Science.gov

Sample records for air counterflow diffusion

  1. Trioxane-Air Counterflow Diffusion Flames in Normal and Microgravity

    NASA Technical Reports Server (NTRS)

    Linteris, Gregory T.; Urban, David L.

    2001-01-01

    Trioxane, a weakly bound polymer of formaldehyde (C3H6O3, m.p. 61 C, b.p. 115 C), is a uniquely suited compound for studying material flammability. Like many of the more commonly used materials for such tests (e.g., delrin, polyethylene, acrylic sheet, wood, and paper), it displays relevant phenomena (internal heat conduction, melting, vaporization, thermal decomposition, and gas phase reaction of the decomposition products). Unlike the other materials, however, it is non-sooting and has simple and well-known chemical kinetic pathways for its combustion. Hence it should prove to be much more useful for numerical modeling of surface combustion than the complex fuels typically used. We have performed the first exploratory tests of trioxane combustion in the counterflow configuration to determine its potential as a surrogate solid fuel which allows detailed modeling. The experiments were performed in the spring and summer of 1998 at the National Institute of Standards and Technology in Gaithersburg, MD, and at NASA-GRC in Cleveland. Using counterflow flames at 1-g, we measured the fuel consumption rate and the extinction conditions with added N2 in the air; at mg conditions, we observed the ignition characteristics and flame shape from video images. We have performed numerical calculations of the flame structure, but these are not described here due to space limitations. This paper summarizes some burning characteristics of trioxane relevant to its use for studying flame spread and fire suppression.

  2. EXTINCTION STUDIES OF PROPANE/AIR COUNTERFLOW DIFFUSION FLAMES: THE EFFECTIVENESS OF AEROSOLS

    EPA Science Inventory

    The fire suppression effectiveness of solid aerosols as suitable halon replacements has examined. Experiments were performed in a counterflow diffusion burner, consisting of two 1 cm i.d. tubes separated by 1 cm. Aerosols were delivered to propane/air flames in the air flow. Both...

  3. Velocity Fields of Axisymmetric Hydrogen-Air Counterflow Diffusion Flames from LDV, PIV, and Numerical Computation

    NASA Technical Reports Server (NTRS)

    Pellett, Gerald L.; Wilson, Lloyd G.; Humphreys, William M., Jr.; Bartram, Scott M.; Gartrell, Luther R.; Isaac, K. M.

    1995-01-01

    Laminar fuel-air counterflow diffusion flames (CFDFs) were studied using axisymmetric convergent-nozzle and straight-tube opposed jet burners (OJBs). The subject diagnostics were used to probe a systematic set of H2/N2-air CFDFs over wide ranges of fuel input (22 to 100% Ha), and input axial strain rate (130 to 1700 Us) just upstream of the airside edge, for both plug-flow and parabolic input velocity profiles. Laser Doppler Velocimetry (LDV) was applied along the centerline of seeded air flows from a convergent nozzle OJB (7.2 mm i.d.), and Particle Imaging Velocimetry (PIV) was applied on the entire airside of both nozzle and tube OJBs (7 and 5 mm i.d.) to characterize global velocity structure. Data are compared to numerical results from a one-dimensional (1-D) CFDF code based on a stream function solution for a potential flow input boundary condition. Axial strain rate inputs at the airside edge of nozzle-OJB flows, using LDV and PIV, were consistent with 1-D impingement theory, and supported earlier diagnostic studies. The LDV results also characterized a heat-release hump. Radial strain rates in the flame substantially exceeded 1-D numerical predictions. Whereas the 1-D model closely predicted the max I min axial velocity ratio in the hot layer, it overpredicted its thickness. The results also support previously measured effects of plug-flow and parabolic input strain rates on CFDF extinction limits. Finally, the submillimeter-scale LDV and PIV diagnostics were tested under severe conditions, which reinforced their use with subcentimeter OJB tools to assess effects of aerodynamic strain, and fueVair composition, on laminar CFDF properties, including extinction.

  4. Strain-induced extinction of hydrogen-air counterflow diffusion flames - Effects of steam, CO2, N2, and O2 additives to air

    NASA Technical Reports Server (NTRS)

    Pellett, G. L.; Northam, G. B.; Wilson, L. G.

    1992-01-01

    A fundamental study was performed using axisymmetric nozzle and tubular opposed jet burners to measure the effects of laminar plug flow and parabolic input velocity profiles on the extinction limits of H2-air counterflow diffusion flames. Extinction limits were quantified by 'flame strength', (average axial air jet velocity) at blowoff of the central flame. The effects of key air contaminants, on the extinction limits, are characterized and analyzed relative to utilization of combustion contaminated vitiated air in high enthalpy supersonic test facilities.

  5. Dynamic Weakening (Extinction) of Simple Hydrocarbon-air Counterflow Diffusion Flames by Oscillatory Inflows

    NASA Technical Reports Server (NTRS)

    Pellett, G.; Kabaria, A.; Panigrahi, B.; Sammons, K.; Convery, J.; Wilson, L.

    2005-01-01

    This study of laminar non-premixed HC-air flames used an Oscillatory-input Opposed Jet Burner (OOJB) system developed from a previously well-characterized 7.2-mm Pyrex-nozzle OJB system. Over 600 dynamic Flame Strength (FS) measurements were obtained on unanchored (free-floating) laminar Counterflow Diffusion Flames (CFDF's). Flames were stabilized using plug inflows having steady-plus-sinusoidal axial velocities of varied magnitude, frequency, f, up to 1600 Hz, and phase angle from 0 (most data) to 360 degrees. Dynamic FS is defined as the maximum average air input velocity (U(sub air), at nozzle exit) a CFDF can sustain before strain-induced extinction occurs due to prescribed oscillatory peak-to-peak velocity inputs superimposed on steady inputs. Initially, dynamic flame extinction data were obtained at low f, and were supported by 25-120 Hz Hot-Wire cold-flow velocity data at nozzle exits. Later, expanded extinction data were supported by 4-1600 Hz Probe Microphone (PM) pk/pk P data at nozzle exits. The PM data were first obtained without flows, and later with cold stagnating flows, which better represent speaker-diaphragm dynamics during runs. The PM approach enabled characterizations of Dynamic Flame Weakening (DFW) of CFDF's from 8 to 1600 Hz. DFW was defined as % decrease in FS per Pascal of pk/pk P oscillation, namely, DFW = - 100 d(U(sub air) / U(sub air),0Hz) / d(pkpk P). The linear normalization with respect to acoustic pressure magnitude (and steady state (SS) FS) led to a DFW unaffected by strong internal resonances. For the C2H4/N2-air system, from 8 to 20 Hz, DFW is constant at 8.52 plus or minus 0.20 (% weakening)/Pa. This reflects a quasi-steady flame response to an acoustically induced dU(sub air)/dP. Also, it is surprisingly independent of C2H4/N2 mole fraction due to normalization by SS FS. From 20 to approximately 150 Hz, the C2H4/N2 air-flames weakened progressively less, with an inflection at approximately 70 Hz, and became asymptotically

  6. Counterflow diffusion flames of hydrogen, and hydrogen plus methane, ethylene, propane, and silane vs. air - Strain rates at extinction

    NASA Technical Reports Server (NTRS)

    Pellett, G. L.; Northam, G. Burton; Wilson, L. G.

    1991-01-01

    Five coaxial tubular opposed jet burners (OJBs) with tube diameter D(T) of 1.8-10 mm and 5 mm conical nozzles were used to form dish-shaped counterflow diffusion flames centered by opposing laminar jets of nitrogen and hydrocarbon-diluted H2 versus air in an argon-purged chamber at 1 atm. Area-averaged air jet velocities at blowoff of the central flame, U(air), characterized extinction of the airside flame as functions of input H2 concentration on the fuelside. A master plot of extensive U(air) data at blowoff versus D(T) shows that U(air) varies linearly with D(T). This and other data sets are used to find that nozzle OJB results for U(air)/diameter average 4.24 + or - 0.28 times larger than tubular OJB results for the same fuel compositions. Critical radial velocity gradients consistent with one-dimensional stagnation point boundary theory and with plug flow inputs are estimated. The results compare favorably with published numerical results based only on potential flow.

  7. Effects of H2O, CO2, and N2 air contaminants on critical airside strain rates for extinction of hydrogen-air counterflow diffusion flames

    NASA Technical Reports Server (NTRS)

    Pellett, G. L.; Northam, G. B.; Wilson, L. G.; Guerra, Rosemary

    1989-01-01

    Dish-shaped counterflow diffusion flames centered by opposing laminar jets of H2 and clean and contaminant O2/N2 mixtures in an argon bath at 1 atm were used to study the effects of contaminants on critical airside strain. The jet velocities for both flame extinction and restoration are found for a wide range of contaminant and O2 concentrations in the air jet. The tests are also conducted for a variety of input H2 concentrations. The results are compared with those from several other studies.

  8. Effects of H2O, CO2, and N2 Air Contaminants on Critical Airside Strain Rates for Extinction of Hydrogen-Air Counterflow Diffusion Flames

    NASA Technical Reports Server (NTRS)

    Pellett, G. L.; Wilson, L. G.; Northam, G. B.; Guerra, Rosemary

    1989-01-01

    Coaxial tubular opposed jet burners (OJB) were used to form dish shaped counterflow diffusion flames (CFDF), centered by opposing laminar jets of H2, N2 and both clean and contaminated air (O2/N2 mixtures) in an argon bath at 1 atm. Jet velocities for flame extinction and restoration limits are shown versus wide ranges of contaminant and O2 concentrations in the air jet, and also input H2 concentration. Blowoff, a sudden breaking of CFDF to a stable ring shape, occurs in highly stretched stagnation flows and is generally believed to measure kinetically limited flame reactivity. Restore, a sudden restoration of central flame, is a relatively new phenomenon which exhibits a H2 dependent hysteresis from Blowoff. For 25 percent O2 air mixtures, mole for mole replacement of 25 percent N2 contaminant by steam increased U(air) or flame strength at Blowoff by about 5 percent. This result is consistent with laminar burning velocity results from analogous substitution of steam for N2 in a premixed stoichiometric H2-O2-N2 (or steam) flame, shown by Koroll and Mulpuru to promote a 10 percent increase in experimental and calculated laminar burning velocity, due to enhanced third body efficiency of water in: H + O2 + M yields HO2 + M. When the OJB results were compared with Liu and MacFarlane's experimental laminar burning velocity of premixed stoichiometric H2 + air + steam, a crossover occurred, i.e., steam enhanced OJB flame strength at extinction relative to laminar burning velocity.

  9. Laser-Induced Fluorescence Measurements and Modeling of Nitric Oxide in Counterflow Diffusion Flames

    NASA Technical Reports Server (NTRS)

    Ravikrishna, Rayavarapu V.

    2000-01-01

    The feasibility of making quantitative nonintrusive NO concentration ([NO]) measurements in nonpremixed flames has been assessed by obtaining laser-induced fluorescence (LIF) measurements of [NO] in counterflow diffusion flames at atmospheric and higher pressures. Comparisons at atmospheric pressure between laser-saturated fluorescence (LSF) and linear LIF measurements in four diluted ethane-air counterflow diffusion flames with strain rates from 5 to 48/s yielded excellent agreement from fuel-lean to moderately fuel-rich conditions, thus indicating the utility of a model-based quenching correction technique, which was then extended to higher pressures. Quantitative LIF measurements of [NO] in three diluted methane-air counterflow diffusion flames with strain rates from 5 to 35/s were compared with OPPDIF model predictions using the GRI (version 2.11) chemical kinetic mechanism. The comparisons revealed that the GRI mechanism underpredicts prompt-NO by 30-50% at atmospheric pressure. Based on these measurements, a modified reaction rate coefficient for the prompt-NO initiation reaction was proposed which causes the predictions to match experimental data. Temperature measurements using thin filament pyrometry (TFP) in conjunction with a new calibration method utilizing a near-adiabatic H2-air Hencken burner gave very good comparisons with model predictions in these counterflow diffusion flames. Quantitative LIF measurements of [NO] were also obtained in four methane-air counterflow partially-premixed flames with fuel-side equivalence ratios (phi(sub B)) of 1.45, 1.6, 1.8 and 2.0. The measurements were in excellent agreement with model predictions when accounting for radiative heat loss. Spatial separation between regions dominated by the prompt and thermal NO mechanisms was observed in the phi(sub B) = 1.45 flame. The modified rate coefficient proposed earlier for the prompt-NO initiation reaction improved agreement between code predictions and measurements in the

  10. Cross-flow versus counterflow air-stripping towers

    SciTech Connect

    Little, J.C.; Marinas, B.J.

    1997-07-01

    Mass-transfer and pressure-drop packing performance correlations are used together with tower design equations and detailed cost models to compare the effectiveness of cross-flow and counterflow air stripping towers over a wide range of contaminant volatility. Cross-flow towers are shown to offer a significant economic advantage over counterflow towers when stripping low volatility organic contaminants primarily due to savings in energy costs. These savings increase as contaminant volatility decreases and as water flow rate increases. A further advantage of the cross-flow configuration is that it extends the feasible operating range for air stripping as cross-flow towers can accommodate higher air-to-water flow ratios than conventional counterflow towers. Finally it is shown that the optimized least-cost design for both counterflow and cross-flow towers varies with Henry`s law constant, water flow rate, and percent removal, but that the optimum is virtually insensitive to other cost and operating variables. This greatly simplifies the tower design procedure.

  11. Counterflow diffusion flame synthesis of ceramic oxide powders

    DOEpatents

    Katz, Joseph L.; Miquel, Philippe F.

    1997-01-01

    Ceramic oxide powders and methods for their preparation are revealed. Ceramic oxide powders are obtained using a flame process whereby one or more precursors of ceramic oxides are introduced into a counterflow diffusion flame burner wherein the precursors are converted into ceramic oxide powders. The nature of the ceramic oxide powder produced is determined by process conditions. The morphology, particle size, and crystalline form of the ceramic oxide powders may be varied by the temperature of the flame, the precursor concentration ratio, the gas stream and the gas velocity.

  12. Counterflow diffusion flame synthesis of ceramic oxide powders

    DOEpatents

    Katz, J.L.; Miquel, P.F.

    1997-07-22

    Ceramic oxide powders and methods for their preparation are revealed. Ceramic oxide powders are obtained using a flame process whereby one or more precursors of ceramic oxides are introduced into a counterflow diffusion flame burner wherein the precursors are converted into ceramic oxide powders. The nature of the ceramic oxide powder produced is determined by process conditions. The morphology, particle size, and crystalline form of the ceramic oxide powders may be varied by the temperature of the flame, the precursor concentration ratio, the gas stream and the gas velocity. 24 figs.

  13. A counterflow diffusion flame study of branched octane isomers

    DOE PAGESBeta

    Sarathy, S. Mani; Niemann, Ulrich; Yeung, Coleman; Gehmlich, Ryan; Westrbrook, Charles K.; Plomer, Max; Luo, Zhaoyu; Mehl, Marco; Pitz, William J.; Seshadri, Kalyanasundaram; et al

    2012-09-25

    Conventional petroleum, Fischer–Tropsch (FT), and other alternative hydrocarbon fuels typically contain a high concentration of lightly methylated iso-alkanes. However, until recently little work has been done on this important class of hydrocarbon components. In order to better understand the combustion characteristics of real fuels, this study presents new experimental data for 3-methylheptane and 2,5-dimethylhexane in counterflow diffusion flames. This new dataset includes flame ignition, extinction, and speciation profiles. The high temperature oxidation of these fuels has been modeled using an extended transport database and a high temperature skeletal chemical kinetic model. The skeletal model is generated from a detailed modelmore » reduced using the directed relation graph with expert knowledge (DRG-X) methodology. The proposed skeletal model contains sufficient chemical fidelity to accurately predict the experimental speciation data in flames. The predictions are compared to elucidate the effects of number and location of the methyl substitutions. The location is found to have little effect on ignition and extinction in these counterflow diffusion flames. However, increasing the number of methyl substitutions was found to inhibit ignition and promote extinction. Chemical kinetic modelling simulations were used to correlate a fuel’s extinction propensity with its ability to populate the H radical concentration. In conclusion, species composition measurements indicate that the location and number of methyl substitutions was found to particularly affect the amount and type of alkenes observed.« less

  14. A counterflow diffusion flame study of branched octane isomers

    SciTech Connect

    Sarathy, S. Mani; Niemann, Ulrich; Yeung, Coleman; Gehmlich, Ryan; Westrbrook, Charles K.; Plomer, Max; Luo, Zhaoyu; Mehl, Marco; Pitz, William J.; Seshadri, Kalyanasundaram; Thomson, Murray J.; Lu, Tianfeng

    2012-09-25

    Conventional petroleum, Fischer–Tropsch (FT), and other alternative hydrocarbon fuels typically contain a high concentration of lightly methylated iso-alkanes. However, until recently little work has been done on this important class of hydrocarbon components. In order to better understand the combustion characteristics of real fuels, this study presents new experimental data for 3-methylheptane and 2,5-dimethylhexane in counterflow diffusion flames. This new dataset includes flame ignition, extinction, and speciation profiles. The high temperature oxidation of these fuels has been modeled using an extended transport database and a high temperature skeletal chemical kinetic model. The skeletal model is generated from a detailed model reduced using the directed relation graph with expert knowledge (DRG-X) methodology. The proposed skeletal model contains sufficient chemical fidelity to accurately predict the experimental speciation data in flames. The predictions are compared to elucidate the effects of number and location of the methyl substitutions. The location is found to have little effect on ignition and extinction in these counterflow diffusion flames. However, increasing the number of methyl substitutions was found to inhibit ignition and promote extinction. Chemical kinetic modelling simulations were used to correlate a fuel’s extinction propensity with its ability to populate the H radical concentration. In conclusion, species composition measurements indicate that the location and number of methyl substitutions was found to particularly affect the amount and type of alkenes observed.

  15. Experimental and Numerical Study of Ammonium Perchlorate Counterflow Diffusion Flames

    NASA Technical Reports Server (NTRS)

    Smooke, M. D.; Yetter, R. A.; Parr, T. P.; Hanson-Parr, D. M.; Tanoff, M. A.

    1999-01-01

    Many solid rocket propellants are based on a composite mixture of ammonium perchlorate (AP) oxidizer and polymeric binder fuels. In these propellants, complex three-dimensional diffusion flame structures between the AP and binder decomposition products, dependent upon the length scales of the heterogeneous mixture, drive the combustion via heat transfer back to the surface. Changing the AP crystal size changes the burn rate of such propellants. Large AP crystals are governed by the cooler AP self-deflagration flame and burn slowly, while small AP crystals are governed more by the hot diffusion flame with the binder and burn faster. This allows control of composite propellant ballistic properties via particle size variation. Previous measurements on these diffusion flames in the planar two-dimensional sandwich configuration yielded insight into controlling flame structure, but there are several drawbacks that make comparison with modeling difficult. First, the flames are two-dimensional and this makes modeling much more complex computationally than with one-dimensional problems, such as RDX self- and laser-supported deflagration. In addition, little is known about the nature, concentration, and evolution rates of the gaseous chemical species produced by the various binders as they decompose. This makes comparison with models quite difficult. Alternatively, counterflow flames provide an excellent geometric configuration within which AP/binder diffusion flames can be studied both experimentally and computationally.

  16. Experimental Observations on a Low Strain Counter-Flow Diffusion Flame: Flow and Bouyancy Effects

    NASA Technical Reports Server (NTRS)

    Sutula, J. A.; Torero, J. L.; Ezekoye, O. A.

    1999-01-01

    Diffusion flames are of great interest in fire safety and many industrial processes. The counter-flow configuration provides a constant strain flow, and therefore is ideal to study the structure of diffusion flames. Most studies have concentrated on the high velocity, high strain limit, since buoyantly induced instabilities will disintegrate the planar flame as the velocity decreases. Only recently, experimental studies in microgravity conditions have begun to explore the low strain regimes. Numerical work has shown the coupling between gas phase reaction rates, soot reaction rates, and radiation. For these programs, size, geometry and experimental conditions have been chosen to keep the flame unaffected by the physical boundaries. When the physical boundaries can not be considered infinitely far from the reaction zone discrepancies arise. A computational study that includes boundary effects and accounts for the deviations occurring when the major potential flow assumptions are relaxed was presented by Borlik et al. This development properly incorporates all heat loss terms and shows the possibility of extinction in the low strain regime. A major constraint of studying the low strain regime is buoyancy. Buoyant instabilities have been shown to have a significant effect on the nature of reactants and heat transport, and can introduce instabilities on the flow that result in phenomena such as flickering or fingering. The counter-flow configuration has been shown to provide a flame with no symmetry disrupting instabilities for inlet velocities greater than 50 mm/s. As the velocity approaches this limit, the characteristic length of the experiment has to be reduced to a few millimetres so as to keep the Rayleigh number (Ra(sub L) = (Beta)(g(sub 0))(L(exp 3) del T)/(alpha(v))) below 2000. In this work, a rectangular counter-flow burner was used to study a two-dimensional counter-flow diffusion flame. Flow visualisation and Particle Image Velocimetry served to describe

  17. Review of HxPyOz-Catalyzed H + OH Recombination in Scramjet Nozzle Expansions; and Possible Phosphoric Acid Enhancement of Scramjet Flameholding, from Extinction of H3PO4 + H2 - Air Counterflow Diffusion Flames

    NASA Technical Reports Server (NTRS)

    Pellett, Gerald

    2005-01-01

    Recent detailed articles by Twarowski indicate that small quantities of phosphorus oxides and acids in the fuel-rich combustion products of H2 + phosphine (PH3) + air should significantly catalyze H, OH and O recombination kinetics during high-speed nozzle expansions -- to reform H2O, release heat, and approach equilibrium more rapidly and closely than uncatalyzed kinetics. This paper is an initial feasibility study to determine (a) if addition of phosphoric acid vapor (H3PO4) to a H2 fuel jet -- which is much safer than using PH3 -- will allow combustion in a high-speed scramjet engine test without adverse effects on localized flameholding, and (b) if phosphorus-containing exhaust emissions are environmentally acceptable. A well-characterized axisymmetric straight-tube opposed jet burner (OJB) tool is used to evaluate H3PO4 addition effects on the air velocity extinction limit (flame strength) of a H2 versus air counterflow diffusion flame. Addition of nitric oxide (NO), also believed to promote catalytic H-atom recombination, was evaluated for comparison. Two to five mass percent H3PO4 in the H2 jet increased flame strength 4.2%, whereas airside addition decreased it 1%. Adding 5% NO to the H2 caused a 2% decrease. Products of H-atom attack on H3PO4 produced an intense green chemiluminescence near the stagnation point. The resultant exothermic production of phosphorus oxides and acids, with accelerated H-atom recombination, released sufficient heat near the stagnation point to increase flame strength. In conclusion, the addition of H3PO4 vapor (or more reactive P sources) to hydrogen in scramjet engine tests may positively affect flameholding stability in the combustor and thrust production during supersonic expansion -- a possible dual benefit with system design / performance implications. Finally, a preliminary assessment of possible environmental effects indicates that scramjet exhaust emissions should consist of phosphoric acid aerosol, with gradual

  18. Flow Regimes of Air-Water Counterflow Through Cross Corrugated Parallel Plates

    SciTech Connect

    de Almeida, V.F.

    2000-06-07

    Heretofore unknown flow regimes of air-water counterflow through a pair of transparent vertical parallel cross corrugated plates were observed via high-speed video. Air flows upward driven by pressure gradient and water, downward driven by gravity. The crimp geometry of the corrugations was drawn from typical corrugated sheets used as filling material in modern structured packed towers. Four regimes were featured, namely, rivulet, bicontinuous, flooding fronts, and flooding waves. It is conceivable that the regimes observed might constitute the basis for understanding how gas and liquid phases contend for available space in the interstices of structured packings in packed towers. Flow regime transitions were expressed in terms of liquid load (liquid superficial velocity) and gas flow factor parameters commonly used in pressure drop and capacity curves. We have carefully examined the range of parameters equivalent to the ill-understood high-liquid-flow operation in packed towers. More importantly, our findings should prove valuable in validating improved first-principles modeling of gas-liquid flows in these industrially important devices.

  19. A numerical study of transient ignition and flame characteristics of diluted hydrogen versus heated air in counterflow

    SciTech Connect

    Yoo, Chun Sang; Chen, Jacqueline H.; Frank, Jonathan H.

    2008-11-15

    Combined experimental and numerical studies of the transient response of ignition to strained flows require a well-characterized ignition trigger. Laser deposition of a small radical pool provides a reliable method for initiating ignition of mixtures that are near the ignition limit. Two-dimensional direct numerical simulations are used to quantify the sensitivity of ignition kernel formation and subsequent edge-flame propagation to the oxidizer temperature and the initial width and amplitude of O-atom deposition used to trigger ignition in an axisymmetric counterflow of heated air versus ambient hydrogen/nitrogen. The ignition delay and super-equilibrium OH concentration in the nascent ignition kernel are highly sensitive to variations in these initial conditions. The ignition delay decreases as the amplitude of the initial O-atom deposition increases. The spatial distribution and the magnitude of the OH overshoot are governed by multi-dimensional effects. The degree of OH overshoot near the burner centerline increases as the diameter of the initial O-atom deposition region decreases. This result is attributed to preferential diffusion of hydrogen in the highly curved leading portion of the edge flame that is established following thermal runaway. The edge-flame speed and OH overshoot at the leading edge of the edge flame are relatively insensitive to variations in the initial conditions of the ignition. The steady edge-flame speed is approximately twice the corresponding laminar flame speed. The rate at which the edge flame approaches its steady state is insensitive to the initial conditions and depends solely on the diffusion time scale at the edge flame. The edge flame is curved toward the heated oxidizer stream as a result of differences in the chemical kinetics between the leading edge and the trailing diffusion flame. The structure of the highly diluted diffusion flame considered in this study corresponds to Linan's 'premixed flame regime' in which only the

  20. A numerical study of transient ignition and flame characteristics of diluted hydrogen versus heated air in counterflow

    SciTech Connect

    Yoo, Chun Sang; Chen, Jacqueline H.; Frank, Jonathan H.

    2009-01-15

    Combined experimental and numerical studies of the transient response of ignition to strained flows require a well-characterized ignition trigger. Laser deposition of a small radical pool provides a reliable method for initiating ignition of mixtures that are near the ignition limit. Two-dimensional direct numerical simulations are used to quantify the sensitivity of ignition kernel formation and subsequent edge-flame propagation to the oxidizer temperature and the initial width and amplitude of O-atom deposition used to trigger ignition in an axisymmetric counterflow of heated air versus ambient hydrogen/nitrogen. The ignition delay and super-equilibrium OH concentration in the nascent ignition kernel are highly sensitive to variations in these initial conditions. The ignition delay decreases as the amplitude of the initial O-atom deposition increases. The spatial distribution and the magnitude of the OH overshoot are governed by multi-dimensional effects. The degree of OH overshoot near the burner centerline increases as the diameter of the initial O-atom deposition region decreases. This result is attributed to preferential diffusion of hydrogen in the highly curved leading portion of the edge flame that is established following thermal runaway. The edge-flame speed and OH overshoot at the leading edge of the edge flame are relatively insensitive to variations in the initial conditions of the ignition. The steady edge-flame speed is approximately twice the corresponding laminar flame speed. The rate at which the edge flame approaches its steady state is insensitive to the initial conditions and depends solely on the diffusion time scale at the edge flame. The edge flame is curved toward the heated oxidizer stream as a result of differences in the chemical kinetics between the leading edge and the trailing diffusion flame. The structure of the highly diluted diffusion flame considered in this study corresponds to Linan's 'premixed flame regime' in which only the

  1. A numerical study of transient ignition and flame characteristics of diluted hydrogen versus heated air in counterflow.

    SciTech Connect

    Yoo, Chun Sang; Chen, Jacqueline H.; Frank, Jonathan H.

    2008-08-01

    Combined experimental and numerical studies of the transient response of ignition to strained flows require a well-characterized ignition trigger. Laser deposition of a small radical pool provides a reliable method for initiating ignition of mixtures that are near the ignition limit. Two-dimensional direct numerical simulations are used to quantify the sensitivity of ignition kernel formation and subsequent edge-flame propagation to the oxidizer temperature and the initial width and amplitude of O-atom deposition used to trigger ignition in an axisymmetric counterflow of heated air versus ambient hydrogen/nitrogen. The ignition delay and super-equilibrium OH concentration in the nascent ignition kernel are highly sensitive to variations in these initial conditions. The ignition delay decreases as the amplitude of the initial O-atom deposition increases. The spatial distribution and the magnitude of the OH overshoot are governed by multi-dimensional effects. The degree of OH overshoot near the burner centerline increases as the diameter of the initial O-atom deposition region decreases. This result is attributed to preferential diffusion of hydrogen in the highly curved leading portion of the edge flame that is established following thermal runaway. The edge-flame speed and OH overshoot at the leading edge of the edge flame are relatively insensitive to variations in the initial conditions of the ignition. The steady edge-flame speed is approximately twice the corresponding laminar flame speed. The rate at which the edge flame approaches its steady state is insensitive to the initial conditions and depends solely on the diffusion time scale at the edge flame. The edge flame is curved toward the heated oxidizer stream as a result of differences in the chemical kinetics between the leading edge and the trailing diffusion flame. The structure of the highly diluted diffusion flame considered in this study corresponds to Linan's 'premixed flame regime' in which only the

  2. EFFECT OF OXYGEN ADDITION ON POLYCYCLIC AROMATIC HYDROCARBON FORMATION IN 1,3 BUTADIENE COUNTER-FLOW DIFFUSION FLAMES. (R828193)

    EPA Science Inventory

    The effect of 3% O2 addition to the fuel on detailed chemical structure of a 1,3 butadiene counter-flow diffusion flame has been investigated by using heated microprobe sampling and online gas chromatography mass spectrometry. Centerline gas temperature and species ...

  3. Observations of Shock Diffusion and Interactions in Supersonic Freestreams with Counterflowing Jets

    NASA Technical Reports Server (NTRS)

    Daso, Endwell O.; Pritchett, Victor E.; Wang, Ten-See; Blankson, Isiah M.; Auslender, Aaron H.

    2006-01-01

    One of the technical challenges in long-duration space exploration and interplanetary missions is controlled entry and re-entry into planetary and Earth atmospheres, which requires the dissipation of considerable kinetic energy as the spacecraft decelerates and penetrates the atmosphere. Efficient heat load management of stagnation points and acreage heating remains a technological challenge and poses significant risk, particularly for human missions. An innovative approach using active flow control concept is proposed to significantly modify the external flow field about the spacecraft in planetary atmospheric entry and re-entry in order to mitigate the harsh aerothermal environments, and significantly weaken and disperse the shock-wave system to reduce aerothermal loads and wave drag, as well as improving aerodynamic performance. To explore the potential benefits of this approach, we conducted fundamental experiments in a trisonic blow down wind tunnel to investigate the effects of counterflowing sonic and supersonic jets against supersonic freestreams to gain a better understanding of the flow physics of the interactions of the opposing flows and the resulting shock structure.

  4. Ignition of CO/H{sub 2}/N{sub 2} versus heated air in counterflow: Experimental and modeling results

    SciTech Connect

    Fotache, C.G.; Tan, Y.; Sung, C.J.; Law, C.K.

    2000-03-01

    Nonpremixed ignition in counterflowing CO/H{sub 2} vs. heated air jets is experimentally and computationally investigated. The experiments confirm the numerical modeling observation of the existence of three ignition regimes as a function of the hydrogen concentration. In all three regimes, the authors first detect experimentally the onset of chemiluminescent glow due to excited CO{sub 2} followed by flame ignition, as the temperature of the air jet is raised gradually. The temperature extent of the glow regime, however, is progressively reduced with increasing hydrogen addition; no glow is detected for H{sub 2} concentrations in excess of {approximately}73%. The temperatures for glow onset and flame ignition are represented by the boundary air temperatures for each threshold. The variation of these temperatures with system pressure and flow strain rate is explored, for pressures between 0.16 and 5 atm, and strain rates of 100 to 600 s{sup {minus}1}. The pressure variation is found to result in three p-T ignition limits, similar to the ignition limits observed in the H{sub 2}/O{sub 2} system. This similarity is also observed on the effects of aerodynamic transport on ignition: within the second limit the ignition temperatures are found to be essentially insensitive to flow strain rate, whereas the other two limits are significantly affected by strain. The transport insensitivity is maintained even in the limit of very low H{sub 2} concentrations, where an analogous H{sub 2}N{sub 2} mixture would fail to ignite. This behavior is explained computationally by the replacement of the shift reaction OH + H{sub 2} {yields} H{sub 2}O + H with the reaction CO + OH {yields} CO{sub 2} + H, thereby minimizing the effect of diminishing H{sub 2} concentration. The experimental data are found to agree well with the calculated results, although discrepancies are noted in modeling the onset of chemiluminescence and its response to pressure variations.

  5. Analysis of opposed-jet hydrogen-air counter flow diffusion flame

    NASA Technical Reports Server (NTRS)

    Ho, Y. H.; Isaac, K. M.; Pellett, G. L.; Northam, G. B.

    1991-01-01

    An opposed-jet counterflow diffusion-flame configuration is considered for the analysis of a nitrogen-diluted hydrogen-air diffusion flame. A boundary-layer similarity solution is employed in order to reduce the governing equations to a set of equations in one independent variable. The equation set is written in the time-dependent form and solved by the finite-volume time-marching technique. This model uses detailed chemistry and accounts for the variations of Prandtl number and Lewis number as well as the effect of thermal diffusion on the flame. It is noted that a one-step model can predict several features of the flame, while the detailed-chemistry model can be used for fine-tuning the results. The present results indicate that thermal diffusion has negligible effect on the characteristics of the flame.

  6. Effects of water-contaminated air on blowoff limits of opposed jet hydrogen-air diffusion flames

    NASA Technical Reports Server (NTRS)

    Pellett, Gerald L.; Jentzen, Marilyn E.; Wilson, Lloyd G.; Northam, G. Burton

    1988-01-01

    The effects of water-contaminated air on the extinction and flame restoration of the central portion of N2-diluted H2 versus air counterflow diffusion flames are investigated using a coaxial tubular opposed jet burner. The results show that the replacement of N2 contaminant in air by water on a mole for mole basis decreases the maximum sustainable H2 mass flow, just prior to extinction, of the flame. This result contrasts strongly with the analogous substitution of water for N2 in a relatively hot premixed H2-O2-N2 flame, which was shown by Koroll and Mulpuru (1986) to lead to a significant, kinetically controlled increase in laminar burning velocity.

  7. Absolute, spatially resolved, in situ CO profiles in atmospheric laminar counter-flow diffusion flames using 2.3 μm TDLAS

    NASA Astrophysics Data System (ADS)

    Wagner, Steven; Klein, Moritz; Kathrotia, Trupti; Riedel, Uwe; Kissel, Thilo; Dreizler, Andreas; Ebert, Volker

    2012-11-01

    We developed a new, spatially traversing, direct tunable diode laser absorption spectrometer (TDLAS) for quantitative, calibration-free, and spatially resolved in situ measurements of CO profiles in atmospheric, laminar, non-premixed CH4/air model flames stabilized at a Tsuji counter-flow burner. The spectrometer employed a carefully characterized, room temperature distributed feedback diode laser to detect the R20 line of CO near 2,313 nm (4,324.4 cm-1), which allows to minimize spectral CH4 interference and detect CO even in very fuel-rich zones of the flame. The burner head was traversed through the 0.5 mm diameter laser beam in order to derive spatially resolved CO profiles in the only 60-mm wide CH4/air flame. Our multiple Voigt line Levenberg-Marquardt fitting algorithm and the use of highly efficient optical disturbance correction algorithms for treating transmission and background emission fluctuations as well as careful fringe interference suppression permitted to achieve a fractional optical resolution of up to 2.4 × 10-4 OD (1σ) in the flame ( T up to 1,965 K). Highly accurate, spatially resolved, absolute gas temperature profiles, needed to compute mole fraction and correct for spectroscopic temperature dependencies, were determined with a spatial resolution of 65 μm using ro-vibrational N2-CARS (Coherent anti-Stokes Raman spectroscopy). With this setup we achieved temperature-dependent CO detection limits at the R20 line of 250-2,000 ppmv at peak CO concentrations of up to 4 vol.%. This permitted local CO detection with signal to noise ratios of more than 77. The CO TDLAS spectrometer was then used to determine absolute, spatially resolved in situ CO concentrations in the Tsuji flame, investigate the strain dependence of the CO Profiles and favorably compare the results to a new flame-chemistry model.

  8. Sensitive and comprehensive detection of chemical warfare agents in air by atmospheric pressure chemical ionization ion trap tandem mass spectrometry with counterflow introduction.

    PubMed

    Seto, Yasuo; Sekiguchi, Hiroshi; Maruko, Hisashi; Yamashiro, Shigeharu; Sano, Yasuhiro; Takayama, Yasuo; Sekioka, Ryoji; Yamaguchi, Shintaro; Kishi, Shintaro; Satoh, Takafumi; Sekiguchi, Hiroyuki; Iura, Kazumitsu; Nagashima, Hisayuki; Nagoya, Tomoki; Tsuge, Kouichiro; Ohsawa, Isaac; Okumura, Akihiko; Takada, Yasuaki; Ezawa, Naoya; Watanabe, Susumu; Hashimoto, Hiroaki

    2014-05-01

    A highly sensitive and specific real-time field-deployable detection technology, based on counterflow air introduction atmospheric pressure chemical ionization, has been developed for a wide range of chemical warfare agents (CWAs) comprising gaseous (two blood agents, three choking agents), volatile (six nerve gases and one precursor agent, five blister agents), and nonvolatile (three lachrymators, three vomiting agents) agents in air. The approach can afford effective chemical ionization, in both positive and negative ion modes, for ion trap multiple-stage mass spectrometry (MS(n)). The volatile and nonvolatile CWAs tested provided characteristic ions, which were fragmented into MS(3) product ions in positive and negative ion modes. Portions of the fragment ions were assigned by laboratory hybrid mass spectrometry (MS) composed of linear ion trap and high-resolution mass spectrometers. Gaseous agents were detected by MS or MS(2) in negative ion mode. The limits of detection for a 1 s measurement were typically at or below the microgram per cubic meter level except for chloropicrin (submilligram per cubic meter). Matrix effects by gasoline vapor resulted in minimal false-positive signals for all the CWAs and some signal suppression in the case of mustard gas. The moisture level did influence the measurement of the CWAs. PMID:24678766

  9. Counterflowing Jet Subsystem Design

    NASA Technical Reports Server (NTRS)

    Farr, Rebecca; Daso, Endwell; Pritchett, Victor; Wang, Ten-See

    2010-01-01

    A counterflowing jet design (a spacecraft and trans-atmospheric subsystem) employs centrally located, supersonic cold gas jets on the face of the vehicle, ejecting into the oncoming free stream. Depending on the supersonic free-stream conditions and the ejected mass flow rate of the counterflowing jets, the bow shock of the vehicle is moved upstream, further away from the vehicle. This results in an increasing shock standoff distance of the bow shock with a progressively weaker shock. At a critical jet mass flow rate, the bow shock becomes so weak that it is transformed into a series of compression waves spread out in a much wider region, thus significantly modifying the flow that wets the outer surfaces, with an attendant reduction in wave and skin friction drag and aerothermal loads.

  10. Diffusion of air (1); furfural (2)

    NASA Astrophysics Data System (ADS)

    Winkelmann, J.

    This document is part of Subvolume A `Gases in Gases, Liquids and their Mixtures' of Volume 15 `Diffusion in Gases, Liquids and Electrolytes' of Landolt-Börnstein Group IV `Physical Chemistry'. It is part of the chapter of the chapter `Diffusion in Pure Gases' and contains data on diffusion of (1) air; (2) furfural

  11. Counterflow Regolith Heat Exchanger

    NASA Technical Reports Server (NTRS)

    Zubrin, Robert; Jonscher, Peter

    2013-01-01

    A problem exists in reducing the total heating power required to extract oxygen from lunar regolith. All such processes require heating a great deal of soil, and the heat energy is wasted if it cannot be recycled from processed material back into new material. The counterflow regolith heat exchanger (CoRHE) is a device that transfers heat from hot regolith to cold regolith. The CoRHE is essentially a tube-in-tube heat exchanger with internal and external augers attached to the inner rotating tube to move the regolith. Hot regolith in the outer tube is moved in one direction by a right-hand - ed auger, and the cool regolith in the inner tube is moved in the opposite direction by a left-handed auger attached to the inside of the rotating tube. In this counterflow arrangement, a large fraction of the heat from the expended regolith is transferred to the new regolith. The spent regolith leaves the heat exchanger close to the temperature of the cold new regolith, and the new regolith is pre-heated close to the initial temperature of the spent regolith. Using the CoRHE can reduce the heating requirement of a lunar ISRU system by 80%, reducing the total power consumption by a factor of two. The unique feature of this system is that it allows for counterflow heat exchange to occur between solids, instead of liquids or gases, as is commonly done. In addition, in variants of this concept, the hydrogen reduction can be made to occur within the counterflow heat exchanger itself, enabling a simplified lunar ISRU (in situ resource utilization) system with excellent energy economy and continuous nonbatch mode operation.

  12. Sensitive monitoring of volatile chemical warfare agents in air by atmospheric pressure chemical ionization mass spectrometry with counter-flow introduction.

    PubMed

    Seto, Yasuo; Kanamori-Kataoka, Mieko; Tsuge, Koichiro; Ohsawa, Isaac; Iura, Kazumitsu; Itoi, Teruo; Sekiguchi, Hiroyuki; Matsushita, Koji; Yamashiro, Shigeharu; Sano, Yasuhiro; Sekiguchi, Hiroshi; Maruko, Hisashi; Takayama, Yasuo; Sekioka, Ryoji; Okumura, Akihiko; Takada, Yasuaki; Nagano, Hisashi; Waki, Izumi; Ezawa, Naoya; Tanimoto, Hiroyuki; Honjo, Shigeru; Fukano, Masumi; Okada, Hidehiro

    2013-03-01

    A new method for sensitively and selectively detecting chemical warfare agents (CWAs) in air was developed using counter-flow introduction atmospheric pressure chemical ionization mass spectrometry (MS). Four volatile and highly toxic CWAs were examined, including the nerve gases sarin and tabun, and the blister agents mustard gas (HD) and Lewisite 1 (L1). Soft ionization was performed using corona discharge to form reactant ions, and the ions were sent in the direction opposite to the airflow by an electric field to eliminate the interfering neutral molecules such as ozone and nitrogen oxide. This resulted in efficient ionization of the target CWAs, especially in the negative ionization mode. Quadrupole MS (QMS) and ion trap tandem MS (ITMS) instruments were developed and investigated, which were movable on the building floor. For sarin, tabun, and HD, the protonated molecular ions and their fragment ions were observed in the positive ion mode. For L1, the chloride adduct ions of L1 hydrolysis products were observed in negative ion mode. The limit of detection (LOD) values in real-time or for a 1 s measurement monitoring the characteristic ions were between 1 and 8 μg/m(3) in QMS instrument. Collision-induced fragmentation patterns for the CWAs were observed in an ITMS instrument, and optimized combinations of the parent and daughter ion pairs were selected to achieve real-time detection with LOD values of around 1 μg/m(3). This is a first demonstration of sensitive and specific real-time detection of both positively and negatively ionizable CWAs by MS instruments used for field monitoring. PMID:23339735

  13. Counterflow absorber for an absorption refrigeration system

    DOEpatents

    Reimann, Robert C.

    1984-01-01

    An air-cooled, vertical tube absorber for an absorption refrigeration system is disclosed. Strong absorbent solution is supplied to the top of the absorber and refrigerant vapor is supplied to the bottom of the absorber to create a direct counterflow of refrigerant vapor and absorbent solution in the absorber. The refrigeration system is designed so that the volume flow rate of refrigerant vapor in the tubes of the absorber is sufficient to create a substantially direct counterflow along the entire length of each tube in the absorber. This provides several advantages for the absorber such as higher efficiency and improved heat transfer characteristics, and allows improved purging of non-condensibles from the absorber.

  14. Combustion rate limits of hydrogen plus hydrocarbon fuel: Air diffusion flames from an opposed jet burner technique

    NASA Technical Reports Server (NTRS)

    Pellett, Gerald L.; Guerra, Rosemary; Wilson, Lloyd G.; Reeves, Ronald N.; Northam, G. Burton

    1987-01-01

    Combustion of H2/hydrocarbon (HC) fuel mixtures may be considered in certain volume-limited supersonic airbreathing propulsion applications. Effects of HC addition to H2 were evaluated, using a recent argon-bathed, coaxial, tubular opposed jet burner (OJB) technique to measure the extinction limits of counterflow diffusion flames. The OJB flames were formed by a laminar jet of (N2 and/or HC)-diluted H2 mixture opposed by a similar jet of air at ambient conditions. The OJB data, derived from respective binary mixtures of H2 and methane, ethylene, or propane HCs, were used to characterize BLOWOFF and RESTORE. BLOWOFF is a sudden breaking of the dish-shaped OJB flame to a stable torus or ring shape, and RESTORE marks sudden restoration of the central flame by radial inward flame propagation. BLOWOFF is a measure of kinetically-limited flame reactivity/speed under highly stretched, but relatively ideal impingement flow conditions. RESTORE measures inward radial flame propagation rate, which is sensitive to ignition processes in the cool central core. It is concluded that relatively small molar amounts of added HC greatly reduce the reactivity characteristics of counterflow hydrogen-air diffusion flames, for ambient initial conditions.

  15. Isotachophoresis with counterflow in an open capillary: computer simulation and experimental validation.

    PubMed

    Liu, Bingwen; Ivory, Cornelius F

    2013-06-01

    The purpose of applying a countercurrent flow to isotachophoretic migration is to increase the effective separation channel length during ITP. However, severe dispersion induced by applying a counterflow can be detrimental to ITP. This paper uses numerical simulations in a 2D axisymmetric domain to investigate the dispersion caused by a parabolic counterflow in open-capillary ITP. Counterflow in these simulations was generated by applying a back pressure to stop the isotachophoretic stack, i.e., forming stationary ITP zones. It is found that dispersion is strongly related to analyte molecular diffusivity: R-phycoerythrin, due to its small diffusivity, showed ~20-fold increase in zone width in stationary counterflow ITP, compared to ITP in the absence of counterflow, while fluorescein only had ~10% increase in zone width under similar operating conditions. Applying the Taylor-Aris dispersion formula in counterflow ITP simulations provided only a rough estimate of the dispersion, e.g., overestimation of analyte zone widths. Experiments on counterflow ITP were conducted in a silica capillary that was covalently and dynamically coated to exclude electroosmosis effect. The counterflow was generated by adjusting the relative height of the fluids in the two reservoirs at the capillary ends. Good qualitative agreement between simulations and experiments was found. PMID:23559546

  16. Opposed jet burner studies of effects of CO, CO2, and N2 air-contaminants on hydrogen-air diffusion flames

    NASA Technical Reports Server (NTRS)

    Guerra, Rosemary; Pellett, Gerald L.; Northam, G. Burton; Wilson, Lloyd G.

    1987-01-01

    The blowoff/restore characteristics for jets of various H2/N2 mixtures opposed to jets of air contaminated by N2, CO, and CO2 have been determined using a counterflow diffusion flame formed by a tubular opposed jet burner. Both blowoff and restore limits are found to be sensitive to fuel and air composition. Empirically derived variations in the limits of the average mass flux of incoming H2 with percent contaminant, at fixed incoming fuel and H2/O2 inputs, are used to quantify the effects of oxygen dilution, flame augmentation, and flame retardation by N2, CO, and CO2 contaminants. The implications of the results are discussed.

  17. Quantification of the uncertainties in the prediction of extinction of hydrogen-air diffusion flames

    NASA Astrophysics Data System (ADS)

    Kseib, Nicolas; Urzay, Javier; Iaccarino, Gianluca

    2011-11-01

    The study of the physical processes that lead to extinction of flames in gaseous hydrogen-air non-premixed combustion is of paramount importance for the reliable design of power plants and advanced propulsion systems in automobiles and hypersonic aircrafts. However, there remain several uncertainties in the experimental quantification of reaction rates of elementary steps in most of hydrogen-air mechanisms, which can produce hazards in hydrogen manipulation and engine malfunction. In this study, the effects of aleatory uncertainties in the chemical reaction-rate constants induced in hydrogen-air counterflow diffusion-flame extinction processes are addressed, with a probabilistic representation of the uncertain parameters sampled with a Markov-Chain Monte Carlo algorithm. Measurements of the reaction-rate constants and their associated uncertainty factors, reported earlier for the Stanford hydrogen-air detailed chemical mechanism, are used to study the propagation of uncertainties in the calculation of scalar dissipation rates at extinction. Non-intrusive methods are used to analyze the variablities, with the probability density function of the scalar dissipation rate being sampled around regions involving flame extinction and global sensitivity indices being computed by Monte Carlo sampling.

  18. Isotope effect of mercury diffusion in air

    PubMed Central

    Koster van Groos, Paul G.; Esser, Bradley K.; Williams, Ross W.; Hunt, James R.

    2014-01-01

    Identifying and reducing impacts from mercury sources in the environment remains a considerable challenge and requires process based models to quantify mercury stocks and flows. The stable isotope composition of mercury in environmental samples can help address this challenge by serving as a tracer of specific sources and processes. Mercury isotope variations are small and result only from isotope fractionation during transport, equilibrium, and transformation processes. Because these processes occur in both industrial and environmental settings, knowledge of their associated isotope effects is required to interpret mercury isotope data. To improve the mechanistic modeling of mercury isotope effects during gas phase diffusion, an experimental program tested the applicability of kinetic gas theory. Gas-phase elemental mercury diffusion through small bore needles from finite sources demonstrated mass dependent diffusivities leading to isotope fractionation described by a Rayleigh distillation model. The measured relative atomic diffusivities among mercury isotopes in air are large and in agreement with kinetic gas theory. Mercury diffusion in air offers a reasonable explanation of recent field results reported in the literature. PMID:24364380

  19. Counterflow driven by swirl decay

    NASA Astrophysics Data System (ADS)

    Shtern, Vladimir N.; Borissov, Anatoli A.

    2010-06-01

    The global meridional circulation of a viscous fluid, caused by swirl decay in a cylindrical container, is studied. To this end, a new solution to the Navier-Stokes equations is obtained, and simple experiments are performed to verify the predictions of the theory. The swirl decay mechanism explains elongated counterflows in hydrocyclones and vortex tubes sometimes extending over a hundred diameters.

  20. Vertical counterflow evaporative cooler

    DOEpatents

    Bourne, Richard C.; Lee, Brian Eric; Callaway, Duncan

    2005-01-25

    An evaporative heat exchanger having parallel plates that define alternating dry and wet passages. A water reservoir is located below the plates and is connected to a water distribution system. Water from the water distribution system flows through the wet passages and wets the surfaces of the plates that form the wet passages. Air flows through the dry passages, mixes with air below the plates, and flows into the wet passages before exiting through the top of the wet passages.

  1. Droplet evaporation in a nonpremixed counterflowing flame

    NASA Astrophysics Data System (ADS)

    Puri, Ishwar K.; Aggarwal, Suresh K.; Chen, Gang

    1991-01-01

    A numerical study is conducted that considers droplets in a conterflowing flame established by flowing two opposing streams of gaseous methane and air against each other. It is noted that this investigation is similar to the flowfield studied experimentally by Puri and Libby (1989), the results of which are used in combination with the results from this experiment in order to develop a further understanding of droplet motion in counterflowing streams. Based on calculations, it is concluded that, in a rapidly changing ambient medium, when the droplet residence time in the high-temperature region is small compared to the time spent in the entire couterflowing flowfield, the choice of gasification models is unimportant. Droplets at different locations in the flowfield, experiencing similar convective conditions, and having the same residence times in the high-temperature zone, are found to possess the same radius history.

  2. Real-time air monitoring of mustard gas and Lewisite 1 by detecting their in-line reaction products by atmospheric pressure chemical ionization ion trap tandem mass spectrometry with counterflow ion introduction.

    PubMed

    Okumura, Akihiko; Takada, Yasuaki; Watanabe, Susumu; Hashimoto, Hiroaki; Ezawa, Naoya; Seto, Yasuo; Sekiguchi, Hiroshi; Maruko, Hisashi; Takayama, Yasuo; Sekioka, Ryoji; Yamaguchi, Shintaro; Kishi, Shintaro; Satoh, Takafumi; Kondo, Tomohide; Nagashima, Hisayuki; Nagoya, Tomoki

    2015-01-20

    A new method enabling sensitive real-time air monitoring of highly reactive chemical warfare agents, namely, mustard gas (HD) and Lewisite 1 (L1), by detecting ions of their in-line reaction products instead of intact agents, is proposed. The method is based on corona discharge-initiated atmospheric pressure chemical ionization coupled with ion trap tandem mass spectrometry (MS(n)) via counterflow ion introduction. Therefore, it allows for highly sensitive and specific real-time detection of a broad range of airborne compounds. In-line chemical reactions, ionization reactions, and ion fragmentations of these agents were investigated. Mustard gas is oxygenated in small quantity by reactive oxygen species generated in the corona discharge. With increasing air humidity, the MS(2) signal intensity of protonated molecules of mono-oxygenated HD decreases but exceeds that of dominantly existing intact HD. This result can be explained in view of proton affinity. Lewisite 1 is hydrolyzed and oxidized. As the humidity increases from zero, the signal of the final product, namely, didechlorinated, dihydroxylated, and mono-oxygenated L1, quickly increases and reaches a plateau, giving the highest MS(2) and MS(3) signals among those of L1 and its reaction products. The addition of minimal moisture gives the highest signal intensity, even under low humidity. The method was demonstrated to provide sufficient analytical performance to meet the requirements concerning hygienic management and counter-terrorism. It will be the first practical method, in view of sensitivity and specificity, for real-time air monitoring of HD and L1 without sample pretreatment. PMID:25553788

  3. Diffusion of air (1); furan-2-yl-methanethiol (2)

    NASA Astrophysics Data System (ADS)

    Winkelmann, J.

    This document is part of Subvolume A `Gases in Gases, Liquids and their Mixtures' of Volume 15 `Diffusion in Gases, Liquids and Electrolytes' of Landolt-Börnstein Group IV `Physical Chemistry'. It is part of the chapter of the chapter `Diffusion in Pure Gases' and contains data on diffusion of (1) air; (2) furan-2-yl-methanethiol

  4. Diffusion of 1-iodo-propane (1); air (2)

    NASA Astrophysics Data System (ADS)

    Winkelmann, J.

    This document is part of Subvolume A `Gases in Gases, Liquids and their Mixtures' of Volume 15 `Diffusion in Gases, Liquids and Electrolytes' of Landolt-Börnstein Group IV `Physical Chemistry'. It is part of the chapter of the chapter `Diffusion in Pure Gases' and contains data on diffusion of (1) 1-iodo-propane; (2) air

  5. Diffusion of 2-iodo-propane (1); air (2)

    NASA Astrophysics Data System (ADS)

    Winkelmann, J.

    This document is part of Subvolume A `Gases in Gases, Liquids and their Mixtures' of Volume 15 `Diffusion in Gases, Liquids and Electrolytes' of Landolt-Börnstein Group IV `Physical Chemistry'. It is part of the chapter of the chapter `Diffusion in Pure Gases' and contains data on diffusion of (1) 2-iodo-propane; (2) air

  6. Computation of NOx emission of a methane - air diffusion flame in a two-dimensional laminar jet with detailed chemistry

    NASA Astrophysics Data System (ADS)

    Ju, Yiguang; Niioka, Takashi

    1997-09-01

    NOx formation from a methane - air diffusion flame in a two-dimensional jet involving highly preheated air, which has recently become an important topic in industrial furnaces, is investigated numerically using a full chemistry approach including C2, prompt and thermal mechanisms. Effects of increased air temperature on NOx formation are examined. Numerical results show that both NO formation mechanisms increase dramatically with increasing air temperature. A C-shaped production zone of NOx, corresponding to the fuel-lean and fuel-rich regions of triple flame, is identified. It is shown that NO formation with high air temperature can be suppressed efficiently by decreasing the oxygen concentration in the airstream. Production rate analyses of elementary reactions are made. Formation paths of NOx at low and high temperatures are obtained and compared. The results show that the NOx formation path depends strongly on the air temperature. In addition to the thermal route and the HCN⇒NO route, the HCN⇒CN and NO⇒CN recycling routes are greatly enhanced at high air temperature. The results show that the prompt mechanism and the thermal mechanism are strongly coupled at high air temperature. Calculations of prompt NO and thermal NO in a two-dimensional jet and in the counterflow configuration reveal that the conventional method cannot give a correct prediction of prompt NO and thermal NO, particularly at high air temperature. A method using the concept of fixed nitrogen is presented. Numerical results indicate that the formation process of prompt NO and thermal NO can be evaluated properly by the present method.

  7. Modeling of hydrogen-air diffusion flame

    NASA Technical Reports Server (NTRS)

    Isaac, K. M.

    1988-01-01

    Work performed during the first six months of the project duration for NASA Grant (NAG-1-861) is reported. An analytical and computational study of opposed jet diffusion flame for the purpose of understanding the effects of contaminants in the reactants and thermal diffusion of light species on extinction and reignition of diffusion flames is in progress. The methodologies attempted so far are described.

  8. Sample dispersion in isotachophoresis with Poiseuille counterflow

    NASA Astrophysics Data System (ADS)

    Bhattacharyya, Somnath; Gopmandal, Partha P.; Baier, Tobias; Hardt, Steffen

    2013-02-01

    A particular mode of isotachophoresis (ITP) employs a pressure-driven flow opposite to the sample electromigration direction in order to anchor a sample zone at a specific position along a channel or capillary. We investigate this situation using a two-dimensional finite-volume model based on the Nernst-Planck equation. The imposed Poiseuille flow profile leads to a significant dispersion of the sample zone. This effect is detrimental for the resolution in analytical applications of ITP. We investigate the impact of convective dispersion, characterized by the area-averaged width of a sample zone, for various values of the sample Péclet-number, as well as the relative mobilities of the sample and the adjacent electrolytes. A one-dimensional model for the area-averaged concentrations based on a Taylor-Aris-type effective axial diffusivity is shown to yield good agreement with the finite-volume calculations. This justifies the use of such simple models and opens the door for the rapid simulation of ITP protocols with Poiseuille counterflow.

  9. Sooting Limits Of Diffusion Flames With Oxygen-Enriched Air And Diluted Fuel

    NASA Technical Reports Server (NTRS)

    Sunderland, P. B.; Urban, D. L.; Stocker, D. P.; Chao, B. H.; Axelbaum, R. L.

    2003-01-01

    Oxygen-enhanced combustion permits certain benefits and flexibility that are not otherwise available in the design of practical combustors, as discussed by Baukal. The cost of pure and enriched oxygen has declined to the point that oxygen-enhanced combustion is preferable to combustion in air for many applications. Carbon sequestration is greatly facilitated by oxygen enrichment because nitrogen can be eliminated from the product stream. For example, when natural gas (or natural gas diluted with CO2) is burned in pure oxygen, the only significant products are water and CO2. Oxygen-enhanced combustion also has important implications for soot formation, as explored in this work. We propose that soot inception in nonpremixed flames requires a region where C/O ratio, temperature, and residence time are above certain critical values. Soot does not form at low temperatures, with the threshold in nonpremixed flames ranging from about 1250-1650 K, a temperature referred to here as the critical temperature for soot inception, Tc. Soot inception also can be suppressed when residence time is short (equivalently, when the strain rate in counterflow flames is high). Soot induction times of 0.8-15 ms were reported by Tesner and Shurupov for acetylene/nitrogen mixtures at 1473 K. Burner stabilized spherical microgravity flames are employed in this work for two main reasons. First, this configuration offers unrestricted control over convection direction. Second, in steady state these flames are strain-free and thus can yield intrinsic sooting limits in diffusion flames, similar to the way past work in premixed flames has provided intrinsic values of C/O ratio associated with soot inception limits.

  10. Application of molecular beam mass spectrometry in studying the structure of a diffusive counterflow flame of CH{sub 4}/N{sub 2} and O{sub 2}/N{sub 2} doped with trimethylphosphate

    SciTech Connect

    Knyazkov, D.A.; Shmakov, A.G.; Korobeinichev, O.P.

    2007-10-15

    The applicability of molecular beam mass spectrometry (MBMS) in studying the structure of counterflow flames has been tested by investigating a counterflow flame of CH{sub 4}/N{sub 2} and O{sub 2}/N{sub 2}. The thermal structure of the flame was examined using a microthermocouple; the concentration profiles of such stable species as CH{sub 4}, O{sub 2}, and CO{sub 2} were measured by sampling with a microprobe and MBMS at various positions. The microprobe did not disturb the flame. However, the sonic probe, when inserted into the flame transverse to the burner axis to measure the centerline concentration profiles, produced a significant disturbance of the flame. But no such disturbance was observed when the tip of the sonic probe was located at the periphery of the burner. Good agreement was obtained between the concentration profiles of stable species, as measured using a microprobe and a sonic probe at the periphery of the burner. To verify the applicability of MBMS for detecting radicals and other labile species in a counterflow flame, the concentration profiles of H, OH, and the main phosphorus-bearing species in the counterflow flame doped with trimethylphosphate (TMP) were measured by MBMS at the periphery of the burner and compared with results of modeling using the OPPDIF code and a mechanism for the combustion of TMP, tested previously in premixed flames of methane and oxygen with TMP as an additive. Good agreement was obtained between the measured and simulated concentration profiles for the reagents, as well as for the final and intermediate products with relatively high molecular weights (PO, PO{sub 2}, HOPO, HOPO{sub 2}). The measured concentration profiles of species with low molecular weights (H{sub 2}O, CO{sub 2}, OH, H) were found to be broader than the calculated ones - in fact, the lower the molecular weight, the wider was the profile. This is probably due to a real flame not being one-dimensional. (author)

  11. Enhancement of diffuse reflectance using air tunnel structure.

    PubMed

    Jang, Jae Eun; Lee, Gae Hwang; Song, Byoung Gwon; Cha, Seung Nam; Jung, Jae Eun

    2013-02-01

    Submicrometer air gap structure has formed on diffuse reflection structure to improve light reflectance. Covering polymer or liquid on a diffuse reflector to make optical components induces the severe decrease of the total reflectance, since the diffuse reflected angle of some light rays is larger than the critical angle and the rays travel to the medium until meeting a proper small incident angle. The reflectance drops to 68% of the original value with just a polymer coating on the diffuse reflector. The formation of an air tunnel structure between the polymer layer and the diffuse reflector makes a symmetrical reflective index matching state and recovers 95% of the original reflectance. Due to the simple fabrication process and the chemical stability, the structure can be applied to various optical components and reflective display devices. PMID:23381414

  12. Diffusion barriers in modified air brazes

    DOEpatents

    Weil, Kenneth Scott; Hardy, John S; Kim, Jin Yong; Choi, Jung-Pyung

    2013-04-23

    A method for joining two ceramic parts, or a ceramic part and a metal part, and the joint formed thereby. The method provides two or more parts, a braze consisting of a mixture of copper oxide and silver, a diffusion barrier, and then heats the braze for a time and at a temperature sufficient to form the braze into a bond holding the two or more parts together. The diffusion barrier is an oxidizable metal that forms either a homogeneous component of the braze, a heterogeneous component of the braze, a separate layer bordering the braze, or combinations thereof. The oxidizable metal is selected from the group Al, Mg, Cr, Si, Ni, Co, Mn, Ti, Zr, Hf, Pt, Pd, Au, lanthanides, and combinations thereof.

  13. Diffusion barriers in modified air brazes

    DOEpatents

    Weil, Kenneth Scott; Hardy, John S.; Kim, Jin Yong; Choi, Jung-Pyung

    2010-04-06

    A method for joining two ceramic parts, or a ceramic part and a metal part, and the joint formed thereby. The method provides two or more parts, a braze consisting of a mixture of copper oxide and silver, a diffusion barrier, and then heats the braze for a time and at a temperature sufficient to form the braze into a bond holding the two or more parts together. The diffusion barrier is an oxidizable metal that forms either a homogeneous component of the braze, a heterogeneous component of the braze, a separate layer bordering the braze, or combinations thereof. The oxidizable metal is selected from the group Al, Mg, Cr, Si, Ni, Co, Mn, Ti, Zr, Hf, Pt, Pd, Au, lanthanides, and combinations thereof.

  14. Counterflow isotachophoresis in a monolithic column.

    PubMed

    Liu, Bingwen; Cong, Yongzheng; Ivory, Cornelius F

    2014-09-01

    This study describes stationary counterflow isotachophoresis (ITP) in a poly(acrylamide-co-N,N'-methylenebisacrylamide) monolithic column as a means for improving ITP processing capacity and reducing dispersion. The flow profile in the monolith was predicted using COMSOL's Brinkman Equation application mode, which revealed that the flow profile was mainly determined by monolith permeability. As monolith permeability decreases, the flow profile changes from a parabolic shape to a plug shape. An experimental monolithic column was prepared in a fused-silica capillary using an ultraviolet-initiated polymerization method. A monolithic column made from 8% (wt.) monomer was chosen for the stationary counterflow ITP experiments. Counterflow ITP in the monolithic column showed undistorted analyte zones with significantly reduced dispersion compared to the severe dispersion observed in an open capillary. Particularly, for r-phycoerythrin focused by counterflow ITP, its zone width in the monolithic column was only one-third that observed in an open capillary. These experiments demonstrate that stationary counterflow ITP in monoliths can be a robust and practical electrofocusing method. PMID:24935025

  15. Computational Investigation of Fluidic Counterflow Thrust Vectoring

    NASA Technical Reports Server (NTRS)

    Hunter, Craig A.; Deere, Karen A.

    1999-01-01

    A computational study of fluidic counterflow thrust vectoring has been conducted. Two-dimensional numerical simulations were run using the computational fluid dynamics code PAB3D with two-equation turbulence closure and linear Reynolds stress modeling. For validation, computational results were compared to experimental data obtained at the NASA Langley Jet Exit Test Facility. In general, computational results were in good agreement with experimental performance data, indicating that efficient thrust vectoring can be obtained with low secondary flow requirements (less than 1% of the primary flow). An examination of the computational flowfield has revealed new details about the generation of a countercurrent shear layer, its relation to secondary suction, and its role in thrust vectoring. In addition to providing new information about the physics of counterflow thrust vectoring, this work appears to be the first documented attempt to simulate the counterflow thrust vectoring problem using computational fluid dynamics.

  16. Computational and Experimental Study of Energetic Material in a Counterflow Microgravity Environment

    NASA Technical Reports Server (NTRS)

    Smooke, Mitchell D.; Yetter, R. A.; Parr, T. P.; Hanson-Parr, D. M.; Tanoff, M. A.

