose surface markers in a more flexible manner. Eight zygomatic fractures were created in four skull models, and preoperative computed tomography (CT) image data were imported into a self-developed navigation program for presurgical planning. This program also calculates the ideal positions of navigation references points for screw holes. During reduction surgery, markers on fractured bone are selected, registered, and calculated as free navigation reference points (FNRPs). The surface markers and FNRPs are used to monitor the position of the dislocated bone. Titanium bone plates were prefabricated on stereolithography models for osteosynthesis. Two reductions with only FNRPs, as well as six reductions with FNRPs and prefabricated bone plates, were successfully performed. Postoperative CT data were obtained, and surgical errors in the six-reduction group were evaluated. The average deviation from the screw hole drilling positions was 0.92 ± 0.38 mm. The average deviation included displacement and rotation of the zygomas. The mean displacement was 0.83 ± 0.38 mm, and the average rotations around the x, y, and z axes were 0.66 ± 0.59°, 0.77 ± 0.54°, and 0.79 ± 0.42°, respectively. The results show that combining presurgical planning and the developed navigation program to generate FNRPs for assisting in secondary zygoma reduction is an accurate and practical method. Further study is

  14. Flight test of a low-altitude helicopter guidance system with obstacle avoidance capability

    NASA Technical Reports Server (NTRS)

    Zelenka, Richard E.; Clark, Raymond F.; Branigan, Robert G.

    1995-01-01

    Military aircraft regularly conduct missions that include low-atltitude, near-terrain flight in order to increase covertness and payload effectiveness. Civilian applications include airborne fire fighting, police surveillance, search and rescue, and helicopter emergency medical service. Several fixed-wing aircraft now employ terrain elevation maps and forward-pointed radars to achieve automated terrain following or terrain avoidance flight. Similar systems specialized to helicopters and their flight regime have not received as much attention. A helicopter guidance system relying on digitized terrain elevation maps has been developed that employs airborne navigation, mission requirements, aircraft performance limits, and radar altimeter returns to generate a valley-seeking, low-altitude trajectory between waypoints. The guidance trajectory is symbolically presented to the pilot on a helmet mounted display. This system has been flight tested to 150 ft (45.7 m) above ground level altitude at 80 kts, and is primarily limited by the ability of the pilot to perform manual detection and avoidance of unmapped hazards. In this study, a wide field of view laser radar sensor has been incorporated into this guidance system to assist the pilot in obstacle detection and avoidance, while expanding the system's operational flight envelope. The results from early flight tests of this system are presented. Low-altitude missions to 100 ft (30.5 m) altitude at 80n kts in the presence of unmapped natural and man-made obstacles were demonstrated while the pilot maintained situational awareness and tracking of the guidance trajectory. Further reductions in altitude are expected with continued flight testing.

  15. Coordinating sensing and local navigation

    NASA Technical Reports Server (NTRS)

    Slack, Marc G.

    1991-01-01

    Based on Navigation Templates (or NaTs), this work presents a new paradigm for local navigation which addresses the noisy and uncertain nature of sensor data. Rather than creating a new navigation plan each time the robot's perception of the world changes, the technique incorporates perceptual changes directly into the existing navigation plan. In this way, the robot's navigation plan is quickly and continuously modified, resulting in actions that remain coordinated with its changing perception of the world.

  16. 33 CFR 209.325 - Navigation lights, aids to navigation, navigation charts, and related data policy, practices and...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Navigation and Navigable Waters CORPS OF ENGINEERS, DEPARTMENT OF THE ARMY, DEPARTMENT OF DEFENSE...), will report the channel conditions promptly, using standard tabular forms, to: Director, Defense... operations in important channels in tidal waters—either in progress and not already reported, or soon to be...

  17. Impact of trained oncology financial navigators on patient out-of-pocket spending.

    PubMed

    Yezefski, Todd; Steelquist, Jordan; Watabayashi, Kate; Sherman, Dan; Shankaran, Veena

    2018-03-01

    Patients with cancer often face financial hardships, including loss of productivity, high out-of-pocket (OOP) costs, depletion of savings, and bankruptcy. By providing financial guidance and assistance through specially trained navigators, hospitals and cancer care clinics may be able mitigate the financial burdens to patients and also minimize financial losses for the treating institutions. Financial navigators at 4 hospitals were trained through The NaVectis Group, an organization that provides training to healthcare staff to increase patient access to care and assist with OOP expenses. Data regarding financial assistance and hospital revenue were collected after instituting these programs. Amount and type of assistance (free medication, new insurance enrollment, premium/co-pay assistance) were determined annually for all qualifying patients at the participating hospitals. Of 11,186 new patients with cancer seen across the 4 participating hospitals between 2012 and 2016, 3572 (32%) qualified for financial assistance. They obtained $39 million in total financial assistance, averaging $3.5 million per year in the 11 years under observation. Patients saved an average of $33,265 annually on medication, $12,256 through enrollment in insurance plans, $35,294 with premium assistance, and $3076 with co-pay assistance. The 4 hospitals were able to avoid write-offs and save on charity care by an average of $2.1 million per year. Providing financial navigation training to staff at hospitals and cancer centers can significantly benefit patients through decreased OOP expenditures and also mitigate financial losses for healthcare institutions.

  18. Preliminary navigation accuracy analysis for the TDRSS Onboard Navigation System (TONS) experiment on EP/EUVE

    NASA Technical Reports Server (NTRS)

    Gramling, C. J.; Long, A. C.; Lee, T.; Ottenstein, N. A.; Samii, M. V.

    1991-01-01

    A Tracking and Data Relay Satellite System (TDRSS) Onboard Navigation System (TONS) is currently being developed by NASA to provide a high accuracy autonomous navigation capability for users of TDRSS and its successor, the Advanced TDRSS (ATDRSS). The fully autonomous user onboard navigation system will support orbit determination, time determination, and frequency determination, based on observation of a continuously available, unscheduled navigation beacon signal. A TONS experiment will be performed in conjunction with the Explorer Platform (EP) Extreme Ultraviolet Explorer (EUVE) mission to flight quality TONS Block 1. An overview is presented of TONS and a preliminary analysis of the navigation accuracy anticipated for the TONS experiment. Descriptions of the TONS experiment and the associated navigation objectives, as well as a description of the onboard navigation algorithms, are provided. The accuracy of the selected algorithms is evaluated based on the processing of realistic simulated TDRSS one way forward link Doppler measurements. The analysis process is discussed and the associated navigation accuracy results are presented.

