Sample records for air conditioning refrigeration

  1. ALTERNATIVE TECHNOLOGIES FOR REFRIGERATION AND AIR-CONDITIONING APPLICATIONS

    EPA Science Inventory

    The report gives results of an assessment of refrigeration technologies that are alternatives to vapor compression refrigeration for use in five application categories: domestic air conditioning, commercial air conditioning, mobile air conditioning, domestic refrigeration, and co...

  2. Mountain Plains Learning Experience Guide: Heating, Refrigeration, & Air Conditioning.

    ERIC Educational Resources Information Center

    Carey, John

    This Heating, Refrigeration, and Air Conditioning course is comprised of eleven individualized units: (1) Refrigeration Tools, Materials, and Refrigerant; (2) Basic Heating and Air Conditioning; (3) Sealed System Repairs; (4) Basic Refrigeration Systems; (5) Compression Systems and Compressors; (6) Refrigeration Controls; (7) Electric Circuit…

  3. Refrigeration, Heating & Air Conditioning. Post Secondary Curriculum Guide.

    ERIC Educational Resources Information Center

    Garrison, Joe C.; And Others

    This curriculum guide was designed for use in postsecondary refrigeration, heating and air conditioning education programs in Georgia. Its purpose is to provide for the development of entry level skills in refrigeration, heating, and air conditioning in the areas of air conditioning knowledge, theoretical structure, tool usage, diagnostic ability,…

  4. Air Conditioning and Refrigeration Program Articulation, 1981-1982.

    ERIC Educational Resources Information Center

    Dallas County Community Coll. District, TX.

    Based on a survey of high school programs and courses in the Dallas County Community College District (DCCCD), this articulated program is designed to prepare students for entry-level employment in the air conditioning and refrigeration industry, including residential and commercial air conditioning and commercial refrigeration. The skills and…

  5. Air Conditioning and Refrigeration Supplementary Units.

    ERIC Educational Resources Information Center

    Winston, Del; And Others

    This document contains supplemental materials for special needs high school students intended to facilitate their mainstreaming in regular air conditioning and refrigeration courses. Teacher's materials precede the materials for students and include general notes for the instructor, additional suggestions, two references, a questionnaire on the…

  6. Criterion-Referenced Test (CRT) Items for Air Conditioning, Heating and Refrigeration.

    ERIC Educational Resources Information Center

    Davis, Diane, Ed.

    These criterion-referenced test (CRT) items for air conditioning, heating, and refrigeration are keyed to the Missouri Air Conditioning, Heating, and Refrigeration Competency Profile. The items are designed to work with both the Vocational Instructional Management System and Vocational Administrative Management System. For word processing and…

  7. Air Conditioning with Magnetic Refrigeration : An Efficient, Green Compact Cooling System Using Magnetic Refrigeration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    2010-09-01

    BEETIT Project: Astronautics is developing an air conditioning system that relies on magnetic fields. Typical air conditioners use vapor compression to cool air. Vapor compression uses a liquid refrigerant to circulate within the air conditioner, absorb the heat, and pump the heat out into the external environment. Astronautics’ design uses a novel property of certain materials, called “magnetocaloric materials”, to achieve the same result as liquid refrigerants. These magnetocaloric materials essentially heat up when placed within a magnetic field and cool down when removed, effectively pumping heat out from a cooler to warmer environment. In addition, magnetic refrigeration uses nomore » ozone-depleting gases and is safer to use than conventional air conditioners which are prone to leaks.« less

  8. Fundamentals of Air Conditioning and Refrigeration.

    ERIC Educational Resources Information Center

    Clemons, Mark

    This set of instructional materials provides secondary and postsecondary students with a state-of-the-art curriculum for the air conditioning and refrigeration industry that includes the many changes brought by new Environmental Protection Agency (EPA) regulations. Introductory materials explain the use of this publication and provide the…

  9. Readings in Air Conditioning and Refrigeration.

    ERIC Educational Resources Information Center

    Uberto, Jeffrey A.

    Designed to encourage vocational high school students to read by offering reading materials relevant to their vocational goals, this document contains thirty-seven articles related to air conditioning and refrigeration which have been selected from trade journals, magazines, and newspapers and adapted to the students' reading capabilities. A…

  10. Air Conditioning and Refrigeration. Book One.

    ERIC Educational Resources Information Center

    Wantiez, Gary W.

    Designed to provide students with the basic skills for an occupation in air conditioning and refrigeration, this curriculum guide includes seven major areas, each consisting of one or more units of instruction. These areas and their respective units are titled as follows: Orientation (history and development, and job opportunities), Safety…

  11. Air Conditioning and Refrigeration Book IV.

    ERIC Educational Resources Information Center

    Eckes, William; Fulkerson, Dan

    This publication is the concluding text in a four-part curriculum for air conditioning and refrigeration. Materials in Book 4 are designed to complement theoretical and functional elements in Books 1-3. Instructional materials in this publication are written in terms of student performance using measurable objectives. The course includes six…

  12. Air Conditioning and Refrigeration Book III.

    ERIC Educational Resources Information Center

    Eckes, William; Fulkerson, Dan

    Designed to present theory as a functional aspect, this air conditioning and refrigeration curriculum guide is comprised of nine units of instruction. Unit titles include (1) Job Orientation, (2) Applying for a Job, (3) Customer Relations, (4) Business Management, (5) Psychometrics, (6) Residential Heat Loss and Heat Gain, (7) Duct Design and…

  13. Air Conditioning and Refrigeration. Book Two.

    ERIC Educational Resources Information Center

    Wantiez, Gary W.

    This curriculum guide (book II), along with book I, is designed to provide students with the basic skills for an occupation in air conditioning and refrigeration. Six major areas are included, each consisting of one or more units of instruction. These areas and their respective units are titled as follows: Electricity (fundamentals of electricity,…

  14. Potential emission savings from refrigeration and air conditioning systems by using low GWP refrigerants

    DOE PAGES

    Beshr, Mohamed; Aute, Vikrant; Abdelaziz, Omar; ...

    2016-08-24

    Refrigeration and air conditioning systems have high, negative environmental impacts due to refrigerant charge leaks from the system and their corresponding high global warming potential. Thus, many efforts are in progress to obtain suitable low GWP alternative refrigerants and more environmentally friendly systems for the future. In addition, the system’s life cycle climate performance (LCCP) is a widespread metric proposed for the evaluation of the system’s environmental impact.

  15. Potential emission savings from refrigeration and air conditioning systems by using low GWP refrigerants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beshr, Mohamed; Aute, Vikrant; Abdelaziz, Omar

    Refrigeration and air conditioning systems have high, negative environmental impacts due to refrigerant charge leaks from the system and their corresponding high global warming potential. Thus, many efforts are in progress to obtain suitable low GWP alternative refrigerants and more environmentally friendly systems for the future. In addition, the system’s life cycle climate performance (LCCP) is a widespread metric proposed for the evaluation of the system’s environmental impact.

  16. A study of alternative refrigerants for the refrigeration and air conditioning sector in Mauritius

    NASA Astrophysics Data System (ADS)

    Dreepaul, R. K.

    2017-11-01

    The most frequently used refrigerants in the refrigeration and air conditioning (RAC) sector in Mauritius are currently hydrochlorofluorocarbons (HCFC) and hydrofluorocarbons (HFC). However, because of their strong influence on global warming and the impact of HCFCs on the ozone layer, refrigerants such as ammonia (NH3), carbon dioxide (CO2) and Hydrocarbons (HC), having minimal impact on the environment, are being considered. So far, HCs have only been safely used in domestic refrigeration. Ammonia has been used mainly for industrial refrigeration whereas CO2 is still under study. In this paper, a comparative study of the various feasible alternatives is presented in a survey that was undertaken with major stake holders in the field. The retrofitting possibility of existing equipment was assessed and safety issues associated with each refrigerant were analysed. The major setback of hydrocarbons as a widely accepted refrigerant is its flammability which was considered as a major safety hazard by the majority of respondents in the survey and the main advantages are the improved equipment coefficient of performance (COP) and better TEWI factor. This resulted in a 12 % drop in energy consumption. Despite the excellent thermodynamic properties of ammonia, its use has mainly been confined to industrial refrigeration due to its toxicity. In Mauritius, the performance of ammonia in air conditioning is being evaluated on a pilot basis. The major setback of carbon dioxide as a refrigerant is the high operating pressure which is considered a safety hazard. The high initial investment cost and the lack of qualified maintenance technician is also an issue. The use of CO2 is mainly being considered in the commercial refrigeration sector.

  17. Air Conditioning, Heating, and Refrigeration: Scope and Sequence.

    ERIC Educational Resources Information Center

    Nashville - Davidson County Metropolitan Public Schools, TN.

    This scope and sequence guide, developed for an air conditioning, heating, and refrigeration vocational education program, represents an initial step in the development of a systemwide articulated curriculum sequence for all vocational programs within the Metropolitan Nashville Public School System. It was developed as a result of needs expressed…

  18. Next Generation Refrigeration Lubricants for Low Global Warming Potential/Low Ozone Depleting Refrigeration and Air Conditioning Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hessell, Edward Thomas

    The goal of this project is to develop and test new synthetic lubricants that possess high compatibility with new low ozone depleting (LOD) and low global warming potential (LGWP) refrigerants and offer improved lubricity and wear protection over current lubricant technologies. The improved compatibility of the lubricants with the refrigerants, along with improved lubricating properties, will resulted in lower energy consumption and longer service life of the refrigeration systems used in residential, commercial and industrial heating, ventilating and air-conditioning (HVAC) and refrigeration equipment.

  19. Air Conditioning, Heating, and Refrigeration. Competency-Based Curriculum Manual.

    ERIC Educational Resources Information Center

    Gourley, Frank A., Jr.

    This manual was developed to serve as an aid to administrators and instructors involved with postsecondary air conditioning, heating, and refrigeration programs. The first of six chapters contains general information on program implementation, the curriculum design, facilities and equipment requirements, and textbooks and references. Chapter 2…

  20. Greenhouse Gas Reporting Requirements Related to Stationary Refrigeration and Air Conditioning

    EPA Pesticide Factsheets

    Provides links to information about parts of the 2009 Mandatory Reporting of Greenhouse Gases Rule that are relevant to owners and importers of stationary refrigeration and air-conditioning equipment.

  1. Experimental evaluation of refrigerant mass charge and ambient air temperature effects on performance of air-conditioning systems

    NASA Astrophysics Data System (ADS)

    Deymi-Dashtebayaz, Mahdi; Farahnak, Mehdi; Moraffa, Mojtaba; Ghalami, Arash; Mohammadi, Nima

    2018-03-01

    In this paper the effects of refrigerant charge amount and ambient air temperature on performance and thermodynamic condition of refrigerating cycle in the split type air-conditioner have been investigated. Optimum mass charge is the point at which the energy efficiency ratio (EER) of refrigeration cycle becomes the maximum. Experiments have been conducted over a range of refrigerant mass charge from 540 to 840 g and a range of ambient temperature from 27 to 45 °C, in a 12,000 Btu/h split air-conditioner as case study. The various parameters have been considered to evaluate the cooling rate, energy efficiency ratio (EER), mass charge effect and thermodynamic cycle of refrigeration system with R22 refrigerant gas. Results confirmed that the lack of appropriate refrigerant mass charge causes the refrigeration system not to reach its maximum cooling capacity. The highest cooling capacity achieved was 3.2 kW (11,000 Btu/h). The optimum mass charge and corresponding EER of studied system have been obtained about 640 g and 2.5, respectively. Also, it is observed that EER decreases by 30% as ambient temperature increases from 27 °C to 45 °C. By optimization of the refrigerant mass charge in refrigerating systems, about 785 GWh per year of electric energy can be saved in Iran's residential sector.

  2. Performance of R-410A Alternative Refrigerants in a Reciprocating Compressor Designed for Air Conditioning Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shrestha, Som S; Vineyard, Edward Allan; Mumpower, Kevin

    In response to environmental concerns raised by the use of refrigerants with high Global Warming Potential (GWP), the Air-Conditioning, Heating, and Refrigeration Institute (AHRI) has launched an industry-wide cooperative research program, referred to as the Low-GWP Alternative Refrigerants Evaluation Program (AREP), to identify and evaluate promising alternative refrigerants for major product categories. After successfully completing the first phase of the program in December 2013, AHRI launched a second phase of the Low-GWP AREP in 2014 to continue research in areas that were not previously addressed, including refrigerants in high ambient conditions, refrigerants in applications not tested in the first phase,more » and new refrigerants identified since testing for the program began. Although the Ozone Depletion Potential of R-410A is zero, this refrigerant is under scrutiny due to its high GWP. Several candidate alternative refrigerants have already demonstrated low global warming potential. Performance of these low-GWP alternative refrigerants is being evaluated for Air conditioning and heat pump applications to ensure acceptable system capacity and efficiency. This paper reports the results of a series of compressor calorimeter tests conducted for the second phase of the AREP to evaluate the performance of R-410A alternative refrigerants in a reciprocating compressor designed for air conditioning systems. It compares performance of alternative refrigerants ARM-71A, L41-1, DR-5A, D2Y-60, and R-32 to that of R-410A over a wide range of operating conditions. The tests showed that, in general, cooling capacities were slightly lower (except for the R-32), but energy efficiency ratios (EER) of the alternative refrigerants were comparable to that of R-410A.« less

  3. State Skill Standards: Heating, Ventilation, Air Conditioning, and Refrigeration

    ERIC Educational Resources Information Center

    Ball, Larry; Soukup, Dennis

    2006-01-01

    The Department of Education has undertaken an ambitious effort to develop statewide career and technical education skill standards. The standards in this document are for Heating, Ventilation, Air Conditioning and Refrigeration (HVAC&R) programs and are designed to clearly state what the student should know and be able to do upon completion of…

  4. Heating, Air-Conditioning, and Refrigeration Technician. National Skill Standards.

    ERIC Educational Resources Information Center

    Vocational Technical Education Consortium of States, Decatur, GA.

    This guide contains information on the knowledge and skills identified by industry as essential to the job performance of heating, air-conditioning, and refrigeration technicians. It is intended to assist training providers in public and private institutions, as well as in industry, to develop and implement training that will provide workers with…

  5. Model validations for low-global warming potential refrigerants in mini-split air-conditioning units

    DOE PAGES

    Shen, Bo; Shrestha, Som; Abdelaziz, Omar

    2016-09-02

    To identify low GWP (global warming potential) refrigerants to replace R-22 and R-410A, extensive experimental evaluations were conducted for multiple candidates of refrigerant at the standard test conditions and at high-ambient conditions with outdoor temperature varying from 27.8 C to 55.0 C.. In the study, R-22 was compared to propane (R-290), DR-3, ARM-20B, N-20B and R-444B in a mini-split air conditioning unit originally designed for R-22; R-410A was compared to R-32, DR-55, ARM-71A, L41-2 (R-447A) in a mini-split unit designed for R-410A. To reveal physics behind the measured performance results, thermodynamic properties of the alternative refrigerants were analysed. In addition,more » the experimental data was used to calibrate a physics-based equipment model, i.e. ORNL Heat Pump Design Model (HPDM). The calibrated model translated the experimental results to key calculated parameters, i.e. compressor efficiencies, refrigerant side two-phase heat transfer coefficients, corresponding to each refrigerant. As a result, these calculated values provide scientific insights on the performance of the alternative refrigerants and are useful for other applications beyond mini-split air conditioning units.« less

  6. Model validations for low-global warming potential refrigerants in mini-split air-conditioning units

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shen, Bo; Shrestha, Som; Abdelaziz, Omar

    To identify low GWP (global warming potential) refrigerants to replace R-22 and R-410A, extensive experimental evaluations were conducted for multiple candidates of refrigerant at the standard test conditions and at high-ambient conditions with outdoor temperature varying from 27.8 C to 55.0 C.. In the study, R-22 was compared to propane (R-290), DR-3, ARM-20B, N-20B and R-444B in a mini-split air conditioning unit originally designed for R-22; R-410A was compared to R-32, DR-55, ARM-71A, L41-2 (R-447A) in a mini-split unit designed for R-410A. To reveal physics behind the measured performance results, thermodynamic properties of the alternative refrigerants were analysed. In addition,more » the experimental data was used to calibrate a physics-based equipment model, i.e. ORNL Heat Pump Design Model (HPDM). The calibrated model translated the experimental results to key calculated parameters, i.e. compressor efficiencies, refrigerant side two-phase heat transfer coefficients, corresponding to each refrigerant. As a result, these calculated values provide scientific insights on the performance of the alternative refrigerants and are useful for other applications beyond mini-split air conditioning units.« less

  7. Heating, Ventilation, Air-conditioning, and Refrigeration. Ohio's Competency Analysis Profile.

    ERIC Educational Resources Information Center

    Ohio State Univ., Columbus. Vocational Instructional Materials Lab.

    Developed through a modified DACUM (Developing a Curriculum) process involving business, industry, labor, and community agency representatives in Ohio, this document is a comprehensive and verified employer competency profile for heating, ventilation, air conditioning, and refrigeration occupations. The list contains units (with and without…

  8. Refrigeration and Air Conditioning Equipment, 11-9. Military Curriculum Materials for Vocational and Technical Education.

    ERIC Educational Resources Information Center

    Ohio State Univ., Columbus. National Center for Research in Vocational Education.

    This military-developed text consists of three blocks of instructional materials for use by those studying to become refrigeration and air conditioning specialists. Covered in the individual course blocks are the following topics: refrigeration and trouble analysis, thermodynamics, and principles of refrigeration; major components and domestic and…

  9. Benefits of Leapfrogging to Superefficiency and Low Global Warming Potential Refrigerants in Room Air Conditioning

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shah, Nihar; Wei, Max; Letschert, Virginie

    2015-10-01

    Hydrofluorocarbons (HFCs) emitted from uses such as refrigerants and thermal insulating foam, are now the fastest growing greenhouse gases (GHGs), with global warming potentials (GWP) thousands of times higher than carbon dioxide (CO2). Because of the short lifetime of these molecules in the atmosphere, mitigating the amount of these short-lived climate pollutants (SLCPs) provides a faster path to climate change mitigation than control of CO2 alone. This has led to proposals from Africa, Europe, India, Island States, and North America to amend the Montreal Protocol on Substances that Deplete the Ozone Layer (Montreal Protocol) to phase-down high-GWP HFCs. Simultaneously, energymore » efficiency market transformation programs such as standards, labeling and incentive programs are endeavoring to improve the energy efficiency for refrigeration and air conditioning equipment to provide life cycle cost, energy, GHG, and peak load savings. In this paper we provide an estimate of the magnitude of such GHG and peak electric load savings potential, for room air conditioning, if the refrigerant transition and energy efficiency improvement policies are implemented either separately or in parallel. We find that implementing HFC refrigerant transition and energy efficiency improvement policies in parallel for room air conditioning, roughly doubles the benefit of either policy implemented separately. We estimate that shifting the 2030 world stock of room air conditioners from the low efficiency technology using high-GWP refrigerants to higher efficiency technology and low-GWP refrigerants in parallel would save between 340-790 gigawatts (GW) of peak load globally, which is roughly equivalent to avoiding 680-1550 peak power plants of 500MW each. This would save 0.85 GT/year annually in China equivalent to over 8 Three Gorges dams and over 0.32 GT/year annually in India equivalent to roughly twice India’s 100GW solar mission target. While there is some uncertainty associated

  10. Fault tree analysis for exposure to refrigerants used for automotive air conditioning in the United States.

    PubMed

    Jetter, J J; Forte, R; Rubenstein, R

    2001-02-01

    A fault tree analysis was used to estimate the number of refrigerant exposures of automotive service technicians and vehicle occupants in the United States. Exposures of service technicians can occur when service equipment or automotive air-conditioning systems leak during servicing. The number of refrigerant exposures of service technicians was estimated to be 135,000 per year. Exposures of vehicle occupants can occur when refrigerant enters passenger compartments due to sudden leaks in air-conditioning systems, leaks following servicing, or leaks caused by collisions. The total number of exposures of vehicle occupants was estimated to be 3,600 per year. The largest number of exposures of vehicle occupants was estimated for leaks caused by collisions, and the second largest number of exposures was estimated for leaks following servicing. Estimates used in the fault tree analysis were based on a survey of automotive air-conditioning service shops, the best available data from the literature, and the engineering judgement of the authors and expert reviewers from the Society of Automotive Engineers Interior Climate Control Standards Committee. Exposure concentrations and durations were estimated and compared with toxicity data for refrigerants currently used in automotive air conditioners. Uncertainty was high for the estimated numbers of exposures, exposure concentrations, and exposure durations. Uncertainty could be reduced in the future by conducting more extensive surveys, measurements of refrigerant concentrations, and exposure monitoring. Nevertheless, the analysis indicated that the risk of exposure of service technicians and vehicle occupants is significant, and it is recommended that no refrigerant that is substantially more toxic than currently available substitutes be accepted for use in vehicle air-conditioning systems, absent a means of mitigating exposure.

  11. An Analysis of the Air Conditioning, Refrigerating and Heating Occupation.

    ERIC Educational Resources Information Center

    Frass, Melvin R.; Krause, Marvin

    The general purpose of the occupational analysis is to provide workable, basic information dealing with the many and varied duties performed in the air conditioning, refrigerating, and heating occupation. The document opens with a brief introduction followed by a job description. The bulk of the document is presented in table form. Six duties are…

  12. Design and experimental investigation of an ejector in an air-conditioning and refrigeration system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    AL-Khalidy, N.; Zayonia, A.

    1995-12-31

    This paper discusses the conservation of energy in a refrigerant ejector refrigerating machine using heat driven from the concentrator collectors. The working refrigerant was R-113. The design of an ejector operating in an air-conditioning and refrigerating system with a low thermal source (70 C to 100 C) is presented. The influence of three major parameters--boiler, condenser, and evaporator temperature--on ejector efficiency is discussed. Experimental results show that the condenser temperature is the major influence at a low evaporator temperature. The maximum ejector efficiency was 31%.

  13. Instructional Guide for Air Conditioning and Refrigeration. V & TECC Curriculum Guide.

    ERIC Educational Resources Information Center

    Duenk, Lester G.; And Others

    This trade and industrial curriculum guide is intended for use in vocational programs that prepare students to enter the air conditioning/refrigeration field. The introductory section provides a statement of philosophy, objectives, block time schedule, and recommended facilities and equipment. Following the introductory section, eighteen blocks of…

  14. Refrigeration and Air Conditioning Mechanic: Apprenticeship Course Outline. Apprenticeship and Industry Training. 1411.2

    ERIC Educational Resources Information Center

    Alberta Advanced Education and Technology, 2011

    2011-01-01

    The graduate of the Refrigeration and Air Conditioning Mechanic apprenticeship training is a journeyman who will: (1) supervise, train and coach apprentices; (2) use and maintain hand and power tools to the standards of competency and safety required in the trade; (3) have a thorough knowledge of the principle components of refrigeration systems,…

  15. TEWI Evaluation for Refrigeration and Air-Conditioning Systems in Office Buildings with Different Regional Heat Demand

    NASA Astrophysics Data System (ADS)

    Sobue, Atsushi; Watanabe, Koichi

    In the present study, we quantitatively evaluated the global warming impact by refrigeration and air-conditioning systems in office buildings on the basis of reliable TEWI information. This paper proposes an improved TEWI evaluation procedure by considering regional heat demands and part load of air-conditioning systems. In the TEWI evaluation of commercial chillers, a percentage of the impact by refrigerant released to the atmosphere (direct effect) is less than 19.9% in TEWI values. Therefore, a reduction of the impact by CO2 released as a result of the energy consumed to drive the refrigeration or air-conditioning systems through out their lifetime (indirect effect) is the most effective measure in reducing the global warming impact. On the other hand, we have also pointed out energy loss that might be generated by an excess investment to the equipment. We have also showed a usefulness in dividing the heating / cooling system into several small-capacity units so as to improve the energy utilization efficiency.

  16. Study on the marine ejector refrigeration-rotary desiccant air-conditioning system

    NASA Astrophysics Data System (ADS)

    Zheng, C. Y.; Zheng, G. J.; Yu, W. S.; Chen, W.

    2017-08-01

    A newly developed ejector refrigeration-rotary desiccant air-conditioning (ERRD A/C) system is proposed to recover ship waste heat as far as possible. Its configuration is built firstly, then its advantages are analyzed, after that, with the help of psychrometric chart, some important parameters such as power consumption, steam consumption and COP of ERRD A/C system are calculated theoretically under design conditions of a real marine A/C, and comparative analysis with conventional A/C is deployed. The results show that the power consumption of ERRD A/C system is only 32.87% of conventional A/C, which meant that ERRD A/C system has potential to make full use of ship waste heat to realize energy saving and environmental protection when using green refrigerant such as water.

  17. Non-Print Instructional Materials for the Air Conditioning and Refrigeration Maintenance Field.

    ERIC Educational Resources Information Center

    Golitko, Raymond L., Ed.; And Others

    This catalog contains a listing of air conditioning/refrigeration maintenance audiovisual training materials from the Houston Community College System library media collection. The material is organized by subject heading. The media titles are listed in alphabetical order by title under each subject heading in the catalog. The citation for each…

  18. Principles of Refrigeration. Automotive Mechanics. Air Conditioning. Instructor's Guide [and] Student Guide.

    ERIC Educational Resources Information Center

    Spignesi, B.

    This instructional package, one in a series of individualized instructional units on automobile air conditioning, consists of a student guide and an instructor guide dealing with the principles of refrigeration. Covered in the module are defining the term heat, defining the term British Thermal Unit (BTU), defining the term latent heat, listing…

  19. Solar Absorption Refrigeration System for Air-Conditioning of a Classroom Building in Northern India

    NASA Astrophysics Data System (ADS)

    Agrawal, Tanmay; Varun; Kumar, Anoop

    2015-10-01

    Air-conditioning is a basic tool to provide human thermal comfort in a building space. The primary aim of the present work is to design an air-conditioning system based on vapour absorption cycle that utilizes a renewable energy source for its operation. The building under consideration is a classroom of dimensions 18.5 m × 13 m × 4.5 m located in Hamirpur district of Himachal Pradesh in India. For this purpose, cooling load of the building was calculated first by using cooling load temperature difference method to estimate cooling capacity of the air-conditioning system. Coefficient of performance of the refrigeration system was computed for various values of strong and weak solution concentration. In this work, a solar collector is also designed to provide required amount of heat energy by the absorption system. This heat energy is taken from solar energy which makes this system eco-friendly and sustainable. A computer program was written in MATLAB to calculate the design parameters. Results were obtained for various values of solution concentrations throughout the year. Cost analysis has also been carried out to compare absorption refrigeration system with conventional vapour compression cycle based air-conditioners.

  20. Heating, Air Conditioning and Refrigeration Curriculum Guide. Michigan Trade and Industrial Education.

    ERIC Educational Resources Information Center

    Michigan State Univ., East Lansing. Coll. of Agriculture and Natural Resources Education Inst.

    This task-based curriculum guide for heating, air conditioning, and refrigeration is intended to help the teacher develop a classroom management system where students learn by doing. Introductory materials include a Dictionary of Occupational Titles job code and title sheet, a career ladder, a matrix relating duty/task numbers to job titles, and a…

  1. Potential Alternative Lower Global Warming Refrigerants for Air Conditioning in Hot Climates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abdelaziz, Omar; Shrestha, Som S; Shen, Bo

    The earth continues to see record increase in temperatures and extreme weather conditions that is largely driven by anthropogenic emissions of warming gases such as carbon dioxide and other more potent greenhouse gases such as refrigerants. The cooperation of 188 countries in the Conference of the Parties in Paris 2015 (COP21) resulted in an agreement aimed to achieve a legally binding and universal agreement on climate, with the aim of keeping global warming below 2 C. A global phasedown of hydrofluorocarbons (HFCs) can prevent 0.5 C of warming by 2100. However, most of the countries in hot climates are consideredmore » as developing countries and as such are still using R-22 (a Hydrochlorofluorocarbon (HCFC)) as the baseline refrigerant and are currently undergoing a phase-out of R-22 which is controlled by current Montreal Protocol to R-410A and other HFC based refrigerants. These HFCs have significantly high Global Warming Potential (GWP) and might not perform as well as R-22 at high ambient temperature conditions. In this paper we present recent results on evaluating the performance of alternative lower GWP refrigerants for R-22 and R-410A for small residential mini-split air conditioners and large commercial packaged units. Results showed that several of the alternatives would provide adequate replacement for R-22 with minor system modification. For the R-410A system, results showed that some of the alternatives were almost drop-in ready with benefit in efficiency and/or capacity. One of the most promising alternatives for R-22 mini-split unit is propane (R-290) as it offers higher efficiency; however it requires compressor and some other minor system modification to maintain capacity and minimize flammability risk. Between the R-410A alternatives, R-32 appears to have a competitive advantage; however at the cost of higher compressor discharge temperature. With respect to the hydrofluoroolefin (HFO) blends, there existed a tradeoff in performance and system

  2. Military Curricula for Vocational & Technical Education. Refrigeration & Air Conditioning Specialist, Blocks I-II.

    ERIC Educational Resources Information Center

    Ohio State Univ., Columbus. National Center for Research in Vocational Education.

    This plan of instruction, study guides, workbooks, and programmed texts for a secondary-postsecondary-level course in refrigeration and air conditioning are one of a number of military-developed curriculum packages selected for adaptation to vocational instruction and curriculum development in a civilian setting. It is the first section of a…

  3. Heating, Air Conditioning and Refrigeration. Vocational Education Curriculum Guide. Industrial and Technical Education.

    ERIC Educational Resources Information Center

    West Virginia State Vocational Curriculum Lab., Cedar Lakes.

    This curriculum guide contains 17 units that provides the basic curriculum components required to develop lesson plans for the heating, air conditioning, and refrigeration curriculum. The guide is not intended to be a complete, self-contained curriculum, but instead provides the teacher with a number of informational items related to the learning…

  4. COMPOSITION CHANGES IN REFRIGERANT BLENDS FOR AUTOMOTIVE AIR CONDITIONING

    EPA Science Inventory

    Three refrigerant blends used to replace CFC-12 in automotive air conditioners were evaluated for composition changes due to typical servicing and leakage. When recommended service procedures were followed, changes in blend compositions were relatively small. Small changes in b...

  5. The optimum intermediate pressure of two-stages vapor compression refrigeration cycle for Air-Conditioning unit

    NASA Astrophysics Data System (ADS)

    Ambarita, H.; Sihombing, H. V.

    2018-03-01

    Vapor compression cycle is mainly employed as a refrigeration cycle in the Air-Conditioning (AC) unit. In order to save energy, the Coefficient of Performance (COP) of the need to be improved. One of the potential solutions is to modify the system into multi-stages vapor compression cycle. The suitable intermediate pressure between the high and low pressures is one of the design issues. The present work deals with the investigation of an optimum intermediate pressure of two-stages vapor compression refrigeration cycle. Typical vapor compression cycle that is used in AC unit is taken into consideration. The used refrigerants are R134a. The governing equations have been developed for the systems. An inhouse program has been developed to solve the problem. COP, mass flow rate of the refrigerant and compressor power as a function of intermediate pressure are plotted. It was shown that there exists an optimum intermediate pressure for maximum COP. For refrigerant R134a, the proposed correlations need to be revised.

  6. Military Curricula for Vocational & Technical Education. Refrigeration and Air Conditioning Specialist, Blocks VI-IX.

    ERIC Educational Resources Information Center

    Ohio State Univ., Columbus. National Center for Research in Vocational Education.

    This plan of instruction, study guides, and workbooks for a secondary-postsecondary-level course in refrigeration and air conditioning are one of a number of military-developed curriculum packages selected for adaptation to vocational instruction and curriculum development in a civilian setting. It is the third section of a three-part course (see…

  7. FAULT TREE ANALYSIS FOR EXPOSURE TO REFRIGERANTS USED FOR AUTOMOTIVE AIR CONDITIONING IN THE U.S.

    EPA Science Inventory

    A fault tree analysis was used to estimate the number of refrigerant exposures of automotive service technicians and vehicle occupants in the United States. Exposures of service technicians can occur when service equipment or automotive air-conditioning systems leak during servic...

  8. REACH. Air Conditioning Units.

    ERIC Educational Resources Information Center

    Garrison, Joe; And Others

    As a part of the REACH (Refrigeration, Electro-Mechanical, Air-Conditioning, Heating) electromechanical cluster, this student manual contains individualized instructional units in the area of air conditioning. The instructional units focus on air conditioning fundamentals, window air conditioning, system and installation, troubleshooting and…

  9. Military Curricula for Vocational & Technical Education. Refrigeration & Air Conditioning Specialist, Blocks III-V, 11-7.

    ERIC Educational Resources Information Center

    Ohio State Univ., Columbus. National Center for Research in Vocational Education.

    This plan of instruction, study guides, and workbooks for a secondary-postsecondary-level course in refrigeration and air conditioning are one of a number of military-developed curriculum packages selected for adaptation to vocational instruction and curriculum development in a civilian setting. It is the second section of a three-part course (see…

  10. REACH. Refrigeration Units.

    ERIC Educational Resources Information Center

    Snow, Rufus; And Others

    As a part of the REACH (Refrigeration, Electro-Mechanical, Air-Conditioning, Heating) electromechanical cluster, this student manual contains individualized instructional units in the area of refrigeration. The instructional units focus on refrigeration fundamentals, tubing and pipe, refrigerants, troubleshooting, window air conditioning, and…

  11. 40 CFR 86.1867-12 - CO2 credits for reducing leakage of air conditioning refrigerant.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... shall calculate an annual rate of refrigerant leakage from an air conditioning system in grams per year... shall be rounded to the nearest tenth of a gram per year. The procedures of SAE J2727 may be used to... be rounded to the nearest tenth of a gram per year. (b) The CO2-equivalent gram per mile leakage...

  12. 40 CFR 86.1867-12 - CO2 credits for reducing leakage of air conditioning refrigerant.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... annual rate of refrigerant leakage from an air conditioning system in grams per year according to the... to the nearest tenth of a gram per year. The procedures of SAE J2727 may be used to determine leakage... nearest tenth of a gram per year. (b) The CO2-equivalent gram per mile leakage reduction used to calculate...

  13. COP improvement of refrigerator/freezers, air-conditioners, and heat pumps using nonazeotropic refrigerant mixtures

    NASA Technical Reports Server (NTRS)

    Westra, Douglas G.

    1993-01-01

    With the February, 1992 announcement by President Bush to move the deadline for outlawing CFC (chloro-fluoro-carbon) refrigerants from the year 2000 to the year 1996, the refrigeration and air-conditioning industries have been accelerating their efforts to find alternative refrigerants. Many of the alternative refrigerants being evaluated require synthetic lubricants, are less efficient, and have toxicity problems. One option to developing new, alternative refrigerants is to combine existing non-CFC refrigerants to form a nonazeotropic mixture, with the concentration optimized for the given application so that system COP (Coefficient Of Performance) may be maintained or even improved. This paper will discuss the dilemma that industry is facing regarding CFC phase-out and the problems associated with CFC alternatives presently under development. A definition of nonazeotropic mixtures will be provided, and the characteristics and COP benefits of nonazeotropic refrigerant mixtures will be explained using thermodynamic principles. Limitations and disadvantages of nonazeotropic mixtures will be discussed, and example systems using such mixtures will be reviewed.

  14. Evaluation of Alternative Refrigerants for Mini-Split Air Conditioners

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abdelaziz, Omar; Shrestha, Som S

    The phase-out of hydrochlorofluorocarbons (HCFC) refrigerants in developing countries is currently underway according to the Montreal Protocol. R-22 is one of the most commonly used HCFCs in the developing nations. It is extremely well suited for air conditioning and refrigeration (AC&R) in high ambient temperature environments. Non-Article 5 countries have already gone through the phase-out of HCFCs and settled on using R-410A as the refrigerant of choice for AC applications. Previous studies have shown that R-410A results in significant capacity and performance degradation at higher ambient temperature conditions. As such, there is a growing concern on finding alternative refrigerants tomore » R-22 that would have zero ODP, lower GWP, and at the same time maintain acceptable performance at higher ambient temperatures. Furthermore, the developed world s transition through higher global warming potential (GWP) refrigerants like HFC and HFC blends resulted in significant direct CO2 equivalent emissions. It is imperative to develop a bridge for developing nations to avoid the transition from HCFC to HFC and then from HFC to alternative lower GWP refrigerants. This paper summarizes data from an experimental campaign on alternative refrigerant evaluation for R-22 and R-410A substitutes for mini-split air conditioners designed for high ambient environments. The experimental evaluation was performed according to ANSI/ASHRAE Standard 37 and the performance was rated at test conditions specified by ANSI/AHRI 210-240 and ISO 5151. Additional tests were conducted at outdoor ambient temperatures of 52 C (125.6 F) and 55 C (131 F) to evaluate their performance at high ambient conditions. Alternative refrigerants, some of which are proprietary, included R-444B, DR-3, N-20b, ARM-20b, R-290, and DR-93 as alternatives to R-22 and R-32, DR-55, L41-2, ARM-71A, and HPR-2A as alternatives to R-410A. The units performances were first verified using the baseline refrigerant and then

  15. Articulated, Performance-Based Instruction Objectives Guide for Air Conditioning, Refrigeration, and Heating. Volume II (Second Year).

    ERIC Educational Resources Information Center

    Henderson, William Edward, Jr., Ed.

    This articulation guide contains 17 units of instruction for the second year of a two-year vocational program designed to prepare the high school graduate to install, maintain, and repair various types of residential and commercial heating, air conditioning, and refrigeration equipment. The units are designed to help the student to expand and…

  16. An evaluation of strategies to control noise from air conditioning and refrigeration condensing units

    NASA Astrophysics Data System (ADS)

    Durden, G. L.; Myers, J. O.; Towers, T. A.; Dickman, D. M.

    1981-12-01

    Noise from air conditioning and refrigeration condensing units is investigated. The practical aspects of attempting to implement innovative approaches are emphasized. These included: (1) sample selection, (2) noise measurement survey, (3) implementation of aggressive abatement procedures, (4) development and use of a screening graph for determining acceptability of sound rated outdoor unitary equipment, (5) incorporation of noise control considerations, (6) exploration of an operatinal curfew, and (7) development of an incentive/information program.

  17. Interaction of temperature, humidity, driver preferences, and refrigerant type on air conditioning compressor usage.

    PubMed

    Levine, C; Younglove, T; Barth, M

    2000-10-01

    Recent studies have shown large increases in vehicle emissions when the air conditioner (AC) compressor is engaged. Factors that affect the compressor-on percentage can have a significant impact on vehicle emissions and can also lead to prediction errors in current emissions models if not accounted for properly. During 1996 and 1997, the University of California, Riverside, College of Engineering-Center for Environmental Research and Technology (CE-CERT) conducted a vehicle activity study for the California Air Resources Board (CARB) in the Sacramento, CA, region. The vehicles were randomly selected from all registered vehicles in the region. As part of this study, ten vehicles were instrumented to collect AC compressor on/off data on a second-by-second basis in the summer of 1997. Temperature and humidity data were obtained and averaged on an hourly basis. The ten drivers were asked to complete a short survey about AC operational preferences. This paper examines the effects of temperature, humidity, refrigerant type, and driver preferences on air conditioning compressor activity. Overall, AC was in use in 69.1% of the trips monitored. The compressor was on an average of 64% of the time during the trips. The personal preference settings had a significant effect on the AC compressor-on percentage but did not interact with temperature. The refrigerant types, however, exhibited a differential response across temperature, which may necessitate separate modeling of the R12 refrigerant-equipped vehicles from the R134A-equipped vehicles. It should be noted that some older vehicles do get retrofitted with new compressors that use R134A; however, none of the vehicles in this study had been retrofitted.

  18. Managing Refrigerant Emissions

    EPA Pesticide Factsheets

    Access information on EPA's efforts to address ozone layer depletion by reducing emissions of refrigerants from stationary refrigeration and air conditioning systems and motor vehicle air conditioning systems.

  19. EVALUATION OF REFRIGERANT FROM MOBILE AIR CONDITIONERS

    EPA Science Inventory

    The report gives results of a project to provide a scientific basis for choosing a reasonable standard of purity for recycled chlorofluorocarbon (CFC) refrigerant in operating automobile air conditioners. The quality of refrigerant from air conditioners in automobiles of differen...

  20. Miniaturized Air-to-Refrigerant Heat Exchangers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Radermacher, Reinhard; Bacellar, Daniel; Aute, Vikrant

    Air-to-refrigerant Heat eXchangers (HX) are an essential component of Heating, Ventilation, Air-Conditioning, and Refrigeration (HVAC&R) systems, serving as the main heat transfer component. The major limiting factor to HX performance is the large airside thermal resistance. Recent literature aims at improving heat transfer performance by utilizing enhancement methods such as fins and small tube diameters; this has lead to almost exhaustive research on the microchannel HX (MCHX). The objective of this project is to develop a miniaturized air-to-refrigerant HX with at least 20% reduction in volume, material volume, and approach temperature compared to current state-of-the-art multiport flat tube designs andmore » also be capable of production within five years. Moreover, the proposed HX’s are expected to have good water drainage and should succeed in both evaporator and condenser applications. The project leveraged Parallel-Parametrized Computational Fluid Dynamics (PPCFD) and Approximation-Assisted Optimization (AAO) techniques to perform multi-scale analysis and shape optimization with the intent of developing novel HX designs whose thermal-hydraulic performance exceeds that of state-of-the-art MCHX. Nine heat exchanger geometries were initially chosen for detailed analysis, selected from 35+ geometries which were identified in previous work at the University of Maryland, College Park. The newly developed optimization framework was exercised for three design optimization problems: (DP I) 1.0kW radiator, (DP II) 10kW radiator and (DP III) 10kW two-phase HX. DP I consisted of the design and optimization of 1.0kW air-to-water HX’s which exceeded the project requirements of 20% volume/material reduction and 20% better performance. Two prototypes for the 1.0kW HX were prototyped, tested and validated using newly-designed airside and refrigerant side test facilities. DP II, a scaled version DP I for 10kW air-to-water HX applications, also yielded optimized HX

  1. Introduction Analysis of Refrigerating and Air-Conditioning Technologies in Micro Grid Type Food Industrial Park

    NASA Astrophysics Data System (ADS)

    Shimazaki, Yoichi

    The aim of this study was to evaluate the refrigerating and air-conditioning technologies in cases of introducing both cogeneration system and energy network in food industrial park. The energy data of 14 factories were classified into steam, hot water, heating, cooling, refrigerating, freezing and electric power by interviews. The author developed a micro grid model based on linear programming so as to minimize the total system costs. The industrial park was divided into the 2,500 square meter mesh in order to take steam transport into consideration. Four cases were investigated. It was found that the electric power driven freezer was introduced compared with the ammonia absorption freezer. The ammonia absorption freezer was introduced in the factory that there is a little steam demand and large freezing demand at the same time.

  2. Development of polyvinylether refrigeration oil for hydrofluorocarbon air-conditioning systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tozaki, Toshinori; Konishi, Tsuneo; Nagamatsu, Noritoshi

    1998-10-01

    Polyolestor (POE) poses capillary tube blockage problems when it is used as an air-conditioner refrigeration oil. A polyvinylether (PVE) oil has been developed to settle such problems. The causes of blockage were determined by analyzing capillary tubes after testing them with PVE and POE in the laboratory and in actual equipment. PVE was confirmed to have superior performance over POE with respect to resistance of capillary tube blockage.

  3. ARTI refrigerant database

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Calm, J.M.

    1998-03-15

    The Refrigerant Database is an information system on alternative refrigerants, associated lubricants, and their use in air conditioning and refrigeration. It consolidates and facilitates access to thermophysical properties, compatibility, environmental, safety, application and other information. It provides corresponding information on older refrigerants, to assist manufacturers and those using alternative refrigerants, to make comparisons and determine differences. The underlying purpose is to accelerate phase out of chemical compounds of environmental concern. The database provides bibliographic citations and abstracts for publications that may be useful in research and design of air conditioning and refrigeration equipment. It also references documents addressing compatibility ofmore » refrigerants and lubricants with other materials.« less

  4. Multimedia Approach to Self-Paced Individualized Instruction in Air Conditioning, Refrigeration and Heating and Other Vocational Programs. Final Report.

    ERIC Educational Resources Information Center

    Oil Belt Vocational Technical School, El Dorado, AR.

    A multimedia, self-paced, individualized instructional program was designed to meet the needs of students in air conditioning, refrigeration, and heating programs at Oil Belt Vocational Technical School (Arkansas). The multimedia approach provided for video-based presentations to meet the needs for visual contact with the classroom and for…

  5. Refrigeration and air-conditioning technology workshop

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lewis, P. J.; Counce, D. M.

    1993-01-01

    The Alternative Fluorocarbon Environmental Acceptability Study (AFEAS), a consortium of fluorocarbon manufacturers, and the US Department of Energy (DOE) are collaborating on a project to evaluate the energy use and global warming impacts of CFC alternatives. The goal of this project is to identify technologies that could replace the use of CFCs in refrigeration, heating, and air-conditioning equipment; to evaluate the direct impacts of chemical emissions on global warming; and to compile accurate estimates of energy use and, indirect CO{sub 2} emissions of substitute technologies. The first phase of this work focused on alternatives that could be commercialized before themore » year 2000. The second phase of the project is examining not-in-kind and next-generation technologies that could be developed to replace CFCs, HCFCs, and HFCs over a longer period. As part of this effort, Oak Ridge National Laboratory held a workshop on June 23--25, 1993. The preliminary agenda covered a broad range of alternative technologies and at least one speaker was invited to make a brief presentation at the workshop on each technology. Some of the invited speakers were unable to participate, and in a few cases other experts could not be identified. As a result, those technologies were not represented at the workshop. Each speaker was asked to prepare a five to seven page paper addressing six key issues concerning the technology he/she is developing. These points are listed in the sidebar. Each expert also spoke for 20 to 25 minutes at the workshop and answered questions from the other participants concerning the presentation and area of expertise. The primary goal of the presentations and discussions was to identify the developmental state of the technology and to obtain comparable data on system efficiencies. Individual papers are indexed separately.« less

  6. T & I--Air Conditioning, Refrigeration, and Heating--Heating Units. Kit No. 87. Instructor's Manual [and] Student Learning Activity Guide.

    ERIC Educational Resources Information Center

    Simmons, Mike

    An instructor's manual and student activity guide on air conditioning, refrigeration, and heating units are provided in this set of prevocational education materials which focuses on the vocational area of trade and industry. (This set of materials is one of ninety-two prevocational education sets arranged around a cluster of seven vocational…

  7. Articulated, Performance-Based Instruction Objectives Guide for Air Conditioning, Refrigeration, and Heating (Environmental Control System Installer/Servicer). Edition I.

    ERIC Educational Resources Information Center

    Henderson, William Edward, Jr., Ed.

    This articulation guide contains 17 units of instruction for the first year of a two-year vocational program designed to prepare the high school graduate to install, maintain, and repair various types of residential and commercial heating, air conditioning, and refrigeration equipment. The units are to introduce the student to fundamental theories…

  8. Performance analysis of the electric vehicle air conditioner by replacing hydrocarbon refrigerant

    NASA Astrophysics Data System (ADS)

    Santoso, Budi; Tjahjana, D. D. D. P.

    2017-01-01

    The thermal comfort in passenger cabins needs an automotive air-conditioning system. The electric vehicle air conditioner system is driven by an electric compressor which includes a compressor and an electric motor. Almost air-conditioning system uses CFC-12, CFC-22 and HFC-134a as refrigerant. However, CFC-12 and CFC-22 will damage the ozone layer. The extreme huge global warming potentials (GWP) values of CFC-12, CFC-22, and HFC-134a represent the serious greenhouse effect of Earth. This article shows new experimental measurements and analysis by using a mixture of HC-134 to replace HFC-134a. The result is a refrigerating effect, the coefficient of performance and energy factor increase along with cooling capacity, both for HFC-134a and HC-134. The refrigerating effect of HC-134 is almost twice higher than HFC-134a. The coefficient of performance value of HC-134 is also 36.42% greater than HFC-134a. Then, the energy factor value of HC-134 is 3.78% greater than HFC-134a.

  9. 48 CFR 52.223-12 - Refrigeration Equipment and Air Conditioners.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 48 Federal Acquisition Regulations System 2 2013-10-01 2013-10-01 false Refrigeration Equipment... Provisions and Clauses 52.223-12 Refrigeration Equipment and Air Conditioners. As prescribed in 23.804(b), insert the following clause: Refrigeration Equipment and Air Conditioners (MAY 1995) The Contractor shall...

  10. 48 CFR 52.223-12 - Refrigeration Equipment and Air Conditioners.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 48 Federal Acquisition Regulations System 2 2011-10-01 2011-10-01 false Refrigeration Equipment... Provisions and Clauses 52.223-12 Refrigeration Equipment and Air Conditioners. As prescribed in 23.804(b), insert the following clause: Refrigeration Equipment and Air Conditioners (MAY 1995) The Contractor shall...

  11. 48 CFR 52.223-12 - Refrigeration Equipment and Air Conditioners.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 48 Federal Acquisition Regulations System 2 2014-10-01 2014-10-01 false Refrigeration Equipment... Provisions and Clauses 52.223-12 Refrigeration Equipment and Air Conditioners. As prescribed in 23.804(b), insert the following clause: Refrigeration Equipment and Air Conditioners (MAY 1995) The Contractor shall...

  12. 48 CFR 52.223-12 - Refrigeration Equipment and Air Conditioners.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 48 Federal Acquisition Regulations System 2 2010-10-01 2010-10-01 false Refrigeration Equipment... Provisions and Clauses 52.223-12 Refrigeration Equipment and Air Conditioners. As prescribed in 23.804(b), insert the following clause: Refrigeration Equipment and Air Conditioners (MAY 1995) The Contractor shall...

  13. 48 CFR 52.223-12 - Refrigeration Equipment and Air Conditioners.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 48 Federal Acquisition Regulations System 2 2012-10-01 2012-10-01 false Refrigeration Equipment... Provisions and Clauses 52.223-12 Refrigeration Equipment and Air Conditioners. As prescribed in 23.804(b), insert the following clause: Refrigeration Equipment and Air Conditioners (MAY 1995) The Contractor shall...

  14. Functional Dependence of Thermodynamic and Thermokinetic Parameters of Refrigerants Used in Mine Air Refrigerators. Part 1 - Refrigerant R407C

    NASA Astrophysics Data System (ADS)

    Nowak, Bernard; Życzkowski, Piotr; Łuczak, Rafał

    2017-03-01

    The authors of this article dealt with the issue of modeling the thermodynamic and thermokinetic properties (parameters) of refrigerants. The knowledge of these parameters is essential to design refrigeration equipment, to perform their energy efficiency analysis, or to compare the efficiency of air refrigerators using different refrigerants. One of the refrigerants used in mine air compression refrigerators is R407C. For this refrigerant, 23 dependencies were developed, determining its thermodynamic and thermokinetic parameters in the states of saturated liquid, dry saturated vapour, superheated vapor, subcooled liquid, and in the two-phase region. The created formulas have been presented in Tables 2, 5, 8, 10 and 12, respectively. It should be noted that the scope of application of these formulas is wider than the range of changes of that refrigerant during the normal operation of mine refrigeration equipment. The article ends with the statistical verification of the developed dependencies. For this purpose, for each model correlation coefficients and coefficients of determination were calculated, as well as absolute and relative deviations between the given values from the program REFPROP 7 (Lemmon et al., 2002) and the calculated ones. The results of these calculations have been contained in Tables 14 and 15.