    1999-01-01

    Ground based (normal gravity) combustion studies can provide important information on the processes by which monopropellants and composite systems burn. The effects of gravitational forces, however, can often complicate the interpretation of the models and the implementation of experiments designed to help elucidate complex issues. We propose to utilize a combined computational/experimental approach in a microgravity environment to understand the interaction of oxidizer-binder diffusion flames in composite propellants. By operating under microgravity conditions we will be able to increase the length scales and suppress the gravitational forces on melting binders such that increased resolution of both major and minor species will be possible thus reducing the demands placed on both the computational and diagnostic tools. Results of a detailed transport/finite rate chemistry model will be compared with nonintrusive optical diagnostic measurements of the structure and extinction of diffusion flames in which oxidizers such as ammonium perchlorate (AP) and ammonium dinitramide (ADN) are counterflowed against realistic binders such as hydroxyl-terminated polybutadiene (HTPB) and 3,3-bis(azidomethyl)oxetane (BAMO). The work proposed herein represents a collaborative effort among the research groups at Yale University, Princeton University and the Combustion Diagnostics Laboratory at the Naval Air Warfare Center in China Lake, CA.

  17. ANALYTICAL DIFFUSION MODEL FOR LONG DISTANCE TRANSPORT OF AIR POLLUTANTS

    EPA Science Inventory

    A steady-state two-dimensional diffusion model suitable for predicting ambient air pollutant concentrations averaged over a long time period (e.g., month, season, or year) and resulting from the transport of pollutants for distances greater than about 100 km from the source is de...

  18. Practical method for diffusion welding of steel plate in air.

    NASA Technical Reports Server (NTRS)

    Moore, T. J.; Holko, K. H.

    1972-01-01

    Description of a simple and easily applied method of diffusion welding steel plate in air which does not require a vacuum furnace or hot press. The novel feature of the proposed welding method is that diffusion welds are made in air with deadweight loading. In addition, the use of an autogenous (self-generated) surface-cleaning principle (termed 'auto-vac cleaning') to reduce the effects of surface oxides that normally hinder diffusion welding is examined. A series of nine butt joints were diffusion welded in thick sections of AISI 1020 steel plate. Diffusion welds were attempted at three welding temperatures (1200, 1090, and 980 C) using a deadweight pressure of 34,500 N/sq m (5 psi) and a two-hour hold time at temperature. Auto-vac cleaning operations prior to welding were also studied for the same three temperatures. Results indicate that sound welds were produced at the two higher temperatures when the joints were previously fusion seal welded completely around the periphery. Also, auto-vac cleaning at 1200 C for 2-1/2 hours prior to diffusion welding was highly beneficial, particularly when subsequent welding was accomplished at 1090 C.

  19. Ignition in laminar and turbulent nonpremixed counterflow

    NASA Astrophysics Data System (ADS)

    Blouch, John Dewey

    2002-01-01

    Investigations into nonpremixed ignition were conducted to examine the influence of complex chemistry and flow turbulence as found in practical combustion systems. The counterflow configuration, where a hot air jet ignited a cold (298K) fuel jet, was adopted in experiments and calculations. The study of the ignition of large alkane hydrocarbons focused on the effects of fuel structure by investigating the reference fuels n-heptane and iso-octane. The ignition response of these fuels was similar to smaller fuels with similar molecular structures. This conclusion was reinforced by showing that the ignition temperature became nearly insensitive to fuel molecule size above C4, but continued to depend on whether the structure was linear or branched. The effects of turbulence were studied by adding perforated plates to the burner to generate controlled levels of turbulence. This configuration was examined in detail experimentally and computationally without reaction, and subsequently the effects of turbulence on ignition were studied with hydrogen as the fuel. The results indicated that at low turbulence intensities, ignition is enhanced relative to laminar ignition, but as the turbulence intensity increases the ignition temperature also increases, demonstrating that optimal conditions for ignition exist at low turbulence intensities. At high pressures, where HO2 chemistry is important, all turbulent ignition temperatures were higher than laminar ones, and the increasing temperature trend with turbulence intensity was still observed. At low fuel concentrations, a different ignition mode was observed where the transition from a weakly reacting state to a flame occurred over a range of temperatures where the flame was repeatedly ignited and extinguished. Turbulent ignition was modeled by solving a joint scalar PDF equation using a Monte Carlo technique. The absence of significant heat release prior to ignition enabled the use of a frozen flow solution, solved separately

  20. Characterization of gas diffusion electrodes for metal-air batteries

    NASA Astrophysics Data System (ADS)

    Danner, Timo; Eswara, Santhana; Schulz, Volker P.; Latz, Arnulf

    2016-08-01

    Gas diffusion electrodes are commonly used in high energy density metal-air batteries for the supply of oxygen. Hydrophobic binder materials ensure the coexistence of gas and liquid phase in the pore network. The phase distribution has a strong influence on transport processes and electrochemical reactions. In this article we present 2D and 3D Rothman-Keller type multiphase Lattice-Boltzmann models which take into account the heterogeneous wetting behavior of gas diffusion electrodes. The simulations are performed on FIB-SEM 3D reconstructions of an Ag model electrode for predefined saturation of the pore space with the liquid phase. The resulting pressure-saturation characteristics and transport correlations are important input parameters for modeling approaches on the continuum scale and allow for an efficient development of improved gas diffusion electrodes.

  1. Characterization of physical, thermal and chemical contributions of sodium bicarbonate particles in extinguishing counterflow nonpremixed flames

    SciTech Connect

    Chelliah, H.K.; Krauss, R.H.; Zhou, H.; Lentati, A.M.

    1999-07-01

    Based on laminar, nonpremixed methane-air flames established in a counterflow field, the flame extinction effectiveness of sodium bicarbonate particles is investigated here, both experimentally and numerically. In experiments, particles are separated into varying sizes (with the range of each size group approximately 10 {micro}m), and are introduced with the air stream. Flame extinction strain rates estimated using the measured nozzle exit velocities and separation distance are reported, as well as limited comparisons with LDV data (latter are mainly for calibration of the system). Numerical flame extinction results are also reported using a hybrid Eulerian-Lagrangian model previously developed for characterization of the flame extinction mechanism of fine-water droplets in a counterflow field. Comparison of the experimental and numerical results indicates a similar trend with particular size variation, but uncertainties in the particle decomposition model employed precludes any absolute comparisons at this time.

  2. Sorbose Counterflow as a Measure of Intracellular Glucose in Baker's Yeast

    PubMed Central

    Wilkins, Peter O.; Cirill, Vincent P.

    1965-01-01

    Wilkins, Peter O. (New Jersey College of Medicine and Dentistry, Jersey City), and Vincent P. Cirillo. Sorbose counterflow as a measure of intracellular glucose in baker's yeast. J. Bacteriol. 90:1605–1610. 1965.—The intracellular concentration of glucose in metabolizing baker's yeast was determined indirectly from the glucose-induced counterflow of previously accumulated sorbose. The method is based on the concept that sugar transport in yeast is a symmetrical facilitated diffusion. The intracellular glucose concentration increased with an increase in the extracellular concentration and was higher in aerobiosis than in anaerobiosis. The concentrations were considerably greater than those obtained by direct analysis of intracellular glucose. Calculation of the apparent maximal velocity of glucose transport yielded values which varied with the rate of metabolism and the extracellular concentration. This suggests that during glucose metabolism the transport of hexoses includes elements that are not revealed by experiments involving metabolic inhibitors or nonmetabolizable sugars. PMID:5854586

  3. Simulation of counterflow pedestrian dynamics using spheropolygons

    NASA Astrophysics Data System (ADS)

    Alonso-Marroquín, Fernando; Busch, Jonathan; Chiew, Coraline; Lozano, Celia; Ramírez-Gómez, Álvaro

    2014-12-01

    Pedestrian dynamic models are typically designed for comfortable walking or slightly congested conditions and typically use a single disk or combination of three disks for the shape of a pedestrian. Under crowd conditions, a more accurate pedestrian shape has advantages over the traditional single or three-disks model. We developed a method for simulating pedestrian dynamics in a large dense crowd of spheropolygons adapted to the cross section of the chest and arms of a pedestrian. Our numerical model calculates pedestrian motion from Newton's second law, taking into account viscoelastic contact forces, contact friction, and ground-reaction forces. Ground-reaction torque was taken to arise solely from the pedestrians' orientation toward their preferred destination. Simulations of counterflow pedestrians dynamics in corridors were used to gain insight into a tragic incident at the Madrid Arena pavilion in Spain, where five girls were crushed to death. The incident took place at a Halloween Celebration in 2012, in a long, densely crowded hallway used as entrance and exit at the same time. Our simulations reconstruct the mechanism of clogging in the hallway. The hypothetical case of a total evacuation order was also investigated. The results highlights the importance of the pedestrians' density and the effect of counterflow in the onset of avalanches and clogging and provides an estimation of the number of injuries based on a calculation of the contact-force network between the pedestrians.

  4. Simulation of counterflow pedestrian dynamics using spheropolygons.

    PubMed

    Alonso-Marroquín, Fernando; Busch, Jonathan; Chiew, Coraline; Lozano, Celia; Ramírez-Gómez, Álvaro

    2014-12-01

    Pedestrian dynamic models are typically designed for comfortable walking or slightly congested conditions and typically use a single disk or combination of three disks for the shape of a pedestrian. Under crowd conditions, a more accurate pedestrian shape has advantages over the traditional single or three-disks model. We developed a method for simulating pedestrian dynamics in a large dense crowd of spheropolygons adapted to the cross section of the chest and arms of a pedestrian. Our numerical model calculates pedestrian motion from Newton's second law, taking into account viscoelastic contact forces, contact friction, and ground-reaction forces. Ground-reaction torque was taken to arise solely from the pedestrians' orientation toward their preferred destination. Simulations of counterflow pedestrians dynamics in corridors were used to gain insight into a tragic incident at the Madrid Arena pavilion in Spain, where five girls were crushed to death. The incident took place at a Halloween Celebration in 2012, in a long, densely crowded hallway used as entrance and exit at the same time. Our simulations reconstruct the mechanism of clogging in the hallway. The hypothetical case of a total evacuation order was also investigated. The results highlights the importance of the pedestrians' density and the effect of counterflow in the onset of avalanches and clogging and provides an estimation of the number of injuries based on a calculation of the contact-force network between the pedestrians. PMID:25615220

  5. NO formation in counterflow partially premixed flames

    SciTech Connect

    Mungekar, Hemant; Atreya, Arvind

    2007-02-15

    An experimental and computational study of NO formation in low-strain-rate partially premixed methane counterflow flames is reported. For progressive fuel-side partial premixing the peak NO concentration increased and the NO distribution along the stagnation streamline broadened. New temperature-dependent emissivity data for a SiO{sub 2}-coated Pt thermocouple was used to estimate the radiation correction for the thermocouple, thus improving the accuracy of the reported flame temperature. Flame structure computations with GRIMech 3.00 showed good agreement between measured and computed concentration distributions of NO and OH radical. With progressive partial premixing the contribution of the thermal NO pathway to NO formation increases. The emission index of NO (EINO) first increased and then decreased, reaching its peak value for the level of partial premixing that corresponds to location of the nonpremixed reaction zone at the stagnation plane. The observation of a maximum in EINO at a level of partial premixing corresponding to the nonpremixed reaction zone at the stagnation plane seems to be a consistent feature of low (<20 s{sup -1})-strain-rate counterflow flames. (author)

  6. Counterflow-induced decoupling in superfluid turbulence

    NASA Astrophysics Data System (ADS)

    Khomenko, Dmytro; L'vov, Victor S.; Pomyalov, Anna; Procaccia, Itamar

    2016-01-01

    In mechanically driven superfluid turbulence, the mean velocities of the normal- and superfluid components are known to coincide: Un=Us . Numerous laboratory, numerical, and analytical studies showed that under these conditions, the mutual friction between the normal- and superfluid velocity components also couples their fluctuations: un'(r,t) ≈ us'(r,t), almost at all scales. We show that this is not the case in thermally driven superfluid turbulence; here the counterflow velocity Uns≡Un-Us≠0 . We suggest a simple analytic model for the cross-correlation function and its dependence on Uns. We demonstrate that un'(r,t ) and us'(r,t) are decoupled almost in the entire range of separations |r - r'| between the energy-containing scale and intervortex distance.

  7. Some effects of non-condensible gas in geothermal reservoirs with steam-water counterflow

    SciTech Connect

    McKibbin, R.; Pruess, K.

    1988-01-01

    A mathematical model is developed for fluid and heat flow in two-phase geothermal reservoirs containing non-condensible gas (CO{sub 2}). Vertical profiles of temperature, pressures and phase saturations in steady-state conditions are obtained by numerically integrating the coupled ordinary differential equations describing conservation of water, CO{sub 2}, and energy. Solutions including binary diffusion effects in the gas phase are generated for cases with net mass throughflow as well as for balanced liquid-vapor counterflow. Calculated examples illustrate some fundamental characteristics of two-phase heat transmission systems with non-condensible gas. 14 refs., 3 figs.

  8. Some effects of non-condensible gas in geothermal reservoirs with steam-water counterflow

    SciTech Connect

    McKibbin, Robert; Pruess, Karsten

    1988-01-01

    A mathematical model is developed for fluid and heat flow in two-phase geothermal reservoirs containing non-condensible gas (CO{sub 2}). Vertical profiles of temperature, pressures and phase saturations in steady-state conditions are obtained by numerically integrating the coupled ordinary differential equations describing conservation of water, CO{sub 2}, and energy. Solutions including binary diffusion effects in the gas phase are generated for cases with net mass throughflow as well as for balanced liquid-vapor counterflow. Calculated examples illustrate some fundamental characteristics of two-phase heat transmission systems with non-condensible gas.

  9. Characterizing He II flow through porous materials using counterflow data

    NASA Technical Reports Server (NTRS)

    Maddocks, J. R.; Van Sciver, S. W.

    1991-01-01

    An empirical extension of the two-fluid model is used to characterize He II flow through porous materials. It is shown that four empirical parameters are necessary to describe the pressure and temperature differences induced by He II flow through a porous sample. The three parameters required to determine pressure differences are measured in counterflow and found to compare favorably with those for isothermal flow. The fourth parameter, the Gorter-Mellink constant, differs substantially from smooth tube values. It is concluded that parameter values determined from counterflow can be used to predict pressure and temperature differences in a variety of flows to an accuracy of about +/- 20 percent.

  10. Three-Dimensional Model for Electrospinning Processes in Controlled Gas Counterflow.

    PubMed

    Lauricella, Marco; Pisignano, Dario; Succi, Sauro

    2016-07-14

    We study the effects of a controlled gas flow on the dynamics of electrified jets in the electrospinning process. The main idea is to model the air drag effects of the gas flow by using a nonlinear Langevin-like approach. The model is employed to investigate the dynamics of electrified polymer jets at different conditions of air drag force, showing that a controlled gas counterflow can lead to a decrease of the average diameter of electrospun fibers, and potentially to an improvement of the quality of electrospun products. We probe the influence of air drag effects on the bending instabilities of the jet and on its angular fluctuations during the process. The insights provided by this study might prove useful for the design of future electrospinning experiments and polymer nanofiber materials. PMID:26859532

  11. Three-Dimensional Model for Electrospinning Processes in Controlled Gas Counterflow

    PubMed Central

    2016-01-01

    We study the effects of a controlled gas flow on the dynamics of electrified jets in the electrospinning process. The main idea is to model the air drag effects of the gas flow by using a nonlinear Langevin-like approach. The model is employed to investigate the dynamics of electrified polymer jets at different conditions of air drag force, showing that a controlled gas counterflow can lead to a decrease of the average diameter of electrospun fibers, and potentially to an improvement of the quality of electrospun products. We probe the influence of air drag effects on the bending instabilities of the jet and on its angular fluctuations during the process. The insights provided by this study might prove useful for the design of future electrospinning experiments and polymer nanofiber materials. PMID:26859532

  12. Prediction of Air Mixing From High Sidewall Diffusers in Cooling Mode: Preprint

    SciTech Connect

    Ridouane, E. H.; Gawlik, K.

    2011-02-01

    Computational fluid dynamics modeling was used to evaluate the performance of high sidewall air supply in cooling mode. The research focused on the design, placement, and operation of air supply diffusers located high on a sidewall and return grilles located near the floor on the same sidewall. Parameters of the study are the supply velocity, supply temperature, diffuser dimensions and room dimensions. Thermal loads characteristic of high performance homes were applied at the walls and room temperature was controlled via a thermostat. The results are intended to provide information to guide the selection of high sidewall supply diffusers to provide proper room mixing for cooling of high performance homes.

  13. PASSIVE/DIFFUSIVE SAMPLERS FOR PESTICIDES IN RESIDENTIAL INDOOR AIR

    EPA Science Inventory

    Pesticides applied indoors vaporize from treated surfaces (e.g., carpets and baseboards) resulting in elevated air concentrations that may persist for long periods after applications. Estimating long-term respiratory exposures to pesticide vapors in residential indoor environme...

  14. Nitrogen-doped carbonaceous catalysts for gas-diffusion cathodes for alkaline aluminum-air batteries

    NASA Astrophysics Data System (ADS)

    Davydova, E. S.; Atamanyuk, I. N.; Ilyukhin, A. S.; Shkolnikov, E. I.; Zhuk, A. Z.

    2016-02-01

    Cobalt tetramethoxyphenyl porphyrin and polyacrylonitrile - based catalysts for oxygen reduction reaction were synthesized and characterized by means of SEM, TEM, XPS, BET, limited evaporation method, rotating disc and rotating ring-disc electrode methods. Half-cell and Al-air cell tests were carried out to determine the characteristics of gas-diffusion cathodes. Effect of active layer thickness and its composition on the characteristics of the gas-diffusion cathodes was investigated. Power density of 300 mW cm-2 was achieved for alkaline Al-air cell with an air-breathing polyacrylonitrile-based cathode.

  15. Effect of ventilation with soluble and diffusible gases on the size of air emboli.

    PubMed

    Presson, R G; Kirk, K R; Haselby, K A; Wagner, W W

    1991-03-01

    Pulmonary hypertension resulting from venous air embolism is known to increase after ventilation with highly soluble and diffusible gases. Exacerbation of the hypertension could be due to further blockage of the circulation if the bubbles enlarge as a result of ingress of gas by diffusion. This mechanism has been frequently cited but lacks direct proof. To determine directly whether intravascular air bubbles actually enlarge when highly soluble and diffusible gases are inspired, we used microscopy to measure the size of gas emboli in vivo. When air bubbles were injected into the right atrium, the bubbles that appeared in pulmonary arterioles were larger during ventilation with helium or nitrous oxide than with air. Air bubbles injected into the pulmonary artery enlarged when the inspired gas was changed to helium or nitrous oxide. The direction, magnitude, and timing of changes in bubble size were consistent with a net diffusion of gas into the bubbles. These data support the idea that venous air emboli enlarge during ventilation with soluble and diffusible gases and thereby cause further vascular obstruction. PMID:2032972

  16. Large volume continuous counterflow dialyzer has high efficiency

    NASA Technical Reports Server (NTRS)

    Mandeles, S.; Woods, E. C.

    1967-01-01

    Dialyzer separates macromolecules from small molecules in large volumes of solution. It takes advantage of the high area/volume ratio in commercially available 1/4-inch dialysis tubing and maintains a high concentration gradient at the dialyzing surface by counterflow.

  17. NITRIC ACID-AIR DIFFUSION COEFFICIENT: EXPERIMENTAL DETERMINATION

    EPA Science Inventory

    Trace gaseous HNO3 in air is removed in a laminar flow nylon tube. The HNO3 deposition pattern was obtained by sectioning the tube, extracting with an aqueous solution, and measuring the concentration by ion chromatography. Mass transport analysis of the deposition pattern demons...

  18. Effect of pressure on structure and NO sub X formation in CO-air diffusion flames

    NASA Technical Reports Server (NTRS)

    Maahs, H. G.; Miller, I. M.

    1979-01-01

    A study was made of nitric oxide formation in a laminar CO-air diffusion flame over a pressure range from 1 to 50 atm. The carbon monoxide (CO) issued from a 3.06 mm diameter port coaxially into a coflowing stream of air confined within a 20.5 mm diameter chimney. Nitric oxide concentrations from the flame were measured at two carbon monoxide (fuel) flow rates: 73 standard cubic/min and 146 sccm. Comparison of the present data with data in the literature for a methane-air diffusion flame shows that for flames of comparable flame height (8 to 10 mm) and pseudoequivalence ratio (0.162), the molar emission index of a CO-air flame is significantly greater than that of a methane-air flame.

  19. Measurement of effective air diffusion coefficients for trichloroethene in undisturbed soil cores

    NASA Astrophysics Data System (ADS)

    Bartelt-Hunt, Shannon L.; Smith, James A.

    2002-06-01

    In this study, we measure effective diffusion coefficients for trichloroethene in undisturbed soil samples taken from Picatinny Arsenal, New Jersey. The measured effective diffusion coefficients ranged from 0.0053 to 0.0609 cm 2/s over a range of air-filled porosity of 0.23-0.49. The experimental data were compared to several previously published relations that predict diffusion coefficients as a function of air-filled porosity and porosity. A multiple linear regression analysis was developed to determine if a modification of the exponents in Millington's [Science 130 (1959) 100] relation would better fit the experimental data. The literature relations appeared to generally underpredict the effective diffusion coefficient for the soil cores studied in this work. Inclusion of a particle-size distribution parameter, d10, did not significantly improve the fit of the linear regression equation. The effective diffusion coefficient and porosity data were used to recalculate estimates of diffusive flux through the subsurface made in a previous study performed at the field site. It was determined that the method of calculation used in the previous study resulted in an underprediction of diffusive flux from the subsurface. We conclude that although Millington's [Science 130 (1959) 100] relation works well to predict effective diffusion coefficients in homogeneous soils with relatively uniform particle-size distributions, it may be inaccurate for many natural soils with heterogeneous structure and/or non-uniform particle-size distributions.

  20. Centrifugal Compressor Surge Margin Improved With Diffuser Hub Surface Air Injection

    NASA Technical Reports Server (NTRS)

    Skoch, Gary J.

    2002-01-01

    Aerodynamic stability is an important parameter in the design of compressors for aircraft gas turbine engines. Compression system instabilities can cause compressor surge, which may lead to the loss of an aircraft. As a result, engine designers include a margin of safety between the operating line of the engine and the stability limit line of the compressor. The margin of safety is typically referred to as "surge margin." Achieving the highest possible level of surge margin while meeting design point performance objectives is the goal of the compressor designer. However, performance goals often must be compromised in order to achieve adequate levels of surge margin. Techniques to improve surge margin will permit more aggressive compressor designs. Centrifugal compressor surge margin improvement was demonstrated at the NASA Glenn Research Center by injecting air into the vaned diffuser of a 4:1-pressure-ratio centrifugal compressor. Tests were performed using injector nozzles located on the diffuser hub surface of a vane-island diffuser in the vaneless region between the impeller trailing edge and the diffuser-vane leading edge. The nozzle flow path and discharge shape were designed to produce an air stream that remained tangent to the hub surface as it traveled into the diffuser passage. Injector nozzles were located near the leading edge of 23 of the 24 diffuser vanes. One passage did not contain an injector so that instrumentation located in that passage would be preserved. Several orientations of the injected stream relative to the diffuser vane leading edge were tested over a range of injected flow rates. Only steady flow (nonpulsed) air injection was tested. At 100 percent of the design speed, a 15-percent improvement in the baseline surge margin was achieved with a nozzle orientation that produced a jet that was bisected by the diffuser vane leading edge. Other orientations also improved the baseline surge margin. Tests were conducted at speeds below the

  1. A correlation of air-coupled ultrasonic and thermal diffusivity data for CFCC materials

    SciTech Connect

    Pillai, T.A.K.; Easler, T.E.; Szweda, A.

    1997-01-01

    An air-coupled (non contact) through-transmission ultrasonic investigation has been conducted on 2D multiple ply Nicalon{trademark} SiC fiber/SiNC CFCC panels as a function of number of processing cycles. Corresponding thermal diffusivity imaging was also conducted. The results of the air-coupled ultrasonic investigation correlated with thermal property variations determined via infrared methods. Areas of delaminations were detected and effects of processing cycles were also detected.

  2. Effects of Coaxial Air on Nitrogen-Diluted Hydrogen Jet Diffusion Flame Length and NOx Emission

    SciTech Connect

    Weiland, N.T.; Chen, R.-H.; Strakey, P.A.

    2007-10-01

    Turbulent nitrogen-diluted hydrogen jet diffusion flames with high velocity coaxial air flows are investigated for their NOx emission levels. This study is motivated by the DOE turbine program’s goal of achieving 2 ppm dry low NOx from turbine combustors running on nitrogen-diluted high-hydrogen fuels. In this study, effects of coaxial air velocity and momentum are varied while maintaining low overall equivalence ratios to eliminate the effects of recirculation of combustion products on flame lengths, flame temperatures, and resulting NOx emission levels. The nature of flame length and NOx emission scaling relationships are found to vary, depending on whether the combined fuel and coaxial air jet is fuel-rich or fuel-lean. In the absence of differential diffusion effects, flame lengths agree well with predicted trends, and NOx emissions levels are shown to decrease with increasing coaxial air velocity, as expected. Normalizing the NOx emission index with a flame residence time reveals some interesting trends, and indicates that a global flame strain based on the difference between the fuel and coaxial air velocities, as is traditionally used, is not a viable parameter for scaling the normalized NOx emissions of coaxial air jet diffusion flames.

  3. Nature of counterflow and circulation in vortex separators

    NASA Astrophysics Data System (ADS)

    Shtern, Vladimir N.; Borissov, Anatoli A.

    2010-08-01

    This paper focuses on the physical mechanism of elongated counterflows occurring in vortex tubes and hydrocyclones. To this end, a new solution to the Navier-Stokes equations is obtained which describes a flow pattern consisting of two through-flows and the global meridional circulation. One of the through-flows has U-shape geometry. It is shown that swirl decay due to fluid-wall friction induces both the U-shape through-flow and the circulation. The circulation does not deteriorate particle separation. The solution illustrates how the swirl-induced pressure distribution drives the counterflow and results in the paradoxical centrifugal stratification where the high-density fluid located at the periphery is hot while the low-density fluid located near the axis is cold.

  4. Depolarization of decaying counterflow turbulence in He II.

    PubMed

    Barenghi, C F; Gordeev, A V; Skrbek, L

    2006-08-01

    We present experimental evidence backed up by numerical simulations that the steady-state vortex tangle created in He II by heat-transfer counterflow is strongly polarized. When the heater that generates the counterflow turbulence is switched off, the vortex tangle decays, the vortex lines randomize their spatial orientation and the tangle's polarization decreases. The process of depolarization slows down the recovery of the transverse second sound signal which measures the vortex line density; at some values of parameters it even leads to a net decrease of the amplitude of the transverse second sound prior to reaching the universal -32 power temporal law decay typical of classical homogeneous isotropic turbulence in a finite-sized channel. PMID:17025541

  5. Depolarization of decaying counterflow turbulence in He II

    SciTech Connect

    Barenghi, C. F.; Gordeev, A. V.; Skrbek, L.

    2006-08-15

    We present experimental evidence backed up by numerical simulations that the steady-state vortex tangle created in He II by heat-transfer counterflow is strongly polarized. When the heater that generates the counterflow turbulence is switched off, the vortex tangle decays, the vortex lines randomize their spatial orientation and the tangle's polarization decreases. The process of depolarization slows down the recovery of the transverse second sound signal which measures the vortex line density; at some values of parameters it even leads to a net decrease of the amplitude of the transverse second sound prior to reaching the universal -3/2 power temporal law decay typical of classical homogeneous isotropic turbulence in a finite-sized channel.

  6. High pressure flame system for pollution studies with results for methane-air diffusion flames

    NASA Technical Reports Server (NTRS)

    Miller, I. M.; Maahs, H. G.

    1977-01-01

    A high pressure flame system was designed and constructed for studying nitrogen oxide formation in fuel air combustion. Its advantages and limitations were demonstrated by tests with a confined laminar methane air diffusion flame over the pressure range from 1 to 50 atm. The methane issued from a 3.06 mm diameter port concentrically into a stream of air contained within a 20.5 mm diameter chimney. As the combustion pressure is increased, the flame changes in shape from wide and convex to slender and concave, and there is a marked increase in the amount of luminous carbon. The height of the flame changes only moderately with pressure.

  7. Measurements and Modeling of Nitric Oxide Formation in Counterflow, Premixed CH4/O2/N2 Flames

    NASA Technical Reports Server (NTRS)

    Thomsen, D. Douglas; Laurendeau, Normand M.

    2000-01-01

    Laser-induced fluorescence (LIF) measurements of NO concentration in a variety of CH4/O2/N2 flames are used to evaluate the chemical kinetics of NO formation. The analysis begins with previous measurements in flat, laminar, premixed CH4/O2/N2 flames stabilized on a water-cooled McKenna burner at pressures ranging from 1 to 14.6 atm, equivalence ratios from 0.5 to 1.6, and volumetric nitrogen/oxygen dilution ratios of 2.2, 3.1 and 3.76. These measured results are compared to predictions to determine the capabilities and limitations of the comprehensive kinetic mechanism developed by the Gas Research Institute (GRI), version 2.11. The model is shown to predict well the qualitative trends of NO formation in lean-premixed flames, while quantitatively underpredicting NO concentration by 30-50%. For rich flames, the model is unable to even qualitatively match the experimental results. These flames were found to be limited by low temperatures and an inability to separate the flame from the burner surface. In response to these limitations, a counterflow burner was designed for use in opposed premixed flame studies. A new LIF calibration technique was developed and applied to obtain quantitative measurements of NO concentration in laminar, counterflow premixed, CH4/O2/N2 flames at pressures ranging from 1 to 5.1 atm, equivalence ratios of 0.6 to 1.5, and an N2/O2 dilution ratio of 3.76. The counterflow premixed flame measurements are combined with measurements in burner-stabilized premixed flames and counterflow diffusion flames to build a comprehensive database for analysis of the GRI kinetic mechanism. Pathways, quantitative reaction path and sensitivity analyses are applied to the GRI mechanism for these flame conditions. The prompt NO mechanism is found to severely underpredict the amount of NO formed in rich premixed and nitrogen-diluted diffusion flames. This underprediction is traced to uncertainties in the CH kinetics as well as in the nitrogen oxidation chemistry

  8. Modeling of the sorption and diffusion processes of volatile organic air pollutants in grape fruits.

    PubMed

    Górna-Binkul, A; Kaczmarski, K; Buszewski, B

    2001-06-01

    A mathematical model for the description of the sorption and diffusion processes of gaseous toluene and p-xylene in fruits of grape has been proposed. This model is based on the Fick's II low regarding a particle with a spherical shape (such as the berry of grapevine) and describes changes of air pollutant concentrations in different layers of the fruit, that is, the wax, peel, and pulp, during an exposure to contaminated air. The mass transfer coefficient and diffusion coefficients in the respective layers can be estimated using the experimental values. The theoretical data and the results from the exposure under steady-state laboratory conditions were compared and showed a good applicability of the proposed model for the prediction of volatile air pollutant partitioning in grape berries. PMID:11409983

  9. Diffusive sampling and measurement of microbial volatile organic compounds in indoor air.

    PubMed

    Araki, A; Eitaki, Y; Kawai, T; Kanazawa, A; Takeda, M; Kishi, R

    2009-10-01

    Microbial volatile organic compounds (MVOC), chemicals emitted from various microorganisms, in indoor air have been of concern in recent years. For large field studies, diffusive samplers are widely used to measure indoor environments. Since the sampling rate of a sampler is a fundamental parameter to calculate concentration, the sampling rates of eight MVOC with diffusive samplers were determined experimentally using a newly developed water-bubbling method: air was supplied to the MVOC-solutions and the vapor collected in an exposure bag, where diffusive and active samplers were placed in parallel for comparison. Correlations between the diffusive and active samplings gave good linear regressions. The sampling rates were 30-35 ml/min and the detection limits were 0.044-0.178 microg/m(3), as determined by GC/MS analysis. Application of the sampling rates in indoor air was validated by parallel sampling of the diffusive and active sampling method. 5% Propan-2-ol/CS(2) was the best solvent to desorb the compounds from absorbents. The procedure was applied to a field study in 41 dwellings. The most frequently detected compounds were hexan-2-one and heptan-2-one, with 97.5% detection rates and geometric mean values of 0.470 and 0.302 microg/m(3), respectively. This study shows that diffusive samplers are applicable to measure indoor MVOC levels. Practical Implications At present, there are still limited reports on indoor Microbial Volatile Organic Compounds (MVOC) levels in general dwellings and occupants' health. Compared with active sampling methods, air sampling using a diffusive sampler is particularly advantageous for use in large field studies due to its smallness, light-size, easy-handling, and cost-effectiveness. In this study, sampling rates of selected MVOC of the diffusive sampler were determined using the water-bubbling method: generating gases by water-bubbling and exposing the diffusive and active samplers at the same time. The obtained sampling rates

  10. Template-directed fabrication of porous gas diffusion layer for magnesium air batteries

    NASA Astrophysics Data System (ADS)

    Xue, Yejian; Miao, He; Sun, Shanshan; Wang, Qin; Li, Shihua; Liu, Zhaoping

    2015-11-01

    The uniform micropore distribution in the gas diffusion layers (GDLs) of the air-breathing cathode is very important for the metal air batteries. In this work, the super-hydrophobic GDL with the interconnected regular pores is prepared by a facile silica template method, and then the electrochemical properties of the Mg air batteries containing these GDLs are investigated. The results indicate that the interconnected and uniform pore structure, the available water-breakout pressure and the high gas permeability coefficient of the GDL can be obtained by the application of 30% silica template. The maximum power density of the Mg air battery containing the GDL with 30% regular pores reaches 88.9 mW cm-2 which is about 1.2 times that containing the pristine GDL. Furthermore, the GDL with 30% regular pores exhibits the improved the long term hydrophobic stability.

  11. High-temperature counter-flow recuperator

    NASA Astrophysics Data System (ADS)

    Rudloff, F.

    1981-05-01

    The commercial potential of a helical recuperator design in recovering waste heat from industrial furnaces is reported. The helical recuperator concept consists of a cylindrical column with an interior helical interface which separates the preheat air and the combustion gas. The column operates in a teer flow mode and is formed from modular sections. The material evaluation consisted of exposing material samples to a soda-lime glass furnace environment for a fifteen week period. ECP-3, X-81, and Unichrome were the best suited for use in a soda-lime environment and ECP-3 was the best candidate with respect to manufacturing. Two potential design modifications were identified: a finned design and a double helix design. For materials that showed the greatest potential for use in the glass environment, the double helix design made from ECP-3 was the most economical producing payback periods of 6 to 14 years.

  12. Partitioned airs at microscale and nanoscale: thermal diffusivity in ultrahigh porosity solids of nanocellulose

    PubMed Central

    Sakai, Koh; Kobayashi, Yuri; Saito, Tsuguyuki; Isogai, Akira

    2016-01-01

    High porosity solids, such as plastic foams and aerogels, are thermally insulating. Their insulation performance strongly depends on their pore structure, which dictates the heat transfer process in the material. Understanding such a relationship is essential to realizing highly efficient thermal insulators. Herein, we compare the heat transfer properties of foams and aerogels that have very high porosities (97.3–99.7%) and an identical composition (nanocellulose). The foams feature rather closed, microscale pores formed with a thin film-like solid phase, whereas the aerogels feature nanoscale open pores formed with a nanofibrous network-like solid skeleton. Unlike the aerogel samples, the thermal diffusivity of the foam decreases considerably with a slight increase in the solid fraction. The results indicate that for suppressing the thermal diffusion of air within high porosity solids, creating microscale spaces with distinct partitions is more effective than directly blocking the free path of air molecules at the nanoscale. PMID:26830144

  13. Partitioned airs at microscale and nanoscale: thermal diffusivity in ultrahigh porosity solids of nanocellulose.

    PubMed

    Sakai, Koh; Kobayashi, Yuri; Saito, Tsuguyuki; Isogai, Akira

    2016-01-01

    High porosity solids, such as plastic foams and aerogels, are thermally insulating. Their insulation performance strongly depends on their pore structure, which dictates the heat transfer process in the material. Understanding such a relationship is essential to realizing highly efficient thermal insulators. Herein, we compare the heat transfer properties of foams and aerogels that have very high porosities (97.3-99.7%) and an identical composition (nanocellulose). The foams feature rather closed, microscale pores formed with a thin film-like solid phase, whereas the aerogels feature nanoscale open pores formed with a nanofibrous network-like solid skeleton. Unlike the aerogel samples, the thermal diffusivity of the foam decreases considerably with a slight increase in the solid fraction. The results indicate that for suppressing the thermal diffusion of air within high porosity solids, creating microscale spaces with distinct partitions is more effective than directly blocking the free path of air molecules at the nanoscale. PMID:26830144

  14. Partitioned airs at microscale and nanoscale: thermal diffusivity in ultrahigh porosity solids of nanocellulose

    NASA Astrophysics Data System (ADS)

    Sakai, Koh; Kobayashi, Yuri; Saito, Tsuguyuki; Isogai, Akira

    2016-02-01

    High porosity solids, such as plastic foams and aerogels, are thermally insulating. Their insulation performance strongly depends on their pore structure, which dictates the heat transfer process in the material. Understanding such a relationship is essential to realizing highly efficient thermal insulators. Herein, we compare the heat transfer properties of foams and aerogels that have very high porosities (97.3-99.7%) and an identical composition (nanocellulose). The foams feature rather closed, microscale pores formed with a thin film-like solid phase, whereas the aerogels feature nanoscale open pores formed with a nanofibrous network-like solid skeleton. Unlike the aerogel samples, the thermal diffusivity of the foam decreases considerably with a slight increase in the solid fraction. The results indicate that for suppressing the thermal diffusion of air within high porosity solids, creating microscale spaces with distinct partitions is more effective than directly blocking the free path of air molecules at the nanoscale.

  15. Characteristics of Gaseous Diffusion Flames with High Temperature Combustion Air in Microgravity

    NASA Technical Reports Server (NTRS)

    Ghaderi, M.; Gupta, A. K.

    2003-01-01

    The characteristics of gaseous diffusion flames have been obtained using high temperature combustion air under microgravity conditions. The time resolved flame images under free fall microgravity conditions were obtained from the video images obtained. The tests results reported here were conducted using propane as the fuel and about 1000 C combustion air. The burner included a 0.686 mm diameter central fuel jet injected into the surrounding high temperature combustion air. The fuel jet exit Reynolds number was 63. Several measurements were taken at different air preheats and fuel jet exit Reynolds number. The resulting hybrid color flame was found to be blue at the base of the flame followed by a yellow color flame. The length and width of flame during the entire free fall conditions has been examined. Also the relative flame length and width for blue and yellow portion of the flame has been examined under microgravity conditions. The results show that the flame length decreases and width increases with high air preheats in microgravity condition. In microgravity conditions the flame length is larger with normal temperature combustion air than high temperature air.

  16. Unsteady behavior of locally strained diffusion flames affected by curvature and preferential diffusion

    SciTech Connect

    Yoshida, Kenji; Takagi, Toshimi

    1999-07-01

    Experimental and numerical studies are made of transient H{sub 2}/N{sub 2}--air counterflow diffusion flames unsteadily strained by an impinging micro jet. Two-dimensional temperature measurements by laser Rayleigh scattering method and numerical computations taking into account detailed chemical kinetics are conducted paying attention to transient local extinction and reignition in relation to the unsteadiness, flame curvature and preferential diffusion effects. The results are as follows. (1) Transient local flame extinction is observed where the micro jet impinges. But, the transient flame can survive instantaneously in spite of quite high stretch rate where the steady flame cannot exist. (2) Reignition is observed after the local extinction due to the micro air jet impingement. The temperature after reignition becomes significantly higher than that of the original flame. This high temperature is induced by the concentration of H{sub 2} species due to the preferential diffusion in relation to the concave curvature. The predicted behaviors of the local transient extinction and reignition are well confirmed by the experiments. (3) The reignition is induced after the formation of combustible premixed gas mixture and the consequent flame propagation. (4) The reignition is hardly observed after the extinction by micro fuel jet impingement. This is due to the dilution of H{sub 2} species induced by the preferential diffusion in relation to the convex curvature. (5) The maximum flame temperature cannot be rationalized by the stretch rate but changes widely depending on the unsteadiness and the flame curvature in relation with preferential diffusion.

  17. Diffusion of gases in air and its affect on oxygen deficiency hazard abatement

    SciTech Connect

    Theilacker, J.C.; White, M.J.; /Fermilab

    2005-09-01

    Density differences between air and released gases of cryogenic systems have been used to either require special oxygen deficiency hazard (ODH) control measures, or as a means of abatement. For example, it is not uncommon to assume that helium spills will quickly collect at the ceiling of a building or enclosure and will efficiently exit at the nearest vertical penetration or vent. Oxygen concentration reduction was found to be detectable during a localized helium spill throughout the entire 6.3 km Tevatron tunnel. This prompted us to perform diffusion tests in air with common gases used at Fermilab. The tests showed that gases, more readily than expected, diffused through an air column in the direction opposing buoyancy. Test results for helium and sulfur hexafluoride are presented. A system of tests were performed to better understand how easily released gases would fully mix with air and whether they remained fully mixed. The test results have been applied to a new system at Fermilab for ODH abatement.

  18. Measurement of the radon diffusion through a nylon foil for different air humidities

    SciTech Connect

    Mamedov, Fadahat; Štekl, Ivan; Smolek, Karel

    2015-08-17

    The dependency of the radon penetration through a nylon foil on air humidity was measured. Such information is needed for the tracking part of the SuperNEMO detector, which is planned to be shielded against radon by nylon foil and in which the air humidity is not negligible. The long term measurements of radon penetration through nylon foils for different air humidities were performed with the radon diffusion setup constructed at the IEAP, CTU in Prague. The setup consists of two stainless steel hemispheres with Si detector in each of them. Both hemispheres are separated by the tested foil. While the left hemisphere contains high Rn activity, the right part contains only activity caused by the radon penetration through the tested foil. Obtained results of this study with a nylon foil with the thickness of 50 µm are presented.

  19. Measurement of the radon diffusion through a nylon foil for different air humidities

    NASA Astrophysics Data System (ADS)

    Mamedov, Fadahat; Štekl, Ivan; Smolek, Karel

    2015-08-01

    The dependency of the radon penetration through a nylon foil on air humidity was measured. Such information is needed for the tracking part of the SuperNEMO detector, which is planned to be shielded against radon by nylon foil and in which the air humidity is not negligible. The long term measurements of radon penetration through nylon foils for different air humidities were performed with the radon diffusion setup constructed at the IEAP, CTU in Prague. The setup consists of two stainless steel hemispheres with Si detector in each of them. Both hemispheres are separated by the tested foil. While the left hemisphere contains high Rn activity, the right part contains only activity caused by the radon penetration through the tested foil. Obtained results of this study with a nylon foil with the thickness of 50 µm are presented.

  20. Effect of Counterflow Jet on a Supersonic Reentry Capsule

    NASA Technical Reports Server (NTRS)

    Chang, Chau-Lyan; Venkatachari, Balaji Shankar; Cheng, Gary C.

    2006-01-01

    Recent NASA initiatives for space exploration have reinvigorated research on Apollo-like capsule vehicles. Aerothermodynamic characteristics of these capsule configurations during reentry play a crucial role in the performance and safety of the planetary entry probes and the crew exploration vehicles. At issue are the forebody thermal shield protection and afterbody aeroheating predictions. Due to the lack of flight or wind tunnel measurements at hypersonic speed, design decisions on such vehicles would rely heavily on computational results. Validation of current computational tools against experimental measurement thus becomes one of the most important tasks for general hypersonic research. This paper is focused on time-accurate numerical computations of hypersonic flows over a set of capsule configurations, which employ a counterflow jet to offset the detached bow shock. The accompanying increased shock stand-off distance and modified heat transfer characteristics associated with the counterflow jet may provide guidance for future design of hypersonic reentry capsules. The newly emerged space-time conservation element solution element (CESE) method is used to perform time-accurate, unstructured mesh Navier-Stokes computations for all cases investigated. The results show good agreement between experimental and numerical Schlieren pictures. Surface heat flux and aerodynamic force predictions of the capsule configurations are discussed in detail.

  1. Characterizing He II flow through porous materials using counterflow data

    NASA Technical Reports Server (NTRS)

    Maddocks, J. R., Jr.; Vansciver, Steven W.

    1990-01-01

    Proposed space applications, such as the cooling of infrared and x ray telescopes, have generated substantial interest in the behavior of He II flowing in porous materials. For design purposes, classical porous media correlations and room temperature data are often used to obtain order of magnitude estimates of expected pressure drops, while the attendant temperature differences are either ignored or estimated using smooth tube correlations. A more accurate alternative to this procedure is suggested by an empirical extension of the two fluid model. It is shown that four empirical parameters are necessary to describe the pressure and temperature differences induced by He II flow through a porous sample. The three parameters required to determine pressure differences are measured in counterflow and found to compare favorably with those for isothermal flow. The fourth parameter, the Gorter-Mellink constant, differs substantially from smooth tube values. It is concluded that parameter values determined from counterflow can be used to predict pressure and temperature differences in a variety of flows to an accuracy of about + or - 20 pct.

  2. Characterizing He 2 flow through porous materials using counterflow data

    NASA Technical Reports Server (NTRS)

    Vansciver, Steven W.; Maddocks, J. R.

    1991-01-01

    Proposed space applications, such as the cooling of infrared and x ray telescopes, have generated substantial interest in the behavior of He(2) flowing in porous materials. For design purposes, classical porous media correlations and room temperature data are often used to obtain order of magnitude estimates of expected pressure drops, while the attendant temperature differences are either ignored or estimated using smooth tube correlations. A more accurate alternative to this procedure is suggested by an empirical extension of the two fluid models. It is shown that four empirical parameters are necessary to describe the pressure and temperature differences induced by He(2) flow through a porous sample. The three parameters required to determine pressure differences are measured in counterflow and found to compare favorably with those for isothermal flow. The fourth parameter, the Gorter-Mellink constant, differs substantially from smooth tube values. It is concluded that parameter values determined from counterflow can be used to predict pressure and temperature differences in a variety of flows to an accuracy of about + or - 20 percent.

  3. Arduino-based control system for measuring ammonia in air using conditionally-deployed diffusive samplers

    NASA Astrophysics Data System (ADS)

    Ham, J. M.; Williams, C.; Shonkwiler, K. B.

    2012-12-01

    Arduino microcontrollers, wireless modules, and other low-cost hardware were used to develop a new type of air sampler for monitoring ammonia at strong areal sources like dairies, cattle feedlots, and waste treatment facilities. Ammonia was sampled at multiple locations on the periphery of an operation using Radiello diffusive passive samplers (Cod. RAD168- and RAD1201-Sigma-Aldrich). However, the samplers were not continuously exposed to the air. Instead, each sampling station included two diffusive samplers housed in specialized tubes that sealed the cartridges from the atmosphere. If a user-defined set of wind and weather conditions were met, the Radiellos were deployed into the air using a micro linear actuator. Each station was solar-powered and controlled by Arduinos that were linked to a central weather station using Xbee wireless modules (Digi International Inc.). The Arduinos also measured the total time of exposure using hall-effect sensors to verify the position of the cartridge (i.e., deployed or retracted). The decision to expose or retract the samplers was made every five minutes based on wind direction, wind speed, and time of day. Typically, the diffusive samplers were replaced with fresh cartridges every two weeks and the used samplers were analyzed in the laboratory using ion chromatography. Initial studies were conducted at a commercial dairy in northern Colorado. Ammonia emissions along the Front Range of Colorado can be transported into the mountains where atmospheric deposition of nitrogen can impact alpine ecosystems. Therefore, low-cost air quality monitoring equipment is needed that can be widely deployed in the region. Initial work at the dairy showed that ammonia concentrations ranged between 600 to 1200 ppb during the summer; the highest concentrations were downwind of a large anaerobic lagoon. Time-averaged ammonia concentrations were also used to approximate emissions using inverse dispersion models. This methodology provides a

  4. Extinction of premixed H{sub 2}/air flames: Chemical kinetics and molecular diffusion effects

    SciTech Connect

    Dong, Yufei; Holley, Adam T.; Andac, Mustafa G.; Egolfopoulos, Fokion N.; Wang, Hai; Davis, Scott G.; Middha, Prankul

    2005-09-01

    Laminar flame speed has traditionally been used for the partial validation of flame kinetics. In most cases, however, its accurate determination requires extensive data processing and/or extrapolations, thus rendering the measurement of this fundamental flame property indirect. Additionally, the presence of flame front instabilities does not conform to the definition of laminar flame speed. This is the case for Le<1 flames, with the most notable example being ultralean H{sub 2}/air flames, which develop cellular structures at low strain rates so that determination of laminar flame speeds for such mixtures is not possible. Thus, this low-temperature regime of H{sub 2} oxidation has not been validated systematically in flames. In the present investigation, an alternative/supplemental approach is proposed that includes the experimental determination of extinction strain rates for these flames, and these rates are compared with the predictions of direct numerical simulations. This approach is meaningful for two reasons: (1) Extinction strain rates can be measured directly, as opposed to laminar flame speeds, and (2) while the unstretched lean H{sub 2}/air flames are cellular, the stretched ones are not, thus making comparisons between experiment and simulations meaningful. Such comparisons revealed serious discrepancies between experiments and simulations for ultralean H{sub 2}/air flames by using four kinetic mechanisms. Additional studies were conducted for lean and near-stoichiometric H{sub 2}/air flames diluted with various amounts of N{sub 2}. Similarly to the ultralean flames, significant discrepancies between experimental and predicted extinction strain rates were also found. To identify the possible sources of such discrepancies, the effect of uncertainties on the diffusion coefficients was assessed and an improved treatment of diffusion coefficients was advanced and implemented. Under the conditions considered in this study, the sensitivity of diffusion

  5. Analysis of opposed jet hydrogen-air counter flow diffusion flame

    NASA Technical Reports Server (NTRS)

    Ho, Y. H.; Isaac, K. M.

    1989-01-01

    A computational simulation of the opposed-jet diffusion flame is performed to study its structure and extinction limits. The present analysis concentrates on the nitrogen-diluted hydrogen-air diffusion flame, which provides the basic information for many vehicle designs such as the aerospace plane for which hydrogen is a candidate as the fuel. The computer program uses the time-marching technique to solve the energy and species equations coupled with the momentum equation solved by the collocation method. The procedure is implemented in two stages. In the first stage, a one-step forward overal chemical reaction is chosen with the gas phase chemical reaction rate determined by comparison with experimental data. In the second stage, a complete chemical reaction mechanism is introduced with detailed thermodynamic and transport property calculations. Comparison between experimental extinction data and theoretical predictions is discussed. The effects of thermal diffusion as well as Lewis number and Prandtl number variations on the diffusion flame are also presented.

  6. Effect of surfactants on the rate of growth of an air bubble by rectified diffusion.

    PubMed

    Lee, Judy; Kentish, Sandra; Ashokkumar, Muthupandian

    2005-08-01

    The rectified diffusion growth of a single air bubble levitated in an acoustic field (frequency = 22.35 kHz) in water and in aqueous solutions containing surfactants (sodium dodecyl sulfate and sodium dodecylbenzene sulfonate) was investigated. As reported by Crum (J. Acoust. Soc. Am. 1980, 68, 203), the presence of surfactants at the bubble/liquid interface enhanced the growth rate of the bubble by rectified diffusion. It is suggested in this paper that in addition to the effect of surfactants on the surface tension and interfacial resistance to mass transfer, the effect of surface rheological properties may also contribute to the cause of the enhancement observed in the bubble growth rate. PMID:16852840

  7. Generation of dark-bright soliton trains in superfluid-superfluid counterflow.

    PubMed

    Hamner, C; Chang, J J; Engels, P; Hoefer, M A

    2011-02-11

    The dynamics of two penetrating superfluids exhibit an intriguing variety of nonlinear effects. Using two distinguishable components of a Bose-Einstein condensate, we investigate the counterflow of two superfluids in a narrow channel. We present the first experimental observation of trains of dark-bright solitons generated by the counterflow. Our observations are theoretically interpreted by three-dimensional numerical simulations for the coupled Gross-Pitaevskii equations and the analysis of a jump in the two relatively flowing components' densities. Counterflow-induced modulational instability for this miscible system is identified as the central process in the dynamics. PMID:21405475

  8. Wake Capture, Particle Breakup, and Other Artifacts Associated with Counterflow Virtual Impaction

    SciTech Connect

    Pekour, Mikhail S.; Cziczo, Daniel J.

    2011-03-03

    Counterflow virtual impaction is used to inertially separate cloud elements from un-activated aerosol. Previous airborne, ground-based and laboratory studies using this technique exhibit artifacts that are not fully explained by impaction theory. We have performed laboratory studies that show small particles can be carried across the inertial barrier of the counterflow by collision and/or coalescence or riding the wake of larger particles with sufficient inertia. We have also performed theoretical calculations to show that aerodynamic forces associated with the requisite acceleration and deceleration of particles within a counterflow virtual impactor can lead to breakup. The implication of these processes on studies using this technique are discussed.

  9. In situ TDLAS measurement of absolute acetylene concentration profiles in a non-premixed laminar counter-flow flame

    NASA Astrophysics Data System (ADS)

    Wagner, S.; Klein, M.; Kathrotia, T.; Riedel, U.; Kissel, T.; Dreizler, A.; Ebert, V.

    2012-06-01

    Acetylene (C2H2), as an important precursor for chemiluminescence species, is a key to understand, simulate and model the chemiluminescence and the related reaction paths. Hence we developed a high resolution spectrometer based on direct Tunable Diode Laser Absorption Spectroscopy (TDLAS) allowing the first quantitative, calibration-free and spatially resolved in situ C2H2 measurement in an atmospheric non-premixed counter-flow flame supported on a Tsuji burner. A fiber-coupled distributed feedback diode laser near 1535 nm was used to measure several absolute C2H2 concentration profiles (peak concentrations up to 9700 ppm) in a laminar non-premixed CH4/air flame ( T up to 1950 K) supported on a modified Tsuji counter-flow burner with N2 purge slots to minimize end flames. We achieve a fractional optical resolution of up to 5×10-5 OD (1 σ) in the flame, resulting in temperature-dependent acetylene detection limits for the P17e line at 6513 cm-1 of up to 2.1 ppmṡm. Absolute C2H2 concentration profiles were obtained by translating the burner through the laser beam using a DC motor with 100 μm step widths. Intercomparisons of the experimental C2H2 profiles with simulations using our new hydrocarbon oxidation mechanisms show excellent agreement in position, shape and in the absolute C2H2 values.

  10. Modification of the surface layers of copper by a diffuse discharge in atmospheric pressure air

    NASA Astrophysics Data System (ADS)

    Shulepov, Mikhail A.; Erofeev, Mikhail V.; Oskomov, Konstantin V.; Tarasenko, Victor F.

    2015-12-01

    The paper presents the results of examination of copper samples exposed to a diffuse discharge initiated by a runaway electron beam in air under normal pressure. The changes in the chemical composition of the surface layers of copper caused by the action of the discharge were investigated. It has been found that the oxygen and carbon concentrations in the surface layers depend on the number of discharge pulses. The study was aimed at finding possible ways of using this type of discharge in research and industry.

  11. Viscoelastic Suppression of Gravity-Driven Counterflow Instability

    NASA Astrophysics Data System (ADS)

    Beiersdorfer, P.; Layne, D.; Magee, E. W.; Katz, J. I.

    2011-02-01

    Attempts to achieve “top kill” of flowing oil wells by pumping dense drilling “muds,” i.e., slurries of dense minerals, from above will fail if the Kelvin-Helmholtz instability in the gravity-driven counterflow produces turbulence that breaks up the denser fluid into small droplets. Here we estimate the droplet size to be submillimeter for fast flows and suggest the addition of a shear-thickening or viscoelastic polymer to suppress turbulence. We find in laboratory experiments a variety of new physical effects for a viscoelastic shear-thickening liquid in a gravity-driven counterstreaming flow. There is a progression from droplet formation to complete turbulence suppression at the relevant high velocities. Thick descending columns show a viscoelastic analogue of the viscous buckling instability. Thinner streams form structures resembling globules on a looping filament.

  12. Viscoelastic suppression of gravity-driven counterflow instability.

    PubMed

    Beiersdorfer, P; Layne, D; Magee, E W; Katz, J I

    2011-02-01

    Attempts to achieve "top kill" of flowing oil wells by pumping dense drilling "muds," i.e., slurries of dense minerals, from above will fail if the Kelvin-Helmholtz instability in the gravity-driven counterflow produces turbulence that breaks up the denser fluid into small droplets. Here we estimate the droplet size to be submillimeter for fast flows and suggest the addition of a shear-thickening or viscoelastic polymer to suppress turbulence. We find in laboratory experiments a variety of new physical effects for a viscoelastic shear-thickening liquid in a gravity-driven counterstreaming flow. There is a progression from droplet formation to complete turbulence suppression at the relevant high velocities. Thick descending columns show a viscoelastic analogue of the viscous buckling instability. Thinner streams form structures resembling globules on a looping filament. PMID:21405442

  13. Critical transport parameters for porous media subjected to counterflow

    NASA Technical Reports Server (NTRS)

    Frederking, T. H. K.; Afifi, F. A.; Ono, D. Y.

    1989-01-01

    Experimental and theoretical studies have been conducted to determine critical parameters at the onset of nonlinear counterflow in He II below the lambda point of He-4. Critical temperature differences have been measured in porous media for zero net mass flow and for Darcy permeabilities in the order of magnitude range from 10 to the -10th to 10 to the -8th sq cm. The normalized critical temperature gradients, which covered the liquid temperature range of 1.5 K to the lambda temperature, are found to vary with T proportional to the ratio of the superfluid density to the normal fluid density. This liquid temperature dependence appears to be consistent with duct data which are limited at low temperature by a Reynolds number criterion.

  14. Counterflow Dielectrophoresis for Trypanosome Enrichment and Detection in Blood

    NASA Astrophysics Data System (ADS)

    Menachery, Anoop; Kremer, Clemens; Wong, Pui E.; Carlsson, Allan; Neale, Steven L.; Barrett, Michael P.; Cooper, Jonathan M.

    2012-10-01

    Human African trypanosomiasis or sleeping sickness is a deadly disease endemic in sub-Saharan Africa, caused by single-celled protozoan parasites. Although it has been targeted for elimination by 2020, this will only be realized if diagnosis can be improved to enable identification and treatment of afflicted patients. Existing techniques of detection are restricted by their limited field-applicability, sensitivity and capacity for automation. Microfluidic-based technologies offer the potential for highly sensitive automated devices that could achieve detection at the lowest levels of parasitemia and consequently help in the elimination programme. In this work we implement an electrokinetic technique for the separation of trypanosomes from both mouse and human blood. This technique utilises differences in polarisability between the blood cells and trypanosomes to achieve separation through opposed bi-directional movement (cell counterflow). We combine this enrichment technique with an automated image analysis detection algorithm, negating the need for a human operator.

  15. Computer program for performance and sizing analysis of compact counter-flow plate-fin heat exchangers, research and development report

    NASA Astrophysics Data System (ADS)

    Ness, J. C.

    1982-12-01

    This report presents a computer program for preliminary design analysis of counter-flow, compact, plate-fin heat exchangers. The program method is based on the effectiveness-NTU relationship analysis. The heat exchanger design begins with assumptions for counter-flow length, total frontal flow area and core matrix fin geometry. Using these constraints, the program proceeds to calculate the resulting effectiveness and pressure drop based on specified air-side and gas-side fin types; the pressures, temperatures, and mass flows of the air and gas streams; fuel-air ratio; as well as, the maximum air-side inlet header velocity. Heat exchanger designs may be generated based on four different fin types (i.e., plain, louvered, strip/offset or wavy fins) over a varied number of core dimensions. Program output includes inlet and exit conditions on air and gas sides, effectiveness, fin characteristics, core length and volume, total frontal units, overall weight, and air-side header diameters and velocities. This report presents the analysis method, description of input and output with sample cases, and a program listing.

  16. Lane formation in pedestrian counterflows driven by a potential field considering following and avoidance behaviours

    NASA Astrophysics Data System (ADS)

    Guo, Wei; Wang, Xiaolu; Zheng, Xiaoping

    2015-08-01

    Lane formation in pedestrian counterflows is an interesting self-organization phenomenon. It is believed to be caused by the following or avoidance behaviours of pedestrians. In this paper, a potential field CA model that considers the velocity and density distributions of a crowd and their subjective consciousness is proposed to study the effects of the two behaviours on lane formation in the case of a pedestrian counterflow in a corridor with a periodic boundary. An indexing system is introduced to distinguish the three different patterns observed in the counterflow, and a smoothness index is introduced to measure the smoothness of the counterflow. It is found that avoidance behaviour is more relevant to lane formation than following behaviour. Some differences between the two behaviours are also presented.

  17. Shapes of Nonbuoyant Round Luminous Laminar-Jet Diffusion Flames in Coflowing Air. Appendix F

    NASA Technical Reports Server (NTRS)

    Lin, K.-C.; Faeth, G. M.; Urban, David L. (Technical Monitor)

    2000-01-01

    The shapes (luminous flame boundaries) of steady nonbuoyant round luminous hydrocarbon-fueled laminar-jet diffusion flames in coflowing air were studied both experimentally and theoretically. Flame shapes were measured from photographs of flames burning at low pressures in order to minimize the effects of buoyancy. Test conditions involved acetylene-, propylene. and 1,3-butadiene-fueled flames having initial reactant temperatures of 300 K, ambient pressures of 19-50 kPa, jet-exit Reynolds numbers of 18-121, and initial air/fuel velocity ratios of 0.22-32.45 to yield luminous flame lengths of 21-198 mm. The present flames were close to the laminar smoke point but were not soot emitting. Simple expressions to estimate the shapes of nonbuoyant laminar-jet diffusion flames in coflow were found by extending an earlier analysis of Mahalingam et al. These formulas provided a good correlation of present measurements except near the burner exit where self-similar approximations used in the simplified analysis are no longer appropriate.

  18. Diffuse plasma treatment of polyamide 66 fabric in atmospheric pressure air

    NASA Astrophysics Data System (ADS)

    Li, Lee; Peng, Ming-yang; Teng, Yun; Gao, Guozhen

    2016-01-01

    The polyamide 66 (PA66) fabrics are hard to be colored or glued in industrial production due to the poor hydrophily. Diffuse plasma is a kind of non-thermal plasma generated at atmospheric pressure in air. This paper proposes that large-scale diffuse plasma generated between wire electrodes can be employed for improving the hydrophily of PA66 fabrics. A repetitive nanosecond-pulse diffuse-discharge reactor using a cylindrical wire electrode configuration is presented, which can generate large-scale non-thermal plasmas steadily at atmospheric pressure without any barrier dielectric. Then the reactor is used to treat PA66 fabrics in different discharge conditions. The hydrophilicity property of modified PA66 is measured by wicking test method. The modified PA66 is also analyzed by atomic force microscopy (AFM) and X-ray photoelectron spectroscopy (XPS) to prove the surface changes in physical microstructure and chemical functional groups, respectively. What's more, the effects of treatment time and treatment frequency on surface modification are investigated and discussed.

  19. Generating diffuse discharge via repetitive nanosecond pulses and line-line electrodes in atmospheric air.

    PubMed

    Li, Lee; Liu, Yun-Long; Ge, Ya-Feng; Bin, Yu; Huang, Jia-Jia; Lin, Fo-Chan

    2013-10-01

    Diffuse discharge in atmospheric air can generate extremely high power density and large-scale non-thermal plasma. An achievable method of generating diffuse discharge is reported in this paper. Based on the resonance theory, a compact high-voltage repetitive nanosecond pulse generator (HRNPG) has been developed as discharge excitation source. The HRNPG mainly consists of repetitive charging circuit, Tesla transformer and sharpening switch. With the voltage lower than 1.0 kV, the primary repetitive charging circuit comprises two fast thyristors as low-voltage switches. A spiral Tesla transformer is designed to provide a peak transformation ratio of more than 100. The HRNPG prototype is capable of generating a pulse with over 100 kV peak voltage and ~30 ns rise-time at the repetition frequency of 500 Hz. Using the copper line electrodes with a diameter of 0.4 mm, the gaps with highly non-uniform electric field are structured. With the suitable gap spacing and applied pulse, the glow-like diffuse discharge has been generated in line-type and ring-type electrode pairs. Some typical images are presented. PMID:24182161

  20. Generating diffuse discharge via repetitive nanosecond pulses and line-line electrodes in atmospheric air

    NASA Astrophysics Data System (ADS)

    Li, Lee; Liu, Yun-Long; Ge, Ya-Feng; Bin, Yu; Huang, Jia-Jia; Lin, Fo-Chan

    2013-10-01

    Diffuse discharge in atmospheric air can generate extremely high power density and large-scale non-thermal plasma. An achievable method of generating diffuse discharge is reported in this paper. Based on the resonance theory, a compact high-voltage repetitive nanosecond pulse generator (HRNPG) has been developed as discharge excitation source. The HRNPG mainly consists of repetitive charging circuit, Tesla transformer and sharpening switch. With the voltage lower than 1.0 kV, the primary repetitive charging circuit comprises two fast thyristors as low-voltage switches. A spiral Tesla transformer is designed to provide a peak transformation ratio of more than 100. The HRNPG prototype is capable of generating a pulse with over 100 kV peak voltage and ˜30 ns rise-time at the repetition frequency of 500 Hz. Using the copper line electrodes with a diameter of 0.4 mm, the gaps with highly non-uniform electric field are structured. With the suitable gap spacing and applied pulse, the glow-like diffuse discharge has been generated in line-type and ring-type electrode pairs. Some typical images are presented.