  19. Image-guided Navigation of Single-element Focused Ultrasound Transducer

    PubMed Central

    Kim, Hyungmin; Chiu, Alan; Park, Shinsuk; Yoo, Seung-Schik

    2014-01-01

    The spatial specificity and controllability of focused ultrasound (FUS), in addition to its ability to modify the excitability of neural tissue, allows for the selective and reversible neuromodulation of the brain function, with great potential in neurotherapeutics. Intra-operative magnetic resonance imaging (MRI) guidance (in short, MRg) has limitations due to its complicated examination logistics, such as fixation through skull screws to mount the stereotactic frame, simultaneous sonication in the MRI environment, and restrictions in choosing MR-compatible materials. In order to overcome these limitations, an image-guidance system based on optical tracking and pre-operative imaging data is developed, separating the imaging acquisition for guidance and sonication procedure for treatment. Techniques to define the local coordinates of the focal point of sonication are presented. First, mechanical calibration detects the concentric rotational motion of a rigid-body optical tracker, attached to a straight rod mimicking the sonication path, pivoted at the virtual FUS focus. The spatial error presented in the mechanical calibration was compensated further by MRI-based calibration, which estimates the spatial offset between the navigated focal point and the ground-truth location of the sonication focus obtained from a temperature-sensitive MR sequence. MRI-based calibration offered a significant decrease in spatial errors (1.9±0.8 mm; 57% reduction) compared to the mechanical calibration method alone (4.4±0.9 mm). Using the presented method, pulse-mode FUS was applied to the motor area of the rat brain, and successfully stimulated the motor cortex. The presented techniques can be readily adapted for the transcranial application of FUS to intact human brain. PMID:25232203

  20. 75 FR 61771 - Notice of Public Availability of Navigation and Vessel Inspection Circular (NVIC) 2-10, “Guidance...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-06

    ... Enforcement of the Salvage and Marine Firefighting Regulations for Vessel Response Plans'' AGENCY: Coast Guard... Response Plans. The guidance contained in the NVIC provides details regarding the application and enforcement of the final rule, ``Salvage and Marine Firefighting Requirements; Vessel Response Plans for Oil...

  1. Potential for Integrating Entry Guidance into the Multi-Disciplinary Entry Vehicle Optimization Environment

    NASA Technical Reports Server (NTRS)

    D'souza, Sarah N.; Kinney, David J.; Garcia, Joseph A.; Sarigul-Klijn, Nesrin

    2014-01-01

    The state-of-the-art in vehicle design decouples flight feasible trajectory generation from the optimization process of an entry spacecraft shape. The disadvantage to this decoupled process is seen when a particular aeroshell does not meet in-flight requirements when integrated into Guidance, Navigation, and Control simulations. It is postulated that the integration of a guidance algorithm into the design process will provide a real-time, rapid trajectory generation technique to enhance the robustness of vehicle design solutions. The potential benefit of this integration is a reduction in design cycles (possible cost savings) and increased accuracy in the aerothermal environment (possible mass savings). This work examines two aspects: 1) the performance of a reference tracking guidance algorithm for five different geometries with the same reference trajectory and 2) the potential of mass savings from improved aerothermal predictions. An Apollo Derived Guidance (ADG) algorithm is used in this study. The baseline geometry and five test case geometries were flown using the same baseline trajectory. The guided trajectory results are compared to separate trajectories determined in a vehicle optimization study conducted for NASA's Mars Entry, Descent, and Landing System Analysis. This study revealed several aspects regarding the potential gains and required developments for integrating a guidance algorithm into the vehicle optimization environment. First, the generation of flight feasible trajectories is only as good as the robustness of the guidance algorithm. The set of dispersed geometries modelled aerodynamic dispersions that ranged from +/-1% to +/-17% and a single extreme case was modelled where the aerodynamics were approximately 80% less than the baseline geometry. The ADG, as expected, was able to guide the vehicle into the aeroshell separation box at the target location for dispersions up to 17%, but failed for the 80% dispersion cases. Finally, the results

  2. Impact of Patient Navigation on Timely Cancer Care: The Patient Navigation Research Program

    PubMed Central

    Battaglia, Tracy A.; Calhoun, Elizabeth; Darnell, Julie S.; Dudley, Donald J.; Fiscella, Kevin; Hare, Martha L.; LaVerda, Nancy; Lee, Ji-Hyun; Levine, Paul; Murray, David M.; Patierno, Steven R.; Raich, Peter C.; Roetzheim, Richard G.; Simon, Melissa; Snyder, Frederick R.; Warren-Mears, Victoria; Whitley, Elizabeth M.; Winters, Paul; Young, Gregory S.; Paskett, Electra D.

    2014-01-01

    Background Patient navigation is a promising intervention to address cancer disparities but requires a multisite controlled trial to assess its effectiveness. Methods The Patient Navigation Research Program compared patient navigation with usual care on time to diagnosis or treatment for participants with breast, cervical, colorectal, or prostate screening abnormalities and/or cancers between 2007 and 2010. Patient navigators developed individualized strategies to address barriers to care, with the focus on preventing delays in care. To assess timeliness of diagnostic resolution, we conducted a meta-analysis of center- and cancer-specific adjusted hazard ratios (aHRs) comparing patient navigation vs usual care. To assess initiation of cancer therapy, we calculated a single aHR, pooling data across all centers and cancer types. We conducted a metaregression to evaluate variability across centers. All statistical tests were two-sided. Results The 10521 participants with abnormal screening tests and 2105 with a cancer or precancer diagnosis were predominantly from racial/ethnic minority groups (73%) and publically insured (40%) or uninsured (31%). There was no benefit during the first 90 days of care, but a benefit of navigation was seen from 91 to 365 days for both diagnostic resolution (aHR = 1.51; 95% confidence interval [CI] = 1.23 to 1.84; P < .001)) and treatment initiation (aHR = 1.43; 95% CI = 1.10 to 1.86; P < .007). Metaregression revealed that navigation had its greatest benefits within centers with the greatest delays in follow-up under usual care. Conclusions Patient navigation demonstrated a moderate benefit in improving timely cancer care. These results support adoption of patient navigation in settings that serve populations at risk of being lost to follow-up. PMID:24938303

  3. A Leapfrog Navigation System

    NASA Astrophysics Data System (ADS)

    Opshaug, Guttorm Ringstad

    There are times and places where conventional navigation systems, such as the Global Positioning System (GPS), are unavailable due to anything from temporary signal occultations to lack of navigation system infrastructure altogether. The goal of the Leapfrog Navigation System (LNS) is to provide localized positioning services for such cases. The concept behind leapfrog navigation is to advance a group of navigation units teamwise into an area of interest. In a practical 2-D case, leapfrogging assumes known initial positions of at least two currently stationary navigation units. Two or more mobile units can then start to advance into the area of interest. The positions of the mobiles are constantly being calculated based on cross-range distance measurements to the stationary units, as well as cross-ranges among the mobiles themselves. At some point the mobile units stop, and the stationary units are released to move. This second team of units (now mobile) can then overtake the first team (now stationary) and travel even further towards the common goal of the group. Since there always is one stationary team, the position of any unit can be referenced back to the initial positions. Thus, LNS provides absolute positioning. I developed navigation algorithms needed to solve leapfrog positions based on cross-range measurements. I used statistical tools to predict how position errors would grow as a function of navigation unit geometry, cross-range measurement accuracy and previous position errors. Using this knowledge I predicted that a 4-unit Leapfrog Navigation System using 100 m baselines and 200 m leap distances could travel almost 15 km before accumulating absolute position errors of 10 m (1sigma). Finally, I built a prototype leapfrog navigation system using 4 GPS transceiver ranging units. I placed the 4 units in the vertices a 10m x 10m square, and leapfrogged the group 20 meters forwards, and then back again (40 m total travel). Average horizontal RMS position

  4. Demonstration of coherent Doppler lidar for navigation in GPS-denied environments

    NASA Astrophysics Data System (ADS)

    Amzajerdian, Farzin; Hines, Glenn D.; Pierrottet, Diego F.; Barnes, Bruce W.; Petway, Larry B.; Carson, John M.

