Sample records for air emissions water

  1. Energy and air emission effects of water supply.

    PubMed

    Stokes, Jennifer R; Horvath, Arpad

    2009-04-15

    Life-cycle air emission effects of supplying water are explored using a hybrid life-cycle assessment For the typically sized U.S. utility analyzed, recycled water is preferable to desalination and comparable to importation. Seawater desalination has an energy and air emission footprint that is 1.5-2.4 times larger than that of imported water. However, some desalination modes fare better; brackish groundwater is 53-66% as environmentally intensive as seawater desalination. The annual water needs (326 m3) of a typical Californian that is met with imported water requires 5.8 GJ of energy and creates 360 kg of CO2 equivalent emissions. With seawater desalination, energy use would increase to 14 GJ and 800 kg of CO2 equivalent emissions. Meeting the water demand of California with desalination would consume 52% of the state's electricity. Supply options were reassessed using alternative electricity mixes, including the average mix of the United States and several renewable sources. Desalination using solar thermal energy has lower greenhouse gas emissions than that of imported and recycled water (using California's electricity mix), but using the U.S. mix increases the environmental footprint by 1.5 times. A comparison with a more energy-intensive international scenario shows that CO2 equivalent emissions for desalination in Dubai are 1.6 times larger than in California. The methods, decision support tool (WEST), and results of this study should persuade decision makers to make informed water policy choices by including energy consumption and material use effects in the decision-making process.

  2. Air Emissions Damages from Municipal Drinking Water Treatment Under Current and Proposed Regulatory Standards.

    PubMed

    Gingerich, Daniel B; Mauter, Meagan S

    2017-09-19

    Water treatment processes present intersectoral and cross-media risk trade-offs that are not presently considered in Safe Drinking Water Act regulatory analyses. This paper develops a method for assessing the air emission implications of common municipal water treatment processes used to comply with recently promulgated and proposed regulatory standards, including concentration limits for, lead and copper, disinfection byproducts, chromium(VI), strontium, and PFOA/PFOS. Life-cycle models of electricity and chemical consumption for individual drinking water unit processes are used to estimate embedded NO x , SO 2 , PM 2.5 , and CO 2 emissions on a cubic meter basis. We estimate air emission damages from currently installed treatment processes at U.S. drinking water facilities to be on the order of $500 million USD annually. Fully complying with six promulgated and proposed rules would increase baseline air emission damages by approximately 50%, with three-quarters of these damages originating from chemical manufacturing. Despite the magnitude of these air emission damages, the net benefit of currently implemented rules remains positive. For some proposed rules, however, the promise of net benefits remains contingent on technology choice.

  3. Spatially resolved air-water emissions tradeoffs improve regulatory impact analyses for electricity generation.

    PubMed

    Gingerich, Daniel B; Sun, Xiaodi; Behrer, A Patrick; Azevedo, Inês L; Mauter, Meagan S

    2017-02-21

    Coal-fired power plants (CFPPs) generate air, water, and solids emissions that impose substantial human health, environmental, and climate change (HEC) damages. This work demonstrates the importance of accounting for cross-media emissions tradeoffs, plant and regional emissions factors, and spatially variation in the marginal damages of air emissions when performing regulatory impact analyses for electric power generation. As a case study, we assess the benefits and costs of treating wet flue gas desulfurization (FGD) wastewater at US CFPPs using the two best available treatment technology options specified in the 2015 Effluent Limitation Guidelines (ELGs). We perform a life-cycle inventory of electricity and chemical inputs to FGD wastewater treatment processes and quantify the marginal HEC damages of associated air emissions. We combine these spatially resolved damage estimates with Environmental Protection Agency estimates of water quality benefits, fuel-switching benefits, and regulatory compliance costs. We estimate that the ELGs will impose average net costs of $3.01 per cubic meter for chemical precipitation and biological wastewater treatment and $11.26 per cubic meter for zero-liquid discharge wastewater treatment (expected cost-benefit ratios of 1.8 and 1.7, respectively), with damages concentrated in regions containing a high fraction of coal generation or a large chemical manufacturing industry. Findings of net cost for FGD wastewater treatment are robust to uncertainty in auxiliary power source, location of chemical manufacturing, and binding air emissions limits in noncompliant regions, among other variables. Future regulatory design will minimize compliance costs and HEC tradeoffs by regulating air, water, and solids emissions simultaneously and performing regulatory assessments that account for spatial variation in emissions impacts.

  4. Spatially resolved air-water emissions tradeoffs improve regulatory impact analyses for electricity generation

    PubMed Central

    Gingerich, Daniel B.; Behrer, A. Patrick; Azevedo, Inês L.

    2017-01-01

    Coal-fired power plants (CFPPs) generate air, water, and solids emissions that impose substantial human health, environmental, and climate change (HEC) damages. This work demonstrates the importance of accounting for cross-media emissions tradeoffs, plant and regional emissions factors, and spatially variation in the marginal damages of air emissions when performing regulatory impact analyses for electric power generation. As a case study, we assess the benefits and costs of treating wet flue gas desulfurization (FGD) wastewater at US CFPPs using the two best available treatment technology options specified in the 2015 Effluent Limitation Guidelines (ELGs). We perform a life-cycle inventory of electricity and chemical inputs to FGD wastewater treatment processes and quantify the marginal HEC damages of associated air emissions. We combine these spatially resolved damage estimates with Environmental Protection Agency estimates of water quality benefits, fuel-switching benefits, and regulatory compliance costs. We estimate that the ELGs will impose average net costs of $3.01 per cubic meter for chemical precipitation and biological wastewater treatment and $11.26 per cubic meter for zero-liquid discharge wastewater treatment (expected cost-benefit ratios of 1.8 and 1.7, respectively), with damages concentrated in regions containing a high fraction of coal generation or a large chemical manufacturing industry. Findings of net cost for FGD wastewater treatment are robust to uncertainty in auxiliary power source, location of chemical manufacturing, and binding air emissions limits in noncompliant regions, among other variables. Future regulatory design will minimize compliance costs and HEC tradeoffs by regulating air, water, and solids emissions simultaneously and performing regulatory assessments that account for spatial variation in emissions impacts. PMID:28167772

  5. Emission of biocides from treated materials: test procedures for water and air.

    PubMed

    Schoknecht, Ute; Wegner, Robby; Horn, Wolfgang; Jann, Oliver

    2003-01-01

    Methods for the determination of biocide emissions from treated materials into water and air were developed and tested in order to support a comparative ecological assessment of biocidal products. Leaching tests, experiments with simulated rain, extraction cleaning of carpets and emission chamber tests were performed with a series of treated materials. The experiments focused on the effect of changes in the procedure as well as characteristics of the specimens and demonstrate the suitability of the proposed methods for biocides of different product types. It was demonstrated that emissions of biocides into water can be compared on the basis of leaching tests in which the emission kinetics of the active ingredients are recorded. However, the water volume per surface area and the timetable for water changes have to be defined in such tests. Functions of flux rates related to time can be well described for inorganic compounds, whereas modelling of the data is more complicated for organic substances. Emission chamber tests using 20-litre and 23-litre glass exsiccators, originally developed to study volatile organic compounds, were successfully adapted for the investigation of the emission of biocides from treated materials which are usually semi volatile organic compounds. However test parameters and the method of analysis have to be adapted to the substances to be determined. Generally, it was found that the emission curves for the semi volatile organic compounds investigated differ from those of volatile organic compounds.

  6. Diminished mercury emission from waters with duckweed cover

    NASA Astrophysics Data System (ADS)

    Wollenberg, Jennifer L.; Peters, Stephen C.

    2009-06-01

    Duckweeds (Lemnaceae) are a widely distributed type of floating vegetation in freshwater systems. Under suitable conditions, duckweeds form a dense vegetative mat on the water surface, which reduces light penetration into the water column and limits gas exchange at the water-air interface by decreasing the area of open water surface. Experiments were conducted to determine whether duckweed decreases mercury emission by limiting gas diffusion across the water-air interface and attenuating light, or, conversely, enhances emission via transpiration of mercury vapor. Microcosm flux chamber experiments indicate that duckweed decreases mercury emission from the water surface compared to open water controls. Fluxes under duckweed were 17-67% lower than in controls, with lower fluxes occurring at higher percent cover. The decrease in mercury emission suggests that duckweed may limit emission through one of several mechanisms, including limited gas transport across the air-water interface, decreased photoreactions due to light attenuation, and plant-mercury interactions. The results of this experiment were applied to a model lake system to illustrate the magnitude of potential effects on mercury cycling. The mercury retained in the lake as a result of hindered emission may increase bioaccumulation potential in lakes with duckweed cover.

  7. Autonomous mobile platform for monitoring air emissions from industrial and municipal wastewater ponds.

    PubMed

    Fu, Long; Huda, Quamrul; Yang, Zheng; Zhang, Lucas; Hashisho, Zaher

    2017-11-01

    Significant amounts of volatile organic compounds and greenhouse gases are generated from wastewater lagoons and tailings ponds in Alberta, Canada. Accurate measurements of these air pollutants and greenhouse gases are needed to support management and regulatory decisions. A mobile platform was developed to measure air emissions from tailings pond in the oil sands region of Alberta. The mobile platform was tested in 2015 in a municipal wastewater treatment lagoon. With a flux chamber and a CO 2 /CH 4 sensor on board, the mobile platform was able to measure CO 2 and CH 4 emissions over two days at two different locations in the pond. Flux emission rates of CO 2 and CH 4 that were measured over the study period suggest the presence of aerobic and anaerobic zones in the wastewater treatment lagoon. The study demonstrated the capabilities of the mobile platform in measuring fugitive air emissions and identified the potential for the applications in air and water quality monitoring programs. The Mobile Platform demonstrated in this study has the ability to measure greenhouse gas (GHG) emissions from fugitive sources such as municipal wastewater lagoons. This technology can be used to measure emission fluxes from tailings ponds with better detection of spatial and temporal variations of fugitive emissions. Additional air and water sampling equipment could be added to the mobile platform for a broad range of air and water quality studies in the oil sands region of Alberta.

  8. Air Emissions Factors and Quantification

    EPA Pesticide Factsheets

    Emissions factors are used in developing air emissions inventories for air quality management decisions and in developing emissions control strategies. This area provides technical information on and support for the use of emissions factors.

  9. Demonstration of Diesel Engine Air Emissions Reduction Technologies

    DTIC Science & Technology

    2008-12-01

    16 Figure 5. Plots of Cheyenne Mountain Operating Cycle and Reference CBD Driving...Air Act CARB California Air Resources Board CBD Central Business District CCR California Code of Regulations CES Cummins Emissions Solutions CFR...matter ppb parts per billion ppm parts per million PuriNOx Proprietary Water / Diesel Emulsified Fuel RPF robust particulate filter THC total

  10. Wintertime Emissions from Produced Water Ponds

    NASA Astrophysics Data System (ADS)

    Evans, J.; Lyman, S.; Mansfield, M. L.

    2013-12-01

    Every year oil and gas drilling in the U.S. generates billions of barrels of produced water (water brought to the surface during oil or gas production). Efficiently disposing of produced water presents a constant financial challenge for producers. The most noticeable disposal method in eastern Utah's Uintah Basin is the use of evaporation ponds. There are 427 acres of produced water ponds in the Uintah Basin, and these were used to evaporate more than 5 million barrels of produced water in 2012, 6% of all produced water in the Basin. Ozone concentrations exceeding EPA standards have been observed in the Uintah Basin during winter inversion conditions, with daily maximum 8 hour average concentrations at some research sites exceeding 150 parts per billion. Produced water contains ozone-forming volatile organic compounds (VOC) which escape into the atmosphere as the water is evaporated, potentially contributing to air quality problems. No peer-reviewed study of VOC emissions from produced water ponds has been reported, and filling this gap is essential for the development of accurate emissions inventories for the Uintah Basin and other air sheds with oil and gas production. Methane, carbon dioxide, and VOC emissions were measured at three separate pond facilities in the Uintah Basin in February and March of 2013 using a dynamic flux chamber. Pond emissions vary with meteorological conditions, so measurements of VOC emissions were collected during winter to obtain data relevant to periods of high ozone production. Much of the pond area at evaporation facilities was frozen during the study period, but areas that actively received water from trucks remained unfrozen. These areas accounted for 99.2% of total emissions but only 9.5% of the total pond area on average. Ice and snow on frozen ponds served as a cap, prohibiting VOC from being emitted into the atmosphere. Emissions of benzene, toluene, and other aromatic VOCs averaged over 150 mg m-2 h-1 from unfrozen pond

  11. Ferry Engine Repower to Provide Benefits for Air and Water

    EPA Pesticide Factsheets

    EPA’s Diesel Emission Reduction Act grant to the Delaware River and Bay Authority is bringing new clean air technology to the Cape May-Lewes Ferry, thereby reducing air pollution emissions and contributing to cleaner water in the Chesapeake Bay.

  12. Air Emission Inventory for the INEEL -- 1999 Emission Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zohner, Steven K

    2000-05-01

    This report presents the 1999 calendar year update of the Air Emission Inventory for the Idaho National Engineering and Environmental Laboratory (INEEL). The INEEL Air Emission Inventory documents sources and emissions of nonradionuclide pollutants from operations at the INEEL. The report describes the emission inventory process and all of the sources at the INEEL, and provides nonradionuclide emissions estimates for stationary sources.

  13. Study on optical emission analysis of AC air water discharges under He, Ar and N2 environments

    NASA Astrophysics Data System (ADS)

    Park, J. Y.; Kostyuk, P. V.; Han, S. B.; Kim, J. S.; Vu, C. N.; Lee, H. W.

    2006-09-01

    In this paper, hybrid air-water discharges were used to develop an optimal condition for providing a high level of water decomposition for hydrogen evolution. Electrical and optical phenomena accompanying the discharges were investigated along with feeding gases, flow rates and point-to-plane electrode gap distance. The experiments were primarily focused on the optical emission of the near UV range, providing a sufficient energy threshold for water dissociation and excitation. The OH(A 2Σ+ → X 2Π, Δν = 0) band optical emission intensity indicated the presence of plasma chemical reactions involving hydrogen formation. Despite the fact that energy input was high, the OH(A-X) optical emission was found to be negligible at the zero gap distance between the tip of the metal rod and water surface. In the gas atmosphere saturated with water vapour the OH(A-X) intensity was relatively high compared with the liquid and transient phases although the optical emission strongly depended on the flow rate and type of feeding gas. The gas phase was found to be more favourable because of less energy consumption in the cases of He and Ar carrier gases, and quenching mechanisms of oxygen in the N2 carrier gas atmosphere, preventing hydrogen from recombining with oxygen. In the gas phase the discharge was at a steady state, in contrast to the other phases, in which bubbles interrupted propagation of the plasma channel. Optical emission intensity of OH(A-X) band increased according to the flow rate or residence time of the He feeding gas. Nevertheless, a reciprocal tendency was acquired for N2 and Ar carrier gases. The peak value of OH(A-X) band optical emission intensity was observed near the water surface; however in the cases of Ar and N2 with a 0.5 SLM flow rate, it was shifted below the water surface. Rotational temperature was estimated to be in the range of 900-3600 K, according to the carrier gas and flow rate, which is sufficient for hydrogen production.

  14. Synchrotron emission in air

    NASA Astrophysics Data System (ADS)

    Rafat, M. Z.; Melrose, D. B.

    2015-05-01

    A conventional astrophysical treatment of synchrotron emission is modified to include the refractive index of air, written as n = 1 + 1/(2γ 02), with γ0 ≫ 1. The angular distribution of emission by an electron with Lorentz factor γ is broadened, from a range of |θ - α| ≈ 1/γ in vacuo (θ = emission angle, α = pitch angle) to |θ - α| ≈ max{1/γ, 1/γ0} in air. The emission spectrum in air is almost unchanged from that in vacuo at sufficiently low frequencies and it is modified by extending to higher frequencies with increasing γ/γ0 < 1, and to arbitrarily high frequencies for γ/γ0 ≥ 1. We estimate the frequency at which this enhancement starts, and show that it decreases with increasing γ/γ0 > 1. We interpret the enhanced high-frequency emission as Cerenkov-like, and attribute it to the formation of caustic surfaces that sweep across the observer; we use a geometric model based on Huygens construction to support this interpretation. The geometric model predicts that the so-called Cerenkov ring present at high frequencies may be circular, elliptical, or crescent shaped. In the astrophysical treatment of synchrotron emission, the dependence on azimuthal angle is lost in the expression for emissivity. A motivation for this investigation is the application to extensive air showers, and for this purpose the loss of azimuthal dependence is a limitation. We comment on methods to overcome this limitation. We show that when an observer can see emission from inside the Cerenkov cone, emission from outside the Cerenkov cone, on either side of it, arrives simultaneously; there are three emission times for a given observation time.

  15. Basic Information about Air Emissions Monitoring

    EPA Pesticide Factsheets

    This site is about types of air emissions monitoring and the Clean Air Act regulations, including Ambient Air Quality Monitoring, Stationary Source Emissions Monitoring, and Continuous Monitoring Systems.

  16. Michigan`s air emission trading program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Russette, T.M.; VanKolken, A.M.

    1997-12-31

    Michigan`s Emission Trading Program took effect on March 16, 1996 after two years of rule development by the Michigan Department of Environmental Quality, Air Quality Division and affected stakeholders. This program is based on the open market trading model and has been designed to (1) be consistent with existing federal and state rules and regulations, (2) integrate with existing air programs such as the permit program, and (3) address the needs of Michigan`s regulated community. Michigan`s Air Quality Division, along with other interested parties, initiated this program as part of market-based approaches to improve air quality through the reduction ofmore » criteria pollutants (except ozone) and volatile organic compounds. The Emission Trading rules offer potential benefits for Michigan companies that include increased operational flexibility, lower compliance costs, and/or money generated from the sale of the emission reduction credits. The environment also benefits from this program because the rules require that 10 percent of all registered emission reductions must be permanently retired as an air quality benefit. The emission trading program provides new opportunities for consulting firms to assist companies by identifying acceptable ways to generate and use emission reduction credits. Air pollution control companies may also see new opportunities by designing and installing control equipment in order to reduce air emissions. The role of consultants and equipment companies may expand to that of a broker selling and/or buying emission reduction credits on the Emission Trading Registry. Much has been learned since the conception of the air emission trading program. This paper will discuss how the program works in practice compared to what was envisioned in theory and the potential benefits from Michigan`s Emission Trading Program.« less

  17. Air Emissions Monitoring for Permits

    EPA Pesticide Factsheets

    Operating permits document how air pollution sources will demonstrate compliance with emission limits and also how air pollution sources will monitor, either periodically or continuously, their compliance with emission limits and all other requirements.

  18. Ports Primer: 7.2 Air Emissions

    EPA Pesticide Factsheets

    Near-port communities are often disproportionately impacted by air emissions due to port operations, goods movement operations and other industries that may be co-located with ports. Air emissions at ports also impact regional air quality.

  19. Integrating air quality, water and climate concerns into China's energy strategy

    NASA Astrophysics Data System (ADS)

    Peng, Wei

    As the world's top carbon emitter, China also suffers from serious air pollution and increasingly severe water stress. My dissertation focuses on a variety of energy strategies in China and examines potential synergies and tradeoffs between air quality, water conservation and carbon mitigation objectives. It includes four analytical chapters. Chapter 2 and 3 examines the air quality and climate implications of a variety policy options in the near term and at the 2030 time horizon, respectively. Based on an integrated assessment using regional air pollution model and epidemiological evidence, I find that improving industrial energy efficiency is the most effective near-term strategy to curb air pollution and carbon emissions, while electrifying end-use sectors (e.g. vehicles and residential stoves) with decarbonized electricity will likely become the favorable co-control strategy in 2030. These two chapters hence provide a scientific basis for policymakers in China to coordinate air pollution and carbon mitigation strategies. Chapter 4 and 5 then examines the role of electricity transmission, as a critical element of the electrification strategy, in the nexus of air pollution, water stress and carbon emissions. Chapter 4 evaluates the potential air quality and climate benefits of long-distance electricity transmission in China in the near term. I find that transmitting a hybrid mix of renewable and coal power can be a cost-effective energy transfer strategy to curb air pollution impacts and carbon emissions, because it not only utilizes zero-carbon renewable resources in the west, but also displaces coal power generation and associated air pollution impacts in highly populated eastern regions. Chapter 5 studies the potential tradeoffs in the transmission system designs to achieve air quality or water conservation benefits from a decarbonized generation system. Since air pollution and water stress are severe in eastern and northern China respectively, I find that an

  20. The air, carbon, water synergies and trade-offs in China's natural gas industry

    NASA Astrophysics Data System (ADS)

    Qin, Y.; Mauzerall, D. L.; Höglund-Isaksson, L.; Wagner, F.; Byers, E.

    2017-12-01

    Both energy production and consumption can simultaneously affect regional air quality, local water stress, and the global climate. Identifying air, carbon and water impacts of various energy sources and end-uses is important in determining the relative merits of various energy policies. Here, we examine the air-carbon-water interdependencies of China's six major natural gas source choices (domestic conventional natural gas, domestic coal-based synthetic natural gas (SNG), domestic shale gas, imported liquefied natural gas, imported Russian pipeline gas, and imported Central Asian pipeline gas) and three end-use coal-to-gas deployment strategies (with substitution strategies that focus in turn on air quality, carbon, and water) in 2020. On the supply side, we find that gas sources other than SNG offer national air-carbon-water co-benefits. However, we find striking air-carbon/water trade-offs for SNG at the national scale. Moreover, the use of SNG significantly increases water demand and carbon emissions in regions already suffering from the most severe water stress and the highest per capita carbon footprint. On the end-use side, gas substitution for coal can result in enormous variations in air quality, carbon, and water impacts, with notable air-carbon synergies but air-water trade-offs. Our study finds that, except for SNG, end-use choices generally have a much larger influence on air quality, carbon emissions and water use than do gas source choices. Simultaneous consideration of air, carbon, and water impacts is necessary in designing both beneficial energy development and deployment policies.

  1. Managing Air Quality - Emissions Inventories

    EPA Pesticide Factsheets

    This page describes the role of emission inventories in the air quality management process, a description of how emission inventories are developed, and where U.S. emission inventory information can be found.

  2. Can Water-Injected Turbomachines Provide Cost-Effective Emissions and Maintenance Reductions?

    NASA Technical Reports Server (NTRS)

    Hendricks, Robert C.; Daggett, David L.; Shouse, Dale T.; Roquemore, William M.; Brankovic, Andreja; Ryder, Robert C., Jr.

    2011-01-01

    An investigation has been performed to evaluate the effect of water injection on the performance of the Air Force Research Laboratory (AFRL, Wright-Patterson Air Force Base (WPAFB)) experimental trapped vortex combustor (TVC) over a range of fuel-to-air and water-to-fuel ratios. Performance is characterized by combustor exit quantities: temperature and emissions measurements using rakes, and overall pressure drop, from upstream plenum to combustor exit. Combustor visualization is performed using gray-scale and color still photographs and high-frame-rate videos. A parallel investigation evaluated the performance of a computational fluid dynamics (CFD) tool for the prediction of the reacting flow in a liquid fueled combustor (e.g., TVC) that uses water injection for control of pollutant emissions and turbine inlet temperature. Generally, reasonable agreement is found between data and NO(x) computations. Based on a study assessing the feasibility and performance impact of using water injection on a Boeing 747-400 aircraft to reduce NO(x) emissions during takeoff, retrofitting does not appear to be cost effective; however, an operator of a newly designed engine and airframe might be able to save up to 1.0 percent in operating costs. Other challenges of water injection will be discussed.

  3. A new test chamber to measure material emissions under controlled air velocity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bortoli, M. de; Ghezzi, E.; Knoeppel, H.

    1999-05-15

    A new 20-L glass chamber for the determination of VOC emissions from construction materials and consumer products under controlled air velocity and turbulence is described. Profiles of air velocity and turbulence, obtained with precisely positioned hot wire anemometric probes, show that the velocity field is homogeneous and that air velocity is tightly controlled by the fan rotation speed; this overcomes the problem of selecting representative positions to measure air velocity above a test specimen. First tests on material emissions show that the influence of air velocity on the emission rate of VOCs is negligible for sources limited by internal diffusionmore » and strong for sources limited by evaporation. In a velocity interval from 0.15 to 0.30 m s{sup {minus}1}, an emission rate increase of 50% has been observed for pure n-decane and 1,4-dichlorobenzene and of 30% for 1,2-propanediol from a water-based paint. In contrast, no measurable influence of turbulence could be observed during vaporization of 1,4-dichlorobenzene within a 3-fold turbulence interval. Investigations still underway show that the chamber has a high recovery for the heavier VOC (TXIB), even at low concentrations.« less

  4. The Air-Carbon-Water Synergies and Trade-Offs in China's Natural Gas Industry

    NASA Astrophysics Data System (ADS)

    Qin, Yue

    China's coal-dominated energy structure is partly responsible for its domestic air pollution, local water stress, and the global climate change. Primarily to tackle the haze issue, China has been actively promoting a nationwide coal to natural gas end-use switch. My dissertation focuses on evaluating the air quality, carbon, and water impacts and their interactions in China's natural gas industry. Chapter 2 assesses the lifecycle climate performance of China's shale gas in comparison to coal based on stage-level energy consumption and methane leakage rates. I find the mean lifecycle carbon footprint of shale gas is about 30-50% lower than that of coal under both 20 year and 100 year global warming potentials (GWP20 and GWP100). However, primarily due to large uncertainties in methane leakage, the lifecycle carbon footprint of shale gas in China could be 15-60% higher than that of coal across sectors under GWP20. Chapter 3 evaluates the air quality, human health, and the climate impacts of China's coal-based synthetic natural gas (SNG) development. Based on earlier 2020 SNG production targets, I conduct an integrated assessment to identify production technologies and end-use applications that will bring as large air quality and health benefits as possible while keeping carbon penalties as small as possible. I find that, due to inefficient and uncontrolled coal combustion in households, allocating currently available SNG to the residential sector proves to be the best SNG allocation option. Chapter 4 compares the air quality, carbon, and water impacts of China's six major gas sources under three end-use substitution scenarios, which are focused on maximizing air pollutant emission reductions, CO 2 emission reductions, and water stress index (WSI)-weighted water consumption reductions, respectively. I find striking national air-carbon/water trade-offs due to SNG, which also significantly increases water demands and carbon emissions in regions already suffering from

  5. Air Emissions Inventories

    EPA Pesticide Factsheets

    This site provides access to emissions data, regulations and guidance, electronic system access, resources and tools to support trends analysis, regional, and local scale air quality modeling, regulatory impact assessments.

  6. Water loss control using pressure management: life-cycle energy and air emission effects.

    PubMed

    Stokes, Jennifer R; Horvath, Arpad; Sturm, Reinhard

    2013-10-01

    Pressure management is one cost-effective and efficient strategy for controlling water distribution losses. This paper evaluates the life-cycle energy use and emissions for pressure management zones in Philadelphia, Pennsylvania, and Halifax, Nova Scotia. It compares water savings using fixed-outlet and flow-modulated pressure control to performance without pressure control, considering the embedded electricity and chemical consumption in the lost water, manufacture of pipe and fittings to repair breaks caused by excess pressure, and pressure management. The resulting energy and emissions savings are significant. The Philadelphia and Halifax utilities both avoid approximately 130 million liters in water losses annually using flow-modulated pressure management. The conserved energy was 780 GJ and 1900 GJ while avoided greenhouse gas emissions were 50 Mg and 170 Mg a year by Philadelphia and Halifax, respectively. The life-cycle financial and environmental performance of pressure management systems compares favorably to the traditional demand management strategy of installing low-flow toilets. The energy savings may also translate to cost-effective greenhouse gas emission reductions depending on the energy mix used, an important advantage in areas where water and energy are constrained and/or expensive and greenhouse gas emissions are regulated as in California, for example.

  7. Improving the indoor air quality by using a surface emissions trap

    NASA Astrophysics Data System (ADS)

    Markowicz, Pawel; Larsson, Lennart

    2015-04-01

    The surface emissions trap, an adsorption cloth developed for reducing emissions of volatile organic compounds and particulate matter from surfaces while allowing evaporation of moisture, was used to improve the indoor air quality of a school building with elevated air concentrations of 2-ethyl-1-hexanol. An improvement of the perceived air quality was noticed a few days after the device had been attached on the PVC flooring. In parallel, decreased air concentrations of 2-ethyl-1-hexanol were found as well as a linear increase of the amounts of the same compound adsorbed on the installed cloth as observed up to 13 months after installation. Laboratory studies revealed that the performance of the device is not affected by differences in RH (35-85%), temperature (30-40 °C) or by accelerated aging simulating up to 10 years product lifetime, and, from a blinded exposure test, that the device efficiently blocks chemical odors. This study suggests that the device may represent a fast and efficient means of restoring the indoor air quality in a building e.g. after water damage leading to irritating and potentially harmful emissions from building material surfaces indoors.

  8. Biogenic organic emissions, air quality and climate

    NASA Astrophysics Data System (ADS)

    Guenther, A. B.

    2015-12-01

    Living organisms produce copious amounts of a diverse array of metabolites including many volatile organic compounds that are released into the atmosphere. These compounds participate in numerous chemical reactions that influence the atmospheric abundance of important air pollutants and short-lived climate forcers including organic aerosol, ozone and methane. The production and release of these organics are strongly influenced by environmental conditions including air pollution, temperature, solar radiation, and water availability and they are highly sensitive to stress and extreme events. As a result, releases of biogenic organics to the atmosphere have an impact on, and are sensitive to, air quality and climate leading to potential feedback couplings. Their role in linking air quality and climate is conceptually clear but an accurate quantitative representation is needed for predictive models. Progress towards this goal will be presented including numerical model development and assessments of the predictive capability of the Model of Emission of Gases and Aerosols from Nature (MEGAN). Recent studies of processes controlling the magnitude and variations in biogenic organic emissions will be described and observations of their impact on atmospheric composition will be shown. Recent advances and priorities for future research will be discussed including laboratory process studies, long-term measurements, multi-scale regional studies, global satellite observations, and the development of a next generation model for simulating land-atmosphere chemical exchange.

  9. 77 FR 16508 - National Emission Standards for Hazardous Air Pollutant Emissions: Group IV Polymers and Resins...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-21

    ... National Emission Standards for Hazardous Air Pollutant Emissions: Group IV Polymers and Resins; Pesticide... Hazardous Air Pollutant Emissions: Group IV Polymers and Resins; National Emission Standards for Hazardous... proposed rule titled, National Emission Standards for Hazardous Air Pollutant Emissions: Group IV Polymers...

  10. Effect of water injection on nitric oxide emissions of a gas turbine combustor burning natural gas fuel

    NASA Technical Reports Server (NTRS)

    Marchionna, N. R.; Diehl, L. A.; Trout, A. M.

    1973-01-01

    The effect of direct water injection on the exhaust gas emissions of a turbojet combustor burning natural gas fuel was investigated. The results are compared with the results from similar tests using ASTM Jet-A fuel. Increasing water injection decreased the emissions of oxides of nitrogen (NOX) and increased the emissions of carbon monoxide and unburned hydrocarbons. The greatest percentage decrease in NOX with increasing water injection was at the lowest inlet-air temperature tested. The effect of increasing inlet-air temperature was to decrease the effect of the water injection. The reduction in NOX due to water injection was almost identical to the results obtained with Jet-A fuel. However, the emission indices of unburned hydrocarbons, carbon monoxide, and percentage nitric oxide in NOX were not.

  11. Impacts of Lowered Urban Air Temperatures on Precursor Emission and Ozone Air Quality.

    PubMed

    Taha, Haider; Konopacki, Steven; Akbari, Hashem

    1998-09-01

    Meteorological, photochemical, building-energy, and power plant simulations were performed to assess the possible precursor emission and ozone air quality impacts of decreased air temperatures that could result from implementing the "cool communities" concept in California's South Coast Air Basin (SoCAB). Two pathways are considered. In the direct pathway, a reduction in cooling energy use translates into reduced demand for generation capacity and, thus, reduced precursor emissions from electric utility power plants. In the indirect pathway, reduced air temperatures can slow the atmospheric production of ozone as well as precursor emission from anthropogenic and biogenic sources. The simulations suggest small impacts on emissions following implementation of cool communities in the SoCAB. In summer, for example, there can be reductions of up to 3% in NO x emissions from in-basin power plants. The photochemical simulations suggest that the air quality impacts of these direct emission reductions are small. However, the indirect atmospheric effects of cool communities can be significant. For example, ozone peak concentrations can decrease by up to 11% in summer and population-weighted exceedance exposure to ozone above the California and National Ambient Air Quality Standards can decrease by up to 11 and 17%, respectively. The modeling suggests that if these strategies are combined with others, such as mobile-source emission control, the improvements in ozone air quality can be substantial.

  12. The national air pollutant emission trends, 1900-1998

    DOT National Transportation Integrated Search

    2000-03-01

    The National Air Pollutant Emission Trends Report, 1900-1998 presents the most : recent estimate of national emissions of the criteria air pollutants. The : emissions of each pollutant are estimated for many different source categories, : which colle...

  13. Air Contamination by Mercury, Emissions and Transformations-a Review.

    PubMed

    Gworek, Barbara; Dmuchowski, Wojciech; Baczewska, Aneta H; Brągoszewska, Paulina; Bemowska-Kałabun, Olga; Wrzosek-Jakubowska, Justyna

    2017-01-01

    The present and future air contamination by mercury is and will continue to be a serious risk for human health. This publication presents a review of the literature dealing with the issues related to air contamination by mercury and its transformations as well as its natural and anthropogenic emissions. The assessment of mercury emissions into the air poses serious methodological problems. It is particularly difficult to distinguish between natural and anthropogenic emissions and re-emissions from lands and oceans, including past emissions. At present, the largest emission sources include fuel combustion, mainly that of coal, and "artisanal and small-scale gold mining" (ASGM). The distinctly highest emissions can be found in South and South-East Asia, accounting for 45% of the global emissions. The emissions of natural origin and re-emissions are estimated at 45-66% of the global emissions, with the largest part of emissions originating in the oceans. Forecasts on the future emission levels are not unambiguous; however, most forecasts do not provide for reductions in emissions. Ninety-five percent of mercury occurring in the air is Hg 0 -GEM, and its residence time in the air is estimated at 6 to 18 months. The residence times of its Hg II -GOM and that in Hg p -TPM are estimated at hours and days. The highest mercury concentrations in the air can be found in the areas of mercury mines and those of ASGM. Since 1980 when it reached its maximum, the global background mercury concentration in the air has remained at a relatively constant level.

  14. Competing Air Quality and Water Conservation Co-benefits from Power Sector Decarbonization

    NASA Astrophysics Data System (ADS)

    Peng, W.; Wagner, F.; Mauzerall, D. L.; Ramana, M. V.; Zhai, H.; Small, M.; Zhang, X.; Dalin, C.

    2016-12-01

    Decarbonizing the power sector can reduce fossil-based generation and associated air pollution and water use. However, power sector configurations that prioritize air quality benefits can be different from those that maximize water conservation benefits. Despite extensive work to optimize the generation mix under an air pollution or water constraint, little research has examined electricity transmission networks and the choice of which fossil fuel units to displace in order to achieve both environmental objectives simultaneously. When air pollution and water stress occur in different regions, the optimal transmission and displacement decisions still depend on priorities placed on air quality and water conservation benefits even if low-carbon generation planning is fixed. Here we use China as a test case, and develop a new optimization framework to study transmission and displacement decisions and the resulting air quality and water use impacts for six power sector decarbonization scenarios in 2030 ( 50% of national generation is low carbon). We fix low-carbon generation in each scenario (e.g. type, location, quantity) and vary technology choices and deployment patterns across scenarios. The objective is to minimize the total physical costs (transmission costs and coal power generation costs) and the estimated environmental costs. Environmental costs are estimated by multiplying effective air pollutant emissions (EMeff, emissions weighted by population density) and effective water use (Weff, water use weighted by a local water stress index) by their unit economic values, Vem and Vw. We are hence able to examine the effect of varying policy priorities by imposing different combinations of Vem and Vw. In all six scenarios, we find that increasing the priority on air quality co-benefits (higher Vem) reduces air pollution impacts (lower EMeff) at the expense of lower water conservation (higher Weff); and vice versa. Such results can largely be explained by differences

  15. 40 CFR 1065.667 - Dilution air background emission correction.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...) AIR POLLUTION CONTROLS ENGINE-TESTING PROCEDURES Calculations and Data Requirements § 1065.667 Dilution air background emission correction. (a) To determine the mass of background emissions to subtract... 40 Protection of Environment 33 2014-07-01 2014-07-01 false Dilution air background emission...

  16. 40 CFR 1065.667 - Dilution air background emission correction.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...) AIR POLLUTION CONTROLS ENGINE-TESTING PROCEDURES Calculations and Data Requirements § 1065.667 Dilution air background emission correction. (a) To determine the mass of background emissions to subtract... 40 Protection of Environment 34 2013-07-01 2013-07-01 false Dilution air background emission...

  17. 40 CFR 1065.667 - Dilution air background emission correction.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...) AIR POLLUTION CONTROLS ENGINE-TESTING PROCEDURES Calculations and Data Requirements § 1065.667 Dilution air background emission correction. (a) To determine the mass of background emissions to subtract... 40 Protection of Environment 32 2010-07-01 2010-07-01 false Dilution air background emission...

  18. 40 CFR 1065.667 - Dilution air background emission correction.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...) AIR POLLUTION CONTROLS ENGINE-TESTING PROCEDURES Calculations and Data Requirements § 1065.667 Dilution air background emission correction. (a) To determine the mass of background emissions to subtract... 40 Protection of Environment 33 2011-07-01 2011-07-01 false Dilution air background emission...

  19. 40 CFR 1065.667 - Dilution air background emission correction.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...) AIR POLLUTION CONTROLS ENGINE-TESTING PROCEDURES Calculations and Data Requirements § 1065.667 Dilution air background emission correction. (a) To determine the mass of background emissions to subtract... 40 Protection of Environment 34 2012-07-01 2012-07-01 false Dilution air background emission...

  20. [Study on emission standard system of air pollutants].

    PubMed

    Jiang, Mei; Zhang, Guo-Ning; Zhang, Ming-Hui; Zou, Lan; Wei, Yu-Xia; Ren, Chun

    2012-12-01

    Scientific and reasonable emission standard system of air pollutants helps to systematically control air pollution, enhance the protection of the atmospheric environment effect and improve the overall atmospheric environment quality. Based on the study of development, situation and characteristics of national air pollutants emission standard system, the deficiencies of system were pointed out, which were not supportive, harmonious and perfect, and the improvement measures of emission standard system were suggested.

  1. Effect of VOC emissions from vegetation on urban air quality during hot periods

    NASA Astrophysics Data System (ADS)

    Churkina, Galina; Kuik, Friderike; Bonn, Boris; Lauer, Axel; Grote, Ruediger; Butler, Tim

    2016-04-01

    Programs to plant millions of trees in cities around the world aim at the reduction of summer temperatures, increase of carbon storage, storm water control, and recreational space, as well as at poverty alleviation. These urban greening programs, however, do not take into account how closely human and natural systems are coupled in urban areas. Compared with the surroundings of cities, elevated temperatures together with high anthropogenic emissions of air and water pollutants are quite typical in urban systems. Urban and sub-urban vegetation respond to changes in meteorology and air quality and can react to pollutants. Neglecting this coupling may lead to unforeseen negative effects on air quality resulting from urban greening programs. The potential of emissions of volatile organic compounds (VOC) from vegetation combined with anthropogenic emissions of air pollutants to produce ozone has long been recognized. This ozone formation potential increases under rising temperatures. Here we investigate how emissions of VOC from urban vegetation affect corresponding ground-level ozone and PM10 concentrations in summer and especially during heat wave periods. We use the Weather Research and Forecasting Model with coupled atmospheric chemistry (WRF-CHEM) to quantify these feedbacks in the Berlin-Brandenburg region, Germany during the two summers of 2006 (heat wave) and 2014 (reference period). VOC emissions from vegetation are calculated by MEGAN 2.0 coupled online with WRF-CHEM. Our preliminary results indicate that the contribution of VOCs from vegetation to ozone formation may increase by more than twofold during heat wave periods. We highlight the importance of the vegetation for urban areas in the context of a changing climate and discuss potential tradeoffs of urban greening programs.

  2. 40 CFR 265.231 - Air emission standards.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 27 2012-07-01 2012-07-01 false Air emission standards. 265.231 Section 265.231 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES... DISPOSAL FACILITIES Surface Impoundments § 265.231 Air emission standards. The owner or operator shall...

  3. 40 CFR 264.232 - Air emission standards.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 26 2014-07-01 2014-07-01 false Air emission standards. 264.232 Section 264.232 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES... Surface Impoundments § 264.232 Air emission standards. The owner or operator shall manage all hazardous...

  4. 40 CFR 265.178 - Air emission standards.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 27 2012-07-01 2012-07-01 false Air emission standards. 265.178 Section 265.178 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES... DISPOSAL FACILITIES Use and Management of Containers § 265.178 Air emission standards. The owner or...

  5. 40 CFR 265.231 - Air emission standards.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 26 2014-07-01 2014-07-01 false Air emission standards. 265.231 Section 265.231 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES... DISPOSAL FACILITIES Surface Impoundments § 265.231 Air emission standards. The owner or operator shall...

  6. 40 CFR 265.178 - Air emission standards.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 26 2014-07-01 2014-07-01 false Air emission standards. 265.178 Section 265.178 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES... DISPOSAL FACILITIES Use and Management of Containers § 265.178 Air emission standards. The owner or...

  7. 40 CFR 264.232 - Air emission standards.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 27 2012-07-01 2012-07-01 false Air emission standards. 264.232 Section 264.232 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES... Surface Impoundments § 264.232 Air emission standards. The owner or operator shall manage all hazardous...

  8. 40 CFR 265.231 - Air emission standards.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 26 2011-07-01 2011-07-01 false Air emission standards. 265.231 Section 265.231 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES... DISPOSAL FACILITIES Surface Impoundments § 265.231 Air emission standards. The owner or operator shall...

  9. 40 CFR 265.178 - Air emission standards.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 25 2010-07-01 2010-07-01 false Air emission standards. 265.178 Section 265.178 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES... DISPOSAL FACILITIES Use and Management of Containers § 265.178 Air emission standards. The owner or...

  10. 40 CFR 264.232 - Air emission standards.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 25 2010-07-01 2010-07-01 false Air emission standards. 264.232 Section 264.232 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES... Surface Impoundments § 264.232 Air emission standards. The owner or operator shall manage all hazardous...

  11. 40 CFR 265.178 - Air emission standards.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 26 2011-07-01 2011-07-01 false Air emission standards. 265.178 Section 265.178 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES... DISPOSAL FACILITIES Use and Management of Containers § 265.178 Air emission standards. The owner or...

  12. 40 CFR 264.232 - Air emission standards.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 26 2011-07-01 2011-07-01 false Air emission standards. 264.232 Section 264.232 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES... Surface Impoundments § 264.232 Air emission standards. The owner or operator shall manage all hazardous...

  13. 40 CFR 265.231 - Air emission standards.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 25 2010-07-01 2010-07-01 false Air emission standards. 265.231 Section 265.231 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES... DISPOSAL FACILITIES Surface Impoundments § 265.231 Air emission standards. The owner or operator shall...

  14. 40 CFR 264.179 - Air emission standards.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 27 2012-07-01 2012-07-01 false Air emission standards. 264.179 Section 264.179 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES... Use and Management of Containers § 264.179 Air emission standards. The owner or operator shall manage...

  15. 40 CFR 265.202 - Air emission standards.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 26 2014-07-01 2014-07-01 false Air emission standards. 265.202 Section 265.202 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES... DISPOSAL FACILITIES Tank Systems § 265.202 Air emission standards. The owner or operator shall manage all...

  16. 40 CFR 264.179 - Air emission standards.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 26 2014-07-01 2014-07-01 false Air emission standards. 264.179 Section 264.179 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES... Use and Management of Containers § 264.179 Air emission standards. The owner or operator shall manage...

  17. 40 CFR 264.200 - Air emission standards.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 27 2012-07-01 2012-07-01 false Air emission standards. 264.200 Section 264.200 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES... Tank Systems § 264.200 Air emission standards. The owner or operator shall manage all hazardous waste...

  18. 40 CFR 265.202 - Air emission standards.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 27 2012-07-01 2012-07-01 false Air emission standards. 265.202 Section 265.202 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES... DISPOSAL FACILITIES Tank Systems § 265.202 Air emission standards. The owner or operator shall manage all...

  19. 40 CFR 264.200 - Air emission standards.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 26 2014-07-01 2014-07-01 false Air emission standards. 264.200 Section 264.200 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES... Tank Systems § 264.200 Air emission standards. The owner or operator shall manage all hazardous waste...

  20. 40 CFR 265.202 - Air emission standards.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 25 2010-07-01 2010-07-01 false Air emission standards. 265.202 Section 265.202 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES... DISPOSAL FACILITIES Tank Systems § 265.202 Air emission standards. The owner or operator shall manage all...

  1. 40 CFR 264.200 - Air emission standards.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 26 2011-07-01 2011-07-01 false Air emission standards. 264.200 Section 264.200 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES... Tank Systems § 264.200 Air emission standards. The owner or operator shall manage all hazardous waste...

  2. 40 CFR 265.202 - Air emission standards.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 26 2011-07-01 2011-07-01 false Air emission standards. 265.202 Section 265.202 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES... DISPOSAL FACILITIES Tank Systems § 265.202 Air emission standards. The owner or operator shall manage all...

  3. 40 CFR 264.179 - Air emission standards.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 25 2010-07-01 2010-07-01 false Air emission standards. 264.179 Section 264.179 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES... Use and Management of Containers § 264.179 Air emission standards. The owner or operator shall manage...

  4. 40 CFR 264.200 - Air emission standards.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 25 2010-07-01 2010-07-01 false Air emission standards. 264.200 Section 264.200 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES... Tank Systems § 264.200 Air emission standards. The owner or operator shall manage all hazardous waste...

  5. 40 CFR 264.179 - Air emission standards.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 26 2011-07-01 2011-07-01 false Air emission standards. 264.179 Section 264.179 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES... Use and Management of Containers § 264.179 Air emission standards. The owner or operator shall manage...

  6. Overview of Megacity Air Pollutant Emissions and Impacts

    NASA Astrophysics Data System (ADS)

    Kolb, C. E.

    2013-05-01

    The urban metabolism that characterizes major cities consumes very large qualities of humanly produced and/or processed food, fuel, water, electricity, construction materials and manufactured goods, as well as, naturally provided sunlight, precipitation and atmospheric oxygen. The resulting urban respiration exhalations add large quantities of trace gas and particulate matter pollutants to urban atmospheres. Key classes of urban primary air pollutants and their sources will be reviewed and important secondary pollutants identified. The impacts of these pollutants on urban and downwind regional inhabitants, ecosystems, and climate will be discussed. Challenges in quantifying the temporally and spatially resolved urban air pollutant emissions and secondary pollutant production rates will be identified and possible measurement strategies evaluated.

  7. Developing Oxidized Nitrogen Atmospheric Deposition Source Attribution from CMAQ for Air-Water Trading for Chesapeake Bay

    NASA Astrophysics Data System (ADS)

    Dennis, R. L.; Napelenok, S. L.; Linker, L. C.; Dudek, M.

    2012-12-01

    Estuaries are adversely impacted by excess reactive nitrogen, Nr, from many point and nonpoint sources, including atmospheric deposition to the watershed and the estuary itself as a nonpoint source. For effective mitigation, trading among sources of Nr is being considered. The Chesapeake Bay Program is working to bring air into its trading scheme, which requires some special air computations. Airsheds are much larger than watersheds; thus, wide-spread or national emissions controls are put in place to achieve major reductions in atmospheric Nr deposition. The tributary nitrogen load reductions allocated to the states to meet the TMDL target for Chesapeake Bay are large and not easy to attain via controls on water point and nonpoint sources. It would help the TMDL process to take advantage of air emissions reductions that would occur with State Implementation Plans that go beyond the national air rules put in place to help meet national ambient air quality standards. There are still incremental benefits from these local or state-level controls on atmospheric emissions. The additional air deposition reductions could then be used to offset water quality controls (air-water trading). What is needed is a source to receptor transfer function that connects air emissions from a state to deposition to a tributary. There is a special source attribution version of the Community Multiscale Air Quality model, CMAQ, (termed DDM-3D) that can estimate the fraction of deposition contributed by labeled emissions (labeled by source or region) to the total deposition across space. We use the CMAQ DDM-3D to estimate simplified state-level delta-emissions to delta-atmospheric-deposition transfer coefficients for each major emission source sector within a state, since local air regulations are promulgated at the state level. The CMAQ 4.7.1 calculations are performed at a 12 km grid size over the airshed domain covering Chesapeake Bay for 2020 CAIR emissions. For results, we first present

  8. Radioactive Air Emissions Notice of Construction for the 105-KW Basin integrated water treatment system filter vessel sparging vent

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kamberg, L.D.

    1998-02-23

    This document serves as a notice of construction (NOC), pursuant to the requirements of Washington Administrative Code (WAC) 246-247-060, and as a request for approval to construct, pursuant to 40 Code of Federal Regulations (CFR) 61.07, for the Integrated Water Treatment System (IWTS) Filter Vessel Sparging Vent at 105-KW Basin. Additionally, the following description, and references are provided as the notices of startup, pursuant to 40 CFR 61.09(a)(1) and (2) in accordance with Title 40 Code of Federal Regulations, Part 61, National Emission Standards for Hazardous Air Pollutants. The 105-K West Reactor and its associated spent nuclear fuel (SNF) storagemore » basin were constructed in the early 1950s and are located on the Hanford Site in the 100-K Area about 1,400 feet from the Columbia River. The 105-KW Basin contains 964 Metric Tons of SNF stored under water in approximately 3,800 closed canisters. This SNF has been stored for varying periods of time ranging from 8 to 17 years. The 105-KW Basin is constructed of concrete with an epoxy coating and contains approximately 1.3 million gallons of water with an asphaltic membrane beneath the pool. The IWTS, which has been described in the Radioactive Air Emissions NOC for Fuel Removal for 105-KW Basin (DOE/RL-97-28 and page changes per US Department of Energy, Richland Operations Office letter 97-EAP-814) will be used to remove radionuclides from the basin water during fuel removal operations. The purpose of the modification described herein is to provide operational flexibility for the IWTS at the 105-KW basin. The proposed modification is scheduled to begin in calendar year 1998.« less

  9. Fuel/air nonuniformity - Effect on nitric oxide emissions

    NASA Technical Reports Server (NTRS)

    Lyons, V. J.

    1981-01-01

    An analytical and experimental study was performed to determine the effect of inlet fuel/air profile nonuniformity on NO(x) emissions. The theoretical NO(x) levels were verified in a flame-tube rig at inlet air temperatures of 600, 700, and 800 K, 0.3 MPa rig pressure, 25 m/sec reference velocity, overall equivalence ratio of 0.6 and residence time near 0.002 sec. The theory predicts an increase in NO(x) emissions for increased fuel/air nonuniformity for average equivalence ratios less than 0.7, while for average equivalence ratios near stoichiometric, increasing the nonuniformity will decrease NO(x) emissions. The results can be used to predict the degree of uniformity of fuel/air profiles necessary to achieve NO(x) emissions goals for actual engines that use lean premixed, prevaporized combustion systems.

  10. 76 FR 22565 - National Emission Standards for Hazardous Air Pollutant Emissions: Group I Polymers and Resins...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-21

    ... National Emission Standards for Hazardous Air Pollutant Emissions: Group I Polymers and Resins; Marine Tank...-AO91 National Emission Standards for Hazardous Air Pollutant Emissions: Group I Polymers and Resins... Emissions Standards for Group I Polymers and Resins (Butyl Rubber Production, Epichlorohydrin Elastomers...

  11. Clean Air Act, TRI drive emission reduction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heller, K.

    1994-06-22

    When asked to rank priority environmental engineering projects, many chemical firms put emissions reduction first. The chief motivators are the need to comply with rules governing major sources of hazardous air pollutants (HAPS) under the Clean Air Act Amendments of 1990 (CAA), along with the need to reduce the volumes of chemicals on EPA`s Toxics Release Inventory (TRI). Deep-welling of toxics is getting special attention as the practice adds considerably to TRI numbers. {open_quotes}We want to eliminate our air toxics so that we can get entirely out of the [CAA] Maximum Achievable Control Technology (MACT) requirements,{close_quotes} says Thomas Zosel, manager/pollutionmore » prevention programs for 3M (St. Paul, MN). He estimates that 3M`s 1993 total research expenditures for environmental improvements were at least $200 million, out of an annual research budget of a little more than $1 billion. And, he says, the spending level is not expected to drop. Among its many efforts, 3M is striving to move away from solvents in all of its processes. To help reach that goal, the company developed a {open_quotes}waste measurement metric{close_quotes} that calculates the wastes produced by each of the company`s 50 operating divisions. In the case of Magic Tape, the company eliminated solvent emission by switching to a water-based adhesive that does not require a solvent.« less

  12. Turbulence and wave breaking effects on air-water gas exchange

    PubMed

    Boettcher; Fineberg; Lathrop

    2000-08-28

    We present an experimental characterization of the effects of turbulence and breaking gravity waves on air-water gas exchange in standing waves. We identify two regimes that govern aeration rates: turbulent transport when no wave breaking occurs and bubble dominated transport when wave breaking occurs. In both regimes, we correlate the qualitative changes in the aeration rate with corresponding changes in the wave dynamics. In the latter regime, the strongly enhanced aeration rate is correlated with measured acoustic emissions, indicating that bubble creation and dynamics dominate air-water exchange.

  13. 75 FR 11560 - Notice of Lodging of Consent Decree Under the Clean Water Act and Clean Air Act

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-11

    ... DEPARTMENT OF JUSTICE Notice of Lodging of Consent Decree Under the Clean Water Act and Clean Air... for the Defendant's violations of the Clean Water Act, 33 U.S.C. 1251 et seq., and the Clean Air Act... including the installation of water effluent controls, the rerouting of air emissions through control...

  14. Maximizing sinter plant operating flexibility through emissions trading and air modeling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schewe, G.J.; Wagner, J.A.; Heron, T.

    1998-12-31

    This paper provides details on the dispersion modeling analysis performed to demonstrate air quality impacts associated with an emission trading scheme for a sintering operation in Youngstown, Ohio. The emission trade was proposed to allow the sinter plant to expand its current allowable sulfur dioxide (SO2) emissions while being offset with SO{sub 2} emissions from boilers at a nearby shutdown steel mill. While the emission trade itself was feasible and the emissions required for the offset were available (the boiler shutdown and their subsequent SO{sub 2} emission credits were never claimed, banked, or used elsewhere), the second criteria for determiningmore » compliance was a demonstration of minimal air quality impact. The air analysis combined the increased ambient SO{sub 2} concentrations of the relaxed sinter plant emissions with the offsetting air quality of the shutdown boilers to yield the net air quality impacts. To test this net air impact, dispersion modeling was performed treating the sinter plant SO{sub 2} emissions as positive and the shutdown boiler SO{sub 2} emissions as negative. The results of the modeling indicated that the ambient air concentrations due to the proposed emissions increase will be offset by the nearby boiler emissions to levels acceptable under EPA`s offset policy Level 2 significant impact concentrations. Therefore, the dispersion modeling demonstrated that the emission trading scheme would not result in significant air quality impacts and maximum operating flexibility was provided to the sintering facility.« less

  15. Potential air emission impacts of cellulosic ethanol production at seven demonstration refineries in the United States.

    PubMed

    Jones, Donna Lee

    2010-09-01

    This paper reports on the estimated potential air emissions, as found in air permits and supporting documentation, for seven of the first group of precommercial or "demonstration" cellulosic ethanol refineries (7CEDF) currently operating or planning to operate in the United States in the near future. These seven refineries are designed to produce from 330,000 to 100 million gal of ethanol per year. The overall average estimated air emission rates for criteria, hazardous, and greenhouse gas pollutants at the 7CEDF are shown here in terms of tons per year and pounds per gallon of ethanol produced. Water use rates estimated for the cellulosic ethanol refineries are also noted. The air emissions are then compared with similar estimates from a U.S. cellulosic ethanol pilot plant, a commercial Canadian cellulosic ethanol refinery, four commercial U.S. corn ethanol refineries, and U.S. petroleum refineries producing gasoline. The U.S. Environmental Protection Agency (EPA) air pollution rules that may apply to cellulosic ethanol refineries are also discussed. Using the lowest estimated emission rates from these cellulosic ethanol demonstration facilities to project air emissions, EPA's major source thresholds for criteria and hazardous air pollutants might not be exceeded by cellulosic ethanol refineries that produce as high as 25 million gal per year of ethanol (95 ML). Emissions are expected to decrease at cellulosic ethanol refineries as the process matures and becomes more commercially viable.

  16. Noise Emission from Laboratory Air Blowers

    ERIC Educational Resources Information Center

    Rossing, Thomas D.; Windham, Betty

    1978-01-01

    Product noise ratings for a number of laboratory air blowers are reported and several recommendations for reducing laboratory noise from air blowers are given. Relevant noise ratings and methods for measuring noise emission of appliances are discussed. (BB)

  17. Working Toward Policy-Relevant Air Quality Emissions Scenarios

    NASA Astrophysics Data System (ADS)

    Holloway, T.

    2010-12-01

    Though much work has been done to develop accurate chemical emission inventories, few publicly available inventories are appropriate for realistic policy analysis. Emissions from the electricity and transportation sectors, in particular, respond in complex ways to policy, technology, and energy use change. Many widely used inventories, such as the EPA National Emissions Inventory, are well-suited for modeling current air quality, but do not have the specificity needed to address "what if?" questions. Changes in electricity demand, fuel prices, new power sources, and emission controls all influence the emissions from regional power production, requiring a plant-by-plant assessment to capture the spatially explicit impacts. Similarly, land use, freight distribution, or driving behavior will yield differentiated transportation emissions for urban areas, suburbs, and rural highways. We here present results from three recent research projects at the University of Wisconsin—Madison, where bottom-up emission inventories for electricity, freight transport, and urban vehicle use were constructed to support policy-relevant air quality research. These three studies include: 1) Using the MyPower electricity dispatch model to calculate emissions and air quality impacts of Renewable Portfolio Standards and other carbon-management strategies; 2) Using advanced vehicle and commodity flow data from the Federal Highway Administration to evaluate the potential to shift commodities from truck to rail (assuming expanded infrastructure), and assess a range of alternative fuel suggestions; and 3) Working with urban planners to connect urban density with vehicle use to evaluate the air quality impacts of smart-growth in major Midwest cities. Drawing on the results of these three studies, and on challenges overcome in their execution, we discuss the current state of policy-relevant emission dataset generation, as well as techniques and attributes that need to be further refined in order

  18. Emission factors of air toxics from semiconductor manufacturing in Korea.

    PubMed

    Eom, Yun-Sung; Hong, Ji-Hyung; Lee, Suk-Jo; Lee, Eun-Jung; Cha, Jun-Seok; Lee, Dae-Gyun; Bang, Sun-Ae

    2006-11-01

    The development of local, accurate emission factors is very important for the estimation of reliable national emissions and air quality management. For that, this study is performed for pollutants released to the atmosphere with source-specific emission tests from the semiconductor manufacturing industry. The semiconductor manufacturing industry is one of the major sources of air toxics or hazardous air pollutants (HAPs); thus, understanding the emission characteristics of the emission source is a very important factor in the development of a control strategy. However, in Korea, there is a general lack of information available on air emissions from the semiconductor industry. The major emission sources of air toxics examined from the semiconductor manufacturing industry were wet chemical stations, coating applications, gaseous operations, photolithography, and miscellaneous devices in the wafer fabrication and semiconductor packaging processes. In this study, analyses of emission characteristics, and the estimations of emission data and factors for air toxics, such as acids, bases, heavy metals, and volatile organic compounds from the semiconductor manufacturing process have been performed. The concentration of hydrogen chloride from the packaging process was the highest among all of the processes. In addition, the emission factor of total volatile organic compounds (TVOCs) for the packaging process was higher than that of the wafer fabrication process. Emission factors estimated in this study were compared with those of Taiwan for evaluation, and they were found to be of similar level in the case of TVOCs and fluorine compounds.

  19. 76 FR 72049 - National Emission Standards for Hazardous Air Pollutant Emissions for Shipbuilding and Ship...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-21

    ...This action finalizes the residual risk and technology review conducted for two industrial source categories regulated by separate national emission standards for hazardous air pollutants. The two national emission standards for hazardous air pollutants are: National Emissions Standards for Shipbuilding and Ship Repair (Surface Coating) and National Emissions Standards for Wood Furniture Manufacturing Operations. This action also finalizes revisions to the regulatory provisions related to emissions during periods of startup, shutdown and malfunction.

  20. Air/Water Purification

    NASA Technical Reports Server (NTRS)

    1992-01-01

    After 18 years of research into air/water pollution at Stennis Space Center, Dr. B. C. Wolverton formed his own company, Wolverton Environmental Services, Inc., to provide technology and consultation in air and water treatment. Common houseplants are used to absorb potentially harmful materials from bathrooms and kitchens. The plants are fertilized, air is purified, and wastewater is converted to clean water. More than 100 U.S. communities have adopted Wolverton's earlier water hyacinth and artificial marsh applications. Catfish farmers are currently evaluating the artificial marsh technology as a purification system.

  1. Air Emission Inventory for the Idaho National Engineering and Environmental Laboratory - Calendar Year 1999 Emission Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zohner, S.K.

    2000-05-30

    This report presents the 1999 calendar year update of the Air Emission Inventory for the Idaho National Engineering and Environmental Laboratory (INEEL). The INEEL Air Emission Inventory documents sources and emissions of nonradionuclide pollutants from operations at the INEEL. The report describes the emission inventory process and all of the sources at the INEEL, and provides nonradionuclide emissions estimates for stationary sources.

  2. Air Emission Inventory for the Idaho National Engineering and Environmental Laboratory - Calendar Year 1998 Emissions Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    S. K. Zohner

    1999-10-01

    This report presents the 1998 calendar year update of the Air Emission Inventory for the Idaho National Engineering and Environmental Laboratory (INEEL). The INEEL Air Emission Inventory documents sources and emissions of nonradionuclide pollutants from operations at the INEEL. The report describes the emission inventory process and all of the sources at the INEEL, and provides nonradiological emissions estimates for stationary sources.

  3. CRITERIA AND AIR TOXIC EMISSIONS FROM IN-USE, LOW EMISSION VEHICLES (LEVS)

    EPA Science Inventory

    The U.S. Environmental Protection Agency implemented a program to identify tailpipe emissions of criteria and air toxic contaminants from in-use, light-duty Low Emission Vehicles (LEVs). EPA recruited twenty-five LEVs in 2002, and measured emissions on a chassis dynamometer usin...

  4. A Method to Exchange Air Nitrogen Emission Reductions for Watershed Nitrogen Load Reductions

    EPA Science Inventory

    Presentation of the method developed for the Chesapeake Bay Program to estimate changes in nitrogen loading to Chesapeake due to changes in Bay State state-level nitrogen oxide emissions to support air-water trading by the Bay States. Type for SticsUnder AMAD Application QAPP, QA...

  5. Transpiration directly regulates the emissions of water-soluble short-chained OVOCs.

    PubMed

    Rissanen, K; Hölttä, T; Bäck, J

    2018-04-20

    Most plant-based emissions of volatile organic compounds (VOCs) are considered mainly temperature dependent. However, certain oxygenated VOCs (OVOCs) have high water solubility; thus, also stomatal conductance could regulate their emissions from shoots. Due to their water solubility and sources in stem and roots, it has also been suggested that their emissions could be affected by transport in xylem sap. Yet, further understanding on the role of transport has been lacking until present. We used shoot-scale long-term dynamic flux data from Scots pines (Pinus sylvestris) to analyse the effects of transpiration and transport in xylem sap flow on emissions of three water soluble OVOC: methanol, acetone and acetaldehyde. We found a direct effect of transpiration on the shoot emissions of the three OVOCs. The emissions were best explained by a regression model that combined linear transpiration and exponential temperature effects. In addition, a structural equation model indicated that stomatal conductance affects emissions mainly indirectly, by regulating transpiration. A part of temperature's effect is also indirect. The tight coupling of shoot emissions to transpiration clearly evidences that these OVOCs are transported in xylem sap from their sources in roots and stem to leaves and to ambient air. This article is protected by copyright. All rights reserved.

  6. The surface emissions trap: a new approach in indoor air purification.

    PubMed

    Markowicz, Pawel; Larsson, Lennart

    2012-11-01

    A new device for stopping or reducing potentially irritating or harmful emissions from surfaces indoors is described. The device is a surface emissions trap prototype and consists of an adsorbent sheet with a semipermeable barrier surrounded by two thin nonwoven layers. The trap may be applied directly at the source of the emissions e.g. at moisture-affected floors and walls, surfaces contaminated by chemical spills etc. This results in an immediate stop or reduction of the emitting pollutants. The trap has a very low water vapor resistance thus allowing drying of wet surfaces. In laboratory experiments typically 98% reduction of air concentrations of volatile organic compounds and a virtually total reduction of mold particle-associated mycotoxins was observed. The surface emissions trap may represent a convenient and efficient way of restoring indoor environments polluted by microbial and other moisture-associated emissions. Copyright © 2012 Elsevier B.V. All rights reserved.

  7. Methane Emissions from the Inland Waters of Alaska

    NASA Astrophysics Data System (ADS)

    Striegl, R. G.; Butman, D. E.; Stackpoole, S. M.; Dornblaser, M.

    2017-12-01

    Inland waters at high latitudes generally emit methane (CH4) continuously to the atmosphere during the open water season and build-up CH4 under ice during winter that is released over a short period following ice melt. Landscape position, stream and river size, water source, and turbulence created by water flow largely control CH4 emissions from streams and rivers. Organic carbon sources for CH4 production in lakes vary widely among lakes and landscapes and include hydrologic inputs from terrestrial sources, releases from permafrost thaw (thermokarst), and autochthonous inputs from aquatic macrophytes and algae. Lake emissions are therefore controlled by the balance between within-lake CH4 production and consumption, surface turbulence at the water-air interface, and CH4 ebullition. This creates a complex range of conditions that are difficult to characterize, where dissolved CH4 concentrations may vary by up to 4 orders of magnitude among lakes and/or within a single lake over an annual seasonal cycle. Moreover, large inputs of organic matter from permafrost thaw or other sources commonly result in high rates of bubble production and ebullition from some lakes, while other lakes have negligible ebullition. We quantified water surface areas and estimated CH4 emission rates for lakes, streams and rivers for the six major hydrologic regions of Alaska and determined that they collectively emit about 0.124 Tg C per year as CH4 to the atmosphere. Lake emissions comprise about 75% of the total. When adjusted for total land surface area in Alaska, our lake emission estimate is substantially smaller than previous global estimates for inland waters north of 50 degrees North latitude. We attribute this to incorporation of results that cover a broad range of lake conditions in interior Alaska and to new data from lakes in southwest Alaska that have very low CH4 concentration but very large surface area.