  15. Competency Index for Air Conditioning and Refrigeration Programs in Missouri. A Crosswalk of Selected Instructional Materials against Missouri's Competency Profile.

    ERIC Educational Resources Information Center

    Missouri Univ., Columbia. Instructional Materials Lab.

    This index was developed to help air conditioning and refrigeration instructors in Missouri use existing instructional materials and keep track of student progress on the VAMS system. The list was compiled by a committee of instructors who selected appropriate references and identified areas that pertained to Missouri competencies. The index lists…

  16. Experimental investigation of static ice refrigeration air conditioning system driven by distributed photovoltaic energy system

    NASA Astrophysics Data System (ADS)

    Xu, Y. F.; Li, M.; Luo, X.; Wang, Y. F.; Yu, Q. F.; Hassanien, R. H. E.

    2016-08-01

    The static ice refrigeration air conditioning system (SIRACS) driven by distributed photovoltaic energy system (DPES) was proposed and the test experiment have been investigated in this paper. Results revealed that system energy utilization efficiency is low because energy losses were high in ice making process of ice slide maker. So the immersed evaporator and co-integrated exchanger were suggested in system structure optimization analysis and the system COP was improved nearly 40%. At the same time, we have researched that ice thickness and ice super-cooled temperature changed along with time and the relationship between system COP and ice thickness was obtained.

  17. Assessment of Environmentally Friendly Refrigerants for Window Air Conditioners

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bansal, Pradeep; Shen, Bo

    This paper presents technical assessment of environmentally friendly refrigerants for window air conditioners that currently use refrigerant R410A for residential and commercial applications. The alternative refrigerants that are studied for its replacement include R32, R600a, R290, R1234yf, R1234ze and a mixture of R32 (90% molar concentration) and R125 (10% molar concentration). Baseline experiments were performed on a window unit charged with R410A. The ORNL Heat Pump Design Model was calibrated with the baseline data and was used to assess the comparative performance of the WAC with alternative refrigerants. The paper discusses the advantages and disadvantages of each refrigerants and theirmore » suitability for window air conditioners.« less

  18. Air Conditioner Charging. Automotive Mechanics. Air Conditioning. Instructor's Guide [and] Student Guide.

    ERIC Educational Resources Information Center

    Spignesi, B.

    This instructional package, one in a series of individualized instructional units on automobile air conditioning, consists of a student guide and an instructor guide dealing with air conditioning charging. Covered in the module are checking the air conditioning system for leaks, checking and adding refrigerant oil as needed, evacuating the system,…

  19. Air Conditioning. Performance Objectives. Intermediate Course.

    ERIC Educational Resources Information Center

    Long, William

    Several intermediate performance objectives and corresponding criterion measures are listed for each of seven terminal objectives for an intermediate air conditioning course. The titles of the seven terminal objectives are Refrigeration Cycle, Job Requirement Skills, Air Conditioning, Trouble Shooting, Performance Test, Shop Management, and S.I.E.…

  20. Estimated 2017 Refrigerant Emissions of 2,3,3,3-Tetrafluoropropene (HFC-1234yf) in the United States Resulting from Automobile Air Conditioning

    EPA Science Inventory

    In response to recent regulations and concern over climate change, the global automotive community is evaluating alternatives to the current refrigerant used in automobile air conditioning units, 1,1,1,2-tetrafluoroethane, HFC-134a. One potential alternative is 2,3,3,3-tetrafluor...

  1. ARTI refrigerant database

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Calm, J.M.

    1997-02-01

    The Refrigerant Database is an information system on alternative refrigerants, associated lubricants, and their use in air conditioning and refrigeration. It consolidates and facilitates access to property, compatibility, environmental, safety, application and other information. It provides corresponding information on older refrigerants, to assist manufacturers and those using alterative refrigerants, to make comparisons and determine differences. The underlying purpose is to accelerate phase out of chemical compounds of environmental concern. The database provides bibliographic citations and abstracts for publications that may be useful in research and design of air-conditioning and refrigeration equipment. The complete documents are not included, though some maymore » be added at a later date. The database identifies sources of specific information on various refrigerants. It addresses lubricants including alkylbenzene, polyalkylene glycol, polyolester, and other synthetics as well as mineral oils. It also references documents addressing compatibility of refrigerants and lubricants with metals, plastics, elastomers, motor insulation, and other materials used in refrigerant circuits. Incomplete citations or abstracts are provided for some documents. They are included to accelerate availability of the information and will be completed or replaced in future updates.« less

  2. ARTI refrigerant database

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Calm, J.M.

    1996-07-01

    The Refrigerant Database is an information system on alternative refrigerants, associated lubricants, and their use in air conditioning and refrigeration. It consolidates and facilitates access to property, compatibility, environmental, safety, application and other information. It provides corresponding information on older refrigerants, to assist manufacturers and those using alternative refrigerants, to make comparisons and determine differences. The underlying purpose is to accelerate phase out of chemical compounds of environmental concern.

  3. ARTI refrigerant database

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Calm, J.M.

    1996-11-15

    The Refrigerant Database is an information system on alternative refrigerants, associated lubricants, and their use in air conditioning and refrigeration. It consolidates and facilitates access to property, compatibility, environmental, safety, application and other information. It provides corresponding information on older refrigerants, to assist manufacturers and those using alternative refrigerants, to make comparisons and determine differences. The underlying purpose is to accelerate phase out of chemical compounds of environmental concern.

  4. Floating Loop System For Cooling Integrated Motors And Inverters Using Hot Liquid Refrigerant

    DOEpatents

    Hsu, John S [Oak Ridge, TN; Ayers, Curtis W [Kingston, TN; Coomer, Chester [Knoxville, TN; Marlino, Laura D [Oak Ridge, TN

    2006-02-07

    A floating loop vehicle component cooling and air-conditioning system having at least one compressor for compressing cool vapor refrigerant into hot vapor refrigerant; at least one condenser for condensing the hot vapor refrigerant into hot liquid refrigerant by exchanging heat with outdoor air; at least one floating loop component cooling device for evaporating the hot liquid refrigerant into hot vapor refrigerant; at least one expansion device for expanding the hot liquid refrigerant into cool liquid refrigerant; at least one air conditioning evaporator for evaporating the cool liquid refrigerant into cool vapor refrigerant by exchanging heat with indoor air; and piping for interconnecting components of the cooling and air conditioning system.

  5. Standardized Curriculum for Heating and Air Conditioning.

    ERIC Educational Resources Information Center

    Mississippi State Dept. of Education, Jackson. Office of Vocational, Technical and Adult Education.

    Standardized vocational education course titles and core contents for two courses in Mississippi are provided: heating and air conditioning I and II. The first course contains the following units: (1) orientation; (2) safety; (3) refrigeration gauges and charging cylinder; (4) vacuum pump service operations; (5) locating refrigerant leaks; (6)…

  6. Total environmental warming impact (TEWI) calculations for alternative automative air-conditioning systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sand, J.R.; Fischer, S.K.

    1997-01-01

    The Montreal Protocol phase-out of chlorofluorocarbons (CFCs) has required manufacturers to develop refrigeration and air-conditioning systems that use refrigerants that can not damage stratospheric ozone. Most refrigeration industries have adapted their designs to use hydrochlorofluorocarbon (HCFC) or hydrofluorocarbon (HFC) refrigerants; new automobile air- conditioning systems use HFC-134a. These industries are now being affected by scientific investigations of greenhouse warming and questions about the effects of refrigerants on global warming. Automobile air-conditioning has three separate impacts on global warming; (1) the effects of refrigerant inadvertently released to the atmosphere from accidents, servicing, and leakage; (2) the efficiency of the cooling equipmentmore » (due to the emission of C0{sub 2} from burning fuel to power the system); and (3) the emission of C0{sub 2} from burning fuel to transport the system. The Total Equivalent Warming Impact (TEWI) is an index that should be used to compare the global warming effects of alternative air-conditioning systems because it includes these contributions from the refrigerant, cooling efficiency, and weight. This paper compares the TEWI of current air-conditioning systems using HFC-134a with that of transcritical vapor compression system using carbon dioxide and systems using flammable refrigerants with secondary heat transfer loops. Results are found to depend on both climate and projected efficiency of C0{sub 2}systems. Performance data on manufacturing prototype systems are needed to verify the potential reductions in TEWI. Extensive field testing is also required to determine the performance, reliability, and ``serviceability`` of each alternative to HFC-134a to establish whether the potential reduction of TEWI can be achieved in a viable consumer product.« less

  7. Liquid over-feeding air conditioning system and method

    DOEpatents

    Mei, Viung C.; Chen, Fang C.

    1993-01-01

    A refrigeration air conditioning system utilizing a liquid over-feeding operation is described. A liquid refrigerant accumulator-heat exchanger is placed in the system to provide a heat exchange relationship between hot liquid refrigerant discharged from condenser and a relatively cool mixture of liquid and vaporous refrigerant discharged from the evaporator. This heat exchange relationship substantially sub-cools the hot liquid refrigerant which undergoes little or no evaporation across the expansion device and provides a liquid over-feeding operation through the evaporator for effectively using 100 percent of evaporator for cooling purposes and for providing the aforementioned mixture of liquid and vaporous refrigerant.

  8. Liquid over-feeding air conditioning system and method

    DOEpatents

    Mei, V.C.; Chen, F.C.

    1993-09-21

    A refrigeration air conditioning system utilizing a liquid over-feeding operation is described. A liquid refrigerant accumulator-heat exchanger is placed in the system to provide a heat exchange relationship between hot liquid refrigerant discharged from condenser and a relatively cool mixture of liquid and vaporous refrigerant discharged from the evaporator. This heat exchange relationship substantially sub-cools the hot liquid refrigerant which undergoes little or no evaporation across the expansion device and provides a liquid over-feeding operation through the evaporator for effectively using 100 percent of evaporator for cooling purposes and for providing the aforementioned mixture of liquid and vaporous refrigerant. 1 figure.

  9. Floating loop method for cooling integrated motors and inverters using hot liquid refrigerant

    DOEpatents

    Hsu, John S.; Ayers, Curtis W.; Coomer, Chester; Marlino, Laura D.

    2007-03-20

    A method for cooling vehicle components using the vehicle air conditioning system comprising the steps of: tapping the hot liquid refrigerant of said air conditioning system, flooding a heat exchanger in the vehicle component with said hot liquid refrigerant, evaporating said hot liquid refrigerant into hot vapor refrigerant using the heat from said vehicle component, and returning said hot vapor refrigerant to the hot vapor refrigerant line in said vehicle air conditioning system.

  10. Analysis of Environmentally Friendly Refrigerant Options for Window Air Conditioners

    DOE PAGES

    Bansal, Pradeep; Shen, Bo

    2015-03-12

    This paper presents a technical assessment of environmentally friendly refrigerants as alternatives to R410A for window air conditioners. The alternative refrigerants that are studied for its replacement include R32, a mixture of R32/R125 with 90%/10% molar concentration, R600a, R290, R1234yf, R1234ze and R134a. Baseline experiments were performed on a window unit charged with R410A. The heat pump design model (HPDM) was modified and calibrated with the baseline data and was used to evaluate the comparative performance of the WAC with alternative refrigerants. The paper discusses the advantages and disadvantages of each refrigerants and their suitability for window air conditioners. Amongmore » all the refrigerants studied, R32 offers the best efficiency and the lowest Global Warming Potential (GWP), and hence its use will result in the overall environmental friendliness.« less

  11. Mathematical model of an air-filled alpha stirling refrigerator

    NASA Astrophysics Data System (ADS)

    McFarlane, Patrick; Semperlotti, Fabio; Sen, Mihir

    2013-10-01

    This work develops a mathematical model for an alpha Stirling refrigerator with air as the working fluid and will be useful in optimizing the mechanical design of these machines. Two pistons cyclically compress and expand air while moving sinusoidally in separate chambers connected by a regenerator, thus creating a temperature difference across the system. A complete non-linear mathematical model of the machine, including air thermodynamics, and heat transfer from the walls, as well as heat transfer and fluid resistance in the regenerator, is developed. Non-dimensional groups are derived, and the mathematical model is numerically solved. The heat transfer and work are found for both chambers, and the coefficient of performance of each chamber is calculated. Important design parameters are varied and their effect on refrigerator performance determined. This sensitivity analysis, which shows what the significant parameters are, is a useful tool for the design of practical Stirling refrigeration systems.

  12. Center for Corporate Climate Leadership: Direct Fugitive Emissions from Refrigeration, Air Conditioning, Fire Suppression, and Industrial Gases

    EPA Pesticide Factsheets

    This guidance document focuses on several fugitive emissions sources that are common for organizations in many sectors: refrigeration and air conditioningsystems, fire suppression systems, and the purchase and release of industrial gases.

  13. Alternative Refrigerant Evaluation for High-Ambient-Temperature Environments: R-22 and R-410A Alternatives for Mini-Split Air Conditioners

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abdelaziz, Omar; Shrestha, Som S.; Munk, Jeffrey D.

    The Oak Ridge National Laboratory (ORNL) High-Ambient-Temperature Evaluation Program for low– global warming potential (Low-GWP) Refrigerants aims to develop an understanding of the performance of low-GWP alternative refrigerants to hydrochlorofluorocarbon (HCFC) and hydrofluorocarbon (HFC) refrigerants in mini-split air conditioners under high-ambient-temperature conditions. This final report describes the parties involved, the alternative refrigerant selection process, the test procedures, and the final results.

  14. ARTI refrigerant database. Quarterly report, March--May 1997

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Calm, J.M.

    1997-05-01

    The Refrigerant Database is an information system on alternative refrigerants, associated lubricants, and their use in air conditioning and refrigeration. It consolidates and facilitates access to property, compatibility, environmental, safety, application and other information. It provides corresponding information an older refrigerants, to assist manufacturers and those using alternative refrigerants, to make comparisons and determine differences. The underlying purpose is to accelerate phase out of chemical compounds of environmental concern. The database provides bibliographic citations and abstracts for publications that may be useful in research and design of air-conditioning and refrigeration equipment. The complete documents are not included, though some maymore » be added at a later date.« less

  15. Heating, Ventilation, and Air Conditioning Series. Duty Task List.

    ERIC Educational Resources Information Center

    Oklahoma State Dept. of Vocational and Technical Education, Stillwater. Curriculum and Instructional Materials Center.

    This task list is intended for use in planning and/or evaluating a competency-based course in heating, ventilation, and air conditioning. The guide outlines the tasks entailed in eight different duties typically required of employees in the following occupations: residential installer, domestic refrigeration technician, air conditioning and…

  16. Seminar 14 - Desiccant Enhanced Air Conditioning: Desiccant Enhanced Evaporative Air Conditioning (Presentation)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kozubal, E.

    2013-02-01

    This presentation explains how liquid desiccant based coupled with an indirect evaporative cooler can efficiently produce cool, dry air, and how a liquid desiccant membrane air conditioner can efficiently provide cooling and dehumidification without the carryover problems of previous generations of liquid desiccant systems. It provides an overview to a liquid desiccant DX air conditioner that can efficiently provide cooling and dehumidification to high latent loads without the need for reheat, explains how liquid desiccant cooling and dehumidification systems can outperform vapor compression based air conditioning systems in hot and humid climates, explains how liquid desiccant cooling and dehumidification systemsmore » work, and describes a refrigerant free liquid desiccant based cooling system.« less

  17. 40 CFR Appendix A to Subpart F of... - Specifications for Fluorocarbon and Other Refrigerants

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Fluorocarbon and Other Refrigerants This appendix is based on the Air-Conditioning and Refrigeration Institute... existing refrigeration and air-conditioning products as required under 40 CFR part 82. 1.1.1Intent. This...-Conditioning and Refrigeration Institute. Appendix C to ARI Standard 700-1995 is incorporated by reference...

  18. 40 CFR Appendix A to Subpart F of... - Specifications for Fluorocarbon and Other Refrigerants

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Fluorocarbon and Other Refrigerants This appendix is based on the Air-Conditioning and Refrigeration Institute... existing refrigeration and air-conditioning products as required under 40 CFR part 82. 1.1.1Intent. This...-Conditioning and Refrigeration Institute. Appendix C to ARI Standard 700-1995 is incorporated by reference...

  19. 40 CFR Appendix A to Subpart F of... - Specifications for Fluorocarbon and Other Refrigerants

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Fluorocarbon and Other Refrigerants This appendix is based on the Air-Conditioning and Refrigeration Institute... existing refrigeration and air-conditioning products as required under 40 CFR part 82. 1.1.1Intent. This...-Conditioning and Refrigeration Institute. Appendix C to ARI Standard 700-1995 is incorporated by reference...

  20. 40 CFR Appendix A to Subpart F of... - Specifications for Fluorocarbon and Other Refrigerants

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Fluorocarbon and Other Refrigerants This appendix is based on the Air-Conditioning and Refrigeration Institute... existing refrigeration and air-conditioning products as required under 40 CFR part 82. 1.1.1Intent. This...-Conditioning and Refrigeration Institute. Appendix C to ARI Standard 700-1995 is incorporated by reference...

  1. 40 CFR Appendix A to Subpart F of... - Specifications for Fluorocarbon and Other Refrigerants

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Fluorocarbon and Other Refrigerants This appendix is based on the Air-Conditioning and Refrigeration Institute... existing refrigeration and air-conditioning products as required under 40 CFR part 82. 1.1.1Intent. This...-Conditioning and Refrigeration Institute. Appendix C to ARI Standard 700-1995 is incorporated by reference...

  2. Domestic Refrigeration, Freezer, and Window Air Conditioner Service. Teacher Edition.

    ERIC Educational Resources Information Center

    Clemons, Mark

    This curriculum guide contains six units of instruction for a course in domestic refrigerator, freezer, and window air conditioner service. The units cover the following topics: (1) service fundamentals; (2) mechanical components and functions; (3) electrical components and control devices; (4) refrigerator and freezer service; (5) domestic ice…

  3. Thermoacoustic refrigeration

    NASA Technical Reports Server (NTRS)

    Garrett, Steven L.; Hofler, Thomas J.

    1991-01-01

    A new refrigerator which uses resonant high amplitude sound in inert gases to pump heat is described and demonstrated. The phasing of the thermoacoustic cycle is provided by thermal conduction. This 'natural' phasing allows the entire refrigerator to operate with only one moving part (the loudspeaker diaphragm). The thermoacoustic refrigerator has no sliding seals, requires no lubrication, uses only low-tolerance machine parts, and contains no expensive components. Because the compressor moving mass is typically small and the oscillation frequency is high, the small amount of vibration is very easily isolated. This low vibration and lack of sliding seals makes thermoacoustic refrigeration an excellent candidate for food refrigeration and commercial/residential air conditioning applications. The design, fabrication, and performance of the first practical, autonomous thermoacoustic refrigerator, which will be flown on the Space Shuttle (STS-42), are described, and designs for terrestrial applications are presented.

  4. Refrigeration oils for low GWP refrigerants in various applications

    NASA Astrophysics Data System (ADS)

    Saito, R.; Sundaresan, S. G.

    2017-08-01

    The practical use of the refrigeration systems is considered as a methods to suppress global warming. The replacement of a refrigerant with a new one that has lower global warming potential (GWP) has been underway for several years. For the application fields of refrigerators, domestic air conditioners, automotive air conditioners and hot water dispensers, the investigation has almost finished. It is still underway for the application fields of commercial air conditioners and chillers, refrigeration facilities for cold storage, etc. And now, the refrigeration system is being applied in various ways to decrease global warming above the generation of electric power with organic Rankine cycle, the binary electric generation with ground source heat pump, and so on. In these situations, various refrigerants are developed and several kinds of suitable refrigeration oils are selected. This paper presents the consideration of suitable refrigeration oil for the various low GWP refrigerants.

  5. Alternative Refrigerant Evaluation for High-Ambient Temperature Environments: R-22 and R-410A Alternatives for Mini-Split Air Conditioners

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abdelaziz, Omar; Munk, Jeffrey D.; Shrestha, Som S.

    The Oak Ridge National Laboratory (ORNL) High-Ambient Temperature Testing Program for Low-GWP Refrigerants aims to develop an understanding of the performance of low-Global Warming Potential (low-GWP) alternatives to Hydrochlorofluorocarbon (HCFC) and Hydrofluorocarbon (HFC) refrigerants in mini-split air conditioners under high ambient temperature conditions. This interim working paper describes the parties involved, the alternative refrigerants selection process, the test procedures, and the preliminary results.

  6. Investigating performance of microchannel evaporators for automobile air conditioning with different port structures

    NASA Astrophysics Data System (ADS)

    Zhou, Guoliang; Su, Lin; Cheng, Qia; Wu, Longbing

    2017-08-01

    Microchannel evaporator has been widely applied in automobile air conditioning, while it faces the problem of refrigerant maldistribution which deteriorates the thermal performance of evaporator. In this study, the performances of microchannel evaporators with different port structures are experimentally investigated for purpose of reducing evaporator pressure drop. Four evaporator samples with different port number and hydraulic diameter are made for this study. The performances of the evaporator samples are tested on a psychometric calorimeter test bench with the refrigerant R-134A at a real automobile air conditioning. The results on the variations of the evaporator pressure drop and evaporator surface temperature distribution are presented and analyzed. By studying the performance of an evaporator, seeking proper port structure is an approach to reduce refrigerant pressure drop as well as improve refrigerant distribution.

  7. 75 FR 6338 - Protection of Stratospheric Ozone: New Substitute in the Motor Vehicle Air Conditioning Sector...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-09

    ... document, EPA proposed to find HFO-1234yf acceptable as an alternative refrigerant for motor vehicle air conditioning, subject to use conditions. The refrigerant discussed in the proposed action, for which the...

  8. NREL's Energy-Saving Technology for Air Conditioning Cuts Peak Power Loads Without Using Harmful Refrigerants (Fact Sheet)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    2012-07-01

    This fact sheet describes how the DEVAP air conditioner was invented, explains how the technology works, and why it won an R&D 100 Award. Desiccant-enhanced evaporative (DEVAP) air-conditioning will provide superior comfort for commercial buildings in any climate at a small fraction of the electricity costs of conventional air-conditioning equipment, releasing far less carbon dioxide and cutting costly peak electrical demand by an estimated 80%. Air conditioning currently consumes about 15% of the electricity generated in the United States and is a major contributor to peak electrical demand on hot summer days, which can lead to escalating power costs, brownouts,more » and rolling blackouts. DEVAP employs an innovative combination of air-cooling technologies to reduce energy use by up to 81%. DEVAP also shifts most of the energy needs to thermal energy sources, reducing annual electricity use by up to 90%. In doing so, DEVAP is estimated to cut peak electrical demand by nearly 80% in all climates. Widespread use of this cooling cycle would dramatically cut peak electrical loads throughout the country, saving billions of dollars in investments and operating costs for our nation's electrical utilities. Water is already used as a refrigerant in evaporative coolers, a common and widely used energy-saving technology for arid regions. The technology cools incoming hot, dry air by evaporating water into it. The energy absorbed by the water as it evaporates, known as the latent heat of vaporization, cools the air while humidifying it. However, evaporative coolers only function when the air is dry, and they deliver humid air that can lower the comfort level for building occupants. And even many dry climates like Phoenix, Arizona, have a humid season when evaporative cooling won't work well. DEVAP extends the applicability of evaporative cooling by first using a liquid desiccant-a water-absorbing material-to dry the air. The dry air is then passed to an indirect

  9. Status of not-in-kind refrigeration technologies for household space conditioning, water heating and food refrigeration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bansal, Pradeep; Vineyard, Edward Allan; Abdelaziz, Omar

    This paper presents a review of the next generation not-in-kind technologies to replace conventional vapor compression refrigeration technology for household applications. Such technologies are sought to provide energy savings or other environmental benefits for space conditioning, water heating and refrigeration for domestic use. These alternative technologies include: thermoacoustic refrigeration, thermoelectric refrigeration, thermotunneling, magnetic refrigeration, Stirling cycle refrigeration, pulse tube refrigeration, Malone cycle refrigeration, absorption refrigeration, adsorption refrigeration, and compressor driven metal hydride heat pumps. Furthermore, heat pump water heating and integrated heat pump systems are also discussed due to their significant energy saving potential for water heating and space conditioningmore » in households. The paper provides a snapshot of the future R&D needs for each of the technologies along with the associated barriers. Both thermoelectric and magnetic technologies look relatively attractive due to recent developments in the materials and prototypes being manufactured.« less

  10. Air liquide 1.8 K refrigeration units for CERN LHC project

    NASA Astrophysics Data System (ADS)

    Hilbert, Benoît; Gistau-Baguer, Guy M.; Caillaud, Aurélie

    2002-05-01

    The Large Hadron Collider (LHC) will be CERN's next research instrument for high energy physics. This 27 km long circular accelerator will make intensive use of superconducting magnets, operated below 2.0 K. It will thus require high capacity refrigeration below 2.0 K [1, 2]. Coupled to a refrigerator providing 18 kW equivalent at 4.5 K [3], these systems will be able to absorb a cryogenic power of 2.4 kW at 1.8 K in nominal conditions. Air Liquide has designed one Cold Compressor System (CCS) pre-series for CERN-preceding 3 more of them (among 8 in total located around the machine). These systems, making use of cryogenic centrifugal compressors in a series arrangement coupled to room temperature screw compressors, are presented. Key components characteristics will be given.

  11. Low GWP Refrigerants Modelling Study for a Room Air Conditioner Having Microchannel Heat Exchangers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shen, Bo; Bhandari, Mahabir S

    Microchannel heat exchangers (MHX) have found great successes in residential and commercial air conditioning applications, being compact heat exchangers, to reduce refrigerant charge and material cost. This investigation aims to extend the application of MHXs in split, room air conditioners (RAC), per fundamental heat exchanger and system modelling. For this paper, microchannel condenser and evaporator models were developed, using a segment-to-segment modelling approach. The microchannel heat exchanger models were integrated to a system design model. The system model is able to predict the performance indices, such as cooling capacity, efficiency, sensible heat ratio, etc. Using the calibrated system and heatmore » exchanger models, we evaluated numerous low GWP (global warming potential) refrigerants. The predicted system performance indices, e.g. cooling efficiency, compressor discharge temperature, and required compressor displacement volume etc., are compared. Suitable replacements for R22 and R-410A for the room air conditioner application are recommended.« less

  12. The Oak Ridge Refrigerant Management Program

    NASA Technical Reports Server (NTRS)

    Kevil, Thomas H.

    1995-01-01

    For many years, chlorofluorocarbons (CFC's) have been used by the Department of Energy's (DOE) Oak Ridge Y-12 Plant in air conditioning and process refrigeration systems. However, Title 6 of the Clean Air Act Amendments (CAAA) and Executive Order 12843 (Procurement Requirements and Policies for Federal Agencies for Ozone Depleting Substances) signed by President Clinton require, as policy, that all federal agencies maximize their use of safe, alternate refrigerants and minimize, where economically practical, the use of Class 1 refrigerants. Unfortunately, many government facilities and industrial plants have no plan or strategy in place to make this changeover, even though their air conditioning and process refrigeration equipment may not be sustainable after CFC production ends December 31, 1995. The Y-12 Plant in Oak Ridge, Tennessee, has taken an aggressive approach to complying with the CAAA and is working with private industry and other government agencies to solve tough manufacturing and application problems associated with CFC and hydrochlorofluorocarbon (HCFC) alternatives. Y-12 was the first DOE Defense Program (DP) facility to develop a long-range Stratospheric Ozone Protection Plan for refrigerant management for compliance with the CAAA. It was also the first DOE DP facility to complete detailed engineering studies on retrofitting and replacing all air conditioning and process refrigeration equipment to enable operation with alternate refrigerants. The management plan and engineering studies are models for use by other government agencies, manufacturing plants, and private industry. This presentation identifies some of the hidden pitfalls to be encountered in the accelerated phaseout schedule of CFC's and explains how to overcome and prevent these problems. In addition, it outlines the general issues that must be considered when addressing the phase-out of ozone depleting substances and gives some 'lessons learned' by Y-12 from its Refrigerant Management

  13. Transitioning to Low-GWP Alternatives in Unitary Air Conditioning

    EPA Pesticide Factsheets

    This fact sheet provides current information on low-Global Warming Potential (GWP) refrigerant alternatives used in unitary air-conditioning equipment, relevant to the Montreal Protocol on Substances that Deplete the Ozone Layer.

  14. 46 CFR 128.410 - Ship's service refrigeration systems.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 4 2014-10-01 2014-10-01 false Ship's service refrigeration systems. 128.410 Section 128.410 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) OFFSHORE SUPPLY VESSELS... service refrigeration systems. No self-contained unit either for air-conditioning or for refrigerated...

  15. 46 CFR 128.410 - Ship's service refrigeration systems.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 4 2011-10-01 2011-10-01 false Ship's service refrigeration systems. 128.410 Section 128.410 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) OFFSHORE SUPPLY VESSELS... service refrigeration systems. No self-contained unit either for air-conditioning or for refrigerated...

  16. 46 CFR 128.410 - Ship's service refrigeration systems.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 4 2012-10-01 2012-10-01 false Ship's service refrigeration systems. 128.410 Section 128.410 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) OFFSHORE SUPPLY VESSELS... service refrigeration systems. No self-contained unit either for air-conditioning or for refrigerated...

  17. 46 CFR 128.410 - Ship's service refrigeration systems.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Ship's service refrigeration systems. 128.410 Section 128.410 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) OFFSHORE SUPPLY VESSELS... service refrigeration systems. No self-contained unit either for air-conditioning or for refrigerated...

  18. 46 CFR 128.410 - Ship's service refrigeration systems.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 4 2013-10-01 2013-10-01 false Ship's service refrigeration systems. 128.410 Section 128.410 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) OFFSHORE SUPPLY VESSELS... service refrigeration systems. No self-contained unit either for air-conditioning or for refrigerated...

  19. Air Conditioning and Refrigeration. Volume XXVI. 1975 Edition of Course of Study Outlines. Middlesex County Vocational and Technical High Schools and Middlesex County Adult Technical Schools.

    ERIC Educational Resources Information Center

    Capizzi, James

    The two courses of study described and outlined here are offered at Burr D. Coe Vocational and Technical High School in East Brunswick, New Jersey, for students wishing to prepare for a career in air conditioning and refrigeration. Section 1 deals with a 4-year high school course, Section 2 with a 1-year course for those who have completed high…

  20. Sound quality evaluation of air conditioning sound rating metric

    NASA Astrophysics Data System (ADS)

    Hodgdon, Kathleen K.; Peters, Jonathan A.; Burkhardt, Russell C.; Atchley, Anthony A.; Blood, Ingrid M.

    2003-10-01

    A product's success can depend on its acoustic signature as much as on the product's performance. The consumer's perception can strongly influence their satisfaction with and confidence in the product. A metric that can rate the content of the spectrum, and predict its consumer preference, is a valuable tool for manufacturers. The current method of assessing acoustic signatures from residential air conditioning units is defined in the Air Conditioning and Refrigeration Institute (ARI 270) 1995 Standard for Sound Rating of Outdoor Unitary Equipment. The ARI 270 metric, and modified versions of that metric, were implemented in software with the flexibility to modify the features applied. Numerous product signatures were analyzed to generate a set of synthesized spectra that targeted spectral configurations that challenged the metric's abilities. A subjective jury evaluation was conducted to establish the consumer preference for those spectra. Statistical correlations were conducted to assess the degree of relationship between the subjective preferences and the various metric calculations. Recommendations were made for modifications to improve the current metric's ability to predict subjective preference. [Research supported by the Air Conditioning and Refrigeration Institute.

  1. A historical look at chlorofluorocarbon refrigerants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bhatti, M.S.

    1999-07-01

    A class of chemical compounds called chlorofluorocarbon refrigerants has been in widespread use since the 1930s in such diverse applications as refrigerants for refrigerating and air-conditioning systems, blowing agents for plastic foams, solvents for microelectronic circuitry and dry cleaning, sterilants for medical instruments, aerosol propellants for personal hygiene products and pesticides, and freezants for food. This paper describes the historical development of the chlorofluorocarbon refrigerants and gives brief biographical sketches of the inventors. 85 refs., 8 figs., 4 tabs.

  2. Air Liquides Contribution to the CERN Lhc Refrigeration System

    NASA Astrophysics Data System (ADS)

    Dauguet, P.; Gistau-Baguer, G. M.; Briend, P.; Hilbert, B.; Monneret, E.; Villard, J. C.; Marot, G.; Delcayre, F.; Mantileri, C.; Hamber, F.; Courty, J. C.; Hirel, P.; Cohu, A.; Moussavi, H.

    2008-03-01

    The Large Hadron Collider (LHC) is the largest particle accelerator in the world. It is a superconducting machine over 27 km in circumference. Its magnets and cavities require helium refrigeration and liquefaction over the temperature range of 1.8 K to 300 K. This is the largest cryogenic system in the world with respect to the needed cryogenic power: 144-kW equivalent power at 4.5 K. The LHC cryogenic system is composed of 8×18 kW at 4.5 K refrigerators, 8×2.4 kW at 1.8 K systems, 5 main valve boxes, more than 27 km of helium transfer lines and around 300 service modules connecting the transfer line to the magnet and cavity strings. More than half of these components have been designed, manufactured, installed and commissioned by Air Liquide. Due to the huge size of the project, the engineering, construction and commissioning of the equipment has lasted for 8 years, from the first order of equipment in 1998 to final commissioning in 2006. Specifications, architecture and the Air Liquide design of major components of the LHC Refrigeration System are presented in this paper.

  3. Keeping Cool With Solar-Powered Refrigeration

    NASA Technical Reports Server (NTRS)

    2003-01-01

    In the midst of developing battery-free, solar-powered refrigeration and air conditioning systems for habitats in space, David Bergeron, the team leader for NASA's Advanced Refrigerator Technology Team at Johnson Space Center, acknowledged the need for a comparable solar refrigerator that could operate in conjunction with the simple lighting systems already in place on Earth. Bergeron, a 20-year veteran in the aerospace industry, founded the company Solus Refrigeration, Inc., in 1999 to take the patented advanced refrigeration technology he co-developed with his teammate, Johnson engineer Michael Ewert, to commercial markets. Now known as SunDanzer Refrigeration, Inc., Bergeron's company is producing battery-free, photovoltaic (PV) refrigeration systems under license to NASA, and selling them globally.

  4. Refrigerants and environment

    NASA Astrophysics Data System (ADS)

    Tsvetkov, O. B.; Laptev, Yu A.

    2017-11-01

    The refrigeration and air-conditioning industries are important sectors of the economy and represents about 15 % of global electricity consumptions. The chlorofluorocarbons also called CFCs are a class of refrigerants containing the halogens chlorine and/or fluorine on a carbon skeleton. Because of their environmental impact the Montreal Protocol was negotiated in 1987 to limit the production of certain CFCs and hydrochlirofluorocarbons (HCFCs) in developed and developing countries. The halogenated refrigerants are depleting the ozone layer also major contribution to the greenhouse effect. To be acceptable as a refrigerant a fluid must satisfy a variety of thermodynamic criteria and should be environment friendly with zero Ozone Depletion Potential and low Global Warming Potential. The perspective of a future phase down of HFCs is considered in this report taking into account a strategy for the phase out of HCFCs and perspective of choosing of various refrigerant followed by safety issues.

  5. E-education in Refrigeration Technologies for Students and Technicians in the Workplace

    ERIC Educational Resources Information Center

    Lenaerts, Marnik; Schreurs, Marc; Reulens, Walter

    2011-01-01

    The demand for broadly educated engineers, installers and service technicians is growing because of the strong growth in refrigeration, air conditioning and heating. The rapid technological evolution makes it impossible for a school or training centre to invest in all HVAC (heating ventilation and air conditioning) and refrigeration fields. It is…

  6. Refrigeration Compressors for the Altitude Wind Tunnel

    NASA Image and Video Library

    1944-09-21

    These compressors inside the Refrigeration Building at the National Advisory Committee for Aeronautics (NACA) Aircraft Engine Research Laboratory were used to generate cold temperatures in the Altitude Wind Tunnel (AWT) and Icing Research Tunnel. The AWT was a large facility that simulated actual flight conditions at high altitudes. The two primary aspects of altitude simulation are the reduction of the air pressure and the decrease of temperature. The Icing Research Tunnel was a smaller facility in which water droplets were added to the refrigerated air stream to simulate weather conditions that produced ice buildup on aircraft. The military pressured the NACA to complete the tunnels quickly so they could be of use during World War II. The NACA engineers struggled with the design of this refrigeration system, so Willis Carrier, whose Carrier Corporation had pioneered modern refrigeration, took on the project. The Carrier engineers devised the largest cooling system of its kind in the world. The system could lower the tunnels’ air temperature to –47⁰ F. The cooling system was powered by 14 Carrier and York compressors, seen in this photograph, which were housed in the Refrigeration Building between the two wind tunnels. The compressors converted the Freon 12 refrigerant into a liquid. The refrigerant was then pumped into zig-zag banks of cooling coils inside the tunnels’ return leg. The Freon absorbed heat from the airflow as it passed through the coils. The heat was transferred to the cooling water and sent to the cooling tower where it was dissipated into the atmosphere.

  7. Properties and Cycle Performance of Refrigerant Blends Operating Near and Above the Refrigerant Critical Point, Task 2: Air Conditioner System Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Piotr A. Domanski; W. Vance Payne

    2002-10-31

    The main goal of this project was to investigate and compare the performance of an R410A air conditioner to that of an R22 air conditioner, with specific interest in performance at high ambient temperatures at which the condenser of the R410A system may be operating above the refrigerant's critical point. Part 1 of this project consisted of conducting comprehensive measurements of thermophysical for refrigerant R125 and refrigerant blends R410A and R507A and developing new equation of state formulations and mixture models for predicting thermophysical properties of HFC refrigerant blends. Part 2 of this project conducted performance measurements of split-system, 3-tonmore » R22 and R410A residential air conditioners in the 80 to 135 F (27.8 to 57.2 C) outdoor temperature range and development of a system performance model. The performance data was used in preparing a beta version of EVAP-COND, a windows-based simulation package for predicting performance of finned-tube evaporators and condensers. The modeling portion of this project also included the formulation of a model for an air-conditioner equipped with a thermal expansion valve (TXV). Capacity and energy efficiency ratio (EER) were measured and compared. The R22 system's performance was measured over the outdoor ambient temperature range of 80 to 135 F (27.8 to 57.2 C). The same test range was planned for the R410A system. However, the compressor's safety system cut off the compressor at the 135.0 F (57.2 C) test temperature. The highest measurement on this system was at 130.0 F (54.4 C). Subsequently, a custom-manufactured R410A compressor with a disabled safety system and a more powerful motor was installed and performance was measured at outdoor temperatures up to 155.0 F (68.3 C). Both systems had similar capacity and EER performance at 82.0 F (27.8 C). The capacity and EER degradation of both systems were nearly linearly dependent with rising ambient outdoor ambient test temperatures. The performance

  8. Greenhouse gas emissions for refrigerant choices in room air conditioner units.

    PubMed

    Galka, Michael D; Lownsbury, James M; Blowers, Paul

    2012-12-04

    In this work, potential replacement refrigerants for window-mounted room air conditioners (RACs) in the U.S. have been evaluated using a greenhouse gas (GHG) emissions analysis. CO(2)-equivalent emissions for several hydrofluoroethers (HFEs) and other potential replacements were compared to the most widely used refrigerants today. Included in this comparison are pure refrigerants that make up a number of hydrofluorocarbon (HFC) mixtures, pure hydrocarbons, and historically used refrigerants such as propane and ammonia. GHG emissions from direct and indirect sources were considered in this thermodynamic analysis. Propylene, dimethyl ether, ammonia, R-152a, propane, and HFE-152a all performed effectively in a 1 ton window unit and produced slightly lower emissions than the currently used R-22 and R-134a. The results suggest that regulation of HFCs in this application would have some effect on reducing emissions since end-of-life emissions remain at 55% of total refrigerant charge despite EPA regulations that mandate 80% recovery. Even so, offsite emissions due to energy generation dominate over direct GHG emissions and all the refrigerants perform similarly in totals of indirect GHG emissions.

  9. 40 CFR 86.166-12 - Method for calculating emissions due to air conditioning leakage.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... determine a refrigerant leakage rate in grams per year from vehicle-based air conditioning units. The... using the following equation: Grams/YRTOT = Grams/YRRP + Grams/YRSP + Grams/YRFH + Grams/YRMC + Grams/YRC Where: Grams/YRTOT = Total air conditioning system emission rate in grams per year and rounded to...

  10. 40 CFR 82.36 - Approved refrigerant handling equipment.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Approved refrigerant handling equipment. (a)(1) Refrigerant recycling equipment must be certified by the...) Recovery/Recycling Equipment and Recovery/Recycling/Recharging for Mobile Air-Conditioning Systems. (5... Recycling Equipment Intended for Use with both CFC-12 and HFC-134a, Recommended Service Procedure for the...

  11. 40 CFR 82.36 - Approved refrigerant handling equipment.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Approved refrigerant handling equipment. (a)(1) Refrigerant recycling equipment must be certified by the...) Recovery/Recycling Equipment and Recovery/Recycling/Recharging for Mobile Air-Conditioning Systems. (5... Recycling Equipment Intended for Use with both CFC-12 and HFC-134a, Recommended Service Procedure for the...

  12. 40 CFR 82.36 - Approved refrigerant handling equipment.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Approved refrigerant handling equipment. (a)(1) Refrigerant recycling equipment must be certified by the...) Recovery/Recycling Equipment and Recovery/Recycling/Recharging for Mobile Air-Conditioning Systems. (5... Recycling Equipment Intended for Use with both CFC-12 and HFC-134a, Recommended Service Procedure for the...

  13. 40 CFR 82.36 - Approved refrigerant handling equipment.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Approved refrigerant handling equipment. (a)(1) Refrigerant recycling equipment must be certified by the...) Recovery/Recycling Equipment and Recovery/Recycling/Recharging for Mobile Air-Conditioning Systems. (5... Recycling Equipment Intended for Use with both CFC-12 and HFC-134a, Recommended Service Procedure for the...

  14. 40 CFR 82.36 - Approved refrigerant handling equipment.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Approved refrigerant handling equipment. (a)(1) Refrigerant recycling equipment must be certified by the...) Recovery/Recycling Equipment and Recovery/Recycling/Recharging for Mobile Air-Conditioning Systems. (5... Recycling Equipment Intended for Use with both CFC-12 and HFC-134a, Recommended Service Procedure for the...

  15. Experimental Investigation of COP Using Hydro Carbon Refrigerant in a Domestic Refrigerator

    NASA Astrophysics Data System (ADS)

    Peyyala, Anusha; Sudheer, N. V. V. S., Dr

    2017-08-01

    Under the Montreal protocol 1987 researchers worked on the possibility of alternative refrigerants like Hydroflourocarbon’s [HFC’s] and Hydrocarbon’s[HC’s] to replace refrigerants Chloroflourocarbon’s [CFC’s] and Hydrochlorofluorocarbons [HCFC’s] in air-conditioning and cooling systems that are destroying the ozone layer. On October 15, 2016 one hundred and ninety plus countries including India came to an agreement called Kigali Amendment to phase out potent green house gases by 2045 there by preventing 0.5 C rise in global temperature by 2050. Under this agreement India agreed to a timeline to reduce the use of HFC’s by 85% of their baseline by 2045. HFC’s are a family of greenhouse gases that are largely used in refrigerators and air conditioners which have reduced the Ozone Depleting Potential [ODP] but increased the Global Warming Potential [GWP]. Refrigeration and its applications are important in almost all branches of industry, so engineers have to become aware of its principles, uses and limitations. Since the decade there are major changes in the choice of refrigerants due to environmental factors. This issue is on-going and new developments should be developed to decrease the environmental problems. So the aim of this paper is to present the experimental analysis of Coefficient of performance [COP] values using R134a [HFC] & R600a [HC] as Refrigerants in Domestic refrigerator using conventional and nonconventional energy sources. Based on the results, usage of R600a in domestic refrigerators will reduce the ODP and also GWP problems which fulfills the nominal requirements of human beings without any effects.

  16. The characteristics of welded joints for air conditioning application

    NASA Astrophysics Data System (ADS)

    Weglowski, M. St.; Weglowska, A.; Miara, D.; Kwiecinski, K.; Błacha, S.; Dworak, J.; Rykala, J.; Pikula, J.; Ziobro, G.; Szafron, A.; Zimierska-Nowak, P.; Richert, M.; Noga, P.

    2017-10-01

    In the paper the results of metallographic examination of welded joints for air-conditioning elements are presented. The European directives 2006/40/EC on the greenhouse gasses elimination demand to stop using traditional refrigerant and to change it to R744 (CO2) medium in air conditioning installation. The R744 refrigerant is environmental friendly medium if compared with standard solution such as R12, R134a or R1234yf and safer for passengers than R1234yf. The non-standard thermodynamic parameters of the R744 which translate into high pressure and high temperature require specific materials to develop the shape and to specify the technology of manufacturing for the particular elements of the conduits and moreover the technologies of joining for the whole structure, which would meet the exploitation requirements of the new air-conditioning system. To produce the test welded joints of stainless steels four different joining technologies were applied: laser welding, plasma welding, electron beam welding as well as high speed rotation welding. This paper describes the influence of the selected welding process on the macrostructure and microstructure of welded joints of AISI 304 and AISI 316L steels. The results indicated that plasma welding laser welding and electron beam welding technologies guaranty the proper quality of welded joints and can be used for the air conditioning application in automotive industry. However, high speed rotation welding not guarantee the good quality of welded joints and cannot be used for above application.

  17. Affect of Air Leakage into a Thermal-Vacuum Chamber on Helium Refrigeration Heat Load

    NASA Technical Reports Server (NTRS)

    Garcia, Sam; Meagher, Daniel; Linza, Robert; Saheli, Fariborz; Vargas, Gerardo; Lauterbach, John; Reis, Carl; Ganni, Venkatarao (Rao); Homan, Jonathan

    2008-01-01

    NASA s Johnson Space Center (JSC) Building 32 houses two large thermal-vacuum chambers (Chamber A and Chamber B). Within these chambers are liquid nitrogen shrouds to provide a thermal environment and helium panels which operate at 20K to provide cryopumping. Some amount of air leakage into the chambers during tests is inevitable. This causes "air fouling" of the helium panel surfaces due to the components of the air that adhere to the panels. The air fouling causes the emittance of the helium panels to increase during tests. The increase in helium panel emittance increases the heat load on the helium refrigerator that supplies the 20K helium for those panels. Planning for thermal-vacuum tests should account for this increase to make sure that the helium refrigerator capacity will not be exceeded over the duration of a test. During a recent test conducted in Chamber B a known-size air leak was introduced to the chamber. Emittance change of the helium panels and the affect on the helium refrigerator was characterized. A description of the test and the results will be presented.

  18. Using Acid Number as a Leading Indicator of Refrigeration and Air Conditioning System Performance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dennis Cartlidge; Hans Schellhase

    2003-07-31

    acid number (TAN), which includes both mineral acids and organic acids, is therefore a useful indicator which can be used to monitor the condition of the system in order to perform remedial maintenance, when required, to prevent system failure. The critical TAN value is the acid level at which remedial action should be taken to prevent the onset of rapid acid formation which can result in system failure. The level of 0.05 mg KOH/g of oil was established for CFC/mineral oil systems based on analysis of 700 used lubricants from operating systems and failed units. There is no consensus within the refrigeration industry as to the critical TAN value for HFC/POE systems, however, the value will be higher than the CFC/mineral oil systems critical TAN value because of the much weaker organic acids produced from POE. A similar study of used POE lubricants should be performed to establish a critical TAN limit for POE systems. Titrimetric analysis per ASTM procedures is the most commonly used method to determine TAN values in lubricants in the refrigeration industry and other industries dealing with lubricating oils. For field measurements, acid test kits are often used since they provide rapid, semi-quantitative TAN results.« less

  19. 40 CFR 86.167-17 - AC17 Air Conditioning Emissions Test Procedure.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... tolerances (such as may occur during gear changes) are acceptable provided they occur for less than 2 seconds... setting changed to “outside air.” (l) Test procedure. The AC17 air conditioning test is composed of the..., interior volume, climate control system type and characteristics, refrigerant used, compressor type, and...

  20. Impact of air conditioning system operation on increasing gases emissions from automobile

    NASA Astrophysics Data System (ADS)

    Burciu, S. M.; Coman, G.

    2016-08-01

    The paper presents a study concerning the influence of air conditioning system operation on the increase of gases emissions from cars. The study focuses on urban operating regimes of the automobile, regimes when the engines have low loads or are operating at idling. Are presented graphically the variations of pollution emissions (CO, CO2, HC) depending of engine speed and the load on air conditioning system. Additionally are presented, injection duration, throttle position, the mechanical power required by the compressor of air conditioning system and the refrigerant pressure variation on the discharge path, according to the stage of charging of the air conditioning system.

  1. Competency-Based Curriculum for Articulated Programs in Air Conditioning/Refrigeration. A Study for the Articulation of Competency-Based Curricula for the Coordination of Vocational-Technical Education Programs in Louisiana. Final Report. Volume II.

    ERIC Educational Resources Information Center

    Louisiana State Dept. of Education, Baton Rouge. Div. of Vocational Education.

    The curriculum guide for air conditioning/refrigeration is one of five guides written and field tested in a project to develop statewide articulated competency-based curricula in selected vocational education programs. Two separate curricula, one for the vocational-technical level and one for the associate degree level, are presented. The six…

  2. Evaluating alternative refrigerants for high ambient temperature environments

    DOE PAGES

    Abdelaziz, Omar; Shrestha, Som S.

    2016-01-01

    According to the Montreal Protocol, developing countries have started the phase out schedule of the ozone depleting substances, including HCFC refrigerants, in 2015 and expect them to reach 35% reduction in 2020. This commitment to the start the phase out of HCFC refrigerants, especially R-22, in developing countries is seen as an opportunity to introduce lower Global Warming Potential (GWP) refrigerants. Furthermore, this paper summarizes an investigation into the performance of lower GWP refrigerants in high ambient temperature environments, experienced in some of the developed countries, in mini-split air conditioning units.