  1. Laser filamentation induced air-flow motion in a diffusion cloud chamber.

    PubMed

    Sun, Haiyi; Liu, Jiansheng; Wang, Cheng; Ju, Jingjing; Wang, Zhanxin; Wang, Wentao; Ge, Xiaochun; Li, Chuang; Chin, See Leang; Li, Ruxin; Xu, Zhizhan

    2013-04-22

    We numerically simulated the air-flow motion in a diffusion cloud chamber induced by femtosecond laser filaments for different chopping rates. A two dimensional model was employed, where the laser filaments were treated as a heat flux source. The simulated patterns of flow fields and maximum velocity of updraft compare well with the experimental results for the chopping rates of 1, 5, 15 and 150 Hz. A quantitative inconsistency appears between simulated and experimental maximum velocity of updraft for 1 kHz repetition rate although a similar pattern of flow field is obtained, and the possible reasons were analyzed. Based on the present simulated results, the experimental observation of more water condensation/snow at higher chopping rate can be explained. These results indicate that the specific way of laser filament heating plays a significant role in the laser-induced motion of air flow, and at the same time, our previous conclusion of air flow having an important effect on water condensation/snow is confirmed. PMID:23609636

  2. Experimental and Computational Study of Nonpremixed Ignition of Dimethyl Ether in Counterflow

    SciTech Connect

    Zheng, X L; Lu, T F; Law, C K; Westbrook, C K

    2003-12-19

    The ignition temperature of nitrogen-diluted dimethyl ether (DME) by heated air in counterflow was experimentally determined for DME concentration from 5.9 to 30%, system pressure from 1.5 to 3.0 atmospheres, and pressure-weighted strain rate from 110 to 170/s. These experimental data were compared with two mechanisms that were respectively available in 1998 and 2003, with the latter being a substantially updated version of the former. The comparison showed that while the 1998-mechanism uniformly over-predicted the ignition temperature, the 2003-mechanism yielded surprisingly close agreement for all experimental data. Sensitivity analysis for the near-ignition state based on both mechanisms identified the deficiencies of the 1998-mechanism, particularly the specifics of the low-temperature cool flame chemistry in effecting ignition at higher temperatures, as the fuel stream is being progressively heated from its cold boundary to the high-temperature ignition region around the hot-stream boundary. The 2003-mechanism, consisting of 79 species and 398 elementary reactions, was then systematically simplified by using the directed relation graph method to a skeletal mechanism of 49 species and 251 elementary reactions, which in turn was further simplified by using computational singular perturbation method and quasi-steady-state species assumption to a reduced mechanism consisting of 33 species and 28 lumped reactions. It was demonstrated that both the skeletal and reduced mechanisms mimicked the performance of the detailed mechanism with high accuracy.

  3. An atmospheric air gas-liquid diffuse discharge excited by bipolar nanosecond pulse in quartz container used for water sterilization

    NASA Astrophysics Data System (ADS)

    Wang, Sen; Yang, De-Zheng; Wang, Wen-Chun; Zhang, Shuai; Liu, Zhi-Jie; Tang, Kai; Song, Ying

    2013-12-01

    In this Letter, we report that the air gas-liquid diffuse discharge plasma excited by bipolar nanosecond pulse in quartz container with different bottom structures at atmospheric pressure. Optical diagnostic measurements show that bountiful chemically and biologically active species, which are beneficial for effective sterilization in some areas, are produced. Such diffuse plasmas are then used to treat drinking water containing the common microorganisms (Candida albicans and Escherichia coli). It is found that these plasmas can sterilize the microorganisms efficiently.

  4. Effect of binders on natural graphite powder-based gas diffusion electrode for Mg-air cell

    NASA Astrophysics Data System (ADS)

    Arinton, Ghenadi; Rianto, Anton; Faizal, Ferry; Hidayat, Darmawan; Hidayat, Sahrul; Panatarani, Camellia; Joni, I. Made

    2016-03-01

    This paper mainly discussed the electrical performance of gas diffusion electrode of Mg-Air Cell. The gas diffusion electrodes (GDE) use a natural graphite powder as catalyst material. The effect of additional binders to the GDE have been investigated to improve electrode performances. Several types of GDE have been developed using binder materials such as epoxy resin, natural clay, carboxymethyl cellulose (CMC) and urea-formaldehyde (UF). By using discharge performance measurement, the characteristics of the as-prepared GDEs are reported.

  5. Exploratory investigation of the use of area suction to eliminate air-flow separation in diffusers having large expansion angles

    NASA Technical Reports Server (NTRS)

    Holzhauser, Curt A; Hall, Leo P

    1956-01-01

    Tests were made at a mean inlet Mach number of 0.2 with area suction applied to conical diffusers with expansion angles of 30 degrees and 50 degrees and exit to inlet area ratios of 2. Air-flow separation was eliminated with suction mass flows of 3 and 4 percent of the inlet mass flows for the 30 degrees and 50 degrees diffusers, respectively.

  6. Magnetically Diffused Radial Electric-Arc Air Heater Employing Water-Cooled Copper Electrodes

    NASA Technical Reports Server (NTRS)

    Mayo, R. F.; Davis, D. D., Jr.

    1962-01-01

    A magnetically rotated electric-arc air heater has been developed that is novel in that an intense magnetic field of the order of 10,000 to 25,000 gauss is employed. This field is supplied by a coil that is connected in series with the arc. Experimentation with this heater has shown that the presence of an intense magnetic field transverse to the arc results in diffusion of the arc and that the arc has a positive effective resistance. With the field coil in series with the arc, highly stable arc operation is obtained from a battery power supply. External ballast is not required to stabilize the arc when it is operating at maximum power level. The electrode erosion rate is so low that the airstream contamination is no more than 0.07 percent and may be substantially less.

  7. Enhanced soot formation in flickering CH{sub 4}/air diffusion flames

    SciTech Connect

    Shaddix, C.R.; Harrington, J.E.; Smyth, K.C.

    1994-12-31

    Optical methods are used to examine soot production in a co-flowing, axisymmetric CH{sub 4}/air diffusion flame in which the fuel flow rate is acoustically forced to create a time-varying flowfield. For a particular forcing condition in which tip clipping occurs (0.75 V loudspeaker excitation), elastic scattering of vertically polarized light from the soot particles increases by nearly an order of magnitude with respect to that observed for a steady flame with the same mean fuel flow rate. Peak soot volume fractions, as measured by time-resolved laser extinction/tomography at 632.8 and 454.5 run and calibrated laser-induced incandescence (LII), show a factor of 4-5 enhancement in this flickering flame. A Mie analysis suggests that most of the enhanced soot production results from the formation of larger particles in the time-varying flowfield.

  8. Soot Oxidation in Laminar Hydrocarbon/Air Diffusion Flames at Atmospheric Pressure. Appendix D

    NASA Technical Reports Server (NTRS)

    Xu, F.; El-Leathy, A. M.; Faeth, G. M.

    2000-01-01

    Soot oxidation was studied experimentally in laminar hydrocarbon/air diffusion flames at atmospheric pressure. Measurements were carried out along the axes of round jets burning in coflowing air considering acetylene, ethylene, proplyene and propane as fuels. Measurements were limited to the initial stages of soot oxidation (carbon consumption less than 70%) where soot oxidation mainly occurs at the surface of primary soot particles. The following properties were measured as a function of distance above the burner exit: soot concentrations by deconvoluted laser extinction, soot temperatures by deconvoluted multiline emission, soot structure by thermophoretic sampling and analysis using Transmission Electron Microscopy (TEM), concentrations of stable major gas species (N2, H2O, H2, 02, CO, CO2, CH4, C2H2, C2H4, C2H6, C3H6, and C3H8) by sampling and gas chromatography, concentrations of some radical species (H, OH, O) by the deconvoluted Li/LiOH atomic absorption technique and flow velocities by laser velocimetry. It was found that soot surface oxidation rates are not particularly affected by fuel type for laminar diffusion flames and are described reasonably well by the OH surface oxidation mechanism with a collision efficiency of 0.10, (standard deviation of 0.07) with no significant effect of fuel type in this behavior; these findings are in good agreement with the classical laminar premixed flame measurements of Neoh et al. Finally, direct rates of surface oxidation by O2 were small compared to OH oxidation for present conditions, based on estimated O2 oxidation rates due to Nagle and Strickland-Constable, because soot oxidation was completed near the flame sheet where O2 concentrations were less than 1.2% by volume.

  9. Soot Oxidation in Hydrocarbon/Air Diffusion Flames at Atmospheric Pressure. Appendix K

    NASA Technical Reports Server (NTRS)

    Xu, F.; El-Leathy, A. M.; Faeth, G. M.; Urban, D. L. (Technical Monitor); Yuan, Z.-G. (Technical Monitor)

    2001-01-01

    Soot oxidation was studied experimentally in laminar hydrocarbon/air diffusion flames at atmospheric pressure. Measurements were carried out along the axes of round jets burning in coflowing air considering acetylene, ethylene, propylene and propane as fuels. Measurements were limited to the initial stages of soot oxidation (carbon consumption less than 70%) where soot oxidation mainly occurs at the surface of primary soot particles. The following properties were measured as a function of distance above the burner exit: soot concentrations by deconvoluted laser extinction, soot temperatures by deconvoluted multiline emission, soot structure by thermophoretic sampling and analysis using Transmission Electron Microscopy (TEM), concentrations of stable major gas species (N2, H2O, H2, O2, CO, CO2, CH4, C2H2,C2H4, C2H6, C3H6, and C3H8) by sampling and gas chromatography, concentrations of some radical species (H, OH, O) by the deconvoluted Li/LiOH atomic absorption technique and flow velocities by laser velocimetry. It was found that soot surface oxidation rates are not particularly affected by fuel type for laminar diffusion flames and are described reasonably well by the OH surface oxidation mechanism with a collision efficiency of 0.10, (standard deviation of 0.07) with no significant effect of fuel type in this behavior; these findings are in good agreement with the classical laminar premixed flame measurements of Neoh et al. Finally, direct rates of surface oxidation by O2 were small compared to OH oxidation for present conditions, based on estimated O2 oxidation rates due to Nagle and Strickland-Constable (1962), because soot oxidation was completed near the flame sheet where O2 concentrations were less than 1.2% by volume.

  10. Soot Surface Oxidation in Laminar Hydrocarbon/Air Diffusion Flames at Atmospheric Pressure. Appendix I

    NASA Technical Reports Server (NTRS)

    Xu, F.; El-Leathy, A. M.; Kim, C. H.; Faeth, G. M.; Yuan, Z.-G. (Technical Monitor); Urban, D. L. (Technical Monitor); Yuan, Z.-G. (Technical Monitor)

    2003-01-01

    Soot surface oxidation was studied experimentally in laminar hydrocarbon/air diffusion flames at atmospheric pressure. Measurements were carried out along the axes of round fuel jets burning in coflowing dry air considering acetylene-nitrogen, ethylene, propyiene-nitrogen, propane and acetylene-benzene-nitrogen in the fuel stream. Measurements were limited to the initial stages of soot oxidation (carbon consumption less than 70%) where soot oxidation occurs at the surface of primary soot particles. The following properties were measured as a function of distance above the burner exit: soot concentrations by deconvoluted laser extinction, soot temperatures by deconvoluted multiline emission, soot structure by thermophoretic sampling and analysis using Transmission Electron Microscopy (TEM), concentrations of major stable gas species (N2, H2O, H2, O2, CO, CO2, CH4, C2H2, C2H6, C3H6, C3H8, and C6H6) by sampling and gas chromatography, concentrations of some radical species (H, OH, O) by deconvoluted Li/LiOH atomic absorption and flow velocities by laser velocimetry. For present test conditions, it was found that soot surface oxidation rates were not affected by fuel type, that direct rates of soot surface oxidation by O2 estimated from Nagle and Strickland-Constable (1962) were small compared to observed soot surface oxidation rates because soot surface oxidation was completed near the flame sheet where O2 concentrations were less than 3% by volume, and that soot surface oxidation rates were described by the OH soot surface oxidation mechanism with a collision efficiency of 0.14 and an uncertainty (95% confidence) of +/- 0.04 when allowing for direct soot surface oxidation by O2, which is in reasonably good agreement with earlier observations of soot surface oxidation rates in both premixed and diffusion flames at atmospheric pressure.

  11. Shapes of Nonbuoyant Round Luminous Hydrocarbon/Air Laminar Jet Diffusion Flames

    NASA Technical Reports Server (NTRS)

    Lin, K.-C.; Faeth, G. M.; Sunderland, P. B.; Urban, D. L.; Yuan, Z.-G.

    1999-01-01

    The shapes (luminous flame boundaries) of round luminous nonbuoyant soot-containing hydrocarbon/air laminar jet diffusion flames at microgravity were found from color video images obtained on orbit in the Space Shuttle Columbia. Test conditions included ethylene- and propane-fueled flames burning in still air at an ambient temperature of 300 K, ambient pressures of 35-130 kPa, initial jet diameters of 1.6 and 2.7 mm, and jet exit Reynolds numbers of 45-170. Present test times were 100-200 s and yielded steady axisymmetric flames that were close to the laminar smoke point (including flames both emitting and not emitting soot) with luminous flame lengths of 15-63 mm. The present soot-containing flames had larger luminous flame lengths than earlier ground-based observations having similar burner configurations: 40% larger than the luminous flame lengths of soot-containing low gravity flames observed using an aircraft (KC-135) facility due to reduced effects of accelerative disturbances and unsteadiness; roughly twice as large as the luminous flame lengths of soot-containing normal gravity flames due to the absence of effects of buoyant mixing and roughly twice as large as the luminous flame lengths of soot-free low gravity flames observed using drop tower facilities due to the presence of soot luminosity and possible reduced effects of unsteadiness. Simplified expressions to estimate the luminous flame boundaries of round nonbuoyant laminar jet diffusion flames were obtained from the classical analysis of Spalding (1979); this approach provided Successful Correlations of flame shapes for both soot-free and soot-containing flames, except when the soot-containing flames were in the opened-tip configuration that is reached at fuel flow rates near and greater than the laminar smoke point fuel flow rate.

  12. Bacterial Growth on Distant Naphthalene Diffusing through Water, Air, and Water-Saturated and Nonsaturated Porous Media

    PubMed Central

    Harms, H.

    1996-01-01

    The influence of substrate diffusion on bacterial growth was investigated. Crystalline naphthalene was supplied as the substrate at various distances in the range of centimeters from naphthalene-degrading organisms separated from the substrate by agar-solidified mineral medium. Within 2 weeks, the cells grew to final numbers which were negatively correlated with the distance from the substrate. A mathematical model that combined (i) Monod growth kinetics extended by a term for culture maintenance and (ii) substrate diffusion could explain the observed growth curves. The model could also predict growth on naphthalene that was separated from the bacteria by air. In addition, the bacteria were grown on distant naphthalene that had to diffuse to the cells through water-saturated and unsaturated porous media. The growth of the bacteria could be used to calculate the effective diffusivity of naphthalene in the three-phase system. Diffusion of naphthalene in the pore space containing 80% air was roughly 1 order of magnitude faster than in medium containing only 20% air because of the high Henry's law coefficient of naphthalene. It is proposed that the effective diffusivities of the substrates and the spatial distribution of substrates and bacteria are the main determinants of final cell numbers and, consequently, final degradation rates. PMID:16535349

  13. Improving design factors of air diffuser systems based on field conditions of dam reservoirs: CFD simulation approach.

    PubMed

    Shin, Sangmin; Lee, Seungjae; Lee, Sangeun; Yum, Kyungtaek; Park, Heekyung

    2012-01-01

    This study aims to improve the design factors of air diffuser systems that have been analyzed in laboratory experiments, with consideration of the field conditions of dam reservoirs. In this study, the destratification number (D(N)), destratification radius, and efficiency are considered as design factors. The computational fluid dynamics (CFD) simulation experiment is performed in diverse field conditions in order to analyze these factors. The results illustrate the wider range of D(N) values in field conditions and the relationship of the destratification radius and efficiency to D(N). The results can lead to better performance of air diffuser systems and water quality management in dam reservoir sites. PMID:22678200

  14. Soot Formation in Laminar Acetylene/Air Diffusion Flames at Atmospheric Pressure. Appendix C

    NASA Technical Reports Server (NTRS)

    Xu, F.; Faeth, G. M.; Urban, D. L. (Technical Monitor); Yuan, Z.-G. (Technical Monitor)

    2000-01-01

    The flame structure and soot-formation (soot nucleation and growth) properties of axisymmetric laminar coflowing jet diffusion flames were studied experimentally. Test conditions involved acetylene-nitrogen jets burning in coflowing air at atmospheric pressure. Measurements were limited to the axes of the flames and included soot concentrations, soot temperatures, soot structure, major gas species concentrations, radical species (H, OH, and O) concentrations, and gas velocities. The results show that as distance increases along the axes of the flames, detectable soot formation begins when significant H concentrations are present, and ends when acetylene concentrations become small. Species potentially associated with soot oxidation-O2, CO2, H2O, O, and OH-are present throughout the soot-formation region so that soot formation and oxidation proceed at the same time. Strong rates of soot growth compared to soot nucleation early in the soot-formation process, combined with increased rates of soot nucleation and oxidation as soot formation proceeds, causes primary soot particle diameters to reach a maximum relatively early in the soot-formation process. Aggregation of primary soot particles proceeds, however, until the final stages of soot oxidation. Present measurements of soot growth (corrected for soot oxidation) in laminar diffusion flames were consistent with earlier measurements of soot growth in laminar premixed flames and exhibited encouraging agreement with existing hydrogen-abstraction/carbon-addition (HACA) soot growth mechanisms in the literature that were developed based on measurements within laminar premixed flames. Measured primary soot particle nucleation rates in the present laminar diffusion flames also were consistent with corresponding rates measured in laminar premixed flames and yielded a crude correlation in terms of acetylene and H concentrations and the temperature.

  15. Soot Formation in Laminar Acetylene/Air Diffusion Flames at Atmospheric Pressure. Appendix J

    NASA Technical Reports Server (NTRS)

    Xu, F.; Faeth, G. M.; Urban, D. L. (Technical Monitor); Yuan, Z.-G. (Technical Monitor)

    2001-01-01

    The flame structure and soot-formation (soot nucleation and growth) properties of axisymmetric laminar coflowing jet diffusion flames were studied experimentally. Test conditions involved acetylene-nitrogen jets burning in coflowing air at atmospheric pressure. Measurements were limited to the axes of the flames and included soot concentrations, soot temperatures, soot structure, major gas species concentrations, radical species (H, OH, and O) concentrations, and gas velocities. The results show that as distance increases along the axes of the flames, detectable soot formation begins when significant H concentrations are present, and ends when acetylene concentrations become small. Species potentially associated with soot oxidation--O2, CO2, H2O, O, and OH-are present throughout the soot-formation region so that soot formation and oxidation proceed at the same time. Strong rates of soot growth compared to soot nucleation early in the soot-formation process, combined with increased rates of soot nucleation and oxidation as soot formation proceeds, causes primary soot particle diameters to reach a maximum relatively early in the soot-formation process. Aggregation of primary soot particles proceeds, however, until the final stages of soot oxidation. Present measurements of soot growth (corrected for soot oxidation) in laminar diffusion flames were consistent with earlier measurements of soot growth in laminar premixed flames and exhibited encouraging agreement with existing hydrogen-abstraction/carbon-addition (HACA) soot growth mechanisms in the literature that were developed based on measurements within laminar premixed flames. Measured primary soot particle nucleation rates in the present laminar diffusion flames also were consistent with corresponding rates measured in laminar premixed flames and yielded a crude correlation in terms of acetylene and H concentrations and the temperature.

  16. Soot Formation in Laminar Acetylene/Air Diffusion Flames at Atmospheric Pressure. Appendix H

    NASA Technical Reports Server (NTRS)

    Xu, F.; Faeth, G. M.; Yuan, Z.-G. (Technical Monitor); Urban, D. L. (Technical Monitor); Yuan, Z.-G. (Technical Monitor)

    2001-01-01

    The flame structure and soot-formation (soot nucleation and growth) properties of axisymmetric laminar coflowing jet diffusion flames were studied experimentally. Test conditions involved acetylene-nitrogen jets burning in coflowing air at atmospheric pressure. Measurements were limited to the axes of the flames and included soot concentrations, soot temperatures, soot structure, major gas species concentrations, radical species (H, OH, and O) concentrations, and gas velocities. The results show that as distance increases along the axes of the flames, detectable soot formation begins when significant H concentrations are present, and ends when acetylene concentrations become small. Species potentially associated with soot oxidation-O2, CO2, H2O, O, and OH-are present throughout the soot-formation region so that soot formation and oxidation proceed at the same time. Strong rates of soot growth compared to soot nucleation early in the soot-formation process, combined with increased rates of soot nucleation and oxidation as soot formation proceeds, causes primary soot particle diameters to reach a maximum relatively early in the soot-formation process. Aggregation of primary soot particles proceeds, however, until the final stages of soot oxidation. Present measurements of soot growth (corrected for soot oxidation) in laminar diffusion flames were consistent with earlier measurements of soot growth in laminar premixed flames and exhibited encouraging agreement with existing hydrogen-abstraction/carbon-addition (HACA) soot growth mechanisms in the literature that were developed based on measurements within laminar premixed flames. Measured primary soot particle nucleation rates in the present laminar diffusion flames also were consistent with corresponding rates measured in laminar premixed flames and yielded a crude correlation in terms of acetylene and H concentrations and the temperature.

  17. Soot Surface Growth in Laminar Hydrocarbon/Air Diffusion Flames. Appendix J

    NASA Technical Reports Server (NTRS)

    El-Leathy, A. M.; Xu, F.; Kim, C. H.; Faeth, G. M.; Yuan, Z.-G. (Technical Monitor); Urban, D. L. (Technical Monitor); Yuan, Z.-G. (Technical Monitor)

    2003-01-01

    The structure and soot surface growth properties of round laminar jet diffusion flames were studied experimentally. Measurements were made along the axes of ethylene-, propylene-propane- and acetylene-benzene-fueled flames burning in coflowing air at atmospheric pressure with the reactants at normal temperature. The measurements included soot structure, soot concentrations, soot temperatures, major gas species concentrations, some radial species (H, OH and 0) concentrations, and gas velocities. These measurements yielded the local flame properties that are thought to affect soot surface growth as well as local soot surface growth rates. When present results were combined with similar earlier observations of acetylene-fueled laminar jet diffusion flames, the results suggested that soot surface growth involved decomposition of the original fuel to form acetylene and H, which were the main reactants for soot surface growth, and that the main effect of the parent fuel on soot surface growth involved its yield of acetylene and H for present test conditions. Thus, as the distance increased along the axes of the flames, soot formation (which was dominated by soot surface growth) began near the cool core of the flow once acetylene and H appeared together and ended near the flame sheet when acetylene disappeared. Species mainly responsible for soot oxidation - OH and 02 were present throughout the soot formation region so that soot surface growth and oxidation proceeded at the same time. Present measurements of soot surface growth rates (corrected for soot surface oxidation) in laminar jet diffusion flames were consistent with earlier measurements of soot surface growth rates in laminar premixed flames and exhibited good agreement with existing Hydrogen-Abstraction/Carbon-Addition (HACA) soot surface growth mechanisms in the literature with steric factors in these mechanisms having values on the order of unity, as anticipated.

  18. Soot Surface Growth in Laminar Hydrocarbon/Air Diffusion Flames. Appendix B

    NASA Technical Reports Server (NTRS)

    El-Leathy, A. M.; Xu, F.; Kim, C. H.; Faeth, G. M.; Urban, D. L. (Technical Monitor); Yuan, Z.-G. (Technical Monitor)

    2001-01-01

    The structure and soot surface growth properties of round laminar jet diffusion flames were studied experimentally. Measurements were made along the axes of ethylene-, propylene-propane- and acetylene-benzene-fueled flames burning in coflowing air at atmospheric pressure with the reactants at normal temperature. The measurements included soot structure, soot concentrations, soot temperatures, major gas species concentrations, some radial species (H, OH and O) concentrations, and gas velocities. These measurements yielded the local flame properties that are thought to affect soot surface growth as well as local soot surface growth rates. When present results were combined with similar earlier observations of acetylene-fueled laminar jet diffusion flames, the results suggested that soot surface growth involved decomposition of the original fuel to form acetylene and H, which were the main reactants for soot surface growth, and that the main effect of the parent fuel on soot surface growth involved its yield of acetylene and H for present test conditions. Thus, as the distance increased along the axes of the flames, soot formation (which was dominated by soot surface growth) began near the cool core of the flow once acetylene and H appeared together and ended near the flame sheet when acetylene disappeared. Species mainly responsible for soot oxidation - OH and O2 were present throughout the soot formation region so that soot surface growth and oxidation proceeded at the same time. Present measurements of soot surface growth rates (corrected for soot surface oxidation) in laminar jet diffusion flames were consistent with earlier measurements of soot surface growth rates in laminar premixed flames and exhibited good agreement with existing Hydrogen-Abstraction/Carbon-Addition (HACA) soot surface growth mechanisms in the literature with steric factors in these mechanisms having values on the order of unity, as anticipated.

  19. Steady Counterflow he II Heat Transfer Through Porous Media

    NASA Astrophysics Data System (ADS)

    Dalban-Canassy, M.; Van Sciver, S. W.

    2010-04-01

    We present steady state counterflow measurements performed on porous samples saturated in He II. The experiment is composed of a vacuum insulated open channel whose top extremity is closed to a Minco® heater. The temperature and pressure differences across the plug are measured by two germanium TTR-G Microsensors® thermometers and a Validyne DP10-20 differential pressure sensor. Applied heat fluxes range up to 0.5 kW/m2 of sample cross section. Measurements were performed at temperatures ranging from 1.7 to 2.1 K on highly anisotropic samples provided by Composite Technology Development Inc.: circular pellets (3.08 mm thick and 28.58 mm in diameter) of 20 compressed layers of pre-impregnated woven magnet insulation. In the laminar regime, the permeability is estimated from the pressure drop measurements for comparison with room temperature data. In the turbulent regime, the model based on tortuosity developed previously fails to describe the heat transfer behavior of He II in this type of porous medium.

  20. STEADY COUNTERFLOW HE II HEAT TRANSFER THROUGH POROUS MEDIA

    SciTech Connect

    Dalban-Canassy, M.; Van Sciver, S. W.

    2010-04-09

    We present steady state counterflow measurements performed on porous samples saturated in He II. The experiment is composed of a vacuum insulated open channel whose top extremity is closed to a Minco registered heater. The temperature and pressure differences across the plug are measured by two germanium TTR-G Microsensors registered thermometers and a Validyne DP10-20 differential pressure sensor. Applied heat fluxes range up to 0.5 kW/m{sup 2} of sample cross section. Measurements were performed at temperatures ranging from 1.7 to 2.1 K on highly anisotropic samples provided by Composite Technology Development Inc.: circular pellets (3.08 mm thick and 28.58 mm in diameter) of 20 compressed layers of pre-impregnated woven magnet insulation. In the laminar regime, the permeability is estimated from the pressure drop measurements for comparison with room temperature data. In the turbulent regime, the model based on tortuosity developed previously fails to describe the heat transfer behavior of He II in this type of porous medium.

  1. The counterflow transport of sterols and PI4P.

    PubMed

    Mesmin, Bruno; Antonny, Bruno

    2016-08-01

    Cholesterol levels in intracellular membranes are constantly adjusted to match with specific organelle functions. Cholesterol is kept high in the plasma membrane (PM) because it is essential for its barrier function, while low levels are found in the endoplasmic reticulum (ER) where cholesterol mediates feedback control of its own synthesis by sterol-sensor proteins. The ER→Golgi→PM concentration gradient of cholesterol in mammalian cells, and ergosterol in yeast, appears to be sustained by specific intracellular transport processes, which are mostly mediated by lipid transfer proteins (LTPs). Here we review a recently described function of two LTPs, OSBP and its yeast homolog Osh4p, which consists in creating a sterol gradient between membranes by vectorial transport. OSBP also contributes to the formation of ER/Golgi membrane contact sites, which are important hubs for the transfer of several lipid species. OSBP and Osh4p organize a counterflow transport of lipids whereby sterols are exchanged for the phosphoinositide PI4P, which is used as a fuel to drive sterol transport. This article is part of a Special Issue entitled: The cellular lipid landscape edited by Tim P. Levine and Anant K. Menon. PMID:26928592

  2. 24-HOUR DIFFUSIVE SAMPLING OF TOXIC VOCS IN AIR ONTO CARBOPACK X SOLID ADSORBENT FOLLOWED BY THERMAL DESORPTION/GC/MS ANALYSIS - LABORATORY STUDIES

    EPA Science Inventory

    Diffusive sampling of a mixture of 42 volatile organic compounds (VOCs) in humidified, purified air onto the solid adsorbent Carbopack X was evaluated under controlled laboratory conditions. The evaluation included variations in sample air temperature, relative humidity, and ozon...

  3. Scaling of velocity and mixture fraction fields in laminar counterflow configurations

    NASA Astrophysics Data System (ADS)

    Bisetti, Fabrizio; Scribano, Gianfranco

    2015-11-01

    Counterflow configurations are widely used to characterize premixed, nonpremixed, and partially premixed laminar flames. We performed a systematic analysis of the velocity and mixture fraction fields in the counterflow configuration and obtained scaling laws, which depend on two suitable nondimensional numbers: (i) the Reynolds number based on the bulk velocity U and half the separation distance between the nozzles L, and (ii) the ratio of the separation distance H = 2 L to the nozzle diameter D. Our study combines velocity measurements via Particle Image Velocimetry, detailed two-dimensional simulations including the nozzle geometry, and an exhaustive analysis of the data based on the nondimensional numbers. The flow field is shown to be moderately sensitive to the Reynolds number and strongly affected by the ratio H / D . By describing the self-similar behavior of the flow field in counterflow configurations comprehensively, our results provide a systematic explanation of existing burner designs as well as clear guidelines for the design of counterflows for pressurized nonpremixed flames. Finally, questions related to the limitations of one-dimensional models for counterflows are addressed conclusively.

  4. Experimental Method Development for Estimating Solid-phase Diffusion Coefficients and Material/Air Partition Coefficients of SVOCs

    EPA Science Inventory

    The solid-phase diffusion coefficient (Dm) and material-air partition coefficient (Kma) are key parameters for characterizing the sources and transport of semivolatile organic compounds (SVOCs) in the indoor environment. In this work, a new experimental method was developed to es...

  5. Diffusion welding in air. [solid state welding of butt joint by fusion welding, surface cleaning, and heating

    NASA Technical Reports Server (NTRS)

    Moore, T. J.; Holko, K. H. (Inventor)

    1974-01-01

    Solid state welding a butt joint by fusion welding the peripheral surfaces to form a seal is described along with, autogenetically cleaning the faying or mating surfaces of the joint by heating the abutting surfaces to 1,200 C and heating to the diffusion welding temperature in air.

  6. Evaluation of passive diffusion bag and dialysis samplers in selected wells at Hickam Air Force Base, Hawaii, July 2001

    USGS Publications Warehouse

    Vroblesky, Don A.; Pravecek, Tasha

    2002-01-01

    Field comparisons of chemical concentrations obtained from dialysis samplers, passive diffusion bag samplers, and low-flow samplers showed generally close agreement in most of the 13 wells tested during July 2001 at Hickam Air Force Base, Hawaii. The data for chloride, sulfate, iron, alkalinity, arsenic, and methane appear to show that the dialysis samplers are capable of accurately collecting a passive sample for these constituents. In general, the comparisons of volatile organic compound concentrations showed a relatively close correspondence between the two different types of diffusion samples and between the diffusion samples and the low-flow samples collected in most wells. Divergence appears to have resulted primarily from the pumping method, either producing a mixed sample or water not characteristic of aquifer water moving through the borehole under ambient conditions. The fact that alkalinity was not detected in the passive diffusion bag samplers, highly alkaline waters without volatilization loss from effervescence, which can occur when a sample is acidified for preservation. Both dialysis and passive diffusion bag samplers are relatively inexpensive and can be deployed rapidly and easily. Passive diffusion bag samplers are intended for sampling volatile organic compounds only, but dialysis samplers can be used to sample both volatile organic compounds and inorganic solutes. Regenerated cellulose dialysis samplers, however, are subject to biodegradation and probably should be deployed no sooner than 2 weeks prior to recovery. 1 U.S. Geological Survey, Columbia, South Carolina. 2 Air Florce Center for Environmental Excellence, San Antionio, Texas.

  7. Fabrication, operation and flow visualization in surface-acoustic-wave-driven acoustic-counterflow microfluidics.

    PubMed

    Travagliati, Marco; Shilton, Richie; Beltram, Fabio; Cecchini, Marco

    2013-01-01

    Surface acoustic waves (SAWs) can be used to drive liquids in portable microfluidic chips via the acoustic counterflow phenomenon. In this video we present the fabrication protocol for a multilayered SAW acoustic counterflow device. The device is fabricated starting from a lithium niobate (LN) substrate onto which two interdigital transducers (IDTs) and appropriate markers are patterned. A polydimethylsiloxane (PDMS) channel cast on an SU8 master mold is finally bonded on the patterned substrate. Following the fabrication procedure, we show the techniques that allow the characterization and operation of the acoustic counterflow device in order to pump fluids through the PDMS channel grid. We finally present the procedure to visualize liquid flow in the channels. The protocol is used to show on-chip fluid pumping under different flow regimes such as laminar flow and more complicated dynamics characterized by vortices and particle accumulation domains. PMID:24022515

  8. Fabrication, Operation and Flow Visualization in Surface-acoustic-wave-driven Acoustic-counterflow Microfluidics

    PubMed Central

    Travagliati, Marco; Shilton, Richie; Beltram, Fabio; Cecchini, Marco

    2013-01-01

    Surface acoustic waves (SAWs) can be used to drive liquids in portable microfluidic chips via the acoustic counterflow phenomenon. In this video we present the fabrication protocol for a multilayered SAW acoustic counterflow device. The device is fabricated starting from a lithium niobate (LN) substrate onto which two interdigital transducers (IDTs) and appropriate markers are patterned. A polydimethylsiloxane (PDMS) channel cast on an SU8 master mold is finally bonded on the patterned substrate. Following the fabrication procedure, we show the techniques that allow the characterization and operation of the acoustic counterflow device in order to pump fluids through the PDMS channel grid. We finally present the procedure to visualize liquid flow in the channels. The protocol is used to show on-chip fluid pumping under different flow regimes such as laminar flow and more complicated dynamics characterized by vortices and particle accumulation domains. PMID:24022515

  9. Study on electrical characteristics of barrier-free atmospheric air diffuse discharge generated by nanosecond pulses and long wire electrodes

    SciTech Connect

    Li, Lee Liu, Yun-Long; Teng, Yun; Liu, Lun; Pan, Yuan

    2014-07-15

    In room-temperature atmospheric air, the large-scale diffuse plasmas can be generated via high-voltage nanosecond pulses with short rise-time and wire electrodes. Diffuse discharge with the wire electrode length up to 110.0 cm and the discharge spacing of several centimeters has been investigated in this paper. Electrical characteristics of diffuse discharge have been analyzed by their optical photographs and measuring of the voltage and current waveforms. Experimental results show the electrode spacing, and the length of wire electrodes can influence the intensity and mode transition of diffuse discharge. The characteristic of current waveforms is that there are several current oscillation peaks at the time of applied pulsed voltage peak, and at the tail of applied pulse, the conduction current component will compensate the displacement one so that the measured current is unidirectional in diffuse discharge mode. The transition from diffuse discharge to arc discharge is always with the increasing of conduction current density. As for nanosecond pulses with long tail, the long wire electrodes are help for generating non-equilibrium diffuse plasmas.

  10. Development of carbon free diffusion layer for activated carbon air cathode of microbial fuel cells.

    PubMed

    Yang, Wulin; Kim, Kyoung-Yeol; Logan, Bruce E

    2015-12-01

    The fabrication of activated carbon air cathodes for larger-scale microbial fuel cells requires a diffusion layer (DL) that is highly resistant to water leakage, oxygen permeable, and made using inexpensive materials. A hydrophobic polyvinylidene fluoride (PVDF) membrane synthesized using a simple phase inversion process was examined as a low cost ($0.9/m(2)), carbon-free DL that prevented water leakage at high pressure heads compared to a polytetrafluoroethylene/carbon black DL ($11/m(2)). The power density produced with a PVDF (20%, w/v) DL membrane of 1400±7mW/m(2) was similar to that obtained using a wipe DL [cloth coated with poly(dimethylsiloxane)]. Water head tolerance reached 1.9m (∼19kPa) with no mesh supporter, and 2.1m (∼21kPa, maximum testing pressure) with a mesh supporter, compared to 0.2±0.05m for the wipe DL. The elimination of carbon black from the DL greatly simplified the fabrication procedure and further reduced overall cathode costs. PMID:26342345

  11. Structure and Soot Properties of Nonbuoyant Ethylene/Air Laminar Jet Diffusion Flames. Appendix I

    NASA Technical Reports Server (NTRS)

    Urban, D. L.; Yuan, Z.-G.; Sunderland, P. B.; Linteris, G. T.; Voss, J. E.; Lin, K.-C.; Dai, Z.; Sun, K.; Faeth, G. M.; Ross, Howard D. (Technical Monitor)

    2000-01-01

    The structure and soot properties of round, soot-emitting, nonbuoyant, laminar jet diffusion flames are described, based on long-duration (175-230/s) experiments at microgravity carried out on orbit In the Space Shuttle Columbia. Experiments] conditions included ethylene-fueled flames burning in still air at nominal pressures of 50 and 100 kPa and an ambient temperature of 300 K with luminous Annie lengths of 49-64 mm. Measurements included luminous flame shapes using color video imaging, soot concentration (volume fraction) distributions using deconvoluted laser extinction imaging, soot temperature distributions using deconvoluted multiline emission imaging, gas temperature distributions at fuel-lean (plume) conditions using thermocouple probes, not structure distributions using thermophoretic sampling and analysis by transmission electron microscopy, and flame radiation using a radiometer. The present flames were larger, and emitted soot men readily, than comparable observed during ground-based microgravity experiments due to closer approach to steady conditions resulting from the longer test times and the reduced gravitational disturbances of the space-based experiments.

  12. Soot formation and temperature field structure in laminar propane-air diffusion flames at elevated pressures

    SciTech Connect

    Bento, Decio S.; Guelder, OEmer L.; Thomson, Kevin A.

    2006-06-15

    The effect of pressure on soot formation and the structure of the temperature field was studied in coflow propane-air laminar diffusion flames over the pressure range of 0.1 to 0.73 MPa in a high-pressure combustion chamber. The fuel flow rate was selected so that the soot was completely oxidized within the visible flame and the flame was stable at all pressures. Spectral soot emission was used to measure radially resolved soot volume fraction and soot temperature as a function of pressure. Additional soot volume fraction measurements were made at selected heights using line-of-sight light attenuation. Soot concentration values from these two techniques agreed to within 30% and both methods exhibited similar trends in the spatial distribution of soot concentration. Maximum line-of-sight soot concentration along the flame centerline scaled with pressure; the pressure exponent was about 1.4 for pressures between 0.2 and 0.73 MPa. Peak carbon conversion to soot, defined as the percentage of fuel carbon content converted to soot, also followed a power-law dependence on pressure, where the pressure exponent was near to unity for pressures between 0.2 and 0.73 MPa. Soot temperature measurements indicated that the overall temperatures decreased with increasing pressure; however, the temperature gradients increased with increasing pressure. (author)

  13. Comparison of CO2 and O2 concentrations in soil air: A lesson learned about CO2 diffusivity in soils

    NASA Astrophysics Data System (ADS)

    Angert, A.; Davidson, E. A.; Savage, K.; Yakir, D.; Luz, B.

    2002-12-01

    Soil respiration is a major component of the global carbon and oxygen cycles and accounts for about one quarter of global respiration. Since respiration consumes O2 and emits CO2, a simple relationship may be expected between the concentration of these gases in soil-air. However, because the [O2] signal in well-drained soils is small, deriving this relationship from field observations is not trivial. In this study, we present high accuracy measurements of O2 concentrations in soil air, that for the first time, enable precise comparison of these concentrations with CO2 concentrations. Soil air was sampled in two sites: an orchard in Israel, and a temperate forest (Harvard forest). The expected ratio of the decrease in [O2] in soil air to the increase in [CO2] can be calculated from the ratio of O2 consumption to CO2 emission in respiration, and the ratio between the diffusivities of these two gases in air as 0.79-0.07. The measured ratio of the decrease in [O2] to the increase in [CO2] in soil air was 0.56-2.48 in the orchard site and 1.06-1.20 in Harvard Forest. These ratios deviate strongly from the expected relationship. In the orchard site, these deviations were probably caused by reactions in the carbonate system due to the calcareous soil of this site. At Harvard Forest, such reactions cannot be quantitatively important because of the low pH of the soil. In this site, we propose that the relationship between CO2 and O2 in the soil air indicates that the ratio of diffusivity of O2 and CO2 in soils is higher than the diffusivity ratio in air. Our results demonstrate that a combination of high accuracy measurements of the O2 and CO2 in soil air is important for better understanding of the soil CO2 dynamics. Such observations will improve estimates of soil respiration that are based only on CO2 concentration and diffusivity.

  14. Tunable diode-laser measurement of carbon monoxide concentration and temperature in a laminar methane-air diffusion flame.

    PubMed

    Houston Miller, J; Elreedy, S; Ahvazi, B; Woldu, F; Hassanzadeh, P

    1993-10-20

    The application of tunable diode lasers for in situ diagnostics in laminar hydrocarbon diffusion flames is demonstrated. By the use of both direct-absorption and wavelength-modulation (second-derivative) techniques, carbon monoxide concentrations and the local flame temperature are determined for a laminar methane-air diffusion flame supported on a Wolfhard-Parker slot burner. In both cases the results are found to be in excellent agreement with prior measurements of these quantities using bothrobe and optical techniques. PMID:20856436

  15. Computational and Experimental Study of Energetic Materials in a Counterflow Microgravity Environment

    NASA Technical Reports Server (NTRS)

    Takahashi, Fumiaki (Technical Monitor); Urban, David (Technical Monitor); Smooke, M. D.; Parr, T. P.; Hanson-Parr, D. M.; Yetter, R. A.; Risha, G.

    2004-01-01

    Counterflow diffusion flames are studied for various fuels flowing against decomposition products from solid ammonium perchlorate (AP) pellets in order to obtain fundamental understanding of composite propellant flame structure and chemistry. We illustrate this approach through a combined experimental and numerical study of a fuel mixture consisting of C2H4 CO + H2, and C2H2 + C2H4 flowing against solid AP. For these particular AP-fuel systems, the resulting flame zone simulates the various flame structures that are ex+ to exist between reaction products from Ap crystals and a hydrocarbon binder. As in all our experimental studies, quantitative species and temperature profiles have been measured between the fuel exit and AP surface. Species measured included CN, NH, NO, OH, N2, CO2, CO, H2, CO, HCl, and H2O. Temperature was measured using a thermocouple at the exit, spontaneous Raman scattering measurements throughout the flame, OH rotational population distributions, and NO vibrational population distributions. The burning rate of AP was also measured as a function of strain rate, given by the separation distance between the AP surface and the gaseous hydrocarbon fuel tube exit plane. This distance was nominally set at 5 mm, although studies have been performed for variations in separation distance. The measured 12 scalars are compared with predictions from a detailed gas-phase kinetics model consisting of 86 species and 531 reactions. Model predictions are found to be in good agreement with experiment and illustrate the type of kinetic features that may be expected to occur in propellants when AP particle size distributions are varied. Furthermore, the results constitute the continued development of a necessary database and validation of a comprehensive model for studying more complex AP-solid fuel systems in microgravity. Exploratory studies have also been performed with liquid and solid fuels at normal gravity. Because of melting (and hence dripping) and deep

  16. Validation and modelling of a novel diffusive sampler for determining concentrations of volatile organic compounds in air.

    PubMed

    Ballesta, Pascual Pérez; Grandesso, Emanuela; Field, Robert A; Cabrerizo, Ana

    2016-02-18

    A novel diffusive sampler that combines radial and axial diffusion has been developed that improves upon existing commercially available designs. The POcket Diffusive (POD) sampler has been validated under laboratory and field conditions for the measurements of VOCs in ambient air. Laboratory tests varied sampling conditions of temperature (-30-40 C), humidity (10-80%), wind velocity (0.1-4 m s(-1)), and concentration (0.5-50 μg m(-3)) for a number of specific VOCs. An overall uncertainty of circa 9% for the measurement of benzene is calculated for the validation tests, in compliance with the data quality objectives of the EU air quality directive 2008/50/EC. A semi-empirical diffusion model has been developed to estimate sampling rates for compounds that were not tested, and for conditions outside of tested ranges during validation. The diffusion model (and validation tests) shows a low influence of environmental conditions on the sampling rate for the POD sampler. Average reproducibility values of circa 3% are reported with overall sampling uncertainties ranging from 9% to 15%, for the whole range of tested conditions, depending on the compound. The adsorbent cartridge is compatible with existing thermal desorption systems in the market. The diffusive sampler can modify the sampling rate by changing the diffusive body within a range of different porosities. Field tests, conducted in parallel with independent quality controlled canister sampling, confirmed the ease of use and quality of VOC measurements with the POD sampler, for compounds that were, and were not, evaluated during laboratory tests. PMID:26826692

  17. Development of a diffuse air-argon plasma source using a dielectric-barrier discharge at atmospheric pressure

    SciTech Connect

    Tang Jie; Jiang Weiman; Zhao Wei; Wang Yishan; Li Shibo; Wang Haojing; Duan Yixiang

    2013-01-21

    A stable diffuse large-volume air plasma source was developed by using argon-induced dielectric-barrier discharges at atmospheric pressure. This plasma source can be operated in a filamentary discharge with the average areal power density of 0.27 W/cm{sup 2} and the gas temperature of 315{+-}3 K. Spatial measurement of emission spectrum and temperature indicates that this plasma is uniform in the central region along the transverse direction. It is also found that the formation of diffuse air plasma mainly lies in the creation of sufficient seed electrons by the Penning effect through collisions between two argon or nitrogen metastables at low electric fields.

  18. Experimental Study of a Nozzle Using Fluidic Counterflow for Thrust Vectoring

    NASA Technical Reports Server (NTRS)

    Flamm, Jeffrey D.

    1998-01-01

    A static experimental investigation of a counterflow thrust vectoring nozzle concept was performed. The study was conducted in the NASA Langley Research Center Jet Exit Test Facility. Internal performance characteristics were defined over a nozzle pressure ratio (jet total to ambient) range of 3.5 to 10.0. The effects of suction collar geometry and suction slot height on nozzle performance were examined. In the counterflow concept, thrust vectoring is achieved by applying a vacuum to a slot adjacent to a primary jet that is shrouded by a suction collar. Two flow phenomena work to vector the primary jet depending upon the test conditions and configuration. In one case, the vacuum source creates a secondary reverse flowing stream near the primary jet. The shear layers between the two counterflowing streams mix and entrain mass from the surrounding fluid. The presence of the collar inhibits mass entrainment and the flow near the collar accelerates, causing a drop in pressure on the collar. The second case works similarly except that the vacuum is not powerful enough to create a counterflowing stream and instead a coflowing stream is present. The primary jet is vectored if suction is applied asymmetrically on the top or bottom of the jet.

  19. Long Penetration Mode Counterflowing Jets for Supersonic Slender Configurations - A Numerical Study

    NASA Technical Reports Server (NTRS)

    Venkatachari, Balaji Shankar; Cheng, Gary; Chang, Chau-Layn; Zichettello, Benjamin; Bilyeu, David L.

    2013-01-01

    A novel approach of using counterflowing jets positioned strategically on the aircraft and exploiting its long penetration mode (LPM) of interaction towards sonic-boom mitigation forms the motivation for this study. Given that most previous studies on the counterflowing LPM jet have all been on blunt bodies and at high supersonic or hypersonic flow conditions, exploring the feasibility to obtain a LPM jet issuing from a slender body against low supersonic freestream conditions is the main focus of this study. Computational fluid dynamics computations of axisymmetric models (cone-cylinder and quartic geometry), of relevance to NASA's High Speed project, are carried out using the space-time conservation element solution element viscous flow solver with unstructured meshes. A systematic parametric study is conducted to determine the optimum combination of counterflowing jet size, mass flow rate, and nozzle geometry for obtaining LPM jets. Details from these computations will be used to assess the potential of the LPM counterflowing supersonic jet as a means of active flow control for enabling supersonic flight over land and to establish the knowledge base for possible future implementation of such technologies.

  20. Effect of traffic rule breaking behavior on pedestrian counterflow in a channel with a partition line

    NASA Astrophysics Data System (ADS)

    Yu, Y. F.; Song, W. G.

    2007-08-01

    In this paper a partition line is used in the counterflow system to present the default (conventional) traffic rule: pedestrians prefer to walk on a certain side on the road during movement, e.g., the right-hand side in China or the left-hand side in Japan. Based on the counterflow model of Takimoto (model A), we introduced two modified models, i.e., model B and C, to study the effects of a partition line in the consideration of people who do not obey the default traffic rule. Model B represents that factor in time scale, while model C in space scale. In model B, there are pedestrians who cross the partition line but choose not to obey the default traffic rule with a probability pnor , while in model C, if a pedestrian crosses the partition line and goes away from it further than a certain nonobeying-rule threshold distance dt , he will not obey the traffic rule. It is found that the behavior of traffic rule breaking influences much the counterflow when it is at the choking flow state rather than at the free moving or stopped state. Furthermore, it is shown that the default traffic rule is not always positive to the counterflow in all situations. It depends on the game result of these two opposite sides: to use the channel width as much as possible and to avoid the interference from the other group as far as possible.

  1. Occupational dimethylformamide exposure. 1. Diffusive sampling of dimethylformamide vapor for determination of time-weighted average concentration in air.

    PubMed

    Yasugi, T; Kawai, T; Mizunuma, K; Horiguchi, S; Iguchi, H; Ikeda, M

    1992-01-01

    A diffusive sampling method with water as absorbent was examined in comparison with 3 conventional methods of diffusive sampling with carbon cloth as absorbent, pumping through National Institute of Occupational Safety and Health (NIOSH) charcoal tubes, and pumping through NIOSH silica gel tubes to measure time-weighted average concentration of dimethylformamide (DMF). DMF vapors of constant concentrations at 3-110 ppm were generated by bubbling air at constant velocities through liquid DMF followed by dilution with fresh air. Both types of diffusive samplers could either absorb or adsorb DMF in proportion to time (0.25-8 h) and concentration (3-58 ppm), except that the DMF adsorbed was below the measurable amount when carbon cloth samplers were exposed at 3 ppm for less than 1 h. When both diffusive samplers were loaded with DMF and kept in fresh air, the DMF in water samplers stayed unchanged for at least for 12 h. The DMF in carbon cloth samplers showed a decay with a half-time of 14.3 h. When the carbon cloth was taken out immediately after termination of DMF exposure, wrapped in aluminum foil, and kept refrigerated, however, there was no measurable decrease in DMF for at least 3 weeks. When the air was drawn at 0.2 l/min, a breakthrough of the silica gel tube took place at about 4,000 ppm.min (as the lower 95% confidence limit), whereas charcoal tubes could tolerate even heavier exposures, suggesting that both tubes are fit to measure the 8-h time-weighted average of DMF at 10 ppm. PMID:1577523

  2. Field-scale tests for determining mixing patterns associated with coarse-bubble air diffuser configurations, Egan Quarry, Illinois

    USGS Publications Warehouse

    Hornewer, N.J.; Johnson, G.P.; Robertson, D.M.; Hondzo, Miki

    1997-01-01

    The U.S. Geological Survey in cooperation with the U.S. Army Corps of Engineers, Chicago District did field-scale tests in August-September 1996 to determine mixing patterns associated with different configurations of coarse-bubble air diffusers. The tests were done in an approximately 13-meter deep quarry near Chicago, Ill. Three-dimensional velocity, water-temperature, dissolved oxygen concentration, and specific-conductivity profiles were collected from locations between approximately 2 to 30 meters from the diffusers for two sets of five test configurations; one set for stratified and one set for destratified conditions in the quarry. The data-collection methods and instrumentation used to characterize mixing patterns and interactions of coarse-bubble diffusers were successful. An extensive data set was collected and is available to calibrate and verify aeration and stratification models, and to characterize basic features of bubble-plume interaction.

  3. Effect of dynamic diffusion of air, nitrogen, and helium gaseous media on the microhardness of ionic crystals with juvenile surfaces

    NASA Astrophysics Data System (ADS)

    Klyavin, O. V.; Fedorov, V. Yu.; Chernov, Yu. M.; Shpeizman, V. V.

    2015-09-01

    The load dependences of the microhardness of surface layers of NaCl and LiF ionic single crystals with juvenile surfaces and surfaces exposed to air for a long time measured in the air, nitrogen, and helium gaseous media have been investigated. It has been found that there is a change in the sign of the derivative of the microhardness as a function of the load for LiF crystals indented in helium and after their aging in air, as well as a weaker effect of the nitrogen and air gaseous media on the studied dependences as compared to NaCl crystals. It has also been found that, after the aging of the surface of NaCl crystals in air, there is a change in the sign of the derivative of the microhardness in the nitrogen and air gaseous media, as well as a pronounced change in the microhardness as a function of the time of aging the samples in air as compared to the weaker effect of the gaseous medium for LiF crystals. The obtained data have been analyzed in terms of the phenomenon of dislocation-dynamic diffusion of particles from the external medium into crystalline materials during their plastic deformation along the nucleating and moving dislocations. It has been shown that this phenomenon affects the microhardness through changes in the intensity of dislocation multiplication upon the formation of indentation rosettes in different gaseous media. The performed investigation of the microhardness of the juvenile surface of NaCl and LiF crystals in different gaseous media has revealed for the first time a different character of dislocation-dynamic diffusion of these media in a "pure" form.

  4. Second-sound studies of coflow and counterflow of superfluid {sup 4}He in channels

    SciTech Connect

    Varga, Emil; Skrbek, L.; Babuin, Simone

    2015-06-15

    We report a comprehensive study of turbulent superfluid {sup 4}He flow through a channel of square cross section. We study for the first time two distinct flow configurations with the same apparatus: coflow (normal and superfluid components move in the same direction), and counterflow (normal and superfluid components move in opposite directions). We realise also a variation of counterflow with the same relative velocity, but where the superfluid component moves while there is no net flow of the normal component through the channel, i.e., pure superflow. We use the second-sound attenuation technique to measure the density of quantised vortex lines in the temperature range 1.2 K ≲ T ≲ T{sub λ} ≈ 2.18 K and for flow velocities from about 1 mm/s up to almost 1 m/s in fully developed turbulence. We find that both the steady-state and temporal decay of the turbulence significantly differ in the three flow configurations, yielding an interesting insight into two-fluid hydrodynamics. In both pure superflow and counterflow, the same scaling of vortex line density with counterflow velocity is observed, L∝V{sub cf}{sup 2}, with a pronounced temperature dependence; in coflow instead, the vortex line density scales with velocity as L ∝ V{sup 3/2} and is temperature independent; we provide theoretical explanations for these observations. Further, we develop a new promising technique to use different second-sound resonant modes to probe the spatial distribution of quantised vortices in the direction perpendicular to the flow. Preliminary measurements indicate that coflow is less homogeneous than counterflow/superflow, with a denser concentration of vortices between the centre of the channel and its walls.

  5. Prediction of Drag Reduction in Supersonic and Hypersonic Flows with Counterflow Jets

    NASA Technical Reports Server (NTRS)

    Daso, Endwell O.; Beaulieu, Warren; Hager, James O.; Turner, James E. (Technical Monitor)

    2002-01-01

    Computational fluid dynamics solutions of the flowfield of a truncated cone-cylinder with and without counterflow jets have been obtained for the short penetration mode (SPM) and long penetration mode (LPM) of the freestream-counterflow jet interaction flowfield. For the case without the counterflow jet, the comparison of the normalized surface pressures showed very good agreement with experimental data. For the case with the SPM jet, the predicted surface pressures did not compare as well with the experimental data upstream of the expansion corner, while aft of the expansion corner, the comparison of the solution and the data is seen to give much better agreement. The difference in the prediction and the data could be due to the transient character of the jet penetration modes, possible effects of the plasma physics that are not accounted for here, or even the less likely effect of flow turbulence, etc. For the LPM jet computations, one-dimensional isentropic relations were used to derived the jet exit conditions in order to obtain the LPM solutions. The solution for the jet exit Mach number of 3 shows a jet penetration several times longer than that of the SPM, and therefore much weaker bow shock, with an attendant reduction in wave drag. The LPM jet is, in essence, seen to be a "pencil" of fluid, with much higher dynamic pressure, embedded in the oncoming supersonic or hypersonic freestream. The methodology for determining the conditions for the LPM jet could enable a practical approach for the design and application of counterflow LPM jets for the reduction of wave drag and heat flux, thus significantly enhancing the aerodynamic characteristics and aerothermal performance of supersonic and hypersonic vehicles. The solutions show that the qualitative flow structure is very well captured. The obtained results, therefore, suggest that counterflowing jets are viable candidate technology concepts that can be employed to give significant reductions in wave drag, heat

  6. Air

    MedlinePlus

    ... do to protect yourself from dirty air . Indoor air pollution and outdoor air pollution Air can be polluted indoors and it can ... this chart to see what things cause indoor air pollution and what things cause outdoor air pollution! Indoor ...

  7. Silver nanoparticle-decorated carbon nanotubes as bifunctional gas-diffusion electrodes for zinc-air batteries

    NASA Astrophysics Data System (ADS)

    Wang, T.; Kaempgen, M.; Nopphawan, P.; Wee, G.; Mhaisalkar, S.; Srinivasan, M.

    Thin, lightweight, and flexible gas-diffusion electrodes (GDEs) based on freestanding entangled networks of single-walled carbon nanotubes (SWNTs) decorated with Ag nanoparticles (AgNPs) are tested as the air-breathing cathode in a zinc-air battery. The SWNT networks provide a highly porous surface for active oxygen absorption and diffusion. The high conductivity of SWNTs coupled with the catalytic activity of AgNPs for oxygen reduction leads to an improvement in the performance of the zinc-air cell. By modulating the pH value and the reaction time, different sizes of AgNPs are decorated uniformly on the SWNTs, as revealed by transmission electron microscopy and powder X-ray diffraction. AgNPs with sizes of 3-5 nm double the capacity and specific energy of a zinc-air battery as compared with bare SWNTs. The simplified, lightweight architecture shows significant advantages over conventional carbon-based GDEs in terms of weight, thickness and conductivity, and hence may be useful for mobile and portable applications.

  8. Diffusion sampler testing at Naval Air Station North Island, San Diego County, California, November 1999 to January 2000

    USGS Publications Warehouse

    Vroblesky, Don A.; Peters, Brian C.

    2000-01-01

    Volatile organic compound concentrations in water from diffusion samplers were compared to concentrations in water obtained by low-flow purging at 15 observation wells at the Naval Air Station North Island, San Diego, California. Multiple diffusion samplers were installed in the wells. In general, comparisons using bladder pumps and diffusion samplers showed similar volatile organic carbon concentrations. In some wells, sharp concentration gradients were observed, such as an increase in cis-1,2-dichloroethene concentration from 100 to 2,600 micrograms per liter over a vertical distance of only 3.4 feet. In areas where such sharp gradients were observed, concentrations in water obtained by low-flow sampling at times reflected an average concentration over the area of influence; however, concentrations obtained by using the diffusion sampler seemed to represent the immediate vicinity of the sampler. When peristaltic pumps were used to collect ground-water samples by low-flow purging, the volatile organic compound concentrations commonly were lower than concentrations obtained by using diffusion samplers. This difference may be due to loss of volatiles by degassing under negative pressures in the sampling lines induced while using the peristaltic pump, mixing in the well screen, or possible short-circuiting of water from an adjacent depth. Diffusion samplers placed in buckets of freephase jet fuel (JP-5) and Stoddard solvent from observation wells did not show evidence of structural integrity loss during the 2 months of equilibration, and volatile organic compounds detected in the free-phase fuel also were detected in the water from the diffusion samplers.

  9. Spray combustion at normal and reduced gravity in counterflow and co-flow configurations

    NASA Technical Reports Server (NTRS)

    Gomez, Alessandro; Chen, Gung

    1995-01-01

    1688) in which the ES was used as a research tool to examine spray combustion in counter-flow and co-flow spray diffusion flames, as summarized below. The ultimate objective of this investigation is to examine the formation and burning of sprays of liquid fuels, at both normal and reduced gravity, first in laminar regimes and then in turbulent ones.

  10. On the air-filled effective porosity parameter of Rogers and Nielson's (1991) bulk radon diffusion coefficient in unsaturated soils.

    PubMed

    Saâdi, Zakaria

    2014-05-01

    The radon exhalation rate at the earth's surface from soil or rock with radium as its source is the main mechanism behind the radon activity concentrations observed in both indoor and outdoor environments. During the last two decades, many subsurface radon transport models have used Rogers and Nielson's formula for modeling the unsaturated soil bulk radon diffusion coefficient. This formula uses an "air-filled effective porosity" to account for radon adsorption and radon dissolution in the groundwater. This formula is reviewed here, and its hypotheses are examined for accuracy in dealing with subsurface radon transport problems. The author shows its limitations by comparing one dimensional steady-state analytical solutions of the two-phase (air/water) transport equation (Fick's law) with Rogers and Nielson's formula. For radon diffusion-dominated transport, the calculated Rogers and Nielson's radon exhalation rate is shown to be unrealistic as it is independent of the values of the radon adsorption and groundwater dissolution coefficients. For convective and diffusive transport, radon exhalation rates calculated using Fick's law and this formula agree only for high values of gas-phase velocity and groundwater saturation. However, these conditions are not usually met in most shallow subsurface environments where radon migration takes place under low gas phase velocities and low water saturation. PMID:24670909

  11. Mice lung disease follow-up with open-air fluorescence diffuse optical tomography

    NASA Astrophysics Data System (ADS)

    Koenig, Anne; Gonon, Georges; Hervé, Lionel; Berger, Michel; Dinten, Jean-Marc; Boutet, Jérôme; Josserand, Véronique; Coll, Jean-Luc; Peltié, Philippe; Rizo, Philippe

    2009-07-01

    A fluorescence diffuse optical tomography instrument including a dedicated reconstruction scheme which accounts for the medium optical heterogeneities is presented. It allows non-contact measurements and does not require animal immersion in an optical adaptation liquid.

  12. COMPARISON OF 24H AVERAGE VOC MONITORING RESULTS FOR RESIDENTIAL INDOOR AND OUTDOOR AIR USING CARBOPACK X-FILLED DIFFUSIVE SAMPLERS AND ACTIVE SAMPLING - A PILOT STUDY

    EPA Science Inventory

    Analytical results obtained by thermal desorption GC/MS for 24h diffusive sampling of 11 volatile organic compounds (VOCs) are compared with results of time-averaged active sampling at a known constant flow rate. Air samples were collected with co-located duplicate diffusive samp...

  13. Analysis and experimental study on formation conditions of large-scale barrier-free diffuse atmospheric pressure air plasmas in repetitive pulse mode

    SciTech Connect

    Li, Lee Liu, Lun; Liu, Yun-Long; Bin, Yu; Ge, Ya-Feng; Lin, Fo-Chang

    2014-01-14

    Atmospheric air diffuse plasmas have enormous application potential in various fields of science and technology. Without dielectric barrier, generating large-scale air diffuse plasmas is always a challenging issue. This paper discusses and analyses the formation mechanism of cold homogenous plasma. It is proposed that generating stable diffuse atmospheric plasmas in open air should meet the three conditions: high transient power with low average power, excitation in low average E-field with locally high E-field region, and multiple overlapping electron avalanches. Accordingly, an experimental configuration of generating large-scale barrier-free diffuse air plasmas is designed. Based on runaway electron theory, a low duty-ratio, high voltage repetitive nanosecond pulse generator is chosen as a discharge excitation source. Using the wire-electrodes with small curvature radius, the gaps with highly non-uniform E-field are structured. Experimental results show that the volume-scaleable, barrier-free, homogeneous air non-thermal plasmas have been obtained between the gap spacing with the copper-wire electrodes. The area of air cold plasmas has been up to hundreds of square centimeters. The proposed formation conditions of large-scale barrier-free diffuse air plasmas are proved to be reasonable and feasible.

  14. Analysis and experimental study on formation conditions of large-scale barrier-free diffuse atmospheric pressure air plasmas in repetitive pulse mode

    NASA Astrophysics Data System (ADS)

    Li, Lee; Liu, Lun; Liu, Yun-Long; Bin, Yu; Ge, Ya-Feng; Lin, Fo-Chang

    2014-01-01

    Atmospheric air diffuse plasmas have enormous application potential in various fields of science and technology. Without dielectric barrier, generating large-scale air diffuse plasmas is always a challenging issue. This paper discusses and analyses the formation mechanism of cold homogenous plasma. It is proposed that generating stable diffuse atmospheric plasmas in open air should meet the three conditions: high transient power with low average power, excitation in low average E-field with locally high E-field region, and multiple overlapping electron avalanches. Accordingly, an experimental configuration of generating large-scale barrier-free diffuse air plasmas is designed. Based on runaway electron theory, a low duty-ratio, high voltage repetitive nanosecond pulse generator is chosen as a discharge excitation source. Using the wire-electrodes with small curvature radius, the gaps with highly non-uniform E-field are structured. Experimental results show that the volume-scaleable, barrier-free, homogeneous air non-thermal plasmas have been obtained between the gap spacing with the copper-wire electrodes. The area of air cold plasmas has been up to hundreds of square centimeters. The proposed formation conditions of large-scale barrier-free diffuse air plasmas are proved to be reasonable and feasible.

  15. Understanding soot particle size evolution in laminar ethylene/air diffusion flames using novel soot coalescence models

    NASA Astrophysics Data System (ADS)

    Veshkini, Armin; Dworkin, Seth B.; Thomson, Murray J.

    2016-07-01

    Two coalescence models based on different merging mechanisms are introduced. The effects of the soot coalescence process on soot particle diameter predictions are studied using a detailed sectional aerosol dynamic model. The models are applied to a laminar ethylene/air diffusion flame, and comparisons are made with experimental data to validate the models. The implementation of coalescence models significantly improves the agreement of prediction of particle diameters with the experimental data. Sensitivity of the soot prediction to the coalescence parameters is analysed. Finally, an update to the coalescence model based on experimental observations of soot particles in the flame oxidation regions has been introduced to improve its predicting capabilities.

  16. Sublimation kinetics and diffusion coefficients of TNT, PETN, and RDX in air by thermogravimetry.

    PubMed

    Hikal, Walid M; Weeks, Brandon L

    2014-07-01

    The diffusion coefficients of explosives are crucial in their trace detection and lifetime estimation. We report on the experimental values of diffusion coefficients of three of the most important explosives in both military and industry: TNT, PETN, and RDX. Thermogravimetric analysis (TGA) was used to determine the sublimation rates of TNT, PETN, and RDX powders in the form of cylindrical billets. The TGA was calibrated using ferrocene as a standard material of well-characterized sublimation rates and vapor pressures to determine the vapor pressures of TNT, PETN, and RDX. The determined sublimation rates and vapor pressures were used to indirectly determine the diffusion coefficients of TNT, PETN, and RDX for the first time. A linear log-log dependence of the diffusion coefficients on temperature is observed for the three materials. The diffusion coefficients of TNT, PETN, and RDX at 273 K were determined to be 5.76×10(-6)m(2)/sec, 4.94×10(-6)m(2)/s, and 5.89×10(-6)m(2)/s, respectively. Values are in excellent agreement with the theoretical values in literature. PMID:24840410

  17. Analysis of Heat Transfers inside Counterflow Plate Heat Exchanger Augmented by an Auxiliary Fluid Flow

    PubMed Central

    Khaled, A.-R. A.