  8. Innovations in projecting emissions for air quality modeling

    EPA Science Inventory

    Air quality modeling is used in setting air quality standards and in evaluating their costs and benefits. Historically, modeling applications have projected emissions and the resulting air quality only 5 to 10 years into the future. Recognition that the choice of air quality mana...

  9. Estimates of air emissions from asphalt storage tanks and truck loading

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Trumbore, D.C.

    1999-12-31

    Title V of the 1990 Clean Air Act requires the accurate estimation of emissions from all US manufacturing processes, and places the burden of proof for that estimate on the process owner. This paper is published as a tool to assist in the estimation of air emission from hot asphalt storage tanks and asphalt truck loading operations. Data are presented on asphalt vapor pressure, vapor molecular weight, and the emission split between volatile organic compounds and particulate emissions that can be used with AP-42 calculation techniques to estimate air emissions from asphalt storage tanks and truck loading operations. Since currentmore » AP-42 techniques are not valid in asphalt tanks with active fume removal, a different technique for estimation of air emissions in those tanks, based on direct measurement of vapor space combustible gas content, is proposed. Likewise, since AP-42 does not address carbon monoxide or hydrogen sulfide emissions that are known to be present in asphalt operations, this paper proposes techniques for estimation of those emissions. Finally, data are presented on the effectiveness of fiber bed filters in reducing air emissions in asphalt operations.« less

  10. 40 CFR 267.204 - What air emission standards apply?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 26 2010-07-01 2010-07-01 false What air emission standards apply? 267... PERMIT Tank Systems § 267.204 What air emission standards apply? You must manage all hazardous waste... incinerator, flame, boiler, process heater, condenser, and carbon absorption unit. ...

  11. Quantifying Uncontrolled Air Emissions from Two Florida Landfills

    EPA Science Inventory

    Landfill gas emissions, if left uncontrolled, contribute to air toxics, climate change, trospospheric ozone, and urban smog. Measuring emissions from landfills presents unique challenges due to the large and variable source area, spatial and temporal variability of emissions, and...

  12. Photochemical influences on the air-water exchange of mercury

    NASA Astrophysics Data System (ADS)

    Vette, Alan Frederic

    The formation of dissolved gaseous mercury (DGM) in natural waters is an important component in the biogeochemical cycle of mercury (Hg). The predominate form of DGM in natural waters, gaseous elemental Hg (Hg0), may be transferred from the water to the atmosphere. Gas exchange may reduce the amount of Hg available for methyl-Hg formation, the most toxic form of Hg that bioaccumulates in the food chain. Determining the mechanisms and rates of DGM formation is essential in understanding the fate and cycling of Hg in aquatic ecosystems. Field and laboratory experiments were conducted to evaluate the effect of light on DGM formation in surface waters containing different levels of dissolved organic carbon (DOC). Water samples collected from the Tahqwamenon River and Whitefish Bay on Lake Superior were amended with divalent Hg (Hg2+) and irradiated under a variety of reaction conditions to determine rates of DGM formation. The water samples were also analyzed for various Hg species (total, filtered, easily reducible and dissolved gaseous Hg), DOC and light attenuation. Additional field studies were conducted on Lake Michigan to measure gaseous Hg in air and water. These data were used to develop a mechanistic model to estimate air-water exchange of gaseous Hg. This research found that photochemical formation of DGM was affected by penetration of UV A radiation (320-400 nm). Formation of DGM was enhanced at higher DOC concentrations, indicating DOC photosensitized the reduction of Hg2+ to Hg0. Wavelength studies determined that formation of DGM was significantly reduced in the absence of UV A. Field studies showed DGM concentrations were highest near the water surface and peaked at mid-day, indicating a photo-induced source of DGM. The conversion of reducible Hg2+ to Hg0 was suppressed in high DOC waters where UV A penetration was limited. The mechanistic model predicted similar DGM concentrations to the observed values and demonstrated that deposition and emission

  13. Effect of fuel-air-ratio nonuniformity on emissions of nitrogen oxides

    NASA Technical Reports Server (NTRS)

    Lyons, V. J.

    1981-01-01

    The inlet fuel-air ratio nonuniformity is studied to deterine how nitrogen oxide (NOx) emissions are affected. An increase in NOx emissions with increased fuel-air ratio nonuniformity for average equivalence ratios less than 0.7 and a decrease in NOx emissions for average equivalence ratios near stoichiometric is predicted. The degree of uniformityy of fuel-air ratio profiles that is necessary to achieve NOx emissions goals for actual engines that use lean, premixed, prevaporized combustion systems is determined.

  14. 40 CFR 267.177 - What air emission standards apply?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 26 2010-07-01 2010-07-01 false What air emission standards apply? 267... PERMIT Use and Management of Containers § 267.177 What air emission standards apply? You must manage all... incinerator, catalytic vapor incinerator, flame, boiler, process heater, condenser, and carbon absorption unit. ...

  15. The effect of water injection on nitric oxide emissions of a gas turbine combustor burning ASTM Jet-A fuel

    NASA Technical Reports Server (NTRS)

    Marchionna, N. R.; Diehl, L. A.; Trout, A. M.

    1973-01-01

    Tests were conducted to determine the effect of water injection on oxides of nitrogen (NOx) emissions of a full annular, ram induction gas turbine combustor burning ASTM Jet-A fuel. The combustor was operated at conditions simulating sea-level takeoff and cruise conditions. Water at ambient temperature was injected into the combustor primary zone at water-fuel ratios up to 2. At an inlet-air temperature of 589 K (600 F) water injection decreased the NOx emission index at a constant exponential rate: NOx = NOx (o) e to the -15 W/F power (where W/F is the water-fuel ratio and NOx(o) indicates the value with no injection). The effect of increasing combustor inlet-air temperature was to decrease the effect of the water injection. Other operating variables such as pressure and reference Mach number did not appear to significantly affect the percent reduction in NOx. Smoke emissions were found to decrease with increasing water injection.

  16. Mercury exchange at the air-water-soil interface: an overview of methods.

    PubMed

    Fang, Fengman; Wang, Qichao; Liu, Ruhai

    2002-06-12

    An attempt is made to assess the present knowledge about the methods of determining mercury (Hg) exchange at the air-water-soil interface during the past 20 years. Methods determining processes of wet and dry removal/deposition of atmospheric Hg to aquatic and terrestrial ecosystems, as well as methods determining Hg emission fluxes to the atmosphere from natural surfaces (soil and water) are discussed. On the basis of the impressive advances that have been made in the areas relating to Hg exchange among air-soil-water interfaces, we analyzed existing problems and shortcomings in our current knowledge. In addition, some important fields worth further research are discussed and proposed.

  17. Measurement of air pollutant emissions from Lome, Cotonou and Accra

    NASA Astrophysics Data System (ADS)

    Lee, James; Vaughan, Adam; Nelson, Bethany; Young, Stuart; Evans, Mathew; Morris, Eleanor; Ladkin, Russel

    2017-04-01

    High concentrations of airborne pollutants (e.g. the oxides of nitrogen, sulphur dioxide and carbon monoxide) in existing and evolving cities along the Guinea Coast cause respiratory diseases with potentially large costs to human health and the economic capacity of the local workforce. It is important to understand the rate of emission of such pollutants in order to model current and future air quality and provide guidance to the potential outcomes of air pollution abatement strategies. Often dated technologies and poor emission control strategies lead to substantial uncertainties in emission estimates calculated from vehicle and population number density statistics. The unreliable electrical supply in cities in the area has led to an increased reliance on small-scale diesel powered generators and these potentially present a significant source of emissions. The uncontrolled open incineration of waste adds a further very poorly constrained emission source within the cities. The DACCIWA (Dynamics-Aerosol-Chemistry-Cloud Interactions in West Africa) project involved a field campaign which used highly instrumented aircraft capable of in situ measurements of a range of air pollutants. Seven flights using the UK British Antarctic Survey's Twin Otter aircraft specifically targeted air pollution emissions from cities in West Africa (4 x Accra, Ghana; 2 x Lome, Togo and 1 x Cotonou, Benin). Measurements of NO, NO2, SO2, CO, CH4 and CO2 were made at multiple altitudes upwind and downwind of the cities, with the mass balance technique used to calculate emission rates. These are then compared to the Emissions Database for Global Atmospheric Research (EDGAR) estimates. Ultimately the data will be used to inform on and potentially improve the emission estimates, which in turn should lead to better forecasting of air pollution in West African cities and help guide future air pollution abatement strategy.

  18. X-ray luminescence imaging of water, air, and tissue phantoms

    NASA Astrophysics Data System (ADS)

    Lun, Michael C.; Li, Changqing

    2018-02-01

    X-ray luminescence computed tomography (XLCT) is an emerging hybrid molecular imaging modality. In XLCT, high energy x-ray photons excite phosphors emitting optical photons for tomographic image reconstruction. During XLCT, the optical signal obtained is thought to only originate from the embedded phosphor particles. However, numerous studies have reported other sources of optical photons such as in air, water, and tissue that are generated from ionization. These sources of optical photons will provide background noise and will limit the molecular sensitivity of XLCT imaging. In this study, using a water-cooled electron multiplying charge-coupled device (EMCCD) camera, we performed luminescence imaging of water, air, and several tissue mimicking phantoms including one embedded with a target containing 0.01 mg/mL of europium-doped gadolinium oxysulfide (GOS:Eu3+) particles during x-ray irradiation using a focused x-ray beam with energy less than the Cerenkov radiation threshold. In addition, a spectrograph was used to measure the x-ray luminescence spectrum. The phantom embedded with the GOS:Eu3+ target displayed the greatest luminescence intensity, followed by the tissue phantom, and finally the water phantom. Our results indicate that the x-ray luminescence intensity from a background phantom is equivalent to a GOS:Eu3+ concentration of 0.8 μg/mL. We also found a 3-fold difference in the radioluminescence intensity between liquid water and air. From the measurements of the emission spectra, we found that water produced a broad spectrum and that a tissue-mimicking phantom made from Intralipid had a different x-ray emission spectrum than one made with TiO2 and India ink. The measured spectra suggest that it is better to use Intralipid instead if TiO2 as optical scatterer for future XLCT imaging.

  19. Description of Latvian Metal Production and Processing Enterprises' Air Emissions

    NASA Astrophysics Data System (ADS)

    Pubule, Jelena; Zahare, Dace; Blumberga, Dagnija

    2010-01-01

    The metal production and processing sector in Latvia has acquired a stable position in the national economy. Smelting of ferrous and nonferrous metals, production of metalware, galvanisation, etc. are developed in Latvia. The metal production and processing sector has an impact on air quality due to polluting substances which are released in the air from metal treatment processes. Therefore it is necessary to determine the total volume of emissions produced by the metal production and processing sector in Latvia. This article deals with the air polluting emissions of the Latvian metal production and processing industry, and sets the optimum sector emission volumes using the emissions benchmark methodology.

  20. Energy-Efficiency and Air-Pollutant Emissions-Reduction Opportunities for the Ammonia Industry in China

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ma, Ding; Hasanbeigi, Ali; Chen, Wenying

    As one of the most energy-intensive and polluting industries, ammonia production is responsible for significant carbon dioxide (CO 2) and air-pollutant emissions. Although many energy-efficiency measures have been proposed by the Chinese government to mitigate greenhouse gas emissions and improve air quality, lack of understanding of the cost-effectiveness of such improvements has been a barrier to implementing these measures. Assessing the costs, benefits, and cost-effectiveness of different energy-efficiency measures is essential to advancing this understanding. In this study, a bottom-up energy conservation supply curve model is developed to estimate the potential for energy savings and emissions reductions from 26 energy-efficiencymore » measures that could be applied in China’s ammonia industry. Cost-effective implementation of these measures saves a potential 271.5 petajoules/year for fuel and 5,443 gigawatt-hours/year for electricity, equal to 14% of fuel and 14% of electricity consumed in China’s ammonia industry in 2012. These reductions could mitigate 26.7 million tonnes of CO 2 emissions. This study also quantifies the co-benefits of reducing air-pollutant emissions and water use that would result from saving energy in China’s ammonia industry. This quantitative analysis advances our understanding of the cost-effectiveness of energy-efficiency measures and can be used to augment efforts to reduce energy use and environmental impacts.« less

  1. Mapping Emissions that Contribute to Air Pollution Using Adjoint Sensitivity Analysis

    NASA Astrophysics Data System (ADS)

    Bastien, L. A. J.; Mcdonald, B. C.; Brown, N. J.; Harley, R.

    2014-12-01

    The adjoint of the Community Multiscale Air Quality model (CMAQ) is used to map emissions that contribute to air pollution at receptors of interest. Adjoint tools provide an efficient way to calculate the sensitivity of a model response to a large number of model inputs, a task that would require thousands of simulations using a more traditional forward sensitivity approach. Initial applications of this technique, demonstrated here, are to benzene and directly-emitted diesel particulate matter, for which atmospheric reactions are neglected. Emissions of these pollutants are strongly influenced by light-duty gasoline vehicles and heavy-duty diesel trucks, respectively. We study air quality responses in three receptor areas where populations have been identified as especially susceptible to, and adversely affected by air pollution. Population-weighted air basin-wide responses for each pollutant are also evaluated for the entire San Francisco Bay area. High-resolution (1 km horizontal grid) emission inventories have been developed for on-road motor vehicle emission sources, based on observed traffic count data. Emission estimates represent diurnal, day of week, and seasonal variations of on-road vehicle activity, with separate descriptions for gasoline and diesel sources. Emissions that contribute to air pollution at each receptor have been mapped in space and time using the adjoint method. Effects on air quality of both relative (multiplicative) and absolute (additive) perturbations to underlying emission inventories are analyzed. The contributions of local versus upwind sources to air quality in each receptor area are quantified, and weekday/weekend and seasonal variations in the influence of emissions from upwind areas are investigated. The contribution of local sources to the total air pollution burden within the receptor areas increases from about 40% in the summer to about 50% in the winter due to increased atmospheric stagnation. The effectiveness of control

  2. REGIONAL AIR POLLUTION STUDY: HEAT EMISSION INVENTORY

    EPA Science Inventory

    As part of the St. Louis Regional Air Pollution Study (RAPS), a heat emission inventory has been assembled. Heat emissions to the atmosphere originate, directly or indirectly, from the combustion of fossil fuels (there are no nuclear plants in the St. Louis AQCR). With the except...

  3. Health effects of SRS non-radiological air emissions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stewart, J.

    1997-06-16

    This report examines the potential health effects of non radiological emissions to the air resulting from operations at the Savannah River Site (SRS). The scope of this study was limited to the 55 air contaminants for which the US Environmental Protection Agency (EPA) has quantified risk by determining unit risk factors (excess cancer risks) and/or reference concentrations (deleterious non cancer risks). Potential health impacts have been assessed in relation to the maximally exposed individual. This is a hypothetical person who resides for a lifetime at the SRS boundary. The most recent (1994) quality assured SRS emissions data available were used.more » Estimated maximum site boundary concentrations of the air contaminants were calculated using air dispersion modeling and 24-hour and annual averaging times. For the emissions studied, the excess cancer risk was found to be less than the generally accepted risk level of 1 in 100,000 and, in most cases, was less than 1 in 1,000,000. Deleterious non cancer effects were also found to be very unlikely.« less

  4. Animals as indicators of ecosystem responses to air emissions

    USGS Publications Warehouse

    Newman, James R.; Schreiber, R. Kent

    1984-01-01

    With existing and proposed air-quality regulations, ecological disasters resulting from air emissions such as those observed at Copperhill, Tennessee, and Sudbury, Ontario, are unlikely. Current air-quality standards, however, may not protect ecosystems from subacute and chronic exposure to air emissions. The encouragement of the use of coal for energy production and the development of the fossil-fuel industries, including oil shales, tar sands, and coal liquification, point to an increase and spread of fossil-fuel emissions and the potential to influence a number of natural ecosystems. This paper reviews the reported responses of ecosystems to air-borne pollutants and discusses the use of animals as indicators of ecosystem responses to these pollutants. Animal species and populations can act as important indicators of biotic and abiotic responses of aquatic and terrestrial ecosystems. These responses can indicate long-term trends in ecosystem health and productivity, chemical cycling, genetics, and regulation. For short-term trends, fish and wildlife also serve as monitors of changes in community structure, signaling food-web contamination, as well as providing a measure of ecosystem vitality. Information is presented to show not only the importance of animals as indicators of ecosystem responses to air-quality degradation, but also their value as air-pollution indices, that is, as air-quality-related values (AQRV), required in current air-pollution regulation.

  5. Compliance Software for Radioactive Air Emissions

    EPA Pesticide Factsheets

    Atmospheric dispersion and transport models that are used to assess radiation dose and risk and to demonstrate compliance with certain radionuclide National Emission Standards for Hazardous Air Pollutants (NESHAPs) regulations.

  6. Spatial analysis on China's regional air pollutants and CO2 emissions: emission pattern and regional disparity

    NASA Astrophysics Data System (ADS)

    Dong, Liang; Liang, Hanwei

    2014-08-01

    China has suffered from serious air pollution and CO2 emission. Challenges of emission reduction policy not only come from technology advancement, but also generate from the fact that, China has pronounced disparity between regions, in geographical and socioeconomic. How to deal with regional disparity is important to achieve the reduction target effectively and efficiently. This research conducts a spatial analysis on the emission patterns of three air pollutants named SO2, NOx and PM2.5, and CO2, in China's 30 provinces, applied with spatial auto-correlation and multi regression modeling. We further analyze the regional disparity and inequity issues with the approach of Lorenz curve and Gini coefficient. Results highlight that: there is evident cluster effect for the regional air pollutants and CO2 emissions. While emission amount increases from western regions to eastern regions, the emission per GDP is in inverse trend. The Lorenz curve shows an even larger unequal distribution of GDP/emissions than GDP/capita in 30 regions. Certain middle and western regions suffers from a higher emission with lower GDP, which reveal the critical issue of emission leakage. Future policy making to address such regional disparity is critical so as to promote the emission control policy under the “equity and efficiency” principle.

  7. 40 CFR 204.52 - Portable air compressor noise emission standard.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 25 2011-07-01 2011-07-01 false Portable air compressor noise emission standard. 204.52 Section 204.52 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) NOISE ABATEMENT PROGRAMS NOISE EMISSION STANDARDS FOR CONSTRUCTION EQUIPMENT Portable Air Compressors § 204.52...

  8. 40 CFR 204.52 - Portable air compressor noise emission standard.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 24 2010-07-01 2010-07-01 false Portable air compressor noise emission standard. 204.52 Section 204.52 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) NOISE ABATEMENT PROGRAMS NOISE EMISSION STANDARDS FOR CONSTRUCTION EQUIPMENT Portable Air Compressors § 204.52...

  9. Modeling Aircraft Emissions for Regional-scale Air Quality: Adapting a New Global Aircraft Emissions Database for the U.S

    NASA Astrophysics Data System (ADS)

    Arunachalam, S.; Baek, B. H.; Vennam, P. L.; Woody, M. C.; Omary, M.; Binkowski, F.; Fleming, G.

    2012-12-01

    Commercial aircraft emit substantial amounts of pollutants during their complete activity cycle that ranges from landing-and-takeoff (LTO) at airports to cruising in upper elevations of the atmosphere, and affect both air quality and climate. Since these emissions are not uniformly emitted over the earth, and have substantial temporal and spatial variability, it is vital to accurately evaluate and quantify the relative impacts of aviation emissions on ambient air quality. Regional-scale air quality modeling applications do not routinely include these aircraft emissions from all cycles. Federal Aviation Administration (FAA) has developed the Aviation Environmental Design Tool (AEDT), a software system that dynamically models aircraft performance in space and time to calculate fuel burn and emissions from gate-to-gate for all commercial aviation activity from all airports globally. To process in-flight aircraft emissions and to provide a realistic representation of these for treatment in grid-based air quality models, we have developed an interface processor called AEDTproc that accurately distributes full-flight chorded emissions in time and space to create gridded, hourly model-ready emissions input data. Unlike the traditional emissions modeling approach of treating aviation emissions as ground-level sources or processing emissions only from the LTO cycles in regional-scale air quality studies, AEDTproc distributes chorded inventories of aircraft emissions during LTO cycles and cruise activities into a time-variant 3-D gridded structure. We will present results of processed 2006 global emissions from AEDT over a continental U.S. modeling domain to support a national-scale air quality assessment of the incremental impacts of aircraft emissions on surface air quality. This includes about 13.6 million flights within the U.S. out of 31.2 million flights globally. We will focus on assessing spatio-temporal variability of these commercial aircraft emissions, and

  10. Results of the air emission research study

    USDA-ARS?s Scientific Manuscript database

    Air quality was monitored in beef mono-slope barns. The objectives of the study were 1) to gather baseline data for the levels of gas emissions and particulate matter from beef mono-slope facilities, 2) evaluate the effect of two different manure handling systems on air quality, and 3) provide infor...

  11. Spray formation of biodiesel-water in air-assisted atomizer using Schlieren photography

    NASA Astrophysics Data System (ADS)

    Amirnordin, S. H.; Khalid, A.; Sapit, A.; Salleh, H.; Razali, A.; Fawzi, M.

    2016-11-01

    Biodiesels are attractive renewable energy sources, particularly for industrial boiler and burner operators. However, biodiesels produce higher nitrogen oxide (NOx) emissions compared with diesel. Although water-emulsified fuels can lower NOx emissions by reducing flame temperature, its influence on atomization needs to be investigated further. This study investigates the effects of water on spray formation in air-assisted atomizers. The Schlieren method was used to capture the spray images in terms of tip penetration, spray angle, and spray area. The experiment used palm oil biodiesel at different blending ratios (B5, B10, and B15) and water contents (0vol%-15vol%). Results show that water content in the fuel increases the spray penetration and area but reduces the spray angle because of the changes in fuel properties. Therefore, biodiesel-water application is applicable to burner systems.

  12. Effect of timed secondary-air injection on automotive emissions

    NASA Technical Reports Server (NTRS)

    Coffin, K. P.

    1973-01-01

    A single cylinder of an automotive V-8 engine was fitted with an electronically timed system for the pulsed injection of secondary air. A straight-tube exhaust minimized any mixing other than that produced by secondary-air pulsing. The device was operated over a range of engine loads and speeds. Effects attributable to secondary-air pulsing were found, but emission levels were generally no better than using the engine's own injection system. Under nontypical fast-idle, no-load conditions, emission levels were reduced by roughly a factor of 2.

  13. Estimating Lightning NOx Emissions for Regional Air Quality Modeling

    NASA Astrophysics Data System (ADS)

    Holloway, T.; Scotty, E.; Harkey, M.

    2014-12-01

    Lightning emissions have long been recognized as an important source of nitrogen oxides (NOx) on a global scale, and an essential emission component for global atmospheric chemistry models. However, only in recent years have regional air quality models incorporated lightning NOx emissions into simulations. The growth in regional modeling of lightning emissions has been driven in part by comparisons with satellite-derived estimates of column NO2, especially from the Ozone Monitoring Instrument (OMI) aboard the Aura satellite. We present and evaluate a lightning inventory for the EPA Community Multiscale Air Quality (CMAQ) model. Our approach follows Koo et al. [2010] in the approach to spatially and temporally allocating a given total value based on cloud-top height and convective precipitation. However, we consider alternate total NOx emission values (which translate into alternate lightning emission factors) based on a review of the literature and performance evaluation against OMI NO2 for July 2007 conditions over the U.S. and parts of Canada and Mexico. The vertical distribution of lightning emissions follow a bimodal distribution from Allen et al. [2012] calculated over 27 vertical model layers. Total lightning NO emissions for July 2007 show the highest above-land emissions in Florida, southeastern Texas and southern Louisiana. Although agreement with OMI NO2 across the domain varied significantly depending on lightning NOx assumptions, agreement among the simulations at ground-based NO2 monitors from the EPA Air Quality System database showed no meaningful sensitivity to lightning NOx. Emissions are compared with prior studies, which find similar distribution patterns, but a wide range of calculated magnitudes.

  14. Diminished Mercury Emission From Water Surfaces by Duckweed (Lemna minor)

    NASA Astrophysics Data System (ADS)

    Wollenberg, J. L.; Peters, S. C.

    2007-12-01

    Aquatic plants of the family Lemnaceae (generally referred to as duckweeds) are a widely distributed type of floating vegetation in freshwater systems. Under suitable conditions, duckweeds form a dense vegetative mat on the water surface, which reduces light penetration into the water column and decreases the amount of exposed water surface. These two factors would be expected to reduce mercury emission by limiting a) direct photoreduction of Hg(II), b) indirect reduction via coupled DOC photooxidation-Hg(II) reduction, and c) gas diffusion across the water-air interface. Conversely, previous studies have demonstrated transpiration of Hg(0) by plants, so it is therefore possible that the floating vegetative mat would enhance emission via transpiration of mercury vapor. The purpose of this experiment was to determine whether duckweed limits mercury flux to the atmosphere by shading and the formation of a physical barrier to diffusion, or whether it enhances emission from aquatic systems via transpiration of Hg(0). Deionized water was amended with mercury to achieve a final concentration of approximately 35 ng/L and allowed to equilibrate prior to the experiment. Experiments were conducted in rectangular polystyrene flux chambers with measured UV-B transmittance greater than 60% (spectral cutoff approximately 290 nm). Light was able to penetrate the flux chamber from the sides as well as the top throughout the experiment, limiting the effect of shading by duckweed on the water surface. Flux chambers contained 8L of water with varying percent duckweed cover, and perforated plastic sheeting was used as an abiotic control. Exposures were conducted outside on days with little to no cloud cover. Real time mercury flux was measured using atomic absorption (Mercury Instruments UT-3000). Total solar and ultraviolet radiation, as well as a suite of meteorological parameters, were also measured. Results indicate that duckweed diminishes mercury emission from the water surface

  15. AIR EMISSION INVENTORIES IN NORTH AMERICA: A CRITICAL ASSESSMENT

    EPA Science Inventory

    Although emission inventories are the foundation of air quality management and have supported substantial improvements in North American air quality, they have a number of shortcomings that can potentially lead to ineffective air quality management strategies. New technologies fo...

  16. Linking seasonal surface water dynamics with methane emissions and export from small, forested wetlands

    NASA Astrophysics Data System (ADS)

    Hondula, K. L.; Palmer, M.

    2017-12-01

    One of the biggest uncertainties about global methane sources and sinks is attributed to uncertainties regarding wetland area and its dynamics. This is exacerbated by confusion over the role of small, shallow water bodies like Delmarva bay wetlands that could be categorized as both wetlands and ponds. These small inland water bodies are often poorly quantified due to their size, closed forest canopies, and inter- and intra-annual variability in surface water extent. We are studying wetland-rich areas on the Delmarva Peninsula in the U.S. mid-Atlantic to address this uncertainty at the scale of individual wetland ecosystems (<1000 m2). We present data linking measurements of hydrologic regime and methane gas fluxes in Delmarva bay wetlands to explore how water level, wetland storage capacity, and water residence time influence the magnitude, source area, and fate of wetland methane emissions. We measured air-water and soil-air gas fluxes using transects of chamber measurements spanning from wetland center to upland, in order to quantify the areal extent of the methane emissions source area throughout seasonal changes in surface water inundation (water level 0 to > 1m depth). We estimated the size and temporal variability of the methane emissions source area by combining these measurements with daily estimates of the extent of surface water inundation derived from water level monitoring and a high-resolution digital elevation model. This knowledge is critical for informing land use decisions (e.g. restoring wetlands specifically for climate mitigation), the jurisdiction of environmental policies in the US, and for resolving major outstanding discrepancies in our understanding of the global methane budget.

  17. 75 FR 9647 - National Emission Standards for Hazardous Air Pollutants for Reciprocating Internal Combustion...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-03

    ...EPA is promulgating national emission standards for hazardous air pollutants for existing stationary compression ignition reciprocating internal combustion engines that either are located at area sources of hazardous air pollutant emissions or that have a site rating of less than or equal to 500 brake horsepower and are located at major sources of hazardous air pollutant emissions. In addition, EPA is promulgating national emission standards for hazardous air pollutants for existing non-emergency stationary compression ignition engines greater than 500 brake horsepower that are located at major sources of hazardous air pollutant emissions. Finally, EPA is revising the provisions related to startup, shutdown, and malfunction for the engines that were regulated previously by these national emission standards for hazardous air pollutants.

  18. Reducing ultrafine particle emissions using air injection in wood-burning cookstoves

    DOE PAGES

    Rapp, Vi H.; Caubel, Julien J.; Wilson, Daniel L.; ...

    2016-06-27

    In order to address the health risks and climate impacts associated with pollution from cooking on biomass fires, researchers have focused on designing new cookstoves that improve cooking performance and reduce harmful emissions, specifically particulate matter (PM). One method for improving cooking performance and reducing emissions is using air injection to increase turbulence of unburned gases in the combustion zone. Although air injection reduces total PM mass emissions, the effect on PM size-distribution and number concentration has not been thoroughly investigated. Using two new wood-burning cookstove designs from Lawrence Berkeley National Laboratory, this research explores the effect of air injectionmore » on cooking performance, PM and gaseous emissions, and PM size distribution and number concentration. Both cookstoves were created using the Berkeley-Darfur Stove as the base platform to isolate the effects of air injection. The thermal performance, gaseous emissions, PM mass emissions, and particle concentrations (ranging from 5 nm to 10 μm in diameter) of the cookstoves were measured during multiple high-power cooking tests. Finally, the results indicate that air injection improves cookstove performance and reduces total PM mass but increases total ultrafine (less than 100 nm in diameter) PM concentration over the course of high-power cooking.« less

  19. Reducing ultrafine particle emissions using air injection in wood-burning cookstoves

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rapp, Vi H.; Caubel, Julien J.; Wilson, Daniel L.

    In order to address the health risks and climate impacts associated with pollution from cooking on biomass fires, researchers have focused on designing new cookstoves that improve cooking performance and reduce harmful emissions, specifically particulate matter (PM). One method for improving cooking performance and reducing emissions is using air injection to increase turbulence of unburned gases in the combustion zone. Although air injection reduces total PM mass emissions, the effect on PM size-distribution and number concentration has not been thoroughly investigated. Using two new wood-burning cookstove designs from Lawrence Berkeley National Laboratory, this research explores the effect of air injectionmore » on cooking performance, PM and gaseous emissions, and PM size distribution and number concentration. Both cookstoves were created using the Berkeley-Darfur Stove as the base platform to isolate the effects of air injection. The thermal performance, gaseous emissions, PM mass emissions, and particle concentrations (ranging from 5 nm to 10 μm in diameter) of the cookstoves were measured during multiple high-power cooking tests. Finally, the results indicate that air injection improves cookstove performance and reduces total PM mass but increases total ultrafine (less than 100 nm in diameter) PM concentration over the course of high-power cooking.« less

  20. Polarized radio emission from extensive air showers measured with LOFAR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schellart, P.; Buitink, S.; Corstanje, A.

    2014-10-01

    We present LOFAR measurements of radio emission from extensive air showers. We find that this emission is strongly polarized, with a median degree of polarization of nearly 99%, and that the angle between the polarization direction of the electric field and the Lorentz force acting on the particles, depends on the observer location in the shower plane. This can be understood as a superposition of the radially polarized charge-excess emission mechanism, first proposed by Askaryan and the geomagnetic emission mechanism proposed by Kahn and Lerche. We calculate the relative strengths of both contributions, as quantified by the charge-excess fraction, formore » 163 individual air showers. We find that the measured charge-excess fraction is higher for air showers arriving from closer to the zenith. Furthermore, the measured charge-excess fraction also increases with increasing observer distance from the air shower symmetry axis. The measured values range from (3.3± 1.0)% for very inclined air showers at 25 m to (20.3± 1.3)% for almost vertical showers at 225 m. Both dependencies are in qualitative agreement with theoretical predictions.« less

  1. Criteria and air-toxic emissions from in-use automobiles in the National Low-Emission Vehicle program.

    PubMed

    Baldauf, Rich W; Gabele, Pete; Crews, William; Snow, Richard; Cook, J Rich

    2005-09-01

    The U.S. Environmental Protection Agency (EPA) implemented a program to identify tailpipe emissions of criteria and air-toxic contaminants from in-use, light-duty low-emission vehicles (LEVs). EPA recruited 25 LEVs in 2002 and measured emissions on a chassis dynamometer using the cold-start urban dynamometer driving schedule of the Federal Test Procedure. The emissions measured included regulated pollutants, particulate matter, speciated hydrocarbon compounds, and carbonyl compounds. The results provided a comparison of emissions from real-world LEVs with emission standards for criteria and air-toxic compounds. Emission measurements indicated that a portion of the in-use fleet tested exceeded standards for the criteria gases. Real-time regulated and speciated hydrocarbon measurements demonstrated that the majority of emissions occurred during the initial phases of the cold-start portion of the urban dynamometer driving schedule. Overall, the study provided updated emission factor data for real-world, in-use operation of LEVs for improved emissions modeling and mobile source inventory development.

  2. Temporalization of Electric Generation Emissions for Improved Representation of Peak Air Quality Episodes

    NASA Astrophysics Data System (ADS)

    Farkas, C. M.; Moeller, M.; Carlton, A. G.

    2013-12-01

    Photochemical transport models routinely under predict peak air quality events. This deficiency may be due, in part, to inadequate temporalization of emissions from the electric generating sector. The National Emissions Inventory (NEI) reports emissions from Electric Generating Units (EGUs) by either Continuous Emission Monitors (CEMs) that report hourly values or as an annual total. The Sparse Matrix Operator Kernel Emissions preprocessor (SMOKE), used to prepare emissions data for modeling with the CMAQ air quality model, allocates annual emission totals throughout the year using specific monthly, weekly, and hourly weights according to standard classification code (SCC) and location. This approach represents average diurnal and seasonal patterns of electricity generation but does not capture spikes in emissions due to episodic use as with peaking units or due to extreme weather events. In this project we use a combination of state air quality permits, CEM data, and EPA emission factors to more accurately temporalize emissions of NOx, SO2 and particulate matter (PM) during the extensive heat wave of July and August 2006. Two CMAQ simulations are conducted; the first with the base NEI emissions and the second with improved temporalization, more representative of actual emissions during the heat wave. Predictions from both simulations are evaluated with O3 and PM measurement data from EPA's National Air Monitoring Stations (NAMS) and State and Local Air Monitoring Stations (SLAMS) during the heat wave, for which ambient concentrations of criteria pollutants were often above NAAQS. During periods of increased photochemistry and high pollutant concentrations, it is critical that emissions are most accurately represented in air quality models.

  3. AIR EMISSIONS FROM SCRAP TIRE COMBUSTION

    EPA Science Inventory

    The report discusses air emissions from two types of scrap tire combustion: uncontrolled and controlled. Uncontrolled sources are open tire fires, which produce many unhealthful products of incomplete combustion and release them directly into the atmosphere. Controlled combustion...

  4. Shipping emissions and their impacts on air quality in China.

    PubMed

    Zhang, Yan; Yang, Xin; Brown, Richard; Yang, Liping; Morawska, Lidia; Ristovski, Zoran; Fu, Qingyan; Huang, Cheng

    2017-03-01

    China has >400 ports, is home to 7 of 10 biggest ports in the world and its waterway infrastructure construction has been accelerating over the past years. But the increasing number of ports and ships means increasing emissions, and in turn, increasing impact on local and regional air pollution. This paper presents an overview of the broad field of ship emissions in China and their atmospheric impacts, including topics of ship engine emissions and control, ship emission factors and their measurements, developing of ship emission inventories, shipping and port emissions of the main shipping areas in China, and quantitative contribution of shipping emissions to the local and regional air pollution. There have been an increasing number of studies published on all the above aspects, yet, this review identified some critical research gaps, filling of which is necessary for better control of ship emissions, and for lowering their impacts. In particular, there are very few studies on inland ports and river ships, and there are few national scale ship emission inventories available for China. While advanced method to estimate ship emission based on ship AIS activities makes it now possible to develop high spatial- and temporal-resolution emission inventories, the ship emission factors used in Chinese studies have been based mainly on foreign measurements. Further, the contribution of ship emissions to air pollution in coastal cities, the dispersion of pollution plumes emitted by ships, or the chemical evolution process along the transmission path, have so far not been systematically studied in China. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Biofuels, vehicle emissions, and urban air quality.

    PubMed

    Wallington, Timothy J; Anderson, James E; Kurtz, Eric M; Tennison, Paul J

    2016-07-18

    Increased biofuel content in automotive fuels impacts vehicle tailpipe emissions via two mechanisms: fuel chemistry and engine calibration. Fuel chemistry effects are generally well recognized, while engine calibration effects are not. It is important that investigations of the impact of biofuels on vehicle emissions consider the impact of engine calibration effects and are conducted using vehicles designed to operate using such fuels. We report the results of emission measurements from a Ford F-350 fueled with either fossil diesel or a biodiesel surrogate (butyl nonanoate) and demonstrate the critical influence of engine calibration on NOx emissions. Using the production calibration the emissions of NOx were higher with the biodiesel fuel. Using an adjusted calibration (maintaining equivalent exhaust oxygen concentration to that of the fossil diesel at the same conditions by adjusting injected fuel quantities) the emissions of NOx were unchanged, or lower, with biodiesel fuel. For ethanol, a review of the literature data addressing the impact of ethanol blend levels (E0-E85) on emissions from gasoline light-duty vehicles in the U.S. is presented. The available data suggest that emissions of NOx, non-methane hydrocarbons, particulate matter (PM), and mobile source air toxics (compounds known, or suspected, to cause serious health impacts) from modern gasoline and diesel vehicles are not adversely affected by increased biofuel content over the range for which the vehicles are designed to operate. Future increases in biofuel content when accomplished in concert with changes in engine design and calibration for new vehicles should not result in problematic increases in emissions impacting urban air quality and may in fact facilitate future required emissions reductions. A systems perspective (fuel and vehicle) is needed to fully understand, and optimize, the benefits of biofuels when blended into gasoline and diesel.

  6. EMISSIONS OF ORGANIC AIR TOXICS FROM OPEN BURNING

    EPA Science Inventory

    A detailed literature search was performed to collect and collate available data reporting emissions of toxic organic substances into the air from open burning sources. Availability of data varied according to the source and the class of air toxics of interest. Volatile organic c...

  7. Clean Air Markets - Part 75 Emissions Monitoring Policy Manual

    EPA Pesticide Factsheets

    Learn about monitoring mass sulfur dioxide and mass carbon dioxide emissions, nitrogen oxide emission rate, and heat input by units affected by the Acid Rain Program and the Clean Air Interstate Rule.

  8. Hydrogen/Air Fuel Nozzle Emissions Experiments

    NASA Technical Reports Server (NTRS)

    Smith, Timothy D.

    2001-01-01

    The use of hydrogen combustion for aircraft gas turbine engines provides significant opportunities to reduce harmful exhaust emissions. Hydrogen has many advantages (no CO2 production, high reaction rates, high heating value, and future availability), along with some disadvantages (high current cost of production and storage, high volume per BTU, and an unknown safety profile when in wide use). One of the primary reasons for switching to hydrogen is the elimination of CO2 emissions. Also, with hydrogen, design challenges such as fuel coking in the fuel nozzle and particulate emissions are no longer an issue. However, because it takes place at high temperatures, hydrogen-air combustion can still produce significant levels of NOx emissions. Much of the current research into conventional hydrocarbon-fueled aircraft gas turbine combustors is focused on NOx reduction methods. The Zero CO2 Emission Technology (ZCET) hydrogen combustion project will focus on meeting the Office of Aerospace Technology goal 2 within pillar one for Global Civil Aviation reducing the emissions of future aircraft by a factor of 3 within 10 years and by a factor of 5 within 25 years. Recent advances in hydrocarbon-based gas turbine combustion components have expanded the horizons for fuel nozzle development. Both new fluid designs and manufacturing technologies have led to the development of fuel nozzles that significantly reduce aircraft emissions. The goal of the ZCET program is to mesh the current technology of Lean Direct Injection and rocket injectors to provide quick mixing, low emissions, and high-performance fuel nozzle designs. An experimental program is planned to investigate the fuel nozzle concepts in a flametube test rig. Currently, a hydrogen system is being installed in cell 23 at NASA Glenn Research Center's Research Combustion Laboratory. Testing will be conducted on a variety of fuel nozzle concepts up to combustion pressures of 350 psia and inlet air temperatures of 1200 F

  9. Dynamic Evaluation of Regional Air Quality Model's Response to Emission Reductions in the Presence of Uncertain Emission Inventories

    EPA Science Inventory

    A method is presented and applied for evaluating an air quality model’s changes in pollutant concentrations stemming from changes in emissions while explicitly accounting for the uncertainties in the base emission inventory. Specifically, the Community Multiscale Air Quality (CMA...

  10. AIR TOXICS EMISSIONS FROM ELECTRONICS INCINERATION

    EPA Science Inventory

    The purpose of this project is to examine the emissions of air toxics from the combustion of electronics equipment, primarily personal computer components. Due to a shortage of recycling programs for personal computers and other personal electronics equipment, most of these mate...

  11. Emissions of organic compounds from produced water ponds II: Evaluation of flux chamber measurements with inverse-modeling techniques.

    PubMed

    Tran, Huy N Q; Lyman, Seth N; Mansfield, Marc L; O'Neil, Trevor; Bowers, Richard L; Smith, Ann P; Keslar, Cara

    2018-07-01

    In this study, the authors apply two different dispersion models to evaluate flux chamber measurements of emissions of 58 organic compounds, including C2-C11 hydrocarbons and methanol, ethanol, and isopropanol from oil- and gas-produced water ponds in the Uintah Basin. Field measurement campaigns using the flux chamber technique were performed at a limited number of produced water ponds in the basin throughout 2013-2016. Inverse-modeling results showed significantly higher emissions than were measured by the flux chamber. Discrepancies between the two methods vary across hydrocarbon compounds and are largest in alcohols due to their physical chemistries. This finding, in combination with findings in a related study using the WATER9 wastewater emission model, suggests that the flux chamber technique may underestimate organic compound emissions, especially alcohols, due to its limited coverage of the pond area and alteration of environmental conditions, especially wind speed. Comparisons of inverse-model estimations with flux chamber measurements varied significantly with the complexity of pond facilities and geometries. Both model results and flux chamber measurements suggest significant contributions from produced water ponds to total organic compound emission from oil and gas productions in the basin. This research is a component of an extensive study that showed significant amount of hydrocarbon emissions from produced water ponds in the Uintah Basin, Utah. Such findings have important meanings to air quality management agencies in developing control strategies for air pollution in oil and gas fields, especially for the Uintah Basin in which ozone pollutions frequently occurred in winter seasons.

  12. Emission controls and changes in air quality in Guangzhou during the Asian Games

    NASA Astrophysics Data System (ADS)

    Liu, Huan; Wang, Xuemei; Zhang, Jinpu; He, Kebin; Wu, Ye; Xu, Jiayu

    2013-09-01

    With the new air quality standards forthcoming in China, the Pearl River Delta region is facing new challenges to achieve its air quality goal. The success of the emission reduction measures introduced by local authorities in the run-up to the Guangzhou Asian Games demonstrated that the Pearl River Delta air quality can be improved by introducing integrated emission reduction measures. This paper combines observation data, emission reduction measures, and air quality simulations that were applied during the Asian Games (12-27 November 2010) to analyze the relationship between emissions and concentrations of pollutants in Guangzhou. The Asian Games abatement strategy totally reduced emissions of 41.1% SO2, 41.9% NOx, 26.5% PM10, 25.8% PM2.5 and 39.7% VOC. The concentrations of SO2, NO2, PM10 and PM2.5 were reduced by 66.8%, 51.3%, 21.5% and 17.1%, respectively. In Guangzhou, the main challenge to be overcome with the new air quality daily requirements is mostly for NO2, PM2.5, and hourly ozone maxima. If pollutants maintain the same concentrations before and after the Asian Games, there will be 47.4% and 31.6% non-attainment days for NO2 and PM2.5 respectively as a period average. Although PM10 concentration can meet the daily limits (150 μg m-3), it is quite difficult to meet the annual limit value (70 μg m-3). One important implication is that the long-term, step-by-step integrated measures of the past six years work better than the strict, intensive, short-term measures on SO2, NO2 and VOC control. Dust control by limiting construction sites and watering the roads can further reduce 12.8% of the PM10 concentration. However, to reduce ambient PM2.5, the abatement strategy should be more complex and extensive. On the contrary, ozone pollution was not improved during the Asian Games, indicating that alleviation strategies should be improved by scientific studies to determine the appropriate control ratio of NO2 and VOC in the Pearl River Delta region.

  13. Emission characteristics of kerosene-air spray combustion with plasma assistance

    NASA Astrophysics Data System (ADS)

    Liu, Xingjian; He, Liming; Zeng, Hao; Jin, Tao; Chen, Yi; Zhang, Yihan; Liu, Pengfei

    2015-09-01

    A plasma assisted combustion system for combustion of kerosene-air mixtures was developed to study emission levels of O2, CO2, CO, and NOx. The emission measurement was conducted by Testo 350-Pro Flue Gas Analyzer. The effect of duty ratio, feedstock gas flow rate and applied voltage on emission performance has been analyzed. The results show that O2 and CO emissions reduce with an increase of applied voltage, while CO2 and NOx emissions increase. Besides, when duty ratio or feedstock gas flow rate decreases, the same emission results would appear. The emission spectrum of the air plasma of plasma assisted combustion actuator was also registered to analyze the kinetic enhancement effect of plasma, and the generation of ozone was believed to be the main factor that plasma makes a difference in our experiment. These results are valuable for the future optimization of kerosene-fueled aircraft engine when using plasma assisted combustion devices to exert emission control.

  14. Emission characteristics of harmful air pollutants from cremators in Beijing, China

    PubMed Central

    Xue, Yifeng; Cheng, Linglong; Chen, Xi; Zhai, Xiaoman; Wang, Wei; Zhang, Wenjie; Bai, Yan; Tian, Hezhong; Nie, Lei; Zhang, Shihao; Wei, Tong

    2018-01-01

    The process of corpse cremation generates numerous harmful air pollutants, including particulate matter (PM), sulfur dioxide (SO2), nitrogen oxides (NOx), volatile organic compounds (VOCs), and heavy metals. These pollutants could have severe effects on the surrounding environment and human health. Currently, the awareness of the emission levels of harmful air pollutants from cremators and their emission characteristics is insufficient. In this study, we obtained the emission characteristics of flue gas from cremators in Beijing and determined the localized emission factors and emission levels of harmful air pollutants based on actual monitoring data from nine typical cremators. The results show that the emissions of air pollutants from the cremators that directly discharge flue gas exceed the emission standards of China and Beijing. The installation of a flue gas post-treatment system could effectively reduce gaseous pollutants and the emission levels of PM. After being equipped with a flue gas post-treatment system, the emission concentrations of PM10, PM2.5, CO, SO2 and VOCs from the cremators are reduced by 97.6, 99.2, 19.6, 85.2 and 70.7%, respectively. Moreover, the emission factors of TSP, PM10, PM2.5, CO, SO2 and VOCs are also reduced to 12.5, 9.3, 3.0, 164.1, 8.8 and 19.8 g/body. Although the emission concentration of VOCs from the cremators is not high, they are one of major sources of “odor” in the crematories and demand more attention. Benzene, a chemical that can seriously harm human health, constitutes the largest proportion (~50%) of the chemical components of VOCs in the flue gas from the cremators. PMID:29718907

  15. Emission characteristics of harmful air pollutants from cremators in Beijing, China.

    PubMed

    Xue, Yifeng; Cheng, Linglong; Chen, Xi; Zhai, Xiaoman; Wang, Wei; Zhang, Wenjie; Bai, Yan; Tian, Hezhong; Nie, Lei; Zhang, Shihao; Wei, Tong

    2018-01-01

    The process of corpse cremation generates numerous harmful air pollutants, including particulate matter (PM), sulfur dioxide (SO2), nitrogen oxides (NOx), volatile organic compounds (VOCs), and heavy metals. These pollutants could have severe effects on the surrounding environment and human health. Currently, the awareness of the emission levels of harmful air pollutants from cremators and their emission characteristics is insufficient. In this study, we obtained the emission characteristics of flue gas from cremators in Beijing and determined the localized emission factors and emission levels of harmful air pollutants based on actual monitoring data from nine typical cremators. The results show that the emissions of air pollutants from the cremators that directly discharge flue gas exceed the emission standards of China and Beijing. The installation of a flue gas post-treatment system could effectively reduce gaseous pollutants and the emission levels of PM. After being equipped with a flue gas post-treatment system, the emission concentrations of PM10, PM2.5, CO, SO2 and VOCs from the cremators are reduced by 97.6, 99.2, 19.6, 85.2 and 70.7%, respectively. Moreover, the emission factors of TSP, PM10, PM2.5, CO, SO2 and VOCs are also reduced to 12.5, 9.3, 3.0, 164.1, 8.8 and 19.8 g/body. Although the emission concentration of VOCs from the cremators is not high, they are one of major sources of "odor" in the crematories and demand more attention. Benzene, a chemical that can seriously harm human health, constitutes the largest proportion (~50%) of the chemical components of VOCs in the flue gas from the cremators.

  16. Analysis of asymmetries in air pollution with water resources, and energy consumption in Iran.

    PubMed

    Ashouri, Mohammad Javad; Rafei, Meysam

    2018-04-17

    Iran should pay special attention to its excessive consumption of energy and air pollution due to the limited availability of water resources. This study explores the effects of the consumption of energy and water resources on air pollution in Iran from 1971 to 2014. It utilizes the non-linear autoregressive distributed lag approach to establish a robust relationship between the variables which show that both long- and short-run coefficients are asymmetrical. The positive and negative aspects of the long-run coefficients of energy consumption and water resources were found to be 0.19, - 1.63, 0.18, and 2.36, respectively, while only the negative ones were significant for energy consumption. Based on the cumulative effects, it can be established that there are important and significant differences in the responses of air pollution to positive and negative changes in water productivity and energy consumption. In particular, CO 2 gas emissions are affected by negative changes in H 2 O productivity both in terms of the total and the GDP per unit of energy use in Iran. In regard to short-run results, considerable asymmetric effects occur on all the variables for CO 2 emissions. Based on the results obtained, some recommendations are presented, which policymakers can adopt in efforts to address the issues of pollution and consumption.

  17. Connecting Water Quality With Air Quality Through Microbial Aerosols

    NASA Astrophysics Data System (ADS)

    Dueker, M. Elias

    Aerosol production from surface waters results in the transfer of aquatic materials (including nutrients and bacteria) to air. These materials can then be transported by onshore winds to land, representing a biogeochemical connection between aquatic and terrestrial systems not normally considered. In urban waterfront environments, this transfer could result in emissions of pathogenic bacteria from contaminated waters. Despite the potential importance of this link, sources, near-shore deposition, identity and viability of microbial aerosols are largely uncharacterized. This dissertation focuses on the environmental and biological mechanisms that define this water-air connection, as a means to build our understanding of the biogeochemical, biogeographical, and public health implications of the transfer of surface water materials to the near-shore environment in both urban and non-urban environments. The effects of tidal height, wind speed and fog on coastal aerosols and microbial content were first quantified on a non-urban coast of Maine, USA. Culture-based, culture-independent, and molecular methods were used to simultaneously sample microbial aerosols while monitoring meteorological parameters. Aerosols at this site displayed clear marine influence and high concentrations of ecologically-relevant nutrients. Coarse aerosol concentrations significantly increased with tidal height, onshore wind speed, and fog presence. Tidal height and fog presence did not significantly influence total microbial aerosol concentrations, but did have a significant effect on culturable microbial aerosol fallout. Molecular analyses of the microbes settling out of near-shore aerosols provided further evidence of local ocean to terrestrial transport of microbes. Aerosol and surface ocean bacterial communities shared species and in general were dominated by organisms previously sampled in marine environments. Fog presence strengthened the microbial connection between water and land through

  18. OFFICE EQUIPMENT: DESIGN, INDOOR AIR EMISSIONS, AND POLLUTION PREVENTION OPPORTUNITIES

    EPA Science Inventory

    The report summarizes available information on office equipment design; indoor air emissions of organics, ozone, and particulates from office equipment; and pollution prevention approaches for reducing these emissions. Since much of the existing emissions data from office equipme...

  19. Development of a Mobile Tracer Correlation Techniques for Assessment of Air Emissions from Landfills and Other Area Sources

    EPA Science Inventory

    Improved understanding of air emissions from large area sources such as landfills, waste water ponds, open-source processing, and agricultural operations is a topic of increasing environmental importance. In many cases, the size of the area source, coupled with spatial-heteroge...

  20. Emission of Air Pollutants in the Hot Water Production

    NASA Astrophysics Data System (ADS)

    Krzysztof, Nowak; Maria, Bukowska; Danuta, Proszak-Miąsik; Sławomir, Rabczak

    2017-10-01

    The result of the deteriorating condition of the environment and climate change is to increase the efficient use of fuel and energy and the rational use of energy resources. Great potential for reducing consumption of fossil fuels are stuck in heating systems ranging from generation, transmission and distribution and ending with the recipients rationalize their consumption of heat. Efficient production of heat is obtained during optimal boiler load. The boiler type WR operates with the highest efficiency of 80-85%, the rate of fuel consumption is the lowest, and the process is close to complete combustion. In such conditions to the atmosphere are emitted mainly: SO2, CO2 and NOX. Pollutants such as CO, CH4, HF, HCl, NH3, etc., are the result of incomplete and imperfect combustion, that is, when the boiler is working inefficiently [1-3]. Measurements of pollutant concentrations were performed using an analyzer FTIR Gasmet DX4000. Fourier Transform Infrared Spectroscopy is a technique of measuring that allows a very precise identification of qualitative and quantitative range of compounds, including gaseous pollutants. Device used to measure the concentrations of gaseous pollutants allow determining the amount of carbon, sulphur and nitrogen compounds, which measurement is not defined any rules, including chlorine compounds, hydrogen, methane, ammonia and volatile organic compounds. In this publication presents part of the literature the use of heat for domestic hot water production in summer and heating demand in winter. Described the characteristics of the water boilers WR type used for heating. Presents the results study of the emissions in the production of hot water for the summer and winter seasons.

  1. Emissions of organic compounds from produced water ponds I: Characteristics and speciation.

    PubMed

    Lyman, Seth N; Mansfield, Marc L; Tran, Huy N Q; Evans, Jordan D; Jones, Colleen; O'Neil, Trevor; Bowers, Ric; Smith, Ann; Keslar, Cara

    2018-04-01

    We measured fluxes of methane, a suite of non-methane hydrocarbons (C2-C11), light alcohols, and carbon dioxide from oil and gas produced water storage and disposal ponds in Utah (Uinta Basin) and Wyoming (Upper Green River Basin) United States during 2013-2016. In this paper, we discuss the characteristics of produced water composition and air-water fluxes, with a focus on flux chamber measurements. In companion papers, we will (1) report on inverse modeling methods used to estimate emissions from produced water ponds, including comparisons with flux chamber measurements, and (2) discuss the development of mass transfer coefficients to estimate emissions and place emissions from produced water ponds in the context of all regional oil and gas-related emissions. Alcohols (made up mostly of methanol) were the most abundant organic compound group in produced water (91% of total volatile organic concentration, with upper and lower 95% confidence levels of 89 and 93%) but accounted for only 34% (28 to 41%) of total organic compound fluxes from produced water ponds. Non-methane hydrocarbons, which are much less water-soluble than methanol and less abundant in produced water, accounted for the majority of emitted organics. C6-C9 alkanes and aromatics dominated hydrocarbon fluxes, perhaps because lighter hydrocarbons had already volatilized from produced water prior to its arrival in storage or disposal ponds, while heavier hydrocarbons are less water soluble and less volatile. Fluxes of formaldehyde and other carbonyls were low (1% (1 to 2%) of total organic compound flux). The speciation and magnitude of fluxes varied strongly across the facilities measured and with the amount of time water had been exposed to the atmosphere. The presence or absence of ice also impacted fluxes. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. A comparison study of exploding a Cu wire in air, water, and solid powders

    NASA Astrophysics Data System (ADS)

    Han, Ruoyu; Wu, Jiawei; Ding, Weidong; Zhou, Haibin; Qiu, Aici; Wang, Yanan

    2017-11-01

    In this paper, an experimental study on exploding a copper wire in air, water, incombustible powders, and energetic materials is performed. We examined the effects of the surrounding media on the explosion process and its related phenomena. Experiments were first carried out with copper wire explosions driven by microsecond timescale pulsed currents in air, water, and the half-half case. Then, the copper wires were exploded in air, water, SiO2 powders, quartz sand, NaCl powders, and energetic-material cylinders, respectively. Our experimental results indicated that the explosion process was significantly influenced by the surrounding media, resulting in noticeable differences in energy deposition, optical emission, and shock waves. In particular, incombustible powders could throttle the current flow completely when a fine wire was adopted. We also found that an air or incombustible-powder layer could drastically attenuate the shock wave generated by a wire explosion. As for energetic-material loads, obvious discrepancies were found in voltage/current waveforms from vaporization when compared with a wire explosion in air/water, which meant the metal vapor/liquid drops play a significant role in the ignition process.

  3. Modeling natural emissions in the Community Multiscale Air Quality (CMAQ) Model-I: building an emissions data base

    NASA Astrophysics Data System (ADS)

    Smith, S. N.; Mueller, S. F.

    2010-05-01

    A natural emissions inventory for the continental United States and surrounding territories is needed in order to use the US Environmental Protection Agency Community Multiscale Air Quality (CMAQ) Model for simulating natural air quality. The CMAQ air modeling system (including the Sparse Matrix Operator Kernel Emissions (SMOKE) emissions processing system) currently estimates non-methane volatile organic compound (NMVOC) emissions from biogenic sources, nitrogen oxide (NOx) emissions from soils, ammonia from animals, several types of particulate and reactive gas emissions from fires, as well as sea salt emissions. However, there are several emission categories that are not commonly treated by the standard CMAQ Model system. Most notable among these are nitrogen oxide emissions from lightning, reduced sulfur emissions from oceans, geothermal features and other continental sources, windblown dust particulate, and reactive chlorine gas emissions linked with sea salt chloride. A review of past emissions modeling work and existing global emissions data bases provides information and data necessary for preparing a more complete natural emissions data base for CMAQ applications. A model-ready natural emissions data base is developed to complement the anthropogenic emissions inventory used by the VISTAS Regional Planning Organization in its work analyzing regional haze based on the year 2002. This new data base covers a modeling domain that includes the continental United States plus large portions of Canada, Mexico and surrounding oceans. Comparing July 2002 source data reveals that natural emissions account for 16% of total gaseous sulfur (sulfur dioxide, dimethylsulfide and hydrogen sulfide), 44% of total NOx, 80% of reactive carbonaceous gases (NMVOCs and carbon monoxide), 28% of ammonia, 96% of total chlorine (hydrochloric acid, nitryl chloride and sea salt chloride), and 84% of fine particles (i.e., those smaller than 2.5 μm in size) released into the atmosphere

  4. Assessing Potential Air Pollutant Emissions from Agricultural Feedstock Production using MOVES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eberle, Annika; Warner, Ethan; Zhang, Yi Min

    Biomass feedstock production is expected to grow as demand for biofuels and bioenergy increases. The change in air pollutant emissions that may result from large-scale biomass supply has implications for local air quality and human health. We developed spatially explicit emissions inventories for corn grain and six cellulosic feedstocks through the extension of the National Renewable Energy Laboratory's Feedstock Production Emissions to Air Model (FPEAM). These inventories include emissions of seven pollutants (nitrogen oxides, ammonia, volatile organic compounds, particulate matter, sulfur oxides, and carbon monoxide) generated from biomass establishment, maintenance, harvest, transportation, and biofuel preprocessing activities. By integrating the EPA'smore » MOtor Vehicle Emissions Simulator (MOVES) into FPEAM, we created a scalable framework to execute county-level runs of the MOVES-Onroad model for representative counties (i.e., those counties with the largest amount of cellulosic feedstock production in each state) on a national scale. We used these results to estimate emissions from the on-road transportation of biomass and combined them with county-level runs of the MOVES-Nonroad model to estimate emissions from agricultural equipment. We also incorporated documented emission factors to estimate emissions from chemical application and the operation of drying equipment for feedstock processing, and used methods developed by the EPA and the California Air Resources Board to estimate fugitive dust emissions. The model developed here could be applied to custom equipment budgets and is extensible to accommodate additional feedstocks and pollutants. Future work will also extend this model to analyze spatial boundaries beyond the county-scale (e.g., regional or sub-county levels).« less

  5. Innovations in projecting emissions for air quality modeling ...

    EPA Pesticide Factsheets

    Air quality modeling is used in setting air quality standards and in evaluating their costs and benefits. Historically, modeling applications have projected emissions and the resulting air quality only 5 to 10 years into the future. Recognition that the choice of air quality management strategy has climate change implications is encouraging longer modeling time horizons. However, for multi-decadal time horizons, many questions about future conditions arise. For example, will current population, economic, and land use trends continue, or will we see shifts that may alter the spatial and temporal pattern of emissions? Similarly, will technologies such as building-integrated solar photovoltaics, battery storage, electric vehicles, and CO2 capture emerge as disruptive technologies - shifting how we produce and use energy - or will these technologies achieve only niche markets and have little impact? These are some of the questions that are being evaluated by researchers within the U.S. EPA’s Office of Research and Development. In this presentation, Dr. Loughlin will describe a range of analytical approaches that are being explored. These include: (i) the development of alternative scenarios of the future that can be used to evaluate candidate management strategies over wide-ranging conditions, (ii) the application of energy system models to project emissions decades into the future and to assess the environmental implications of new technologies, (iii) and methodo

  6. EPA evaluates air, water controls

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fairley, P.

    1996-06-05

    Water and air pollution controls make significant contribution to the economy`s health, according to two EPA reports. Clean water provides billions of dollars in benefits to US industries, says a recently released study; and the agency`s draft report on the benefits of air pollution identifiesmore » $$20 in medical costs avoided for every dollar spent on pollution controls. The Clean Water Industry Coalition (CWIC) says the water report reaffirms the need to {open_quotes}modernize{close_quotes} the Clean Water Act (CWA), but EPA administrator Carol Browner says a CWA {open_quotes}rollback{close_quotes} supported by CWIC and passed by House Republicans last May would have jeopardized industries that depend on clean water by weakening effluent standards. Browner denies that the benefits of clean water as identified by the EPA report would have protected water standards from the bill`s cost-benefit requirements. A draft EPA report on clean air leaked by the American Lung Association estimates that tailpipe and smokestack controls for air pollution saved 79,000 lives and resulted in 15 million fewer respiratory illnesses in 1990 alone. The report assesses the costs and benefits of the Clean Air Act from 1970 to 1990. The cost of federal, state, and local regulations were estimated at $$436 billion over the 20-year span, whereas direct benefits of reduced pollution totaled $6.8 trillion.« less

  7. Impact of Trans-Boundary Emissions on Modelled Air Pollution in Canada

    NASA Astrophysics Data System (ADS)

    Pavlovic, Radenko; Moran, Mike; Zhang, Junhua; Zheng, Qiong; Menard, Sylvain; Anselmo, David; Davignon, Didier

    2014-05-01

    The operational air quality model GEM-MACH is run twice daily at the Canadian Meteorological Centre in Montreal, Quebec to produce 48-hour forecasts of hourly O3, NO2, and PM2.5 fields over a North American domain. The hourly gridded anthropogenic emissions fields needed by GEM-MACH are currently based on the 2006 Canadian emissions inventory, a 2012 projected U.S. inventory, and the 1999 Mexican inventory. The Sparse Matrix Operator Kernel Emissions (SMOKE) processing package was used to process these three national emissions inventories to create the GEM-MACH emissions fields. While Canada is the second-largest country in the world by total area, its population and its emissions of criteria contaminants are both only about one-tenth of U.S. values and roughly 80% of the Canadian population lives within 150 km of the international border with the U.S. As a consequence, transboundary transport of air pollution has a major impact on air quality in Canada. To quantify the impact of non-Canadian emissions on forecasted pollutant levels in Canada, the following two tests were performed: (a) all U.S. and Mexican anthropogenic emissions were switched off; and (b) anthropogenic emissions from the southernmost tier of U.S. states and Mexico were switched off. These sensitivity tests were performed for the summer and winter periods of 2012 or 2011. The results obtained show that the impact of non-Canadian sources on forecasted pollution is generally larger in summer than in winter, especially in south-eastern parts of Canada. For the three pollutants considered in the Canadian national Air Quality Health Index, PM2.5 is impacted the most (up to 80%) and NO2 the least (<10%). Emissions from the southern U.S. and Mexico do impact Canadian air quality, but the sign may change depending on the season (i.e., increase vs. decrease), reflecting chemical processing en route.

  8. Comparison of emissions inventories of anthropogenic air pollutants and greenhouse gases in China

    NASA Astrophysics Data System (ADS)

    Saikawa, Eri; Kim, Hankyul; Zhong, Min; Avramov, Alexander; Zhao, Yu; Janssens-Maenhout, Greet; Kurokawa, Jun-ichi; Klimont, Zbigniew; Wagner, Fabian; Naik, Vaishali; Horowitz, Larry W.; Zhang, Qiang

    2017-05-01

    Anthropogenic air pollutant emissions have been increasing rapidly in China, leading to worsening air quality. Modelers use emissions inventories to represent the temporal and spatial distribution of these emissions needed to estimate their impacts on regional and global air quality. However, large uncertainties exist in emissions estimates. Thus, assessing differences in these inventories is essential for the better understanding of air pollution over China. We compare five different emissions inventories estimating emissions of carbon dioxide (CO2), carbon monoxide (CO), nitrogen oxides (NOx), sulfur dioxide (SO2), and particulate matter with an aerodynamic diameter of 10 µm or less (PM10) from China. The emissions inventories analyzed in this paper include the Regional Emission inventory in ASia v2.1 (REAS), the Multi-resolution Emission Inventory for China (MEIC), the Emission Database for Global Atmospheric Research v4.2 (EDGAR), the inventory by Yu Zhao (ZHAO), and the Greenhouse Gas and Air Pollution Interactions and Synergies (GAINS). We focus on the period between 2000 and 2008, during which Chinese economic activities more than doubled. In addition to national totals, we also analyzed emissions from four source sectors (industry, transport, power, and residential) and within seven regions in China (East, North, Northeast, Central, Southwest, Northwest, and South) and found that large disagreements exist among the five inventories at disaggregated levels. These disagreements lead to differences of 67 µg m-3, 15 ppbv, and 470 ppbv for monthly mean PM10, O3, and CO, respectively, in modeled regional concentrations in China. We also find that all the inventory emissions estimates create a volatile organic compound (VOC)-limited environment and MEIC emissions lead to much lower O3 mixing ratio in East and Central China compared to the simulations using REAS and EDGAR estimates, due to their low VOC emissions. Our results illustrate that a better

  9. Air sparging: Air-water mass transfer coefficients

    NASA Astrophysics Data System (ADS)

    Braida, Washington J.; Ong, Say Kee

    1998-12-01

    Experiments investigating the mass transfer of several dissolved volatile organic compounds (VOCs) across the air-water interface were conducted using a single-air- channel air-sparging system. Three different porous media were used in the study. Air velocities ranged from 0.2 cm s-1 to 2.5 cm s-1. The tortuosity factor for each porous medium and the air-water mass transfer coefficients were estimated by fitting experimental data to a one-dimensional diffusion model. The estimated mass transfer coefficients KG ranged from 1.79 × 10-3 cm min-1 to 3.85 × 10-2 cm min-1. The estimated lumped gas phase mass transfer coefficients KGa were found to be directly related to the air diffusivity of the VOC, air velocity, and particle size, and inversely related to the Henry's law constant of the VOCs. Of the four parameters investigated, the parameter that controlled or had a dominant effect on the lumped gas phase mass transfer coefficient was the air diffusivity of the VOC. Two empirical models were developed by correlating the Damkohler and the modified air phase Sherwood numbers with the air phase Peclet number, Henry's law constant, and the reduced mean particle size of porous media. The correlation developed in this study may be used to obtain better predictions of mass transfer fluxes for field conditions.