    2017-05-01

    A coherent Doppler lidar has been developed to address NASA's need for a high-performance, compact, and cost-effective velocity and altitude sensor onboard its landing vehicles. Future robotic and manned missions to solar system bodies require precise ground-relative velocity vector and altitude data to execute complex descent maneuvers and safe, soft landing at a pre-designated site. This lidar sensor, referred to as a Navigation Doppler Lidar (NDL), meets the required performance of the landing missions while complying with vehicle size, mass, and power constraints. Operating from up to four kilometers altitude, the NDL obtains velocity and range precision measurements reaching 2 cm/sec and 2 meters, respectively, dominated by the vehicle motion. Terrestrial aerial vehicles will also benefit from NDL data products as enhancement or replacement to GPS systems when GPS is unavailable or redundancy is needed. The NDL offers a viable option to aircraft navigation in areas where the GPS signal can be blocked or jammed by intentional or unintentional interference. The NDL transmits three laser beams at different pointing angles toward the ground to measure range and velocity along each beam using a frequency modulated continuous wave (FMCW) technique. The three line-of-sight measurements are then combined in order to determine the three components of the vehicle velocity vector and its altitude relative to the ground. This paper describes the performance and capabilities that the NDL demonstrated through extensive ground tests, helicopter flight tests, and onboard an autonomous rocket-powered test vehicle while operating in closedloop with a guidance, navigation, and control (GN and C) system.

  5. Autonomous landing guidance program

    NASA Astrophysics Data System (ADS)

    Brown, John A.

    1996-05-01

    The Autonomous Landing Guidance program is partly funded by the US Government under the Technology Reinvestment Project. The program consortium consists of avionics and other equipment vendors, airlines and the USAF. A Sextant Avionique HUD is used to present flight symbology in cursive form as well as millimeter wave radar imagery from Lear Astronics equipment and FLIR Systems dual-channel, forward-looking, infrared imagery. All sensor imagery is presented in raster form. A future aim is to fuse all imagery data into a single presentation. Sensor testing has been accomplished in a Cessna 402 operated by the Maryland Advanced Development Laboratory. Development testing is under way in a Northwest Airlines simulator equipped with HUD and image simulation. Testing is also being carried out using United Airlines Boeing 727 and USAF C-135C (Boeing 707) test aircraft. The paper addresses the technology utilized in sensory and display systems as well as modifications made to accommodate the elements in the aircraft. Additions to the system test aircraft include global positioning systems, inertial navigation systems and extensive data collection equipment. Operational philosophy and benefits for both civil and military users are apparent. Approach procedures have been developed allowing use of Category 1 ground installations in Category 3 conditions.

  6. The navigation of homing pigeons: Do they use sun Navigation?

    NASA Technical Reports Server (NTRS)

    Walcott, C.

    1972-01-01

    Experiments to determine the dependence of homing pigeons on the sun as a navigational cue are discussed. Various methods were employed to interrupt the circadian rhythms of the pigeons prior to release. It was determined that the sun may serve as a compass, but that topographic features are more important for navigation. The effects of a magnetic field produced by electric equipment carried by the bird were also investigated. It was concluded that magnetic fields may have a small effect on the homing ability. The exact nature of the homing pigeon's navigational ability is still unknown after years of elaborate experimentation.

  7. Satellite Formation Design for Space Based Radar Applications

    DTIC Science & Technology

    2007-07-30

    communications. While the Clohessy - Wiltshire Hills (CWH) equations have been in existence for sometime, it is more recently that they have been... Clohessy - Wiltshire equations. To get the state transition matrix for relative position and velocity, these differential equations are integrated to...Practical Guidance Methodology for Relative Motion of LEO Spacecraft Based on the Clohessy - Wiltshire Equations,” AAS Paper 04-252, AAS/AIAA Space

  8. Intra-operative ultrasound-based augmented reality guidance for laparoscopic surgery.

    PubMed

    Singla, Rohit; Edgcumbe, Philip; Pratt, Philip; Nguan, Christopher; Rohling, Robert

    2017-10-01

    In laparoscopic surgery, the surgeon must operate with a limited field of view and reduced depth perception. This makes spatial understanding of critical structures difficult, such as an endophytic tumour in a partial nephrectomy. Such tumours yield a high complication rate of 47%, and excising them increases the risk of cutting into the kidney's collecting system. To overcome these challenges, an augmented reality guidance system is proposed. Using intra-operative ultrasound, a single navigation aid, and surgical instrument tracking, four augmentations of guidance information are provided during tumour excision. Qualitative and quantitative system benefits are measured in simulated robot-assisted partial nephrectomies. Robot-to-camera calibration achieved a total registration error of 1.0 ± 0.4 mm while the total system error is 2.5 ± 0.5 mm. The system significantly reduced healthy tissue excised from an average (±standard deviation) of 30.6 ± 5.5 to 17.5 ± 2.4 cm 3 ( p < 0.05) and reduced the depth from the tumor underside to cut from an average (±standard deviation) of 10.2 ± 4.1 to 3.3 ± 2.3 mm ( p < 0.05). Further evaluation is required in vivo, but the system has promising potential to reduce the amount of healthy parenchymal tissue excised.

  9. Optimal motion planning using navigation measure

    NASA Astrophysics Data System (ADS)

    Vaidya, Umesh

    2018-05-01

    We introduce navigation measure as a new tool to solve the motion planning problem in the presence of static obstacles. Existence of navigation measure guarantees collision-free convergence at the final destination set beginning with almost every initial condition with respect to the Lebesgue measure. Navigation measure can be viewed as a dual to the navigation function. While the navigation function has its minimum at the final destination set and peaks at the obstacle set, navigation measure takes the maximum value at the destination set and is zero at the obstacle set. A linear programming formalism is proposed for the construction of navigation measure. Set-oriented numerical methods are utilised to obtain finite dimensional approximation of this navigation measure. Application of the proposed navigation measure-based theoretical and computational framework is demonstrated for a motion planning problem in a complex fluid flow.