  3. 77 FR 76825 - Energy Conservation Program: Certification of Commercial and Industrial HVAC, Refrigeration and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-12-31

    ... Energy Conservation Program: Certification of Commercial and Industrial HVAC, Refrigeration and Water... provisions for commercial refrigeration equipment; commercial heating, ventilating, air-conditioning (HVAC..., the Department extended the compliance date for certification of commercial refrigeration equipment...

  4. REFRIGERANT CONCENTRATIONS IN MOTOR VEHICLE PASSENGER COMPARTMENTS

    EPA Science Inventory

    Refrigerant leak rates were measured for faulty air-conditioner evaporators removed from vehicles, and results indicated a range of very small to very large leaks. A survey of automotive air-conditioning service shops was conducted, and leakage scenarios were evaluated to determi...

  5. ARTI Refrigerant Database

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cain, J.M.

    1993-04-30

    The Refrigerant Database consolidates and facilitates access to information to assist industry in developing equipment using alternative refrigerants. The underlying purpose is to accelerate phase out of chemical compounds of environmental concern. The database provides bibliographic citations and abstracts for publications that may be useful in research and design of air-conditioning and refrigeration equipment. The complete documents are not included. The database identifies sources of specific information on R-32, R-123, R-124, R-125, R-134, R-134a, R-141b, R-142b, R-143a, R-152a, R-245ca, R-290 (propane), R-717 (ammonia), ethers, and others as well as azeotropic and zeotropic blends of these fluids. It addresses lubricants includingmore » alkylbenzene, polyalkylene glycol, ester, and other synthetics as well as mineral oils. It also references documents addressing compatibility of refrigerants and lubricants with metals, plastics, elastomers, motor insulation, and other materials used in refrigerant circuits. Incomplete citations or abstracts are provided for some documents to accelerate availability of the information and will be completed or replaced in future updates.« less

  6. Neutron imaging of diabatic two-phase flows relevant to air conditioning

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Geoghegan, Patrick J; Sharma, Vishaldeep

    The design of the evaporator of an air conditioning system relies heavily on heat transfer coefficients and pressure drop correlations that predominantly involve an estimate of the changing void fraction and the underlying two-phase flow regime. These correlations dictate whether the resulting heat exchanger is oversized or not and the amount of refrigerant charge necessary to operate. The latter is particularly important when dealing with flammable or high GWP refrigerants. Traditional techniques to measure the void fraction and visualize the flow are either invasive to the flow or occur downstream of the evaporator, where some of the flow distribution willmore » have changed. Neutron imaging has the potential to visualize two-phase flow in-situ where an aluminium heat exchanger structure becomes essentially transparent to the penetrating neutrons. The subatomic particles are attenuated by the passing refrigerant flow. The resulting image may be directly related to the void fraction and the overall picture provides a clear insight into the flow regime present. This work presents neutron images of the refrigerant Isopentane as it passes through the flow channels of an aluminium evaporator at flowrates relevant to air conditioning. The flow in a 4mm square macro channel is compared to that in a 250 m by 750 m rectangular microchannel in terms of void fraction and regime. All neutron imaging experiments were conducted at the High Flux Isotope Reactor, an Oak Ridge National Laboratory facility« less

  7. Low Global Warming Potential Refrigerants for Commercial Refrigeration Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fricke, Brian A.; Sharma, Vishaldeep; Abdelaziz, Omar

    Supermarket refrigeration systems account for approximately 50% of supermarket energy use, placing this class of equipment among the highest energy consumers in the commercial building domain. In addition, the commonly used refrigeration system in supermarket applications is the multiplex direct expansion (DX) system, which is prone to refrigerant leaks due to its long lengths of refrigerant piping. This leakage reduces the efficiency of the system and increases the impact of the system on the environment. The high Global Warming Potential (GWP) of the hydrofluorocarbon (HFC) refrigerants commonly used in these systems, coupled with the large refrigerant charge and the highmore » refrigerant leakage rates leads to significant direct emissions of greenhouse gases into the atmosphere. Environmental concerns are driving regulations for the heating, ventilating, air-conditioning and refrigeration (HVAC&R) industry towards lower GWP alternatives to HFC refrigerants. Existing lower GWP refrigerant alternatives include hydrocarbons, such as propane (R-290) and isobutane (R-600a), as well as carbon dioxide (R-744), ammonia (R-717), and R-32. In addition, new lower GWP refrigerant alternatives are currently being developed by refrigerant manufacturers, including hydrofluoro-olefin (HFO) and unsaturated hydrochlorofluorocarbon (HCFO) refrigerants. The selection of an appropriate refrigerant for a given refrigeration application should be based on several factors, including the GWP of the refrigerant, the energy consumption of the refrigeration system over its operating lifetime, and leakage of refrigerant over the system lifetime. For example, focusing on energy efficiency alone may overlook the significant environmental impact of refrigerant leakage; while focusing on GWP alone might result in lower efficiency systems that result in higher indirect impact over the equipment lifetime. Thus, the objective of this Collaborative Research and Development Agreement (CRADA

  8. Thermoelectric refrigerator

    NASA Technical Reports Server (NTRS)

    Park, Brian V. (Inventor); Smith, Jr., Malcolm C. (Inventor); McGrath, Ralph D. (Inventor); Gilley, Michael D. (Inventor); Criscuolo, Lance (Inventor); Nelson, John L. (Inventor)

    1996-01-01

    A refrigerator is provided which combines the benefits of superinsulation materials with thermoelectric devices and phase change materials to provide an environmentally benign system that is energy efficient and can maintain relatively uniform temperatures for extended periods of time with relatively low electrical power requirements. The refrigerator includes a thermoelectric assembly having a thermoelectric device with a hot sink and a cold sink. The superinsulation materials include a plurality of vacuum panels. The refrigerator is formed from an enclosed structure having a door. The vacuum panels may be contained within the walls of the enclosed structure and the door. By mounting the thermoelectric assembly on the door, the manufacturer of the enclosed structure is simplified and the overall R rating of the refrigerator increased. Also an electrical motor and propellers may be mounted on the door to assist in the circulation of air to improve the efficiency of the cold sink and the hot sink. A propeller and/or impeller is preferably mounted within the refrigerator to assist in establishing the desired air circulation flow path.

  9. Motor Transportation Technology: Automechanics. [Air Conditioning.] Block IX. A-IX.

    ERIC Educational Resources Information Center

    Texas A and M Univ., College Station. Vocational Instructional Services.

    This packet contains 13 teacher lesson plans with related student information, job sheets, and task sheets for a block of instruction on motor vehicle refrigeration (air conditioning) systems in a course on auto mechanics. Lesson plans, which are either informational or manipulative in format, take the teacher step-by-step through each lesson.…

  10. Limited options for low-global-warming-potential refrigerants

    DOE PAGES

    McLinden, Mark O.; Brown, J. Steven; Brignoli, Riccardo; ...

    2017-02-17

    Hydrofluorocarbons, currently used as refrigerants in air-conditioning systems, are potent greenhouse gases, and their contribution to climate change is projected to increase. Future use of the hydrofluorocarbons will be phased down and, thus replacement fluids must be found. Here we show that only a few pure fluids possess the combination of chemical, environmental, thermodynamic, and safety properties necessary for a refrigerant and that these fluids are at least slightly flammable.We search for replacements by applying screening criteria to a comprehensive chemical database. For the fluids passing the thermodynamic and environmental screens (critical temperature and global warming potential), we simulate performancemore » in small air-conditioning systems, including optimization of the heat exchangers. We show that the efficiency-versus-capacity trade-off that exists in an ideal analysis disappears when a more realistic system is considered. Furthermore, the maximum efficiency occurs at a relatively high volumetric refrigeration capacity, but there are few fluids in this range.« less

  11. Limited options for low-global-warming-potential refrigerants.

    PubMed

    McLinden, Mark O; Brown, J Steven; Brignoli, Riccardo; Kazakov, Andrei F; Domanski, Piotr A

    2017-02-17

    Hydrofluorocarbons, currently used as refrigerants in air-conditioning systems, are potent greenhouse gases, and their contribution to climate change is projected to increase. Future use of the hydrofluorocarbons will be phased down and, thus replacement fluids must be found. Here we show that only a few pure fluids possess the combination of chemical, environmental, thermodynamic, and safety properties necessary for a refrigerant and that these fluids are at least slightly flammable. We search for replacements by applying screening criteria to a comprehensive chemical database. For the fluids passing the thermodynamic and environmental screens (critical temperature and global warming potential), we simulate performance in small air-conditioning systems, including optimization of the heat exchangers. We show that the efficiency-versus-capacity trade-off that exists in an ideal analysis disappears when a more realistic system is considered. The maximum efficiency occurs at a relatively high volumetric refrigeration capacity, but there are few fluids in this range.

  12. Limited options for low-global-warming-potential refrigerants

    NASA Astrophysics Data System (ADS)

    McLinden, Mark O.; Brown, J. Steven; Brignoli, Riccardo; Kazakov, Andrei F.; Domanski, Piotr A.

    2017-02-01

    Hydrofluorocarbons, currently used as refrigerants in air-conditioning systems, are potent greenhouse gases, and their contribution to climate change is projected to increase. Future use of the hydrofluorocarbons will be phased down and, thus replacement fluids must be found. Here we show that only a few pure fluids possess the combination of chemical, environmental, thermodynamic, and safety properties necessary for a refrigerant and that these fluids are at least slightly flammable. We search for replacements by applying screening criteria to a comprehensive chemical database. For the fluids passing the thermodynamic and environmental screens (critical temperature and global warming potential), we simulate performance in small air-conditioning systems, including optimization of the heat exchangers. We show that the efficiency-versus-capacity trade-off that exists in an ideal analysis disappears when a more realistic system is considered. The maximum efficiency occurs at a relatively high volumetric refrigeration capacity, but there are few fluids in this range.

  13. Limited options for low-global-warming-potential refrigerants

    PubMed Central

    McLinden, Mark O.; Brown, J. Steven; Brignoli, Riccardo; Kazakov, Andrei F.; Domanski, Piotr A.

    2017-01-01

    Hydrofluorocarbons, currently used as refrigerants in air-conditioning systems, are potent greenhouse gases, and their contribution to climate change is projected to increase. Future use of the hydrofluorocarbons will be phased down and, thus replacement fluids must be found. Here we show that only a few pure fluids possess the combination of chemical, environmental, thermodynamic, and safety properties necessary for a refrigerant and that these fluids are at least slightly flammable. We search for replacements by applying screening criteria to a comprehensive chemical database. For the fluids passing the thermodynamic and environmental screens (critical temperature and global warming potential), we simulate performance in small air-conditioning systems, including optimization of the heat exchangers. We show that the efficiency-versus-capacity trade-off that exists in an ideal analysis disappears when a more realistic system is considered. The maximum efficiency occurs at a relatively high volumetric refrigeration capacity, but there are few fluids in this range. PMID:28211518

  14. Limited options for low-global-warming-potential refrigerants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McLinden, Mark O.; Brown, J. Steven; Brignoli, Riccardo

    Hydrofluorocarbons, currently used as refrigerants in air-conditioning systems, are potent greenhouse gases, and their contribution to climate change is projected to increase. Future use of the hydrofluorocarbons will be phased down and, thus replacement fluids must be found. Here we show that only a few pure fluids possess the combination of chemical, environmental, thermodynamic, and safety properties necessary for a refrigerant and that these fluids are at least slightly flammable.We search for replacements by applying screening criteria to a comprehensive chemical database. For the fluids passing the thermodynamic and environmental screens (critical temperature and global warming potential), we simulate performancemore » in small air-conditioning systems, including optimization of the heat exchangers. We show that the efficiency-versus-capacity trade-off that exists in an ideal analysis disappears when a more realistic system is considered. Furthermore, the maximum efficiency occurs at a relatively high volumetric refrigeration capacity, but there are few fluids in this range.« less

  15. Cascade Reverse Osmosis Air Conditioning System: Cascade Reverse Osmosis and the Absorption Osmosis Cycle

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    BEETIT Project: Battelle is developing a new air conditioning system that uses a cascade reverse osmosis (RO)-based absorption cycle. Analyses show that this new cycle can be as much as 60% more efficient than vapor compression, which is used in 90% of air conditioners. Traditional vapor-compression systems use polluting liquids for a cooling effect. Absorption cycles use benign refrigerants such as water, which is absorbed in a salt solution and pumped as liquid—replacing compression of vapor. The refrigerant is subsequently separated from absorbing salt using heat for re-use in the cooling cycle. Battelle is replacing thermal separation of refrigerant withmore » a more efficient reverse osmosis process. Research has shown that the cycle is possible, but further investment will be needed to reduce the number of cascade reverse osmosis stages and therefore cost.« less

  16. Automatic control study of the icing research tunnel refrigeration system

    NASA Technical Reports Server (NTRS)

    Kieffer, Arthur W.; Soeder, Ronald H.

    1991-01-01

    The Icing Research Tunnel (IRT) at the NASA Lewis Research Center is a subsonic, closed-return atmospheric tunnel. The tunnel includes a heat exchanger and a refrigeration plant to achieve the desired air temperature and a spray system to generate the type of icing conditions that would be encountered by aircraft. At the present time, the tunnel air temperature is controlled by manual adjustment of freon refrigerant flow control valves. An upgrade of this facility calls for these control valves to be adjusted by an automatic controller. The digital computer simulation of the IRT refrigeration plant and the automatic controller that was used in the simulation are discussed.

  17. High Technology Centrifugal Compressor for Commercial Air Conditioning Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ruckes, John

    2006-04-15

    R&D Dynamics, Bloomfield, CT in partnership with the State of Connecticut has been developing a high technology, oil-free, energy-efficient centrifugal compressor called CENVA for commercial air conditioning systems under a program funded by the US Department of Energy. The CENVA compressor applies the foil bearing technology used in all modern aircraft, civil and military, air conditioning systems. The CENVA compressor will enhance the efficiency of water and air cooled chillers, packaged roof top units, and other air conditioning systems by providing an 18% reduction in energy consumption in the unit capacity range of 25 to 350 tons of refrigeration Themore » technical approach for CENVA involved the design and development of a high-speed, oil-free foil gas bearing-supported two-stage centrifugal compressor, CENVA encompassed the following high technologies, which are not currently utilized in commercial air conditioning systems: Foil gas bearings operating in HFC-134a; Efficient centrifugal impellers and diffusers; High speed motors and drives; and System integration of above technologies. Extensive design, development and testing efforts were carried out. Significant accomplishments achieved under this program are: (1) A total of 26 builds and over 200 tests were successfully completed with successively improved designs; (2) Use of foil gas bearings in refrigerant R134a was successfully proven; (3) A high speed, high power permanent magnet motor was developed; (4) An encoder was used for signal feedback between motor and controller. Due to temperature limitations of the encoder, the compressor could not operate at higher speed and in turn at higher pressure. In order to alleviate this problem a unique sensorless controller was developed; (5) This controller has successfully been tested as stand alone; however, it has not yet been integrated and tested as a system; (6) The compressor successfully operated at water cooled condensing temperatures Due to

  18. Performance Optimization of Alternative Lower Global Warming Potential Refrigerants in Mini-Split Room Air Conditioners

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shen, Bo; Abdelaziz, Omar; Shrestha, Som S

    Oak Ridge National laboratory (ORNL) recently conducted extensive laboratory, drop-in investigations for lower Global Warming Potential (GWP) refrigerants to replace R-22 and R-410A. ORNL studied propane, DR-3, ARM-20B, N-20B and R-444B as lower GWP refrigerant replacement for R-22 in a mini-split room air conditioner (RAC) originally designed for R-22; and, R-32, DR-55, ARM-71A, and L41-2, in a mini-split RAC designed for R-410A. We obtained laboratory testing results with very good energy balance and nominal measurement uncertainty. Drop-in studies are not enough to judge the overall performance of the alternative refrigerants since their thermodynamic and transport properties might favor different heatmore » exchanger configurations, e.g. cross-flow, counter flow, etc. This study compares optimized performances of individual refrigerants using a physics-based system model tools. The DOE/ORNL Heat Pump Design Model (HPDM) was used to model the mini-split RACs by inputting detailed heat exchangers geometries, compressor displacement and efficiencies as well as other relevant system components. The RAC models were calibrated against the lab data for each individual refrigerant. The calibrated models were then used to conduct a design optimization for the cooling performance by varying the compressor displacement to match the required capacity, and changing the number of circuits, refrigerant flow direction, tube diameters, air flow rates in the condenser and evaporator at 100% and 50% cooling capacities. This paper compares the optimized performance results for all alternative refrigerants and highlights best candidates for R-22 and R-410A replacement.« less

  19. System design and analysis of the trans-critical carbon-dioxide automotive air-conditioning system.

    PubMed

    Mu, Jing-Yang; Chen, Jiang-Ping; Chen, Zhi-Jiu

    2003-01-01

    As an environmentally harmless and feasible alternate refrigerant, CO2 has attracted worldwide attention, especially in the area of automobile air-conditioning (AAC). The thermal property of CO2 and its trans-critical refrigeration cycle is very different from that of the traditional CFC or HCFC system. The detailed process of CO2 system thermal cycle design and optimization is described in this paper. System prototype and performance test bench were developed to analyze the performance of the CO2 AAC system.

  20. Transition to New Refrigerants

    EPA Pesticide Factsheets

    Overview page provides information on the refrigerants that motor vehicle air conditioners have used over time, with information on environmental impacts, refrigerant fitting sizes, label colors, and alternatives to ozone-depleting substances.

  1. Compatibility of refrigerants and lubricants with elastomers. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hamed, G.R.; Seiple, R.H.; Taikum, Orawan

    1994-01-01

    The information contained in this report is designed to assist the air-conditioning and refrigeration industry in the selection of suitable elastomeric gasket and seal materials that will prove useful in various refrigerant and refrigeration lubricant environments. In part I of the program the swell behavior in the test fluids has been determined using weight and in situ diameter measurements for the refrigerants and weight, diameter and thickness measurements for the lubricants. Weight and diameter measurements are repeated after 2 and 24 hours for samples removed fro the refrigerant test fluids and 24 hours after removal from the lubricants. Part IImore » of the testing program includes the evaluation of tensile strength, hardness, weight, and dimensional changes after immersion aging in refrigerant/lubricant mixtures of selected elastomer formulations at elevated temperature and pressure.« less

  2. Model-based optimizations of packaged rooftop air conditioners using low global warming potential refrigerants

    DOE PAGES

    Shen, Bo; Abdelaziz, Omar; Shrestha, Som; ...

    2017-10-31

    Based on laboratory investigations for R-22 and R-410A alternative low GWP refrigerants in two baseline rooftop air conditioners (RTU), the DOE/ORNL Heat Pump Design Model was used to model the two RTUs and the models were calibrated against the experimental data. We compared the compressor efficiencies and heat exchanger performances. An efficiency-based compressor mapping method was developed. Extensive model-based optimizations were conducted to provide a fair comparison between all the low GWP candidates by selecting optimal configurations. The results illustrate that all the R-22 low GWP refrigerants will lead to slightly lower COPs. ARM-20B appears to be the best R-22more » replacement at normal conditions. At higher ambient temperatures, ARM-20A exhibits better performance. All R-410A low GWP candidates will result in similar or better efficiencies than R-410A. R-32 has the best COP while requiring the smallest compressor. Finally, R-452B uses the closest compressor displacement volume and achieves the same efficiency as R-410A.« less

  3. Model-based optimizations of packaged rooftop air conditioners using low global warming potential refrigerants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shen, Bo; Abdelaziz, Omar; Shrestha, Som

    Based on laboratory investigations for R-22 and R-410A alternative low GWP refrigerants in two baseline rooftop air conditioners (RTU), the DOE/ORNL Heat Pump Design Model was used to model the two RTUs and the models were calibrated against the experimental data. We compared the compressor efficiencies and heat exchanger performances. An efficiency-based compressor mapping method was developed. Extensive model-based optimizations were conducted to provide a fair comparison between all the low GWP candidates by selecting optimal configurations. The results illustrate that all the R-22 low GWP refrigerants will lead to slightly lower COPs. ARM-20B appears to be the best R-22more » replacement at normal conditions. At higher ambient temperatures, ARM-20A exhibits better performance. All R-410A low GWP candidates will result in similar or better efficiencies than R-410A. R-32 has the best COP while requiring the smallest compressor. Finally, R-452B uses the closest compressor displacement volume and achieves the same efficiency as R-410A.« less

  4. Performance characteristics of low global warming potential R134a alternative refrigerants in ejector-expansion refrigeration system

    NASA Astrophysics Data System (ADS)

    Mishra, Shubham; Sarkar, Jahar

    2016-12-01

    Performance assessment of ejector-expansion vapor compression refrigeration system with eco-friendly R134a alternative refrigerants (R152a, R1234yf, R600a, R600, R290, R161, R32, and propylene) is presented for air-conditioning application. Ejector has been modeled by considering experimental data based correlations of component efficiencies to take care of all irreversibilities. Ejector area ratio has been optimized based on maximum coefficient of performance (COP) for typical air-conditioner operating temperatures. Selected refrigerants have been compared based on area ratio, pressure lift ratio, entrainment ratio, COP, COP improvement and volumetric cooling capacity. Effects of normal boiling point and critical point on the performances have been studied as well. Using ejector as an expansion device, maximum improvement in COP is noted in R1234yf (10.1%), which reduces the COP deviation with R134a (4.5% less in basic cycle and 2.5% less in ejector cycle). Hence, R1234yf seems to be best alternative for ejector expansion system due to its mild flammability and comparable volumetric capacity and cooling COP. refrigerant R161 is superior to R134a in terms of both COP and volumetric cooling capacity, although may be restricted for low capacity application due to its flammability.

  5. ARTI Refrigerant Database

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Calm, J.M.

    1992-11-09

    The database provides bibliographic citations and abstracts for publications that may be useful in research and design of air- conditioning and refrigeration equipment. The database identifies sources of specific information on R-32, R-123, R-124, R-125, R-134, R-134a, R-141b, R-142b, R-143a, R-152a, R-245ca, R-290 (propane), R- 717 (ammonia), ethers, and others as well as azeotropic and zeotropic and zeotropic blends of these fluids. It addresses lubricants including alkylbenzene, polyalkylene glycol, ester, and other synthetics as well as mineral oils. It also references documents on compatibility of refrigerants and lubricants with metals, plastics, elastomers, motor insulation, and other materials used in refrigerantmore » circuits. A computerized version is available that includes retrieval software.« less

  6. Investigation of pressure drop in capillary tube for mixed refrigerant Joule-Thomson cryocooler

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ardhapurkar, P. M.; Sridharan, Arunkumar; Atrey, M. D.

    2014-01-29

    A capillary tube is commonly used in small capacity refrigeration and air-conditioning systems. It is also a preferred expansion device in mixed refrigerant Joule-Thomson (MR J-T) cryocoolers, since it is inexpensive and simple in configuration. However, the flow inside a capillary tube is complex, since flashing process that occurs in case of refrigeration and air-conditioning systems is metastable. A mixture of refrigerants such as nitrogen, methane, ethane, propane and iso-butane expands below its inversion temperature in the capillary tube of MR J-T cryocooler and reaches cryogenic temperature. The mass flow rate of refrigerant mixture circulating through capillary tube depends onmore » the pressure difference across it. There are many empirical correlations which predict pressure drop across the capillary tube. However, they have not been tested for refrigerant mixtures and for operating conditions of the cryocooler. The present paper assesses the existing empirical correlations for predicting overall pressure drop across the capillary tube for the MR J-T cryocooler. The empirical correlations refer to homogeneous as well as separated flow models. Experiments are carried out to measure the overall pressure drop across the capillary tube for the cooler. Three different compositions of refrigerant mixture are used to study the pressure drop variations. The predicted overall pressure drop across the capillary tube is compared with the experimentally obtained value. The predictions obtained using homogeneous model show better match with the experimental results compared to separated flow models.« less

  7. Overview of Air Liquide refrigeration systems between 1.8 K and 200 K

    NASA Astrophysics Data System (ADS)

    Gondrand, C.; Durand, F.; Delcayre, F.; Crispel, S.; Baguer, G. M. Gistau

    2014-01-01

    Cryogenic refrigeration systems are necessary for numerous applications. Gas purification and distillation require temperatures between 15 K and 200 K depending on the application, space simulation chambers down to 15 K, superconductivity between 1.8 K and up to 75 K (magnets, cavities or HTS devices like cables, FCL, SMES, etc), Cold Neutron Sources between 15 and 20 K, etc. Air Liquide Advanced Technologies is designing and manufacturing refrigerators since 60 years to satisfy those needs. The step by step developments achieved have led to machines with higher efficiency and reliability. In 1965, reciprocating compressors and Joule Thomson expansion valves were used. In 1969, centripetal expanders began to be used. In 1980, oil lubricated screw compressors took the place of reciprocating compressors and a standard range of Claude cycle refrigerators was developed: the HELIAL series. 1980 was also the time for cryogenic centrifugal compressor development. In 2011, driven by the need for lower operational cost (high efficiency and low maintenance), cycle oil free centrifugal compressors on magnetic bearings were introduced instead of screw compressors. The power extracted by centripetal expanders was recovered. Based on this technology, a range of Turbo-Brayton refrigerators has been designed for temperatures between 40 K and 150 K. On-going development will enable widening the range of Turbo-Brayton refrigerators to cryogenic temperatures down to 15 K.. Cryogenic centrifugal circulators have been developed in order to answer to an increasing demand of 4 K refrigerators able to distribute cold power.

  8. Discussion on fresh air volume in Temperature and Humidity Independent Control of Air-conditioning System

    NASA Astrophysics Data System (ADS)

    Cheng, Xiaolong; Liu, Jinxiang; Wang, Yu; Yuan, Xiaolei; Jin, Hui

    2018-05-01

    The fresh air volume in Temperature and Humidity Independent Control of Air-conditioning System(THIC) of a typical office was comfirmed, under the premise of adopting the refrigeration dehumidifying fresh air unit(7°C/12°C). By detailed calculating the space moisture load and the fresh air volume required for dehumidification in 120 selected major cities in China, it can be inferred that the minimum fresh air volume required for dehumidification in THIC is mainly determined by the local outdoor air moisture and the outdoor wind speed; Then the mathematical fitting software Matlab was used to fit the three parameters, and a simplified formula for calculating the minimum per capita fresh air volume required for dehumidification was obtained; And the indoor relative humidity was simulated by the numerical software Airpak and the results by using the formula data and the data for hygiene were compared to verify the relibility of the simplified formula.

  9. Overview of Air Liquide refrigeration systems between 1.8 K and 200 K

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gondrand, C.; Durand, F.; Delcayre, F.

    Cryogenic refrigeration systems are necessary for numerous applications. Gas purification and distillation require temperatures between 15 K and 200 K depending on the application, space simulation chambers down to 15 K, superconductivity between 1.8 K and up to 75 K (magnets, cavities or HTS devices like cables, FCL, SMES, etc), Cold Neutron Sources between 15 and 20 K, etc. Air Liquide Advanced Technologies is designing and manufacturing refrigerators since 60 years to satisfy those needs. The step by step developments achieved have led to machines with higher efficiency and reliability. In 1965, reciprocating compressors and Joule Thomson expansion valves weremore » used. In 1969, centripetal expanders began to be used. In 1980, oil lubricated screw compressors took the place of reciprocating compressors and a standard range of Claude cycle refrigerators was developed: the HELIAL series. 1980 was also the time for cryogenic centrifugal compressor development. In 2011, driven by the need for lower operational cost (high efficiency and low maintenance), cycle oil free centrifugal compressors on magnetic bearings were introduced instead of screw compressors. The power extracted by centripetal expanders was recovered. Based on this technology, a range of Turbo-Brayton refrigerators has been designed for temperatures between 40 K and 150 K. On-going development will enable widening the range of Turbo-Brayton refrigerators to cryogenic temperatures down to 15 K.. Cryogenic centrifugal circulators have been developed in order to answer to an increasing demand of 4 K refrigerators able to distribute cold power.« less

  10. Progress towards Managing Residential Electricity Demand: Impacts of Standards and Labeling for Refrigerators and Air Conditioners in India

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McNeil, Michael A.; Iyer, Maithili

    The development of Energy Efficiency Standards and Labeling (EES&L) began in earnest in India in 2001 with the Energy Conservation Act and the establishment of the Indian Bureau of Energy Efficiency (BEE). The first main residential appliance to be targeted was refrigerators, soon to be followed by room air conditioners. Both of these appliances are of critical importance to India's residential electricity demand. About 15percent of Indian households own a refrigerator, and sales total about 4 million per year, but are growing. At the same time, the Indian refrigerator market has seen a strong trend towards larger and more consumptivemore » frost-free units. Room air conditioners in India have traditionally been sold to commercial sector customers, but an increasing number are going to the residential sector. Room air conditioner sales growth in India peaked in the last few years at 20percent per year. In this paper, we perform an engineering-based analysis using data specific to Indian appliances. We evaluate costs and benefits to residential and commercial sector consumers from increased equipment costs and utility bill savings. The analysis finds that, while the BEE scheme presents net benefits to consumers, there remain opportunities for efficiency improvement that would optimize consumer benefits, according to Life Cycle Cost analysis. Due to the large and growing market for refrigerators and air conditioners in India, we forecast large impacts from the standards and labeling program as scheduled. By 2030, this program, if fully implemented would reduce Indian residential electricity consumption by 55 TWh. Overall savings through 2030 totals 385 TWh. Finally, while efficiency levels have been set for several years for refrigerators, labels and MEPS for these products remain voluntary. We therefore consider the negative impact of this delay of implementation to energy and financial savings achievable by 2030.« less

  11. Advances in refrigeration and heat transfer engineering

    DOE PAGES

    Bansal, Pradeep; Cremaschi, Prof. Lorenzo

    2015-05-13

    This special edition of Science and Technology for the Built Environment (STBE) presents selected high quality papers that were presented at the 15th International Refrigeration and Air Conditioning Conference held at Purdue University during July 14-17 2014. All papers went through the additional review before being finally accepted for publication in this special issue of Science and Technology and the Built Environment. Altogether 20 papers made to this special issue that cover a wide range of topics, including advancements in alternative refrigerants, heat exchangers/heat transfer, nano-fluids, systems design and optimization and modeling approaches. Although CO 2 may perhaps have beenmore » the most researched and popular refrigerant in the past decade, R32 is being seriously considered lately as an alternative and environmentally friendly refrigerant for small systems due to its low Global Warming Potential (GWP).« less

  12. Advances in refrigeration and heat transfer engineering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bansal, Pradeep; Cremaschi, Prof. Lorenzo

    This special edition of Science and Technology for the Built Environment (STBE) presents selected high quality papers that were presented at the 15th International Refrigeration and Air Conditioning Conference held at Purdue University during July 14-17 2014. All papers went through the additional review before being finally accepted for publication in this special issue of Science and Technology and the Built Environment. Altogether 20 papers made to this special issue that cover a wide range of topics, including advancements in alternative refrigerants, heat exchangers/heat transfer, nano-fluids, systems design and optimization and modeling approaches. Although CO 2 may perhaps have beenmore » the most researched and popular refrigerant in the past decade, R32 is being seriously considered lately as an alternative and environmentally friendly refrigerant for small systems due to its low Global Warming Potential (GWP).« less

  13. Refrigeration system having dual suction port compressor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Guolian

    A cooling system for appliances, air conditioners, and other spaces includes a compressor, and a condenser that receives refrigerant from the compressor. The system also includes an evaporator that receives refrigerant from the condenser. Refrigerant received from the condenser flows through an upstream portion of the evaporator. A first portion of the refrigerant flows to the compressor without passing through a downstream portion of the evaporator, and a second portion of the refrigerant from the upstream portion of the condenser flows through the downstream portion of the evaporator after passing through the upstream portion of the evaporator. The second portionmore » of the refrigerant flows to the compressor after passing through the downstream portion of the evaporator. The refrigeration system may be configured to cool an appliance such as a refrigerator and/or freezer, or it may be utilized in air conditioners for buildings, motor vehicles, or other such spaces.« less

  14. Sodium lactate addition on the quality and shelf life of refrigerated sliced poultry sausage packaged in air or nitrogen atmosphere.

    PubMed

    Cegielska-Radziejewska, Renata; Pikul, Jan

    2004-03-01

    The aim of this study was to determine the effect of sodium lactate addition on shelf-life extension of sliced poultry sausage packaged both in air and nitrogen atmospheres and stored in refrigerated conditions. Basic chemical composition, pH, and malonaldehyde content were assayed and color measurement using the reflection method was carried out. Microbiological examination consisted of determination of total number of aerobic psychrotrophic bacteria and number of lactic acid bacteria. Sensory evaluation of products was performed. Microbiological and sensory quality of sliced poultry meat sausage was dependent on the addition during production of sodium lactate and the composition of gases (air or nitrogen) used in packaging. Slices of poultry sausage with 1% as well as 2% of sodium lactate maintained their initial quality of evaluated sensory attributes longer, irrespective of the applied gases. Sodium lactate inhibited growth of aerobic psychrotrophic bacteria and lactic acid bacteria during refrigerated storage. Sodium lactate also inhibited the formation of malonaldehyde in sliced poultry sausage during refrigerated storage. The effectiveness of this process depended on the concentration of sodium lactate addition. It was concluded that 1% as well as 2% addition of sodium lactate could extend the shelf life of sliced poultry sausage packaged in air atmosphere and stored at 5 to 7 degrees C by 3 or 4 times, respectively. Sliced poultry sausage treated with 2% sodium lactate packed in nitrogen had the longest (35-day) shelf life. This was a sevenfold increase in the shelf life of sliced poultry sausage compared with the control.

  15. Active magnetic refrigerants based on Gd-Si-Ge material and refrigeration apparatus and process

    DOEpatents

    Gschneidner, Jr., Karl A.; Pecharsky, Vitalij K.

    1998-04-28

    Active magnetic regenerator and method using Gd.sub.5 (Si.sub.x Ge.sub.1-x).sub.4, where x is equal to or less than 0.5, as a magnetic refrigerant that exhibits a reversible ferromagnetic/antiferromagnetic or ferromagnetic-II/ferromagnetic-I first order phase transition and extraordinary magneto-thermal properties, such as a giant magnetocaloric effect, that renders the refrigerant more efficient and useful than existing magnetic refrigerants for commercialization of magnetic regenerators. The reversible first order phase transition is tunable from approximately 30 K to approximately 290 K (near room temperature) and above by compositional adjustments. The active magnetic regenerator and method can function for refrigerating, air conditioning, and liquefying low temperature cryogens with significantly improved efficiency and operating temperature range from approximately 10 K to 300 K and above. Also an active magnetic regenerator and method using Gd.sub.5 (Si.sub.x Ge.sub.1-x).sub.4, where x is equal to or greater than 0.5, as a magnetic heater/refrigerant that exhibits a reversible ferromagnetic/paramagnetic second order phase transition with large magneto-thermal properties, such as a large magnetocaloric effect that permits the commercialization of a magnetic heat pump and/or refrigerant. This second order phase transition is tunable from approximately 280 K (near room temperature) to approximately 350 K by composition adjustments. The active magnetic regenerator and method can function for low level heating for climate control for buildings, homes and automobile, and chemical processing.

  16. Determination of properties of PVE lubricants with HFC refrigerants[PolyVinylEther

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kaneko, Masato; Sakanoue, Shuichi; Tazaki, Toshihiro

    1999-07-01

    Polyalkyleneglycol (PAG) and polyol ester (POE) have been developed as refrigeration lubricants, used with HFC134a. PAG is used for automotive air conditioning systems and POE is used for domestic reciprocating refrigerators and for A/C systems. Although PAG exhibits good lubricity performance, it is difficult to use for domestic reciprocating refrigerators due to its low dielectric property. POE is difficult to use for automotive A/C systems, due to hydrolysis and poor lubricity performance. Polyvinylether (PVE) can be used in place of PAG and POE with HFC refrigerants. PVE is used for A/C systems as well as refrigerator and freezer applications. PVEmore » is an ideal lubricant for use with HFCs.« less

  17. Comprehensive Compressor Calorimeter Testing of Lower-GWP Alternative Refrigerants for Heat Pump and Medium Temperature Refrigeration Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shrestha, Som S; Sharma, Vishaldeep; Abdelaziz, Omar

    In response to environmental concerns raised by the use of refrigerants with high Global Warming Potential (GWP), the Air-Conditioning, Heating, and Refrigeration Institute (AHRI) has launched an industry-wide cooperative research program, referred to as the Low-GWP Alternative Refrigerants Evaluation Program (AREP), to identify and evaluate promising alternative refrigerants for major product categories. This paper reports one of the Oak Ridge National Laboratory (ORNL) contributions to AREP. It compares performance of alternative refrigerants to that of R-410A and R-404A for heat pump and medium temperature applications, respectively. The alternatives reported in this paper are: R-32, DR-5, and L-41a for R-410A andmore » ARM-31a, D2Y-65, L-40, and a mixture of R-32 and R-134a for R-404A. All performance comparison tests were conducted using scroll compressors of ~1.85 tons (6.5 kW) cooling capacity. Tests were conducted over a range of combinations of saturation suction and saturation discharge temperatures for both compressors. The tests showed that, in general, energy efficiency ratio (EER) and cooling capacity of R-410A alternative refrigerants were slightly lower than that of the baseline refrigerant with a moderate increases in discharge temperature. On the other hand, R-404A alternative refrigerants showed relative performance dependence on saturation suction and saturation discharge temperatures and larger increases in discharge temperature than for the R-410A alternatives. This paper summarizes the relative performance of all alternative refrigerants compared to their respective baseline.« less

  18. Alternate working fluids for solar air conditioning applications

    NASA Technical Reports Server (NTRS)

    Evans, R. D.; Beck, J. K.

    1978-01-01

    An experimental investigation of sixteen different refrigerant-absorbent fluid pairs has been carried out in order to determine their suitability as the working fluid in a solar-powered absorption cycle air conditioner. The criteria used in the initial selection of a refrigerant-absorbent pair included: high affinity (large negative deviation from Raoult's Law), high solubility, low specific heat, low viscosity, stability, corrosive properties, safety, and cost. For practical solar considerations of a fluid pair, refrigerants were selected with low boiling points whereas absorbent fluids were selected with a boiling point considerably above that of the refrigerant. Additional restrictions are determined by the operating temperatures of the absorber and the generator; these temperatures were specified as 100 F (39 C) and 170 F (77 C). Data are presented for a few selected pressures at the specified absorber and generator temperatures.

  19. Refrigeration generation using expander-generator units

    NASA Astrophysics Data System (ADS)

    Klimenko, A. V.; Agababov, V. S.; Koryagin, A. V.; Baidakova, Yu. O.

    2016-05-01

    The problems of using the expander-generator unit (EGU) to generate refrigeration, along with electricity were considered. It is shown that, on the level of the temperatures of refrigeration flows using the EGU, one can provide the refrigeration supply of the different consumers: ventilation and air conditioning plants and industrial refrigerators and freezers. The analysis of influence of process parameters on the cooling power of the EGU, which depends on the parameters of the gas expansion process in the expander and temperatures of cooled environment, was carried out. The schematic diagram of refrigeration generation plant based on EGU is presented. The features and advantages of EGU to generate refrigeration compared with thermotransformer of steam compressive and absorption types were shown, namely: there is no need to use the energy generated by burning fuel to operate the EGU; beneficial use of the heat delivered to gas from the flow being cooled in equipment operating on gas; energy production along with refrigeration generation, which makes it possible to create, using EGU, the trigeneration plants without using the energy power equipment. It is shown that the level of the temperatures of refrigeration flows, which can be obtained by using the EGU on existing technological decompression stations of the transported gas, allows providing the refrigeration supply of various consumers. The information that the refrigeration capacity of an expander-generator unit not only depends on the parameters of the process of expansion of gas flowing in the expander (flow rate, temperatures and pressures at the inlet and outlet) but it is also determined by the temperature needed for a consumer and the initial temperature of the flow of the refrigeration-carrier being cooled. The conclusion was made that the expander-generator units can be used to create trigeneration plants both at major power plants and at small energy.

  20. Microbiological quality of raw milk attributable to prolonged refrigeration conditions.

    PubMed

    Vithanage, Nuwan R; Dissanayake, Muditha; Bolge, Greg; Palombo, Enzo A; Yeager, Thomas R; Datta, Nivedita

    2017-02-01

    Refrigerated storage of raw milk is a prerequisite in dairy industry. However, temperature abused conditions in the farming and processing environments can significantly affect the microbiological quality of raw milk. Thus, the present study investigated the effect of different refrigeration conditions such as 2, 4, 6, 8, 10 and 12 °C on microbiological quality of raw milk from three different dairy farms with significantly different initial microbial counts. The bacterial counts (BC), protease activity (PA), proteolysis (PL) and microbial diversity in raw milk were determined during storage. The effect of combined heating (75 ± 0·5 °C for 15 s) and refrigeration on controlling those contaminating microorganisms was also investigated. Results of the present study indicated that all of the samples showed increasing BC, PA and PL as a function of temperature, time and initial BC with a significant increase in those criteria ≥6 °C. Similar trends in BC, PA and PL were observed during the extended storage of raw milk at 4 °C. Both PA and PL showed strong correlation with the psychrotrophic proteolytic count (PPrBC: at ≥4 °C) and thermoduric psychrotrophic count (TDPC: at ≥8 °C) compared to total plate count (TPC) and psychrotrophic bacterial count (PBC), that are often used as the industry standard. Significant increases in PA and PL were observed when PPrBC and TDPC reached 5 × 104 cfu/ml and 1 × 104 cfu/ml, and were defined as storage life for quality (S LQ), and storage life for safety (S LS) aspects, respectively. The storage conditions also significantly affected the microbial diversity, where Pseudomonas fluorescens and Bacillus cereus were found to be the most predominant isolates. However, deep cooling (2 °C) and combination of heating and refrigeration (≤4 °C) significantly extended the S LQ and S Ls of raw milk.

  1. 77 FR 17344 - Protection of Stratospheric Ozone: Amendment to HFO-1234yf SNAP Rule for Motor Vehicle Air...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-26

    ...-depleting substances (ODSs) in the motor vehicle air conditioning end-use within the refrigeration and air... part 82). These sectors--refrigeration and air conditioning; foam blowing; cleaning solvents; fire...

  2. Active magnetic refrigerants based on Gd-Si-Ge material and refrigeration apparatus and process

    DOEpatents

    Gschneidner, K.A. Jr.; Pecharsky, V.K.

    1998-04-28

    Active magnetic regenerator and method using Gd{sub 5} (Si{sub x}Ge{sub 1{minus}x}){sub 4}, where x is equal to or less than 0.5, as a magnetic refrigerant that exhibits a reversible ferromagnetic/antiferromagnetic or ferromagnetic-II/ferromagnetic-I first order phase transition and extraordinary magneto-thermal properties, such as a giant magnetocaloric effect, that renders the refrigerant more efficient and useful than existing magnetic refrigerants for commercialization of magnetic regenerators. The reversible first order phase transition is tunable from approximately 30 K to approximately 290 K (near room temperature) and above by compositional adjustments. The active magnetic regenerator and method can function for refrigerating, air conditioning, and liquefying low temperature cryogens with significantly improved efficiency and operating temperature range from approximately 10 K to 300 K and above. Also an active magnetic regenerator and method using Gd{sub 5} (Si{sub x} Ge{sub 1{minus}x}){sub 4}, where x is equal to or greater than 0.5, as a magnetic heater/refrigerant that exhibits a reversible ferromagnetic/paramagnetic second order phase transition with large magneto-thermal properties, such as a large magnetocaloric effect that permits the commercialization of a magnetic heat pump and/or refrigerant. This second order phase transition is tunable from approximately 280 K (near room temperature) to approximately 350 K by composition adjustments. The active magnetic regenerator and method can function for low level heating for climate control for buildings, homes and automobile, and chemical processing. 27 figs.

  3. An Evaluation of the Environmental Impact of Different Commercial Supermarket Refrigeration Systems Using Low Global Warming Potential Refrigerants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beshr, Mohamed; Aute, Vikrant; Abdelaziz, Omar

    Commercial refrigeration systems consumed 1.21 Quads of primary energy in 2010 and are known to be a major source for refrigerant charge leakage into the environment. Thus, it is important to study the environmental impact of commercial supermarket refrigeration systems and improve their design to minimize any adverse impacts. The system s Life Cycle Climate Performance (LCCP) was presented as a comprehensive metric with the aim of calculating the equivalent mass of carbon dioxide released into the atmosphere throughout its lifetime, from construction to operation and destruction. In this paper, an open source tool for the evaluation of the LCCPmore » of different air-conditioning and refrigeration systems is presented and used to compare the environmental impact of a typical multiplex direct expansion (DX) supermarket refrigeration systems based on three different refrigerants as follows: two hydrofluorocarbon (HFC) refrigerants (R-404A, and R-407F), and a low global warming potential (GWP) refrigerant (N-40). The comparison is performed in 8 US cities representing different climates. The hourly energy consumption of the refrigeration system, required for the calculation of the indirect emissions, is calculated using a widely used building energy modeling tool (EnergyPlus). A sensitivity analysis is performed to determine the impact of system charge and power plant emission factor on the LCCP results. Finally, we performed an uncertainty analysis to determine the uncertainty in total emissions for both R-404A and N-40 operated systems. We found that using low GWP refrigerants causes a considerable drop in the impact of uncertainty in the inputs related to direct emissions on the uncertainty of the total emissions of the system.« less

  4. Characteristics Air Flow in Room Chamber Test Refrigerator Household Energy Consumption with Inlet Flow Variation

    NASA Astrophysics Data System (ADS)

    Susanto, Edy; Idrus Alhamid, M.; Nasruddin; Budihardjo

    2018-03-01

    Room Chamber is the most important in making a good Testing Laboratory. In this study, the 2-D modeling conducted to assess the effect placed the inlet on designing a test chamber room energy consumption of household refrigerators. Where the geometry room chamber is rectangular and approaching the enclosure conditions. Inlet varied over the side parallel to the outlet and compared to the inlet where the bottom is made. The purpose of this study was to determine and define the characteristics of the airflow in the room chamber using CFD simulation. CFD method is used to obtain flow characteristics in detail, in the form of vector flow velocity and temperature distribution inside the chamber room. The result found that the position of the inlet parallel to the outlet causes air flow cannot move freely to the side of the floor, even flow of air moves up toward the outlet. While by making the inlet is below, the air can move freely from the bottom up to the side of the chamber room wall as well as to help uniform flow.

  5. Possibility of using adsorption refrigeration unit in district heating network

    NASA Astrophysics Data System (ADS)

    Grzebielec, Andrzej; Rusowicz, Artur; Jaworski, Maciej; Laskowski, Rafał

    2015-09-01

    Adsorption refrigeration systems are able to work with heat sources of temperature starting with 50 °C. The aim of the article is to determine whether in terms of technical and economic issues adsorption refrigeration equipment can work as elements that produce cold using hot water from the district heating network. For this purpose, examined was the work of the adsorption air conditioning equipment cooperating with drycooler, and the opportunities offered by the district heating network in Warsaw during the summer. It turns out that the efficiency of the adsorption device from the economic perspective is not sufficient for production of cold even during the transitional period. The main problem is not the low temperature of the water supply, but the large difference between the coefficients of performance, COPs, of adsorption device and a traditional compressor air conditioning unit. When outside air temperature is 25 °C, the COP of the compressor type reaches a value of 4.49, whereas that of the adsorption device in the same conditions is 0.14. The ratio of the COPs is 32. At the same time ratio between the price of 1 kWh of electric power and 1 kWh of heat is only 2.85. Adsorption refrigeration equipment to be able to compete with compressor devices, should feature COPads efficiency to be greater than 1.52. At such a low driving temperature and even changing the drycooler into the evaporative cooler it is not currently possible to achieve.

  6. Flow, stock, and impact assessment of refrigerants in the Japanese household air conditioner sector.

    PubMed

    Xue, Mianqiang; Kojima, Naoya; Machimura, Takashi; Tokai, Akihiro

    2017-05-15

    Refrigerants provide society with great benefits while have the potential to cause adverse effects on the environment and human health. The present study estimated time-dependent flows and stocks and assessed the effects of refrigerants (R-22, R-410a, and R-32) in household air conditioners in Japan. It was found that stock of R-22 and R-410a peaked at 49,147t in 2000 and 55,994t in 2017, respectively. The largest flow of R-22 and R-410a to waste phase occurred at 3417t/yr. in 2005 and 4011t/yr. in 2023, respectively. The total global warming potential (GWP) due to refrigerant emissions increased from 3.6kt CO 2 eq. in 1952 to 6999kt CO 2 eq. in 2019, and then decreased to 5314kt CO 2 eq. in 2030. The ozone depletion potential (ODP) peaked at 141t CFC-11 eq. in 2002. When substituting R-410a for R-22, the ODP decreased 50% while the GDP increased 8%. When substituting R-32 for R-410a, there was no effect on the ODP while the GDP decreased 6%. The human health damage due to the global warming effect of refrigerant emission was much higher than that due to the ozone depleting effect. The refrigerant emission in use and waste management phases dominated the human health damage. The dynamic estimation not only allows us to evaluate the performance of past policies but also supports the future sustainable management associated with the health effects of refrigerants. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Emissions of halocarbons from mobile vehicle air conditioning system in Hong Kong.

    PubMed

    Yan, H H; Guo, H; Ou, J M

    2014-08-15

    During the implementation of Montreal Protocol, emission inventories of halocarbons in different sectors at regional scale are fundamental to the formulation of relevant management strategy and inspection of the implementation efficiency. This study investigated the emission profile of halocarbons used in the mobile vehicle air conditioning system, the leading sector of refrigeration industry in terms of the refrigerant bank, market and emission, in the Hong Kong Special Administrative Region, using a bottom-up approach developed by 2006 IPCC Good Practice Guidance. The results showed that emissions of CFC-12 peaked at 53 tons ODP (Ozone Depletion Potential) in 1992 and then gradually diminished, whereas HFC-134a presented an increasing emission trend since 1990s and the emissions of HFC-134a reached 65,000 tons CO2-equivelant (CO2-eq) by the end of 2011. Uncertainty analysis revealed relatively high levels of uncertainties for special-purpose vehicles and government vehicles. Moreover, greenhouse gas (GHG) abatements under different scenarios indicated that potential emission reduction of HFC-134a ranged from 4.1 to 8.4 × 10(5)tons CO2-eq. The findings in this study advance our knowledge of halocarbon emissions from mobile vehicle air conditioning system in Hong Kong. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. Stirling Air Conditioner for Compact Cooling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    2010-09-01

    BEETIT Project: Infinia is developing a compact air conditioner that uses an unconventional high efficient Stirling cycle system (vs. conventional vapor compression systems) to produce cool air that is energy efficient and does not rely on polluting refrigerants. The Stirling cycle system is a type of air conditioning system that uses a motor with a piston to remove heat to the outside atmosphere using a gas refrigerant. To date, Stirling systems have been expensive and have not had the right kind of heat exchanger to help cool air efficiently. Infinia is using chip cooling technology from the computer industry tomore » make improvements to the heat exchanger and improve system performance. Infinia’s air conditioner uses helium gas as refrigerant, an environmentally benign gas that does not react with other chemicals and does not burn. Infinia’s improvements to the Stirling cycle system will enable the cost-effective mass production of high-efficiency air conditioners that use no polluting refrigerants.« less

  9. Miscibility comparison for three refrigerant mixtures and four component refrigerants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kang, H.M.; Pate, M.B.