  10. National Emission Standards for Hazardous Air Pollutants - Radionuclide Emissions, Calendar Year 2010

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NSTec Ecological and Environmental Monitoring

    2011-06-30

    The U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office operates the Nevada National Security Site (NNSS, formerly the Nevada Test Site) and North Las Vegas Facility (NLVF). From 1951 through 1992, the NNSS was the continental testing location for U.S. nuclear weapons. The release of radionuclides from NNSS activities has been monitored since the initiation of atmospheric testing. Limitation to underground detonations after 1962 greatly reduced radiation exposure to the public surrounding the NNSS. After nuclear testing ended in 1992, NNSS radiation monitoring focused on detecting airborne radionuclides from historically contaminated soils. These radionuclides are derived frommore » re-suspension of soil (primarily by wind) and emission of tritium-contaminated soil moisture through evapotranspiration. Low amounts of tritium are also emitted to air at the NLVF, an NNSS support complex in North Las Vegas. To protect the public from harmful levels of man-made radiation, the Clean Air Act, National Emission Standards for Hazardous Air Pollutants (NESHAP) (Title 40 Code of Federal Regulations [CFR] Part 61 Subpart H) (CFR, 2010a) limits the release of radioactivity from a U.S. Department of Energy (DOE) facility to that which would cause 10 millirem per year (mrem/yr) effective dose equivalent to any member of the public. This limit does not include radiation unrelated to NNSS activities. Unrelated doses could come from naturally occurring radioactive elements, from sources such as medically or commercially used radionuclides, or from sources outside of the United States, such as those from the damaged Fukushima nuclear power plant in Japan. Because this report is intended to discuss radioactive air emissions during calendar year 2010, data on radionuclides in air from the 2011 Fukushima nuclear power plant releases are not presented but will be included in the report for calendar year 2011. The NNSS demonstrates compliance with the

  11. Effect of heat waves on VOC emissions from vegetation and urban air quality

    NASA Astrophysics Data System (ADS)

    Churkina, G.; Kuik, F.; Lauer, A.; Bonn, B.; Butler, T. M.

    2015-12-01

    Programs to plant millions of trees in cities around the world aim at the reduction of summer temperatures, increase carbon storage, storm water control, provision of space for recreation, as well as poverty alleviation. Although these multiple benefits speak positively for urban greening programs, the programs do not take into account how close human and natural systems are coupled in urban areas. Elevated temperatures together with anthropogenic emissions of air and water pollutants distinguish the urban system. Urban and sub-urban vegetation responds to ambient changes and reacts with pollutants. Neglecting this coupling may lead to unforeseen drawbacks of urban greening programs. The potential for emissions of volatile organic compounds (VOC) from vegetation combined with anthropogenic emissions to produce ozone has long been recognized. This potential increases under rising temperatures. Here we investigate how heat waves affect emissions of VOC from urban vegetation and corresponding ground-level ozone. In this study we use Weather Research and Forecasting Model with coupled atmospheric chemistry (WRF-CHEM) to quantify these feedbacks in Berlin, Germany during the 2006 heat wave. VOC emissions from vegetation are simulated with MEGAN 2.0 coupled with WRF-CHEM. Our preliminary results indicate that contribution of VOCs from vegetation to ozone formation may increase by more than twofold during the heat wave period. We highlight the importance of the vegetation for urban areas under changing climate and discuss associated tradeoffs.

  12. HVAC SYSTEMS AS EMISSION SOURCES AFFECTING INDOOR AIR QUALITY: A CRITICAL REVIEW

    EPA Science Inventory

    The study evaluates heating, ventilating, and air-conditioning (HVAC) systems as contaminant emission sources that affect indoor air quality (IAQ). Various literature sources and methods for characterizing HVAC emission sources are reviewed. Available methods include in situ test...

  13. Comparing the VOC emissions between air-dried and heat-treated Scots pine wood

    NASA Astrophysics Data System (ADS)

    Manninen, Anne-Marja; Pasanen, Pertti; Holopainen, Jarmo K.

    The emissions of volatile organic compounds (VOCs) from air-dried Scots pine wood and from heat-treated Scots pine wood were compared with GC-MS analysis. Air-dried wood blocks released about 8 times more total VOCs than heat-treated (24 h at 230°C) ones. Terpenes were clearly the main compound group in the air-dried wood samples, whereas aldehydes and carboxylic acids and their esters dominated in the heat-treated wood samples. Only 14 compounds out of 41 identified individual compounds were found in both wood samples indicating considerable changes in VOC emission profile during heat-treatment process. Of individual compounds α-pinene, 3-carene and hexanal were the most abundant ones in the air-dried wood. By contrast, in the heat-treated wood 2-furancarboxaldehyde, acetic acid and 2-propanone were the major compounds of VOC emission. Current emission results reveal that significant chemical changes have occurred, and volatile monoterpenes and other low-molecular-weight compounds have evaporated from the wood during the heat-treatment process when compared to air-dried wood. Major chemical changes detected in VOC emissions are explained by the thermal degradation and oxidation of main constituents in wood. The results suggest that if heat-treated wood is used in interior carpentry, emissions of monoterpenes are reduced compared to air-dried wood, but some irritating compounds might be released into indoor air.

  14. Influence of water content on the inactivation of P. digitatum spores using an air-water plasma jet

    NASA Astrophysics Data System (ADS)

    Youyi, HU; Weidong, ZHU; Kun, LIU; Leng, HAN; Zhenfeng, ZHENG; Huimin, HU

    2018-04-01

    In order to investigate whether an air-water plasma jet is beneficial to improve the efficiency of inactivation, a series of experiments were done using a ring-needle plasma jet. The water content in the working gas (air) was accurately measured based on the Karl Fischer method. The effects of water on the production of OH (A2Σ+-X2Πi) and O (3p5P-3s5S) were also studied by optical emission spectroscopy. The results show that the water content is in the range of 2.53-9.58 mg l-1, depending on the gas/water mixture ratio. The production of OH (A2Σ+-X2Πi) rises with the increase of water content, whereas the O (3p5P-3s5S) shows a declining tendency with higher water content. The sterilization experiments indicate that this air-water plasma jet inactivates the P. digitatum spores very effectively and its efficiency rises with the increase of the water content. It is possible that OH (A2Σ+-X2Πi) is a more effective species in inactivation than O (3p5P-3s5S) and the water content benefit the spore germination inhibition through rising the OH (A2Σ+-X2Πi) production. The maximum of the inactivation efficacy is up to 93% when the applied voltage is -6.75 kV and the water content is 9.58 mg l-1.

  15. Regional emissions of air pollutants in China.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Streets, D. G.

    1998-10-05

    As part of the China-MAP program, sponsored by the US National Aeronautics and Space Administration, regional inventories of air pollutants emitted in China are being characterized, in order that the atmospheric chemistry over China can be more fully understood and the resulting ambient concentrations in Chinese cities and the deposition levels to Chinese ecosystems be determined with better confidence. In addition, the contributions of greenhouse gases from China and of acidic aerosols that counteract global warming are being quantified. This paper presents preliminary estimates of the emissions of some of the major air pollutants in China: sulfur dioxide (SO{sub 2}),more » nitrogen oxides (NO{sub x}), carbon monoxide (CO), and black carbon (C). Emissions are estimated for each of the 27 regions of China included in the RAINS-Asia simulation model and are subsequently distributed to a 1{degree} x 1{degree} grid using appropriate disaggregation factors. Emissions from all sectors of the Chinese economy are considered, including the combustion of biofuels in rural homes. Emissions from larger power plants are calculated individually and allocated to the grid accordingly. Data for the period 1990-1995 are being developed, as well as projections for the future under alternative assumptions about economic growth and environmental control.« less

  16. Assessment of the emissions and air quality impacts of biomass and biogas use in California.

    PubMed

    Carreras-Sospedra, Marc; Williams, Robert; Dabdub, Donald

    2016-02-01

    It is estimated that there is sufficient in-state "technically" recoverable biomass to support nearly 4000 MW of bioelectricity generation capacity. This study assesses the emissions of greenhouse gases and air pollutants and resulting air quality impacts of new and existing bioenergy capacity throughout the state of California, focusing on feedstocks and advanced technologies utilizing biomass resources predominant in each region. The options for bioresources include the production of bioelectricity and renewable natural gas (NG). Emissions of criteria pollutants and greenhouse gases are quantified for a set of scenarios that span the emission factors for power generation and the use of renewable natural gas for vehicle fueling. Emissions are input to the Community Multiscale Air Quality (CMAQ) model to predict regional and statewide temporal air quality impacts from the biopower scenarios. With current technology and at the emission levels of current installations, maximum bioelectricity production could increase nitrogen oxide (NOx) emissions by 10% in 2020, which would cause increases in ozone and particulate matter concentrations in large areas of California. Technology upgrades would achieve the lowest criteria pollutant emissions. Conversion of biomass to compressed NG (CNG) for vehicles would achieve comparable emission reductions of criteria pollutants and minimize emissions of greenhouse gases (GHG). Air quality modeling of biomass scenarios suggest that applying technological changes and emission controls would minimize the air quality impacts of bioelectricity generation. And a shift from bioelectricity production to CNG production for vehicles would reduce air quality impacts further. From a co-benefits standpoint, CNG production for vehicles appears to provide the best benefits in terms of GHG emissions and air quality. This investigation provides a consistent analysis of air quality impacts and greenhouse gas emissions for scenarios examining

  17. Air pollution in Latin America: Bottom-up Vehicular Emissions Inventory and Atmospheric Modeling

    NASA Astrophysics Data System (ADS)

    Ibarra Espinosa, S.; Vela, A. V.; Calderon, M. G.; Carlos, G.; Ynoue, R.

    2016-12-01

    Air pollution is a global environmental and health problem. Population of Latin America are facing air quality risks due to high level of air pollution. According to World Health Organization (WHO; 2016), several Latin American cities have high level of pollution. Emissions inventories are a key tool for air quality, however they normally present lack of quality and adequate documentation in developing countries. This work aims to develop air quality assessments in Latin American countries by 1) develop a high resolution emissions inventory of vehicles, and 2) simulate air pollutant concentrations. The bottom-up vehicular emissions inventory used was obtained with the REMI model (Ibarra et al., 2016) which allows to interpolate traffic over road network of Open Street Map to estimate vehicular emissions 24-h, each day of the week. REMI considers several parameters, among them the average age of fleet which was associated with gross domestic product (GDP) per capita. The estimated pollutants are CO, NOx, HC, PM2.5, NO, NO2, CO2, N2O, COV, NH3 and Fuel Consumption. The emissions inventory was performed at the biggest cities, including every capital of Latin America's countries. Initial results shows that the cities with most CO emissions are Buenos Aires 162800 (t/year), São Paulo 152061 (t/year), Campinas 151567 (t/year) and Brasilia 144332 (t/year). The results per capita shows that the city with most CO emissions per capita is Campinas, with 130 (kgCO/hab/year), showed in figure 1. This study also cover high resolution air quality simulations with WRF-Chem main cities in Latin America. Results will be assessed comparing: fuel estimates with local fuel sales, traffic count interpolation with available traffic data set at each city, and comparison between air pollutant simulations with air monitoring observation data. Ibarra, S., R. Ynoue, and S. Mhartain. 2016: "High Resolution Vehicular Emissions Inventory for the Megacity of São Paulo." Manuscript submitted to

  18. 76 FR 13514 - National Emission Standards for Hazardous Air Pollutants for Chemical Manufacturing Area Sources

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-14

    ... National Emission Standards for Hazardous Air Pollutants for Chemical Manufacturing Area Sources AGENCY... Emission Standards for Hazardous Air Pollutants for Chemical Manufacturing Area Sources. Among the... Emission Standards for Hazardous Air Pollutants for Chemical Manufacturing Area Sources (CMAS) on October...

  19. HVAC SYSTEMS AS EMISSION SOURCES AFFECTING INDOOR AIR QUALITY: A CRITICAL REVIEW

    EPA Science Inventory

    The paper discusses results of an evaluation of literature on heating, ventilating, and air-conditioning (HVAC) systems as contaminant emission sources that affect indoor air quality (IAQ). The various literature sources and methods for characterizing HVAC emission sources are re...

  20. U.S. ozone air quality under changing climate and anthropogenic emissions.

    PubMed

    Racherla, Pavan N; Adams, Peter J

    2009-02-01

    We examined future ozone (O3) air quality in the United States (U.S.) under changing climate and anthropogenic emissions worldwide by performing global climate-chemistry simulations, utilizing various combinations of present (1990s) and future (Intergovernmental Panel on Climate Change (IPCC) Special Report on Emissions Scenarios (SRES) A2 2050s) climates, and present and future (2050s; IPCC SRES A2 and B1) anthropogenic emissions. The A2 climate scenario is employed here because it lies at the upper extreme of projected climate change for the 21st century. To examine the sensitivity of U.S. O3 to regional emissions increases (decreases), the IPCC SRES A2 and B1 scenarios, which have overall higher and lower O3-precursor emissions for the U.S., respectively, have been chosen. We find that climate change, by itself, significantly worsens the severity and frequency of high-O3 events ("episodes") over most locations in the U.S., with relatively small changes in average O3 air quality. These high-O3 increases due to climate change alone will erode moderately the gains made under a U.S. emissions reduction scenario (e.g., B1). The effect of climate change on high- and average-O3 increases with anthropogenic emissions. Insofar as average O3 air quality is concerned, changes in U.S. anthropogenic emissions will play the most important role in attaining (or not) near-term U.S. O3 air quality standards. However, policy makers must plan appropriately for O3 background increases due to projected increases in global CH4 abundance and non-U.S. anthropogenic emissions, as well as potential local enhancements that they could cause. These findings provide strong incentives for more-than-planned emissions reductions at locations that are currently O3-nonattainment.

  1. Water gun vs air gun: A comparison

    USGS Publications Warehouse

    Hutchinson, D.R.; Detrick, R. S.

    1984-01-01

    The water gun is a relatively new marine seismic sound source that produces an acoustic signal by an implosive rather than explosive mechanism. A comparison of the source characteristics of two different-sized water guns with those of conventional air guns shows the the water gun signature is cleaner and much shorter than that of a comparable-sized air gun: about 60-100 milliseconds (ms) for an 80-in3. (1.31-liter (I)) water gun compared with several hundred ms for an 80-in3. (1.31-1) air gun. The source spectra of water guns are richer in high frequencies (>200 Hz) than are those of air guns, but they also have less energy than those of air guns at low frequencies. A comparison between water gun and air gun reflection profiles in both shallow (Long Island Sound)-and deep (western Bermuda Rise)-water settings suggests that the water gun offers a good compromise between very high resolution, limited penetration systems (e.g. 3.5-kHz profilers and sparkers) and the large volume air guns and tuned air gun arrays generally used where significant penetration is required. ?? 1984 D. Reidel Publishing Company.

  2. Effect of low emission sources on air quality in Cracow

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nedoma, J.

    1995-12-31

    The paper presents calculation of power engineering low emission and results of stimulation of the effect of this emission on air quality in Cracow, Poland. It has been stated that the segment of low emission in central areas of the town makes up ca. 40% of the observed concentration of sulfur dioxide. Furthermore it has been stated that the capital investment must be concentrated in the central part of the town in order to reach noticeable improvement of air quality in Cracow. Neither the output of a separate power source nor the emission level and its individual harmful effect, butmore » the location of the source and especially packing density of the sources must decide the priority of upgrading actions.« less

  3. Unusually high soil nitrogen oxide emissions influence air quality in a high-temperature agricultural region

    PubMed Central

    Oikawa, P. Y.; Ge, C.; Wang, J.; Eberwein, J. R.; Liang, L. L.; Allsman, L. A.; Grantz, D. A.; Jenerette, G. D.

    2015-01-01

    Fertilized soils have large potential for production of soil nitrogen oxide (NOx=NO+NO2), however these emissions are difficult to predict in high-temperature environments. Understanding these emissions may improve air quality modelling as NOx contributes to formation of tropospheric ozone (O3), a powerful air pollutant. Here we identify the environmental and management factors that regulate soil NOx emissions in a high-temperature agricultural region of California. We also investigate whether soil NOx emissions are capable of influencing regional air quality. We report some of the highest soil NOx emissions ever observed. Emissions vary nonlinearly with fertilization, temperature and soil moisture. We find that a regional air chemistry model often underestimates soil NOx emissions and NOx at the surface and in the troposphere. Adjusting the model to match NOx observations leads to elevated tropospheric O3. Our results suggest management can greatly reduce soil NOx emissions, thereby improving air quality. PMID:26556236

  4. Characterization of Air Emissions from Open Burning and ...

    EPA Pesticide Factsheets

    Emissions from open burning (OB) and open detonation (OD) of military ordnance and static fires (SF) of rocket motors were sampled in fall, 2013 at the Dundurn Depot (Saskatchewan, Canada). Emission sampling was conducted with an aerostat-lofted instrument package termed the “Flyer” that was maneuvered into the downwind plumes. Forty-nine OB events, 94 OD events, and 16 SF on four propellants types (Triple base, 105 M1, 155 M4A2 white bag, and 155 M6 red bag), two smokes (HC grenade and red phosphorus), five explosive types (Trigran, C4, ANFO, ANFO+HC grenade, and ANFO+Flare), and two rocket motors types (CVR-7 and MK 58) resulted in emission factors for particulate matter (PM), carbon dioxide (CO2), carbon monoxide (CO), methane (CH4), volatile organic compounds (VOCs), chlorine species (HCl, chloride, chlorate, perchlorate), polychlorinated dibenzodioxins and polychlorinated dibenzofurans (PCDDs/PCDFs) and PM-based metals. These data provide Canada and the United States with additional air emissions data to support health risk assessments and permitting for safe treatment of military ordnance by OB/OD/SF. In addition, the data will be used to conduct air dispersion modelling assessing the impact of treatment of various ordnance on the air quality, to support mandatory reporting requirements of the Canadian Environmental Protection Act (CEPA), the National Pollutant Release Inventory (NPRI), and to update the Canadian Ammunition Chemical Database.Result

  5. Modelling CO2 emissions from water surface of a boreal hydroelectric reservoir.

    PubMed

    Wang, Weifeng; Roulet, Nigel T; Kim, Youngil; Strachan, Ian B; Del Giorgio, Paul; Prairie, Yves T; Tremblay, Alain

    2018-01-15

    To quantify CO 2 emissions from water surface of a reservoir that was shaped by flooding the boreal landscape, we developed a daily time-step reservoir biogeochemistry model. We calibrated the model using the measured concentrations of dissolved organic and inorganic carbon (C) in a young boreal hydroelectric reservoir, Eastmain-1 (EM-1), in northern Quebec, Canada. We validated the model against observed CO 2 fluxes from an eddy covariance tower in the middle of EM-1. The model predicted the variability of CO 2 emissions reasonably well compared to the observations (root mean square error: 0.4-1.3gCm -2 day -1 , revised Willmott index: 0.16-0.55). In particular, we demonstrated that the annual reservoir surface effluxes were initially high, steeply declined in the first three years, and then steadily decreased to ~115gCm -2 yr -1 with increasing reservoir age over the estimated "engineering" reservoir lifetime (i.e., 100years). Sensitivity analyses revealed that increasing air temperature stimulated CO 2 emissions by enhancing CO 2 production in the water column and sediment, and extending the duration of open water period over which emissions occur. Increasing the amount of terrestrial organic C flooded can enhance benthic CO 2 fluxes and CO 2 emissions from the reservoir water surface, but the effects were not significant over the simulation period. The model is useful for the understanding of the mechanism of C dynamics in reservoirs and could be used to assist the hydro-power industry and others interested in the role of boreal hydroelectric reservoirs as sources of greenhouse gas emissions. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Control of air emissions from POTWs using biofiltration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Webster, T.S.; Devinny, J.S.; Torres, E.M.

    1995-12-31

    The University of Southern California (USC), in collaboration with the County Sanitation Districts of Orange County (CSDOC), the South Coast Air Quality Management District (SCAQMD), Southern California Edison (SCE), the Water Environment Research Foundation (WERF), and Huntingdon Environmental Engineering, Inc. (HEEI), is conducting a research project to evaluate the application of biofiltration to remove volatile organic compounds (VOCs), odor-causing air pollutants, and toxics from a publicly owned treatment works (POTW) waste airstream. As part of this project, bench-scale and pilot-scale experiments are being conducted to test the effectiveness of biofiltration and determine the optimum parameters for applying biofiltration to POTWs.more » Results from the bench-scale experiments demonstrate that biofiltration is effective in reducing the concentration of hydrogen sulfide (H{sub 2}S) and total VOCs present in waste airstreams by over 99% and up to 90%, respectively. Average reduction of specific aromatic and carbonyl compounds ranged from 55% to 91%. Removal efficiencies for chlorinated hydrocarbons were variable, ranging from 6% to 88%. Overall, biofiltration appears to be a promising technology for full-scale implementation at POTWs for VOC and odor emission compliance.« less

  7. Impacts of Energy Sector Emissions on PM2.5 Air Quality in Northern India

    NASA Astrophysics Data System (ADS)

    Karambelas, A. N.; Kiesewetter, G.; Heyes, C.; Holloway, T.

    2015-12-01

    India experiences high concentrations of fine particulate matter (PM2.5), and several Indian cities currently rank among the world's most polluted cities. With ongoing urbanization and a growing economy, emissions from different energy sectors remain major contributors to air pollution in India. Emission sectors impact ambient air quality differently due to spatial distribution (typical urban vs. typical rural sources) as well as source height characteristics (low-level vs. high stack sources). This study aims to assess the impacts of emissions from three distinct energy sectors—transportation, domestic, and electricity—on ambient PM2.5­­ in northern India using an advanced air quality analysis framework based on the U.S. EPA Community Multi-Scale Air Quality (CMAQ) model. Present air quality conditions are simulated using 2010 emissions from the Greenhouse Gas-Air Pollution Interaction and Synergies (GAINS) model. Modeled PM2.5 concentrations are compared with satellite observations of aerosol optical depth (AOD) from the Moderate Imaging Spectroradiometer (MODIS) for 2010. Energy sector emissions impacts on future (2030) PM2.5 are evaluated with three sensitivity simulations, assuming maximum feasible reduction technologies for either transportation, domestic, or electricity sectors. These simulations are compared with a business as usual 2030 simulation to assess relative sectoral impacts spatially and temporally. CMAQ is modeled at 12km by 12km and include biogenic emissions from the Community Land Model coupled with the Model of Emissions of Gases and Aerosols in Nature (CLM-MEGAN), biomass burning emissions from the Global Fires Emissions Database (GFED), and ERA-Interim meteorology generated with the Weather Research and Forecasting (WRF) model for 2010 to quantify the impact of modified anthropogenic emissions on ambient PM2.5 concentrations. Energy sector emissions analysis supports decision-making to improve future air quality and public health in

  8. Emissions of an AVCO Lycoming 0-320-DIAD air cooled light aircraft engine as a function of fuel-air ratio, timing, and air temperature and humidity

    NASA Technical Reports Server (NTRS)

    Meng, P. R.; Skorobatckyi, M.; Cosgrove, D. V.; Kempke, E. E., Jr.

    1976-01-01

    A carbureted aircraft engine was operated over a range of test conditions to establish the exhaust levels over the EPA seven-mode emissions cycle. Baseline (full rich production limit) exhaust emissions at an induction air temperature of 59 F and near zero relative humidity were 90 percent of the EPA standard for HC, 35 percent for NOx, and 161 percent for CO. Changes in ignition timing around the standard 25 deg BTDC from 30 deg BTDC to 20 deg BTDC had little effect on the exhaust emissions. Retarding the timing to 15 deg BTDC increased both the HC and CO emissions and decreased NOx emissions. HC and CO emissions decreased as the carburetor was leaned out, while NOx emissions increased. The EPA emission standards were marginally achieved at two leanout conditions. Variations in the quantity of cooling air flow over the engine had no effect on exhaust emissions. Temperature-humidity effects at the higher values of air temperature and relative humidity tested indicated that the HC and CO emissions increased significantly, while the NOx emissions decreased.

  9. Evaluation of life-cycle air emission factors of freight transportation.

    PubMed

    Facanha, Cristiano; Horvath, Arpad

    2007-10-15

    Life-cycle air emission factors associated with road, rail, and air transportation of freight in the United States are analyzed. All life-cycle phases of vehicles, infrastructure, and fuels are accounted for in a hybrid life-cycle assessment (LCA). It includes not only fuel combustion, but also emissions from vehicle manufacturing, maintenance, and end of life, infrastructure construction, operation, maintenance, and end of life, and petroleum exploration, refining, and fuel distribution. Results indicate that total life-cycle emissions of freight transportation modes are underestimated if only tailpipe emissions are accounted for. In the case of CO2 and NOx, tailpipe emissions underestimate total emissions by up to 38%, depending on the mode. Total life-cycle emissions of CO and SO2 are up to seven times higher than tailpipe emissions. Sensitivity analysis considers the effects of vehicle type, geography, and mode efficiency on the final results. Policy implications of this analysis are also discussed. For example, while it is widely assumed that currently proposed regulations will result in substantial reductions in emissions, we find that this is true for NOx, emissions, because fuel combustion is the main cause, and to a lesser extent for SO2, but not for PM10 emissions, which are significantly affected by the other life-cycle phases.

  10. 75 FR 80833 - Shipboard Air Emission Reduction Technology Report

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-23

    ... Reduction Technology Report AGENCY: Coast Guard, DHS. ACTION: Notice and request for comments. SUMMARY: In... Protection Agency, on Ship Emission Reduction Technology for cargo and passenger vessels that operate in... will survey new technology and new applications of existing technology for reducing air emissions from...

  11. Modeling natural emissions in the Community Multiscale Air Quality (CMAQ) model - Part 1: Building an emissions data base

    NASA Astrophysics Data System (ADS)

    Smith, S. N.; Mueller, S. F.

    2010-01-01

    A natural emissions inventory for the continental United States and surrounding territories is needed in order to use the US Environmental Protection Agency Community Multiscale Air Quality (CMAQ) Model for simulating natural air quality. The CMAQ air modeling system (including the Sparse Matrix Operator Kernel Emissions (SMOKE) emissions processing system) currently estimates volatile organic compound (VOC) emissions from biogenic sources, nitrogen oxide (NOx) emissions from soils, ammonia from animals, several types of particulate and reactive gas emissions from fires, as well as windblown dust and sea salt emissions. However, there are several emission categories that are not commonly treated by the standard CMAQ Model system. Most notable among these are nitrogen oxide emissions from lightning, reduced sulfur emissions from oceans, geothermal features and other continental sources, and reactive chlorine gas emissions linked with sea salt chloride. A review of past emissions modeling work and existing global emissions data bases provides information and data necessary for preparing a more complete natural emissions data base for CMAQ applications. A model-ready natural emissions data base is developed to complement the anthropogenic emissions inventory used by the VISTAS Regional Planning Organization in its work analyzing regional haze based on the year 2002. This new data base covers a modeling domain that includes the continental United States plus large portions of Canada, Mexico and surrounding oceans. Comparing July 2002 source data reveals that natural emissions account for 16% of total gaseous sulfur (sulfur dioxide, dimethylsulfide and hydrogen sulfide), 44% of total NOx, 80% of reactive carbonaceous gases (VOCs and carbon monoxide), 28% of ammonia, 96% of total chlorine (hydrochloric acid, nitryl chloride and sea salt chloride), and 84% of fine particles (i.e., those smaller than 2.5 μm in size) released into the atmosphere. The seasonality and

  12. Air pollution radiative forcing from specific emissions sectors at 2030

    NASA Astrophysics Data System (ADS)

    Unger, Nadine; Shindell, Drew T.; Koch, Dorothy M.; Streets, David G.

    2008-01-01

    Reduction of short-lived air pollutants can contribute to mitigate global warming in the near-term with ancillary benefits to human health. However, the radiative forcings of short-lived air pollutants depend on the location and source type of the precursor emissions. We apply the Goddard Institute for Space Studies atmospheric composition-climate model to quantify near-future (2030 A1B) global annual mean radiative forcing by ozone (O3) and sulfate from six emissions sectors in seven geographic regions. At 2030 the net forcings from O3, sulfate, black and organic carbon, and indirect CH4 effects for each emission sector are (in mWm-2) biomass burning, +95; domestic, +68; transportation, +67; industry, -131; and power, -224. Biomass burning emissions in East Asia and central and southern Africa, domestic biofuel emissions in East Asia, south Asia, and central and southern Africa, and transportation emissions in Europe and North America have large net positive forcings and are therefore attractive targets to counter global warming. Power and industry emissions from East Asia, south Asia, and north Africa and the Middle East have large net negative forcings. Therefore air quality control measures that affect these regional sectors require offsetting climate measures to avoid a warming impact. Linear relationships exist between O3 forcing and biomass burning and domestic biofuel CO precursor emissions independent of region with sensitivity of +0.2 mWm-2/TgCO. Similarly, linear relationships exist between sulfate forcing and SO2 precursor emissions that depend upon region but are independent of sector with sensitivities ranging from -3 to -12 mWm-2/TgS.

  13. Large Gain in Air Quality Compared to an Alternative Anthropogenic Emissions Scenario

    NASA Technical Reports Server (NTRS)

    Daskalakis, Nikos; Tsigaridis, Kostas; Myriokefalitakis, Stelios; Fanourgakis, George S.; Kanakidou, Maria

    2016-01-01

    During the last 30 years, significant effort has been made to improve air quality through legislation for emissions reduction. Global three-dimensional chemistrytransport simulations of atmospheric composition over the past 3 decades have been performed to estimate what the air quality levels would have been under a scenario of stagnation of anthropogenic emissions per capita as in 1980, accounting for the population increase (BA1980) or using the standard practice of neglecting it (AE1980), and how they compare to the historical changes in air quality levels. The simulations are based on assimilated meteorology to account for the yearto- year observed climate variability and on different scenarios of anthropogenic emissions of pollutants. The ACCMIP historical emissions dataset is used as the starting point. Our sensitivity simulations provide clear indications that air quality legislation and technology developments have limited the rapid increase of air pollutants. The achieved reductions in concentrations of nitrogen oxides, carbon monoxide, black carbon, and sulfate aerosols are found to be significant when comparing to both BA1980 and AE1980 simulations that neglect any measures applied for the protection of the environment. We also show the potentially large tropospheric air quality benefit from the development of cleaner technology used by the growing global population. These 30-year hindcast sensitivity simulations demonstrate that the actual benefit in air quality due to air pollution legislation and technological advances is higher than the gain calculated by a simple comparison against a constant anthropogenic emissions simulation, as is usually done. Our results also indicate that over China and India the beneficial technological advances for the air quality may have been masked by the explosive increase in local population and the disproportional increase in energy demand partially due to the globalization of the economy.

  14. Reducing greenhouse gas emissions and improving air quality: Two global challenges.

    PubMed

    Erickson, Larry E

    2017-07-01

    There are many good reasons to promote sustainable development and reduce greenhouse gas emissions and other combustion emissions. The air quality in many urban environments is causing many premature deaths because of asthma, cardiovascular disease, chronic obstructive pulmonary disease, lung cancer, and dementia associated with combustion emissions. The global social cost of air pollution is at least $3 trillion/year; particulates, nitrogen oxides and ozone associated with combustion emissions are very costly pollutants. Better air quality in urban environments is one of the reasons for countries to work together to reduce greenhouse gas emissions through the Paris Agreement on Climate Change. There are many potential benefits associated with limiting climate change. In the recent past, the concentrations of greenhouse gases in the atmosphere have been increasing and the number of weather and climate disasters with costs over $1 billion has been increasing. The average global temperature set new record highs in 2014, 2015, and 2016. To reduce greenhouse gas emissions, the transition to electric vehicles and electricity generation using renewable energy must take place in accord with the goals of the Paris Agreement on Climate Change. This work reviews progress and identifies some of the health benefits associated with reducing combustion emissions. © 2017 American Institute of Chemical Engineers Environ Prog, 36: 982-988, 2017.

  15. VOLATILIZATION RATES FROM WATER TO INDOOR AIR ...

    EPA Pesticide Factsheets

    Contaminated water can lead to volatilization of chemicals to residential indoor air. Previous research has focused on only one source (shower stalls) and has been limited to chemicals in which gas-phase resistance to mass transfer is of marginal significance. As a result, attempts to extrapolate chemical emissions from high-volatility chemicals to lower volatility chemicals, or to sources other than showers, have been difficult or impossible. This study involved the development of two-phase, dynamic mass balance models for estimating chemical emissions from washing machines, dishwashers, and bathtubs. An existing model was adopted for showers only. Each model required the use of source- and chemical-specific mass transfer coefficients. Air exchange (ventilation) rates were required for dishwashers and washing machines as well. These parameters were estimated based on a series of 113 experiments involving 5 tracer chemicals (acetone, ethyl acetate, toluene, ethylbenzene, and cyclohexane) and 4 sources (showers, bathtubs, washing machines, and dishwashers). Each set of experiments led to the determination of chemical stripping efficiencies and mass transfer coefficients (overall, liquid-phase, gas-phase), and to an assessment of the importance of gas- phase resistance to mass transfer. Stripping efficiencies ranged from 6.3% to 80% for showers, 2.6% to 69% for bathtubs, 18% to 100% for dishwashers, and 3.8% to 100% for washing machines. Acetone and cyclohexane al

  16. Impacts of Residential Biofuel Emissions on Air Quality and Climate

    NASA Astrophysics Data System (ADS)

    Huang, Y.; Unger, N.; Harper, K.; Storelvmo, T.

    2016-12-01

    The residential biofuel sector is defined as fuelwood, agricultural residues and dung used for household cooking and heating. Aerosol emissions from this human activity play an important role affecting local, regional and global air quality, climate and public health. However, there are only few studies available that evaluate the net impacts and large uncertainties persist. Here we use the Community Atmosphere Model version 5.3 (CAM v5.3) within the Community Earth System Model version 1.2.2, to quantify the impacts of cook-stove biofuel emissions on air quality and climate. The model incorporates a novel advanced treatment of black carbon (BC) effects on mixed-phase/ice clouds. We update the global anthropogenic emission inventory in CAM v5.3 to a state-of-the-art emission inventory from the Greenhouse Gas-Air Pollution Interactions and Synergies integrated assessment model. Global in-situ and aircraft campaign observations for BC and organic carbon are used to evaluate and validate the model performance. Sensitivity simulations are employed to assess the impacts of residential biofuel emissions on regional and global direct and indirect radiative forcings in the contemporary world. We focus the analyses on several key regions including India, China and Sub-Saharan Africa.

  17. Sequim Site Radionuclide Air Emissions Report for Calendar Year 2012

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Snyder, Sandra F.; Barnett, J. Matthew; Gervais, Todd L.

    2013-04-01

    This report is prepared to document compliance with the Code of Federal Regulations (CFR), Title 40, Protection of the Environment, Part 61, National Emission Standards for Hazardous Air Pollutants (NESHAP), Subpart H, National Emission Standards for Emissions of Radionuclides Other than Radon from Department of Energy Facilities and ashington Administrative Code (WAC) Chapter 246-247, Radiation Protection Air Emissions. This report meets the calendar year 2012 Sequim Site annual reporting requirement for its operations as a privately-owned facility as well as its federally-contracted status that began in October 2012. Compliance is indicated by comparing the estimated dose to the maximally exposedmore » individual (MEI) with the 10 mrem/yr Environmental Protection Agency (EPA) standard. The MSL contains only sources classified as fugitive emissions. Despite the fact that the regulations are intended for application to point source emissions, fugitive emissions are included with regard to complying with the EPA standard. The dose to the Sequim Site MEI due to routine operations in 2012 was 9E-06 mrem (9E-08 mSv). No non-routine emissions occurred in 2012. The MSL is in compliance with the federal and state 10 mrem/yr standard.« less

  18. [Air pollutant emissions of aircraft in China in recent 30 years].

    PubMed

    He, Ji-Cheng

    2012-01-01

    Although aircrafts are of great importance in transportation in China, there has been rare study on air pollutant emissions of aircrafts until now. Based on the annually statistical data collected by the Statistic Center of Civil Aviation of China, using the emission factor method derived from fuel consumption, the air pollutant emissions of aircrafts during 1980-2009 were calculated, and their emission intensities and dynamic characteristics were analyzed. The results show that the emissions of SO2, CO, NO(x) and HC from aircrafts of China Civil Aviation increased from 0.31 thousand, 1.89 thousand, 2.25 thousand and 3.14 thousand tons in 1980 to 11.83 thousand, 72.98 thousand, 87.05 thousand and 121.59 thousand tons in 2009, indicating a increase of 0.397 thousand, 2.45 thousand, 2.92 thousand and 4.08 thousand tons per year, respectively. The emission intensities of SO2, CO, NO(x) and HC decreased significantly from 0.624, 3.806, 4.53 and 6.322 g x (t x km)(-1) in 1980 to 0.275, 1.697, 2.025 and 2.828 g x (t x km)(-1) in 2009, respectively. SO2, CO, NO(x) emissions of aircrafts of China Civil Aviation accounted very little of each total emissions in China, and the air pollutant emissions from aircrafts of China Civil Aviation was less than those from other industries in China.

  19. Carbon emission allowance allocation with a mixed mechanism in air passenger transport.

    PubMed

    Qiu, Rui; Xu, Jiuping; Zeng, Ziqiang

    2017-09-15

    Air passenger transport carbon emissions have become a great challenge for both governments and airlines because of rapid developments in the aviation industry in recent decades. In this paper, a mixed mechanism composed of a cap-and-trade mechanism and a carbon tax mechanism is developed to assist governments in allocating carbon emission allowances to airlines operating on the routes. Combined this mixed mechanism with an equilibrium strategy, a bi-level multi-objective model is proposed for an air passenger transport carbon emission allowance allocation problem, in which a government is considered as a leader and the airlines as the followers. An interactive solution approach integrating a genetic algorithm and an interactive evolutionary mechanism is designed to search for satisfactory solutions of the proposed model. A case study is then presented to show its practicality and efficiency in mitigating carbon emissions. Sensitivity analyses under different tradable and taxable levels are also conducted, which can give the government insights as to the tradeoffs between lowering carbon intensity and improving airlines' operations. The computational results demonstrate that the mixed mechanism can assist greatly in carbon emission mitigation for air passenger transport and therefore, it should be established as part of air passenger transport carbon emission policies. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Temporal variability of air-sea CO2 exchange in a low-emission estuary

    NASA Astrophysics Data System (ADS)

    Mørk, Eva Thorborg; Sejr, Mikael Kristian; Stæhr, Peter Anton; Sørensen, Lise Lotte

    2016-07-01

    There is the need for further study of whether global estimates of air-sea CO2 exchange in estuarine systems capture the relevant temporal variability and, as such, the temporal variability of bulk parameterized and directly measured CO2 fluxes was investigated in the Danish estuary, Roskilde Fjord. The air-sea CO2 fluxes showed large temporal variability across seasons and between days and that more than 30% of the net CO2 emission in 2013 was a result of two large fall and winter storms. The diurnal variability of ΔpCO2 was up to 400 during summer changing the estuary from a source to a sink of CO2 within the day. Across seasons the system was suggested to change from a sink of atmospheric CO2 during spring to near neutral during summer and later to a source of atmospheric CO2 during fall. Results indicated that Roskilde Fjord was an annual low-emission estuary, with an estimated bulk parameterized release of 3.9 ± 8.7 mol CO2 m-2 y-1 during 2012-2013. It was suggested that the production-respiration balance leading to the low annual emission in Roskilde Fjord, was caused by the shallow depth, long residence time and high water quality in the estuary. In the data analysis the eddy covariance CO2 flux samples were filtered according to the H2Osbnd CO2 cross-sensitivity assessment suggested by Landwehr et al. (2014). This filtering reduced episodes of contradicting directions between measured and bulk parameterized air-sea CO2 exchanges and changed the net air-sea CO2 exchange from an uptake to a release. The CO2 gas transfer velocity was calculated from directly measured CO2 fluxes and ΔpCO2 and agreed to previous observations and parameterizations.

  1. Using E-PRTR data on point source emissions to air and water—First steps towards a national chemical footprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sörme, L., E-mail: louise.sorme@scb.se; Palm, V.; KTH Royal Institute of Technology, Division of Environmental Strategies Research, SE-100 44 Stockholm

    2016-01-15

    There is a great need for indicators to monitor the use and potential impacts of hazardous chemicals. Today there is a huge lack of data, methods and results and method development and studies should be given urgent priority. The aim of this paper was to develop and test an approach to calculate the potential environmental impacts of chemicals for a whole country using the E-PRTR (European Pollutant Release and Transfer Register) as a database and Sweden as an example. Swedish data from 2008 on emissions to air and water for 54 substances from point sources were retrieved from an openmore » database. The data were transformed and aggregated using USEtox, a life-cycle impact assessment (LCIA) method for calculating potential human toxicity and ecotoxicity, both from industrial emissions directly and after input–output analysis (IO analysis) to reallocate emissions to product categories. Zinc to air and water contributed most to human toxicity followed by mercury to air. The largest contribution by industry to potential human toxicity came from the metal industry, followed by the paper and paper product industry. For potential ecotoxicity, zinc, fluoranthene and copper contributed the most. The largest contributions by industry came from the paper and paper products manufacturing sector, followed by the basic metals manufacturing sector. The approach used here can be seen as the first step towards a chemical footprint for nations. By adding data from other countries and other sources, a more complete picture can be gained in line with other footprint calculations. Furthermore, diffuse emissions from, for example, transport or emissions of pesticides could also be added for a more holistic assessment. Since the area of chemicals is complicated, it is probably necessary to develop and use several indicators that complement each other. It is suggested that the approach outlined here could be useful in developing a method for establishing a national chemical

  2. Tackling agricultural diffuse pollution: What might uptake of farmer-preferred measures deliver for emissions to water and air?

    PubMed

    Collins, A L; Zhang, Y S; Winter, M; Inman, A; Jones, J I; Johnes, P J; Cleasby, W; Vrain, E; Lovett, A; Noble, L

    2016-03-15

    Mitigation of agricultural diffuse pollution poses a significant policy challenge across Europe and particularly in the UK. Existing combined regulatory and voluntary approaches applied in the UK continue to fail to deliver the necessary environmental outcomes for a variety of reasons including failure to achieve high adoption rates. It is therefore logical to identify specific on-farm mitigation measures towards which farmers express positive attitudes for higher future uptake rates. Accordingly, a farmer attitudinal survey was undertaken during phase one of the Demonstration Test Catchment programme in England to understand those measures towards which surveyed farmers are most receptive to increasing implementation in the future. A total of 29 on-farm measures were shortlisted by this baseline farm survey. This shortlist comprised many low cost or cost-neutral measures suggesting that costs continue to represent a principal selection criterion for many farmers. The 29 measures were mapped onto relevant major farm types and input, assuming 95% uptake, to a national scale multi-pollutant modelling framework to predict the technically feasible impact on annual agricultural emissions to water and air, relative to business as usual. Simulated median emission reductions, relative to current practise, for water management catchments across England and Wales, were estimated to be in the order sediment (20%)>ammonia (16%)>total phosphorus (15%) ≫ nitrate/methane (11%)>nitrous oxide (7%). The corresponding median annual total cost of the modelled scenario to farmers was £3 ha(-1)yr(-1), with a corresponding range of -£84 ha(-1)yr(-1) (i.e. a net saving) to £33 ha(-1)yr(-1). The results suggest that those mitigation measures which surveyed farmers are most inclined to implement in the future would improve the environmental performance of agriculture in England and Wales at minimum to low cost per hectare. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Health effects of subchronic exposure to diesel-water emulsion emission.

    PubMed

    Reed, M D; Blair, L F; Burling, K; Daly, I; Gigliotti, A P; Gudi, R; Mercieca, M D; McDonald, J D; Naas, D J; O'callaghan, J P; Seilkop, S K; Ronsko, N L; Wagner, V O; Kraska, R C

    2005-12-15

    The U.S. Environmental Protection Agency (EPA) National Ambient Air Quality Standards for ozone and particulate matter are requiring urban nonattainment areas to implement pollution-reduction strategies for anthropogenic source emissions. A type of fuel shown to decrease combustion emissions components versus traditional diesel fuels is the diesel-water emulsion. The Lubrizol Corporation in conjunction with Lovelace Respiratory Research Institute and several subcontracting laboratories recently conducted a rodent health assessment of inhaled combustion emissions of PuriNO(x) diesel fuel emulsion. Combustion emissions from either of two 2001 model Cummins 5.9-L ISB engines were diluted with charcoal-filtered air to exposure concentrations of 100, 200, and 400 microg total particulate matter/m(3). The engines were operated on a continuously repeating, heavy-duty certification cycle (U.S. Code of Federal Regulations, Title 40, Chapter I) using Rotella-T 15W-40 engine oil. Nitrogen oxide and particulate matter were reduced when engines were operated on PuriNO(x) versus California Air Resources Board diesel fuel under these conditions. Male and female F344 rats were housed in Hazleton H2000 exposure chambers and exposed to exhaust atmospheres 6 h/day, 5 days/wk for the first 11 wk and 7 days/wk threafter. Exposures ranged from 58 to 70 days, depending on the treatment group. Indicators of general toxicity (body weight, organ weight, clinical pathology, and histopathology), neurotoxicity (glial fibrillary acidic protein assay), genotoxicity (Ames assay, micronucleus, sister chromatid exchange), and reproduction and development were measured. Overall, effects observed were mild. Emulsion combustion emissions were not associated with neurotoxicity, reproductive/developmental toxicity, or in vivo genotoxicity. Small decreases in serum cholesterol and small increases in platelet values in some groups of exposed animals were observed. Particulate matter accumulation within

  4. Probing the radio emission from air showers with polarization measurements

    NASA Astrophysics Data System (ADS)

    Aab, A.; Abreu, P.; Aglietta, M.; Ahlers, M.; Ahn, E. J.; Albuquerque, I. F. M.; Allekotte, I.; Allen, J.; Allison, P.; Almela, A.; Alvarez Castillo, J.; Alvarez-Muñiz, J.; Alves Batista, R.; Ambrosio, M.; Aminaei, A.; Anchordoqui, L.; Andringa, S.; Antičić, T.; Aramo, C.; Arqueros, F.; Asorey, H.; Assis, P.; Aublin, J.; Ave, M.; Avenier, M.; Avila, G.; Badescu, A. M.; Barber, K. B.; Bardenet, R.; Bäuml, J.; Baus, C.; Beatty, J. J.; Becker, K. H.; Bellido, J. A.; BenZvi, S.; Berat, C.; Bertou, X.; Biermann, P. L.; Billoir, P.; Blanco, F.; Blanco, M.; Bleve, C.; Blümer, H.; Boháčová, M.; Boncioli, D.; Bonifazi, C.; Bonino, R.; Borodai, N.; Brack, J.; Brancus, I.; Brogueira, P.; Brown, W. C.; Buchholz, P.; Bueno, A.; Buscemi, M.; Caballero-Mora, K. S.; Caccianiga, B.; Caccianiga, L.; Candusso, M.; Caramete, L.; Caruso, R.; Castellina, A.; Cataldi, G.; Cazon, L.; Cester, R.; Cheng, S. H.; Chiavassa, A.; Chinellato, J. A.; Chudoba, J.; Cilmo, M.; Clay, R. W.; Cocciolo, G.; Colalillo, R.; Collica, L.; Coluccia, M. R.; Conceição, R.; Contreras, F.; Cooper, M. J.; Coutu, S.; Covault, C. E.; Criss, A.; Cronin, J.; Curutiu, A.; Dallier, R.; Daniel, B.; Dasso, S.; Daumiller, K.; Dawson, B. R.; de Almeida, R. M.; De Domenico, M.; de Jong, S. J.; De La Vega, G.; de Mello Junior, W. J. M.; de Mello Neto, J. R. T.; De Mitri, I.; de Souza, V.; de Vries, K. D.; del Peral, L.; Deligny, O.; Dembinski, H.; Dhital, N.; Di Giulio, C.; Di Matteo, A.; Diaz, J. C.; Díaz Castro, M. L.; Diep, P. N.; Diogo, F.; Dobrigkeit, C.; Docters, W.; D'Olivo, J. C.; Dong, P. N.; Dorofeev, A.; dos Anjos, J. C.; Dova, M. T.; Ebr, J.; Engel, R.; Erdmann, M.; Escobar, C. O.; Espadanal, J.; Etchegoyen, A.; Facal San Luis, P.; Falcke, H.; Fang, K.; Farrar, G.; Fauth, A. C.; Fazzini, N.; Ferguson, A. P.; Fick, B.; Figueira, J. M.; Filevich, A.; Filipčič, A.; Foerster, N.; Fox, B. D.; Fracchiolla, C. E.; Fraenkel, E. D.; Fratu, O.; Fröhlich, U.; Fuchs, B.; Gaior, R.; Gamarra, R. F.; Gambetta, S.; García, B.; Garcia Roca, S. T.; Garcia-Gamez, D.; Garcia-Pinto, D.; Garilli, G.; Gascon Bravo, A.; Gemmeke, H.; Ghia, P. L.; Giammarchi, M.; Giller, M.; Gitto, J.; Glaser, C.; Glass, H.; Gomez Albarracin, F.; Gómez Berisso, M.; Gómez Vitale, P. F.; Gonçalves, P.; Gonzalez, J. G.; Gookin, B.; Gorgi, A.; Gorham, P.; Gouffon, P.; Grebe, S.; Griffith, N.; Grillo, A. F.; Grubb, T. D.; Guardincerri, Y.; Guarino, F.; Guedes, G. P.; Hansen, P.; Harari, D.; Harrison, T. A.; Harton, J. L.; Haungs, A.; Hebbeker, T.; Heck, D.; Herve, A. E.; Hill, G. C.; Hojvat, C.; Hollon, N.; Holt, E.; Homola, P.; Hörandel, J. R.; Horvath, P.; Hrabovský, M.; Huber, D.; Huege, T.; Insolia, A.; Isar, P. G.; Jansen, S.; Jarne, C.; Josebachuili, M.; Kadija, K.; Kambeitz, O.; Kampert, K. H.; Karhan, P.; Kasper, P.; Katkov, I.; Kégl, B.; Keilhauer, B.; Keivani, A.; Kemp, E.; Kieckhafer, R. M.; Klages, H. O.; Kleifges, M.; Kleinfeller, J.; Knapp, J.; Krause, R.; Krohm, N.; Krömer, O.; Kruppke-Hansen, D.; Kuempel, D.; Kunka, N.; La Rosa, G.; LaHurd, D.; Latronico, L.; Lauer, R.; Lauscher, M.; Lautridou, P.; Le Coz, S.; Leão, M. S. A. B.; Lebrun, D.; Lebrun, P.; Leigui de Oliveira, M. A.; Letessier-Selvon, A.; Lhenry-Yvon, I.; Link, K.; López, R.; Lopez Agüera, A.; Louedec, K.; Lozano Bahilo, J.; Lu, L.; Lucero, A.; Ludwig, M.; Lyberis, H.; Maccarone, M. C.; Malacari, M.; Maldera, S.; Maller, J.; Mandat, D.; Mantsch, P.; Mariazzi, A. G.; Marin, V.; Mariş, I. C.; Marquez Falcon, H. R.; Marsella, G.; Martello, D.; Martin, L.; Martinez, H.; Martínez Bravo, O.; Martraire, D.; Masías Meza, J. J.; Mathes, H. J.; Matthews, J.; Matthews, J. A. J.; Matthiae, G.; Maurel, D.; Maurizio, D.; Mayotte, E.; Mazur, P. O.; Medina, C.; Medina-Tanco, G.; Melissas, M.; Melo, D.; Menichetti, E.; Menshikov, A.; Messina, S.; Meyhandan, R.; Mićanović, S.; Micheletti, M. I.; Middendorf, L.; Minaya, I. A.; Miramonti, L.; Mitrica, B.; Molina-Bueno, L.; Mollerach, S.; Monasor, M.; Monnier Ragaigne, D.; Montanet, F.; Morales, B.; Morello, C.; Moreno, J. C.; Mostafá, M.; Moura, C. A.; Muller, M. A.; Müller, G.; Münchmeyer, M.; Mussa, R.; Navarra, G.; Navarro, J. L.; Navas, S.; Necesal, P.; Nellen, L.; Nelles, A.; Neuser, J.; Nhung, P. T.; Niechciol, M.; Niemietz, L.; Niggemann, T.; Nitz, D.; Nosek, D.; Nožka, L.; Oehlschläger, J.; Olinto, A.; Oliveira, M.; Ortiz, M.; Pacheco, N.; Pakk Selmi-Dei, D.; Palatka, M.; Pallotta, J.; Palmieri, N.; Parente, G.; Parra, A.; Pastor, S.; Paul, T.; Pech, M.; PeÂķala, J.; Pelayo, R.; Pepe, I. M.; Perrone, L.; Pesce, R.; Petermann, E.; Petrera, S.; Petrolini, A.; Petrov, Y.; Piegaia, R.; Pierog, T.; Pieroni, P.; Pimenta, M.; Pirronello, V.; Platino, M.; Plum, M.; Pontz, M.; Porcelli, A.; Preda, T.; Privitera, P.; Prouza, M.; Quel, E. J.; Querchfeld, S.; Quinn, S.; Rautenberg, J.; Ravel, O.; Ravignani, D.; Revenu, B.; Ridky, J.; Riggi, S.; Risse, M.; Ristori, P.; Rivera, H.; Rizi, V.; Roberts, J.; Rodrigues de Carvalho, W.; Rodriguez Cabo, I.; Rodriguez Fernandez, G.; Rodriguez Martino, J.; Rodriguez Rojo, J.; Rodríguez-Frías, M. D.; Ros, G.; Rosado, J.; Rossler, T.; Roth, M.; Rouillé-d'Orfeuil, B.; Roulet, E.; Rovero, A. C.; Rühle, C.; Saffi, S. J.; Saftoiu, A.; Salamida, F.; Salazar, H.; Salesa Greus, F.; Salina, G.; Sánchez, F.; Sanchez-Lucas, P.; Santo, C. E.; Santos, E.; Santos, E. M.; Sarazin, F.; Sarkar, B.; Sarmento, R.; Sato, R.; Scharf, N.; Scherini, V.; Schieler, H.; Schiffer, P.; Schmidt, A.; Scholten, O.; Schoorlemmer, H.; Schovánek, P.; Schröder, F. G.; Schulz, A.; Schulz, J.; Sciutto, S. J.; Scuderi, M.; Segreto, A.; Settimo, M.; Shadkam, A.; Shellard, R. C.; Sidelnik, I.; Sigl, G.; Sima, O.; Śmiałkowski, A.; Šmída, R.; Snow, G. R.; Sommers, P.; Sorokin, J.; Spinka, H.; Squartini, R.; Srivastava, Y. N.; Stanič, S.; Stapleton, J.; Stasielak, J.; Stephan, M.; Straub, M.; Stutz, A.; Suarez, F.; Suomijärvi, T.; Supanitsky, A. D.; Šuša, T.; Sutherland, M. S.; Swain, J.; Szadkowski, Z.; Szuba, M.; Tapia, A.; Tartare, M.; Taşcǎu, O.; Thao, N. T.; Tiffenberg, J.; Timmermans, C.; Tkaczyk, W.; Todero Peixoto, C. J.; Toma, G.; Tomankova, L.; Tomé, B.; Tonachini, A.; Torralba Elipe, G.; Torres Machado, D.; Travnicek, P.; Tridapalli, D. B.; Trovato, E.; Tueros, M.; Ulrich, R.; Unger, M.; Valdés Galicia, J. F.; Valiño, I.; Valore, L.; van Aar, G.; van den Berg, A. M.; van Velzen, S.; van Vliet, A.; Varela, E.; Vargas Cárdenas, B.; Varner, G.; Vázquez, J. R.; Vázquez, R. A.; Veberič, D.; Verzi, V.; Vicha, J.; Videla, M.; Villaseñor, L.; Wahlberg, H.; Wahrlich, P.; Wainberg, O.; Walz, D.; Watson, A. A.; Weber, M.; Weidenhaupt, K.; Weindl, A.; Werner, F.; Westerhoff, S.; Whelan, B. J.; Widom, A.; Wieczorek, G.; Wiencke, L.; Wilczyńska, B.; Wilczyński, H.; Will, M.; Williams, C.; Winchen, T.; Wundheiler, B.; Wykes, S.; Yamamoto, T.; Yapici, T.; Younk, P.; Yuan, G.; Yushkov, A.; Zamorano, B.; Zas, E.; Zavrtanik, D.; Zavrtanik, M.; Zaw, I.; Zepeda, A.; Zhou, J.; Zhu, Y.; Zimbres Silva, M.; Ziolkowski, M.; Pierre Auger Collaboration

    2014-03-01

    The emission of radio waves from air showers has been attributed to the so-called geomagnetic emission process. At frequencies around 50 MHz this process leads to coherent radiation which can be observed with rather simple setups. The direction of the electric field induced by this emission process depends only on the local magnetic field vector and on the incoming direction of the air shower. We report on measurements of the electric field vector where, in addition to this geomagnetic component, another component has been observed that cannot be described by the geomagnetic emission process. The data provide strong evidence that the other electric field component is polarized radially with respect to the shower axis, in agreement with predictions made by Askaryan who described radio emission from particle showers due to a negative charge excess in the front of the shower. Our results are compared to calculations which include the radiation mechanism induced by this charge-excess process.

  5. Electric discharges in air - Near infrared emission spectrum.

    NASA Technical Reports Server (NTRS)

    Benesch, W. M.; Saum, K. A.

    1972-01-01

    The emission from glow discharges in flowing air has been investigated in the 1- to 5-micron wavelength region with a vacuum spectrometer. Most of the spectral features observed in the pressure range of .5 to 10 torr are identified, including atomic lines of OI, NI, and HI and molecular bands of N2, NO, N2O, CO2, and CO. The spectra are presented as a function of pressure and a table compiled of the atomic lines. Of particular interest are the contrasts between the emission of the air discharge and that of the pure gases, nitrogen and oxygen. In addition, the results of studies of several discharge modes, employing steady voltages and pulsed, provide data on details of the energy flow within the plasma.

  6. Reducing greenhouse gas emissions and improving air quality: Two global challenges

    PubMed Central

    2017-01-01

    There are many good reasons to promote sustainable development and reduce greenhouse gas emissions and other combustion emissions. The air quality in many urban environments is causing many premature deaths because of asthma, cardiovascular disease, chronic obstructive pulmonary disease, lung cancer, and dementia associated with combustion emissions. The global social cost of air pollution is at least $3 trillion/year; particulates, nitrogen oxides and ozone associated with combustion emissions are very costly pollutants. Better air quality in urban environments is one of the reasons for countries to work together to reduce greenhouse gas emissions through the Paris Agreement on Climate Change. There are many potential benefits associated with limiting climate change. In the recent past, the concentrations of greenhouse gases in the atmosphere have been increasing and the number of weather and climate disasters with costs over $1 billion has been increasing. The average global temperature set new record highs in 2014, 2015, and 2016. To reduce greenhouse gas emissions, the transition to electric vehicles and electricity generation using renewable energy must take place in accord with the goals of the Paris Agreement on Climate Change. This work reviews progress and identifies some of the health benefits associated with reducing combustion emissions. © 2017 American Institute of Chemical Engineers Environ Prog, 36: 982–988, 2017 PMID:29238442

  7. Air-water Gas Exchange Rates on a Large Impounded River Measured Using Floating Domes (Poster)

    EPA Science Inventory

    Mass balance models of dissolved gases in rivers typically serve as the basis for whole-system estimates of greenhouse gas emission rates. An important component of these models is the exchange of dissolved gases between air and water. Controls on gas exchange rates (K) have be...

  8. Updating Sea Spray Aerosol Emissions in the Community Multiscale Air Quality Model

    NASA Astrophysics Data System (ADS)

    Gantt, B.; Bash, J. O.; Kelly, J.

    2014-12-01

    Sea spray aerosols (SSA) impact the particle mass concentration and gas-particle partitioning in coastal environments, with implications for human and ecosystem health. In this study, the Community Multiscale Air Quality (CMAQ) model is updated to enhance fine mode SSA emissions, include sea surface temperature (SST) dependency, and revise surf zone emissions. Based on evaluation with several regional and national observational datasets in the continental U.S., the updated emissions generally improve surface concentrations predictions of primary aerosols composed of sea-salt and secondary aerosols affected by sea-salt chemistry in coastal and near-coastal sites. Specifically, the updated emissions lead to better predictions of the magnitude and coastal-to-inland gradient of sodium, chloride, and nitrate concentrations at Bay Regional Atmospheric Chemistry Experiment (BRACE) sites near Tampa, FL. Including SST-dependency to the SSA emission parameterization leads to increased sodium concentrations in the southeast U.S. and decreased concentrations along the Pacific coast and northeastern U.S., bringing predictions into closer agreement with observations at most Interagency Monitoring of Protected Visual Environments (IMPROVE) and Chemical Speciation Network (CSN) sites. Model comparison with California Research at the Nexus of Air Quality and Climate Change (CalNex) observations will also be discussed, with particular focus on the South Coast Air Basin where clean marine air mixes with anthropogenic pollution in a complex environment. These SSA emission updates enable more realistic simulation of chemical processes in coastal environments, both in clean marine air masses and mixtures of clean marine and polluted conditions.

  9. Strategies for emission reduction of air pollutants produced from a chemical plant.

    PubMed

    Lee, Byeong-Kyu; Cho, Sung-Woong

    2003-01-01

    Various air pollution control (APC) techniques were employed in order to reduce emissions of air pollutants produced from chemical plants, which have many different chemical production facilities. For an emission reduction of acid gases, this study employed a method to improve solubility of pollutants by decreasing the operating temperature of the scrubbers, increasing the surface area for effective contact of gas and liquid, and modifying processes in the acid scrubbers. To reduce emission of both amines and acid gases, pollutant gas components were first separated, then condensation and/or acid scrubbing, depending on the chemical and physical properties of pollutant components, were used. To reduce emission of solvents, condensation and activated carbon adsorption were employed. To reduce emission of a mixture gases containing acid gases and solvents, the mixed gases were passed into the first condenser, the acid scrubber, the second condenser, and the activated carbon adsorption tower in sequence. As a strategy to reduce emission of pollutants at the source, this study also employed the simple pollution prevention concept of modification of the previously operating APC control device. Finally, air emissions of pollutants produced from the chemical plants were much more reduced by applying proper APC methods, depending upon the types (physical or chemical properties) and the specific emission situations of pollutants.

  10. Effects of business-as-usual anthropogenic emissions on air quality

    NASA Astrophysics Data System (ADS)

    Pozzer, A.; Zimmermann, P.; Doering, U. M.; van Aardenne, J.; Tost, H.; Dentener, F.; Janssens-Maenhout, G.; Lelieveld, J.

    2012-04-01

    The atmospheric chemistry general circulation model EMAC has been used to estimate the impact of anthropogenic emission changes on global and regional air quality in recent and future years (2005, 2010, 2025 and 2050). The emission scenario assumes that population and economic growth largely determine energy and food consumption and consequent pollution sources with the current technologies ("business as usual"). This scenario is chosen to show the effects of not implementing legislation to prevent additional climate change and growing air pollution, other than what is in place for the base year 2005, representing a pessimistic (but feasible) future. By comparing with recent observations, it is shown that the model reproduces the main features of regional air pollution distributions though with some imprecisions inherent to the coarse horizontal resolution (~100 km) and simplified bottom-up emission input. To identify possible future hot spots of poor air quality, a multi pollutant index (MPI), suited for global model output, has been applied. It appears that East and South Asia and the Middle East represent such hotspots due to very high pollutant concentrations, although a general increase of MPIs is observed in all populated regions in the Northern Hemisphere. In East Asia a range of pollutant gases and fine particulate matter (PM2.5) is projected to reach very high levels from 2005 onward, while in South Asia air pollution, including ozone, will grow rapidly towards the middle of the century. Around the Arabian Gulf, where natural PM2.5 concentrations are already high (desert dust), ozone levels are expected to increase strongly. The per capita MPI (PCMPI), which combines demographic and pollutants concentrations projections, shows that a rapidly increasing number of people worldwide will experience reduced air quality during the first half of the 21st century. Following the business as usual scenario, it is projected that air quality for the global average

  11. Effects of business-as-usual anthropogenic emissions on air quality

    NASA Astrophysics Data System (ADS)

    Pozzer, A.; Zimmermann, P.; Doering, U. M.; van Aardenne, J.; Tost, H.; Dentener, F.; Janssens-Maenhout, G.; Lelieveld, J.

    2012-08-01

    The atmospheric chemistry general circulation model EMAC has been used to estimate the impact of anthropogenic emission changes on global and regional air quality in recent and future years (2005, 2010, 2025 and 2050). The emission scenario assumes that population and economic growth largely determine energy and food consumption and consequent pollution sources with the current technologies ("business as usual"). This scenario is chosen to show the effects of not implementing legislation to prevent additional climate change and growing air pollution, other than what is in place for the base year 2005, representing a pessimistic (but plausible) future. By comparing with recent observations, it is shown that the model reproduces the main features of regional air pollution distributions though with some imprecisions inherent to the coarse horizontal resolution (~100 km) and simplified bottom-up emission input. To identify possible future hot spots of poor air quality, a multi pollutant index (MPI), suited for global model output, has been applied. It appears that East and South Asia and the Middle East represent such hotspots due to very high pollutant concentrations, while a general increase of MPIs is observed in all populated regions in the Northern Hemisphere. In East Asia a range of pollutant gases and fine particulate matter (PM2.5) is projected to reach very high levels from 2005 onward, while in South Asia air pollution, including ozone, will grow rapidly towards the middle of the century. Around the Persian Gulf, where natural PM2.5 concentrations are already high (desert dust), ozone levels are expected to increase strongly. The population weighted MPI (PW-MPI), which combines demographic and pollutant concentration projections, shows that a rapidly increasing number of people worldwide will experience reduced air quality during the first half of the 21st century. Following this business as usual scenario, it is projected that air quality for the global

  12. 14 CFR 1260.34 - Clean air and water.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 5 2010-01-01 2010-01-01 false Clean air and water. 1260.34 Section 1260... AGREEMENTS General Provisions § 1260.34 Clean air and water. Clean Air and Water October 2000 (Applicable... the Clean Air Act (42 U.S.C. 1857c-8(c)(1) or the Federal Water Pollution Control Act (33 U.S.C. 1319...

