Science.gov

Sample records for air flow excitation

  1. Terminal Air Flow Planning

    NASA Technical Reports Server (NTRS)

    Denery, Dallas G.; Erzberger, Heinz; Edwards, Thomas A. (Technical Monitor)

    1998-01-01

    The Center TRACON Automation System (CTAS) will be the basis for air traffic planning and control in the terminal area. The system accepts arriving traffic within an extended terminal area and optimizes the flow based on current traffic and airport conditions. The operational use of CTAS will be presented together with results from current operations.

  2. Control of shear flows by artificial excitation

    NASA Technical Reports Server (NTRS)

    Rice, E. J.; Zaman, K. B. M. Q.

    1987-01-01

    Investigations involving artificial excitation of various shear flows are reviewed. Potential applications of excitation in flow control, e.g., in enhancing mixing, and in delaying transition and separation are discussed. An account is given of the current activities at NASA Lewis Research Center in this regard.

  3. Plasmoelectronics: coupling plasmonic excitation with electron flow.

    PubMed

    Warren, Scott C; Walker, David A; Grzybowski, Bartosz A

    2012-06-19

    Explorations of the coupling of light and charge via localized surface plasmons have led to the discovery that plasmonic excitation can influence macroscopic flows of charge and, conversely, that charging events can change the plasmonic excitation. We discuss recent theory and experiments in the emerging field of plasmoelectronics, with particular emphasis on the application of these materials to challenges in nanotechnology, energy use, and sensing. PMID:22385329

  4. Radiative Processes In Air Excited By An ArF Laser

    NASA Technical Reports Server (NTRS)

    Mckenzie, Robert L.; Huo, Winifred; Laufer, Gabriel

    1990-01-01

    Report describes experimental and theoretical studies of emission spectrum of air excited by light from ArF laser. Purpose of studies to determine conditions under which fluorescence from O2 used to measure temperatures in aerodynamic flows.

  5. Coherent motion in excited free shear flows

    NASA Technical Reports Server (NTRS)

    Wygnanski, Israel J.; Petersen, Robert A.

    1987-01-01

    The application of the inviscid instability approach to externally excited turbulent free shear flows at high Reynolds numbers is explored. Attention is given to the cases of a small-deficit plane turbulent wake, a plane turbulent jet, an axisymmetric jet, the nonlinear evolution of instabilities in free shear flows, the concept of the 'preferred mode', vortex pairing in turbulent mixing layers, and experimental results for the control of free turbulent shear layers. The special features often attributed to pairing or to the preferred mode are found to be difficult to comprehend; the concept of feedback requires further substantiation in the case of incompressible flow.

  6. Volcanic termor: Nonlinear excitation by fluid flow

    NASA Astrophysics Data System (ADS)

    Julian, Bruce R.

    1994-06-01

    A nonlinear process analogous to the excitation mechanism of musical wind instruments and human vocal cords can explain many characteristics of volcanic tremor, including (1) periodic and 'chaotic' oscillations, with peaked and irregular spectra respectively, (2) rapid pulsations in eruptions occurring at the same frequency as tremor, (3) systematic changes in tremor amplitude as channel geometry evolves during an eruption, (4) the period doubling reported for Hawaiian deep tremor, and (5) the fact that the onset of termor can be either gradual or abrupt. Volcanic 'long-period' earthquakes can be explained as oscillations excited by transient disturbances produced by nearby earthquakes, fluid heterogeneity, or changes in channel geometry, when the magma flow rate is too low to excite continuous tremor. A simple lumped-parameter tremor model involving the flow of an incompressible viscous fluid through a channel with movable elastic walls leads to a third-order system of nonlinear ordinary differential equations. For different driving fluid pressures, numerical solutions exhibit steady flow, simple limit-cycle oscillations, a cascade of period-doubling subharmonic bifurcations, and chaotic oscillations controlled by a strange attractor of Rossler type. In this model, tremor occurs most easily at local constrictions, and fluid discharge is lower than would occur in unstable steady flow.