  10. A navigation system for the visually impaired using colored navigation lines and RFID tags.

    PubMed

    Seto, First Tatsuya

    2009-01-01

    In this paper, we describe about a developed navigation system that supports the independent walking of the visually impaired in the indoor space. Our developed instrument consists of a navigation system and a map information system. These systems are installed on a white cane. Our navigation system can follow a colored navigation line that is set on the floor. In this system, a color sensor installed on the tip of a white cane senses the colored navigation line, and the system informs the visually impaired that he/she is walking along the navigation line by vibration. The color recognition system is controlled by a one-chip microprocessor and this system can discriminate 6 colored navigation lines. RFID tags and a receiver for these tags are used in the map information system. The RFID tags and the RFID tag receiver are also installed on a white cane. The receiver receives tag information and notifies map information to the user by mp3 formatted pre-recorded voice. Three normal subjects who were blindfolded with an eye mask were tested with this system. All of them were able to walk along the navigation line. The performance of the map information system was good. Therefore, our system will be extremely valuable in supporting the activities of the visually impaired.

  11. 3D navigated implantation of the glenoid component in reversed shoulder arthroplasty. Feasibility and results in an anatomic study.

    PubMed

    Stübig, Timo; Petri, Maximilian; Zeckey, Christian; Hawi, Nael; Krettek, Christian; Citak, Musa; Meller, Rupert

    2013-12-01

    Reversed shoulder arthroplasty is an alternative to total shoulder arthroplasty for various indications. The long-term results depend on stable bone fixation, and correct positioning of the glenoid component. The potential contribution of image guidance for reversed shoulder arthroplasty procedures was tested in vitro. 27 positioning procedures (15 navigated, 12 non-navigated) of the glenoid baseplate in reverse shoulder arthroplasty were performed by a single experienced orthopaedic surgeon. A Kirschner wire was placed freehand or with the use of a navigated drill guide. For the navigated procedures, a flat detector 3D C-arm with navigation system was used. The Kirschner wire was to be inserted 12 mm from the inferior glenoid, with an inferior tilt of 10° and centrally in the axial scapular axis. The insertion point in the glenoid as well as the position of the K-wire in the axial and sagittal planes were measured. For statistical analysis, t-tests were performed with a significance level of 0.05. The inferior glenoid drilling distance was 14.1 ± 3.4 mm for conventional placement and 15.1 ± 3.4 mm for the navigated procedure (P = 0.19). The inferior tilt showed no significant difference between the two methods (conventional 7.4 ± 5.2°, navigated 7.7 ± 4.9°, P = 0.63). The glenoid version in the axial plane showed significantly higher accuracy for the navigated procedure, with a mean deviation of 1.6 ±4.5° for the navigated procedure compared with 11.5 ± 6.5° for the conventional procedure(P = 0.004). Accurate positioning of the glenoidal baseplate in the axial scapular plane can be improved using 3D C-arm navigation for reversed shoulder arthroplasty. However, computer navigation may not improve the inferior tilt of the component or the position in the inferior glenoid to avoid scapular notching. Nevertheless, further studies are required to confirm these findings in the clinical setup. Copyright © 2013 John Wiley & Sons

  12. Hybrid optical navigation by crater detection for lunar pin-point landing: trajectories from helicopter flight tests

    NASA Astrophysics Data System (ADS)

    Trigo, Guilherme F.; Maass, Bolko; Krüger, Hans; Theil, Stephan

    2018-01-01

    Accurate autonomous navigation capabilities are essential for future lunar robotic landing missions with a pin-point landing requirement, since in the absence of direct line of sight to ground control during critical approach and landing phases, or when facing long signal delays the herein before mentioned capability is needed to establish a guidance solution to reach the landing site reliably. This paper focuses on the processing and evaluation of data collected from flight tests that consisted of scaled descent scenarios where the unmanned helicopter of approximately 85 kg approached a landing site from altitudes of 50 m down to 1 m for a downrange distance of 200 m. Printed crater targets were distributed along the ground track and their detection provided earth-fixed measurements. The Crater Navigation (CNav) algorithm used to detect and match the crater targets is an unmodified method used for real lunar imagery. We analyze the absolute position and attitude solutions of CNav obtained and recorded during these flight tests, and investigate the attainable quality of vehicle pose estimation using both CNav and measurements from a tactical-grade inertial measurement unit. The navigation filter proposed for this end corrects and calibrates the high-rate inertial propagation with the less frequent crater navigation fixes through a closed-loop, loosely coupled hybrid setup. Finally, the attainable accuracy of the fused solution is evaluated by comparison with the on-board ground-truth solution of a dual-antenna high-grade GNSS receiver. It is shown that the CNav is an enabler for building autonomous navigation systems with high quality and suitability for exploration mission scenarios.

  13. In silico Interrogation of Insect Central Complex Suggests Computational Roles for the Ellipsoid Body in Spatial Navigation.

    PubMed

    Fiore, Vincenzo G; Kottler, Benjamin; Gu, Xiaosi; Hirth, Frank

    2017-01-01

    The central complex in the insect brain is a composite of midline neuropils involved in processing sensory cues and mediating behavioral outputs to orchestrate spatial navigation. Despite recent advances, however, the neural mechanisms underlying sensory integration and motor action selections have remained largely elusive. In particular, it is not yet understood how the central complex exploits sensory inputs to realize motor functions associated with spatial navigation. Here we report an in silico interrogation of central complex-mediated spatial navigation with a special emphasis on the ellipsoid body. Based on known connectivity and function, we developed a computational model to test how the local connectome of the central complex can mediate sensorimotor integration to guide different forms of behavioral outputs. Our simulations show integration of multiple sensory sources can be effectively performed in the ellipsoid body. This processed information is used to trigger continuous sequences of action selections resulting in self-motion, obstacle avoidance and the navigation of simulated environments of varying complexity. The motor responses to perceived sensory stimuli can be stored in the neural structure of the central complex to simulate navigation relying on a collective of guidance cues, akin to sensory-driven innate or habitual behaviors. By comparing behaviors under different conditions of accessible sources of input information, we show the simulated insect computes visual inputs and body posture to estimate its position in space. Finally, we tested whether the local connectome of the central complex might also allow the flexibility required to recall an intentional behavioral sequence, among different courses of actions. Our simulations suggest that the central complex can encode combined representations of motor and spatial information to pursue a goal and thus successfully guide orientation behavior. Together, the observed computational features

  14. In silico Interrogation of Insect Central Complex Suggests Computational Roles for the Ellipsoid Body in Spatial Navigation