  13. 14 CFR 1260.34 - Clean air and water.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 5 2013-01-01 2013-01-01 false Clean air and water. 1260.34 Section 1260... AGREEMENTS General Provisions § 1260.34 Clean air and water. Clean Air and Water October 2000 (Applicable... the Clean Air Act (42 U.S.C. 1857c-8(c)(1) or the Federal Water Pollution Control Act (33 U.S.C. 1319...

  14. Impact of air velocity, temperature, humidity, and air on long-term voc emissions from building products

    NASA Astrophysics Data System (ADS)

    Wolkoff, Peder

    The emissions of two volatile organic compounds (VOCs) of concern from five building products (BPs) were measured in the field and laboratory emission cell (FLEC) up to 250 d. The BPs (VOCs selected on the basis of abundance and low human odor thresholds) were: nylon carpet with latex backing (2-ethylhexanol, 4-phenylcyclohexene), PVC flooring (2-ethylhexanol, phenol), floor varnish on pretreated beechwood parquet (butyl acetate, N-methylpyrrolidone), sealant (hexane, dimethyloctanols), and waterborne wall paint on gypsum board (1,2-propandiol, Texanol). Ten different climate conditions were tested: four different air velocities from ca. 1 cm s -1 to ca. 9 cm s -1, three different temperatures (23, 35, and 60°C), two different relative humidities (0% and 50% RH), and pure nitrogen instead of clean air supply. Additionally, two sample specimen and two different batches were compared for repeatability and homogeneity. The VOCs were sampled on Tenax TA and determined by thermal desorption and gas chromatography (FID). Quantification was carried out by individual calibration of each VOC of concern. Concentration/time profiles of the selected VOCs (i.e. their concentration decay curves over time) in a standard room were used for comparison. Primary source emissions were not affected by the air velocity after a few days to any great extent. Both the temperature and relative humidity affected the emission rates, but depended strongly on the type of BP and type of VOC. Secondary (oxidative) source emissions were only observed for the PVC and for dimethyloctanols from the sealant. The time to reach a given concentration (emission rate) appears to be a good approach for future interlaboratory comparisons of BP's VOC emissions.

  15. 40 CFR 270.27 - Specific Part B information requirements for air emission controls for tanks, surface...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... requirements for air emission controls for tanks, surface impoundments, and containers. 270.27 Section 270.27... information requirements for air emission controls for tanks, surface impoundments, and containers. (a) Except... containers that use air emission controls in accordance with the requirements of 40 CFR part 264, subpart CC...

  16. 40 CFR 270.27 - Specific Part B information requirements for air emission controls for tanks, surface...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... requirements for air emission controls for tanks, surface impoundments, and containers. 270.27 Section 270.27... information requirements for air emission controls for tanks, surface impoundments, and containers. (a) Except... containers that use air emission controls in accordance with the requirements of 40 CFR part 264, subpart CC...

  17. 40 CFR 270.27 - Specific Part B information requirements for air emission controls for tanks, surface...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... requirements for air emission controls for tanks, surface impoundments, and containers. 270.27 Section 270.27... information requirements for air emission controls for tanks, surface impoundments, and containers. (a) Except... containers that use air emission controls in accordance with the requirements of 40 CFR part 264, subpart CC...

  18. 40 CFR 270.27 - Specific Part B information requirements for air emission controls for tanks, surface...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... requirements for air emission controls for tanks, surface impoundments, and containers. 270.27 Section 270.27... information requirements for air emission controls for tanks, surface impoundments, and containers. (a) Except... containers that use air emission controls in accordance with the requirements of 40 CFR part 264, subpart CC...

  19. 40 CFR 270.27 - Specific Part B information requirements for air emission controls for tanks, surface...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... requirements for air emission controls for tanks, surface impoundments, and containers. 270.27 Section 270.27... information requirements for air emission controls for tanks, surface impoundments, and containers. (a) Except... containers that use air emission controls in accordance with the requirements of 40 CFR part 264, subpart CC...

  20. PRELIMINARY ANALYSIS OF HAZARDOUS AIR POLLUTANT EMISSION INVENTORIES FROM THREE MAJOR URBAN AREAS

    EPA Science Inventory

    The paper reports EPA/AEERL's progress on emissions inventory evaluation and improvement under a hazardous air pollutant (HAP) emissions research program in support of the Urban Area Source Program required under Title III of the Clean Air Act Amendments of 1990 (CAAA). he paper ...

  1. 76 FR 15607 - National Emission Standards for Hazardous Air Pollutants for Major Sources: Industrial...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-21

    ...On September 13, 2004, under authority of section 112 of the Clean Air Act, EPA promulgated national emission standards for hazardous air pollutants for new and existing industrial/commercial/ institutional boilers and process heaters. On June 19, 2007, the United States Court of Appeals for the District of Columbia Circuit vacated and remanded the standards. In response to the Court's vacatur and remand, EPA is, in this action, establishing emission standards that will require industrial/ commercial/institutional boilers and process heaters located at major sources to meet hazardous air pollutants standards reflecting the application of the maximum achievable control technology. This rule protects air quality and promotes public health by reducing emissions of the hazardous air pollutants listed in section 112(b)(1) of the Clean Air Act.

  2. Economic development and multiple air pollutant emissions from the industrial sector.

    PubMed

    Fujii, Hidemichi; Managi, Shunsuke

    2016-02-01

    This study analyzed the relationship between economic growth and emissions of eight environmental air pollutants (carbon dioxide (CO2), methane (CH4), nitrous oxide (N2O), nitrogen oxide (NOx), sulfur oxide (SOx), carbon monoxide (CO), non-methane volatile organic compound (NMVOC), and ammonia (NH3)) in 39 countries from 1995 to 2009. We tested an environmental Kuznets curve (EKC) hypothesis for 16 individual industry sectors and for the total industrial sector. The results clarified that at least ten individual industries do not have an EKC relationship in eight air pollutants even though this relationship was observed in the country and total industrial sector level data. We found that the key industries that dictated the EKC relationship in the country and the total industrial sector existed in CO2, N2O, CO, and NMVOC emissions. Finally, the EKC turning point and the relationship between economic development and trends of air pollutant emissions differ among industries according to the pollution substances. These results suggest inducing new environmental policy design such as the sectoral crediting mechanism, which focuses on the industrial characteristics of emissions.

  3. Trends of multiple air pollutants emissions from residential coal combustion in Beijing and its implication on improving air quality for control measures

    NASA Astrophysics Data System (ADS)

    Xue, Yifeng; Zhou, Zhen; Nie, Teng; Wang, Kun; Nie, Lei; Pan, Tao; Wu, Xiaoqing; Tian, Hezhong; Zhong, Lianhong; Li, Jing; Liu, Huanjia; Liu, Shuhan; Shao, Panyang

    2016-10-01

    Residential coal combustion is considered to be an important source of air pollution in Beijing. However, knowledge regarding the emission characteristics of residential coal combustion and the related impacts on the air quality is very limited. In this study, we have developed an emission inventory for multiple hazardous air pollutants (HAPs) associated with residential coal combustion in Beijing for the period of 2000-2012. Furthermore, a widely used regional air quality model, the Community Multi-Scale Air Quality model (CMAQ), is applied to analyze the impact of residential coal combustion on the air quality in Beijing in 2012. The results show that the emissions of primary air pollutants from residential coal combustion have basically remained the same levels during the past decade, however, along with the strict emission control imposed on major industrial sources, the contribution of residential coal combustion emissions to the overall emissions from anthropogenic sources have increased obviously. In particular, the contributions of residential coal combustion to the total air pollutants concentrations of PM10, SO2, NOX, and CO represent approximately 11.6%, 27.5%, 2.8% and 7.3%, respectively, during the winter heating season. In terms of impact on the spatial variation patterns, the distributions of the pollutants concentrations are similar to the distribution of the associated primary HAPs emissions, which are highly concentrated in the rural-urban fringe zones and rural suburb areas. In addition, emissions of primary pollutants from residential coal combustion are forecasted by using a scenario analysis. Generally, comprehensive measures must be taken to control residential coal combustion in Beijing. The best way to reduce the associated emissions from residential coal combustion is to use economic incentive means to promote the conversion to clean energy sources for residential heating and cooking. In areas with reliable energy supplies, the coal used

  4. Continuous measurement of air-water gas exchange by underwater eddy covariance

    NASA Astrophysics Data System (ADS)

    Berg, Peter; Pace, Michael L.

    2017-12-01

    Exchange of gases, such as O2, CO2, and CH4, over the air-water interface is an important component in aquatic ecosystem studies, but exchange rates are typically measured or estimated with substantial uncertainties. This diminishes the precision of common ecosystem assessments associated with gas exchanges such as primary production, respiration, and greenhouse gas emission. Here, we used the aquatic eddy covariance technique - originally developed for benthic O2 flux measurements - right below the air-water interface (˜ 4 cm) to determine gas exchange rates and coefficients. Using an acoustic Doppler velocimeter and a fast-responding dual O2-temperature sensor mounted on a floating platform the 3-D water velocity, O2 concentration, and temperature were measured at high-speed (64 Hz). By combining these data, concurrent vertical fluxes of O2 and heat across the air-water interface were derived, and gas exchange coefficients were calculated from the former. Proof-of-concept deployments at different river sites gave standard gas exchange coefficients (k600) in the range of published values. A 40 h long deployment revealed a distinct diurnal pattern in air-water exchange of O2 that was controlled largely by physical processes (e.g., diurnal variations in air temperature and associated air-water heat fluxes) and not by biological activity (primary production and respiration). This physical control of gas exchange can be prevalent in lotic systems and adds uncertainty to assessments of biological activity that are based on measured water column O2 concentration changes. For example, in the 40 h deployment, there was near-constant river flow and insignificant winds - two main drivers of lotic gas exchange - but we found gas exchange coefficients that varied by several fold. This was presumably caused by the formation and erosion of vertical temperature-density gradients in the surface water driven by the heat flux into or out of the river that affected the turbulent

  5. Identification of the odour and chemical composition of alumina refinery air emissions.

    PubMed

    Coffey, P S; Ioppolo-Armanios, M

    2004-01-01

    Alcoa World Alumina Australia has undertaken comprehensive air emissions monitoring aimed at characterising and quantifying the complete range of emissions to the atmosphere from Bayer refining of alumina at its Western Australian refineries. To the best of our knowledge, this project represents the most complete air emissions inventory of a Bayer refinery conducted in the worldwide alumina industry. It adds considerably to knowledge of air emission factors available for use in emissions estimation required under national pollutant release and transfer registers (NPRTs), such as the Toxic Releases Inventory, USA, and the National Pollutant Inventory, Australia. It also allows the preliminary identification of the key chemical components responsible for characteristic alumina refinery odours and the contribution of these components to the quality, or hedonic tone, of the odours. The strength and acceptability of refinery odours to employees and neighbours appears to be dependent upon where and in what proportion the odorous gases have been emitted from the refineries. This paper presents the results of the programme and develops a basis for classifying the odour properties of the key emission sources in the alumina-refining process.

  6. Effects of future anthropogenic pollution emissions on global air quality

    NASA Astrophysics Data System (ADS)

    Pozzer, A.; Zimmermann, P.; Doering, U.; van Aardenne, J.; Dentener, F.; Lelieveld, J.

    2012-04-01

    The atmospheric chemistry general circulation model EMAC is used to estimate the impact of anthropogenic emission changes on global and regional air quality in recent and future years (2005, 2010, 2025 and 2050). The emission scenario assumes that population and economic growth largely determine energy consumption and consequent pollution sources ("business as usual"). By comparing with recent observations, it is shown that the model reproduces the main features of regional air pollution distributions though with some imprecision inherent to the coarse horizontal resolution (around 100 km). To identify possible future hot spots of poor air quality, a multi pollutant index (MPI) has been applied. It appears that East and South Asia and the Arabian Gulf regions represent such hotspots due to very high pollutant concentrations. In East Asia a range of pollutant gases and particulate matter (PM2.5) are projected to reach very high levels from 2005 onward, while in South Asia air pollution, including ozone, will grow rapidly towards the middle of the century. Around the Arabian Gulf, where natural PM2.5 concentrations are already high (desert dust), ozone levels will increase strongly. By extending the MPI definition, we calculated a Per Capita MPI (PCMPI) in which we combined population projections with those of pollution emissions. It thus appears that a rapidly increasing number of people worldwide will experience reduced air quality during the first half of the 21st century. It is projected that air quality for the global average citizen in 2050 will be comparable to the average in East Asia in the year 2005.

  7. Impact of emissions from natural gas production facilities on ambient air quality in the Barnett Shale area: a pilot study.

    PubMed

    Zielinska, Barbara; Campbell, Dave; Samburova, Vera

    2014-12-01

    Rapid and extensive development of shale gas resources in the Barnett Shale region of Texas in recent years has created concerns about potential environmental impacts on water and air quality. The purpose of this study was to provide a better understanding of the potential contributions of emissions from gas production operations to population exposure to air toxics in the Barnett Shale region. This goal was approached using a combination of chemical characterization of the volatile organic compound (VOC) emissions from active wells, saturation monitoring for gaseous and particulate pollutants in a residential community located near active gas/oil extraction and processing facilities, source apportionment of VOCs measured in the community using the Chemical Mass Balance (CMB) receptor model, and direct measurements of the pollutant gradient downwind of a gas well with high VOC emissions. Overall, the study results indicate that air quality impacts due to individual gas wells and compressor stations are not likely to be discernible beyond a distance of approximately 100 m in the downwind direction. However, source apportionment results indicate a significant contribution to regional VOCs from gas production sources, particularly for lower-molecular-weight alkanes (< C6). Although measured ambient VOC concentrations were well below health-based safe exposure levels, the existence of urban-level mean concentrations of benzene and other mobile source air toxics combined with soot to total carbon ratios that were high for an area with little residential or commercial development may be indicative of the impact of increased heavy-duty vehicle traffic related to gas production. Implications: Rapid and extensive development of shale gas resources in recent years has created concerns about potential environmental impacts on water and air quality. This study focused on directly measuring the ambient air pollutant levels occurring at residential properties located near

  8. Potential Air Pollutant Emissions and Permitting Classifications for Two Biorefinery Process Designs in the United States

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eberle, Annika; Bhatt, Arpit; Zhang, Yimin

    Advanced biofuel production facilities (biorefineries), such as those envisioned by the United States (U.S.) Renewable Fuel Standard and U.S. Department of Energy's research and development programs, often lack historical air pollutant emissions data, which can pose challenges for obtaining air emission permits that are required for construction and operation. To help fill this knowledge gap, we perform a thorough regulatory analysis and use engineering process designs to assess the applicability of federal air regulations and quantify air pollutant emissions for two feasibility-level biorefinery designs. We find that without additional emission-control technologies both biorefineries would likely be required to obtain majormore » source permits under the Clean Air Act's New Source Review program. The permitting classification (so-called 'major' or 'minor') has implications for the time and effort required for permitting and therefore affects the cost of capital and the fuel selling price. Consequently, we explore additional technically feasible emission-control technologies and process modifications that have the potential to reduce emissions to achieve a minor source permitting classification. Finally, our analysis of air pollutant emissions and controls can assist biorefinery developers with the air permitting process and inform regulatory agencies about potential permitting pathways for novel biorefinery designs.« less

  9. Potential Air Pollutant Emissions and Permitting Classifications for Two Biorefinery Process Designs in the United States

    DOE PAGES

    Eberle, Annika; Bhatt, Arpit; Zhang, Yimin; ...

    2017-04-26

    Advanced biofuel production facilities (biorefineries), such as those envisioned by the United States (U.S.) Renewable Fuel Standard and U.S. Department of Energy's research and development programs, often lack historical air pollutant emissions data, which can pose challenges for obtaining air emission permits that are required for construction and operation. To help fill this knowledge gap, we perform a thorough regulatory analysis and use engineering process designs to assess the applicability of federal air regulations and quantify air pollutant emissions for two feasibility-level biorefinery designs. We find that without additional emission-control technologies both biorefineries would likely be required to obtain majormore » source permits under the Clean Air Act's New Source Review program. The permitting classification (so-called 'major' or 'minor') has implications for the time and effort required for permitting and therefore affects the cost of capital and the fuel selling price. Consequently, we explore additional technically feasible emission-control technologies and process modifications that have the potential to reduce emissions to achieve a minor source permitting classification. Finally, our analysis of air pollutant emissions and controls can assist biorefinery developers with the air permitting process and inform regulatory agencies about potential permitting pathways for novel biorefinery designs.« less

  10. Potential Air Pollutant Emissions and Permitting Classifications for Two Biorefinery Process Designs in the United States.

    PubMed

    Eberle, Annika; Bhatt, Arpit; Zhang, Yimin; Heath, Garvin

    2017-06-06

    Advanced biofuel production facilities (biorefineries), such as those envisioned by the United States (U.S.) Renewable Fuel Standard and U.S. Department of Energy's research and development programs, often lack historical air pollutant emissions data, which can pose challenges for obtaining air emission permits that are required for construction and operation. To help fill this knowledge gap, we perform a thorough regulatory analysis and use engineering process designs to assess the applicability of federal air regulations and quantify air pollutant emissions for two feasibility-level biorefinery designs. We find that without additional emission-control technologies both biorefineries would likely be required to obtain major source permits under the Clean Air Act's New Source Review program. The permitting classification (so-called "major" or "minor") has implications for the time and effort required for permitting and therefore affects the cost of capital and the fuel selling price. Consequently, we explore additional technically feasible emission-control technologies and process modifications that have the potential to reduce emissions to achieve a minor source permitting classification. Our analysis of air pollutant emissions and controls can assist biorefinery developers with the air permitting process and inform regulatory agencies about potential permitting pathways for novel biorefinery designs.

  11. Measurement of Ozone Emission and Particle Removal Rates from Portable Air Purifiers

    ERIC Educational Resources Information Center

    Mang, Stephen A.; Walser, Maggie L.; Nizkorodov, Sergey A.; Laux, John M.

    2009-01-01

    Portable air purifiers are popular consumer items, especially in areas with poor air quality. Unfortunately, most users of these air purifiers have minimal understanding of the factors affecting their efficiency in typical indoor settings. Emission of the air pollutant ozone (O[subscript 3]) by certain air purifiers is of particular concern. In an…

  12. Impact of air conditioning system operation on increasing gases emissions from automobile

    NASA Astrophysics Data System (ADS)

    Burciu, S. M.; Coman, G.

    2016-08-01

    The paper presents a study concerning the influence of air conditioning system operation on the increase of gases emissions from cars. The study focuses on urban operating regimes of the automobile, regimes when the engines have low loads or are operating at idling. Are presented graphically the variations of pollution emissions (CO, CO2, HC) depending of engine speed and the load on air conditioning system. Additionally are presented, injection duration, throttle position, the mechanical power required by the compressor of air conditioning system and the refrigerant pressure variation on the discharge path, according to the stage of charging of the air conditioning system.

  13. Marine Sciences Laboratory Radionuclide Air Emissions Report for Calendar Year 2013

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Snyder, Sandra F.; Barnett, J. Matthew; Ballinger, Marcel Y.

    2014-05-01

    The U.S. Department of Energy Office of Science (DOE-SC) Pacific Northwest Site Office (PNSO) has oversight and stewardship duties associated with the Pacific Northwest National Laboratory (PNNL) Marine Sciences Laboratory (MSL) located on Battelle Land – Sequim (Sequim). This report is prepared to document compliance with the Code of Federal Regulations (CFR), Title 40, Protection of the Environment, Part 61, National Emission Standards for Hazardous Air Pollutants (NESHAP), Subpart H, “National Emission Standards for Emissions of Radionuclides Other than Radon from Department of Energy Facilities” and Washington Administrative Code (WAC) Chapter 246-247, “Radiation Protection–Air Emissions.” The EDE to the Sequimmore » MEI due to routine operations in 2013 was 5E-05 mrem (5E-07 mSv). No non-routine emissions occurred in 2013. The MSL is in compliance with the federal and state 10 mrem/yr standard.« less

  14. Marine Sciences Laboratory Radionuclide Air Emissions Report for Calendar Year 2014

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Snyder, Sandra F.; Barnett, J. Matthew

    2015-05-04

    The U.S. Department of Energy Office of Science (DOE-SC) Pacific Northwest Site Office (PNSO) has oversight and stewardship duties associated with the Pacific Northwest National Laboratory (PNNL) Marine Sciences Laboratory (MSL) located on Battelle Land – Sequim.This report is prepared to document compliance with the Code of Federal Regulations (CFR), Title 40, Protection of the Environment, Part 61, National Emission Standards for Hazardous Air Pollutants (NESHAP), Subpart H, ''National Emission Standards for Emissions of Radionuclides Other than Radon from Department of Energy Facilities” and Washington Administrative Code (WAC) Chapter 246-247, “Radiation Protection–Air Emissions.'' The EDE to the MSL MEI duemore » to routine operations in 2014 was 9E-05 mrem (9E-07 mSv). No non-routine emissions occurred in 2014. The MSL is in compliance with the federal and state 10 mrem/yr standard.« less

  15. Volcanic gas emissions and their impact on ambient air character at Kilauea Volcano, Hawaii

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sutton, A.J.; Elias, T.; Navarrete, R.

    1994-12-31

    Gas emissions from Kilauea occur from the summit caldera, along the middle East Rift Zone (ERZ), and where lava enters the ocean. We estimate that the current ERZ eruption of Kilauea releases between 400 metric tonnes of SO{sub 2} per day, during eruptive pauses, to as much as 1850 metric tonnes per day during actively erupting periods, along with lesser amounts of other chemically and radiatively active species including H{sub 2}S, HCl and HF. In order to characterize gas emissions from Kilauea in a meaningful way for assessing environmental impact, we made a series of replicate grab-sample measurements of ambientmore » air and precipitation at the summit of Kilauea, along its ERZ, and at coastal sites where lava enters the ocean. The grab-sampling data combined with SO{sub 2} emission rates, and continuous air quality and meteorological monitoring at the summit of Kilauea show that the effects of these emissions on ambient air character are a complex function of chemical reactivity, source geometry and effusivity, and local meteorology. Prevailing tradewinds typically carry the gases and aerosols released to the southwest, where they are further distributed by the regional wind regime. Episodes of kona, or low speed variable winds sometimes disrupt this pattern, however, and allow the gases and their oxidation products to collect at the summit and eastern side of the island. Summit solfatara areas of Kilauea are distinguished by moderate to high ambient SO{sub 2}, high H{sub 2}S at one location, and low H{sub 2}S at all others, and negligible HCl concentrations, as measured 1 m from degassing point-sources. Summit solfatara rain water has high sulfate and low chloride ion concentrations, and low pH.« less

  16. Micrometeorological Measurement of Fetch- and Atmospheric Stability-Dependent Air- Water Exchange of Legacy Semivolatile Organic Contaminants in Lake Superior

    NASA Astrophysics Data System (ADS)

    Perlinger, J. A.; Tobias, D. E.; Rowe, M. D.

    2008-12-01

    Coastal waters including the Laurentian Great Lakes are particularly susceptible to local, regional, and long- range transport and deposition of semivolatile organic contaminants (SOCs) as gases and/or associated with particles. Recently-marketed SOCs can be expected to undergo net deposition in surface waters, whereas legacy SOCs such as polychlorinated biphenyls (PCBs) are likely to be at equilibrium with respect to air-water exchange, or, if atmospheric concentrations decrease through, e.g., policy implementation, to undergo net gas emission. SOC air-water exchange flux is usually estimated using the two-film model. This model describes molecular diffusion through the air and water films adjacent to the air-water interface. Air-water exchange flux is estimated as the product of SOC fugacity, typically based on on-shore gaseous concentration measurements, and a transfer coefficient, the latter which is estimated from SOC properties and environmental conditions. The transfer coefficient formulation commonly applied neglects resistance to exchange in the internal boundary layer under atmospherically stable conditions, and the use of on-shore gaseous concentration neglects fetch-dependent equilibration, both of which will tend to cause overestimation of flux magnitude. Thus, for legacy chemicals or in any highly contaminated surface water, the rate at which the water is cleansed through gas emission tends to be over-predicted using this approach. Micrometeorological measurement of air-water exchange rates of legacy SOCs was carried out on ships during four transect experiments during off-shore flow in Lake Superior using novel multicapillary collection devices and thermal extraction technology to measure parts-per-quadrillion SOC levels. Employing sensible heat in the modified Bowen ratio, fluxes at three over-water stations along the transects were measured, along with up-wind, onshore gaseous concentration and aqueous concentration. The atmosphere was unstable for

  17. Examining air pollution in China using production- and consumption-based emissions accounting approaches.

    PubMed

    Huo, Hong; Zhang, Qiang; Guan, Dabo; Su, Xin; Zhao, Hongyan; He, Kebin

    2014-12-16

    Two important reasons for China's air pollution are the high emission factors (emission per unit of product) of pollution sources and the high emission intensity (emissions per unit of GDP) of the industrial structure. Therefore, a wide variety of policy measures, including both emission abatement technologies and economic adjustment, must be implemented. To support such measures, this study used the production- and consumption-based emissions accounting approaches to simulate the SO2, NOx, PM2.5, and VOC emissions flows among producers and consumers. This study analyzed the emissions and GDP performance of 36 production sectors. The results showed that the equipment, machinery, and devices manufacturing and construction sectors contributed more than 50% of air pollutant emissions, and most of their products were used for capital formation and export. The service sector had the lowest emission intensities, and its output was mainly consumed by households and the government. In China, the emission intensities of production activities triggered by capital formation and export were approximately twice that of the service sector triggered by final consumption expenditure. This study suggests that China should control air pollution using the following strategies: applying end-of-pipe abatement technologies and using cleaner fuels to further decrease the emission factors associated with rural cooking, electricity generation, and the transportation sector; continuing to limit highly emission-intensive but low value-added exports; developing a plan to reduce construction activities; and increasing the proportion of service GDP in the national economy.

  18. Methane flux across the air-water interface - Air velocity effects

    NASA Technical Reports Server (NTRS)

    Sebacher, D. I.; Harriss, R. C.; Bartlett, K. B.

    1983-01-01

    Methane loss to the atmosphere from flooded wetlands is influenced by the degree of supersaturation and wind stress at the water surface. Measurements in freshwater ponds in the St. Marks Wildlife Refuge, Florida, demonstrated that for the combined variability of CH4 concentrations in surface water and air velocity over the water surface, CH4 flux varied from 0.01 to 1.22 g/sq m/day. The liquid exchange coefficient for a two-layer model of the gas-liquid interface was calculated as 1.7 cm/h for CH4 at air velocity of zero and as 1.1 + 1.2 v to the 1.96th power cm/h for air velocities from 1.4 to 3.5 m/s and water temperatures of 20 C.

  19. Location of acoustic emission sources generated by air flow

    PubMed

    Kosel; Grabec; Muzic

    2000-03-01

    The location of continuous acoustic emission sources is a difficult problem of non-destructive testing. This article describes one-dimensional location of continuous acoustic emission sources by using an intelligent locator. The intelligent locator solves a location problem based on learning from examples. To verify whether continuous acoustic emission caused by leakage air flow can be located accurately by the intelligent locator, an experiment on a thin aluminum band was performed. Results show that it is possible to determine an accurate location by using a combination of a cross-correlation function with an appropriate bandpass filter. By using this combination, discrete and continuous acoustic emission sources can be located by using discrete acoustic emission sources for locator learning.

  20. Biofiltration: An innovative air pollution control technology for VOC emissions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leson, G.; Winer, A.M.

    1991-08-01

    Biofiltration is a relatively recent air pollution control (APC) technology in which off-gases containing biodegradable volatile organic compounds (VOC) or inorganic air toxics are vented through a biologically active material. This technology has been successfully applied in Germany and The Netherlands in many full-scale applications to control odors, VOC and air toxic emissions from a wide range of industrial and public sector sources. Control efficiencies of more than 90 percent have been achieved for many common air pollutants. Due to lower operating costs, biofiltration can provide significant economic advantages over other APC technologies if applied to off-gases that contain readilymore » biodegradable pollutants in low concentrations. Environmental benefits include low energy requirements and the avoidance of cross media transfer of pollutants. This paper reviews the history and current status of biofiltration, outlines its underlying scientific and engineering principles, and discusses the applicability of biofilters for a wide range of specific emission sources.« less

  1. Biofiltration: an innovative air pollution control technology for VOC emissions.

    PubMed

    Leson, G; Winer, A M

    1991-08-01

    Biofiltration is a relatively recent air pollution control (APC) technology in which off-gases containing biodegradable volatile organic compounds (VOC) or inorganic air toxics are vented through a biologically active material. This technology has been successfully applied in Germany and The Netherlands in many full-scale applications to control odors, VOC and air toxic emissions from a wide range of industrial and public sector sources. Control efficiencies of more than 90 percent have been achieved for many common air pollutants. Due to lower operating costs, biofiltration can provide significant economic advantages over other APC technologies if applied to off-gases that contain readily biodegradable pollutants in low concentrations. Environmental benefits include low energy requirements and the avoidance of cross media transfer of pollutants. This paper reviews the history and current status of biofiltration, outlines its underlying scientific and engineering principles, and discusses the applicability of biofilters for a wide range of specific emission sources.

  2. 78 FR 15376 - Notice of Lodging of Proposed Consent Decree Amendment Under the Clean Air Act; the Clean Water...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-11

    ... Act; the Clean Water Act; the Resource Conservation and Recovery Act; the Emergency Planning and...'') for violations of the Clean Air Act, the Resource Conservation and Recovery Act, the Clean Water Act... Herculaneum Lead Smelter Facility 12-month rolling average limit for SO 2 emissions and the 12-month rolling...

  3. Sampling for Air Chemical Emissions from the Life Sciences Laboratory II

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ballinger, Marcel Y.; Lindberg, Michael J.

    Sampling for air chemical emissions from the Life Science Laboratory II (LSL-II) ventilation stack was performed in an effort to determine potential exposure of maintenance staff to laboratory exhaust on the building roof. The concern about worker exposure was raised in December 2015 and several activities were performed to assist in estimating exposure concentrations. Data quality objectives were developed to determine the need for and scope and parameters of a sampling campaign to measure chemical emissions from research and development activities to the outside air. The activities provided data on temporal variation of air chemical concentrations and a basis formore » evaluating calculated emissions. Sampling for air chemical emissions was performed in the LSL-II ventilation stack over the 6-week period from July 26 to September 1, 2016. A total of 12 sampling events were carried out using 16 sample media. Resulting analysis provided concentration data on 49 analytes. All results were below occupational exposure limits and most results were below detection limits. When compared to calculated emissions, only 5 of the 49 chemicals had measured concentrations greater than predicted. This sampling effort will inform other study components to develop a more complete picture of a worker’s potential exposure from LSL-II rooftop activities. Mixing studies were conducted to inform spatial variation in concentrations at other rooftop locations and can be used in conjunction with these results to provide temporal variations in concentrations for estimating the potential exposure to workers working in and around the LSL-II stack.« less

  4. How do emission patterns in megacities affect regional air pollution?

    NASA Astrophysics Data System (ADS)

    Heil, A.; Richter, C.; Schroeder, S.; Schultz, M. G.

    2010-12-01

    Megacities around the world show distinctly different emission patterns in terms of absolute amounts and emission ratios of individual chemical compounds due to varying socio-economic developments and technological standards. The emission patterns influence the chemical reactivity of the urban pollution plume, and hence determine air quality in and around megacity areas. In this study, which is part of the European project CITYZEN (megaCITY - Zoom for the ENvironment), the effects of emission changes in four selected megacity areas on air pollution were investigated: BeNeLux (BNL), Istanbul (IST), Pearl River Delta (PRD) and Sao Paulo (SAP). The study aims at answering the question: how would air pollution in megacity X change if it had the same urban emissions per capita as megacity Y? Model simulations with the global chemistry climate model ECHAM5-MOZ were carried out for the year 2001 using a resolution of about 2 degrees in the horizontal and of 31 levels (surface to 10 hPa) in the vertical. The model was driven by meteorological input data from the ECMWF ERA Interim reanalysis. Emissions were taken from the gridded global ACCMIP emission inventory recently established for use in chemistry-climate simulations in connection to the IPCC-AR5 assessments (Lamarque et al. 2010). We carried out sensitivity simulations where emission patterns from each of the megacity areas were replaced by those from all others. This was done on the basis of the per capita emissions for each species and sector averaged over the respective region. Total per capita CO and NMVOC emissions are highest in PRD and lowest in SAP while total per capita NOx emissions are highest in BNL and lowest in SAP. There are strong differences in the relative contribution of the urban sectors to total emissions of individual compounds. As a result, each of the four megacity areas exhibits a very characteristic NMVOC speciation profile which determines the NMVOC-related photochemical ozone (O_3

  5. Different methodologies to quantify uncertainties of air emissions.

    PubMed

    Romano, Daniela; Bernetti, Antonella; De Lauretis, Riccardo

    2004-10-01

    Characterization of the uncertainty associated with air emission estimates is of critical importance especially in the compilation of air emission inventories. In this paper, two different theories are discussed and applied to evaluate air emissions uncertainty. In addition to numerical analysis, which is also recommended in the framework of the United Nation Convention on Climate Change guidelines with reference to Monte Carlo and Bootstrap simulation models, fuzzy analysis is also proposed. The methodologies are discussed and applied to an Italian example case study. Air concentration values are measured from two electric power plants: a coal plant, consisting of two boilers and a fuel oil plant, of four boilers; the pollutants considered are sulphur dioxide (SO(2)), nitrogen oxides (NO(X)), carbon monoxide (CO) and particulate matter (PM). Monte Carlo, Bootstrap and fuzzy methods have been applied to estimate uncertainty of these data. Regarding Monte Carlo, the most accurate results apply to Gaussian distributions; a good approximation is also observed for other distributions with almost regular features either positive asymmetrical or negative asymmetrical. Bootstrap, on the other hand, gives a good uncertainty estimation for irregular and asymmetrical distributions. The logic of fuzzy analysis, where data are represented as vague and indefinite in opposition to the traditional conception of neatness, certain classification and exactness of the data, follows a different description. In addition to randomness (stochastic variability) only, fuzzy theory deals with imprecision (vagueness) of data. Fuzzy variance of the data set was calculated; the results cannot be directly compared with empirical data but the overall performance of the theory is analysed. Fuzzy theory may appear more suitable for qualitative reasoning than for a quantitative estimation of uncertainty, but it suits well when little information and few measurements are available and when

  6. Pacific Northwest National Laboratory Campus Radionuclide Air Emissions Report for Calendar Year 2015

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Snyder, Sandra F.; Barnett, J. Matthew; Bisping, Lynn E.

    This report documents radionuclide air emissions that result in the 2015 highest effective dose equivalent (EDE) to an offsite member of the public, referred to as the maximally exposed individual (MEI). The report has been prepared in compliance with the Code of Federal Regulations (CFR), Title 40, Protection of the Environment, Part 61, National Emission Standards for Hazardous Air Pollutants (NESHAP), Subpart H, “National Emission Standards for Emissions of Radionuclides Other than Radon from Department of Energy Facilities” and Washington Administrative Code (WAC) Chapter 246-247, “Radiation Protection–Air Emissions.” The dose to the PNNL Campus MEI from routine major and minormore » point source emissions in 2015 from PNNL Campus sources is 2.6E-4 mrem (2.6E-6 mSv) EDE. The dose from all fugitive sources is 1.8E-6 mrem (1.8E-8 mSv) EDE. The dose from radon emissions is 4.4E-8 mrem (4.4E-10 mSv) EDE. No nonroutine emissions occurred in 2015. The total radiological dose to the MEI from all PNNL Campus radionuclide emissions, including fugitive emissions and radon, is 2.6E-4 mrem (2.6E-6 mSv) EDE, or more than 10,000 times less than the federal and state standard of 10 mrem/yr, with which the PNNL Campus is in compliance.« less

  7. WORKSHOP ON SOURCE EMISSION AND AMBIENT AIR MONITORING OF MERCURY

    EPA Science Inventory

    AN EPA/ORD Workshop on Source Emission and Ambient Air Monitoring of Mercury was held on 9/13-14/99, Bloomington, Minnesota. The purpose of the workshop was to discuss the state-of-the-science in source and ambient air mercury monitoring as well as mercury monitoring research and...

  8. Mississippi SIP: Title 11, Part 2, Chapter 1 - Air Emission Regulations for the Prevention, Abatement and Control of Air Contaminents

    EPA Pesticide Factsheets

    Air Emission Regulations for the Prevention, Abatement and Control of Air Contaminents for areas involved in ambient air quality standards & regulations in MS + where to obtain copies of referenced federal regulations

  9. EMISSIONS OF ORGANIC AIR TOXICS FROM OPEN ...

    EPA Pesticide Factsheets

    A detailed literature search was performed to collect and collate available data reporting emissions of toxic organic substances into the air from open burning sources. Availability of data varied according to the source and the class of air toxics of interest. Volatile organic compound (VOC) and polycyclic aromatic hydrocarbon (PAH) data were available for many of the sources. Data on semivolatile organic compounds (SVOCs) that are not PAHs were available for several sources. Carbonyl and polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofuran (PCDD/F) data were available for only a few sources. There were several sources for which no emissions data were available at all. Several observations were made including: 1) Biomass open burning sources typically emitted less VOCs than open burning sources with anthropogenic fuels on a mass emitted per mass burned basis, particularly those where polymers were concerned; 2) Biomass open burning sources typically emitted less SVOCs and PAHs than anthropogenic sources on a mass emitted per mass burned basis. Burning pools of crude oil and diesel fuel produced significant amounts of PAHs relative to other types of open burning. PAH emissions were highest when combustion of polymers was taking place; and 3) Based on very limited data, biomass open burning sources typically produced higher levels of carbonyls than anthropogenic sources on a mass emitted per mass burned basis, probably due to oxygenated structures r

  10. MODELS TO ESTIMATE VOLATILE ORGANIC HAZARDOUS AIR POLLUTANT EMISSIONS FROM MUNICIPAL SEWER SYSTEMS

    EPA Science Inventory

    Emissions from municipal sewers are usually omitted from hazardous air pollutant (HAP) emission inventories. This omission may result from a lack of appreciation for the potential emission impact and/or from inadequate emission estimation procedures. This paper presents an analys...

  11. Environmental Chemistry: Air and Water Pollution.

    ERIC Educational Resources Information Center

    Stoker, H. Stephen; Seager, Spencer L.

    This is a book about air and water pollution whose chapters cover the topics of air pollution--general considerations, carbon monoxide, oxides of nitrogen, hydrocarbons and photochemical oxidants, sulfur oxides, particulates, temperature inversions and the greenhouse effect; and water pollution--general considerations, mercury, lead, detergents,…

  12. Estimating emissions from fires in North America for air quality modeling.

    Treesearch

    Christine Wiedinmyer; Brad Quayle; Chris Geron; Angie Belote; Don McKenzie; Xiaoyang Zhang; Susan O' Neill; Kristina Klos Wynne

    2006-01-01

    Fires contribute substantial emissions of trace gases and particles to the atmosphere. These emissions can impact air quality and even climate. We have developed a modeling framework to estimate the emissions from fires in North and parts of Central America (10-71 ˚N and 55-175 ˚W) by taking advantage of a combination of complementary satellite and...

  13. Year 2015 Aircraft Emission Scenario for Scheduled Air Traffic

    NASA Technical Reports Server (NTRS)

    Baughcum, Steven L.; Sutkus, Donald J.; Henderson, Stephen C.

    1998-01-01

    This report describes the development of a three-dimensional scenario of aircraft fuel burn and emissions (fuel burned, NOx, CO, and hydrocarbons)for projected year 2015 scheduled air traffic. These emission inventories are available for use by atmospheric scientists conducting the Atmospheric Effects of Aviation Project (AEAP) modeling studies. Fuel burned and emissions of nitrogen oxides (NOx as NO2), carbon monoxides, and hydrocarbons have been calculated on a 1 degree latitude x 1 degree longitude x 1 kilometer altitude grid and delivered to NASA as electronic files.

  14. Data Quality Objectives Supporting Radiological Air Emissions Monitoring for the PNNL Richland Campus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Snyder, Sandra F.; Moleta, Donna Grace L.; Meier, Kirsten M.

    This is the second revision of the DQO Supporting Radiological Air Emissions Monitoring for the Pacific Northwest National Laboratory Richland Campus. In January 2017, the PNNL Richland Campus expanded to the north by 0.35 km 2 (85.6 acres). Under the requirements of Washington State Department of Health Radioactive Air Emissions License (RAEL)-005, the PNNL Campus operates and maintains a radiological air monitoring program. This revision documents and evaluates the newly acquired acreage while also removing recreational land at the southwest, and also re-examines all active radioactive emission units on the PNNL Campus. No buildings are located on this new Campusmore » land, which was transferred from the U.S. DOE Hanford Site. Additionally, this revision includes information regarding the background monitoring station PNL-5 in Benton City, Washington, which became active in October 2016. The key purpose of this revision is to determine the adequacy of the existing environmental surveillance stations to monitor radiological air emissions in light of this northern boundary change.« less

  15. Emissions reduction policies and recent trends in Southern California's ambient air quality.

    PubMed

    Lurmann, Fred; Avol, Ed; Gilliland, Frank

    2015-03-01

    To assess accountability and effectiveness of air regulatory policies, we reviewed more than 20 years of monitoring data, emissions estimates, and regulatory policies across several southern California communities participating in a long-term study of children's health. Between 1994 and 2011, air quality improved for NO2 and PM2.5 in virtually all the monitored communities. Average NO2 declined 28% to 53%, and PM2.5 decreased 13% to 54%. Year-to-year PM2.5 variability at lower pollution sites was large compared to changes in long-term trends. PM10 and O3 decreases were largest in communities that were initially among the most polluted. Trends in annual average NO2, PM2.5, and PM10 concentrations in higher pollution communities were generally consistent with NOx, ROG, SOx, PM2.5, and PM10 emissions decreases. Reductions observed at one of the higher PM2.5 sites, Mira Loma, were generally within the range expected from reductions observed in ROG, NOx, SOx, and PM2.5 emissions. Despite a 38% increase in regional motor vehicle activity, vigorous economic growth, and a 30% population increase, total estimated emissions of NOx, ROG, SOx, PM2.5, and PM10 decreased by 54%, 65%, 40%, 21%, and 15%, respectively, during the 20-year time period. Emission control strategies in California have achieved dramatic reductions in ambient NO2, O3, PM2.5, and PM10. However, additional reductions will still be needed to achieve current health-based clean air standards. For many cities facing the challenge of reducing air pollution to meet health-based standards, the emission control policies and pollution reduction programs adopted in southern California should serve as an example of the potential success of aggressive, comprehensive, and integrated approaches. Policies targeting on-road mobile emissions were the single most important element for observed improvements in the Los Angeles region. However, overall program success was the result of a much broader approach designed to

  16. The 1977 emissions inventory for southeastern Virginia. [environment model of air quality based on exhaust emission from urban areas

    NASA Technical Reports Server (NTRS)

    Brewer, D. A.; Remsberg, E. E.; Woodbury, G. E.; Quinn, L. C.

    1979-01-01

    Regional tropospheric air pollution modeling and data compilation to simulate the time variation of species concentrations in and around an urban area is discussed. The methods used to compile an emissions inventory are outlined. Emissions factors for vehicular travel in the urban area are presented along with an analysis of the emission gases. Emission sources other than vehicular including industrial wastes, residential solid waste disposal, aircraft emissions, and emissions from the railroads are investigated.

  17. A prescribed fire emission factors database for land management and air quality applications

    Treesearch

    E. Lincoln; WeiMin Hao; S. Baker; R. J. Yokelson; I. R. Burling; Shawn Urbanski; W. Miller; D. R. Weise; T. J. Johnson

    2010-01-01

    Prescribed fire is a significant emissions source in the U.S. and that needs to be adequately characterized in atmospheric transport/chemistry models. In addition, the Clean Air Act, its amendments, and air quality regulations require that prescribed fire managers estimate the quantity of emissions that a prescribed fire will produce. Several published papers contain a...

  18. AIR EMISSIONS FROM THE TREATMENT OF SOILS CONTAMINATED WITH PETROLEUM FUELS AND OTHER SUBSTANCES

    EPA Science Inventory

    The report updates a 1992 report that summarizes available information on air emissions from the treatment of soils contaminated with fuels. Soils contaminated by leaks or spills of fuel products, such as gasoline or jet fuel, are a nationwide concern. Air emissions during remedi...

  19. Food-Growing, Air- And Water-Cleaning Module

    NASA Technical Reports Server (NTRS)

    Sauer, R. L.; Scheld, H. W.; Mafnuson, J. W.

    1988-01-01

    Apparatus produces fresh vegetables and removes pollutants from air. Hydroponic apparatus performs dual function of growing fresh vegetables and purifying air and water. Leafy vegetables rooted in granular growth medium grow in light of fluorescent lamps. Air flowing over leaves supplies carbon dioxide and receives fresh oxygen from them. Adaptable to production of food and cleaning of air and water in closed environments as in underwater research stations and submarines.

  20. 14 CFR 1260.34 - Clean air and water.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 5 2011-01-01 2010-01-01 true Clean air and water. 1260.34 Section 1260.34... Provisions § 1260.34 Clean air and water. Clean Air and Water October 2000 (Applicable only if the award... (42 U.S.C. 1857c-8(c)(1) or the Federal Water Pollution Control Act (33 U.S.C. 1319(c)), and is listed...

  1. Air/Superfund national technical guidance study series, Volume 2. Estimation of baseline air emission at Superfund sites. Interim report(Final)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1989-01-01

    This volume is one in a series of manuals prepared for EPA to assist its Remedial Project Managers in the assessment of the air contaminant pathway and developing input data for risk assessment. The manual provides guidance on developing baseline-emission estimates from hazardous waste sites. Baseline-emission estimates (BEEs) are defined as emission rates estimated for a site in its undisturbed state. Specifically, the manual is intended to: Present a protocol for selecting the appropriate level of effort to characterize baseline air emissions; Assist site managers in designing an approach for BEEs; Describe useful technologies for developing site-specific baseline emission estimatesmore » (BEEs); Help site managers select the appropriate technologies for generating site-specific BEEs.« less

  2. AIR EMISSIONS FROM COMBUSTION OF SOLVENT REFINED COAL

    EPA Science Inventory

    The report gives details of a Solvent Refined Coal (SRC) combustion test at Georgia Power Company's Plant Mitchell, March, May, and June 1977. Flue gas samples were collected for modified EPA Level 1 analysis; analytical results are reported. Air emissions from the combustion of ...

  3. Pacific Northwest National Laboratory Potential Impact Categories for Radiological Air Emission Monitoring

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ballinger, Marcel Y.; Gervais, Todd L.; Barnett, J. Matthew

    2012-06-05

    In 2002, the EPA amended 40 CFR 61 Subpart H and 40 CFR 61 Appendix B Method 114 to include requirements from ANSI/HPS N13.1-1999 Sampling and Monitoring Releases of Airborne Radioactive Substances from the Stack and Ducts of Nuclear Facilities for major emission points. Additionally, the WDOH amended the Washington Administrative Code (WAC) 246-247 Radiation protection-air emissions to include ANSI/HPS N13.1-1999 requirements for major and minor emission points when new permitting actions are approved. A result of the amended regulations is the requirement to prepare a written technical basis for the radiological air emission sampling and monitoring program. A keymore » component of the technical basis is the Potential Impact Category (PIC) assigned to an emission point. This paper discusses the PIC assignments for the Pacific Northwest National Laboratory (PNNL) Integrated Laboratory emission units; this revision includes five PIC categories.« less

  4. Constraining Microwave Emission from Extensive Air Showers via the MIDAS Experiment

    NASA Astrophysics Data System (ADS)

    Richardson, Matthew; Privitera, Paolo

    2017-01-01

    Ultra high energy cosmic rays (UHECRs) are accelerated by the most energetic processes in the universe. Upon entering Earth’s atmosphere they produce particle showers known as extensive air showers (EASs). Observatories like the Pierre Auger Observatory sample the particles and light produced by the EASs through large particle detector arrays or nitrogen fluorescence detectors to ascertain the fundamental properties of UHECRs. The large sample of high quality data provided by the Pierre Auger Observatory can be attributed to the hybrid technique which utilizes the two aforementioned techniques simultaneously; however, the limitation of only being able to observe nitrogen fluorescence from EASs on clear moonless nights yields a limited 10% duty cycle for the hybrid technique. One proposal for providing high quality data at increased statistics is the observation of isotropic microwave emission from EASs, as such emission would be observed with a 100% duty cycle. Measurements of microwave emission from laboratory air plasmas conducted by Gorham et al. (2008) produced promising results indicating that the microwave emission should be observable using inexpensive detectors. The Microwave Detection of Air Showers (MIDAS) experiment was built at the University of Chicago to characterize the isotropic microwave emission from EASs and has collected 359 days of observational data at the location of the Pierre Auger experiment. We have performed a time coincidence analysis between this data and data from Pierre Auger and we report a null result. This result places stringent limits on microwave emission from EASs and demonstrates that the laboratory measurements of Gorham et al. (2008) are not applicable to EASs, thus diminishing the feasibility of using isotropic microwave emission to detect EASs.

  5. Mechanism of ion adsorption to aqueous interfaces: Graphene/water vs. air/water.

    PubMed

    McCaffrey, Debra L; Nguyen, Son C; Cox, Stephen J; Weller, Horst; Alivisatos, A Paul; Geissler, Phillip L; Saykally, Richard J

    2017-12-19

    The adsorption of ions to aqueous interfaces is a phenomenon that profoundly influences vital processes in many areas of science, including biology, atmospheric chemistry, electrical energy storage, and water process engineering. Although classical electrostatics theory predicts that ions are repelled from water/hydrophobe (e.g., air/water) interfaces, both computer simulations and experiments have shown that chaotropic ions actually exhibit enhanced concentrations at the air/water interface. Although mechanistic pictures have been developed to explain this counterintuitive observation, their general applicability, particularly in the presence of material substrates, remains unclear. Here we investigate ion adsorption to the model interface formed by water and graphene. Deep UV second harmonic generation measurements of the SCN - ion, a prototypical chaotrope, determined a free energy of adsorption within error of that for air/water. Unlike for the air/water interface, wherein repartitioning of the solvent energy drives ion adsorption, our computer simulations reveal that direct ion/graphene interactions dominate the favorable enthalpy change. Moreover, the graphene sheets dampen capillary waves such that rotational anisotropy of the solute, if present, is the dominant entropy contribution, in contrast to the air/water interface.

  6. Isoprene Emissions from Downy Oak under Water Limitation during an Entire Growing Season: What Cost for Growth?

    PubMed Central

    Genard-Zielinski, Anne-Cyrielle; Ormeño, Elena; Boissard, Christophe; Fernandez, Catherine

    2014-01-01

    Increases in the production of terpene- and phenolic-like compounds in plant species under abiotic stress conditions have been interpreted in physiological studies as a supplementary defense system due to their capacity to limit cell oxidation. From an ecological perspective however, these increases are only expected to confer competitive advantages if they do not imply a significant cost for the plant, that is, growth reduction. We investigated shifts of isoprene emissions, and to a lesser extent phenolic compound concentration, of Quercus pubescens Willd. from early leaf development to leaf senescence under optimal watering (control: C), mild and severe water stress (MS, SS). The impact of water stress was concomitantly assessed on plant physiological (chlorophyll fluorescence, stomatal conductance, net photosynthesis, water potential) functional (relative leaf water content, leaf mass per area ratio) and growth (aerial and root biomass) traits. Growth changes allowed to estimate the eventual costs related to the production of isoprene and phenolics. The total phenolic content was not modified under water stress whereas isoprene emissions were promoted under MS over the entire growing cycle despite the decline of Pn by 35%. Under SS, isoprene emissions remained similar to C all over the study despite the decline of Pn by 47% and were thereby clearly uncoupled to Pn leading to an overestimation of the isoprene emission factor by 44%. Under SS, maintenance of isoprene emissions and phenolic compound concentration resulted in very significant costs for the plants as growth rates were very significantly reduced. Under MS, increases of isoprene emission and maintenance of phenolic compound concentration resulted in moderate growth reduction. Hence, it is likely that investment in isoprene emissions confers Q. pubescens an important competitive advantage during moderate but not severe periods of water scarcity. Consequences of this response for air quality in North

  7. Isoprene emissions from downy oak under water limitation during an entire growing season: what cost for growth?

    PubMed

    Genard-Zielinski, Anne-Cyrielle; Ormeño, Elena; Boissard, Christophe; Fernandez, Catherine

    2014-01-01

    Increases in the production of terpene- and phenolic-like compounds in plant species under abiotic stress conditions have been interpreted in physiological studies as a supplementary defense system due to their capacity to limit cell oxidation. From an ecological perspective however, these increases are only expected to confer competitive advantages if they do not imply a significant cost for the plant, that is, growth reduction. We investigated shifts of isoprene emissions, and to a lesser extent phenolic compound concentration, of Quercus pubescens Willd. from early leaf development to leaf senescence under optimal watering (control: C), mild and severe water stress (MS, SS). The impact of water stress was concomitantly assessed on plant physiological (chlorophyll fluorescence, stomatal conductance, net photosynthesis, water potential) functional (relative leaf water content, leaf mass per area ratio) and growth (aerial and root biomass) traits. Growth changes allowed to estimate the eventual costs related to the production of isoprene and phenolics. The total phenolic content was not modified under water stress whereas isoprene emissions were promoted under MS over the entire growing cycle despite the decline of Pn by 35%. Under SS, isoprene emissions remained similar to C all over the study despite the decline of Pn by 47% and were thereby clearly uncoupled to Pn leading to an overestimation of the isoprene emission factor by 44%. Under SS, maintenance of isoprene emissions and phenolic compound concentration resulted in very significant costs for the plants as growth rates were very significantly reduced. Under MS, increases of isoprene emission and maintenance of phenolic compound concentration resulted in moderate growth reduction. Hence, it is likely that investment in isoprene emissions confers Q. pubescens an important competitive advantage during moderate but not severe periods of water scarcity. Consequences of this response for air quality in North

  8. Health effects of subchronic exposure to diesel-water-methanol emulsion emission.

    PubMed

    Reed, M D; Blair, L F; Burling, K; Daly, I; Gigliotti, A P; Gudi, R; Mercieca, M D; McDonald, J D; O'Callaghan, J P; Seilkop, S K; Ronskoh, N L; Wagner, V O; Kraska, R C

    2006-03-01

    The U.S. Environmental Protection Agency's National Ambient Air Quality Standards for ozone and particulate matter (PM) require urban non-attainment areas to implement pollution-reduction strategies for anthropogenic source emissions. The type of fuel shown to decrease combustion emissions components versus traditional diesel fuel, is the diesel emulsion. The Lubrizol Corporation, in conjunction with Lovelace Respiratory Research Institute and several subcontracting laboratories, recently conducted a health assessment of the combustion emissions of PuriNOx diesel fuel emulsion (diesel-water-methanol) in rodents. Combustion emissions from either of two, 2002 model Cummins 5.9L ISB engines, were diluted with charcoal-filtered air to exposure concentrations of 125, 250 and 500 microg total PM/m3. The engines were operated on a continuous, repeating, heavy-duty certification cycle (U.S. Code of Federal Regulations, Title 40, Chapter I) using Rotella-T 15W-40 engine oil. Nitrogen oxide (NO) and PM were reduced when engines were operated on PuriNOx versus California Air Resources Board diesel fuel under these conditions. Male and female F344 rats were housed in Hazleton H2000 exposure chambers and exposed to exhaust atmospheres 6 h/day, five days/week for the first 11 weeks and seven days/week thereafter. Exposures ranged from 61 to 73 days depending on the treatment group. Indicators of general toxicity (body weight, organ weight, clinical pathology and histopathology), neurotoxicity (glial fibrillary acidic protein assay), genotoxicity (Ames assay, micronucleus, sister chromatid exchange), and reproduction and development were measured. Overall, effects observed were mild. Emulsion combustion emissions were not associated with neurotoxicity, reproductive/developmental toxicity, or in vivo genotoxicity. Small decreases in serum cholesterol in the 500-microg/m3 exposure group were observed. PM accumulation within alveolar macrophages was evident in all exposure groups

  9. 30 CFR 550.249 - What air emissions information must accompany the DPP or DOCD?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... and Information Contents of Development and Production Plans (dpp) and Development Operations Coordination Documents (docd) § 550.249 What air emissions information must accompany the DPP or DOCD? The... 30 Mineral Resources 2 2013-07-01 2013-07-01 false What air emissions information must accompany...

  10. 30 CFR 550.249 - What air emissions information must accompany the DPP or DOCD?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... and Information Contents of Development and Production Plans (dpp) and Development Operations Coordination Documents (docd) § 550.249 What air emissions information must accompany the DPP or DOCD? The... 30 Mineral Resources 2 2012-07-01 2012-07-01 false What air emissions information must accompany...

  11. 30 CFR 550.249 - What air emissions information must accompany the DPP or DOCD?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... and Information Contents of Development and Production Plans (dpp) and Development Operations Coordination Documents (docd) § 550.249 What air emissions information must accompany the DPP or DOCD? The... 30 Mineral Resources 2 2014-07-01 2014-07-01 false What air emissions information must accompany...

  12. 75 FR 80761 - National Emission Standards for Hazardous Air Pollutants for Reciprocating Internal Combustion...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-23

    ... National Emission Standards for Hazardous Air Pollutants for Reciprocating Internal Combustion Engines... March 3, 2010, final national emission standards for hazardous air pollutants for reciprocating internal... engines to allow emergency engines to operate for up to 15 hours per year as part of an emergency demand...

  13. Practical water production from desert air

    PubMed Central

    Kalmutzki, Markus J.; Kapustin, Eugene A.

    2018-01-01

    Energy-efficient production of water from desert air has not been developed. A proof-of-concept device for harvesting water at low relative humidity was reported; however, it used external cooling and was not desert-tested. We report a laboratory-to-desert experiment where a prototype using up to 1.2 kg of metal-organic framework (MOF)–801 was tested in the laboratory and later in the desert of Arizona, USA. It produced 100 g of water per kilogram of MOF-801 per day-and-night cycle, using only natural cooling and ambient sunlight as a source of energy. We also report an aluminum-based MOF-303, which delivers more than twice the amount of water. The desert experiment uncovered key parameters pertaining to the energy, material, and air requirements for efficient production of water from desert air, even at a subzero dew point. PMID:29888332

  14. Practical water production from desert air.

    PubMed

    Fathieh, Farhad; Kalmutzki, Markus J; Kapustin, Eugene A; Waller, Peter J; Yang, Jingjing; Yaghi, Omar M

    2018-06-01

    Energy-efficient production of water from desert air has not been developed. A proof-of-concept device for harvesting water at low relative humidity was reported; however, it used external cooling and was not desert-tested. We report a laboratory-to-desert experiment where a prototype using up to 1.2 kg of metal-organic framework (MOF)-801 was tested in the laboratory and later in the desert of Arizona, USA. It produced 100 g of water per kilogram of MOF-801 per day-and-night cycle, using only natural cooling and ambient sunlight as a source of energy. We also report an aluminum-based MOF-303, which delivers more than twice the amount of water. The desert experiment uncovered key parameters pertaining to the energy, material, and air requirements for efficient production of water from desert air, even at a subzero dew point.

  15. Integration of Linear Dynamic Emission and Climate Models with Air Traffic Simulations

    NASA Technical Reports Server (NTRS)

    Sridhar, Banavar; Ng, Hok K.; Chen, Neil Y.

    2012-01-01

    Future air traffic management systems are required to balance the conflicting objectives of maximizing safety and efficiency of traffic flows while minimizing the climate impact of aviation emissions and contrails. Integrating emission and climate models together with air traffic simulations improve the understanding of the complex interaction between the physical climate system, carbon and other greenhouse gas emissions and aviation activity. This paper integrates a national-level air traffic simulation and optimization capability with simple climate models and carbon cycle models, and climate metrics to assess the impact of aviation on climate. The capability can be used to make trade-offs between extra fuel cost and reduction in global surface temperature change. The parameters in the simulation can be used to evaluate the effect of various uncertainties in emission models and contrails and the impact of different decision horizons. Alternatively, the optimization results from the simulation can be used as inputs to other tools that monetize global climate impacts like the FAA s Aviation Environmental Portfolio Management Tool for Impacts.

  16. [Implementation results of emission standards of air pollutants for thermal power plants: a numerical simulation].

    PubMed

    Wang, Zhan-Shan; Pan, Li-Bo

    2014-03-01

    The emission inventory of air pollutants from the thermal power plants in the year of 2010 was set up. Based on the inventory, the air quality of the prediction scenarios by implementation of both 2003-version emission standard and the new emission standard were simulated using Models-3/CMAQ. The concentrations of NO2, SO2, and PM2.5, and the deposition of nitrogen and sulfur in the year of 2015 and 2020 were predicted to investigate the regional air quality improvement by the new emission standard. The results showed that the new emission standard could effectively improve the air quality in China. Compared with the implementation results of the 2003-version emission standard, by 2015 and 2020, the area with NO2 concentration higher than the emission standard would be reduced by 53.9% and 55.2%, the area with SO2 concentration higher than the emission standard would be reduced by 40.0%, the area with nitrogen deposition higher than 1.0 t x km(-2) would be reduced by 75.4% and 77.9%, and the area with sulfur deposition higher than 1.6 t x km(-2) would be reduced by 37.1% and 34.3%, respectively.

  17. Air pollution response to changing weather and power plant emissions in the eastern United States

    NASA Astrophysics Data System (ADS)

    Bloomer, Bryan Jaye

    Air pollution in the eastern United States causes human sickness and death as well as damage to crops and materials. NOX emission reduction is observed to improve air quality. Effectively reducing pollution in the future requires understanding the connections between smog, precursor emissions, weather, and climate change. Numerical models predict global warming will exacerbate smog over the next 50 years. My analysis of 21 years of CASTNET observations quantifies a climate change penalty. I calculate, for data collected prior to 2002, a climate penalty factor of ˜3.3 ppb O3/°C across the power plant dominated receptor regions in the rural, eastern U.S. Recent reductions in NOX emissions decreased the climate penalty factor to ˜2.2 ppb O3/°C. Prior to 1995, power plant emissions of CO2, SO2, and NOX were estimated with fuel sampling and analysis methods. Currently, emissions are measured with continuous monitoring equipment (CEMS) installed directly in stacks. My comparison of the two methods show CO 2 and SO2 emissions are ˜5% lower when inferred from fuel sampling; greater differences are found for NOX emissions. CEMS are the method of choice for emission inventories and commodity trading and should be the standard against which other methods are evaluated for global greenhouse gas trading policies. I used CEMS data and applied chemistry transport modeling to evaluate improvements in air quality observed by aircraft during the North American electrical blackout of 2003. An air quality model produced substantial reductions in O3, but not as much as observed. The study highlights weaknesses in the model as commonly used for evaluating a single day event and suggests areas for further investigation. A new analysis and visualization method quantifies local-daily to hemispheric-seasonal scale relationships between weather and air pollution, confirming improved air quality despite increasing temperatures across the eastern U.S. Climate penalty factors indicate

  18. Use of a land-use-based emissions inventory in delineating clean-air zones

    Treesearch

    Victor S. Fahrer; Howard A. Peters

    1977-01-01

    Use of a land-use-based emissions inventory from which air-pollution estimates can be projected was studied. First the methodology used to establish a land-use-based emission inventory is described. Then this inventory is used as input in a simple model that delineates clean air and buffer zones. The model is applied to the town of Burlington, Massachusetts....

  19. Absorption cooling sources atmospheric emissions decrease by implementation of simple algorithm for limiting temperature of cooling water

    NASA Astrophysics Data System (ADS)

    Wojdyga, Krzysztof; Malicki, Marcin

    2017-11-01

    Constant strive to improve the energy efficiency forces carrying out activities aimed at reduction of energy consumption hence decreasing amount of contamination emissions to atmosphere. Cooling demand, both for air-conditioning and process cooling, plays an increasingly important role in the balance of Polish electricity generation and distribution system in summer. During recent years' demand for electricity during summer months has been steadily and significantly increasing leading to deficits of energy availability during particularly hot periods. This causes growing importance and interest in trigeneration power generation sources and heat recovery systems producing chilled water. Key component of such system is thermally driven chiller, mostly absorption, based on lithium-bromide and water mixture. Absorption cooling systems also exist in Poland as stand-alone systems, supplied with heating from various sources, generated solely for them or recovered as waste or useless energy. The publication presents a simple algorithm, designed to reduce the amount of heat for the supply of absorption chillers producing chilled water for the purposes of air conditioning by reducing the temperature of the cooling water, and its impact on decreasing emissions of harmful substances into the atmosphere. Scale of environmental advantages has been rated for specific sources what enabled evaluation and estimation of simple algorithm implementation to sources existing nationally.

  20. Assessment of China's virtual air pollution transport embodied in trade by a consumption-based emission inventory

    NASA Astrophysics Data System (ADS)

    Zhao, H. Y.; Zhang, Q.; Davis, S. J.; Guan, D.; Liu, Z.; Huo, H.; Lin, J. T.; Liu, W. D.; He, K. B.

    2014-10-01

    High anthropogenic emissions from China have resulted in serious air pollution, and it has attracted considerable academic and public concern. The physical transport of air pollutants in the atmosphere has been extensively investigated, however, understanding the mechanisms how the pollutants were transferred through economic and trade activities remains challenge. In this work, we assessed China's virtual air pollutant transport embodied in trade, by using consumption-based accounting approach. We first constructed a consumption-based emission inventory for China's four key air pollutants (primary PM2.5, sulfur dioxide (SO2), nitrogen oxides (NOx) and non-methane volatile organic compounds (NMVOC)) in 2007, based on the bottom-up sectoral emission inventory concerning their production activities - a production-based inventory. We used a multiregional input-output (MRIO) model to integrate the sectoral production-based emissions and the associated economic and trade activities, and finally obtained consumption-based inventory. Unlike the production-based inventory, the consumption-based inventory tracked emissions throughout the supply chain related to the consumption of goods and services and hereby identified the emission flows followed the supply chains. From consumption-based perspective, emissions were significantly redistributed among provinces due to interprovincial trade. Large amount of emissions were embodied in the net imports of east regions from northern and central regions; these were determined by differences in the regional economic status and environmental policies. We also calculated the emissions embodied in exported and imported goods and services. It is found that 15-23% of China's pollutant emissions were related to exports for foreign consumption; that proportion was much higher for central and export-oriented coastal regions. It is suggested that measures should be introduced to reduce air pollution by integrating cross-regional consumers

  1. 14 CFR § 1260.34 - Clean air and water.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 5 2014-01-01 2014-01-01 false Clean air and water. § 1260.34 Section Â... AGREEMENTS General Provisions § 1260.34 Clean air and water. Clean Air and Water October 2000 (Applicable... the Clean Air Act (42 U.S.C. 1857c-8(c)(1) or the Federal Water Pollution Control Act (33 U.S.C. 1319...