  7. Excitation of vortex meandering in shear flow

    NASA Astrophysics Data System (ADS)

    Schröttle, Josef; Dörnbrack, Andreas; Schumann, Ulrich

    2015-06-01

    This paper investigates the evolution of a streamwise aligned columnar vortex with vorticity {\\boldsymbol{ ω }} in an axial background shear of magnitude Ω by means of linear stability analysis and numerical simulations. A long wave mode of vorticity normal to the plane spanned by the background shear vector {\\boldsymbol{ Ω }} and the vorticity of the vortex are excited by an instability. The stationary wave modes of the vertical and lateral vorticity are amplified. In order to form a helical vortex, the lateral and vertical vorticity can be phase shifted by half a wavelength. The linear and nonlinear evolutions of the vortex in the shear flow are studied numerically. Linearized simulations confirm the results of the stability analysis. The nonlinear simulations reveal further evolution of the helix in the shear flow. The linearly excited mode persists in co-existence with evolving smaller scale instabilities until the flow becomes fully turbulent at the time of O(100 {{Ω }-1}). Turbulent mixing dampens the amplifying mode. The described phenomenon of vortex meandering may serve as an alternative explanation for the excitation of wind turbine wake meandering in the atmospheric boundary layer.

  8. Nitric oxide flow tagging in unseeded air.

    PubMed

    Dam, N; Klein-Douwel, R J; Sijtsema, N M; Meulen, J J

    2001-01-01

    A scheme for molecular tagging velocimetry is presented that can be used in air flows without any kind of seeding. The method is based on the local and instantaneous creation of nitric oxide (NO) molecules from N(2) and O(2) in the waist region of a focused ArF excimer laser beam. This NO distribution is advected by the flow and can be visualized any time later by laser-induced fluorescence in the gamma bands. The creation of NO is confirmed by use of an excitation spectrum. Two examples of the application of the new scheme for air-flow velocimetry are given in which single laser pulses are used for creation and visualization of NO. PMID:18033499

  9. Natural Flow Air Cooled Photovoltaics

    NASA Astrophysics Data System (ADS)

    Tanagnostopoulos, Y.; Themelis, P.

    2010-01-01

    Our experimental study aims to investigate the improvement in the electrical performance of a photovoltaic installation on buildings through cooling of the photovoltaic panels with natural air flow. Our experimental study aims to investigate the improvement in the electrical performance of a photovoltaic installation on buildings through cooling of the photovoltaic panels with natural air flow. We performed experiments using a prototype based on three silicon photovoltaic modules placed in series to simulate a typical sloping building roof with photovoltaic installation. In this system the air flows through a channel on the rear side of PV panels. The potential for increasing the heat exchange from the photovoltaic panel to the circulating air by the addition of a thin metal sheet (TMS) in the middle of air channel or metal fins (FIN) along the air duct was examined. The operation of the device was studied with the air duct closed tightly to avoid air circulation (CLOSED) and the air duct open (REF), with the thin metal sheet (TMS) and with metal fins (FIN). In each case the experiments were performed under sunlight and the operating parameters of the experimental device determining the electrical and thermal performance of the system were observed and recorded during a whole day and for several days. We collected the data and form PV panels from the comparative diagrams of the experimental results regarding the temperature of solar cells, the electrical efficiency of the installation, the temperature of the back wall of the air duct and the temperature difference in the entrance and exit of the air duct. The comparative results from the measurements determine the improvement in electrical performance of the photovoltaic cells because of the reduction of their temperature, which is achieved by the naturally circulating air.

  10. Viscous flow drag reduction by acoustic excitation

    NASA Astrophysics Data System (ADS)

    Nagel, Robert T.

    1986-12-01

    An experimental program in which the effectiveness of a single large eddy break up (LEBU) blade is enhanced by proper acoustic excitation is described. Acoustic waves are generated in response to the incident large scale eddies and directed at the blade trailing edge through the test surface floor below the manipulator blade. The acoustic input is phase locked to the incident flow. Control of the acoustic input apparently allows enhancement of the large eddy cancellation process leading to a decrease of skin friction coefficient. Control of this process with acoustic excitation indicates that vortex unwinding is the mechanism for large eddy destruction in the boundary layer. A deeper understanding of this phenomena could lead to better drag reduction technology and further understanding of the physics of the turbulent boundary layer.

  11. Parametric excitation of a micro Coriolis mass flow sensor

    NASA Astrophysics Data System (ADS)

    Droogendijk, H.; Groenesteijn, J.; Haneveld, J.; Sanders, R. G. P.; Wiegerink, R. J.; Lammerink, T. S. J.; Lötters, J. C.; Krijnen, G. J. M.