    2014-01-01

    Enhancement of heat transfers in counterflow plate heat exchanger due to presence of an intermediate auxiliary fluid flow is investigated. The intermediate auxiliary channel is supported by transverse conducting pins. The momentum and energy equations for the primary fluids are solved numerically and validated against a derived approximate analytical solution. A parametric study including the effect of the various plate heat exchanger, and auxiliary channel dimensionless parameters is conducted. Different enhancement performance indicators are computed. The various trends of parameters that can better enhance heat transfer rates above those for the conventional plate heat exchanger are identified. Large enhancement factors are obtained under fully developed flow conditions. The maximum enhancement factors can be increased by above 8.0- and 5.0-fold for the step and exponential distributions of the pins, respectively. Finally, counterflow plate heat exchangers with auxiliary fluid flows are recommended over the typical ones if these flows can be provided with the least cost. PMID:24719572

  18. High-pressure soot formation and diffusion flame extinction characteristics of gaseous and liquid fuels

    NASA Astrophysics Data System (ADS)

    Karatas, Ahmet Emre

    High-pressure soot formation and flame stability characteristics were studied experimentally in laminar diffusion flames. For the former, radially resolved soot volume fraction and temperature profiles were measured in axisymmetric co-flow laminar diffusion flames of pre-vaporized n-heptane-air, undiluted ethylene-air, and nitrogen and carbon dioxide diluted ethylene-air at elevated pressures. Abel inversion was used to re-construct radially resolved data from the line-of-sight spectral soot emission measurements. For the latter, flame extinction strain rate was measured in counterflow laminar diffusion flames of C1-4 alcohols and hydrocarbon fuels of n-heptane, n-octane, iso-octane, toluene, Jet-A, and biodiesel. The luminous flame height, as marked by visible soot radiation, of the nitrogen- and helium-diluted n-heptane and nitrogen- and carbon dioxide-diluted ethylene flames stayed constant at all pressures. In pure ethylene flames, flame heights initially increased with pressure, but changed little above 5 atm. The maximum soot yield as a function of pressure in nitrogen-diluted n-heptane diffusion flames indicate that n-heptane flames are slightly more sensitive to pressure than gaseous alkane hydrocarbon flames at least up to 7 atm. Ethylene's maximum soot volume fractions were much higher than those of ethane and n-heptane diluted with nitrogen (fuel to nitrogen mass flow ratio is about 0.5). Pressure dependence of the peak carbon conversion to soot, defined as the percentage of fuel's carbon content converted to soot, was assessed and compared to previous measurements with other gaseous fuels. Maximum soot volume fractions were consistently lower in carbon dioxide-diluted flames between 5 and 15 atm but approached similar values to those in nitrogen-diluted flames at 20 atm. This observation implies that the chemical soot suppression effect of carbon dioxide, previously demonstrated at atmospheric pressure, is also present at elevated pressures up to 15 atm

  19. Membrane characteristics and osmotic fragility of red cells, fractionated with anglehead centrifugation and counterflow centrifugation.

    PubMed

    van der Vegt, S G; Ruben, A M; Werre, J M; de Gier, J; Staal, G E

    1985-11-01

    Red cell populations were separated on the basis of differences in density using anglehead centrifugation and on the basis of differences in mean cell volume using counterflow centrifugation. In the different fractions, mean surface area was calculated, phospholipid and cholesterol content determined as well as the osmotic behaviour in hypotonic salt solutions. Older red cells appeared to be more resistant to hypotonic salt solutions, due to favourable surface area to volume ratio. PMID:4063204

  20. Particle trajectories in thermal counterflow of superfluid helium in a wide channel of square cross section

    NASA Astrophysics Data System (ADS)

    La Mantia, Marco

    2016-02-01

    The motion of micrometer-sized solid hydrogen particles in thermal counterflow of superfluid helium is studied experimentally by using the particle tracking velocimetry technique. The investigated quantum flow occurs in a square channel of 25 mm sides and 100 mm length, appreciably wider than those employed in previous related experiments. Flow velocities up to 10 mm/s are obtained, corresponding to temperatures between about 1.3 K and 2.1 K, and applied heat fluxes between ca. 50 W/m2 and 500 W/m2. The character of the obtained particle trajectories changes significantly as the imposed mean flow velocity increases. At thermal counterflow velocities lower than approximately 1 mm/s, the particle tracks appear straighter than at larger velocities. On the basis of the current understanding of the underlying physics, it is argued that the outcome is most likely due to the transition to the turbulent state of the investigated flow as, for narrower channels, this transition was reported to occur at larger velocities. The present results confirm that, at least in the parameter ranges investigated to date, the transition to turbulence in thermal counterflow depends on the geometry of the channel where this quantum flow develops.

  1. An Experimental/Modeling Study of Jet Attachment during Counterflow Thrust Vectoring

    NASA Technical Reports Server (NTRS)

    Strykowski, Paul J.

    1997-01-01

    Recent studies have shown the applicability of vectoring rectangular jets using asymmetrically applied counterflow in the presence of a short collar. This novel concept has applications in the aerospace industry where counterflow can be used to vector the thrust of a jet's exhaust, shortening take-off and landing distances and enhancing in-flight maneuverability of the aircraft. Counterflow thrust vectoring, 'CFTV' is desirable due to its fast time response, low thrust loss, and absence of moving parts. However, implementation of a CFTV system is only possible if bistable jet attachment can be prevented. This can be achieved by properly designing the geometry of the collar. An analytical model is developed herein to predict the conditions under which a two-dimensional jet will attach to an offset curved wall. Results from this model are then compared with experiment; for various jet exit Mach numbers, collar offset distances, and radii of curvature. Their excellent correlation permits use of the model as a tool for designing a CFTV system.

  2. Investigation of the Gas-Diffusion-Electrode Used as Lithium/Air Cathode in Non-aqueous Electrolyte and the Importance of Carbon Material Porosity

    SciTech Connect

    Qu, D.; Yang, X.; Tran, C.

    2010-04-02

    The gas-diffusion-electrode used in a Li-air cell has been studied in a unique homemade electrochemical cell. Three major obstacles for the development of a feasible Li-air system were discussed with a focus on the development of a functional gas-diffusion-electrode in non-aqueous electrolytes and the way of avoiding the passivation of gas-diffusion-electrodes caused by the deposition of the reduction products. It is the first time that the importance of establishing the 3-phase electrochemical interface in non-aqueous electrolyte is demonstrated by creating air-diffusion paths and an air saturated portion for an air cathode. A model mechanism of electrode passivation by the reaction products was also proposed. Lithium oxides formed during O{sub 2} reduction tend to block small pores, preventing them from further utilization in the electrochemical reaction. On the other hand, lithium oxides would accumulate inside the large pores during the reduction until the density of oxides becomes high enough to choke-off the mass transfer. Carbon materials with a high surface area associated with larger pores should be selected to make the gas-diffusion-electrode for Li-air battery. For the first time, a near linear relationship between the capacity of GDE in a non-aqueous electrolyte and the average pore diameter was demonstrated, which could be used to estimate the capacity of the GDE quantitatively.

  3. Numerical study on the influence of hydrogen addition on soot formation in a laminar ethylene-air diffusion flame

    SciTech Connect

    Guo, Hongsheng; Liu, Fengshan; Smallwood, Gregory J.; Guelder, OEmer L.

    2006-04-15

    The influence of hydrogen addition to the fuel of an atmosphere pressure coflow laminar ethylene-air diffusion flame on soot formation was studied by numerical simulation. A detailed gas-phase reaction mechanism, which includes aromatic chemistry up to four rings, and complex thermal and transport properties were used. The fully coupled elliptic governing equations were solved. The interactions between soot and gas-phase chemistry were taken into account. Radiation heat transfer from CO{sub 2}, CO, H{sub 2}O, and soot was calculated using the discrete-ordinates method coupled to a statistical narrow-band-correlated K-based wide-band model. The predicted results were compared with the available experimental data and analyzed. It is indicated that the addition of hydrogen to the fuel in an ethylene-air diffusion flame suppresses soot formation through the effects of dilution and chemistry. This result is in agreement with available experiments. The simulations further suggest that the chemically inhibiting effect of hydrogen addition on soot formation is due to the decrease of hydrogen atom concentration in soot surface growth regions and higher concentration of molecular hydrogen in the lower flame region. (author)

  4. Experimental Study on Branch and Diffuse Type of Streamers in Leader Restrike of Long Air Gap Discharge

    NASA Astrophysics Data System (ADS)

    Chen, She; Zeng, Rong; Zhuang, Chijie; Zhou, Xuan; Ding, Yujian

    2016-03-01

    One of the main problems in the Ultra High Voltage (UHV) transmission project is to choose the external insulation distance, which requires a deep understanding of the long air gap discharge mechanism. The leader-streamer propagation is one of most important stages in long air gap discharge. In the conductor-tower lattice configuration, we have measured the voltage, the current on the high voltage side and the electric field in the gap. While the streamer in the leader-streamer system presented a conical or hyperboloid diffuse shape, the clear branch structure streamer in front of the leader was firstly observed by a high speed camera in the experiment. Besides, it is found that the leader velocity, width and injected charge for the branch type streamer are greater than those of a diffuse type. We propose that the phenomenon results from the high humidity, which was 15.5-16.5 g/m3 in our experiment. supported by the Fund of the National Priority Basic Research of China (2011CB209403) and National Natural Science Foundation of China (Nos. 51325703, 51377094, 51577098)

  5. On the effect of carbon monoxide addition on soot formation in a laminar ethylene/air coflow diffusion flame

    SciTech Connect

    Guo, Hongsheng; Thomson, Kevin A.; Smallwood, Gregory J.

    2009-06-15

    The effect of carbon monoxide addition on soot formation in an ethylene/air diffusion flame is investigated by experiment and detailed numerical simulation. The paper focuses on the chemical effect of carbon monoxide addition by comparing the results of carbon monoxide and nitrogen diluted flames. Both experiment and simulation show that although overall the addition of carbon monoxide monotonically reduces the formation of soot, the chemical effect promotes the formation of soot in an ethylene/air diffusion flame. The further analysis of the details of the numerical result suggests that the chemical effect of carbon monoxide addition may be caused by the modifications to the flame temperature, soot surface growth and oxidation reactions. Flame temperature increases relative to a nitrogen diluted flame, which results in a higher surface growth rate, when carbon monoxide is added. Furthermore, the addition of carbon monoxide increases the concentration of H radical owing to the intensified forward rate of the reaction CO + OH = CO{sub 2} + H and therefore increases the surface growth reaction rates. The addition of carbon monoxide also slows the oxidation rate of soot because the same reaction CO + OH = CO{sub 2} + H results in a lower concentration of OH. (author)

  6. Contribution of emission control and atmospheric diffusion ability to the improved air quality in 2015 of China

    NASA Astrophysics Data System (ADS)

    Wang, X.; Wang, K.

    2015-12-01

    China experiences extremely severe and frequent PM2.5 (fine particulate matters with diameters less than 2.5 µm) pollution in recent years, arousing unprecedented public concern. Tough targets have been set for three particularly smog-ridden regions: JingJinJi area, the Yangtze River Delta and Pearl River Delta, requiring these regions to reduce their atmospheric levels of PM2.5 by 25%, 20% and 15% respectively by the year 2017. A lot of mitigation actions have been taken to improve the air quality in China. In January 2013, China began to deploy instruments to measure PM2.5 nationally and released hourly observational data to the public. Observed PM2.5 concentrations showed a significant decrease in 2015 comparing to that of 2014 as shown in Fig.1. Many studies have attributed this kind of air quality improvement to the effect of emission control. However, air quality not only depends on the original emission, the atmospheric abilities of contaminant transfer, spread and wet deposition play a big role in reducing the ambient air pollutants and directly determined by the occurrence of pollution episodes. Here we used the first 2 years PM2.5 observation data in China to quantify the contribution of the effect of emission control and atmospheric ability of diffusing on reducing ambient PM2.5 concentrations. We found that PM2.5 decreased by 24% in 2015 winter (Dec. 2014-Feb. 2015) comparing to that in 2014; and 12% of decrease occurred for the spring time. The inconsistent seasonal improvement of air quality is mainly due to the favorable atmospheric background in 2015, with its frequent precipitation, infrequency of surface calm wind during the wintertime.

  7. Influence of cathode opening size and wetting properties of diffusion layers on the performance of air-breathing PEMFCs

    NASA Astrophysics Data System (ADS)

    Schmitz, A.; Tranitz, M.; Eccarius, S.; Weil, A.; Hebling, C.

    Air-breathing PEMFCs consist of an open cathodic side to allow an entirely passive supply of oxygen by diffusion. Furthermore, a large fraction of the produced water is removed by evaporation from the open cathode. Gas diffusion layers (GDLs) and the opening size of the cathode have a crucial influence on the performance of an air-breathing PEMFC. In order to assure an unobstructed supply of oxygen the water has to be removed efficiently and condensation in the GDL has to be avoided. On the other hand good humidification of the membrane has to be achieved to obtain high protonic conductivity. In this paper the influence of varying cathodic opening sizes (33%, 50% and 80% opening ratios) and of GDLs with different wetting properties are analysed. GDLs with hydrophobic and hydrophilic properties are prepared by coating of untreated GDLs (Toray ® carbon paper TGP-H-120, thickness of 350 μm). The air-breathing PEMFC test samples are realised using printed circuit board (PCB) technology. The cell samples were characterised over the entire potential range (0-0.95 V) by extensive measurements of the current density, the temperature and the cell impedance at 1 kHz. Additionally, measurements of the water balance were carried out at distinct operation points. The best cell performance was achieved with the largest opening ratio (80%) and an untreated GDL. At the maximum power point, this cell sample achieved a power density of 100 mW cm -2 at a moderate cell temperature of 43 °C. Furthermore, it could be shown that GDLs with hydrophilic or intense hydrophobic properties do not improve the performance of an air-breathing PEMFC. Based on the extensive characterisations, two design rules for air-breathing PEMFCs could be formulated. Firstly, it is crucial to maximise the cathode opening as far as an appropriate compression pressure of the cell assembly and therewith low contact resistance can be assured. Secondly, it is advantageous to use an untreated, slightly hydrophobic

  8. Gold Nanorods Based Air Scanning Electron Microscopy and Diffusion Reflection Imaging for Mapping Tumor Margins in Squamous Cell Carcinoma.

    PubMed

    Ankri, Rinat; Ashkenazy, Ariel; Milstein, Yonat; Brami, Yaniv; Olshinka, Asaf; Goldenberg-Cohen, Nitza; Popovtzer, Aron; Fixler, Dror; Hirshberg, Abraham

    2016-02-23

    A critical challenge arising during a surgical procedure for tumor removal is the determination of tumor margins. Gold nanorods (GNRs) conjugated to epidermal growth factor receptors (EGFR) (GNRs-EGFR) have long been used in the detection of cancerous cells as the expression of EGFR dramatically increases once the tissue becomes cancerous. Optical techniques for the identification of these GNRs-EGFR in tumor are intensively developed based on the unique scattering and absorption properties of the GNRs. In this study, we investigate the distribution of the GNRs in tissue sections presenting squamous cell carcinoma (SCC) to evaluate the SCC margins. Air scanning electron microscopy (airSEM), a novel, high resolution microscopy is used, enabling to localize and actually visualize nanoparticles on the tissue. The airSEM pictures presented a gradient of GNRs from the tumor to normal epithelium, spread in an area of 1 mm, suggesting tumor margins of 1 mm. Diffusion reflection (DR) measurements, performed in a resolution of 1 mm, of human oral SCC have shown a clear difference between the DR profiles of the healthy epithelium and the tumor itself. PMID:26759920

  9. Optimization of heat and mass transfers in counterflow corrugated-plate liquid-gas exchangers used in a greenhouse dehumidifier

    NASA Astrophysics Data System (ADS)

    Bentounes, N.; Jaffrin, A.

    1998-09-01

    Heat and mass transfers occuring in a counterflow direct contact liquid-gas exchanger determine the performance of a new greenhouse air dehumidifier designed at INRA. This prototype uses triethylene glycol (TEG) as the desiccant fluid which extracts water vapor from the air. The regeneration of the TEG desiccant fluid is then performed by direct contact with combustion gas from a high efficiency boiler equipped with a condensor. The heat and mass transfers between the thin film of diluted TEG and the hot gas were simulated by a model which uses correlation formula from the literature specifically relevant to the present cross-corrugated plates geometry. A simple set of analytical solutions is first derived, which explains why some possible processes can clearly be far from optimal. Then, more exact numerical calculations confirm that some undesirable water recondensations on the upper part of the exchanger were limiting the performance of this prototype. More suitable conditions were defined for the process, which lead to a new design of the apparatus. In this second prototype, a gas-gas exchanger provides dryer and cooler gas to the basis of the regenerators, while a warmer TEG is fed on the top. A whole range of operating conditions was experimented and measured parameters were compared with numerical simulations of this new configuration: recondensation did not occur any more. As a consequence, this second prototype was able to concentrate the desiccant fluid at the desired rate of 20 kg H_{2O}/hour, under temperature and humidity conditions which correspond to the dehumidification of a 1000 m2 greenhouse heated at night during the winter season.

  10. Sensitivity of Urban Airshed Model (UAM-IV) calculated air pollutant concentrations to the vertical diffusion parameterization during convective meteorological situations

    SciTech Connect

    Nowacki, P.; Samson, P.J.; Sillman, S.

    1996-10-01

    It is shown that Urban Airshed Model (UAM-IV) calculated air pollutant concentrations during photochemical smog episodes in Atlanta, Georgia, depend strongly on the numerical parameterization of the daytime vertical diffusivity. Results found suggest that vertical mixing is overestimated by the UAM-IV during unstable daytime conditions, as calculated vertical diffusivity values exceed measured and comparable literature values. Although deviations between measured and UAM-IV calculated air pollutant concentrations may only in part be due the UAM-IV diffusivity parameterization, results indicate the large error potential in vertical diffusivity parameterization. Easily implemented enhancements to UAM-IV algorithms are proposed, thus improving UAM-IV modeling performance during unstable stratification. 38 refs., 14 figs., 1 tab.

  11. From pores to eddies - linking diffusion-based evaporative fluxes from porous surfaces with a turbulent air boundary layer

    NASA Astrophysics Data System (ADS)

    Haghighi, E.; Or, D.

    2012-04-01

    Evaporation affects hydration and energy balance of terrestrial surfaces. Evaporation rates exhibit complex dynamics reflecting interactions between external conditions and internal transport properties of a the drying porous surface Motivated by recent progress in estimating evaporative fluxes from isolated pores across laminar air sublayer, we seek to expand the description and quantify evaporation across a turbulent boundary layer. We adopt concepts from surface renewal (SR) theory focusing on turbulent exchange with individual eddies and linking eddies surface footprint and their local boundary layer over patches of a drying surface. The model resolves diffusive exchange during limited residence time and integrates fluxes over the entire surface to quantify mean evaporative fluxes from drying surfaces into turbulent airflows accounting for subsurface internal transport processes and diffusive exchanges. Input parameters and model evaluation would be based on data from spatially and temporally resolved Infrared (IR) thermography of drying surfaces under prescribe turbulent regimes conducted in a wind-tunnel experiment. The study provides basic ingredients and building blocks essential for upscaling the results to estimation of evaporative fluxes at the field and landscape scales. Keywords: Evaporation; Turbulent Coupling; Surface Renewal; Infrared Imaging.

  12. Experimental method development for estimating solid-phase diffusion coefficients and material/air partition coefficients of SVOCs

    NASA Astrophysics Data System (ADS)

    Liu, Xiaoyu; Guo, Zhishi; Roache, Nancy F.

    2014-06-01

    The solid-phase diffusion coefficient (Dm) and material/air partition coefficient (Kma) are key parameters for characterizing the sources and transport of semivolatile organic compounds (SVOCs) in the indoor environment. In this work, a new experimental method was developed to estimate parameters Dm and Kma. The SVOCs chosen for study were polychlorinated biphenyl (PCB) congeners, including PCB-52, PCB-66, PCB-101, PCB-110, and PCB-118. The test materials included polypropylene, high density polyethylene, low density polyethylene, polytetrafluoroethylene, polyether ether ketone, glass, stainless steel and concrete. Two 53-L environmental chambers were connected in series, with the relatively stable SVOCs source in the source chamber and the test materials, made as small “buttons”, in the test chamber. Prior to loading the test chamber with the test materials, the test chamber had been dosed with SVOCs for 12 days to “coat” the chamber walls. During the tests, the material buttons were removed from the test chamber at different exposure times to determine the amount of SVOC absorbed by the buttons. SVOC concentrations at the inlet and outlet of the test chamber were also monitored. The data were used to estimate the partition and diffusion coefficients by fitting a sink model to the experimental data. The parameters obtained were employed to predict the accumulation of SVOCs in the sink materials using an existing mass transfer model. The model prediction agreed reasonably well with the experimental data.

  13. Liquid-phase thermal diffusion isotope separation apparatus and method having tapered column

    DOEpatents

    Rutherford, William M.

    1988-05-24

    A thermal diffusion counterflow method and apparatus for separating isotopes in solution in which the solution is confined in a long, narrow, vertical slit which tapers from bottom to top. The variation in the width of the slit permits maintenance of a stable concentration distribution with relatively long columns, thus permitting isotopic separation superior to that obtainable in the prior art.

  14. Liquid-phase thermal diffusion isotope separation apparatus and method having tapered column

    DOEpatents

    Rutherford, W.M.

    1985-12-04

    A thermal diffusion counterflow method and apparatus for separating isotopes in solution in which the solution is confined in a long, narrow, vertical slit which tapers from bottom to top. The variation in the width of the slit permits maintenance of a stable concentration distribution with relatively long columns, thus permitting isotopic separation superior to that obtained in the prior art.

  15. Liquid helium-II counterflow in a tube packed with angular particles and application as a superfluid pump

    NASA Astrophysics Data System (ADS)

    Guenin, B. M.; Hess, G. B.

    1980-09-01

    Observations are reported on the operation of a recirculating superfluid 4He pump capable of driving a stable superfluid flow from subcritical continuously through a wide range of chemical potential head, ranging from very small to moderately large. The pump consists of a superfluid path shunting a thermal counterflow tube. The latter is packed with coarse angular particles, which generate quantized vorticity at a low and reproducible superfluid velocity in the tube, and so improve control of the superfluid flux in the shunt. We have made a limited study of the tube characteristic for conditions other than pure counterflow as a basis for analyzing the pump operation. Applied to a study of the onset of dissipation in an external sample, this pump has proved convinient and free of long relaxation times. Some precautions must be taken in matching the counterflow tube to the sample, to avoid regions of possible instability.

  16. Dual tube, counter-flow heat exchange for turkey barns. First quarterly report

    SciTech Connect

    Not Available

    1982-12-01

    A prototype of the dual tube, counter-flow heat exchanger for turkey barns is presently built and installed in a turkey barn at Molly Creek Turkey Farm, Swanville, Minnesota. Phase 1 of the project selecting cooperator barn, and taking survey information, is now complete. Drawing existing barn for the design, is now complete; building test model is now complete; and building of prorotype is almost completed. The prototype is now ready for final items, testing and monitoring equipment installed, and to actually run under working conditions.

  17. The Dynamics of Shock Dispersion and Interactions in Supersonic Freestreams with Counterflowing Jets

    NASA Technical Reports Server (NTRS)

    Daso, Endwell O.; Pritchett, Victor E.; Wang, Ten-See; Ota, Dale K.; Blankson, Isaiah M.; Auslender, Aaron H.

    2007-01-01

    An active flow control concept using counterflowing jets to significantly modify the external flowfields and strongly weaken or disperse the shock-waves of supersonic and hypersonic vehicles to reduce the aerothermal loads and wave drag was investigated. Experiments were conducted in a trisonic blow-down wind-tunnel, complemented by pre-test computational fluid dynamics (CFD) analysis of a 2.6% scale model of Apollo capsule, with and without counterflowing jets, in Mach 3.48 and 4.0 freestreams, to assess the potential aerothermal and aerodynamic benefits of this concept. The model was instrumented with heat flux gauges, thermocouples and pressure taps, and employed five counterflowing jet nozzles (three sonic and other two supersonic with design Mach numbers of 2.44 and 2.94) and nozzle exit diameters ranging from 0.25 to 0.5 inch. Schlieren data show that at low jet flow rates of 0.05 and 0.1lb(sub m)/sec, the interactions result in a long penetration mode (LPM) jet, while the short penetration mode (SPM) jet is observed at flow rates greater than 0.1 lb(sub m)/sec., consistent with the pre-test CFD predictions. For the LPM, the jet appears to be nearly fully-expanded, resulting in a very unsteady and oscillatory flow structure in which the bow shock becomes highly dispersed such that it is no longer discernable. Higher speed camera Schlieren data reveal the shock to be dispersed into striations of compression waves, which suddenly coalesce to a weaker bow shock with a larger standoff distance as the flow rate reached a critical value. The pronounced shock dispersion could significantly impact the aerodynamic performance (L/D) and heat flux reduction of spacecraft in atmospheric entry and re-entry, and could also attenuate the entropy layer in hypersonic blunt body flows. For heat transfer, the results show significant reduction in heat flux, even giving negative heat flux for some of the SPM interactions, indicating that the flow wetting the model is cooling

  18. A simple counter-flow cooling system for a supersonic free-jet beam source assembly.

    PubMed

    Barr, M; Fahy, A; Martens, J; Dastoor, P C

    2016-05-01

    A simple design for an inexpensive, cooled, free-jet beam source is described. The source assembly features an integrated cooling system as supplied by a counter-flow of chilled nitrogen, and is composed primarily of off-the-shelf tube fittings. The design facilitates rapid implementation and eases subsequent alignment with respect to any downstream beamline aperture. The source assembly outlined cools the full length of the stagnation volume, offering temperature control down to 100 K and long-term temperature stability better than ±1 K. PMID:27250408

  19. A simple counter-flow cooling system for a supersonic free-jet beam source assembly

    NASA Astrophysics Data System (ADS)

    Barr, M.; Fahy, A.; Martens, J.; Dastoor, P. C.

    2016-05-01

    A simple design for an inexpensive, cooled, free-jet beam source is described. The source assembly features an integrated cooling system as supplied by a counter-flow of chilled nitrogen, and is composed primarily of off-the-shelf tube fittings. The design facilitates rapid implementation and eases subsequent alignment with respect to any downstream beamline aperture. The source assembly outlined cools the full length of the stagnation volume, offering temperature control down to 100 K and long-term temperature stability better than ±1 K.

  20. Extinction and Autoignition of n-Heptane in Counterflow Configuration

    SciTech Connect

    Seiser, R.; Pitsch, H.; Seshadri, K.; Pitz, W.J.; Curran, H.J.

    2000-01-12

    A study is performed to elucidate the mechanisms of extinction and autoignition of n-heptane in strained laminar flows under nonpremixed conditions. A previously developed detailed mechanism made UP of 2540 reversible elementary reactions among 557 species is the starting point for the study. The detailed mechanism was previously used to calculate ignition delay times in homogeneous reactors, and concentration histories of a number of species in plug-flow and jet-stirred reactors. An intermediate mechanism made up of 1282 reversible elementary reactions among 282 species and a short mechanism made up of 770 reversible elementary reactions among 160 species are assembled from this detailed mechanism. Ignition delay times in an isochoric homogeneous reactor calculated using the intermediate and the short mechanism are found to agree well with those calculated using the detailed mechanism. The intermediate and the short mechanism are used to calculate extinction and autoignition of n-heptane in strained laminar flows. Steady laminar flow of two counter flowing Streams toward a stagnation plane is considered. One stream made up of prevaporized n-heptane and nitrogen is injected from the fuel boundary and the other stream made up of air and nitrogen is injected from the oxidizer boundary. Critical conditions of extinction and autoignition given by the strain rate, temperature and concentrations of the reactants at the boundaries, are calculated. The results are found to agree well with experiments. Sensitivity analysis is carried out to evaluate the influence of various elementary reactions on autoignition. At all values of the strain rate investigated here, high temperature chemical processes are found to control autoignition. In general, the influence of low temperature chemistry is found to increase with decreasing strain. A key finding of the present study is that strain has more influence on low temperature chemistry than the temperature of the reactants.

  1. Application of a Reynolds Stress turbulence model to a supersonic hydrogen-air diffusion flame

    NASA Technical Reports Server (NTRS)

    Chandrasekhar, R.; Tiwari, S. N.

    1991-01-01

    A second-order differential Reynolds Stress turbulence model has been applied to the Favre-averaged Navier-Stokes equations for the study of supersonic flows undergoing hydrogen-air chemical reactions. An assumed Beta Probability Density Function is applied to account for the chemical source terms in the conservation equations. An algebraic Reynolds Flux model is used for the fluctuating density-velocity as well as the species mass fraction-velocity correlations. The variances of temperature and species fluctuations are also modelled using an algebraic flux technique. A seven-species, seven-reaction finite rate chemistry mechanism is used to simulate the combustion processes. The resulting formulation is validated by comparison with experimental data on reacting supersonic axisymmetric jets. Results obtained for specific conditions indicate that the effect of chemical reaction on the turbulence is significant.

  2. Spherical Ethylene/Air Diffusion Flames Subject to Concentric DC Electric Field in Microgravity

    NASA Technical Reports Server (NTRS)

    Yuan, Z. -G.; Hegde, U.; Faeth, G. M.

    2001-01-01

    It is well known that microgravity conditions, by eliminating buoyant flow, enable many combustion phenomena to be observed that are not possible to observe at normal gravity. One example is the spherical diffusion flame surrounding a porous spherical burner. The present paper demonstrates that by superimposing a spherical electrical field on such a flame, the flame remains spherical so that we can study the interaction between the electric field and flame in a one-dimensional fashion. Flames are susceptible to electric fields that are much weaker than the breakdown field of the flame gases owing to the presence of ions generated in the high temperature flame reaction zone. These ions and the electric current of the moving ions, in turn, significantly change the distribution of the electric field. Thus, to understand the interplay between the electric field and the flame is challenging. Numerous experimental studies of the effect of electric fields on flames have been reported. Unfortunately, they were all involved in complex geometries of both the flow field and the electric field, which hinders detailed study of the phenomena. In a one-dimensional domain, however, the electric field, the flow field, the thermal field and the chemical species field are all co-linear. Thus the problem is greatly simplified and becomes more tractable.

  3. Analysis of turbulent free-jet hydrogen-air diffusion flames with finite chemical reaction rates

    NASA Technical Reports Server (NTRS)

    Sislian, J. P.; Glass, I. I.; Evans, J. S.

    1979-01-01

    A numerical analysis is presented of the nonequilibrium flow field resulting from the turbulent mixing and combustion of an axisymmetric hydrogen jet in a supersonic parallel ambient air stream. The effective turbulent transport properties are determined by means of a two-equation model of turbulence. The finite-rate chemistry model considers eight elementary reactions among six chemical species: H, O, H2O, OH, O2 and H2. The governing set of nonlinear partial differential equations was solved by using an implicit finite-difference procedure. Radial distributions were obtained at two downstream locations for some important variables affecting the flow development, such as the turbulent kinetic energy and its dissipation rate. The results show that these variables attain their peak values on the axis of symmetry. The computed distribution of velocity, temperature, and mass fractions of the chemical species gives a complete description of the flow field. The numerical predictions were compared with two sets of experimental data. Good qualitative agreement was obtained.

  4. Analysis of turbulent free jet hydrogen-air diffusion flames with finite chemical reaction rates

    NASA Technical Reports Server (NTRS)

    Sislian, J. P.

    1978-01-01

    The nonequilibrium flow field resulting from the turbulent mixing and combustion of a supersonic axisymmetric hydrogen jet in a supersonic parallel coflowing air stream is analyzed. Effective turbulent transport properties are determined using the (K-epsilon) model. The finite-rate chemistry model considers eight reactions between six chemical species, H, O, H2O, OH, O2, and H2. The governing set of nonlinear partial differential equations is solved by an implicit finite-difference procedure. Radial distributions are obtained at two downstream locations of variables such as turbulent kinetic energy, turbulent dissipation rate, turbulent scale length, and viscosity. The results show that these variables attain peak values at the axis of symmetry. Computed distributions of velocity, temperature, and mass fraction are also given. A direct analytical approach to account for the effect of species concentration fluctuations on the mean production rate of species (the phenomenon of unmixedness) is also presented. However, the use of the method does not seem justified in view of the excessive computer time required to solve the resulting system of equations.

  5. DIFFUSIVE EXCHANGE OF GASEOUS POLYCYCLIC AROMATIC HYDROCARBONS AND POLYCHLORINATED BIPHENYLS ACROSS THE AIR-WATER INTERFACE OF THE CHESAPEAKE BAY. (R825245)

    EPA Science Inventory

    Dissolved and gas-phase concentrations of nine polycyclic aromatic hydrocarbons and 46 polychlorinated biphenyl congeners were measured at eight sites on the Chesapeake Bay at four different times of the year to estimate net diffusive air-water gas exchange rates. Gaseous PAHs ar...

  6. Numerical Investigation of the Interaction of Counterflowing Jets and Supersonic Capsule Flows

    NASA Technical Reports Server (NTRS)

    Venkatachari, Balaji Shankar; Ito, Yasushi; Cheng, Gary; Chang, Chau-Lyan

    2011-01-01

    Use of counterflowing jets ejected into supersonic freestreams as a flow control concept to modify the external flowfield has gained renewed interest with regards to potential retropropulsion applications pertinent to entry, descent, and landing investigations. This study describes numerical computations of such a concept for a scaled wind-tunnel capsule model by employing the space-time conservation element solution element viscous flow solver with unstructured meshes. Both steady-state and time-accurate computations are performed for several configurations with different counterflowing jet Mach numbers. Axisymmetric computations exploring the effect of the jet flow rate and jet Mach number on the flow stability, jet interaction with the bow shock and its subsequent impact on the aerodynamic and aerothermal loads on the capsule body are carried out. Similar to previous experimental findings, both long and short penetration modes exist at a windtunnel Mach number of 3.48. It was found that both modes exhibit non-stationary behavior and the former is much more unstable than the latter. It was also found that the unstable long penetration mode only exists in a relatively small range of the jet mass flow rate. Solution-based mesh refinement procedures are used to improve solution accuracy and provide guidelines for a more effective mesh generation procedure for parametric studies. Details of the computed flowfields also serve as a means to broaden the knowledge base for future retropropulsion design studies.

  7. Highly sensitive analysis of catecholamines by counter-flow electrokinetic supercharging in the constant voltage mode.

    PubMed

    Kwon, Joon Yub; Chang, Seo Bong; Jang, Yong Oh; Dawod, Mohamed; Chung, Doo Soo

    2013-06-01

    Electrokinetic supercharging is one of the most powerful sample-stacking methods that combines field amplified sample injection and transient ITP. In counter-flow electrokinetic supercharging, a constant counter pressure is applied during sample injection in order to counterbalance the movement of the injected sample zone. As a result, there will be a pronounced increase in the amount of sample injected and the portion of the capillary available for electrophoresis. In this report, counter-flow electrokinetic supercharging optimization factors such as the electric field application in the constant voltage and constant current modes, the magnitude of counter pressure, and the terminating electrolyte concentrations were investigated. The enrichments obtained with a 30 min injection of 10 nM catecholamines in 5 mM terminating electrolyte solution in the constant voltage mode applying a counter pressure of 1.3 psi were 41,000-fold for dopamine, 50,000-fold for norepinephrine, and 32,000-fold for epinephrine, yielding detection limits of 1.3, 1.4, and 1.2 nM, respectively, with absorbance detection at 200 nm. PMID:23568890

  8. Comparison of experimental and numerical studies of the performance characteristics of a pumped counterflow virtual impactor

    SciTech Connect

    Kulkarni, Gourihar R.; Pekour, Mikhail S.; Afchine, Armin; Murphy, Daniel M.; Cziczo, Daniel J.

    2011-01-03

    Experiments and Computational Fluid Dynamic (CFD) simulations were performed to evaluate the performance characteristics of a Pumped Counterflow Virtual Impactor (PCVI). Tests were conducted for various flow configurations for which the diameter at which 50% of the particles were transmitted was determined. Experimentally determined 50% cutpoints varied from 2.2 to 4.8 micrometers and CFD predicted diameters agreed within ± 0.4 microns. Both experimental and CFD results showed similar transmission efficiency (TE) curves. CFD TE was always greater than experimental results, most likely due to impaction losses in fittings not included in the simulations. Ideal transmission, corresponding to 100% TE, was never realized in either case due to impaction losses and small scale flow features such as eddies. Areas where CFD simulations showed such flow recirculation zones were also found to be the locations where particulate residue was deposited during experiments. CFD parametric tests showed that PCVI performance can be affected by the nozzle geometry and misalignment between the nozzle and collector orifice. We conclude that CFD can be used with confidence for counterflow virtual impactor (CVI) design. Modifications to improve the performance characteristics of the PCVI are suggested.

  9. Compact counter-flow cooling system with subcooled gravity-fed circulating liquid nitrogen

    NASA Astrophysics Data System (ADS)

    Ivanov, Yu.; Radovinsky, A.; Zhukovsky, A.; Sasaki, A.; Watanabe, H.; Kawahara, T.; Hamabe, M.; Yamaguchi, S.

    2010-11-01

    A liquid nitrogen (LN2) is usually used to keep the high-temperature superconducting (HTS) cable low temperature. A pump is utilized to circulate LN2 inside the cryopipes. In order to minimize heat leakage, a thermal siphon circulation scheme can be realized instead. Here, we discuss the effectiveness of thermal siphon with counter-flow circulation loop composed of cryogen flow channel and inner cable channel. The main feature of the system is the existence of essential parasitic heat exchange between upwards and downwards flows. Feasibility of the proposed scheme for cable up to 500 m in length has been investigated numerically. Calculated profiles of temperature and pressure show small differences of T and p in the inner and the outer flows at the same elevation, which allows not worrying about mechanical stability of the cable. In the case under consideration the thermal insulating properties of a conventional electrical insulating material (polypropylene laminated paper, PPLP) appear to be sufficient. Two interesting effects were disclosed due to analysis of subcooling of LN2. In case of highly inclined siphon subcooling causes significant increase of temperature maximum that can breakup of superconductivity. In case of slightly inclined siphon high heat flux from outer flow to inner flow causes condensation of nitrogen gas in outer channel. It leads to circulation loss. Results of numerical analyses indicate that counter-flow thermosiphon cooling system is a promising way to increase performance of short-length power transmission (PT) lines, but conventional subcooling technique should be applied carefully.

  10. Financial price dynamics and pedestrian counterflows: A comparison of statistical stylized facts

    NASA Astrophysics Data System (ADS)

    Parisi, Daniel R.; Sornette, Didier; Helbing, Dirk

    2013-01-01

    We propose and document the evidence for an analogy between the dynamics of granular counterflows in the presence of bottlenecks or restrictions and financial price formation processes. Using extensive simulations, we find that the counterflows of simulated pedestrians through a door display eight stylized facts observed in financial markets when the density around the door is compared with the logarithm of the price. Finding so many stylized facts is very rare indeed among all agent-based models of financial markets. The stylized properties are present when the agents in the pedestrian model are assumed to display a zero-intelligent behavior. If agents are given decision-making capacity and adapt to partially follow the majority, periods of herding behavior may additionally occur. This generates the very slow decay of the autocorrelation of absolute return due to an intermittent dynamics. Our findings suggest that the stylized facts in the fluctuations of the financial prices result from a competition of two groups with opposite interests in the presence of a constraint funneling the flow of transactions to a narrow band of prices with limited liquidity.

  11. Influence of HX size and augmentation on performance potential of mixtures in air-to-air heat pumps

    SciTech Connect

    Rice, C.K.

    1993-05-01

    A modified Carnot analysis with finite heat exchanger (HX) sizes, counterflow HX configurations, and ideal glide matching was conducted for an air-to-air heat pump application. The purpose of the analysis was to determine the envelope of potential HX size and refrigerant-side augmentation benefits for ideal mixtures relative to pure refrigerant alternatives. The mixture COP benefits examined are those due to exact external fluid glide-matching of idealized mixtures in more effective heat exchangers. Maximum possible mixture COP gains are evaluated for four steady-state air-to-air heat pump conditions. Performance improvement opportunities are found to be primarily in the cooling mode. The effects of deviation from counterflow by use of crossflow and countercrossflow HX configurations are addressed. Refrigerant-side augmentation with pure and mixed refrigerants is examined for air-side dominant and air-to-refrigerant balanced HXs.

  12. Modeling aerosol formation in opposed-flow diffusion flames.

    PubMed

    Violi, Angela; D'Anna, Andrea; D'Alessio, Antonio; Sarofim, Adel F

    2003-06-01

    The microstructures of atmospheric pressure, counter-flow, sooting, flat, laminar ethylene diffusion flames have been studied numerically by using a new kinetic model developed for hydrocarbon oxidation and pyrolysis. Modeling results are in reasonable agreement with experimental data in terms of concentration profiles of stable species and gas-phase aromatic compounds. Modeling results are used to analyze the controlling steps of aromatic formation and soot growth in counter-flow configurations. The formation of high molecular mass aromatics in diffusion controlled conditions is restricted to a narrow area close to the flame front where these species reach a molecular weight of about 1000 u. Depending on the flame configuration, soot formation is controlled by the coagulation of nanoparticles or by the addition of PAH to soot nuclei. PMID:12718969

  13. Counter-flow electrokinetic supercharging for the determination of non-steroidal anti-inflammatory drugs in water samples.

    PubMed

    Dawod, Mohamed; Breadmore, Michael C; Guijt, Rosanne M; Haddad, Paul R

    2009-04-10

    Electrokinetic supercharging (EKS) has been used in the last few years as a powerful tool for separation and on-line preconcentration of different types of analytes. We have developed a valuable modification for EKS system, namely counter-flow EKS (CF-EKS) and applied it for the separation and on-line preconcentration of seven non-steroidal anti-inflammatory drugs (NSAIDs) in water samples. In CF-EKS, a hydrodynamic counter-flow is applied during electrokinetic injection of the analytes within the EKS system. This counter-flow minimises the introduction of the sample matrix into the capillary, allowing longer injections to be performed. Careful choice of the optimum counter-flow as well as the optimum injection voltage allowed the sensitivity to be enhanced by 11,800-fold, giving limits of detection (LODs) of 10.7-47.0 ng/L for the selected NSAIDs. The developed method was validated and then applied for the determination of the studied NSAIDs in drinking water as well as wastewater samples from Hobart city. PMID:19251261

  14. The Effects of Flame Structure on Extinction of CH4-O2-N2 Diffusion Flames

    NASA Technical Reports Server (NTRS)

    Du, J.; Axelbaum, R. L.; Gokoglu, S. (Technical Monitor)

    1996-01-01

    The effects of flame structure on the extinction limits of CH4-O2-N2 counterflow diffusion flames were investigated experimentally and numerically by varying the stoichiometric mixture fraction Z(sub st), Z(sub st) was varied by varying free-stream concentrations, while the adiabatic flame temperature T(sub ad) was held fixed by maintaining a fixed amount of nitrogen at the flame. Z(sub st) was varied between 0.055 (methane-air flame) and 0.78 (diluted- methane-oxygen flame). The experimental results yielded an extinction strain rate K(sub ext) of 375/s for the methane-air flame, increasing monotonically to 1042/s for the diluted-methane-oxygen flame. Numerical results with a 58-step Cl mechanism yielded 494/s and 1488/s, respectively. The increase in K(sub ext) with Z(sub st) for a fixed T(sub ad) is explained by the shift in the O2 profile toward the region of maximum temperature and the subsequent increase in rates for chain-branching reactions. The flame temperature at extinction reached a minimum at Z(sub st) = 0.65, where it was 200 C lower than that of the methane-air flame. This significant increase in resistance to extinction is seen to correspond to the condition in which the OH and O production zones are centered on the location of maximum temperature.

  15. Comparison of passive diffusion bag samplers and submersible pump sampling methods for monitoring volatile organic compounds in ground water at Area 6, Naval Air Station, Whidbey Island, Washington

    USGS Publications Warehouse

    Huffman, Raegan L.

    2002-01-01

    Ground-water samples were collected in April 1999 at Naval Air Station Whidbey Island, Washington, with passive diffusion samplers and a submersible pump to compare concentrations of volatile organic compounds (VOCs) in water samples collected using the two sampling methods. Single diffusion samplers were installed in wells with 10-foot screened intervals, and multiple diffusion samplers were installed in wells with 20- to 40-foot screened intervals. The diffusion samplers were recovered after 20 days and the wells were then sampled using a submersible pump. VOC concentrations in the 10-foot screened wells in water samples collected with diffusion samplers closely matched concentrations in samples collected with the submersible pump. Analysis of VOC concentrations in samples collected from the 20- to 40-foot screened wells with multiple diffusion samplers indicated vertical concentration variation within the screened interval, whereas the analysis of VOC concentrations in samples collected with the submersible pump indicated mixing during pumping. The results obtained using the two sampling methods indicate that the samples collected with the diffusion samplers were comparable with and can be considerably less expensive than samples collected using a submersible pump.

  16. The interaction between soot and NO formation in a laminar axisymmetric coflow ethylene/air diffusion flame

    SciTech Connect

    Guo, Hongsheng; Smallwood, Gregory J.

    2007-04-15

    The interaction between soot and NO formation in a laminar axisymmetric coflow ethylene/air diffusion flame was investigated by numerical simulation. A detailed gas-phase reaction scheme and a simplified soot model were employed. The results show that the formation of NO has little effect on that of soot. However, the formation of soot in the flame significantly suppresses the formation of NO. The peak NO concentration and NO emission index are reduced by 28 and 46%, respectively, due to the formation of soot. The influence of soot on NO formation is caused by not only the radiation-induced thermal effect, but also the reaction-induced chemical effect. Relatively the thermal effect is more significant, causing 25 and 38% reduction, respectively, in peak NO concentration and NO emission index. The chemical effect is caused by the competition for acetylene (C{sub 2}H{sub 2}) between soot and NO formation. The formation of soot consumes acetylene in the flame and thus lowers the formation rate of radical CH. This reduces the reaction rate of CH + N{sub 2} = HCN + N, which is the rate-limiting step of the prompt NO formation route, the dominant route in the studied flame. (author)

  17. Feedback control for counterflow thrust vectoring with a turbine engine: Experiment design and robust control design and implementation

    NASA Astrophysics Data System (ADS)

    Dores, Delfim Zambujo Das

    2005-11-01

    Engineering research over the last few years has successfully demonstrated the potential of thrust vector control using counterflow at conditions up to Mach 2. Flow configurations that include the pitch vectoring of rectangular jets and multi-axis vector control in diamond and axisymmetric nozzle geometries have been studied. Although bistable (on-off) fluid-based control has been around for some time, the present counterflow thrust vector control is unique because proportional and continuous jet response can be achieved in the absence of moving parts, while avoiding jet attachment, which renders most fluidic approaches unacceptable for aircraft and missile control applications. However, before this study, research had been limited to open-loop studies of counterflow thrust vectoring. For practical implementation it was vital that the counterflow scheme be used in conjunction with feedback control. Hence, the focus of this research was to develop and experimentally demonstrate a feedback control design methodology for counterflow thrust vectoring. This research focused on 2-D (pitch) thrust vectoring and addresses four key modeling issues. The first issue is to determine the measured variable to be commanded since the thrust vector angle is not measurable in real time. The second related issue is to determine the static mapping from the thrust vector angle to this measured variable. The third issue is to determine the dynamic relationship between the measured variable and the thrust vector angle. The fourth issue is to develop dynamic models with uncertainty characterizations. The final and main goal was the design and implementation of robust controllers that yield closed-loop systems with fast response times, and avoid overshoot in order to aid in the avoidance of attachment. These controllers should be simple and easy to implement in real applications. Hence, PID design has been chosen. Robust control design is accomplished by using ℓ1 control theory in

  18. One-dimensional turbulence modeling of a turbulent counterflow flame with comparison to DNS

    SciTech Connect

    Jozefik, Zoltan; Kerstein, Alan R.; Schmidt, Heiko; Lyra, Sgouria; Kolla, Hemanth; Chen, Jackie H.

    2015-06-01

    The one-dimensional turbulence (ODT) model is applied to a reactant-to-product counterflow configuration and results are compared with DNS data. The model employed herein solves conservation equations for momentum, energy, and species on a one dimensional (1D) domain corresponding to the line spanning the domain between nozzle orifice centers. The effects of turbulent mixing are modeled via a stochastic process, while the Kolmogorov and reactive length and time scales are explicitly resolved and a detailed chemical kinetic mechanism is used. Comparisons between model and DNS results for spatial mean and root-meansquare (RMS) velocity, temperature, and major and minor species profiles are shown. The ODT approach shows qualitatively and quantitatively reasonable agreement with the DNS data. Scatter plots and statistics conditioned on temperature are also compared for heat release rate and all species. ODT is able to capture the range of results depicted by DNS. However, conditional statistics show signs of underignition.

  19. Backreaction of Tracer Particles on Vortex Tangle in Helium II Counterflow

    NASA Astrophysics Data System (ADS)

    Varga, E.; Barenghi, C. F.; Sergeev, Y. A.; Skrbek, L.

    2016-05-01

    We report computer simulations of the interaction of seeding particles with quantized vortices and with the normal fluid flow in thermal counterflow of superfluid ^4He. We show that if the number of particles is too large, the vortex tangle is significantly affected, posing problems in the interpretation of visualization experiments. The main effects are an increase in vortex line density and a change in polarization of the vortex tangle, caused by the action of the Stokes drag of the viscous normal fluid on the trapped particles. We argue that in the case of large particle number, typically used for the particle image velocimetry technique, the tangle properties might become significantly changed. On the contrary, the particle tracking velocimetry technique that uses smaller particle concentration should not be appreciably affected.

  20. Effects of steam-liquid counterflow on pressure transient data from two-phase geothermal reservoirs

    SciTech Connect

    Bodvarsson, G.S.; Cox, B.L.; Ripperda, M.

    1987-06-01

    Numerical studies are performed to investigate the effects localized feedzones on the pressure transients in two-phase reservoirs. It is shown that gravity effects can significantly affect the pressure transients, because of the large difference in the density of liquid water and vapor. Production from such systems enhances steam/liquid water counterflow and expands the vapor-dominated zone at the top of the reservoir. Subcooled liquid regions develop in the center of the reservoir due to gravity drainage of cooler liquid water. The vapor zone will act as a constant pressure boundary and help stabilize the decline in the system. It is shown that the pressure transients at observation wells depend greatly on the location (depth) of the major feedzone; if this is not accounted for, large errors in deduced reservoir properties will result. At shallow observation points pressures may actually increase as a result of enhanced steam upflow due to production at a deep feedzone. 12 refs., 17 figs.

  1. Experimental study of vortex diffusers

    SciTech Connect

    Shakerin, S.; Miller, P.L.

    1995-11-01

    This report documents experimental research performed on vortex diffusers used in ventilation and air-conditioning systems. The main objectives of the research were (1) to study the flow characteristics of isothermal jets issuing from vortex diffusers, (2) to compare the vortex diffuser`s performance with that of a conventional diffuser, and (3) to prepare a report that disseminates the results to the designers of ventilation and air-conditioning systems. The researchers considered three diffusers: a conventional round ceiling diffuser and two different styles of vortex diffusers. Overall, the vortex diffusers create slightly more induction of ambient air in comparison to the conventional diffuser.

  2. Influences of flame-vortex interactions on formation of oxides of nitrogen in curved methane-air diffusion flamelets

    SciTech Connect

    Card, J.M.; Ryden, R.; Williams, F.A.

    1994-01-01

    To improve knowledge of production rates of nitrogen oxides in turbulent diffusion flames in reaction-sheet regimes, an analytical investigation is made of the structure of a parabolic flamelet. The mixture-fraction field, scalar dissipation rate and gas velocity relative to the flamelet in the vortex are related to flame curvature at the parabolic tip. Flame structure for major species and temperature is described by rate-ratio asymptotics based on two-step and three-step reduced chemical-kinetic mechanisms. Production rates by prompt, thermal and nitrous-oxide mechanisms are obtained from one-step reduced-chemistry approximations that employ steady states for all reaction intermediaries. For sufficiently large streamwise separation distances between isoscalar surfaces, it is found that equilibrium conditions are closely approached near the flame tip, and the thermal mechanism dominates there, but the prompt mechanism always dominates in the wings, away from the tip, where the highest rates of scalar dissipation occur. Increasing the tip curvature increases the Peclet number and the prompt contribution while decreasing the thermal contribution. At 1 atm and ambient temperatures of 300 K, the prompt mechanism always dominates the total production rate in the parabolic flamelet, and, perhaps surprisingly, the rate of the nitrous-oxide mechanism is faster than that of the thermal mechanism and varies with the tip curvature and with scalar dissipation in the same manner as that of the prompt mechanism, different from that of the thermal mechanism. Conclusion reached is that Zel`dovich NO is relatively insignificant in hydrocarbon-air mixtures in reaction-sheet regimes.

  3. Rate-ratio asymptotic analysis of methane-air diffusion-flame structure for predicting production of oxides of nitrogen

    SciTech Connect

    Hewson, J.C.; Williams, F.A.

    1999-05-01

    Production rates of oxides of nitrogen in laminar methane-air diffusion flames are addressed, with thermal, prompt, and nitrous oxide mechanisms taken into account, as well as consumption processes collectively termed reburn. For this purpose, it is necessary to extend the well-known four-step flame-chemistry description to six steps, with acetylene taken out of steady-state and one-step production of nitric oxide included. Emission indices are calculated as functions of the rate of scalar dissipation at the stoichiometric mixture fraction for near-atmospheric pressures and shown to be in reasonable agreement with results obtained from numerical integrations. The various mechanisms of NO{sub x} production and consumption are verified to be strongly dependent on the flame temperature and on superequilibrium concentrations of radicals, both fuel-derived and from hydrogen-oxygen chemistry; the flame-structure analysis was extended to provide sufficient accuracy in the prediction of these quantities. It was found that for flames in near-normal ambient atmospheres, the prompt mechanism usually is most important. For longer residence times, and especially for ambient pressures and temperatures above standard, the thermal mechanism was found to increase in importance, but this increase was calculated to be offset almost entirely by NO consumption through reburn reactions. Conditions that favor reburn were observed to be those where the ratio of radical concentrations to NO concentrations is small. Longer residence times and higher pressures were demonstrated to lead both to more complete heat release and to smaller superequilibrium radical concentrations whence the correspondence between thermal production and reburn. The nitrous oxide mechanism was found to be generally less important for the conditions considered here.

  4. Tackling agricultural diffuse pollution: What might uptake of farmer-preferred measures deliver for emissions to water and air?

    PubMed

    Collins, A L; Zhang, Y S; Winter, M; Inman, A; Jones, J I; Johnes, P J; Cleasby, W; Vrain, E; Lovett, A; Noble, L

    2016-03-15

    Mitigation of agricultural diffuse pollution poses a significant policy challenge across Europe and particularly in the UK. Existing combined regulatory and voluntary approaches applied in the UK continue to fail to deliver the necessary environmental outcomes for a variety of reasons including failure to achieve high adoption rates. It is therefore logical to identify specific on-farm mitigation measures towards which farmers express positive attitudes for higher future uptake rates. Accordingly, a farmer attitudinal survey was undertaken during phase one of the Demonstration Test Catchment programme in England to understand those measures towards which surveyed farmers are most receptive to increasing implementation in the future. A total of 29 on-farm measures were shortlisted by this baseline farm survey. This shortlist comprised many low cost or cost-neutral measures suggesting that costs continue to represent a principal selection criterion for many farmers. The 29 measures were mapped onto relevant major farm types and input, assuming 95% uptake, to a national scale multi-pollutant modelling framework to predict the technically feasible impact on annual agricultural emissions to water and air, relative to business as usual. Simulated median emission reductions, relative to current practise, for water management catchments across England and Wales, were estimated to be in the order sediment (20%)>ammonia (16%)>total phosphorus (15%) ≫ nitrate/methane (11%)>nitrous oxide (7%). The corresponding median annual total cost of the modelled scenario to farmers was £3 ha(-1)yr(-1), with a corresponding range of -£84 ha(-1)yr(-1) (i.e. a net saving) to £33 ha(-1)yr(-1). The results suggest that those mitigation measures which surveyed farmers are most inclined to implement in the future would improve the environmental performance of agriculture in England and Wales at minimum to low cost per hectare. PMID:26789365

  5. Effect of dielectric material on bipolar nanosecond pulse diffuse dielectric barrier discharge in air at atmospheric pressure

    NASA Astrophysics Data System (ADS)

    Tang, Kai; Wang, Wenchun; Yang, Dezheng; Zhang, Shuai; Yang, Yang; Liu, Zhijie

    2013-08-01

    In this paper, dielectric plates made by ceramic, quartz and polytetrafluoroethylene (PTFE) respectively are employed to generate low gas temperature, diffuse dielectric barrier discharge plasma by using a needle-plate electrode configuration in air at atmospheric pressure. Both discharge images and the optical emission spectra are obtained while ceramic, quartz and PTFE are used as dielectric material. Plasma gas temperature is also calculated by comparing the experimental emission spectra with the best fitted spectra of N2 (C3Πu → B3Πg 1-3) and N2 (C3Πu → B3Πg 0-2). The effects of different pulse peak voltages and gas gap distances on the emission intensity of N2 (C3Πu → B3Πg, 0-0, 337.1 nm) and the plasma area on dielectric surface are investigated while ceramic, quartz and PTFE are used as dielectric material. It is found that the permittivity of dielectric material plays an important role in the discharge homogeneity, plasma gas temperature, emission spectra intensity of the discharge, etc. Dielectric with higher permittivity i.e., ceramic means brighter discharge luminosity and stronger emission spectra intensity of N2 (C3Πu → B3Πg, 0-0, 337.1 nm) among the three dielectric materials. However, more homogeneous, larger plasma area on dielectric surface and lower plasma gas temperature can be obtained under dielectric with lower permittivity i.e., PTFE. The emission spectra intensity and plasma gas temperature of the discharge while the dielectric plate is made by quartz are smaller than that while ceramic is used as dielectric material and bigger than that when PTFE is used as dielectric material.

  6. Effect of dielectric material on bipolar nanosecond pulse diffuse dielectric barrier discharge in air at atmospheric pressure.

    PubMed

    Tang, Kai; Wang, Wenchun; Yang, Dezheng; Zhang, Shuai; Yang, Yang; Liu, Zhijie

    2013-08-01

    In this paper, dielectric plates made by ceramic, quartz and polytetrafluoroethylene (PTFE) respectively are employed to generate low gas temperature, diffuse dielectric barrier discharge plasma by using a needle-plate electrode configuration in air at atmospheric pressure. Both discharge images and the optical emission spectra are obtained while ceramic, quartz and PTFE are used as dielectric material. Plasma gas temperature is also calculated by comparing the experimental emission spectra with the best fitted spectra of N2 (C(3)Πu→B(3)Πg 1-3) and N2 (C(3)Πu→B(3)Πg 0-2). The effects of different pulse peak voltages and gas gap distances on the emission intensity of N2 (C(3)Πu→B(3)Πg, 0-0, 337.1 nm) and the plasma area on dielectric surface are investigated while ceramic, quartz and PTFE are used as dielectric material. It is found that the permittivity of dielectric material plays an important role in the discharge homogeneity, plasma gas temperature, emission spectra intensity of the discharge, etc. Dielectric with higher permittivity i.e., ceramic means brighter discharge luminosity and stronger emission spectra intensity of N2 (C(3)Πu→B(3)Πg, 0-0, 337.1 nm) among the three dielectric materials. However, more homogeneous, larger plasma area on dielectric surface and lower plasma gas temperature can be obtained under dielectric with lower permittivity i.e., PTFE. The emission spectra intensity and plasma gas temperature of the discharge while the dielectric plate is made by quartz are smaller than that while ceramic is used as dielectric material and bigger than that when PTFE is used as dielectric material. PMID:23673240

  7. Evaluation of passive diffusion bag samplers, dialysis samplers, and nylon-screen samplers in selected wells at Andersen Air Force Base, Guam, March-April 2002

    USGS Publications Warehouse

    Vroblesky, Don A.; Joshi, Manish; Morrell, Jeff; Peterson, J.E.

    2003-01-01

    During March-April 2002, the U.S. Geological Survey, Earth Tech, and EA Engineering, Science, and Technology, Inc., in cooperation with the Air Force Center for Environmental Excellence, tested diffusion samplers at Andersen Air Force Base, Guam. Samplers were deployed in three wells at the Main Base and two wells at Marianas Bonins (MARBO) Annex as potential ground-water monitoring alternatives. Prior to sampler deployment, the wells were tested using a borehole flowmeter to characterize vertical flow within each well. Three types of diffusion samplers were tested: passive diffusion bag (PDB) samplers, dialysis samplers, and nylon-screen samplers. The primary volatile organic compounds (VOCs) tested in ground water at Andersen Air Force Base were trichloroethene and tetrachloroethene. In most comparisons, trichloroethene and tetrachloroethene concentrations in PDB samples closely matched concentrations in pumped samples. Exceptions were in wells where the pumping or ambient flow produced vertical translocation of water in a chemically stratified aquifer. In these wells, PDB samplers probably would be a viable alternative sampling method if they were placed at appropriate depths. In the remaining three test wells, the trichloroethene or tetrachloroethene concentrations obtained with the diffusion samplers closely matched the result from pumped sampling. Chloride concentrations in nylon-screen samplers were compared with chloride concentrations in dialysis and pumped samples to test inorganic-solute diffusion into the samplers across a range of concentrations. The test showed that the results from nylon-screen samplers might have underestimated chloride concentrations at depths with elevated chloride concentrations. The reason for the discrepancy in this investigation is unknown, but may be related to nylon-screen-mesh size, which was smaller than that used in previous investigations.

  8. Generation of large-scale, barrier-free diffuse plasmas in air at atmospheric pressure using array wire electrodes and nanosecond high-voltage pulses

    SciTech Connect

    Teng, Yun; Li, Lee Liu, Yun-Long; Liu, Lun; Liu, Minghai

    2014-10-15

    This paper introduces a method to generate large-scale diffuse plasmas by using a repetition nanosecond pulse generator and a parallel array wire-electrode configuration. We investigated barrier-free diffuse plasmas produced in the open air in parallel and cross-parallel array line-line electrode configurations. We found that, when the distance between the wire-electrode pair is small, the discharges were almost extinguished. Also, glow-like diffuse plasmas with little discharge weakening were obtained in an appropriate range of line-line distances and with a cathode-grounding cross-electrode configuration. As an example, we produced a large-scale, stable diffuse plasma with volumes as large as 18 × 15 × 15 cm{sup 3}, and this discharge region can be further expanded. Additionally, using optical and electrical measurements, we showed that the electron temperature was higher than the gas temperature, which was almost the same as room temperature. Also, an array of electrode configuration with more wire electrodes had helped to prevent the transition from diffuse discharge to arc discharge. Comparing the current waveforms of configurations with 1 cell and 9 cells, we found that adding cells significantly increased the conduction current and the electrical energy delivered in the electrode gaps.

  9. Generation of large-scale, barrier-free diffuse plasmas in air at atmospheric pressure using array wire electrodes and nanosecond high-voltage pulses

    NASA Astrophysics Data System (ADS)

    Teng, Yun; Li, Lee; Liu, Yun-Long; Liu, Lun; Liu, Minghai

    2014-10-01

    This paper introduces a method to generate large-scale diffuse plasmas by using a repetition nanosecond pulse generator and a parallel array wire-electrode configuration. We investigated barrier-free diffuse plasmas produced in the open air in parallel and cross-parallel array line-line electrode configurations. We found that, when the distance between the wire-electrode pair is small, the discharges were almost extinguished. Also, glow-like diffuse plasmas with little discharge weakening were obtained in an appropriate range of line-line distances and with a cathode-grounding cross-electrode configuration. As an example, we produced a large-scale, stable diffuse plasma with volumes as large as 18 × 15 × 15 cm3, and this discharge region can be further expanded. Additionally, using optical and electrical measurements, we showed that the electron temperature was higher than the gas temperature, which was almost the same as room temperature. Also, an array of electrode configuration with more wire electrodes had helped to prevent the transition from diffuse discharge to arc discharge. Comparing the current waveforms of configurations with 1 cell and 9 cells, we found that adding cells significantly increased the conduction current and the electrical energy delivered in the electrode gaps.

  10. Separation and sampling of ice nucleation chamber generated ice particles by means of the counterflow virtual impactor technique for the characterization of ambient ice nuclei.

    NASA Astrophysics Data System (ADS)

    Schenk, Ludwig; Mertes, Stephan; Kästner, Udo; Schmidt, Susan; Schneider, Johannes; Frank, Fabian; Nillius, Björn; Worringen, Annette; Kandler, Konrad; Ebert, Martin; Stratmann, Frank

    2014-05-01

    In 2011, the German research foundation (DFG) research group called Ice Nuclei Research Unit (INUIT (FOR 1525, project STR 453/7-1) was established with the objective to achieve a better understanding concerning heterogeneous ice formation. The presented work is part of INUIT and aims for a better microphysical and chemical characterization of atmospheric aerosol particles that have the potential to act as ice nuclei (IN). For this purpose a counterflow virtual impactor (Kulkarni et al., 2011) system (IN-PCVI) was developed and characterized in order to separate and collect ice particles generated in the Fast Ice Nucleus Chamber (FINCH; Bundke et al., 2008) and to release their IN for further analysis. Here the IN-PCVI was used for the inertial separation of the IN counter produced ice particles from smaller drops and interstitial particles. This is realized by a counterflow that matches the FINCH output flow inside the IN-PCVI. The choice of these flows determines the aerodynamic cut-off diameter. The collected ice particles are transferred into the IN-PCVI sample flow where they are completely evaporated in a particle-free and dry carrier air. In this way, the aerosol particles detected as IN by the IN counter can be extracted and distributed to several particle sensors. This coupled setup FINCH, IN-PCVI and aerosol instrumentation was deployed during the INUIT-JFJ joint measurement field campaign at the research station Jungfraujoch (3580m asl). Downstream of the IN-PCVI, the Aircraft-based Laser Ablation Aerosol Mass Spectrometer (ALABAMA; Brands et al., 2011) was attached for the chemical analysis of the atmospheric IN. Also, number concentration and size distribution of IN were measured online (TROPOS) and IN impactor samples for electron microscopy (TU Darmstadt) were taken. Therefore the IN-PCVI was operated with different flow settings than known from literature (Kulkarni et al., 2011), which required a further characterisation of its cut

  11. Design and optimization of non-clogging counter-flow microconcentrator for enriching epidermoid cervical carcinoma cells.