  2. EMISSIONS FROM THE BURNING OF VEGETATIVE DEBRIS IN AIR CURTAIN DESTRUCTORS

    EPA Science Inventory

    Although no data has been published on emissions from construction and demolition (C&D) debris burned in an air curtain destructor (ACD), a few studies provide information on emissions from combustion of vegetative debris. These results are compared to studies of open burning of...

  3. Nitrogen fluorescence in air for observing extensive air showers

    NASA Astrophysics Data System (ADS)

    Keilhauer, B.; Bohacova, M.; Fraga, M.; Matthews, J.; Sakaki, N.; Tameda, Y.; Tsunesada, Y.; Ulrich, A.

    2013-06-01

    Extensive air showers initiate the fluorescence emissions from nitrogen molecules in air. The UV-light is emitted isotropically and can be used for observing the longitudinal development of extensive air showers in the atmosphere over tenth of kilometers. This measurement technique is well-established since it is exploited for many decades by several cosmic ray experiments. However, a fundamental aspect of the air shower analyses is the description of the fluorescence emission in dependence on varying atmospheric conditions. Different fluorescence yields affect directly the energy scaling of air shower reconstruction. In order to explore the various details of the nitrogen fluorescence emission in air, a few experimental groups have been performing dedicated measurements over the last decade. Most of the measurements are now finished. These experimental groups have been discussing their techniques and results in a series of Air Fluorescence Workshops commenced in 2002. At the 8th Air Fluorescence Workshop 2011, it was suggested to develop a common way of describing the nitrogen fluorescence for application to air shower observations. Here, first analyses for a common treatment of the major dependences of the emission procedure are presented. Aspects like the contributions at different wavelengths, the dependence on pressure as it is decreasing with increasing altitude in the atmosphere, the temperature dependence, in particular that of the collisional cross sections between molecules involved, and the collisional de-excitation by water vapor are discussed.

  4. “Exchanges of Aggregate Air Nitrogen Emissions and Watershed Nitrogen Loads”

    EPA Science Inventory

    An approach has been developed to define transfer coefficients that can be used to convert changes in air emissions to changes in air deposition and subsequently to changes in loads delivered to the Bay. This approach uses a special CMAQ version that quantitatively attributes wa...

  5. EMISSIONS OF ORGANIC AIR TOXICS FROM OPEN BURNING: A COMPREHENSIVE REVIEW

    EPA Science Inventory

    A detailed literature search was performed to collect and collate available data reporting emissions of organic air toxics from open burning sources. Availability of data varied according to the source and the class of air toxics of interest, and there were several sources for wh...

  6. The Impact of Residential Combustion Emissions on Air Quality and Human Health in China

    NASA Astrophysics Data System (ADS)

    Archer-Nicholls, S.; Wiedinmyer, C.; Baumgartner, J.; Brauer, M.; Cohen, A.; Carter, E.; Frostad, J.; Forouzanfar, M.; Xiao, Q.; Liu, Y.; Yang, X.; Hongjiang, N.; Kun, N.

    2015-12-01

    Solid fuel cookstoves are used heavily in rural China for both residential cooking and heating purposes. Their use contributes significantly to regional emissions of several key pollutants, including carbon monoxide, volatile organic compounds, oxides of nitrogen, and aerosol particles. The residential sector was responsible for approximately 36%, 46% and 81% of China's total primary PM2.5, BC and OC emissions respectively in 2005 (Lei et al., 2011). These emissions have serious consequences for household air pollution, ambient air quality, tropospheric ozone formation, and the resulting population health and climate impacts. This paper presents initial findings from the modeling component of a multi-disciplinary energy intervention study currently being conducted in Sichuan, China. The purpose of this effort is to quantify the impact of residential cooking and heating emissions on regional air quality and human health. Simulations with varying levels of residential emissions have been carried out for the whole of 2014 using the Weather Research and Forecasting model with Chemistry (WRF-Chem), a fully-coupled, "online" regional chemical transport model. Model output is evaluated against surface air quality measurements across China and compared with seasonal (winter and summer) ambient air pollution measurements conducted at the Sichuan study site in 2014. The model output is applied to available exposure—response relationships between PM2.5 and cardiopulmonary health outcomes. The sensitivity in different regions across China to the different cookstove emission scenarios and seasonality of impacts are presented. By estimating the mortality and disease burden risk attributable to residential emissions we demonstrate the potential benefits from large-scale energy interventions. Lei Y, Zhang Q, He KB, Streets DG. 2011. Primary anthropogenic aerosol emission trends for China, 1990-2005. Atmos. Chem. Phys. 11:931-954.

  7. Fluorescence emission induced by the femtosecond filament transmitting through the butane/air flame

    NASA Astrophysics Data System (ADS)

    Li, Suyu; Li, Yanhua; Shi, Zhe; Sui, Laizhi; Li, He; Li, Qingyi; Chen, Anmin; Jiang, Yuanfei; Jin, Mingxing

    2018-01-01

    We measure the backward fluorescence spectra generated by the femtosecond filament transmitting through the butane/air flame, and study the fluorescence emission from combustion intermediates (CN, CH and C2 radicals), air (mainly N2 and N2+). It is found that the fluorescence emission from combustion intermediates, N2 and N2+ shows difference when the femtosecond filament transmits through different parts of the butane/air flame, and we attempt to analyze it in this paper. This study demonstrates that the filament-induced fluorescence technique can be utilized to sense the combustion intermediates.

  8. Atmospheric Ammonia Over China: Emission Estimates And Impact On Air Quality

    NASA Astrophysics Data System (ADS)

    Zhang, L.; Chen, Y.; Zhao, Y.; Henze, D. K.

    2016-12-01

    Ammonia (NH3) in the atmosphere is an important precursor of aerosols, and its deposition through wet and dry processes can cause adverse effects on ecosystems. The ammonia emissions over China are particularly large due to intensive agricultural activities, yet our current estimates of Chinese ammonia emissions and associated consequences on air quality are subject to large errors. We use the GEOS-Chem chemical transport model and its adjoint model to better quantify this issue. The TES satellite observations of ammonia concentrations and surface measurements of wet deposition fluxes are assimilated into the model to constrain the ammonia emissions over China. Optimized emissions show a strong seasonal variability with emissions in summer a factor of 3 higher than winter. This is consistent with an improved bottom-up estimate of Chinese ammonia emissions from fertilizer use by using more practical fertilizer application rates for different crop types. We further use the GEOS-Chem adjoint at 0.25x0.3125 degree resolution to examine the sources contributing to the PM2.5 air pollution over North China. We show that wintertime PM2.5 over Beijing is largely contributed by residential and industrial sources, and ammonia emissions from agriculture activities. PM2.5 concentrations over North China are particularly sensitive to emissions of ammonia and nitrogen oxides, reflecting strong formation of aerosol nitrate in the cold seasons.

  9. 76 FR 81327 - National Emission Standards for Hazardous Air Pollutants From the Pulp and Paper Industry

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-27

    ... for each emission unit type (e.g., gas- or oil-fired paper machine dryers) based on the most common... 63 National Emission Standards for Hazardous Air Pollutants From the Pulp and Paper Industry...-AQ41 National Emission Standards for Hazardous Air Pollutants From the Pulp and Paper Industry AGENCY...

  10. Impacts of Future Climate and Emission Changes on U.S. Air Quality

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Penrod, Ashley; Zhang, Yang; Wang, K.

    2014-06-01

    Changes in climate and emissions will affect future air quality. In this work, simulations of present (2001-2005) and future (2026-2030) regional air quality are conducted with the newly released CMAQ version 5.0 to examine the individual and combined impacts of simulated future climate and anthropogenic emission projections on air quality over the U.S. Current (2001-2005) meteorological and chemical predictions are evaluated against observational data to assess the model’s capability in reproducing the seasonal differences. Overall, WRF and CMAQ perform reasonably well. Increased temperatures (up to 3.18 °C) and decreased ventilation (up to 157 m in planetary boundary layer height) aremore » found in both future winter and summer, with more prominent changes in winter. Increases in future temperatures result in increased isoprene and terpene emissions in winter and summer, driving the increase in maximum 8-h average O3 (up to 5.0 ppb) over the eastern U.S. in winter while decreases in NOx emissions drive the decrease in O3 over most of the U.S. in summer. Future concentrations of PM2.5 in winter and summer and many of its components including organic matter in winter, ammonium and nitrate in summer, and sulfate in winter and summer, decrease due to decreases in primary anthropogenic emissions and the concentrations of secondary anthropogenic pollutants and increased precipitation in winter. Future winter and summer dry and wet deposition fluxes are spatially variable and increase with increasing surface resistance and precipitation (e.g., NH4+ and NO3- dry and wet deposition fluxes increase in winter over much of the U.S.), respectively, and decrease with a decrease in ambient particulate concentrations (e.g., SO42- dry and wet deposition fluxes decrease over the eastern U.S. in summer and winter). Sensitivity simulations show that anthropogenic emission projections dominate over changes in climate in their impacts on the U.S. air quality in the near future

  11. Air pollutant emissions from Chinese households: A major and underappreciated ambient pollution source.

    PubMed

    Liu, Jun; Mauzerall, Denise L; Chen, Qi; Zhang, Qiang; Song, Yu; Peng, Wei; Klimont, Zbigniew; Qiu, Xinghua; Zhang, Shiqiu; Hu, Min; Lin, Weili; Smith, Kirk R; Zhu, Tong

    2016-07-12

    As part of the 12th Five-Year Plan, the Chinese government has developed air pollution prevention and control plans for key regions with a focus on the power, transport, and industrial sectors. Here, we investigate the contribution of residential emissions to regional air pollution in highly polluted eastern China during the heating season, and find that dramatic improvements in air quality would also result from reduction in residential emissions. We use the Weather Research and Forecasting model coupled with Chemistry to evaluate potential residential emission controls in Beijing and in the Beijing, Tianjin, and Hebei (BTH) region. In January and February 2010, relative to the base case, eliminating residential emissions in Beijing reduced daily average surface PM2.5 (particulate mater with aerodynamic diameter equal or smaller than 2.5 micrometer) concentrations by 14 ± 7 μg⋅m(-3) (22 ± 6% of a baseline concentration of 67 ± 41 μg⋅m(-3); mean ± SD). Eliminating residential emissions in the BTH region reduced concentrations by 28 ± 19 μg⋅m(-3) (40 ± 9% of 67 ± 41 μg⋅m(-3)), 44 ± 27 μg⋅m(-3) (43 ± 10% of 99 ± 54 μg⋅m(-3)), and 25 ± 14 μg⋅m(-3) (35 ± 8% of 70 ± 35 μg⋅m(-3)) in Beijing, Tianjin, and Hebei provinces, respectively. Annually, elimination of residential sources in the BTH region reduced emissions of primary PM2.5 by 32%, compared with 5%, 6%, and 58% achieved by eliminating emissions from the transportation, power, and industry sectors, respectively. We also find air quality in Beijing would benefit substantially from reductions in residential emissions from regional controls in Tianjin and Hebei, indicating the value of policies at the regional level.

  12. Air pollutant emissions from Chinese households: A major and underappreciated ambient pollution source

    PubMed Central

    Liu, Jun; Mauzerall, Denise L.; Chen, Qi; Zhang, Qiang; Song, Yu; Peng, Wei; Klimont, Zbigniew; Qiu, Xinghua; Zhang, Shiqiu; Hu, Min; Lin, Weili; Smith, Kirk R.; Zhu, Tong

    2016-01-01

    As part of the 12th Five-Year Plan, the Chinese government has developed air pollution prevention and control plans for key regions with a focus on the power, transport, and industrial sectors. Here, we investigate the contribution of residential emissions to regional air pollution in highly polluted eastern China during the heating season, and find that dramatic improvements in air quality would also result from reduction in residential emissions. We use the Weather Research and Forecasting model coupled with Chemistry to evaluate potential residential emission controls in Beijing and in the Beijing, Tianjin, and Hebei (BTH) region. In January and February 2010, relative to the base case, eliminating residential emissions in Beijing reduced daily average surface PM2.5 (particulate mater with aerodynamic diameter equal or smaller than 2.5 micrometer) concentrations by 14 ± 7 μg⋅m−3 (22 ± 6% of a baseline concentration of 67 ± 41 μg⋅m−3; mean ± SD). Eliminating residential emissions in the BTH region reduced concentrations by 28 ± 19 μg⋅m−3 (40 ± 9% of 67 ± 41 μg⋅m−3), 44 ± 27 μg⋅m−3 (43 ± 10% of 99 ± 54 μg⋅m−3), and 25 ± 14 μg⋅m−3 (35 ± 8% of 70 ± 35 μg⋅m−3) in Beijing, Tianjin, and Hebei provinces, respectively. Annually, elimination of residential sources in the BTH region reduced emissions of primary PM2.5 by 32%, compared with 5%, 6%, and 58% achieved by eliminating emissions from the transportation, power, and industry sectors, respectively. We also find air quality in Beijing would benefit substantially from reductions in residential emissions from regional controls in Tianjin and Hebei, indicating the value of policies at the regional level. PMID:27354524

  13. Interfacial behavior of alkaline protease at the air-water and oil-water interfaces

    NASA Astrophysics Data System (ADS)

    Zhang, Jian; Li, Yanyan; Wang, Jing; Zhang, Yue

    2018-03-01

    The interfacial behavior of alkaline protease at the air-water and n-hexane-water interfaces was investigated using interfacial tension, dilatational rheology and dynamic light scattering. Additionally, different adsorption models which are Langmuir, Frumkin, Reorientation-A and Reorientation-R were used to fitting the data of equilibrium interfacial tension for further understanding the interfacial behavior of alkaline protease. Data fitting of the equilibrium interfacial tension was achieved by IsoFit software. The results show that the molecules arrangement of the alkaline protease at the n-hexane-water interface is more tightly than at the air-water interface. The data were further analyzed to indicate that the hydrophobic chains of alkaline protease penetrate into oil phase deeper than the air phase. Also data indicate that the electrostatic interactions and hydrophobic interactions at the n-hexane-water interface are stronger than at the air-water interface within molecules of the alkaline protease. Based on comprehensive analysis of the adsorption kinetics and interfacial rheological properties, interfacial structures mechanism of alkaline protease at n-hexane-water and air-water interfaces was proposed.

  14. Emissions of CO2 and criteria air pollutants from mobile sources: Insights from integrating real-time traffic data into local air quality models

    NASA Astrophysics Data System (ADS)

    Gately, Conor; Hutyra, Lucy

    2016-04-01

    In 2013, on-road mobile sources were responsible for over 26% of U.S. fossil fuel carbon dioxide (ffCO2) emissions, and over 34% of both CO and NOx emissions. However, accurate representations of these emissions at the scale of urban areas remains a difficult challenge. Quantifying emissions at the scale of local streets and highways is critical to provide policymakers with the information needed to develop appropriate mitigation strategies and to guide research into the underlying process that drive mobile emissions. Quantification of vehicle ffCO2 emissions at high spatial and temporal resolutions requires a detailed synthesis of data on traffic activity, roadway attributes, fleet characteristics and vehicle speeds. To accurately characterize criteria air pollutant emissions, information on local meteorology is also critical, as the temperature and relative humidity can affect emissions rates of these pollutants by as much as 400%. As the health impacts of air pollutants are more severe for residents living in close proximity (<500m) to road sources, it is critical that inventories of these emissions rely on highly resolved source data to locate potential hot-spots of exposure. In this study we utilize real-time GPS estimates of vehicle speeds to estimate ffCO2 and criteria air pollutant emissions at multiple spatial and temporal scales across a large metropolitan area. We observe large variations in emissions associated with diurnal activity patterns, congestion, sporting and civic events, and weather anomalies. We discuss the advantages and challenges of using highly-resolved source data to quantify emissions at a roadway scale, and the potential of this methodology for forecasting the air quality impacts of changes in infrastructure, urban planning policies, and regional climate.

  15. Emissions of CO2 and criteria air pollutants from mobile sources: Insights from integrating real-time traffic data into local air quality models

    NASA Astrophysics Data System (ADS)

    Gately, C.; Hutyra, L.; Sue Wing, I.; Peterson, S.; Janetos, A.

    2015-12-01

    In 2013, on-road mobile sources were responsible for over 26% of U.S. fossil fuel carbon dioxide (ffCO2) emissions, and over 34% of both CO and NOx emissions. However, accurate representations of these emissions at the scale of urban areas remains a difficult challenge. Quantifying emissions at the scale of local streets and highways is critical to provide policymakers with the information needed to develop appropriate mitigation strategies and to guide research into the underlying process that drive mobile emissions. Quantification of vehicle ffCO2 emissions at high spatial and temporal resolutions requires a detailed synthesis of data on traffic activity, roadway attributes, fleet characteristics and vehicle speeds. To accurately characterize criteria air pollutant emissions, information on local meteorology is also critical, as the temperature and relative humidity can affect emissions rates of these pollutants by as much as 400%. As the health impacts of air pollutants are more severe for residents living in close proximity (<500m) to road sources, it is critical that inventories of these emissions rely on highly resolved source data to locate potential hot-spots of exposure. In this study we utilize real-time GPS estimates of vehicle speeds to estimate ffCO2 and criteria air pollutant emissions at multiple spatial and temporal scales across a large metropolitan area. We observe large variations in emissions associated with diurnal activity patterns, congestion, sporting and civic events, and weather anomalies. We discuss the advantages and challenges of using highly-resolved source data to quantify emissions at a roadway scale, and the potential of this methodology for forecasting the air quality impacts of changes in infrastructure, urban planning policies, and regional climate.

  16. Portable air pollution control equipment for the control of toxic particulate emissions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chaurushia, A.; Odabashian, S.; Busch, E.

    1997-12-31

    Chromium VI (Cr VI) has been identified by the environmental regulatory agencies as a potent carcinogen among eleven heavy metals. A threshold level of 0.0001 lb/year for Cr VI emissions has been established by the California Air Resources Board for reporting under Assembly Bill 2588. A need for an innovative control technology to reduce fugitive emissions of Cr VI was identified during the Air Toxic Emissions Reduction Program at Northrop Grumman Military Aircraft Systems Division (NGMASD). NGMASD operates an aircraft assembly facility in El Segundo, CA. Nearly all of the aircraft components are coated with a protective coating (primer) priormore » to assembly. The primer has Cr VI as a component for its excellent corrosion resistance property. The complex assembly process requires fasteners which also need primer coating. Therefore, NGMASD utilizes High Volume Low Pressure (HVLP) guns for the touch-up spray coating operations. During the touch-up spray coating operations, Cr VI particles are atomized and transferred to the aircraft surface. The South Coast Air Quality Management District (SCAQMD) has determined that the HVLP gun transfers 65% of the paint particles onto the substrate and the remaining 35% are emitted as an overspray if air pollution controls are not applied. NGMASD has developed the Portable Air Pollution Control Equipment (PAPCE) to capture and control the overspray in order to reduce fugitive Cr VI emissions from the touch-up spray coating operations. A source test was performed per SCAQMD guidelines and the final report has been approved by the SCAQMD.« less

  17. Assessment of China's virtual air pollution transport embodied in trade by using a consumption-based emission inventory

    NASA Astrophysics Data System (ADS)

    Zhao, H. Y.; Zhang, Q.; Guan, D. B.; Davis, S. J.; Liu, Z.; Huo, H.; Lin, J. T.; Liu, W. D.; He, K. B.

    2015-05-01

    Substantial anthropogenic emissions from China have resulted in serious air pollution, and this has generated considerable academic and public concern. The physical transport of air pollutants in the atmosphere has been extensively investigated; however, understanding the mechanisms how the pollutant was transferred through economic and trade activities remains a challenge. For the first time, we quantified and tracked China's air pollutant emission flows embodied in interprovincial trade, using a multiregional input-output model framework. Trade relative emissions for four key air pollutants (primary fine particle matter, sulfur dioxide, nitrogen oxides and non-methane volatile organic compounds) were assessed for 2007 in each Chinese province. We found that emissions were significantly redistributed among provinces owing to interprovincial trade. Large amounts of emissions were embodied in the imports of eastern regions from northern and central regions, and these were determined by differences in regional economic status and environmental policy. It is suggested that measures should be introduced to reduce air pollution by integrating cross-regional consumers and producers within national agreements to encourage efficiency improvement in the supply chain and optimize consumption structure internationally. The consumption-based air pollutant emission inventory developed in this work can be further used to attribute pollution to various economic activities and final demand types with the aid of air quality models.

  18. Advanced emissions-speciation methodologies for the auto/oil air-quality improvement research program. 2. Aldehydes, ketones, and alcohols. SAE technical paper series

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Swarin, S.J.; Loo, J.F.; Chladek, E.

    1992-01-01

    Analytical methods for determining individual aldehyde, ketone, and alcohol emissions from gasoline-, methanol-, and variable-fueled vehicles are described. These methods were used in the Auto/Oil Air Quality Improvement Research Program to provide emission data for comparison of individual reformulated fuels, individual vehicles, and for air modeling studies. The emission samples are collected in impingers which contain either 2,4-dinitrophenylhydrazine solution for the aldehydes and ketones or deionized water for the alcohols. Subsequent analyses by liquid chromatography for the aldehydes and ketones and gas chromatography for the alcohols utilized auto injectors and computerized data systems which permit high sample throughput with minimalmore » operator intervention. The quality control procedures developed and interlaboratory comparisons conducted as part of the program are also described. (Copyright (c) 1992 Society of Automotive Engineers, Inc.)« less

  19. Regional air quality impacts of future fire emissions in Sumatra and Kalimantan

    NASA Astrophysics Data System (ADS)

    Marlier, Miriam E.; DeFries, Ruth S.; Kim, Patrick S.; Gaveau, David L. A.; Koplitz, Shannon N.; Jacob, Daniel J.; Mickley, Loretta J.; Margono, Belinda A.; Myers, Samuel S.

    2015-05-01

    Fire emissions associated with land cover change and land management contribute to the concentrations of atmospheric pollutants, which can affect regional air quality and climate. Mitigating these impacts requires a comprehensive understanding of the relationship between fires and different land cover change trajectories and land management strategies. We develop future fire emissions inventories from 2010-2030 for Sumatra and Kalimantan (Indonesian Borneo) to assess the impact of varying levels of forest and peatland conservation on air quality in Equatorial Asia. To compile these inventories, we combine detailed land cover information from published maps of forest extent, satellite fire radiative power observations, fire emissions from the Global Fire Emissions Database, and spatially explicit future land cover projections using a land cover change model. We apply the sensitivities of mean smoke concentrations to Indonesian fire emissions, calculated by the GEOS-Chem adjoint model, to our scenario-based future fire emissions inventories to quantify the different impacts of fires on surface air quality across Equatorial Asia. We find that public health impacts are highly sensitive to the location of fires, with emissions from Sumatra contributing more to smoke concentrations at population centers across the region than Kalimantan, which had higher emissions by more than a factor of two. Compared to business-as-usual projections, protecting peatlands from fires reduces smoke concentrations in the cities of Singapore and Palembang by 70% and 40%, and by 60% for the Equatorial Asian region, weighted by the population in each grid cell. Our results indicate the importance of focusing conservation priorities on protecting both forested (intact or logged) peatlands and non-forested peatlands from fire, even after considering potential leakage of deforestation pressure to other areas, in order to limit the impact of fire emissions on atmospheric smoke concentrations and

  20. Method and apparatus for extracting water from air

    DOEpatents

    Spletzer, Barry L.; Callow, Diane Schafer; Marron, Lisa C.; Salton, Jonathan R.

    2002-01-01

    The present invention provides a method and apparatus for extracting liquid water from moist air using minimal energy input. The method comprises compressing moist air under conditions that foster the condensation of liquid water. The air can be decompressed under conditions that do not foster the vaporization of the condensate. The decompressed, dried air can be exchanged for a fresh charge of moist air and the process repeated. The liquid condensate can be removed for use. The apparatus can comprise a compression chamber having a variable internal volume. An intake port allows moist air into the compression chamber. An exhaust port allows dried air out of the compression chamber. A condensation device fosters condensation at the desired conditions. A condensate removal port allows liquid water to be removed.

  1. Report: EPA Needs to Improve Its Efforts to Reduce Air Emissions at U.S. Ports

    EPA Pesticide Factsheets

    Report #09-P-0125, March 23, 2009. While EPA has issued air emissions regulations for most port sources, EPA’s actions to address air emissions from large oceangoing vessels in U.S. ports have not yet achieved the goals for protecting human health.

  2. 77 FR 65135 - National Emission Standards for Hazardous Air Pollutants for Chemical Manufacturing Area Sources

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-25

    .... On February 12, 2010, the American Chemistry Council and the Society of Chemical Manufacturers and... National Emission Standards for Hazardous Air Pollutants for Chemical Manufacturing Area Sources AGENCY... Emission Standards for Hazardous Air Pollutants for Chemical Manufacturing Area Sources (CMAS) that was...

  3. Secondary Aluminum Production: National Emission Standards for Hazardous Air Pollutants

    EPA Pesticide Factsheets

    National emission standards for hazardous air pollutants (NESHAP) for new and existing sources at secondary aluminum production facilities. Includes rule history, summary, federal register citations and implementation information.

  4. Modelling of radio emission from cosmic ray air showers

    NASA Astrophysics Data System (ADS)

    Ludwig, Marianne

    2011-06-01

    Cosmic rays entering the Earth's atmosphere induce extensive air showers consisting of up to billions of secondary particles. Among them, a multitude of electrons and positrons are generated. These get deflected in the Earth's magnetic field, creating time-varying transverse currents. Thereby, the air shower emits coherent radiation in the MHz frequency range measured by radio antenna arrays on the ground such as LOPES at the KIT. This detection method provides a possibility to study cosmic rays with energies above 1017 eV. At this time, the radio technique undergoes the change from prototype experiments to large scale application. Thus, a detailed understanding of the radio emission process is needed more than ever. Before starting this work, different models made conflicting predictions on the pulse shape and the amplitude of the radio signal. It turned out that a radiation component caused by the variation of the number of charged particles within the air shower was missed in several models. The Monte Carlo code REAS2 superposing the radiation of the individual air shower electrons and positrons was one of those. At this time, it was not known how to take the missing component into account. For REAS3, we developed and implemented the endpoint formalism, a universal approach, to calculate the radiation from each single particle. For the first time, we achieve a good agreement between REAS3 and MGMR, an independent and completely different simulation approach. In contrast to REAS3, MGMR is based on a macroscopic approach and on parametrisations of the air shower. We studied the differences in the underlying air shower models to explain the remaining deviations. For comparisons with LOPES data, we developed a new method which allows "top-down" simulations of air showers. From this, we developed an air shower selection criterion based on the number of muons measured with KASCADE to take shower-to-shower fluctuations for a single event analysis into account. With

  5. CHARACTERIZATION OF OZONE EMISSIONS FROM AIR CLEANERS EQUIPPED WITH OZONE GENERATORS AND SENSOR AND FEEDBACK CONTROL CIRCUITRY

    EPA Science Inventory

    The paper give results of a characterization of ozone emissions from air cleaners equipped with ozone generators and sensor and feedback control circuitry. Ozone emission rates of several consumer appliances, marketed as indoor air treatment or air purification systems, were det...

  6. Understanding Potential Air Emissions from a Cellulosic Biorefinery Producing Renewable Diesel Blendstock.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Yimin; Heath, Garvin A.; Renzaglia, Jason

    2015-06-22

    The Energy Independence and Security Act of 2007, through the Renewable Fuel Standard (RFS), mandates increased use of biofuels, including cellulosic biofuels. The RFS is expected to spur the development of advanced biofuel technologies (e.g., new and innovative biofuel conversion pathways) as well as the construction of biorefineries (refineries that produce biofuels) using these technologies. To develop sustainable cellulosic biofuels, one of the goals of the Bioenergy Technologies Office (BETO) at the Department of Energy is to minimize air pollutants from the entire biofuel supply chain, as stated in their 2014 Multi-Year Program Plan (2014). Although biofuels in general havemore » been found to have lower life cycle greenhouse gas (GHG) emissions compared to petroleum fuels on an energy basis, biomass feedstock production, harvesting, transportation, processing and conversion are expected to emit a wide range of other air pollutants (e.g., criteria air pollutants, hazardous air pollutants), which could affect the environmental benefits of biofuels when displacing petroleum fuels. While it is important for policy makers, air quality planners and regulators, biofuel developers, and investors to understand the potential implications on air quality from a growing biofuel industry, there is a general lack of information and knowledge about the type, fate and magnitude of potential air pollutant emissions from the production of cellulosic biofuels due to the nascent stage of this emerging industry. This analysis assesses potential air pollutant emissions from a hypothetical biorefinery, selected by BETO for further research and development, which uses a biological conversion process of sugars to hydrocarbons to produce infrastructural-compatible renewable diesel blendstock from cellulosic biomass.« less

  7. Water content dependence of trapped air in two soils

    USGS Publications Warehouse

    Stonestrom, David A.; Rubin, Jacob

    1989-01-01

    An improved air pycnometer method was used to examine the water content dependence of trapped-air volumes in two repacked, nonswelling soils. Trapped-air volumes were determined at a series of hydrostatic equilibrium stages which were attained during water pressure-controlled wetting and drying cycles over a range of 0 to −10 kPa for a sand and 0 to −20 kPa for a loam. Small pressure perturbations, between 0.2 and 0.6 kPa, were used in the air pycnometer method. Volumes of trapped air obtained at each hydrostatic equilibrium stage were independent of perturbation level and remained relatively constant over the time required to make repeated determinations. In contrast with most of the results obtained in previous studies, which often showed irregular relations, in this study the volume fraction of trapped air was found to be a regular, monotonically increasing (though possibly hysteretic) function of water content. For the soils studied, the function definitely exceeded zero only at water contents greater than 70% of saturation. However, during the initial drying from complete water saturation, the volume fraction of trapped air was virtually zero. Air trapping influenced the water retention curves significantly only at water contents higher than about 60% of saturation. Except at zero water pressure, however, not all of the differences between the initial and the other drying retention curves were accounted for by observed differences in trapped-air volumes. Air trapping was not required for the onset of hysteresis in the water retention relation for the cases studied, i.e., when drying-to-wetting reversals were imposed at about 27% and 40% of saturation for the sand and loam soils, respectively.

  8. Quantifying automobile refinishing VOC air emissions - a methodology with estimates and forecasts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anderson, S.P.; Rubick, C.

    1996-12-31

    Automobile refinishing coatings (referred to as paints), paint thinners, reducers, hardeners, catalysts, and cleanup solvents used during their application, contain volatile organic compounds (VOCs) which are precursors to ground level ozone formation. Some of these painting compounds create hazardous air pollutants (HAPs) which are toxic. This paper documents the methodology, data sets, and the results of surveys (conducted in the fall of 1995) used to develop revised per capita emissions factors for estimating and forecasting the VOC air emissions from the area source category of automobile refinishing. Emissions estimates, forecasts, trends, and reasons for these trends are presented. Future emissionsmore » inventory (EI) challenges are addressed in light of data availability and information networks.« less

  9. Air emissions assessment from offshore oil activities in Sonda de Campeche, Mexico.

    PubMed

    Schifter, I; González-Macías, C; Miranda, A; López-Salinas, E

    2005-10-01

    Air emission data from offshore oil platforms, gas and oil processing installations and contribution of marine activities at the Sonda de Campeche, located at the Gulf of Mexico, were compiled and integrated to facilitate the study of long range transport of pollutants into the region. From this important region, roughly 76% of the total Mexican oil and gas production is obtained. It was estimated that the total air emissions of all contaminants are approximately 821,000 tons per year. Hydrocarbons are the largest pollutant emissions with 277,590 tons per year, generated during flaring activities, and SOx in second place with 185,907 tons per year. Marine and aviation activities contribute with less than 2% of total emissions. Mass of pollutants emitted per barrel of petroleum produced calculated in this work, are in the range reported by similar oil companies.

  10. Global Scenarios of Air Pollutant Emissions from Road Transport through to 2050

    PubMed Central

    Takeshita, Takayuki

    2011-01-01

    This paper presents global scenarios of sulphur dioxide (SO2), nitrogen oxides (NOx), and particulate matter (PM) emissions from road transport through to 2050, taking into account the potential impacts of: (1) the timing of air pollutant emission regulation implementation in developing countries; (2) global CO2 mitigation policy implementation; and (3) vehicle cost assumptions, on study results. This is done by using a global energy system model treating the transport sector in detail. The major conclusions are the following. First, as long as non-developed countries adopt the same vehicle emission standards as in developed countries within a 30-year lag, global emissions of SO2, NOx, and PM from road vehicles decrease substantially over time. Second, light-duty vehicles and heavy-duty trucks make a large and increasing contribution to future global emissions of SO2, NOx, and PM from road vehicles. Third, the timing of air pollutant emission regulation implementation in developing countries has a large impact on future global emissions of SO2, NOx, and PM from road vehicles, whereas there is a possibility that global CO2 mitigation policy implementation has a comparatively small impact on them. PMID:21845172

  11. Development of probabilistic emission inventories of air toxics for Jacksonville, Florida, USA.

    PubMed

    Zhao, Yuchao; Frey, H Christopher

    2004-11-01

    Probabilistic emission inventories were developed for 1,3-butadiene, mercury (Hg), arsenic (As), benzene, formaldehyde, and lead for Jacksonville, FL. To quantify inter-unit variability in empirical emission factor data, the Maximum Likelihood Estimation (MLE) method or the Method of Matching Moments was used to fit parametric distributions. For data sets that contain nondetected measurements, a method based upon MLE was used for parameter estimation. To quantify the uncertainty in urban air toxic emission factors, parametric bootstrap simulation and empirical bootstrap simulation were applied to uncensored and censored data, respectively. The probabilistic emission inventories were developed based on the product of the uncertainties in the emission factors and in the activity factors. The uncertainties in the urban air toxics emission inventories range from as small as -25 to +30% for Hg to as large as -83 to +243% for As. The key sources of uncertainty in the emission inventory for each toxic are identified based upon sensitivity analysis. Typically, uncertainty in the inventory of a given pollutant can be attributed primarily to a small number of source categories. Priorities for improving the inventories and for refining the probabilistic analysis are discussed.

  12. Ship emission inventory and its impact on the PM2.5 air pollution in Qingdao Port, North China

    NASA Astrophysics Data System (ADS)

    Chen, Dongsheng; Wang, Xiaotong; Nelson, Peter; Li, Yue; Zhao, Na; Zhao, Yuehua; Lang, Jianlei; Zhou, Ying; Guo, Xiurui

    2017-10-01

    In this study, a first high temporal-spatial ship emission inventory in Qingdao Port and its adjacent waters has been developed using a ;bottom-up; method based on Automatic Identification System (AIS) data. The total estimated ship emissions for SO2, NOX, PM10, PM2.5, HC and CO in 2014 are 3.32 × 104, 4.29 × 104, 4.54 × 103, 4.18 × 103, 1.85 × 103 and 3.66 × 103 tonnes, respectively. Emissions of SO2 and NOX from ships account for 9% and 13% of the anthropogenic totals in Qingdao, respectively. The main contributors to the ship emissions are containers, followed by fishing ships, oil tankers and bulk carriers. The inter-monthly ship emissions varied significantly due to two reasons: stopping of the fishing ship activities during the fishing moratorium and the reduction of freight volume around the Chinese New Year Festival. Emissions from transport vessels concentrated basically along the shipping routes, while fishing ships contributed to massive irregular spatial emissions in the sea. The impact of ship emissions on the ambient air quality was further investigated using the Weather Research and Forecasting with Chemistry (WRF/Chem) model. The results reveal that the contribution of ship emissions to the PM2.5 concentrations in Qingdao is the highest in summer (13.1%) and the lowest in winter (1.5%). The impact was more evident over densely populated urban areas, where the contributions from ship emissions could be over 20% in July due to their close range to the docks. These results indicated that the management and control of the ship emissions are highly demanded considering their remarkable influence on the air quality and potential negative effects on human health.

  13. 40 CFR 60.2860 - What are the emission limitations for air curtain incinerators?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) STANDARDS OF PERFORMANCE FOR NEW STATIONARY SOURCES Emissions Guidelines and Compliance Times for Commercial and Industrial Solid Waste Incineration Units Model Rule-Air...

  14. IACP (INTEGRATED AIR CANCER PROJECT) EMISSIONS: TRANSFORMATIONS AND FATE

    EPA Science Inventory

    As part of the Integrated Air Cancer Project (IACP), diluted emissions from wood stoves and automobiles were injected into a Teflon smog chamber and irradiated to simulate their photochemical transformation in the atmosphere. Changes in the chemical composition and physical prope...

  15. SEMINAR PUBLICATION: ORGANIC AIR EMISSIONS FROM WASTE MANAGEMENT FACILITIES

    EPA Science Inventory

    The organic chemicals contained in wastes processed during waste management operations can volatilize into the atmosphere and cause toxic or carcinogenic effects or contribute to ozone formation. Because air emissions from waste management operations pose a threat to human health...

  16. EMISSIONS OF AIR TOXICS FROM A SIMULATED CHARCOAL KILN

    EPA Science Inventory

    The report gives results of experiments in a laboratory-scale charcoal kiln simulator to evaluate emissions of hazardous air pollutants from the production of charcoal in Missouri-type kilns. Fixed combustion gases were measured using continuous monitors. In Addition, other pollu...

  17. Method and apparatus for extracting water from air

    DOEpatents

    Spletzer, Barry L.

    2001-01-01

    The present invention provides a method and apparatus for extracting liquid water from moist air using minimal energy input. The method comprises compressing moist air under conditions that foster the condensation of liquid water (ideally isothermal to a humidity of 1.0, then adiabatic thereafter). The air can be decompressed under conditions that do not foster the vaporization of the condensate. The decompressed, dried air can be exchanged for a fresh charge of moist air and the process repeated. The liquid condensate can be removed for use. The apparatus can comprise a compression chamber having a variable internal volume. An intake port allows moist air into the compression chamber. An exhaust port allows dried air out of the compression chamber. A condensation device fosters condensation at the desired conditions. A condensate removal port allows liquid water to be removed.

  18. Review of Singapore's air quality and greenhouse gas emissions: current situation and opportunities.

    PubMed

    Velasco, Erik; Roth, Matthias

    2012-06-01

    Singapore has many environmental accomplishments to its credit. Accessible data on air quality indicates that all criteria pollutants satisfy both U.S. Environmental Protection Agency (EPA) and World Health Organization (WHO) air quality standards and guidelines, respectively. The exception is PM2.5 (particles with an aerodynamic diameter < or = 2.5 microm), which is not currently considered a criteria pollutant in Singapore but may potentially be the major local air pollution problem and cause for health concern. Levels of other airborne pollutants as well as their physical and chemical processes associated with local formation, transformation, dispersion, and deposition are not known. According to available emission inventories, Singapore contribution to the total atmospheric pollution and carbon budget at the regional and global scales is small. Emissions per unit gross domestic product (GDP) are low compared with other countries, although Singapore's per-capita GDP and per-capita emissions are among the highest in the world. Some information is available on health effects, but the impacts on the ecosystem and the complex interactions of air pollution and climate change at a regional level are also unknown. This article reviews existing available information on atmospheric pollution and greenhouse gas emissions and proposes a multipollutant approach to greenhouse gas mitigation and local air quality. Singapore, by reducing its per-capita emissions, increasing the availability of information (e.g., through regularly publishing hourly and/or daily PM2.5 concentrations) and developing a research agenda in this area, would likely be seen to be a model of a high-density, livable, and sustainable city in Southeast Asia and other tropical regions worldwide.

  19. Emissions of halocarbons from mobile vehicle air conditioning system in Hong Kong.

    PubMed

    Yan, H H; Guo, H; Ou, J M

    2014-08-15

    During the implementation of Montreal Protocol, emission inventories of halocarbons in different sectors at regional scale are fundamental to the formulation of relevant management strategy and inspection of the implementation efficiency. This study investigated the emission profile of halocarbons used in the mobile vehicle air conditioning system, the leading sector of refrigeration industry in terms of the refrigerant bank, market and emission, in the Hong Kong Special Administrative Region, using a bottom-up approach developed by 2006 IPCC Good Practice Guidance. The results showed that emissions of CFC-12 peaked at 53 tons ODP (Ozone Depletion Potential) in 1992 and then gradually diminished, whereas HFC-134a presented an increasing emission trend since 1990s and the emissions of HFC-134a reached 65,000 tons CO2-equivelant (CO2-eq) by the end of 2011. Uncertainty analysis revealed relatively high levels of uncertainties for special-purpose vehicles and government vehicles. Moreover, greenhouse gas (GHG) abatements under different scenarios indicated that potential emission reduction of HFC-134a ranged from 4.1 to 8.4 × 10(5)tons CO2-eq. The findings in this study advance our knowledge of halocarbon emissions from mobile vehicle air conditioning system in Hong Kong. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. Assessment of air pollutant emissions from the Akrotiri landfill site (Chania, Greece).

    PubMed

    Chalvatzaki, E; Lazaridis, M

    2010-09-01

    Air pollutants emitted from landfills affect air quality, contribute to the greenhouse effect and may cause serious problems to human health under certain circumstances. The current study was focused on the determination of air emissions from the Akrotiri landfill site which is located in the Akrotiri area (Chania, Greece). The landfill consists of two phases, phase A (first phase) which is currently closed (operational between 2003 and 2007) and phase B (second phase, operation between 2007 and (foreseen) 2013). Three different emission models (the EPA LandGEM model, the triangular model and the stoichiometric model) were used for the quantification of emissions. The LandGEM 3.02 software was further adopted and used in conjunction with the long-term dispersion model ISC3-LT for the evaluation of the dispersion of gaseous chemical components from the landfill. The emission and meteorological conditions under which the models were applied were based on the worst-case emission scenario. Furthermore, the concentration of hydrogen sulfide, vinyl chloride and benzene were determined in and around the landfill site. The concentrations of hydrogen sulfide and benzene were calculated to be far below the limit value proposed by the World Health Organization (WHO) for human health safety. However, the vinyl chloride concentrations were above the WHO reference lifetime exposure health criteria for the phase B area.

  1. 55 FR 14037 Correction to the National Emission Standards for Hazardous Air Pollutants

    EPA Pesticide Factsheets

    Correction to the National Emission Standards for Hazardous Air Pollutants; Benzene Emissions From Maleic Anhydride Plants, Ethylbenzene/Styrene Plants, Benzene Storage Vessels, Benzene Equipment Leaks, and Coke Byproduct Recovery Plants.

  2. Transport and Environment Database System (TRENDS): Maritime air pollutant emission modelling

    NASA Astrophysics Data System (ADS)

    Georgakaki, Aliki; Coffey, Robert A.; Lock, Graham; Sorenson, Spencer C.

    This paper reports the development of the maritime module within the framework of the Transport and Environment Database System (TRENDS) project. A detailed database has been constructed for the calculation of energy consumption and air pollutant emissions. Based on an in-house database of commercial vessels kept at the Technical University of Denmark, relationships between the fuel consumption and size of different vessels have been developed, taking into account the fleet's age and service speed. The technical assumptions and factors incorporated in the database are presented, including changes from findings reported in Methodologies for Estimating air pollutant Emissions from Transport (MEET). The database operates on statistical data provided by Eurostat, which describe vessel and freight movements from and towards EU 15 major ports. Data are at port to Maritime Coastal Area (MCA) level, so a bottom-up approach is used. A port to MCA distance database has also been constructed for the purpose of the study. This was the first attempt to use Eurostat maritime statistics for emission modelling; and the problems encountered, since the statistical data collection was not undertaken with a view to this purpose, are mentioned. Examples of the results obtained by the database are presented. These include detailed air pollutant emission calculations for bulk carriers entering the port of Helsinki, as an example of the database operation, and aggregate results for different types of movements for France. Overall estimates of SO x and NO x emission caused by shipping traffic between the EU 15 countries are in the area of 1 and 1.5 million tonnes, respectively.

  3. 77 FR 41146 - Delegation of National Emission Standards for Hazardous Air Pollutants for Source Categories...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-12

    ... ENVIRONMENTAL PROTECTION AGENCY 40 CFR Part 63 [EPA-R09-OAR-2012-0286; FRL-9698-6] Delegation of National Emission Standards for Hazardous Air Pollutants for Source Categories; Gila River Indian Community... emission standards for hazardous air pollutants (NESHAP) to the Gila River Indian Community Department of...

  4. Atmospheric emissions from the Deepwater Horizon spill constrain air-water partitioning, hydrocarbon fate, and leak rate

    NASA Astrophysics Data System (ADS)

    Ryerson, T. B.; Aikin, K. C.; Angevine, W. M.; Atlas, E. L.; Blake, D. R.; Brock, C. A.; Fehsenfeld, F. C.; Gao, R.-S.; de Gouw, J. A.; Fahey, D. W.; Holloway, J. S.; Lack, D. A.; Lueb, R. A.; Meinardi, S.; Middlebrook, A. M.; Murphy, D. M.; Neuman, J. A.; Nowak, J. B.; Parrish, D. D.; Peischl, J.; Perring, A. E.; Pollack, I. B.; Ravishankara, A. R.; Roberts, J. M.; Schwarz, J. P.; Spackman, J. R.; Stark, H.; Warneke, C.; Watts, L. A.

    2011-04-01

    The fate of deepwater releases of gas and oil mixtures is initially determined by solubility and volatility of individual hydrocarbon species; these attributes determine partitioning between air and water. Quantifying this partitioning is necessary to constrain simulations of gas and oil transport, to predict marine bioavailability of different fractions of the gas-oil mixture, and to develop a comprehensive picture of the fate of leaked hydrocarbons in the marine environment. Analysis of airborne atmospheric data shows massive amounts (˜258,000 kg/day) of hydrocarbons evaporating promptly from the Deepwater Horizon spill; these data collected during two research flights constrain air-water partitioning, thus bioavailability and fate, of the leaked fluid. This analysis quantifies the fraction of surfacing hydrocarbons that dissolves in the water column (˜33% by mass), the fraction that does not dissolve, and the fraction that evaporates promptly after surfacing (˜14% by mass). We do not quantify the leaked fraction lacking a surface expression; therefore, calculation of atmospheric mass fluxes provides a lower limit to the total hydrocarbon leak rate of 32,600 to 47,700 barrels of fluid per day, depending on reservoir fluid composition information. This study demonstrates a new approach for rapid-response airborne assessment of future oil spills.

  5. Concentrations in ambient air and emissions of cyclic volatile methylsiloxanes in Zurich, Switzerland.

    PubMed

    Buser, Andreas M; Kierkegaard, Amelie; Bogdal, Christian; MacLeod, Matthew; Scheringer, Martin; Hungerbühler, Konrad

    2013-07-02

    Tens of thousands of tonnes of cyclic volatile methylsiloxanes (cVMS) are used each year globally, which leads to high and continuous cVMS emissions to air. However, field measurements of cVMS in air and empirical information about emission rates to air are still limited. Here we present measurements of decamethylcyclopentasiloxane (D5) and dodecamethylcyclohexasiloxane (D6) in air for Zurich, Switzerland. The measurements were performed in January and February 2011 over a period of eight days and at two sites (city center and background) with a temporal resolution of 6-12 h. Concentrations of D5 and D6 are higher in the center of Zurich and range from 100 to 650 ng m(-3) and from 10 to 79 ng m(-3), respectively. These values are among the highest levels of D5 and D6 reported in the literature. In a second step, we used a multimedia environmental fate model parametrized for the region of Zurich to interpret the levels and time trends in the cVMS concentrations and to back-calculate the emission rates of D5 and D6 from the city of Zurich. The average emission rates obtained for D5 and D6 are 120 kg d(-1) and 14 kg d(-1), respectively, which corresponds to per-capita emissions of 310 mg capita(-1) d(-1) for D5 and 36 mg capita(-1) d(-1) for D6.

  6. Air Toxics Emissions from Open Burning of Crop Residues in Southeast Asia

    NASA Astrophysics Data System (ADS)

    KIM Oanh, N. T.; Permadi, D. A.; Hopke, P. K.; Smith, K. R.; Nguyet, D. A.

    2016-12-01

    Agricultural crops production in Southeast Asia (SEA) increases annually to meet domestic consumption of growing population and also for export. Crop residue open burning (CROB) is commonly practiced by farmers to quickly dispose of huge amounts of the agricultural waste, such as rice straw, generated after each crop cycle. This CROB activity emits various toxic air pollutants as well as short-lived climate pollutants such as black carbon particles. Our study focused on quantifying the 2015 annual emissions of semi-volatile organic compounds including polycyclic aromatic hydrocarbons (PAHs), dioxins/furans (PCDD/PCDF), organochlorine pesticides (OCP), along with other conventional trace gases, particulate matter, and greenhouse gases from CROB in 10 major agricultural crop producing SEA countries. Crop production statistics and current field OB practices were gathered from our primary surveys and relevant secondary data sources. Emission factors for rice straw and maize residue burning were taken mainly from our measurements in Thailand while for other crops relevant published data were used. The best emission estimates of air toxics from CROB in SEA were 112 g-TEQ/yr of PCDD/PCDF, 33 t/yr of OCP, and 25 Gg/yr of total PAH of which the well-known carcinogenic benzo[a]pyrene was 0.3 Gg/yr. The CROB of rice production had the highest shares of emissions (33-95%) among considered 8 crop types. Indonesia was the top contributor to the total SEA emissions (30-45%) followed by Vietnam (16-26%), Thailand (6-22%) and Myanmar (5-18%). The spatial distributions of emissions, 0.1º x 0.1º, for each specie were prepared using MODIS land cover data. Temporally, higher emissions were observed in the harvesting months of the main rice crops. This emissions database can be used in regional air quality modeling studies to assess the impacts of CROB activity and to promote non-open burning alternatives.

  7. Emissions from oil and gas operations in the United States and their air quality implications.

    PubMed

    Allen, David T

    2016-06-01

    The energy supply infrastructure in the United States has been changing dramatically over the past decade. Increased production of oil and natural gas, particularly from shale resources using horizontal drilling and hydraulic fracturing, made the United States the world's largest producer of oil and natural gas in 2014. This review examines air quality impacts, specifically, changes in greenhouse gas, criteria air pollutant, and air toxics emissions from oil and gas production activities that are a result of these changes in energy supplies and use. National emission inventories indicate that volatile organic compound (VOC) and nitrogen oxide (NOx) emissions from oil and gas supply chains in the United States have been increasing significantly, whereas emission inventories for greenhouse gases have seen slight declines over the past decade. These emission inventories are based on counts of equipment and operational activities (activity factors), multiplied by average emission factors, and therefore are subject to uncertainties in these factors. Although uncertainties associated with activity data and missing emission source types can be significant, multiple recent measurement studies indicate that the greatest uncertainties are associated with emission factors. In many source categories, small groups of devices or sites, referred to as super-emitters, contribute a large fraction of emissions. When super-emitters are accounted for, multiple measurement approaches, at multiple scales, produce similar results for estimated emissions. Challenges moving forward include identifying super-emitters and reducing their emission magnitudes. Work done to date suggests that both equipment malfunction and operational practices can be important. Finally, although most of this review focuses on emissions from energy supply infrastructures, the regional air quality implications of some coupled energy production and use scenarios are examined. These case studies suggest that both

  8. Forced-air warming design: evaluation of intake filtration, internal microbial buildup, and airborne-contamination emissions.

    PubMed

    Reed, Mike; Kimberger, Oliver; McGovern, Paul D; Albrecht, Mark C

    2013-08-01

    Forced-air warming devices are effective for the prevention of surgical hypothermia. However, these devices intake nonsterile floor-level air, and it is unknown whether they have adequate filtration measures to prevent the internal buildup or emission of microbial contaminants. We rated the intake filtration efficiency of a popular current-generation forced-air warming device (Bair Hugger model 750, Arizant Healthcare) using a monodisperse sodium chloride aerosol in the laboratory. We further sampled 23 forced-air warming devices (same model) in daily hospital use for internal microbial buildup and airborne-contamination emissions via swabbing and particle counting. Laboratory testing found the intake filter to be 63.8% efficient. Swabbing detected microorganisms within 100% of the forced-air warming blowers sampled, with isolates of coagulase-negative staphylococci, mold, and micrococci identified. Particle counting showed 96% of forced-air warming blowers to be emitting significant levels of internally generated airborne contaminants out of the hose end. These findings highlight the need for upgraded intake filtration, preferably high-efficiency particulate air filtration (99.97% efficient), on current-generation forced-air warming devices to reduce contamination buildup and emission risks.

  9. [Estimation of average traffic emission factor based on synchronized incremental traffic flow and air pollutant concentration].

    PubMed

    Li, Run-Kui; Zhao, Tong; Li, Zhi-Peng; Ding, Wen-Jun; Cui, Xiao-Yong; Xu, Qun; Song, Xian-Feng

    2014-04-01

    On-road vehicle emissions have become the main source of urban air pollution and attracted broad attentions. Vehicle emission factor is a basic parameter to reflect the status of vehicle emissions, but the measured emission factor is difficult to obtain, and the simulated emission factor is not localized in China. Based on the synchronized increments of traffic flow and concentration of air pollutants in the morning rush hour period, while meteorological condition and background air pollution concentration retain relatively stable, the relationship between the increase of traffic and the increase of air pollution concentration close to a road is established. Infinite line source Gaussian dispersion model was transformed for the inversion of average vehicle emission factors. A case study was conducted on a main road in Beijing. Traffic flow, meteorological data and carbon monoxide (CO) concentration were collected to estimate average vehicle emission factors of CO. The results were compared with simulated emission factors of COPERT4 model. Results showed that the average emission factors estimated by the proposed approach and COPERT4 in August were 2.0 g x km(-1) and 1.2 g x km(-1), respectively, and in December were 5.5 g x km(-1) and 5.2 g x km(-1), respectively. The emission factors from the proposed approach and COPERT4 showed close values and similar seasonal trends. The proposed method for average emission factor estimation eliminates the disturbance of background concentrations and potentially provides real-time access to vehicle fleet emission factors.

  10. DEVELOPMENT OF HAZARDOUS AIR POLLUTANT EMISSION FACTORS FROM STATE SOURCE TEST PROGRAMS

    EPA Science Inventory

    The report gives results of a study in which emission factors were evolved from test data obtained from several Air Quality Management Districts in California and from state environmental agencies in Louisiana, Maryland, New Jersey, and Texas. The emission factors were developed...

  11. Urban air chemistry and diesel vehicles emissions: Quantifying small and big hydrocarbons by CIMS to improve emission inventories

    NASA Astrophysics Data System (ADS)

    Jobson, B. T.; Derstroff, B.; Edtbauer, A.; VanderSchelden, G. S.; Williams, J.

    2017-10-01

    Emissions from vehicles are a major source of volatile organic compounds (VOCs) in urban environments. Photochemical oxidation of VOCs emitted from vehicle exhaust contributes to O3 and PM2.5 formation, harmful pollutants that major urban areas struggle to control. How will a shift to a diesel engine fleet impact urban air chemistry? Diesel vehicles are a growing fraction of the passenger vehicle fleet in Europe as a result of a deliberate policy to reduce energy consumption and CO2 emissions from the transportation sector (Sullivan et al., 2004). In countries such as France the diesel passenger fleet was already ∼50% of the total in 2009, up from 20% in 1995. Dunmore et al. (2015) have recently inferred that in London, HO radical loss rates to organic compounds is dominated by diesel engine emissions. In the US, increasingly more stringent vehicles emission standards and requirement for improved energy efficiency means spark ignition passenger vehicle emissions have declined significantly over the last 20 years, resulting in the urban diesel fleet traffic (freight trucks) having a growing importance as a source of vehicle pollution (McDonald et al., 2013). The recent scandal involving a major car manufacturer rigging emission controls for diesel passenger cars is a reminder that real world emissions of VOCs from diesel engines are not well understood nor thoroughly accounted for in air quality modeling.

  12. Contribution of ship emissions to the concentration and deposition of air pollutants in Europe

    NASA Astrophysics Data System (ADS)

    Aksoyoglu, S.; Prévôt, A. S. H.; Baltensperger, U.

    2015-11-01

    Emissions from the marine transport sector are one of the least regulated anthropogenic emission sources and contribute significantly to air pollution. Although strict limits were introduced recently for the maximum sulfur content in marine fuels in the SECAs (sulfur emission control areas) and in the EU ports, sulfur emissions outside the SECAs and emissions of other components in all European maritime areas have continued to increase in the last two decades. We have used the air quality model CAMx with and without ship emissions for the year 2006 to determine the effects of international shipping on the annual as well as seasonal concentrations of ozone, primary and secondary components of PM2.5 and the dry and wet deposition of nitrogen and sulfur compounds in Europe. Our results suggest that emissions from international shipping affect the air quality in northern and southern Europe differently and their contributions to the air concentrations vary seasonally. The largest changes in pollutant concentrations due to ship emissions were predicted for summer. Increased concentrations of the primary particle mass were found only along the shipping routes whereas concentrations of the secondary pollutants were affected over a larger area. Concentrations of particulate sulfate increased due to ship emissions in the Mediterranean (up to 60 %), in the English Channel and the North Sea (30-35 %) while increases in particulate nitrate levels were found especially in the north, around the Benelux area (20 %) where there were high NH3 land-based emissions. Our model results showed that not only the atmospheric concentrations of pollutants are affected by ship emissions, but also depositions of nitrogen and sulfur compounds increase significantly along the shipping routes. NOx emissions from the ships especially in the English Channel and the North Sea, cause a decrease in the dry deposition of reduced nitrogen at source regions by moving it from the gas-phase to the

  13. Gas and Particulate Aircraft Emissions Measurements: Impacts on local air quality.

    NASA Astrophysics Data System (ADS)

    Jayne, J. T.; Onasch, T.; Northway, M.; Canagaratna, M.; Worsnop, D.; Timko, M.; Wood, E.; Miake-Lye, R.; Herndon, S.; Knighton, B.; Whitefield, P.; Hagen, D.; Lobo, P.; Anderson, B.

    2007-12-01

    Air travel and freight shipping by air are becoming increasingly important and are expected to continue to expand. The resulting increases in the local concentrations of pollutants, including particulate matter (PM), volatile organic compounds (VOCs), and nitrogen oxides (NOX), can have negative impacts on regional air quality, human health and can impact climate change. In order to construct valid emission inventories, accurate measurements of aircraft emissions are needed. These measurements must be done both at the engine exit plane (certification) and downwind following the rapid cooling, dilution and initial atmospheric processing of the exhaust plume. We present here results from multiple field experiments which include the Experiment to Characterize Volatile Aerosol and Trace Species Emissions (EXCAVATE) and the four Aircraft Particle Emissions eXperiments (APEX- 1/Atlanta/2/3) which characterized gas and particle emissions from both stationary or in-use aircraft. Emission indices (EIs) for NOx and VOCs and for particle number concentration, refractory PM (black carbon soot) and volatile PM (primarily sulfate and organic) particles are reported. Measurements were made at the engine exit plane and at several downstream locations (10 and 30 meters) for a number of different engine types and engine thrust settings. A significant fraction of organic particle mass is composed of low volatility oil-related compounds and is not combustion related, potentially emitted by vents or heated surfaces within aircraft engines. Advected plumes measurements from in-use aircraft show that the practice of reduced thrust take-offs has a significant effect on total NOx and soot emitted in the vicinity of the airport. The measurements reported here represent a first observation of this effect and new insights have been gained with respect to the chemical processing of gases and particulates important to the urban airshed.

  14. Analyzing Air Pollutant Emissions from the Biofuel Supply Chain | Energy

    Science.gov Websites

    biomass-to-biofuels life cycle - fast-growing trees, agricultural waste, storage silos, and a biorefinery published in Chapter 9-"Implications of Air Pollutant Emissions from Producing Agricultural and

  15. Modeling to Evaluate Contribution of Oil and Gas Emissions to Air Pollution.

    PubMed

    Thompson, Tammy M; Shepherd, Donald; Stacy, Andrea; Barna, Michael G; Schichtel, Bret A

    2017-04-01

    Oil and gas production in the Western United States has increased considerably over the past 10 years. While many of the still limited oil and gas impact assessments have focused on potential human health impacts, the typically remote locations of production in the Intermountain West suggests that the impacts of oil and gas production on national parks and wilderness areas (Class I and II areas) could also be important. To evaluate this, we utilize the Comprehensive Air quality Model with Extensions (CAMx) with a year-long modeling episode representing the best available representation of 2011 meteorology and emissions for the Western United States. The model inputs for the 2011 episodes were generated as part of the Three State Air Quality Study (3SAQS). The study includes a detailed assessment of oil and gas (O&G) emissions in Western States. The year-long modeling episode was run both with and without emissions from O&G production. The difference between these two runs provides an estimate of the contribution of the O&G production to air quality. These data were used to assess the contribution of O&G to the 8 hour average ozone concentrations, daily and annual fine particulate concentrations, annual nitrogen deposition totals and visibility in the modeling domain. We present the results for the Class I and II areas in the Western United States. Modeling results suggest that emissions from O&G activity are having a negative impact on air quality and ecosystem health in our National Parks and Class I areas. In this research, we use a modeling framework developed for oil and gas evaluation in the western United States to determine the modeled impacts of emissions associated with oil and gas production on air pollution metrics. We show that oil and gas production may have a significant negative impact on air quality and ecosystem health in some national parks and other Class I areas in the western United States. Our findings are of particular interest to federal

  16. Miscellaneous Coating Manufacturing: National Emission Standards for Hazardous Air Pollutants (NESHAP)

    EPA Pesticide Factsheets

    The national emission standards for hazardous air pollutants for miscellaneous coating manufacturing. Includes summary, rule history, compliance and implementation information, federal registry citations.

  17. The Impact of Future Emissions Changes on Air Pollution Concentrations and Related Human Health Effects

    NASA Astrophysics Data System (ADS)

    Mikolajczyk, U.; Suppan, P.; Williams, M.

    2015-12-01

    Quantification of potential health benefits of reductions in air pollution on the local scale is becoming increasingly important. The aim of this study is to conduct health impact assessment (HIA) by utilizing regionally and spatially specific data in order to assess the influence of future emission scenarios on human health. In the first stage of this investigation, a modeling study was carried out using the Weather Research and Forecasting (WRF) model coupled with Chemistry to estimate ambient concentrations of air pollutants for the baseline year 2009, and for the future emission scenarios in southern Germany. Anthropogenic emissions for the baseline year 2009 are derived from the emission inventory provided by the Netherlands Organization of Applied Scientific Research (TNO) (Denier van der Gon et al., 2010). For Germany, the TNO emissions were replaced by gridded emission data with a high spatial resolution of 1/64 x 1/64 degrees. Future air quality simulations are carried out under different emission scenarios, which reflect possible energy and climate measures in year 2030. The model set-up included a nesting approach, where three domains with horizontal resolution of 18 km, 6 km and 2 km were defined. The simulation results for the baseline year 2009 are used to quantify present-day health burdens. Concentration-response functions (CRFs) for PM2.5 and NO2 from the WHO Health risks of air Pollution in Europe (HRAPIE) project were applied to population-weighted mean concentrations to estimate relative risks and hence to determine numbers of attributable deaths and associated life-years lost. In the next step, future health impacts of projected concentrations were calculated taking into account different emissions scenarios. The health benefits that we assume with air pollution reductions can be used to provide options for future policy decisions to protect public health.

  18. Updated emission inventories of power plants in simulating air quality during haze periods over East China

    NASA Astrophysics Data System (ADS)

    Zhang, Lei; Zhao, Tianliang; Gong, Sunling; Kong, Shaofei; Tang, Lili; Liu, Duanyang; Wang, Yongwei; Jin, Lianji; Shan, Yunpeng; Tan, Chenghao; Zhang, Yingjie; Guo, Xiaomei

    2018-02-01

    Air pollutant emissions play a determinant role in deteriorating air quality. However, an uncertainty in emission inventories is still the key problem for modeling air pollution. In this study, an updated emission inventory of coal-fired power plants (UEIPP) based on online monitoring data in Jiangsu Province of East China for the year of 2012 was implemented in the widely used Multi-resolution Emission Inventory for China (MEIC). By employing the Weather Research and Forecasting model with Chemistry (WRF-Chem), two simulation experiments were executed to assess the atmospheric environment change by using the original MEIC emission inventory and the MEIC inventory with the UEIPP. A synthetic analysis shows that power plant emissions of PM2.5, PM10, SO2, and NOx were lower, and CO, black carbon (BC), organic carbon (OC) and NMVOCs (non-methane volatile organic compounds) were higher in UEIPP relative to those in MEIC, reflecting a large discrepancy in the power plant emissions over East China. In accordance with the changes in UEIPP, the modeled concentrations were reduced for SO2 and NO2, and increased for most areas of primary OC, BC, and CO. Interestingly, when the UEIPP was used, the atmospheric oxidizing capacity significantly reinforced. This was reflected by increased oxidizing agents, e.g., O3 and OH, thus directly strengthening the chemical production from SO2 and NOx to sulfate and nitrate, respectively, which offset the reduction of primary PM2.5 emissions especially on haze days. This study indicates the importance of updating air pollutant emission inventories in simulating the complex atmospheric environment changes with implications on air quality and environmental changes.

  19. Contribution of ship emissions to the concentration and deposition of air pollutants in Europe

    NASA Astrophysics Data System (ADS)

    Aksoyoglu, Sebnem; Baltensperger, Urs; Prévôt, André S. H.

    2016-02-01

    Emissions from the marine transport sector are one of the least-regulated anthropogenic emission sources and contribute significantly to air pollution. Although strict limits were introduced recently for the maximum sulfur content in marine fuels in the SECAs (sulfur emission control areas) and in EU ports, sulfur emissions outside the SECAs and emissions of other components in all European maritime areas have continued to increase in the last two decades. We have used the air quality model CAMx (Comprehensive Air Quality Model with Extensions) with and without ship emissions for the year 2006 to determine the effects of international shipping on the annual as well as seasonal concentrations of ozone, primary and secondary components of PM2.5, and the dry and wet deposition of nitrogen and sulfur compounds in Europe. The largest changes in pollutant concentrations due to ship emissions were predicted for summer. Concentrations of particulate sulfate increased due to ship emissions in the Mediterranean (up to 60 %), the English Channel and the North Sea (30-35 %), while increases in particulate nitrate levels were found especially in the north, around the Benelux area (20 %), where there were high NH3 land-based emissions. Our model results showed that not only are the atmospheric concentrations of pollutants affected by ship emissions, but also depositions of nitrogen and sulfur compounds increase significantly along the shipping routes. NOx emissions from the ships, especially in the English Channel and the North Sea, cause a decrease in the dry deposition of reduced nitrogen at source regions by moving it from the gas phase to the particle phase which then contributes to an increase in the wet deposition at coastal areas with higher precipitation. In the western Mediterranean region, on the other hand, model results show an increase in the deposition of oxidized nitrogen (mostly HNO3) due to the ship traffic. Dry deposition of SO2 seems to be significant along

  20. Pesticide Active Ingredient Production Industry: National Emission Standards for Hazardous Air Pollutants (NESHAP)

    EPA Pesticide Factsheets

    This action promulgates national emission standards for hazardous air pollutants (NESHAP) for the pesticide active ingredient (PAI) production source category under section 112 of the Clean Air Act as amended (CAA or Act).