    PubMed Central

    Fiore, Vincenzo G.; Kottler, Benjamin; Gu, Xiaosi; Hirth, Frank

    2017-01-01

    The central complex in the insect brain is a composite of midline neuropils involved in processing sensory cues and mediating behavioral outputs to orchestrate spatial navigation. Despite recent advances, however, the neural mechanisms underlying sensory integration and motor action selections have remained largely elusive. In particular, it is not yet understood how the central complex exploits sensory inputs to realize motor functions associated with spatial navigation. Here we report an in silico interrogation of central complex-mediated spatial navigation with a special emphasis on the ellipsoid body. Based on known connectivity and function, we developed a computational model to test how the local connectome of the central complex can mediate sensorimotor integration to guide different forms of behavioral outputs. Our simulations show integration of multiple sensory sources can be effectively performed in the ellipsoid body. This processed information is used to trigger continuous sequences of action selections resulting in self-motion, obstacle avoidance and the navigation of simulated environments of varying complexity. The motor responses to perceived sensory stimuli can be stored in the neural structure of the central complex to simulate navigation relying on a collective of guidance cues, akin to sensory-driven innate or habitual behaviors. By comparing behaviors under different conditions of accessible sources of input information, we show the simulated insect computes visual inputs and body posture to estimate its position in space. Finally, we tested whether the local connectome of the central complex might also allow the flexibility required to recall an intentional behavioral sequence, among different courses of actions. Our simulations suggest that the central complex can encode combined representations of motor and spatial information to pursue a goal and thus successfully guide orientation behavior. Together, the observed computational features

  15. 33 CFR 207.169 - Oklawaha River, navigation lock and dam at Moss Bluff, Fla.; use, administration, and navigation.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 3 2010-07-01 2010-07-01 false Oklawaha River, navigation lock and dam at Moss Bluff, Fla.; use, administration, and navigation. 207.169 Section 207.169 Navigation... REGULATIONS § 207.169 Oklawaha River, navigation lock and dam at Moss Bluff, Fla.; use, administration, and...

  16. 33 CFR 207.169 - Oklawaha River, navigation lock and dam at Moss Bluff, Fla.; use, administration, and navigation.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 3 2011-07-01 2011-07-01 false Oklawaha River, navigation lock and dam at Moss Bluff, Fla.; use, administration, and navigation. 207.169 Section 207.169 Navigation... REGULATIONS § 207.169 Oklawaha River, navigation lock and dam at Moss Bluff, Fla.; use, administration, and...

  17. Impact of patient navigation on timely cancer care: the Patient Navigation Research Program.

    PubMed

    Freund, Karen M; Battaglia, Tracy A; Calhoun, Elizabeth; Darnell, Julie S; Dudley, Donald J; Fiscella, Kevin; Hare, Martha L; LaVerda, Nancy; Lee, Ji-Hyun; Levine, Paul; Murray, David M; Patierno, Steven R; Raich, Peter C; Roetzheim, Richard G; Simon, Melissa; Snyder, Frederick R; Warren-Mears, Victoria; Whitley, Elizabeth M; Winters, Paul; Young, Gregory S; Paskett, Electra D

    2014-06-01

    Patient navigation is a promising intervention to address cancer disparities but requires a multisite controlled trial to assess its effectiveness. The Patient Navigation Research Program compared patient navigation with usual care on time to diagnosis or treatment for participants with breast, cervical, colorectal, or prostate screening abnormalities and/or cancers between 2007 and 2010. Patient navigators developed individualized strategies to address barriers to care, with the focus on preventing delays in care. To assess timeliness of diagnostic resolution, we conducted a meta-analysis of center- and cancer-specific adjusted hazard ratios (aHRs) comparing patient navigation vs usual care. To assess initiation of cancer therapy, we calculated a single aHR, pooling data across all centers and cancer types. We conducted a metaregression to evaluate variability across centers. All statistical tests were two-sided. The 10521 participants with abnormal screening tests and 2105 with a cancer or precancer diagnosis were predominantly from racial/ethnic minority groups (73%) and publically insured (40%) or uninsured (31%). There was no benefit during the first 90 days of care, but a benefit of navigation was seen from 91 to 365 days for both diagnostic resolution (aHR = 1.51; 95% confidence interval [CI] = 1.23 to 1.84; P < .001)) and treatment initiation (aHR = 1.43; 95% CI = 1.10 to 1.86; P < .007). Metaregression revealed that navigation had its greatest benefits within centers with the greatest delays in follow-up under usual care. Patient navigation demonstrated a moderate benefit in improving timely cancer care. These results support adoption of patient navigation in settings that serve populations at risk of being lost to follow-up. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  18. Consistent evaluation of an ultrasound-guided surgical navigation system by utilizing an active validation platform

    NASA Astrophysics Data System (ADS)

    Kim, Younsu; Kim, Sungmin; Boctor, Emad M.

    2017-03-01

    An ultrasound image-guided needle tracking systems have been widely used due to their cost-effectiveness and nonionizing radiation properties. Various surgical navigation systems have been developed by utilizing state-of-the-art sensor technologies. However, ultrasound transmission beam thickness causes unfair initial evaluation conditions due to inconsistent placement of the target with respect to the ultrasound probe. This inconsistency also brings high uncertainty and results in large standard deviations for each measurement when we compare accuracy with and without the guidance. To resolve this problem, we designed a complete evaluation platform by utilizing our mid-plane detection and time of flight measurement systems. The evaluating system uses a PZT element target and an ultrasound transmitting needle. In this paper, we evaluated an optical tracker-based surgical ultrasound-guided navigation system whereby the optical tracker tracks marker frames attached on the ultrasound probe and the needle. We performed ten needle trials of guidance experiment with a mid-plane adjustment algorithm and with a B-mode segmentation method. With the midplane adjustment, the result showed a mean error of 1.62+/-0.72mm. The mean error increased to 3.58+/-2.07mm without the mid-plane adjustment. Our evaluation system can reduce the effect of the beam-thickness problem, and measure ultrasound image-guided technologies consistently with a minimal standard deviation. Using our novel evaluation system, ultrasound image-guided technologies can be compared under equal initial conditions. Therefore, the error can be evaluated more accurately, and the system provides better analysis on the error sources such as ultrasound beam thickness.

  19. Testing of the high accuracy inertial navigation system in the Shuttle Avionics Integration Lab

    NASA Technical Reports Server (NTRS)

    Strachan, Russell L.; Evans, James M.

    1991-01-01

    The description, results, and interpretation is presented of comparison testing between the High Accuracy Inertial Navigation System (HAINS) and KT-70 Inertial Measurement Unit (IMU). The objective was to show the HAINS can replace the KT-70 IMU in the space shuttle Orbiter, both singularly and totally. This testing was performed in the Guidance, Navigation, and Control Test Station (GTS) of the Shuttle Avionics Integration Lab (SAIL). A variety of differences between the two instruments are explained. Four, 5 day test sessions were conducted varying the number and slot position of the HAINS and KT-70 IMUs. The various steps in the calibration and alignment procedure are explained. Results and their interpretation are presented. The HAINS displayed a high level of performance accuracy previously unseen with the KT-70 IMU. The most significant improvement of the performance came in the Tuned Inertial/Extended Launch Hold tests. The HAINS exceeded the 4 hr specification requirement. The results obtained from the SAIL tests were generally well beyond the requirements of the procurement specification.