    1999-07-01

    Miscibility data were taken and compared for seven different refrigerants when mixed with the same polyol ester (POE) lubricant. Four of the seven refrigerants were single-component refrigerants while three of the refrigerants were mixtures composed of various combinations of the pure refrigerants. The purpose of this research was to investigate the difference in miscibility characteristics between refrigerant mixtures and their respective component refrigerants. The POE lubricant was a penta erythritol mixed-acid type POE which has a viscosity ISO32. The four pure refrigerants were R-32, R-125, R-134a, and R-143a and the three refrigerant mixtures were R-404A, R407C, and R-410A. The miscibilitymore » tests were performed in a test facility consisting of a series of miniature test cells submerged in a constant temperature bath. The test cells were constructed to allow for complete visibility of the refrigerant/lubricant mixtures under all test conditions. The tests were performed over a concentration range of 0 to 100% and a temperature range of {minus}40 to 194 F. The miscibility test results for refrigerant mixtures are compared to component refrigerants. In all cases, the refrigerant mixtures appear to have better miscibility than their most immiscible pure component.« less

  10. Control systems for heating, ventilating, and air conditioning

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haines, R.W.

    1977-01-01

    Hundreds of ideas for designing and controlling sophisticated heating, ventilating and air conditioning (HVAC) systems are presented. Information is included on enthalpy control, energy conservation in HVAC systems, on solar heating, cooling and refrigeration systems, and on a self-draining water collector and heater. Computerized control systems and the economics of supervisory systems are discussed. Information is presented on computer system components, software, relevant terminology, and computerized security and fire reporting systems. Benefits of computer systems are explained, along with optimization techniques, data management, maintenance schedules, and energy consumption. A bibliography, glossaries of HVAC terminology, abbreviations, symbols, and a subject indexmore » are provided. (LCL)« less

  11. Refrigeration Showcases

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Through the Technology Affiliates Program at the Jet Propulsion Laboratory (JPL), valuable modifications were made to refrigerator displays built by Displaymor Manufacturing Company, Inc. By working with JPL, Displaymor could address stiffer requirements that ensure the freshness of foods. The application of the space technology meant that the small business would be able to continue to market its cases without incurring expenses that could threaten the viability of the business, and the future of several dozen jobs. Research and development improvements in air flow distribution and refrigeration coil technology contributed greatly to certifying Displaymor's showcases given the new federal regulations. These modifications resulted in a refrigerator case that will keep foods cooler, longer. Such changes maintained the openness of the display, critical to customer visibility and accessibility, impulse buying, and cross-merchandising.

  12. Alternative refrigerants and refrigeration cycles for domestic refrigerators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sand, J.R.; Rice, C.L.; Vineyard, E.A.

    1992-12-01

    This project initially focused on using nonazeotropic refrigerant mixtures (NARMs) in a two-evaporator refrigerator-freezer design using two stages of liquid refrigerant subcooling. This concept was proposed and tested in 1975. The work suggested that the concept was 20% more efficient than the conventional one-evaporator refrigerator-freezer (RF) design. After considerable planning and system modeling based on using a NARM in a Lorenz-Meutzner (L-M) RF, the program scope was broadened to include investigation of a ``dual-loop`` concept where energy savings result from exploiting the less stringent operating conditions needed to satisfy cooling, of the fresh food section. A steady-state computer model (CYCLE-Z)more » capable of simulating conventional, dual loop, and L-M refrigeration cycles was developed. This model was used to rank the performance of 20 ozone-safe NARMs in the L-M refrigeration cycle while key system parameters were systematically varied. The results indicated that the steady-state efficiency of the L-M design was up to 25% greater than that of a conventional cycle. This model was also used to calculate the performance of other pure refrigerants relative to that of dichlorodifluoromethane, R-12, in conventional and dual-loop RF designs. Projected efficiency gains for these cycles were more modest, ranging from 0 to 10%. Individual compressor calorimeter tests of nine combinations of evaporator and condenser temperatures usually used to map RF compressor performance were carried out with R-12 and two candidate L-M NARMs in several compressors. Several models of a commercially produced two-evaporator RF were obtained as test units. Two dual-loop RF designs were built and tested as part of this project.« less

  13. Energy Efficient Commercial Refrigeration with Carbon Dioxide Refrigerant and Scroll Expanders

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dieckmann, John

    Current supermarket refrigeration systems are built around conventional fluorocarbon refrigerants – HFC-134a and the HFC blends R-507 and R404A, which replaced the CFC refrigerants, R-12 and R-502, respectively, used prior to the Montreal Protocol phase out of ozone depleting substances. While the HFC refrigerants are non-ozone depleting, they are strong greenhouse gases, so there has been continued interest in replacing them, particularly in applications with above average refrigerant leakage. Large supermarket refrigeration systems have proven to be particularly difficult to maintain in a leak-tight condition. Refrigerant charge losses of 15% of total charge per year are the norm, making themore » global warming impact of refrigerant emissions comparable to that associated with the energy consumption of these systems.« less

  14. Capillary Tube and Thermostatic Expansion Valve Comparative Analysis in Water Chiller Air Conditioning

    NASA Astrophysics Data System (ADS)

    Wijaya Sunu, Putu; Made Rasta, I.; Anakottapary, Daud Simon; Made Suarta, I.; Cipta Santosa, I. D. M.

    2018-01-01

    The aims of this study to compares the performance characteristics of a water chiller air conditioning simulation equipped with thermostatic expansion valve (TEV) with those of a capillary tube. Water chiller system filled with the same charge of refrigerant. Comparative analyses were performed based on coefficient of performance (COP) and performance parameter of the refrigeration system, carried out at medium cooling load level with the ambient temperature of 29-31°C, constant compressor speed and fixed chilled water volume flowrate at 15 lpm. It was shown that the TEV system showed better energy consumption compared to that of capillary tube. From the coefficient of performance perspective, the thermostatic expansion valve system showed higher COP (± 21.4%) compared to that of capillary tube system.

  15. Characteristics of a Refrigeration Cycle Using a Zeotropic Refrigerant Mixture with a Temperature Glide Shift Heat Exchanger

    NASA Astrophysics Data System (ADS)

    Endoh, Kazuhiro; Matsushima, Hiroaki; Nonaka, Masayuki

    HFC zeotropic refrigerant mixture R-407C is one of the promising alternatives for HCFC-22. We have found that the coefficient of performance (COP) of the refrigeration cycle using R-407C is improved by installing a temperature glide shift heat exchanger (TGSX) which takes advantage of zeotropic characteristics to an air-conditioner. We obtained the characteristics of a refrigeration cycle of experimental apparatus with comparison to those of a fundamental refrigeration cycle based on the refrigerant thermodynamic properties. We concluded that the COP improvement ratio of experimental apparatus with the TGSX to that without the TGSX is greater than that ratio which is calculated from the fundamental refrigeration cycle. This proved to be caused by the pressure loss of low pressure side which is not taken into account in the fundamental refrigeration cycle.

  16. Experimental investigation of a thermoacoustic-Stirling refrigerator driven by a thermoacoustic-Stirling heat engine.

    PubMed

    Luo, E C; Dai, W; Zhang, Y; Ling, H

    2006-12-22

    In this paper, a thermally-driven thermoacoustic refrigerator system without any moving part is reported. This refrigeration system consists of a thermoacoustic-Stirling heat engine and a thermoacoustic-Stirling refrigerator; that is, the former is the driving source for the latter. Both the subsystems are designed to operate on traveling-wave mode. In the experiment, it was found that the DC-flows had significant negative effect on the heat engine and the refrigerator. To suppress these DC-flows, two flexible membranes were inserted into the two subsystems and worked very well. Then extensive experiments were made to test the influence of different parameters on refrigeration performance of the whole system. The system has so far achieved a no-load temperature of -65 degrees C, a cooling capacity of about 270 W at -20 degrees C and 405 W at 0 degrees C; in fact, the result showed a good prospect of the refrigeration system in room-temperature cooling such as food refrigeration and air-conditioning.

  17. 21 CFR 1250.34 - Refrigeration equipment.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Refrigeration equipment. 1250.34 Section 1250.34 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED... SANITATION Food Service Sanitation on Land and Air Conveyances, and Vessels § 1250.34 Refrigeration equipment...

  18. 21 CFR 1250.34 - Refrigeration equipment.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Refrigeration equipment. 1250.34 Section 1250.34 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED... SANITATION Food Service Sanitation on Land and Air Conveyances, and Vessels § 1250.34 Refrigeration equipment...

  19. 21 CFR 1250.34 - Refrigeration equipment.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Refrigeration equipment. 1250.34 Section 1250.34 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED... SANITATION Food Service Sanitation on Land and Air Conveyances, and Vessels § 1250.34 Refrigeration equipment...

  20. 21 CFR 1250.34 - Refrigeration equipment.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Refrigeration equipment. 1250.34 Section 1250.34 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED... SANITATION Food Service Sanitation on Land and Air Conveyances, and Vessels § 1250.34 Refrigeration equipment...

  1. 21 CFR 1250.34 - Refrigeration equipment.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Refrigeration equipment. 1250.34 Section 1250.34 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED... SANITATION Food Service Sanitation on Land and Air Conveyances, and Vessels § 1250.34 Refrigeration equipment...

  2. Global Emissions of Refrigerants HCFC-22 and HFC-134a: Unforeseen Seasonal Contributions

    NASA Astrophysics Data System (ADS)

    Xiang, B.; Patra, P. K.; Montzka, S. A.; Miller, S. M.; Elkins, J. W.; Moore, F.; Atlas, E. L.; Miller, B. R.; Prinn, R. G.; Wofsy, S. C.

    2014-12-01

    HCFC-22 (CHClF2) and HFC-134a (CH2FCF3) are two major gases currently used worldwide in domestic and commercial refrigeration and air conditioning. HCFC-22 contributes to stratospheric ozone depletion and both species are potent greenhouse gases, and their global emissions continue to rise at the present. In this work, we study aircraft based in-situ observations of HCFC-22 and HFC-134a over the Pacific Ocean in a three-year span (HIaper Pole-to-Pole Observation of carbon cycle and greenhouse gases study, HIPPO 2009-2011) and combine these data with long-term observations from global surface sites (NOAA and AGAGE networks). We find a steady increase in global annual emissions of HCFC-22 and HFC-134a for the past two decades (on average 3% and 4% per year, respectively). Emissions of HFC-134a since 2000 are consistently higher, with 60% more in recent years (2009-2011), compared to the United Nations Framework Convention on Climate Change (UNFCCC) inventory. Using both HIPPO and surface data, we quantify and verify enhanced summertime emissions of HFC-134a and HCFC-22 that are about three times those in the wintertime. This unforeseen large seasonal contribution indicates unaccounted mechanisms controlling refrigerant gas emissions, missing in the existing inventory estimates. Possible mechanisms for greater refrigerant leakages in the summer are: 1) higher vapor pressure in the sealed compartment of the system at summer high temperatures (saturated vapor pressure is ~ 3 times at 303 K compared to that at 273 K for both species), and 2) more frequent use of refrigeration and air conditioners in the summer (vapor pressure in the compressor line is higher when in use than not in use). Our results suggest that the engineering of the refrigeration and air conditioning systems can greatly influence the release of these two species to the atmosphere.

  3. Oil-return characteristics of refrigerant oils in split heat pump system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sundaresan, S.G.; Radermacher, R.

    1996-08-01

    Currently, HFC substitute refrigerants for R-22 are being evaluated in air-conditioning and heat pump applications. The oil return characteristics and heat transfer effects of the lubricants are being studied again. Based on commercial refrigeration experience POEs are the lubricants of choice for HFC refrigerants. POEs have two major drawbacks: hygroscopicity and high cost. Thus the question is raised to what extent is it possible to replace POEs with a lower cost, but immiscible, oil such as mineral oil. It is the purpose of this study to experimentally investigate the oil return behavior of R-407C with mineral oil in a splitmore » three-ton heat pump in comparison to R407C/POE and R-22/Mineral Oil.« less

  4. Counterflow absorber for an absorption refrigeration system

    DOEpatents

    Reimann, Robert C.

    1984-01-01

    An air-cooled, vertical tube absorber for an absorption refrigeration system is disclosed. Strong absorbent solution is supplied to the top of the absorber and refrigerant vapor is supplied to the bottom of the absorber to create a direct counterflow of refrigerant vapor and absorbent solution in the absorber. The refrigeration system is designed so that the volume flow rate of refrigerant vapor in the tubes of the absorber is sufficient to create a substantially direct counterflow along the entire length of each tube in the absorber. This provides several advantages for the absorber such as higher efficiency and improved heat transfer characteristics, and allows improved purging of non-condensibles from the absorber.

  5. Hydrothermal stability of SAPO-34 for refrigeration and air conditioning applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Haijun; Cui, Qun, E-mail: cuiqun@njtech.edu.cn; Wu, Juan

    Graphical abstract: The SAPO-34 was synthesized by a hydrothermal method using diethylamine as a template. Water adsorption strength on SAPO-34 is between that on 13X and A type silica gel. During 100–400 Pa, the water uptake on SAPO-34 increases sensitively to pressure, and equilibrium water uptake reaches 0.35 kg/kg, 25% higher than 13X. SAPO-34 shows no significant reduced cyclic water uptake over 60 cycles. Most of the initial SAPO-34 phase is restored, while the regular cubic-like morphology is well maintained, and the specific surface area only decreases by 8.6%. - Highlights: • Water adsorption strength on SAPO-34 is between thatmore » on 13X and A type silica gel. During 100–400 Pa, the water uptake on SAPO-34 increases sensitively to pressure, and equilibrium water uptake reaches 0.35 kg/kg, 25% higher than 13X. • SAPO-34 with diethylamine as the template shows no significant reduced cyclic water uptake over 60 cycles, and most of the initial SAPO-34 phase is well maintained. • SAPO-34 has an excellent adsorption performance and a good hydrothermal stability, thus is promising for application in adsorption refrigeration. - Abstract: Hydrothermal stability is one of the crucial factors in applying SAPO-34 molecular sieve to adsorption refrigration. The SAPO-34 was synthesized by a hydrothermal method using diethylamine as a template. Both a vacuum gravimetric method and an intelligent gravimetric analyzer were applied to analyze the water adsorption performance of SAPO-34. Cyclic hydrothermal performance was determined on the modified simulation adsorption refrigeration test rig. Crystal phase, morphology, and porosity of SAPO-34 were characterized by X-ray diffraction, scanning electron microscopy, and N{sub 2} sorption, respectively. The results show that, water adsorption strength on SAPO-34 is between that on 13X and A type silica gel. During 100–400 Pa, the water uptake on SAPO-34 increases sensitively to pressure, and equilibrium water

  6. Optimal coupling and feasibility of a solar-powered year-round ejector air conditioner

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sokolov, M.; Hershgal, D.

    1993-06-01

    An ejector refrigeration system that uses a conventional refrigerant (R-114) is introduced as a possible mechanism for providing solar-based air-conditioning. Optimal coupling conditions between the collectors' energy output and energy requirements of the cooling system, are investigated. Operation at such optimal conditions assures maximized overall efficiency. Procedures leading to the evaluation of the performance of a real system are disclosed. Design curves for such a system with R-114 as refrigerant are provided. A multi-ejectors arrangement that provides an efficient adjustment for variations of ambient conditions, is described. Year-round air-conditioning is facilitated by rerouting the refrigerant flow through a heating modemore » of the system. Calculations are carried out for illustrative configurations in which relatively low condensing temperature (water reservoirs, cooling towers, or moderate climate) can be maintained.« less

  7. Experiments with a pressure-driven Stirling refrigerator with flexible chambers

    NASA Astrophysics Data System (ADS)

    McFarlane, Patrick; Suire, Jonathan; Sen, Mihir; Semperlotti, Fabio

    2014-06-01

    We report on the design and experimental testing of a Stirling refrigerator that uses air as the working fluid, and where the conventional piston-cylinder assemblies are replaced by pressure-driven flexible chambers. The two chambers are periodically compressed by pneumatic actuators resulting in airflow through the regenerator and in a net temperature difference between the chambers. An experimental setup is used to investigate the performance of the refrigerator under different operating conditions with particular attention to actuation frequencies, driving pressure differences, and phase angles between the two inputs. The time constant of the temperature difference between the two chambers is determined, and the temperature difference is measured as a function of the system parameters. The results of several tests conducted under different operating conditions show that the refrigerating effect is very robust and allows good performance even for modulated inputs. The frequency response is radically different from that of a traditional motion-driven device. This work suggests that mechanical to thermal energy conversion devices based on this principle can be successfully powered by human motion.

  8. The application of condensate water as an additional cooling media intermittently in condenser of a split air conditioning

    NASA Astrophysics Data System (ADS)

    Ardita, I. N.; Subagia, I. W. A.

    2018-01-01

    The condensate water produced by indoor a split air conditioning is usually not utilized and thrown away into the environment. The result of measurement shows that the temperature of condensate water produced by split air conditioning is quite low, that is 19-22 °C at the rate of 16-20 mL / min and it has PH balance. Under such conditions, Air Condensate produced by split air conditioning should still be recovered as an additional cooling medium on the condenser. This research will re-investigate the use of condensate water as an intermittent additional cooling of the condenser to increase the cooling capacity and performance of the air conditioning system. This research is done by experimental method whose implementation includes; designing and manufacturing of experimental equipment, mounting measuring tools, experimental data retrieval, data processing and yield analysis. The experimental results show that the use of condensate water as an intermittent additional cooling medium on split air conditioning condenser can increase the refrigeration effect about 2%, cooling capacity about 4% and 7% of COP system. Experimental results also show a decrease in power consumption in the system compressor about 3%

  9. Measurement of absorption rates of HFC single and blended refrigerants in POE oils

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leung, M.; Jotshi, C.K.; Goswami, D.Y.

    1999-07-01

    Thermophysical properties of refrigerant/lubricant mixtures play an important role in refrigeration and air-conditioning system design. Therefore it is important to have a good understanding of the mixture composition in each system component such as the compressor or evaporator. Because the system operation is dynamic the rates of absorption and desorption become significant parameters. In this paper measured absorption rates of alternative refrigerants in polyolester (POE) oils are reported. An effective online mass gain method was designed and constructed to measure the absorption rates and solubility of refrigerants in lubricants. HFC single refrigerants (R-32, R-125, R-134a, and R-143a), and blended refrigerantsmore » (R-404A, R-407C, and R-410A) were tested with POE ISO 68 lubricant under various conditions. The experimental results showed that, at room temperature, R-134a is the most soluble in POE ISO 68 oil among all the refrigerants tested at pressures of 239 kPa (20 psig) to 446 kPa (70 psig). Among the blended refrigerants tested, R-407C was found to be the most soluble at room temperature and pressures of 239 kPa and 446 kPa. Experimental solubility data from this new measurement method were compared with data available in the literature. Good agreement between the two indicates the feasibility of the new method employed in this investigation.« less

  10. Experimental performance study of a proposed desiccant based air conditioning system.

    PubMed

    Bassuoni, M M

    2014-01-01

    An experimental investigation on the performance of a proposed hybrid desiccant based air conditioning system referred as HDBAC is introduced in this paper. HDBAC is mainly consisted of a liquid desiccant dehumidification unit integrated with a vapor compression system (VCS). The VCS unit has a cooling capacity of 5.27 kW and uses 134a as refrigerant. Calcium chloride (CaCl2) solution is used as the working desiccant material. HDBAC system is used to serve low sensible heat factor applications. The effect of different parameters such as, process air flow rate, desiccant solution flow rate, evaporator box and condenser box solution temperatures, strong solution concentration and regeneration temperature on the performance of the system is studied. The performance of the system is evaluated using some parameters such as: the coefficient of performance (COPa), specific moisture removal and energy saving percentage. A remarkable increase of about 54% in the coefficient of performance of the proposed system over VCS with reheat is achieved. A maximum overall energy saving of about 46% is observed which emphasizes the use of the proposed system as an energy efficient air conditioning system.

  11. Experimental performance study of a proposed desiccant based air conditioning system

    PubMed Central

    Bassuoni, M.M.

    2013-01-01

    An experimental investigation on the performance of a proposed hybrid desiccant based air conditioning system referred as HDBAC is introduced in this paper. HDBAC is mainly consisted of a liquid desiccant dehumidification unit integrated with a vapor compression system (VCS). The VCS unit has a cooling capacity of 5.27 kW and uses 134a as refrigerant. Calcium chloride (CaCl2) solution is used as the working desiccant material. HDBAC system is used to serve low sensible heat factor applications. The effect of different parameters such as, process air flow rate, desiccant solution flow rate, evaporator box and condenser box solution temperatures, strong solution concentration and regeneration temperature on the performance of the system is studied. The performance of the system is evaluated using some parameters such as: the coefficient of performance (COPa), specific moisture removal and energy saving percentage. A remarkable increase of about 54% in the coefficient of performance of the proposed system over VCS with reheat is achieved. A maximum overall energy saving of about 46% is observed which emphasizes the use of the proposed system as an energy efficient air conditioning system. PMID:25685475

  12. The study of operating an air conditioning system using Maisotsenko-Cycle

    NASA Astrophysics Data System (ADS)

    Khan, Mohammad S.; Tahan, Sami; Toufic El-Achkar, Mohamad; Abou Jamus, Saleh

    2018-03-01

    The project aims to design and build an air conditioning system that runs on the Maisotsenko cycle. The system is required to condition and cool down ambient air for a small residential space with the reduction in the use of electricity and eliminating the use of commercial refrigerants. This project can operate at its optimum performance in remote areas like oil diggers and other projects that run in the desert or any site that would not have a very high relative humidity level. The Maisotsenko cycle is known as the thermodynamic concept that captures energy from the air by using the psychometric renewable energy available in the latent heat in water evaporating in air. The heat and mass exchanger design was based on choosing a material that would-be water resistant and breathable, which was found to be layers of cardboard placed on top of each other and thus creating channels for air to pass through. Aiming for this design eliminates any high power electrical equipment such as compressors, condensers and evaporators that would be used in an AC system with the exception of a 600 W blower and a 10 W fan, thus making it a more environmentally friendly project. Moreover, the project is limited by the ambient temperature and humidity, as the model operates at an optimum when the relative humidity is lower.

  13. Advanced Refrigerant-Based Cooling Technologies for Information and Communication Infrastructure (ARCTIC)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Salamon, Todd

    2012-12-13

    Faster, more powerful and dense computing hardware generates significant heat and imposes considerable data center cooling requirements. Traditional computer room air conditioning (CRAC) cooling methods are proving increasingly cost-ineffective and inefficient. Studies show that using the volume of room air as a heat exchange medium is wasteful and allows for substantial mixing of hot and cold air. Further, it limits cabinet/frame/rack density because it cannot effectively cool high heat density equipment that is spaced closely together. A more cost-effective, efficient solution for maximizing heat transfer and enabling higher heat density equipment frames can be accomplished by utilizing properly positioned phasemore » change or two-phase pumped refrigerant cooling methods. Pumping low pressure, oil-free phase changing refrigerant through microchannel heat exchangers can provide up to 90% less energy consumption for the primary cooling loop within the room. The primary benefits of such a solution include reduced energy requirements, optimized utilization of data center space, and lower OPEX and CAPEX. Alcatel-Lucent recently developed a modular cooling technology based on a pumped two-phase refrigerant that removes heat directly at the shelf level of equipment racks. The key elements that comprise the modular cooling technology consist of the following. A pump delivers liquid refrigerant to finned microchannel heat exchangers mounted on the back of equipment racks. Fans drive air through the equipment shelf, where the air gains heat dissipated by the electronic components therein. Prior to exiting the rack, the heated air passes through the heat exchangers, where it is cooled back down to the temperature level of the air entering the frame by vaporization of the refrigerant, which is subsequently returned to a condenser where it is liquefied and recirculated by the pump. All the cooling air enters and leaves the shelves/racks at nominally the same temperature

  14. Design of refrigeration system using refrigerant R134a for macro compartment

    NASA Astrophysics Data System (ADS)

    Rani, M. F. H.; Razlan, Z. M.; Shahriman, A. B.; Yong, C. K.; Harun, A.; Hashim, M. S. M.; Faizi, M. K.; Ibrahim, I.; Kamarrudin, N. S.; Saad, M. A. M.; Zunaidi, I.; Wan, W. K.; Desa, H.

    2017-10-01

    The main objective of this study is to analyse and design an optimum cooling system for macro compartment. Current product of the refrigerator is not specified for single function and not compact in size. Hence, a refrigeration system using refrigerant R134a is aimed to provide instant cooling in a macro compartment with sizing about 150 × 150 × 250 mm. The macro compartment is purposely designed to fit a bottle or drink can, which is then cooled to a desired drinking temperature of about 8°C within a period of 1 minute. The study is not only concerned with analysing of heat load of the macro compartment containing drink can, but also focused on determining suitable heat exchanger volume for both evaporator and condenser, calculating compressor displacement value and computing suitable resistance value of the expansion valve. Method of optimization is used to obtain the best solution of the problem. Mollier diagram is necessary in the process of developing the refrigeration system. Selection of blower is made properly to allow air circulation and to increase the flow rate for higher heat transfer rate. Property data are taken precisely from thermodynamic property tables. As the main four components, namely condenser, compressor, evaporator and expansion valve are fully developed, the refrigeration system is complete.

  15. 40 CFR Appendix B1 to Subpart F of... - Performance of Refrigerant Recovery, Recycling and/or Reclaim Equipment

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ..., Recycling and/or Reclaim Equipment B1 Appendix B1 to Subpart F of Part 82 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) PROTECTION OF STRATOSPHERIC OZONE Recycling... Refrigerant Recovery, Recycling and/or Reclaim Equipment This appendix is based on the Air-Conditioning and...

  16. 40 CFR Appendix B1 to Subpart F of... - Performance of Refrigerant Recovery, Recycling and/or Reclaim Equipment

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ..., Recycling and/or Reclaim Equipment B1 Appendix B1 to Subpart F of Part 82 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) PROTECTION OF STRATOSPHERIC OZONE Recycling... Refrigerant Recovery, Recycling and/or Reclaim Equipment This appendix is based on the Air-Conditioning and...

  17. 40 CFR Appendix B1 to Subpart F of... - Performance of Refrigerant Recovery, Recycling and/or Reclaim Equipment

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ..., Recycling and/or Reclaim Equipment B1 Appendix B1 to Subpart F of Part 82 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) PROTECTION OF STRATOSPHERIC OZONE Recycling... Refrigerant Recovery, Recycling and/or Reclaim Equipment This appendix is based on the Air-Conditioning and...

  18. Pilot retrofit test of refrigerant R-134a for GDSCC

    NASA Technical Reports Server (NTRS)

    Albus, J.; Brown, B.; Dungao, M.; Spencer, G.

    1994-01-01

    NASA has issued an interim policy requiring all of its Centers to eliminate consumption (purchase) of stratospheric ozone-depleting substances, including chlorofluorocarbons (CFC's), by 1995. Also, plans must be outlined for the eventual phase out of their usage. The greatest source of CFC consumption and usage at the Goldstone Deep Space Communications Complex is refrigerant R-12, which is used in many of the facility's air-conditioning systems. A pilot retrofit test shows that retrofitting R-12 air-conditioning systems with hydrofluorocarbon R-13a would be a workable means to comply with the R-12 portion of NASA's policy. Results indicate acceptable cost levels and nearly equivalent system performance.

  19. Testing ZigBee Motes for Monitoring Refrigerated Vegetable Transportation under Real Conditions

    PubMed Central

    Ruiz-Garcia, Luis; Barreiro, Pilar; Robla, Jose Ignacio; Lunadei, Loredana

    2010-01-01

    Quality control and monitoring of perishable goods during transportation and delivery services is an increasing concern for producers, suppliers, transport decision makers and consumers. The major challenge is to ensure a continuous ‘cold chain’ from producer to consumer in order to guaranty prime condition of goods. In this framework, the suitability of ZigBee protocol for monitoring refrigerated transportation has been proposed by several authors. However, up to date there was not any experimental work performed under real conditions. Thus, the main objective of our experiment was to test wireless sensor motes based in the ZigBee/IEEE 802.15.4 protocol during a real shipment. The experiment was conducted in a refrigerated truck traveling through two countries (Spain and France) which means a journey of 1,051 kilometers. The paper illustrates the great potential of this type of motes, providing information about several parameters such as temperature, relative humidity, door openings and truck stops. Psychrometric charts have also been developed for improving the knowledge about water loss and condensation on the product during shipments. PMID:22399917

  20. Testing ZigBee motes for monitoring refrigerated vegetable transportation under real conditions.

    PubMed

    Ruiz-Garcia, Luis; Barreiro, Pilar; Robla, Jose Ignacio; Lunadei, Loredana

    2010-01-01

    Quality control and monitoring of perishable goods during transportation and delivery services is an increasing concern for producers, suppliers, transport decision makers and consumers. The major challenge is to ensure a continuous 'cold chain' from producer to consumer in order to guaranty prime condition of goods. In this framework, the suitability of ZigBee protocol for monitoring refrigerated transportation has been proposed by several authors. However, up to date there was not any experimental work performed under real conditions. Thus, the main objective of our experiment was to test wireless sensor motes based in the ZigBee/IEEE 802.15.4 protocol during a real shipment. The experiment was conducted in a refrigerated truck traveling through two countries (Spain and France) which means a journey of 1,051 kilometers. The paper illustrates the great potential of this type of motes, providing information about several parameters such as temperature, relative humidity, door openings and truck stops. Psychrometric charts have also been developed for improving the knowledge about water loss and condensation on the product during shipments.

  1. Pilot Testing of Commercial Refrigeration-Based Demand Response

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hirsch, Adam; Clark, Jordan; Deru, Michael

    Supermarkets potentially offer a substantial demand response (DR) resource because of their high energy intensity and use patterns. This report describes a pilot project conducted to better estimate supermarket DR potential. Previous work has analyzed supermarket DR using heating, ventilating, and air conditioning (HVAC), lighting, and anti-condensate heaters. This project was concerned with evaluating DR using the refrigeration system and quantifying the DR potential inherent in supermarket refrigeration systems. Ancillary aims of the project were to identify practical barriers to the implementation of DR programs in supermarkets and to determine which high-level control strategies were most appropriate for achieving certainmore » DR objectives. The scope of this project does not include detailed control strategy development for DR or development of a strategy for regional implementation of DR in supermarkets.« less

  2. The Future of Air Conditioning for Buildings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goetzler, William; Guernsey, Matt; Young, Jim

    BTO works with researchers and industry to develop and deploy technologies that can substantially reduce energy consumption and greenhouse gas (GHG) emissions in residential and commercial buildings. Air conditioning systems in buildings contribute to GHG emissions both directly through refrigerant emissions, as well as indirectly through fossil fuel combustion for power generation. BTO promotes pre-competitive research and development on next-generation HVAC technologies that support the phase down of hydrofluorocarbon (HFC) production and consumption, as well as cost-effective energy efficiency improvements. DOE provides, with this report, a fact-based vision for the future of A/C use around the world. DOE intends formore » this vision to reflect a broad and balanced aggregation of perspectives. DOE brings together this content in an effort to support dialogue within the international community and help keep key facts and objectives at the forefront among the many important discussions.« less

  3. Refrigeration and Cryogenics Specialist. J3ABR54530

    ERIC Educational Resources Information Center

    Air Force Training Command, Sheppard AFB, TX.

    This document package contains an Air Force course used to train refrigeration and cryogenics specialists. The course is organized in six blocks designed for group instruction. The blocks cover the following topics: electrical principles; fundamentals of tubing and piping; metering devices, motor controls, domestic and commercial refrigeration;…

  4. TRANSIENT AND STEADY STATE STUDY OF PURE AND MIXED REFRIGERANTS IN A RESIDENTIAL HEAT PUMP

    EPA Science Inventory

    The report gives results of an experimental and theoretical investigation of the transient and steady state performance of a residential air-conditioning/heat pump (AC/HP) operating with different refrigerants. (NOTE: The project was motivated by environmental concerns related to...

  5. The performance of a mobile air conditioning system with a water cooled condenser

    NASA Astrophysics Data System (ADS)

    Di Battista, Davide; Cipollone, Roberto

    2015-11-01

    Vehicle technological evolution lived, in recent years, a strong acceleration due to the increased awareness of environmental issues related to pollutants and climate altering emissions. This resulted in a series of international regulations on automotive sector which put technical challenges that must consider the engine and the vehicle as a global system, in order to improve the overall efficiency of the system. The air conditioning system of the cabin, for instance, is the one of the most important auxiliaries in a vehicle and requires significant powers. Its performances can be significantly improved if it is integrated within the engine cooling circuit, eventually modified with more temperature levels. In this paper, the Authors present a mathematical model of the A/C system, starting from its single components: compressors, condenser, flush valve and evaporator and a comparison between different refrigerant fluid. In particular, it is introduced the opportunity to have an A/C condenser cooled by a water circuit instead of the external air linked to the vehicle speed, as in the actual traditional configuration. The A/C condenser, in fact, could be housed on a low temperature water circuit, reducing the condensing temperature of the refrigeration cycle with a considerable efficiency increase.

  6. Modeling and investigation of refrigeration system performance with two-phase fluid injection in a scroll compressor

    NASA Astrophysics Data System (ADS)

    Gu, Rui

    Vapor compression cycles are widely used in heating, refrigerating and air-conditioning. A slight performance improvement in the components of a vapor compression cycle, such as the compressor, can play a significant role in saving energy use. However, the complexity and cost of these improvements can block their application in the market. Modifying the conventional cycle configuration can offer a less complex and less costly alternative approach. Economizing is a common modification for improving the performance of the refrigeration cycle, resulting in decreasing the work required to compress the gas per unit mass. Traditionally, economizing requires multi-stage compressors, the cost of which has restrained the scope for practical implementation. Compressors with injection ports, which can be used to inject economized refrigerant during the compression process, introduce new possibilities for economization with less cost. This work focuses on computationally investigating a refrigeration system performance with two-phase fluid injection, developing a better understanding of the impact of injected refrigerant quality on refrigeration system performance as well as evaluating the potential COP improvement that injection provides based on refrigeration system performance provided by Copeland.

  7. Tuning the heat transfer medium and operating conditions in magnetic refrigeration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ghahremani, Mohammadreza, E-mail: mghahrem@shepherd.edu; Dept. of Electrical and Computer Engineering, The George Washington University, Washington DC 20052; Aslani, Amir

    A new experimental test bed has been designed, built, and tested to evaluate the effect of the system’s parameters on a reciprocating Active Magnetic Regenerator (AMR) near room temperature. Bulk gadolinium was used as the refrigerant, silicon oil as the heat transfer medium, and a magnetic field of 1.3 T was cycled. This study focuses on the methodology of single stage AMR operation conditions to get a high temperature span near room temperature. Herein, the main objective is not to report the absolute maximum attainable temperature span seen in an AMR system, but rather to find the system’s optimal operatingmore » conditions to reach that maximum span. The results of this research show that there is a optimal operating frequency, heat transfer fluid flow rate, flow duration, and displaced volume ratio in any AMR system. By optimizing these parameters in our AMR apparatus the temperature span between the hot and cold ends increased by 24%. The optimized values are system dependent and need to be determined and measured for any AMR system by following the procedures that are introduced in this research. It is expected that such optimization will permit the design of a more efficient magnetic refrigeration system.« less

  8. Impact of Charge Degradation on the Life Cycle Climate Performance of a Residential Air-Conditioning System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beshr, Mohamed; Aute, Vikrant; Abdelaziz, Omar

    2014-01-01

    Vapor compression systems continuously leak a small fraction of their refrigerant charge to the environment, whether during operation or servicing. As a result of the slow leak rate occurring during operation, the refrigerant charge decreases until the system is serviced and recharged. This charge degradation, after a certain limit, begins to have a detrimental effect on system capacity, energy consumption, and coefficient of performance (COP). This paper presents a literature review and a summary of previous experimental work on the effect of undercharging or charge degradation of different vapor compression systems, especially those without a receiver. These systems include residentialmore » air conditioning and heat pump systems utilizing different components and refrigerants, and water chiller systems. Most of these studies show similar trends for the effect of charge degradation on system performance. However, it is found that although much experimental work exists on the effect of charge degradation on system performance, no correlation or comparison between charge degradation and system performance yet exists. Thus, based on the literature review, three different correlations that characterize the effect of charge on system capacity and energy consumption are developed for different systems as follows: one for air-conditioning systems, one for vapor compression water-to-water chiller systems, and one for heat pumps. These correlations can be implemented in vapor compression cycle simulation tools to obtain a better prediction of the system performance throughout its lifetime. In this paper, these correlations are implemented in an open source tool for life cycle climate performance (LCCP) based design of vapor compression systems. The LCCP of a residential air-source heat pump is evaluated using the tool and the effect of charge degradation on the results is studied. The heat pump is simulated using a validated component-based vapor compression system

  9. Conception of a test bench to generate known and controlled conditions of refrigerant mass flow.

    PubMed

    Martins, Erick F; Flesch, Carlos A; Flesch, Rodolfo C C; Borges, Maikon R

    2011-07-01

    Refrigerant compressor performance tests play an important role in the evaluation of the energy characteristics of the compressor, enabling an increase in the quality, reliability, and efficiency of these products. Due to the nonexistence of a refrigerating capacity standard, it is common to use previously conditioned compressors for the intercomparison and evaluation of the temporal drift of compressor performance test panels. However, there are some limitations regarding the use of these specific compressors as standards. This study proposes the development of a refrigerating capacity standard which consists of a mass flow meter and a variable-capacity compressor, whose speed is set based on the mass flow rate measured by the meter. From the results obtained in the tests carried out on a bench specifically developed for this purpose, it was possible to validate the concept of a capacity standard. Copyright © 2011 ISA. Published by Elsevier Ltd. All rights reserved.

  10. Performance of solar refrigerant ejector refrigerating machine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Al-Khalidy, N.A.H.

    1997-12-31

    In this work a detailed analysis for the ideal, theoretical, and experimental performance of a solar refrigerant ejector refrigerating machine is presented. A comparison of five refrigerants to select a desirable one for the system is made. The theoretical analysis showed that refrigerant R-113 is more suitable for use in the system. The influence of the boiler, condenser, and evaporator temperatures on system performance is investigated experimentally in a refrigerant ejector refrigerating machine using R-113 as a working refrigerant.

  11. Frost sensor for use in defrost controls for refrigeration

    DOEpatents

    French, Patrick D.; Butz, James R.; Veatch, Bradley D.; O'Connor, Michael W.

    2002-01-01

    An apparatus and method for measuring the total thermal resistance to heat flow from the air to the evaporative cooler fins of a refrigeration system. The apparatus is a frost sensor that measures the reduction in heat flow due to the added thermal resistance of ice (reduced conduction) as well as the reduction in heat flow due to the blockage of airflow (reduced convection) from excessive ice formation. The sensor triggers a defrost cycle when needed, instead of on a timed interval. The invention is also a method for control of frost in a system that transfers heat from air to a refrigerant along a thermal path. The method involves measuring the thermal conductivity of the thermal path from the air to the refrigerant, recognizing a reduction in thermal conductivity due to the thermal insulation effect of the frost and due to the loss of airflow from excessive ice formation; and controlling the defrosting of the system.

  12. Evaluation for Practical Application of HFC Refrigerants

    NASA Astrophysics Data System (ADS)

    Uemura, Shigehiro; Noguchi, Masahiro; Inagaki, Sadayasu; Teraoka, Takuya

    Production restriction of CFCs which are used for refrigerators and air conditioners has been implemented through the international mutual agreement approved by the Montreal Protocol. Due to the less impact on the ozone layer dep1etion, alternative refrigerants for CFCs had included HCFC-123 and HCFC-22. However, H CFC-123 and HCFC-22 do not completely prevent the ozone layer depletion. This paper presents the investigation results of HFC-125, H FC-143a, HFC-152a, and HFC-32 which prevent the ozone layer depletion and are candidates for alternatives of CFCs and HCFCs. The test results of thermal stability of these refrigerants are similar to those of CFC-12 and HCFC-22. The test results show that each refrigerant has different material compatibility. The test results of lubricant solubility show that synthetic oi1s are soluble in these refrigerants, but the mineral oils currently in use for CFCs and HCFCs are not. The refrigeration performance based on the calculated thermodynamic properties corresponds with that of the experimental results.

  13. Fundamentals of Refrigeration; Air Conditioning and Heating Mechanics 1--Appliance Repair 2: 9013.01 and 9025.05.

    ERIC Educational Resources Information Center

    Dade County Public Schools, Miami, FL.

    Providing the student with an understanding of the basic refrigeration fundamentals, the course introduces the various types of tools and equipment used in this trade. The course consists of 90 clock hours and is organized into six instructional blocks. The student will gain an understanding of trade terminology, heat and temperature, transfer of…

  14. Desiccant Enhanced Evaporative Air-Conditioning (DEVap): Evaluation of a New Concept in Ultra Efficient Air Conditioning

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kozubal, E.; Woods, J.; Burch, J.

    2011-01-01

    NREL has developed the novel concept of a desiccant enhanced evaporative air conditioner (DEVap) with the objective of combining the benefits of liquid desiccant and evaporative cooling technologies into an innovative 'cooling core.' Liquid desiccant technologies have extraordinary dehumidification potential, but require an efficient cooling sink. DEVap's thermodynamic potential overcomes many shortcomings of standard refrigeration-based direct expansion cooling. DEVap decouples cooling and dehumidification performance, which results in independent temperature and humidity control. The energy input is largely switched away from electricity to low-grade thermal energy that can be sourced from fuels such as natural gas, waste heat, solar, or biofuels.

  15. Shuttle Kit Freezer Refrigeration Unit Conceptual Design

    NASA Technical Reports Server (NTRS)

    Copeland, R. J.

    1975-01-01

    The refrigerated food/medical sample storage compartment as a kit to the space shuttle orbiter is examined. To maintain the -10 F in the freezer kit, an active refrigeration unit is required, and an air cooled Stirling Cycle refrigerator was selected. The freezer kit contains two subsystems, the refrigeration unit, and the storage volume. The freezer must provide two basic capabilities in one unit. One requirement is to store 215 lbs of food which is consumed in a 30-day period by 7 people. The other requirement is to store 128.3 lbs of medical samples consisting of both urine and feces. The unit can be mounted on the lower deck of the shuttle cabin, and will occupy four standard payload module compartments on the forward bulkhead. The freezer contains four storage compartments.

  16. Applicability of ASST-A helium refrigeration system for JLab End Station Refrigerator

    NASA Astrophysics Data System (ADS)

    Hasan, N.; Knudsen, P.; Ganni, V.

    2017-12-01

    The MØLLER experiment at Jefferson Lab (JLab) is a high power (5 kW) liquid hydrogen target scheduled to be operational in the 12 GeV-era. At present, cryogenic loads and targets at three of JLab’s four experimental halls are supported by the End Station Refrigerator (ESR) - a CTI/Helix 1.5 kW 4.5 K refrigerator. It is not capable of supporting the high power target load and a capacity upgrade of the ESR cryogenic system is essential. The ASST-A helium refrigeration system is a 4 kW 4.5 K refrigerator. It was designed and used for the Superconducting Super Collider Lab (SSCL) magnet string test and later obtained by JLab after the cancellation of that project. The modified ASST-A refrigeration system, which will be called ESR-II along with a support flow from JLab’s Central Helium Liquefier (CHL) is considered as an option for the End Station Refrigerator capacity upgrade. The applicability of this system for ESR-II under varying load conditions is investigated. The present paper outlines the findings of this process study.

  17. Section 609 of the Clean Air Act: MVAC

    EPA Pesticide Factsheets

    Fact sheet provides a general overview of EPA regulations under Section 609 of the Clean Air Act, which is focused on preventing the release of refrigerants during the servicing of motor vehicle air-conditioning systems and similar appliances.

  18. SYNOPSIS OF THE U.S. ENVIRONMENTAL PROTECTION AGENCY RESIDENTIAL REFRIGERATOR/FREEZER ALTERNATIVE REFRIGERANTS EVALUATION PROGRAM

    EPA Science Inventory

    The paper is a recapitulation of the experimental testing at the U.S. Environmental Protection Agency's NRMRL's (National Risk Management Research Laboratory's) Air Pollution Prevention and Control Division on residential refrigerator/freezers (R/Fs). R/F testing at the NRMRL lab...

  19. Optimization analysis of the motor cooling method in semi-closed single screw refrigeration compressor

    NASA Astrophysics Data System (ADS)

    Wang, Z. L.; Shen, Y. F.; Wang, Z. B.; Wang, J.

    2017-08-01

    Semi-closed single screw refrigeration compressors (SSRC) are widely used in refrigeration and air conditioning systems owing to the advantages of simple structure, balanced forces on the rotor, high volumetric efficiency and so on. In semi-closed SSRCs, motor is often cooled by suction gas or injected refrigerant liquid. Motor cooling method will changes the suction gas temperature, this to a certain extent, is an important factor influencing the thermal dynamic performance of a compressor. Thus the effects of motor cooling method on the performance of the compressor must be studied. In this paper mathematical models of motor cooling process by using these two methods were established. Influences of motor cooling parameters such as suction gas temperature, suction gas quantity, temperature of the injected refrigerant liquid and quantity of the injected refrigerant liquid on the thermal dynamic performance of the compressor were analyzed. The performances of the compressor using these two kinds of motor cooling methods were compared. The motor cooling capacity of the injected refrigerant liquid is proved to be better than the suction gas. All analysis results obtained can be useful for optimum design of the motor cooling process to improve the efficiency and the energy efficiency of the compressor.

  20. Chilling Prospect: Climate Change Effects of Mismanaged Refrigerants in China.

    PubMed

    Duan, Huabo; Miller, T Reed; Liu, Gang; Zeng, Xianlai; Yu, Keli; Huang, Qifei; Zuo, Jian; Qin, Yufei; Li, Jinhui

    2018-06-05

    The global community has responded to the dual threats of ozone depletion and climate change from refrigerant emissions (e.g., chlorofluorocarbons, CFCs, and hydrofluorocarbons, HFCs) in refrigerators and air conditioners (RACs) by agreeing to phase out the production of the most damaging chemicals and replacing them with substitutes. Since these refrigerants are "banked" in products during their service life, they will continue to impact our environment for decades to come if they are released due to mismanagement at the end of life. Addressing such long-term impacts of refrigerants requires a dynamic understanding of the RACs' life cycle, which was largely overlooked in previous studies. Based on field surveys and a dynamic model, we reveal the lingering ozone depletion potential (ODP) and significant global warming potential (GWP) of scrap refrigerants in China, the world's largest producer (62%) and consumer (46%) of RACs in 2015, which comes almost entirely from air conditioners rather than refrigerators. If the use and waste management of RACs continue with the current trend, the total GWP of scrap refrigerants in China will peak by 2025 at a level of 135.2 ± 18.9 Mt CO 2 e (equal to approximately 1.2% ± 0.2% of China's total greenhouse gas emissions or the national total of either The Netherlands and Czech Republic in 2015). Our results imply an urgent need for improving the recycling and waste management of RACs in China.

  1. Assessment of commercially available energy-efficient room air conditioners including models with low global warming potential (GWP) refrigerants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shah, N. K.; Park, W. Y.; Gerke, B.

    Improving the energy efficiency of room air conditioners (RACs) while transitioning to low global-warming-potential (GWP) refrigerants will be a critical step toward reducing the energy, peak load, and emissions impacts of RACs while keeping costs low. Previous research quantified the benefits of leapfrogging to high efficiency in tandem with the transition to low-GWP refrigerants for RACs (Shah et al., 2015) and identified opportunities for initial action to coordinate energy efficiency with refrigerant transition in economies constituting about 65% of the global RAC market (Shah et al., 2017). This report describes further research performed to identify the best-performing (i.e., most efficientmore » and low-GWP-refrigerant using) RACs on the market, to support an understanding of the best available technology (BAT). Understanding BAT can help support market-transformation programs for high-efficiency and low-GWP equipment such as minimum energy performance standards (MEPS), labeling, procurement, and incentive programs. We studied RACs available in six economies—China, Europe, India, Japan, South Korea, and the United States—that together account for about 70% of global RAC demand, as well as other emerging economies. The following are our key findings: • Highly efficient RACs using low-GWP refrigerants, e.g., HFC-32 (R-32) and HC-290 (R-290), are commercially available today at prices comparable to similar RACs using high-GWP HCFC-22 (R-22) or HFC-410A (R-410A). • High efficiency is typically a feature of high-end products. However, highly efficient, cost-competitive (less than 1,000 or 1,500 U.S. dollars in retail price, depending on size) RACs are available. • Where R-22 is being phased out, high GWP R-410A still dominates RAC sales in most mature markets except Japan, where R-32 dominates. • In all of the economies studied except Japan, only a few models are energy efficient and use low-GWP refrigerants. For example, in Europe, India, and

  2. Waking the sleeping giant: Introducing new heat exchanger technology into the residential air-conditioning marketplace

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chapp, T.; Voss, M.; Stephens, C.

    1998-07-01

    The Air Conditioning Industry has made tremendous strides in improvements to the energy efficiency and reliability of its product offerings over the past 40 years. These improvement can be attributed to enhancements of components, optimization of the energy cycle, and modernized and refined manufacturing techniques. During this same period, energy consumption for space cooling has grown significantly. In January of 1992, the minimum efficiency requirement for central air conditioning equipment was raised to 10 SEER. This efficiency level is likely to increase further under the auspices of the National Appliance Energy Conservation Act (NAECA). A new type of heat exchangermore » was developed for air conditioning equipment by Modine Manufacturing Company in the early 1990's. Despite significant advantages in terms of energy efficiency, dehumidification, durability, and refrigerant charge there has been little interest expressed by the air conditioning industry. A cooperative effort between Modine, various utilities, and several state energy offices has been organized to test and demonstrate the viability of this heat exchanger design throughout the nation. This paper will review the fundamentals of heat exchanger design and document this simple, yet novel technology. These experiences involving equipment retrofits have been documented with respect to the performance potential of air conditioning system constructed with PF{trademark} Heat Exchangers (generically referred to as microchannel heat exchangers) from both an energy efficiency as well as a comfort perspective. The paper will also detail the current plan to introduce 16 to 24 systems into an extended field test throughout the US which commenced in the Fall of 1997.« less

  3. Simulation of a solar-assisted absorption air conditioning system for applications in Puerto Rico

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khan, A.Y.; Hernandez, H.R.; Gonzalez, J.E.