  1. Performance and emission characteristics of swirl-can combustors to near-stoichiometric fuel-air ratio

    NASA Technical Reports Server (NTRS)

    Diehl, L. A.; Trout, A. M.

    1976-01-01

    Emissions and performance characteristics were determined for two full annular swirl-can combustors operated to near stoichiometric fuel-air ratio. Test condition variations were as follows: combustor inlet-air temperatures, 589, 756, 839, and 894 K; reference velocities, 24 to 37 meters per second; inlet pressure, 62 newtons per square centimeter; and fuel-air ratios, 0.015 to 0.065. The combustor average exit temperature and combustor efficiency were calculated from the combustor exhaust gas composition. For fuel-air ratios greater than 0.04, the combustion efficiency decreased with increasing fuel-air ratios in a near-linear manner. Increasing the combustor inlet air temperature tended to offset this decrease. Maximum oxides of nitrogen emission indices occurred at intermediate fuel-air ratios and were dependent on combustor design. Carbon monoxide levels were extremely high and were the primary cause of poor combustion efficiency at the higher fuel-air ratios. Unburned hydrocarbons were low for all test conditions. For high fuel-air ratios SAE smoke numbers greater than 25 were produced, except at the highest inlet-air temperatures.

  2. The hydroxyl-water megamaser connection. I. Water emission toward OH megamaser hosts

    DOE PAGES

    Wiggins, Brandon K.; Migenes, Victor; Smidt, Joseph M.

    2016-02-05

    Questions surround the connection of luminous extragalactic masers to galactic processes. The observation that water and hydroxyl megamasers rarely coexist in the same galaxy has given rise to a hypothesis that the two species appear in different phases of nuclear activity. The detection of simultaneous hydroxyl and water megamaser emission toward IC694 has called this hypothesis into question, but, because many megamasers have not been surveyed for emission in the other molecule, it remains unclear whether IC694 occupies a narrow phase of galaxy evolution or whether the relationship between megamaser species and galactic processes is more complicated than previously believed. In this paper, we present results of a systematic search for 22 GHz water maser emission among OH megamaser hosts to identify additional objects hosting both megamasers. Our work roughly doubles the number of galaxies searched for emission in both molecules, which host at least one confirmed maser. We confirm with a high degree of confidence (more » $$\\gt 8\\sigma $$) the detection of water emission toward IIZw96, firmly establishing it as the second object to cohost both water and hydroxyl megamasers after IC694. We find high luminosity, narrow features in the water feature in IIZw96. All dual megamaser candidates appear in merging galaxy systems suggestive that megamasers that coexistance may signal a brief phase along the merger sequence. In conclusion, a statistical analysis of the results of our observations provide possible evidence for an exclusion of H 2O kilomasers among OH megamaser hosts.« less

  3. CO2 emissions from German drinking water reservoirs.

    PubMed

    Saidi, Helmi; Koschorreck, Matthias

    2017-03-01

    Globally, reservoirs are a significant source of atmospheric CO 2 . However, precise quantification of greenhouse gas emissions from drinking water reservoirs on the regional or national scale is still challenging. We calculated CO 2 fluxes for 39 German drinking water reservoirs during a period of 22years (1991-2013) using routine monitoring data in order to quantify total emission of CO 2 from drinking water reservoirs in Germany and to identify major drivers. All reservoirs were a net CO 2 source with a median flux of 167gCm -2 y -1 , which makes gaseous emissions a relevant process for the carbon budget of each reservoir. Fluxes varied seasonally with median fluxes of 13, 48, and 201gCm -2 y -1 in spring, summer, and autumn respectively. Differences between reservoirs appeared to be primarily caused by the concentration of CO 2 in the surface water rather than by the physical gas transfer coefficient. Consideration of short term fluctuations of the gas transfer coefficient due to varying wind speed had only a minor effect on the annual budgets. High CO 2 emissions only occurred in reservoirs with pH<7 and total alkalinity <0.2mEql -1 . Annual CO 2 emissions correlated exponentially with pH but not with dissolved organic carbon (DOC). There was significant correlation between land use in the catchment and CO 2 emissions. In total, German drinking water reservoirs emit 44000t of CO 2 annually, which makes them a negligible CO 2 source (<0.005% of national CO 2 emissions) in Germany. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. 76 FR 17287 - Protocol Gas Verification Program and Minimum Competency Requirements for Air Emission Testing

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-28

    ...EPA is finalizing rule revisions that modify existing requirements for sources affected by the federally administered emission trading programs including the NOX Budget Trading Program, the Acid Rain Program, and the Clean Air Interstate Rule. EPA is amending its Protocol Gas Verification Program (PGVP) and the minimum competency requirements for air emission testing (formerly air emission testing body requirements) to improve the accuracy of emissions data. EPA is also amending other sections of the Acid Rain Program continuous emission monitoring system regulations by adding and clarifying certain recordkeeping and reporting requirements, removing the provisions pertaining to mercury monitoring and reporting, removing certain requirements associated with a class-approved alternative monitoring system, disallowing the use of a particular quality assurance option in EPA Reference Method 7E, adding two incorporation by references that were inadvertently left out of the January 24, 2008 final rule, adding two new definitions, revising certain compliance dates, and clarifying the language and applicability of certain provisions.

  5. Combustion and NOx emission characteristics with respect to staged-air damper opening in a 600 MWe down-fired pulverized-coal furnace under deep-air-staging conditions.

    PubMed

    Kuang, Min; Li, Zhengqi; Wang, Zhihua; Jing, Xinjing; Liu, Chunlong; Zhu, Qunyi; Ling, Zhongqian

    2014-01-01

    Deep-air-staging combustion conditions, widely used in tangential-fired and wall-arranged furnaces to significantly reduce NOx emissions, are premature up to now in down-fired furnaces that are designed especially for industry firing low-volatile coals such as anthracite and lean coal. To uncover combustion and NOx emission characteristics under deep-air-staging conditions within a newly operated 600 MWe down-fired furnace and simultaneously understand the staged-air effect on the furnace performance, full-load industrial-size measurements taken of gas temperatures and species concentrations in the furnace, CO and NOx emissions in flue gas, and carbon in fly ash were performed at various staged-air damper openings of 10%, 20%, 30%, and 50%. Increasing the staged-air damper opening, gas temperatures along the flame travel (before the flame penetrating the staged-air zone) increased initially but then decreased, while those in the staged-air zone and the upper part of the hopper continuously decreased and increased, respectively. On opening the staged-air damper to further deepen the air-staging conditions, O2 content initially decreased but then increased in both two near-wall regions affected by secondary air and staged air, respectively, whereas CO content in both two regions initially increased but then decreased. In contrast to the conventional understanding about the effects of deep-air-staging conditions, here increasing the staged-air damper opening to deepen the air-staging conditions essentially decreased the exhaust gas temperature and carbon in fly ash and simultaneously increased both NOx emissions and boiler efficiency. In light of apparently low NOx emissions and high carbon in fly ash (i.e., 696-878 mg/m(3) at 6% O2 and 9.81-13.05%, respectively) developing in the down-fired furnace under the present deep-air-staging conditions, further adjustments such as enlarging the staged-air declination angle to prolong pulverized-coal residence times in the

  6. International trade and air pollution: estimating the economic costs of air emissions from waterborne commerce vessels in the United States.

    PubMed

    Gallagher, Kevin P

    2005-10-01

    Although there is a burgeoning literature on the effects of international trade on the environment, relatively little work has been done on where trade most directly effects the environment: the transportation sector. This article shows how international trade is affecting air pollution emissions in the United States' shipping sector. Recent work has shown that cargo ships have been long overlooked regarding their contribution to air pollution. Indeed, ship emissions have recently been deemed "the last unregulated source of traditional air pollutants". Air pollution from ships has a number of significant local, national, and global environmental effects. Building on past studies, we examine the economic costs of this increasing and unregulated form of environmental damage. We find that total emissions from ships are largely increasing due to the increase in foreign commerce (or international trade). The economic costs of SO2 pollution range from dollars 697 million to dollars 3.9 billion during the period examined, or dollars 77 to dollars 435 million on an annual basis. The bulk of the cost is from foreign commerce, where the annual costs average to dollars 42 to dollars 241 million. For NOx emissions the costs are dollars 3.7 billion over the entire period or dollars 412 million per year. Because foreign trade is driving the growth in US shipping, we also estimate the effect of the Uruguay Round on emissions. Separating out the effects of global trade agreements reveals that the trade agreement-led emissions amounted to dollars 96 to dollars 542 million for SO2 between 1993 and 2001, or dollars 10 to dollars 60 million per year. For NOx they were dollars 745 million for the whole period or dollars 82 million per year. Without adequate policy responses, we predict that these trends and costs will continue into the future.

  7. Industrial Process Cooling Towers: National Emission Standards for Hazardous Air Pollutants

    EPA Pesticide Factsheets

    Standards limiting discharge of chromium compound air emissions from industrial process cooling towers (IPCT's). Includes rule history, Federal Registry citations, implementation information and additional resources.

  8. Organic Liquids Distribution: National Emission Standards for Hazardous Air Pollutants (NESHAP)

    EPA Pesticide Factsheets

    National emission standards for hazardous air pollutants (NESHAP) for organic liquidsdistribution (OLD) (non-gasoline) operations. Includes rule history, Federal Registry citations, implementation and compliance information.

  9. EMISSIONS FROM TWO OUTBOARD ENGINES OPERATING ON REFORMULATED GASOLINE CONTAINING MTBE

    EPA Science Inventory

    Air and water pollutant emissions were measured from two 9.9 HP outboard engines: a two-stroke Evinrude and its four-stroke Honda counterpart. In addition to the measurement of regulated air pollutants, speciated organic pollutants and particulate matter emissions were determi...

  10. Evaluation of speciated VOC emission factors for Air Force hush houses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sullivan, P.D.; Stevens, D.K.

    1997-12-31

    Data published in: ``Engine and Hush House Emissions from a TF30-P109 Jet Engine Tested at Cannon Air Force Base, NM`` by Radian Corporation and ``Aircraft Emissions. Characterization: TF41-A2, TF30-P103 , and TF30-P109 Engines`` by Battelle are reviewed and compared. Specifically CO, NO{sub x}, and VOC emission factors using EPA Method 19 are addressed, with comparisons between JP-4 and JP-8 jet fuels. CO and NO{sub x} emissions for JP-4 and JP-8 jet fuels were found to be essentially the same. VOC emission data exhibited high variability. Problems inherent in speciated VOC emission testing are discussed. A limiting of speciated VOC emissionmore » testing, with emission factor estimation based on fuel content is proposed.« less

  11. Environmental health in China: challenges to achieving clean air and safe water

    PubMed Central

    Zhang, Junfeng (Jim); Mauzerall, Denise L.; Zhu, Tong; Liang, Song; Ezzati, Majid; Remais, Justin

    2014-01-01

    The health effects of environmental risks, especially those of air and water pollution, remain a major source of morbidity and mortality in China. Biomass fuel and coal are routinely burned for cooking and heating in almost all rural and many urban households resulting in severe indoor air pollution that contributes greatly to the burden of disease. Many communities lack access to safe drinking water and santiation, and thus the risk of waterborne disease in many regions remains high. At the same time, China is rapidly industrializing with associated increases in energy use and industrial waste. While economic growth resulting from industrialization has improved health and quality of life indicators in China, it has also increased the incidence of environmental disasters and the release of chemical toxins into the environment, with severe impacts on health. Air quality in China's cities is among the worst in the world and industrial water pollution has become a widespread health hazard. Moreover, emissions of climate-warming greenhouse gases from energy use are rapidly increasing. Global climate change will inevitably intensify China's environmental health problems, with potentially catastrophic outcomes from major shifts in temperature and precipitation. Facing the overlap of traditional, modern, and emerging environmental problems, China has committed substantial resources to environmental improvement. China has the opportunity to both address its national environmental health challenges and to assume a central role in the international effort to improve the global environment. PMID:20346817

  12. Recent decreases in fossil-fuel emissions of ethane and methane derived from firn air.

    PubMed

    Aydin, Murat; Verhulst, Kristal R; Saltzman, Eric S; Battle, Mark O; Montzka, Stephen A; Blake, Donald R; Tang, Qi; Prather, Michael J

    2011-08-10

    Methane and ethane are the most abundant hydrocarbons in the atmosphere and they affect both atmospheric chemistry and climate. Both gases are emitted from fossil fuels and biomass burning, whereas methane (CH(4)) alone has large sources from wetlands, agriculture, landfills and waste water. Here we use measurements in firn (perennial snowpack) air from Greenland and Antarctica to reconstruct the atmospheric variability of ethane (C(2)H(6)) during the twentieth century. Ethane levels rose from early in the century until the 1980s, when the trend reversed, with a period of decline over the next 20 years. We find that this variability was primarily driven by changes in ethane emissions from fossil fuels; these emissions peaked in the 1960s and 1970s at 14-16 teragrams per year (1 Tg = 10(12) g) and dropped to 8-10 Tg  yr(-1) by the turn of the century. The reduction in fossil-fuel sources is probably related to changes in light hydrocarbon emissions associated with petroleum production and use. The ethane-based fossil-fuel emission history is strikingly different from bottom-up estimates of methane emissions from fossil-fuel use, and implies that the fossil-fuel source of methane started to decline in the 1980s and probably caused the late twentieth century slow-down in the growth rate of atmospheric methane.

  13. Dynamic relationship between the VOC emissions from a Scots pine stem and the tree water relations

    NASA Astrophysics Data System (ADS)

    Vanhatalo, Anni; Chan, Tommy; Aalto, Juho; Kolari, Pasi; Rissanen, Kaisa; Hakola, Hannele; Hölttä, Teemu; Bäck, Jaana

    2013-04-01

    The stems of coniferous trees contain huge storages of oleoresin. The composition of oleoresin depends on e.g. tree species, age, provenance, health status, and environmental conditions. Oleoresin is under pressure in the extensive network of resin ducts in wood and needles. It flows out from a mechanically damaged site to protect the tree by sealing the wounded site. Once in contact with air, volatile parts of oleoresin evaporate, and the residual compounds harden to make a solid protective seal over damaged tissues. The hardening time of the resin depends on evaporation rate of the volatiles which in turn depends on temperature. The storage is also toxic to herbivores and attracts predators that restrict the herbivore damage. Despite abundant knowledge on emissions of volatile isoprenoids from foliage, very little is known about their emissions from woody plant parts. We set up an experiment to measure emissions of isoprene and monoterpenes as well as two oxygenated VOCs, methanol and acetone, from a Scots pine (Pinus sylvestris) stem and branches. The measurements were started in early April and continued until mid-June, 2012. Simultaneously, we measured the dynamics of whole stem and xylem diameter changes, stem sap flow rate and foliage transpiration rate. These measurements were used to estimate A) pressure changes inside the living stem tissue and the water conducting xylem, B) the refilling of stem water stores after winter dehydration (the ratio of sap flow at the stem base to water loss by foliage), and C) the increase in tree water transport capacity (the ratio of maximum daily sap flow rate to the diurnal variation in xylem pressure) during spring due to winter embolism refilling and/or the temperature dependent root water uptake capacity. The results show that already very early in spring, significant VOC emissions from pine stem can be detected, and that they exhibit a diurnal cycle similar to that of ambient temperature. During the highest emission

  14. Heat Transfer of Confined Impinging Air-water Mist Jet

    NASA Astrophysics Data System (ADS)

    Chang, Shyy Woei; Su, Lo May

    This paper describes the detailed heat transfer distributions of an atomized air-water mist jet impinging orthogonally onto a confined target plate with various water-to-air mass-flow ratios. A transient technique was used to measure the full field heat transfer coefficients of the impinging surface. Results showed that the high momentum mist-jet interacting with the water-film and wall-jet flows created a variety of heat transfer contours on the impinging surface. The trade-off between the competing influences of the different heat transfer mechanisms involving in an impinging mist jet made the nonlinear variation tendency of overall heat transfer against the increase of water-to-air mass-flow ratio and extended the effective cooling region. With separation distances of 10, 8, 6 and 4 jet-diameters, the spatially averaged heat transfer values on the target plate could respectively reach about 2.01, 1.83, 2.43 and 2.12 times of the equivalent air-jet values, which confirmed the applicability of impinging mist-jet for heat transfer enhancement. The optimal choices of water-to-air mass-flow ratio for the atomized mist jet required the considerations of interactive and combined effects of separation distance, air-jet Reynolds number and the water-to-air mass-flow ratio into the atomized nozzle.

  15. 75 FR 31317 - National Emission Standards for Hazardous Air Pollutants: Area Source Standards for Paints and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-03

    ... National Emission Standards for Hazardous Air Pollutants: Area Source Standards for Paints and Allied... when they should not be covered. This action clarifies text of the National Emission Standards for Hazardous Air Pollutants: Paints and Allied Products Manufacturing Area Source Standards which was published...

  16. Quantification of variability and uncertainty for air toxic emission inventories with censored emission factor data.

    PubMed

    Frey, H Christopher; Zhao, Yuchao

    2004-11-15

    Probabilistic emission inventories were developed for urban air toxic emissions of benzene, formaldehyde, chromium, and arsenic for the example of Houston. Variability and uncertainty in emission factors were quantified for 71-97% of total emissions, depending upon the pollutant and data availability. Parametric distributions for interunit variability were fit using maximum likelihood estimation (MLE), and uncertainty in mean emission factors was estimated using parametric bootstrap simulation. For data sets containing one or more nondetected values, empirical bootstrap simulation was used to randomly sample detection limits for nondetected values and observations for sample values, and parametric distributions for variability were fit using MLE estimators for censored data. The goodness-of-fit for censored data was evaluated by comparison of cumulative distributions of bootstrap confidence intervals and empirical data. The emission inventory 95% uncertainty ranges are as small as -25% to +42% for chromium to as large as -75% to +224% for arsenic with correlated surrogates. Uncertainty was dominated by only a few source categories. Recommendations are made for future improvements to the analysis.

  17. Pharmaceuticals Production Industry: National Emission Standards for Hazardous Air Pollutants (NESHAP)

    EPA Pesticide Factsheets

    National emission standards for hazardous air pollutants (NESHAP) from facilities that manufacture pharmaceutical products. Includes rule history, Federal Register citations, implementation and compliance information, and additional resources.

  18. Water Stress Detection using Temperature, Emissivity, and Reflectance

    NASA Astrophysics Data System (ADS)

    Gerhards, Max; Rock, Gilles; Schlerf, Martin; Udelhoven, Thomas

    2017-04-01

    Water stress is one of the most critical abiotic stressors limiting crop development. The main imaging and non-imaging remote sensing based techniques for the detection of plant stress (water stress and other types of stress) are thermography, visible (VIS), near- and shortwave infrared (NIR/SWIR) reflectance, and fluorescence. Just very recently, in addition to broadband thermography, narrowband (hyperspectral) thermal imaging has become available, which even facilitates the retrieval of spectral emissivity as an additional measure of plant stress. It is, however, still unclear at what stage plant stress is detectable with the various techniques. During summer 2014 a water treatment experiment was run on 60 potato plants (Solanum tuberosum L. Cilena) with one half of the plants watered and the other half stressed. Crop response was measured using broadband and hyperspectral thermal cameras and a VNIR/SWIR spectrometer. Stomatal conductance was measured using a leaf porometer. Various measures and indices were computed and analysed for their sensitivity towards water stress (Crop Water Stress Index (CWSI), Moisture Stress Index (MSI), Photochemical Reflectance Index (PRI), and spectral emissivity, amongst others). The results show that water stress as measured through stomatal conductance started on day 2 after watering was stopped. The fastest reacting, i.e., starting on day 7, indices were temperature based measures (e.g., CWSI) and NIR/SWIR reflectance based indices related to plant water content (e.g., MSI). Spectral emissivity reacted equally fast. Contrarily, visual indices (e.g., PRI) either did not respond at all or responded in an inconsistent manner. This experiment shows that pre-visual water stress detection is feasible using indices depicting leaf temperature, leaf water content and spectral emissivity.

  19. Objective Measure of Nasal Air Emission Using Nasal Accelerometry

    ERIC Educational Resources Information Center

    Cler, Meredith J.; Lien, Yu-An, S.; Braden, Maia N.; Mittleman, Talia; Downing, Kerri; Stepp, Cara, E.

    2016-01-01

    Purpose: This article describes the development and initial validation of an objective measure of nasal air emission (NAE) using nasal accelerometry. Method: Nasal acceleration and nasal airflow signals were simultaneously recorded while an expert speech language pathologist modeled NAEs at a variety of severity levels. In addition, microphone and…

  20. National Emission Standards for Hazardous Air Pollutants in Region 7

    EPA Pesticide Factsheets

    National Emission Standards for Hazardous Air Pollutants (NESHAPs) are applicable requirements under the Title V operating permit program. This is a resource for permit writers and reviewers to learn about the rules and explore other helpful tools.

  1. Influence of Air Pollutant Emission Controls on the "Climate Penalty" in the United States

    NASA Astrophysics Data System (ADS)

    Feng, T.; Couzo, E. A.; Selin, N. E.; Garcia-Menendez, F.; Monier, E.

    2016-12-01

    Previous work has examined the so-called "climate penalty" (or benefit, where climate change leads to decreased pollutant concentrations) for the U.S. In particular, previous research has identified the role of changes in temperature, precipitation, relative humidity, and biogenic emissions, in altering concentrations of O3 and PM2.5, when emissions of air pollutant precursors are held constant. However, changes in emissions of those precursors can also affect the magnitude of climate penalty/benefit. The effect of changing air pollutant emissions on the climate penalty/benefit has not been systematically studied. Here, we estimate the U.S. climate penalty (for O3 and PM2.5) as a function of four different local (U.S.) non-GHG emissions scenarios using the GEOS-Chem chemical transport model coupled to the MIT Integrated Global System Model linked to the Community Atmosphere Model (IGSM-CAM). Our base case scenario includes global and regional emissions for 2006. We conduct three sensitivity scenarios that adjust U.S. air pollutant precursor (non-GHG) emissions by -50%, +50%, and +100%; global emissions are kept at 2006 levels. This allows us to quantify the avoided climate penalty achieved by non-GHG emissions reductions. To capture inter-annual meteorological variability, our climate penalty calculations use 20-year averages for the present (1991-2010) and future (2091-2110) climate under a no-policy scenario. Consistent with previous work, we find a "climate penalty" for O3 and PM2.5 in U.S. by 2100 across all four scenarios. We also find a climate-related decrease in the concentration of NOx and nitrate, and an increase in black carbon, organic carbon and sulfate. Changes in ammonium are spatially inhomogeneous, with an increase in eastern U.S. and a decrease in middle and western U.S. When air pollutant precursor emissions increase, we find that the O3 "climate penalty" is enhanced. However, the response of the PM2.5 "climate penalty" to changed emissions

  2. Difficult colonoscopy: air, carbon dioxide, or water insufflation?

    PubMed

    Chaubal, Alisha; Pandey, Vikas; Patel, Ruchir; Poddar, Prateik; Phadke, Aniruddha; Ingle, Meghraj; Sawant, Prabha

    2018-04-01

    This study aimed to compare tolerance to air, carbon dioxide, or water insufflation in patients with anticipated difficult colonoscopy (young, thin, obese individuals, and patients with prior abdominal surgery or irradiation). Patients with body mass index (BMI) less than 18 kg/m 2 or more than 30 kg/m 2 , or who had undergone previous abdominal or pelvic surgeries were randomized to air, carbon dioxide, or water insufflation during colonoscopy. The primary endpoint was cecal intubation with mild pain (less than 5 on visual analogue scale [VAS]), without use of sedation. The primary end point was achieved in 32.7%, 43.8%, and 84.9% of cases with air, carbon dioxide and water insufflation ( P <0.001). The mean pain scores were 5.17, 4.72, and 3.93 on the VAS for air, carbon dioxide, and water insufflation ( P <0.001). The cecal intubation rate or procedure time did not differ significantly between the 3 groups. Water insufflation was superior to air or carbon dioxide for pain tolerance. This was seen in the subgroups with BMI <18 kg/m 2 and the post-surgical group, but not in the group with BMI >30 kg/m 2 .

  3. Data Quality Objectives for Regulatory Requirements for Hazardous and Radioactive Air Emissions Sampling and Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    MULKEY, C.H.

    1999-07-06

    This document describes the results of the data quality objective (DQO) process undertaken to define data needs for state and federal requirements associated with toxic, hazardous, and/or radiological air emissions under the jurisdiction of the River Protection Project (RPP). Hereafter, this document is referred to as the Air DQO. The primary drivers for characterization under this DQO are the regulatory requirements pursuant to Washington State regulations, that may require sampling and analysis. The federal regulations concerning air emissions are incorporated into the Washington State regulations. Data needs exist for nonradioactive and radioactive waste constituents and characteristics as identified through themore » DQO process described in this document. The purpose is to identify current data needs for complying with regulatory drivers for the measurement of air emissions from RPP facilities in support of air permitting. These drivers include best management practices; similar analyses may have more than one regulatory driver. This document should not be used for determining overall compliance with regulations because the regulations are in constant change, and this document may not reflect the latest regulatory requirements. Regulatory requirements are also expected to change as various permits are issued. Data needs require samples for both radionuclides and nonradionuclide analytes of air emissions from tanks and stored waste containers. The collection of data is to support environmental permitting and compliance, not for health and safety issues. This document does not address health or safety regulations or requirements (those of the Occupational Safety and Health Administration or the National Institute of Occupational Safety and Health) or continuous emission monitoring systems. This DQO is applicable to all equipment, facilities, and operations under the jurisdiction of RPP that emit or have the potential to emit regulated air pollutants.« less

  4. Reinforced Plastic Composites Production: National Emission Standards for Hazardous Air Pollutants

    EPA Pesticide Factsheets

    National emissions standards for hazardous air pollutants for reinforced plastic composites production facilities. Regulates production and ancillary processes used to manufacture products with thermoset resins and gel coats.

  5. Study of Ultra-High Energy Cosmic Rays from Extensive Air Showers Radio Emission

    NASA Astrophysics Data System (ADS)

    Petrov, Igor; Kozlov, Vladimir; Petrov, Zim; Knurenko, Stanislav; Pravdin, Mikhail

    The study of cosmic rays with the help of radio detection from extensive air showers may be an alternative to traditional detecting methods, which use a large area array installed with hundreds and thousands of scintillation detectors for charged particles, or the detectors of measuring the emission produced by relativistic particles of EAS in the optical wavelengths. Processes that lead to the emission of electromagnetic radiation are well known and calculations show that the air shower radio emission depends on the processes of development of the electromagnetic cascade, i.e. related with the longitudinal development of the shower, with the magnetic field near sea level etc. In this regard, there is a question to establish the correlation between characteristics of EAS both longitudinal and lateral development and radio emission parameters observed when air shower particles pass through the atmosphere. For this purpose, in Yakutsk, radio array for detecting air shower radio emission was established. The array consists of the antenna field on which crossed antennas are installed; antennas oriented E - W and N - S. Radio emission measurements are conducted at frequency 32 MHz, free from industrial noise. In 2008 - 2013 years, Yakutsk array has measured several seasons of registration of EAS events, including showers with energies above 10 (19) eV. In the course of the data analysis the following results were obtained: a) lateral distribution of the radio signal plotted as a function of distance from the shower axis ; b) a correlation between the amplitude of the radio signal with the energy of the shower, which is determined by measuring the fluxes of charged particles , muons and EAS Cerenkov radiation (energy balance method); c) we made evaluation of the depth of maximum development of the shower using form of radio emission LDF measured in ultra-high energy showers; g) a comparison of the Yakutsk array data with data from other arrays.

  6. Comparison of air pollutant emissions and household air quality in rural homes using improved wood and coal stoves

    NASA Astrophysics Data System (ADS)

    Du, Wei; Shen, Guofeng; Chen, Yuanchen; Zhu, Xi; Zhuo, Shaojie; Zhong, Qirui; Qi, Meng; Xue, Chunyu; Liu, Guangqing; Zeng, Eddy; Xing, Baoshan; Tao, Shu

    2017-10-01

    Air pollutant emissions, fuel consumption, and household air pollution were investigated in rural Hubei, central China, as a revisited evaluation of an intervention program to replace coal use by wood in gasifier stoves. Measured emission factors were comparable to the results measured two years ago when the program was initiated. Coal combustion produced significantly higher emissions of CO2, CH4, and SO2 compared with wood combustion; however, wood combustion in gasifier stoves had higher emissions of primary PM2.5 (particles with diameter less than 2.5 μm), Elemental Carbon (EC) and Organic Carbon (OC). In terms of potential impacts on climate, although the use of wood in gasifier stoves produced more black carbon (6.37 vs 910 gCO2e per day per capita from coal and wood use) and less SO2 (-684 vs -312), obvious benefits could be obtained owing to greater OC emissions (-15.4 vs -431), fewer CH4 emissions (865 vs 409) and, moreover, a reduction of CO2 emissions. The total GWC100 (Global Warming Potential over a time horizon of 100 years) would decrease by approximately 90% if coal use were replaced with renewable wood burned in gasifier stoves. However, similar levels of ambient particles and higher indoor OC and EC were found at homes using wood gasifier stoves compared to the coal-use homes. This suggests critical investigations on potential health impacts from the carbon-reduction intervention program.

  7. Cleaning verification by air/water impingement

    NASA Technical Reports Server (NTRS)

    Jones, Lisa L.; Littlefield, Maria D.; Melton, Gregory S.; Caimi, Raoul E. B.; Thaxton, Eric A.

    1995-01-01

    This paper will discuss how the Kennedy Space Center intends to perform precision cleaning verification by Air/Water Impingement in lieu of chlorofluorocarbon-113 gravimetric nonvolatile residue analysis (NVR). Test results will be given that demonstrate the effectiveness of the Air/Water system. A brief discussion of the Total Carbon method via the use of a high temperature combustion analyzer will also be given. The necessary equipment for impingement will be shown along with other possible applications of this technology.

  8. Water-carbon trade-off in China's coal power industry.

    PubMed

    Zhang, Chao; Anadon, Laura Diaz; Mo, Hongpin; Zhao, Zhongnan; Liu, Zhu

    2014-10-07

    The energy sector is increasingly facing water scarcity constraints in many regions around the globe, especially in China, where the unprecedented large-scale construction of coal-fired thermal power plants is taking place in its extremely arid northwest regions. As a response to water scarcity, air-cooled coal power plants have experienced dramatic diffusion in China since the middle 2000s. By the end of 2012, air-cooled coal-fired thermal power plants in China amounted to 112 GW, making up 14% of China's thermal power generation capacity. But the water conservation benefit of air-cooled units is achieved at the cost of lower thermal efficiency and consequently higher carbon emission intensity. We estimate that in 2012 the deployment of air-cooled units contributed an additional 24.3-31.9 million tonnes of CO2 emissions (equivalent to 0.7-1.0% of the total CO2 emissions by China's electric power sector), while saving 832-942 million m(3) of consumptive water use (about 60% of the total annual water use of Beijing) when compared to a scenario with water-cooled plants. Additional CO2 emissions from air-cooled plants largely offset the CO2 emissions reduction benefits from Chinese policies of retiring small and outdated coal plants. This water-carbon trade-off is poised to become even more significant by 2020, as air-cooled units are expected to grow by a factor of 2-260 GW, accounting for 22% of China's total coal-fired power generation capacity.

  9. AIR EMISSIONS FROM RESIDENTIAL HEATING: THE WOOD HEATING OPTION PUT INTO ENVIRONMENTAL PERSPECTIVE

    EPA Science Inventory

    The paper compares the national scale (rather than local) air quality impacts of the various residential space heating options. Specifically, it compares the relative contribution of the space heating options to fine particulate emissions, greenhouse gas emissions, and acid preci...

  10. New Directions: GEIA’s 2020 Vision for Better Air Emissions Information

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Frost, G. J.; Middleton, Paulette; Tarrason, Leonor

    2013-12-01

    We are witnessing a crucial change in how we quantify and understand emissions of greenhouse gases and air pollutants, with an increasing demand for science-based transparent emissions information produced by robust community efforts. Today’s scientific capabilities, with near-real-time in-situ and remote sensing observations combined with forward and inverse models and a better understanding of the controlling processes, are contributing to this transformation and providing new approaches to derive, verify, and forecast emissions (Tong et al., 2011; Frost et al., 2012) and to quantify their impacts on the environment (e.g., Bond et al., 2013). At the same time, the needs formore » emissions information and the demands for their accuracy and consistency have grown. Changing economies, demographics, agricultural practices, and energy sources, along with mandates to evaluate emissions mitigation efforts, demonstrate compliance with legislation, and verify treaties, are leading to new challenges in emissions understanding. To quote NOAA Senior Technical Scientist David Fahey, "We are in the Century of Accountability. Emissions information is critical not only for environmental science and decision-making, but also as an instrument of foreign policy and international diplomacy." Emissions quantification represents a key step in explaining observed variability and trends in atmospheric composition and in attributing these observed changes to their causes. Accurate emissions data are necessary to identify feasible controls that reduce adverse impacts associated with air quality and climate and to track the success of implemented policies. To progress further, the international community must improve the understanding of drivers and contributing factors to emissions, and it must strengthen connections among and within different scientific disciplines that characterize our environment and entities that protect the environment and influence further emissions. The Global

  11. Aircraft engine exhaust emissions and other airport-related contributions to ambient air pollution: A review

    NASA Astrophysics Data System (ADS)

    Masiol, Mauro; Harrison, Roy M.

    2014-10-01

    Civil aviation is fast-growing (about +5% every year), mainly driven by the developing economies and globalisation. Its impact on the environment is heavily debated, particularly in relation to climate forcing attributed to emissions at cruising altitudes and the noise and the deterioration of air quality at ground-level due to airport operations. This latter environmental issue is of particular interest to the scientific community and policymakers, especially in relation to the breach of limit and target values for many air pollutants, mainly nitrogen oxides and particulate matter, near the busiest airports and the resulting consequences for public health. Despite the increased attention given to aircraft emissions at ground-level and air pollution in the vicinity of airports, many research gaps remain. Sources relevant to air quality include not only engine exhaust and non-exhaust emissions from aircraft, but also emissions from the units providing power to the aircraft on the ground, the traffic due to the airport ground service, maintenance work, heating facilities, fugitive vapours from refuelling operations, kitchens and restaurants for passengers and operators, intermodal transportation systems, and road traffic for transporting people and goods in and out to the airport. Many of these sources have received inadequate attention, despite their high potential for impact on air quality. This review aims to summarise the state-of-the-art research on aircraft and airport emissions and attempts to synthesise the results of studies that have addressed this issue. It also aims to describe the key characteristics of pollution, the impacts upon global and local air quality and to address the future potential of research by highlighting research needs.

  12. A high-resolution air pollutants emission inventory in 2013 for the Beijing-Tianjin-Hebei region, China

    NASA Astrophysics Data System (ADS)

    Qi, Ji; Zheng, Bo; Li, Meng; Yu, Fang; Chen, Chuchu; Liu, Fei; Zhou, Xiafei; Yuan, Jing; Zhang, Qiang; He, Kebin

    2017-12-01

    We developed a high-resolution Beijing-Tianjin-Hebei (BTH) regional air pollutants emission inventory for the year 2013. The inventory was established using a bottom-up approach based on facility-level activity data obtained from multiple data sources. The estimates from the BTH 2013 emission inventory show that the total emissions of SO2, NOX, PM2.5, PM10, CO, NMVOC, NH3, BC, and OC were 2,305, 2,686, 1,090, 1,494, 20,567, 2,207, 623, 160, and 254 Gg, respectively. The industry sector is the largest emissions source for SO2, NOX, PM2.5, PM10, CO, and NMVOC in the BTH region, contributing 72.6%, 43.7%, 59.6%, 64.7%, 60.3%, and 70.4% of the total emissions, respectively. Power plants contributed 11.8% and 23.3% of the total SO2 and NOX emissions, respectively. The transportation sector contributed 28.9% of the total NOX emissions. Emissions from the residential sector accounted for 31.3%, 21.5%, 46.6% and 71.7% of the total PM2.5, NMVOC, BC and OC emissions, respectively. In addition, more than 90% of the total NH3 emissions originate from the agriculture sector, with 44.2% from fertilizer use and 47.7% from livestock. The spatial distribution results illustrate that air pollutant emissions are mainly distributed over the eastern and southern BTH regions. Beijing, Tianjin, Shijiazhuang, Tangshan and Handan are the major contributors of air pollutants. The major NMVOC species in the BTH region are ethylene, acetylene, ethane and toluene. Ethylene is the biggest contributor in Tianjin and Hebei. The largest contributor in Beijing is toluene. There is relatively low uncertainty in SO2 and NOX emission estimates, medium uncertainty in PM2.5, PM10 and CO emission estimates, and high uncertainties in VOC, NH3, BC and OC emission estimates. The proposed policy recommendations, based on the BTH 2013 emission inventory, would be helpful to develop strategies for air pollution control.

  13. Using surface water application to reduce 1,3-dichloropropene emission from soil fumigation.

    PubMed

    Gao, Suduan; Trout, Thomas J

    2006-01-01

    High emissions from soil fumigants increase the risk of detrimental impact on workers, bystanders, and the environment, and jeopardize future availability of fumigants. Efficient and cost-effective approaches to minimize emissions are needed. This study evaluated the potential of surface water application (or water seal) to reduce 1,3-dichloropropene (1,3-D) emissions from soil (Hanford sandy loam) columns. Treatments included dry soil (control), initial water application (8 mm of water just before fumigant application), initial plus a second water application (2.6 mm) at 12 h, initial plus two water applications (2.6 mm each time) at 12 and 24 h, standard high density polyethylene (HDPE) tarp, initial water application plus HDPE tarp, and virtually impermeable film (VIF) tarp. Emissions from the soil surface and distribution of 1,3-D in the soil-gas phase were monitored for 2 wk. Each water application abruptly reduced 1,3-D emission flux, which rebounded over a few hours. Peak emission rates were substantially reduced, but total emission reduction was small. Total fumigant emission was 51% of applied for the control, 46% for initial water application only, and 41% for the three intermittent water applications with the remaining water treatment intermediate. The HDPE tarp alone resulted in 45% emission, while initial water application plus HDPE tarp resulted in 38% emission. The most effective soil surface treatment was VIF tarp (10% emission). Surface water application can be as effective, and less expensive than, standard HDPE tarp. Frequent water application is required to substantially reduce emissions.

  14. Allometric scaling of UK urban emissions: interpretation and implications for air quality management

    NASA Astrophysics Data System (ADS)

    MacKenzie, Rob; Barnes, Matt; Whyatt, Duncan; Hewitt, Nick

    2016-04-01

    Allometry uncovers structures and patterns by relating the characteristics of complex systems to a measure of scale. We present an allometric analysis of air quality for UK urban settlements, beginning with emissions and moving on to consider air concentrations. We consider both airshed-average 'urban background' concentrations (cf. those derived from satellites for NO2) and local pollution 'hotspots'. We show that there is a strong and robust scaling (with respect to population) of the non-point-source emissions of the greenhouse gases carbon dioxide and methane, as well as the toxic pollutants nitrogen dioxide, PM2.5, and 1,3-butadiene. The scaling of traffic-related emissions is not simply a reflection of road length, but rather results from the socio-economic patterning of road-use. The recent controversy regarding diesel vehicle emissions is germane to our study but does not affect our overall conclusions. We next develop an hypothesis for the population-scaling of airshed-average air concentrations, with which we demonstrate that, although average air quality is expected to be worse in large urban centres compared to small urban centres, the overall effect is an economy of scale (i.e., large cities reduce the overall burden of emissions compared to the same population spread over many smaller urban settlements). Our hypothesis explains satellite-derived observations of airshed-average urban NO2 concentrations. The theory derived also explains which properties of nature-based solutions (urban greening) can make a significant contribution at city scale, and points to a hitherto unforeseen opportunity to make large cities cleaner than smaller cities in absolute terms with respect to their airshed-average pollutant concentration.

  15. Antioxidative response of olive to air emissions from tire burning under various zinc nutritional treatments.

    PubMed

    Hatami, Ashkan; Khoshgoftarmanesh, Amir Hossein

    2016-12-01

    Uniform 2-year old seedlings of a commercial olive cultivar (Olea europaea L., cv. Mahzam) were exposed or unexposed to the air pollution from the controlled burning of waste tires. The plants were supplied with zinc sulfate (ZnSO 4 ) or synthesized Zn(Glycine) 2 (Zn-Gly) or unsupplied with Zn. Exposure to air pollution resulted in oxidative damage to the olive, as indicated by the higher production of malondialdehyde (MDA). Supplement with Zn partly alleviated oxidative damage induced by the air emissions on the olive. Leaf concentration of MDA was higher at the active period of tire burning than that of the inactive one. Exposure to the emissions from tire burning significantly increased leaf ascorbate peroxidase (APX) activity. Supplement with Zn increased APX activity in plants exposed to the air pollution. According to the results, Zn nutrition was effective in alleviating oxidative stress induced by air pollution on the olive. APX seemed to play a significant role in alleviating oxidative damages induced by air emissions from tire burning on the olive; however, the role of other antioxidant enzymes should be addressed in future studies.

  16. Combustion and NOx emissions in deep-air-staging combustion of char in a circulating fluidized bed

    NASA Astrophysics Data System (ADS)

    Gong, Zhiqiang; Wang, Zhentong; Wang, Lei; Du, Aixun

    2017-10-01

    Combustion and NOx emissions in deep-air-staging (with higher level secondary air (SA) injection) combustion of char have been investigated in a CFB test rig. A good fluidized condition and uniform temperature distribution can be achieved with injection of higher level SA. NOx emission decreases with injection of higher level SA and the reduction effect is more obvious at higher temperature. NOx emission decreases with combustion temperature increasing for char combustion.

  17. Effect of fuel/air nonuniformity on nitric oxide emissions

    NASA Technical Reports Server (NTRS)

    Lyons, V. J.

    1979-01-01

    A flame tube combustor holding jet A fuel was used in experiments performed at a pressure of .3 Mpa and a reference velocity of 25 meters/second for three inlet air temperatures of 600, 700, and 800 K. The gas sample measurements were taken at locations 18 cm and 48 cm downstream of the perforated plate flameholder. Nonuniform fuel/air profiles were produced using a fuel injector by separately fueling the inner five fuel tubes and the outer ring of twelve fuel tubes. Six fuel/air profiles were produced for nominal overall equivalence ratios of .5 and .6. An example of three of three of these profiles and their resultant nitric oxide NOx emissions are presented. The uniform fuel/air profile cases produced uniform and relatively low profile levels. When the profiles were either center-peaked or edge-peaked, the overall mass-weighted nitric oxide levels increased.

  18. [Virus adsorption from batch experiments as influenced by air-water interface].

    PubMed

    Zhang, Hui; Zhao, Bing-zi; Zhang, Jia-bao; Zhang, Cong-zhi; Wang, Qiu-ying; Chen, Ji

    2007-12-01

    The presence of air-water interface in batch sorption experiments may result in inaccurate estimation of virus adsorption onto various soils. A batch sorption experiment was conducted to compare the adsorption results of MS2 in different soils under presence/absence of air-water interface. Soils with sterilization/nonterilization treatment were used. Virus recovery efficiency in a blank experiment (no soil) was also evaluated as affected by different amount of air-water interface. The presence of air-water interface altered the results of virus adsorption in different soils with different extent, with Sandy fluvo-aquic soil being the most considerably affected, followed by Red loam soil, and the least being Red clay soil, probably because of different soil properties associated with virus adsorption/inactivation. Soil sterilization resulted in more significant difference of virus adsorption onto the Sandy fluvo-aquic soil between the presence and absence of air-water interface, while a reduced difference was observed in the Red loam soil. The presence of air-water interface significantly decreased virus recovery efficiency, with the values being decreased with increase in the amount of air-water interface. Soil particles likely prohibit viruses from reaching the air-water interface or alter the forces at the solid-water-air interface so that the results from the blank experiment did not truly represent results from control blank, which probably resulted in adsorption difference between presence and absence of the air-water interface.

  19. VOC EMISSIONS FROM AN AIR FRESHENER IN THE INDOOR ENVIRONMENT

    EPA Science Inventory

    The paper describes results of tests, conducted in the U.S. Environmental Protection Agency (EPA) large chamber facility, that investigated emissions of volatile organic compounds (VOCS) from one electrical plug-in type air freshener with pine-scented refills. VOCs were measured ...

  20. Air quality impacts of implementing emission reduction strategies at southern California airports

    NASA Astrophysics Data System (ADS)

    Benosa, Guillem; Zhu, Shupeng; Kinnon, Michael Mac; Dabdub, Donald

    2018-07-01

    Reducing aviation emissions will be a major concern in the coming years, as the relative contribution of aviation to overall emissions is projected to increase in the future. The South Coast Air Basin of California (SoCAB) is an extreme nonattainment area with many airports located upwind of the most polluted regions in the basin. Techniques to reduce aviation emissions have been studied in the past, and strategies that can be implemented at airports include taxi-out times reduction, ground support equipment electrification and aviation biofuel implementation. These strategies have been analyzed only at the national scale, their effectiveness to improve air quality within the SoCAB given the local meteorology and chemical regimes is unclear. This work studies how the adoption of the techniques at commercial SoCAB airports affect ozone (O3) and fine particulate matter (PM2.5) concentrations. In addition, potential impacts on public exposure to PM2.5 and O3 resulting from changes in the concentration of these pollutants are estimated. In addition, the work calculates aviation emissions for each scenario and simulate the transport and atmospheric chemistry of the pollutants using the Community Multiscale Air Quality (CMAQ) model. The simultaneous application of all reduction strategies is projected to reduce the aviation-attributable population weighted ground-level PM2.5 by 36% in summer and 32% in winter. On the other hand, O3 increases by 16% in winter. Occurring mostly in densely populated areas, the decrease in ground-level PM2.5 would have a positive health impact and help the region achieve attainment of national ambient air quality standards.

  1. Thermodynamic and transport properties of air/water mixtures

    NASA Technical Reports Server (NTRS)

    Fessler, T. E.

    1981-01-01

    Subroutine WETAIR calculates properties at nearly 1,500 K and 4,500 atmospheres. Necessary inputs are assigned values of combinations of density, pressure, temperature, and entropy. Interpolation of property tables obtains dry air and water (steam) properties, and simple mixing laws calculate properties of air/water mixture. WETAIR is used to test gas turbine engines and components operating in relatively humid air. Program is written in SFTRAN and FORTRAN.

  2. Detection of Thermal Water Vapor Emission from W Hydrae

    NASA Technical Reports Server (NTRS)

    Neufeld, David A.; Chen, Wesley; Melnick, Gary J.; DeGraauw, Thijs; Feuchtgruber, Helmut; Harwitt, Martin

    1997-01-01

    We have detected four far-infrared emission lines of water vapor toward the evolved star W Hydrae, using the Short Wavelength Spectrometer (SWS) of the Infrared Space Observatory (ISO). This is the first detection of thermal water vapor emission from a circumstellar outflow.

  3. 75 FR 65067 - National Emission Standards for Hazardous Air Pollutant Emissions: Hard and Decorative Chromium...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-21

    ... non-air quality health and environmental impacts) and are commonly referred to as maximum achievable... process, stack, storage, or fugitive emissions point, (D) are design, equipment, work practice, or... combination of the above. CAA section 112(d)(2)(A)-(E). The MACT standard may take the form of a design...

  4. Performance analysis of underwater pump for water-air dual-use engine

    NASA Astrophysics Data System (ADS)

    Xia, Jun; Wang, Yun; Chen, Yu

    2017-10-01

    To make water-air dual-use engine work both in air and under water, the compressor of the engine should not only meet the requirements of air flight, but also must have the ability to work underwater. To verify the performance of the compressor when the water-air dual-use engine underwater propulsion mode, the underwater pumping water model of the air compressor is simulated by commercial CFD software, and the flow field analysis is carried out. The results show that conventional air compressors have a certain ability to work in the water environment, however, the blade has a great influence on the flow, and the compressor structure also affects the pump performance. Compressor can initially take into account the two modes of water and air. In order to obtain better performance, the structure of the compressor needs further improvement and optimization.

  5. Difficult colonoscopy: air, carbon dioxide, or water insufflation?

    PubMed Central

    Pandey, Vikas; Patel, Ruchir; Poddar, Prateik; Phadke, Aniruddha; Ingle, Meghraj; Sawant, Prabha

    2018-01-01

    Background/Aims This study aimed to compare tolerance to air, carbon dioxide, or water insufflation in patients with anticipated difficult colonoscopy (young, thin, obese individuals, and patients with prior abdominal surgery or irradiation). Methods Patients with body mass index (BMI) less than 18 kg/m2 or more than 30 kg/m2, or who had undergone previous abdominal or pelvic surgeries were randomized to air, carbon dioxide, or water insufflation during colonoscopy. The primary endpoint was cecal intubation with mild pain (less than 5 on visual analogue scale [VAS]), without use of sedation. Results The primary end point was achieved in 32.7%, 43.8%, and 84.9% of cases with air, carbon dioxide and water insufflation (P<0.001). The mean pain scores were 5.17, 4.72, and 3.93 on the VAS for air, carbon dioxide, and water insufflation (P<0.001). The cecal intubation rate or procedure time did not differ significantly between the 3 groups. Conclusions Water insufflation was superior to air or carbon dioxide for pain tolerance. This was seen in the subgroups with BMI <18 kg/m2 and the post-surgical group, but not in the group with BMI >30 kg/m2. PMID:29743844

  6. 14 CFR 1274.926 - Clean Air-Water Pollution Control Acts.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 5 2011-01-01 2010-01-01 true Clean Air-Water Pollution Control Acts. 1274... AGREEMENTS WITH COMMERCIAL FIRMS Other Provisions and Special Conditions § 1274.926 Clean Air-Water Pollution Control Acts. Clean Air-Water Pollution Control Acts July 2002 If this cooperative agreement or supplement...

  7. Characterization of process air emissions in automotive production plants.

    PubMed

    D'Arcy, J B; Dasch, J M; Gundrum, A B; Rivera, J L; Johnson, J H; Carlson, D H; Sutherland, J W

    2016-01-01

    During manufacturing, particles produced from industrial processes become airborne. These airborne emissions represent a challenge from an industrial hygiene and environmental standpoint. A study was undertaken to characterize the particles associated with a variety of manufacturing processes found in the auto industry. Air particulates were collected in five automotive plants covering ten manufacturing processes in the areas of casting, machining, heat treatment and assembly. Collection procedures provided information on air concentration, size distribution, and chemical composition of the airborne particulate matter for each process and insight into the physical and chemical processes that created those particles.

  8. Estimating criteria pollutant emissions using the California Regional Multisector Air Quality Emissions (CA-REMARQUE) model v1.0

    NASA Astrophysics Data System (ADS)

    Zapata, Christina B.; Yang, Chris; Yeh, Sonia; Ogden, Joan; Kleeman, Michael J.

    2018-04-01

    The California Regional Multisector Air Quality Emissions (CA-REMARQUE) model is developed to predict changes to criteria pollutant emissions inventories in California in response to sophisticated emissions control programs implemented to achieve deep greenhouse gas (GHG) emissions reductions. Two scenarios for the year 2050 act as the starting point for calculations: a business-as-usual (BAU) scenario and an 80 % GHG reduction (GHG-Step) scenario. Each of these scenarios was developed with an energy economic model to optimize costs across the entire California economy and so they include changes in activity, fuels, and technology across economic sectors. Separate algorithms are developed to estimate emissions of criteria pollutants (or their precursors) that are consistent with the future GHG scenarios for the following economic sectors: (i) on-road, (ii) rail and off-road, (iii) marine and aviation, (iv) residential and commercial, (v) electricity generation, and (vi) biorefineries. Properly accounting for new technologies involving electrification, biofuels, and hydrogen plays a central role in these calculations. Critically, criteria pollutant emissions do not decrease uniformly across all sectors of the economy. Emissions of certain criteria pollutants (or their precursors) increase in some sectors as part of the overall optimization within each of the scenarios. This produces nonuniform changes to criteria pollutant emissions in close proximity to heavily populated regions when viewed at 4 km spatial resolution with implications for exposure to air pollution for those populations. As a further complication, changing fuels and technology also modify the composition of reactive organic gas emissions and the size and composition of particulate matter emissions. This is most notably apparent through a comparison of emissions reductions for different size fractions of primary particulate matter. Primary PM2.5 emissions decrease by 4 % in the GHG-Step scenario vs

  9. Cellulose Products Manufacturing: National Emission Standards for Hazardous Air Pollutants (NESHAP)

    EPA Pesticide Factsheets

    Read the National Emission Standards for Hazardous Air Pollutants (NESHAP) for Cellulose Products Manufacturing, see the rule history for this Maximum Achievable Control Technology (MACT), and find Compliance help for this source.

  10. MEASUREMENT OF INDOOR AIR EMISSIONS FROM DRY-PROCESS PHOTOCOPY MACHINES

    EPA Science Inventory

    The article provides background information on indoor air emissions from office equipment, with emphasis on dry-process photocopy machines. The test method is described in detail along with results of a study to evaluate the test method using four dry-process photocopy machines. ...

  11. Air Monitoring of Emissions from the Fukushima Daiichi Reactor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McNaughton, Michael; Allen, Shannon P.; Archuleta, Debra C.

    2012-06-12

    In response to the disasters in Japan on March 11, 2011, and the subsequent emissions from Fukushima-Daiichi, we monitored the air near Los Alamos using four air-monitoring systems: the standard AIRNET samplers, the standard rad-NESHAP samplers, the NEWNET system, and high-volume air samplers. Each of these systems has advantages and disadvantages. In combination, they provide a comprehensive set of measurements of airborne radionuclides near Los Alamos during the weeks following March 11. We report air-monitoring measurements of the fission products released from the Fukushima-Daiichi nuclear-power-plant accident in 2011. Clear gamma-spectrometry peaks were observed from Cs-134, Cs-136, Cs-137, I-131, I132, Te-132,more » and Te-129m. These data, together with measurements of other radionuclides, are adequate for an assessment and assure us that radionuclides from Fukushima Daiichi did not present a threat to human health at or near Los Alamos. The data demonstrate the capabilities of the Los Alamos air-monitoring systems.« less

  12. Setting limits: Using air pollution thresholds to protect and restore US ecosystems

    USGS Publications Warehouse

    Fenn, Mark E.; Lambert, Kathleen F.; Blett, Tamara F.; Burns, Douglas A.; Pardo, Linda H.; Lovett, Gary M.; Haeuber, Richard A.; Evers, David C.; Driscoll, Charles T.; Jeffries, Dean S.

    2011-01-01

    More than four decades of research provide unequivocal evidence that sulfur, nitrogen, and mercury pollution have altered, and will continue to alter, our nation's lands and waters. The emission and deposition of air pollutants harm native plants and animals, degrade water quality, affect forest productivity, and are damaging to human health. Many air quality policies limit emissions at the source but these control measures do not always consider ecosystem impacts. Air pollution thresholds at which ecological effects are observed, such as critical loads, are effective tools for assessing the impacts of air pollution on essential ecosystem services and for informing public policy. U.S. ecosystems can be more effectively protected and restored by using a combination of emissions-based approaches and science-based thresholds of ecosystem damage.

  13. Fuel-cycle emissions for conventional and alternative fuel vehicles : an assessment of air toxics

    DOT National Transportation Integrated Search

    2000-08-01

    This report provides information on recent efforts to use the Greenhouse Gases, Regulated Emissions, and Energy Use in Transportation (GREET) fuel-cycle model to estimate air toxics emissions. GREET, developed at Argonne National Laboratory, currentl...

  14. Interrelationships of petiolar air canal architecture, water depth, and convective air flow in Nymphaea odorata (Nymphaeaceae).

    PubMed

    Richards, Jennifer H; Kuhn, David N; Bishop, Kristin

    2012-12-01

    Nymphaea odorata grows in water up to 2 m deep, producing fewer larger leaves in deeper water. This species has a convective flow system that moves gases from younger leaves through submerged parts to older leaves, aerating submerged parts. Petiolar air canals are the convective flow pathways. This study describes the structure of these canals, how this structure varies with water depth, and models how convective flow varies with depth. • Nymphaea odorata plants were grown at water depths from 30 to 90 cm. Lamina area, petiolar cross-sectional area, and number and area of air canals were measured. Field-collected leaves and leaves from juvenile plants were analyzed similarly. Using these data and data from the literature, we modeled how convective flow changes with water depth. • Petioles of N. odorata produce two central pairs of air canals; additional pairs are added peripherally, and succeeding pairs are smaller. The first three pairs account for 96% of air canal area. Air canals form 24% of petiolar cross-sectional area. Petiolar and air canal cross-sectional areas increase with water depth. Petiolar area scales with lamina area, but the slope of this relationship is lower in 90 cm water than at shallower depths. In our model, the rate of convective flow varied with depth and with the balance of influx to efflux leaves. • Air canals in N. odorata petioles increase in size and number in deeper water but at a decreasing amount in relation to lamina area. Convective flow also depends on the number of influx to efflux laminae.

  15. Improving the City-scale Emission Inventory of Anthropogenic Air Pollutants: A Case Study of Nanjing

    NASA Astrophysics Data System (ADS)

    Qiu, L.; Zhao, Y.; Xu, R.; Xie, F.; Wang, H.; Qin, H.; Wu, X.; Zhang, J.

    2014-12-01

    To evaluate the improvement of city-scale emission inventory, a high-resolution emission inventory of air pollutants for Nanjing is first developed combining detailed source information, and then justified through quantitative analysis with observations. The best available domestic emission factors and unit-/facility-based activity level data were compiled based on a thorough field survey on major emission sources. Totally 1089 individual emission sources were identified as point sources and all the emission-related parameters including burner type, combustion technology, fuel quality, and removal efficiency of pollution control devices, are carefully investigated and analyzed. Some new data such as detailed information of city fueling-gas stations, construction sites, monthly activity level, data from continuous emission monitoring systems and traffic flow information were combined to improve spatiotemporal distribution of this inventory. For SO2, NOX and CO, good spatial correlations were found between ground observation (9 state controlling air sampling sites in Nanjing) and city-scale emission inventory (R2=0.34, 0.38 and 0.74, respectively). For TSP, PM10 and PM2.5, however, poorer correlation was found due to relatively weaker accuracy in emission estimation and spatial distribution of road dust. The mixing ratios between specific pollutants including OC/EC, BC/CO and CO2/CO, are well correlated between those from ground observation and emission. Compared to MEIC (Multi-resolution Emission Inventory for China), there is a better spatial consistence between this city-scale emission inventory and NO2 measured by OMI (Ozone Monitoring Instrument). In particular, the city-scale emission inventory still correlated well with satellite observations (R2=0.28) while the regional emission inventory showed little correlation with satellite observations (R2=0.09) when grids containing power plants are excluded. It thus confirms the improvement of city-scale emission

  16. Atmospheric emissions and air quality impacts from natural gas production and use.

    PubMed

    Allen, David T

    2014-01-01

    The US Energy Information Administration projects that hydraulic fracturing of shale formations will become a dominant source of domestic natural gas supply over the next several decades, transforming the energy landscape in the United States. However, the environmental impacts associated with fracking for shale gas have made it controversial. This review examines emissions and impacts of air pollutants associated with shale gas production and use. Emissions and impacts of greenhouse gases, photochemically active air pollutants, and toxic air pollutants are described. In addition to the direct atmospheric impacts of expanded natural gas production, indirect effects are also described. Widespread availability of shale gas can drive down natural gas prices, which, in turn, can impact the use patterns for natural gas. Natural gas production and use in electricity generation are used as a case study for examining these indirect consequences of expanded natural gas availability.

  17. Air pollutant emissions from straw open burning: A case study in Tianjin

    NASA Astrophysics Data System (ADS)

    Guan, Yanan; Chen, Guanyi; Cheng, Zhanjun; Yan, Beibei; Hou, Li'an

    2017-12-01

    Straw open burning is a primary source of air pollution and difficult to forbid in China. To have a better understanding of the pollution status of straw open burning in Tianjin, an accurate pollutant emission inventory was established based on the county-level statistical data from 1996 to 2014 in Tianjin. Results showed that the emission of CO, VOCs, PM10, PM2.5, CH4, NOx, OC, SO2, NH3 and BC have decreased by 41.66%, 58.74%, 54.55%, 55.01%, 58.42%, 47.03%, 48.71%, 44.85%, 64.60%, 51.56% from 1996 to 2000, and then gradually increased by 44.05%, 53.48%, 59.43%, 59.49%, 51.24%, 55.05%, 53.09%, 22.73%, 56.25%, and 64.29% from 2000 to 2014, respectively. Spatially, counties of Wuqing, Baodi and Jixian were the largest contributors to the total emissions with the contribution of 25.98%, 22.69% and 18.87% respectively through the study period. The Monte Carlo simulation was also used to estimate the uncertainty and its confidence intervals of the pollutant emissions. The uncertainty of total pollutant emissions for each year is within ±80.35%. This study provides more accurate estimation for the pollutant emissions from straw open burning and reliable guidance for the policy formulation to improve the air quality in Tianjin.

  18. ESP 2.0: Improved method for projecting U.S. GHG and air pollution emissions through 2055

    EPA Science Inventory

    The Emission Scenario Projection (ESP) method is used to develop multi-decadal projections of U.S. Greenhouse Gas (GHG) and criteria pollutant emissions. The resulting future-year emissions can then translated into an emissions inventory and applied in climate and air quality mod...

  19. Influence of future anthropogenic emissions on climate, natural emissions, and air quality

    NASA Astrophysics Data System (ADS)

    Jacobson, Mark Z.; Streets, David G.

    2009-04-01

    This study examines the effects of future anthropogenic emissions on climate, and the resulting feedback to natural emissions and air quality. Speciated sector- and region-specific 2030 emission factors were developed to produce gas and particle emission inventories that followed Special Report on Emission Scenarios (SRES) A1B and B1 emission trajectories. Current and future climate model simulations were run, in which anthropogenic emission changes affected climate, which fed back to natural emissions from lightning (NO, NO2, HONO, HNO3, N2O, H2O2, HO2, CO), soils (dust, bacteria, NO, N2O, H2, CH4, H2S, DMS, OCS, CS2), the ocean (bacteria, sea spray, DMS, N2O, H2, CH4), vegetation (pollen, spores, isoprene, monoterpenes, methanol, other VOCs), and photosynthesis/respiration. New methods were derived to calculate lightning flash rates as a function of size-resolved collisions and other physical principles and pollen, spore, and bacteria emissions. Although the B1 scenario was "cleaner" than the A1B scenario, global warming increased more in the B1 scenario because much A1B warming was masked by additional reflective aerosol particles. Thus neither scenario is entirely beneficial from a climate and health perspective, and the best control measure is to reduce warming gases and warming/cooling particles together. Lightning emissions declined by ˜3% in the B1 scenario and ˜12% in the A1B scenario as the number of ice crystals, thus charge-separating bounceoffs, decreased. Net primary production increased by ˜2% in both scenarios. Emissions of isoprene and monoterpenes increased by ˜1% in the A1B scenario and 4-5% in the B1 scenario. Near-surface ozone increased by ˜14% in the A1B scenario and ˜4% in the B1 scenario, reducing ambient isoprene in the latter case. Gases from soils increased in both scenarios due to higher temperatures. Near-surface PM2.5 mass increased by ˜2% in the A1B scenario and decreased by ˜2% in the B1 scenario. The resulting 1.4% higher

  20. The impacts of reactive terpene emissions from plants on air quality in Las Vegas, Nevada

    NASA Astrophysics Data System (ADS)

    Papiez, Maria R.; Potosnak, Mark J.; Goliff, Wendy S.; Guenther, Alex B.; Matsunaga, Sou N.; Stockwell, William R.

    A three-part study was conducted to quantify the impact of landscaped vegetation on air quality in a rapidly expanding urban area in the arid southeastern United States. The study combines in situ, plant-level measurements, a spatial emissions inventory, and a photochemical box model. Maximum plant-level basal emission rates were moderate: 18.1 μgC gdw -1 h -1 ( Washingtonia spp., palms) for isoprene and 9.56 μgC gdw -1 h -1 ( Fraxinus velutina, Arizona ash) for monoterpenes. Sesquiterpene emission rates were low for plant species selected in this study, with no measurement exceeding 0.1 μgC gdw -1 h -1. The high ambient temperatures combined with moderate plant-level emission factors resulted in landscape emission factors that were low (250-640 μgC m -2 h -1) compared to more mesic environments (e.g., the southeastern United States). The Regional Atmospheric Chemistry Mechanism (RACM) was modified to include a new reaction pathway for ocimene. Using measured concentrations of anthropogenic hydrocarbons and other reactive air pollutants (NO x, ozone), the box model employing the RACM mechanism revealed that these modest emissions could have a significant impact on air quality. For a suburban location that was downwind of the urban core (high NO x; low anthropogenic hydrocarbons), biogenic terpenes increased time-dependent ozone production rates by a factor of 50. Our study demonstrates that low-biomass density landscapes emit sufficient biogenic terpenes to have a significant impact on regional air quality.

  1. Application of High Resolution Air-Borne Remote Sensing Observations for Monitoring NOx Emissions

    NASA Astrophysics Data System (ADS)

    Souri, A.; Choi, Y.; Pan, S.; Curci, G.; Janz, S. J.; Kowalewski, M. G.; Liu, J.; Herman, J. R.; Weinheimer, A. J.

    2017-12-01

    Nitrogen oxides (NOx=NO+NO2) are one of the air pollutants, responsible for the formation of tropospheric ozone, acid rain and particulate nitrate. The anthropogenic NOx emissions are commonly estimated based on bottom-up inventories which are complicated by many potential sources of error. One way to improve the emission inventories is to use relevant observations to constrain them. Fortunately, Nitrogen dioxide (NO2) is one of the most successful detected species from remote sensing. Although many studies have shown the capability of using space-borne remote sensing observations for monitoring emissions, the insufficient sample number and footprint of current measurements have introduced a burden to constrain emissions at fine scales. Promisingly, there are several air-borne sensors collected for NASA's campaigns providing high spatial resolution of NO2 columns. Here, we use the well-characterized NO2 columns from the Airborne Compact Atmospheric Mapper (ACAM) onboard NASA's B200 aircraft into a 1×1 km regional model to constrain anthropogenic NOx emissions in the Houston-Galveston-Brazoria area. Firstly, in order to incorporate the data, we convert the NO2 slant column densities to vertical ones using a joint of a radiative transfer model and the 1x1 km regional model constrained by P3-B aircraft measurements. After conducting an inverse modeling method using the Kalman filter, we find the ACAM observations are resourceful at mitigating the overprediction of model in reproducing NO2 on regular days. Moreover, the ACAM provides a unique opportunity to detect an anomaly in emissions leading to strong air quality degradation that is lacking in previous works. Our study provides convincing evidence that future geostationary satellites with high spatial and temporal resolutions will give us insights into uncertainties associated with the emissions at regional scales.