    PubMed

    Tran-Minh, Nhut; Dong, Tao; Su, Qianhua; Yang, Zhaochu; Jakobsen, Henrik; Karlsen, Frank

    2011-02-01

    Clogging failure is common for microfilters in living cells concentration; for instance, the CaSki Cell-lines (Epidermoid cervical carcinoma cells) utilizing the flat membrane structure. In order to avoid the clogging, counter-flow concentration units with turbine blade-like micropillar are proposed in microconcentrator design. Due to the unusual geometrical-profiles and extraordinary microfluidic performance, the cells blocking does not occur even at permeate entrances. A counter-flow microconcentrator was designed, with both processing layer and collecting layer arranged in terms of the fractal based honeycomb structure. The device was optimized by coupling Artificial Neuron Network (ANN) and Computational Fluid Dynamics (CFD). The excellent concentration ratio of a final microconcentrator was presented in numerical results. PMID:21053081

  12. Experimental Study of Counterflow Cooling Using a Test Loop to Simulate the Thermal Characteristics of a HTS Cable System

    SciTech Connect

    Demko, Jonathan A

    2012-01-01

    The counterflow cooling configuration is a compact, efficient, and relatively low cost thermal management approach for long-length HTS cable systems. In the counter-flow cooling configuration the coolant flow, typically liquid nitrogen, is initially supplied through the center of the cable turning around at the far end of the cable and returning through the annular space between the cable and the inner cryostat wall, using a single cryostat. The temperature distributions along the cable and the nitrogen flow streams are extremely difficult to measure in an operating HTS cable because of the issues associated with installing thermometers on high voltage components. A 5-meter long test loop has been built that simulates a counter-flow cooled, HTS cable using a heated metal tube to simulate the cable. The test loop contains calibrated thermometers to measure the temperature distribution along the tube and the return liquid nitrogen stream. Measured temperature distributions in the return flow stream and along the tube wall for varying flow rates and heating conditions to simulate a HTS cable are presented and discussed.

  13. Opposed jet burner studies of hydrogen combustion with pure and N2, NO-contaminated air

    NASA Technical Reports Server (NTRS)

    Guerra, Rosemary; Pellett, Gerald L.; Northam, G. Burton; Wilson, Lloyd G.

    1987-01-01

    A counterflow diffusion flame formed by an argon-bathed tubular-opposed jet burner (OJB) was used to determine the 'blowoff' and 'restore' combustion characteristics for jets of various H2/N2 mixtures and for jets of air contaminated by NO (which normally occurs in high-enthalpy airflows supplied to hypersonic test facilities for scramjet combustors). Substantial divergence of 'blowoff' and 'restore' limits occurred as H2 mass flux, M(H)2, increased, the H2 jet became richer, and the M(air)/M(H2 + N2) ratio increased from 1 to 3 (molar H2/O2 from 1 to 16). Both OJB limits were sensitive to reactant composition. One to six percent NO in air led to significant N2-corrected decreases in the M(H2) values for 'blowoff' (2-8 percent) and 'restore' (6-12 percent) for mole fractions of H2 ranging from 0.5 to 0.95. However, when H2/O2 was held constant, all N2-corrected changes in M(H2) were negligible.

  14. Magmatism at passive margins: Effect of depth-dependent rifting and depleted continental lithospheric counterflow

    NASA Astrophysics Data System (ADS)

    Lu, Gang; Huismans, Ritske

    2016-04-01

    Rifted continental margins may have a variety of structural and magmatic styles, resulting in narrow or wide, magma-dominated or magma-poor conjugate margins. Some magma-poor margins differ from the classical uniform extension (McKenzie) model in that continental crust breaks up significantly earlier or later than continental mantle lithosphere and establishment of mature mid-ocean ridge is significantly delayed. The best-known examples are observed at: 1) the Iberia-Newfoundland conjugate margins (Type I) with a narrow transition between oceanic and continental crust; and 2) ultra-wide central South Atlantic margins (Type II) where the continental crust spans wide regions while the mantle lithosphere beneath has been removed. These margins are explained by depth-dependent extension. In this study, we perform 2D thermo-mechanical finite element numerical experiments to investigate magmatism at passive margins with depth-dependent extension. A melting prediction model is coupled with the thermo-mechanical model, in which temperature, density and viscosity feedbacks are considered. For the standard models, the crust is either strong and coupled (Type I-A models), or weak and decoupled (Type II-A models) with mantle lithosphere. In addition, models with a buoyant, depleted (cratonic) lower mantle lithosphere (referred as C models) are also investigated. We illustrate that Type I-A/C models develop Type I narrow margins, whereas Type II-A/C models develop Type II wide margins. In the C models, the buoyant lower mantle lithosphere flows laterally towards the ridge (i.e. the counterflow), resulting in the exhumation (in Type I-C models) or underplating (in Type II-C models) of the continental mantle lithosphere. Magmatic productivity is strongly prohibited when counterflow is developed. We argue that Type I-A and I-C models are comparable with the Aden Gulf rifted margins and the Iberia-Newfoundland conjugate margins, respectively. The Type II-A/C models are consistent

  15. UPDATING APPLIED DIFFUSION MODELS

    EPA Science Inventory

    Most diffusion models currently used in air quality applications are substantially out of date with understanding of turbulence and diffusion in the planetary boundary layer. Under a Cooperative Agreement with the Environmental Protection Agency, the American Meteorological Socie...

  16. Assessment of diffusion parameters of new passive samplers using optical chemical sensor for on-site measuring formaldehyde in indoor air: experimental and numerical studies.

    PubMed

    Vignau-Laulhere, Jane; Mocho, Pierre; Plaisance, Hervé; Raulin, Katarzyna; Desauziers, Valérie

    2016-03-01

    New passive samplers using a sensor consisting of a sol-gel matrix entrapping Fluoral-P as sampling media were developed for the determination of formaldehyde in indoor air. The reaction between Fluoral-P and formaldehyde produces a colored compound which is quantified on-site by means of a simple optical reading module. The advantages of this sensor are selectivity, low cost, ppb level limit of detection, and on-site direct measurement. In the development process, it is necessary to determine the sampling rate, a key parameter that cannot be directly assessed in the case of diffusive samplers using optical chemical sensor. In this study, a methodology combining experimental tests and numerical modeling is proposed and applied at five different radial diffusive samplers equipped with the same optical chemical sensor to assess the sampled material flows and sampling rates. These radial diffusive samplers differ in the internal volume of the sampler (18.97 and 6.14 cm(3)), the position of sensor inside the sampler (in front and offset of 1.2 cm above the membrane) and the width of the diffusion slot (1.4 and 5.9 mm). The influences of these three parameters (internal volume, position of sensor inside the sampler, and width of the diffusion slot) were assessed and discussed with regard to the formaldehyde sampling rate and water uptake by sensor (potential interference of measure). Numerical simulations based on Fick's laws are in agreement with the experimental results and provide to estimate the effective diffusion coefficient of formaldehyde through the membrane (3.50 × 10(-6) m(2) s(-1)). Conversion factors between the sensor response, sampled formaldehyde mass and sampling rate were also assessed. PMID:26847188

  17. Three-dimensional visualization of morphology and ventilation procedure (air flow and diffusion) of a subdivision of the acinus using synchrotron radiation microtomography of the human lung specimens

    NASA Astrophysics Data System (ADS)

    Shimizu, Kenji; Ikura, Hirohiko; Ikezoe, Junpei; Nagareda, Tomofumi; Yagi, Naoto; Umetani, Keiji; Imai, Yutaka

    2004-04-01

    We have previously reported a synchrotron radiation (SR) microtomography system constructed at the bending magnet beamline at the SPring-8. This system has been applied to the lungs obtained at autopsy and inflated and fixed by Heitzman"s method. Normal lung and lung specimens with two different types of pathologic processes (fibrosis and emphysema) were included. Serial SR microtomographic images were stacked to yield the isotropic volumetric data with high-resolution (12 μm3 in voxel size). Within the air spaces of a subdivision of the acinus, each voxel is segmented three-dimensionally using a region growing algorithm ("rolling ball algorithm"). For each voxel within the segmented air spaces, two types of voxel coding have been performed: single-seeded (SS) coding and boundary-seeded (BS) coding, in which the minimum distance from an initial point as the only seed point and all object boundary voxels as a seed set were calculated and assigned as the code values to each voxel, respectively. With these two codes, combinations of surface rendering and volume rendering techniques were applied to visualize three-dimensional morphology of a subdivision of the acinus. Furthermore, sequentially filling process of air into a subdivision of the acinus was simulated under several conditions to visualize the ventilation procedure (air flow and diffusion). A subdivision of the acinus was reconstructed three-dimensionally, demonstrating the normal architecture of the human lung. Significant differences in appearance of ventilation procedure were observed between normal and two pathologic processes due to the alteration of the lung architecture. Three-dimensional reconstruction of the microstructure of a subdivision of the acinus and visualization of the ventilation procedure (air flow and diffusion) with SR microtomography would offer a new approach to study the morphology, physiology, and pathophysiology of the human respiratory system.

  18. Hygrothermal performance of EIFS-clad walls: Effect of vapor diffusion and air leakage on the drying of construction moisture [Exterior Insulation and Finish Systems

    SciTech Connect

    Karagiozis, A.N.; Salonvaara, M.H.

    1999-07-01

    Hydrothermal performance describes the response of the material layers that make up the wall to thermal and moisture loads. Modeling can be applied to determine the drying and wetting potential of walls with various initial construction moisture loads and to test alternative innovations. This paper investigates the drying performance of a particular barrier EIFS clad wall as a function of vapor diffusion control with a specific air leakage path. This investigation was conducted with constant interior temperature and relative humidity. The LATENITE model, developed at NRD, is employed in the investigation. This advanced hydrothermal model can incorporate system and sub-system performances by introducing simulated defects and wall system details derived from laboratory and field measurements. Moisture loads available to the EIFS structure originating either from the interior, the exterior or from initial construction moisture can be included. In this paper the authors present a study to determine the drying potential of a barrier EIFS clad wall for the climate of Wilmington, NC. This climate is characterized by the ASHRAE Handbook of Fundamentals as being mixed. The effect of drying and wetting by airflow was investigated by introducing airflow paths. Hydrothermal performance with three different vapor diffusion control strategies and two air leakage conditions was simulated for a period of one year. Initial oriented strand board (OSB) moisture content was assumed to be very high. The influence of rain water, solar radiation and air movement within the cavity was included in the analysis.

  19. Theory of radical-induced ignition of counterflowing hydrogen versus oxygen at high temperatures

    SciTech Connect

    Helenbrook, B.T.; Im, H.G.; Law, C.K.

    1998-01-01

    Ignition of hydrogen and oxygen in counterflow was studied using asymptotic methods for temperatures above that of crossover. Starting with seven elementary reaction steps, a reduced mechanism was derived using chemical steady-state approximations for the O and OH radicals. An algebraic ignition criterion was derived using this mechanism which predicts the ignition state as a function of the parameters defining the system. This criterion successfully explains the behavior analogous to the first and second explosion limits observed in homogeneous hydrogen-oxygen mixtures. A bifurcation analysis was then performed to clarify the ignition behavior. This analysis demonstrated that an ignition turning point can occur solely through the interaction of radical species with no contribution from heat release. The source of this turning was found to be the reaction H + HO{sub 2} {yields} 20H, confirming results from numerical calculations. Finally, the regimes in which abrupt or monotonic transition to an ignited state were recalculated including the effect of this reaction.

  20. The effect of flushing-ratio on the performance of counterflow fixed-bed thermal regenerators

    SciTech Connect

    Monte, F. de; Galli, G.

    1997-12-31

    A closed form-expression for the effectiveness of a counterflow thermal regenerator is given. It takes account for the flushing phase, i.e., for that part of the blow involved in removing the residue of fluid from a previous blow. The proposed analytical approach is based on a Lagrange viewpoint for evaluating the fluid temperature and involves some mathematical difficulties for calculating the matrix temperature, as the solution of a linear integral equation, whose overcoming is discussed in the text. The developed method allows, indeed, the matrix and gas temperature profiles within the regenerator to be obtained too. The obtained results are very useful for the heat regenerators adopted in Stirling cycle machines, where the time required for an/ element of gas to pass through the regenerator is approximately equal to the blow time. In addition, the availability of a closed-form expression for the regenerator effectiveness is useful especially for those engines, like the free-piston Stirling engines, whose design requires the application of analytically based optimization criteria.

  1. One-dimensional turbulence modeling of a turbulent counterflow flame with comparison to DNS

    DOE PAGESBeta

    Jozefik, Zoltan; Kerstein, Alan R.; Schmidt, Heiko; Lyra, Sgouria; Kolla, Hemanth; Chen, Jackie H.

    2015-06-01

    The one-dimensional turbulence (ODT) model is applied to a reactant-to-product counterflow configuration and results are compared with DNS data. The model employed herein solves conservation equations for momentum, energy, and species on a one dimensional (1D) domain corresponding to the line spanning the domain between nozzle orifice centers. The effects of turbulent mixing are modeled via a stochastic process, while the Kolmogorov and reactive length and time scales are explicitly resolved and a detailed chemical kinetic mechanism is used. Comparisons between model and DNS results for spatial mean and root-meansquare (RMS) velocity, temperature, and major and minor species profiles aremore » shown. The ODT approach shows qualitatively and quantitatively reasonable agreement with the DNS data. Scatter plots and statistics conditioned on temperature are also compared for heat release rate and all species. ODT is able to capture the range of results depicted by DNS. However, conditional statistics show signs of underignition.« less

  2. Matter-wave solitons in the counterflow of two immiscible superfluids

    NASA Astrophysics Data System (ADS)

    Tsitoura, F.; Achilleos, V.; Malomed, B. A.; Yan, D.; Kevrekidis, P. G.; Frantzeskakis, D. J.

    2013-06-01

    We study formation of solitons induced by counterflows of immiscible superfluids. Our setting is based on a quasi-one-dimensional binary Bose-Einstein condensate, composed of two immiscible components with large and small numbers of atoms in them. Assuming that the “small” component moves with constant velocity, either by itself, or being dragged by a moving trap, and intrudes into the “large” counterpart, the following results are obtained. Depending on the velocity, and on whether the small component moves in the absence or in the presence of the trap, two-component dark-bright solitons, scalar dark solitons, or multiple dark solitons may emerge, the last outcome taking place due to breakdown of the superfluidity. We present two sets of analytical results to describe this phenomenology. In an intermediate velocity regime, where dark-bright solitons form, a reduction of the two-component Gross-Pitaevskii system to an integrable Mel'nikov system is developed, demonstrating that solitary waves of the former are very accurately described by analytically available solitons of the latter. In the high-velocity regime, where the breakdown of the superfluidity induces the formation of dark solitons and multisoliton trains, an effective single-component description, in which a strongly localized wave packet of the “small” component acts as an effective potential for the “large” one, allows us to estimate the critical velocity beyond which the coherent structures emerge in good agreement with the numerical results.

  3. Highly turbulent counterflow flames: A laboratory scale benchmark for practical systems

    SciTech Connect

    Coppola, Gianfilippo; Coriton, Bruno; Gomez, Alessandro

    2009-09-15

    We propose a highly turbulent counterflow flame as a very useful benchmark of complexity intermediate between laminar flames and practical systems. By operating in a turbulent Reynolds number regime of relevance to practical systems such as gas turbines and internal combustion engines, it retains the interaction of turbulence and chemistry of such environments, but offers several advantages including: (a) the achievement of high Reynolds numbers without pilot flames, which is particularly advantageous from a modeling standpoint; (b) control of the transition from stable flames to local extinction/reignition conditions; (c) compactness of the domain by comparison with jet flames, with obvious advantages from both a diagnostic and, especially, a computational viewpoint; and (d) the reduction or, altogether, elimination of soot formation, thanks to the high strain rates and low residence times of such a system, and the establishment of conditions of large stoichiometric mixture fraction, as required for robust flame stabilization. We demonstrate the phenomenology of such highly strained turbulent flames under conditions spanning unpremixed, partially premixed and premixed regimes. The system lends itself to the validation of DNS and other computational models. It is also well-suited for the examination of practical fuel blends - a need that is becoming more and more pressing in view of the anticipated diversification of the future fossil fuel supply. (author)

  4. Two-dimensional imaging of molecular hydrogen in H2-air diffusion flames using two-photon laser-induced fluorescence

    NASA Technical Reports Server (NTRS)

    Lempert, W.; Kumar, V.; Glesk, I.; Miles, R.; Diskin, G.

    1991-01-01

    The use of a tunable ArF laser at 193.26 nm to record simultaneous single-laser-shot, planar images of molecular hydrogen and hot oxygen in a turbulent H2-air diffusion flame. Excitation spectra of fuel and oxidant-rich flame zones confirm a partial overlap of the two-photon H2 and single-photon O2 Schumann-Runge absorption bands. UV Rayleigh scattering images of flame structure and estimated detection limits for the H2 two-photon imaging are also presented.

  5. A computational study of radiation and gravity effect on temperature and soot formation in a methane air co-flow diffusion flame

    NASA Astrophysics Data System (ADS)

    Bhowal, Arup Jyoti; Mandal, Bijan Kumar

    2016-07-01

    An effort has been made for a quantitative assessment of the soot formed under steady state in a methane air co flow diffusion flame by a numerical simulation at normal gravity and at lower gravity levels of 0.5 G, 0.1 G and 0.0001 G (microgravity). The peak temperature at microgravity is reduced by about 50 K than that at normal gravity level. There is an augmentation of soot formation at lower gravity levels. Peak value at microgravity multiplies by a factor of ˜7 of that at normal gravity. However, if radiation is not considered, soot formation is found to be much more.

  6. NO{sub x} emissions of a jet diffusion flame which is surrounded by a shroud of combustion air

    SciTech Connect

    Tran, P.X.; White, F.P.; Mathur, M.P.; Ekmann, J.M.

    1996-08-01

    The present work reports an experimental study on the behavior of a jet flame surrounded by a shroud of combustion air. Measurements focussed on the flame length and the emissions of NO{sub x}, total unburned hydrocarbons, CO{sub 2}, and O{sub 2}. Four different fuel flow rates (40.0, 78.33, 138.33, and 166.6 cm/s), air flow rates up to 2500 cm{sup 3}/s and four different air injector diameters (0.079 cm, 0. 158 cm, 0.237 cm, and 0.316 cm) were used. The shroud of combustion air causes the flame length to decrease by a factor proportional to 1/[p{sub a}/p{sub f} + C{sub 2}({mu}{sub a}Re,a/{mu}{sub f}Re,f){sup 2}]{sup {1/2}}. A substantial shortening of the flame length occurred by increasing the air injection velocity keeping fuel rate fixed or conversely by lowering the fuel flow rate keeping air flow rate constant. NO{sub x} emissions ranging from 5 ppm to 64 ppm were observed and the emission of NO{sub x} decreased strongly with the increased air velocity. The decrease of NO{sub x} emissions was found to follow a similar scaling law as does the flame length. However, the emission of the total hydrocarbons increased with the increased air velocity or the decreased fuel flow rate. A crossover condition where both NO{sub x} and unburned- hydrocarbon emissions are low, was identified. At an air-to-fuel velocity ratio of about 1, the emissions of NO{sub x} and the total hydrocarbons were found to be under 20 ppm.

  7. Effects of Flame Structure and Hydrodynamics on Soot Particle Inception and Flame Extinction in Diffusion Flames

    NASA Technical Reports Server (NTRS)

    Axelbaum, R. L.; Chen, R.; Sunderland, P. B.; Urban, D. L.; Liu, S.; Chao, B. H.

    2001-01-01

    This paper summarizes recent studies of the effects of stoichiometric mixture fraction (structure) and hydrodynamics on soot particle inception and flame extinction in diffusion flames. Microgravity experiments are uniquely suited for these studies because, unlike normal gravity experiments, they allow structural and hydrodynamic effects to be independently studied. As part of this recent flight definition program, microgravity studies have been performed in the 2.2 second drop tower. Normal gravity counterflow studies also have been employed and analytical and numerical models have been developed. A goal of this program is to develop sufficient understanding of the effects of flame structure that flames can be "designed" to specifications - consequently, the program name Flame Design. In other words, if a soot-free, strong, low temperature flame is required, can one produce such a flame by designing its structure? Certainly, as in any design, there will be constraints imposed by the properties of the available "materials." For hydrocarbon combustion, the base materials are fuel and air. Additives could be considered, but for this work only fuel, oxygen and nitrogen are considered. Also, the structure of these flames is "designed" by varying the stoichiometric mixture fraction. Following this line of reasoning, the studies described are aimed at developing the understanding of flame structure that is needed to allow for optimum design.

  8. Seasonal variation in diffusive exchange of polycyclic aromatic hydrocarbons across the air-seawater interface in coastal urban area.

    PubMed

    Kim, Seung-Kyu; Chae, Doo Hyun

    2016-08-15

    Concentrations of 15 polycyclic aromatic hydrocarbons (PAHs) in air-seawater interface were measured over 1year in the coastal region of Incheon, South Korea. Most individual PAHs and total PAHs in air displayed statistically significant negative correlations with temperature, but not significant in seawater. Less hydrophobic compounds with three rings were at or near equilibrium in summer, while PAHs with four to six rings were in disequilibrium in all seasons, with higher fugacity gradients in colder seasons and for more hydrophobic compounds. Differently from fugacity gradients, the highest net fluxes occurred for some three- and four-ring PAHs showing the highest atmospheric concentrations. Net gaseous exchange, which was higher in winter, occurred from air to seawater with an annual cumulative flux of 2075μg/m(2)/year (for Σ15PAHs), indicating that atmospheric PAHs in this region, originating from coal/biomass combustion, can deteriorate the quality of seawater and sediment. PMID:27269384

  9. Diffuse CO 2 soil degassing and CO 2 and H 2S concentrations in air and related hazards at Vulcano Island (Aeolian arc, Italy)

    NASA Astrophysics Data System (ADS)

    Carapezza, M. L.; Barberi, F.; Ranaldi, M.; Ricci, T.; Tarchini, L.; Barrancos, J.; Fischer, C.; Perez, N.; Weber, K.; Di Piazza, A.; Gattuso, A.

    2011-10-01

    La Fossa crater on Vulcano Island is quiescent since 1890. Periodically it undergoes "crises" characterized by marked increase of temperature (T), gas output and concentration of magmatic components in the crater fumaroles (T may exceed 600 °C). During these crises, which so far did not lead to any eruptive reactivation, the diffuse CO 2 soil degassing also increases and in December 2005 an anomalous CO 2 flux of 1350 tons/day was estimated by 1588 measurements over a surface of 1.66 km 2 extending from La Fossa crater to the inhabited zone of Vulcano Porto. The crater area and two other anomalously degassing sites (Levante Beach and Palizzi) have been periodically investigated from December 2004 to August 2010 for diffuse CO 2 soil flux. They show a marked variation with time of the degassing rate, with synchronous maxima in December 2005. Carbon dioxide soil flux and environmental parameters have been also continuously monitored for over one year by an automatic station at Vulcano Porto. In order to assess the hazard of the endogenous gas emissions, CO 2 and H 2S air concentrations have been measured by Tunable Diode Laser profiles near the fumaroles of the crater rim and of the Levante Beach area, where also the viscous gas flux has been estimated. In addition, CO 2 air concentration has been measured both indoor and outdoor in an inhabited sector of Vulcano Porto. Results show that in some sites usually frequented by tourists there is a dangerous H 2S air concentration and CO 2 exceeds the hazardous thresholds in some Vulcano houses. These zones should be immediately monitored for gas hazard should a new crisis arise.

  10. Steady-state solution of the semi-empirical diffusion equation for area sources. [air pollution studies

    NASA Technical Reports Server (NTRS)

    Lebedeff, S. A.; Hameed, S.

    1975-01-01

    The problem investigated can be solved exactly in a simple manner if the equations are written in terms of a similarity variable. The exact solution is used to explore two questions of interest in the modelling of urban air pollution, taking into account the distribution of surface concentration downwind of an area source and the distribution of concentration with height.

  11. Associations of autophagy with lung diffusion capacity and oxygen saturation in severe COPD: effects of particulate air pollution

    PubMed Central

    Lee, Kang-Yun; Chiang, Ling-Ling; Ho, Shu-Chuan; Liu, Wen-Te; Chen, Tzu-Tao; Feng, Po-Hao; Su, Chien-Ling; Chuang, Kai-Jen; Chang, Chih-Cheng; Chuang, Hsiao-Chi

    2016-01-01

    Although traffic exposure has been associated with the development of COPD, the role of particulate matter <10 μm in aerodynamic diameter (PM10) in the pathogenesis of COPD is not yet fully understood. We assessed the 1-year effect of exposure to PM10 on the pathogenesis of COPD in a retrospective cohort study. We recruited 53 subjects with COPD stages III and IV and 15 healthy controls in a hospital in Taiwan. We estimated the 1-year annual mean levels of PM10 at all residential addresses of the cohort participants. Changes in PM10 for the 1-year averages in quintiles were related to diffusion capacity of the lung for carbon monoxide levels (r=−0.914, P=0.029), changes in the pulse oxygen saturation (ΔSaO2; r=−0.973, P=0.005), receptor for advanced glycation end-products (r=−0.881, P=0.048), interleukin-6 (r=0.986, P=0.002), ubiquitin (r=0.940, P=0.017), and beclin 1 (r=0.923, P=0.025) in COPD. Next, we observed that ubiquitin was correlated with ΔSaO2 (r=−0.374, P=0.019). Beclin 1 was associated with diffusion capacity of the lung for carbon monoxide (r=−0.362, P=0.028), ΔSaO2 (r=−0.354, P=0.032), and receptor for advanced glycation end-products (r=−0.471, P=0.004). Autophagy may be an important regulator of the PM10-related pathogenesis of COPD, which could cause deterioration in the lung diffusion capacity and oxygen saturation. PMID:27468231

  12. Seasonality of diffusive exchange of polychlorinated biphenyls and hexachlorobenzene across the air-sea interface of Kaohsiung Harbor, Taiwan.

    PubMed

    Fang, Meng-Der; Ko, Fung-Chi; Baker, Joel E; Lee, Chon-Lin

    2008-12-15

    Gaseous and dissolved concentrations of polychlorinated biphenyls (PCBs) and hexachlorobenzene (HCB) were measured in the ambient air and water of Kaohsiung Harbor lagoon, Taiwan, from December 2003 to January 2005. During the rainy season (April to September), gaseous PCB and HCB concentrations were low due to both scavenging by precipitation and dilution by prevailing southwesterly winds blown from the atmosphere of the South China Sea. In contrast, trace precipitation and prevailing northeasterly winds during the dry season (October to March) resulted in higher gaseous PCB and HCB concentrations. Instantaneous air-water exchange fluxes of PCB homologues and HCB were calculated from 22 pairs of air and water samples from Kaohsiung Harbor lagoon. All net fluxes of PCB homologues and HCB in this study are from water to air (net volatilization). The highest net volatile flux observed was +172 ng m(-)(2) day(-1) (dichlorobiphenyls) in December, 2003 due to the high wind speed and high dissolved concentration. The PCB homologues and HCB fluxes were significantly governed by dissolved concentrations in Kaohsiung Harbor lagoon. For low molecular weight PCBs (LMW PCBs), their fluxes were also significantly correlated with wind speed. The net PCB and HCB fluxes suggest that the annual sums of 69 PCBs and HCB measured in this study were mainly volatile (57.4 x 10(3) and 28.3 x 10(3) ng m(-2) yr(-1), respectively) and estimated yearly, 1.5 kg and 0.76 kg of PCBs and HCB were emitted from the harbor lagoon surface waters to the ambient atmosphere. The average tPCB flux in this study was about one-tenth of tPCB fluxes seen in New York Harbor and in the Delaware River, which are reported to be greatly impacted by PCBs. PMID:18977513

  13. On the Comparison of the Long Penetration Mode (LPM) Supersonic Counterflowing Jet to the Supersonic Screech Jet

    NASA Technical Reports Server (NTRS)

    Farr, Rebecca A.; Chang, Chau-Lyan.; Jones, Jess H.; Dougherty, N. Sam

    2015-01-01

    The authors provide a brief overview of the classic tonal screech noise problem created by underexpanded supersonic jets, briefly describing the fluid dynamic-acoustics feedback mechanism that has been long established as the basis for this well-known aeroacoustics problem. This is followed by a description of the Long Penetration Mode (LPM) supersonic underexpanded counterflowing jet phenomenon which has been demonstrated in several wind tunnel tests and modeled in several computational fluid dynamics (CFD) simulations. The authors provide evidence from test and CFD analysis of LPM that indicates that acoustics feedback and fluid interaction seen in LPM are analogous to the aeroacoustics interactions seen in screech jets. Finally, the authors propose applying certain methodologies to LPM which have been developed and successfully demonstrated in the study of screech jets and mechanically induced excitation in fluid oscillators for decades. The authors conclude that the large body of work done on jet screech, other aeroacoustic phenomena, and fluid oscillators can have direct application to the study and applications of LPM counterflowing supersonic cold flow jets.

  14. Experimental and computational investigation of supersonic counterflow jet interaction in atmospheric conditions

    NASA Astrophysics Data System (ADS)

    Ivanchenko, Oleksandr

    The flow field generated by the interaction of a converging-diverging nozzle (exit diameter, D=26 mm M=1.5) flow and a choked flow from a minor jet (exit diameter, d=2.6 mm) in a counterflow configuration was investigated. During the tests both the main C-D nozzle and the minor jet stagnation pressures were varied as well as the region of interaction. Investigations were made in the near field, at most about 2D distance, and in the far field, where the repeated patterns of shock waves were eliminated by turbulence. Both nozzles exhausted to the atmospheric pressure conditions. The flow physics was studied using Schlieren imaging techniques, Pitot-tube, conical Mach number probe, Digital Particle Image Velocimetry (DPIV) and acoustic measurement methods. During the experiments in the far field the jets interaction was observed as the minor jet flow penetrates into the main jet flow. The resulting shock structure caused by the minor jet's presence was dependent on the stagnation pressure ratio between the two jets. The penetration length of the minor jet into the main jet was also dependent on the stagnation pressure ratio. In the far field, increasing the minor jet stagnation pressure moved the bow shock forward, towards the main jet exit. In the near field, the minor jet flow penetrates into the main jet flow, and in some cases modified the flow pattern generated by the main jet, revealing a new effect of jet flow interaction that was previously unknown. A correlation function between the flow modes and the jet stagnation pressure ratios was experimentally determined. Additionally the flow interaction between the main and minor jets was simulated numerically using FLUENT. The optimal mesh geometry was found and the k-epsilon turbulence model was defined as the best fit. The results of the experimental and computational studies were used to describe the shock attenuation effect as self-sustain oscillations in supersonic flow. The effects described here can be used

  15. Opposed jet burner studies of silane-methane, silane-hydrogen, and hydrogen diffusion flames with air

    NASA Technical Reports Server (NTRS)

    Pellett, G. L.; Guerra, Rosemary; Wilson, L. G.; Northam, G. B.

    1986-01-01

    An atmospheric pressure tubular opposed jet burner technique was used to characterize certain diffusion-flame transitions and associated burning rates for N2-diluted mixtures of highly-reactive fuels. The paper presents: (1) details of the technique, with emphasis on features permitting the study of flames involving pyrophoric gases and particle-forming combustion reactions; (2) discoveries on the properties of these flames which correspond to physically and chemically distinct stages of silane and hydrogen combustion; and (3) unburnt gas velocity data obtained from flames based on SiH4-CH4-N2, SiH4-H2-N2, and H2-N2 fuel mixtures, and plotted as functions of combustible-fuel mole fraction and fuel/oxygen molar input flow ratios. In addition, these burning velocity results are analyzed and interpreted.

  16. Opposed jet burner studies of silane-methane, silane-hydrogen and hydrogen diffusion flames with air

    NASA Technical Reports Server (NTRS)

    Pellett, G. L.; Guerra, Rosemary; Wilson, L. G.; Northam, G. B.

    1986-01-01

    An atmospheric pressure tubular opposed jet burner technique was used to characterize certain diffusion-flame transitions and associated burning rates for N2-diluted mixtures of highly-reactive fuels. Presented are: (1) details of the technique, with emphasis on features permitting the study of flames involving pyrophoric gases and particle-forming combustion reactions: (2) discoveries on the properties of these flames which correspond to physically and chemically distinct stages of silane and hydrogen combustion; and (3) unburnt gas velocity data obtained from flames based on SiH4-CH4-N2, SiH4-H2-N2, and H2-N2 fuel mixtures, and plotted as functions of combustible-fuel mole fraction and fuel/oxygen molar input flow ratios. In addition, these burning velocity results are analyzed and interpreted.

  17. Highly efficient electro-generation of hydrogen peroxide using NCNT/NF/CNT air diffusion electrode for electro-Fenton degradation of p-nitrophenol.

    PubMed

    Tang, Q; Wang, D; Yao, D M; Yang, C W; Sun, Y C

    2016-01-01

    To promote the in situ generation of hydrogen peroxide (H2O2) in electro-Fenton system, a new air diffusion electrode (ADE) was put forward in the present work using N-doped multi-walled carbon nanotubes (NCNT) as the catalyst layer, multi-walled carbon nanotubes (CNT) as the diffusion layer, and nickel foam (NF) as the supporting material, respectively. The catalyst layer in ADE was characterized by transmission electron microscopy and X-ray photoelectron spectroscopy. Then the performances of H2O2 accumulation and p-nitrophenol (p-NP) degradation with the electrode (NCNT/NF/CNT ADE) were investigated. The experimental results showed that H2O2 accumulation on the NCNT/NF/CNT ADE was greatly improved by the presence of N doping, and H2O2 accumulation concentration could reach 307 mg L(-1) after 120 min at the current intensity of 100 mA. Moreover, the NCNT/NF/CNT ADE presented more effective performance on p-NP degradation than the CNT/NF/CNT ADE or the NF ADE. p-NP of initial 50 mg L(-1) could be almost completely removed after 30 min, and the total organic carbon removal efficiency reached 62.61% after 120 min when 0.4 mM Fe(2+) was added into the system. The repeatability test suggested that the stability of the NCNT/NF/CNT ADE was very good. PMID:27054737

  18. Oxygen transport resistance at gas diffusion layer - Air channel interface with film flow of water in a proton exchange membrane fuel cell

    NASA Astrophysics Data System (ADS)

    Koz, Mustafa; Kandlikar, Satish G.

    2016-01-01

    Water present as films on the gas diffusion layer-air channel interface in a proton exchange membrane fuel cell (PEMFC) alters the oxygen transport resistance, which is expressed through Sherwood number (Sh). The effect of multiple films along the flow length on Sh is investigated through 3D and stationary simulations. The effects of air Péclet number, non-dimensional film width, length, and spacing are studied. Using the simulation results, non-dimensional correlations are developed for local Sh within a mean absolute percentage error of 9%. These correlations can be used for simulating PEMFC performance over temperature and relative humidity ranges of 20-80 °C and 0-100%, respectively. Sh on the film side can be up to 31% lower than that for a dry channel, while a film may reduce the interfacial width by up to 39%. The corresponding increase in transport resistance results in lowering the voltage by 5 and 8 mV respectively at a current density of 1.5 A cm-2. However, their combined effect leads to a voltage loss of 20 mV due to this additional mass transport resistance. It is therefore important to incorporate the additional resistance introduced by the films while modeling fuel cell performance.

  19. Theoretical model for diffusive greenhouse gas fluxes estimation across water-air interfaces measured with the static floating chamber method

    NASA Astrophysics Data System (ADS)

    Xiao, Shangbin; Wang, Chenghao; Wilkinson, Richard Jeremy; Liu, Defu; Zhang, Cheng; Xu, Wennian; Yang, Zhengjian; Wang, Yuchun; Lei, Dan

    2016-07-01

    Aquatic systems are sources of greenhouse gases on different scales, however the uncertainty of gas fluxes estimated using popular methods are not well defined. Here we show that greenhouse gas fluxes across the air-water interface of seas and inland waters are significantly underestimated by the currently used static floating chamber (SFC) method. We found that the SFC CH4 flux calculated with the popular linear regression (LR) on changes of gas concentration over time only accounts for 54.75% and 35.77% of the corresponding real gas flux when the monitoring periods are 30 and 60 min respectively based on the theoretical model and experimental measurements. Our results do manifest that nonlinear regression models can improve gas flux estimations, while the exponential regression (ER) model can give the best estimations which are close to true values when compared to LR. However, the quadratic regression model is proved to be inappropriate for long time measurements and those aquatic systems with high gas emission rate. The greenhouse gases effluxes emitted from aquatic systems may be much more than those reported previously, and models on future scenarios of global climate changes should be adjusted accordingly.

  20. Numerical analysis of reaction-diffusion effects on species mixing rates in turbulent premixed methane-air combustion

    SciTech Connect

    Richardson, E.S.; Grout, R.W.; Chen, J.H.; Sankaran, R.

    2010-03-15

    The scalar mixing time scale, a key quantity in many turbulent combustion models, is investigated for reactive scalars in premixed combustion. Direct numerical simulations (DNS) of three-dimensional, turbulent Bunsen flames with reduced methane-air chemistry have been analyzed in the thin reaction zones regime. Previous conclusions from single step chemistry DNS studies are confirmed regarding the role of dilatation and turbulence-chemistry interactions on the progress variable dissipation rate. Compared to the progress variable, the mixing rates of intermediate species is found to be several times greater. The variation of species mixing rates are explained with reference to the structure of one-dimensional premixed laminar flames. According to this analysis, mixing rates are governed by the strong gradients which are imposed by flamelet structures at high Damkoehler numbers. This suggests a modeling approach to estimate the mixing rate of individual species which can be applied, for example, in transported probability density function simulations. Flame-turbulence interactions which modify the flamelet based representation are analyzed. (author)

  1. On the Comparison of the Long Penetration Mode (LPM) Supersonic Counterflowing Jet to the Supersonic Screech Jet

    NASA Technical Reports Server (NTRS)

    Farr, Rebecca A.; Chang, Chau-Lyan; Jones, Jess H.; Dougherty, N. Sam

    2015-01-01

    Classic tonal screech noise created by under-expanded supersonic jets; Long Penetration Mode (LPM) supersonic phenomenon -Under-expanded counter-flowing jet in supersonic free stream -Demonstrated in several wind tunnel tests -Modeled in several computational fluid dynamics (CFD) simulations; Discussion of LPM acoustics feedback and fluid interactions -Analogous to the aero-acoustics interactions seen in screech jets; Lessons Learned: Applying certain methodologies to LPM -Developed and successfully demonstrated in the study of screech jets -Discussion of mechanically induced excitation in fluid oscillators in general; Conclusions -Large body of work done on jet screech, other aero-acoustic phenomenacan have direct application to the study and applications of LPM cold flow jets

  2. Generation Of Atmospheric Pressure Non-Thermal Plasma By Diffusive And Constricted Discharges In Rest And Flowing Gases (Air And Nitrogen)

    NASA Astrophysics Data System (ADS)

    Akishev, Y.; Grushin, M.; Karalnik, V.; Kochetov, I.; Napartovich A.; Trushkin N.

    2010-07-01

    Weekly ionized non-thermal plasma (NTP) is of great interest for many applications because of its strong non-equilibrium state wherein an average electron energy Te exceeds markedly gas temperature Tg, i.e. electrons in the NTP are strongly overheated compared to neutral gas. Energetic electrons due to frequent collisions with the neutrals excite and dissociate effectively atoms and molecules of the plasma-forming gas that results in a creation of physically-, and bio-chemically active gaseous medium in a practically cold background gas. At present there are many kinds of plasma sources working at low and atmospheric pressure and using MW, RF, low frequency, pulsed and DC power supplies for NTP generation. The NTP at atmospheric pressure is of considerable interest for practice. A reason is that sustaining the NTP at atmospheric pressure at first allows us to avoid the use of expensive vacuum equipment and second gives opportunity to use the NTP for treatment of the exhausted gases and polluted liquids. The second opportunity cannot be realized at all with use of the NTP at low pressure. Main subject of this talk is low current atmospheric pressure gas discharges powering with DC power supplies. Plasma forming gases are air and nitrogen which are much cheaper compared to rare gases like He or Ar. Besides, great interest to molecular nitrogen as plasma forming gas is caused first of all its unique capability to accumulate huge energy in vibration, electron (metastables) and dissociated (atomic) states providing high chemical reactivity of the activated nitrogen. All active particles mentioned above have a long lifetime, and they can be therefore transported for a long distance away from place of their generation. Different current modes (diffusive and constricted) of these discharges are discussed. Experimental and numerical results on generation of chemically active species in the diffusive and constricted mode are presented. Some data on the usage of the

  3. Seasonal, anthropogenic, air mass, and meteorological influences on the atmospheric concentrations of polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs): Evidence for the importance of diffuse combustion sources

    SciTech Connect

    Lee, R.G.M.; Green, N.J.L.; Lohmann, R.; Jones, K.C.

    1999-09-01

    Sampling programs were undertaken to establish air polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/F) concentrations at a semirural site on the northwest coast of England in autumn and summer and to investigate factors causing their variability. Changing source inputs, meteorological parameters, air masses, and the impact of a festival when it is customary to light fireworks and bonfires were investigated. Various lines of evidence from the study point to diffuse, combustion-related sources being a major influence on ambient air concentrations. Higher PCDD/F concentrations were generally associated with air masses that had originated and moved over land, particularly during periods of low ambient temperature. Low concentrations were associated with air masses that had arrived from the Atlantic Ocean/Irish Sea to the west of the sampling site and had little or no contact with urban/industrialized areas. Concentrations in the autumn months were 2 to 10 times higher than those found in the summer.

  4. Strain-Rate-Free Diffusion Flames: Initiation, Properties, and Quenching

    NASA Technical Reports Server (NTRS)

    Fendell, Francis; Rungaldier, Harald; Gokoglu, Suleyman; Schultz, Donald

    1997-01-01

    For about a half century, the stabilization of a steady planar deflagration on a heat-sink-type flat-flame burner has been of extraordinary service for the theoretical modeling and diagnostic probing of combusting gaseous mixtures. However, most engineering devices and most unwanted fire involve the burning of initially unmixed reactants. The most vigorous burning of initially separated gaseous fuel and oxidizer is the diffusion flame. In this useful idealization (limiting case), the reactants are converted to product at a mathematically thin interface, so no interpenetration of fuel and oxidizer occurs. This limit is of practical importance because it often characterizes the condition of optimal performance (and sometimes environmentally objectionable operation) of a combustor. A steady planar diffusion flame is most closely approached in the laboratory in the counterflow apparatus. The utility of this simple-strain-rate flow for the modeling and probing of diffusion flames was noted by Pandya and Weinberg 35 years ago, though only in the last decade or so has its use become internationally common place. However, typically, as the strain rate a is reduced below about 20 cm(exp -1), and the diffusion-flame limit (reaction rate much faster than the flow rate) is approached, the burning is observed to become unstable in earth gravity. The advantageous steady planar flow is not available in the diffusion-flame limit in earth gravity. This is unfortunate because the typical spatial scale in a counterflow is (k/a)(sup 1/2), where k denotes a characteristic diffusion coefficient; thus, the length scale becomes large, and the reacting flow is particularly amenable to diagnostic probing, as the diffusion-flame limit is approached. The disruption of planar symmetry is owing the fact that, as the strain rate a decreases, the residence time (l/a) of the throughput in the counterflow burner increases. Observationally, when the residence time exceeds about 50 msec, the

  5. Study of roughness-induced diffuse and specular reflectance at silver-air and silver-liquid interfaces. Final report, July 1, 1979-August 31, 1980

    SciTech Connect

    Sari, S.O.

    1980-07-01

    Results of an extended investigation of surface plasma-wave absorption and roughness-induced optical scattering from an interface of silver and air are described. In particular, the position of the surface plasma resonance minimum in reflectivity for a stochastically roughened metal silver surface has been studied as a function of a number of distinct roughness perturbations. In the case of a transparent liquid-silver boundary the frequency red shift of the resonance minimum has been determined and the location of the surface plasmon dip for various liquids is shown to agree well with a simple roughness theory. The additional interfacial properties due to the formation of a thin inhomogeneous oxide layer occurring either spontaneously or due to application of a small interfacial electrical potential are more complex. However, the optical constants of the interlayer have been determined from differential specular reflectance measurements at the boundary. Nodule size parameters determined from scattering and absorption measurements and features of both polarized and depolarized diffuse reflectance give further information on the state of the interface. Reflectance of ordered-corrugated surfaces are also described.

  6. Some new results on electron transport in the atmosphere. [Monte Carlo calculation of penetration, diffusion, and slowing down of electron beams in air

    NASA Technical Reports Server (NTRS)

    Berger, M. J.; Seltzer, S. M.; Maeda, K.

    1972-01-01

    The penetration, diffusion and slowing down of electrons in a semi-infinite air medium has been studied by the Monte Carlo method. The results are applicable to the atmosphere at altitudes up to 300 km. Most of the results pertain to monoenergetic electron beams injected into the atmosphere at a height of 300 km, either vertically downwards or with a pitch-angle distribution isotropic over the downward hemisphere. Some results were also obtained for various initial pitch angles between 0 deg and 90 deg. Information has been generated concerning the following topics: (1) the backscattering of electrons from the atmosphere, expressed in terms of backscattering coefficients, angular distributions and energy spectra of reflected electrons, for incident energies T(o) between 2 keV and 2 MeV; (2) energy deposition by electrons as a function of the altitude, down to 80 km, for T(o) between 2 keV and 2 MeV; (3) the corresponding energy depostion by electron-produced bremsstrahlung, down to 30 km; (4) the evolution of the electron flux spectrum as function of the atmospheric depth, for T(o) between 2 keV and 20 keV. Energy deposition results are given for incident electron beams with exponential and power-exponential spectra.

  7. The back-diffusion effect of air on the discharge characteristics of atmospheric-pressure radio-frequency glow discharges using bare metal electrodes

    NASA Astrophysics Data System (ADS)

    Sun, Wen-Ting; Liang, Tian-Ran; Wang, Hua-Bo; Li, He-Ping; Bao, Cheng-Yu

    2007-05-01

    Radio-frequency (RF), atmospheric-pressure glow discharge (APGD) plasmas using bare metal electrodes have promising prospects in the fields of plasma-aided etching, deposition, surface treatment, disinfection, sterilization, etc. In this paper, the discharge characteristics, including the breakdown voltage and the discharge voltage for sustaining a stable and uniform α mode discharge of the RF APGD plasmas are presented. The experiments are conducted by placing the home-made planar-type plasma generator in ambient and in a vacuum chamber, respectively, with helium as the primary plasma-forming gas. When the discharge processes occur in ambient, particularly for the lower plasma-working gas flow rates, the experimental measurements show that it is the back-diffusion effect of air in atmosphere, instead of the flow rate of the gas, that results in the obvious decrease in the breakdown voltage with increasing plasma-working gas flow rate. Further studies on the discharge characteristics, e.g. the luminous structures, the concentrations and distributions of chemically active species in plasmas, with different plasma-working gases or gas mixtures need to be conducted in future work.

  8. Efficient Spectral Diffusion at the Air/Water Interface Revealed by Femtosecond Time-Resolved Heterodyne-Detected Vibrational Sum Frequency Generation Spectroscopy.

    PubMed

    Inoue, Ken-Ichi; Ishiyama, Tatsuya; Nihonyanagi, Satoshi; Yamaguchi, Shoichi; Morita, Akihiro; Tahara, Tahei

    2016-05-19

    Femtosecond vibrational dynamics at the air/water interface is investigated by time-resolved heterodyne-detected vibrational sum frequency generation (TR-HD-VSFG) spectroscopy and molecular dynamics (MD) simulation. The low- and high-frequency sides of the hydrogen-bonded (HB) OH stretch band at the interface are selectively excited with special attention to the bandwidth and energy of the pump pulses. Narrow bleach is observed immediately after excitation of the high-frequency side of the HB OH band at ∼3500 cm(-1), compared to the broad bleach observed with excitation of the low-frequency side at ∼3300 cm(-1). However, the time-resolved spectra observed with the two different excitations become very similar at 0.5 ps and almost indistinguishable by 1.0 ps. This reveals that efficient spectral diffusion occurs regardless of the difference of the pump frequency. The experimental observations are well-reproduced by complementary MD simulation. There is no experimental and theoretical evidence that supports extraordinary slow dynamics in the high-frequency side of the HB OH band, which was reported before. PMID:27120559

  9. Structure and Soot Properties of Nonbuoyant Ethylene/Air Laminar Jet Diffusion Flames. Appendix E; Repr. from AIAA Journal, v. 36 p 1346-1360

    NASA Technical Reports Server (NTRS)

    Urban, D. L.; Yuan, Z.-G.; Sunderland, P. B.; Linteris, G. T.; Voss, J. E.; Lin, K.-C.; Dai, Z.; Sun, K.; Faeth, G. M.; Ross, Howard D. (Technical Monitor)

    2001-01-01

    The structure and soot properties of round, soot-emitting, nonbuoyant, laminar jet diffusion flames are described, based on long-duration (175-230-s) experiments at microgravity carried out on orbit in the Space Shuttle Columbia. Experimental conditions included ethylene-fueled flames burning in still air at nominal pressures of 50 and 100 kPa and an ambient temperature of 300 K with luminous flame lengths of 49-64 mm Measurements included luminous flame shapes using color video imaging soot concentration (volume fraction) distributions using deconvoluted laser extinction imaging, soot temperature distributions using deconvoluted multiline emission imaging, gas temperature distributions at fuel-lean (plume) conditions using thermocouple probes, soot structure distributions using thermophoretic sampling and analysis by transmission electron microscopy, and flame radiation using a radiometer.The present flames were larger, and emitted soot more readily, than comparable flames observed during ground-based microgravity experiments due to closer approach to steady conditions resulting from the longer test times and the reduced gravitational disturbances of the space-based experiments.

  10. Experimental determination of the retention time of reduced temperature of gas-vapor mixture in trace of water droplets moving in counterflow of combustion products

    NASA Astrophysics Data System (ADS)

    Volkov, R. S.; Kuznetsov, G. V.; Strizhak, P. A.

    2016-06-01

    We have experimentally studied temporal variation of the temperature of gas-vapor mixture in the trace of water droplets moving in the counterflow of high-temperature combustion products. The initial gas temperature was within 500-950 K. The water droplet radius in the aerosol flow varied from 40 to 400 μm. The motion of water droplets in the counterflow of combustion products in a 1-m-high hollow quartz cylinder with an internal diameter of 20 cm was visualized by optical flow imaging techniques (interferometric particle imaging, shadow photography, particle tracking velocimetry, and particle image velocimetry) with the aid of a cross-correlation complex setup. The scale of temperature decrease in the mixture of combustion products and water droplets was determined for a pulsed (within 1 s) and continuous supply of aerosol with various droplet sizes. Retention times of reduced temperature (relative to the initial level) in trace of water droplets (aerosol temperature trace) are determined. A hypothesis concerning factors responsible for the variation of temperature in the trace of droplets moving in the counterflow of combustion products is experimentally verified.

  11. Numerical and experimental study of an axisymmetric coflow laminar methane-air diffusion flame at pressures between 5 and 40 atmospheres

    SciTech Connect

    Liu, Fengshan; Thomson, Kevin A.; Guo, Hongsheng; Smallwood, Gregory J.

    2006-08-15

    A numerical and experimental study of an axisymmetric coflow laminar methane-air diffusion flame at pressures between 5 and 40 atm was conducted to investigate the effect of pressure on the flame structure and soot formation characteristics. Experimental work was carried out in a new high-pressure combustion chamber described in a recent study [K.A. Thomson, O.L. Gulder, E.J. Weckman, R.A. Fraser, G.J. Smallwood, D.R. Snelling, Combust. Flame 140 (2005) 222-232]. Radially resolved soot volume fraction was experimentally measured using both spectral soot emission and line-of-sight attenuation techniques. Numerically, the elliptic governing equations were solved in axisymmetric cylindrical coordinates using the finite volume method. Detailed gas-phase chemistry and complex thermal and transport properties were employed in the numerical calculations. The soot model employed in this study accounts for soot nucleation and surface growth using a semiempirical acetylene-based global soot model with oxidation of soot by O{sub 2}, OH, and O taken into account. Radiative heat transfer was calculated using the discrete-ordinates method and a nine-band nongray radiative property model. Two soot surface growth submodels were investigated and the predicted pressure dependence of soot yield was compared with available experimental data. The experiment, the numerical model, and a simplified theoretical analysis found that the visible flame diameter decreases with pressure as P{sub a}{sup -0.5}. The flame-diameter-integrated soot volume fraction increases with pressure as P{sub a}{sup 1.3} between 5 and 20 atm. The assumption of a square root dependence of the soot surface growth rate on the soot particle surface area predicts the pressure dependence of soot yield in good agreement with the experimental observation. On the other hand, the assumption of linear dependence of the soot surface growth rate on the soot surface area predicts a much faster increase in the soot yield with

  12. Asthenospheric counterflows beneath the moving lithosphere of Central and East Asia in the past 90 Ma: volcanic and tomographic evidence

    NASA Astrophysics Data System (ADS)

    Rasskazov, Sergei; Chuvashova, Irina; Kozhevnikov, Vladimir

    2015-04-01

    Asthenospheric counterflows, accompanied motions of the lithosphere in Central and East Asia, are defined on basis of spatial-temporal activity of mantle sources [Rasskazov et al., 2012; Rasskazov, Chuvashova, 2013; Chuvashova, Rasskazov, 2014] and the tomographic model of the Rayleigh wave group velocities [Kozhevnikov et al., 2014]. The opposite fluxes are defined relative to centers of convective instability (low-velocity anomalies), expressed by thinning of the mantle transition layer under Southwestern Gobi (44 °N, 95 °E) and Northern Baikal (52 °N, 108 °E). Cretaceous-Paleogene volcanic fields in Southern Gobi are shifted eastwards relative to the former anomaly over 600 km with the opposite sub-lithospheric flux at depths of 150-300 km. Likewise, the Late Tertiary Vitim volcanic field is shifted relative to the latter anomaly over 100-200 km. We suggest that the Gobi and Baikal asthenospheric counterflows contributed to the rollback mechanism of downgoing slab material from the Pacific under the eastern margin of Asia in the Cretaceous-Paleogene and Early-Middle Miocene. The east-west Gobi reverse flux, caused by differential block motions in front of the Indo-Asian convergence, resulted in the oblique Honshu-Korean flexure of the Pacific slab that propagated beneath the continental margin, while the Japan Sea was quickly opening at about 15 Ma. The Baikal N60°W reverse flux, originated due to oncoming traffic between Eurasia and the Pacific plate, entailed the formation of the Baikal Rift Zone and direct Hokkaido Amur slab flexure [Rasskazov et al., 2004]. The study is supported by the Russian Foundation for Basic Research (Grant 14-05-31328). References Chuvashova I.S., Rasskazov S.V. Magmatic sources in the mantle of the evolving Earth. Irkutsk: Publishing House of the Irkutsk State University, 2014. 310 p. (in Russian) Kozhevnikov V.M., Seredkina A.I., Solovei O.A. 3D mantle structure of Central Asia from Rayleigh wave group velocity dispersion

  13. A Computational and Experimental Study of Coflow Laminar Methane/Air Diffusion Flames: Effects of Fuel Dilution, Inlet Velocity, and Gravity

    NASA Technical Reports Server (NTRS)

    Cao, S.; Ma, B.; Bennett, B. A. V.; Giassi, D.; Stocker, D. P.; Takahashi, F.; Long, M. B.; Smooke, M. D.

    2014-01-01

    The influences of fuel dilution, inlet velocity, and gravity on the shape and structure of laminar coflow CH4-air diffusion flames were investigated computationally and experimentally. A series of nitrogen-diluted flames measured in the Structure and Liftoff in Combustion Experiment (SLICE) on board the International Space Station was assessed numerically under microgravity (mu g) and normal gravity (1g) conditions with CH4 mole fraction ranging from 0.4 to 1.0 and average inlet velocity ranging from 23 to 90 cm/s. Computationally, the MC-Smooth vorticity-velocity formulation was employed to describe the reactive gaseous mixture, and soot evolution was modeled by sectional aerosol equations. The governing equations and boundary conditions were discretized on a two-dimensional computational domain by finite differences, and the resulting set of fully coupled, strongly nonlinear equations was solved simultaneously at all points using a damped, modified Newton's method. Experimentally, flame shape and soot temperature were determined by flame emission images recorded by a digital color camera. Very good agreement between computation and measurement was obtained, and the conclusions were as follows. (1) Buoyant and nonbuoyant luminous flame lengths are proportional to the mass flow rate of the fuel mixture; computed and measured nonbuoyant flames are noticeably longer than their 1g counterparts; the effect of fuel dilution on flame shape (i.e., flame length and flame radius) is negligible when the flame shape is normalized by the methane flow rate. (2) Buoyancy-induced reduction of the flame radius through radially inward convection near the flame front is demonstrated. (3) Buoyant and nonbuoyant flame structure is mainly controlled by the fuel mass flow rate, and the effects from fuel dilution and inlet velocity are secondary.

  14. High-quality GaN epilayer grown by newly designed horizontal counter-flow MOCVD reactor

    NASA Astrophysics Data System (ADS)

    Lee, Cheul-Ro; Son, Sung-Jin; Lee, In-Hwan; Leem, Jae-Young; Noh, Sam Kyu

    1997-12-01

    We have fabricated a newly designed horizontal counter-flow reactor for growing high-quality III-V nitrides and characterized the GaN/sapphire(0 0 0 1) grown in it. The surface morphology of the film was featureless and smooth without any defects such as hillocks or truncated hexagonals. The measured background concentration and carrier mobility of the film 1.5 m thick are 4 × 1017/cm3 and 180 cm2/V s, respectively. The defect density measured by TEM is about 1 × 109/cm2 and the FWHM of DCX-ray curving is 336 arcsec, respectively. This crystallinity is similar to what was commonly obtained for GaN on sapphire until recently. The FWHM of the band-edge emission peak measured by PL at room temperature is typically around 14 and 4 meV for the main extonic peak(DBE) at 10 K. Except DBE at 3.490 eV, two minor structures are detected on the high-energy and low-energy shoulder of DBE at 3.498 eV(FE) and 3.483(ABE).

  15. Ice Nuclei in Mid-Latitude Cirrus: Preliminary Results from a New Counterflow Virtual Impactor (CVI) Aircraft Inlet

    NASA Astrophysics Data System (ADS)

    Froyd, K. D.; Cziczo, D. J.; Murphy, D. M.; Kulkarni, G.; Lawson, P.

    2011-12-01

    Cirrus cloud properties are strongly governed by the mechanism of ice particle formation and by the number and effectiveness of ambient ice nuclei. Airborne measurements of ice nuclei reveal new nucleation mechanisms, provide constraints on microphysical models, and guide laboratory investigations. For over two decades the Counterflow Virtual Impactor (CVI) inlet has remained the prevailing approach for sampling cloud particles to measure ice nuclei from an aircraft platform. However, traditional CVI inlets have fundamental limitations when operating on high speed aircraft, where only a small fraction of ambient cloud particles are typically sampled. A novel 'folded' CVI was constructed and deployed during the NASA MACPEX 2011 campaign. The flow design of this inlet effectively doubles the CVI length and thereby increases the size range of captured cirrus particles. Additional design elements such as an internal vortex flow, a neon carrier gas, and an infrared laser further improve the capture and evaporation of ice crystals. Preliminary results of ice nuclei composition measured by the PALMS single-particle mass spectrometer are presented from the MACPEX campaign. Examples of ice nuclei from mid-latitude cirrus are shown, including mineral dust, organic-rich aerosol with amine and diacid components, and lead-containing aerosol.

  16. Drag and heat reduction mechanism induced by a combinational novel cavity and counterflowing jet concept in hypersonic flows

    NASA Astrophysics Data System (ADS)

    Sun, Xi-wan; Guo, Zhen-yun; Huang, Wei; Li, Shi-bin; Yan, Li

    2016-09-01

    The drag and heat reduction problem of hypersonic reentry vehicles has always attracted the attention worldwide, and many novel schemes have been proposed recently. In the current study, the research progress of the combinational configuration of the forward-facing cavity and the counterflowing jet has been reviewed, and the conventional cavity configuration has been substituted by an approximate maximum thrust nozzle contour for better heat and surface pressure reduction efficiency. The Reynolds-average of Navier-Stokes (RANS) equations coupled with the SST k-ω turbulence model have been employed to calculate its surrounding flow fields. A validation metric and the grid convergence index (GCI) have been employed to conduct the turbulence model assessment and the grid independence analysis respectively. The axisymmetric assumption has been verified by three-dimensional computational results as well. The obtained results show that the SST k-ω model is more suitable for the novel drag and heat flux reduction scheme proposed in this article, and the axisymmetric assumption is approximately reasonable. After investigating the influence of jet pressure ratio, the novel combinational configuration has been verified to be more effective in heat and surface pressure reduction, and this is because the approximate maximum thrust nozzle contour contributes to better expansion and avoids total pressure loss of the jet.

  17. Formation of Counter-Flows by Magnetic Perturbations in Computer Simulations of the Plasma Boundary of Tokamaks

    NASA Astrophysics Data System (ADS)

    Frerichs, H.; Schmitz, O.; Evans, T. E.; Feng, Y.; Reiter, D.

    2014-10-01

    Simulations of the plasma boundary of an ITER similar shape H-mode plasma at DIII-D with the EMC3-EIRENE code have shown that a pattern of counter-flow channels emerges when resonant magnetic perturbations (RMPs) are applied. This pattern is found to be correlated with a flow-reversal in the perturbed scrape-off layer bounded by the perturbed separatrix. As a result of small non-axisymmetric perturbations to an axisymmetric equilibrium field, stable and unstable invariant manifolds associated with the separatrix split and intersect transversely. This so-called homoclinic tangle determines where field lines may connect from inside of the original separatrix to plasma facing components, and it introduces a checkerboard pattern of field lines with short and long connection lengths. In the present contribution we focus on the resulting plasma flows and we give a detailed analysis of the emerging flow pattern. Work supported in part by the US DOE under DE-FC02-04ER54698 and by Start-Up Funds of the U. Wisconsin-Madison.

  18. Preliminary assessment of using tree-tissue analysis and passive-diffusion samplers to evaluate trichloroethene contamination of ground water at Site SS-34N, McChord Air Force Base, Washington, 2001

    USGS Publications Warehouse

    Cox, S.E.

    2002-01-01

    Two low-cost innovative sampling procedures for characterizing trichloroethene (TCE) contamination in ground water were evaluated for use at McChord Air Force Base (AFB) by the U.S. Geological Survey, in cooperation with the U.S. Air Force McChord Air Force Base Installation Restoration Program, in 2001. Previous attempts to characterize the source of ground-water contamination in the heterogeneous glacial outwash aquifer at McChord site SS-34N using soil-gas surveys, direct-push exploration, and more than a dozen ground-water monitoring wells have had limited success. The procedures assessed in this study involved analysis of tree-tissue samples to map underlying ground-water contamination and deploying passive-diffusion samplers to measure TCE concentrations in existing monitoring wells. These procedures have been used successfully at other U.S. Department of Defense sites and have resulted in cost avoidance and accelerated site characterization. Despite the presence of TCE in ground water at site SS-34N, TCE was not detected in any of the 20 trees sampled at the site during either early spring or late summer sampling. The reason the tree tissue procedure was not successful at the McChord AFB site SS-34N may have been due to an inability of tree roots to extract moisture from a water table 30 feet below the land surface, or that concentrations of TCE in ground water were not large enough to be detectable in the tree tissue at the sampling point. Passive-diffusion samplers were placed near the top, middle, and bottom of screened intervals in three monitoring wells and TCE was observed in all samplers. Concentrations of TCE from the passive-diffusion samplers were generally similar to concentrations found in samples collected in the same wells using conventional pumping methods. In contrast to conventional pumping methods, the collection of ground-water samples using the passive-diffusion samples did not generate waste purge water that would require hazardous

  19. Air Pollution.

    ERIC Educational Resources Information Center

    Scorer, Richard S.

    The purpose of this book is to describe the basic mechanisms whereby pollution is transported and diffused in the atmosphere. It is designed to give practitioners an understanding of basic mechanics and physics so they may have a correct basis on which to formulate their decisions related to practical air pollution control problems. Since many…

  20. Counterflow quantum turbulence of He-II in a square channel: Numerical analysis with nonuniform flows of the normal fluid

    NASA Astrophysics Data System (ADS)

    Yui, Satoshi; Tsubota, Makoto

    2015-05-01

    We perform a numerical analysis of counterflow quantum turbulence of superfluid 4He with nonuniform flows by using the vortex filament model. In recent visualization experiments nonuniform laminar flows of the normal fluid, namely, Hagen-Poiseuille flow and tail-flattened flow, have been observed. Tail-flattened flow is a laminar flow in which the outer part of the Hagen-Poiseuille flow becomes flat. In our simulation, the velocity field of the normal fluid is prescribed to be two nonuniform profiles. This work addresses a square channel to obtain important physics not revealed in the preceding numerical works. In the studies of the two profiles we analyze the statistics of the physical quantities. Under Hagen-Poiseuille flow, inhomogeneous quantum turbulence appears as a statistically steady state. The vortex tangle shows a characteristic space-time oscillation. Under tail-flattened flow, the nature of the quantum turbulence depends strongly on that flatness. Vortex line density increases significantly as the profile becomes flatter, being saturated above a certain flatness. The inhomogeneity is significantly reduced in comparison to the case of Hagen-Poiseuille flow. Investigating the behavior of quantized vortices reveals that tail-flattened flow is an intermediate state between Hagen-Poiseuille flow and uniform flow. In both profiles we obtain a characteristic inhomogeneity in the physical quantities, which suggests that a boundary layer of superfluid appears near a solid boundary. The vortex tangle produces a velocity field opposite to the applied superfluid flow, and, consequently, the superfluid flow becomes smaller than the applied one.

  1. Characterization and first results of an ice nucleating particle measurement system based on counterflow virtual impactor technique

    NASA Astrophysics Data System (ADS)

    Schenk, L. P.; Mertes, S.; Kästner, U.; Frank, F.; Nillius, B.; Bundke, U.; Rose, D.; Schmidt, S.; Schneider, J.; Worringen, A.; Kandler, K.; Bukowiecki, N.; Ebert, M.; Curtius, J.; Stratmann, F.