  20. Acoustically active injection catheter guided by ultrasound: navigation tests in acutely ischemic porcine hearts.

    PubMed

    Belohlavek, Marek; Katayama, Minako; Zarbatany, David; Fortuin, F David; Fatemi, Mostafa; Nenadic, Ivan Z; McMahon, Eileen M

    2014-07-01

    Catheters are increasingly used therapeutically and investigatively. With complex usage comes a need for more accurate intracardiac localization than traditional guidance can provide. An injection catheter navigated by ultrasound was designed and then tested in an open-chest model of acute ischemia in eight pigs. The catheter is made "acoustically active" by a piezo-electric crystal near its tip, electronically controlled, vibrating in the audio frequency range and uniquely identifiable using pulsed-wave Doppler. Another "target" crystal was sutured to the epicardium within the ischemic region. Sonomicrometry was used to measure distances between the two crystals and then compared with measurements from 2-D echocardiographic images. Complete data were obtained from seven pigs, and the correlation between sonomicrometry and ultrasound measurements was excellent (p < 0.0001, ρ = 0.9820), as was the intraclass correlation coefficient (0.96) between two observers. These initial experimental results suggest high accuracy of ultrasound navigation of the acoustically active catheter prototype located inside the beating left ventricle. Copyright © 2014 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  1. Racial and Ethnic Differences in Patient Navigation: Results from the Patient Navigation Research Program

    PubMed Central

    Ko, Naomi Y; Snyder, Frederick R; Raich, Peter C; Paskett, Electra D.; Dudley, Donald; Lee, Ji-Hyun; Levine, Paul H.; Freund, Karen M

    2016-01-01

    Purpose Patient navigation was developed to address barriers to timely care and reduce cancer disparities. This study explores navigation and racial and ethnic differences in time to diagnostic resolution of a cancer screening abnormality. Patients and Methods We conducted an analysis of the multi-site Patient Navigation Research Program. Participants with an abnormal cancer screening test were allocated to either navigation or control. Unadjusted median time to resolution was calculated for each racial and ethnic group by navigation and control. Multivariable Cox proportional hazards models were fit, adjusting for sex, age, cancer abnormality type, and health insurance, stratifying by center of care. Results Among a sample of 7,514 participants, 29% were Non-Hispanic White, 43% Hispanic, and 28% Black. In the control group Blacks had a longer median time to diagnostic resolution (108 days) than Non-Hispanic Whites (65 days) or Hispanics (68 days) (p< .0001). In the navigated groups, Blacks had a reduction in median time to diagnostic resolution (97 days) (p <.0001). In the multivariable models, among controls, Black race was associated with increased delay to diagnostic resolution (HR=0.77; 95% CI: 0.69, 0.84) compared to the Non-Hispanic Whites, which was reduced in the navigated arm (HR=0.85; 95% CI: 0.77, 0.94). Conclusion Patient navigation had its greatest impact for Black patients who had the greatest delays in care. PMID:27227342

  2. Texas ports and navigation districts : overview.

    DOT National Transportation Integrated Search

    2017-01-01

    The first Navigation District was established in 1909, and there are now 24 Navigation Districts statewide.1 Navigation districts generally provide for the construction and improvement of waterways in Texas for the purpose of navigation. The creation...

  3. Shuttle unified navigation filter, revision 1

    NASA Technical Reports Server (NTRS)

    Muller, E. S., Jr.

    1973-01-01

    Equations designed to meet the navigation requirements of the separate shuttle mission phases are presented in a series of reports entitled, Space Shuttle GN and C Equation Document. The development of these equations is based on performance studies carried out for each particular mission phase. Although navigation equations have been documented separately for each mission phase, a single unified navigation filter design is embodied in these separate designs. The purpose of this document is to present the shuttle navigation equations in a form in which they would most likely be coded-as the single unified navigation filter used in each mission phase. This document will then serve as a single general reference for the navigation equations replacing each of the individual mission phase navigation documents (which may still be used as a description of a particular navigation phase).

  4. The Advantage of a Ureteroscopic Navigation System with Magnetic Tracking in Comparison with Simulated Fluoroscopy in a Phantom Study.

    PubMed

    Yoshida, Kenji; Yokomizo, Akira; Matsuda, Tadashi; Hamasaki, Tsutomu; Kondo, Yukihiro; Yamaguchi, Kunihisa; Kanayama, Hiro-Omi; Wakumoto, Yoshiaki; Horie, Shigeo; Naito, Seiji

    2015-09-01

    To assess whether our ureteroscopic real-time navigation system has the possibility to reduce radiation exposure and improve performance of ureteroscopic maneuvers in surgeons of various ages and experience levels. Our novel ureteroscopic navigation system used a magnetic tracking device to detect the position of the ureteroscope and display it on a three-dimensional image. We recruited 31 urologists from five institutions to perform two tasks. Task 1 consisted of finding three internal markings on the phantom calices. Task 2 consisted of identifying all calices by ureteroscopy. In both tasks, participants performed with simulated fluoroscopy first, followed by our navigation system. Accuracy rates (AR) for identification, required time (T) for completing the task, migration length (ML), and time exposed to simulated fluoroscopy were recorded. The AR, T, and ML for both tasks were significantly better with the navigation system than without it (Task 1 with simulated fluoroscopy vs with navigation: AR 87.1 % vs 98.9%, P=0.003; T 355 s vs 191 s, P<0.0001; ML 4627 mm vs 2701 mm, P<0.0001. Task 2: AR 88.2% vs 96.7%, P=0.011; T 394 s vs 333 s, P=0.027; ML 5966 mm vs 5299 mm, P=0.0006). In both tasks, the participants used the simulated fluoroscopy about 20% of the total task time. Our navigation system, while still under development, could help surgeons of all levels to achieve better performances for ureteroscopic maneuvers compared with using fluoroscopic guidance. It also has the potential to reduce radiation exposure during fluoroscopy.

  5. Lunar Navigation Architecture Design Considerations

    NASA Technical Reports Server (NTRS)

    D'Souza, Christopher; Getchius, Joel; Holt, Greg; Moreau, Michael

    2009-01-01

    The NASA Constellation Program is aiming to establish a long-term presence on the lunar surface. The Constellation elements (Orion, Altair, Earth Departure Stage, and Ares launch vehicles) will require a lunar navigation architecture for navigation state updates during lunar-class missions. Orion in particular has baselined earth-based ground direct tracking as the primary source for much of its absolute navigation needs. However, due to the uncertainty in the lunar navigation architecture, the Orion program has had to make certain assumptions on the capabilities of such architectures in order to adequately scale the vehicle design trade space. The following paper outlines lunar navigation requirements, the Orion program assumptions, and the impacts of these assumptions to the lunar navigation architecture design. The selection of potential sites was based upon geometric baselines, logistical feasibility, redundancy, and abort support capability. Simulated navigation covariances mapped to entry interface flightpath- angle uncertainties were used to evaluate knowledge errors. A minimum ground station architecture was identified consisting of Goldstone, Madrid, Canberra, Santiago, Hartebeeshoek, Dongora, Hawaii, Guam, and Ascension Island (or the geometric equivalent).