    2012-11-01

    We demonstrate that a micro Coriolis mass flow sensor can be excited in its torsional movement by applying parametric excitation. Using AC-bias voltages for periodic electrostatic spring softening, the flow-filled tube exhibits a steady vibration at suitable voltage settings. Measurements show that the sensor for this type of excitation can be used to measure water flow rates within a range of 0 ± 500 μl/h with an accuracy of 1% full scale error.

  12. Acoustically excited heated jets. 3: Mean flow data

    NASA Technical Reports Server (NTRS)

    Lepicovsky, J.; Ahuja, K. K.; Brown, W. H.; Salikuddin, M.; Morris, P. J.

    1988-01-01

    This is Part 3 of a report on the excitability of heated jets under the influence of acoustic excitation. The effects of upstream internal acoustic excitation on jet mixing were described in Part 1. Part 2 described the effects of external excitation on flow mixing. Part 3 contains quantitative results from the measurements of mean Mach number and temperature and consists of radial profiles and centerline distributions measured at selected jet operating conditions for internally excited and unexcited jets. The mean flow data are presented in both graphical and tabulated forms. For the sake of completeness, this part contains temperature probe calibration curves also.

  13. Femtosecond laser flow tagging in non-air flows

    NASA Astrophysics Data System (ADS)

    Zhang, Yibin; Calvert, Nathan

    2015-11-01

    The Femtosecond Laser Electronic Excitation Tagging (FLEET) [Michael, J. B. et al., Applied optics, 50(26), 2011] method is studied in nitrogen-containing gaseous flows. The underlying mechanism behind the FLEET process is the dissociation of molecular nitrogen into atomic nitrogen, which produces long-lived florescence as the nitrogen atoms recombine. Spectra and images of the resulting tagged line provide insight into the effects of different atmospheric gases on the FLEET process. The ionization cross-section, conductivity and energy states of the gaseous particles are each brought into consideration. These experiments demonstrate the feasibility for long-lived flow tagging on the order of hundreds of microseconds in non-air environments. Of particular interest are the enhancement of the FLEET signal with the addition of argon gas, and the non-monotonic quenching effect of oxygen on the length, duration and intensity of the resulting signal and spectra. FLEET is characterized in number of different atmospheric gases, including that simulating Mar's atmospheric composition.

  14. Excitation of inertial modes in an experimental spherical Couette flow.

    PubMed

    Rieutord, Michel; Triana, Santiago Andrés; Zimmerman, Daniel S; Lathrop, Daniel P

    2012-08-01

    Spherical Couette flow (flow between concentric rotating spheres) is one of flows under consideration for the laboratory magnetic dynamos. Recent experiments have shown that such flows may excite Coriolis restored inertial modes. The present work aims to better understand the properties of the observed modes and the nature of their excitation. Using numerical solutions describing forced inertial modes of a uniformly rotating fluid inside a spherical shell, we first identify the observed oscillations of the Couette flow with nonaxisymmetric, retrograde, equatorially antisymmetric inertial modes, confirming first attempts using a full sphere model. Although the model has no differential rotation, identification is possible because a large fraction of the fluid in a spherical Couette flow rotates rigidly. From the observed sequence of the excited modes appearing when the inner sphere is slowed down by step, we identify a critical Rossby number associated with a given mode, below which it is excited. The matching between this critical number and the one derived from the phase velocity of the numerically computed modes shows that these modes are excited by an instability likely driven by the critical layer that develops in the shear layer, staying along the tangent cylinder of the inner sphere. PMID:23005851

  15. A scalable concept for micropower generation using flow-induced self-excited oscillations

    NASA Astrophysics Data System (ADS)

    St. Clair, D.; Bibo, A.; Sennakesavababu, V. R.; Daqaq, M. F.; Li, G.

    2010-04-01

    Inspired by music-playing harmonicas that create tones via oscillations of reeds when subjected to air blow, this paper entails a concept for microwind power generation using flow-induced self-excited oscillations of a piezoelectric beam embedded within a cavity. Specifically, when the volumetric flow rate of air past the beam exceeds a certain threshold, the energy pumped into the structure via nonlinear pressure forces offsets the system's intrinsic damping setting the beam into self-sustained limit-cycle oscillations. The vibratory energy is then converted into electricity through principles of piezoelectricity. Experimental and theoretical results are presented demonstrating the feasibility of the proposed concept.