    2014-10-01

    A specific instrument combination was developed to achieve a better microphysical and chemical characterization of atmospheric aerosol particles that have the potential to act as ice nucleating particles (INP). For this purpose a pumped counterflow virtual impactor system called IN-PCVI was set up and characterized to separate ice particles that had been activated on INP in the Fast Ice Nucleus Chamber (FINCH) from interstitial, non-activated particles. This coupled setup consisting of FINCH (ice particle activation and counting), IN-PCVI (INP separation and preparation), and further aerosol instrumentation (INP characterization) had been developed for the application in field experiments. The separated INP were characterized on-line with regard to their total number concentration, number size distribution and chemical composition, especially with the Aircraft-based Laser Ablation Aerosol Mass Spectrometer ALABAMA. Moreover, impactor samples for electron microscopy were taken. Due to the coupling the IN-PCVI had to be operated with different flow settings than known from literature, which required a further characterization of its cut-off-behavior. Taking the changed cut-off-behavior into account, the INP number concentration measured by the IN-PCVI system was in good agreement with the one detected by the FINCH optics for water saturation ratios up to 1.01 (ice saturation ratios between 1.21-1.34 and temperatures between -18 and -26 °C). First field results of INP properties are presented which were gained during the INUIT-JFJ/CLACE 2013 campaign at the high altitude research station Jungfraujoch in the Bernese Alps, Switzerland (3580 m a.s.l.).

  2. Diffusion Flame Stabilization

    NASA Technical Reports Server (NTRS)

    Takahashi, Fumiaki; Katta, V. R.

    2006-01-01

    Diffusion flames are commonly used for industrial burners in furnaces and flares. Oxygen/fuel burners are usually diffusion burners, primarily for safety reasons, to prevent flashback and explosion in a potentially dangerous system. Furthermore, in most fires, condensed materials pyrolyze, vaporize, and burn in air as diffusion flames. As a result of the interaction of a diffusion flame with burner or condensed-fuel surfaces, a quenched space is formed, thus leaving a diffusion flame edge, which plays an important role in flame holding in combustion systems and fire spread through condensed fuels. Despite a long history of jet diffusion flame studies, lifting/blowoff mechanisms have not yet been fully understood, compared to those of premixed flames. In this study, the structure and stability of diffusion flames of gaseous hydrocarbon fuels in coflowing air at normal earth gravity have been investigated experimentally and computationally. Measurements of the critical mean jet velocity (U(sub jc)) of methane, ethane, or propane at lifting or blowoff were made as a function of the coflowing air velocity (U(sub a)) using a tube burner (i.d.: 2.87 mm). By using a computational fluid dynamics code with 33 species and 112 elementary reaction steps, the internal chemical-kinetic structures of the stabilizing region of methane and propane flames were investigated. A peak reactivity spot, i.e., reaction kernel, is formed in the flame stabilizing region due to back-diffusion of heat and radical species against an oxygen-rich incoming flow, thus holding the trailing diffusion flame. The simulated flame base moved downstream under flow conditions close to the measured stability limit.

  3. Diffusion Flame Stabilization

    NASA Technical Reports Server (NTRS)

    Takahashi, Fumiaki; Katta, Viswanath R.

    2007-01-01

    Diffusion flames are commonly used for industrial burners in furnaces and flares. Oxygen/fuel burners are usually diffusion burners, primarily for safety reasons, to prevent flashback and explosion in a potentially dangerous system. Furthermore, in most fires, condensed materials pyrolyze, vaporize, and burn in air as diffusion flames. As a result of the interaction of a diffusion flame with burner or condensed-fuel surfaces, a quenched space is formed, thus leaving a diffusion flame edge, which plays an important role in flame holding in combustion systems and fire spread through condensed fuels. Despite a long history of jet diffusion flame studies, lifting/blowoff mechanisms have not yet been fully understood, compared to those of premixed flames. In this study, the structure and stability of diffusion flames of gaseous hydrocarbon fuels in coflowing air at normal earth gravity have been investigated experimentally and computationally. Measurements of the critical mean jet velocity (U(sub jc)) of methane, ethane, or propane at lifting or blowoff were made as a function of the coflowing air velocity (U(sub a)) using a tube burner (i.d.: 2.87 mm) (Fig. 1, left). By using a computational fluid dynamics code with 33 species and 112 elementary reaction steps, the internal chemical-kinetic structures of the stabilizing region of methane and propane flames were investigated (Fig. 1, right). A peak reactivity spot, i.e., reaction kernel, is formed in the flame stabilizing region due to back-diffusion of heat and radical species against an oxygen-rich incoming flow, thus holding the trailing diffusion flame. The simulated flame base moved downstream under flow conditions close to the measured stability limit.

  4. Flammability measurements of difluoromethane in air at 100 C

    SciTech Connect

    Grosshandler, W.L.; Donnelly, M.K.; Womeldorf, C.

    1999-07-01

    Difluoromethane (CH{sub 2}F{sub 2}, or R-32) is a candidate to replace currently used ozone-depleting chlorofluorocarbon refrigerants. Because CH{sub 2}F{sub 2} is flammable, it is necessary to assess the hazard posed by a leak in a refrigeration machine. The currently accepted method for determining flammability, ASTM E 681, has difficulty discerning the flammability boundary for weak fuels such as CH{sub 2}F{sub 2}. This paper describes an alternative approach to identify the limits of flammability, using a twin, premixed counter-flow flame. By using the extinction of an already established flame, the point dividing flammable from non-flammable becomes unambiguous. The limiting extinction mixture changes with stretch rate, so it is convenient to report the flammability limit as the value extrapolated to a zero stretch condition. In the burner, contoured nozzles with outlet diameters of 12 mm are aligned counter to each other and spaced 12 mm apart. The lean flammability limit of CH{sub 2}F{sub 2} in dry air at room temperature was previously reported by the authors to be a mole fraction of 0.14, using the twin counter-flow flame method. In the current study, relative humidity was not found to affect the lean limit. Increasing the temperature of the premixed fuel and air to 100 C is shown to extend the flammability limit in the lean direction to 0.13. The rich limit of CH{sub 2}F{sub 2} found using the counter-flow method is around 0.27. The uncertainties of the measurements are presented and the results compared to data in the literature.

  5. 24-HOUR DIFFUSIVE SAMPLING OF 1,3-BUTADIENE IN AIR ONTO CARBOPACK X SOLID ADSORBENT FOLLOWED BY THERMAL DESORPTION/GC/MS ANALYSIS - FEASIBILITY STUDY

    EPA Science Inventory

    Diffusive sampling of 1,3-butadiene for 24 hr onto the graphitic adsorbent Carbopack X packed in a stainless steel tube badge (6.3 mm o.d., 5 mm i.d., and 90 mm in length) with analysis by thermal desorption/gas chromatography (GC)/mass spectrometry (MS) has been evaluated in con...

  6. 24-HOUR DIFFUSIVE SAMPLING OF 1,3-BUTADIENE IN AIR ONTO CARBONPAK X SOLID ADSORBENT WITH THEMAL DESORPTION/GC/MS ANALYSIS - FEASIBILITY STUDIES

    EPA Science Inventory

    Diffusive sampling of 1,3-butadiene for 24 hours onto the graphitic adsorbent Carbopack X contained in a stainless steel tube badge (6.3 mm OD, 5 mm ID, and 90 mm in length) with analysis by thermal desorption/GC/MS has been evaluated in controlled tests. A test matrix of 42 tr...

  7. Opposed Jet Burner Extinction Limits: Simple Mixed Hydrocarbon Scramjet Fuels vs Air

    NASA Technical Reports Server (NTRS)

    Pellett, Gerald L.; Vaden, Sarah N.; Wilson, Lloyd G.

    2007-01-01

    Opposed Jet Burner tools have been used extensively by the authors to measure Flame Strength (FS) of laminar non-premixed H2 air and simple hydrocarbon (HC) air counterflow diffusion flames at 1-atm. FS represents a strain-induced extinction limit based on air jet velocity. This paper follows AIAA-2006-5223, and provides new HC air FSs for global testing of chemical kinetics, and for characterizing idealized flameholding potentials during early scramjet-like combustion. Previous FS data included six HCs, pure and N2-diluted; and three HC-diluted H2 fuels, where FS decayed very nonlinearly as HC was added to H2, due to H-atom scavenging. This study presents FSs on mixtures of (candidate surrogate) HCs, some with very high FS ethylene. Included are four binary gaseous systems at 300 K, and a hot ternary system at approx. 600 K. The binaries are methane + ethylene, ethane + ethylene, methane + ethane, and methane + propylene. The first three also form two ternary systems. The hot ternary includes both 10.8 and 21.3 mole % vaporized n-heptane and full ranges of methane + ethylene. Normalized FS data provide accurate means of (1) validating, globally, chemical kinetics for extinction of non-premixed flames, and (2) estimating (scaling by HC) the loss of incipient flameholding in scramjet combustors. The n-heptane is part of a proposed baseline simulant (10 mole % with 30% methane + 60% ethylene) that mimics the ignition of endothermically cracked JP-7 like kerosene fuel, as suggested by Colket and Spadaccini in 2001 in their shock tube Scramjet Fuels Autoignition Study. Presently, we use FS to gauge idealized flameholding, and define HC surrogates. First, FS was characterized for hot nheptane + methane + ethylene; then a hot 36 mole % methane + 64% ethylene surrogate was defined that mimics FS of the baseline simulant system. A similar hot ethane + ethylene surrogate can also be defined, but it has lower vapor pressure at 300 K, and thus exhibits reduced gaseous

  8. Numerical and Physical Simulation of the Low-Velocity Air Flow in a Diffuser with a Circular Cavity in the Case of Suction of the Air from the Central Cylindrical Body Positioned in the Cavity

    NASA Astrophysics Data System (ADS)

    Isaev, S. A.; Guvernyuk, S. V.; Zubin, M. A.; Baranov, P. A.; Ermakov, A. M.

    2015-01-01

    Comparative analysis of the results of solution of the steady-state Reynolds equations closed with the use of the shear-stress transfer model for the air fl ow in a divergent channel with suction of the air from the surface of the cylindrical central body positioned in the circular vortex cavity built in the lower wall of the channel with the corresponding experimental data has been performed.

  9. Improving Best Air Conditioner Efficiency by 20-30% through a High Efficiency Fan and Diffuser Stage Coupled with an Evaporative Condenser Pre-Cooler

    SciTech Connect

    Parker, Danny S; Sherwin, John R; Raustad, Richard

    2014-04-10

    The Florida Solar Energy Center (FSEC) conducted a research project to improve the best residential air conditioner condenser technology currently available on the market by retrofitting a commercially-available unit with both a high efficiency fan system and an evaporative pre-cooler. The objective was to integrate these two concepts to achieve an ultra-efficient residential air conditioner design. The project produced a working prototype that was 30% more efficient compared to the best currently-available technologies; the peak the energy efficiency ratio (EER) was improved by 41%. Efficiency at the Air-Conditioning and Refrigeration Institute (ARI) standard B-condition which is used to estimate seasonal energy efficiency ratio (SEER), was raised from a nominal 21 Btu/Wh to 32 Btu/Wh.

  10. Holographic diffusers

    NASA Astrophysics Data System (ADS)

    Wadle, Stephen; Wuest, Daniel; Cantalupo, John; Lakes, Roderic S.

    1994-01-01

    Holographic diffusers are prepared using silver halide (Agfa 8E75 and Kodak 649F) and photopolymer (Polaroid DMP 128 and DuPont 600, 705, and 150 series) media. It is possible to control the diffusion angle in three ways: by selection of the properties of the source diffuser, by control of its subtended angle, and by selection of the holographic medium. Several conventional diffusers based on refraction or scattering of light are examined for comparison.

  11. EFFECT OF OXYGEN ADDITION ON POLYCYCLIC AROMATIC HYDROCARBON FORMATION IN 1,3 BUTADIENE COUNTER-FLOW DIFFUSION FLAMES. (R826730)

    EPA Science Inventory

    The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...

  12. Diffusion MRI

    NASA Astrophysics Data System (ADS)

    Fukuyama, Hidenao

    Recent advances of magnetic resonance imaging have been described, especially stressed on the diffusion sequences. We have recently applied the diffusion sequence to functional brain imaging, and found the appropriate results. In addition to the neurosciences fields, diffusion weighted images have improved the accuracies of clinical diagnosis depending upon magnetic resonance images in stroke as well as inflammations.

  13. Effects of carbon on oxygen reduction and evolution reactions of gas-diffusion air electrodes based on perovskite-type oxides

    NASA Astrophysics Data System (ADS)

    Nishio, Koji; Molla, Sergio; Okugaki, Tomohiko; Nakanishi, Shinji; Nitta, Iwao; Kotani, Yukinari

    2015-12-01

    Electrochemical properties of three perovskite oxides with different B-site elements, LaMnO3, La0.6Sr0.4FeO3 and LaNiO3, are examined with and without carbon using gas-diffusion electrodes, in comparison with our previous results on La0.5Sr0.5CoO3. Cyclic voltammetry studies reveal very low oxygen reduction current density of carbon-free perovskite oxides, indicating their poor catalytic activity on oxygen reduction reactions. By mixing carbon with perovskite oxides, the oxygen reduction current density is increased by about two orders. The results are consistent with the peroxide pathway mechanism in which the perovskite oxide is highly active on either electrochemical reduction or chemical decomposition. Electrochemical properties of a three-layered gas diffusion electrode demonstrate the peroxide pathway mechanism works even the perovskite oxide and the carbon exist in separate layers. Oxygen evolution reactions are prominently dependent on the oxide species and also on an addition of carbon. The electrode based on carbon-free LaNiO3 or La0.5Sr0.5CoO3 show moderate oxygen evolution activity, and the activity is further enhanced by an addition of carbon, while LaMnO3 and La0.6Sr0.4FeO3 show poor activity even with an addition of carbon.

  14. Atmospheric air diffuse array-needles dielectric barrier discharge excited by positive, negative, and bipolar nanosecond pulses in large electrode gap

    NASA Astrophysics Data System (ADS)

    Zhang, Li; Yang, De-zheng; Wang, Wen-chun; Liu, Zhi-jie; Wang, Sen; Jiang, Peng-chao; Zhang, Shuai

    2014-09-01

    In this paper, positive, negative, and bipolar nanosecond pulses are employed to generate stable and diffuse discharge plasma using array needles-plate electrode configuration at atmospheric pressure. A comparison study of discharge images, electrical characteristics, optical emission spectra, and plasma vibrational temperature and rotational temperatures in three pulsed polarity discharges is carried on under different discharge conditions. It is found that bipolar pulse is beneficial to the excitation of diffuse dielectric barrier discharge, which can generate a room temperature plasma with more homogeneous and higher discharge intensity compared with unipolar discharges. Under the condition of 6 mm electrode gap distance, 26 kV pulse peak voltage, and 150 Hz pulse repetition rate, the emission intensity of N2 (C3Πu → B3Πg) of the bipolar pulsed discharge is 4 times higher than the unipolar discharge (both positive and negative), while the plasma gas temperature is kept at 300 K, which is about 10-20 K lower than the unipolar discharge plasma.

  15. Numerical Evaluation of the "Dual-Kernel Counter-flow" Matric Convolution Integral that Arises in Discrete/Continuous (D/C) Control Theory

    NASA Technical Reports Server (NTRS)

    Nixon, Douglas D.

    2009-01-01

    Discrete/Continuous (D/C) control theory is a new generalized theory of discrete-time control that expands the concept of conventional (exact) discrete-time control to create a framework for design and implementation of discretetime control systems that include a continuous-time command function generator so that actuator commands need not be constant between control decisions, but can be more generally defined and implemented as functions that vary with time across sample period. Because the plant/control system construct contains two linear subsystems arranged in tandem, a novel dual-kernel counter-flow convolution integral appears in the formulation. As part of the D/C system design and implementation process, numerical evaluation of that integral over the sample period is required. Three fundamentally different evaluation methods and associated algorithms are derived for the constant-coefficient case. Numerical results are matched against three available examples that have closed-form solutions.

  16. Activated transport in the νT=1 exciton condensate at balanced and imbalanced densities measured in drag and counter-flow configuration

    NASA Astrophysics Data System (ADS)

    Wiersma, R. D.; Lok, J. G. S.; Kraus, S.; Dietsche, W.; von Klitzing, K.; Schuh, D.; Bichler, M.; Tranitz, H.-P.; Wegscheider, W.

    2006-08-01

    We observe the total filling factor νT=1 exciton condensate in independently contacted bilayer two-dimensional electron systems in samples with minute tunnel coupling. At balanced electron densities in the layers, we find for both drag and counter-flow current configurations, thermally activated transport with a monotonic increase of the activation energy for d/ℓB<1.65 with activation energies up to 0.4 K. In the imbalanced system the activation energies show a striking asymmetry around the balance point, implying that the gap to charge excitations is considerably different in the separate layers that form the bilayer condensate. This indicates that the measured activation energy is neither the binding energy of the excitons, nor their condensation energy.

  17. Ti Diffusion in Pyroxene

    NASA Astrophysics Data System (ADS)

    Cherniak, D.; Liang, Y.

    2008-12-01

    Diffusion of titanium has been characterized in natural enstatite and diopside under buffered conditions and in air. The sources of diffusant for the enstatite experiments were mixtures of Mg, Si and Ti oxide powders, which were combined and heated at 1300°C overnight, and then thoroughly mixed with synthesized enstatite powder and heated for an additional day at 1300°C. Sources for diopside experiments were prepared similarly, using Ca, Mg, Si, and Ti oxide powders combined with synthesized diopside powder, with heating of source materials at 1200°C. Buffered experiments were prepared by enclosing source material and pyroxene (polished and pre-annealed under conditions comparable to those to be experienced in the experiment) in AgPd or platinum capsules, placing the metal capsule in a silica glass capsule with a solid buffer (to buffer at NNO or IW) and sealing the assembly under vacuum. Some experiments on enstatite were run in air; sample and source were placed in Pt capsules and crimped shut. Prepared capsules were then annealed in 1 atm furnaces for times ranging from 8 hours to a few months, at temperatures from 950 to 1200°C. The Ti distributions in the pyroxene were profiled with Rutherford Backscattering Spectrometry (RBS). The following Arrhenius relation is obtained for Ti diffusion in a natural enstatite, for diffusion normal to the (210) cleavage face (950 - 1150°C, experiments run in air): DTi = 1.9×10-10 exp(-300 ± 44 kJ mol-1/RT) m2 sec-1. Diffusion under NNO and IW-buffered conditions is similar to that for experiments run in air, suggesting little dependence of Ti diffusion on oxygen fugacity. There is also little evidence of anisotropy, as diffusion normal to (001) does not differ significantly from diffusion for the other orientation. Preliminary findings for Ti diffusion in diopside suggest diffusivities similar to those for enstatite. Ti diffusivities in enstatite are similar to those of the trivalent REEs (Cherniak and Liang, 2007

  18. Diffusion Flame Extinction in a Low Strain Flow

    NASA Technical Reports Server (NTRS)

    Sutula, Jason; Jones, Joshua; Torero, Jose L.; Borlik, Jeffrey; Ezekoye, Ofodike A.

    1997-01-01

    Diffusion flames are of great interest in fire safety and many industrial processes. Many parameters significantly affect the flame structure, shape and stability, of particular importance are the constraints imposed by geometrical boundaries. Physical boundaries determine the characteristics of the flow, affect heat, fuel, and oxidizer transport from and towards the flame and can act as heat sinks or heat sources. As a result, the existence of a flame, its shape and nature are intimately related to the geometrical characteristics of the environment that surrounds it. The counter-flow configuration provides a constant strain flow, therefore, is ideal to study the structure of diffusion flames. Most studies have concentrated on the high velocity, high strain limit, since buoyantly induced instabilities will disintegrate the planar flame as the velocity decreases. Only recently, experimental studies in micro-gravity conditions have begun to explore the low strain regimes. The main objective of these on-going studies is to determine the effect of radiative heat losses and variable strain on the structure and radiation-induced extinction of diffusion flames. For these programs, size, geometry, and experimental conditions have been chosen to keep the flame unaffected by the physical boundaries. Whether is the burning of condensed or gaseous fuels, for most real situations the boundaries impose a significant effect on the nature of the flame. There is, therefore, a need to better understand the effect that geometrical constraints (i.e. flow nonperpendicular to a fuel surface, heat losses to the boundaries, etc.) might have on the final characteristics of a diffusion flame. Preliminary experiments have shown that, in the absence of gravity, and depending on the distance from the flame to the boundary, three characteristically different regimes can be observed. Close to the boundary, the flame is parabolic, very thin and blue, almost soot-less. Diffusion is the main

  19. Temperature dependence of Soret and diffusion coefficients for toluene-cyclohexane mixture measured in convection-free environment.

    PubMed

    Mialdun, A; Shevtsova, V

    2015-12-14

    We report on the measurement of diffusion (D), Soret (S(T)), and thermodiffusion (D(T)) coefficients in toluene-cyclohexane mixture with mass fraction of toluene 0.40 onboard of the International Space Station. The coefficients were measured in the range of the mean temperatures between 20 °C and 34 °C. The Soret coefficient is negative within the investigated temperature range and its absolute value |S(T)| decreases with increasing temperature. The diffusion coefficient for this system increases with temperature rising. For comparison, the temperature dependence of diffusion coefficient was measured in ground laboratory using counter-flow cell technique and revealed a good agreement with microgravity results. A non-direct comparison of the measured onboard Soret coefficients with different systems indicated a similar trend for the temperature dependent behavior. Unexpected experimental finding is that for this system the thermodiffusion coefficient D(T) does not depend on temperature. PMID:26671399

  20. Temperature dependence of Soret and diffusion coefficients for toluene-cyclohexane mixture measured in convection-free environment

    NASA Astrophysics Data System (ADS)

    Mialdun, A.; Shevtsova, V.

    2015-12-01

    We report on the measurement of diffusion (D), Soret (ST), and thermodiffusion (DT) coefficients in toluene-cyclohexane mixture with mass fraction of toluene 0.40 onboard of the International Space Station. The coefficients were measured in the range of the mean temperatures between 20 °C and 34 °C. The Soret coefficient is negative within the investigated temperature range and its absolute value |ST| decreases with increasing temperature. The diffusion coefficient for this system increases with temperature rising. For comparison, the temperature dependence of diffusion coefficient was measured in ground laboratory using counter-flow cell technique and revealed a good agreement with microgravity results. A non-direct comparison of the measured onboard Soret coefficients with different systems indicated a similar trend for the temperature dependent behavior. Unexpected experimental finding is that for this system the thermodiffusion coefficient DT does not depend on temperature.

  1. Non-fouling heat exchanger preheats plant make-up air: saves $13,000 in first year

    SciTech Connect

    Goss, J.

    1980-08-01

    Air exchanges to maintain a comfortable working environment at Gates Rubber Company in Denver, Colorado, involves general exhaust from V-belt vulcanization lines. A ventilation system without heat recovery or make-up air heaters had been in use, but the goal of the company was to install a sytem that could handle normal plant exhaust air without filtration and involve little or no mechanization. A counter-flow, air-to-air heat exchanger having no moving parts has been used successfully to recover heat from many dirty industrial process exhausts. Heat recovery efficiencies range from 50 to 80%. Four heat exchangers, arranged in parallel, were installed in one of the 30,000 scfm exhaust/make-up air systems at the Denver plant and savings amounted to $13,000 the first year.

  2. DESCRIPTION OF ATMOSPHERIC TRANSPORT PROCESSES IN EULERIAN AIR QUALITY MODELS

    EPA Science Inventory

    Key differences among many types of air quality models are the way atmospheric advection and turbulent diffusion processes are treated. Gaussian models use analytical solutions of the advection-diffusion equations. Lagrangian models use a hypothetical air parcel concept effecti...

  3. Air cycle machine for an aircraft environmental control system

    NASA Technical Reports Server (NTRS)

    Decrisantis, Angelo A. (Inventor); O'Coin, James R. (Inventor); Taddey, Edmund P. (Inventor)

    2010-01-01

    An ECS system includes an ACM mounted adjacent an air-liquid heat exchanger through a diffuser that contains a diffuser plate. The diffuser plate receives airflow from the ACM which strikes the diffuser plate and flows radially outward and around the diffuser plate and into the air-liquid heat exchanger to provide minimal pressure loss and proper flow distribution into the air-liquid heat exchanger with significantly less packaging space.

  4. Vaneless diffusers

    NASA Astrophysics Data System (ADS)

    Senoo, Y.

    The influence of vaneless diffusers on flow in centrifugal compressors, particularly on surge, is discussed. A vaneless diffuser can demonstrate stable operation in a wide flow range only if it is installed with a backward leaning blade impeller. The circumferential distortion of flow in the impeller disappears quickly in the vaneless diffuser. The axial distortion of flow at the diffuser inlet does not decay easily. In large specific speed compressors, flow out of the impeller is distorted axially. Pressure recovery of diffusers at distorted inlet flow is considerably improved by half guide vanes. The best height of the vanes is a little 1/2 diffuser width. In small specific speed compressors, flow out of the impeller is not much distorted and pressure recovery can be predicted with one-dimensional flow analysis. Wall friction loss is significant in narrow diffusers. The large pressure drop at a small flow rate can cause the positive gradient of the pressure-flow rate characteristic curve, which may cause surging.

  5. Counterion Diffusion in Ionomers

    NASA Astrophysics Data System (ADS)

    Walter, Russell; Winey, Karen; Kim, Joon-Seop; Composto, Russell

    2004-03-01

    Diffusion of Cs counterions to the air/ionomer film interface is followed using Rutherford backscattering spectrometry and results compared with the "sticky reptation" model[1]. The ionomer system is poly(styrene-ran-methacrylic acid) (Cs-SMAA) neutralized at 100% by Cs. The concentration profiles exhibit a surface excess, z*, of Cs followed by a depletion of Cs. The z* and depletion layer thickness grow as t1/2, consistent with diffusion limited growth. Annealing studies at 130 °C, 145 °C and 208 °C were used to extract the diffusion coefficient, D. In all cases, D is greater than that of the matrix chains. These results suggest that the diffusion rate is controlled by the fraction of counterions that disassociate from the acid groups and migrate through the matrix. Moreover, the "sticky reptation" model doesn't appear to predict the diffusion behavior in the Cs-SMAA system. [1] Leibler, L, Ludwick, L., Rubinstein, M., Colby, R.H., Macromolecules 24 (1991) 4701.

  6. Flame Propagation of Butanol Isomers/Air Mixtures

    SciTech Connect

    Veloo, Peter S.; Egolfopoulos, Fokion N.

    2011-01-01

    An experimental and computational study was conducted on the propagation of flames of saturated butanol isomers. The experiments were performed in the counterflow configuration under atmospheric pressure, unburned mixture temperature of 343 K, and for a wide range of equivalence ratios. The experiments were simulated using a recent kinetic model for the four isomers of butanol. Results indicate that n-butanol/air flames propagate somewhat faster than both sec-butanol/air and iso-butanol/air flames, and that tert-butanol/air flames propagate notably slower compared to the other three isomers. Reaction path analysis of tert-butanol/air flames revealed that iso-butene is a major intermediate, which subsequently reacts to form the resonantly stable iso-butenyl radical retarding thus the overall reactivity of tert-butanol/air flames relatively to the other three isomers. Through sensitivity analysis, it was determined that the mass burning rates of sec-butanol/air and iso-butanol/air flames are sensitive largely to hydrogen, carbon monoxide, and C{sub 1}–C{sub 2} hydrocarbon kinetics and not to fuel-specific reactions similarly to n-butanol/air flames. However, for tert-butanol/air flames notable sensitivity to fuel-specific reactions exists. While the numerical results predicted closely the experimental data for n-butanol/air and sec-butanol/air flames, they overpredicted and underpredicted the laminar flame speeds for iso-butanol/air and tert-butanol/air flames respectively. It was demonstrated further that the underprediction of the laminar flame speeds of tert-butanol/air flames by the model was most likely due to deficiencies of the C{sub 4}-alkene kinetics.

  7. Diffusion barriers

    NASA Technical Reports Server (NTRS)

    Nicolet, M. A.

    1983-01-01

    The choice of the metallic film for the contact to a semiconductor device is discussed. One way to try to stabilize a contact is by interposing a thin film of a material that has low diffusivity for the atoms in question. This thin film application is known as a diffusion barrier. Three types of barriers can be distinguished. The stuffed barrier derives its low atomic diffusivity to impurities that concentrate along the extended defects of a polycrystalline layer. Sacrificial barriers exploit the fact that some (elemental) thin films react in a laterally uniform and reproducible fashion. Sacrificial barriers have the advantage that the point of their failure is predictable. Passive barriers are those most closely approximating an ideal barrier. The most-studied case is that of sputtered TiN films. Stuffed barriers may be viewed as passive barriers whose low diffusivity material extends along the defects of the polycrystalline host.

  8. Diffuse radiation

    NASA Technical Reports Server (NTRS)

    1981-01-01

    A diffuse celestial radiation which is isotropic at least on a course scale were measured from the soft X-ray region to about 150 MeV, at which energy the intensity falls below that of the galactic emission for most galactic latitudes. The spectral shape, the intensity, and the established degree of isotropy of this diffuse radiation already place severe constraints on the possible explanations for this radiation. Among the extragalactic theories, the more promising explanations of the isotropic diffuse emission appear to be radiation from exceptional galaxies from matter antimatter annihilation at the boundaries of superclusters of galaxies of matter and antimatter in baryon symmetric big bang models. Other possible sources for extragalactic diffuse gamma radiation are discussed and include normal galaxies, clusters of galaxies, primordial cosmic rays interacting with intergalactic matter, primordial black holes, and cosmic ray leakage from galaxies.

  9. Heat transfer, diffusion, and evaporation

    NASA Technical Reports Server (NTRS)

    Nusselt, Wilhelm

    1954-01-01

    Although it has long been known that the differential equations of the heat-transfer and diffusion processes are identical, application to technical problems has only recently been made. In 1916 it was shown that the speed of oxidation of the carbon in iron ore depends upon the speed with which the oxygen of the combustion air diffuses through the core of gas surrounding the carbon surface. The identity previously referred to was then used to calculate the amount of oxygen diffusing to the carbon surface on the basis of the heat transfer between the gas stream and the carbon surface. Then in 1921, H. Thoma reversed that procedure; he used diffusion experiments to determine heat-transfer coefficients. Recently Lohrisch has extended this work by experiment. A technically very important application of the identity of heat transfer and diffusion is that of the cooling tower, since in this case both processes occur simultaneously.

  10. Effects of sodium meta bisulfite on diffusion fermentation of fodder beets for fuel ethanol production. [Saccharomyces cerevisiae

    SciTech Connect

    Gibbons, W.R.; Westby, C.A.

    1987-01-01

    The authors designed and tested a new process for converting fodder beets to ethanol: continuous diffusion-fermentation. This process utilizes the simultaneous diffusion-fermentation concept of the EX-FERM design; however, it overcomes the material handling problems inherent in that system by utilizing a counterflow tubular auger system. This process also eliminates the need for roller mills or presses and dryers which are required for alcohol recovery from solid phase fermentation. The latter is the only other currently feasible procedure for producing distillably worthwhile amounts of ethanol from fodder beets, sweet sorghum, and other similar feedstocks. Results on the use of sodium meta bisulfite (SMB) for contamination control with fermenting fodder beet cubes are reported.

  11. Development of a small air-cooled ``midnight sun'' thermophotovoltaic electric generator

    NASA Astrophysics Data System (ADS)

    Fraas, Lewis M.; Xiang, Huang Han; Hui, She; Ferguson, Luke; Samaras, John; Ballantyne, Russ; Seal, Michael; West, Ed

    1996-02-01

    A natural gas fired thermophotovoltaic generator using infrared-sensitive GaSb cells and a silicon carbide emitter is described. The emitter is designed to operate at 1400 °C. Twelve GaSb receivers surround the emitter. Each receiver contains a string of series connected cells. Special infrared filters are bonded to each cell. These filters transmit short wavelength useful IR to the cells while reflecting longer wavelength IR back to the emitter. Combustion air is supplied to the burner through a counterflow heat exchanger where the air is preheated by the exhaust from the burner. The unit is air cooled and designed to produce approximately 100 Watts of electric power.

  12. Defusing Diffusion

    ERIC Educational Resources Information Center

    Dou, Remy; Hogan, DaNel; Kossover, Mark; Spuck, Timothy; Young, Sarah

    2013-01-01

    Diffusion has often been taught in science courses as one of the primary ways by which molecules travel, particularly within organisms. For years, classroom teachers have used the same common demonstrations to illustrate this concept (e.g., placing drops of food coloring in a beaker of water). Most of the time, the main contributor to the motion…

  13. Relativistic diffusion

    NASA Astrophysics Data System (ADS)

    Haba, Z.

    2009-02-01

    We discuss relativistic diffusion in proper time in the approach of Schay (Ph.D. thesis, Princeton University, Princeton, NJ, 1961) and Dudley [Ark. Mat. 6, 241 (1965)]. We derive (Langevin) stochastic differential equations in various coordinates. We show that in some coordinates the stochastic differential equations become linear. We obtain momentum probability distribution in an explicit form. We discuss a relativistic particle diffusing in an external electromagnetic field. We solve the Langevin equations in the case of parallel electric and magnetic fields. We derive a kinetic equation for the evolution of the probability distribution. We discuss drag terms leading to an equilibrium distribution. The relativistic analog of the Ornstein-Uhlenbeck process is not unique. We show that if the drag comes from a diffusion approximation to the master equation then its form is strongly restricted. The drag leading to the Tsallis equilibrium distribution satisfies this restriction whereas the one of the Jüttner distribution does not. We show that any function of the relativistic energy can be the equilibrium distribution for a particle in a static electric field. A preliminary study of the time evolution with friction is presented. It is shown that the problem is equivalent to quantum mechanics of a particle moving on a hyperboloid with a potential determined by the drag. A relation to diffusions appearing in heavy ion collisions is briefly discussed.

  14. Demonstrating Diffusion

    ERIC Educational Resources Information Center

    Foy, Barry G.

    1977-01-01

    Two demonstrations are described. Materials and instructions for demonstrating movement of molecules into cytoplasm using agar blocks, phenolphthalein, and sodium hydroxide are given. A simple method for demonstrating that the rate of diffusion of a gas is inversely proportional to its molecular weight is also presented. (AJ)

  15. Relativistic diffusion.

    PubMed

    Haba, Z

    2009-02-01

    We discuss relativistic diffusion in proper time in the approach of Schay (Ph.D. thesis, Princeton University, Princeton, NJ, 1961) and Dudley [Ark. Mat. 6, 241 (1965)]. We derive (Langevin) stochastic differential equations in various coordinates. We show that in some coordinates the stochastic differential equations become linear. We obtain momentum probability distribution in an explicit form. We discuss a relativistic particle diffusing in an external electromagnetic field. We solve the Langevin equations in the case of parallel electric and magnetic fields. We derive a kinetic equation for the evolution of the probability distribution. We discuss drag terms leading to an equilibrium distribution. The relativistic analog of the Ornstein-Uhlenbeck process is not unique. We show that if the drag comes from a diffusion approximation to the master equation then its form is strongly restricted. The drag leading to the Tsallis equilibrium distribution satisfies this restriction whereas the one of the Jüttner distribution does not. We show that any function of the relativistic energy can be the equilibrium distribution for a particle in a static electric field. A preliminary study of the time evolution with friction is presented. It is shown that the problem is equivalent to quantum mechanics of a particle moving on a hyperboloid with a potential determined by the drag. A relation to diffusions appearing in heavy ion collisions is briefly discussed. PMID:19391727

  16. Evaluation of the effect of different sampling time periods and ambient air pollutant concentrations on the performance of the Radiello diffusive sampler for the analysis of VOCs by TD-GC/MS.

    PubMed

    Gallego, E; Roca, F J; Perales, J F; Guardino, X

    2011-09-01

    The effect of different sampling exposure times and ambient air pollutant concentrations on the performance of Radiello® samplers for analysis of volatile organic compounds (VOCs) is evaluated. Quadruplicate samples of Radiello® passive tubes were taken for 3, 4, 7 and 14 days. Samples were taken indoors during February and March 2010 and outdoors during July 2010 in La Canonja (Tarragona, Spain). The analysis was performed by automatic thermal desorption (ATD) coupled with capillary gas chromatography (GC)/mass spectrometry detection (MS). The results show significant differences (t-test, p < 0.05) between the amounts of VOCs obtained from the sum of two short sampling periods and a single equivalent longer sampling period for 65% of all the data. 17% of the results show significantly larger amounts of pollutant in the sum of two short sampling periods. Back diffusion due to changes in concentrations together with saturation and competitive effects between the compounds during longer sampling periods could be responsible for these differences. The other 48% of the results that are different show significantly larger amounts in the single equivalent longer sampling period. The remaining 35% of the results do not show significant differences. Although significant differences are observed in the amount of several VOCs collected over two shorter sampling intervals compared to the amount collected during a single equivalent longer sampling period, the ratios obtained are very close to unity (between 0.7 and 1.2 in 75% of cases). We conclude that Radiello® passive samplers are useful tools if their limitations are taken into account and the manufacturer's recommendations are followed. PMID:21829856

  17. Diffusion bonding

    DOEpatents

    Anderson, Robert C.

    1976-06-22

    1. A method for joining beryllium to beryllium by diffusion bonding, comprising the steps of coating at least one surface portion of at least two beryllium pieces with nickel, positioning a coated surface portion in a contiguous relationship with an other surface portion, subjecting the contiguously disposed surface portions to an environment having an atmosphere at a pressure lower than ambient pressure, applying a force upon the beryllium pieces for causing the contiguous surface portions to abut against each other, heating the contiguous surface portions to a maximum temperature less than the melting temperature of the beryllium, substantially uniformly decreasing the applied force while increasing the temperature after attaining a temperature substantially above room temperature, and maintaining a portion of the applied force at a temperature corresponding to about maximum temperature for a duration sufficient to effect the diffusion bond between the contiguous surface portions.

  18. An Air Quality Data Analysis System for Interrelating Effects, Standards and Needed Source Reductions

    ERIC Educational Resources Information Center

    Larsen, Ralph I.

    1973-01-01

    Makes recommendations for a single air quality data system (using average time) for interrelating air pollution effects, air quality standards, air quality monitoring, diffusion calculations, source-reduction calculations, and emission standards. (JR)

  19. Flow/Soot-Formation Interactions in Nonbuoyant Laminar Diffusion Flames

    NASA Technical Reports Server (NTRS)

    Dai, Z.; Lin, K.-C.; Sunderland, P. B.; Xu, F.; Faeth, G. M.

    2002-01-01

    This is the final report of a research program considering interactions between flow and soot properties within laminar diffusion flames. Laminar diffusion flames were considered because they provide model flame systems that are far more tractable for theoretical and experimental studies than more practical turbulent diffusion flames. In particular, understanding the transport and chemical reaction processes of laminar flames is a necessary precursor to understanding these processes in practical turbulent flames and many aspects of laminar diffusion flames have direct relevance to turbulent diffusion flames through application of the widely recognized laminar flamelet concept of turbulent diffusion flames. The investigation was divided into three phases, considering the shapes of nonbuoyant round laminar jet diffusion flames in still air, the shapes of nonbuoyant round laminar jet diffusion flames in coflowing air, and the hydrodynamic suppression of soot formation in laminar diffusion flames.

  20. An automated oxide and diffusion facility for IC's

    NASA Technical Reports Server (NTRS)

    Kennedy, B. W.

    1980-01-01

    Report discusses totally-automated oxidation and diffusion facility for fabricating IC's. Several innovations are demonstrated: process controller specifically designed for semiconductor processing; automatic loading system to accept wafers from air track, insert them in quartz carrier, and place carrier on paddle for insertion into furnace; automatic unloading of wafers back onto air track; and boron diffusion using diborane.

  1. Quantum diffusion

    SciTech Connect

    Habib, S.

    1994-10-01

    We consider a simple quantum system subjected to a classical random force. Under certain conditions it is shown that the noise-averaged Wigner function of the system follows an integro-differential stochastic Liouville equation. In the simple case of polynomial noise-couplings this equation reduces to a generalized Fokker-Planck form. With nonlinear noise injection new ``quantum diffusion`` terms rise that have no counterpart in the classical case. Two special examples that are not of a Fokker-Planck form are discussed: the first with a localized noise source and the other with a spatially modulated noise source.

  2. DIFFUSION PUMP

    DOEpatents

    Levenson, L.

    1963-09-01

    A high-vacuum diffusion pump is described, featuring a novel housing geometry for enhancing pumping speed. An upright, cylindrical lower housing portion is surmounted by a concentric, upright, cylindrical upper housing portion of substantially larger diameter; an uppermost nozzle, disposed concentrically within the upper portion, is adapted to eject downwardly a conical sheet of liquid outwardly to impinge upon the uppermost extremity of the interior wall of the lower portion. Preferably this nozzle is mounted upon a pedestal rising coaxially from within the lower portion and projecting up into said upper portion. (AEC)

  3. Correlation of flame speed with stretch in turbulent premixed methane/air flames

    SciTech Connect

    Chen, J.H.; Im, H.G.

    1998-03-01

    Direct numerical simulations of two-dimensional unsteady premixed methane/air flames are performed to determine the correlation of flame speed with stretch over a wide range of curvatures and strain rates generated by intense two-dimensional turbulence. Lean and stoichiometric premixtures are considered with a detailed C{sub 1}-mechanism for methane oxidation. The computed correlation shows the existence of two distinct stable branches. It further shows that exceedingly large negative values of stretch can be obtained solely through curvature effects which give rise to an overall nonlinear correlation of the flame speed with stretch. Over a narrower stretch range, {minus}1 {le} Ka {le} 1, which includes 90% of the sample, the correlation is approximately linear, and hence, the asymptotic theory for stretch is practically applicable. Overall, one-third of the sample has negative stretch. In this linear range, the Markstein number associated with the positive branch is determined and is consistent with values obtained from comparable steady counterflow computations. In addition to this conventional positive branch, a negative branch is identified. This negative branch occurs when a flame cusp, with a center of curvature in the burnt gases, is subjected to intense compressive strain, resulting in a negative displacement speed. Negative flame speeds are also encountered for extensive tangential strain rates exceeding a Karlovitz number of unity, a value consistent with steady counterflow computations.

  4. Air Pollution

    MedlinePlus

    Air pollution is a mixture of solid particles and gases in the air. Car emissions, chemicals from factories, dust, ... a gas, is a major part of air pollution in cities. When ozone forms air pollution, it's ...

  5. Air Pollution

    MedlinePlus

    Air pollution is a mixture of solid particles and gases in the air. Car emissions, chemicals from factories, ... Ozone, a gas, is a major part of air pollution in cities. When ozone forms air pollution, it's ...

  6. Kinetic Effects of Aromatic Molecular Structures on Diffusion Flame Extinction

    SciTech Connect

    Won, Sang Hee; Dooley, S.; Dryer, F. L.; Ju, Yiguang

    2011-01-01

    Kinetic effects of aromatic molecular structures for jet fuel surrogates on the extinction of diffusion flames have been investigated experimentally and numerically in the counterflow configuration for toluene, n-propylbenzene, 1,2,4-trimethylbenzene, and 1,3,5-trimethylbenzene. Quantitative measurement of OH concentration for aromatic fuels was conducted by directly measuring the quenching rate from the emission lifetimes of OH planar laser induced fluorescence (LIF). The kinetic models for toluene and 1,2,4-trimethylbenzene were validated against the measurements of extinction strain rates and LIF measurements. A semi-detailed n-propylbenzene kinetic model was developed and tested. The experimental results showed that the extinction limits are ranked from highest to lowest as n-propylbenzene, toluene, 1,2,4-trimethylbenzene, and 1,3,5-trimethylbenzene. The present models for toluene and n-propylbenzene agree reasonably well with the measurements, whereas the model for 1,2,4-trimethylbenzene under-estimates extinction limits. Kinetic pathways of OH production and consumption were analyzed to investigate the impact of fuel fragmentation on OH formation. It was found that, for fuels with different molecular structures, the fuel decomposition pathways and their propagation into the formation of radical pool play an important role to determine the extinction limits of diffusion flames. Furthermore, OH concentrations were found to be representative of the entire radical pool concentration, the balance between chain branching and propagation/termination reactions and the balance between heat production from the reaction zone and heat losses to the fuel and oxidizer sides. Finally, a proposed “OH index,” was defined to demonstrate a linear correlation between extinction strain rate and OH index and fuel mole fraction, suggesting that the diffusion flame extinctions for the tested aromatic fuels can be determined by the capability of a fuel to establish a radical pool

  7. Unsteady Effects in Methane Diffusion Flame-Vortex Ring Interactions

    NASA Astrophysics Data System (ADS)

    Safta, Cosmin; Madnia, Cyrus K.

    2002-11-01

    Direct Numerical Simulations of nonpremixed flame - vortex ring interactions are performed. The methane combustion is modeled by the GRI-Mech v2.11 kinetic mechanism. The vortex ring is generated by a finite duration axisymmetric jet that is pushed into a quiescent oxidizer. The much higher temperature of the oxidizer compared to the fuel leads to the auto-ignition of the vortex ring. The flame intensity is controlled by adjusting the initial fuel and oxidizer concentrations. The unsteady effects on the various flame regions surrounding the ring are assessed by comparisons with steady and unsteady counterflow diffusion flame simulations. In order to obtain equivalent flames, the fuel and oxidizer concentrations, as well as the mixture fraction dissipation at the flame surface are matched between the two configurations. Since HCO is found to be a good marker of the heat release rate, its characteristic time is used as a surrogate for the flame characteristic time. It is observed that there is a good correlation between the values of the HCO characteristic time and the departure of the front flame from the steady state. The unsteady effects of the vortex ring on the flame structure are further assessed by examining the balance between the terms in the species and temperature transport equations.

  8. Cold air systems: Sleeping giant

    SciTech Connect

    MacCracken, C.D. )

    1994-04-01

    This article describes how cold air systems help owners increase the profits from their buildings by reducing electric costs and improving indoor air quality through lower relative humidity levels. Cold air distribution involves energy savings, cost savings, space savings, greater comfort, cleaner air, thermal storage, tighter ducting, coil redesign, lower relative humidities, retrofitting, and improved indoor air quality (IAQ). It opens a door for architects, engineers, owners, builders, environmentalists, retrofitters, designers, occupants, and manufacturers. Three things have held up cold air's usage: multiple fan-powered boxes that ate up the energy savings of primary fans. Cold air room diffusers that provided inadequate comfort. Condensation from ducts, boxes, and diffusers. Such problems have been largely eliminated through research and development by utilities and manufacturers. New cold air diffusers no longer need fan powered boxes. It has also been found that condensation is not a concern so long as the ducts are located in air conditioned space, such as drop ceilings or central risers, where relative humidity falls quickly during morning startup.

  9. Dual-pump CARS temperature and major species concentration measurements in counter-flow methane flames using narrowband pump and broadband Stokes lasers

    SciTech Connect

    Thariyan, Mathew P.; Ananthanarayanan, Vijaykumar; Bhuiyan, Aizaz H.; Naik, Sameer V.; Gore, Jay P.; Lucht, Robert P.

    2010-07-15

    Dual-pump coherent anti-Stokes Raman scattering (CARS) is used to measure temperature and species profiles in representative non-premixed and partially-premixed CH{sub 4}/O{sub 2}/N{sub 2} flames. A new laser system has been developed to generate a tunable single-frequency beam for the second pump beam in the dual-pump N{sub 2}-CO{sub 2} CARS process. The second harmonic output ({proportional_to}532 nm) from an injection-seeded Nd:YAG laser is used as one of the narrowband pump beams. The second single-longitudinal-mode pump beam centered near 561 nm is generated using an injection-seeded optical parametric oscillator, consisting of two non-linear {beta}-BBO crystals, pumped using the third harmonic output ({proportional_to}355 nm) of the same Nd:YAG laser. A broadband dye laser (BBDL), pumped using the second harmonic output of an unseeded Nd:YAG laser, is employed to produce the Stokes beam centered near 607 nm with full-width-at-half-maximum of {proportional_to}250 cm{sup -1}. The three beams are focused between two opposing nozzles of a counter-flow burner facility to measure temperature and major species concentrations in a variety of CH{sub 4}/O{sub 2}/N{sub 2} non-premixed and partially-premixed flames stabilized at a global strain rate of 20 s{sup -1} at atmospheric-pressure. For the non-premixed flames, excellent agreement is observed between the measured profiles of temperature and CO{sub 2}/N{sub 2} concentration ratios with those calculated using an opposed-flow flame code with detailed chemistry and molecular transport submodels. For partially-premixed flames, with the rich side premixing level beyond the stable premixed flame limit, the calculations overestimate the distance between the premixed and the non-premixed flamefronts. Consequently, the calculated temperatures near the rich, premixed flame are higher than those measured. Accurate prediction of the distance between the premixed and the non-premixed flames provides an interesting challenge for

  10. 100,000-fold concentration of anions in capillary zone electrophoresis using electroosmotic flow controlled counterflow isotachophoretic stacking under field amplified conditions.

    PubMed

    Breadmore, Michael C; Quirino, Joselito P

    2008-08-15

    An electroosmotic flow (EOF) controlled counterflow isotachophoretic stacking boundary (cf-ITPSB) system under field amplified conditions has been examined as a way to improve the sensitivity of anions separated by capillary zone electrophoresis. The system comprised a high concentration of a high-mobility leading ion (100 mM chloride) and a low concentration of low-mobility terminating ion (1-3 mM MES or CHES) added to the sample in an unmodified fused-silica capillary at pH 8.05, buffered with Tris. Computer simulation studies using the software GENTRANS showed an increase in sensitivity of at least 10-fold over the previous cf-ITPSB system for simple inorganic ions, nitrite and nitrate. The simulations also suggested that the cf-ITPSB became stationary within the capillary and that its stationary position was not adversely affected by the concentration of MES. This was in contrast to experimental results that showed a slow and continual movement of the cf-ITPSB. This was more pronounced at lower concentrations of terminator (i.e., <3 mM) and resulted in a loss of resolution due to the cf-ITPSB being closer to the detector upon separation. This discrepancy was attributed to the change in pH across the capillary due to electrolysis and low buffering capacity in the sample, a phenomenon that cannot be simulated by the GENTRANS software. Replacement of MES with CHES as a lower mobility ion with increased buffer capacity failed to reduce the movement of the cf-ITPSB but did provide a further 3-fold improvement in sensitivity. The potential of this approach for sensitivity enhancement was demonstrated for the co-EOF separation of a mixture of six inorganic and small organic ions, with detection limits at the single-figure nanogram per liter level. These detection limits are 100,000 times better than can be achieved by normal hydrodynamic injection (ions prepared in water) and 250 times better than has been achieved by other online preconcentration approaches. The

  11. Flame Velocities over a Wide Composition Range for Pentane-air, Ethylene-air, and Propyne-air Flames

    NASA Technical Reports Server (NTRS)

    Simon, Dorothy M; Wong, Edgar, L

    1951-01-01

    Fundamental flame velocities are reported for pentane air, ethylene-air, and propylene-air mixtures for the concentration range 60 to 130 percent of stoichiometric. A form of the Tanford and Pease equation, which includes a small constant velocity term independent of diffusion, will predict the observed changes in flame velocity.

  12. Microgravity Turbulent Gas-Jet Diffusion Flames

    NASA Technical Reports Server (NTRS)

    1996-01-01

    A gas-jet diffusion flame is similar to the flame on a Bunsen burner, where a gaseous fuel (e.g., propane) flows from a nozzle into an oxygen-containing atmosphere (e.g., air). The difference is that a Bunsen burner allows for (partial) premixing of the fuel and the air, whereas a diffusion flame is not premixed and gets its oxygen (principally) by diffusion from the atmosphere around the flame. Simple gas-jet diffusion flames are often used for combustion studies because they embody the mechanisms operating in accidental fires and in practical combustion systems. However, most practical combustion is turbulent (i.e., with random flow vortices), which enhances the fuel/air mixing. These turbulent flames are not well understood because their random and transient nature complicates analysis. Normal gravity studies of turbulence in gas-jet diffusion flames can be impeded by buoyancy-induced instabilities. These gravitycaused instabilities, which are evident in the flickering of a candle flame in normal gravity, interfere with the study of turbulent gas-jet diffusion flames. By conducting experiments in microgravity, where buoyant instabilities are avoided, we at the NASA Lewis Research Center hope to improve our understanding of turbulent combustion. Ultimately, this could lead to improvements in combustor design, yielding higher efficiency and lower pollutant emissions. Gas-jet diffusion flames are often researched as model flames, because they embody mechanisms operating in both accidental fires and practical combustion systems (see the first figure). In normal gravity laboratory research, buoyant air flows, which are often negligible in practical situations, dominate the heat and mass transfer processes. Microgravity research studies, however, are not constrained by buoyant air flows, and new, unique information on the behavior of gas-jet diffusion flames has been obtained.

  13. H+ diffusion and electrochemical stability of Li1+x+yAlxTi2-xSiyP3-yO12 glass in aqueous Li/air battery electrolytes

    SciTech Connect

    Ding, Fei; Xu, Wu; Shao, Yuyan; Chen, Xilin; Wang, Zhiguo; Gao, Fei; Liu, Xingjiang; Zhang, Ji-Guang

    2012-09-01

    It is well known that LATP (Li1+x+yAlxTi2-xSiyP3-yO12) glass is a good lithium ion conductor. However, the interaction between LATP glass and H+ ions (including its diffusion and surface adsorption) needs to be well understood before the long-term application of LATP glass in an aqueous electrolyte based Li-air batteries where H+ always present. In this work, we investigate the H+ ion diffusion properties in LATP glass and their surface interactions using both experimental and modeling approaches. Our analysis indicates that the apparent H+ related current observed in the initial cyclic voltammetry scan should be attributed to the adsorption of H+ ions on the LATP glass rather than the bulk diffusion of H+ ions in the glass. Furthermore, the density functional theory calculations indicate that the H+ ion diffusion energy barrier (3.21 eV) is much higher than that of Li+ ion (0.79 eV) and Na+ ion (0.79 eV) in NASICON type LiTi2(PO4)3 material. As a result, the H+ ion conductivity in LATP glass is negligible at room temperature. However, significant surface corrosion was found after the LATP glass was soaked in strong alkaline electrolyte for extended time. Therefore, appropriate electrolytes have to be developed to prevent the corrosion of LATP glass before its practical application for Li-air batteries using aqueous electrolyte.

  14. Fuel cell stack with passive air supply

    DOEpatents

    Ren, Xiaoming; Gottesfeld, Shimshon

    2006-01-17

    A fuel cell stack has a plurality of polymer electrolyte fuel cells (PEFCs) where each PEFC includes a rectangular membrane electrode assembly (MEA) having a fuel flow field along a first axis and an air flow field along a second axis perpendicular to the first axis, where the fuel flow field is long relative to the air flow field. A cathode air flow field in each PEFC has air flow channels for air flow parallel to the second axis and that directly open to atmospheric air for air diffusion within the channels into contact with the MEA.

  15. Air Abrasion

    MedlinePlus

    ... delivered directly to your desktop! more... What Is Air Abrasion? Article Chapters What Is Air Abrasion? What Happens? The Pros and Cons Will I Feel Anything? Is Air Abrasion for Everyone? print full article print this ...

  16. Parallel flow diffusion battery

    DOEpatents

    Yeh, H.C.; Cheng, Y.S.

    1984-01-01

    A parallel flow diffusion battery for determining the mass distribution of an aerosol has a plurality of diffusion cells mounted in parallel to an aerosol stream, each diffusion cell including a stack of mesh wire screens of different density.

  17. Parallel flow diffusion battery

    DOEpatents

    Yeh, Hsu-Chi; Cheng, Yung-Sung

    1984-08-07

    A parallel flow diffusion battery for determining the mass distribution of an aerosol has a plurality of diffusion cells mounted in parallel to an aerosol stream, each diffusion cell including a stack of mesh wire screens of different density.

  18. NIST Diffusion Data Center

    National Institute of Standards and Technology Data Gateway

    NIST Diffusion Data Center (Web, free access)   The NIST Diffusion Data Center is a collection of over 14,100 international papers, theses, and government reports on diffusion published before 1980.

  19. FRACTIONAL PEARSON DIFFUSIONS

    PubMed Central

    Leonenko, Nikolai N.; Meerschaert, Mark M.

    2013-01-01

    Pearson diffusions are governed by diffusion equations with polynomial coefficients. Fractional Pearson diffusions are governed by the corresponding time-fractional diffusion equation. They are useful for modeling sub-diffusive phenomena, caused by particle sticking and trapping. This paper provides explicit strong solutions for fractional Pearson diffusions, using spectral methods. It also presents stochastic solutions, using a non-Markovian inverse stable time change. PMID:23626377

  20. Quantification of differential diffusion in nonpremixed systems.

    SciTech Connect

    Smith, Philip J.; Sutherland, James C.; Chen, Jacqueline H.

    2004-06-01

    Most attempts to quantify differential diffusion (DD) are based on the difference between different definitions of the mixture fraction. This paper presents a general method for evaluating differential diffusion in premixed or nonpremixed systems based on conservation equations for the elemental mass fractions. These measures form a basis for analyzing differential diffusion. Casting these in terms of a mixture fraction gives particular insight into differential diffusion for nonpremixed systems, and provides a single DD measure. Furthermore, it allows direct evaluation of the validity of the traditional assumptions involved in writing a mixture fraction transport equation. Results are presented for one-dimensional opposed flow simulations of hydrogen and methane flames as well as direct numerical simulations (DNS) of CH 4 /H 2 -air and CO/H 2 -air flames. For a common definition of the mixture fraction, the DD measure can be approximated well by considering only the contribution of H 2 and CH 4 in methane-air flames. Differential diffusion is largely driven by production of H 2 in the flame zone for hydrocarbon flames. Effects of strain rate and filter width on the relative importance of differential diffusion are examined.

  1. Effect of cation structure on the oxygen solubility and diffusivity in a range of bis{(trifluoromethyl)sulfonyl}imide anion based ionic liquids for lithium-air battery electrolytes.

    PubMed

    Neale, Alex R; Li, Peilin; Jacquemin, Johan; Goodrich, Peter; Ball, Sarah C; Compton, Richard G; Hardacre, Christopher

    2016-04-28

    This paper reports on the solubility and diffusivity of dissolved oxygen in a series of ionic liquids (ILs) based on the bis{(trifluoromethyl)sulfonyl}imide anion with a range of related alkyl and ether functionalised cyclic alkylammonium cations. Cyclic voltammetry has been used to observe the reduction of oxygen in ILs at a microdisk electrode and chronoamperometric measurements have then been applied to simultaneously determine both the concentration and the diffusion coefficient of oxygen in different ILs. The viscosity of the ILs and the calculated molar volume and free volume are also reported. It is found that, within this class of ILs, the oxygen diffusivity generally increases with decreasing viscosity of the neat IL. An inverse relationship between oxygen solubility and IL free volume is reported for the two IL families implying that oxygen is not simply occupying the available empty space. In addition, it is reported that the introduction of an ether-group into the IL cation structure promotes the diffusivity of dissolved oxygen but reduces the solubility of the gas. PMID:27052672

  2. Cloud partitioning of isocyanic acid (HNCO) and evidence of secondary source of HNCO in ambient air

    NASA Astrophysics Data System (ADS)

    Zhao, R.; Lee, A. K. Y.; Wentzell, J. J. B.; Mcdonald, A. M.; Toom-Sauntry, D.; Leaitch, W. R.; Modini, R. L.; Corrigan, A. L.; Russell, L. M.; Noone, K. J.; Schroder, J. C.; Bertram, A. K.; Hawkins, L. N.; Abbatt, J. P. D.; Liggio, J.

    2014-10-01

    Although isocyanic acid (HNCO) may cause a variety of health issues via protein carbamylation and has been proposed as a key compound in smoke-related health issues, our understanding of the atmospheric sources and fate of this toxic compound is currently incomplete. To address these issues, a field study was conducted at Mount Soledad, La Jolla, CA, to investigate partitioning of HNCO to clouds and fogs using an Acetate Chemical Ionization Mass Spectrometer coupled to a ground-based counterflow virtual impactor. The first field evidence of cloud partitioning of HNCO is presented, demonstrating that HNCO is dissolved in cloudwater more efficiently than expected based on the effective Henry's law solubility. The measurements also indicate evidence for a secondary, photochemical source of HNCO in ambient air at this site.

  3. Addition of Diffusion Model to MELCOR and Comparison with Data

    SciTech Connect

    Brad Merrill; Richard Moore; Chang Oh

    2004-06-01

    A chemical diffusion model was incorporated into the thermal-hydraulics package of the MELCOR Severe Accident code (Reference 1) for analyzing air ingress events for a very high temperature gas-cooled reactor.

  4. Air pollution modeling and its application III

    SciTech Connect

    De Wispelaere, C.

    1984-01-01

    This book focuses on the Lagrangian modeling of air pollution. Modeling cooling tower and power plant plumes, modeling the dispersion of heavy gases, remote sensing as a tool for air pollution modeling, dispersion modeling including photochemistry, and the evaluation of model performances in practical applications are discussed. Specific topics considered include dispersion in the convective boundary layer, the application of personal computers to Lagrangian modeling, the dynamic interaction of cooling tower and stack plumes, the diffusion of heavy gases, correlation spectrometry as a tool for mesoscale air pollution modeling, Doppler acoustic sounding, tetroon flights, photochemical air quality simulation modeling, acid deposition of photochemical oxidation products, atmospheric diffusion modeling, applications of an integral plume rise model, and the estimation of diffuse hydrocarbon leakages from petrochemical factories. This volume constitutes the proceedings of the Thirteenth International Technical Meeting on Air Pollution Modeling and Its Application held in France in 1982.

  5. Automated semiconductor diffusion and oxidation facility

    NASA Technical Reports Server (NTRS)

    1982-01-01

    A semiconductor diffusion and oxidation facility (totally automated) was developed. Wafers arrived on an air track, automatically loaded into a furnace tube, processed, returned to track, and sent on to the next process. The entire process was controlled by a computer.

  6. Development of PIV for Microgravity Diffusion Flames

    NASA Technical Reports Server (NTRS)

    Greenberg, Paul S.; Wernet, Mark P.; Yanis, William; Urban, David L.; Sunderland, Peter B.

    2003-01-01

    Results are presented from the application of Particle Image Velocimetry(PIV) to the overfire region of a laminar gas jet diffusion flame in normal gravity. A methane flame burning in air at 0.98 bar was considered. The apparatus demonstrated here is packaged in a drop rig designed for use in the 2.2 second drop tower.

  7. Air resources

    SciTech Connect

    1995-10-01

    This section describes the ambient (surrounding) air quality of the TVA region, discusses TVA emission contributions to ambient air quality, and identifies air quality impacts to human health and welfare. Volume 2 Technical Document 2, Environmental Consequences, describes how changes in TVA emissions could affect regional air quality, human health, environmental resources, and materials. The primary region of the affected environment is broadly defined as the state of Tennessee, as well as southern Kentucky, western Virginia, southern West Virginia, western North Carolina, and northern Georgia, Alabama, and Mississippi. This area represents the watershed of the Tennessee River and the 201 counties of the greater TVA service area. Emissions from outside the Tennessee Valley region contribute to air quality in the Valley. Also, TVA emissions are transported outside the Valley and have some impact on air quality beyond the primary study area. Although the study area experiences a number of air quality problems, overall air quality is good.

  8. Theory and Experiments on Supersonic Air-to-Air Ejectors.

    NASA Technical Reports Server (NTRS)

    Fabri, J; Paulon, J

    1958-01-01

    A comparison of experiment with theory is made for air ejectors having cylindrical mixing sections and operating under conditions of supersonic primary flow and either mixed or supersonic regimes of mixing. The effect on ejector performance of such parameters as mixer length and cross section, terminating diffuser, primary Mach number, and primary nozzle position is presented in terms of mass flow and pressure ratio.

  9. Air Pollution.

    ERIC Educational Resources Information Center

    Gilpin, Alan

    A summary of one of our most pressing environmental problems, air pollution, is offered in this book by the Director of Air Pollution Control for the Queensland (Australia) State Government. Discussion of the subject is not restricted to Queensland or Australian problems and policies, however, but includes analysis of air pollution the world over.…

  10. Microfabricated diffusion source

    DOEpatents

    Oborny, Michael C.; Frye-Mason, Gregory C.; Manginell, Ronald P.

    2008-07-15

    A microfabricated diffusion source to provide for a controlled diffusion rate of a vapor comprises a porous reservoir formed in a substrate that can be filled with a liquid, a headspace cavity for evaporation of the vapor therein, a diffusion channel to provide a controlled diffusion of the vapor, and an outlet to release the vapor into a gas stream. The microfabricated diffusion source can provide a calibration standard for a microanalytical system. The microanalytical system with an integral diffusion source can be fabricated with microelectromechanical systems technologies.

  11. Diffusion on spatial network

    NASA Astrophysics Data System (ADS)

    Hui, Zi; Tang, Xiaoyue; Li, Wei; Greneche, Jean-Marc; Wang, Qiuping A.

    2015-04-01

    In this work, we study the problem of diffusing a product (idea, opinion, disease etc.) among agents on spatial network. The network is constructed by random addition of nodes on the planar. The probability for a previous node to be connected to the new one is inversely proportional to their spatial distance to the power of α. The diffusion rate between two connected nodes is inversely proportional to their spatial distance to the power of β as well. Inspired from the Fick's first law, we introduce the diffusion coefficient to measure the diffusion ability of the spatial network. Using both theoretical analysis and Monte Carlo simulation, we get the fact that the diffusion coefficient always decreases with the increasing of parameter α and β, and the diffusion sub-coefficient follows the power-law of the spatial distance with exponent equals to -α-β+2. Since both short-range diffusion and long-range diffusion exist, we use anomalous diffusion method in diffusion process. We get the fact that the slope index δ in anomalous diffusion is always smaller that 1. The diffusion process in our model is sub-diffusion.

  12. Diffusion bonding aeroengine components

    NASA Astrophysics Data System (ADS)

    Fitzpatrick, G. A.; Broughton, T.

    1988-10-01

    The use of diffusion bonding processes at Rolls-Royce for the manufacture of titanium-alloy aircraft engine components and structures is described. A liquid-phase diffusion bonding process called activated diffusion bonding has been developed for the manufacture of the hollow titanium wide chord fan blade. In addition, solid-state diffusion bonding is being used in the manufacture of hollow vane/blade airfoil constructions mainly in conjunction with superplastic forming and hot forming techniques.

  13. Handbook on atmospheric diffusion

    SciTech Connect

    Hanna, S.R.; Briggs, G.A.; Hosker, R.P. Jr.