  2. Recommended Parameter Values for GENII Modeling of Radionuclides in Routine Air and Water Releases

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Snyder, Sandra F.; Arimescu, Carmen; Napier, Bruce A.

    The GENII v2 code is used to estimate dose to individuals or populations from the release of radioactive materials into air or water. Numerous parameter values are required for input into this code. User-defined parameters cover the spectrum from chemical data, meteorological data, agricultural data, and behavioral data. This document is a summary of parameter values that reflect conditions in the United States. Reasonable regional and age-dependent data is summarized. Data availability and quality varies. The set of parameters described address scenarios for chronic air emissions or chronic releases to public waterways. Considerations for the special tritium and carbon-14 modelsmore » are briefly addressed. GENIIv2.10.0 is the current software version that this document supports.« less

  3. An air quality emission inventory of offshore operations for the exploration and production of petroleum by the Mexican oil industry

    NASA Astrophysics Data System (ADS)

    Villasenor, R.; Magdaleno, M.; Quintanar, A.; Gallardo, J. C.; López, M. T.; Jurado, R.; Miranda, A.; Aguilar, M.; Melgarejo, L. A.; Palmerín, E.; Vallejo, C. J.; Barchet, W. R.

    An air quality screening study was performed to assess the impacts of emissions from the offshore operations of the oil and gas exploration and production by Mexican industry in the Campeche Sound, which includes the states of Tabasco and Campeche in southeast Mexico. The major goal of this study was the compilation of an emission inventory (EI) for elevated, boom and ground level flares, processes, internal combustion engines and fugitive emissions. This inventory is so far the most comprehensive emission register that has ever been developed for the Mexican petroleum industry in this area. The EI considered 174 offshore platforms, the compression station at Atasta, and the Maritime Ports at Dos Bocas and Cayo Arcas. The offshore facilities identified as potential emitters in the area were the following: (1) trans-shipment stations, (2) a maritime floating port terminal, (3) drilling platforms, (4) crude oil recovering platforms, (5) crude oil production platforms, (6) linking platforms, (7) water injection platforms, (8) pumping platforms, (9) shelter platforms, (10) telecommunication platforms, (11) crude oil measurement platforms, and (12) flaring platforms. Crude oil storage tanks, helicopters and marine ship tankers were also considered to have an EI accurate enough for air quality regulations and mesoscale modeling of atmospheric pollutants. Historical ambient data measure at two onshore petroleum facilities were analyzed to measure air quality impacts on nearby inhabited coastal areas, and a source-receptor relationship for flares at the Ixtoc marine complex was performed to investigate health-based standards for offshore workers. A preliminary air quality model simulation was performed to observe the transport and dispersion patterns of SO 2, which is the main pollutant emitted from the offshore platforms. The meteorological wind and temperature fields were generated with CALMET, a diagnostic meteorological model that used surface observations and upper

  4. Emission of pesticides into the air

    USGS Publications Warehouse

    Van Den, Berg; Kubiak, R.; Benjey, W.G.; Majewski, M.S.; Yates, S.R.; Reeves, G.L.; Smelt, J.H.; Van Der Linden, A. M. A.

    1999-01-01

    During and after the application of a pesticide in agriculture, a substantial fraction of the dosage may enter the atmosphere and be transported over varying distances downwind of the target. The rate and extent of the emission during application, predominantly as spray particle drift, depends primarily on the application method (equipment and technique), the formulation and environmental conditions, whereas the emission after application depends primarily on the properties of the pesticide, soils, crops and environmental conditions. The fraction of the dosage that misses the target area may be high in some cases and more experimental data on this loss term are needed for various application types and weather conditions. Such data are necessary to test spray drift models, and for further model development and verification as well. Following application, the emission of soil fumigants and soil incorporated pesticides into the air can be measured and computed with reasonable accuracy, but further model development is needed to improve the reliability of the model predictions. For soil surface applied pesticides reliable measurement methods are available, but there is not yet a reliable model. Further model development is required which must be verified by field experiments. Few data are available on pesticide volatilization from plants and more field experiments are also needed to study the fate processes on the plants. Once this information is available, a model needs to be developed to predict the volatilization of pesticides from plants, which, again, should be verified with field measurements. For regional emission estimates, a link between data on the temporal and spatial pesticide use and a geographical information system for crops and soils with their characteristics is needed.

  5. Maryland's efforts to develop regulations creating an air emissions offset trading program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guy, D.M.; Zaw-Mon, M.

    1999-07-01

    Under the federal Clean Air Act's New Source Review program, many companies located in or planning to locate in areas that do not meet federal air quality standards or in the Northeast Ozone Transport Region (northern Virginia to Maine) must obtain emission reductions (called offsets) of volatile organic compounds and nitrogen oxides that are greater than the new emissions that will be released. This offset requirement allows growth in industry while protecting air quality against deterioration. Despite the federal offset requirement, a formal banking and trading program is not mandated by the Clean Air Act Amendments of 1990. Still, amore » mechanism is needed to ensure that emission reduction credits (ERCs) are available for sources to use to meet the offset requirement. Currently, Maryland does not have regulations covering the sale or transfer of ERCs from one facility to another. Maryland works with industry on a case-by-case basis to identify potential sources of ERCs and to assist in obtaining them. Then, the offset requirement and the ERCs used to meet the offsets are incorporated into individual permits using various permitting mechanisms. Desiring certainty and stability in the banking and trading process, Maryland's business community has pressed for regulations to formalize Maryland's procedures. Working over several years through a stakeholder process, Maryland has developed concepts for a trading program and a draft regulation. This paper describes Maryland's current case-by-case banking and trading procedure and traces efforts to develop a regulation to formalize the process. The paper discusses complex policy issues related to establishing a banking and trading program, describes the principal elements of Maryland's draft regulation, and summarizes elements of other states' emissions banking and trading programs.« less

  6. EMISSION OF ORGANIC HAZARDOUS AIR POLLUTANTS FROM THE COMBUSION OF PULVERIZED COAL IN A SMALL-SCALE COMBUSTOR

    EPA Science Inventory

    The emissions of hazardous air pollutants (HAPs) from the combustion of pulverized coal have become an important issue in light of the requirements of Title I11 of the 1990 Clean Air Act Amendments, which impose emission limits on 189 compounds and compound classes. Although pre...

  7. [Summer Greenhouse Gases Exchange Flux Across Water-air Interface in Three Water Reservoirs Located in Different Geologic Setting in Guangxi, China].

    PubMed

    Li, Jian-hong; Pu, Jun-bing; Sun, Ping-an; Yuan, Dao-xian; Liu, Wen; Zhang, Tao; Mo, Xue

    2015-11-01

    Due to special hydrogeochemical characteristics of calcium-rich, alkaline and DIC-rich ( dissolved inorganic carbon) environment controlled by the weathering products from carbonate rock, the exchange characteristics, processes and controlling factors of greenhouse gas (CO2 and CH4) across water-air interface in karst water reservoir show obvious differences from those of non-karst water reservoir. Three water reservoirs (Dalongdong reservoir-karst reservoir, Wulixia reservoir--semi karst reservoir, Si'anjiang reservoir-non-karst reservoir) located in different geologic setting in Guangxi Zhuang Autonomous Region, China were chosen to reveal characteristics and controlling factors of greenhouse gas exchange flux across water-air interface. Two common approaches, floating chamber (FC) and thin boundary layer models (TBL), were employed to research and contrast greenhouse gas exchange flux across water-air interface from three reservoirs. The results showed that: (1) surface-layer water in reservoir area and discharging water under dam in Dalongdong water reservoir were the source of atmospheric CO2 and CH4. Surface-layer water in reservoir area in Wulixia water reservoir was the sink of atmospheric CO2 and the source of atmospheric CH4, while discharging water under dam was the source of atmospheric CO2 and CH4. Surface-layer water in Si'anjiang water reservoir was the sink of atmospheric CO2 and source of atmospheric CH4. (2) CO2 and CH4 effluxes in discharging water under dam were much more than those in surface-layer water in reservoir area regardless of karst reservoir or non karst reservoir. Accordingly, more attention should be paid to the CO2 and CH4 emission from discharging water under dam. (3) In the absence of submerged soil organic matters and plants, the difference of CH4 effluxes between karst groundwater-fed reservoir ( Dalongdong water reservoir) and non-karst area ( Wulixia water reservoir and Si'anjiang water reservoir) was less. However, CO2

  8. 21 CFR 874.1800 - Air or water caloric stimulator.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Air or water caloric stimulator. 874.1800 Section 874.1800 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES EAR, NOSE, AND THROAT DEVICES Diagnostic Devices § 874.1800 Air or water caloric stimulator. (a) Identification. An air or wate...

  9. Full-scale chamber investigation and simulation of air freshener emissions in the presence of ozone.

    PubMed

    Liu, Xiaoyu; Mason, Mark; Krebs, Kenneth; Sparks, Leslie

    2004-05-15

    Volatile organic compound (VOC) emissions from one electrical plug-in type of pine-scented air freshener and their reactions with O3 were investigated in the U.S. Environmental Protection Agency indoor air research large chamber facility. Ozone was generated from a device marketed as an ozone generator air cleaner. Ozone and oxides of nitrogen concentrations and chamber conditions such as temperature, relative humidity, pressure, and air exchange rate were controlled and/or monitored. VOC emissions and some of the reaction products were identified and quantified. Source emission models were developed to predict the time/concentration profiles of the major VOCs (limonene, alpha-pinene, beta-pinene, 3-carene, camphene, benzyl propionate, benzyl alcohol, bornyl acetate, isobornyl acetate, and benzaldehyde) emitted bythe air freshener. Gas-phase reactions of VOCs from the air freshener with O3 were simulated by a photochemical kinetics simulation system using VOC reaction mechanisms and rate constants adopted from the literature. The concentration-time predictions were in good agreement with the data for O3 and VOCs emitted from the air freshener and with some of the primary reaction products. Systematic differences between the predictions and the experimental results were found for some species. Poor understanding of secondary reactions and heterogeneous chemistry in the chamber is the likely cause of these differences. The method has the potential to provide data to predict the impact of O3/VOC interactions on indoor air quality.

  10. Reducing air pollutant emissions at airports by controlling aircraft ground operations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gelinas, C.G.; Fan, H.S.L.

    1979-02-01

    Potential reductions in air pollutant emissions were determined for four stategies to control aircraft ground operations at two case study airports, Los Angeles and San Francisco International Airports. Safety, cost, and fuel savings associated with strategy implementation were examined. Two strategies, aircraft towing and shutdown of one engine during taxi operations, provided significant emission reductions. However, there are a number of safety problems associated with aircraft towing. The shutdown of one engine while taxiing was found to be the most viable strategy because of substantial emission reductions, cost benefits resulting from fuel savings, and no apparent safety problems.

  11. National Emission Standards for Hazardous Air Pollutants for Reciprocating Internal Combustion Engines

    EPA Pesticide Factsheets

    This page contains the current National Emission Standards for Hazardous Air Pollutants (NESHAP) for Reciprocating Internal Combustion Engines and additional information regarding rule compliance and implementation.

  12. High-pressure combustor exhaust emissions with improved air-atomizing and conventional pressure-atomizing fuel nozzles

    NASA Technical Reports Server (NTRS)

    Ingebo, R. D.; Norgren, C. T.

    1973-01-01

    A high-pressure combustor segment 0.456 meter (18 in.) long with a maximum cross section of 0.153 by 0.305 meter (6 by 12 in.) was tested with specially designed air-atomizing and conventional pressure-atomizing fuel nozzles at inlet-air temperatures of 340 to 755 k (610 deg to 1360 R), reference velocities of 12.4 to 26.1 meters per second (41 to 86 ft/sec), and fuel-air ratios of 0.008 to 0.020. Increasing inlet-air pressure from 4 to 20 atmospheres generally increased smoke number and nitric oxide, but decreased carbon monoxide and unburned hydrocarbon concentrations with air-atomizing and pressure-atomizing nozzles. Emission indexes for carbon monoxide and unburned hydrocarbons were lower at 4, 10, and 20 atmospheres, and nitric oxide emission indexes were lower at 10 and 20 atmospheres with air-atomizing than with pressure-atomizing nozzles.

  13. 77 FR 37361 - National Emission Standards for Hazardous Air Pollutants for Reciprocating Internal Combustion...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-21

    ... National Emission Standards for Hazardous Air Pollutants for Reciprocating Internal Combustion Engines; New Source Performance Standards for Stationary Internal Combustion Engines AGENCY: Environmental Protection... Standards for Hazardous Air Pollutants for Reciprocating Internal Combustion Engines; New Source Performance...

  14. Modeling Study on Air Quality Improvement due to Mobile Source Emission control Plan in Seoul Metropolitan Area

    NASA Astrophysics Data System (ADS)

    Kim, Y. J.; Sunwoo, Y.; Hwang, I.; Song, S.; Sin, J.; Kim, D.

    2015-12-01

    A very high population and corresponding high number of vehicles in the Seoul Metropolitan Area (SMA) are aggravating the air quality of this region. The Korean government continues to make concerted efforts to improve air quality. One of the major policies that the Ministry of Environment of Korea enforced is "The Special Act for Improvement of Air Quality in SMA" and "The 1st Air Quality Management Plan of SMA". Mobile Source emission controls are an important part of the policy. Thus, it is timely to evaluate the air quality improvement due to the controls. Therefore, we performed a quantitative analysis of the difference in air quality using the Community Multiscale Air Quality (CMAQ) model and December, 2011 was set as the target period to capture the impact of the above control plans. We considered four fuel-type vehicle emission scenarios and compared the air quality improvement differences between them. The scenarios are as follows: no-control, gasoline vehicle control only, diesel vehicle control only, and control of both; utilizing the revised mobile source emissions from the Clean Air Policy Support System (CAPSS), which is the national emission inventory reflecting current policy.In order to improve the accuracy of the modeling data, we developed new temporal allocation coefficients based on traffic volume observation data and spatially reallocated the mobile source emissions using vehicle flow survey data. Furthermore, we calculated the PM10 and PM2.5 emissions of gasoline vehicles which is omitted in CAPSS.The results of the air quality modeling shows that vehicle control plans for both gasoline and diesel lead to a decrease of 0.65ppb~8.75ppb and 0.02㎍/㎥~7.09㎍/㎥ in NO2 and PM10 monthly average concentrations, respectively. The large percentage decreases mainly appear near the center of the metropolis. However, the largest NO2 decrease percentages are found in the northeast region of Gyeonggi-do, which is the province that surrounds the

  15. Influence of water depth on the sound generated by air-bubble vibration in the water musical instrument

    NASA Astrophysics Data System (ADS)

    Ohuchi, Yoshito; Nakazono, Yoichi

    2014-06-01

    We have developed a water musical instrument that generates sound by the falling of water drops within resonance tubes. The instrument can give people who hear it the healing effect inherent in the sound of water. The sound produced by falling water drops arises from air- bubble vibrations. To investigate the impact of water depth on the air-bubble vibrations, we conducted experiments at varying values of water pressure and nozzle shape. We found that air-bubble vibration frequency does not change at a water depth of 50 mm or greater. Between 35 and 40 mm, however, the frequency decreases. At water depths of 30 mm or below, the air-bubble vibration frequency increases. In our tests, we varied the nozzle diameter from 2 to 4 mm. In addition, we discovered that the time taken for air-bubble vibration to start after the water drops start falling is constant at water depths of 40 mm or greater, but slower at depths below 40 mm.

  16. Constraining the uncertainty in emissions over India with a regional air quality model evaluation

    NASA Astrophysics Data System (ADS)

    Karambelas, Alexandra; Holloway, Tracey; Kiesewetter, Gregor; Heyes, Chris

    2018-02-01

    To evaluate uncertainty in the spatial distribution of air emissions over India, we compare satellite and surface observations with simulations from the U.S. Environmental Protection Agency (EPA) Community Multi-Scale Air Quality (CMAQ) model. Seasonally representative simulations were completed for January, April, July, and October 2010 at 36 km × 36 km using anthropogenic emissions from the Greenhouse Gas-Air Pollution Interaction and Synergies (GAINS) model following version 5a of the Evaluating the Climate and Air Quality Impacts of Short-Lived Pollutants project (ECLIPSE v5a). We use both tropospheric columns from the Ozone Monitoring Instrument (OMI) and surface observations from the Central Pollution Control Board (CPCB) to closely examine modeled nitrogen dioxide (NO2) biases in urban and rural regions across India. Spatial average evaluation with satellite retrievals indicate a low bias in the modeled tropospheric column (-63.3%), which reflects broad low-biases in majority non-urban regions (-70.1% in rural areas) across the sub-continent to slightly lesser low biases reflected in semi-urban areas (-44.7%), with the threshold between semi-urban and rural defined as 400 people per km2. In contrast, modeled surface NO2 concentrations exhibit a slight high bias of +15.6% when compared to surface CPCB observations predominantly located in urban areas. Conversely, in examining extremely population dense urban regions with more than 5000 people per km2 (dense-urban), we find model overestimates in both the column (+57.8) and at the surface (+131.2%) compared to observations. Based on these results, we find that existing emission fields for India may overestimate urban emissions in densely populated regions and underestimate rural emissions. However, if we rely on model evaluation with predominantly urban surface observations from the CPCB, comparisons reflect model high biases, contradictory to the knowledge gained using satellite observations. Satellites thus

  17. Effect of water temperature and air stream velocity on performance of direct evaporative air cooler for thermal comfort

    NASA Astrophysics Data System (ADS)

    Aziz, Azridjal; Mainil, Rahmat Iman; Mainil, Afdhal Kurniawan; Listiono, Hendra

    2017-01-01

    The aim of this work was to determine the effects of water temperature and air stream velocity on the performance of direct evaporative air cooler (DEAC) for thermal comfort. DEAC system requires the lower cost than using vapor compression refrigeration system (VCRS), because VCRS use a compressor to circulate refrigerant while DEAC uses a pump for circulating water in the cooling process to achieve thermal comfort. The study was conducted by varying the water temperature (10°C, 20°C, 30°C, 40°C, and 50°C) at different air stream velocity (2,93 m/s, 3.9 m/s and 4,57 m/s). The results show that the relative humidity (RH) in test room tends to increase with the increasing of water temperature, while on the variation of air stream velocity, RH remains constant at the same water temperature, because the amount of water that evaporates increase with the increasing water temperature. The cooling effectiveness (CE) increase with the increasing of air stream velocity where the higher CE was obtained at lower water temperature (10°C) with high air velocity (4,57m/s). The lower room temperature (26°C) was achieved at water temperature 10°C and air stream velocity 4.57 m/s with the relative humidity 85,87%. DEAC can be successfully used in rooms that have smoothly air circulation to fulfill the indoor thermal comfort.

  18. Emissions of organic compounds from produced water ponds III: Mass-transfer coefficients, composition-emission correlations, and contributions to regional emissions.

    PubMed

    Mansfield, Marc L; Tran, Huy N Q; Lyman, Seth N; Bowers, Richard L; Smith, Ann P; Keslar, Cara

    2018-06-15

    A common method for treating the aqueous phase (produced water) brought to the surface along with oil and natural gas is to discharge it into surface impoundments, also known as produced water ponds. Here we analyze data on the concentration of organic compounds in the water and on the flux of the same compounds into the atmosphere. Flux data extending from about 5 × 10 -2 to 10 +3 mg m -2 h -1 are consistent with mass-transfer laws given by the WATER9 semi-empirical algorithm, although empirical data display a noise level of about one order of magnitude and predictions by WATER9 are biased high. The data suggest partitioning between hydrocarbons in aqueous solution and in suspension, especially at higher overall concentrations. Salinity of the produced water does not have a detectable effect on hydrocarbon fluxes. Recently impounded waters are stronger emitters of hydrocarbons, while emissions of older waters are dominated by CO 2 . This aging effect can be explained by assuming, first, poor vertical mixing in the ponds, and second, gradual oxidation of hydrocarbons to CO 2 . Our measurements account for about 25% of the produced water ponds in the Uinta Basin, Eastern Utah, and when extrapolated to all ponds in the basin, account for about 4% to 14% of all organic compound emissions by the oil and natural gas sector of the basin, depending on the emissions inventory, and about 13% and 58%, respectively, of emissions of aromatics and alcohols. Copyright © 2018 Elsevier B.V. All rights reserved.

  19. Emission of poly and perfluoroalkyl substances, UV-filters and siloxanes to air from wastewater treatment plants.

    PubMed

    Shoeib, Mahiba; Schuster, Jasmin; Rauert, Cassandra; Su, Ky; Smyth, Shirley-Anne; Harner, Tom

    2016-11-01

    The potential of wastewater treatment plants (WWTPs) to act as sources of poly and perfluoroalkyl substances (PFASs), volatile methyl siloxanes (VMSs) and organic UV-filters to the atmosphere was investigated. Target compounds included: PFASs (fluorotelomer alcohols (FTOHs), perfluorooctane sulfonamides/sulfonamidoethanols (FOSAs/FOSEs), perfluroalkyl sulfonic acids (PFSAs) and perfluroalkyl carboxylic acids (PFCAs)), cyclic VMSs (D3 to D6), linear VMSs (L3 to L5) and eight UV-filters. Emissions to air were assessed at eight WWTPs using paired sorbent-impregnated polyurethane foam passive air samplers, deployed during summer 2013 and winter 2014. Samplers were deployed on-site above the active tank and off-site as a reference. Several types of WWTPs were investigated: secondary activated sludge in urban areas (UR-AS), secondary extended aeration in towns (TW-EA) and facultative lagoons in rural areas (RU-LG). The concentrations of target compounds in air were ∼1.7-35 times higher on-site compared to the corresponding off-site location. Highest concentrations in air were observed at UR-AS sites while the lowest were at RU-LG. Higher air concentrations (∼2-9 times) were observed on-site during summer compared to winter, possibly reflecting enhanced volatilization due to higher wastewater temperatures or differences in influent wastewater concentrations. A significant positive correlation was obtained between concentrations in air and WWTP characteristics (influent flow rate and population in the catchment of the WWTP); whereas a weak negative correlation was obtained with hydraulic retention time. Emissions to air were estimated using a simplified dispersion model. Highest emissions to air were seen at the UR-AS locations. Emissions to air (g/year/tank) were highest for VMSs (5000-112,000) followed by UV-filters (16-2000) then ΣPFASs (10-110). Copyright © 2016. Published by Elsevier Ltd.

  20. 15 CFR 923.45 - Air and water pollution control requirements.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 15 Commerce and Foreign Trade 3 2010-01-01 2010-01-01 false Air and water pollution control....45 Air and water pollution control requirements. The program must incorporate, by reference or otherwise, all requirements established by the Federal Water Pollution Control Act, as amended (Clean Water...

  1. 15 CFR 923.45 - Air and water pollution control requirements.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 15 Commerce and Foreign Trade 3 2011-01-01 2011-01-01 false Air and water pollution control....45 Air and water pollution control requirements. The program must incorporate, by reference or otherwise, all requirements established by the Federal Water Pollution Control Act, as amended (Clean Water...

  2. 15 CFR 923.45 - Air and water pollution control requirements.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 15 Commerce and Foreign Trade 3 2014-01-01 2014-01-01 false Air and water pollution control....45 Air and water pollution control requirements. The program must incorporate, by reference or otherwise, all requirements established by the Federal Water Pollution Control Act, as amended (Clean Water...

  3. 15 CFR 923.45 - Air and water pollution control requirements.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 15 Commerce and Foreign Trade 3 2013-01-01 2013-01-01 false Air and water pollution control....45 Air and water pollution control requirements. The program must incorporate, by reference or otherwise, all requirements established by the Federal Water Pollution Control Act, as amended (Clean Water...

  4. Prospective randomized trial compares suction versus water seal for air leaks.

    PubMed

    Cerfolio, R J; Bass, C; Katholi, C R

    2001-05-01

    Surgeons treat air leaks differently. Our goal was to evaluate whether it is better to place chest tubes on suction or water seal for stopping air leaks after pulmonary surgery. A second goal was to evaluate a new classification system for air leaks that we developed. Patients were prospectively randomized before surgery to receive suction or water seal to their chest tubes on postoperative day (POD) #2. Air leaks were described and quantified daily by a classification system and a leak meter. The air-leak meter scored leaks from 1 (least) to 7 (greatest). The group randomized to water seal stayed on water seal unless a pneumothorax developed. On POD #2, 33 of 140 patients had an air leak. Eighteen patients had been preoperatively randomized to water seal and 15 to suction. Air leaks resolved in 12 (67%) of the water seal patients by the morning of POD #3. All 6 patients whose air leak did not stop had a leak that was 4/7 or greater (p < 0.0001) on the leak meter. Of the 15 patients randomized to suction, only 1 patient's air leak (7%) resolved by the morning of POD #3. The randomization aspect of the trial was ended and statistical analysis showed water seal was superior (p = 0.001). The remaining 14 patients were then placed to water seal and by the morning of POD #4, 13 patients' leaks had stopped. Of the 32 total patients placed to seal, 7 (22%) developed a pneumothorax and 6 of these 7 patients had leaks that were 4/7 or greater (p = 0.001). Placing chest tubes on water seal seems superior to wall suction for stopping air leaks after pulmonary resection. However, water seal does not stop expiratory leaks that are 4/7 or greater. Pneumothorax may occur when chest tubes are placed on seal with leaks this large.

  5. IMPROVING EMISSION INVENTORIES FOR EFFECTIVE AIR-QUALITY MANAGMENT ACROSS NORTH AMERICA - A NARSTO ASSESSMENT

    EPA Science Inventory

    The NARSTO Ozone and Particulate Matter Assessments emphasized that emission inventories are critical to the success of air quality management programs and that emissions inventories in Canada, Mexico, and the United States need improvement to meet expectations for quality, timel...

  6. IMPROVING EMISSION INVENTORIES FOR EFFECTIVE AIR-QUALITY MANAGEMENT ACROSS NORTH AMERICA - A NARSTO ASSESSMENT

    EPA Science Inventory

    The NARSTO Ozone and Particulate Matter Assessments emphasized that emission inventories are critical to the success of air quality management programs and that emissions inventories in Canada, Mexico, and the United States need improvement to meet expectations for quality, timel...

  7. Emission of dimers from a free surface of heated water

    NASA Astrophysics Data System (ADS)

    Bochkarev, A. A.; Polyakova, V. I.

    2014-09-01

    The emission rate of water dimers from a free surface and a wetted solid surface in various cases was calculated by a simplified Monte Carlo method with the use of the binding energy of water molecules. The binding energy of water molecules obtained numerically assuming equilibrium between the free surface of water and vapor in the temperature range of 298-438 K corresponds to the coordination number for liquid water equal to 4.956 and is close to the reference value. The calculation results show that as the water temperature increases, the free surface of water and the wetted solid surface become sources of free water dimers. At a temperature of 438 K, the proportion of dimers in the total flow of water molecules on its surface reaches 1%. It is found that in the film boiling mode, the emission rate of dimers decreases with decreasing saturation vapor. Two mechanisms of the emission are described.

  8. 78 FR 29815 - Control of Air Pollution From Motor Vehicles: Tier 3 Motor Vehicle Emission and Fuel Standards

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-21

    ...This action would establish more stringent vehicle emissions standards and reduce the sulfur content of gasoline beginning in 2017, as part of a systems approach to addressing the impacts of motor vehicles and fuels on air quality and public health. The proposed gasoline sulfur standard would make emission control systems more effective for both existing and new vehicles, and would enable more stringent vehicle emissions standards. The proposed vehicle standards would reduce both tailpipe and evaporative emissions from passenger cars, light-duty trucks, medium-duty passenger vehicles, and some heavy-duty vehicles. This would result in significant reductions in pollutants such as ozone, particulate matter, and air toxics across the country and help state and local agencies in their efforts to attain and maintain health-based National Ambient Air Quality Standards. Motor vehicles are an important source of exposure to air pollution both regionally and near roads. These proposed vehicle standards are intended to harmonize with California's Low Emission Vehicle program, thus creating a federal vehicle emissions program that would allow automakers to sell the same vehicles in all 50 states. The proposed vehicle standards would be implemented over the same timeframe as the greenhouse gas/fuel efficiency standards for light-duty vehicles, as part of a comprehensive approach toward regulating emissions from motor vehicles.

  9. Air Emission Reduction Benefits of Biogas Electricity Generation at Municipal Wastewater Treatment Plants.

    PubMed

    Gingerich, Daniel B; Mauter, Meagan S

    2018-02-06

    Conventional processes for municipal wastewater treatment facilities are energy and materially intensive. This work quantifies the air emission implications of energy consumption, chemical use, and direct pollutant release at municipal wastewater treatment facilities across the U.S. and assesses the potential to avoid these damages by generating electricity and heat from the combustion of biogas produced during anaerobic sludge digestion. We find that embedded and on-site air emissions from municipal wastewater treatment imposed human health, environmental, and climate (HEC) damages on the order of $1.63 billion USD in 2012, with 85% of these damages attributed to the estimated consumption of 19 500 GWh of electricity by treatment processes annually, or 0.53% of the US electricity demand. An additional 11.8 million tons of biogenic CO 2 are directly emitted by wastewater treatment and sludge digestion processes currently installed at plants. Retrofitting existing wastewater treatment facilities with anaerobic sludge digestion for biogas production and biogas-fueled heat and electricity generation has the potential to reduce HEC damages by up to 24.9% relative to baseline emissions. Retrofitting only large plants (>5 MGD), where biogas generation is more likely to be economically viable, would generate HEC benefits of $254 annually. These findings reinforce the importance of accounting for use-phase embedded air emissions and spatially resolved marginal damage estimates when designing sustainable infrastructure systems.

  10. Ship emissions and the use of current air cleaning technology: contributions to air pollution and acidification in the Baltic Sea

    NASA Astrophysics Data System (ADS)

    Claremar, Björn; Haglund, Karin; Rutgersson, Anna

    2017-10-01

    The shipping sector is a significant contributor to emissions of air pollutants in marine and coastal regions. In order to achieve sustainable shipping, primarily through new regulations and techniques, greater knowledge of dispersion and deposition of air pollutants is required. Regional model calculations of the dispersion and concentration of sulfur, nitrogen, and particulate matter, as well as deposition of oxidized sulfur and nitrogen from the international maritime sector in the Baltic Sea and the North Sea, have been made for the years 2011 to 2013. The contribution from shipping is highest along shipping lanes and near large ports for concentration and dry deposition. Sulfur is the most important pollutant coupled to shipping. The contribution of both SO2 concentration and dry deposition of sulfur represented up to 80 % of the total in some regions. WHO guidelines for annual concentrations were not trespassed for any analysed pollutant, other than PM2.5 in the Netherlands, Belgium, and central Poland. However, due to the resolution of the numerical model, 50 km × 50 km, there may be higher concentrations locally close to intense shipping lanes. Wet deposition is more spread and less sensitive to model resolution. The contribution of wet deposition of sulfur and nitrogen from shipping was up to 30 % of the total wet deposition. Comparison of simulated to measured concentration at two coastal stations close to shipping lanes showed some underestimations and missed maximums, probably due to resolution of the model and underestimated ship emissions. A change in regulation for maximum sulfur content in maritime fuel, in 2015 from 1 to 0.1 %, decreases the atmospheric sulfur concentration and deposition significantly. However, due to costs related to refining, the cleaning of exhausts through scrubbers has become a possible economic solution. Open-loop scrubbers meet the air quality criteria but their consequences for the marine environment are largely unknown

  11. River Gardens Intermediate-Care Facility water-to-air heating and air-conditioning demonstration project. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, R.C.

    An integrated system of heat pumps is used to reject heat into or extract heat from circulating water from a shallow well adjacent to the river to demonstrate the efficiency and fuel cost savings of water-to-air heat pumps, without the expense of drilling a deep well. Water is returned unpolluted to the Guadalupe River and is circulated through a five-building complex at River Gardens Intermediate Care Facility for the Mentally Retarded in New Braunfels, Texas. The water is used as a heat source or sink for 122 heat pumps providing space heating and cooling, and for refrigeration and freezer units.more » The system was not installed as designed, which resulted in water pumping loads being higher than the original design. Electrical consumption for pumping water represented 36 to 37% of system electrical consumption. Without the water pumping load, the water-to-air system was an average of 25% more efficient in heating than a comparable air-to-air unit with resistance heating. With water pumping load included, the installed system averaged 17% less efficient in cooling and 19% more efficient in heating than the comparable unit.« less

  12. Role of air-water interfaces in colloid transport in porous media: A review

    NASA Astrophysics Data System (ADS)

    Flury, Markus; Aramrak, Surachet

    2017-07-01

    Air-water interfaces play an important role in unsaturated porous media, giving rise to phenomena like capillarity. Less recognized and understood are interactions of colloids with the air-water interface in porous media and the implications of these interactions for fate and transport of colloids. In this review, we discuss how colloids, both suspended in the aqueous phase and attached at pore walls, interact with air-water interfaces in porous media. We discuss the theory of colloid/air-water interface interactions, based on the different forces acting between colloids and the air-water interface (DLVO, hydrophobic, capillary forces) and based on thermodynamic considerations (Gibbs free energy). Subsurface colloids are usually electrostatically repelled from the air-water interface because most subsurface colloids and the air-water are negatively charged. However, hydrophobic interactions can lead to attraction to the air-water interface. When colloids are at the air-water interface, capillary forces are usually dominant over other forces. Moving air-water interfaces are effective in mobilizing and transporting colloids from surfaces. Thermodynamic considerations show that, for a colloid, the air-water interface is the favored state as compared with the suspension phase, except for hydrophilic colloids in the nanometer size range. Experimental evidence indicates that colloid mobilization in soils often occurs through macropores, although matrix transport is also prevalent in absence of macropores. Moving air-water interfaces, e.g., occurring during infiltration, imbibition, or drainage, have been shown to scour colloids from surfaces and translocate colloids. Colloids can also be pinned to surfaces by thin water films and capillary menisci at the air-water-solid interface line, causing colloid retention and immobilization. Air-water interfaces thus can both mobilize or immobilize colloids in porous media, depending on hydrodynamics and colloid and surface

  13. Effect of Air Temperature and Relative Humidity at Various Fuel-Air Ratios on Exhaust Emissions on a Per-Mode Basis of an AVCO Lycoming 0-320 Diad Light Aircraft Engine: Volume 1: Results and Plotted Data

    NASA Technical Reports Server (NTRS)

    Skorobatckyi, M.; Cosgrove, D. V.; Meng, P. R.; Kempe, E. E., Jr.

    1978-01-01

    A carbureted four cylinder air cooled 0-320 DIAD Lycoming aircraft engine was tested to establish the effects of air temperature and humidity at various fuel-air ratios on the exhaust emissions on a per-mode basis. The test conditions include carburetor lean out at air temperatures of 50, 59, 80, and 100 F at relative humidities of 0, 30, 60, and 80 percent. Temperature humidity effects at the higher values of air temperature and relative humidity tested indicated that the HC and CO emissions increased significantly, while the NOx emissions decreased. Even at a fixed fuel air ratio, the HC emissions increase and the NOx emissions decrease at the higher values of air temperature and humidity.

  14. Metasurface for Water-to-Air Sound Transmission

    NASA Astrophysics Data System (ADS)

    Bok, Eun; Park, Jong Jin; Choi, Haejin; Han, Chung Kyu; Wright, Oliver B.; Lee, Sam H.

    2018-01-01

    Effective transmission of sound from water to air is crucial for the enhancement of the detection sensitivity of underwater sound. However, only 0.1% of the acoustic energy is naturally transmitted at such a boundary. At audio frequencies, quarter-wave plates or multilayered antireflection coatings are too bulky for practical use for such enhancement. Here we present an acoustic metasurface of a thickness of only ˜λ /100 , where λ is the wavelength in air, consisting of an array of meta-atoms that each contain a set of membranes and an air-filled cavity. We experimentally demonstrate that such a meta-atom increases the transmission of sound at ˜700 Hz by 2 orders of magnitude, allowing about 30% of the incident acoustic power from water to be transmitted into air. Applications include underwater sonic sensing and communication.

  15. Regional Air Quality in central México and emissions inventories

    NASA Astrophysics Data System (ADS)

    Gerardo Ruiz-Suarez, Luis; Torres-Jardón, Ricardo; Agustín García-Reynoso, José; Santos García-Yee, José; Barrera-Huertas, Hugo; Alejandro Torres-Jaramillo, Jorge; Robles-Roldán, Miguel Angel; Gutierrez López, Wilfrido; García-Espinoza, Manuel; Castro-Romero, Telma

    2014-05-01

    Four air quality field campaigns, from 2009 to 2012, during March-April were carried out in several sites in urban, rural and semi-rural sites in Central México. One of the sites was in the Chalco Gap southeast of MCMA (2011), another in the state of Morelos (2011), other two in the state of Puebla (2009 and 2012). All these sites are South and East of the Mexico Basin. The main object of those campaigns was to document regional air quality, mainly in rural and periurban sites, including the photochemical age of regional polluted plumes as they were transported away from the main metropolitan areas within the region. In this paper, we focus on comparisons between observed CO/NOx, and CO/SO2 ratios with those from the National Emissions Inventory and form local inventories reported in state air quality management programs. Comparisons were made with data between 05:00 to 08:00 h to minimize effects photochemical activity and the fast evolution of MLH occurring between 08:00 and 09:00 due to high insolation. Comparisons among observed ratios show a fairly consistent ratio, whereas ratios from emissions inventory are widely variable and only in few sites compare reasonable well with observed ones, indicating the need for homologation of emissions inventories in the country. Also Ozone, CO, NOx and NOy observed time series are compared with WRF-Chem model results for the same campaign periods to evaluate its performance outside MCMA. In addition, observed surface wind speeds and early morning MLH obtained with a tethered balloon are also compared with modeled values to help understanding discrepancies in the trace gases comparisons.

  16. Emissions Reduction Policies and Recent Trends in Southern California’s Ambient Air Quality

    PubMed Central

    Lurmann, Fred; Gilliland, Frank

    2017-01-01

    To assess accountability and effectiveness of air regulatory policies, we reviewed over 20 years of monitoring data, emissions estimates, and regulatory policies across several Southern California communities participating in a long-term study of children’s health. Between 1994 and 2011, air quality improved for NO2 and PM2.5 in virtually all the monitored communities. Average NO2 declined 28% to 53%, and PM2.5 decreased 13% to 54%. Year-to-year PM2.5 variability at lower-pollution sites was large compared to changes in long-term trends. PM10 and O3 decreases were largest in communities that were initially among the most polluted. Trends in annual average NO2, PM2.5, and PM10 concentrations in higher pollution communities were generally consistent with NOx, ROG, SOx, PM2.5, and PM10 emissions decreases. Reductions observed at one of the higher PM2.5 sites, Mira Loma, was generally within the range expected from reductions observed in ROG, NOx, SOx, and PM2.5 emissions. Despite a 38% increase in regional motor vehicle activity, vigorous economic growth, and a 30% population increase, total estimated emissions of NOx, ROG, SOx, PM2.5, and PM10 decreased by 54%, 65%, 40%, 21%, and 15%, respectively, during the 20-year time period. Emission control strategies in California have achieved dramatic reductions in ambient NO2, O3, PM2.5, and PM10. However, additional reductions will still be needed to achieve current health-based clean air standards. PMID:25947128

  17. Emissions inventory and scenario analyses of air pollutants in Guangdong Province, China

    NASA Astrophysics Data System (ADS)

    Chen, Hui; Meng, Jing

    2017-03-01

    Air pollution, causing significantly adverse health impacts and severe environmental problems, has raised great concerns in China in the past few decades. Guangdong Province faces major challenges to address the regional air pollution problem due to the lack of an emissions inventory. To fill this gap, an emissions inventory of primary fine particles (PM2.5) is compiled for the year 2012, and the key precursors (sulfur dioxide, nitrogen oxides) are identified. Furthermore, policy packages are simulated during the period of 2012‒2030 to investigate the potential mitigation effect. The results show that in 2012, SO2, NO x , and PM2.5 emissions in Guangdong Province were as high as (951.7, 1363.6, and 294.9) kt, respectively. Industrial production processes are the largest source of SO2 and PM2.5 emissions, and transport is the top contributor of NO x emissions. Both the baseline scenario and policy scenario are constructed based on projected energy growth and policy designs. Under the baseline scenario, SO2, NO x , and PM2.5 emissions will almost double in 2030 without proper emissions control policies. The suggested policies are categorized into end-of- pipe control in power plants (ECP), end-of-pipe control in industrial processes (ECI), fuel improvement (FI), energy efficiency improvement (EEI), substitution-pattern development (SPD), and energy saving options (ESO). With the implementation of all these policies, SO2, NO x , and PM2.5 emissions are projected to drop to (303.1, 585.4, and 102.4) kt, respectively, in 2030. This inventory and simulated results will provide deeper insights for policy makers to understand the present situation and the evolution of key emissions in Guangdong Province.

  18. Air pollution from industrial waste gas emissions is associated with cancer incidences in Shanghai, China.

    PubMed

    Cong, Xiaowei

    2018-05-01

    Outdoor air pollution may be associated with cancer risk at different sites. This study sought to investigate outdoor air pollution from waste gas emission effects on multiple cancer incidences in a retrospective population-based study in Shanghai, China. Trends in cancer incidence for males and females and trends in waste gas emissions for the total waste gas, industrial waste gas, other waste gas, SO 2 , and soot were investigated between 1983 and 2010 in Shanghai, China. Regression models after adjusting for confounding variables were constructed to estimate associations between waste gas emissions and multiple cancer incidences in the whole group and stratified by sex, Engel coefficient, life expectancy, and number of doctors per 10,000 populations to further explore whether changes of waste gas emissions were associated with multiple cancer incidences. More than 550,000 new cancer patients were enrolled and reviewed. Upward trends in multiple cancer incidences for males and females and in waste gas emissions were observed from 1983 to 2010 in Shanghai, China. Waste gas emissions came mainly from industrial waste gas. Waste gas emissions was significantly positively associated with cancer incidence of salivary gland, small intestine, colorectal, anus, gallbladder, thoracic organs, connective and soft tissue, prostate, kidney, bladder, thyroid, non-Hodgkin's lymphoma, lymphatic leukemia, myeloid leukemia, and other unspecified sites (all p < 0.05). Negative association between waste gas emissions and the esophagus cancer incidence was observed (p < 0.05). The results of the whole group were basically consistent with the results of the stratified analysis. The results from this retrospective population-based study suggest ambient air pollution from waste gas emissions was associated with multiple cancer incidences.

  19. Impact of emission control on regional air quality in the Pearl Delta River region, southern China

    NASA Astrophysics Data System (ADS)

    Wang, N.; Xuejiao, D.

    2017-12-01

    The Pearl River Delta (PRD) in China has been suffering from air quality issues and the government has implemented a series of strategies in controlling emissions. In an attempt to provide scientific support for improving air quality, the paper investigates the concerning past-to-present air quality data and assesses air quality resulting from emission control. Statistical data revealed that energy consumption doubled from 2004 to 20014 and vehicle usage increased significantly from 2006 to 2014. Due to the effect of control efforts, primary emission of SO2, NOx and PM2.5 decreased resulting in ambient concentrations of SO2, NO2 and PM10 decreased by 66%, 20% and 24%, respectively. However, O3 increased 19% because of the increase of VOC emission. A chemical transport model, the Community Multi-scale Air Quality, was employed to evaluate the responses of nitrate, ammonium, SOA, PM2.5 and O3 to changes in NOx, VOC and NH3 emissions. Three scenarios, a baseline scenario, a CAP scenario (control strength followed as past tendency), and a REF scenario (strict control referred to latest policy and plans), were conducted to investigate the responses and mechanisms. NOx controlling scenarios showed that NOx, nitrate and PM2.5 reduced by 1.8%, 0.7% and 0.2% under CAP and reduced by 7.2%, 1.8% and 0.3% under REF, respectively. The results indicated that reducing NOx emission caused the increase of atmospheric oxidizability, which might result in a compensation of PM2.5 due to the increase of nitrate or sulfate. NH3 controlling scenarios showed that nitrate was sensitive to NH3 emission in PRD, with nitrate decreased by 0 - 10.6% and 0 - 48% under CAP and REF, respectively. Since controlling NH3 emissions not only reduced ammonium but also significantly reduced nitrate, the implement of NH3 controlling strategy was highly suggested. The VOC scenarios revealed that though SOA was not the major component of PM2.5, controlling VOC emission might take effect in southwestern PRD

  20. Quantifying Volatile Organic Compound Emissions from Solvents and their Impacts on Urban Air Quality

    NASA Astrophysics Data System (ADS)

    Mcdonald, B. C.; De Gouw, J. A.; Gilman, J.; Ahmadov, R.; Cappa, C. D.; Frost, G. J.; Goldstein, A. H.; Jathar, S.; Jimenez, J. L.; Kim, S. W.; McKeen, S. A.; Roberts, J. M.; Trainer, M.

    2016-12-01

    Solvents, which consist of personal care products, paints, degreasing agents, and other chemical products, are an important anthropogenic source of volatile organic compound (VOC) emissions. Yet there are many unresolved questions related to their emission rates, chemical composition, and relative importance on urban air quality problems. Using atmospheric measurements of speciated VOCs collected at a ground site located in the Los Angeles basin during the California Nexus (CalNex) Study in 2010, and utilizing data on the composition of solvent emissions from the California Air Resources Board (CARB), we are able to reconcile solvent emissions with ambient observations. Our analysis indicates that solvent emissions are underestimated by a factor of 2-3 in the CARB inventory. We then estimate the reactivity of solvent emissions with the hydroxyl (OH) radical, and also estimate the propensity of solvent emissions to form secondary organic aerosol (SOA). Solvents contain significant fractions of oxygenated compounds, including intermediate volatility compounds, which if released to the atmosphere are potentially reactive and can lead to the formation of SOA. Overall, our results suggest that in the Los Angeles basin, solvents are now the largest anthropogenic source of VOC emissions, OH reactivity, and SOA formation, and larger than the contribution from motor vehicles. This suggests that more research is needed in better constraining this potentially important source of urban VOC emissions.

  1. [Diurnal changes in greenhouse gases at water-air interface of Xiangxi River in autumn and their influencing factors].

    PubMed

    Huang, Wen-Min; Zhu, Kong-Xian; Zhao, Wei; Yu, Bo-Shi; Yuan, Xi-Gong; Feng, Rui-Jie; Bi, Yong-Hong; Hu, Zheng-Yu

    2013-04-01

    With the closed chamber and gas chromatography method, a 24-hour continuous monitoring was carried out to understand the greenhouse gases fluxes across the water-air interface of the Xiangxi River Bay, the Three-Gorges Reservoir in Autumn. Results indicated that the fluxes of CO2, CH4 and N2O across the water-air interface showed an obvious diurnal variation. The absorption and emission process of CH4 showed strong diurnal variation during the experimental period, reaching the highest emission at 1 am, whereas CO2 and N2O were emitted all day. The fluxes of CO2 ranged from 20.1-97.5 mg x (m2 x h)(-1) at day and 32.7-42.5 mg x (m2 x h)(-1) at night, the fluxes of N2O ranged from 18.4-133.7 microg x (m2 x h)(-1) at day and 42.1-102.6 microg x (m2 x h)(-1) at night. The fluxes of CO2 had positive correlation with wind speed and negative correlation with pH. The fluxes of N2O had positive correlation with pH.

  2. Plants Clean Air and Water for Indoor Environments

    NASA Technical Reports Server (NTRS)

    2007-01-01

    Wolverton Environmental Services Inc., founded by longtime government environmental scientist B.C. "Bill" Wolverton, is an environmental consulting firm that gives customers access to the results of his decades of cutting-edge bioremediation research. Findings about how to use plants to improve indoor air quality have been published in dozens of NASA technical papers and in the book, "How to Grow Fresh Air: 50 Houseplants That Purify Your Home or Office." The book has now been translated into 12 languages and has been on the shelves of bookstores for nearly 10 years. A companion book, "Growing Clean Water: Nature's Solution to Water Pollution," explains how plants can clean waste water. Other discoveries include that the more air that is allowed to circulate through the roots of the plants, the more effective they are at cleaning polluted air; and that plants play a psychological role in welfare in that people recover from illness faster in the presence of plants. Wolverton Environmental is also working in partnership with Syracuse University, to engineer systems consisting of modular wicking filters tied into duct work and water supplies, essentially tying plant-based filters into heating, ventilation, and air conditioning (HVAC) systems. Also, the company has recently begun to assess the ability of the EcoPlanter to remove formaldehyde from interior environments. Wolverton Environmental is also in talks with designers of the new Stennis Visitor's Center, who are interested in using its designs for indoor air-quality filters

  3. Estimating air chemical emissions from research activities using stack measurement data.

    PubMed

    Ballinger, Marcel Y; Duchsherer, Cheryl J; Woodruff, Rodger K; Larson, Timothy V

    2013-03-01

    Current methods of estimating air emissions from research and development (R&D) activities use a wide range of release fractions or emission factors with bases ranging from empirical to semi-empirical. Although considered conservative, the uncertainties and confidence levels of the existing methods have not been reported. Chemical emissions were estimated from sampling data taken from four research facilities over 10 years. The approach was to use a Monte Carlo technique to create distributions of annual emission estimates for target compounds detected in source test samples. Distributions were created for each year and building sampled for compounds with sufficient detection frequency to qualify for the analysis. The results using the Monte Carlo technique without applying a filter to remove negative emission values showed almost all distributions spanning zero, and 40% of the distributions having a negative mean. This indicates that emissions are so low as to be indistinguishable from building background. Application of a filter to allow only positive values in the distribution provided a more realistic value for emissions and increased the distribution mean by an average of 16%. Release fractions were calculated by dividing the emission estimates by a building chemical inventory quantity. Two variations were used for this quantity: chemical usage, and chemical usage plus one-half standing inventory. Filters were applied so that only release fraction values from zero to one were included in the resulting distributions. Release fractions had a wide range among chemicals and among data sets for different buildings and/or years for a given chemical. Regressions of release fractions to molecular weight and vapor pressure showed weak correlations. Similarly, regressions of mean emissions to chemical usage, chemical inventory, molecular weight, and vapor pressure also gave weak correlations. These results highlight the difficulties in estimating emissions from R

  4. Temporal trends and spatial variation characteristics of primary air pollutants emissions from coal-fired industrial boilers in Beijing, China.

    PubMed

    Xue, Yifeng; Tian, Hezhong; Yan, Jing; Zhou, Zhen; Wang, Junling; Nie, Lei; Pan, Tao; Zhou, Junrui; Hua, Shenbing; Wang, Yong; Wu, Xiaoqing

    2016-06-01

    Coal-fired combustion is recognized as a significant anthropogenic source of atmospheric compounds in Beijing, causing heavy air pollution events and associated deterioration in visibility. Obtaining an accurate understanding of the temporal trends and spatial variation characteristics of emissions from coal-fired industrial combustion is essential for predicting air quality changes and evaluating the effectiveness of current control measures. In this study, an integrated emission inventory of primary air pollutants emitted from coal-fired industrial boilers in Beijing is developed for the period of 2007-2013 using a technology-based approach. Future emission trends are projected through 2030 based on current energy-related and emission control policies. Our analysis shows that there is a general downward trend in primary air pollutants emissions because of the implementation of stricter local emission standards and the promotion by the Beijing municipal government of converting from coal-fired industrial boilers to gas-fired boilers. However, the ratio of coal consumed by industrial boilers to total coal consumption has been increasing, raising concerns about the further improvement of air quality in Beijing. Our estimates indicate that the total emissions of PM10, PM2.5, SO2, NOx, CO and VOCs from coal-fired industrial boilers in Beijing in 2013 are approximately 19,242 t, 13,345 t, 26,615 t, 22,965 t, 63,779 t and 1406 t, respectively. Under the current environmental policies and relevant energy savings and emission control plans, it may be possible to reduce NOx and other air pollutant emissions by 94% and 90% by 2030, respectively, if advanced flue gas purification technologies are implemented and coal is replaced with natural gas in the majority of existing boilers. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Effect of air temperature and relative humidity at various fuel-air ratios on exhaust emissions on a per-mode basis of an Avco Lycoming 0-320 DIAD light aircraft engine. Volume 2: Individual data points

    NASA Technical Reports Server (NTRS)

    Skorobatckyi, M.; Cosgrove, D. V.; Meng, P. R.; Kempke, E. R.

    1976-01-01

    A carbureted four cylinder air cooled 0-320 DIAD Lycoming aircraft engine was tested to establish the effects of air temperature and humidity at various fuel-air ratios on the exhaust emissions on a per-mode basis. The test conditions included carburetor lean-out at air temperatures of 50, 59, 80, and 100 F at relative humidities of 0, 30, 60, and 80 percent. Temperature-humidity effects at the higher values of air temperature and relative humidity tested indicated that the HC and CO emissions increased significantly, while the NOx emissions decreased. Even at a fixed fuel-air ratio, the HC emissions increase and the NOx emissions decrease at the higher values of air temperature and humidity. Volume II contains the data taken at each of the individual test points.

  6. Efficacy of air/water syringe tip sterilization.

    PubMed

    Inger, M; Bennani, V; Farella, M; Bennani, F; Cannon, R D

    2014-03-01

    Dental procedures involve contact between instruments and the patient's tissues, blood or saliva. This study evaluated the efficacy of the standardized sterilization of non-disposable air/water syringe tips and corrosion and contaminant build-up in these tips. The bacterial contamination of single-use and multiple-use non-disposable air/water syringe tips after routine use and sterilization was compared to that of single-use disposable tips by microbial culturing on PCA and blood agar plates. The effect of flushing the syringe tips prior to sterilization was also measured. The amount of corrosion in single-use and multiple-use non-disposable syringes was measured by SEM and EDS analyses. Non-disposable syringe tips had significantly (p < 0.05) greater bacterial contamination than single-use disposable tips. There were no statistically different levels of contamination between flushed and non-flushed non-disposable syringes or between single-use and multiple-use non-disposable syringes. SEM and EDS analyses showed greater evidence of corrosion and contaminant build-up in multiple-use syringes compared to single-use non-disposable syringes. Sterilization of non-disposable air/water syringes is not completely effective and rinsing, or the number of uses, does not affect the effectiveness of sterilization. There may be a lower risk of cross-infection from the use of disposable air/water syringe tips, instead of non-disposable ones. © 2014 Australian Dental Association.

  7. Effects of animal activity and air temperature on methane and ammonia emissions from a naturally ventilated building for dairy cows

    NASA Astrophysics Data System (ADS)

    Ngwabie, N. M.; Jeppsson, K.-H.; Gustafsson, G.; Nimmermark, S.

    2011-12-01

    Knowledge of how different factors affect gas emissions from animal buildings can be useful for emission prediction purposes and for the improvement of emission abatement techniques. In this study, the effects of dairy cow activity and indoor air temperature on gas emissions were examined. The concentrations of CH 4, NH 3, CO 2 and N 2O inside and outside a dairy cow building were measured continuously between February and May together with animal activity and air temperature. The building was naturally ventilated and had a solid concrete floor which sloped towards a central urine gutter. Manure was scraped from the floor once every hour in the daytime and once every second hour at night into a partly covered indoor pit which was emptied daily at 6 a.m. and at 5 p.m. Gas emissions were calculated from the measured gas concentrations and ventilation rates estimated by the CO 2 balance method. The animal activity and emission rates of CH 4 and NH 3 showed significant diurnal variations with two peaks which were probably related to the feeding routine. On an average day, CH 4 emissions ranged from 7 to 15 g LU -1 h -1 and NH 3 emissions ranged from 0.4 to 1.5 g LU -1 h -1 (1 LU = 500 kg animal weight). Mean emissions of CH 4 and NH 3 were 10.8 g LU -1 h -1 and 0.81 g LU -1 h -1, respectively. The NH 3 emissions were comparable to emissions from tied stall buildings and represented a 4% loss in manure nitrogen. At moderate levels, temperature seems to affect the behaviour of dairy cows and in this study where the daily indoor air temperature ranged from about 5 up to about 20 °C, the daily activity of the cows decreased with increasing indoor air temperature ( r = -0.78). Results suggest that enteric fermentation is the main source of CH 4 emissions from systems of the type in this study, while NH 3 is mainly emitted from the manure. Daily CH 4 emissions increased significantly with the activity of the cows ( r = 0.61) while daily NH 3 emissions increased

  8. Greenhouse gas emissions for refrigerant choices in room air conditioner units.

    PubMed

    Galka, Michael D; Lownsbury, James M; Blowers, Paul

    2012-12-04

    In this work, potential replacement refrigerants for window-mounted room air conditioners (RACs) in the U.S. have been evaluated using a greenhouse gas (GHG) emissions analysis. CO(2)-equivalent emissions for several hydrofluoroethers (HFEs) and other potential replacements were compared to the most widely used refrigerants today. Included in this comparison are pure refrigerants that make up a number of hydrofluorocarbon (HFC) mixtures, pure hydrocarbons, and historically used refrigerants such as propane and ammonia. GHG emissions from direct and indirect sources were considered in this thermodynamic analysis. Propylene, dimethyl ether, ammonia, R-152a, propane, and HFE-152a all performed effectively in a 1 ton window unit and produced slightly lower emissions than the currently used R-22 and R-134a. The results suggest that regulation of HFCs in this application would have some effect on reducing emissions since end-of-life emissions remain at 55% of total refrigerant charge despite EPA regulations that mandate 80% recovery. Even so, offsite emissions due to energy generation dominate over direct GHG emissions and all the refrigerants perform similarly in totals of indirect GHG emissions.

  9. Ambient air emissions of polycyclic aromatic hydrocarbons and female breast cancer incidence in US.

    PubMed

    Stults, William Parker; Wei, Yudan

    2018-05-05

    To examine ambient air pollutants, specifically polycyclic aromatic hydrocarbons (PAHs), as a factor in the geographic variation of breast cancer incidence seen in the US, we conducted an ecological study involving counties throughout the US to examine breast cancer incidence in relation to PAH emissions in ambient air. Age-adjusted incidence rates of female breast cancer from the surveillance, epidemiology, and end results (SEER) program of the US National Cancer Institute were collected and analyzed using SEER*Stat 8.3.2. PAH emissions data were obtained from the Environmental Protection Agency. Linear regression analysis was performed using SPSS 23 software for Windows to analyze the association between PAH emissions and breast cancer incidence, adjusting for potential confounders. Age-adjusted incidence rates of female breast cancer were found being significantly higher in more industrialized metropolitan SEER regions over the years of 1973-2013 as compared to less industrialized regions. After adjusting for sex, race, education, socioeconomic status, obesity, and smoking prevalence, PAH emission density was found to be significantly associated with female breast cancer incidence, with the adjusted β of 0.424 (95% CI 0.278, 0.570; p < 0.0001) for emissions from all sources and of 0.552 (95% CI 0.278, 0.826; p < 0.0001) for emissions from traffic source. This study suggests that PAH exposure from ambient air could play a role in the increased breast cancer risk among women living in urban areas of the US. Further research could provide insight into breast cancer etiology and prevention.

  10. A novel membrane device for the removal of water vapor and water droplets from air

    NASA Technical Reports Server (NTRS)

    Ray, Rod; Newbold, David D.; Mccray, Scott B.; Friesen, Dwayne T.; Kliss, Mark

    1992-01-01

    One of the key challenges facing NASA engineers is the development of systems for separating liquids and gases in microgravity environments. In this paper, a novel membrane-based phase separator is described. This device, known as a water recovery heat exchanger (WRHEX), overcomes the inherent deficiencies of current phase-separation technology. Specifically, the WRHEX cools and removes water vapor or water droplets from feed-air streams without the use of a vacuum or centrifugal force. As is shown in this paper, only a low-power air blower and a small stream of recirculated cool water is required for WRHEX operation. This paper presents the results of tests using this novel membrane device over a wide range of operating conditions. The data show that the WRHEX produces a dry air stream containing no entrained or liquid water - even when the feed air contains water droplets or mist. An analysis of the operation of the WRHEX is presented.

  11. Influence of relative air/water flow velocity on oxygen mass transfer in gravity sewers.

    PubMed

    Carrera, Lucie; Springer, Fanny; Lipeme-Kouyi, Gislain; Buffiere, Pierre

    2017-04-01

    Problems related to hydrogen sulfide may be serious for both network stakeholders and the public in terms of health, sustainability of the sewer structure and urban comfort. H 2 S emission models are generally theoretical and simplified in terms of environmental conditions. Although air transport characteristics in sewers must play a role in the fate of hydrogen sulfide, only a limited number of studies have investigated this issue. The aim of this study was to better understand H 2 S liquid to gas transfer by highlighting the link between the mass transfer coefficient and the turbulence in the air flow and the water flow. For experimental safety reasons, O 2 was taken as a model compound. The oxygen mass transfer coefficients were obtained using a mass balance in plug flow. The mass transfer coefficient was not impacted by the range of the interface air-flow velocity values tested (0.55-2.28 m·s -1 ) or the water velocity values (0.06-0.55 m·s -1 ). Using the ratio between k L,O 2 to k L,H 2 S , the H 2 S mass transfer behavior in a gravity pipe in the same hydraulic conditions can be predicted.

  12. 40 CFR 63.686 - Standards: Oil-water and organic-water separators.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 10 2011-07-01 2011-07-01 false Standards: Oil-water and organic-water... Operations § 63.686 Standards: Oil-water and organic-water separators. (a) The provisions of this section apply to the control of air emissions from oil-water separators and organic-water separators for which...

  13. 40 CFR 63.686 - Standards: Oil-water and organic-water separators.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 10 2010-07-01 2010-07-01 false Standards: Oil-water and organic-water... Operations § 63.686 Standards: Oil-water and organic-water separators. (a) The provisions of this section apply to the control of air emissions from oil-water separators and organic-water separators for which...

  14. 40 CFR 63.686 - Standards: Oil-water and organic-water separators.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 11 2014-07-01 2014-07-01 false Standards: Oil-water and organic-water... Operations § 63.686 Standards: Oil-water and organic-water separators. (a) The provisions of this section apply to the control of air emissions from oil-water separators and organic-water separators for which...

  15. 40 CFR 63.686 - Standards: Oil-water and organic-water separators.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 11 2012-07-01 2012-07-01 false Standards: Oil-water and organic-water... Operations § 63.686 Standards: Oil-water and organic-water separators. (a) The provisions of this section apply to the control of air emissions from oil-water separators and organic-water separators for which...

  16. 40 CFR 63.686 - Standards: Oil-water and organic-water separators.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 11 2013-07-01 2013-07-01 false Standards: Oil-water and organic-water... Operations § 63.686 Standards: Oil-water and organic-water separators. (a) The provisions of this section apply to the control of air emissions from oil-water separators and organic-water separators for which...

  17. The Regional Impacts of Cooking and Heating Emissions on Ambient Air Quality and Disease Burden in China.

    PubMed

    Archer-Nicholls, Scott; Carter, Ellison; Kumar, Rajesh; Xiao, Qingyang; Liu, Yang; Frostad, Joseph; Forouzanfar, Mohammad H; Cohen, Aaron; Brauer, Michael; Baumgartner, Jill; Wiedinmyer, Christine

    2016-09-06

    Exposure to air pollution is a major risk factor globally and particularly in Asia. A large portion of air pollutants result from residential combustion of solid biomass and coal fuel for cooking and heating. This study presents a regional modeling sensitivity analysis to estimate the impact of residential emissions from cooking and heating activities on the burden of disease at a provincial level in China. Model surface PM2.5 fields are shown to compare well when evaluated against surface air quality measurements. Scenarios run without residential sector and residential heating emissions are used in conjunction with the Global Burden of Disease 2013 framework to calculate the proportion of deaths and disability adjusted life years attributable to PM2.5 exposure from residential emissions. Overall, we estimate that 341 000 (306 000-370 000; 95% confidence interval) premature deaths in China are attributable to residential combustion emissions, approximately a third of the deaths attributable to all ambient PM2.5 pollution, with 159 000 (142 000-172 000) and 182 000 (163 000-197 000) premature deaths from heating and cooking emissions, respectively. Our findings emphasize the need to mitigate emissions from both residential heating and cooking sources to reduce the health impacts of ambient air pollution in China.

  18. Evaluating the impact of ambient benzene vapor concentrations on product water from Condensation Water From Air technology.

    PubMed

    Kinder, Katherine M; Gellasch, Christopher A; Dusenbury, James S; Timmes, Thomas C; Hughes, Thomas M

    2017-07-15

    Globally, drinking water resources are diminishing in both quantity and quality. This situation has renewed interest in Condensation Water From Air (CWFA) technology, which utilizes water vapor in the air to produce water for both potable and non-potable purposes. However, there are currently insufficient data available to determine the relationship between air contaminants and the rate at which they are transferred from the air into CWFA untreated product water. This study implemented a novel experimental method utilizing an environmental test chamber to evaluate how air quality and temperature affects CWFA untreated product water quality in order to collect data that will inform the type of water treatment required to protect human health. This study found that temperature and benzene air concentration affected the untreated product water from a CWFA system. Benzene vapor concentrations representing a polluted outdoor environment resulted in benzene product water concentrations between 15% and 23% of the USEPA drinking water limit of 5μg/l. In contrast, product water benzene concentrations representing an indoor industrial environment were between 1.4 and 2.4 times higher than the drinking water limit. Lower condenser coil temperatures were correlated with an increased concentration of benzene in the product water. Environmental health professionals and engineers can integrate the results of this assessment to predict benzene concentrations in the product water and take appropriate health protective measures. Published by Elsevier B.V.

  19. Simultaneous generation of acidic and alkaline water using atmospheric air plasma formed in water

    NASA Astrophysics Data System (ADS)

    Imai, Shin-ichi; Sakaguchi, Yoshihiro; Shirafuji, Tatsuru

    2018-01-01

    Plasmas on water surfaces and in water can be generated at atmosphere pressure using several kinds of gases, including helium, argon, oxygen, and air. Nitrates are generated in water through the interaction between water and atmospheric plasma that uses ambient air. Water that has been made acidic by the generation of nitric acid and the acidic water can be used for the sterilization of medical instruments, toilet bowls, and washing machines. Dishwashers are another potential application, as alkaline water is needed to remove grease from tableware. To investigate the production of alkaline water and its mechanism, gas component analysis was performed using an atmospheric quadrupole mass spectrometer. It was found that hydrogen gas evolves from the water surrounding both the positive and negative electrodes. The gas and water analyses carried out in this study revealed that acidic water of pH 2.5 and alkaline water of pH 10 can be simultaneously generated by our ambient air plasma device, which has been altered from our original model. The alterative plasma device has a partition wall, which is made of conductive resin, between the positive and negative electrodes.