  16. Simulator Of Rain In Flowing Air

    NASA Technical Reports Server (NTRS)

    Clayton, Richard M.; Cho, Young I.; Shakkottai, Parthasarathy; Back, Lloyd H.

    1989-01-01

    Report describes relatively inexpensive apparatus that creates simulated precipitation from drizzle to heavy rain in flowing air. Small, positive-displacement pump and water-injecting device positioned at low-airspeed end of converging section of wind tunnel 10 in. in diameter. Drops injected by array entrained in flow of air as it accelerates toward narrower outlet, 15 in. downstream. Outlet 5 in. in diameter.

  17. Passive control of flow-excited acoustic resonance in rectangular cavities using upstream mounted blocks

    NASA Astrophysics Data System (ADS)

    Shaaban, Mahmoud; Mohany, Atef

    2015-04-01

    A passive method for controlling the flow-excited acoustic resonance resulting from subsonic flows over rectangular cavities in channels is investigated. A cavity with length to depth ratio of is tested in air flow of Mach number up to 0.45. When the acoustic resonance is excited, the sound pressure level in the cavity reaches 162 dB. Square blocks are attached to the surface of the channel and centred upstream of the cavity leading edge to suppress the flow-excited acoustic resonance in the cavity. Six blocks of different widths are tested at three different upstream distances. The results show that significant attenuation of up to 30 dB of the excited sound pressure level is achieved using a block with a width to height ratio of 3, while blocks that fill the whole width of the channel amplify the pressure of the excited acoustic resonance. Moreover, it is found that placing the block upstream of the cavity causes the onset of the acoustic resonance to occur at higher flow velocities. In order to investigate the nature of the interactions that lead to suppression of the acoustic resonance and to identify the changes in flow patterns due to the placement of the block, 2D measurements of turbulence intensity in the shear layer and the block wake region are performed. The location of the flow reattachment point downstream of the block relative to the shear layer separation point has a major influence on the suppression level of the excited acoustic resonance. Furthermore, higher attenuation of noise is related to lower span-wise correlation of the shear-layer perturbation.

  18. Simulation of air gap vibration on aerostatic bearing under flow/structure coupled conditions

    NASA Astrophysics Data System (ADS)

    Wang, Qian; Wu, Jianjin; Li, Dongsheng

    2008-10-01

    The vibration of aerostatic bearing air gap is one of the main factors, which restricts the precision of nano-processing and nano-measurement. Finite volume method was employed to obtain the air gap steady flow of different air gap thicknesses for the demonstration of vibrations under flow/structure coupled conditions. The unsteady flow of air gap was analyzed numerically by using the air gap flow & boundary movement control equations to get the pressure distribution on the slide surface and the amplitude of air gap for further study on the self-excited vibration of aerostatic bearings. Numerical analyses show that the highest aerostatic bearing amplitude is relative to the difference between load capacity and gravity at the initial moment as air gap rises, and the final air gap thickness has nothing to do with the initial air gap thickness. The results presented a new analytic demonstration for the research on the reduction of aerostatic bearing vibration.

  19. Air flow cued spatial learning in mice.

    PubMed

    Bouchekioua, Youcef; Mimura, Masaru; Watanabe, Shigeru

    2015-01-01

    Spatial learning experiments in rodents typically employ visual cues that are associated with a goal place, even though it is now well established that they have poor visual acuity. We assessed here the possibility of spatial learning in mice based on an air flow cue in a dry version of the Morris water maze task. A miniature fan was placed at each of the four cardinal points of the circular maze, but only one blew air towards the centre of the maze. The three other fans were blowing towards their own box. The mice were able to learn the task only if the spatial relationship between the air flow cue and the position of the goal place was kept constant across trials. A change of this spatial relationship resulted in an increase in the time to find the goal place. We report here the first evidence of spatial learning relying on an air flow cue. PMID:25257773

  20. Nonlinear excitation of zonal flows and streamers in plasmas

    SciTech Connect

    Benkadda, S.; Klochkov, D. N.; Popel, S. I.; Izvekova, Yu. N.