    1982-01-01

    Basic meteorological concepts are covered as well as plume rise, source effects, and diffusion models. Chapters are included on cooling tower plumes and urban diffusion. Suggestions are given for calculating diffusion in special situations, such as for instantaneous releases over complex terrain, over long distances, and during times when chemical reactions or dry or wet deposition are important. (PSB)

  14. Reduce Confusion about Diffusion.

    ERIC Educational Resources Information Center

    Hebrank, Mary R.

    1997-01-01

    Presents activities that allow students to explore the fundamental but poorly understood concept of diffusion by appealing to their kinesthetic senses first, then challenging their analytical skills as they try to deduce the mathematical principle involved. Presents a computer simulation of diffusion and discusses diffusion's limitations and…

  15. Diffusion of uranium hexafluoride

    NASA Astrophysics Data System (ADS)

    Winkelmann, J.

    This document is part of Subvolume A `Gases in Gases, Liquids and their Mixtures' of Volume 15 `Diffusion in Gases, Liquids and Electrolytes' of Landolt-Börnstein Group IV `Physical Chemistry'. It is part of the chapter of the chapter `Diffusion in Pure Gases' and contains data on diffusion of uranium hexafluoride

  16. Diffusion Strategy Guide.

    ERIC Educational Resources Information Center

    McCutcheon, James R.; Sanders, John R.

    A methodology is presented for planning and managing the spread of educational innovations. The first portion of the guide develops a theoretical framework for diffusion which summarizes and capitalizes on the latest marketing and on the latest marketing and diffusion research findings. Major stages in the diffusion paradigm discussed include…

  17. Degradation characteristics of air cathode in zinc air fuel cells

    NASA Astrophysics Data System (ADS)

    Ma, Ze; Pei, Pucheng; Wang, Keliang; Wang, Xizhong; Xu, Huachi; Liu, Yongfeng; peng, Guanlin

    2015-01-01

    The zinc air fuel cell (ZAFC) is a promising candidate for electrical energy storage and electric vehicle propulsion. However, its limited durability has become a major obstacle for its successful commercialization. In this study, 2-cell stacks, 25 cm² cells and three-electrode half-cells are constructed to experimentally investigate the degradation characteristics of the air cathode. The results of electrochemical tests reveal that the peak power density for the 25 cm2 cell with a new air cathode is 454 mW cm-2, which is twice as the value of the used air cathode. The electrochemical impedance analysis shows that both the charge transfer resistance and the mass transfer resistance of the used air cathodes have increased, suggesting that the catalyst surface area and gas diffusion coefficient have decreased significantly. Additionally, the microstructure and morphology of the catalytic layer (CL) and gas diffusion layer (GDL) are characterized by scanning electron microscopes (SEM). SEM results confirm that the micropores in CL and GDL of the used air cathode are seriously clogged, and many catalyst particles are lost. Therefore, the performance degradation is mainly due to the clogging of micropores and loss of catalyst particles. Furthermore, hypotheses of degradation mechanism and mitigation strategies for GDL and CL are discussed briefly.

  18. A study of atmospheric diffusion from the LANDSAT imagery. [pollution transport over the ocean

    NASA Technical Reports Server (NTRS)

    Dejesusparada, N. (Principal Investigator); Viswanadham, Y.; Torsani, J. A.

    1981-01-01

    LANDSAT multispectral scanner data of the smoke plumes which originated in eastern Cabo Frio, Brazil and crossed over into the Atlantic Ocean, are analyzed to illustrate how high resolution LANDSAT imagery can aid meteorologists in evaluating specific air pollution events. The eleven LANDSAT images selected are for different months and years. The results show that diffusion is governed primarily by water and air temperature differences. With colder water, low level air is very stable and the vertical diffusion is minimal; but water warmer than the air induces vigorous diffusion. The applicability of three empirical methods for determining the horizontal eddy diffusivity coefficient in the Gaussian plume formula was evaluated with the estimated standard deviation of the crosswind distribution of material in the plume from the LANDSAT imagery. The vertical diffusion coefficient in stable conditions is estimated using Weinstock's formulation. These results form a data base for use in the development and validation of meso scale atmospheric diffusion models.

  19. Air Pollution.

    ERIC Educational Resources Information Center

    Fox, Donald L.

    1989-01-01

    Materials related to air pollution are reviewed for the period January 1987, to October 1988. The topics are pollution monitoring, air pollution, and environmental chemistry. The organization consists of two major analytical divisions: (1) gaseous methods; and (2) aerosol and particulate methods. (MVL)

  20. Air Pollution.

    EPA Science Inventory

    Air quality is affected by many types of pollutants that are emitted from various sources, including stationary and mobile. These sources release both criteria and hazardous air pollutants, which cause health effects, ecological harm, and material damage. They are generally categ...

  1. Thermally grown oxide and diffusions for automatic processing of integrated circuits

    NASA Technical Reports Server (NTRS)

    Kennedy, B. W.

    1979-01-01

    A totally automated facility for semiconductor oxidation and diffusion was developed using a state-of-the-art diffusion furnace and high temperature grown oxides. Major innovations include: (1) a process controller specifically for semiconductor processing; (2) an automatic loading system to accept wafers from an air track, insert them into a quartz carrier and then place the carrier on a paddle for insertion into the furnace; (3) automatic unloading of the wafers back onto the air track, and (4) boron diffusion using diborane with plus or minus 5 percent uniformity. Processes demonstrated include Wet and dry oxidation for general use and for gate oxide, boron diffusion, phosphorous diffusion, and sintering.

  2. Noble gas diffusion in silicate liquids

    NASA Astrophysics Data System (ADS)

    Amalberti, J.; Burnard, P.; Laporte, D.

    2013-12-01

    Fractionated noble gas relative abundances (Ne/Ar, Kr/Ar and Xe/Ar) and isotopic compositions (40Ar/36Ar, 38Ar/36Ar, 20Ne/22Ne, 21Ne/22Ne) are found in volcanic materials, notably in pumices (1-3). This has generally been interpreted as fractionation resulting from diffusion. However, there is some disagreement as to whether this fractionation occurs during high temperature magmatic processes (3) or due to diffusion of air into solidified pyroclastic deposits (2). We show that differences in relative noble gas diffusivities (e.g. D4He vs D40Ar, where D is the diffusivity) and isotopic diffusivities (e.g. D40Ar vs D36Ar) reduce at high temperatures (Fig). These results predict minimal fractionation of noble gases during magmatic processes. However, it is important to note that these diffusivities were measured in silicate glasses; the relative noble diffusivities in silicate liquids are poorly known. We have developed a new experimental protocol which will to determine the diffusivities of the noble gases and their isotopes in the liquid state. A graphite crucible c. 0.3 mm diameter and c. 20mm deep is filled with powdered glass of the desired composition, heated to 1773 K for 15 minutes and quenched to form a glass cylinder within the crucible. The crucible is then placed in a low pressure (1 bar) controlled atmosphere vertical furnace and heated at high temperatures (1673-1773K) for 2 hours in a pure N2 atmosphere. At this point noble gases (He and Ar) are introduced into the furnace and allowed to diffuse into the cylinder of liquid for durations of between 30 and 90. After quenching, the glass cylinder, preserving its' diffusion profile, is sawed into c. 1mm thick discs which are measured by conventional noble gas mass spectrometry for noble gas abundances (He, Ar) and isotopes (40,38,36Ar). The results will be presented at the conference. References 1 Kaneoka, I. Earth Planet Sci Letts 48, 284-292 (1980). 2 Pinti, D. L., Wada, N. & Matsuda, J. J. Volcan

  3. A review of methods for predicting air pollution dispersion

    NASA Technical Reports Server (NTRS)

    Mathis, J. J., Jr.; Grose, W. L.

    1973-01-01

    Air pollution modeling, and problem areas in air pollution dispersion modeling were surveyed. Emission source inventory, meteorological data, and turbulent diffusion are discussed in terms of developing a dispersion model. Existing mathematical models of urban air pollution, and highway and airport models are discussed along with their limitations. Recommendations for improving modeling capabilities are included.

  4. Numerical evaluation of equivalence ratio measurement using OH{sup *} and CH{sup *} chemiluminescence in premixed and non-premixed methane-air flames

    SciTech Connect

    Panoutsos, C.S.; Hardalupas, Y.; Taylor, A.M.K.P.

    2009-02-15

    This work presents results from detailed chemical kinetics calculations of electronically excited OH (A{sup 2}{sigma}, denoted as OH{sup *}) and CH (A{sup 2}{delta}, denoted as CH{sup *}) chemiluminescent species in laminar premixed and non-premixed counterflow methane-air flames, at atmospheric pressure. Eight different detailed chemistry mechanisms, with added elementary reactions that account for the formation and destruction of the chemiluminescent species OH{sup *} and CH{sup *}, are studied. The effects of flow strain rate and equivalence ratio on the chemiluminescent intensities of OH{sup *}, CH{sup *} and their ratio are studied and the results are compared to chemiluminescent intensity ratio measurements from premixed laminar counterflow natural gas-air flames. This is done in order to numerically evaluate the measurement of equivalence ratio using OH{sup *} and CH{sup *} chemiluminescence, an experimental practise that is used in the literature. The calculations reproduced the experimental observation that there is no effect of strain rate on the chemiluminescent intensity ratio of OH{sup *} to CH{sup *}, and that the ratio is a monotonic function of equivalence ratio. In contrast, the strain rate was found to have an effect on both the OH{sup *} and CH{sup *} intensities, in agreement with experiment. The calculated OH{sup *}/CH{sup *} values showed that only five out of the eight mechanisms studied were within the same order of magnitude with the experimental data. A new mechanism, proposed in this work, gave results that agreed with experiment within 30%. It was found that the location of maximum emitted intensity from the excited species OH{sup *} and CH{sup *} was displaced by less than 65 and 115 {mu}m, respectively, away from the maximum of the heat release rate, in agreement with experiments, which is small relative to the spatial resolution of experimental methods applied to combustion applications, and, therefore, it is expected that intensity

  5. Diffusion in disordered media

    NASA Astrophysics Data System (ADS)

    Havlin, Shlomo; Ben-Avraham, Daniel

    2002-01-01

    Diffusion in disordered systems does not follow the classical laws which describe transport in ordered crystalline media, and this leads to many anomalous physical properties. Since the application of percolation theory, the main advances in the understanding of these processes have come from fractal theory. Scaling theories and numerical simulations are important tools to describe diffusion processes (random walks: the 'ant in the labyrinth') on percolation systems and fractals. Different types of disordered systems exhibiting anomalous diffusion are presented (the incipient infinite percolation cluster, diffusion-limited aggregation clusters, lattice animals, and random combs), and scaling theories as well as numerical simulations of greater sophistication are described. Also, diffusion in the presence of singular distributions of transition rates is discussed and related to anomalous diffusion on disordered structures.

  6. Hereditary Diffuse Infiltrating Retinoblastoma.

    PubMed

    Schedler, Katharina J E; Traine, Peter G; Lohmann, Dietmar R; Haritoglou, Christos; Metz, Klaus A; Rodrigues, Eduardo B

    2016-03-01

    Retinoblastoma is one of the most common childhood cancers. The diffuse infiltrating retinoblastoma is a rare subtype of this neoplasm. The majority of cases of diffuse infiltrating retinoblastoma are unilateral and occur sporadically. Herein we report on a family with three children affected by retinoblastoma, among them one girl with diffuse infiltrating retinoblastoma. This girl was diagnosed at the age of 8 years with a unilateral diffuse infiltrating retinoblastoma. By contrast, the two brothers became clinically apparent in the first 2 years of life with bilateral retinoblastoma. The parents were clinically unremarkable. Genetic analysis of RB1 gene was performed. The girl with diffuse infiltrating RB was found to be heterozygous for an oncogenic mutation in the RB1 gene that was also carried by both brothers and the father of the family. These results show that diffuse infiltrating retinoblastoma can develop on the background of a hereditary predisposition to retinoblastoma. PMID:24892564

  7. Relation between the inhibition of the laminar diffusion flame of polymers soot formation and radiation

    SciTech Connect

    Makharinskii, L.E.; Berlin, A.A.; Khalturinskii, N.A.; Rudakova, T.A.

    1983-09-01

    This article investigates the action of effective combustion inhibitors of premixed C/sub 2/F/sub 4/Br/sub 2/ and CC1/sub 4/ mixtures on the flame propagation rate over a polymer surface in an oxidizer counterflow. The cellulose-based polymers (paper, methyl cellulose, cellophane) examined included specimens in the form of films in a frame, polymethyl methacrylate (PMMA), polystyrene in the form of plates 4 mm thick and 20 mm wide on an asbestos substrate, and STD (a copolymer of formaldehyde with trioxane) in the form of cylindrical 10-mm-diameter specimens. The flame propagation rate is related to the total heat flux, which includes the conductive or convective flux and radiation on the polymer surface. It is concluded that when considering the inhibition of diffusion flames it is necessary to take account of the possible effect associated with the change in flame luminance, and not only the chemical effects of the inert dilution of the flame by the inhibitors.

  8. Multinomial diffusion equation

    NASA Astrophysics Data System (ADS)

    Balter, Ariel; Tartakovsky, Alexandre M.

    2011-06-01

    We describe a new, microscopic model for diffusion that captures diffusion induced fluctuations at scales where the concept of concentration gives way to discrete particles. We show that in the limit as the number of particles N→∞, our model is equivalent to the classical stochastic diffusion equation (SDE). We test our new model and the SDE against Langevin dynamics in numerical simulations, and show that our model successfully reproduces the correct ensemble statistics, while the classical model fails.

  9. Multinomial diffusion equation

    SciTech Connect

    Balter, Ariel I.; Tartakovsky, Alexandre M.

    2011-06-24

    We describe a new, microscopic model for diffusion that captures diffusion induced uctuations at scales where the concept of concentration gives way to discrete par- ticles. We show that in the limit as the number of particles N ! 1, our model is equivalent to the classical stochastic diffusion equation (SDE). We test our new model and the SDE against Langevin dynamics in numerical simulations, and show that our model successfully reproduces the correct ensemble statistics, while the classical model fails.

  10. Gaseous diffusion system

    DOEpatents

    Garrett, George A.; Shacter, John

    1978-01-01

    1. A gaseous diffusion system comprising a plurality of diffusers connected in cascade to form a series of stages, each of said diffusers having a porous partition dividing it into a high pressure chamber and a low pressure chamber, and means for combining a portion of the enriched gas from a succeeding stage with a portion of the enriched gas from the low pressure chamber of each stage and feeding it into one extremity of the high pressure chamber thereof.

  11. Inpainting using airy diffusion

    NASA Astrophysics Data System (ADS)

    Lorduy Hernandez, Sara

    2015-09-01

    One inpainting procedure based on Airy diffusion is proposed, implemented via Maple and applied to some digital images. Airy diffusion is a partial differential equation with spatial derivatives of third order in contrast with the usual diffusion with spatial derivatives of second order. Airy diffusion generates the Airy semigroup in terms of the Airy functions which can be rewritten in terms of Bessel functions. The Airy diffusion can be used to smooth an image with the corresponding noise elimination via convolution. Also the Airy diffusion can be used to erase objects from an image. We build an algorithm using the Maple package ImageTools and such algorithm is tested using some images. Our results using Airy diffusion are compared with the similar results using standard diffusion. We observe that Airy diffusion generates powerful filters for image processing which could be incorporated in the usual packages for image processing such as ImageJ and Photoshop. Also is interesting to consider the possibility to incorporate the Airy filters as applications for smartphones and smart-glasses.

  12. Diffusion induced recrystallization of NiO

    SciTech Connect

    Parthasarathy, T.A.; Shewmon, P.G.

    1984-01-01

    It is shown that changing the composition of a sample from that in equilibrium with air at 1200/sup 0/C to that in equilibrium with oxygen saturated Ni at 800-900/sup 0/C recrystallize the surface to a finer grain size. Annealing back at 1200/sup 0/C in air will again recrystallize the surface layer. This type of diffusion-induced recrystallization has been observed in metals, but never reported in ceramics. Its occurrence in NiO is interpreted as a demonstration that diffusion-induced grain boundary motion is driven directly by the free energy of mixing defects into the matrix instead of indirectly as suggested by others.

  13. Edge Diffusion Flame Propagation and Stabilization Studied

    NASA Technical Reports Server (NTRS)

    Takahashi, Fumiaki; Katta, Viswanath R.

    2004-01-01

    In most practical combustion systems or fires, fuel and air are initially unmixed, thus forming diffusion flames. As a result of flame-surface interactions, the diffusion flame often forms an edge, which may attach to burner walls, spread over condensed fuel surfaces, jump to another location through the fuel-air mixture formed, or extinguish by destabilization (blowoff). Flame holding in combustors is necessary to achieve design performance and safe operation of the system. Fires aboard spacecraft behave differently from those on Earth because of the absence of buoyancy in microgravity. This ongoing in-house flame-stability research at the NASA Glenn Research Center is important in spacecraft fire safety and Earth-bound combustion systems.

  14. Air Pollution

    MedlinePlus

    ... tobacco smoke. How is air pollution linked to climate change? While climate change is a global process, it ... ozone levels are also a concern. Impacts of Climate Change on Human Health in the United States: A ...

  15. Air Apparent.

    ERIC Educational Resources Information Center

    Harbster, David A.

    1988-01-01

    Explains the principle upon which a barometer operates. Describes how to construct two barometric devices for use in the classroom that show air's changing pressure. Cites some conditions for predicting weather. (RT)

  16. Galactic Diffuse Emissions

    SciTech Connect

    Digel, Seth W.; /SLAC

    2007-10-25

    Interactions of cosmic rays with interstellar nucleons and photons make the Milky Way a bright, diffuse source of high-energy {gamma}-rays. Observationally, the results from EGRET, COMPTEL, and OSSE have now been extended to higher energies by ground-based experiments, with detections of diffuse emission in the Galactic center reported by H.E.S.S. in the range above 100 GeV and of diffuse emission in Cygnus by MILAGRO in the TeV range. In the range above 100 keV, INTEGRAL SPI has found that diffuse emission remains after point sources are accounted for. I will summarize current knowledge of diffuse {gamma}-ray emission from the Milky Way and review some open issues related to the diffuse emission -- some old, like the distribution of cosmic-ray sources and the origin of the 'excess' of GeV emission observed by EGRET, and some recently recognized, like the amount and distribution of molecular hydrogen not traced by CO emission -- and anticipate some of the advances that will be possible with the Large Area Telescope on GLAST. We plan to develop an accurate physical model for the diffuse emission, which will be useful for detecting and accurately characterizing emission from Galactic point sources as well as any Galactic diffuse emission from exotic processes, and for studying the unresolved extragalactic emission.

  17. The Diffusion of Innovation

    NASA Technical Reports Server (NTRS)

    Earabino, Gerard J.; Heyl, G. Christopher; Percorini, Thomas J.

    1987-01-01

    New ideas encounter obstacles on way to becoming products. Report examines process by which new ideas become products, processes, or accepted standards. Sequence of events called "the diffusion of innovation." Focuses on development of material processing in low gravity as case study in diffusion of innovation.

  18. Investigating Diffusion with Technology

    ERIC Educational Resources Information Center

    Miller, Jon S.; Windelborn, Augden F.

    2013-01-01

    The activities described here allow students to explore the concept of diffusion with the use of common equipment such as computers, webcams and analysis software. The procedure includes taking a series of digital pictures of a container of water with a webcam as a dye slowly diffuses. At known time points, measurements of the pixel densities…

  19. Anatomy of Particle Diffusion

    ERIC Educational Resources Information Center

    Bringuier, E.

    2009-01-01

    The paper analyses particle diffusion from a thermodynamic standpoint. The main goal of the paper is to highlight the conceptual connection between particle diffusion, which belongs to non-equilibrium statistical physics, and mechanics, which deals with particle motion, at the level of third-year university courses. We start out from the fact…

  20. Cosmology with matter diffusion

    SciTech Connect

    Calogero, Simone; Velten, Hermano E-mail: velten@cce.ufes.br

    2013-11-01

    We construct a viable cosmological model based on velocity diffusion of matter particles. In order to ensure the conservation of the total energy-momentum tensor in the presence of diffusion, we include a cosmological scalar field φ which we identify with the dark energy component of the universe. The model is characterized by only one new degree of freedom, the diffusion parameter σ. The standard ΛCDM model can be recovered by setting σ = 0. If diffusion takes place (σ > 0) the dynamics of the matter and of the dark energy fields are coupled. We argue that the existence of a diffusion mechanism in the universe may serve as a theoretical motivation for interacting models. We constrain the background dynamics of the diffusion model with Supernovae, H(z) and BAO data. We also perform a perturbative analysis of this model in order to understand structure formation in the universe. We calculate the impact of diffusion both on the CMB spectrum, with particular attention to the integrated Sachs-Wolfe signal, and on the matter power spectrum P(k). The latter analysis places strong constraints on the magnitude of the diffusion mechanism but does not rule out the model.

  1. Comparison of radon diffusion coefficients measured by transient-diffusion and steady-state laboratory methods

    SciTech Connect

    Kalwarf, D.R.; Nielson, K.K.; Rich, D.C.; Rogers, V.C.

    1982-11-01

    A method was developed and used to determine radon diffusion coefficients in compacted soils by transient-diffusion measurements. A relative standard deviation of 12% was observed in repeated measurements with a dry soil by the transient-diffusion method, and a 40% uncertainty was determined for moistures exceeding 50% of saturation. Excellent agreement was also obtained between values of the diffusion coefficient for radon in air, as measured by the transient-diffusion method, and those in the published literature. Good agreement was also obtained with diffusion coefficients measured by a steady-state method on the same soils. The agreement was best at low moistures, averaging less than ten percent difference, but differences of up to a factor of two were observed at high moistures. The comparison of the transient-diffusion and steady-state methods at low moistures provides an excellent verification of the theoretical validity and technical accuracy of these approaches, which are based on completely independent experimental conditions, measurement methods and mathematical interpretations.

  2. Unsteady planar diffusion flames: Ignition, travel, burnout

    NASA Technical Reports Server (NTRS)

    Fendell, F.; Wu, F.

    1995-01-01

    In microgravity, a thin planar diffusion flame is created and thenceforth travels so that the flame is situated at all times at an interface at which the hydrogen and oxygen meet in stoichiometric proportion. If the initial amount of hydrogen is deficient relative to the initial amount of oxygen, then the planar flame will travel further and further into the half volume initially containing hydrogen, until the hydrogen is (virtually) fully depleted. Of course, when the amount of residual hydrogen becomes small, the diffusion flame is neither vigorous nor thin; in practice, the flame is extinguished before the hydrogen is fully depleted, owing to the finite rate of the actual chemical-kinetic mechanism. The rate of travel of the hydrogen-air diffusion flame is much slower than the rate of laminar flame propagation through a hydrogen-air mixture. This slow travel facilitates diagnostic detection of the flame position as a function of time, but the slow travel also means that the time to burnout (extinction) probably far exceeds the testing time (typically, a few seconds) available in earth-sited facilities for microgravity-environment experiments. We undertake an analysis to predict (1) the position and temperature of the diffusion flame as a function of time, (2) the time at which extinction of the diffusion flame occurs, and (3) the thickness of quench layers formed on side walls (i.e., on lateral boundaries, with normal vectors parallel to the diffusion-flame plane), and whether, prior to extinction, water vapor formed by burning will condense on these cold walls.

  3. Diffusion in Coulomb crystals.

    PubMed

    Hughto, J; Schneider, A S; Horowitz, C J; Berry, D K

    2011-07-01

    Diffusion in Coulomb crystals can be important for the structure of neutron star crusts. We determine diffusion constants D from molecular dynamics simulations. We find that D for Coulomb crystals with relatively soft-core 1/r interactions may be larger than D for Lennard-Jones or other solids with harder-core interactions. Diffusion, for simulations of nearly perfect body-centered-cubic lattices, involves the exchange of ions in ringlike configurations. Here ions "hop" in unison without the formation of long lived vacancies. Diffusion, for imperfect crystals, involves the motion of defects. Finally, we find that diffusion, for an amorphous system rapidly quenched from Coulomb parameter Γ=175 to Coulomb parameters up to Γ=1750, is fast enough that the system starts to crystalize during long simulation runs. These results strongly suggest that Coulomb solids in cold white dwarf stars, and the crust of neutron stars, will be crystalline and not amorphous. PMID:21867316

  4. Combustor diffuser interaction program

    NASA Technical Reports Server (NTRS)

    Srinivasan, Ram; Thorp, Daniel

    1986-01-01

    Advances in gas turbine engine performance are achieved by using compressor systems with high stage loading and low part count, which result in high exit Mach numbers. The diffuser and combustor systems in such engines should be optimized to reduce system pressure loss and to maximize the engine thrust-to-weight ratio and minimize length. The state-of-the-art combustor-diffuser systems do not meet these requirements. Detailed understanding of the combustor-diffuser flow field interaction is required for designing advanced gas turbine engines. An experimental study of the combustor-diffuser interaction (CDI) is being conducted to obtain data for the evaluation and improvement of analytical models applicable to a wide variety of diffuser designs. The CDI program consists of four technical phases: Literature Search; Baseline Configuration; Parametric Configurations; and Performance Configurations. Phase 2 of the program is in progress.

  5. Diffusion on strained surfaces

    NASA Astrophysics Data System (ADS)

    Schroeder, M.; Wolf, D. E.

    1997-03-01

    The change of diffusion kinetics when elastic fields are present is discussed for diffusion on (001) surfaces of simple cubic, fcc and bcc lattices. All particles interact pairwise with a Lennard-Jones potential. The simple cubic lattice was stabilized by an anisotropic prefactor. It is found that generically compressive strain enhances diffusion whereas tensile strain increases the activation barrier. An approximately linear dependence of the barrier in a wide range of misfits is found. In heteroepitaxy, diffusion on top of large clusters is inhomogeneous and anisotropic. The kinetics close to edges and centers of islands are remarkably different. In many cases changes of binding energies are small compared to those of saddle point energies. Thermodynamic arguments (minimization of free energy) are not appropriate to describe diffusion on strained surfaces in these cases.

  6. Visualization of diffuser outlet flow using liquid crystal sheets

    SciTech Connect

    Kirkpatrick, A.T.

    1995-08-01

    This article describes a new imaging technique to determine air temperatures and flow fields from HVAC diffusers. The technique uses liquid crystal sheets to record the airflow and temperatures in color. The air temperature field is an important contributor to the thermal comfort in a room and is used to evaluate diffuser performance. Visualization of the temperature field allows one to see directly the flow field and how it is interacting with the room air. a particular application is to cold-air distribution systems that supply cooling and ventilation air to rooms at temperatures lower than in conventional systems. In these systems the cold-air supply is as low as 39 F (4 C), instead of the conventional value of 55 F (13 C). This new technique uses a temperature-sensitive liquid crystal sheet to create a visual measuring tool. The liquid crystals are layered on a plane sheet and produce two-dimensional color images of the air temperature field. Since air is invisible, some type of indicator placed in the air stream is required to determine the air temperature. At present, instruments such as thermocouples and thermistors determine the air temperature in rooms and measure the value at a single point. Information about the temperature and flow field in a room is obtained by moving the device, or using multiple sensors. This is a time-consuming process, and only yields information at the points of measurement. However, the temperature field is usually unsteady, due to variable air currents and cooling loads, so a movable device is not entirely suitable, and multiple instruments require multiple data acquisition channels. It would be more informative to visualize the entire airflow from the diffuser at any instant. This article deals with a temperature characterization method.

  7. MODELED MESOSCALE METEOROLOGICAL FIELDS WITH FOUR-DIMENSIONAL DATA ASSIMILATION IN REGIONAL SCALE AIR QUALITY MODELS

    EPA Science Inventory

    This paper addresses the need to increase the temporal and spatial resolution of meteorological data currently used in air quality simulation models, AQSMs. ransport and diffusion parameters including mixing heights and stability used in regulatory air quality dispersion models a...

  8. Thorium Diffusion in Monazite

    NASA Astrophysics Data System (ADS)

    Cherniak, D. J.

    2006-05-01

    Diffusion of thorium has been characterized in synthetic monazite under dry conditions. The synthetic monazites (either pure CePO4, NdPO4, or a mixed LREE phosphate containing Ce, Nd, and Sm) were grown via a Na2CO3-MoO3 flux method. The source of diffusant for the experiments were either synthesized ThSiO4 or CaTh(PO4)2 powders. Experiments were performed by placing source and monazite in Pt capsules and annealing capsules in 1 atm furnaces for times ranging from 10 days to a few hours, at temperatures from 1400 to 1550C. The Th distributions in the monazite were profiled by Rutherford Backscattering Spectrometry (RBS). The following Arrhenius relation was obtained for diffusion in monazite: DSm = 7.2x103 exp(-814 kJ mol-1/RT) m2sec-1 The diffusivity of Th was similar for monazites containing a single REE and the mixed LREE phosphates. Th diffusion was also similar for experiments run using the Th silicate and Ca-Th phosphate sources, suggesting that the substitutional mechanism for Th in monazite, i.e, Th+4 + Si+4 for REE+3 + P+5 with the ThSiO4 source, and Th+4 + Ca+2 for 2REE+3 with the CaTh(PO4)2 source, does not significantly affect Th diffusivities, and that Th is likely the rate-limiting species. Th diffusion in monazite is about 4 orders of magnitude slower than Pb diffusion (Cherniak et al., 2004). This contrasts with findings of Gardes et al. (2005) who determined that Pb, Th and REE diffusivities in monazite are similar. Th diffusion in zircon (Cherniak et al., 1997) is about an order of magnitude slower than in monazite, but with similar activation energy for diffusion. The smaller diffusivities in zircon may be a consequence of the larger disparity in size between Th and the Zr site in zircon as compared with Th and the REE site in monazite. Nonetheless, Th is essentially immobile in monazite with respect to exchange by volume diffusion under most geologic conditions; these findings may have implications for containment of high- level actinide

  9. A comparison of Fick and Maxwell-Stefan diffusion formulations in PEMFC gas diffusion layers

    NASA Astrophysics Data System (ADS)

    Lindstrom, Michael; Wetton, Brian

    2016-04-01

    This paper explores the mathematical formulations of Fick and Maxwell-Stefan diffusion in the context of polymer electrolyte membrane fuel cell cathode gas diffusion layers. The simple Fick law with a diagonal diffusion matrix is an approximation of Maxwell-Stefan. Formulations of diffusion combined with mass-averaged Darcy flow are considered for three component gases. For this application, the formulations can be compared computationally in a simple, one dimensional setting. Despite the models' seemingly different structure, it is observed that the predictions of the formulations are very similar on the cathode when air is used as oxidant. The two formulations give quite different results when the Nitrogen in the air oxidant is replaced by helium (this is often done as a diagnostic for fuel cells designs). The two formulations also give quite different results for the anode with a dilute Hydrogen stream. These results give direction to when Maxwell-Stefan diffusion, which is more complicated to implement computationally in many codes, should be used in fuel cell simulations.

  10. Tungsten diffusion in silicon

    SciTech Connect

    De Luca, A.; Texier, M.; Burle, N.; Oison, V.; Pichaud, B.; Portavoce, A.; Grosjean, C.

    2014-01-07

    Two doses (10{sup 13} and 10{sup 15} cm{sup −2}) of tungsten (W) atoms were implanted in different Si(001) wafers in order to study W diffusion in Si. The samples were annealed or oxidized at temperatures between 776 and 960 °C. The diffusion profiles were measured by secondary ion mass spectrometry, and defect formation was studied by transmission electron microscopy and atom probe tomography. W is shown to reduce Si recrystallization after implantation and to exhibit, in the temperature range investigated, a solubility limit close to 0.15%–0.2%, which is higher than the solubility limit of usual metallic impurities in Si. W diffusion exhibits unusual linear diffusion profiles with a maximum concentration always located at the Si surface, slower kinetics than other metals in Si, and promotes vacancy accumulation close to the Si surface, with the formation of hollow cavities in the case of the higher W dose. In addition, Si self-interstitial injection during oxidation is shown to promote W-Si clustering. Taking into account these observations, a diffusion model based on the simultaneous diffusion of interstitial W atoms and W-Si atomic pairs is proposed since usual models used to model diffusion of metallic impurities and dopants in Si cannot reproduce experimental observations.

  11. Tungsten diffusion in olivine

    NASA Astrophysics Data System (ADS)

    Cherniak, D. J.; Van Orman, J. A.

    2014-03-01

    Diffusion of tungsten has been characterized in synthetic forsterite and natural olivine (Fo90) under dry conditions. The source of diffusant was a mixture of magnesium tungstate and olivine powders. Experiments were prepared by sealing the source material and polished olivine under vacuum in silica glass ampoules with solid buffers to buffer at NNO or IW. Prepared capsules were annealed in 1 atm furnaces for times ranging from 45 min to several weeks, at temperatures from 1050 to 1450 °C. Tungsten distributions in the olivine were profiled by Rutherford Backscattering Spectrometry (RBS). The following Arrhenius relation is obtained for W diffusion in forsterite: D=1.0×10-8exp(-365±28 kJ mol/RT) m s Diffusivities for the synthetic forsterite and natural Fe-bearing olivine are similar, and tungsten diffusion in olivine shows little dependence on crystallographic orientation or oxygen fugacity. The slow diffusivities measured for W in olivine indicate that Hf-W ages in olivine-metal systems will close to diffusive exchange at higher temperatures than other chronometers commonly used in cosmochronology, and that tungsten isotopic signatures will be less likely to be reset by subsequent thermal events.

  12. Air surveillance

    SciTech Connect

    Patton, G.W.

    1995-06-01

    This section of the 1994 Hanford Site Environmental Report summarizes the air surveillance and monitoring programs currently in operation at that Hanford Site. Atmospheric releases of pollutants from Hanford to the surrounding region are a potential source of human exposure. For that reason, both radioactive and nonradioactive materials in air are monitored at a number of locations. The influence of Hanford emissions on local radionuclide concentrations was evaluated by comparing concentrations measured at distant locations within the region to concentrations measured at the Site perimeter. This section discusses sample collection, analytical methods, and the results of the Hanford air surveillance program. A complete listing of all analytical results summarized in this section is reported separately by Bisping (1995).

  13. Air Dehydration Membranes for Nonaqueous Lithium-Air Batteries

    SciTech Connect

    Zhang, Jian; Xu, Wu; Li, Xiaohong S; Liu, Wei

    2010-06-11

    In this paper, several types of new membranes were innovated and used as an O2-selective and H2O barrier films attached onto the cathode of non-aqueous Li-air batteries for continuous supplying of dry air into the batteries from ambient air. The membranes were prepared by depositing an O2/H2O selective coating layer on the exterior surface of a newly-invented thin porous Ni substrate sheet at thickness of ~50µm. The coatings tried include hydrophobic silicalite type zeolite and Teflon (PTFE) materials. The melted PTFE-membrane on the porous Ni sheet at 360°C enabled the Li-air batteries with Ketjen black carbon air electrodes to operate in ambient air (with 20% RH) for 21 days with a specific capacity of 1022 mAh/g carbon and a specific energy of 2792 Wh/kg carbon. Its performance is much better than the battery assembled with the same battery material but by use of a commercial, porous PTFE diffusion membranes as the moisture barrier layer on the cathode, which only had a discharge time of five and half days corresponding to a specific capacity of 267 mAh/g carbon and a specific energy of 704Wh/kg carbon. The Li-air battery with the present selective membrane barrier layer even showed better performance in ambient air operation (20% RH) than the reference battery tested in the dry air box (< 1% RH).

  14. Hereditary Diffuse Gastric Cancer

    MedlinePlus

    ... with the syndrome is recommended. What are the estimated cancer risks associated with HDGC? Not everyone who ... the lifetime risk for diffuse gastric cancer is estimated to be 70% to 80% for men and ...

  15. Multinomial Diffusion Equation

    SciTech Connect

    Balter, Ariel I.; Tartakovsky, Alexandre M.

    2011-06-01

    We have developed a novel stochastic, space/time discrete representation of particle diffusion (e.g. Brownian motion) based on discrete probability distributions. We show that in the limit of both very small time step and large concentration, our description is equivalent to the space/time continuous stochastic diffusion equation. Being discrete in both time and space, our model can be used as an extremely accurate, efficient, and stable stochastic finite-difference diffusion algorithm when concentrations are so small that computationally expensive particle-based methods are usually needed. Through numerical simulations, we show that our method can generate realizations that capture the statistical properties of particle simulations. While our method converges converges to both the correct ensemble mean and ensemble variance very quickly with decreasing time step, but for small concentration, the stochastic diffusion PDE does not, even for very small time steps.

  16. Investigating diffusion with technology

    NASA Astrophysics Data System (ADS)

    Miller, Jon S.; Windelborn, Augden F.

    2013-07-01

    The activities described here allow students to explore the concept of diffusion with the use of common equipment such as computers, webcams and analysis software. The procedure includes taking a series of digital pictures of a container of water with a webcam as a dye slowly diffuses. At known time points, measurements of the pixel densities (darkness) of the digital pictures are recorded and then plotted on a graph. The resulting graph of darkness versus time allows students to see the results of diffusion of the dye over time. Through modification of the basic lesson plan, students are able to investigate the influence of a variety of variables on diffusion. Furthermore, students are able to expand the boundaries of their thinking by formulating hypotheses and testing their hypotheses through experimentation. As a result, students acquire a relevant science experience through taking measurements, organizing data into tables, analysing data and drawing conclusions.

  17. Mastocytosis, diffuse cutaneous (image)

    MedlinePlus

    This is a picture of diffuse, cutaneous mastocytosis. Abnormal collections of cells in the skin (mast cells) produce this rash. Unlike bullous mastocytosis, rubbing will not lead to formation of blisters ( ...

  18. Lung diffusion testing

    MedlinePlus

    Lung diffusion testing measures how well the lungs exchange gases. This is an important part of lung testing , because ... Gender Height Hemoglobin (the protein in red blood cells that carries oxygen) level

  19. /Air Atmospheres

    NASA Astrophysics Data System (ADS)

    Emami, Samar; Sohn, Hong Yong; Kim, Hang Goo

    2014-08-01

    Molten magnesium oxidizes rapidly when exposed to air causing melt loss and handling difficulties. The use of certain additive gases such as SF6, SO2, and CO2 to form a protective MgO layer over a magnesium melt has been proposed. The oxidation behavior of molten magnesium in air containing various concentrations of SF6 was investigated. Measurements of the kinetics of the oxide layer growth at various SF6 concentrations in air and temperatures were made. Experiments were performed using a thermogravimetric analysis unit in the temperature range of 943 K to 1043 K (670 °C to 770 °C). Results showed that a thin, coherent, and protective MgF2 layer was formed under SF6/Air mixtures, with a thickness ranging from 300 nm to 3 μm depending on SF6 concentration, temperature, and exposure time. Rate parameters were calculated and a model for the process was developed. The morphology and composition of the surface films were studied using scanning electron microscope and energy-dispersive spectroscope.

  20. Air Pollution

    PubMed Central

    Clifton, Marjorie

    1964-01-01

    Dr Marjorie Clifton describes the classification of gaseous and nongaseous constituents of air pollution and then outlines the methods of measuring these. The National Survey embraced 150 towns of all sizes throughout England and Wales and provided data on smoke and sulphur dioxide in relation to climate, topography, industrialization, population density, fuel utilization and urban development. Dr W C Turner discusses the relationship between air pollution and mortality from respiratory conditions, and particularly the incidence of chronic bronchitis. He postulates a theory that such respiratory conditions arise as an allergy to the spores of certain moulds, spore formation being encouraged by the air humidity in Greatv Britain and overcrowded and damp living conditions. He describes the results of a twenty-week study undertaken in 1962-3, showing associations between respiratory disease and levels of air pollution. Dr Stuart Carne undertook a survey in general practice to plot the patterns of respiratory illness in London during the winter of 1962-3. There were two peaks of respiratory illnesses coinciding with the fog at the beginning of December and the freeze-up from the end of December until the beginning of March. PMID:14178955

  1. Air Trafficco

    ERIC Educational Resources Information Center

    Kasunic, Kevin

    1970-01-01

    The work of the 14,000 air traffic controllers can be both challenging and nerve-racking. Concentration, steady nerves, and a clear voice are required to remember the routing and identification of the maze of aircraft and to instruct each of them accurately. Controllers must have a high school diploma and three years work experience or a college…

  2. Hydrogen Diffusion in Forsterite

    NASA Astrophysics Data System (ADS)

    Demouchy, S.; Mackwell, S.

    2002-12-01

    Physical and chemical properties of Earth's mantle are readily modified by interaction with volatiles, such as water. Thus, characterization of solubility and kinetics of incorporation for water in nominally anhydrous minerals is important in order to understand the behavior of Earth's interior under hydrous conditions. Experimental studies on the olivine-water system indicate that significant amounts of OH can dissolve within olivine as point defects (Bell and Rossman, 1992; Kohlstedt et al. 1996). Extending Kohlstedt and Mackwell's (1998) work, our study concerns the kinetics of hydrogen transport in the iron-free olivine-water system. This study is based on hydrogenation of forsterite samples during piston-cylinder and TZM cold-seal vessel experiments. We use infrared analyses in order to constrain the speciation of the mobile water-derived defects in forsterite single-crystal sample, and the rates of diffusion of such species under uppermost mantle conditions (0.2 to 1.5 GPa, 900 to 1100° C). Hydrogen defect transport in single crystals of forsterite is investigated for diffusion parallel to each crystallographic axis. Defect diffusivities are obtained by fitting a diffusion law to the OH content as a function of position in the sample. Our current results indicate that incorporation of hydroxyl species into iron-free olivine is a one-stage process with hydrogen diffusion linked to magnesium vacancy self-diffusion DV, such that DV = D~/3 = 10-12 m2/s at 1000° C parallel to [001], where D~ represents the chemical diffusivity. Those diffusion rates are slightly lower than in iron-bearing olivine for the same incorporation mechanism. The different concentration profiles show a clear anisotropy of diffusion, with fastest diffusion parallel to [001] as in iron-bearing olivine. Thus, while hydrogen solubilities are dependent on iron content, the rate of incorporation of water-derived species in olivine is not strongly coupled to the concentration of iron. This

  3. Nodal Diffusion & Transport Theory

    Energy Science and Technology Software Center (ESTSC)

    1992-02-19

    DIF3D solves multigroup diffusion theory eigenvalue, adjoint, fixed source, and criticality (concentration, buckling, and dimension search) problems in 1, 2, and 3-space dimensions for orthogonal (rectangular or cylindrical), triangular, and hexagonal geometries. Anisotropic diffusion theory coefficients are permitted. Flux and power density maps by mesh cell and regionwise balance integrals are provided. Although primarily designed for fast reactor problems, upscattering and internal black boundary conditions are also treated.

  4. Advanced manufacturing: Technology diffusion

    SciTech Connect

    Tesar, A.

    1995-12-01

    In this paper we examine how manufacturing technology diffuses rom the developers of technology across national borders to those who do not have the capability or resources to develop advanced technology on their own. None of the wide variety of technology diffusion mechanisms discussed in this paper are new, yet the opportunities to apply these mechanisms are growing. A dramatic increase in technology diffusion occurred over the last decade. The two major trends which probably drive this increase are a worldwide inclination towards ``freer`` markets and diminishing isolation. Technology is most rapidly diffusing from the US In fact, the US is supplying technology for the rest of the world. The value of the technology supplied by the US more than doubled from 1985 to 1992 (see the Introduction for details). History shows us that technology diffusion is inevitable. It is the rates at which technologies diffuse to other countries which can vary considerably. Manufacturers in these countries are increasingly able to absorb technology. Their manufacturing efficiency is expected to progress as technology becomes increasingly available and utilized.

  5. Diffusive flux of methane from warm wetlands

    SciTech Connect

    Barber, T.R.; Burke, R.A.; Sackett, W.M. )

    1988-12-01

    Diffusion of methane across the air-water interface from several wetland environments in south Florida was estimated from measured surface water concentrations using an empirically derived gas exchange model. The flux from the Everglades sawgrass marsh system varied widely, ranging from 0.18 + or{minus}0.21 mol CH{sub 4}/sq m/yr for densely vegetated regions to 2.01 + or{minus}0.88 for sparsely vegetated, calcitic mud areas. Despite brackish salinities, a strong methane flux, 1.87 + or{minus}0.63 mol CH{sub 4}/sq m/yr, was estimated for an organic-rich mangrove pond near Florida Bay. The diffusive flux accounted for 23, 36, and 13% of the total amount of CH{sub 4} emitted to the atmosphere from these environments, respectively. The average dissolved methane concentration for an organic-rich forested swamp was the highest of any site at 12.6 microM; however, the calculated diffusive flux from this location, 2.57 + or{minus}1.88 mol CH{sub 4}/sq m/yr, was diminished by an extensive plant canopy that sheltered the air-water interface from the wind. The mean diffusive flux from four freshwater lakes, 0.77 + or{minus}0.73 mol CH{sub 4}/sq m/yr, demonstrated little temperature dependence. The mean diffusive flux for an urbanized, subtropical estuary was 0.06 + or{minus}0.05 mol CH{sub 4}/sq m/yr.

  6. Fractionation of soil gases by diffusion of water vapor, gravitational settling, and thermal diffusion

    SciTech Connect

    Severinghaus, J.P.; Bender, M.L.; Keeling, R.F.; Broecker, W.S.

    1996-03-01

    Air sampled from the moist unsaturated zone in a sand dune exhibits depletion in the heavy isotopes of N{sub 2} and O{sub 2}. We propose that the depletion is caused by a diffusive flux of water vapor out of the dune, which sweeps out the other gases, forcing them to diffuse back into the dune. The heavy isotopes of N{sub 2} and O{sub 2} diffuse back more slowly, resulting in a steady-state depletion of the heavy isotopesin the dune interior. We predict the effect`s magnitude with molecular diffusion theory and reproduce it in a laboratory simulation, finding good agreement between field, theory, and lab. The magnitude of the effect is governed by the ratio of the binary diffusivities against water vapor of a pair of gases, and increases {approximately} linearly with the difference between the water vapor mole fraction of the site and the advectively mixed reservoir with which it is in diffusive contact (in most cases the atmosphere). 32 refs., 1 fig., 3 tabs.

  7. Wave turbulent diffusion due to the Doppler shift

    NASA Astrophysics Data System (ADS)

    Balk, A. M.

    2006-08-01

    Turbulent diffusion of a passive tracer caused by a random wavefield is believed to be quadratic with respect to the energy spectrum ɛk of the velocity field (i.e. proportional to epsi4, where epsi is the order of the wave amplitudes). So, the wave turbulent diffusion (say, on the ocean surface or in the air) is often believed to be dominated by the turbulent diffusion due to the incompressible flow. In this paper, we show that the wave turbulent diffusion can be associated with the Doppler shift and find that the wave turbulent diffusion can be more significant than previously thought. This mechanism works if the velocity field is compressible and statistically anisotropic, with the result that the wave system has a significant Stokes drift. The contribution of this mechanism has a lower order in epsi. We confirm our results with numerical simulations. To derive these results, we develop the statistical near-identity transformation.

  8. Er3+ diffusion in LiTaO3 crystal

    NASA Astrophysics Data System (ADS)

    Zhang, De-Long; Zhang, Qun; Wong, Wing-Han; Pun, Edwin Yue-Bun

    2015-12-01

    Some Er3+-doped LiTaO3 plates were prepared by in-diffusion of Er-metal film locally coated onto congruent Z-cut substrate in air at a wide temperature range from 1000 to 1500 °C. After diffusion, Er3+-doping effect on LiTaO3 refractive index and Li2O out-diffusion arising from Er3+ in-diffusion were studied at first. Refractive indices at the doped and undoped surface parts were measured by prism coupling technique and the surface composition was estimated. The results show that Er3+ dopant has small contribution to the LiTaO3 index. Li2O out-diffusion is slight (Li2O content loss <0.3 mol%) for the temperature below 1300 °C while is moderate (Li2O content loss <0.6 mol%) for the temperature above 1400 °C. The Er3+ profile was studied by secondary ion mass spectrometry. The study shows that the diffused Er3+ ions follow either a complementary error function or a Gaussian profile. Characteristic parameters including diffusivity, diffusion constant, activation energy, solubility, solubility constant and heat of solution were obtained and compared with the LiNbO3 case. The comparison shows that the diffusivity and solubility in LiTaO3 are considerably smaller than in LiNbO3 because of the difference of Ta and Nb in atomic weight.

  9. Experimental measurements of the diffusion coefficient of 212Pb.

    PubMed

    Su, Y F; Newton, G J; Cheng, Y S; Yeh, H C

    1989-03-01

    Knowledge of the diffusion coefficient of Rn progeny is necessary for assessing the radiation exposure resulting from exposure to Rn and its progeny. The diffusion coefficient for 220Rn progeny was determined in ambient air by two independent methods, measuring deposition using a cylindrical tube or screens. A sampling train consisting of a diffusion tube and a screen-type diffusion battery was used for the experimental study. A range of flow rates and relative humidities was investigated. For 35% less than or equal to RH less than or equal to 85%, results from the two systems agree with each other. The diffusion coefficient of 212Pb was 0.036 +/- 0.002 cm2 s-1 and 0.037 +/- 0.004 cm2 s-1 for the tube and screen penetration methods, respectively. In low humidity air (RH less than 30%), a linear relationship between the diffusion coefficient of 212Pb and relative humidity was observed. The observed diffusion coefficient is strongly affected by the amount of material agglomerated onto the 212Pb atom. Further studies on the effects of trace gases and organics are required to fully understand the results. PMID:2537267

  10. Experimental measurements of the diffusion coefficient of /sup 212/Pb

    SciTech Connect

    Su, Y.F.; Newton, G.J.; Cheng, Y.S.; Yeh, H.C.

    1989-03-01

    Knowledge of the diffusion coefficient of Rn progeny is necessary for assessing the radiation exposure resulting from exposure to Rn and its progeny. The diffusion coefficient for 220Rn progeny was determined in ambient air by two independent methods, measuring deposition using a cylindrical tube or screens. A sampling train consisting of a diffusion tube and a screen-type diffusion battery was used for the experimental study. A range of flow rates and relative humidities was investigated. For 35% less than or equal to RH less than or equal to 85%, results from the two systems agree with each other. The diffusion coefficient of 212Pb was 0.036 +/- 0.002 cm2 s-1 and 0.037 +/- 0.004 cm2 s-1 for the tube and screen penetration methods, respectively. In low humidity air (RH less than 30%), a linear relationship between the diffusion coefficient of 212Pb and relative humidity was observed. The observed diffusion coefficient is strongly affected by the amount of material agglomerated onto the 212Pb atom. Further studies on the effects of trace gases and organics are required to fully understand the results.

  11. Orbital Transfer Vehicle Engine Technology High Velocity Ratio Diffusing Crossover

    NASA Technical Reports Server (NTRS)

    Lariviere, Brian W.

    1992-01-01

    High speed, high efficiency head rise multistage pumps require continuous passage diffusing crossovers to effectively convey the pumped fluid from the exit of one impeller to the inlet of the next impeller. On Rocketdyne's Orbital Transfer Vehicle (OTV), the MK49-F, a three stage high pressure liquid hydrogen turbopump, utilizes a 6.23 velocity ratio diffusing crossover. This velocity ratio approaches the diffusion limits for stable and efficient flow over the operating conditions required by the OTV system. The design of the high velocity ratio diffusing crossover was based on advanced analytical techniques anchored by previous tests of stationary two-dimensional diffusers with steady flow. To secure the design and the analytical techniques, tests were required with the unsteady whirling characteristics produced by an impeller. A tester was designed and fabricated using a 2.85 times scale model of the MK49-F turbopumps first stage, including the inducer, impeller, and the diffusing crossover. Water and air tests were completed to evaluate the large scale turbulence, non-uniform velocity, and non-steady velocity on the pump and crossover head and efficiency. Suction performance tests from 80 percent to 124 percent of design flow were completed in water to assess these pump characteristics. Pump and diffuser performance from the water and air tests were compared with the actual MK49-F test data in liquid hydrogen.

  12. Cation Diffusion in Xenotime

    NASA Astrophysics Data System (ADS)

    Cherniak, D. J.

    2004-05-01

    Xenotime is an important mineral in metamorphic paragenesis, and useful in isotopic dating, garnet-xenotime thermometry, and monazite-xenotime thermometry, so diffusion data for xenotime of cations of geochronological and geochemical importance are of some interest. We report here on diffusion of the rare earth elements Sm, Dy and Yb in synthetic xenotime under dry conditions. The synthetic xenotime was grown via a Na2}CO{3}-MoO_{3 flux method. The source of diffusant for the experiments were REE phosphate powders, with experiments run with sources containing a single REE. Experiments were performed by placing source and xenotime in Pt capsules, and annealing capsules in 1 atm furnaces for times ranging from thirty minutes to a month, at temperatures from 1000 to 1400C. The REE distributions in the xenotime were profiled by Rutherford Backscattering Spectrometry (RBS). The following Arrhenius relations are obtained for diffusion in xenotime, normal to (101): DSm = 1.7x10-4 exp(-442 kJ mol-1/RT) m2}sec{-1 DDy = 3.5x10-7 exp(-365 kJ mol-1/RT) m2}sec{-1 DYb = 7.4x10-7 exp(-371 kJ mol-1/RT) m2}sec{-1. Diffusivities of these REE do not differ greatly in xenotime, in contrast to the findings noted for the REE in zircon (Cherniak et al., 1997), where the LREE diffuse more slowly, and with higher activation energies for diffusion, than the heavier rare earths. In zircon, these differences among diffusion of the rare earths are attributed to the relatively large size of the REE with respect to Zr, for which they substitute in the zircon lattice. With the systematic increase in ionic radius from the heavy to lighter REE, this size mismatch becomes more pronounced and diffusivities of the LREE are as consequence slower. Although xenotime is isostructural with zircon, the REE are more closely matched in size to Y, so in xenotime this effect appears much smaller and the REE diffuse at similar rates. In addition, the process of diffusion in xenotime likely involves simple REE+3

  13. Tracking a terrain bounce jammer with a diffuse scattering model

    NASA Astrophysics Data System (ADS)

    Nguyen, Joseph H.; Bowyer, Duane E.

    1994-07-01

    This paper presents a simulation model for an air-to-air missile to measure the power losses due to specular and diffuse scattering on various terrains. This includes a range of surfaces from a sea surface of different root-mean-square surface roughness slopes to desert sand. This paper also presents the correlation between theoretical and empirical data for specular scattering on dry land and moist sand.

  14. Characteristics of methane diffusion flame in a reacting vortex ring

    NASA Astrophysics Data System (ADS)

    Safta, C.; Madnia, C. K.

    2004-09-01

    Direct numerical simulations of non-premixed methane flame vortex ring interactions are performed. The methane combustion was modelled using a detailed kinetic mechanism which consists of 36 species and 217 elementary reactions and involves C1, C2, and a small set of C3 kinetics. The vortex ring is generated by a brief discharge of cold fuel into a quiescent oxidizer ambient. The much higher oxidizer temperature leads to the auto-ignition of the vortex ring. The effects of fuel and oxidizer dilution and vortex ring strength on the dynamics of the interaction are studied. Three flame regions, front, top, and wake, are identified. Several combustion regimes are defined in the reacting vortex ring configuration. For the range of parameters accessible, unsteady, curvature and thickening effects on the flame structure are observed. Flame structure comparisons with steady counterflow diffusion flame (CFDF) results show that for a Damköhler number greater than 25, the unsteady effects on the flame become small. The contributions of time varying straining, fuel temperature and concentration to the unsteady effects on the front flame structure are separated through comparisons with unsteady CFDF simulations. For high initial Damköhler number simulations, none of these contributions are important since the flame becomes quasi-steady shortly after ignition. For intermediate initial Damköhler number simulations the unsteady effects are important at early times. At later times, a decrease in the straining and an increase in the fuel temperature reduce these effects. However, a decrease in the fuel concentration extends the duration for which the unsteady effects are important. If the initial Damköhler number is sufficiently low, the decrease in the fuel concentration overcomes the effects of straining and fuel temperature, and the flame remains unsteady for the entire simulation. Thickening and curvature effects on the flame structure are observed for the intermediate and

  15. [Air pollution].

    PubMed

    Bauters, Christophe; Bauters, Gautier

    2016-01-01

    Short-term exposure to particulate matter (PM) air pollution is associated with an increased cardiovascular mortality. Chronic exposure to PM is also associated with cardiovascular risk. Myocardial infarction and heart failure are the most common cardiovascular events associated with PM pollution. The pathophysiological mechanisms related to PM pollution are inflammation, thrombosis, vasomotion abnormalities, progression of atherosclerosis, increased blood pressure, and cardiac remodeling. A decrease in PM exposure may be particularly beneficial in subjects with a high cardiovascular risk. PMID:26547674

  16. Air filtering device

    SciTech Connect

    Backus, A.L.

    1992-07-28

    This patent describes a room air cleaning device. It comprises: a box housing having an air inlet and an air outlet provided therein; a vertical baffle coupled to the box housing opposite the air outlet and spaced form the box housing such that an air egress outlet is formed between the vertical baffle and the box housing; air cleansing means substantially disposed within the box housing and cleansing air passing into the inlet and out of the air egress outlet; a fan disposed within the box housing, the fan providing air movement through the air inlet and the air egress outlet; wherein air exits the room air cleaning device through the air egress outlet as a vertical plane of moving air; and wherein formation of the vertical plane of moving air contributes to the formation of a low pressure area drawing impure air toward the air inlet.

  17. Diffuse and fugitive radionuclide emissions assessment for the Hanford Site

    SciTech Connect

    Davis, W.E.; Gleckler, B.P.; Schmidt, J.W.; Rhoads, K.

    1996-12-31

    On February 7, 1994 a Federal Facility Compliance Agreement (FFCA) was signed by the Department of Energy Richland Operations and the US Environmental Protection Agency, EPA, Region 10. The FFCA defines the actions needed to bring the Hanford Site into compliance with 40 Code of Federal Regulations Part 61 Subpart H. One of the milestones specified by the FFCA was that the Hanford Site is to provide EPA with a copy of the Federal Clean Air Act Title V operating air permit application and Air Emission Inventory (AEI) concurrent with its submission to the Washington State Department of Ecology. The AEI includes a dose assessment of the radionuclide emissions from diffuse and unmonitored sources at the Hanford Site. This paper describes how the dose assessment was performed using upwind and downwind radionuclide air concentration measurements. The paper also describes results from two diffuse and fugitive emissions studies. The studies were performed at several diffuse and fugitive emissions sites and utilized arrays of upwind and downwind low volume (2 cfm) air samplers. One study also utilized 4 high volume (40 cfm) PM{sub 10} air samplers to sample during high wind conditions.

  18. Air extraction in gas turbines burning coal-derived gas

    SciTech Connect

    Yang, Tah-teh; Agrawal, A.K.; Kapat, J.S.

    1993-11-01

    In the first phase of this contracted research, a comprehensive investigation was performed. Principally, the effort was directed to identify the technical barriers which might exist in integrating the air-blown coal gasification process with a hot gas cleanup scheme and the state-of-the-art, US made, heavy-frame gas turbine. The guiding rule of the integration is to keep the compressor and the expander unchanged if possible. Because of the low-heat content of coal gas and of the need to accommodate air extraction, the combustor and perhaps, the flow region between the compressor exit and the expander inlet might need to be modified. In selecting a compressed air extraction scheme, one must consider how the scheme affects the air supply to the hot section of the turbine and the total pressure loss in the flow region. Air extraction must preserve effective cooling of the hot components, such as the transition pieces. It must also ensure proper air/fuel mixing in the combustor, hence the combustor exit pattern factor. The overall thermal efficiency of the power plant can be increased by minimizing the total pressure loss in the diffusers associated with the air extraction. Therefore, a study of airflow in the pre- and dump-diffusers with and without air extraction would provide information crucial to attaining high-thermal efficiency and to preventing hot spots. The research group at Clemson University suggested using a Griffith diffuser for the prediffuser and extracting air from the diffuser inlet. The present research establishes that the analytically identified problems in the impingement cooling flow are factual. This phase of the contracted research substantiates experimentally the advantage of using the Griffith diffuser with air extraction at the diffuser inlet.

  19. Diffusion of corrosion products of iron in compacted bentonite

    SciTech Connect

    Idemitsu, K.; Furuya, H.; Inagaki, Y.

    1993-12-31

    Carbon steel is one of the candidate overpack materials for high-level waste disposal. The corrosion rate of carbon steel is reduced by the presence of buffer materials such as bentonite and seems to be affected by the diffusion of corrosive materials and corrosion products through the buffer material. The apparent diffusivities of corrosion product of iron were measured in some bentonite specimens in contact with carbon steel. The apparent diffusivities of iron were also measured without carbon steel. The apparent diffusivities of iron were also measured without carbon steel for comparison. The apparent diffusivities of corrosion product were on the order of 10{sup -12} m{sup 2}/s and showed a tendency to decrease with increasing density of the bentonite specimen. There was no significant effect of silica sand on the apparent diffusivities. The apparent diffusivities of iron in the system without carbon steel were in the range of 10{sup -14} m{sup 2}/s and showed a tendency to increase with increasing silica sand content. The difference of the diffusivities between corrosion product and iron without carbon steel seems to be due to the difference of diffusing species. The color of the corrosion product was dark-green during contact with bentonite specimens and became red on exposure to air in a few minutes. Gas bubbles were also observed in the corrosion product. This suggests hydrogen generation during corrosion of the carbon steel. Thus the diffusing species seems to be in a reduced state, probably ferrous ion. On the other hand, the diffusing species of iron without carbon steel was probably a ferric hydroxide complex that was negatively charged. This suggests that ferrous ion could diffuse in the surface water adsorbed on bentonite, while ferric complex was excluded.

  20. Practical method of diffusion-welding steel plate in air

    NASA Technical Reports Server (NTRS)

    Holko, K. H.; Moore, T. J.

    1971-01-01

    Method is ideal for critical service requirements where parent metal properties are equaled in notch toughness, stress rupture and other characteristics. Welding technique variations may be used on a variety of materials, such as carbon steels, alloy steels, stainless steels, ceramics, and reactive and refractory materials.

  1. Structure of laminar sooting inverse diffusion flames

    SciTech Connect

    Mikofski, Mark A.; Fernandez-Pello, A. Carlos; Williams, Timothy C.; Shaddix, Christopher R.; Blevins, Linda G.

    2007-06-15

    The flame structure of laminar inverse diffusion flames (IDFs) was studied to gain insight into soot formation and growth in underventilated combustion. Both ethylene-air and methane-air IDFs were examined, fuel flow rates were kept constant for all flames of each fuel type, and airflow rates were varied to observe the effect on flame structure and soot formation. Planar laser-induced fluorescence of hydroxyl radicals (OH PLIF) and polycyclic aromatic hydrocarbons (PAH PLIF), planar laser-induced incandescence of soot (soot PLII), and thermocouple-determined gas temperatures were used to draw conclusions about flame structure and soot formation. Flickering, caused by buoyancy-induced vortices, was evident above and outside the flames. The distances between the OH, PAH, and soot zones were similar in IDFs and normal diffusion flames (NDFs), but the locations of those zones were inverted in IDFs relative to NDFs. Peak OH PLIF coincided with peak temperature and marked the flame front. Soot appeared outside the flame front, corresponding to temperatures around the minimum soot formation temperature of 1300 K. PAHs appeared outside the soot layer, with characteristic temperature depending on the wavelength detection band. PAHs and soot began to appear at a constant axial position for each fuel, independent of the rate of air flow. PAH formation either preceded or coincided with soot formation, indicating that PAHs are important components in soot formation. Soot growth continued for some time downstream of the flame, at temperatures below the inception temperature, probably through reaction with PAHs. (author)

  2. Cesium diffusion in graphite

    SciTech Connect

    Evans, R.B. III; Davis, W. Jr.; Sutton, A.L. Jr.

    1980-05-01

    Experiments on diffusion of /sup 137/Cs in five types of graphite were performed. The document provides a completion of the report that was started and includes a presentation of all of the diffusion data, previously unpublished. Except for data on mass transfer of /sup 137/Cs in the Hawker-Siddeley graphite, analyses of experimental results were initiated but not completed. The mass transfer process of cesium in HS-1-1 graphite at 600 to 1000/sup 0/C in a helium atmosphere is essentially pure diffusion wherein values of (E/epsilon) and ..delta..E of the equation D/epsilon = (D/epsilon)/sub 0/ exp (-..delta..E/RT) are about 4 x 10/sup -2/ cm/sup 2//s and 30 kcal/mole, respectively.

  3. Apparatus for diffusion separation

    DOEpatents

    Nierenberg, William A.; Pontius, Rex B.

    1976-08-10

    1. The method of testing the separation efficiency of porous permeable membranes which comprises causing a stream of a gaseous mixture to flow into contact with one face of a finely porous permeable membrane under such conditions that a major fraction of the mixture diffuses through the membrane, maintaining a rectangular cross section of the gaseous stream so flowing past said membrane, continuously recirculating the gas that diffuses through said membrane and continuously withdrawing the gas that does not diffuse through said membrane and maintaining the volume of said recirculating gas constant by continuously introducing into said continuously recirculating gas stream a mass of gas equivalent to that which is continuously withdrawn from said gas stream and comparing the concentrations of the light component in the entering gas, the withdrawn gas and the recirculated gas in order to determine the efficiency of said membrane.