  6. A randomized clinical trial comparing guided implant surgery (bone- or mucosa-supported) with mental navigation or the use of a pilot-drill template.

    PubMed

    Vercruyssen, Marjolein; Cox, Catherine; Coucke, Wim; Naert, Ignace; Jacobs, Reinhilde; Quirynen, Marc

    2014-07-01

    To assess the accuracy of guided surgery (mucosa and bone-supported) compared to mental navigation or the use of a surgical template, in fully edentulous jaws, in a randomized controlled study. Fifty-nine patients (72 jaws), requiring four to six implants (maxilla or mandible), were consecutively recruited and randomly assigned to one of the following treatment groups; guidance via Materialise Universal(®)/mucosa, Materialise Universal(®)/bone, Facilitate™/mucosa, Facilitate™/bone, or mental navigation or a pilot-drill template. The precision was assessed by matching the planning computed tomography (CT) with a post-operative cone beam CT. A significant lower mean deviation at the entry point (1.4 mm, range: 0.3-3.7), at the apex (1.6 mm, range: 0.2-3.7) and angular deviation (3.0°, range: 0.2-16°) was observed for the guiding systems when compared to mental navigation (2.7 mm, range: 0.3-8.3; 2.9 mm, range: 0.5-7.4 and 9.9°, range: 1.5-27.8) and to the surgical template group (3.0 mm, range: 0.6-6.6; 3.4 mm, range: 0.3-7.5 and 8.4°, range: 0.6-21.3°). Differences between bone and mucosa support or type of guidance were negligible. Jaw and implant location (posterior-anterior, left-right), however, had a significant influence on the accuracy when guided. Based on these findings, guided implant placement appears to offer clear accuracy benefits. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  7. Technical Note: Mobile accelerator guidance using an optical tracker during docking in IOERT procedures.

    PubMed

    Marinetto, Eugenio; Victores, Juan González; García-Sevilla, Mónica; Muñoz, Mercedes; Calvo, Felipe Ángel; Balaguer, Carlos; Desco, Manuel; Pascau, Javier

    2017-10-01

    Intraoperative electron radiation therapy (IOERT) involves the delivery of a high radiation dose during tumor resection in a shorter time than other radiation techniques, thus improving local control of tumors. However, a linear accelerator device is needed to produce the beam safely. Mobile linear accelerators have been designed as dedicated units that can be moved into the operating room and deliver radiation in situ. Correct and safe dose delivery is a key concern when using mobile accelerators. The applicator is commonly fixed to the patient's bed to ensure that the dose is delivered to the prescribed location, and the mobile accelerator is moved to dock the applicator to the radiation beam output (gantry). In a typical clinical set-up, this task is time-consuming because of safety requirements and the limited degree of freedom of the gantry. The objective of this study was to present a navigation solution based on optical tracking for guidance of docking to improve safety and reduce procedure time. We used an optical tracker attached to the mobile linear accelerator to track the prescribed localization of the radiation collimator inside the operating room. Using this information, the integrated navigation system developed computes the movements that the mobile linear accelerator needs to perform to align the applicator and the radiation gantry and warns the physician if docking is unrealizable according to the available degrees of freedom of the mobile linear accelerator. Furthermore, we coded a software application that connects all the necessary functioning elements and provides a user interface for the system calibration and the docking guidance. The system could safeguard against the spatial limitations of the operating room, calculate the optimal arrangement of the accelerator and reduce the docking time in computer simulations and experimental setups. The system could be used to guide docking with any commercial linear accelerator. We believe that the

  8. [Navigated retinal laser therapy].

    PubMed

    Kernt, M; Ulbig, M; Kampik, A; Neubauer, A S

    2013-08-01

    Navigated laser therapy introduces for the first time computerized assistance systems for retinal laser therapy. The Navilas system offers high precision and safety and provides additional benefits regarding standardization of planning, execution, documentation and quality assurance. The current focus of clinical application for navigated laser therapy besides laser treatment after retinal vein occlusion and panretinal laser photocoagulation in proliferative diabetic retinopathy (PDR) is diabetic macular edema. Recent data indicate that combined initial anti-vascular endothelial growth factor (anti-VEGF) and navigated macular laser therapy allows achievement and maintenance of treatment success with a minimum number of interventions. Despite very promising results the current assessment of navigated laser therapy is still limited by the evidence available worldwide.

  9. 33 CFR 66.10-35 - Navigation lights.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Navigation lights. 66.10-35... NAVIGATION PRIVATE AIDS TO NAVIGATION Uniform State Waterway Marking System § 66.10-35 Navigation lights. A red light shall only be used on a solid colored red buoy. A green light shall only be used on a solid...

  10. 33 CFR 66.10-35 - Navigation lights.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 1 2011-07-01 2011-07-01 false Navigation lights. 66.10-35... NAVIGATION PRIVATE AIDS TO NAVIGATION Uniform State Waterway Marking System § 66.10-35 Navigation lights. A red light shall only be used on a solid colored red buoy. A green light shall only be used on a solid...

  11. 33 CFR 66.10-35 - Navigation lights.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 1 2013-07-01 2013-07-01 false Navigation lights. 66.10-35... NAVIGATION PRIVATE AIDS TO NAVIGATION Uniform State Waterway Marking System § 66.10-35 Navigation lights. A red light shall only be used on a solid colored red buoy. A green light shall only be used on a solid...

  12. 33 CFR 66.10-35 - Navigation lights.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 1 2014-07-01 2014-07-01 false Navigation lights. 66.10-35... NAVIGATION PRIVATE AIDS TO NAVIGATION Uniform State Waterway Marking System § 66.10-35 Navigation lights. A red light shall only be used on a solid colored red buoy. A green light shall only be used on a solid...

  13. 33 CFR 66.10-35 - Navigation lights.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 1 2012-07-01 2012-07-01 false Navigation lights. 66.10-35... NAVIGATION PRIVATE AIDS TO NAVIGATION Uniform State Waterway Marking System § 66.10-35 Navigation lights. A red light shall only be used on a solid colored red buoy. A green light shall only be used on a solid...

  14. Indoor navigation by image recognition

    NASA Astrophysics Data System (ADS)

    Choi, Io Teng; Leong, Chi Chong; Hong, Ka Wo; Pun, Chi-Man

    2017-07-01

    With the progress of smartphones hardware, it is simple on smartphone using image recognition technique such as face detection. In addition, indoor navigation system development is much slower than outdoor navigation system. Hence, this research proves a usage of image recognition technique for navigation in indoor environment. In this paper, we introduced an indoor navigation application that uses the indoor environment features to locate user's location and a route calculating algorithm to generate an appropriate path for user. The application is implemented on Android smartphone rather than iPhone. Yet, the application design can also be applied on iOS because the design is implemented without using special features only for Android. We found that digital navigation system provides better and clearer location information than paper map. Also, the indoor environment is ideal for Image recognition processing. Hence, the results motivate us to design an indoor navigation system using image recognition.