    2011-05-15

    Nonlinear excitation of zonal flows and streamers in plasmas is considered. The emphasis is given to the nonlinear interaction of low- and high-frequency drift waves which can result in the excitation of zonal flows and streamers in a plasma of fusion devices. For this purpose, an inhomogeneous nonisothermal plasma in a strong external magnetic field whose characteristic frequencies are lower than the ion Langmuir frequency but higher than the collision frequency is studied. The excitation of a long-wavelength low-frequency drift wave during the development of the nonlinear modulational interaction of a high-frequency drift pump wave is investigated. The growth rates of the modulational instability are obtained, and the conditions for its development are determined. Self-organized structures described by solutions of evolutionary equations for the modulational interaction are associated with zonal flows and streamers. A possible relation of the modulational interaction in Earth's ionospheric plasma to the formation of dust flows and transport of dust particles in the ionosphere is also discussed. It is shown that one of the ways of transport of dust particles in the ionosphere is vertical flows (streamers), which are generated by dust vortices as a result of development of the modulational instability.

  1. Air flow through poppet valves

    NASA Technical Reports Server (NTRS)

    Lewis, G W; Nutting, E M

    1920-01-01

    Report discusses the comparative continuous flow characteristics of single and double poppet valves. The experimental data presented affords a direct comparison of valves, single and in pairs of different sizes, tested in a cylinder designed in accordance with current practice in aviation engines.

  2. 40 CFR 91.416 - Intake air flow measurement specifications.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Intake air flow measurement... Procedures § 91.416 Intake air flow measurement specifications. (a) If used, the engine intake air flow measurement method used must have a range large enough to accurately measure the air flow over the...

  3. Analysis of the stochastic excitability in the flow chemical reactor

    SciTech Connect

    Bashkirtseva, Irina

    2015-11-30

    A dynamic model of the thermochemical process in the flow reactor is considered. We study an influence of the random disturbances on the stationary regime of this model. A phenomenon of noise-induced excitability is demonstrated. For the analysis of this phenomenon, a constructive technique based on the stochastic sensitivity functions and confidence domains is applied. It is shown how elaborated technique can be used for the probabilistic analysis of the generation of mixed-mode stochastic oscillations in the flow chemical reactor.

  4. Closed-loop Separation Control Using Oscillatory Flow Excitation

    NASA Technical Reports Server (NTRS)

    Allan, Brian G.; Juang, Jer-Nan; Raney, David L.; Seifert, Avi; Pack, latunia G.; Brown, Donald E.

    2000-01-01

    Design and implementation of a digital feedback controller for a flow control experiment was performed. The experiment was conducted in a cryogenic pressurized wind tunnel on a generic separated configuration at a chord Reynolds number of 16 million and a Mach number of 0.25. The model simulates the upper surface of a 20% thick airfoil at zero angle-of-attack. A moderate favorable pressure gradient, up to 55% of the chord, is followed by a severe adverse pressure gradient which is relaxed towards the trailing edge. The turbulent separation bubble, behind the adverse pressure gradient, is then reduced by introducing oscillatory flow excitation just upstream of the point of flow separation. The degree of reduction in the separation region can be controlled by the amplitude of the oscillatory excitation. A feedback controller was designed to track a given trajectory for the desired degree of flow reattachment and to improve the transient behavior of the flow system. Closed-loop experiments demonstrated that the feedback controller was able to track step input commands and improve the transient behavior of the open-loop response.

  5. Localized Electronic Excitation Temperature Measurements in an Air Microwave Plasma Torch at Atmospheric Pressure

    NASA Astrophysics Data System (ADS)

    Green, K. M.; Flores, G. J., III; Woskov, P. P.; Hadidi, K.; Thomas, P.

    1999-10-01

    The Microwave Plasma Continuous Emissions Monitor, currently under development, uses atomic emission spectroscopy for trace metals pollution monitoring of stack exhaust. Operating at 2.45 GHz, the 1.5 kW magnetron sustains the plasma in a shorted WR-284 waveguide. Air flows through a 25.4 mm i.d. fused quartz tube traversing the waveguide. A pneumatic nebulizer introduces an iron nitrate solution into the axial gas flow. Radial profile measurements of atomic excitation temperature inside the waveguide have been obtained by Abel inversion of Fe I emission lines in the 367 nm to 377 nm range. An optical system with image magnification lenses and a fiber optic cable on a translation stage scans the radial intensity profile along 66 chords. Intensity and temperature profiles show peaked values on axis with a FWHM of 11 mm. An electronic excitation temperature of 6551 K ± 349 K is measured with an axial flow of 12 l/min and a swirl flow of 10 l/min.

  6. Control of flow separation and mixing by aerodynamic excitation

    NASA Technical Reports Server (NTRS)

    Rice, Edward J.; Abbott, John M.