  4. Diffusion imaging concepts for clinicians.

    PubMed

    Neil, Jeffrey J

    2008-01-01

    This review covers the fundamentals of diffusion tensor imaging. It is written with the clinician in mind and assumes the reader has a passing familiarity with magnetic resonance imaging (MRI). Topics covered include comparison of diffusion MRI with conventional MRI, water apparent diffusion coefficient (ADC), diffusion anisotropy, tract tracing, and changes of water apparent diffusion in response to injury. The discussion centers primarily on applications to the central nervous system, but examples from other tissues are included. PMID:18050325

  5. Hydrogen diffusion in Zircon

    NASA Astrophysics Data System (ADS)

    Ingrin, Jannick; Zhang, Peipei

    2016-04-01

    Hydrogen mobility in gem quality zircon single crystals from Madagascar was investigated through H-D exchange experiments. Thin slices were annealed in a horizontal furnace flushed with a gas mixture of Ar/D2(10%) under ambient pressure between 900 ° C to 1150 ° C. FTIR analyses were performed on oriented slices before and after each annealing run. H diffusion along [100] and [010] follow the same diffusion law D = D0exp[-E /RT], with log D0 = 2.24 ± 1.57 (in m2/s) and E = 374 ± 39 kJ/mol. H diffusion along [001] follows a slightly more rapid diffusion law, with log D0 = 1.11 ± 0.22 (in m2/s) and E = 334 ± 49 kJ/mol. H diffusion in zircon has much higher activation energy and slower diffusivity than other NAMs below 1150 ° C even iron-poor garnets which are known to be among the slowest (Blanchard and Ingrin, 2004; Kurka et al. 2005). During H-D exchange zircon incorporates also deuterium. This hydration reaction involves uranium reduction as it is shown from the exchange of U5+ and U4+ characteristic bands in the near infrared region during annealing. It is the first time that a hydration reaction U5+ + OH‑ = U4+ + O2‑ + 1/2H2, is experimentally reported. The kinetics of deuterium incorporation is slightly slower than hydrogen diffusion, suggesting that the reaction is limited by hydrogen mobility. Hydrogen isotopic memory of zircon is higher than other NAMs. Zircons will be moderately retentive of H signatures at mid-crustal metamorphic temperatures. At 500 ° C, a zircon with a radius of 300 μm would retain its H isotopic signature over more than a million years. However, a zircon is unable to retain this information for geologically significant times under high-grade metamorphism unless the grain size is large enough. Refrences Blanchard, M. and Ingrin, J. (2004) Hydrogen diffusion in Dora Maira pyrope. Physics and Chemistry of Minerals, 31, 593-605. Kurka, A., Blanchard, M. and Ingrin, J. (2005) Kinetics of hydrogen extraction and deuteration in

  6. Radon diffusion modelling.

    PubMed

    Wilkinson, P; Dimbylow, P J

    1985-10-01

    A mathematical model has been developed that examines the ingress of radon into houses, through a vertical crack in an otherwise impervious concrete floor. Initially, the model considered the diffusive flow of radon from its soil source and this simulation has highlighted the dependency of the flux of radon into the house on the magnitude of various parameters, such as the diffusion coefficient of radon in soil. A preliminary investigation of the modelling of pressure-driven flow into a building is presented, and the potential of this type of analysis is discussed. PMID:4081719

  7. Evolution of error diffusion

    NASA Astrophysics Data System (ADS)

    Knox, Keith T.

    1999-10-01

    As we approach the new millennium, error diffusion is approaching the 25th anniversary of its invention. Because of its exceptionally high image quality, it continues to be a popular choice among digital halftoning algorithms. Over the last 24 years, many attempts have been made to modify and improve the algorithm--to eliminate unwanted textures and to extend it to printing media and color. Some of these modifications have been very successful and are in use today. This paper will review the history of the algorithm and its modifications. Three watershed events in the development of error diffusion will be described, together with the lessons learned along the way.

  8. Evolution of error diffusion

    NASA Astrophysics Data System (ADS)

    Knox, Keith T.

    1998-12-01

    As we approach the new millennium, error diffusion is approaching the 25th anniversary of its invention. Because of its exceptionally high image quality, it continues to be a popular choice among digital halftoning algorithms. Over the last 24 years, many attempts have been made to modify and improve the algorithm - to eliminate unwanted textures and to extend it to printing media and color. Some of these modifications have been very successful and are in use today. This paper will review the history of the algorithm and its modifications. Three watershed events in the development of error diffusion will be described, together with the lesions learned along the way.

  9. Mass diffusion in liquids

    NASA Astrophysics Data System (ADS)

    Walter, H. U.

    Dimensionless number analysis indicates that diffusion-controlled conditions with liquid samples having characteristic dimensions larger than one millimetre can only be established under microgravity conditions.Consequently, heat and mass transport properties of fluids can only be quantitatively investigated in space.Results obtained from experiments on selfdiffusion, interdiffusion and thermodiffusion carried out during the SL-1 and D-1 Spacelab missions clearly demonstrate the potential of space platforms to determine such properties with a precision unattainable on earth. These results imply also that crystal growth from solutions, vapours and melts in the diffusive regime can be realised in space only.

  10. Multispecies diffusion models: A study of uranyl species diffusion

    NASA Astrophysics Data System (ADS)

    Liu, Chongxuan; Shang, Jianying; Zachara, John M.

    2011-12-01

    Rigorous numerical description of multispecies diffusion requires coupling of species, charge, and aqueous and surface complexation reactions that collectively affect diffusive fluxes. The applicability of a fully coupled diffusion model is, however, often constrained by the availability of species self-diffusion coefficients, as well as by computational complication in imposing charge conservation. In this study, several diffusion models with variable complexity in charge and species coupling were formulated and compared to describe reactive multispecies diffusion in groundwater. Diffusion of uranyl [U(VI)] species was used as an example in demonstrating the effectiveness of the models in describing multispecies diffusion. Numerical simulations found that a diffusion model with a single, common diffusion coefficient for all species was sufficient to describe multispecies U(VI) diffusion under a steady state condition of major chemical composition, but not under transient chemical conditions. Simulations revealed that for multispecies U(VI) diffusion under transient chemical conditions, a fully coupled diffusion model could be well approximated by a component-based diffusion model when the diffusion coefficient for each chemical component was properly selected. The component-based diffusion model considers the difference in diffusion coefficients between chemical components, but not between the species within each chemical component. This treatment significantly enhanced computational efficiency at the expense of minor charge conservation. The charge balance in the component-based diffusion model can be enforced, if necessary, by adding a secondary migration term resulting from model simplification. The effect of ion activity coefficient gradients on multispecies diffusion is also discussed. The diffusion models were applied to describe U(VI) diffusive mass transfer in intragranular domains in two sediments collected from U.S. Department of Energy's Hanford 300A

  11. Irradiance calibration with solar diffuser

    NASA Technical Reports Server (NTRS)

    Haring, Robert E. (Inventor); Roeder, Herbert A. (Inventor); Hartmann, Ulli G. (Inventor)

    1993-01-01

    The sun's energy is used in combination of movable and fixed diffuser plates, windows and apertures which are positioned in a series of test sequences (modes) for reflectance monitoring and calibration without the use of man-made sources. There are three embodiments, or implementations, of the invention--one embodiment uses two diffusers--a working diffuser and a secondary diffuser--the second embodiment uses three diffusers, a working diffuser, a secondary diffuser and a reference diffuser--and the third embodiment uses two diffusers--a working diffuser and a secondary diffuser, the latter also functioning as a cover for the working diffuser. The movable diffusers are mounted on rotatable cones and, in all embodiments, the sun is blocked from reaching the diffusers when not in use. Thus, the sun is used as a stable source for calibration and monitoring and the sun/diffuser combination is used in such a way that the response of all elements of the optical subsystem of the TOMS can be unambiguously and efficiently characterized with high accuracy and precision.

  12. A novel high energy density rechargeable lithium/air battery.

    PubMed

    Zhang, Tao; Imanishi, Nobuyuki; Shimonishi, Yuta; Hirano, Atsushi; Takeda, Yasuo; Yamamoto, Osamu; Sammes, Nigel

    2010-03-14

    A novel rechargeable lithium/air battery was fabricated, which consisted of a water-stable multilayer Li-metal anode, acetic acid-water electrolyte, and a fuel-cell analogous air-diffusion cathode and possessed a high energy density of 779 W h kg(-1), twice that of the conventional graphite/LiCoO(2) cell. PMID:20177608

  13. Exhaust cloud rise and diffusion in the atmosphere

    NASA Technical Reports Server (NTRS)

    Chandler, M. W.; Chu, R. T.; Thayer, S. D.

    1971-01-01

    Analytical approach develops physical-mathematical model of rocket engine exhaust cloud rise, growth, and diffusion. Analytic derivations and resultant model apply to hot exhaust cloud study or industrial stack plumes, making work results applicable to air pollution. Model formulations apply to all exhaust cloud types and various atmospheric conditions.

  14. Diffusion in random networks

    NASA Astrophysics Data System (ADS)

    Padrino, Juan C.; Zhang, Duan Z.

    2015-11-01

    The ensemble phase averaging technique is applied to model mass transport in a porous medium. The porous material is idealized as an ensemble of random networks, where each network consists of a set of junction points representing the pores and tortuous channels connecting them. Inside a channel, fluid transport is assumed to be governed by the one-dimensional diffusion equation. Mass balance leads to an integro-differential equation for the pores mass density. Instead of attempting to solve this equation, and equivalent set of partial differential equations is derived whose solution is sought numerically. As a test problem, we consider the one-dimensional diffusion of a substance from one end to the other in a bounded domain. For a statistically homogeneous and isotropic material, results show that for relatively large times the pore mass density evolution from the new theory is significantly delayed in comparison with the solution from the classical diffusion equation. In the short-time case, when the solution evolves with time as if the domain were semi-infinite, numerical results indicate that the pore mass density becomes a function of the similarity variable xt- 1 / 4 rather than xt- 1 / 2 characteristic of classical diffusion. This result was verified analytically. Possible applications of this framework include flow in gas shales. Work supported by LDRD project of LANL.

  15. Osmosis and Diffusion

    ERIC Educational Resources Information Center

    Sack, Jeff

    2005-01-01

    OsmoBeaker is a CD-ROM designed to enhance the learning of diffusion and osmosis by presenting interactive experimentation to the student. The software provides several computer simulations that take the student through different scenarios with cells, having different concentrations of solutes in them.

  16. Thermodynamics of diffusion

    NASA Astrophysics Data System (ADS)

    Matuszak, Daniel

    Diffusion is the migration of molecules in the reference frame of a system's center of mass and it is a physical process that occurs in all chemical and biological systems. Diffusion generally involves intermolecular interactions that lead to clustering, adsorption, and phase transitions; as such, it is difficult to describe theoretically on a molecular level in systems containing both intermolecular repulsions and attractions. This work describes a simple thermodynamic approach that accounts for intermolecular attractions and repulsions (much like how the van der Waals equation does) to model and help provide an understanding of diffusion. The approach is an extension of the equilibrium Lattice Density Functional Theory of Aranovich and Donohue; it was developed with Mason and Lonsdale's guidelines on how to construct and test a transport theory. In the framework of lattice fluids, this new approach gives (a) correct equilibrium limits, (b) Fickian behavior for non-interacting systems, (c) correct departures from Fickian behavior in non-ideal systems, (d) the correct Maxwell-Stefan formulation, (e) symmetry behavior upon re-labeling species, (f) reasonable non-equilibrium phase behavior, (g) agreement with Molecular Dynamics simulations, (h) agreement with the theory of non-equilibrium thermodynamics, (i) a vanishing diffusive flux at the critical point, and (j) other qualitatively-correct behaviors when applied to problems in porous membranes and in packed beds.

  17. Diffuse sorption modeling.

    PubMed

    Pivovarov, Sergey

    2009-04-01

    This work presents a simple solution for the diffuse double layer model, applicable to calculation of surface speciation as well as to simulation of ionic adsorption within the diffuse layer of solution in arbitrary salt media. Based on Poisson-Boltzmann equation, the Gaines-Thomas selectivity coefficient for uni-bivalent exchange on clay, K(GT)(Me(2+)/M(+))=(Q(Me)(0.5)/Q(M)){M(+)}/{Me(2+)}(0.5), (Q is the equivalent fraction of cation in the exchange capacity, and {M(+)} and {Me(2+)} are the ionic activities in solution) may be calculated as [surface charge, mueq/m(2)]/0.61. The obtained solution of the Poisson-Boltzmann equation was applied to calculation of ionic exchange on clays and to simulation of the surface charge of ferrihydrite in 0.01-6 M NaCl solutions. In addition, a new model of acid-base properties was developed. This model is based on assumption that the net proton charge is not located on the mathematical surface plane but diffusely distributed within the subsurface layer of the lattice. It is shown that the obtained solution of the Poisson-Boltzmann equation makes such calculations possible, and that this approach is more efficient than the original diffuse double layer model. PMID:19159896

  18. Diffusion welding tool

    NASA Technical Reports Server (NTRS)

    Milam, T. B.

    1973-01-01

    Tool allows flat plate diffusion welding to be done in standard brazing furnace. Weld is achieved using high water pressure applied by hand-operated positive-displacement pump. Good welds have been obtained between nickel and nickel-base alloy plates at temperature of 1200 K and water pressure of 13.8 million N/sq m.

  19. Water vapor diffusion membranes

    NASA Technical Reports Server (NTRS)

    Holland, F. F., Jr.; Smith, J. K.

    1974-01-01

    The program is reported, which was designed to define the membrane technology of the vapor diffusion water recovery process and to test this technology using commercially available or experimental membranes. One membrane was selected, on the basis of the defined technology, and was subjected to a 30-day demonstration trial.

  20. Ti Diffusion in Zircon

    NASA Astrophysics Data System (ADS)

    Cherniak, D. J.; Watson, E. B.

    2006-12-01

    Diffusion of Ti under anhydrous conditions at 1 atmosphere and under fluid-present conditions at 1.1-1.2 GPa has been measured in natural zircon. The source of diffusant for 1-atm experiments was a ZrO2- TiO2-ZrSiO4 mixture, with experiments run in Pt capsules. Diffusion experiments conducted in the presence of H2O-CO2 fluid were run in a piston-cylinder apparatus, using a source of ground TiO2, ZrSiO4 and SiO2, with oxalic acid added to produce H2O-CO2 vapor and partially melt the solid source material, yielding an assemblage of rutile + zircon + melt + vapor. Resonant nuclear reaction analysis (NRA) with the nuclear reaction ^{48}Ti(p,Γ)^{49}V was used to measure diffusion profiles for both sets of experiments. The following Arrhenius relation was obtained for Ti diffusion normal to c over the temperature range 1350-1550C at one atmosphere: DTi = 3.3x102 exp(-754 ± 56 kJ mol-1 /RT) m2sec-1 Ti diffusivities were found to be similar for experiments run under fluid-present conditions. A fit to all of the data yields the Arrhenius relation D = 1.3x103 exp(-741 ± 46 kJ mol-1 /RT) m2sec-1. These data suggest that zircon should be extremely retentive of Ti chemical signatures, indicating that the recently developed Ti-in-zircon crystallization geothermometer (Watson and Harrison, 2005; Watson et al., 2006) will be quite robust in preserving temperatures of zircon crystallization. Titanium diffuses somewhat faster in zircon than larger tetravalent cations U, Th, and Hf, but considerably more slowly than Pb, the REE, and oxygen; hence Ti crystallization temperatures may be retained under circumstances when radiometric ages or other types of geochemical information are lost. Watson EB, Harrison TM (2005) Science 308, 841-844. Watson EB, Wark DA, Thomas JB (2006) CMP(in press).

  1. Diffusion on Cu surfaces

    NASA Technical Reports Server (NTRS)

    Karimi, Majid

    1993-01-01

    Understanding surface diffusion is essential in understanding surface phenomena, such as crystal growth, thin film growth, corrosion, physisorption, and chemisorption. Because of its importance, various experimental and theoretical efforts have been directed to understand this phenomena. The Field Ion Microscope (FIM) has been the major experimental tool for studying surface diffusion. FIM have been employed by various research groups to study surface diffusion of adatoms. Because of limitations of the FIM, such studies are only limited to a few surfaces: nickel, platinum, aluminum, iridium, tungsten, and rhodium. From the theoretical standpoint, various atomistic simulations are performed to study surface diffusion. In most of these calculations the Embedded Atom Method (EAM) along with the molecular static (MS) simulation are utilized. The EAM is a semi-empirical approach for modeling the interatomic interactions. The MS simulation is a technique for minimizing the total energy of a system of particles with respect to the positions of its particles. One of the objectives of this work is to develop the EAM functions for Cu and use them in conjunction with the molecular static (MS) simulation to study diffusion of a Cu atom on a perfect as well as stepped Cu(100) surfaces. This will provide a test of the validity of the EAM functions on Cu(100) surface and near the stepped environments. In particular, we construct a terrace-ledge-kink (TLK) model and calculate the migration energies of an atom on a terrace, near a ledge site, near a kink site, and going over a descending step. We have also calculated formation energies of an atom on the bare surface, a vacancy in the surface, a stepped surface, and a stepped-kink surface. Our results are compared with the available experimental and theoretical results.

  2. Numerical investigations of gaseous spherical diffusion flames

    NASA Astrophysics Data System (ADS)

    Lecoustre, Vivien R.

    Spherical diffusion flames have several unique characteristics that make them attractive from experimental and theoretical perspectives. They can be modeled with one spatial dimension, which frees computational resources for detailed chemistry, transport, and radiative loss models. This dissertation is a numerical study of two classes of spherical diffusion flames: hydrogen micro-diffusion flames, emphasizing kinetic extinction, and ethylene diffusion flames, emphasizing sooting limits. The flames were modeled using a one-dimensional, time-accurate diffusion flame code with detailed chemistry and transport. Radiative losses from products were modeled using a detailed absorption/emission statistical narrow band model and the discrete ordinates method. During this work the code has been enhanced by the implementation of a soot formation/oxidation model using the method of moments. Hydrogen micro-diffusion flames were studied experimentally and numerically. The experiments involved gas jets of hydrogen. At their quenching limits, these flames had heat release rates of 0.46 and 0.25 W in air and in oxygen, respectively. These are the weakest flames ever observed. The modeling results confirmed the quenching limits and revealed high rates of reactant leakage near the limits. The effects of the burner size and mass flow rate were predicted to have a significant impact on the flame chemistry and species distribution profiles, favoring kinetic extinction. Spherical ethylene diffusion flames at their sooting limits were also examined. Seventeen normal and inverse spherical flames were considered. Initially sooty, these flames were experimentally observed to reach their sooting limits 2 s after ignition. Structure of the flames at 2 s was considered, with an emphasis on the relationships among local temperature, carbon to oxygen atom ratio (C/O), and scalar dissipation rate. A critical C/O ratio was identified, along with two different sooting limit regimes. Diffusion flames

  3. Planar Strain-Rate-Free Diffusion Flames: Initiation, Properties, and Extinction

    NASA Technical Reports Server (NTRS)

    Fendell, Francis; Gokoglu, Suleyman; Rungaldier, Harald; Schultz, Donald

    1999-01-01

    An effectively strain-rate-free diffusion flame constitutes the most vigorous laminar combustion of initially unmixed reactive gases. Such a diffusion flame is characterized by a relatively long residence time and by a relatively large characteristic length scale. If such a flame were also planar, providing high symmetry, it would be particularly suitable for experimental and theoretical investigations of key combustion phenomena, such as multicomponent diffusion, chemical kinetics, and soot inception, growth, and oxidation. Unfortunately, a planar strain-rate-free diffusion flame is highly disrupted in earth-gravity (e.g., in a counterflow-diffusion-flame apparatus) because of the very rapid onset (approx. 100 ms) of gravity-induced instability. Accordingly, a specially dedicated apparatus was designed, fabricated, and initially checked out for the examination of a planar strain-rate-free diffusion flame in microgravity. Such a diffusion flame may be formed within a hollowed-out squat container (initially configured as 25 cm x 25 cm x 9 cm), with isothermal, noncatalytic, impervious walls. At test initiation, a thin metallic sheet (approx. 1 mm in thickness) that separates the internal volume into two equal portions, each of dimensions 25 cm x 25 cm x 4.5 cm, is withdrawn, by uniform translation (approx. 50 cm/s) in its own plane, through a tightly fitting slit in one side wall. Thereupon, diluted fuel vapor (initially confined to one half-volume of the container) gains access to diluted oxygen (initially with the same pressure, density, and temperature as the fuel, but initially confined to the other half-volume). After a brief delay (approx. 10 ms), to permit limited but sufficient-for-flammability diffusional interpenetration of fuel vapor and oxidizer, burning is initiated by discharge of a line igniter, located along that side wall from which the trailing edge of the separator withdraws. The ignition spawns a triple-flame propagation across the 25 cm x 25 cm

  4. Instrumentation in Diffuse Optical Imaging

    PubMed Central

    Zhang, Xiaofeng

    2014-01-01

    Diffuse optical imaging is highly versatile and has a very broad range of applications in biology and medicine. It covers diffuse optical tomography, fluorescence diffuse optical tomography, bioluminescence, and a number of other new imaging methods. These methods of diffuse optical imaging have diversified instrument configurations but share the same core physical principle – light propagation in highly diffusive media, i.e., the biological tissue. In this review, the author summarizes the latest development in instrumentation and methodology available to diffuse optical imaging in terms of system architecture, light source, photo-detection, spectral separation, signal modulation, and lastly imaging contrast. PMID:24860804

  5. Erbium diffusion in silicon dioxide

    SciTech Connect

    Lu Yingwei; Julsgaard, B.; Petersen, M. Christian; Jensen, R. V. Skougaard; Pedersen, T. Garm; Pedersen, K.; Larsen, A. Nylandsted

    2010-10-04

    Erbium diffusion in silicon dioxide layers prepared by magnetron sputtering, chemical vapor deposition, and thermal growth has been investigated by secondary ion mass spectrometry, and diffusion coefficients have been extracted from simulations based on Fick's second law of diffusion. Erbium diffusion in magnetron sputtered silicon dioxide from buried erbium distributions has in particular been studied, and in this case a simple Arrhenius law can describe the diffusivity with an activation energy of 5.3{+-}0.1 eV. Within a factor of two, the erbium diffusion coefficients at a given temperature are identical for all investigated matrices.

  6. AIR CLEANING FOR ACCEPTABLE INDOOR AIR QUALITY

    EPA Science Inventory

    The paper discusses air cleaning for acceptable indoor air quality. ir cleaning has performed an important role in heating, ventilation, and air-conditioning systems for many years. raditionally, general ventilation air-filtration equipment has been used to protect cooling coils ...

  7. Charge-induced secondary atomization in diffusion flames of electrostatic sprays

    NASA Technical Reports Server (NTRS)

    Gomez, Alessandro; Chen, Gung

    1994-01-01

    The combustion of electrostatic sprays of heptane in laminar counterflow diffusion flames was experimentally studied by measuring droplet size and velocity distributions, as well as the gas-phase temperature. A detailed examination of the evolution of droplet size distribution as droplets approach the flame shows that, if substantial evaporation occurs before droplets interact with the flame, an initially monodisperse size distribution becomes bimodal. A secondary sharp peak in the size histogram develops in correspondence of diameters about one order of magnitude smaller than the mean. No evaporation mechanism can account for the development of such bimodality, that can be explained only in terms of a disintegration of droplets into finer fragments of size much smaller than that of the parent. Other evidence in support of this interpretation is offered by the measurements of droplet size-velocity correlation and velocity component distributions, showing that, as a consequence of the ejection process, the droplets responsible for the secondary peak have velocities uncorrelated with the mean flow. The fission is induced by the electric charge. When a droplet evaporates, in fact, the electric charge density on the droplet surface increases while the droplet shrinks, until the so-called Rayleigh limit is reached at which point the repulsion of electric charges overcomes the surface tension cohesive force, ultimately leading to a disintegraton into finer fragments. We report on the first observation of such fissions in combustion environments. If, on the other hand, insufficient evaporation has occurred before droplets enter the high temperature region, there appears to be no significant evidence of bimodality in their size distribution. In this case, in fact, the concentration of flame chemi-ions or, in the case of positively charged droplets, electrons may be sufficient for them to neutralize the charge on the droplets and to prevent disruption.

  8. [Diffuse Pulmonary Ossification].

    PubMed

    Avsar, K; Behr, J; Morresi-Hauf, A

    2016-04-01

    Diffuse pulmonary ossification (DPO) represents an uncommon condition usually associated with different underlying pulmonary and extrapulmonary diseases. In this work, we discuss eleven patients of our clinic with the diagnosis of a diffuse pulmonary ossification. We focus on histological changes in the surrounding lung tissue. Clinical and radiological findings were analysed. The aim of the study is to collect data for a better understanding of this condition, especially in association with interstitial lung disease.Three patients with interstitial lung disease had histological findings of UIP. The follow-up data of these patients showed a benign course of the disease.The analysis of the clinical data yielded a very heterogenous group. Regarding these fact we assume, that DPO is not an own entity, but a pathological epiphenomenon in the context of different conditions, possibly with pathogenetic overlap. PMID:26829606

  9. Diffusion dans les liquides

    NASA Astrophysics Data System (ADS)

    Dianoux, A. J.

    2003-09-01

    Après une brève introduction qui rappelle les concepts détaillés dans le cours de M. Bée, nous présentons un aperçu de trois de nos travaux sur l'étude de la diffusion. Tout d'abord la dynamique de l'eau, dans son état normal ou surfondu, révèle la complexité apportée par le réseau de liaisons hydrogène. Ensuite l'effet du confinement sur la dynamique de l'eau sera étudié dans le cas de la membrane Nafion. Enfin la diffusion dans les phases nématique et smectique A d'un cristal liquide permet d'obtenir la valeur du potentiel qui maintient les couches dans la phase smectique.

  10. Galactic Diffuse Polarized Emission

    NASA Astrophysics Data System (ADS)

    Carretti, Ettore

    2011-12-01

    Diffuse polarized emission by synchrotron is a key tool to investigate magnetic fields in the Milky Way, particularly the ordered component of the large scale structure. Key observables are the synchrotron emission itself and the RM is by Faraday rotation. In this paper the main properties of the radio polarized diffuse emission and its use to investigate magnetic fields will be reviewed along with our current understanding of the galactic magnetic field and the data sets available. We will then focus on the future perspective discussing RM-synthesis - the new powerful instrument devised to unlock the information encoded in such an emission - and the surveys currently in progress like S-PASS and GMIMS.

  11. Thermal diffusivity imaging

    NASA Astrophysics Data System (ADS)

    Gfroerer, Tim; Phillips, Ryan; Rossi, Peter

    2015-11-01

    The tip of a rod is heated with a torch and brought into contact with the center of a metal sheet. A thermal camera is then used to image the temperature profile of the surface as a function of time. The infrared camera is capable of recording radiometric data with 1 mK resolution in nearly 105 pixels, so thermal diffusion can be monitored with unprecedented precision. With a frame rate of approximately 10 Hz, the pace of the data acquisition minimizes the loss of accuracy due to inevitable cooling mechanisms. We report diffusivity constants equal to 1.23 ± 0.06 cm2/s in copper and 0.70 ± 0.05 cm2/s in aluminum. The behavior is modeled with a straightforward but oddly under-utilized one-dimensional finite difference method.

  12. Nonlocal electrical diffusion equation

    NASA Astrophysics Data System (ADS)

    Gómez-Aguilar, J. F.; Escobar-Jiménez, R. F.; Olivares-Peregrino, V. H.; Benavides-Cruz, M.; Calderón-Ramón, C.

    2016-07-01

    In this paper, we present an analysis and modeling of the electrical diffusion equation using the fractional calculus approach. This alternative representation for the current density is expressed in terms of the Caputo derivatives, the order for the space domain is 0<β≤1 and for the time domain is 0<γ≤2. We present solutions for the full fractional equation involving space and time fractional derivatives using numerical methods based on Fourier variable separation. The case with spatial fractional derivatives leads to Levy flight type phenomena, while the time fractional equation is related to sub- or super diffusion. We show that the mathematical concept of fractional derivatives can be useful to understand the behavior of semiconductors, the design of solar panels, electrochemical phenomena and the description of anomalous complex processes.

  13. Turbo fluid machinery and diffusers

    NASA Technical Reports Server (NTRS)

    Sakurai, T.

    1984-01-01

    The general theory behind turbo devices and diffusers is explained. Problems and the state of research on basic equations of flow and experimental and measuring methods are discussed. Conventional centrifugation-type compressor and fan diffusers are considered in detail.

  14. Diffusive Shock Acceleration

    NASA Astrophysics Data System (ADS)

    Baring, Matthew

    2003-04-01

    The process of diffusive acceleration of charged particles in shocked plasmas is widely invoked in astrophysics to account for the ubiquitous presence of signatures of non-thermal relativistic electrons and ions in the universe. This statistical energization mechanism, manifested in turbulent media, was first posited by Enrico Fermi in 1949 to explain the observed cosmic ray population, which exhibits an almost power-law distribution in rigidity. The absence of a momentum scale is a key characteristic of diffusive shock acceleration, and astrophysical systems generally only impose scales at the injection (low energy) and loss (high energy) ends of the particle spectrum. The existence of structure in the cosmic ray spectrum (the "knee") at around 3000 TeV has promoted contentions that there are at least two origins for cosmic rays, a galactic one supplying those up to the knee, and perhaps an extragalactic one that can explain even the ultra-high energy cosmic rays (UHECRs) seen at 1-300 EeV. Accounting for the UHECRs with familiar astrophysical sites of acceleration has historically proven difficult due to the need to assume high magnetic fields in order to reduce the shortest diffusive acceleration timescale, the ion gyroperiod, to meaningful values. Yet active galaxies and gamma-ray bursts remain strong and interesting candidate sources for UHECRs, turning the theoretical focus to relativistic shocks. This review summarizes properties of diffusive shock acceleration that are salient to the issue of UHECR generation. These include spectral indices, anisotropies, acceleration efficencies and timescales, as functions of the shock speed and mean field orientation, and also the degree of field turbulence. Astrophysical sites for UHECR production are also critiqued.

  15. Peridynamic thermal diffusion

    NASA Astrophysics Data System (ADS)

    Oterkus, Selda; Madenci, Erdogan; Agwai, Abigail

    2014-05-01

    This study presents the derivation of ordinary state-based peridynamic heat conduction equation based on the Lagrangian formalism. The peridynamic heat conduction parameters are related to those of the classical theory. An explicit time stepping scheme is adopted for numerical solution of various benchmark problems with known solutions. It paves the way for applying the peridynamic theory to other physical fields such as neutronic diffusion and electrical potential distribution.

  16. Peridynamic thermal diffusion

    SciTech Connect

    Oterkus, Selda; Madenci, Erdogan; Agwai, Abigail

    2014-05-15

    This study presents the derivation of ordinary state-based peridynamic heat conduction equation based on the Lagrangian formalism. The peridynamic heat conduction parameters are related to those of the classical theory. An explicit time stepping scheme is adopted for numerical solution of various benchmark problems with known solutions. It paves the way for applying the peridynamic theory to other physical fields such as neutronic diffusion and electrical potential distribution.

  17. Mass transport by diffusion

    NASA Technical Reports Server (NTRS)

    Baird, James K.

    1987-01-01

    For the purpose of determining diffusion coefficients as required for electrodeposition studies and other applications, a diaphragm cell and an isothermal water bath were constructed. the calibration of the system is discussed. On the basis of three calibration runs on the diaphram cell, researchers concluded that the cell constant beta equals 0.12 cm -2 . Other calibration runs in progress should permit the cell constant to be determined with an accuracy of one percent.

  18. [Diffuse Lewy body disease].

    PubMed

    Kosaka, K

    1995-12-01

    Diffuse Lewy body disease (DLBD), which we have proposed since 1976, has received great attention among both researchers and clinicians. Recently, it was reported by some English and American research groups that DLBD is the second most frequent dementing illness in the elderly, following Alzheimer-type dementia (ATD). Our recent research of 79 autopsied dementia cases in a hospital disclosed that DLBD (15.4%) was the second most common degenerative dementia, following ATD (43.6%). In 1980 we proposed Lewy body disease, and classified it into three types: brain stem type, transitional type, and diffuse type. Diffuse type of LBD is now called DLBD. In 1990 we divided DLBD into two forms: common form and pure form. The common form of DLBD has more or less Alzheimer pathology, and pure form has none. Very recently, we proposed the cerebral type of LBD, in which numerous Lewy bodies are found in the cerebral cortex and amygdala, but no PD pathology is present in the brain stem. Therefore, LBD is now classified as follows: [table: see text] PMID:8752428

  19. Solute diffusion in liquid metals

    NASA Technical Reports Server (NTRS)

    Bhat, B. N.

    1973-01-01

    A gas model of diffusion in liquid metals is presented. In this model, ions of liquid metals are assumed to behave like the molecules in a dense gas. Diffusion coefficient of solute is discussed with reference to its mass, ionic size, and pair potential. The model is applied to the case of solute diffusion in liquid silver. An attempt was made to predict diffusion coefficients of solutes with reasonable accuracy.

  20. The Microbiology of Counterflow Scalding Systems

    Technology Transfer Automated Retrieval System (TEKTRAN)

    For most of the thousands of years that humans have used scalding to make it easier to remove feathers from birds, no one knew about the microbiological implications of scalding. The hot water in scald tanks kills many bacteria, but scalding multiple birds in the same tank gives surviving bacteria ...

  1. Counter-Flow Cooling Tower Test Cell

    NASA Astrophysics Data System (ADS)

    Dvořák, Lukáš; Nožička, Jiří

    2014-03-01

    The article contains a design of a functional experimental model of a cross-flow mechanical draft cooling tower and the results and outcomes of measurements. This device is primarily used for measuring performance characteristics of cooling fills, but with a simple rebuild, it can be used for measuring other thermodynamic processes that take part in so-called wet cooling. The main advantages of the particular test cell lie in the accuracy, size, and the possibility of changing the water distribution level. This feature is very useful for measurements of fills of different heights without the influence of the spray and rain zone. The functionality of this test cell has been verified experimentally during assembly, and data from the measurement of common film cooling fills have been compared against the results taken from another experimental line. For the purpose of evaluating the data gathered, computational scripts were created in the MATLAB numerical computing environment. The first script is for exact calculation of the thermal balance of the model, and the second is for determining Merkel's number via Chebyshev's method.

  2. Percolation of interaction diffusing particles

    NASA Technical Reports Server (NTRS)

    Selinger, Robin Blumberg; Stanley, H. Eugene

    1990-01-01

    The connectivity properties of systems of diffusing interacting particles with the blind and myopic diffusion rules are studied. It is found that the blind rule case is equivalent to the lattice gas with J = 0 in all dimensions. The connectivity properties of blind rule diffusion are described by random site percolation due to the fact that the density on neighboring sites is uncorrelated.

  3. Diffusion of Zonal Variables Using Node-Centered Diffusion Solver

    SciTech Connect

    Yang, T B

    2007-08-06

    Tom Kaiser [1] has done some preliminary work to use the node-centered diffusion solver (originally developed by T. Palmer [2]) in Kull for diffusion of zonal variables such as electron temperature. To avoid numerical diffusion, Tom used a scheme developed by Shestakov et al. [3] and found their scheme could, in the vicinity of steep gradients, decouple nearest-neighbor zonal sub-meshes leading to 'alternating-zone' (red-black mode) errors. Tom extended their scheme to couple the sub-meshes with appropriate chosen artificial diffusion and thereby solved the 'alternating-zone' problem. Because the choice of the artificial diffusion coefficient could be very delicate, it is desirable to use a scheme that does not require the artificial diffusion but still able to avoid both numerical diffusion and the 'alternating-zone' problem. In this document we present such a scheme.

  4. Experimental Investigation of Radio-Turbulence Induced Diffusion -- Final Report

    SciTech Connect

    Spitz, H. B.; Usman, S.

    2005-07-07

    The outcome of this research project suggests that the transport of radon in water is significantly greater than that predicted solely by molecular diffusion. The original study was related to the long term storage of {sup 226}Ra-bearing sand at the DOE Fernald site and determining whether a barrier of water covering the sand would be effective in reducing the emanation of {sup 222}Rn from the sand. Initial observations before this study found the transport of radon in water to be greater than that predicted solely by molecular diffusion. Fick's law on diffusion was used to model the transport of radon in water including the impact associated with radioactive decay. Initial measurements suggested that the deposition of energy in water associated with the radioactive decay process influences diffusion and enhances transport of radon. A multi-region, one-dimensional, steady-state transport model was used to analyze the movement of radon through a sequential column of air, water and air. An effective diffusion coefficient was determined by varying the thickness of the water column and measuring the time for transport of {sup 222}Rn through of the water barrier. A one-region, one-dimensional transient diffusion equation was developed to investigate the build up of radon at the end of the water column to the time when a steady-state, equilibrium condition was achieved. This build up with time is characteristic of the transport rate of radon in water and established the basis for estimating the effective diffusion coefficient for {sup 222}Rn in water. Several experiments were conducted using different types and physical arrangements of water barriers to examine how radon transport is influenced by the water barrier. Results of our measurements confirm our theoretical analyses which suggest that convective forces other than pure molecular diffusion impact the transport of {sup 222}Rn through the water barrier. An effective diffusion coefficient is defined that includes

  5. Dairy Biomass-Wyoming Coal Blends Fixed Gasification Using Air-Steam for Partial Oxidation

    DOE PAGESBeta

    Gordillo, Gerardo; Annamalai, Kalyan

    2012-01-01

    Concenmore » trated animal feeding operations such as dairies produce a large amount of manure, termed as dairy biomass (DB), which could serve as renewable feedstock for thermal gasification. DB is a low-quality fuel compared to fossil fuels, and hence the product gases have lower heat content; however, the quality of gases can be improved by blending with coals. This paper deals with air-steam fixed-bed counterflow gasification of dairy biomass-Wyoming coal blend (DBWC). The effects of equivalence ratio ( 1.6 < Φ < 6.4 ) and steam-to-fuel ratio ( 0.4 < S : F < 0.8 ) on peak temperatures, gas composition, gross heating value of the products, and energy recovery are presented. According to experimental results, increasing Φ and ( S : F ) ratios decreases the peak temperature and increases the H 2 and CO 2 production, while CO production decreases. On the other hand, the concentrations of CH 4 and C 2 H 6 were lower compared to those of other gases and almost not affected by Φ.« less

  6. Application of Shear Plate Interferometry to Jet Diffusion Flame Temperature Measurements

    NASA Technical Reports Server (NTRS)

    VanDerWege, Brad A.; OBrien, Chris J.; Hochgreb, Simone

    1997-01-01

    The recent ban on the production of bromotrifluoromethane (CF3Br) because of its high stratospheric ozone depletion potential has led to interest in finding alternative agents for fire extinguishing applications. Some of the promising alternatives are fluorinated hydrocarbons. A clear understanding of the effects of CF3Br and alternative chemical suppressants on diffusion flames is therefore necessary in the selection of alternative suppressants for use in normal and microgravity. The flame inhibition effects of halogen compounds have been studied extensively in premixed systems. The effect of addition of halocarbons (carbon-halogen compounds) to diffusion flames has been studied experimentally in coflow configurations and in counterflow gaseous and liquid-pool flames. Halogenated compounds are believed to inhibit combustion by scavenging hydrogen radicals to form the relatively unreactive compound HF, or through a catalytic recombination cycle involving HBr to form H2. Comparisons between halogens show that bromine inhibition is significantly more effective than chlorine or fluorine. Although fluorinated compounds are only slightly more effective inhibitors on a mass basis than nitrogen, they are more effective on a volume basis and are easily stored in liquid form. The objectives of this study are (a) to determine the stability limits of laminar jet diffusion flames with respect to inhibitor concentration in both normal and microgravity, and (b) to investigate the structure of halocarbon-inhibited flames. In the initial phase of this project, visual diagnostics were used to observe the structure and behavior of normal and microgravity flames. The initial observations showed significant changes in the structure of the flames with the addition of halocarbons to the surrounding environment, as discussed below. Furthermore, the study established that the flames are more stable relative to the addition of halocarbons in microgravity than in normal gravity. Visual

  7. Apparent Anisotropic Diffusion of SF6 in a Deep Arid Unsaturated Zone

    NASA Astrophysics Data System (ADS)

    Green, C. T.; Walvoord, M. A.; Andraski, B. J.; Striegl, R. G.; Stonestrom, D. A.

    2014-12-01

    Gas transport in the unsaturated zone affects contaminant dispersal, remediation, interpretation of groundwater travel times from atmospheric tracers, and mass-budgets of environmentally important gases. Although deep unsaturated zone transport of gases is commonly treated as dominated by Fickian diffusion, previous observations at the Amargosa Desert Research Site have shown that the transport rates of various gas phase contaminants are faster than expected from standard models of diffusive transport. In this study, we use a multi-model approach to analyze results of a gas-tracer (SF6) test to clarify factors affecting gas transport in a deep unsaturated zone. Thirteen separate models with distinct diffusivity structures were calibrated to the tracer-test data. Models were compared on the basis of Akaike Information Criteria estimates of posterior model probability. The greatest posterior probability occurred for a model with significant anisotropy of diffusivity in addition to varying apparent diffusivity among vertically distributed sampling locations. Some horizontal diffusivities were greater than expected for purely diffusive transport, with values approaching free-air diffusivity (tortuosity ≈ 0.6 to 1). The magnitudes of the high apparent diffusivities were consistent with advective oscillations propagating through unsaturated-zone strata based on an analysis of barometric and unsaturated-zone air pressure time series. These results indicate that point source gases in layered unsaturated zones can spread laterally more quickly, and produce higher peak concentrations, than predicted by isotropic Fickian diffusion models.

  8. Galactic diffuse gamma rays from galactic plane

    NASA Astrophysics Data System (ADS)

    Tateyama, N.; Nishimura, J.

    2001-08-01

    The dominant part of the diffuse gamma rays from the Galactic plane, with energy greater than 1TeV, has been thought as due to the inverse Compton scattering of the interstellar photons with the high-energy cosmic electrons. In these energy regions, the diffuse gamma-ray observation gives us unique infor-mation on the energy spectrum of the high-energy electrons in the interstellar space, since we cannot observe those electrons directly. This provides us information on the cosmicray source, production mechanism and propagation in the Galaxy. We discuss the implication of our results by comparing with the work of Porter and Protheroe, and also compare with the data observed by the most recent extensive air showers. It is also pointed out that the patchy structure of gammaray distribution will appear at high-energy side, if we observe the distribution with a higher angular resolution of a few arc degrees. This patchy structure will become clear beyond 10TeV of IC gamma rays, where the number of contributing sources of parent decrease and the diffusion distance of the electrons become smaller.

  9. Pollutant Transport and Diffusion in Katabatic Flows.

    NASA Astrophysics Data System (ADS)

    Nappo, Carmen J.; Shankar Rao, K.; Herwehe, Jerold A.

    1989-07-01

    The characteristics of pollutant transport and diffusion of a passive contaminant in a two-dimensional katabatic flow over a simple slope are examined using a primitive equation hydrodynamic model. It is shown that pollutants released above the drainage layer can be entrained into the layer and diffused to the ground surface. For elevated release within the drainage layer, subsidence in the flow leads to relatively high surface concentrations of pollutants close to the stack. Pollutants released at ground level can spread through the entire depth of the drainage layer. This vertical diffusion is more effective for a shallow slope, resulting in higher concentrations at all heights, than for a steeper slope. These dispersion characteristics are quite different from those for stable flows over flat terrain. The differences result from increases of boundary-layer depth, wind speed, and turbulence as the katabatic flow develops downslope.The katabatic flow and dispersion model is tested by simulating the perfluorocarbon and heavy methane tracer releases for Night 4 of the 1980 ASCOT field study in Anderson Creek Valley, California. These tests show that the observed concentrations and the depth of the drainage layer in the lower region of the slope are underpredicted because the model could not simulate the convergence of drainage air (pooling) in the valley basin. The nightly average values of the observed concentrations, however, are predicted well. It is concluded that the model is applicable to nearly two-dimensional open slopes.

  10. Metal-Air Batteries

    SciTech Connect

    Zhang, Jiguang; Bruce, Peter G.; Zhang, Gregory

    2011-08-01

    Metal-air batteries have much higher specific energies than most currently available primary and rechargeable batteries. Recent advances in electrode materials and electrolytes, as well as new designs on metal-air batteries, have attracted intensive effort in recent years, especially in the development of lithium-air batteries. The general principle in metal-air batteries will be reviewed in this chapter. The materials, preparation methods, and performances of metal-air batteries will be discussed. Two main metal-air batteries, Zn-air and Li-air batteries will be discussed in detail. Other type of metal-air batteries will also be described.

  11. Anisotropic fractional diffusion tensor imaging

    PubMed Central

    Meerschaert, Mark M; Magin, Richard L; Ye, Allen Q

    2015-01-01

    Traditional diffusion tensor imaging (DTI) maps brain structure by fitting a diffusion model to the magnitude of the electrical signal acquired in magnetic resonance imaging (MRI). Fractional DTI employs anomalous diffusion models to obtain a better fit to real MRI data, which can exhibit anomalous diffusion in both time and space. In this paper, we describe the challenge of developing and employing anisotropic fractional diffusion models for DTI. Since anisotropy is clearly present in the three-dimensional MRI signal response, such models hold great promise for improving brain imaging. We then propose some candidate models, based on stochastic theory.

  12. Assessment of a Molecular Diffusion Model in MELCOR

    SciTech Connect

    Chang OH; Richard Moore

    2005-06-01

    The MELCOR (version 1.8.5) [1] computer code with INEEL revisions is being improved for the analysis of very high temperature gas-cooled reactors [2]. Following a loss-of-coolant accident, flow through the reactor vessel may initially stagnate due to a non-uniform concentration of helium and air. However, molecular diffusion will eventually result in a uniform concentration of air and helium. The differences in fluid temperatures within the reactor vessel will then result in the establishment of a natural circulation flow that can supply significant amounts of air to the reactor core. The heat released by the resulting oxidation of graphite in the reactor core has the potential to increase the peak fuel temperature. In order to analyze the effects of oxidation on the response of the reactor during accidents, a molecular diffusion model was added to MELCOR. The model is based on Fick's Second Law for spatially uniform pressure and temperature. This paper describes equimolal counter diffusion experiments in a two bulb diffusion cell and the results of the assessment calculations.

  13. AMBIENT AIR MONITORING STRATEGY

    EPA Science Inventory

    The Clean Air Act requires EPA to establish national ambient air quality standards and to regulate as necessary, hazardous air pollutants. EPA uses ambient air monitoring to determine current air quality conditions, and to assess progress toward meeting these standards and relat...

  14. Accelerated stochastic diffusion processes

    NASA Astrophysics Data System (ADS)

    Garbaczewski, Piotr

    1990-07-01

    We give a purely probabilistic demonstration that all effects of non-random (external, conservative) forces on the diffusion process can be encoded in the Nelson ansatz for the second Newton law. Each random path of the process together with a probabilistic weight carries a phase accumulation (complex valued) weight. Random path summation (integration) of these weights leads to the transition probability density and transition amplitude respectively between two spatial points in a given time interval. The Bohm-Vigier, Fenyes-Nelson-Guerra and Feynman descriptions of the quantum particle behaviours are in fact equivalent.

  15. Diffusion in silicon isotope heterostructures

    SciTech Connect

    Silvestri, Hughes Howland

    2004-05-14

    The simultaneous diffusion of Si and the dopants B, P, and As has been studied by the use of a multilayer structure of isotopically enriched Si. This structure, consisting of 5 pairs of 120 nm thick natural Si and {sup 28}Si enriched layers, enables the observation of {sup 30}Si self-diffusion from the natural layers into the {sup 28}Si enriched layers, as well as dopant diffusion from an implanted source in an amorphous Si cap layer, via Secondary Ion Mass Spectrometry (SIMS). The dopant diffusion created regions of the multilayer structure that were extrinsic at the diffusion temperatures. In these regions, the Fermi level shift due to the extrinsic condition altered the concentration and charge state of the native defects involved in the diffusion process, which affected the dopant and self-diffusion. The simultaneously recorded diffusion profiles enabled the modeling of the coupled dopant and self-diffusion. From the modeling of the simultaneous diffusion, the dopant diffusion mechanisms, the native defect charge states, and the self- and dopant diffusion coefficients can be determined. This information is necessary to enhance the physical modeling of dopant diffusion in Si. It is of particular interest to the modeling of future electronic Si devices, where the nanometer-scale features have created the need for precise physical models of atomic diffusion in Si. The modeling of the experimental profiles of simultaneous diffusion of B and Si under p-type extrinsic conditions revealed that both species are mediated by neutral and singly, positively charged Si self-interstitials. The diffusion of As and Si under extrinsic n-type conditions yielded a model consisting of the interstitialcy and vacancy mechanisms of diffusion via singly negatively charged self-interstitials and neutral vacancies. The simultaneous diffusion of P and Si has been modeled on the basis of neutral and singly negatively charged self-interstitials and neutral and singly positively charged P

  16. High efficiency air cycle air conditioning system

    SciTech Connect

    Rannenberg, G. C.

    1985-11-19

    An air cycle air conditioning system is provided with regenerative heat exchangers upstream and downstream of an expansion turbine. A closedloop liquid circulatory system serially connects the two regenerative heat exchangers for regeneration without the bulk associated with air-to-air heat exchange. The liquid circulatory system may also provide heat transport to a remote sink heat exchanger and from a remote load as well as heat exchange within the sink heat exchanger and load for enhanced compactness and efficiency.

  17. Healthy Air Outdoors

    MedlinePlus

    ... clean up the air are enforced. Learn more Climate Change Climate change threatens the health of millions of people, with ... What Makes Air Unhealthy Fighting for Healthy Air Climate Change Emergencies & Natural Disasters Tobacco Education and Training Ask ...

  18. HEPA air filter (image)

    MedlinePlus

    ... pet dander and other irritating allergens from the air. Along with other methods to reduce allergens, such ... controlling the amount of allergens circulating in the air. HEPA filters can be found in most air ...

  19. Needed: Clean Air.

    ERIC Educational Resources Information Center

    Schneider, Gerald

    1979-01-01

    Provides information on air pollution for young readers. Discusses damage to substances and sickness from air pollution, air quality, and what to do in a pollution alert. Includes questions with answers, illustrations, and activities for the learner. (MA)

  20. Studies of surface diffusion by second harmonic fluctuation spectroscopy

    SciTech Connect

    Zhao, Xiaolin; Goh, M.C.; Subrahmanyan, S.; Eisenthal, K.B. )

    1990-05-03

    The authors have shown how the fluctuations in the signal from surface second harmonic generation can be utilized for the study of a heterogeneous surface such as palmitic acid (C{sub 15}H{sub 31}COOH) spread on the air/water interface, under conditions of gas-liquid coexistence. The authors report observations of time-correlated fluctuations in the SH signal, with decay constant of approximately 6 s. This is attributed to motions of the liquidlike clusters of palmitic acid. If the motion is diffusive, a diffusion constant of about 10{sup {minus}8} cm{sup 2}/s is estimated for these clusters.

  1. Numerical analysis of entropy generation in a turbulent diffusion flame

    NASA Astrophysics Data System (ADS)

    Bouras, F.; Khaldi, F.

    2016-01-01

    Thermodynamic irreversibilities generated by the combustion process are evaluated and analyzed numerically. The numerical simulation is performed for a reference case study for which experimental data are available in the literature: diffusion flame properties in a common burner configuration are studied by the Fluent software with the standard k-ɛ turbulence model and two-step chemical reaction. The study quantifies the contribution of each mechanism to entropy generation, i.e., friction, heat conduction, species diffusion, and chemical reaction. The chemical reaction and heat conduction are found to be the major sources of entropy production. Preheating of air reduces thermodynamic irreversibilities within the combustor.

  2. A method for thermal diffusivity measurement in fluids.

    PubMed

    Marín, E; Hernández-Rosales, E; Mansanares, A M; Ivanov, R; Rojas-Trigos, J B; Calderón, A

    2013-10-01

    A technique is proposed for thermal diffusivity measurement in fluids. It is based on the Angstrom method, but with excitation of thermal waves by electromagnetic energy absorption and pyroelectric detection. The good agreement between measured thermal diffusivity of air and some test liquids with literature values shows the validity of the method. It is free of some limitations of conventional photopyroelectric technique with length scanning because it is free of moving parts inside the sample and because it avoids problems associated with the non-parallelism between thermal wave generator surface and sensor. It does not require any data normalization procedure or special sample preparation. PMID:24182147

  3. A method for thermal diffusivity measurement in fluids

    NASA Astrophysics Data System (ADS)

    Marín, E.; Hernández-Rosales, E.; Mansanares, A. M.; Ivanov, R.; Rojas-Trigos, J. B.; Calderón, A.

    2013-10-01

    A technique is proposed for thermal diffusivity measurement in fluids. It is based on the Angstrom method, but with excitation of thermal waves by electromagnetic energy absorption and pyroelectric detection. The good agreement between measured thermal diffusivity of air and some test liquids with literature values shows the validity of the method. It is free of some limitations of conventional photopyroelectric technique with length scanning because it is free of moving parts inside the sample and because it avoids problems associated with the non-parallelism between thermal wave generator surface and sensor. It does not require any data normalization procedure or special sample preparation.

  4. A simple flow analysis of diffuser-getter-diffuser systems

    SciTech Connect

    Klein, J. E.; Howard, D. W.

    2008-07-15

    Tritium clean-up systems typically deploy gas processing technologies between stages of palladium-silver (Pd/Ag) diffusers/permeators. The number of diffusers positioned before and after a gas clean-up process to obtain optimal system performance will vary with feed gas inert composition. A simple method to analyze optimal diffuser configuration is presented. The method assumes equilibrium across the Pd/Ag tubes and system flows are limited by diffuser vacuum pump speeds preceding or following the clean-up process. A plot of system feed as a function of inert feed gas composition for various diffuser configuration allows selection of a diffuser configuration for maximum throughput based on feed gas composition. (authors)

  5. FLOW ANALYSIS OF DIFFUSER-GETTER-DIFFUSER SYSTEMS

    SciTech Connect

    Klein, J; Dave W. Howard, D

    2007-07-24

    Tritium clean-up systems typically deploy gas processing technologies between stages of palladium-silver (Pd/Ag) diffusers/permeators. The number of diffusers positioned before and after a gas clean-up process to obtain optimal system performance will vary with feed gas inert composition. A simple method to analyze optimal diffuser configuration is presented. The method assumes equilibrium across the Pd/Ag tubes and system flows are limited by diffuser vacuum pump speeds preceding or following the clean-up process. A plot of system feed as a function of inert feed gas composition for various diffuser configuration allows selection of a diffuser configuration for maximum throughput based on feed gas composition.

  6. Sampling diffusive transition paths

    SciTech Connect

    F. Miller III, Thomas; Predescu, Cristian

    2006-10-12

    We address the problem of sampling double-ended diffusive paths. The ensemble of paths is expressed using a symmetric version of the Onsager-Machlup formula, which only requires evaluation of the force field and which, upon direct time discretization, gives rise to a symmetric integrator that is accurate to second order. Efficiently sampling this ensemble requires avoiding the well-known stiffness problem associated with sampling infinitesimal Brownian increments of the path, as well as a different type of stiffness associated with sampling the coarse features of long paths. The fine-features sampling stiffness is eliminated with the use of the fast sampling algorithm (FSA), and the coarse-feature sampling stiffness is avoided by introducing the sliding and sampling (S&S) algorithm. A key feature of the S&S algorithm is that it enables massively parallel computers to sample diffusive trajectories that are long in time. We use the algorithm to sample the transition path ensemble for the structural interconversion of the 38-atom Lennard-Jones cluster at low temperature.

  7. Sampling diffusive transition paths.

    PubMed

    Miller, Thomas F; Predescu, Cristian

    2007-04-14

    The authors address the problem of sampling double-ended diffusive paths. The ensemble of paths is expressed using a symmetric version of the Onsager-Machlup formula, which only requires evaluation of the force field and which, upon direct time discretization, gives rise to a symmetric integrator that is accurate to second order. Efficiently sampling this ensemble requires avoiding the well-known stiffness problem associated with the sampling of infinitesimal Brownian increments of the path, as well as a different type of stiffness associated with the sampling of the coarse features of long paths. The fine-feature sampling stiffness is eliminated with the use of the fast sampling algorithm, and the coarse-feature sampling stiffness is avoided by introducing the sliding and sampling (S&S) algorithm. A key feature of the S&S algorithm is that it enables massively parallel computers to sample diffusive trajectories that are long in time. The authors use the algorithm to sample the transition path ensemble for the structural interconversion of the 38-atom Lennard-Jones cluster at low temperature. PMID:17444696

  8. Anisotropic Thermal Diffusion

    NASA Astrophysics Data System (ADS)

    Gardiner, Thomas

    2013-10-01

    Anisotropic thermal diffusion in magnetized plasmas is an important physical phenomena for a diverse set of physical conditions ranging from astrophysical plasmas to MFE and ICF. Yet numerically simulating this phenomenon accurately poses significant challenges when the computational mesh is misaligned with respect to the magnetic field. Particularly when the temperature gradients are unresolved, one frequently finds entropy violating solutions with heat flowing from cold to hot zones for χ∥ /χ⊥ >=102 which is substantially smaller than the range of interest which can reach 1010 or higher. In this talk we present a new implicit algorithm for solving the anisotropic thermal diffusion equations and demonstrate its characteristics on what has become a fairly standard set of test problems in the literature. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. SAND2013-5687A.

  9. The diffusion of microfinance.

    PubMed

    Banerjee, Abhijit; Chandrasekhar, Arun G; Duflo, Esther; Jackson, Matthew O

    2013-07-26

    To study the impact of the choice of injection points in the diffusion of a new product in a society, we developed a model of word-of-mouth diffusion and then applied it to data on social networks and participation in a newly available microfinance loan program in 43 Indian villages. Our model allows us to distinguish information passing among neighbors from direct influence of neighbors' participation decisions, as well as information passing by participants versus nonparticipants. The model estimates suggest that participants are seven times as likely to pass information compared to informed nonparticipants, but information passed by nonparticipants still accounts for roughly one-third of eventual participation. An informed household is not more likely to participate if its informed friends participate. We then propose two new measures of how effective a given household would be as an injection point. We show that the centrality of the injection points according to these measures constitutes a strong and significant predictor of eventual village-level participation. PMID:23888042

  10. Apparatus for diffusion separation

    DOEpatents

    Nierenberg, William A.

    1976-08-10

    1. A diffuser separator apparatus which comprises a plurality of flow channels in a single stage, each of said channels having an inlet port and an outlet port and a constant cross sectional area between said ports, at least a portion of the defining surface of each of said channels being a diffusion separation membrane, and each of said channels having a different cross sectional area, means for connecting said channels in series so that each successive channel of said series has a smaller cross sectional area than the previous channel of said series, a source of gaseous mixture, individual means for flowing said gaseous mixture to the inlet port of each of said channels, gas receiving and analyzing means, individual means for flowing gas passing from each of said outlet ports and means for flowing gas passing through said membranes to said receiving and analyzing means, and individual means for connecting the outlet port of each channel with the inlet port of the channel having the next smaller cross sectional area.

  11. Uranium(VI) Diffusion in Low-Permeability Subsurface Materials

    SciTech Connect

    Liu, Chongxuan; Zhong, Lirong; Zachara, John M.

    2010-01-01

    Uranium(VI) diffusion was investigated in a fine-grained saprolite sediment that was collected from U.S. Department of Energy (DOE) Oak Ridge site, TN, where uranium contamination in groundwater is a major environmental concern. U(VI) diffusion was studied in a diffusion cell with one cell end in contact with a large, air-equilibrated electrolyte reservoir. The pH, carbonate and U(VI) concentrations in the reservoir solution were varied to investigate the effect of solution chemical composition and uranyl speciation on U(VI) diffusion. The rates of U(VI) diffusion were evaluated by monitoring the U(VI) concentration in the reservoir solution as a function of time; and by measuring the total concentration of U(VI) extracted from the sediment as a function of time and distance in the diffusion cells. The estimated apparent rate of U(VI) diffusion varied significantly with pH with the slowest rate observed at pH 7 as a result of strong adsorptive retardation. The estimated retardation factor was generally consistent with a surface complexation model. Numerical simulations indicated that a species-based diffusion model that incorporated both aqueous and surface complexation reactions was required to describe U(VI) diffusion in the low permeability material under variable geochemical conditions. Our results implied that low permeability materials will play an important role in storing U(VI) and attenuating U(VI) plume migration at circumneutral pH conditions, and will serve as a long-term source for releasing U(VI) back to the nearby aquifer during and after aquifer decontamination.

  12. Sucrose diffusion in aqueous solution.

    PubMed

    Price, Hannah C; Mattsson, Johan; Murray, Benjamin J

    2016-07-28

    The diffusion of sugar in aqueous solution is important both in nature and in technological applications, yet measurements of diffusion coefficients at low water content are scarce. We report directly measured sucrose diffusion coefficients in aqueous solution. Our technique utilises a Raman isotope tracer method to monitor the diffusion of non-deuterated and deuterated sucrose across a boundary between the two aqueous solutions. At a water activity of 0.4 (equivalent to 90 wt% sucrose) at room temperature, the diffusion coefficient of sucrose was determined to be approximately four orders of magnitude smaller than that of water in the same material. Using literature viscosity data, we show that, although inappropriate for the prediction of water diffusion, the Stokes-Einstein equation works well for predicting sucrose diffusion under the conditions studied. As well as providing information of importance to the fundamental understanding of diffusion in binary solutions, these data have technological, pharmaceutical and medical implications, for example in cryopreservation. Moreover, in the atmosphere, slow organic diffusion may have important implications for aerosol growth, chemistry and evaporation, where processes may be limited by the inability of a molecule to diffuse between the bulk and the surface of a particle. PMID:27364512

  13. Diffusion limited aggregation. The role of surface diffusion

    NASA Astrophysics Data System (ADS)

    García-Ruiz, Juan M.; Otálora, Fermín

    1991-11-01

    We present a growth model in which the hitting particles are able to diffuse to more stable growth sites in the perimeter of a cluster growing by diffusion limited aggregation. By tuning the diffusion path Ls, the morphological output - from disordered fractal to perfect single crystals - can be controlled. Instabilities appear when the mean length of the crystal faces Lf are greater than 2 Ls.

  14. Primary zone air proportioner

    DOEpatents

    Cleary, Edward N. G.

    1982-10-12

    An air proportioner is provided for a liquid hydrocarbon fueled gas turbine of the type which is convertible to oil gas fuel and to coal gas fuel. The turbine includes a shell for enclosing the turbine, an air duct for venting air in said shell to a gasifier, and a fuel injector for injecting gasified fuel into the turbine. The air proportioner comprises a second air duct for venting air from the air duct for mixing with fuel from the gasifier. The air can be directly injected into the gas combustion basket along with the fuel from the injector or premixed with fuel from the gasifier prior to injection by the fuel injector.

  15. The Harrison Diffusion Kinetics Regimes in Solute Grain Boundary Diffusion

    SciTech Connect

    Belova, Irina; Fiedler, T; Kulkarni, Nagraj S; Murch, Prof. Graeme

    2012-01-01

    Knowledge of the limits of the principal Harrison kinetics regimes (Type-A, B and C) for grain boundary diffusion is very important for the correct analysis of the depth profiles in a tracer diffusion experiment. These regimes for self-diffusion have been extensively studied in the past by making use of the phenomenological Lattice Monte Carlo (LMC) method with the result that the limits are now well established. The relationship of those self-diffusion limits to the corresponding ones for solute diffusion in the presence of solute segregation to the grain boundaries remains unclear. In the present study, the influence of solute segregation on the limits is investigated with the LMC method for the well-known parallel grain boundary slab model by showing the equivalence of two diffusion models. It is shown which diffusion parameters are useful for identifying the limits of the Harrison kinetics regimes for solute grain boundary diffusion. It is also shown how the measured segregation factor from the diffusion experiment in the Harrison Type-B kinetics regime may differ from the global segregation factor.

  16. Apoplastic Diffusion Barriers in Arabidopsis

    PubMed Central

    Schreiber, Lukas; Franke, Rochus Benni; Geldner, Niko; Reina-Pinto, José J.; Kunst, Ljerka

    2013-01-01

    During the development of Arabidopsis and other land plants, diffusion barriers are formed in the apoplast of specialized tissues within a variety of plant organs. While the cuticle of the epidermis is the primary diffusion barrier in the shoot, the Casparian strips and suberin lamellae of the endodermis and the periderm represent the diffusion barriers in the root. Different classes of molecules contribute to the formation of extracellular diffusion barriers in an organ- and tissue-specific manner. Cutin and wax are the major components of the cuticle, lignin forms the early Casparian strip, and suberin is deposited in the stage II endodermis and the periderm. The current status of our understanding of the relationships between the chemical structure, ultrastructure and physiological functions of plant diffusion barriers is discussed. Specific aspects of the synthesis of diffusion barrier components and protocols that can be used for the assessment of barrier function and important barrier properties are also presented. PMID:24465172

  17. Light diffusing fiber optic chamber

    DOEpatents

    Maitland, Duncan J.

    2002-01-01

    A light diffusion system for transmitting light to a target area. The light is transmitted in a direction from a proximal end to a distal end by an optical fiber. A diffusing chamber is operatively connected to the optical fiber for transmitting the light from the proximal end to the distal end and transmitting said light to said target area. A plug is operatively connected to the diffusing chamber for increasing the light that is transmitted to the target area.

  18. Air volume measurement of 'Braeburn' apple fruit.

    PubMed

    Drazeta, Lazar; Lang, Alexander; Hall, Alistair J; Volz, Richard K; Jameson, Paula E

    2004-05-01

    The radial disposition of air in the flesh of fruit of Malus domestica Borkh., cv 'Braeburn' was investigated using a gravimetric technique based on Archimedes' principle. Intercellular air volume was measured by weighing a small tissue sample under water before and after vacuum infiltration to remove the air. In a separate procedure, the volume of the same sample was measured by recording the buoyant upthrust experienced by it when fully immersed in water. The method underestimates tissue air volume due to a slight invasion of the intercellular air spaces around the edges of the sample when it is immersed in water. To correct for this error, an adjustment factor was made based upon an analysis of a series of measurements of air volume in samples of different dimensions. In 'Braeburn' there is a gradient of declining air content from just beneath the skin to the centre of the fruit with a sharp discontinuity at the core line. Cell shape and cell packing were observed in the surface layers of freshly excised and stained flesh samples using a dissecting microscope coupled to a video camera and a PC running proprietary software. Tissue organization changed with distance below the skin. It is speculated that reduced internal gas movement, due to the tightly packed tissue of 'Braeburn' and to the potential diffusion barrier at the core line between the cortex and the pith, may increase susceptibility of the flesh to disorders associated with tissue browning and breakdown. PMID:15047764

  19. Multilane driven diffusive systems

    NASA Astrophysics Data System (ADS)

    Curatolo, A. I.; Evans, M. R.; Kafri, Y.; Tailleur, J.

    2016-03-01

    We consider networks made of parallel lanes along which particles hop according to driven diffusive dynamics. The particles also hop transversely from lane to lane, hence indirectly coupling their longitudinal dynamics. We present a general method for constructing the phase diagram of these systems which reveals that in many cases their physics reduce to that of single-lane systems. The reduction to an effective single-lane description legitimizes, for instance, the use of a single TASEP to model the hopping of molecular motors along the many tracks of a single microtubule. Then, we show how, in quasi-2D settings, new phenomena emerge due to the presence of non-zero transverse currents, leading, for instance, to strong ‘shear localization’ along the network.

  20. Gas turbine engine with radial diffuser and shortened mid section

    SciTech Connect

    Charron, Richard C.; Montgomery, Matthew D.

    2015-09-08

    An industrial gas turbine engine (10), including: a can annular combustion assembly (80), having a plurality of discrete flow ducts configured to receive combustion gas from respective combustors (82) and deliver the combustion gas along a straight flow path at a speed and orientation appropriate for delivery directly onto the first row (56) of turbine blades (62); and a compressor diffuser (32) having a redirecting surface (130, 140) configured to receive an axial flow of compressed air and redirect the axial flow of compressed air radially outward.