  15. NASA/DOD Aerospace Knowledge Diffusion Research Project. Paper 40: Technical communications in aerospace education: A study of AIAA student members

    NASA Technical Reports Server (NTRS)

    Kennedy, John M.; Pinelli, Thomas E.; Barclay, Rebecca O.

    1994-01-01

    This paper describes the preliminary analysis of a survey of the American Institute of Aeronautics and Astronautics (AIAA) student members. In the paper we examine (1) the demographic characteristics of the students, (2) factors that affected their career decisions, (3) their career goals and aspirations, and (4) their training in technical communication and techniques for finding and using aerospace scientific and technical information (STI). We determine that aerospace engineering students receive training in technical communication skills and the use of STI. While those in the aerospace industry think that more training is needed, we believe the students receive the appropriate amount of training. We think that the differences between the amount of training students receive and the perception of training needs is related partially to the characteristics of the students and partially to the structure of the aerospace STI dissemination system. Overall, we conclude that the students' technical communication training and knowledge of STI, while limited by external forces, makes it difficult for students to achieve their career goals.

  16. Analysis of safety reports involving area navigation and required navigation performance procedures.

    DOT National Transportation Integrated Search

    2010-11-03

    In order to achieve potential operational and safety benefits enabled by Area Navigation (RNAV) and Required Navigation Performance (RNP) procedures it is important to monitor emerging issues in their initial implementation. Reports from the Aviation...

  17. Innovative use of global navigation satellite systems for flight inspection

    NASA Astrophysics Data System (ADS)

    Kim, Eui-Ho

    The International Civil Aviation Organization (ICAO) mandates flight inspection in every country to provide safety during flight operations. Among many criteria of flight inspection, airborne inspection of Instrument Landing Systems (ILS) is very important because the ILS is the primary landing guidance system worldwide. During flight inspection of the ILS, accuracy in ILS landing guidance is checked by using a Flight Inspection System (FIS). Therefore, a flight inspection system must have high accuracy in its positioning capability to detect any deviation so that accurate guidance of the ILS can be maintained. Currently, there are two Automated Flight Inspection Systems (AFIS). One is called Inertial-based AFIS, and the other one is called Differential GPS-based (DGPS-based) AFIS. The Inertial-based AFIS enables efficient flight inspection procedures, but its drawback is high cost because it requires a navigation-grade Inertial Navigation System (INS). On the other hand, the DGPS-based AFIS has relatively low cost, but flight inspection procedures require landing and setting up a reference receiver. Most countries use either one of the systems based on their own preferences. There are around 1200 ILS in the U.S., and each ILS must be inspected every 6 to 9 months. Therefore, it is important to manage the airborne inspection of the ILS in a very efficient manner. For this reason, the Federal Aviation Administration (FAA) mainly uses the Inertial-based AFIS, which has better efficiency than the DGPS-based AFIS in spite of its high cost. Obviously, the FAA spends tremendous resources on flight inspection. This thesis investigates the value of GPS and the FAA's augmentation to GPS for civil aviation called the Wide Area Augmentation System (or WAAS) for flight inspection. Because standard GPS or WAAS position outputs cannot meet the required accuracy for flight inspection, in this thesis, various algorithms are developed to improve the positioning ability of Flight

  18. Surface navigation on Mars with a Navigation Satellite

    NASA Technical Reports Server (NTRS)

    Vijayaraghavan, A.; Thurman, Sam W.; Kahn, Robert D.; Hastrup, Rolf C.

    1992-01-01

    Radiometric navigation data from the Deep Space Network (DSN) stations on the earth to transponders and other surface elements such as rovers and landers on Mars, can determine their positions to only within a kilometer in inertial space. The positional error is mostly in the z-component of the surface element parallel to the Martian spin-axis. However, with Doppler and differenced-Doppler data from a Navigation Satellite in orbit around Mars to two or more of such transponders on the planetary surface, their positions can be determined to within 15 meters (or 20 meters for one-way Doppler beacons on Mars) in inertial space. In this case, the transponders (or other vehicles) on Mars need not even be capable of directly communicating to the earth. When the Navigation Satellite data is complemented by radiometric observations from the DSN stations also, directly to the surface elements on Mars, their positions can be determined to within 3 meters in inertial space. The relative positions of such surface elements on Mars (relative to one another) in Mars-fixed coordinates, however, can be determined to within 5 meters from simply range and Doppler data from the DSN stations to the surface elements. These results are obtained from covariance studies assuming X-band data noise levels and data-arcs not exceeding 10 days. They are significant in the planning and deployment of a Mars-based navigation network necessary to support real-time operations during critical phases of manned exploration of Mars.

  19. Surface navigation on Mars with a Navigation Satellite

    NASA Astrophysics Data System (ADS)

    Vijayaraghavan, A.; Thurman, Sam W.; Kahn, Robert D.; Hastrup, Rolf C.

    Radiometric navigation data from the Deep Space Network (DSN) stations on the earth to transponders and other surface elements such as rovers and landers on Mars, can determine their positions to only within a kilometer in inertial space. The positional error is mostly in the z-component of the surface element parallel to the Martian spin-axis. However, with Doppler and differenced-Doppler data from a Navigation Satellite in orbit around Mars to two or more of such transponders on the planetary surface, their positions can be determined to within 15 meters (or 20 meters for one-way Doppler beacons on Mars) in inertial space. In this case, the transponders (or other vehicles) on Mars need not even be capable of directly communicating to the earth. When the Navigation Satellite data is complemented by radiometric observations from the DSN stations also, directly to the surface elements on Mars, their positions can be determined to within 3 meters in inertial space. The relative positions of such surface elements on Mars (relative to one another) in Mars-fixed coordinates, however, can be determined to within 5 meters from simply range and Doppler data from the DSN stations to the surface elements. These results are obtained from covariance studies assuming X-band data noise levels and data-arcs not exceeding 10 days. They are significant in the planning and deployment of a Mars-based navigation network necessary to support real-time operations during critical phases of manned exploration of Mars.

  20. Computer-assisted navigation in orthopedic surgery.

    PubMed

    Mavrogenis, Andreas F; Savvidou, Olga D; Mimidis, George; Papanastasiou, John; Koulalis, Dimitrios; Demertzis, Nikolaos; Papagelopoulos, Panayiotis J

    2013-08-01

    Computer-assisted navigation has a role in some orthopedic procedures. It allows the surgeons to obtain real-time feedback and offers the potential to decrease intra-operative errors and optimize the surgical result. Computer-assisted navigation systems can be active or passive. Active navigation systems can either perform surgical tasks or prohibit the surgeon from moving past a predefined zone. Passive navigation systems provide intraoperative information, which is displayed on a monitor, but the surgeon is free to make any decisions he or she deems necessary. This article reviews the available types of computer-assisted navigation, summarizes the clinical applications and reviews the results of related series using navigation, and informs surgeons of the disadvantages and pitfalls of computer-assisted navigation in orthopedic surgery. Copyright 2013, SLACK Incorporated.