    1990-01-01

    The recent research progress in the control of shear flows using unsteady aerodynamic excitation conducted at the NASA Lewis Research Center is reviewed. The program is of fundamental nature concentrating on the physics of the unsteady aerodynamic processes. This field of research is a fairly new development with great promise in the areas of enhanced mixing and flow separation control. Enhanced mixing research reported in this paper include influence of core turbulence, forced pairing of coherent structures, and saturation of mixing enhancement. Separation flow control studies included are for a two-dimensional diffuser, conical diffusers, and single airfoils. Ultimate applications of this research include aircraft engine inlet flow control at high angle of attack, wide angle diffusers, highly loaded airfoils as in turbomachinery, and ejector/suppressor nozzles for the supersonic transport. An argument involving the Coanda Effect is made here that all of the above mentioned application areas really only involve forms of shear layer mixing enhancement. The program also includes the development of practical excitation devices which might be used in aircraft applications.

  7. Control of flow separation and mixing by aerodynamic excitation

    NASA Technical Reports Server (NTRS)

    Rice, Edward J.; Abbott, John M.

    1990-01-01

    The recent research in the control of shear flows using unsteady aerodynamic excitation conducted at the NASA Lewis Research Center is reviewed. The program is of a fundamental nature, concentrating on the physics of the unsteady aerodynamic processes. This field of research is a fairly new development with great promise in the areas of enhanced mixing and flow separation control. Enhanced mixing research includes influence of core turbulence, forced pairing of coherent structures, and saturation of mixing enhancement. Separation flow control studies included are for a two-dimensional diffuser, conical diffusers, and single airfoils. Ultimate applications include aircraft engine inlet flow control at high angle of attack, wide angle diffusers, highly loaded airfoils as in turbomachinery, and ejector/suppressor nozzles for the supersonic transport. An argument involving the Coanda Effect is made that all of the above mentioned application areas really only involve forms of shear layer mixing enhancement. The program also includes the development of practical excitation devices which might be used in aircraft applications.

  8. 40 CFR 89.414 - Air flow measurement specifications.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 20 2011-07-01 2011-07-01 false Air flow measurement specifications. 89.414 Section 89.414 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Emission Test Procedures § 89.414 Air flow measurement specifications. (a) The air flow measurement...

  9. 40 CFR 89.414 - Air flow measurement specifications.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Air flow measurement specifications. 89.414 Section 89.414 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Emission Test Procedures § 89.414 Air flow measurement specifications. (a) The air flow measurement...

  10. Vortex convection in the flow-excited Helmholtz resonator

    NASA Astrophysics Data System (ADS)

    Dai, Xiwen

    2016-05-01

    Vorticity convection as well as its excitation to a Helmholtz resonator is studied numerically. Convection velocities of both the concentrated vortical structure and the total distributed vorticity in the orifice region are calculated. Results indicate that the vortex convection velocity is the more useful one in controlling the oscillation frequency. The excitation pressure from the vortical flow is found almost in phase with the fluctuation of the total circulation in the orifice region. This helps us to deduce that vorticity accumulation in the opening region and its relatively simultaneous efflux, due to the shear layer rolling-up into a vortex, are responsible for the pressure fluctuation that excites the acoustic mode of the cavity. It is found that the frequency characteristics can be significantly varied by the system damping. Increasing the damping leads to a reduction in the range of the Strouhal number of oscillation, which is associated with the disappearing lock-in effect in frequency. The dependence of the vortex convection velocity and the critical Strouhal number for the maximum oscillation on damping is also shown.

  11. Review of air flow measurement techniques

    SciTech Connect

    McWilliams, Jennifer

    2002-12-01

    Airflow measurement techniques are necessary to determine the most basic of indoor air quality questions: ''Is there enough fresh air to provide a healthy environment for the occupants of the building?'' This paper outlines airflow measurement techniques, but it does not make recommendations for techniques that should be used. The airflows that will be discussed are those within a room or zone, those between rooms or zones, such as through doorways (open or closed) or passive vents, those between the building and outdoors, and those through mechanical air distribution systems. Techniques that are highlighted include particle streak velocimetry, hot wire anemometry, fan pressurization (measuring flow at a given pressure), tracer gas, acoustic methods for leak size determination, the Delta Q test to determine duct leakage flows, and flow hood measurements. Because tracer gas techniques are widely used to measure airflow, this topic is broken down into sections as follows: decay, pulse injection, constant injection, constant concentration, passive sampling, and single and multiple gas measurements for multiple zones.