    1995-11-01

    Regions without conventional fuel sources have felt the need for the development of new technologies for air conditioning applications as cost of electrical energy production has continually risen the cost of air conditioning by conventional means. This paper deals with the simulation of a solar-assisted absorption system for air conditioning application in Puerto Rico. A simple thermodynamic model for the solar assisted absorption system has been developed. A solar energy based thermal storage system along with an auxiliary heater is used to provide the required energy in the generator of this absorption system. Results from a parametric analysis to studymore » the influence of the absorber, generator, condenser and evaporator temperatures, on the COP of the system are presented in this paper. The influence of two different refrigerant/absorbent pairs, water/lithium bromide and water/lithium-chloride have also been studied. A sub-system consisting of an array of flat plate solar collectors along with a hot water storage is modeled and verified with the data from an already existing system operating in Sacramento. Finally, off-design performance of a 35 kW solar-assisted absorption system is simulated to report the auxiliary heating requirement for a typical summer day operation in southern Puerto Rico.« less

  4. Not all counterclockwise thermodynamic cycles are refrigerators

    NASA Astrophysics Data System (ADS)

    Dickerson, R. H.; Mottmann, J.

    2016-06-01

    Clockwise cycles on PV diagrams always represent heat engines. It is therefore tempting to assume that counterclockwise cycles always represent refrigerators. This common assumption is incorrect: most counterclockwise cycles cannot be refrigerators. This surprising result is explored here for quasi-static ideal gas cycles, and the necessary conditions for refrigeration cycles are clarified. Three logically self-consistent criteria can be used to determine if a counterclockwise cycle is a refrigerator. The most fundamental test compares the counterclockwise cycle with a correctly determined corresponding Carnot cycle. Other criteria we employ include a widely accepted description of the functional behavior of refrigerators, and a corollary to the second law that limits a refrigerator's coefficient of performance.

  5. Modeling and testing of fractionation effects with refrigerant blends in an actual residential heat pump system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Biancardi, F.R.; Pandy, D.R.; Sienel, T.H.

    1997-12-31

    The heating, ventilating, and air-conditioning (HVAC) industry is actively evaluating and testing hydrofluorocarbon (HFC) refrigerant blends as a means of complying with current and impending national and international environmental regulations restricting the use and disposal of conventional chlorofluorocarbon (CFC) and hydrochlorofluorocarbon (HCFC) refrigerants that contribute to the global ozone-depletion effects. While analyses and system performance tools have shown that HFC refrigerant blends offer certain performance, capacity, and operational advantages, there are significant possible service and operational issues that are raised by the use of blends. Many of these issues occur due to the fractionation of the blends. Therefore, the objectivemore » of this program was to conduct analyses and experimental tests aimed at understanding these issues, develop approaches or techniques to predict these effects, and convey to the industry safe and reliable approaches. As a result, analytical models verified by laboratory data have been developed that predict the fractionation effects of HFC refrigerant blends (1) when exposed to selected POE lubricants, (2) during the system charging process from large liquid containers, and (3) during system start-up, operation, and shutdown within various system components (where two-phase refrigerant exists) and during selected system and component leakage scenarios. Model predictions and experimental results are presented for HFC refrigerant blends containing R-32, R-134a, and R-125 and the data are generalized for various operating conditions and scenarios.« less

  6. Response to comment on "Environmental fate of the next generation refrigerant 2,3,3,3-tetrafluoropropene (HFO-1234yf)

    DOE PAGES

    Im, Jeongdae; Walshe-Langford, Gillian E.; Moon, Ji Won; ...

    2015-06-11

    In this study, refrigerant 2,3,3,3-tetrafluoropropene (HFO-1234yf) has been developed for use in mobile air conditioning systems to replace 1,1,1,2-tetrafluoroethane (HFC-134a), which has a much greater global warming potential.

  7. Thermal conditions and perceived air quality in an air-conditioned auditorium

    NASA Astrophysics Data System (ADS)

    Polednik, Bernard; Guz, Łukasz; Skwarczyński, Mariusz; Dudzińska, Marzenna R.

    2016-07-01

    The study reports measurements of indoor air temperature (T) and relative humidity (RH), perceived air quality (PAQ) and CO2, fine aerosol particle number (PN) and mass (PM1) concentrations in an air conditioned auditorium. The measurements of these air physical parameters have been carried out in the unoccupied auditorium with the air conditioning system switched off (AC off mode) and in the unoccupied and occupied auditorium with the air conditioning system switched off during the night and switched on during the day (AC on/off mode). The average indoor air thermal parameters, CO2 concentration and the PAQ value (in decipols) were elevated, while average PM1 concentration was lower in the AC on/off mode. A statistically significant (p < 0.001) positive correlation has been observed between T and PAQ values and CO2 concentrations (r = 0.66 and r = 0.59, respectively) in that AC mode. A significant negative correlation has been observed between T and PN and PM1 concentrations (r = -0.38 and r = -0.49, respectively). In the AC off mode the above relations between T and the particle concentrations were not that unequivocal. These findings may be of importance as they indicate that in certain AC operation modes the indoor air quality deteriorates along with the variation of the indoor air microclimate and room occupation. This, in turn, may adversely affect the comfort and productivity of the users of air conditioned premises.

  8. A Blast of Cool Air

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Unable to solve their engineering problem with a rotor in their Orbital Vane product, DynEco Corporation turned to Kennedy Space Center for help. KSC engineers determined that the compressor rotor was causing a large concentration of stress, which led to cracking and instant rotor failure. NASA redesigned the lubrication system, which allowed the company to move forward with its compressor that has no rubbing parts. The Orbital Vane is a refrigerant compressor suitable for mobile air conditioning and refrigeration.

  9. Effect of CuO nanolubricant on compressor characteristics and performance of LPG based refrigeration cycle: experimental investigation

    NASA Astrophysics Data System (ADS)

    Kumar, Ravinder; Singh, Jagdev; Kundal, Pankaj

    2018-05-01

    Refrigeration, Ventilation and Air Conditioning system is the largest reason behind the increasing demand of energy consumption in the world and saving that energy through some innovative methods becomes a large issue for the researchers. Compressor is a primary component of the refrigeration cycle. The application of nanoparticles in refrigeration cycle overcomes the energy consumption issue by improving the compressor suction and discharge characteristics. In this paper, an experimental study is carried out to investigate the effect of copper oxide (CuO) nanoparticles on different parameters of the refrigeration cycle. CuO particles are appended with the system refrigerant through lubricating oil of the compressor. Further, the viscosity measurements and friction coefficient analysis of compressor lubricant for different fractions of nanoparticles has been investigated. The results showed that both the suction and discharge characteristics of the compressor were enhanced with the utilization of nanolubricant in LPG based refrigeration cycle. Nanoparticles additive in lubricant increases the viscosity which lead to a significant decrease in friction coefficient. The COP of the cycle was improved by 46%, as the energy consumption of the compressor was decreased by 7%.

  10. Shelf-life extension of refrigerated Mediterranean mullet (Mullus surmuletus) using modified atmosphere packaging.

    PubMed

    Pournis, Nikolaos; Papavergou, Aikaterini; Badeka, Anastasia; Kontominas, Michael G; Savvaidis, Ioannis N

    2005-10-01

    The present work evaluated the quality and freshness characteristics and the effect of modified atmosphere packaging (MAP) on the shelf-life extension of refrigerated Mediterranean mullet using microbiological, biochemical, and sensory analyses. Fresh open sea red mullet (Mullus surmuletus) were packaged in four different atmospheres: M1, 10%/20%/70% (O2/ CO2/N2); M2, 10%/40%/50% (O2/CO2/N2); M3, 10%/60%/30% (O2/CO2/N2); identical fish samples were packaged in air. All fish were kept under refrigeration (4 +/- 0.5 degrees C) for 14 days. Of the three gas atmospheres, the 10%/40%/50% (M2) and 10%/ 60%/30% (M3) gas mixtures were the most effective for inhibiting growth of aerobic microflora in mullet samples until day 10 of refrigerated storage. H2S-producing bacteria and pseudomonads were part of the mullet microflora and their growth was partly inhibited under MAP conditions. Between these two bacterial groups, H2S-producing bacteria (including Shewanella putrefaciens) were dominant toward the end of the storage period, regardless of the packaging conditions. Brochothrix thermosphacta and lactic acid bacteria were found to be members of the final microbial flora of MAP and air-packaged mullet, whereas the Enterobacteriaceae population was lower than other bacterial groups. Of the chemical freshness indices determined, thiobarbituric acid values were variable in mullet samples irrespective of packaging conditions indicative of no specific oxidative rancidity trend. Based on sensorial data and aerobic plate count, trimethylamine nitrogen and total volatile basic nitrogen limit values in the range of ca. 15 to 23 and 52 to 60 mg N/100 g of fish muscle were obtained, respectively, for mullet packaged under modified atmosphere and air. Sensory analyses (odor and taste attributes) showed that the limit of sensorial acceptability was reached after ca. 6 days for the samples packaged in air, 8 days for the M1 and M3 samples, and after 10 days for the M2 samples. Respective

  11. Effect of fee-for-service air-conditioning management in balancing thermal comfort and energy usage.

    PubMed

    Chen, Chen-Peng; Hwang, Ruey-Lung; Shih, Wen-Mei

    2014-11-01

    Balancing thermal comfort with the requirement of energy conservation presents a challenge in hot and humid areas where air-conditioning (AC) is frequently used in cooling indoor air. A field survey was conducted in Taiwan to demonstrate the adaptive behaviors of occupants in relation to the use of fans and AC in a school building employing mixed-mode ventilation where AC use was managed under a fee-for-service mechanism. The patterns of using windows, fans, and AC as well as the perceptions of students toward the thermal environment were examined. The results of thermal perception evaluation in relation to the indoor thermal conditions were compared to the levels of thermal comfort predicted by the adaptive models described in the American Society of Heating, Refrigerating, and Air-Conditioning Engineers Standard 55 and EN 15251 and to that of a local model for evaluating thermal adaption in naturally ventilated buildings. A thermal comfort-driven adaptive behavior model was established to illustrate the probability of fans/AC use at specific temperature and compared to the temperature threshold approach to illustrate the potential energy saving the fee-for-service mechanism provided. The findings of this study may be applied as a reference for regulating the operation of AC in school buildings of subtropical regions.

  12. Redesign 3 R Machine as a Refrigerant Waste Treatment Alternative in Environmental Rescue

    NASA Astrophysics Data System (ADS)

    Negara, I. P. S.; Arsawan, I. M.

    2018-01-01

    , recycle and richarging process, although using semi-automatic control system. So the use of car air conditioning refrigerant can be more efficient. With the functioning of 3R mesi is expected wastes refrigerant is not wasted which is one of the efforts to save the environment.

  13. Precooling of a dilution refrigerator

    NASA Astrophysics Data System (ADS)

    Pavlov, Valentin N.

    A non-trivial system for Precooling of the dilution refrigerator for low-temperatureexperiments on an ISOL-facility is described in detail. Neither exchange gas in the vacuum jacket of the cryostat nor a demantable window in the 4K shield are used in this system. Instead of that the dilution refrigerator is supplemented with two capillaries and a heater in order to cool all low-temperature parts of the refrigerator down to start conditions. The, time of cooling depends on the total impedance of the first heat exchanger. Such system has been developed and tested in Dubna, and it is in operation.

  14. Development and Evaluation of a Sandia Cooler-based Refrigerator Condenser

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, Terry A.; Kariya, Harumichi Arthur; Leick, Michael T.

    This report describes the first design of a refrigerator condenser using the Sandia Cooler, i.e. air - bearing supported rotating heat - sink impeller. The project included ba seline performance testing of a residential refrigerator, analysis and design development of a Sandia Cooler condenser assembly including a spiral channel baseplate, and performance measurement and validation of this condenser system as incorporated into the residential refrigerator. Comparable performance was achieved in a 60% smaller volume package. The improved modeling parameters can now be used to guide more optimized designs and more accurately predict performance.

  15. 7 CFR 58.154 - Refrigerated storage.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 3 2014-01-01 2014-01-01 false Refrigerated storage. 58.154 Section 58.154... Specifications for Dairy Plants Approved for USDA Inspection and Grading Service 1 Storage of Finished Product § 58.154 Refrigerated storage. Finished product in containers subject to such conditions that will...

  16. 7 CFR 58.154 - Refrigerated storage.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 3 2010-01-01 2010-01-01 false Refrigerated storage. 58.154 Section 58.154... Specifications for Dairy Plants Approved for USDA Inspection and Grading Service 1 Storage of Finished Product § 58.154 Refrigerated storage. Finished product in containers subject to such conditions that will...

  17. 7 CFR 58.154 - Refrigerated storage.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 3 2012-01-01 2012-01-01 false Refrigerated storage. 58.154 Section 58.154... Specifications for Dairy Plants Approved for USDA Inspection and Grading Service 1 Storage of Finished Product § 58.154 Refrigerated storage. Finished product in containers subject to such conditions that will...

  18. 7 CFR 58.154 - Refrigerated storage.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 3 2011-01-01 2011-01-01 false Refrigerated storage. 58.154 Section 58.154... Specifications for Dairy Plants Approved for USDA Inspection and Grading Service 1 Storage of Finished Product § 58.154 Refrigerated storage. Finished product in containers subject to such conditions that will...

  19. 7 CFR 58.154 - Refrigerated storage.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 3 2013-01-01 2013-01-01 false Refrigerated storage. 58.154 Section 58.154... Specifications for Dairy Plants Approved for USDA Inspection and Grading Service 1 Storage of Finished Product § 58.154 Refrigerated storage. Finished product in containers subject to such conditions that will...

  20. Control Technologies for Room Air-conditioner and Packaged Air-conditioner

    NASA Astrophysics Data System (ADS)

    Ito, Nobuhisa

    Trends of control technologies about air-conditioning machineries, especially room or packaged air conditioners, are presented in this paper. Multiple air conditioning systems for office buildings are mainly described as one application of the refrigeration cycle control technologies including sensors for thermal comfort and heating/ cooling loads are also described as one of the system control technologies. Inverter systems and related technologies for driving variable speed compressors are described in both case of including induction motors and brushless DC motors. Technologies for more accurate control to meet various kind of regulations such as ozone layer destruction, energy saving and global warming, and for eliminating harmonic distortion of power source current, as a typical EMC problem, will be urgently desired.

  1. Component-wise exergy and energy analysis of vapor compression refrigeration system using mixture of R134a and LPG as refrigerant

    NASA Astrophysics Data System (ADS)

    Gill, Jatinder; Singh, Jagdev

    2018-05-01

    In this work, the experimental examination was carried out using a mixture of R134a and LPG refrigerant (consisting of R134a and LPG in a proportion of 28:72 by weight) as a replacement for R134a in a vapor compression refrigeration system. Exergy and energy tests were carried out at different evaporator and condenser temperatures with controlled environmental conditions. The results showed that the exergy destruction in the compressor, condenser, evaporator, and a capillary tube of the R134a / LPG refrigeration system was found lower by approximately 11.13-3.41%, 2.24-3.43%, 12.02-13.47% and 1.54-5.61% respectively. The compressor exhibits the highest level of destruction, accompanied by a condenser, an evaporator and a capillary tube in refrigeration systems. The refrigeration capacity, COP and power consumption of the compressor of the R134a /LPG refrigeration system were detected higher and lower compared to the R134a refrigeration system by about 7.04-11.41%, 15.1-17.82%, and 3.83-8.08% respectively. Also, the miscibility of R134a and LPG blend with mineral oil discovered good. The R134a and LPG refrigerant mixture proposed in this study perform superior to R134a from component-wise exergy and energy analyses under similar experimental conditions.

  2. An experimental evaluation of two nonazeotropic refrigerant mixtures in a water-to-water breadboard heat pump

    NASA Astrophysics Data System (ADS)

    Kauffeld, Michael; Mulroy, William; McLinden, Mark; Didion, David

    1990-02-01

    As part of the Department of Energy/Oak Ridge National Laboratory Building Equipment Research program, the National Institute of Standards and Technology constructed an experimental, easily reconfigurable, water-to-water, breadboard heat pump apparatus in order to compare pure R22 to nonazeotropic refrigerant mixtures. Performance of the heat pump charged with a range of compositions of the binary mixtures R22/RI14 and R13/R12 were compared to R22. The advantage claimed for mixtures in this application is improved thermodynamic efficiency as a result of gliding refrigerant temperatures in the evaporator and condenser in low lift, high glide applications typical of air conditioning.

  3. Refrigeration Playbook: Natural Refrigerants; Selecting and Designing Energy-Efficient Commercial Refrigeration Systems That Use Low Global Warming Potential Refrigerants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nelson, Caleb; Reis, Chuck; Nelson, Eric

    This report provides guidance for selecting and designing energy efficient commercial refrigeration systems using low global warming potential refrigerants. Refrigeration systems are generally the largest energy end use in a supermarket type building, often accounting for more than half of a building's energy consumption.

  4. The Effect of Temperature Glide of R407C Refrigerant on the Power of Evaporator in Air Refrigerators / WPŁYW POŚLIZGU Temperatury Czynnika CHŁODNICZEGO R407C NA Moc Parownika CHŁODZIARKI Powietrza

    NASA Astrophysics Data System (ADS)

    Nowak, Bernard; Życzkowski, Piotr

    2013-12-01

    The article discusses the effect of the phenomenon of temperature glide of zeotropic refrigerants on thermal power of an evaporator in an air compression refrigerator. Zeotropic mixtures are subject to phase transitions, the process of which significantly differs from that of homogeneous refrigerants. In contrast to homogeneous refrigerants, where boiling and condensing processes take place at a constant temperature, for the zeotropic mixtures it is essential to know the vapor quality to unambiguously determine the temperature at which the evaporation process is initiated. The R407C refrigerant serves as an example to describe the method of determining the initial temperature of the evaporation process taking into account the effect of temperature glide. The developed formula (7) has been based on a proven linear course of isobars in the two-phase region (Fig. 5) and thus determining a polynomial describing their angle of inclination (8). In addition, temperature calculation formulas (9) and specific enthalpy (10) of dry saturated vapor of the R407C refrigerant have been presented as well. This approach allows to determine the temperature of the R407C refrigerant at the inlet to the evaporator without the required knowledge of its vapor quality. The previously used simplified methods for determining the temperature of a refrigerant at the inlet to the evaporator result in considerable deviations in calculated power of the evaporator compared with its actual value. The presented calculation example involving mine air compression refrigerator of TS-450P type shows that relative deviations of the evaporator thermal power may even exceed 20%. This example compares two simplified methods for determining zeotropic evaporating temperature of a refrigerant used in comparative calculations of refrigerants with the method presented in this article. W artykule przedstawiono wpływ zjawiska poślizgu temperatury zeotropowych czynników chłodniczych na moc cieplną parownika

  5. A Model Action Pla to Reduce the Use and Release of CFCs in Air- Conditioning and Refrigeration Systems

    DTIC Science & Technology

    1992-09-01

    ccmpounds discussed in the research. Chiorofluorocarbon nolecules consist entirely of chlorine, fluorine, and carbon atoms. When a hydrogen atm is bonded...of carbon, hydrogen, and fluorine atoms contained in the compound. Chlorine atms miake up the remaining available bond sites. For exanple, CFC-l1...HCFC-22 has been successfully tested as a substitute for CFC-12 and CFC-502 in retrofitted supermarket refrigeration systems. There is same loss of

  6. Effect of Dynamic Pressure on the Performance of Thermoacoustic Refrigerator with Aluminium (Al) Resonator

    NASA Astrophysics Data System (ADS)

    Arya, Bheemsha; Nayak, B. Ramesh; Shivakumara, N. V.

    2018-04-01

    In practice the refrigerants are being used in the conventional refrigeration system to get the required cooling effect. These refrigerants produce Chlorofluorocarbons (CFCs) and Hydro chlorofluorocarbons (HCFCs) which are highly harmful to the environment, particularly depleting of ozone layers resulting in green house emissions. In order to overcome these effects, the research needs to be focused on the development of an ecofriendly refrigeration system. The thermoacoustic refrigeration system is one among such system where the sound waves are used to compress and expand the gas particles. This study focuses on the effect of dynamic pressure on the thermoacoustic refrigerator made of aluminium with overall length of 748.82 mm, and the entire inner surface of the resonator tube was coated with 2mm thickness of polyurethane to minimize the heat losses to the atmosphere. Experiments were conducted with different stack geometries i.e. parallel plates having 0.119 mm thick with spacing between the plates maintained at 0.358 mm, 1mm diameter pipes, 2mm diameter pipes and 4 mm diameter pipes. Experiments were also conducted with different drive ratios of 0.6%, 1% and 1.6% for a constant dynamic pressure of 2 bar and 10 bar for helium and air as working medium. The results were plotted with the help of graphs, the variation of coefficient of performance (COP) and the relative coefficient of performance (COPR) for the above said conditions were calculated.

  7. Refrigerated Warehouse Demand Response Strategy Guide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Scott, Doug; Castillo, Rafael; Larson, Kyle

    This guide summarizes demand response measures that can be implemented in refrigerated warehouses. In an appendix, it also addresses related energy efficiency opportunities. Reducing overall grid demand during peak periods and energy consumption has benefits for facility operators, grid operators, utility companies, and society. State wide demand response potential for the refrigerated warehouse sector in California is estimated to be over 22.1 Megawatts. Two categories of demand response strategies are described in this guide: load shifting and load shedding. Load shifting can be accomplished via pre-cooling, capacity limiting, and battery charger load management. Load shedding can be achieved by lightingmore » reduction, demand defrost and defrost termination, infiltration reduction, and shutting down miscellaneous equipment. Estimation of the costs and benefits of demand response participation yields simple payback periods of 2-4 years. To improve demand response performance, it’s suggested to install air curtains and another form of infiltration barrier, such as a rollup door, for the passageways. Further modifications to increase efficiency of the refrigeration unit are also analyzed. A larger condenser can maintain the minimum saturated condensing temperature (SCT) for more hours of the day. Lowering the SCT reduces the compressor lift, which results in an overall increase in refrigeration system capacity and energy efficiency. Another way of saving energy in refrigerated warehouses is eliminating the use of under-floor resistance heaters. A more energy efficient alternative to resistance heaters is to utilize the heat that is being rejected from the condenser through a heat exchanger. These energy efficiency measures improve efficiency either by reducing the required electric energy input for the refrigeration system, by helping to curtail the refrigeration load on the system, or by reducing both the load and required energy input.« less

  8. Space shuttle orbiter mechanical refrigeration system

    NASA Technical Reports Server (NTRS)

    Williams, J. L.

    1974-01-01

    A radiator/condenser was designed which is efficient in both condensation (refrigeration) and liquid phase (radiator) operating modes, including switchover from the refrigeration mode to the radiator mode and vice versa. A method for predicting the pressure drop of a condensing two-phase flow in zero-gravity was developed along with a method for predicting the flow regime which would prevail along the condensation path. The hybrid refrigeration system was assembled with the two radiator/condenser panels installed in a space environment simulator. The system was tested under both atmospheric and vacuum conditions. Results of the tests are presented.

  9. Refrigeration system having standing wave compressor

    DOEpatents

    Lucas, Timothy S.

    1992-01-01

    A compression-evaporation refrigeration system, wherein gaseous compression of the refrigerant is provided by a standing wave compressor. The standing wave compressor is modified so as to provide a separate subcooling system for the refrigerant, so that efficiency losses due to flashing are reduced. Subcooling occurs when heat exchange is provided between the refrigerant and a heat pumping surface, which is exposed to the standing acoustic wave within the standing wave compressor. A variable capacity and variable discharge pressure for the standing wave compressor is provided. A control circuit simultaneously varies the capacity and discharge pressure in response to changing operating conditions, thereby maintaining the minimum discharge pressure needed for condensation to occur at any time. Thus, the power consumption of the standing wave compressor is reduced and system efficiency is improved.

  10. Influence of Storage Conditions on the Growth of Pseudomonas Species in Refrigerated Raw Milk▿ †

    PubMed Central

    De Jonghe, Valerie; Coorevits, An; Van Hoorde, Koenraad; Messens, Winy; Van Landschoot, Anita; De Vos, Paul; Heyndrickx, Marc

    2011-01-01

    The refrigerated storage of raw milk throughout the dairy chain prior to heat treatment creates selective conditions for growth of psychrotolerant bacteria. These bacteria, mainly belonging to the genus Pseudomonas, are capable of producing thermoresistant extracellular proteases and lipases, which can cause spoilage and structural defects in pasteurized and ultra-high-temperature-treated milk (products). To map the influence of refrigerated storage on the growth of these pseudomonads, milk samples were taken after the first milking turn and incubated laboratory scale at temperatures simulating optimal and suboptimal preprocessing storage conditions. The outgrowth of Pseudomonas members was monitored over time by means of cultivation-independent denaturing gradient gel electrophoresis (DGGE). Isolates were identified by a polyphasic approach. These incubations revealed that outgrowth of Pseudomonas members occurred from the beginning of the dairy chain (farm tank) under both optimal and suboptimal storage conditions. An even greater risk for outgrowth, as indicated by a vast increase of about 2 log CFU per ml raw milk, existed downstream in the chain, especially when raw milk was stored under suboptimal conditions. This difference in Pseudomonas outgrowth between optimal and suboptimal storage was already statistically significant within the farm tank. The predominant taxa were identified as Pseudomonas gessardii, Pseudomonas gessardii-like, Pseudomonas fluorescens-like, Pseudomonas lundensis, Pseudomonas fragi, and Pseudomonas fragi-like. Those taxa show an important spoilage potential as determined on elective media for proteolysis and lipolysis. PMID:21115713

  11. 63. Refrigerator, microwave oven, storage cabinet open, north side ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    63. Refrigerator, microwave oven, storage cabinet open, north side - Ellsworth Air Force Base, Delta Flight, Launch Control Facility, County Road CS23A, North of Exit 127, Interior, Jackson County, SD

  12. Magnetic Refrigeration Development

    NASA Technical Reports Server (NTRS)

    Deardoff, D. D.; Johnson, D. L.

    1984-01-01

    Magnetic refrigeration is being developed to determine whether it may be used as an alternative to the Joule-Thomson circuit of a closed cycle refrigerator for providing 4 K refrigeration. An engineering model 4-15 K magnetic refrigerator has been designed and is being fabricated. This article describes the overall design of the magnetic refrigerator.

  13. Resources and Fact Sheets on Servicing Motor Vehicle Air Conditioners (Summary Page)

    EPA Pesticide Factsheets

    Page provides links to resources that can assist motor vehicle air-conditioning system technicians in understanding system servicing requirements and best practices, and learn about alternative refrigerants.

  14. Maximizing NGL recovery by refrigeration optimization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baldonedo H., A.H.

    1999-07-01

    PDVSA--Petroleo y Gas, S.A. has within its facilities in Lake Maracaibo two plants that extract liquids from natural gas (NGL), They use a combined mechanic refrigeration absorption with natural gasoline. Each of these plants processes 420 MMsccfd with a pressure of 535 psig and 95 F that comes from the compression plants PCTJ-2 and PCTJ-3 respectively. About 40 MMscfd of additional rich gas comes from the high pressure system. Under the present conditions these plants produce in the order of 16,800 and 23,800 b/d of NGL respectively, with a propane recovery percentage of approximately 75%, limited by the capacity ofmore » the refrigeration system. To optimize the operation and the design of the refrigeration system and to maximize the NGL recovery, a conceptual study was developed in which the following aspects about the process were evaluated: capacity of the refrigeration system, refrigeration requirements, identification of limitations and evaluation of the system improvements. Based on the results obtained it was concluded that by relocating some condensers, refurbishing the main refrigeration system turbines and using HIGH FLUX piping in the auxiliary refrigeration system of the evaporators, there will be an increase of 85% on the propane recovery, with an additional production of 25,000 b/d of NGL and 15 MMscfd of ethane rich gas.« less

  15. Effect of heat recovery water heater system on the performance of residential split air conditioner using hydrocarbon refrigerant (HCR22)

    NASA Astrophysics Data System (ADS)

    Aziz, A.; Thalal; Amri, I.; Herisiswanto; Mainil, A. K.

    2017-09-01

    This This paper presents the performance of residential split air conditioner (RSAC) using hydrocarbon refrigerant (HCR22) as the effect on the use of heat recovery water heater system (HRWHS). In this study, RSAC was modified with addition of dummy condenser (trombone coil type) as heat recovery water heater system (HRWHS). This HRWHS is installed between a compressor and a condenser by absorbing a part of condenser waste heat. The results show that RSAC with HRWHS is adequate to generate hot water with the temperature range about 46.58˚C - 48.81˚C when compared to without HRWHS and the use of dummy condenser does not give significant effect to the split air conditioner performance. When the use of HRWHS, the refrigerant charge has increase about 19.05%, the compressor power consumption has slightly increase about 1.42% where cooling capacity almost the same with slightly different about 0.39%. The condenser heat rejection is lower about 2.68% and the COP has slightly increased about 1.05% when compared to without HRWHS. The use of HRWHS provide free hot water, it means there is energy saving for heating water without negative impact to the system performance of RSAC.

  16. Influence of Oil on Refrigerant Evaporator Performance

    NASA Astrophysics Data System (ADS)

    Kim, Jong-Soo; Nagata, Karsuya; Katsuta, Masafumi; Tomosugi, Hiroyuki; Kikuchi, Kouichiro; Horichi, Toshiaki

    In vapor compression refrigeration system using oil-lubricated compressors, some amount of oil is always circulated through the system. Oil circulation can have a significant influence on the evaporator performance of automotive air conditioner which is especially required to cool quickly the car interior after a period standing in the sun. An experimental investigation was carried out an electrically heated horizontal tube to measure local heat transfer coefficients for various flow rates and heat fluxes during forced convection boiling of pure refrigerant R12 and refrigerant-oil mixtures (0-11% oil concentration by weight) and the results were compared with oil free performance. Local heat transfer coefficients increased at the region of low vapor quality by the addition of oil. On the other hand, because the oil-rich liquid film was formed on the heat transfer surface, heat transfer coefficients gradually decreased as the vapor quality became higher. Average heat transfer coefficient reached a maximum at about 4% oil concentration and this trend agreed well with the results of Green and Furse. Previous correlations, using the properties of the refrigerant-oil mixture, could not predict satisfactorily the local heat transfer coefficients data. New correlation modified by oil concentration factor was developed for predicting the corresponding heat transfer coefficient for refrigerant-oil mixture convection boiling. The maximum percent deviation between predicted and measured heat transfer coefficient was within ±30%.

  17. Measured performance of the heat exchanger in the NASA icing research tunnel under severe icing and dry-air conditions

    NASA Technical Reports Server (NTRS)

    Olsen, W.; Vanfossen, J.; Nussle, R.

    1987-01-01

    Measurements were made of the pressure drop and thermal perfomance of the unique refrigeration heat exchanger in the NASA Lewis Icing Research Tunnel (IRT) under severe icing and frosting conditions and also with dry air. This data will be useful to those planning to use or extend the capability of the IRT and other icing facilities (e.g., the Altitude Wind Tunnel-AWT). The IRT heat exchanger and refrigeration system is able to cool air passing through the test section down to at least a total temperature of -30 C (well below icing requirements), and usually up to -2 C. The system maintains a uniform temperature across the test section at all airspeeds, which is more difficult and time consuming at low airspeeds, at high temperatures, and on hot, humid days when the cooling towers are less efficient. The very small surfaces of the heat exchanger prevent any icing cloud droplets from passing through it and going through the tests section again. The IRT heat exchanger was originally designed not to be adversely affected by severe icing. During a worst-case icing test the heat exchanger iced up enough so that the temperature uniformaity was no worse than about +/- 1 deg C. The conclusion is that the heat exchanger design performs well.

  18. Cooling performance and evaluation of automotive refrigeration system for a passenger car

    NASA Astrophysics Data System (ADS)

    Prajitno, Deendarlianto, Majid, Akmal Irfan; Mardani, Mahardeka Dhias; Wicaksono, Wendi; Kamal, Samsul; Purwanto, Teguh Pudji; Fauzun

    2016-06-01

    A new design of automotive refrigeration system for a passenger car was proposed. To ensure less energy consumption and optimal thermal comfort, the performance of the system were evaluated. This current research was aimed to evaluate the refrigeration characteristics of the system for several types of cooling load. In this present study, a four-passenger wagon car with 1500 cc gasoline engine that equipped by a belt driven compressor (BDC) was used as the tested vehicle. To represent the tropical condition, a set of lamps and wind sources are installed around the vehicle. The blower capacity inside a car is varied from 0.015 m/s to 0.027 m/s and the compressor speed is varied at variable 820, 1400, and 2100 rpm at a set temperature of 22°C. A set of thermocouples that combined by data logger were used to measure the temperature distribution. The system uses R-134a as the refrigerant. In order to determine the cooling capacity of the vehicle, two conditions were presented: without passengers and full load conditions. As the results, cooling capacity from any possible heating sources and transient characteristics of temperature in both systems for the cabin, engine, compressor, and condenser are presented in this work. As the load increases, the outlet temperature of evaporator also increases due to the increase of condensed air. This phenomenon also causes the increase of compressor work and compression ratio which associated to the addition of specific volume in compressor inlet.

  19. Elastohydrodynamic Lubrication with Polyolester Lubricants and HFC Refrigerants, Final Report, Volume 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gunsel, Selda; Pozebanchuk, Michael

    1999-04-01

    Lubrication properties of refrigeration lubricants were investigated in high pressure nonconforming contacts under different conditions of temperature, rolling speed, and refrigerant concentration. The program was based upon the recognition that the lubrication regime in refrigeration compressors is generally elastohydrodynamic or hydrodynamic, as determined by the operating conditions of the compressor and the properties of the lubricant. Depending on the compressor design, elastohydrodynamic lubrication conditions exist in many rolling and sliding elements of refrigeration compressors such as roller element bearings, gears, and rotors. The formation of an elastohydrodynamic film separating rubbing surfaces is important in preventing the wear and failure ofmore » compressor elements. It is, therefore, important to predict the elastohydrodynamic (EHD) performance of lubricants under realistic tribocontact renditions. This is, however, difficult as the lubricant properties that control film formation are critically dependent upon pressure and shear, and cannot be evaluated using conventional laboratory instruments. In this study, the elastohydrodynamic behavior of refrigeration lubricants with and without the presence of refrigerants was investigated using the ultrathin film EHD interferometry technique. This technique enables very thin films, down to less than 5 nm, to be measured accurately within an EHD contact under realistic conditions of temperature, shear, and pressure. The technique was adapted to the study of lubricant refrigerant mixtures. Film thickness measurements were obtained on refrigeration lubricants as a function of speed, temperature, and refrigerant concentration. The effects of lubricant viscosity, temperature, rolling speed, and refrigerant concentration on EHD film formation were investigated. From the film thickness measurements, effective pressure-viscosity coefficients were calculated. The lubricants studied in this project included two

  20. Global emissions of refrigerants HCFC-22 and HFC-134a: Unforeseen seasonal contributions

    PubMed Central

    Xiang, Bin; Montzka, Stephen A.; Miller, Scot M.; Elkins, James W.; Moore, Fred L.; Atlas, Elliot L.; Miller, Ben R.; Weiss, Ray F.; Prinn, Ronald G.; Wofsy, Steven C.

    2014-01-01

    HCFC-22 (CHClF2) and HFC-134a (CH2FCF3) are two major gases currently used worldwide in domestic and commercial refrigeration and air conditioning. HCFC-22 contributes to stratospheric ozone depletion, and both species are potent greenhouse gases. In this work, we study in situ observations of HCFC-22 and HFC-134a taken from research aircraft over the Pacific Ocean in a 3-y span [HIaper-Pole-to-Pole Observations (HIPPO) 2009–2011] and combine these data with long-term ground observations from global surface sites [National Oceanic and Atmospheric Administration (NOAA) and Advanced Global Atmospheric Gases Experiment (AGAGE) networks]. We find the global annual emissions of HCFC-22 and HFC-134a have increased substantially over the past two decades. Emissions of HFC-134a are consistently higher compared with the United Nations Framework Convention on Climate Change (UNFCCC) inventory since 2000, by 60% more in recent years (2009–2012). Apart from these decadal emission constraints, we also quantify recent seasonal emission patterns showing that summertime emissions of HCFC-22 and HFC-134a are two to three times higher than wintertime emissions. This unforeseen large seasonal variation indicates that unaccounted mechanisms controlling refrigerant gas emissions are missing in the existing inventory estimates. Possible mechanisms enhancing refrigerant losses in summer are (i) higher vapor pressure in the sealed compartment of the system at summer high temperatures and (ii) more frequent use and service of refrigerators and air conditioners in summer months. Our results suggest that engineering (e.g., better temperature/vibration-resistant system sealing and new system design of more compact/efficient components) and regulatory (e.g., reinforcing system service regulations) steps to improve containment of these gases from working devices could effectively reduce their release to the atmosphere. PMID:25422438

  1. Alternatives to ozone depleting refrigerants in test equipment

    NASA Technical Reports Server (NTRS)

    Hall, Richard L.; Johnson, Madeleine R.

    1995-01-01

    This paper describes the initial results of a refrigerant retrofit project at the Aerospace Guidance and Metrology Center (AGMC) at Newark Air Force Base, Ohio. The objective is to convert selected types of test equipment to properly operate on hydrofluorocarbon (HFC) alternative refrigerants, having no ozone depleting potential, without compromising system reliability or durability. This paper discusses the primary technical issues and summarizes the test results for 17 different types of test equipment: ten environmental chambers, two ultralow temperature freezers, two coolant recirculators, one temperature control unit, one vapor degreaser, and one refrigerant recovery system. The postconversion performance test results have been very encouraging: system capacity and input power remained virtually unchanged. In some cases, the minimum operating temperature increased by a few degrees as a result of the conversion, but never beyond AGMC's functional requirements.

  2. Malone refrigeration

    NASA Astrophysics Data System (ADS)

    Swift, G. W.

    Malone refrigeration is the use of a liquid near its critical points without evaporations as working fluid in a regenerative or recuperative refrigeration cycle such as the Stirling and Brayton cycles. It's potential advantages include compactness, efficiency, an environmentally benign working fluid, and reasonable cost. One Malone refrigerator has been built and studied; two more are under construction. Malone refrigeration is such a new, relatively unexplored technology that the potential for inventions leading to improvements in efficiency and simplicity is very high.

  3. The application of ionizers in domestic refrigerators for reduction in airborne and surface bacteria.

    PubMed

    Kampmann, Y; Klingshirn, A; Kloft, K; Kreyenschmidt, J

    2009-12-01

    To investigate the antimicrobial effect of ionization on bacteria in household refrigerators. Ionizer prototypes were tested with respect to their technical requirements and their ability to reduce surface and airborne contamination in household refrigerators. Ion and ozone production of the tested prototypes were measured online by an ion meter and an ozone analyser. The produced negative air ion (NAI) and ozone amounts were between 1.2 and 3.7 x 10(6) NAI cm(-3) and 11 and 19 ppb O(3), respectively. To test the influence of ionization on surface contamination, different materials like plastic, glass and nutrient agar for simulation of food were inoculated with bacterial suspensions. The reduction rate was dependent on surface properties. The effect on airborne bacteria was tested by nebulization of Bacillus subtilis- suspension (containing spores) aerosols in refrigerators with and without an ionizer. A clear reduction in air contamination because of ionization was measured. The antimicrobial effect is dependent on several factors, such as surface construction and airflow patterns within the refrigerator. Ionization seems to be an effective method for reduction in surface and airborne bacteria. This study is an initiation for a new consumer tool to decontaminate domestic refrigerators.

  4. Hermetic compressor and block expansion valve in refrigeration performance

    NASA Astrophysics Data System (ADS)

    Santoso, Budi; Susilo, Didik Djoko; Tjahjana, D. D. D. P.

    2016-03-01

    Vehicle cabin in tropical countries requires the cooling during the day for comfort of passengers. Air conditioning machine is commonly driven by an internal combustion engine having a great power, which the conventional compressor is connected to crank shaft. The stage of research done is driving the hermetic compressor with an electric motor, and using block expansion valve. The HFC-134a was used as refrigerant working. The primary parameters observed during the experiment are pressure, temperature, and power consumption for different cooling capacities. The results show that the highest coefficient of performance (COP) and the electric power of system are 6.3 and 638 Watt, respectively.

  5. Heat pump employing optimal refrigerant compressor for low pressure ratio applications

    DOEpatents

    Ecker, Amir L.

    1982-01-01

    What is disclosed is a heat pump apparatus for conditioning a fluid characterized by a fluid handler for circulating the fluid in heat exchange relationship with a refrigerant fluid; two refrigerant heat exchangers; one for effecting the heat exchange with the fluid and a second refrigerant-heat exchange fluid heat exchanger for effecting a low pressure ratio of compression of the refrigerant; a rotary compressor for compressing the refrigerant with low power consumption at the low pressure ratio; at least one throttling valve connecting at the inlet side of heat exchanger in which liquid refrigerant is vaporized; a refrigerant circuit serially connecting the above elements; refrigerant in the circuit; a source of heat exchange fluid; heat exchange fluid circulating device and heat exchange fluid circuit for circulating the heat exchange fluid in heat exchange relationship with the refrigerant.

  6. Development of a solar-powered residential air conditioner: Screening analysis

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Screening analysis aimed at the definition of an optimum configuration of a Rankine cycle solar-powered air conditioner designed for residential application were conducted. Initial studies revealed that system performance and cost were extremely sensitive to condensing temperature and to the type of condenser used in the system. Consequently, the screening analyses were concerned with the generation of parametric design data for different condenser approaches; i. e., (1) an ambient air condenser, (2) a humidified ambient air condenser (3) an evaporative condenser, and (4) a water condenser (with a cooling tower). All systems feature a high performance turbocompressor and a single refrigerant (R-11) for the power and refrigeration loops. Data were obtained by computerized methods developed to permit system characterization over a broad range of operating and design conditions. The criteria used for comparison of the candidate system approaches were (1) overall system COP (refrigeration effect/solar heat input), (2) auxiliary electric power for fans and pumps, and (3) system installed cost or cost to the user.

  7. Experimental investigation of the effect of air velocity on a unit cooler under frosting condition: a case study

    NASA Astrophysics Data System (ADS)

    Bayrak, Ergin; Çağlayan, Akın; Konukman, Alp Er S.

    2017-10-01

    Finned tube evaporators are used in a wide range of applications such as commercial and industrial cold/freezed storage rooms with high traffic loading under frosting conditions. In this case study, an evaporator with an integrated fan was manufactured and tested under frosting conditions by only changing the air flow rate in an ambient balanced type test laboratory compared to testing in a wind tunnel with a more uniform flow distribution in order to detect the effect of air flow rate on frosting. During the test, operation was performed separately based on three different air flow rates. The parameters concerning test operation such as the changes of air temperature, air relative humidity, surface temperature, air-side pressure drop and refrigerant side capacity etc. were followed in detail for each air flow rate. At the same time, digital images were captured in front of the evaporator; thus, frost thicknesses and blockage ratios at the course of fan stall were determined by using an image-processing technique. Consequently, the test and visual results showed that the trendline of air-side pressure drop increased slowly at the first stage of test operations, then increased linearly up to a top point and then the linearity was disrupted instantly. This point speculated the beginning of defrost operation for each case. In addition, despite detecting a velocity that needs to be avoided, a test applied at minimum air velocity is superior to providing minimum capacity in terms of loss of capacity during test operations.

  8. The Future of Air Conditioning for Buildings - Executive Summary

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goetzler, William; Guernsey, Matt; Young, J.

    2016-07-01

    The Building Technologies Office (BTO), within the U.S. Department of Energy’s (DOE) Office of Energy Efficiency and Renewable Energy, works with researchers and industry to develop and deploy technologies that can substantially reduce energy consumption and greenhouse gas (GHG) emissions in residential and commercial buildings. Air conditioning (A/C) systems in buildings contribute to GHG emissions both directly through refrigerant emissions, as well as indirectly through fossil fuel combustion for power generation. BTO promotes pre-competitive research and development (R&D) on next-generation HVAC technologies that support the phase down of hydrofluorocarbon (HFC) production and consumption, as well as cost-effective energy efficiency improvements.more » Over the past several decades, product costs and lifecycle cooling costs have declined substantially in many global markets due to improved, higher-volume manufacturing and higher energy efficiency driven by R&D investments and efficiency policies including minimum efficiency standards and labeling programs.1 This report characterizes the current landscape and trends in the global A/C market, including discussion of both direct and indirect climate impacts, and potential global warming impacts from growing global A/C usage. The report also documents solutions that can help achieve international goals for energy efficiency and GHG emissions reductions. The solutions include pathways related to low-global warming potential2 (GWP) refrigerants, energy efficiency innovations, long-term R&D initiatives, and regulatory actions. DOE provides, with this report, a fact-based vision for the future of A/C use around the world. DOE intends for this vision to reflect a broad and balanced aggregation of perspectives. DOE brings together this content in an effort to support dialogue within the international community and help keep key facts and objectives at the forefront among the many important discussions.« less

  9. No-reheat air-conditioning

    NASA Technical Reports Server (NTRS)

    Obler, H. D.

    1980-01-01

    Air conditioning system, for environmentally controlled areas containing sensitive equipment, regulates temperature and humidity without wasteful and costly reheating. System blends outside air with return air as dictated by various sensors to ensure required humidity in cooled spaces (such as computer room).

  10. HVAC (heating, ventilation, air conditioning) literature in Japan: A critical review

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hane, G.J.

    1988-02-01

    Japanese businessmen in the heating, ventilation, air conditioning, and refrigeration (HVACandR) industry consider the monitoring of technical and market developments in the United States to be a normal part of their business. In contrast, efforts by US businessmen to monitor Japanese HVAC and R developments are poorly developed. To begin to redress this imbalance, this report establishes the groundwork for a more effective system for use in monitoring Japanese HVAC and R literature. Discussions of a review of the principal HVAC and R publications in Japan and descriptions of the type of information contained in each of those publications aremore » included in this report. Since the Japanese HVAC and R literature is abundant, this report also provides practical suggestions on how a researcher or research manager can limit the monitoring effort to the publications and type of information that would most likely be of greatest value.« less

  11. 62. Refrigerator, microwave oven, equipment storage at top, north side ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    62. Refrigerator, microwave oven, equipment storage at top, north side - Ellsworth Air Force Base, Delta Flight, Launch Control Facility, County Road CS23A, North of Exit 127, Interior, Jackson County, SD

  12. Relationship between Air Pollution and Weather Conditions under Complicated Geographical conditions

    NASA Astrophysics Data System (ADS)

    Cheng, Q.; Jiang, P.; Li, M.

    2017-12-01

    Air pollution is one of the most serious issues all over the world, especially in megacities with constrained geographical conditions for air pollution diffusion. However, the dynamic mechanism of air pollution diffusion under complicated geographical conditions is still be confused. Researches to explore relationship between air pollution and weather conditions from the perspective of local atmospheric circulations can contribute more to solve such problem. We selected three megacities (Beijing, Shanghai and Guangzhou) under different geographical condition (mountain-plain transition region, coastal alluvial plain and coastal hilly terrain) to explore the relationship between air pollution and weather conditions. RDA (Redundancy analysis) model was used to analyze how the local atmospheric circulation acts on the air pollutant diffusion. The results show that there was a positive correlation between the concentration of air pollutants and air pressure, while temperature, precipitation and wind speed have negative correlations with the concentration of air pollutants. Furthermore, geographical conditions, such as topographic relief, have significant effects on the direction, path and intensity of local atmospheric circulation. As a consequence, air pollutants diffusion modes in different cities under various geographical conditions are diverse from each other.

  13. Refrigerant directly cooled capacitors

    DOEpatents

    Hsu, John S [Oak Ridge, TN; Seiber, Larry E [Oak Ridge, TN; Marlino, Laura D [Oak Ridge, TN; Ayers, Curtis W [Kingston, TN

    2007-09-11

    The invention is a direct contact refrigerant cooling system using a refrigerant floating loop having a refrigerant and refrigeration devices. The cooling system has at least one hermetic container disposed in the refrigerant floating loop. The hermetic container has at least one electronic component selected from the group consisting of capacitors, power electronic switches and gating signal module. The refrigerant is in direct contact with the electronic component.

  14. [Microbial air purity in hospitals. Operating theatres with air conditioning system].

    PubMed

    Krogulski, Adam; Szczotko, Maciej

    2010-01-01

    The aim of this study was to show the influence of air conditioning control for microbial contamination of air inside the operating theatres equipped with correctly working air-conditioning system. This work was based on the results of bacteria and fungi concentration in hospital air obtained since 2001. Assays of microbial air purity conducted on atmospheric air in parallel with indoor air demonstrated that air filters applied in air-conditioning systems worked correctly in every case. To show the problem of fluctuation of bacteria concentration more precisely, every sequences of single results from successive measure series were examined independently.

  15. Fault detection and diagnosis for refrigerator from compressor sensor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Keres, Stephen L.; Gomes, Alberto Regio; Litch, Andrew D.

    A refrigerator, a sealed refrigerant system, and method are provided where the refrigerator includes at least a refrigerated compartment and a sealed refrigerant system including an evaporator, a compressor, a condenser, a controller, an evaporator fan, and a condenser fan. The method includes monitoring a frequency of the compressor, and identifying a fault condition in the at least one component of the refrigerant sealed system in response to the compressor frequency. The method may further comprise calculating a compressor frequency rate based upon the rate of change of the compressor frequency, wherein a fault in the condenser fan is identifiedmore » if the compressor frequency rate is positive and exceeds a condenser fan fault threshold rate, and wherein a fault in the evaporator fan is identified if the compressor frequency rate is negative and exceeds an evaporator fan fault threshold rate.« less

  16. Automotive absorption air conditioner utilizing solar and motor waste heat

    NASA Technical Reports Server (NTRS)

    Popinski, Z. (Inventor)

    1981-01-01

    In combination with the ground vehicles powered by a waste heat generating electric motor, a cooling system including a generator for driving off refrigerant vapor from a strong refrigerant absorbant solution is described. A solar collector, an air-cooled condenser connected with the generator for converting the refrigerant vapor to its liquid state, an air cooled evaporator connected with the condenser for returning the liquid refrigerant to its vapor state, and an absorber is connected to the generator and to the evaporator for dissolving the refrigerant vapor in the weak refrigerant absorbant solution, for providing a strong refrigerant solution. A pump is used to establish a pressurized flow of strong refrigerant absorbant solution from the absorber through the electric motor, and to the collector.