  20. Estimation of GHG Emissions from Water Reclamation Plants in Beijing.

    PubMed

    Fan, Yupeng; Bai, Yanying; Jiao, Wentao

      A procedure for estimating Greenhouse gas (GHG) emissions from a wastewater reclamation plant in Beijing was developed based on the process chain model. GHG emissions under two typical water reclamation treatment processes, the coagulation-sedimentation-filtration traditional process and advanced biological treatment process, were examined. The total on-site GHG emissions were estimated to be 0.0056 kg/m 3 and 0.6765 kg/m 3 respectively, while total off-site GHG emissions were estimated to be 0.3699 kg/m 3 and 0.4816 kg/m 3 . The overall GHG emissions were 0.3755 kg/m 3 under the type 1 treatment, which is much lower than that under the type 2 of 1.1581 kg/m 3 . Emissions from both processes were lower than that from the tap water production. Wastewater reclamation and reuse should be promoted as it not only saves the water resources but also can reduce the GHG emissions. Energy consumption was the most significant source of GHG emissions. Biogas recovery should be employed as it can significantly reduce the GHG emissions, especially under the type 2 treatment process. Considering the wastewater treatment and reclamation process as a whole, the type 2 treatment process has advantages in reducing the GHG emissions per unit of pollutant. This paper provides scientific basis for decision making.

  1. 14 CFR 1274.926 - Clean Air-Water Pollution Control Acts.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 5 2010-01-01 2010-01-01 false Clean Air-Water Pollution Control Acts...-Water Pollution Control Acts. Clean Air-Water Pollution Control Acts July 2002 If this cooperative... 91-604) and section 308 of the Federal Water Pollution Control Act, as amended (33 U.S.C. 1251 et seq...

  2. 14 CFR 1274.926 - Clean Air-Water Pollution Control Acts.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 5 2013-01-01 2013-01-01 false Clean Air-Water Pollution Control Acts...-Water Pollution Control Acts. Clean Air-Water Pollution Control Acts July 2002 If this cooperative... 91-604) and section 308 of the Federal Water Pollution Control Act, as amended (33 U.S.C. 1251 et seq...

  3. 14 CFR 1274.926 - Clean Air-Water Pollution Control Acts.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 5 2012-01-01 2012-01-01 false Clean Air-Water Pollution Control Acts...-Water Pollution Control Acts. Clean Air-Water Pollution Control Acts July 2002 If this cooperative... 91-604) and section 308 of the Federal Water Pollution Control Act, as amended (33 U.S.C. 1251 et seq...

  4. Life cycle air emissions impacts and ownership costs of light-duty vehicles using natural gas as a primary energy source.

    PubMed

    Luk, Jason M; Saville, Bradley A; MacLean, Heather L

    2015-04-21

    This paper aims to comprehensively distinguish among the merits of different vehicles using a common primary energy source. In this study, we consider compressed natural gas (CNG) use directly in conventional vehicles (CV) and hybrid electric vehicles (HEV), and natural gas-derived electricity (NG-e) use in plug-in battery electric vehicles (BEV). This study evaluates the incremental life cycle air emissions (climate change and human health) impacts and life cycle ownership costs of non-plug-in (CV and HEV) and plug-in light-duty vehicles. Replacing a gasoline CV with a CNG CV, or a CNG CV with a CNG HEV, can provide life cycle air emissions impact benefits without increasing ownership costs; however, the NG-e BEV will likely increase costs (90% confidence interval: $1000 to $31 000 incremental cost per vehicle lifetime). Furthermore, eliminating HEV tailpipe emissions via plug-in vehicles has an insignificant incremental benefit, due to high uncertainties, with emissions cost benefits between -$1000 and $2000. Vehicle criteria air contaminants are a relatively minor contributor to life cycle air emissions impacts because of strict vehicle emissions standards. Therefore, policies should focus on adoption of plug-in vehicles in nonattainment regions, because CNG vehicles are likely more cost-effective at providing overall life cycle air emissions impact benefits.

  5. Global Occurrence and Emission of Rotaviruses to Surface Waters

    PubMed Central

    Kiulia, Nicholas M.; Hofstra, Nynke; Vermeulen, Lucie C.; Obara, Maureen A.; Medema, Gertjan; Rose, Joan B.

    2015-01-01

    Group A rotaviruses (RV) are the major cause of acute gastroenteritis in infants and young children globally. Waterborne transmission of RV and the presence of RV in water sources are of major public health importance. In this paper, we present the Global Waterborne Pathogen model for RV (GloWPa-Rota model) to estimate the global distribution of RV emissions to surface water. To our knowledge, this is the first model to do so. We review the literature to estimate three RV specific variables for the model: incidence, excretion rate and removal during wastewater treatment. We estimate total global RV emissions to be 2 × 1018 viral particles/grid/year, of which 87% is produced by the urban population. Hotspot regions with high RV emissions are urban areas in densely populated parts of the world, such as Bangladesh and Nigeria, while low emissions are found in rural areas in North Russia and the Australian desert. Even for industrialized regions with high population density and without tertiary treatment, such as the UK, substantial emissions are estimated. Modeling exercises like the one presented in this paper provide unique opportunities to further study these emissions to surface water, their sources and scenarios for improved management. PMID:25984911

  6. Globally significant greenhouse-gas emissions from African inland waters

    NASA Astrophysics Data System (ADS)

    Borges, Alberto V.; Bouillon, Steven

    2017-04-01

    The relevance of inland waters to global biogeochemical cycles is increasingly recognized, and of particular importance is their contribution of greenhouse gases to the atmosphere. The latter remain largely unreported in African inland waters. Here we report dissolved CO2, CH4 and N2O from 12 rivers in Sub-Saharan Africa acquired during >30 field expeditions and additional seasonally resolved sampling at >30 sites between 2006 and 2014. Fluxes were calculated from reported gas transfer velocity values, and upscaled using available spatial datasets, with an estimated uncertainty of about ±19%. CO2 equivalent emissions ( 0.4±0.1 PgC yr-1) match 2/3 of the overall net carbon sink previously reported for Africa. Including emissions from wetlands of the Congo, the putative total emission ( 0.9±0.1 PgC yr-1) is about half of the global oceanic or land carbon sinks. In-situ respiration supported <14% of riverine CO2 emissions, which must therefore largely be driven by mineralization in wetlands or uplands. Riverine CO2 and CH4 emissions were directly correlated to wetland coverage and aboveground vegetation biomass, implying that future changes in wetland and upland vegetation cover will strongly impact GHG emissions from African inland waters.

  7. Life-cycle assessment of greenhouse gas and air emissions of electric vehicles: A comparison between China and the U.S.

    NASA Astrophysics Data System (ADS)

    Huo, Hong; Cai, Hao; Zhang, Qiang; Liu, Fei; He, Kebin

    2015-05-01

    We evaluated the fuel-cycle emissions of greenhouse gases (GHGs) and air pollutants (NOx, SO2, PM10, and PM2.5) of electric vehicles (EVs) in China and the United States (U.S.), two of the largest potential markets for EVs in the world. Six of the most economically developed and populated regions in China and the U.S. were selected. The results showed that EV fuel-cycle emissions depend substantially on the carbon intensity and cleanness of the electricity mix, and vary significantly across the regions studied. In those regions with a low share of coal-based electricity (e.g., California), EVs can reduce GHG and air pollutant emissions (except for PM) significantly compared with conventional vehicles. However, in the Chinese regions and selected U.S. Midwestern states where coal dominates in the generation mix, EVs can reduce GHG emissions but increase the total and urban emissions of air pollutants. In 2025, EVs will offer greater reductions in GHG and air pollutant emissions because emissions from power plants will be better controlled; EVs in the Chinese regions examined, however, may still increase SO2 and PM emissions. Reductions of 60-85% in GHGs and air pollutants could be achieved were EVs charged with 80% renewable electricity or the electricity generated from the best available technologies of coal-fired power plants, which are futuristic power generation scenarios.

  8. Effects of Passive Fuel-Air Mixing Control on Burner Emissions Via Lobed Fuel Injectors

    NASA Technical Reports Server (NTRS)

    Mitchell, M. G.; Smith, O. I.; Karagozian, A. R.

    1999-01-01

    The present experimental study examines the effects of differing levels of passive fuel-air premixing on flame structures and their associated NO(x) and CO emissions. Four alternative fuel injector geometries were explored, three of which have lobed shapes. These lobed injectors mix fuel and air and strain species inter-faces to differing extents due to streamwise vorticity generation, thus creating different local or core equivalence ratios within flow regions upstream of flame ignition and stabilization. Prior experimental studies of two of these lobed injector flowfields focused on non-reactive mixing characteristics and emissions measurements for the case where air speeds were matched above and below the fuel injector, effectively generating stronger streamwise vorticity than spanwise vorticity. The present studies examine the effects of airstream mismatch (and hence additional spanwise vorticity generation), effects of confinement of the crossflow to reduce the local equivalence ratio, and the effects of altering the geometry and position of the flameholders. NO(x) and CO emissions as well as planar laser-induced fluorescence imaging (PLIF) of seeded acetone are used to characterize injector performance and reactive flow evolution.

  9. Water maser emission from exoplanetary systems

    NASA Astrophysics Data System (ADS)

    Cosmovici, C. B.; Pogrebenko, S.

    2018-01-01

    Since the first discovery of a Jupiter-mass planet in 1995 more than 2000 exo-planets have been found to exist around main sequence stars. The detection techniques are based on the radial velocity method (which involves the measurement of the star's wobbling induced by the gravitational field of the orbiting giant planets) or on transit photometry by using space telescopes (Kepler, Corot, Hubble and Spitzer) outside the absorbing Earth atmosphere. From the ground, as infrared observations are strongly limited by atmospheric absorption, radioastronomy offers almost the only possible way to search for water presence and abundance in the planetary atmospheres of terrestrial-type planets where life may evolve. Following the discovery in 1994 of the first water maser emission in the atmosphere of Jupiter induced by a cometary impact, our measurements have shown that the water maser line at 22 GHz (1.35 cm) can be used as a powerful diagnostic tool for water search outside the solar system, as comets are able to deliver considerable amounts of water to planets raising the fascinating possibility of extraterrestrial life evolution. Thus in 1999 we started the systematic search for water on 35 different targets up to 50 light years away from the Sun. Here we report the first detection of the water maser emission from the exoplanetary systems Epsilon Eridani, Lalande 21185 and Gliese 581. We have shown the peculiar feasibility of water detection and its importance in the search for exoplanetary systems especially for the Astrobiology programs, given the possibility of long period observations using powerful radiotelescopes equipped with adequate spectrometers.

  10. 40 CFR 61.347 - Standards: Oil-water separators.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 9 2012-07-01 2012-07-01 false Standards: Oil-water separators. 61.347 Section 61.347 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS National Emission Standard for Benzene...

  11. Potential air pollutant emission from private vehicles based on vehicle route

    NASA Astrophysics Data System (ADS)

    Huboyo, H. S.; Handayani, W.; Samadikun, B. P.

    2017-06-01

    Air emissions related to the transportation sector has been identified as the second largest emitter of ambient air quality in Indonesia. This is due to large numbers of private vehicles commuting within the city as well as inter-city. A questionnaire survey was conducted in Semarang city involving 711 private vehicles consisting of cars and motorcycles. The survey was conducted in random parking lots across the Semarang districts and in vehicle workshops. Based on the parking lot survey, the average distance private cars travelled in kilometers (VKT) was 17,737 km/year. The machine start-up number of cars during weekdays; weekends were on average 5.19 and 3.79 respectively. For motorcycles the average of kilometers travelled was 27,092 km/year. The machine start-up number of motorcycles during weekdays and weekends were on average 5.84 and 3.98, respectively. The vehicle workshop survey showed the average kilometers travelled to be 9,510 km/year for motorcycles, while for private cars the average kilometers travelled was 21,347 km/year. Odometer readings for private cars showed a maximum of 3,046,509 km and a minimum of 700 km. Meanwhile, for motorcycles, odometer readings showed a maximum of 973,164 km and a minimum of roughly 54.24 km. Air pollutant emissions on East-West routes were generally higher than those on South-North routes. Motorcycles contribute significantly to urban air pollution, more so than cars. In this study, traffic congestion and traffic volume contributed much more to air pollution than the impact of fluctuating terrain.

  12. ENGINEERING BULLETIN: CONTROL OF AIR EMISSIONS FROM MATERIALS HANDLING DURING REMEDIATION

    EPA Science Inventory

    This bulletin presents an overview discussion on the importance of and methods for controlling emissions into the air from materials handling processes at Superfund or other hazardous waste sites. It also describes several techniques used for dust and vapor suppress ion that have...

  13. Toluene diisocyanate emission to air and migration to a surface from a flexible polyurethane foam.

    PubMed

    Vangronsveld, Erik; Berckmans, Steven; Spence, Mark

    2013-06-01

    Flexible polyurethane foam (FPF) is produced from the reaction of toluene diisocyanate (TDI) and polyols. Because of the potential for respiratory sensitization following exposure to TDI, concerns have been raised about potential consumer exposure to TDI from residual 'free TDI' in FPF products. Limited and conflicting results exist in the literature concerning the presence of unreacted TDI remaining in FPF as determined by various solvent extraction and analysis techniques. Because residual TDI results are most often intended for application in assessment of potential human exposure to TDI from FPF products, testing techniques that more accurately simulated human contact with foam were designed. To represent inhalation exposure to TDI from polyurethane foam, a test that measured the emission of TDI to air was conducted. For simulation of human dermal exposure to TDI from polyurethane foam, a migration test technique was designed. Emission of TDI to air was determined for a representative FPF using three different emission test cells. Two were commercially available cells that employ air flow over the surface of the foam [the Field and Laboratory Emission Cell (FLEC®) and the Micro-Chamber/Thermal Extraction™ cell]. The third emission test cell was of a custom design and features air flow through the foam sample rather than over the foam surface. Emitted TDI in the air of the test cells was trapped using glass fiber filters coated with 1-(2-methoxyphenyl)-piperazine (MP), a commonly used derivatizing agent for diisocyanates. The filters were subsequently desorbed and analyzed by liquid chromatography/mass spectrometry. Measurement of TDI migration from representative foam was accomplished by placing glass fiber filters coated with MP on the outer surfaces of a foam disk and then compressing the filters against the disk using a clamping apparatus for periods of 8 and 24 h. The sample filters were subsequently desorbed and analyzed in the same manner as for the

  14. Fuel-Air Mixing Effect on Nox Emissions for a Lean Premixed-Prevaporized Combustion System

    NASA Technical Reports Server (NTRS)

    Lee, Chi-Ming; Chun, Kue S.; Locke, Randy J.

    1995-01-01

    The lean premixed-prevaporized (LPP) concept effectively meets low nitrogen oxides (NOx) emission requirements for combustors with the high inlet temperature and pressure typical of the High-Speed Civil Transport (HSCT). For the LPP system fuel-air mixture uniformity is probably the most important factor for low NOx emissions. Previous studies have suggested that the fuel-air mixture uniformity can be severely affected by changing the number and configuration of fuel injection points. Therefore, an experimental study was performed to determine how the number of fuel injection points and their arrangement affect NOx emissions from an LPP system. The NOx emissions were measured by a gas-sampling probe in a flame-tube rig at the following conditions: inlet temperature of 810 K (1000 F), rig pressure of 10 atm, reference velocity of 150 ft/s, and residence time near 0.005 s. Additionally, a focused Schlieren diagnostic technique coupled with a high speed camera was used to provide a qualitative description of the spatial flow field.

  15. Effectiveness of water-air and octanol-air partition coefficients to predict lipophilic flavor release behavior from O/W emulsions.

    PubMed

    Tamaru, Shunji; Igura, Noriyuki; Shimoda, Mitsuya

    2018-01-15

    Flavor release from food matrices depends on the partition of volatile flavor compounds between the food matrix and the vapor phase. Thus, we herein investigated the relationship between released flavor concentrations and three different partition coefficients, namely octanol-water, octanol-air, and water-air, which represented the oil, water, and air phases present in emulsions. Limonene, 2-methylpyrazine, nonanal, benzaldehyde, ethyl benzoate, α-terpineol, benzyl alcohol, and octanoic acid were employed. The released concentrations of these flavor compounds from oil-in-water (O/W) emulsions were measured under equilibrium using static headspace gas chromatography. The results indicated that water-air and octanol-air partition coefficients correlated with the logarithms of the released concentrations in the headspace for highly lipophilic flavor compounds. Moreover, the same tendency was observed over various oil volume ratios in the emulsions. Our findings therefore suggest that octanol-air and water-air partition coefficients can be used to predict the released concentration of lipophilic flavor compounds from O/W emulsions. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Impacts of air pollutants from fire and non-fire emissions on the regional air quality in Southeast Asia

    NASA Astrophysics Data System (ADS)

    Lee, Hsiang-He; Iraqui, Oussama; Gu, Yefu; Hung-Lam Yim, Steve; Chulakadabba, Apisada; Yiu-Ming Tonks, Adam; Yang, Zhengyu; Wang, Chien

    2018-05-01

    Severe haze events in Southeast Asia caused by particulate pollution have become more intense and frequent in recent years. Widespread biomass burning occurrences and particulate pollutants from human activities other than biomass burning play important roles in degrading air quality in Southeast Asia. In this study, numerical simulations have been conducted using the Weather Research and Forecasting (WRF) model coupled with a chemistry component (WRF-Chem) to quantitatively examine the contributions of aerosols emitted from fire (i.e., biomass burning) versus non-fire (including fossil fuel combustion, and road dust, etc.) sources to the degradation of air quality and visibility over Southeast Asia. These simulations cover a time period from 2002 to 2008 and are driven by emissions from (a) fossil fuel burning only, (b) biomass burning only, and (c) both fossil fuel and biomass burning. The model results reveal that 39 % of observed low-visibility days (LVDs) can be explained by either fossil fuel burning or biomass burning emissions alone, a further 20 % by fossil fuel burning alone, a further 8 % by biomass burning alone, and a further 5 % by a combination of fossil fuel burning and biomass burning. Analysis of an 24 h PM2.5 air quality index (AQI) indicates that the case with coexisting fire and non-fire PM2.5 can substantially increase the chance of AQI being in the moderate or unhealthy pollution level from 23 to 34 %. The premature mortality in major Southeast Asian cities due to degradation of air quality by particulate pollutants is estimated to increase from ˜ 4110 per year in 2002 to ˜ 6540 per year in 2008. In addition, we demonstrate the importance of certain missing non-fire anthropogenic aerosol sources including anthropogenic fugitive and industrial dusts in causing urban air quality degradation. An experiment of using machine learning algorithms to forecast the occurrence of haze events in Singapore is also explored in this study. All of these

  17. Exposure to industrial air pollutant emissions and lung function in children: Canadian Health Measures Survey, 2007 to 2011.

    PubMed

    Wong, Suzy L; Coates, Allan L; To, Teresa

    2016-02-01

    Long-term exposure to ambient air pollution has been associated with adverse effects on children's lung function. Few studies have examined lung function in relation to industrial emissions of air pollutants. This cross-sectional study was based on 2,833 respondents aged 6 to 18 for whom spirometry data were collected by the Canadian Health Measures Survey, 2007 to 2011. The weighted sum of industrial air emissions of nitrogen oxides (NOₓ) and fine particulate matter (PM2.5) within 25 km of the respondent's residence was derived using National Pollutant Release Inventory data. Multivariate linear regression was used to examine the relationship between NOₓ and PM2.5 emissions and forced vital capacity (FVC), the forced expiratory volume in 1 sec (FEV₁), and the ratio of the two (FEV₁/FVC). Industrial air emissions of NOₓ were not significantly associated with lung function among males or females. Emissions of PM2.5 were negatively associated with FEV₁ and FEV₁/FVC, but not FVC, among males. PM2.5 was not significantly related to lung function among females. The associations that emerged between lung function and industrial emissions of PM2.5 among males were consistent with airway obstruction. Further research is warranted to investigate the gender differences observed in this study.

  18. 76 FR 13851 - National Emission Standards for Hazardous Air Pollutants: Mercury Emissions From Mercury Cell...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-14

    ...This action proposes amendments to the national emission standards for hazardous air pollutants (NESHAP) for mercury emissions from mercury cell chlor-alkali plants (Mercury Cell NESHAP). On June 11, 2008, EPA proposed amendments to this NESHAP in response to a petition for reconsideration filed by the Natural Resources Defense Council (NRDC). This action is a supplement to the June 11, 2008, proposal. Specifically, this action proposes two options for amending the NESHAP for mercury emissions from mercury cell chlor-alkali plants. The first option would require the elimination of mercury emissions and thus encourage the conversion to non-mercury technology. The second option would require the measures proposed in 2008. These measures, which included significant improvements in the work practices to reduce fugitive emissions from the cell room, would result in near-zero levels of mercury emissions while still allowing the mercury cell facilities to continue to operate. We are specifically requesting comment on which of these options is more appropriate, and may finalize either option or a combination of elements from them. In addition, this action proposes several amendments that would apply regardless of which option we select. These proposed amendments are provisions of the existing NESHAP that would apply to periods of startup, shutdown, and malfunction (SSM), and corrections to compliance errors in the currently effective rule.

  19. Greenhouse gas emissions from oilfield-produced water in Shengli Oilfield, Eastern China.

    PubMed

    Yang, Shuang; Yang, Wei; Chen, Guojun; Fang, Xuan; Lv, Chengfu; Zhong, Jiaai; Xue, Lianhua

    2016-08-01

    Greenhouse gas (GHG) emissions from oil and gas systems are an important component of the GHG emission inventory. To assess the carbon emissions from oilfield-produced water under atmospheric conditions correctly, in situ detection and simulation experiments were developed to study the natural release of GHG into the atmosphere in the Shengli Oilfield, the second largest oilfield in China. The results showed that methane (CH4) and carbon dioxide (CO2) were the primary gases released naturally from the oilfield-produced water. The atmospheric temperature and release time played important roles in determining the CH4 and CO2 emissions under atmospheric conditions. Higher temperatures enhanced the carbon emissions. The emissions of both CH4 and CO2 from oilfield-produced water were highest at 27°C and lowest at 3°C. The bulk of CH4 and CO2 was released from the oilfield-produced water during the first release period, 0-2hr, for each temperature, with a maximum average emission rate of 0.415gCH4/(m(3)·hr) and 3.934gCO2/(m(3)·hr), respectively. Then the carbon emissions at other time periods gradually decreased with the extension of time. The higher solubility of CO2 in water than CH4 results in a higher emission rate of CH4 than CO2 over the same release duration. The simulation proved that oilfield-produced water is one of the potential emission sources that should be given great attention in oil and gas systems. Copyright © 2016. Published by Elsevier B.V.

  20. Modeling the Dynamic Change of Air Quality and its Response to Emission Trends

    NASA Astrophysics Data System (ADS)

    Zhou, Wei

    This thesis focuses on evaluating atmospheric chemistry and transport models' capability in simulating the chemistry and dynamics of power plant plumes, evaluating their strengths and weaknesses in predicting air quality trends at regional scales, and exploring air quality trends in an urban area. First, the Community Mutlti-scale Air Quality (CMAQ) model is applied to simulate the physical and chemical evolution of power plant plumes (PPPs) during the second Texas Air Quality Study (TexAQS) in 2006. SO2 and NOy were observed to be rapidly removed from PPPs on cloudy days but not on cloud-free days, indicating efficient aqueous processing of these compounds in clouds, while the model fails to capture the rapid loss of SO2 and NOy in some plumes on the cloudy day. Adjustments to cloud liquid water content (QC) and the default metal concentrations in the cloud module could explain some of the SO 2 loss while NOy in the model was insensitive to QC. Second, CMAQ is applied to simulate the ozone (O3) change after the NO x SIP Call and mobile emission controls in the eastern U.S. from 2002 to 2006. Observed downward changes in 8-hour O3 concentrations in the NOx SIP Call region were under-predicted by 26%--66%. The under-prediction in O3 improvements could be alleviated by 5%--31% by constraining NOx emissions in each year based on observed NOx concentrations while temperature biases or uncertainties in chemical reactions had minor impact on simulated O3 trends. Third, changes in ozone production in the Houston area is assessed with airborne measurements from TexAQS 2000 and 2006. Simultaneous declines in nitrogen oxides (NOx=NO+NO2) and highly reactive Volatile Organic Compounds (HRVOCs) were observed in the Houston Ship Channel (HSC). The reduction in HRVOCs led to the decline in total radical concentration by 20-50%. Rapid ozone production rates in the Houston area declined by 40-50% from 2000 to 2006, to which the reduction in NOx and HRVOCs had the similar

  1. Cost Effective Measures to Reduce CO2 Emissions in the Air Freight Sector

    NASA Technical Reports Server (NTRS)

    Blinge, Magnus

    2003-01-01

    This paper presents cost effective measures to reduce CO2 emissions in the air freight sector. One door-to-door transport chain is studied in detail from a Scandinavian city to a city in southern Europe. The transport chain was selected by a group of representatives from the air freight sector in order to encompass general characteristics within the sector. Three different ways of shipping air cargo are studied, i.e., by air freighter, as belly freight (in passenger aircrafts) and trucking. CO2 emissions are calculated for each part of the transport chain and its relative importance towards the total amount CO2 emitted during the whole transport chain is shown. It is confirmed that the most CO2 emitting part of the transport chain is the actual flight and that it is in the take-off and climbing phases that most fuel are burned. It is also known that the technical development of aircraft implies a reduction in fuel consumption for each new generation of aircraft. Thus, the aircraft manufacturers have an important role in this development. Having confirmed these observations, this paper focuses on other factors that significantly affects the fuel consumption. Analyzed factors are, e.g., optimization of speed and altitude, traffic management, congestion on and around the airfields, tankering, "latest acceptance time" for goods and improving the load factor. The different factors relative contribution to the total emission levels for the transport chain has been estimated.

  2. An emission processing system for air quality modelling in the Mexico City metropolitan area: Evaluation and comparison of the MOBILE6.2-Mexico and MOVES-Mexico traffic emissions.

    PubMed

    Guevara, M; Tena, C; Soret, A; Serradell, K; Guzmán, D; Retama, A; Camacho, P; Jaimes-Palomera, M; Mediavilla, A

    2017-04-15

    This article describes the High-Elective Resolution Modelling Emission System for Mexico (HERMES-Mex) model, an emission processing tool developed to transform the official Mexico City Metropolitan Area (MCMA) emission inventory into hourly, gridded (up to 1km 2 ) and speciated emissions used to drive mesoscale air quality simulations with the Community Multi-scale Air Quality (CMAQ) model. The methods and ancillary information used for the spatial and temporal disaggregation and speciation of the emissions are presented and discussed. The resulting emission system is evaluated, and a case study on CO, NO 2 , O 3 , VOC and PM 2.5 concentrations is conducted to demonstrate its applicability. Moreover, resulting traffic emissions from the Mobile Source Emission Factor Model for Mexico (MOBILE6.2-Mexico) and the MOtor Vehicle Emission Simulator for Mexico (MOVES-Mexico) models are integrated in the tool to assess and compare their performance. NO x and VOC total emissions modelled are reduced by 37% and 26% in the MCMA when replacing MOBILE6.2-Mexico for MOVES-Mexico traffic emissions. In terms of air quality, the system composed by the Weather Research and Forecasting model (WRF) coupled with the HERMES-Mex and CMAQ models properly reproduces the pollutant levels and patterns measured in the MCMA. The system's performance clearly improves in urban stations with a strong influence of traffic sources when applying MOVES-Mexico emissions. Despite reducing estimations of modelled precursor emissions, O 3 peak averages are increased in the MCMA core urban area (up to 30ppb) when using MOVES-Mexico mobile emissions due to its VOC-limited regime, while concentrations in the surrounding suburban/rural areas decrease or increase depending on the meteorological conditions of the day. The results obtained suggest that the HERMES-Mex model can be used to provide model-ready emissions for air quality modelling in the MCMA. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. The energy and emissions footprint of water supply for Southern California

    NASA Astrophysics Data System (ADS)

    Fang, A. J.; Newell, Joshua P.; Cousins, Joshua J.

    2015-11-01

    Due to climate change and ongoing drought, California and much of the American West face critical water supply challenges. California’s water supply infrastructure sprawls for thousands of miles, from the Colorado River to the Sacramento Delta. Bringing water to growing urban centers in Southern California is especially energy intensive, pushing local utilities to balance water security with factors such as the cost and carbon footprint of the various supply sources. To enhance water security, cities are expanding efforts to increase local water supply. But do these local sources have a smaller carbon footprint than imported sources? To answer this question and others related to the urban water-energy nexus, this study uses spatially explicit life cycle assessment to estimate the energy and emissions intensity of water supply for two utilities in Southern California: Los Angeles Department of Water and Power, which serves Los Angeles, and the Inland Empire Utility Agency, which serves the San Bernardino region. This study differs from previous research in two significant ways: (1) emissions factors are based not on regional averages but on the specific electric utility and generation sources supplying energy throughout transport, treatment, and distribution phases of the water supply chain; (2) upstream (non-combustion) emissions associated with the energy sources are included. This approach reveals that in case of water supply to Los Angeles, local recycled water has a higher carbon footprint than water imported from the Colorado River. In addition, by excluding upstream emissions, the carbon footprint of water supply is potentially underestimated by up to 30%. These results have wide-ranging implications for how carbon footprints are traditionally calculated at local and regional levels. Reducing the emissions intensity of local water supply hinges on transitioning the energy used to treat and distribute water away from fossil fuel, sources such as coal.

  4. Site Remediation National Emission Standards for Hazardous Air Pollutants (NESHAP) Fact Sheets

    EPA Pesticide Factsheets

    This page contains July 2003 and May 2016 fact sheets with information regarding the final National Emission Standards for Hazardous Air Pollutants (NESHAP). This document provides a summary of the information for these regulations.

  5. Magnetic Tape Manufacturing Operations: National Emission Standards for Hazardous Air Pollutants (NESHAP)

    EPA Pesticide Factsheets

    Read this page to find information on the National Emission Standards for hazardous air pollutants for magnetic tape manufacturing operations. Read the rule summary and history, as well as supporting documents and related rules.

  6. Urban scale air quality modelling using detailed traffic emissions estimates

    NASA Astrophysics Data System (ADS)

    Borrego, C.; Amorim, J. H.; Tchepel, O.; Dias, D.; Rafael, S.; Sá, E.; Pimentel, C.; Fontes, T.; Fernandes, P.; Pereira, S. R.; Bandeira, J. M.; Coelho, M. C.

    2016-04-01

    The atmospheric dispersion of NOx and PM10 was simulated with a second generation Gaussian model over a medium-size south-European city. Microscopic traffic models calibrated with GPS data were used to derive typical driving cycles for each road link, while instantaneous emissions were estimated applying a combined Vehicle Specific Power/Co-operative Programme for Monitoring and Evaluation of the Long-range Transmission of Air Pollutants in Europe (VSP/EMEP) methodology. Site-specific background concentrations were estimated using time series analysis and a low-pass filter applied to local observations. Air quality modelling results are compared against measurements at two locations for a 1 week period. 78% of the results are within a factor of two of the observations for 1-h average concentrations, increasing to 94% for daily averages. Correlation significantly improves when background is added, with an average of 0.89 for the 24 h record. The results highlight the potential of detailed traffic and instantaneous exhaust emissions estimates, together with filtered urban background, to provide accurate input data to Gaussian models applied at the urban scale.

  7. Use of an air-assisted fuel nozzle to reduce idle emissions of a jt8d engine combustor

    NASA Technical Reports Server (NTRS)

    Papathakos, L. C.; Jones, R. E.

    1973-01-01

    Tests were performed at typical engine idle conditions on a single-can JT8D combustor installed in a 24 centimeter (9.45 in.) housing to evaluate the effect of an air-assist nozzle on reducing exhaust emissions. By injecting high-pressure air through the secondary-flow passage of a standard duplex fuel nozzle, it was possible to reduce hydrocarbon emissions from 840 parts per million to 95 parts per million and carbon monoxide emissions from 873 parts per million to 258 parts per million. NOX emissions increased slightly from 18 parts per million to 22 parts per million. An air-assist differential pressure of only 20.1 newtons per square centimeter (29.1 psi) and an airflow rate of only 0.22 percent of the total combustor airflow was required.

  8. Propane and butane emission sources to ambient air of Mexico City metropolitan area.

    PubMed

    Jaimes, L; Sandoval, J

    2002-04-22

    Samples of volatile organic compounds (VOCs) were collected in a smog chamber in order to determine whether automotive exhausts or LP Gas emissions play a greater role in the source of propane and butane, which affect ozone formation and other pollutants in the ambient air of the Mexico City metropolitan area (MCMA). These samples were collected in April 1995 during mornings and evenings. The testing methodology used for measuring exhaust emission were FTP or EPA-74 tests, and SHED type tests were also conducted in order to evaluate evaporative emissions. The finding from analysis of the VOCs collected in the morning demonstrate that in the atmosphere, propane concentrations are higher than that of butane but the reverse in evaporative and exhaust emissions, with the concentration of propane lower than that of butane. Our conclusion is that most of C3 and C4 in the ambient air comes from LP gas and not vehicle exhaust or evaporative emission, due to the higher levels of propane than butane in its formulation. The analysis of VOCs also indicates that although the conversion (in the smog chamber) of alkanes is low during the day, due to the high initial concentration, their contribution in the reaction mechanism to produce ozone can be appreciable.

  9. Correlations between water-soluble organic aerosol and water vapor: a synergistic effect from biogenic emissions?

    PubMed

    Hennigan, Christopher J; Bergin, Michael H; Weber, Rodney J

    2008-12-15

    Ground-based measurements of meteorological parameters and water-soluble organic carbon in the gas(WSOCg) and particle (WSOCp) phases were carried out in Atlanta, Georgia, from May to September 2007. Fourteen separate events were observed throughout the summer in which WSOCp and water vapor concentrations were highly correlated (average WSOCp-water vapor r = 0.92); however, for the entire summer, no well-defined relationship existed between the two. The correlation events, which lasted on average 19 h, were characterized by a wide range of WSOCp and water vapor concentrations. Several hypotheses for the correlation are explored, including heterogeneous liquid phase SOA formation and the co-emission of biogenic VOCs and water vapor. The data provide supporting evidence for contributions from both and suggest the possibility of a synergistic effect between the co-emission of water vapor and VOCs from biogenic sources on SOA formation. Median WSOCp concentrations were also correlated with elemental carbon (EC), although this correlation extended over the entire summer. Despite the emission of water vapor from anthropogenic mobile sources and the WSOCp-EC correlation, mobile sources were not considered a potential cause for the WSOCp-water vapor correlations because of their low contribution to the water vapor budget. Meteorology could perhaps have influenced the WSOCp-EC correlation, but other factors are implicated as well. Overall, the results suggest that the temperature-dependent co-emission of water vapor through evapotranspiration and SOA precursor-VOCs by vegetation may be an important process contributing to SOA in some environments.

  10. Economics of water injected air screw compressor systems

    NASA Astrophysics Data System (ADS)

    Venu Madhav, K.; Kovačević, A.

    2015-08-01

    There is a growing need for compressed air free of entrained oil to be used in industry. In many cases it can be supplied by oil flooded screw compressors with multi stage filtration systems, or by oil free screw compressors. However, if water injected screw compressors can be made to operate reliably, they could be more efficient and therefore cheaper to operate. Unfortunately, to date, such machines have proved to be insufficiently reliable and not cost effective. This paper describes an investigation carried out to determine the current limitations of water injected screw compressor systems and how these could be overcome in the 15-315 kW power range and delivery pressures of 6-10 bar. Modern rotor profiles and approach to sealing and cooling allow reasonably inexpensive air end design. The prototype of the water injected screw compressor air system was built and tested for performance and reliability. The water injected compressor system was compared with the oil injected and oil free compressor systems of the equivalent size including the economic analysis based on the lifecycle costs. Based on the obtained results, it was concluded that water injected screw compressor systems could be designed to deliver clean air free of oil contamination with a better user value proposition than the oil injected or oil free screw compressor systems over the considered range of operations.

  11. The identification of Volatile Organic Compound's emission sources in indoor air of living spaces, offices and laboratories

    NASA Astrophysics Data System (ADS)

    Kultys, Beata

    2018-01-01

    Indoor air quality is important because people spend most of their time in closed rooms. If volatile organic compounds (VOCs) are present at elevated concentrations, they may cause a deterioration in human well-being or health. The identification of indoor emission sources is carried out by comparison indoor and outdoor air composition. The aim of the study was to determinate the concentration of VOCs in indoor air, where there was a risk of elevated levels due to the kind of work type carried out or the users complained about the symptoms of a sick building followed by an appropriate interpretation of the results to determine whether the source of the emission in the tested room occurs. The air from residential, office and laboratory was tested in this study. The identification of emission sources was based on comparison of indoor and outdoor VOCs concentration and their correlation coefficients. The concentration of VOCs in all the rooms were higher or at a similar level to that of the air sampled at the same time outside the building. Human activity, in particular repair works and experiments with organic solvents, has the greatest impact on deterioration of air quality.

  12. Nature of air pollution, emission sources, and management in the Indian cities

    NASA Astrophysics Data System (ADS)

    Guttikunda, Sarath K.; Goel, Rahul; Pant, Pallavi

    2014-10-01

    The global burden of disease study estimated 695,000 premature deaths in 2010 due to continued exposure to outdoor particulate matter and ozone pollution for India. By 2030, the expected growth in many of the sectors (industries, residential, transportation, power generation, and construction) will result in an increase in pollution related health impacts for most cities. The available information on urban air pollution, their sources, and the potential of various interventions to control pollution, should help us propose a cleaner path to 2030. In this paper, we present an overview of the emission sources and control options for better air quality in Indian cities, with a particular focus on interventions like urban public transportation facilities; travel demand management; emission regulations for power plants; clean technology for brick kilns; management of road dust; and waste management to control open waste burning. Also included is a broader discussion on key institutional measures, like public awareness and scientific studies, necessary for building an effective air quality management plan in Indian cities.

  13. Non-thermal plasma for air and water remediation.

    PubMed

    Hashim, Siti Aiasah; Samsudin, Farah Nadia Dayana Binti; Wong, Chiow San; Abu Bakar, Khomsaton; Yap, Seong Ling; Mohd Zin, Mohd Faiz

    2016-09-01

    A modular typed dielectric barrier discharge (DBD) device is designed and tested for air and water remediation. The module is made of a number of DBD tubes that can be arranged in series or parallel. Each of the DBD tubes comprises inner electrode enclosed with dielectric barrier and arranged as such to provide a gap for the passage of gases. Non-thermal plasma generated in the gap effectively creates gaseous chemical reactions. Its efficacy in the remediation of gas stream containing high NOx, similar to diesel emission and wastewater containing latex, are presented. A six tubes DBD module has successfully removed more than 80% of nitric oxide from the gas stream. In another arrangement, oxygen was fed into a two tubes DBD to generate ozone for treatment of wastewater. Samples of wastewater were collected from a treatment pond of a rubber vulcanization pilot plant. The water pollution load was evaluated by the chemical oxygen demand (COD) and biological oxygen demand (BOD5) values. Preliminary results showed some improvement (about 13%) on the COD after treatment and at the same time had increased the BOD5 by 42%. This results in higher BOD5/COD ratio after ozonation which indicate better biodegradability of the wastewater. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. Global emissions of trace gases, particulate matter, and hazardous air pollutants from open burning of domestic waste.

    PubMed

    Wiedinmyer, Christine; Yokelson, Robert J; Gullett, Brian K

    2014-08-19

    The open burning of waste, whether at individual residences, businesses, or dump sites, is a large source of air pollutants. These emissions, however, are not included in many current emission inventories used for chemistry and climate modeling applications. This paper presents the first comprehensive and consistent estimates of the global emissions of greenhouse gases, particulate matter, reactive trace gases, and toxic compounds from open waste burning. Global emissions of CO2 from open waste burning are relatively small compared to total anthropogenic CO2; however, regional CO2 emissions, particularly in many developing countries in Asia and Africa, are substantial. Further, emissions of reactive trace gases and particulate matter from open waste burning are more significant on regional scales. For example, the emissions of PM10 from open domestic waste burning in China is equivalent to 22% of China's total reported anthropogenic PM10 emissions. The results of the emissions model presented here suggest that emissions of many air pollutants are significantly underestimated in current inventories because open waste burning is not included, consistent with studies that compare model results with available observations.

  15. Modelling the emissions from ships in ports and their impact on air quality in the metropolitan area of Hamburg

    NASA Astrophysics Data System (ADS)

    Ramacher, Martin; Karl, Matthias; Aulinger, Armin; Bieser, Johannes; Matthias, Volker; Quante, Markus

    2016-04-01

    Exhaust emissions from shipping contribute significantly to the anthropogenic burden of air pollutants such as nitrogen oxides (NOX) and particulate matter (PM). Ships emit not only when sailing on open sea, but also when approaching harbors, during port manoeuvers and at berth to produce electricity and heat for the ship's operations. This affects the population of harbor cities because long-term exposure to PM and NOX has significant effects on human health. The European Union has therefore has set air quality standards for air pollutants. Many port cities have problems meeting these standards. The port of Hamburg with around 10.000 ship calls per year is Germany's largest seaport and Europe's second largest container port. Air quality standard reporting in Hamburg has revealed problems in meeting limits for NO2 and PM10. The amount and contribution of port related ship emissions (38% for NOx and 17% for PM10) to the overall emissions in the metropolitan area in 2005 [BSU Hamburg (2012): Luftreinhalteplan für Hamburg. 1. Fortschreibung 2012] has been modelled with a bottom up approach by using statistical data of ship activities in the harbor, technical vessel information and specific emission algorithms [GAUSS (2008): Quantifizierung von gasförmigen Emissionen durch Maschinenanlagen der Seeschiffart an der deutschen Küste]. However, knowledge about the spatial distribution of the harbor ship emissions over the city area is crucial when it comes to air quality standards and policy decisions to protect human health. Hence, this model study examines the spatial distribution of harbor ship emissions (NOX, PM10) and their deposition in the Hamburg metropolitan area. The transport and chemical transformation of atmospheric pollutants is calculated with the well-established chemistry transport model TAPM (The Air Pollution Model). TAPM is a three-dimensional coupled prognostic meteorological and air pollution model with a condensed chemistry scheme including

  16. Environmental Quality and the U.S. Power Sector: Air Quality, Land Use and Environmental Justice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Massetti, Emanuele; Brown, Marilyn Ann; Lapsa, Melissa Voss

    This baseline report summarizes key environmental quality issues associated with electricity generation, transmission, distribution, and end use in the United States. Its scope includes non-greenhouse gas air pollution (i.e., sulfur dioxide, nitrogen oxides, particulate matter and hazardous air pollutants), land use, water pollution, ecological impacts, human health, and environmental justice. The discussion characterizes both current impacts and recent trends, as well as assessments of key drivers of change. For example, the air emissions section includes a quantitative decomposition analysis of the drivers of change in sulfur dioxide emissions reductions from coal-fired power plants. The report is divided into four topicalmore » sections: air emissions, land use and ecology, water quality, and environmental justice.« less

  17. 40 CFR 86.166-12 - Method for calculating emissions due to air conditioning leakage.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... determine a refrigerant leakage rate in grams per year from vehicle-based air conditioning units. The... using the following equation: Grams/YRTOT = Grams/YRRP + Grams/YRSP + Grams/YRFH + Grams/YRMC + Grams/YRC Where: Grams/YRTOT = Total air conditioning system emission rate in grams per year and rounded to...

  18. Air-water ‘tornado’-type microwave plasmas applied for sugarcane biomass treatment

    NASA Astrophysics Data System (ADS)

    Bundaleska, N.; Tatarova, E.; Dias, F. M.; Lino da Silva, M.; Ferreira, C. M.; Amorim, J.

    2014-02-01

    The production of cellulosic ethanol from sugarcane biomass is an attractive alternative to the use of fossil fuels. Pretreatment is needed to separate the cellulosic material, which is packed with hemicellulose and lignin in cell wall of sugarcane biomass. A microwave ‘tornado’-type air-water plasma source operating at 2.45 GHz and atmospheric pressure has been applied for this purpose. Samples of dry and wet biomass (˜2 g) have been exposed to the late afterglow plasma stream. The experiments demonstrate that the air-water highly reactive plasma environment provides a number of long-lived active species able to destroy the cellulosic wrapping. Scanning electron microscopy has been applied to analyse the morphological changes occurring due to plasma treatment. The effluent gas streams have been analysed by Fourier-transform infrared spectroscopy (FT-IR). Optical emission spectroscopy and FT-IR have been applied to determine the gas temperature in the discharge and late afterglow plasma zones, respectively. The optimal range of the operational parameters is discussed along with the main active species involved in the treatment process. Synergistic effects can result from the action of singlet O2(a 1Δg) oxygen, NO2, nitrous acid HNO2 and OH hydroxyl radical.

  19. Interpreting contact angle results under air, water and oil for the same surfaces

    NASA Astrophysics Data System (ADS)

    Ozkan, Orkun; Yildirim Erbil, H.

    2017-06-01

    Under-water and under-oil superhydropobicity and superhydrophilicity have gained significant attention over the last few years. In this study, contact angles on five flat surfaces (polypropylene, poly(methyl methacrylate), polycarbonate, TEFLON-FEP and glass slide) were measured in water drop-in-air, air bubble-under-water, oil drop-in-air, air bubble-under-oil, oil drop-under-water and water drop-under-oil conditions. Heptane, octane, nonane, decane, dodecane, and hexadecane hydrocarbons were used as oils. Immiscible water/oil pairs were previously mutually saturated to provide thermodynamical equilibrium conditions and their surface and interfacial tensions were determined experimentally. These pairs were used in the two-liquid contact angle measurements. Surface free energies of the solid surfaces in air were determined independently by using the van Oss-Good method, using the contact angle results of pure water, ethylene glycol, formamide, methylene iodide and α-bromonaphalene. In addition, Zisman’s ‘critical surface tension’ values were also determined for comparison. In theory, the summation of contact angle results in a complementary case would give a total of 180° for ideal surfaces. However, it was determined that there are large deviations from this rule in practical cases and these deviations depend on surface free energies of solids. Three complementary cases of (water-in-air with air bubble-under-water); (oil-in-air with air bubble-under-oil); and (oil-under-water with water-under-oil) were investigated in particular to determine the deviations from ideality. A novel approach, named ‘complementary hysteresis’ [γ WA(cosθ 1  -  cosθ 2) and γ OW(cosθ 6  -  cosθ 5)] was developed where γ WA and γ OW represent the interfacial tensions of water/air and oil/water, and θ 1, θ 2, θ 5, and θ 6 were the contact angles of water/air, air bubble/water, oil/water and water/oil respectively. It was experimentally determined that

  20. Effects of air vessel on water hammer in high-head pumping station

    NASA Astrophysics Data System (ADS)

    Wang, L.; Wang, F. J.; Zou, Z. C.; Li, X. N.; Zhang, J. C.

    2013-12-01

    Effects of air vessel on water hammer process in a pumping station with high-head were analyzed by using the characteristics method. The results show that the air vessel volume is the key parameter that determines the protective effect on water hammer pressure. The maximum pressure in the system declines with increasing air vessel volume. For a fixed volume of air vessel, the shape of air vessel and mounting style, such as horizontal or vertical mounting, have little effect on the water hammer. In order to obtain good protection effects, the position of air vessel should be close to the outlet of the pump. Generally, once the volume of air vessel is guaranteed, the water hammer of a entire pipeline is effectively controlled.

  1. Greenhouse gas emissions from alternative water supply processes in southern California, USA

    NASA Astrophysics Data System (ADS)

    Schneider, A.; Townsend-Small, A.

    2012-12-01

    Burgeoning population centers and declining hydrological resources have encouraged the development of alternative water treatment systems, including desalination and wastewater recycling. These processes currently provide potable water for millions of people and assist in satisfying agricultural and landscaping irrigation demands. There are a variety of alternative water production methods in place, and while they help to reduce the demands placed on aquifers, during their operation they are also significant sources of greenhouse gases. The environmental advantages of these alternative water production methods need to be carefully weighed against their energy footprints and greenhouse gas emissions profiles. This study measured the greenhouse gas emissions of a wastewater treatment and recycling facility in Orange County, California to get a more complete picture of the carbon footprint of the plant. We measured atmospheric emissions of CO2, CH4, and N2O throughout the water recycling process and at various times of the day and week. This allowed us to assemble a thorough, cross-sectional profile of greenhouse gas emissions from the facility. We then compared the measured emissions of the treatment plant to the modeled emissions of desalination plants in order to assess the relative carbon footprints of the two water production methods. Other water supply alternatives, including regional water importation, were also included in the comparison in order to provide a more complete understanding of the potential greenhouse gas emissions. Finally, we assessed the significance of wastewater treatment as an urban greenhouse gas source when compared to other known emissions in the region. This research offers a valuable tool for sustainable urban and regional development by providing planners with a quantified comparison of the carbon footprints of several water production options.

  2. The Effects of Air Preheat and Number of Orifices on Flow and Emissions in an RQL Mixing Section

    NASA Technical Reports Server (NTRS)

    Holdeman, James D.; Chang, Clarence T.

    2007-01-01

    This study was motivated by a goal to understand the mixing and emissions in the rich-burn/quick-mix/lean-burn (RQL) combustor scheme that has been proposed to minimize the formation of oxides of nitrogen (NOx) in gas turbine combustors. The study reported in this paper was a reacting jet-in-crossflow experiment at atmospheric pressure in a cylindrical duct. The jets were injected from the perimeter of the duct through round-hole orifices into a fuel-rich mainstream flow. The number of orifices investigated in this study gave over- to optimum to underpenetrating jets at a jet-to-mainstream momentum-flux ratio of 57. The size of individual orifices was decreased as their number increased to maintain a constant total area. The jet-to-mainstream mass-flow ratio was held constant at 2.5. The experiments focused on the effects of the number of orifices and inlet air preheat and were conducted in a facility that provided the capability for independent variation of jet and main inlet air preheat temperature. The number of orifices was found to have a significant effect on mixing and the distributions of species, but very little effect on overall NOx emissions, suggesting that an aerodynamically optimum mixer may not minimize NOx emissions. Air preheat was found to have very little effect on mixing and the distributions of major species, but preheat did increase NOx emissions significantly. Although the air jets injected in the quick-mix section of a RQL combustor may comprise over 70% of the total air flow, the overall NOx emission levels were found to be more sensitive to mainstream air preheat than to jet stream air preheat.

  3. (AWMA) IMPROVING EMISSION INVENTORIES FOR EFFECTIVE AIR-QUALITY MANAGEMENT ACROSS NORTH AMERICA - A NARSTO ASSESSMENT

    EPA Science Inventory

    The NARSTO Ozone and Particulate Matter Assessments emphasized that emission inventories are critical to the success of air quality management programs and that emissions inventories in Canada, Mexico, and the United States need improvement to meet expectations for quality, timel...

  4. Modeled Full-Flight Aircraft Emissions Impacts on Air Quality and Their Sensitivity to Grid Resolution

    EPA Science Inventory

    Aviation is a unique anthropogenic source with four-dimensional varying emissions, peaking at cruise altitudes (9–12 km). Aircraft emission budgets in the upper troposphere lower stratosphere region and their potential impacts on upper troposphere and surface air quality ar...

  5. QA procedures and emissions from nonstandard sources in AQUIS, a PC-based emission inventory and air permit manager

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, A.E.; Tschanz, J.; Monarch, M.

    1996-05-01

    The Air Quality Utility Information System (AQUIS) is a database management system that operates under dBASE IV. It runs on an IBM-compatible personal computer (PC) with MS DOS 5.0 or later, 4 megabytes of memory, and 30 megabytes of disk space. AQUIS calculates emissions for both traditional and toxic pollutants and reports emissions in user-defined formats. The system was originally designed for use at 7 facilities of the Air Force Materiel Command, and now more than 50 facilities use it. Within the last two years, the system has been used in support of Title V permit applications at Department ofmore » Defense facilities. Growth in the user community, changes and additions to reference emission factor data, and changing regulatory requirements have demanded additions and enhancements to the system. These changes have ranged from adding or updating an emission factor to restructuring databases and adding new capabilities. Quality assurance (QA) procedures have been developed to ensure that emission calculations are correct even when databases are reconfigured and major changes in calculation procedures are implemented. This paper describes these QA and updating procedures. Some user facilities include light industrial operations associated with aircraft maintenance. These facilities have operations such as fiberglass and composite layup and plating operations for which standard emission factors are not available or are inadequate. In addition, generally applied procedures such as material balances may need special treatment to work in an automated environment, for example, in the use of oils and greases and when materials such as polyurethane paints react chemically during application. Some techniques used in these situations are highlighted here. To provide a framework for the main discussions, this paper begins with a description of AQUIS.« less

  6. Manufacturing of Nutritional Yeast: National Emission Standards for Hazardous Air Pollutants (NESHAP)

    EPA Pesticide Factsheets

    Read the final rule on the National Emission Standards for Hazardous Air Pollutants (NESHAP) for the Manufacturing of Nutritional Yeast, see the rule history, and a compliance and enforcement manual on this Maximum Achievable Control Technology.

  7. Impacts of emission reduction and meteorological conditions on air quality improvement during the 2014 Youth Olympic Games in Nanjing, China

    NASA Astrophysics Data System (ADS)

    Huang, Qian; Wang, Tijian; Chen, Pulong; Huang, Xiaoxian; Zhu, Jialei; Zhuang, Bingliang

    2017-11-01

    As the holding city of the 2nd Youth Olympic Games (YOG), Nanjing is highly industrialized and urbanized, and faces several air pollution issues. In order to ensure better air quality during the event, the local government took great efforts to control the emissions from pollutant sources. However, air quality can still be affected by synoptic weather, not only emission. In this paper, the influences of meteorological factors and emission reductions were investigated using observational data and numerical simulations with WRF-CMAQ (Weather Research and Forecasting - Community Multiscale Air Quality). During the month in which the YOG were held (August 2014), the observed hourly mean concentrations of SO2, NO2, PM10, PM2.5, CO and O3 were 11.6 µg m-3, 34.0 µg m-3, 57.8 µg m-3, 39.4 µg m-3, 0.9 mg m-3 and 38.8 µg m-3, respectively, which were below China National Ambient Air Quality Standard (level 2). However, model simulation showed that the weather conditions, such as weaker winds during the YOG, were adverse for better air quality and could increase SO2, NO2, PM10, PM2.5 and CO by 17.5, 16.9, 18.5, 18.8, 7.8 and 0.8 %. Taking account of local emission abatement only, the simulated SO2, NO2, PM10, PM2.5 and CO decreased by 24.6, 12.1, 15.1, 8.1 and 7.2 %. Consequently, stringent emission control measures can reduce the concentrations of air pollutants in the short term, and emission reduction is very important for air quality improvement during the YOG. A good example has been set for air quality protection for important social events.

  8. Nonlinear Acoustics at the Air-Water Free Surface

    NASA Astrophysics Data System (ADS)

    Pree, Seth; Naranjo, Brian; Putterman, Seth

    2016-11-01

    According to linear acoustics, airborne sound incident on a water surface transmits only a tenth of a percent of its energy. This difficulty of transmitting energy across the water surface limits the feasibility of standoff ultrasound imaging. We propose to overcome this long standing problem by developing new methods of coupling into the medium at standoff. In particular, we believe that the acoustic nonlinearity of both the air and the medium may yield a range of effects in the vicinity of the surface permitting an efficient transmission of ultrasound from the air into the medium. The recent commercial availability of parametric speakers that deliver modulated 100kHz ultrasound at 135dB to nonlinearly generate music at 95dB provides an interesting platform with which to revisit the transmission of sound across acoustic impedance mismatches. We show results of experimental studies of the behavior of the air-water free surface when subjected to large amplitude acoustic pressures from the air. This work was supported by the ARO STIR program.

  9. Modeling Water Resource Systems Accounting for Water-Related Energy Use, GHG Emissions and Water-Dependent Energy Generation in California

    NASA Astrophysics Data System (ADS)

    Escriva-Bou, A.; Lund, J. R.; Pulido-Velazquez, M.; Medellin-Azuara, J.

    2015-12-01

    Most individual processes relating water and energy interdependence have been assessed in many different ways over the last decade. It is time to step up and include the results of these studies in management by proportionating a tool for integrating these processes in decision-making to effectively understand the tradeoffs between water and energy from management options and scenarios. A simple but powerful decision support system (DSS) for water management is described that includes water-related energy use and GHG emissions not solely from the water operations, but also from final water end uses, including demands from cities, agriculture, environment and the energy sector. Because one of the main drivers of energy use and GHG emissions is water pumping from aquifers, the DSS combines a surface water management model with a simple groundwater model, accounting for their interrelationships. The model also explicitly includes economic data to optimize water use across sectors during shortages and calculate return flows from different uses. Capabilities of the DSS are demonstrated on a case study over California's intertied water system. Results show that urban end uses account for most GHG emissions of the entire water cycle, but large water conveyance produces significant peaks over the summer season. Also the development of more efficient water application on the agricultural sector has increased the total energy consumption and the net water use in the basins.

  10. Chemical Preparations Industry: National Emission Standards for Hazardous Air Pollutants for Area Sources

    EPA Pesticide Factsheets

    National emissions standards for control of hazardous air pollutants (HAP) from the chemical preparations area source category. Includes rule history, Federal Registry citations, implementation information, and additional resources.

  11. Effects of water-contaminated air on blowoff limits of opposed jet hydrogen-air diffusion flames

    NASA Technical Reports Server (NTRS)

    Pellett, Gerald L.; Jentzen, Marilyn E.; Wilson, Lloyd G.; Northam, G. Burton

    1988-01-01

    The effects of water-contaminated air on the extinction and flame restoration of the central portion of N2-diluted H2 versus air counterflow diffusion flames are investigated using a coaxial tubular opposed jet burner. The results show that the replacement of N2 contaminant in air by water on a mole for mole basis decreases the maximum sustainable H2 mass flow, just prior to extinction, of the flame. This result contrasts strongly with the analogous substitution of water for N2 in a relatively hot premixed H2-O2-N2 flame, which was shown by Koroll and Mulpuru (1986) to lead to a significant, kinetically controlled increase in laminar burning velocity.

  12. Biofuels that cause land-use change may have much larger non-GHG air quality emissions than fossil fuels.

    PubMed

    Tsao, C-C; Campbell, J E; Mena-Carrasco, M; Spak, S N; Carmichael, G R; Chen, Y

    2012-10-02

    Although biofuels present an opportunity for renewable energy production, significant land-use change resulting from biofuels may contribute to negative environmental, economic, and social impacts. Here we examined non-GHG air pollution impacts from both indirect and direct land-use change caused by the anticipated expansion of Brazilian biofuels production. We synthesized information on fuel loading, combustion completeness, and emission factors, and developed a spatially explicit approach with uncertainty and sensitivity analyses to estimate air pollution emissions. The land-use change emissions, ranging from 6.7 to 26.4 Tg PM(2.5), were dominated by deforestation burning practices associated with indirect land-use change. We also found Brazilian sugar cane ethanol and soybean biodiesel including direct and indirect land-use change effects have much larger life-cycle emissions than conventional fossil fuels for six regulated air pollutants. The emissions magnitude and uncertainty decrease with longer life-cycle integration periods. Results are conditional to the single LUC scenario employed here. After LUC uncertainty, the largest source of uncertainty in LUC emissions stems from the combustion completeness during deforestation. While current biofuels cropland burning policies in Brazil seek to reduce life-cycle emissions, these policies do not address the large emissions caused by indirect land-use change.

  13. Broiler litter ammonia emissions near sidewalls, feeders and waterers

    USDA-ARS?s Scientific Manuscript database

    Ammonia (NH3) volatilized from broiler litter diminishes indoor air quality which can potentially decrease bird productivity. Emissions of NH3 exhausted from broiler houses pose environmental concerns for ecosystem biodiversity, aquatic nutrient enrichment and particulate formation in the atmospher...

  14. Greenhouse gas emissions from rice, peanut and millet farms in peninsular India: Effects of water and nitrogen management

    NASA Astrophysics Data System (ADS)

    Kritee, K.; Tiwari, R.; Nair, D.; Loecke, T. D.; Adhya, T. K.; Rudek, J.; Ahuja, R.; Hamburg, S.

    2013-12-01

    At Environmental Defense Fund (EDF), we recognize that any intervention to mitigate greenhouse gas (GHG) emissions should meet the interests of small scale farmers and low-carbon farming (LCF) is an integral component of our work on international climate. As a part of our Emissions Measurement and Methodology Development (EMD) Project, a joint undertaking with Indian NGO partners of the Fair Climate Network (FCN), five GHG measurement laboratories were set up across three states in peninsular (south) India. These labs represent different agro-ecological zones within the dryland agriculture belt in South India for which no reliable datasets on GHG emission have been available. Our approach for collecting gas samples was based on the Gracenet protocol. Sampling for nitrous oxide and methane emissions were made on approximately 50% of the total number of days in a growing season and once a week during fallow periods. In order to capture the peak emissions of nitrous oxide, samples were collected for 3-4 consecutive days after critical events like tillage, weeding, fertilization, and rainfall/irrigation. The research team collected field data at the time of sampling (temperature of the soil, water and air; and water levels). We also recorded parameters (e.g. water, fertilizer, labor and energy use; and yields) which were necessary for calculating farm profitability. Our data from 2012-2013 suggest that, for peninsular India, low-carbon rice cultivation techniques offer very large emission reduction potential (2-5 metric tons CO2e per acre per year), with smaller reductions from peanut and millet (0.15-0.5 metric ton CO2e per acre per season). The Tier 1 IPCC emissions factors 1) grossly underestimate both the amount of nitrous oxide emission from conventional rice cultivation practices, and the extent to which it can be reduced through better fertilizer management and 2) overestimate the methane emission reduction possible due to water management for rice paddies by a

  15. INTEGRATION OF THE BIOGENIC EMISSIONS INVENTORY SYSTEM (BEIS3) INTO THE COMMUNITY MULTISCALE AIR QUALITY MODELING SYSTEM

    EPA Science Inventory

    The importance of biogenic emissions for regional air quality modeling is generally recognized [Guenther et al., 2000]. Since the 1980s, biogenic emission estimates have been derived from algorithms such as the Biogenic Emissions Inventory System (BEIS) [Pierce et. al., 1998]....

  16. Novel water-air circulation quenching process for AISI 4140 steel

    NASA Astrophysics Data System (ADS)

    Zheng, Liyun; Zheng, Dawei; Zhao, Lixin; Wang, Lihui; Zhang, Kai

    2013-11-01

    AISI 4140 steel is usually used after quenching and tempering. During the heat treatment process in industry production, there are some problems, such as quenching cracks, related to water-cooling and low hardness due to oil quenching. A water-air circulation quenching process can solve the problems of quenching cracks with water and the high cost quenching with oil, which is flammable, unsafe and not enough to obtain the required hardness. The control of the water-cooling and air-cooling time is a key factor in the process. This paper focuses on the quenching temperature, water-air cycle time and cycle index to prevent cracking for AISI 4140 steel. The optimum heat treatment parameters to achieve a good match of the strength and toughness of AISI 4140 steel were obtained by repeated adjustment of the water-air circulation quenching process parameters. The tensile strength, Charpy impact energy at -10 °C and hardness of the heat treated AISI 4140 steel after quenching and tempering were approximately 1098 MPa, 67.5 J and 316 HB, respectively.

  17. Subarcsecond imaging of the water emission in Arp 220

    NASA Astrophysics Data System (ADS)

    König, S.; Martín, S.; Muller, S.; Cernicharo, J.; Sakamoto, K.; Zschaechner, L. K.; Humphreys, E. M. L.; Mroczkowski, T.; Krips, M.; Galametz, M.; Aalto, S.; Vlemmings, W. H. T.; Ott, J.; Meier, D. S.; Fuente, A.; García-Burillo, S.; Neri, R.

    2017-06-01

    Aims: Extragalactic observations of water emission can provide valuable insight into the excitation of the interstellar medium. In particular they allow us to investigate the excitation mechanisms in obscured nuclei, that is, whether an active galactic nucleus or a starburst dominates. Methods: We use subarcsecond resolution observations to tackle the nature of the water emission in Arp 220. ALMA Band 5 science verification observations of the 183 GHz H2O 313 - 220 line, in conjunction with new ALMA Band 7 H2O 515 - 422 data at 325 GHz, and supplementary 22 GHz H2O 616 - 523 VLA observations, are used to better constrain the parameter space in the excitation modeling of the water lines. Results: We detect 183 GHz H2O and 325 GHz water emission toward the two compact nuclei at the center of Arp 220, being brighter in Arp 220 West. The emission at these two frequencies is compared to previous single-dish data and does not show evidence of variability. The 183 and 325 GHz lines show similar spectra and kinematics, but the 22 GHz profile is significantly different in both nuclei due to a blend with an NH3 absorption line. Conclusions: Our findings suggest that the most likely scenario to cause the observed water emission in Arp 220 is a large number of independent masers originating from numerous star-forming regions. Based on observations carried in ALMA programs ADS/JAO.ALMA#2011.0.00018.SV and ADS/JAO.ALMA#2012.1.00453.S, with the IRAM 30 m telescope under project numbers 189-12 and 186-13.We dedicate this work to the memory of Fred Lo.

  18. Terahertz emission from ultrafast ionizing air in symmetry-broken laser fields

    NASA Astrophysics Data System (ADS)

    Kim, Ki-Yong; Glownia, James H.; Taylor, Antoinette J.; Rodriguez, George

    2007-04-01

    A transient photocurrent model is developed to explain coherent terahertz emission from air irradiated by a symmetry-broken laser field composed of the fundamental and its second harmonic laser pulses. When the total laser field is asymmetric across individual optical cycles, a nonvanishing electron current surge can arise during optical field ionization of air, emitting a terahertz electromagnetic pulse. Terahertz power scalability is also investigated, and with optical pump energy of tens of millijoules per pulse, peak terahertz field strengths in excess of 150 kV/cm are routinely produced.

  19. Terahertz emission from ultrafast ionizing air in symmetry-broken laser fields.

    PubMed

    Kim, Ki-Yong; Glownia, James H; Taylor, Antoinette J; Rodriguez, George

    2007-04-16

    A transient photocurrent model is developed to explain coherent terahertz emission from air irradiated by a symmetry-broken laser field composed of the fundamental and its second harmonic laser pulses. When the total laser field is asymmetric across individual optical cycles, a nonvanishing electron current surge can arise during optical field ionization of air, emitting a terahertz electromagnetic pulse. Terahertz power scalability is also investigated, and with optical pump energy of tens of millijoules per pulse, peak terahertz field strengths in excess of 150 kV/cm are routinely produced.

  20. 76 FR 30604 - National Emission Standards for Hazardous Air Pollutants for Polyvinyl Chloride and Copolymers...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-26

    ... National Emission Standards for Hazardous Air Pollutants for Polyvinyl Chloride and Copolymers Production... Standards for Hazardous Air Pollutants for Polyvinyl Chloride and Copolymers Production. The EPA is... present oral testimony at the public hearing, please contact Ms. Teresa Clemons, U.S. Environmental...