  12. Effects of Gas Flow Rate on the Discharge Characteristics of a DC Excited Plasma Jet

    NASA Astrophysics Data System (ADS)

    Li, Xuechen; Jia, Pengying; Di, Cong; Bao, Wenting; Zhang, Chunyan

    2015-09-01

    A direct current (DC) source excited plasma jet consisting of a hollow needle anode and a plate cathode has been developed to form a diffuse discharge plume in ambient air with flowing argon as the working gas. Using optical and electrical methods, the discharge characteristics are investigated for the diffuse plasma plume. Results indicate that the discharge has a pulse characteristic, under the excitation of a DC voltage. The discharge pulse corresponds to the propagation process of a plasma bullet travelling from the anode to the cathode. It is found that, with an increment of the gas flow rate, both the discharge plume length and the current peak value of the pulsed discharge decrease in the laminar flow mode, reach their minima at about 1.5 L/min, and then slightly increase in the turbulent mode. However, the frequency of the pulsed discharge increases in the laminar mode with increasing the argon flow rate until the argon flow rate equals to about 1.5 L/min, and then slightly decreases in the turbulent mode. supported by National Natural Science Foundation of China (Nos. 10805013, 11375051), Funds for Distinguished Young Scientists of Hebei Province, China (No. A2012201045), Department of Education for Outstanding Youth Project of China (No. Y2011120), and Youth Project of Hebei University of China (No. 2011Q14)

  13. Optical Air Flow Measurements for Flight Tests and Flight Testing Optical Air Flow Meters

    NASA Technical Reports Server (NTRS)

    Jentink, Henk W.; Bogue, Rodney K.

    2005-01-01

    Optical air flow measurements can support the testing of aircraft and can be instrumental to in-flight investigations of the atmosphere or atmospheric phenomena. Furthermore, optical air flow meters potentially contribute as avionics systems to flight safety and as air data systems. The qualification of these instruments for the flight environment is where we encounter the systems in flight testing. An overview is presented of different optical air flow measurement techniques applied in flight and what can be achieved with the techniques for flight test purposes is reviewed. All in-flight optical airflow velocity measurements use light scattering. Light is scattered on both air molecules and aerosols entrained in the air. Basic principles of making optical measurements in flight, some basic optical concepts, electronic concepts, optoelectronic interfaces, and some atmospheric processes associated with natural aerosols are reviewed. Safety aspects in applying the technique are shortly addressed. The different applications of the technique are listed and some typical examples are presented. Recently NASA acquired new data on mountain rotors, mountain induced turbulence, with the ACLAIM system. Rotor position was identified using the lidar system and the potentially hazardous air flow profile was monitored by the ACLAIM system.

  14. 40 CFR 89.414 - Air flow measurement specifications.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 20 2014-07-01 2013-07-01 true Air flow measurement specifications. 89... Test Procedures § 89.414 Air flow measurement specifications. (a) The air flow measurement method used... during the test. Overall measurement accuracy must be ± 2 percent of the maximum engine value for...

  15. 40 CFR 89.414 - Air flow measurement specifications.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 21 2013-07-01 2013-07-01 false Air flow measurement specifications... Emission Test Procedures § 89.414 Air flow measurement specifications. (a) The air flow measurement method... during the test. Overall measurement accuracy must be ± 2 percent of the maximum engine value for...

  16. 40 CFR 89.414 - Air flow measurement specifications.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 21 2012-07-01 2012-07-01 false Air flow measurement specifications... Emission Test Procedures § 89.414 Air flow measurement specifications. (a) The air flow measurement method... during the test. Overall measurement accuracy must be ± 2 percent of the maximum engine value for...

  17. 40 CFR 90.416 - Intake air flow measurement specifications.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Intake air flow measurement... Gaseous Exhaust Test Procedures § 90.416 Intake air flow measurement specifications. (a) If used, the engine intake air flow measurement method used must have a range large enough to accurately measure...