  17. Simulated performance of biomass gasification based combined power and refrigeration plant for community scale application

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chattopadhyay, S., E-mail: suman.mech09@gmail.com; Mondal, P., E-mail: mondal.pradip87@gmail.com; Ghosh, S., E-mail: sudipghosh.becollege@gmail.com

    Thermal performance analysis and sizing of a biomass gasification based combined power and refrigeration plant (CPR) is reported in this study. The plant is capable of producing 100 kWe of electrical output while simultaneously producing a refrigeration effect, varying from 28-68 ton of refrigeration (TR). The topping gas turbine cycle is an indirectly heated all-air cycle. A combustor heat exchanger duplex (CHX) unit burns producer gas and transfer heat to air. This arrangement avoids complex gas cleaning requirements for the biomass-derived producer gas. The exhaust air of the topping GT is utilized to run a bottoming ammonia absorption refrigeration (AAR)more » cycle via a heat recovery steam generator (HRSG), steam produced in the HRSG supplying heat to the generator of the refrigeration cycle. Effects of major operating parameters like topping cycle pressure ratio (r{sub p}) and turbine inlet temperature (TIT) on the energetic performance of the plant are studied. Energetic performance of the plant is evaluated via energy efficiency, required biomass consumption and fuel energy savings ratio (FESR). The FESR calculation method is significant for indicating the savings in fuel of a combined power and process heat plant instead of separate plants for power and process heat. The study reveals that, topping cycle attains maximum power efficiency of 30%in pressure ratio range of 8-10. Up to a certain value of pressure ratio the required air flow rate through the GT unit decreases with increase in pressure ratio and then increases with further increase in pressure ratio. The capacity of refrigeration of the AAR unit initially decreases up to a certain value of topping GT cycle pressure ratio and then increases with further increase in pressure ratio. The FESR is found to be maximized at a pressure ratio of 9 (when TIT=1100°C), the maximum value being 53%. The FESR is higher for higher TIT. The heat exchanger sizing is also influenced by the topping cycle pressure

  18. Experimental research of high frequency standing wave thermoacoustic refrigerator driven by loudspeaker

    NASA Astrophysics Data System (ADS)

    Chunping, Zhang; Wei, Liu; Zhichun, Yang; Zhengyu, Li; Xiaoqing, Zhang; Feng, Wu

    2012-05-01

    A small size standing wave thermoacoustic refrigerator driven by a high frequency loudspeaker has been experimentally studied. Instead of water cooling, the cold heat exchanger of the refrigerator was cooled by air through fins on it. By working at 600-700 Hz and adjusting the position of the thermoacoustic core components including the stack and adjacent exchangers, the influences of it on the capability of refrigeration were experimentally investigated. The lowest temperature of 4.1 °C in the cold heat exchanger with the highest temperature difference of 21.5 °C between two heat exchangers were obtained. And the maximum cooling power of 9.7 W has been achieved.

  19. When are solar refrigerators less costly than on-grid refrigerators: A simulation modeling study.

    PubMed

    Haidari, Leila A; Brown, Shawn T; Wedlock, Patrick; Connor, Diana L; Spiker, Marie; Lee, Bruce Y

    2017-04-19

    Gavi recommends solar refrigerators for vaccine storage in areas with less than eight hours of electricity per day, and WHO guidelines are more conservative. The question remains: Can solar refrigerators provide value where electrical outages are less frequent? Using a HERMES-generated computational model of the Mozambique routine immunization supply chain, we simulated the use of solar versus electric mains-powered refrigerators (hereafter referred to as "electric refrigerators") at different locations in the supply chain under various circumstances. At their current price premium, the annual cost of each solar refrigerator is 132% more than each electric refrigerator at the district level and 241% more at health facilities. Solar refrigerators provided savings over electric refrigerators when one-day electrical outages occurred more than five times per year at either the district level or the health facilities, even when the electric refrigerator holdover time exceeded the duration of the outage. Two-day outages occurring more than three times per year at the district level or more than twice per year at the health facilities also caused solar refrigerators to be cost saving. Lowering the annual cost of a solar refrigerator to 75% more than an electric refrigerator allowed solar refrigerators to be cost saving at either level when one-day outages occurred more than once per year, or when two-day outages occurred more than once per year at the district level or even once per year at the health facilities. Our study supports WHO and Gavi guidelines. In fact, solar refrigerators may provide savings in total cost per dose administered over electrical refrigerators when electrical outages are less frequent. Our study identified the frequency and duration at which electrical outages need to occur for solar refrigerators to provide savings in total cost per dose administered over electric refrigerators at different solar refrigerator prices. Copyright © 2017. Published

  20. Portable refrigerant charge meter and method for determining the actual refrigerant charge in HVAC systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gao, Zhiming; Abdelaziz, Omar; LaClair, Tim L.

    A refrigerant charge meter and a method for determining the actual refrigerant charge in HVAC systems are described. The meter includes means for determining an optimum refrigerant charge from system subcooling and system component parameters. The meter also includes means for determining the ratio of the actual refrigerant charge to the optimum refrigerant charge. Finally, the meter includes means for determining the actual refrigerant charge from the optimum refrigerant charge and the ratio of the actual refrigerant charge to the optimum refrigerant charge.

  1. Airborne exposure to trihalomethanes from tap water in homes with refrigeration-type and evaporative cooling systems.

    PubMed

    Kerger, Brent D; Suder, David R; Schmidt, Chuck E; Paustenbach, Dennis J

    2005-03-26

    This study evaluates airborne concentrations of common trihalomethane compounds (THM) in selected living spaces of homes supplied with chlorinated tap water containing >85 ppb total THM. Three small homes in an arid urban area were selected, each having three bedrooms, a full bath, and approximately 1000 square feet; two homes had standard (refrigeration-type) central air conditioning and the third had a central evaporative cooling system ("swamp cooler"). A high-end water-use pattern was used at each home in this exposure simulation. THM were concurrently measured on 4 separate test days in tap water and air in the bathroom, living room, the bedroom closest to the bathroom, and outside using Summa canisters. Chloroform (trichloromethane, TCM), bromodichloromethane (BDCM), and dibromochloromethane (DBCM) concentrations were quantified using U.S. EPA Method TO-14. The apparent volatilization fraction consistently followed the order: TCM > BDCM > DBCM. Relatively low airborne THM concentrations (similar to outdoors) were found in the living room and bedroom samples for the home with evaporative cooling, while the refrigeration-cooled homes showed significantly higher THM levels (three- to fourfold). This differential remained after normalizing the air concentrations based on estimated THM throughput or water concentrations. These findings indicate that, despite higher throughput of THM-containing water in homes using evaporative coolers, the higher air exchange rates associated with these systems rapidly clears THM to levels similar to ambient outdoor concentrations.

  2. Development of a solar-powered residential air conditioner

    NASA Technical Reports Server (NTRS)

    1975-01-01

    The initial objective of the program was the optimization (in terms of cost and performance) of a Rankine cycle mechanical refrigeration system which utilizes thermal energy from a flat solar collector for air conditioning residential buildings. However, feasibility investigations of the adsorption process revealed that a dessicant-type air conditioner offers many significant advantages. As a result, limited efforts were expended toward the optimization of such a system.

  3. Study on the Materials for Compressor and Reliability of Refrigeration Circuit in Refrigerator with R134a Refrigerant

    NASA Astrophysics Data System (ADS)

    Komatsubara, Takeo; Sunaga, Takasi; Takahasi, Yasuki

    R134a was selected as the alternative refrigerant for R12 because of the similar thermodynamic properties with R12. But refrigeration oil for R12 couldn't be used for R134a because of the immiscibility with R134a. To solve this problem we researched miscible oil with R134a and selected polyol ester oil (POE) as refrigeration oil. But we found sludge deposition into capillary tube after life test of refrigerator with POE and detected metal soap, decomposed oil and alkaline ions by analysis of sludge. This results was proof of phenomena like oil degradation, precipitation of process materials and wear of compressor. Therefore we improved stability and lubricity of POE, reevaluated process materials and contaminations in refrigerating circuit. In this paper we discuss newly developed these technologies and evaluation results of it by life test of refrigerator.

  4. Scaling and Optimization of Magnetic Refrigeration for Commercial Building HVAC Systems Greater than 175 kW in Capacity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abdelaziz, Omar; West, David L; Mallow, Anne M

    Heating, ventilation, air-conditioning and refrigeration (HVACR) account for approximately one- third of building energy consumption. Magnetic refrigeration presents an opportunity for significant energy savings and emissions reduction for serving the building heating, cooling, and refrigeration loads. In this paper, we have examined the magnet and MCE material requirements for scaling magnetic refrigeration systems for commercial building cooling applications. Scaling relationships governing the resources required for magnetic refrigeration systems have been developed. As system refrigeration capacity increases, the use of superconducting magnet systems becomes more applicable, and a comparison is presented of system requirements for permanent and superconducting (SC) magnetization systems.more » Included in this analysis is an investigation of the ability of superconducting magnet based systems to overcome the parasitic power penalty of the cryocooler used to keep SC windings at cryogenic temperatures. Scaling relationships were used to develop the initial specification for a SC magnet-based active magnetic regeneration (AMR) system. An optimized superconducting magnet was designed to support this system. In this analysis, we show that the SC magnet system consisting of two 0.38 m3 regenerators is capable of producing 285 kW of cooling power with a T of 28 K. A system COP of 4.02 including cryocooler and fan losses which illustrates that an SC magnet-based system can operate with efficiency comparable to traditional systems and deliver large cooling powers of 285.4 kW (81.2 Tons).« less

  5. Thermal characteristics of non-edible oils as phase change materials candidate to application of air conditioning chilled water system

    NASA Astrophysics Data System (ADS)

    Irsyad, M.; Indartono, Y. S.; Suwono, A.; Pasek, A. D.

    2015-09-01

    The addition of phase change material in the secondary refrigerant has been able to reduce the energy consumption of air conditioning systems in chilled water system. This material has a high thermal density because its energy is stored as latent heat. Based on material melting and freezing point, there are several non-edible oils that can be studied as a phase change material candidate for the application of chilled water systems. Forests and plantations in Indonesia have great potential to produce non-edible oil derived from the seeds of the plant, such as; Calophyllum inophyllum, Jatropha curcas L, and Hevea braziliensis. Based on the melting temperature, these oils can further studied to be used as material mixing in the secondary refrigerant. Thermal characteristics are obtained from the testing of T-history, Differential Scanning Calorimetric (DSC) and thermal conductivity materials. Test results showed an increase in the value of the latent heat when mixed with water with the addition of surfactant. Thermal characteristics of each material of the test results are shown completely in discussion section of this article.

  6. When are solar refrigerators less costly than on-grid refrigerators: A simulation modeling study☆

    PubMed Central

    Haidari, Leila A.; Brown, Shawn T.; Wedlock, Patrick; Connor, Diana L.; Spiker, Marie; Lee, Bruce Y.

    2017-01-01

    Background Gavi recommends solar refrigerators for vaccine storage in areas with less than eight hours of electricity per day, and WHO guidelines are more conservative. The question remains: Can solar refrigerators provide value where electrical outages are less frequent? Methods Using a HERMES-generated computational model of the Mozambique routine immunization supply chain, we simulated the use of solar versus electric mains-powered refrigerators (hereafter referred to as “electric refrigerators”) at different locations in the supply chain under various circumstances. Results At their current price premium, the annual cost of each solar refrigerator is 132% more than each electric refrigerator at the district level and 241% more at health facilities. Solar refrigerators provided savings over electric refrigerators when one-day electrical outages occurred more than five times per year at either the district level or the health facilities, even when the electric refrigerator holdover time exceeded the duration of the outage. Two-day outages occurring more than three times per year at the district level or more than twice per year at the health facilities also caused solar refrigerators to be cost saving. Lowering the annual cost of a solar refrigerator to 75% more than an electric refrigerator allowed solar refrigerators to be cost saving at either level when one-day outages occurred more than once per year, or when two-day outages occurred more than once per year at the district level or even once per year at the health facilities. Conclusion Our study supports WHO and Gavi guidelines. In fact, solar refrigerators may provide savings in total cost per dose administered over electrical refrigerators when electrical outages are less frequent. Our study identified the frequency and duration at which electrical outages need to occur for solar refrigerators to provide savings in total cost per dose administered over electric refrigerators at different solar

  7. Chemically assisted mechanical refrigeration process

    DOEpatents

    Vobach, Arnold R.

    1987-01-01

    There is provided a chemically assisted mechanical refrigeration process including the steps of: mechanically compressing a refrigerant stream which includes vaporized refrigerant; contacting the refrigerant with a solvent in a mixer (11) at a pressure sufficient to promote substantial dissolving of the refrigerant in the solvent in the mixer (11) to form a refrigerant-solvent solution while concurrently placing the solution in heat exchange relation with a working medium to transfer energy to the working medium, said refrigerant-solvent solution exhibiting a negative deviation from Raoult's Law; reducing the pressure over the refrigerant-solvent solution in an evaporator (10) to allow the refrigerant to vaporize and substantially separate from the solvent while concurrently placing the evolving refrigerant-solvent solution in heat exchange relation with a working medium to remove energy from the working medium to thereby form a refrigerant stream and a solvent stream; and passing the solvent and refrigerant stream from the evaporator.

  8. Chemically assisted mechanical refrigeration process

    DOEpatents

    Vobach, Arnold R.

    1987-01-01

    There is provided a chemically assisted mechanical refrigeration process including the steps of: mechanically compressing a refrigerant stream which includes vaporized refrigerant; contacting the refrigerant with a solvent in a mixer (11) at a pressure sufficient to promote substantial dissolving of the refrigerant in the solvent in the mixer (11) to form a refrigerant-solvent solution while concurrently placing the solution in heat exchange relation with a working medium to transfer energy to the working medium, said refrigerant-solvent solution exhibiting a negative deviation from Raoult's Law; reducing the pressure over the refrigerant-solvent solution in an evaporator (10) to allow the refrigerant to vaporize and substantially separate from the solvent while concurrently placing he evolving refrigerant-solvent solution in heat exchange relation with a working medium to remove energy from the working medium to thereby form a refrigerant stream and a solvent stream; and passing the solvent and refrigerant stream from the evaporator.

  9. Chemically assisted mechanical refrigeration process

    DOEpatents

    Vobach, A.R.

    1987-06-23

    There is provided a chemically assisted mechanical refrigeration process including the steps of: mechanically compressing a refrigerant stream which includes vaporized refrigerant; contacting the refrigerant with a solvent in a mixer at a pressure sufficient to promote substantial dissolving of the refrigerant in the solvent in the mixer to form a refrigerant-solvent solution while concurrently placing the solution in heat exchange relation with a working medium to transfer energy to the working medium, said refrigerant-solvent solution exhibiting a negative deviation from Raoult's Law; reducing the pressure over the refrigerant-solvent solution in an evaporator to allow the refrigerant to vaporize and substantially separate from the solvent while concurrently placing the evolving refrigerant-solvent solution in heat exchange relation with a working medium to remove energy from the working medium to thereby form a refrigerant stream and a solvent stream; and passing the solvent and refrigerant stream from the evaporator. 5 figs.

  10. Chemically assisted mechanical refrigeration process

    DOEpatents

    Vobach, A.R.

    1987-11-24

    There is provided a chemically assisted mechanical refrigeration process including the steps of: mechanically compressing a refrigerant stream which includes vaporized refrigerant; contacting the refrigerant with a solvent in a mixer at a pressure sufficient to promote substantial dissolving of the refrigerant in the solvent in the mixer to form a refrigerant-solvent solution while concurrently placing the solution in heat exchange relation with a working medium to transfer energy to the working medium, said refrigerant-solvent solution exhibiting a negative deviation from Raoult's Law; reducing the pressure over the refrigerant-solvent solution in an evaporator to allow the refrigerant to vaporize and substantially separate from the solvent while concurrently placing the evolving refrigerant-solvent solution in heat exchange relation with a working medium to remove energy from the working medium to thereby form a refrigerant stream and a solvent stream; and passing the solvent and refrigerant stream from the evaporator. 5 figs.

  11. Chemical Safety Alert: Hazards of Ammonia Releases at Ammonia Refrigeration Facilities

    EPA Pesticide Factsheets

    Anhydrous ammonia is used as a refrigerant in mechanical compression systems, often liquefied under pressure which increases exposure risk due to potential for rapid release into the air as a toxic gas.

  12. Review of magnetic refrigeration system as alternative to conventional refrigeration system

    NASA Astrophysics Data System (ADS)

    Mezaal, N. A.; Osintsev, K. V.; Zhirgalova, T. B.

    2017-10-01

    The refrigeration system is one of the most important systems in industry. Developers are constantly seeking for how to avoid the damage to the environment. Magnetic refrigeration is an emerging, environment-friendly technology based on a magnetic solid that acts as a refrigerant by magneto-caloric effect (MCE). In the case of ferromagnetic materials, MCE warms as the magnetic moments of the atom are aligned by the application of a magnetic field. There are two types of magnetic phase changes that may occur at the Curie point: first order magnetic transition (FOMT) and second order magnetic transition (SOMT). The reference cycle for magnetic refrigeration is AMR (Active Magnetic Regenerative cycle), where the magnetic material matrix works both as a refrigerating medium and as a heat regenerating medium, while the fluid flowing in the porous matrix works as a heat transfer medium. Regeneration can be accomplished by blowing a heat transfer fluid in a reciprocating fashion through the regenerator made of magnetocaloric material that is alternately magnetized and demagnetized. Many magnetic refrigeration prototypes with different designs and software models have been built in different parts of the world. In this paper, the authors try to shed light on the magnetic refrigeration and show its effectiveness compared with conventional refrigeration methods.

  13. Discussion of Refrigeration Cycle Using Carbon Dioxide as Refrigerant

    NASA Astrophysics Data System (ADS)

    Ji, Amin; Sun, Miming; Li, Jie; Yin, Gang; Cheng, Keyong; Zhen, Bing; Sun, Ying

    Nowadays, the problem of the environment goes worse, it urges people to research and study new energy-saving and environment-friendly refrigerants, such as carbon dioxide, at present, people do research on carbon dioxide at home and abroad. This paper introduces the property of carbon dioxide as a refrigerant, sums up and analyses carbon dioxide refrigeration cycles, and points out the development and research direction in the future.

  14. An experimental investigation of ejector performance based upon different refrigerants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, S.L.; Yen, J.Y.; Huang, M.C.

    1998-12-31

    This article experimentally compares the characteristics of different refrigerants as the working fluid in an ejector cooling system. The study covers common refrigerants including R-113, R-114, R-142b, and R-718. The critical choking conditions against the variation of condenser back pressure, the evaporator pressure, and the generator pressure are determined for each refrigerant. The results are compiled into a convenient performance curve and COP chart. These results can serve as an important reference for future design of ejector cooling systems. Finally, this paper presents a comparison of the performances of different refrigerants in an ejector cooling system.

  15. 112. REFRIGERANT CONDENSER TANKS AND PRESSURE CONTROLS IN NORTHEAST CORNER ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    112. REFRIGERANT CONDENSER TANKS AND PRESSURE CONTROLS IN NORTHEAST CORNER OF MECHANICAL EQUIPMENT ROOM (201), LSB (BLDG. 751) - Vandenberg Air Force Base, Space Launch Complex 3, Launch Pad 3 East, Napa & Alden Roads, Lompoc, Santa Barbara County, CA

  16. Refrigerant Performance Evaluation Including Effects of Transport Properties and Optimized Heat Exchangers.

    PubMed

    Brignoli, Riccardo; Brown, J Steven; Skye, H; Domanski, Piotr A

    2017-08-01

    Preliminary refrigerant screenings typically rely on using cycle simulation models involving thermodynamic properties alone. This approach has two shortcomings. First, it neglects transport properties, whose influence on system performance is particularly strong through their impact on the performance of the heat exchangers. Second, the refrigerant temperatures in the evaporator and condenser are specified as input, while real-life equipment operates at imposed heat sink and heat source temperatures; the temperatures in the evaporator and condensers are established based on overall heat transfer resistances of these heat exchangers and the balance of the system. The paper discusses a simulation methodology and model that addresses the above shortcomings. This model simulates the thermodynamic cycle operating at specified heat sink and heat source temperature profiles, and includes the ability to account for the effects of thermophysical properties and refrigerant mass flux on refrigerant heat transfer and pressure drop in the air-to-refrigerant evaporator and condenser. Additionally, the model can optimize the refrigerant mass flux in the heat exchangers to maximize the Coefficient of Performance. The new model is validated with experimental data and its predictions are contrasted to those of a model based on thermodynamic properties alone.

  17. Energy saving opportunities in the refrigerated transport sector through Phase Change Materials (PCMs) application

    NASA Astrophysics Data System (ADS)

    Principi, P.; Fioretti, R.; Copertaro, B.

    2017-11-01

    Transportation of food products at controlled temperature is a critical task in the transport sector. In fact, whilst there is a need of ensuring both food quality and safety to the global population, its impact in terms of energy consumption and related CO2 emissions into the atmosphere is becoming increasingly evident. In this regard, Thermal Energy Storage (TES) using Phase Change Materials (PCMs) can be considered as a potential way of reducing the cooling load, energy consumption and related greenhouse gas emissions in refrigerated transport sector. In this paper two different PCM applications are investigated. Specifically, in the first study a PCM (35 °C melting temperature) layer was added to the external side of a refrigerated enclosure wall with the aim of managing the cooling peak (shifting and reducing) and reducing the daily energy rate. Outdoor experimental results showed that the added PCM layer helps to reduce (between 5.55% and 8.57%) and delay (between 4.30 h and 3.30 h) the peak load of incoming heat compared to the reference one. In the second study, the energy performance of a refrigerated chamber with an air heat exchanger containing PCM (5°C melting temperature) was investigated. The study purpose was to reduce the cooling energy consumption during steady state operating conditions and the rate of temperature increase throughout the course of a power failure event. Test results showed that using a PCM air heat exchanger addition, up to 16% of energy can be saved.

  18. Optimum design on refrigeration system of high-repetition-frequency laser

    NASA Astrophysics Data System (ADS)

    Li, Gang; Li, Li; Jin, Yezhou; Sun, Xinhua; Mao, Shaojuan; Wang, Yuanbo

    2014-12-01

    A refrigeration system with fluid cycle, semiconductor cooler and air cooler is designed to solve the problems of thermal lensing effect and unstable output of high-repetition-frequency solid-state lasers. Utilizing a circulating water pump, water recycling system carries the water into laser cavity to absorb the heat then get to water cooling head. The water cooling head compacts cold spot of semiconductor cooling chips, so the heat is carried to hot spot which contacts the radiating fins, then is expelled through cooling fan. Finally, the cooled water return to tank. The above processes circulate to achieve the purposes of highly effective refrigeration in miniative solid-state lasers.The refrigeration and temperature control components are designed strictly to ensure refrigeration effect and practicability. we also set up a experiment to test the performances of this refrigeration system, the results show that the relationship between water temperature and cooling power of semiconductor cooling chip is linear at 20°C-30°C (operating temperature range of Nd:YAG), the higher of the water temperature, the higher of cooling power. According to the results, cooling power of single semiconductor cooling chip is above 60W, and the total cooling power of three semiconductor cooling chips achieves 200W that will satisfy the refrigeration require of the miniative solid-state lasers.The performance parameters of laser pulse are also tested, include pulse waveform, spectrogram and laser spot. All of that indicate that this refrigeration system can ensure the output of high-repetition-frequency pulse whit high power and stability.

  19. River Gardens Intermediate-Care Facility water-to-air heating and air-conditioning demonstration project. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, R.C.

    An integrated system of heat pumps is used to reject heat into or extract heat from circulating water from a shallow well adjacent to the river to demonstrate the efficiency and fuel cost savings of water-to-air heat pumps, without the expense of drilling a deep well. Water is returned unpolluted to the Guadalupe River and is circulated through a five-building complex at River Gardens Intermediate Care Facility for the Mentally Retarded in New Braunfels, Texas. The water is used as a heat source or sink for 122 heat pumps providing space heating and cooling, and for refrigeration and freezer units.more » The system was not installed as designed, which resulted in water pumping loads being higher than the original design. Electrical consumption for pumping water represented 36 to 37% of system electrical consumption. Without the water pumping load, the water-to-air system was an average of 25% more efficient in heating than a comparable air-to-air unit with resistance heating. With water pumping load included, the installed system averaged 17% less efficient in cooling and 19% more efficient in heating than the comparable unit.« less

  20. National Weatherization Assistance Program Evaluation: Assessment of Refrigerator Energy Use

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tonn, Bruce Edward; Goeltz, Rick

    2015-03-01

    This report assesses the energy consumption characteristics and performance of refrigerators that were monintored as a component of the Indoor Air Quality Study that itself was a component of the retrospective evaluation of the Department of Energy's Weatherization Assistance Program.

  1. 24 CFR 3280.511 - Comfort cooling certificate and information.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... Refrigeration Institute Standards The central air conditioning system provided with this home has been sized... and Refrigeration Institute Standards. The central air conditioning system provided with this home has... the appropriate Air Conditioning and Refrigeration Institute Standards. When the air circulators of...

  2. Analysis of a domestic refrigerator cycle with an ejector

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tomasek, M.L.; Radermacher, R.

    1995-08-01

    In this paper, an improved cooling cycle for a conventional domestic refrigerator-freezer utilizing an ejector for vapor precompression is analyzed using an idealized model Its energy efficiency is compared to that of the conventional refrigerator-freezer system. Emphasis is placed on off-design conditions. The ejector-enhanced refrigeration cycle consists of two evaporators that operate at different pressure and temperature levels. The ejector combines the vapor flows exiting the two evaporators into one at an intermediate pressure level The ejector cycle gives an increase of up to 12.4% in the coefficient of performance (COP) compared to that of a standard refrigerator-freezer refrigeration cycle.more » The analysis includes calculations on the optimum throat diameters of the ejector. The investigation on the off-design performance of the ejector cycle shows little dependency of energy consumption on constant ejector throat diameters.« less

  3. Vaccine refrigeration

    PubMed Central

    McColloster, Patrick J; Martin-de-Nicolas, Andres

    2014-01-01

    This commentary reviews recent changes in Centers for Disease Control (CDC) vaccine storage guidelines that were developed in response to an investigative report by the Office of the Inspector General. The use of temperature data loggers with probes residing in glycol vials is advised along with storing vaccines in pharmaceutical refrigerators. These refrigerators provide good thermal distribution but can warm to 8 °C in less than one hour after the power is discontinued. Consequently, electric grid instability influences appropriate refrigerator selection and the need for power back-up. System Average Interruption Duration Index (SAIDI) values quantify this instability and can be used to formulate region-specific guidelines. A novel aftermarket refrigerator regulator with a battery back-up power supply and microprocessor control system is also described. PMID:24442209

  4. Non-intrusive refrigerant charge indicator

    DOEpatents

    Mei, Viung C.; Chen, Fang C.; Kweller, Esher

    2005-03-22

    A non-intrusive refrigerant charge level indicator includes a structure for measuring at least one temperature at an outside surface of a two-phase refrigerant line section. The measured temperature can be used to determine the refrigerant charge status of an HVAC system, and can be converted to a pressure of the refrigerant in the line section and compared to a recommended pressure range to determine whether the system is under-charged, properly charged or over-charged. A non-intrusive method for assessing the refrigerant charge level in a system containing a refrigerant fluid includes the step of measuring a temperature at least one outside surface of a two-phase region of a refrigerant containing refrigerant line, wherein the temperature measured can be converted to a refrigerant pressure within the line section.

  5. Analytical method validation for the determination of 2,3,3,3-tetrafluoropropene in air samples using gas chromatography with flame ionization detection.

    PubMed

    Mawn, Michael P; Kurtz, Kristine; Stahl, Deborah; Chalfant, Richard L; Koban, Mary E; Dawson, Barbara J

    2013-01-01

    A new low global warming refrigerant, 2,3,3,3-tetrafluoro propene, or HFO-1234yf, has been successfully evaluated for automotive air conditioning, and is also being evaluated for stationary refrigeration and air conditioning systems. Due to the advantageous environmental properties of HFO-1234yf versus HFC-134a, coupled with its similar physical properties and system performance, HFO-1234yf is also being evaluated to replace HFC-134a in refrigeration applications where neat HFC-134a is currently used. This study reports on the development and validation of a sampling and analytical method for the determination of HFO-1234yf in air. Different collection media were screened for desorption and simulated sampling efficiency with three-section (350/350/350 mg) Anasorb CSC showing the best results. Therefore, air samples were collected using two 3-section Anasorb CSC sorbent tubes in series at 0.02 L/min for up to 8 hr for sample volumes of up to 9.6 L. The sorbent tubes were extracted in methylene chloride, and analyzed by gas chromatography with flame ionization detection. The method was validated from 0.1× to 20× the target level of 0.5 ppm (2.3 mg/m(3)) for a 9.6 L air volume. Desorption efficiencies for HFO-1234yf were 88 to 109% for all replicates over the validation range with a mean overall recovery of 93%. Simulated sampling efficiencies ranged from 87 to 104% with a mean of 94%. No migration or breakthrough to the back tube was observed under the sampling conditions evaluated. HFO-1234yf samples showed acceptable storage stability on Anasorb CSC sorbent up to a period of 30 days when stored under ambient, refrigerated, or frozen temperature conditions.

  6. 91. REFRIGERANT CONDENSER TANKS IN NORTHEAST CORNER OF MECHANICAL EQUIPMENT ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    91. REFRIGERANT CONDENSER TANKS IN NORTHEAST CORNER OF MECHANICAL EQUIPMENT ROOM (101), LSB (BLDG. 770). PREFILTERS AND PRESSURE CONTROLS IN CENTER OF PHOTOGRAPH. - Vandenberg Air Force Base, Space Launch Complex 3, Launch Pad 3 West, Napa & Alden Roads, Lompoc, Santa Barbara County, CA

  7. Survival of the Human Granulocytic Ehrlichiosis Agent under Refrigeration Conditions

    PubMed Central

    Kalantarpour, Fatemeh; Chowdhury, Ishraq; Wormser, Gary P.; Aguero-Rosenfeld, Maria E.

    2000-01-01

    The human granulocytic ehrlichiosis (HGE) agent in infected blood specimens remained viable during refrigeration at 4°C for up to 18 days. These findings suggest that blood specimens submitted for culture may withstand transportation to a remote laboratory. HGE should be added to the list of infections potentially transmitted by blood transfusion. PMID:10835014

  8. 10 CFR 431.62 - Definitions concerning commercial refrigerators, freezers and refrigerator-freezers.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... transparent or solid doors, sliding or hinged doors, a combination of hinged, sliding, transparent, or solid... compressors, refrigerant condensers, condenser fans and motors, and factory supplied accessories. Self... more refrigerant compressors, refrigerant condensers, condenser fans and motors, and factory supplied...

  9. Relationship between composition of mixture charged and that in circulation in an auto refrigerant cascade and a J-T refrigerator operating in liquid refrigerant supply mode

    NASA Astrophysics Data System (ADS)

    Sreenivas, Bura; Nayak, H. Gurudath; Venkatarathnam, G.

    2017-01-01

    The composition of the refrigerant mixture in circulation during steady state operation of J-T and allied refrigerators is not the same as that charged due to liquid hold up in the heat exchangers and phase separators, as well as the differential solubility of different refrigerant components in the compressor lubricating oil. The performance of refrigerators/liquefiers operating on mixed refrigerant cycles is dependent on the mixture composition. It is therefore important to charge the right mixture that results in an optimum composition in circulation during steady state operation. The relationship between the charged and circulating composition has been experimentally studied in a J-T refrigerator operating in the liquid refrigerant supply (LRS) mode and an auto refrigerant cascade refrigerator (with a phase separator) operating in the gas refrigerant supply (GRS) mode. The results of the study are presented in this work. The results show that the method presented earlier for J-T refrigerators operating in GRS mode is also applicable in the case of refrigerators studied in this work.

  10. Refrigeration-Induced Binding of von Willebrand Factor Facilitates Fast Clearance of Refrigerated Platelets.

    PubMed

    Chen, Wenchun; Druzak, Samuel A; Wang, Yingchun; Josephson, Cassandra D; Hoffmeister, Karin M; Ware, Jerry; Li, Renhao

    2017-12-01

    Apheresis platelets for transfusion treatment are currently stored at room temperature because after refrigeration platelets are rapidly cleared on transfusion. In this study, the role of von Willebrand factor (VWF) in the clearance of refrigerated platelets is addressed. Human and murine platelets were refrigerated in gas-permeable bags at 4°C for 24 hours. VWF binding, platelet signaling events, and platelet post-transfusion recovery and survival were measured. After refrigeration, the binding of plasma VWF to platelets was drastically increased, confirming earlier studies. The binding was blocked by peptide OS1 that bound specifically to platelet glycoprotein (GP)Ibα and was absent in VWF - / - plasma. Although surface expression of GPIbα was reduced after refrigeration, refrigeration-induced VWF binding under physiological shear induced unfolding of the GPIbα mechanosensory domain on the platelet, as evidenced by increased exposure of a linear epitope therein. Refrigeration and shear treatment also induced small elevation of intracellular Ca 2+ , phosphatidylserine exposure, and desialylation of platelets, which were absent in VWF -/- platelets or inhibited by OS1, which is a monomeric 11-residue peptide (CTERMALHNLC). Furthermore, refrigerated VWF -/- platelets displayed increased post-transfusion recovery and survival than wild-type ones. Similarly, adding OS1 to transgenic murine platelets expressing only human GPIbα during refrigeration improved their post-transfusion recovery and survival. Refrigeration-induced binding of VWF to platelets facilitates their rapid clearance by inducing GPIbα-mediated signaling. Our results suggest that inhibition of the VWF-GPIbα interaction may be a potential strategy to enable refrigeration of platelets for transfusion treatment. © 2017 American Heart Association, Inc.

  11. Properties of Gas Mixtures and Their Use in Mixed-Refrigerant Joule-Thomson Refrigerators

    NASA Astrophysics Data System (ADS)

    Luo, E.; Gong, M.; Wu, J.; Zhou, Y.

    2004-06-01

    The Joule-Thomson (J-T) effect has been widely used for achieving low temperatures. In the past few years, much progress has been made in better understanding the working mechanism of the refrigeration method and in developing prototypes for different applications. In this talk, there are three aspects of our research work to be discussed. First, some special thermal properties of the mixtures for achieving liquid nitrogen temperature range will be presented. Secondly, some important conclusions from the optimization of various mixed-refrigerant J-T cycles such as a simple J-T cycle and an auto-cascade mixed-refrigerant J-T cycle will be presented. Moreover, an auto-cascade, mixed-refrigerant J-T refrigerator with a special mixture capable of achieving about 50K will be mentioned. Finally, various prototypes based on the mixed-refrigerant refrigeration technology will be described. These applications include miniature J-T cryocoolers for cooling infrared detectors and high-temperature superconducting devices, cryosurgical knife for medical treatment, low-temperature refrigerators for biological storage and so forth. The on-going research work and unanswered questions for this technology will be also discussed.

  12. Japanese power electronics inverter technology and its impact on the American air conditioning industry

    NASA Astrophysics Data System (ADS)

    Ushimaru, Kenji

    1990-08-01

    Since 1983, technological advances and market growth of inverter-driven variable-speed heat pumps in Japan have been dramatic. The high level of market penetration was promoted by a combination of political, economic, and trade policies in Japan. A unique environment was created in which the leading domestic industries, microprocessor manufacturing, compressors for air conditioning and refrigerators, and power electronic devices, were able to direct the development and market success of inverter-driven heat pumps. As a result, leading U.S. variable-speed heat pump manufacturers should expect a challenge from the Japanese producers of power devices and microprocessors. Because of the vertically-integrated production structure in Japan, in contrast to the out-sourcing culture of the United States, price competition at the component level (such as inverters, sensors, and controls) may impact the structure of the industry more severely than final product sales.

  13. Time-Temperature Profiling of United Kingdom Consumers' Domestic Refrigerators.

    PubMed

    Evans, Ellen W; Redmond, Elizabeth C

    2016-12-01

    Increased consumer demand for convenience and ready-to-eat food, along with changes to consumer food purchase and storage practices, have resulted in an increased reliance on refrigeration to maximize food safety. Previous research suggests that many domestic refrigerators operate at temperatures exceeding recommendations; however, the results of several studies were determined by means of one temperature data point, which, given temperature fluctuation, may not be a true indicator of actual continual operating temperatures. Data detailing actual operating temperatures and the effects of consumer practices on temperatures are limited. This study has collated the time-temperature profiles of domestic refrigerators in consumer kitchens (n = 43) over 6.5 days with concurrent self-reported refrigerator usage. Overall, the findings established a significant difference (P < 0.05) between one-off temperature (the recording of one temperature data point) and mean operating temperature. No refrigerator operated at ≤5.0°C for the entire duration of the study. Mean temperatures exceeding 5.0°C were recorded in the majority (91%) of refrigerators. No significant associations or differences were determined for temperature profiles and demographics, including household size, or refrigerator characteristics (age, type, loading, and location). A positive correlation (P < 0.05) between room temperature and refrigerator temperature was determined. Reported door opening frequency correlated with temperature fluctuation (P < 0.05). Thermometer usage was determined to be infrequent. Cumulatively, research findings have established that the majority of domestic refrigerators in consumer homes operate at potentially unsafe temperatures and that this is influenced by consumer usage. The findings from this study may be utilized to inform the development of shelf-life testing based on realistic domestic storage conditions. Furthermore, the data can inform the development of future

  14. 46 CFR 147.90 - Refrigerants.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Refrigerants. 147.90 Section 147.90 Shipping COAST GUARD... Special Requirements for Particular Materials § 147.90 Refrigerants. (a) Only refrigerants listed in ANSI/ASHRAE 34-78 may be carried as ships' stores. (b) Refrigerants contained in a vessel's operating system...

  15. 46 CFR 147.90 - Refrigerants.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 5 2011-10-01 2011-10-01 false Refrigerants. 147.90 Section 147.90 Shipping COAST GUARD... Special Requirements for Particular Materials § 147.90 Refrigerants. (a) Only refrigerants listed in ANSI/ASHRAE 34-78 may be carried as ships' stores. (b) Refrigerants contained in a vessel's operating system...

  16. 76 FR 19090 - Agency Information Collection Activities; Submission to OMB for Review and Approval; Comment...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-06

    ... used as refrigerants during the service, maintenance, repair, or disposal of refrigeration and air... person in the course of maintaining, servicing, repairing, or disposing of refrigeration or air...-depleting refrigerants recovered during the servicing and disposal of air-conditioning and refrigeration...

  17. 75 FR 77864 - Agency Information Collection Activities; Proposed Collection; Comment Response; National...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-14

    ... used as refrigerants during the service, maintenance, repair, or disposal of refrigeration and air... person in the course of maintaining, servicing, repairing, or disposing of refrigeration or air...-depleting refrigerants recovered during the servicing and disposal of air-conditioning and refrigeration...

  18. Solar-powered compression-enhanced ejector air conditioner

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sokolov, M.; Hershgal, D.

    1993-09-01

    This article is an extension of an earlier investigation into the possibility of adaptation of the ejector refrigeration cycle to solar air-conditioning. In a previous work the ejector cycle has been proven a viable option only for a limited number of cases. These include systems with combined (heating, cooling, and hot water supply) loads where means for obtaining low condensing temperature are available. The purpose of this work is to extend the applicability of such systems by enhancing their efficiency and thereby improving their economical attractiveness. This is done by introducing the compression enhanced ejector system in which mechanical (rathermore » than thermal) energy is used to boost the pressure of the secondary stream into the ejector, Such a boost improves the performance of the whole system. Similar to the conventional ejector, the compression-enhanced ejector system utilizes practically the same hardware for solar heating during the winter and for solar cooling during the summer. Thus, it is capable of providing a year-round space air-conditioning. Optimization of the best combination in which the solar and refrigeration systems combine through the vapor generator working temperature is also presented.« less

  19. Air-Conditioning for Electric Vehicles

    NASA Technical Reports Server (NTRS)

    Popinski, Z.

    1984-01-01

    Combination of ammonia-absorption refrigerator, roof-mounted solar collectors, and 200 degrees C service electric-vehicle motor provides evaporative space-heating/space cooling system for electric-powered and hybrid fuel/electric vehicles.

  20. The Effect of Computers on School Air-Conditioning.

    ERIC Educational Resources Information Center

    Fickes, Michael

    2000-01-01

    Discusses the issue of increased air-conditioning demand when schools equip their classrooms with computers that require enhanced and costlier air-conditioning systems. Air-conditioning costs are analyzed in two elementary schools and a middle school. (GR)

  1. Magnetic refrigeration for maser amplifier cooling

    NASA Technical Reports Server (NTRS)

    Johnson, D. L.

    1982-01-01

    The development of a multifrequency upconverter-maser system for the DSN has created the need to develop a closed-cycle refrigerator (CCR) capable of providing more than 3 watts of refrigeration capability at 4.5 K. In addition, operating concerns such as the high cost of electrical power consumption and the loss of maser operation due to CCR failures require that improvements be made to increase the efficiency and reliability of the CCR. One refrigeration method considered is the replacement of the Joule-Thomson expansion circuit with a magnetic refrigeration. Magnetic refrigerators can provide potentially reliable and highly efficient refrigeration at a variety of temperature ranges and cooling power. The concept of magnetic refrigeration is summarized and a literature review of existing magnetic refrigerator designs which have been built and tested and that may also be considered as possibilities as a 4 K to 15 K magnetic refrigeration stage for the DSN closed-cycle refrigerator is provided.

  2. ARTI Refrigerant Database

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Calm, J.M.

    The Refrigerant Database consolidates and facilitates access to information to assist industry in developing equipment using alternative refrigerants. The underlying purpose is to accelerate phase out of chemical compounds of environmental concern.

  3. Non-positive autoimmune responses against CYP2E1 in refrigeration mechanics exposed to halogenated hydrocarbons.

    PubMed

    Gunnare, Sara; Vidali, Matteo; Lillienberg, Linnéa; Ernstgård, Lena; Sjögren, Bengt; Hagberg, Mats; Albano, Emanuele; Johanson, Gunnar

    2007-09-20

    The aim of the study was to determine if occupational exposure to hydrofluorocarbons (HFC) and hydrochlorofluorocarbons (HCFC) generates autoimmune responses against CYP2E1. HFCs and HCFCs have replaced the chlorofluorocarbons (CFC) in e.g. refrigeration installations and air-conditioning systems. During the substitution period, refrigeration mechanics reported symptoms like asthma, influenza-like reactions, and joint troubles. These symptoms resemble those of chronic inflammatory diseases with an autoimmune component. Since exposure to structurally similar chemicals, e.g. halothane, has previously been associated with autoimmune responses and diseases, autoimmunity among the refrigeration mechanics might hypothetically explain the reported inflammatory symptoms. Serum from 44 Swedish men, occupationally exposed to halogenated hydrocarbons, was screened for antibodies against CYP2E1 with enzyme-linked immunosorbent assay. Thirty of the workers had asthma, joint problems or influenza-like symptoms whereas 14 of them had no such symptoms. They were all selected from a cohort of 280 refrigeration mechanics. Unexposed, healthy, Swedish men (n=35) constituted control group. The study was approved by the Ethics Committee at Karolinska Institutet. No increase in autoantibodies against CYP2E1 was detected among the occupationally exposed workers as compared to the unexposed controls. Further, there was no difference in antibody titer between the exposed workers with symptoms and the exposed, asymtomatic workers or the unexposed controls. The present study does not completely exclude a connection between exposure and effect but makes the relation less likely at these exposure levels.

  4. Modeling of Pressure Drop During Refrigerant Condensation in Pipe Minichannels

    NASA Astrophysics Data System (ADS)

    Sikora, Małgorzata; Bohdal, Tadeusz

    2017-12-01

    Investigations of refrigerant condensation in pipe minichannels are very challenging and complicated issue. Due to the multitude of influences very important is mathematical and computer modeling. Its allows for performing calculations for many different refrigerants under different flow conditions. A large number of experimental results published in the literature allows for experimental verification of correctness of the models. In this work is presented a mathematical model for calculation of flow resistance during condensation of refrigerants in the pipe minichannel. The model was developed in environment based on conservation equations. The results of calculations were verified by authors own experimental investigations results.

  5. Low-temperature magnetic refrigerator

    DOEpatents

    Barclay, J.A.

    1983-05-26

    The invention relates to magnetic refrigeration and more particularly to low temperature refrigeration between about 4 and about 20 K, with an apparatus and method utilizing a belt of magnetic material passed in and out of a magnetic field with heat exchangers within and outside the field operably disposed to accomplish refrigeration.

  6. Modified Peng-Robinson Equation of State for Pure and Mixture Refrigerants with R-32,R-125 and R-134a

    NASA Astrophysics Data System (ADS)

    Ll, Jin; Sato, Haruki; Watanabe, Koichi

    On the basis of critically-evaluated thermodynamic property data among those recently published, a new Peng-Robinson equation of state for the HFC refrigerants,R-32,R-125 and R-134a,has be end eveloped so as to represent the VLE properties in the vapor-liquid coexisting phase at temperatures 223K-323K. In accord with a challenge to correlate the binary and/or ternary interatction parameters as functions of temperature, we have also applied the present modified Peng-Robinson equation of state to the promising alternative HFC refrigerant mixtures, i.e., R-32/125,R-32/134a and R-32/125/134a systems. The developed equation of state improves significantly its effectiveness for practical engineering property calculations at refrigerantion and air-conditioning industries in comparison with conventional Peng-Robinson equation.

  7. Thermodynamic Analysis of a Mixed Refrigerant Ejector Refrigeration Cycle Operating with Two Vapor-liquid Separators

    NASA Astrophysics Data System (ADS)

    Tan, Yingying; Chen, Youming; Wang, Lin

    2018-06-01

    A mixed refrigerant ejector refrigeration cycle operating with two-stage vapor-liquid separators (MRERC2) is proposed to obtain refrigeration temperature at -40°C. The thermodynamic investigations on performance of MRERC2 using zeotropic mixture refrigerant R23/R134a are performed, and the comparisons of cycle performance between MRERC2 and MRERC1 (MRERC with one-stage vapor-liquid separator) are conducted. The results show that MRERC2 can achieve refrigeration temperature varying between -23.9°C and -42.0°C when ejector pressure ratio ranges from 1.6 to 2.3 at the generation temperature of 57.3-84.9°C. The parametric analysis indicates that increasing condensing temperature decreases coefficient of performance ( COP) of MRERC2, and increasing ejector pressure ratio and mass fraction of the low boiling point component in the mixed refrigerant can improve COP of MRERC2. The MRERC2 shows its potential in utilizing low grade thermal energy as driving power to obtain low refrigeration temperature for the ejector refrigeration cycle.

  8. Investigation of waste heat recovery of binary geothermal plants using single component refrigerants

    NASA Astrophysics Data System (ADS)

    Unverdi, M.

    2017-08-01

    In this study, the availability of waste heat in a power generating capacity of 47.4 MW in Germencik Geothermal Power Plant has been investigated via binary geothermal power plant. Refrigerant fluids of 7 different single components such as R-134a, R-152a, R-227ea, R-236fa, R-600, R-143m and R-161 have been selected. The binary cycle has been modeled using the waste heat equaling to mass flow rate of 100 kg/s geothermal fluid. While the inlet temperature of the geothermal fluid into the counter flow heat exchanger has been accepted as 110°C, the outlet temperature has been accepted as 70°C. The inlet conditions have been determined for the refrigerants to be used in the binary cycle. Finally, the mass flow rate of refrigerant fluid and of cooling water and pump power consumption and power generated in the turbine have been calculated for each inlet condition of the refrigerant. Additionally, in the binary cycle, energy and exergy efficiencies have been calculated for 7 refrigerants in the availability of waste heat. In the binary geothermal cycle, it has been found out that the highest exergy destruction for all refrigerants occurs in the heat exchanger. And the highest and lowest first and second law efficiencies has been obtained for R-600 and R-161 refrigerants, respectively.

  9. Air Conditioning and Heating Technology--II.

    ERIC Educational Resources Information Center

    Gattone, Felix

    Twenty-eight chapters and numerous drawings provide information for instructors and students of air conditioning and heating technology. Chapter 1 lists the occupational opportunities in the field. Chapter 2 covers the background or development of the industry of air conditioning and heating technology. Chapter 3 includes some of the principle…

  10. Case Study of R-1234yf Refrigerant: Implications for the Framework for Responsible Innovation.

    PubMed

    Wodzisz, Rafał

    2015-12-01

    Safety and care for the natural environment are two of the most important values that drive scientific enterprise in twentieth century. Researchers and innovators often develop new technologies aimed at pollution reduction, and therefore satisfy the strive for fulfilment of these values. This work is often incentivized by policy makers. According to EU directive 2006/40/EC on mobile air conditioning since 2013 all newly approved vehicles have to be filled with refrigerant with low global warming potential (GWP). Extensive and expensive research financed by leading car manufacturers led to invention of R-1234yf refrigerant with GWP < 1, which was huge improvement. For the proper understanding of this case it will be useful to refer it to the idea of responsible innovation (RI), which is now being developed and quickly attracts attention. I proceed in the following order. Firstly, I present the relevant properties of R-1234yf and discuss the controversy associated with its marketing. Secondly, I examine framework for responsible innovation. In greater detail I discuss the notions of care for future generations and collective responsibility. Thirdly, I apply the offered framework to the case study at hand. Finally, I draw some conclusions which go in two directions: one is to make some suggestions for improving the framework of RI, and the second is to identify missed opportunities for developing truly responsible refrigerant.

  11. Concentrated Solar Air Conditioning for Buildings Project

    NASA Technical Reports Server (NTRS)

    McLaughlin, Rusty

    2010-01-01

    This slide presentation reviews project to implement the use of solar power to provide air conditioning for NASA buildings. Included is an overall conceptual schematic, and an diagram of the plumbing and instrumentation for the project. The use of solar power to power air conditioning in buildings, particularly in the Southwest, could save a significant amount of money. DOD studies have concluded that air conditioning accounts for 30-60% of total energy expenditures.

  12. The air-conditioning capacity of the human nose.

    PubMed

    Naftali, Sara; Rosenfeld, Moshe; Wolf, Michael; Elad, David

    2005-04-01

    The nose is the front line defender of the respiratory system. Unsteady simulations in three-dimensional models have been developed to study transport patterns in the human nose and its overall air-conditioning capacity. The results suggested that the healthy nose can efficiently provide about 90% of the heat and the water fluxes required to condition the ambient inspired air to near alveolar conditions in a variety of environmental conditions and independent of variations in internal structural components. The anatomical replica of the human nose showed the best performance and was able to provide 92% of the heating and 96% of the moisture needed to condition the inspired air to alveolar conditions. A detailed analysis explored the relative contribution of endonasal structural components to the air-conditioning process. During a moderate breathing effort, about 11% reduction in the efficacy of nasal air-conditioning capacity was observed.

  13. Optimal design of gas adsorption refrigerators for cryogenic cooling

    NASA Technical Reports Server (NTRS)

    Chan, C. K.

    1983-01-01

    The design of gas adsorption refrigerators used for cryogenic cooling in the temperature range of 4K to 120K was examined. The functional relationships among the power requirement for the refrigerator, the system mass, the cycle time and the operating conditions were derived. It was found that the precool temperature, the temperature dependent heat capacities and thermal conductivities, and pressure and temperature variations in the compressors have important impacts on the cooling performance. Optimal designs based on a minimum power criterion were performed for four different gas adsorption refrigerators and a multistage system. It is concluded that the estimates of the power required and the system mass are within manageable limits in various spacecraft environments.

  14. Controlling energy costs in refrigeration systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vig, R.

    1984-08-09

    Altering the operating conditions of components in a refrigeration system can have a significant effect on energy consumption. The ramifications of superheating the gas at the evaporator, subcooling the liquid at the condenser, lowering the condensing pressure, and raising the suction temperature should be examined.

  15. Solubility modeling of refrigerant/lubricant mixtures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Michels, H.H.; Sienel, T.H.

    1996-12-31

    A general model for predicting the solubility properties of refrigerant/lubricant mixtures has been developed based on applicable theory for the excess Gibbs energy of non-ideal solutions. In our approach, flexible thermodynamic forms are chosen to describe the properties of both the gas and liquid phases of refrigerant/lubricant mixtures. After an extensive study of models for describing non-ideal liquid effects, the Wohl-suffix equations, which have been extensively utilized in the analysis of hydrocarbon mixtures, have been developed into a general form applicable to mixtures where one component is a POE lubricant. In the present study we have analyzed several POEs wheremore » structural and thermophysical property data were available. Data were also collected from several sources on the solubility of refrigerant/lubricant binary pairs. We have developed a computer code (NISC), based on the Wohl model, that predicts dew point or bubble point conditions over a wide range of composition and temperature. Our present analysis covers mixtures containing up to three refrigerant molecules and one lubricant. The present code can be used to analyze the properties of R-410a and R-407c in mixtures with a POE lubricant. Comparisons with other models, such as the Wilson or modified Wilson equations, indicate that the Wohl-suffix equations yield more reliable predictions for HFC/POE mixtures.« less

  16. A strategy for oxygen conditioning at high altitude: comparison with air conditioning.

    PubMed

    West, John B

    2015-09-15

    Large numbers of people live or work at high altitude, and many visit to trek or ski. The inevitable hypoxia impairs physical working capacity, and at higher altitudes there is also cognitive impairment. Twenty years ago oxygen enrichment of room air was introduced to reduce the hypoxia, and this is now used in dormitories, hotels, mines, and telescopes. However, recent advances in technology now allow large amounts of oxygen to be obtained from air or cryogenic oxygen sources. As a result it is now feasible to oxygenate large buildings and even institutions such as hospitals. An analogy can be drawn between air conditioning that has improved the living and working conditions of millions of people who live in hot climates and oxygen conditioning that can do the same at high altitude. Oxygen conditioning is similar to air conditioning except that instead of cooling the air, the oxygen concentration is raised, thus reducing the equivalent altitude. Oxygen conditioning on a large scale could transform living and working conditions at high altitude, where it could be valuable in homes, hospitals, schools, dormitories, company headquarters, banks, and legislative settings. Copyright © 2015 the American Physiological Society.

  17. Improving turbine performance by cooling inlet air using a waste heat powered ejector refrigerator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kowalski, G.J.

    1996-12-31

    Stationary turbines are used to produce electricity in many areas of the world. Their performance is adversely affected by high ambient temperatures. Several means of reducing the turbine inlet temperature (offpeak water chiller and ice storage and absorption refrigeration systems) are being proposed as a means of increasing turbine output. In the present investigation the feasibility of increasing turbine output power by using its exhaust gases to power an ejector refrigeration system is demonstrated. The advantages of the ejector refrigeration are: it operates on a non-CFC fluid, its small number of moving parts and its small size. The analysis focusesmore » on United Technologies FT4 turbine with a base load output of 21.6 MW. It is demonstrated that the proposed system can decrease the turbine inlet temperature from 296.2 K to 277.6 K which increases the turbine output by 12.8% during periods of high ambient temperature and improves yearly averaged power output by 5.5% in a temperature climate. It is shown that the energy in the turbine exhaust has the potential of producing additional cooling beyond that required to reduce the inlet temperature.« less

  18. Dilution refrigeration for space applications

    NASA Technical Reports Server (NTRS)

    Israelsson, U. E.; Petrac, D.

    1990-01-01

    Dilution refrigerators are presently used routinely in ground based applications where temperatures below 0.3 K are required. The operation of a conventional dilution refrigerator depends critically on the presence of gravity. To operate a dilution refrigerator in space many technical difficulties must be overcome. Some of the anticipated difficulties are identified in this paper and possible solutions are described. A single cycle refrigerator is described conceptually that uses forces other than gravity to function and the stringent constraints imposed on the design by requiring the refrigerator to function on the earth without using gravity are elaborated upon.

  19. Performance of HCFC22 alternative refrigerants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jung, D.; Kim, C.B.; Song, Y.J.

    1999-07-01

    In this study, 14 refrigerant mixtures composed of R32, R125, R134a, R152a, R290(Propane) and R1270(Propylene) were tested in a breadboard heat pump in an attempt to replace R22 used in residential air-conditioners. The test heat pump was of 1 ton capacity with water as the secondary heat transfer fluids. All tests were conducted under ARI test A condition. Test results how that ternary mixtures composed of R32, R125, and R134a have 4 {approximately} 5% higher coefficient of performance(COP) and capacity than R22. Hence they seem to be promising alternatives for R22. On the other hand, ternary mixtures containing R125, R134a,more » and R152a have lower COPs and capacities than R22. R290/R134 azeotrope also shows 3--4% increases in COP and capacity. The compressor discharge and dome temperatures of all the mixtures tested are lower than those of R22 by 15.9--34.7 C and 5.5--14.3 C respectively, indicating that these mixtures would offer better system reliability and longer life time than R22. Finally, the test results with a suction line heat exchanger (SLHX) indicated that SLHX must be used with special care in air-conditioners since its effect is fluid dependent.« less

  20. Air Conditioning. FOS: Fundamentals of Service.

    ERIC Educational Resources Information Center

    Employment and Training Administration (DOL), Washington, DC. Office of Youth Programs.

    This manual on air conditioning is one of a series of power mechanics texts and visual aids covering theory of operation, diagnosis, and repair. Information is presented for use by vocational students and teachers as well as shop servicemen and laymen. Focus is on air conditioning systems for mobile machines, but most of the information also…

  1. High Efficiency, Low Emission Refrigeration System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fricke, Brian A.; Sharma, Vishaldeep

    Supermarket refrigeration systems account for approximately 50% of supermarket energy use, placing this class of equipment among the highest energy consumers in the commercial building domain. In addition, the commonly used refrigeration system in supermarket applications is the multiplex direct expansion (DX) system, which is prone to refrigerant leaks due to its long lengths of refrigerant piping. This leakage reduces the efficiency of the system and increases the impact of the system on the environment. The high Global Warming Potential (GWP) of the hydrofluorocarbon (HFC) refrigerants commonly used in these systems, coupled with the large refrigerant charge and the highmore » refrigerant leakage rates leads to significant direct emissions of greenhouse gases into the atmosphere. Methods for reducing refrigerant leakage and energy consumption are available, but underutilized. Further work needs to be done to reduce costs of advanced system designs to improve market utilization. In addition, refrigeration system retrofits that result in reduced energy consumption are needed since the majority of applications address retrofits rather than new stores. The retrofit market is also of most concern since it involves large-volume refrigerant systems with high leak rates. Finally, alternative refrigerants for new and retrofit applications are needed to reduce emissions and reduce the impact on the environment. The objective of this Collaborative Research and Development Agreement (CRADA) between the Oak Ridge National Laboratory and Hill Phoenix is to develop a supermarket refrigeration system that reduces greenhouse gas emissions and has 25 to 30 percent lower energy consumption than existing systems. The outcomes of this project will include the design of a low emission, high efficiency commercial refrigeration system suitable for use in current U.S. supermarkets. In addition, a prototype low emission, high efficiency supermarket refrigeration system will be produced

  2. Measurement of Vehicle Air Conditioning Pull-Down Period

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thomas, John F.; Huff, Shean P.; Moore, Larry G.

    2016-08-01

    Air conditioner usage was characterized for high heat-load summer conditions during short driving trips using a 2009 Ford Explorer and a 2009 Toyota Corolla. Vehicles were parked in the sun with windows closed to allow the cabin to become hot. Experiments were conducted by entering the instrumented vehicles in this heated condition and driving on-road with the windows up and the air conditioning set to maximum cooling, maximum fan speed and the air flow setting to recirculate cabin air rather than pull in outside humid air. The main purpose was to determine the length of time the air conditioner systemmore » would remain at or very near maximum cooling power under these severe-duty conditions. Because of the variable and somewhat uncontrolled nature of the experiments, they serve only to show that for short vehicle trips, air conditioning can remain near or at full cooling capacity for 10-minutes or significantly longer and the cabin may be uncomfortably warm during much of this time.« less

  3. A review of pulse tube refrigeration

    NASA Technical Reports Server (NTRS)

    Radebaugh, Ray

    1990-01-01

    This paper reviews the development of the three types of pulse tube refrigerators: basic, resonant, and orifice types. The principles of operation are given. It is shown that the pulse tube refrigerator is a variation of the Stirling-cycle refrigerator, where the moving displacer is substituted by a heat transfer mechanism or by an orifice to bring about the proper phase shifts between pressure and mass flow rate. A harmonic analysis with phasors is described which gives reasonable results for the refrigeration power, yet is simple enough to make clear the processes which give rise to the refrigeration. The efficiency and refrigeration power are compared with those of other refrigeration cycles. A brief review is given of the research being done at various laboratories on both one- and two-stage pulse tubes. A preliminary assessment of the role of pulse tube refrigerators is discussed.

  4. 40 CFR Appendix D to Subpart A of... - Harmonized Tariff Schedule Description of Products That May Contain Controlled Substances in...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Conditioning/Heat Pump Equipment Domestic and commercial air conditioning and refrigeration equipment fall... cooling/heat cycle. 8415.82.00 Other, incorporating a refrigerating unit— Self-contained machines and... refrigerating or freezing equipment, electric or other; heat pumps, other than air conditioning machines of...

  5. 40 CFR Appendix D to Subpart A of... - Harmonized Tariff Schedule Description of Products That May Contain Controlled Substances in...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Conditioning/Heat Pump Equipment Domestic and commercial air conditioning and refrigeration equipment fall... cooling/heat cycle. 8415.82.00 Other, incorporating a refrigerating unit— Self-contained machines and... refrigerating or freezing equipment, electric or other; heat pumps, other than air conditioning machines of...

  6. 40 CFR Appendix D to Subpart A of... - Harmonized Tariff Schedule Description of Products That May Contain Controlled Substances in...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Conditioning/Heat Pump Equipment Domestic and commercial air conditioning and refrigeration equipment fall... cooling/heat cycle. 8415.82.00 Other, incorporating a refrigerating unit— Self-contained machines and... refrigerating or freezing equipment, electric or other; heat pumps, other than air conditioning machines of...

  7. 40 CFR Appendix D to Subpart A of... - Harmonized Tariff Schedule Description of Products That May Contain Controlled Substances in...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Conditioning/Heat Pump Equipment Domestic and commercial air conditioning and refrigeration equipment fall... cooling/heat cycle. 8415.82.00 Other, incorporating a refrigerating unit— Self-contained machines and... refrigerating or freezing equipment, electric or other; heat pumps, other than air conditioning machines of...

  8. 40 CFR Appendix D to Subpart A of... - Harmonized Tariff Schedule Description of Products That May Contain Controlled Substances in...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Conditioning/Heat Pump Equipment Domestic and commercial air conditioning and refrigeration equipment fall... cooling/heat cycle. 8415.82.00 Other, incorporating a refrigerating unit— Self-contained machines and... refrigerating or freezing equipment, electric or other; heat pumps, other than air conditioning machines of...

  9. 10 CFR 431.62 - Definitions concerning commercial refrigerators, freezers and refrigerator-freezers.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... functional characteristics that affect energy consumption. Commercial refrigerator, freezer, and refrigerator... formed by the plane of the door, when the equipment is viewed in cross-section; and (2) For equipment...

  10. Low temperature air with high IAQ for dry climates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Scofield, C.M.; Des Champs, N.H.

    1995-01-01

    This article describes how low temperature supply air and air-to-air heat exchangers can furnish 100% outdoor air with reduced peak energy demands. The use of low temperature supply air systems in arid climates greatly simplifies the air-conditioning design. Risks associated with moisture migration and sweating of duct and terminal equipment are reduced. Insulation and vapor barrier design requirements are not nearly as critical as they are in the humid, ambient conditions that exist in the eastern United States. The introduction of outdoor air to meet ASHRAE Standard 62-1989 becomes far less taxing on the mechanical cooling equipment because of themore » lower enthalpy levels of the dry western climate. Energy costs to assure indoor air quality (IAQ) are lower than for more tropical climates. In arid regions, maintaining acceptable indoor relative humidity (RH) levels becomes a major IAQ concern. For the western United States, coupling an air-to-air heat exchanger to direct (adiabatic) evaporative coolers can greatly reduce low temperature supply air refrigeration energy requirements and winter humidification costs while ensuring proper ventilation.« less

  11. Diesel-Powered Heavy-Duty Refrigeration Unit Noise

    DOT National Transportation Integrated Search

    1976-01-01

    A series of noise measurements were performed on a diesel-powered heavy-duty refrigeration unit. Noise survey information collected included: polar plots of the 'A Weighted' noise levels of the unit under maximum and minimum load conditions; a linear...

  12. High speed variable delivery helical screw compressor/expander automotive air conditioning and waste heat energy recovery system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gagnon, J.A.; Schaefer, D.D.; Shaw, D.N.

    1980-09-02

    A compact, helical screw compressor/expander unit is described that is mounted in a vehicle and connected to the vehicle engine driven drive shaft has inlet and outlet ports and a capacity control slide valve and a pressure matching or volume ratio slide valve, respectively, for said ports. A refrigerant loop includes the compressor, a condenser mounted in the path of air flow over the engine and an evaporator mounted in a fresh air/cab return air flow duct for the occupant. Heat pipes thermally connect the cab air flow duct to the engine exhaust system which also bears the vapor boiler.more » Selectively operated damper valves control the fresh air/cab return air for passage selectively over the evaporator coil and the heat pipes as well as the exhaust gas flow over opposite ends of the heat pipes and the vapor boiler.« less

  13. Application of solar energy to air-conditioning

    NASA Technical Reports Server (NTRS)

    Harstad, A. J.; Nash, J. M.

    1978-01-01

    Results of survey of application of solar energy to air-conditioning systems are summarized in report. Survey reviewed air-conditioning techniques that are most likely to find residential applications and that are compatible with solar-energy systems being developed.

  14. 46 CFR 154.1720 - Indirect refrigeration.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Indirect refrigeration. 154.1720 Section 154.1720... § 154.1720 Indirect refrigeration. A refrigeration system that is used to cool acetaldehyde, ethylene oxide, or methyl bromide, must be an indirect refrigeration system that does not use vapor compression. ...

  15. 46 CFR 154.1720 - Indirect refrigeration.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 5 2011-10-01 2011-10-01 false Indirect refrigeration. 154.1720 Section 154.1720... § 154.1720 Indirect refrigeration. A refrigeration system that is used to cool acetaldehyde, ethylene oxide, or methyl bromide, must be an indirect refrigeration system that does not use vapor compression. ...

  16. 46 CFR 154.1720 - Indirect refrigeration.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 5 2012-10-01 2012-10-01 false Indirect refrigeration. 154.1720 Section 154.1720... § 154.1720 Indirect refrigeration. A refrigeration system that is used to cool acetaldehyde, ethylene oxide, or methyl bromide, must be an indirect refrigeration system that does not use vapor compression. ...

  17. 46 CFR 154.1720 - Indirect refrigeration.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 5 2014-10-01 2014-10-01 false Indirect refrigeration. 154.1720 Section 154.1720... § 154.1720 Indirect refrigeration. A refrigeration system that is used to cool acetaldehyde, ethylene oxide, or methyl bromide, must be an indirect refrigeration system that does not use vapor compression. ...

  18. 46 CFR 154.1720 - Indirect refrigeration.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 5 2013-10-01 2013-10-01 false Indirect refrigeration. 154.1720 Section 154.1720... § 154.1720 Indirect refrigeration. A refrigeration system that is used to cool acetaldehyde, ethylene oxide, or methyl bromide, must be an indirect refrigeration system that does not use vapor compression. ...

  19. Refrigerant leak detector

    NASA Technical Reports Server (NTRS)

    Byrne, E. J.

    1979-01-01

    Quantitative leak detector visually demonstrates refrigerant loss from precision volume of large refrigeration system over established period of time from single test point. Mechanical unit is less costly than electronic "sniffers" and is more reliable due to absence of electronic circuits that are susceptible to drift.

  20. Quantum-circuit refrigerator

    NASA Astrophysics Data System (ADS)

    Tan, Kuan Yen; Partanen, Matti; Lake, Russell E.; Govenius, Joonas; Masuda, Shumpei; Möttönen, Mikko

    2017-05-01

    Quantum technology promises revolutionizing applications in information processing, communications, sensing and modelling. However, efficient on-demand cooling of the functional quantum degrees of freedom remains challenging in many solid-state implementations, such as superconducting circuits. Here we demonstrate direct cooling of a superconducting resonator mode using voltage-controllable electron tunnelling in a nanoscale refrigerator. This result is revealed by a decreased electron temperature at a resonator-coupled probe resistor, even for an elevated electron temperature at the refrigerator. Our conclusions are verified by control experiments and by a good quantitative agreement between theory and experimental observations at various operation voltages and bath temperatures. In the future, we aim to remove spurious dissipation introduced by our refrigerator and to decrease the operational temperature. Such an ideal quantum-circuit refrigerator has potential applications in the initialization of quantum electric devices. In the superconducting quantum computer, for example, fast and accurate reset of the quantum memory is needed.

  1. Air conditioning system and component therefore distributing air flow from opposite directions

    NASA Technical Reports Server (NTRS)

    Obler, H. D.; Bauer, H. B. (Inventor)

    1974-01-01

    The air conditioning system comprises a plurality of separate air conditioning units coupled to a common supply duct such that air may be introduced into the supply duct in two opposite flow directions. A plurality of outlets such as registers or auxiliary or branch ducts communicate with the supply duct and valve means are disposed in the supply duct at at least some of the outlets for automatically channelling a controllable amount of air from the supply duct to the associated outlet regardless of the direction of air flow within the supply duct. The valve means comprises an automatic air volume control apparatus for distribution within the air supply duct into which air may be introduced from two opposite directions. The apparatus incorporates a freely swinging movable vane in the supply duct to automatically channel into the associated outlet only the deflected air flow which has the higher relative pressure.

  2. Field test and simulation evaluation of variable refrigerant flow systems performance

    DOE PAGES

    Lee, Je Hyeon; Im, Piljae; Song, Young-hak

    2017-10-24

    Our study aims to compare the performance of a Variable Refrigerant Flow (VRF) system with a Roof Top Unit, (RTU) and a variable-air-volume (VAV) system through field tests and energy simulations. The field test was conducted in as similar conditions as possible between the two systems, such as the installation and operating environments of heating, the ventilation and air conditioning (HVAC) system, including internal heat gain and outdoor conditions, including buildings to compare the performance of the two systems accurately. A VRF system and RTU were installed at the test building located in Oak Ridge, Tennessee, in the USA. Themore » same internal heat gain was generated at the same operating time of the two systems using lighting, electric heaters, and humidifiers inside the building. The HVAC system was alternately operated between cooling and heating operations to acquire energy performance data and to compare energy usage. Furthermore, an hourly building energy simulation model was developed with regard to the VRF system and RTU, and then the model was calibrated using actual measured data. Then, annual energy consumption of the two systems were compared and analyzed using the calibrated model. Moreover, additional analysis was conducted when the controlled discharge air temperature in the RTU was changed. The field test result showed that when energy consumptions of two systems were compared at the same outdoor conditions, using the weather-normalized model, the VRF system exhibited an energy reduction of approximately 17% during cooling operation and of approximately 74% during heating operations. A comparison on the annual energy consumption using simulations showed that the VRF system reduced energy consumption more than that of the RTU by 60%. Furthermore, when the discharge air temperature in the RTU was controlled according to the outdoor air temperature, energy consumption of the RTU was reduced by 6% in cooling operations and by 18% in heating

  3. Field test and simulation evaluation of variable refrigerant flow systems performance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Je Hyeon; Im, Piljae; Song, Young-hak

    Our study aims to compare the performance of a Variable Refrigerant Flow (VRF) system with a Roof Top Unit, (RTU) and a variable-air-volume (VAV) system through field tests and energy simulations. The field test was conducted in as similar conditions as possible between the two systems, such as the installation and operating environments of heating, the ventilation and air conditioning (HVAC) system, including internal heat gain and outdoor conditions, including buildings to compare the performance of the two systems accurately. A VRF system and RTU were installed at the test building located in Oak Ridge, Tennessee, in the USA. Themore » same internal heat gain was generated at the same operating time of the two systems using lighting, electric heaters, and humidifiers inside the building. The HVAC system was alternately operated between cooling and heating operations to acquire energy performance data and to compare energy usage. Furthermore, an hourly building energy simulation model was developed with regard to the VRF system and RTU, and then the model was calibrated using actual measured data. Then, annual energy consumption of the two systems were compared and analyzed using the calibrated model. Moreover, additional analysis was conducted when the controlled discharge air temperature in the RTU was changed. The field test result showed that when energy consumptions of two systems were compared at the same outdoor conditions, using the weather-normalized model, the VRF system exhibited an energy reduction of approximately 17% during cooling operation and of approximately 74% during heating operations. A comparison on the annual energy consumption using simulations showed that the VRF system reduced energy consumption more than that of the RTU by 60%. Furthermore, when the discharge air temperature in the RTU was controlled according to the outdoor air temperature, energy consumption of the RTU was reduced by 6% in cooling operations and by 18% in heating

  4. Thermoelectric refrigerator having improved temperature stabilization means

    DOEpatents

    Falco, Charles M.

    1982-01-01

    A control system for thermoelectric refrigerators is disclosed. The thermoelectric refrigerator includes at least one thermoelectric element that undergoes a first order change at a predetermined critical temperature. The element functions as a thermoelectric refrigerator element above the critical temperature, but discontinuously ceases to function as a thermoelectric refrigerator element below the critical temperature. One example of such an arrangement includes thermoelectric refrigerator elements which are superconductors. The transition temperature of one of the superconductor elements is selected as the temperature control point of the refrigerator. When the refrigerator attempts to cool below the point, the metals become superconductors losing their ability to perform as a thermoelectric refrigerator. An extremely accurate, first-order control is realized.

  5. The microbiological quality of air improves when using air conditioning systems in cars.

    PubMed

    Vonberg, Ralf-Peter; Gastmeier, Petra; Kenneweg, Björn; Holdack-Janssen, Hinrich; Sohr, Dorit; Chaberny, Iris F

    2010-06-01

    Because of better comfort, air conditioning systems are a common feature in automobiles these days. However, its impact on the number of particles and microorganisms inside the vehicle--and by this its impact on the risk of an allergic reaction--is yet unknown. Over a time period of 30 months, the quality of air was investigated in three different types of cars (VW Passat, VW Polo FSI, Seat Alhambra) that were all equipped with a automatic air conditioning system. Operation modes using fresh air from outside the car as well as circulating air from inside the car were examined. The total number of microorganisms and the number of mold spores were measured by impaction in a high flow air sampler. Particles of 0.5 to 5.0 microm diameter were counted by a laser particle counter device. Overall 32 occasions of sampling were performed. The concentration of microorganisms outside the cars was always higher than it was inside the cars. Few minutes after starting the air conditioning system the total number of microorganisms was reduced by 81.7%, the number of mold spores was reduced by 83.3%, and the number of particles was reduced by 87.8%. There were no significant differences neither between the types of cars nor between the types of operation mode of the air conditioning system (fresh air vs. circulating air). All parameters that were looked for in this study improved during utilization of the car's air conditioning system. We believe that the risk of an allergic reaction will be reduced during use also. Nevertheless, we recommend regular maintenance of the system and replacement of older filters after defined changing intervals.

  6. Air quality and passenger comfort in an air-conditioned bus micro-environment.

    PubMed

    Zhu, Xiaoxuan; Lei, Li; Wang, Xingshen; Zhang, Yinghui

    2018-04-12

    In this study, passenger comfort and the air pollution status of the micro-environmental conditions in an air-conditioned bus were investigated through questionnaires, field measurements, and a numerical simulation. As a subjective analysis, passengers' perceptions of indoor environmental quality and comfort levels were determined from questionnaires. As an objective analysis, a numerical simulation was conducted using a discrete phase model to determine the diffusion and distribution of pollutants, including particulate matter with a diameter < 10 μm (PM 10 ), which were verified by experimental results. The results revealed poor air quality and dissatisfactory thermal comfort conditions in Jinan's air-conditioned bus system. To solve these problems, three scenarios (schemes A, B, C) were designed to alter the ventilation parameters. According to the results of an improved simulation of these scenarios, reducing or adding air outputs would shorten the time taken to reach steady-state conditions and weaken the airflow or lower the temperature in the cabin. The airflow pathway was closely related to the layout of the air conditioning. Scheme B lowered the temperature by 0.4 K and reduced the airflow by 0.01 m/s, while scheme C reduced the volume concentration of PM 10 to 150 μg/m 3 . Changing the air supply angle could further improve the airflow and reduce the concentration of PM 10 . With regard to the perception of airflow and thermal comfort, the scheme with an airflow provided by a 60° nozzle was considered better, and the concentration of PM 10 was reduced to 130 μg/m 3 .

  7. Refrigerated cryogenic envelope

    DOEpatents

    Loudon, John D.

    1976-11-16

    An elongated cryogenic envelope including an outer tube and an inner tube coaxially spaced within said inner tube so that the space therebetween forms a vacuum chamber for holding a vacuum. The inner and outer tubes are provided with means for expanding or contracting during thermal changes. A shield is located in the vacuum chamber intermediate the inner and outer tubes; and, a refrigeration tube for directing refrigeration to the shield is coiled about at least a portion of the inner tube within the vacuum chamber to permit the refrigeration tube to expand or contract along its length during thermal changes within said vacuum chamber.

  8. Direct condensation refrigerant recovery and restoration system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grant, D.C.H.

    1992-03-10

    This patent describes a refrigerant recovery and purification system for removing gaseous refrigerant from a disabled refrigeration unit, cleaning the refrigerant of contaminants, and converting the gaseous refrigerant to a liquid state for storage. It comprises a low pressure inlet section; a high pressure storage section; the low pressure inlet section comprising: an oil and refrigerant gas separator, including a separated oil removal means, first conduit means for connecting an inlet of the separator to the disabled refrigerant unit, a slack-sided accumulator, second conduit means connecting the separator to the slack-sided accumulator, a reclaim condenser, third conduit means connecting themore » separator and the reclaim condenser in series, an evaporator coil in the reclaim condenser connectable to a conventional operating refrigeration system for receiving a liquid refrigerant under pressure for expansion therein, the evaporator coil forming a condensing surface for condensing the refrigerant gas at near atmospheric pressure in the condenser, a liquid receiver, a reclaimed refrigerant storage tank, fourth conduit means further connecting the liquid receiver in series with the reclaim condenser, downstream thereof, means between the reclaim condenser and the liquid receiver.« less

  9. More effective wet turboexpander for the nuclotron helium refrigerators

    NASA Astrophysics Data System (ADS)

    Agapov, N. N.; Batin, V. I.; Davydov, A. B.; Khodzhibagian, H. G.; Kovalenko, A. D.; Perestoronin, G. A.; Sergeev, I. I.; Stulov, V. L.; Udut, V. N.

    2002-05-01

    In order to raise the efficiency of cryogenic refrigerators and liquefiers, it is very important to replace the JT process, which involves large losses of exergy, by the improved process of adiabatic expansion. This paper presents test results of the second-generation wet turboexpander for the Nuclotron helium refrigerators. A rotor is fixed vertically by a combination of gas and hydrostatic oil bearings. The turbines are capable to operate at a speed of 300,000 revolutions per minute. The power generated by the turbine goes into friction in the oil bearings. The design of the new wet turboexpander was executed in view of those specific conditions, which arise due to the operation at liquid helium temperature. The application of this new expansion machine increases the efficiency of the Nuclotron helium refrigerators by 25%.

  10. Influence of the astrophysical requirements on dilution refrigerator design

    NASA Astrophysics Data System (ADS)

    Sirbi, Adriana; Pouilloux, Benjamin; Benoit, Alain; Lamarre, Jean-Michel

    1999-12-01

    A 300 K to 0.1 K space prototype is developed in cooperation with CRTBT, IAS Air Liquide and RAL, under CNES and ESA contracts, to demonstrate the feasibility of such a cooling system. The heart of the system is a 4 K to 0.1 K open cycle dilution refrigerator circulating 3He and 4He. All the tests are now completed. The design of this system is chosen like the nominal solution for PLANCK/HFI instrument. Since scientific requirements have changed, the design of the prototype has to be adjusted to receive the focal plane of HFI (High Frequency Instrument) instrument of PLANCK. The main goal is to optimise 3He consumption without degrading both mechanical and thermal performances. This paper presents the prototype architecture, the dilution refrigerator and the associated tests. The suitability to PLANCK mission is also assessed.

  11. Air regenerating and conditioning

    NASA Technical Reports Server (NTRS)

    Grishayenkov, B. G.

    1975-01-01

    Various physicochemical methods of regenerating and conditioning air for spacecraft are described with emphasis on conditions which affect efficiency of the system. Life support systems used in closed, hermetically sealed environments are discussed with references to actual application in the Soviet Soyuz and Voskhod manned spacecraft. Temperature and humidity control, removal of carbon dioxide, oxygen regeneration, and removal of bacteria and viruses are among the factors considered.

  12. Status Of Sorption Cryogenic Refrigeration

    NASA Technical Reports Server (NTRS)

    Jones, Jack A.

    1988-01-01

    Report reviews sorption refrigeration. Developed for cooling infrared detectors, cryogenic research, and other advanced applications, sorption refrigerators have few moving parts, little vibration, and lifetimes of 10 years or more. Describes types of sorption stages, multistage and hybrid refrigeration systems, power requirements, cooling capacities, and advantages and disadvantages of various stages and systems.

  13. The microbiological quality of air improves when using air conditioning systems in cars

    PubMed Central

    2010-01-01

    Background Because of better comfort, air conditioning systems are a common feature in automobiles these days. However, its impact on the number of particles and microorganisms inside the vehicle - and by this its impact on the risk of an allergic reaction - is yet unknown. Methods Over a time period of 30 months, the quality of air was investigated in three different types of cars (VW Passat, VW Polo FSI, Seat Alhambra) that were all equipped with a automatic air conditioning system. Operation modes using fresh air from outside the car as well as circulating air from inside the car were examined. The total number of microorganisms and the number of mold spores were measured by impaction in a high flow air sampler. Particles of 0.5 to 5.0 μm diameter were counted by a laser particle counter device. Results Overall 32 occasions of sampling were performed. The concentration of microorganisms outside the cars was always higher than it was inside the cars. Few minutes after starting the air conditioning system the total number of microorganisms was reduced by 81.7%, the number of mold spores was reduced by 83.3%, and the number of particles was reduced by 87.8%. There were no significant differences neither between the types of cars nor between the types of operation mode of the air conditioning system (fresh air vs. circulating air). All parameters that were looked for in this study improved during utilization of the car's air conditioning system. Conclusions We believe that the risk of an allergic reaction will be reduced during use also. Nevertheless, we recommend regular maintenance of the system and replacement of older filters after defined changing intervals. PMID:20515449

  14. 40 CFR 86.165-12 - Air conditioning idle test procedure.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... at idle when CO2 emissions are measured without any air conditioning systems operating, followed by a ten-minute period at idle when CO2 emissions are measured with the air conditioning system operating... section, turn on the vehicle's air conditioning system. Set automatic air conditioning systems to a...

  15. Refrigeration system oil measurement and sampling device

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baker, J.A.

    1989-09-19

    This patent describes a sampling device for use with a refrigeration system having a refrigerant and oil entrained therein. It comprises: an elongated reservoir having a stepped bore therein for receiving refrigerant and oil carried thereby. The reservoir comprising a large bore diameter upper section having an index marking the fill level of the reservoir and a small bore diameter lower section having graduation marks for oil level measurement. The upper and lower sections comprising transparent material to allow observation of the contents, first valve means for coupling the reservoir to the refrigeration system to admit liquid refrigerant to themore » reservoir, second valve means for selectively coupling the reservoir to the low pressure side of the refrigeration system or to a vacuum line to evacuate vaporized refrigerant from the reservoir, and means for supplying heat to the refrigerant in the bore to facilitate vaporization of the refrigerant.« less

  16. Refrigeration for Cryogenic Sensors

    NASA Technical Reports Server (NTRS)

    Gasser, M. G. (Editor)

    1983-01-01

    Research in cryogenically cooled refrigerators is discussed. Low-power Stirling cryocoolers; spacecraft-borne long-life units; heat exchangers; performance tests; split-stirling, linear-resonant, cryogenic refrigerators; and computer models are among the topics discussed.

  17. 10 CFR 431.62 - Definitions concerning commercial refrigerators, freezers and refrigerator-freezers.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ...-section. Basic model means, with respect to commercial refrigerators, freezers, and refrigerator-freezers... 430); (2) Is not designed and marketed exclusively for medical, scientific, or research purposes; (3... standard product temperature-measuring device. Vertical Closed means equipment with hinged or sliding doors...

  18. Influence of the nozzle angle on refrigeration performance of a gas wave refrigerator

    NASA Astrophysics Data System (ADS)

    Liu, P.; Zhu, Y.; Wang, H.; Zhu, C.; Zou, J.; Wu, J.; Hu, D.

    2017-05-01

    A gas wave refrigerator (GWR) is a novel refrigerating device that refrigerates a medium by shock waves and expansion waves generated by gas pressure energy. In a typical GWR, the injection energy losses between the nozzle and the expansion tube are essential factors which influence the refrigeration efficiency. In this study, numerical simulations are used to analyze the underlying mechanism of the injection energy losses. The results of simulations show that the vortex loss, mixing energy loss, and oblique shock wave reflection loss are the main factors contributing to the injection energy losses in the expansion tube. Furthermore, the jet angle of the gas is found to dominate the injection energy losses. Therefore, the optimum jet angle is theoretically calculated based on the velocity triangle method. The value of the optimum jet angle is found to be 4^{circ }, 8^{circ }, and 12^{circ } when the refrigeration efficiency is the first-order, second-order, and third-order maximum value over all working ranges of jet frequency, respectively. Finally, a series of experiments are conducted with the jet angle ranging from -4^{circ } to 12^{circ } at a constant expansion ratio. The results indicate the optimal jet angle obtained by the experiments is in good agreement with the calculated value. The isentropic refrigeration efficiency increased by about 4 % after the jet angle was optimized.

  19. Experimental evaluation of automotive air-conditioning using HFC-134a and HC-134a

    NASA Astrophysics Data System (ADS)

    Nasution, Henry; Zainudin, Muhammad Amir; Aziz, Azhar Abdul; Latiff, Zulkarnain Abdul; Perang, Mohd Rozi Mohd; Rahman, Abd Halim Abdul

    2012-06-01

    An experimental study to evaluate the energy consumption of an automotive air conditioning is presented. In this study, these refrigerants will be tested using the experimental rig which simulated the actual cars as a cabin complete with a cooling system component of the actual car that is as the blower, evaporator, condenser, radiators, electric motor, which acts as a vehicle engine, and then the electric motor will operate the compressor using a belt and pulley system, as well as to the alternator will recharge the battery. The compressor working with the fluids HFC-134a and HC-134a and has been tested varying the speed in the range 1000, 1500, 2000 and 2500 rpm. The measurements taken during the one hour experimental periods at 2-minutes interval times for temperature setpoint of 20°C with internal heat loads 0, 500, 700 and 1000 W. The final results of this study show an overall better energy consumption of the HFC-134a compared with the HC-134a.

  20. Stability evaluation of 7 % chloral hydrate syrup contained in mono and multi-dose bottles under room and refrigeration conditions.

    PubMed

    Bustos-Fierro, C; Olivera, M E; Manzo, P G; Jiménez-Kairuz, Álvaro F

    2013-01-01

    To evaluate the stability of an extemporaneously prepared 7% chloral hydrate syrup under different conditions of storage and dispensing. Three batches of 7% chloral hydrate syrup were prepared. Each batch was stored in 50 light-resistant glass containers of 60 mL with child-resistant caps and in two bottles of 1000 mL to simulate two forms of dispensing, mono and multi-dose, respectively. Twenty five mono-dose bottles and a multi-dose bottle of each batch were stored under room conditions (20 ± 1 °C) and the rest of the samples were stored in the fridge (5 ± 2 °C). The physical, chemical and microbiological stability was evaluated for 180 days. Stability was defined as retention of at least 95% of the initial concentration of chloral hydrate, the absence of both visible particulate matter, or color and/or odor changes and the compliance with microbiological attributes of non-sterile pharmaceutical products. At least 98% of the initial chloral hydrate concentration remained throughout the 180-day study period. There were no detectable changes in color, odor, specific gravity and pH and no visible microbial growth. These results were not affected by storage, room or refrigeration conditions or by the frequent opening or closing of the multi-dose containers. Extemporaneously compounded 7% chloral hydrate syrup was stable for at least 180 days when stored in mono or multi-dose light-resistant glass containers at room temperature and under refrigeration. Copyright © 2013 SEFH. Published by AULA MEDICA. All rights reserved.

  1. THERMODYNAMIC PROPERTIES OF SELECTED HFC REFRIGERANTS

    EPA Science Inventory

    Hydrofluorocarbon (HFC) refrigerants are possible alternatives to replace ozone-depleting chlorofluorocarbon and hydrochlorofluorocarbon (HCFC) refrigerants. The flammability of a proposed new refrigerant is a major consideration in assessing its utility for a particular applicat...

  2. General collaboration offer of Johnson Controls regarding the performance of air conditioning automatic control systems and other buildings` automatic control systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gniazdowski, J.

    1995-12-31

    JOHNSON CONTROLS manufactures measuring and control equipment (800 types) and is as well a {open_quotes}turn-key{close_quotes} supplier of complete automatic controls systems for heating, air conditioning, ventilation and refrigerating engineering branches. The Company also supplies Buildings` Computer-Based Supervision and Monitoring Systems that may be applied in both small and large structures. Since 1990 the company has been performing full-range trade and contracting activities on the Polish market. We have our own well-trained technical staff and we collaborate with a series of designing and contracting enterprises that enable us to have our projects carried out all over Poland. The prices of ourmore » supplies and services correspond with the level of the Polish market.« less

  3. Coefficient of performance and its bounds with the figure of merit for a general refrigerator

    NASA Astrophysics Data System (ADS)

    Long, Rui; Liu, Wei

    2015-02-01

    A general refrigerator model with non-isothermal processes is studied. The coefficient of performance (COP) and its bounds at maximum χ figure of merit are obtained and analyzed. This model accounts for different heat capacities during the heat transfer processes. So, different kinds of refrigerator cycles can be considered. Under the constant heat capacity condition, the upper bound of the COP is the Curzon-Ahlborn (CA) coefficient of performance and is independent of the time durations of the heat exchanging processes. With the maximum χ criterion, in the refrigerator cycles, such as the reversed Brayton refrigerator cycle, the reversed Otto refrigerator cycle and the reversed Atkinson refrigerator cycle, where the heat capacity in the heat absorbing process is not less than that in the heat releasing process, their COPs are bounded by the CA coefficient of performance; otherwise, such as for the reversed Diesel refrigerator cycle, its COP can exceed the CA coefficient of performance. Furthermore, the general refined upper and lower bounds have been proposed.

  4. CO2 Supermarket Refrigeration Systems for Southeast Asia and the USA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sharma, Vishaldeep; Fricke, Brian A; Bansal, Pradeep

    This paper presents a comparative analysis of the annual energy consumption of these refrigeration systems in eighty eight cities from all climate zones in Southeast Asia. Also, the performance of the CO2 refrigeration systems is compared to the baseline R404A multiplex direct expansion (DX) system. Finally, the overall performance of the CO2 refrigeration systems in various climatic conditions in Southeast Asia is compared to that in the United States. For the refrigeration systems investigated, it was found that the Transcritical Booster System with Bypass Compressor (TBS-BC) performs better or equivalent to the R404A multiplex DX system in the northern regionsmore » of Southeast Asia (China and Japan). In the southern regions of Southeast Asia (India, Bangladesh, Burma), the R404A multiplex DX system and the Combined Secondary Cascade (CSC) system performs better than the TBS-BC.« less

  5. Survival of rhizobia in two soils as influenced by storage conditions.

    PubMed

    Martyniuk, Stefan; Oroń, Jadwiga

    2008-01-01

    Two soils were kept moist at 4 degrees C, -20 degrees C or air-dried at 20-22 degrees C and after one week, one month, two months and six months of storage at these conditions changes in soil populations of Rhizobium leguminosarum bv. trifolii (Rlt) and Rhizobium leguminosarum bv. viciae (Rlv) were examined. In one air-dried soil (from Grab6w) markedly lower numbers of both Rlt and Rlv., as compared to the refrigerated or frozen samples, were found already after 1 week of storage. In the case of the second soil (from Osiny) air-drying significantly reduced numbers of the rhizobia after 2 and 6 months of storage. The soil from Osiny contained higher amounts of C org, total N and clay than the Grabów soil. Both soils stored moist in a refrigerator (4 degrees C) or frozen (-20 degrees C) retained similar populations of the examined rhizobia throughout the entire storage period, indicating that soil freezing is not detrimental for the examined rhizobia.

  6. Thermodynamic design of hydrogen liquefaction systems with helium or neon Brayton refrigerator

    NASA Astrophysics Data System (ADS)

    Chang, Ho-Myung; Ryu, Ki Nam; Baik, Jong Hoon

    2018-04-01

    A thermodynamic study is carried out for the design of hydrogen liquefaction systems with helium (He) or neon (Ne) Brayton refrigerator. This effort is motivated by our immediate goal to develop a small-capacity (100 L/h) liquefier for domestic use in Korea. Eight different cycles are proposed and their thermodynamic performance is investigated in comparison with the existing liquefaction systems. The proposed cycles include the standard and modified versions of He Brayton refrigerators whose lowest temperature is below 20 K. The Brayton refrigerator is in direct thermal contact with the hydrogen flow at atmospheric pressure from ambient-temperature gas to cryogenic liquid. The Linde-Hampson system pre-cooled by a Ne Brayton refrigerator is also considered. Full cycle analysis is performed with the real properties of fluids to estimate the figure of merit (FOM) under an optimized operation condition. It is concluded that He Brayton refrigerators are feasible for this small-scale liquefaction, because a reasonably high efficiency can be achieved with simple and safe (low-pressure) operation. The complete cycles with He Brayton refrigerator are presented for the development of a prototype, including the ortho-to-para conversion.

  7. Testing of refrigerant mixtures in residential heat pumps. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Judge, J.F.; Radermacher, R.

    1995-08-01

    To contribute to finding the proper substitute for R-22, a test facility was designed and built to measure the steady state and cyclic performance of two air-to-air heat pumps of 2 & 3 refrigeration-ton (RT) capacity. The performance of heat pumps is evaluated based on ASHRAE Standard 116-1983 {open_quotes}Method of Testing for Seasonal Efficiency of Unitary Air-conditioners and Heat Pumps{close_quotes} (47). This standard includes six steady-state tests; three cooling tests (A, B, and C) and three heating tests (High Temperature (47S), Frost Accumulation (35F), and Low Temperature (17L)). The standard also includes two cyclic tests; a cyclic cooling test (D)more » and a cyclic heating test (47C). The results of these tests are used to evaluate the seasonal performance of a heat pump. In the work presented here, two heat pumps (test units) are used. Test unit 1 is a 2 RT split heat pump system using a reciprocating compressor, a short tube, and a thermostatic expansion valve. Test unit 2 is a 3 RT split heat pump system using a scroll compressor and two thermostatic expansion valves. This study investigates four different possibilities for replacing R-22 with R-32/125/134a (30/10/60 wt.%) (Mixture 1) or R-32/125/134a (23/25/52 wt.%) (Mixture 2). The first and simplest scenario is the retrofit with no hardware modifications. The second possibility investigated is altering the refrigerant path to attain a near-counterflow configuration in the indoor coil for the heating mode. The third and most complex possibility is the soft optimization which consists of maximizing the COPs of R-22 and Mixture 2 in the heating and cooling modes by optimizing refrigerant charge and expansion devices. The fourth option investigated is the suction-line heat exchange (SLHX). In unit 1, the first, second, and third scenarios are investigated and in unit 2, the first, second, and fourth scenarios are investigated.« less

  8. Method and apparatus for desuperheating refrigerant

    DOEpatents

    Zess, James A.; Drost, M. Kevin; Call, Charles J.

    1997-01-01

    The present invention is an apparatus and method for de-superheating a primary refrigerant leaving a compressor wherein a secondary refrigerant is used between the primary refrigerant to be de-superheated. Reject heat is advantageously used for heat reclaim.

  9. Performance modeling of optical refrigerators

    NASA Astrophysics Data System (ADS)

    Mills, Gary; Mord, Allan

    2006-02-01

    Optical refrigeration using anti-Stokes fluorescence in solids has several advantages over more conventional techniques including low mass, low volume, low cost and no vibration. It also has the potential of allowing miniature cryocoolers on the scale of a few cubic centimeters. It has been the topic of analysis and experimental work by several organizations. In 2003, we demonstrated the first optical refrigerator. We have developed a comprehensive system-level performance model of optical refrigerators. Our current version models the refrigeration cycle based on the fluorescent material emission and absorption data at ambient and reduced temperature for the Ytterbium-ZBLAN glass (Yb:ZBLAN) cooling material. It also includes the heat transfer into the refrigerator cooling assembly due to radiation and conduction. In this paper, we report on modeling results which reveal the interplay between size, power input, and cooling load. This interplay results in practical size limitations using Yb:ZBLAN.

  10. Experimental study on the performance of the vapor injection refrigeration system with an economizer for intermediate pressures

    NASA Astrophysics Data System (ADS)

    Moon, Chang-Uk; Choi, Kwang-Hwan; Yoon, Jung-In; Kim, Young-Bok; Son, Chang-Hyo; Ha, Soo-Jung; Jeon, Min-Ju; An, Sang-Young; Lee, Joon-Hyuk

    2018-04-01

    In this study, to investigate the performance characteristics of vapor injection refrigeration system with an economizer at an intermediate pressure, the vapor injection refrigeration system was analyzed under various experiment conditions. As a result, the optimum design data of the vapor injection refrigeration system with an economizer were obtained. The findings from this study can be summarized as follows. The mass flow rate through the compressor increases with intermediate pressure. The compression power input showed an increasing trend under all the test conditions. The evaporation capacity increased and then decreased at the intermediate pressure, and as such, it became maximum at the given intermediate pressure. The increased mass flow rate of the by-passed refrigerant enhanced the evaporation capacity at the low medium pressure range, but the increased saturation temperature limited the subcooling degree of the liquid refrigerant after the application of the economizer when the intermediate pressure kept rising, and degenerated the evaporation capacity. The coefficient of performance (COP) increased and then decreased with respect to the intermediate pressures under all the experiment conditions. Nevertheless, there was an optimum intermediate pressure for the maximum COP under each experiment condition. Therefore, the optimum intermediate pressure in this study was found at -99.08 kPa, which is the theoretical standard medium pressure under all the test conditions.

  11. Measure Guideline: Air Conditioner Diagnostics, Maintenance, and Replacement

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Springer, D.; Dakin, B.

    2013-03-01

    This guideline responds to the need for an efficient means of identifying, diagnosing, and repairing faults in air conditioning systems in existing homes that are undergoing energy upgrades. Inadequate airflow due to constricted ducts or undersized filters, improper refrigerant charge, and other system defects can be corrected at a fraction of the cost of equipment replacement and can yield significant savings. The guideline presents a two-step approach to diagnostics and repair.

  12. Measure Guideline. Air Conditioner Diagnostics, Maintenance, and Replacement

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Springer, David; Dakin, Bill

    2013-03-01

    This guideline responds to the need for an efficient means of identifying, diagnosing, and repairing faults in air conditioning systems in existing homes that are undergoing energy upgrades. Inadequate airflow due to constricted ducts or undersized filters, improper refrigerant charge, and other system defects can be corrected at a fraction of the cost of equipment replacement and can yield significant savings. The guideline presents a two-step approach to diagnostics and repair.

  13. 46 CFR 151.40-11 - Refrigeration systems.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Refrigeration systems. 151.40-11 Section 151.40-11... Refrigeration systems. (a) Boiloff systems. The venting of cargo boiloff to atmosphere shall not be used as a...) Vapor compression, tank refrigeration, and secondary refrigeration systems: The required cooling...

  14. 46 CFR 151.40-11 - Refrigeration systems.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 5 2012-10-01 2012-10-01 false Refrigeration systems. 151.40-11 Section 151.40-11... Refrigeration systems. (a) Boiloff systems. The venting of cargo boiloff to atmosphere shall not be used as a...) Vapor compression, tank refrigeration, and secondary refrigeration systems: The required cooling...

  15. 46 CFR 151.40-11 - Refrigeration systems.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 5 2011-10-01 2011-10-01 false Refrigeration systems. 151.40-11 Section 151.40-11... Refrigeration systems. (a) Boiloff systems. The venting of cargo boiloff to atmosphere shall not be used as a...) Vapor compression, tank refrigeration, and secondary refrigeration systems: The required cooling...

  16. 46 CFR 151.40-11 - Refrigeration systems.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 5 2014-10-01 2014-10-01 false Refrigeration systems. 151.40-11 Section 151.40-11... Refrigeration systems. (a) Boiloff systems. The venting of cargo boiloff to atmosphere shall not be used as a...) Vapor compression, tank refrigeration, and secondary refrigeration systems: The required cooling...

  17. 46 CFR 151.40-11 - Refrigeration systems.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 5 2013-10-01 2013-10-01 false Refrigeration systems. 151.40-11 Section 151.40-11... Refrigeration systems. (a) Boiloff systems. The venting of cargo boiloff to atmosphere shall not be used as a...) Vapor compression, tank refrigeration, and secondary refrigeration systems: The required cooling...

  18. Reduced bleed air extraction for DC-10 cabin air conditioning

    NASA Technical Reports Server (NTRS)

    Newman, W. H.; Viele, M. R.; Hrach, F. J.

    1980-01-01

    It is noted that a significant fuel savings can be achieved by reducing bleed air used for cabin air conditioning. Air in the cabin can be recirculated to maintain comfortable ventilation rates but the quality of the air tends to decrease due to entrainment of smoke and odors. Attention is given to a development system designed and fabricated under the NASA Engine Component Improvement Program to define the recirculation limit for the DC-10. It is shown that with the system, a wide range of bleed air reductions and recirculation rates is possible. A goal of 0.8% fuel savings has been achieved which results from a 50% reduction in bleed extraction from the engine.

  19. A comparative study on the environmental impact of supermarket refrigeration systems using low GWP refrigerants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beshr, M.; Aute, V.; Sharma, V.

    Supermarket refrigeration systems have high environmental impact due to their large refrigerant charge and high leak rates. Consequently, the interest in using low GWP refrigerants such as carbon dioxide (CO 2) and new refrigerant blends is increasing. In this study, an open-source Life Cycle Climate Performance (LCCP) framework is presented and used to compare the environmental impact of four supermarket refrigeration systems: a transcritical CO 2 booster system, a cascade CO 2/N-40 system, a combined secondary circuit with central DX N-40/L-40 system, and a baseline multiplex direct expansion system utilizing R-404A and N-40. The study is performed for different climatesmore » within the USA using EnergyPlus to simulate the systems' hourly performance. Finally, further analyses are presented such as parametric, sensitivity, and uncertainty analyses to study the impact of different system parameters on the LCCP.« less

  20. A comparative study on the environmental impact of supermarket refrigeration systems using low GWP refrigerants

    DOE PAGES

    Beshr, M.; Aute, V.; Sharma, V.; ...

    2015-04-09

    Supermarket refrigeration systems have high environmental impact due to their large refrigerant charge and high leak rates. Consequently, the interest in using low GWP refrigerants such as carbon dioxide (CO 2) and new refrigerant blends is increasing. In this study, an open-source Life Cycle Climate Performance (LCCP) framework is presented and used to compare the environmental impact of four supermarket refrigeration systems: a transcritical CO 2 booster system, a cascade CO 2/N-40 system, a combined secondary circuit with central DX N-40/L-40 system, and a baseline multiplex direct expansion system utilizing R-404A and N-40. The study is performed for different climatesmore » within the USA using EnergyPlus to simulate the systems' hourly performance. Finally, further analyses are presented such as parametric, sensitivity, and uncertainty analyses to study the impact of different system parameters on the LCCP.« less

  1. Development of Low Global Warming Potential Refrigerant Solutions for Commercial Refrigeration Systems using a Life Cycle Climate Performance Design Tool

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abdelaziz, Omar; Fricke, Brian A; Vineyard, Edward Allan

    Commercial refrigeration systems are known to be prone to high leak rates and to consume large amounts of electricity. As such, direct emissions related to refrigerant leakage and indirect emissions resulting from primary energy consumption contribute greatly to their Life Cycle Climate Performance (LCCP). In this paper, an LCCP design tool is used to evaluate the performance of a typical commercial refrigeration system with alternative refrigerants and minor system modifications to provide lower Global Warming Potential (GWP) refrigerant solutions with improved LCCP compared to baseline systems. The LCCP design tool accounts for system performance, ambient temperature, and system load; systemmore » performance is evaluated using a validated vapor compression system simulation tool while ambient temperature and system load are devised from a widely used building energy modeling tool (EnergyPlus). The LCCP design tool also accounts for the change in hourly electricity emission rate to yield an accurate prediction of indirect emissions. The analysis shows that conventional commercial refrigeration system life cycle emissions are largely due to direct emissions associated with refrigerant leaks and that system efficiency plays a smaller role in the LCCP. However, as a transition occurs to low GWP refrigerants, the indirect emissions become more relevant. Low GWP refrigerants may not be suitable for drop-in replacements in conventional commercial refrigeration systems; however some mixtures may be introduced as transitional drop-in replacements. These transitional refrigerants have a significantly lower GWP than baseline refrigerants and as such, improved LCCP. The paper concludes with a brief discussion on the tradeoffs between refrigerant GWP, efficiency and capacity.« less

  2. 46 CFR 154.702 - Refrigerated carriage.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... FOR SELF-PROPELLED VESSELS CARRYING BULK LIQUEFIED GASES Design, Construction and Equipment Cargo Pressure and Temperature Control § 154.702 Refrigerated carriage. (a) Each refrigeration system must: (1... the purpose of this section, a “refrigeration unit” includes a compressor and its motors and controls...

  3. 46 CFR 154.702 - Refrigerated carriage.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... FOR SELF-PROPELLED VESSELS CARRYING BULK LIQUEFIED GASES Design, Construction and Equipment Cargo Pressure and Temperature Control § 154.702 Refrigerated carriage. (a) Each refrigeration system must: (1... the purpose of this section, a “refrigeration unit” includes a compressor and its motors and controls...

  4. 46 CFR 154.702 - Refrigerated carriage.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... FOR SELF-PROPELLED VESSELS CARRYING BULK LIQUEFIED GASES Design, Construction and Equipment Cargo Pressure and Temperature Control § 154.702 Refrigerated carriage. (a) Each refrigeration system must: (1... the purpose of this section, a “refrigeration unit” includes a compressor and its motors and controls...

  5. 46 CFR 154.702 - Refrigerated carriage.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... FOR SELF-PROPELLED VESSELS CARRYING BULK LIQUEFIED GASES Design, Construction and Equipment Cargo Pressure and Temperature Control § 154.702 Refrigerated carriage. (a) Each refrigeration system must: (1... the purpose of this section, a “refrigeration unit” includes a compressor and its motors and controls...

  6. 46 CFR 154.702 - Refrigerated carriage.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... FOR SELF-PROPELLED VESSELS CARRYING BULK LIQUEFIED GASES Design, Construction and Equipment Cargo Pressure and Temperature Control § 154.702 Refrigerated carriage. (a) Each refrigeration system must: (1... the purpose of this section, a “refrigeration unit” includes a compressor and its motors and controls...

  7. 40 CFR Appendix E to Subpart G of... - Unacceptable Substitutes Listed in the January 26, 1999 Final Rule, Effective January 26, 1999

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Refrigeration and Air-Conditioning Sector Unacceptable Substitutes End-use Substitute Decision Comments All refrigeration and air-conditioning end uses MT-31 Unacceptable Chemical contained in this blend presents...

  8. 40 CFR 82.306 - Prohibited products.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...) PROTECTION OF STRATOSPHERIC OZONE Ban on Refrigeration and Air-Conditioning Appliances Containing HCFCs § 82...-charged appliance component for air-conditioning or refrigeration appliances manufactured on or after...

  9. 40 CFR Appendix F to Subpart G of... - Unacceptable Substitutes Listed in the January 26, 1999 Final Rule, Effective January 26, 1999

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Refrigeration and Air-Conditioning Sector UnacceptabLe Substitutes End-use Substitute Decision Comments All refrigeration and air-conditioning end uses Hexafluoropropylene (HFP) and all HFP-containing blends Unacceptable...

  10. 40 CFR 82.306 - Prohibited products.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...) PROTECTION OF STRATOSPHERIC OZONE Ban on Refrigeration and Air-Conditioning Appliances Containing HCFCs § 82...-charged appliance component for air-conditioning or refrigeration appliances manufactured on or after...

  11. 10 CFR 431.85 - Materials incorporated by reference.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... (GAMA) merged in 2008 with the Air-Conditioning and Refrigeration Institute to become the Air-Conditioning, Heating, and Refrigeration Institute (AHRI). The Hydronics Institute BTS-2000 Testing Standard...

  12. 40 CFR Appendix E to Subpart G of... - Unacceptable Substitutes Listed in the January 26, 1999 Final Rule, Effective January 26, 1999

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Refrigeration and Air-Conditioning Sector Unacceptable Substitutes End-use Substitute Decision Comments All refrigeration and air-conditioning end uses MT-31 Unacceptable Chemical contained in this blend presents...

  13. 40 CFR Appendix E to Subpart G of... - Unacceptable Substitutes Listed in the January 26, 1999 Final Rule, Effective January 26, 1999

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Refrigeration and Air-Conditioning Sector Unacceptable Substitutes End-use Substitute Decision Comments All refrigeration and air-conditioning end uses MT-31 Unacceptable Chemical contained in this blend presents...

  14. 10 CFR 431.85 - Materials incorporated by reference.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... (GAMA) merged in 2008 with the Air-Conditioning and Refrigeration Institute to become the Air-Conditioning, Heating, and Refrigeration Institute (AHRI). The Hydronics Institute BTS-2000 Testing Standard...

  15. 40 CFR Appendix E to Subpart G of... - Unacceptable Substitutes Listed in the January 26, 1999 Final Rule, Effective January 26, 1999

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Refrigeration and Air-Conditioning Sector Unacceptable Substitutes End-use Substitute Decision Comments All refrigeration and air-conditioning end uses MT-31 Unacceptable Chemical contained in this blend presents...

  16. 40 CFR 82.306 - Prohibited products.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...) PROTECTION OF STRATOSPHERIC OZONE Ban on Refrigeration and Air-Conditioning Appliances Containing HCFCs § 82...-charged appliance component for air-conditioning or refrigeration appliances manufactured on or after...

  17. 10 CFR 431.85 - Materials incorporated by reference.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... (GAMA) merged in 2008 with the Air-Conditioning and Refrigeration Institute to become the Air-Conditioning, Heating, and Refrigeration Institute (AHRI). The Hydronics Institute BTS-2000 Testing Standard...

  18. 40 CFR Appendix F to Subpart G of... - Unacceptable Substitutes Listed in the January 26, 1999 Final Rule, Effective January 26, 1999

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Refrigeration and Air-Conditioning Sector UnacceptabLe Substitutes End-use Substitute Decision Comments All refrigeration and air-conditioning end uses Hexafluoropropylene (HFP) and all HFP-containing blends Unacceptable...

  19. 40 CFR 82.306 - Prohibited products.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...) PROTECTION OF STRATOSPHERIC OZONE Ban on Refrigeration and Air-Conditioning Appliances Containing HCFCs § 82...-charged appliance component for air-conditioning or refrigeration appliances manufactured on or after...

  20. 10 CFR 431.85 - Materials incorporated by reference.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... (GAMA) merged in 2008 with the Air-Conditioning and Refrigeration Institute to become the Air-Conditioning, Heating, and Refrigeration Institute (AHRI). The Hydronics Institute BTS-2000 Testing Standard...

  1. 40 CFR 82.306 - Prohibited products.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...) PROTECTION OF STRATOSPHERIC OZONE Ban on Refrigeration and Air-Conditioning Appliances Containing HCFCs § 82...-charged appliance component for air-conditioning or refrigeration appliances manufactured on or after...

  2. 40 CFR Appendix F to Subpart G of... - Unacceptable Substitutes Listed in the January 26, 1999 Final Rule, Effective January 26, 1999

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Refrigeration and Air-Conditioning Sector UnacceptabLe Substitutes End-use Substitute Decision Comments All refrigeration and air-conditioning end uses Hexafluoropropylene (HFP) and all HFP-containing blends Unacceptable...

  3. 10 CFR 431.85 - Materials incorporated by reference.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... (GAMA) merged in 2008 with the Air-Conditioning and Refrigeration Institute to become the Air-Conditioning, Heating, and Refrigeration Institute (AHRI). The Hydronics Institute BTS-2000 Testing Standard...

  4. 40 CFR Appendix F to Subpart G of... - Unacceptable Substitutes Listed in the January 26, 1999 Final Rule, Effective January 26, 1999

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Refrigeration and Air-Conditioning Sector UnacceptabLe Substitutes End-use Substitute Decision Comments All refrigeration and air-conditioning end uses Hexafluoropropylene (HFP) and all HFP-containing blends Unacceptable...

  5. 40 CFR Appendix E to Subpart G of... - Unacceptable Substitutes Listed in the January 26, 1999 Final Rule, Effective January 26, 1999

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Refrigeration and Air-Conditioning Sector Unacceptable Substitutes End-use Substitute Decision Comments All refrigeration and air-conditioning end uses MT-31 Unacceptable Chemical contained in this blend presents...

  6. 40 CFR Appendix F to Subpart G of... - Unacceptable Substitutes Listed in the January 26, 1999 Final Rule, Effective January 26, 1999

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Refrigeration and Air-Conditioning Sector UnacceptabLe Substitutes End-use Substitute Decision Comments All refrigeration and air-conditioning end uses Hexafluoropropylene (HFP) and all HFP-containing blends Unacceptable...

  7. SIMULATION RESULTS OF SINGLE REFRIGERANTS FOR USE IN A DUAL-CIRCUIT REFRIGERATOR/FREEZER

    EPA Science Inventory

    The paper reviews the refrigerant/freezer (RF) design and refrigerant selection process that is necessary to design an energy efficient RF that does not use fully halogenated chlorofluorocarbons (CFCs). EPA is interested in phasing out CFCs in RFs to minimize stratospheric ozone ...

  8. Air conditioning system with supplemental ice storing and cooling capacity

    DOEpatents

    Weng, Kuo-Lianq; Weng, Kuo-Liang

    1998-01-01

    The present air conditioning system with ice storing and cooling capacity can generate and store ice in its pipe assembly or in an ice storage tank particularly equipped for the system, depending on the type of the air conditioning system. The system is characterized in particular in that ice can be produced and stored in the air conditioning system whereby the time of supplying cooled air can be effectively extended with the merit that the operation cycle of the on and off of the compressor can be prolonged, extending the operation lifespan of the compressor in one aspect. In another aspect, ice production and storage in great amount can be performed in an off-peak period of the electrical power consumption and the stored ice can be utilized in the peak period of the power consumption so as to provide supplemental cooling capacity for the compressor of the air conditioning system whereby the shift of peak and off-peak power consumption can be effected with ease. The present air conditioning system can lower the installation expense for an ice-storing air conditioning system and can also be applied to an old conventional air conditioning system.

  9. Control system for thermoelectric refrigerator

    NASA Technical Reports Server (NTRS)

    Nelson, John L. (Inventor); Criscuolo, Lance (Inventor); Gilley, Michael D. (Inventor); Park, Brian V. (Inventor)

    1996-01-01

    Apparatus including a power supply (202) and control system is provided for maintaining the temperature within an enclosed structure (40) using thermoelectric devices (92). The apparatus may be particularly beneficial for use with a refrigerator (20) having superinsulation materials (46) and phase change materials (112) which cooperate with the thermoelectric device (92) to substantially enhance the overall operating efficiency of the refrigerator (20). The electrical power supply (202) and control system allows increasing the maximum power capability of the thermoelectric device (92) in response to increased heat loads within the refrigerator (20). The electrical power supply (202) and control system may also be used to monitor the performance of the cooling system (70) associated with the refrigerator (20).

  10. Dual-circuit, multiple-effect refrigeration system and method

    DOEpatents

    DeVault, Robert C.

    1995-01-01

    A dual circuit absorption refrigeration system comprising a high temperature single-effect refrigeration loop and a lower temperature double-effect refrigeration loop separate from one another and provided with a double-condenser coupling therebetween. The high temperature condenser of the single-effect refrigeration loop is double coupled to both of the generators in the double-effect refrigeration loop to improve internal heat recovery and a heat and mass transfer additive such as 2-ethyl-1-hexanol is used in the lower temperature double-effect refrigeration loop to improve the performance of the absorber in the double-effect refrigeration loop.

  11. High-Performance, Low Environmental Impact Refrigerants

    NASA Technical Reports Server (NTRS)

    McCullough, E. T.; Dhooge, P. M.; Glass, S. M.; Nimitz, J. S.

    2001-01-01

    Refrigerants used in process and facilities systems in the US include R-12, R-22, R-123, R-134a, R-404A, R-410A, R-500, and R-502. All but R-134a, R-404A, and R-410A contain ozone-depleting substances that will be phased out under the Montreal Protocol. Some of the substitutes do not perform as well as the refrigerants they are replacing, require new equipment, and have relatively high global warming potentials (GWPs). New refrigerants are needed that addresses environmental, safety, and performance issues simultaneously. In efforts sponsored by Ikon Corporation, NASA Kennedy Space Center (KSC), and the US Environmental Protection Agency (EPA), ETEC has developed and tested a new class of refrigerants, the Ikon (registered) refrigerants, based on iodofluorocarbons (IFCs). These refrigerants are nonflammable, have essentially zero ozone-depletion potential (ODP), low GWP, high performance (energy efficiency and capacity), and can be dropped into much existing equipment.

  12. Magnetic refrigeration for low-temperature applications

    NASA Technical Reports Server (NTRS)

    Barclay, J. A.

    1985-01-01

    The application of refrigeration at low temperatures ranging from production of liquid helium for medical imaging systems to cooling of infrared sensors on surveillance satellites is discussed. Cooling below about 15 K with regenerative refrigerators is difficult because of the decreasing thermal mass of the regenerator compared to that of the working material. In order to overcome this difficulty with helium gas as the working material, a heat exchanger plus a Joule-Thomson or other exponder is used. Regenerative magnetic refrigerators with magnetic solids as the working material have the same regenerator problem as gas refrigerators. This problem provides motivation for the development of nonregenerative magnetic refrigerators that span approximately 1 K to approximately 0 K. Particular emphasis is placed on high reliability and high efficiency. Calculations indicate considerable promise in this area. The principles, the potential, the problems, and the progress towards development of successful 4 to 20 K magnetic refrigerators are discussed.

  13. Refrigerant charge management in a heat pump water heater

    DOEpatents

    Chen, Jie; Hampton, Justin W.

    2016-07-05

    Heat pumps that heat or cool a space and that also heat water, refrigerant management systems for such heat pumps, and methods of managing refrigerant charge. Various embodiments remove idle refrigerant from a heat exchanger that is not needed for transferring heat by opening a refrigerant recovery valve and delivering the idle refrigerant from the heat exchanger to an inlet port on the compressor. The heat exchanger can be isolated by closing an electronic expansion valve, actuating a refrigerant management valve, or both. Refrigerant charge can be controlled by controlling how much refrigerant is drawn from the heat exchanger, by letting some refrigerant back into the heat exchanger, or both. Heat pumps can be operated in different modes of operation, and various components can be interconnected with refrigerant conduit. Some embodiments deliver refrigerant gas to the heat exchanger and drive liquid refrigerant out prior to isolating the heat exchanger.

  14. 10 CFR 431.95 - Materials incorporated by reference.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... reference. (1) Air-Conditioning and Refrigeration Institute (ARI) Standard 210/240-2003 published in 2003... standards from the Air-Conditioning and Refrigeration Institute, 4301 North Fairfax Drive, Suite 425...

  15. Residential air-conditioning and climate change: voices of the vulnerable.

    PubMed

    Farbotko, Carol; Waitt, Gordon

    2011-12-01

    Decreasing the risk of heat-stress is an imperative in health promotion, and is widely accepted as necessary for successful adaptation to climate change. Less well understood are the vulnerabilities that air-conditioning use exacerbates, and conversely, the need for the promotion of alternative strategies for coping with heat wave conditions. This paper considers these issues with a focus on the role of air-conditioning in the everyday life of elderly public housing tenants living alone, a sector of the population that has been identified as being at high risk of suffering heat stress. A vulnerability analysis of domestic air-conditioning use, drawing on literature and policy on air-conditioning practices and ethnographic research with households. Residential air-conditioning exacerbated existing inequities. Case studies of two specifically selected low-income elderly single person households revealed that such households were unlikely to be able to afford this 'solution' to increasing exposure to heat waves in the absence of energy subsidies. Residential air-conditioning use during heat waves caused unintended side-effects, such as system-wide blackouts, which, in turn, led to escalating electricity costs as power companies responded by upgrading infrastructure to cope with periods of excess demand. Air-conditioning also contributed to emissions that cause climate change. Residential air-conditioning is a potentially maladaptive technology for reducing the risk of heat stress.

  16. Sorption compressor/mechanical expander hybrid refrigeration

    NASA Technical Reports Server (NTRS)

    Jones, J. A.; Britcliffe, M.

    1987-01-01

    Experience with Deep Space Network (DSN) ground-based cryogenic refrigerators has proved the reliability of the basic two-stage Gifford-McMahon helium refrigerator. A very long life cryogenic refrigeration system appears possible by combining this expansion system or a turbo expansion system with a hydride sorption compressor in place of the usual motor driven piston compressor. To test the feasibility of this system, a commercial Gifford-McMahon refrigerator was tested using hydrogen gas as the working fluid. Although no attempt was made to optimize the system for hydrogen operation, the refrigerator developed 1.3 W at 30 K and 6.6 W at 60 K. The results of the test and of theoretical performances of the hybrid compressor coupled to these expansion systems are presented.

  17. Magnetic refrigeration using flux compression in superconductors

    NASA Technical Reports Server (NTRS)

    Israelsson, U. E.; Strayer, D. M.; Jackson, H. W.; Petrac, D.

    1990-01-01

    The feasibility of using flux compression in high-temperature superconductors to produce the large time-varying magnetic fields required in a field cycled magnetic refrigerator operating between 20 K and 4 K is presently investigated. This paper describes the refrigerator concept and lists limitations and advantages in comparison with conventional refrigeration techniques. The maximum fields obtainable by flux compression in high-temperature supercoductor materials, as presently prepared, are too low to serve in such a refrigerator. However, reports exist of critical current values that are near usable levels for flux pumps in refrigerator applications.

  18. Solar Refrigerators Store Life-Saving Vaccines

    NASA Technical Reports Server (NTRS)

    2014-01-01

    Former Johnson Space Center engineer David Bergeron used his experience on the Advanced Refrigeration Technology Team to found SunDanzer Refrigeration Inc., a company specializing in solar-powered refrigerators. The company has created a battery-free unit that provides safe storage for vaccines in rural and remote areas around the world.

  19. Self-actuating heat switches for redundant refrigeration systems

    NASA Technical Reports Server (NTRS)

    Chan, Chung K. (Inventor)

    1988-01-01

    A dual refrigeration system for cooling a sink device is described, which automatically thermally couples the cold refrigerator to the sink device while thermally isolating the warm refrigerator from the sink device. The system includes two gas gap heat switches that each thermally couples one of the refrigerators to the sink device, and a pair of sorption pumps that are coupled through tubes to the heat switches. When the first refrigerator is operated and therefore cold, the first pump which is thermally coupled to it is also cooled and adsorbs gas to withdraw it from the second heat switch, to thereby thermally isolate the sink device from the warm second refrigerator. With the second refrigerator being warm, the second pump is also warm and desorbs gas, so the gas lies in the first switch, to close that switch and therefore thermally couple the cold first refrigerator to the sink device. Thus, the heat switches are automatically switched according to the temperature of the corresponding refrigerator.

  20. 75 FR 34017 - Protection of Stratospheric Ozone: Notice 25 for Significant New Alternatives Policy Program

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-16

    ... sectors: Refrigeration and air-conditioning, foam blowing, aerosols, and sterilants. The majority of the... additional refrigerant alternatives as acceptable will provide users in the refrigeration and air... alternatives to HCFCs other than HCFC-22, HCFC-142b, and blends thereof? D. In servicing existing refrigeration...

  1. Measurement of the Space Thermoacoustic Refrigerator Performance

    DTIC Science & Technology

    1990-09-01

    the refrigerator was a requisite towards simplifying the process of selecting the operating frequency . The simplest method allowing for the most...LIST OF FIGURES I-1 Pulse Tube Refrigerator.............................. 3 1-2 Hofler Refrigerator.................................. 5 1-3 Acoustical...qualitative manner as did Rayleigh. The first example of an acoustic heat pump was the pulse - tube refrigerator in which Gifford and Longsworth, by applying

  2. Ternary Dy-Er-Al magnetic refrigerants

    DOEpatents

    Gschneidner, Jr., Karl A.; Takeya, Hiroyuki

    1995-07-25

    A ternary magnetic refrigerant material comprising (Dy.sub.1-x Er.sub.x)Al.sub.2 for a magnetic refrigerator using the Joule-Brayton thermodynamic cycle spanning a temperature range from about 60K to about 10K, which can be adjusted by changing the Dy to Er ratio of the refrigerant.

  3. Semiconductor-based optical refrigerator

    DOEpatents

    Epstein, Richard I.; Edwards, Bradley C.; Sheik-Bahae, Mansoor

    2002-01-01

    Optical refrigerators using semiconductor material as a cooling medium, with layers of material in close proximity to the cooling medium that carries away heat from the cooling material and preventing radiation trapping. In addition to the use of semiconducting material, the invention can be used with ytterbium-doped glass optical refrigerators.

  4. High temperature refrigerator

    DOEpatents

    Steyert, Jr., William A.

    1978-01-01

    A high temperature magnetic refrigerator which uses a Stirling-like cycle in which rotating magnetic working material is heated in zero field and adiabatically magnetized, cooled in high field, then adiabatically demagnetized. During this cycle said working material is in heat exchange with a pumped fluid which absorbs heat from a low temperature heat source and deposits heat in a high temperature reservoir. The magnetic refrigeration cycle operates at an efficiency 70% of Carnot.

  5. Development and Analysis of Hybrid Thermoelectric Refrigerator Systems

    NASA Astrophysics Data System (ADS)

    Saifizi, M.; Zakaria, M. S.; Yaacob, Sazali; Wan, Khairunizam

    2018-03-01

    Thermoelectric module (TEM) is a type of solid-state devices which has the capability to maintain the accuracy of small temperature variation application. In this study, a hybrid thermoelectric refrigerator system is introduced by utilizing TEMs; direct and air to air thermoelectric heat pump to cool down and maintain low temperature for vaccines storage. Two different materials which are aluminum and stainless steel are used as container in hybrid thermoelectric refrigerator (HTER) configuration to investigate the response of every system in transient and steady state mode. A proper temperature sensor calibration technique is implemented to make certain real time data acquisition of the systems are not affected very much from the noise generated. From step response analysis, it is indicated that HTER I (aluminum) has rapid settling time from transient to steady state than HTER II (stainless steel) since aluminum has better thermal conductivity as compared to stainless steel. It is found that HTER I is better in cooling capability with the same input current instead of HTER II which required a longer time to achieve steady state mode. Besides, in Pseudo Random Binary Sequence (PRBS) response analysis injected to both systems shows HTER I is very sensitive to current input as the sequence length of HTER I is shorter than HTER II. However both systems depict the varying temperature in the range of 4 oC due to differences in thermal conductivity of container.

  6. Ternary Dy-Er-Al magnetic refrigerants

    DOEpatents

    Gschneidner, K.A. Jr.; Takeya, Hiroyuki

    1995-07-25

    A ternary magnetic refrigerant material comprising (Dy{sub 1{minus}x}Er{sub x})Al{sub 2} for a magnetic refrigerator using the Joule-Brayton thermodynamic cycle spanning a temperature range from about 60K to about 10K, which can be adjusted by changing the Dy to Er ratio of the refrigerant. 29 figs.

  7. Field Demonstration of a High-Efficiency Packaged Rooftop Air Conditioning Unit at Fort Gordon, Augusta, GA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Armstrong, Peter R.; Sullivan, Gregory P.; Parker, Graham B.

    2006-03-31

    As part of a larger program targeting the market transformation of packaged rooftop air conditioning, five high-efficiency rooftop air conditioning products were selected in 2002 by the U.S. Department of Energy (DOE) under the Unitary Air Conditioner (UAC) Technology Procurement (http://www.pnl.gov/uac). In February 2003, Fort Gordon in Augusta, Georgia was chosen as the demonstration site. With the goal of validating the field performance and operation of one of the awarded products, a 10-ton high-efficiency packaged rooftop unit (RTU) manufactured by Global Energy Group (GEG) was installed at Fort Gordon in October 2003. Following equipment installation, power metering, air- and refrigerant-sidemore » instrumentation was installed on the GEG RTU and a 4-year old typical-efficiency 20-ton RTU manufactured by AAON . The GEG and AAON units were instrumented identically and operated May through July, 2005, to observe performance under a range of conditions. Based on the data collected as part of this demonstration, the GEG equipment performed at least 8% better in stage-1 (single compressor running) cooling and at least 16% better in stage-2 (both compressors running) than the baseline AAON equipment. Performance comparisons are based on what we call application EER normalized to equivalent specific fan power. The full-load, specific-fan-power-normalized application EERs at ARI design conditions were 10.48 Btu/Wh for the GEG and 9.00 Btu/Wh for the baseline machine. With a cost premium of nearly 50%, and slightly higher maintenance costs, the life-cycle cost analysis shows that the GEG technology pays for itself--a positive net-present value (NPV)--only in climates and buildings with long cooling seasons. Manufacture of this equipment on a larger scale can be expected to reduce costs to the point where it is more broadly cost-effective. The assumed 10-ton baseline and new-technology unit costs are $3824.00 and $5525.00 respectively. If the new technology cost is

  8. SIMULATION OF NON-AZEOTROPIC REFRIGERANT MIXTURES FOR USE IN A DUAL-CIRCUIT REFRIGERATOR/FREEZER WITH COUNTERCURRENT HEAT EXCHANGES

    EPA Science Inventory

    The paper discusses a refrigerator/freezer (RF) system that has two complete and independent refrigeration cycles for the two compartments. It uses a non-azeotropic refrigerant mixture (NARM) in each cycle and countercurrent heat exchangers throughout. This RF is housed in a stan...

  9. Design and demonstration of a storage assisted air conditioning system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Avril, F.; Irvine, T.F.

    1982-04-01

    The report describes the design and demonstration of a storage-assisted air conditioning system for residential central air conditioning applications. The system was designed to reduce peak air conditioning loads by storing coolness to fulfill daytime air conditioning requirements. The system design analyses, as well as performance data obtained from a residential installation on Long Island, are presented, along with an economic evaluation of the system. The results of the study indicate that such a system can reduce air conditioning peak load requirements while maintaining house temperature and humidity within prescribed limits. However, further system optimization is required, as well asmore » either equipment costs reduction or increased incentives, to make this system economically attractive for use in New York State.« less

  10. 46 CFR 130.230 - Protection from refrigerants.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... refrigerants. (a) For each refrigeration system that exceeds 0.6 cubic meters (20 cubic feet) of storage... refrigeration equipment. (c) A complete recharge in the form of a spare charge must be carried for each self...

  11. 46 CFR 130.230 - Protection from refrigerants.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... refrigerants. (a) For each refrigeration system that exceeds 0.6 cubic meters (20 cubic feet) of storage... refrigeration equipment. (c) A complete recharge in the form of a spare charge must be carried for each self...

  12. 46 CFR 130.230 - Protection from refrigerants.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... refrigerants. (a) For each refrigeration system that exceeds 0.6 cubic meters (20 cubic feet) of storage... refrigeration equipment. (c) A complete recharge in the form of a spare charge must be carried for each self...

  13. 46 CFR 130.230 - Protection from refrigerants.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... refrigerants. (a) For each refrigeration system that exceeds 0.6 cubic meters (20 cubic feet) of storage... refrigeration equipment. (c) A complete recharge in the form of a spare charge must be carried for each self...

  14. 46 CFR 130.230 - Protection from refrigerants.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... refrigerants. (a) For each refrigeration system that exceeds 0.6 cubic meters (20 cubic feet) of storage... refrigeration equipment. (c) A complete recharge in the form of a spare charge must be carried for each self...

  15. 40 CFR 86.165-12 - Air conditioning idle test procedure.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...) Applicability. This section describes procedures for determining air conditioning-related CO2 emissions from... used to qualify for air conditioning efficiency CO2 credits according to § 86.1866-12(c). (b) Overview... at idle when CO2 emissions are measured without any air conditioning systems operating, followed by a...

  16. 40 CFR 86.165-12 - Air conditioning idle test procedure.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...) Applicability. This section describes procedures for determining air conditioning-related CO2 emissions from... used to qualify for air conditioning efficiency CO2 credits according to § 86.1866-12(c). (b) Overview... at idle when CO2 emissions are measured without any air conditioning systems operating, followed by a...

  17. 40 CFR 86.165-12 - Air conditioning idle test procedure.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...) Applicability. This section describes procedures for determining air conditioning-related CO2 emissions from... used to qualify for air conditioning efficiency CO2 credits according to § 86.1866-12(c). (b) Overview... at idle when CO2 emissions are measured without any air conditioning systems operating, followed by a...

  18. 40 CFR 86.165-12 - Air conditioning idle test procedure.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...) Applicability. This section describes procedures for determining air conditioning-related CO2 emissions from... used to qualify for air conditioning efficiency CO2 credits according to § 86.1866-12(c). (b) Overview... at idle when CO2 emissions are measured without any air conditioning systems operating, followed by a...

  19. Adsorption Refrigeration System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Kai; Vineyard, Edward Allan

    Adsorption refrigeration is an environmentally friendly cooling technology which could be driven by recovered waste heat or low-grade heat such as solar energy. In comparison with absorption system, an adsorption system has no problems such as corrosion at high temperature and salt crystallization. In comparison with vapor compression refrigeration system, it has the advantages of simple control, no moving parts and less noise. This paper introduces the basic theory of adsorption cycle as well as the advanced adsorption cycles such as heat and mass recovery cycle, thermal wave cycle and convection thermal wave cycle. The types, characteristics, advantages and drawbacksmore » of different adsorbents used in adsorption refrigeration systems are also summarized. This article will increase the awareness of this emerging cooling technology among the HVAC engineers and help them select appropriate adsorption systems in energy-efficient building design.« less

  20. Reducing the Carbon Footprint of Commercial Refrigeration Systems Using Life Cycle Climate Performance Analysis: From System Design to Refrigerant Options

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fricke, Brian A; Abdelaziz, Omar; Vineyard, Edward Allan

    In this paper, Life Cycle Climate Performance (LCCP) analysis is used to estimate lifetime direct and indirect carbon dioxide equivalent gas emissions of various refrigerant options and commercial refrigeration system designs, including the multiplex DX system with various hydrofluorocarbon (HFC) refrigerants, the HFC/R744 cascade system incorporating a medium-temperature R744 secondary loop, and the transcritical R744 booster system. The results of the LCCP analysis are presented, including the direct and indirect carbon dioxide equivalent emissions for each refrigeration system and refrigerant option. Based on the results of the LCCP analysis, recommendations are given for the selection of low GWP replacement refrigerantsmore » for use in existing commercial refrigeration systems, as well as for the selection of commercial refrigeration system designs with low carbon dioxide equivalent emissions, suitable for new installations.« less

  1. Control method for mixed refrigerant based natural gas liquefier

    DOEpatents

    Kountz, Kenneth J.; Bishop, Patrick M.

    2003-01-01

    In a natural gas liquefaction system having a refrigerant storage circuit, a refrigerant circulation circuit in fluid communication with the refrigerant storage circuit, and a natural gas liquefaction circuit in thermal communication with the refrigerant circulation circuit, a method for liquefaction of natural gas in which pressure in the refrigerant circulation circuit is adjusted to below about 175 psig by exchange of refrigerant with the refrigerant storage circuit. A variable speed motor is started whereby operation of a compressor is initiated. The compressor is operated at full discharge capacity. Operation of an expansion valve is initiated whereby suction pressure at the suction pressure port of the compressor is maintained below about 30 psig and discharge pressure at the discharge pressure port of the compressor is maintained below about 350 psig. Refrigerant vapor is introduced from the refrigerant holding tank into the refrigerant circulation circuit until the suction pressure is reduced to below about 15 psig, after which flow of the refrigerant vapor from the refrigerant holding tank is terminated. Natural gas is then introduced into a natural gas liquefier, resulting in liquefaction of the natural gas.

  2. The Development and Calculation of an Energy-saving Plant for Obtaining Water from Atmospheric Air

    NASA Astrophysics Data System (ADS)

    Uglanov, D. A.; Zheleznyak, K. E.; Chertykovsev, P. A.

    2018-01-01

    The article shows the calculation of characteristics of energy-efficient water generator from atmospheric air. This installation or the atmospheric water generator is the unique mechanism which produces safe drinking water by extraction it from air. The existing atmospheric generators allow to receive safe drinking water by means of process of condensation at air humidity at least equal to 35% and are capable to give to 25 liters of water in per day, and work from electricity. Authors offer to use instead of the condenser in the scheme of installation for increase volume of produced water by generator in per day, the following refrigerating machines: the vapor compression refrigerating machines (VCRM), the thermoelectric refrigerating machines (TRM) and the Stirling-cycle refrigerating machines (SRM). The paper describes calculation methods for each of refrigerating systems. Calculation of technical-and-economic indexes for the atmospheric water generator was carried out and the optimum system with the maximum volume of received water in per day was picked up. The atmospheric water generator which is considered in article will work from autonomous solar power station.

  3. Refrigerant charge management in a heat pump water heater

    DOEpatents

    Chen, Jie; Hampton, Justin W.

    2014-06-24

    Heat pumps that heat or cool a space and that also heat water, refrigerant management systems for such heat pumps, methods of managing refrigerant charge, and methods for heating and cooling a space and heating water. Various embodiments deliver refrigerant gas to a heat exchanger that is not needed for transferring heat, drive liquid refrigerant out of that heat exchanger, isolate that heat exchanger against additional refrigerant flowing into it, and operate the heat pump while the heat exchanger is isolated. The heat exchanger can be isolated by closing an electronic expansion valve, actuating a refrigerant management valve, or both. Refrigerant charge can be controlled or adjusted by controlling how much liquid refrigerant is driven from the heat exchanger, by letting refrigerant back into the heat exchanger, or both. Heat pumps can be operated in different modes of operation, and segments of refrigerant conduit can be interconnected with various components.

  4. Commercial Refrigeration: Heat Transfer Optimization and Energy Reduction, Measurement and Verification of a Liquid Refrigerant Pump System Retrofit

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gaul, Chris; Sheppy, Michael

    This study describes the test results of a Refrigerant Pump System integrated into a commercial supermarket direct expansion (DX) vapor compression refrigeration system. The Liquid Refrigerant Pump System retrofit (patent-pending; application number 13/964,198) was introduced to NREL in August 2014 by CTA Architects Engineers.

  5. Method and apparatus for de-superheating refrigerant

    DOEpatents

    Zess, J.A.; Drost, M.K.; Call, C.J.

    1997-11-25

    The present invention is an apparatus and method for de-superheating a primary refrigerant leaving a compressor wherein a secondary refrigerant is used between the primary refrigerant to be de-superheated. Reject heat is advantageously used for heat reclaim. 7 figs.

  6. Numerical simulation and nasal air-conditioning

    PubMed Central

    Keck, Tilman; Lindemann, Jörg

    2011-01-01

    Heating and humidification of the respiratory air are the main functions of the nasal airways in addition to cleansing and olfaction. Optimal nasal air conditioning is mandatory for an ideal pulmonary gas exchange in order to avoid desiccation and adhesion of the alveolar capillary bed. The complex three-dimensional anatomical structure of the nose makes it impossible to perform detailed in vivo studies on intranasal heating and humidification within the entire nasal airways applying various technical set-ups. The main problem of in vivo temperature and humidity measurements is a poor spatial and time resolution. Therefore, in vivo measurements are feasible only to a restricted extent, solely providing single temperature values as the complete nose is not entirely accessible. Therefore, data on the overall performance of the nose are only based on one single measurement within each nasal segment. In vivo measurements within the entire nose are not feasible. These serious technical issues concerning in vivo measurements led to a large number of numerical simulation projects in the last few years providing novel information about the complex functions of the nasal airways. In general, numerical simulations merely calculate predictions in a computational model, e.g. a realistic nose model, depending on the setting of the boundary conditions. Therefore, numerical simulations achieve only approximations of a possible real situation. The aim of this review is the synopsis of the technical expertise on the field of in vivo nasal air conditioning, the novel information of numerical simulations and the current state of knowledge on the influence of nasal and sinus surgery on nasal air conditioning. PMID:22073112

  7. Influence of some design parameters on the thermal performance of domestic refrigerator appliances

    NASA Astrophysics Data System (ADS)

    Rebora, Alessandro; Senarega, Maurizio; Tagliafico, Luca A.

    2006-07-01

    This paper presents a thermal study on chest-freezers, the small refrigerators used in domestic and supermarket applications. A thermal and energy model of a particular kind of these refrigerators, the “hot-wall” (or “skin condenser”) refrigerator, is developed and used to perform sensitivity and design optimisation analysis for given working temperatures and useful volume of the refrigerated cell. A finite-element heat transfer model of the refrigerator box is coupled to the complete thermodynamic model of the refrigerating plant, including real working conditions (compressor efficiency, friction pressure losses and so on). A sensitivity study of the main design parameters affecting the global refrigerator performance has been developed (for fixed working temperatures) with reference to the thickness of the metallic plates, to the evaporator and condenser tube diameters and to the evaporator tube pitch (with fixed evaporator-to-condenser tube pitch ratio). The results obtained show that the proposed sensitivity analysis can yield quite reliable results (in comparison with much more complex, albeit more accurate mathematical optimisation algorithms) using small computational resources. The great importance of 2-D heat conduction in the metallic plates is shown, evidencing how the plate thickness and the evaporator and condenser tube diameters affect the global performance of the system according to the well-known “fin efficiency” effect. The influence of the evaporator and condenser tube diameters on the friction pressure losses is also outlined. Some practical suggestions are made in conclusion, regarding the criteria which should be adopted in the thermal design of a hot-wall refrigerator.

  8. Modeling of a Von Platen-Munters diffusion absorption refrigeration cycle

    NASA Astrophysics Data System (ADS)

    Agostini, Bruno; Agostini, Francesco; Habert, Mathieu

    2016-09-01

    This article presents a thermodynamical model of a Von-Platen diffusion absorption refrigeration cycle for power electronics applications. It is first validated by comparison with data available in the literature for the classical water-ammonia-helium cycle for commercial absorption fridges. Then new operating conditions corresponding to specific ABB applications, namely high ambient temperature and new organic fluids combinations compatible with aluminium are simulated and discussed. The target application is to cool power electronics converters in harsh environments with high ambient temperature by providing refrigeration without compressor, for passive components losses of about 500 W, with a compact and low cost solution.

  9. Dilution cycle control for an absorption refrigeration system

    DOEpatents

    Reimann, Robert C.

    1984-01-01

    A dilution cycle control system for an absorption refrigeration system is disclosed. The control system includes a time delay relay for sensing shutdown of the absorption refrigeration system and for generating a control signal only after expiration of a preselected time period measured from the sensed shutdown of the absorption refrigeration system, during which the absorption refrigeration system is not restarted. A dilution cycle for the absorption refrigeration system is initiated in response to generation of a control signal by the time delay relay. This control system is particularly suitable for use with an absorption refrigeration system which is frequently cycled on and off since the time delay provided by the control system prevents needless dilution of the absorption refrigeration system when the system is turned off for only a short period of time and then is turned back on.

  10. MOBILE AIR-CONDITIONING RECYCLING MANUAL

    EPA Science Inventory

    The report gives guidelines on the recovery and recycle of the chlorofluorocarbon (CFC), dichlorodifluoromethane (CFC-12), from mobile air conditions. It is intended for wide distribution internationally and is especially for use by developing countries and the World Bank to ass...

  11. Refrigerant pressurization system with a two-phase condensing ejector

    DOEpatents

    Bergander, Mark [Madison, CT

    2009-07-14

    A refrigerant pressurization system including an ejector having a first conduit for flowing a liquid refrigerant therethrough and a nozzle for accelerating a vapor refrigerant therethrough. The first conduit is positioned such that the liquid refrigerant is discharged from the first conduit into the nozzle. The ejector includes a mixing chamber for condensing the vapor refrigerant. The mixing chamber comprises at least a portion of the nozzle and transitions into a second conduit having a substantially constant cross sectional area. The condensation of the vapor refrigerant in the mixing chamber causes the refrigerant mixture in at least a portion of the mixing chamber to be at a pressure greater than that of the refrigerant entering the nozzle and greater than that entering the first conduit.

  12. An experimental study of the flow of LPG as refrigerant inside an adiabatic helical coiled capillary tube in vapour compression refrigeration system

    NASA Astrophysics Data System (ADS)

    Punia, Sanjeev Singh; Singh, Jagdev

    2015-11-01

    This paper presents an experimental investigation for the flow of liquefied petroleum gas (LPG) as a refrigerant inside an adiabatic helically coiled capillary tube in vapour compression refrigeration system. The effect of various geometric parameters and operating conditions like capillary tube inner diameter, length of capillary tube, coil diameter and different inlet subcoolings on the mass flow rate of LPG through the helical coiled capillary tube geometry has been investigated. It has been established that the coil diameter significantly influences the mass flow rate of LPG through the adiabatic helical capillary tube. It has been concluded that the effect of coiling of capillary tube reduces the mass flow rate by 5-12 % as compared to those of the straight capillary tube operating under similar conditions. The data obtained from the experiments are analyzed and a dimensionless correlation has been developed. The proposed correlation predicts that more than 90 % of experimental data which is in agreement with measured data in an error band of ±10 %.

  13. Dynamic simulation of a reverse Brayton refrigerator

    NASA Astrophysics Data System (ADS)

    Peng, N.; Lei, L. L.; Xiong, L. Y.; Tang, J. C.; Dong, B.; Liu, L. Q.

    2014-01-01

    A test refrigerator based on the modified Reverse Brayton cycle has been developed in the Chinese Academy of Sciences recently. To study the behaviors of this test refrigerator, a dynamic simulation has been carried out. The numerical model comprises the typical components of the test refrigerator: compressor, valves, heat exchangers, expander and heater. This simulator is based on the oriented-object approach and each component is represented by a set of differential and algebraic equations. The control system of the test refrigerator is also simulated, which can be used to optimize the control strategies. This paper describes all the models and shows the simulation results. Comparisons between simulation results and experimental data are also presented. Experimental validation on the test refrigerator gives satisfactory results.

  14. [Air quality control systems: heating, ventilating, and air conditioning (HVAC)].

    PubMed

    Bellucci Sessa, R; Riccio, G

    2004-01-01

    After a brief illustration of the principal layout schemes of Heating, Ventilating, and Air Conditioning (HVAC), the first part of this paper summarizes the standards, both voluntary and compulsory, regulating HVAC facilities design and installation with regard to the question of Indoor Air Quality (IAQ). The paper then examines the problem of ventilation systems maintenance and the essential hygienistic requirements in whose absence HVAC facilities may become a risk factor for people working or living in the building. Lastly, the paper deals with HVAC design strategies and methods, which aim not only to satisfy comfort and air quality requirements, but also to ensure easy and effective maintenance procedures.

  15. Magnetocaloric Materials Revolutionize Refrigeration Technology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Momen, Ayyoub

    Researchers at Oak Ridge National Laboratory have partnered with General Electric (GE) Appliances on a building technologies project to revolutionize today’s 100-year-old home refrigeration technology. Using magnetocaloric materials (MCM), they’ve eliminated the need for a vapor compression cycle, associated refrigerants, and their negative environmental impacts. The research team is currently working to determine the most effective means to transfer heat from the solid MCM, and using fluid passed through high-resolution microchannels shows promise. This technology has the potential to reduce energy consumption by 25%, and GE hopes to commercialize magnetocaloric refrigerators for use in homes by 2020.

  16. EVALUATION OF OZONE-FRIENDLY HYDROFLUOROPROPANE-BASED ZEOTROPIC REFRIGERANT MIXTURES IN A LORENZ-MEUTZNER REFRIGERATOR/FREEZER

    EPA Science Inventory

    The two-evaporator (located in the freezer and fresh food compartments) design of the Lorenz-Meutzner (L-M) refrigerator/freezer (R/F) makes it a leading candidate for use of zeotropic refrigerant mixtures. Zeotrophic mixtures can have significant temperature glides during evapor...

  17. Manganese Nitride Sorption Joule-Thomson Refrigerator

    NASA Technical Reports Server (NTRS)

    Jones, Jack A.; Phillips, Wayne M.

    1992-01-01

    Proposed sorption refrigeration system of increased power efficiency combines MnxNy sorption refrigeration stage with systems described in "Regenerative Sorption Refrigerator" (NPO-17630). Measured pressure-vs-composition isotherms for reversible chemisorption of N2 in MnxNy suggest feasibility to incorporate MnxNy chemisorption stage in Joule-Thomson cryogenic system. Discovery represents first known reversible nitrogen chemisorption compression system. Has potential in nitrogen-isotope separation, nitrogen purification, or contamination-free nitrogen compression.

  18. Study on energy saving effect of IHX on vehicle air conditioning system

    NASA Astrophysics Data System (ADS)

    Li, Huguang; Tong, Lin; Xu, Ming; Wei, Wangrui; Zhao, Meng; Wang, Long

    2018-02-01

    In this paper, the performance of Internal Heat Exchanger (IHX) air conditioning system for R134a is investigated in bench test and vehicle test. Comparison for cooling capacity and energy consumption between IHX air conditioning system and traditional tube air conditioning system are conducted. The suction temperature and discharge temperature of compressor is also recorded. The results show that IHX air conditioning system has higher cooling capacity, the vent temperature decrease 2.3 °C in idle condition. But the suction temperature and discharge temperature of compressor increase 10°C. IHX air conditioning system has lower energy consumption than traditional tube air conditioning system. Under the experimental conditions in this paper, the application of IHX can significantly reduce the energy consumption of air conditioning system. At 25°C of environment temperature, AC system energy consumption decrease 14%, compressor energy consumption decrease 16%. At 37°C of environment temperature, AC system energy consumption decrease 16%, compressor energy consumption decrease 13%.

  19. Dilution Refrigerator for Nuclear Refrigeration and Cryogenic Thermometry Studies

    NASA Astrophysics Data System (ADS)

    Nakagawa, Hisashi; Hata, Tohru

    2014-07-01

    This study explores the design and construction of an ultra-low temperature facility in order to realize the Provisional low-temperature scale from 0.9 mK to 1 K (PLTS-2000) in Japan, to disseminate its use through calibration services, and to study thermometry at low temperatures below 1 K. To this end, a dilution refrigerator was constructed in-house that has four sintered silver discrete heat exchangers for use as a precooling stage of a copper nuclear demagnetization stage. A melting curve thermometer attached to the mixing chamber flange could be cooled continuously to 4.0 mK using the refrigerator. The dependence of minimum temperatures on circulation rates can be explained by the calculation of Frossati's formula based on a perfect continuous counterflow heat exchanger model, assuming that the Kapitza resistance has a temperature dependence. Residual heat leakage to the mixing chamber was estimated to be around 86 nW. A nuclear demagnetization cryostat with a nuclear stage containing an effective amount of copper (51 mol in a 9 T magnetic field) is under construction, and we will presently start to work toward the realization of the PLTS-2000. In this article, the design and performance of the dilution refrigerator are reported.

  20. Combined refrigeration system with a liquid pre-cooling heat exchanger

    DOEpatents

    Gaul, Christopher J.

    2003-07-01

    A compressor-pump unit for use in a vapor-compression refrigeration system is provided. The compressor-pump unit comprises a driving device including a rotatable shaft. A compressor is coupled with a first portion of the shaft for compressing gaseous refrigerant within the vapor-compression refrigeration system. A liquid pump is coupled with a second portion of the shaft for receiving liquid refrigerant having a first pressure and for discharging the received liquid refrigerant at a second pressure with the second pressure being higher than the first pressure by a predetermined amount such that the discharged liquid refrigerant is subcooled. A pre-cooling circuit is connected to the liquid pump with the pre-cooling circuit being exposed to the gaseous refrigerant whereby the gaseous refrigerant absorbs heat from the liquid refrigerant, prior to the liquid refrigerant entering the liquid pump.