  18. A uniform laminar air plasma plume with large volume excited by an alternating current voltage

    NASA Astrophysics Data System (ADS)

    Li, Xuechen; Bao, Wenting; Chu, Jingdi; Zhang, Panpan; Jia, Pengying

    2015-12-01

    Using a plasma jet composed of two needle electrodes, a laminar plasma plume with large volume is generated in air through an alternating current voltage excitation. Based on high-speed photography, a train of filaments is observed to propagate periodically away from their birth place along the gas flow. The laminar plume is in fact a temporal superposition of the arched filament train. The filament consists of a negative glow near the real time cathode, a positive column near the real time anode, and a Faraday dark space between them. It has been found that the propagation velocity of the filament increases with increasing the gas flow rate. Furthermore, the filament lifetime tends to follow a normal distribution (Gaussian distribution). The most probable lifetime decreases with increasing the gas flow rate or decreasing the averaged peak voltage. Results also indicate that the real time peak current decreases and the real time peak voltage increases with the propagation of the filament along the gas flow. The voltage-current curve indicates that, in every discharge cycle, the filament evolves from a Townsend discharge to a glow one and then the discharge quenches. Characteristic regions including a negative glow, a Faraday dark space, and a positive column can be discerned from the discharge filament. Furthermore, the plasma parameters such as the electron density, the vibrational temperature and the gas temperature are investigated based on the optical spectrum emitted from the laminar plume.

  19. Flow-excited acoustic resonance of two tandem cylinders in cross-flow

    NASA Astrophysics Data System (ADS)

    Mohany, A.; Ziada, S.

    2005-11-01

    The aeroacoustic response of two tandem cylinders in cross-flow is investigated experimentally. Eleven spacing ratios between the cylinders, in the range of L/D=1.2 4.5, have been tested to investigate the effect of the gap between the cylinders on the excitation mechanism of acoustic resonance. During the tests, the acoustic cross-modes of the duct housing the cylinders are self-excited. Similar tests are performed on isolated cylinders. The aeroacoustic response of the tandem cylinders is found to be considerably different from that of isolated cylinders. For isolated cylinders, acoustic resonance of a given mode occurs over a single range of flow velocity and is excited by the natural vortex shedding process observed in the absence of acoustic resonance. In the case of tandem cylinders with a spacing ratio inside the proximity region, L/D is less than 3.5, the resonance occurs over two different ranges of flow velocity. One of these ranges is similar to that observed for isolated cylinders and the other occurs at much lower flow velocities. The latter resonance range seems to be triggered by the instability of the separated flow in the gap between the cylinders. Outside the proximity region, the aeroacoustic response of the two tandem cylinders is similar to that of isolated cylinder.

  20. Decentralized and Tactical Air Traffic Flow Management

    NASA Technical Reports Server (NTRS)

    Bertsimas, Dimitris; Odoni, Amedeo R.

    1997-01-01

    This project dealt with the following topics: 1. Review and description of the existing air traffic flow management system (ATFM) and identification of aspects with potential for improvement. 2. Identification and review of existing models and simulations dealing with all system segments (enroute, terminal area, ground) 3. Formulation of concepts for overall decentralization of the ATFM system, ranging from moderate decentralization to full decentralization 4. Specification of the modifications to the ATFM system required to accommodate each of the alternative concepts. 5. Identification of issues that need to be addressed with regard to: determination of the way the ATFM system would be operating; types of flow management strategies that would be used; and estimation of the effectiveness of ATFM with regard to reducing delay and re-routing costs. 6. Concept evaluation through identification of criteria and methodologies for accommodating the interests of stakeholders and of approaches to optimization of operational procedures for all segments of the ATFM system.

  1. Combustor air flow control method for fuel cell apparatus

    DOEpatents

    Clingerman, Bruce J.; Mowery, Kenneth D.; Ripley, Eugene V.

    2001-01-01

    A method for controlling the heat output of a combustor in a fuel cell apparatus to a fuel processor where the combustor has dual air inlet streams including atmospheric air and fuel cell cathode effluent containing oxygen depleted air. In all operating modes, an enthalpy balance is provided by regulating the quantity of the air flow stream to the combustor to support fuel cell processor heat requirements. A control provides a quick fast forward change in an air valve orifice cross section in response to a calculated predetermined air flow, the molar constituents of the air stream to the combustor, the pressure drop across the air valve, and a look up table of the orifice cross sectional area and valve steps. A feedback loop fine tunes any error between the measured air flow to the combustor and the predetermined air flow.

  2. Dynamic Flow Management Problems in Air Transportation

    NASA Technical Reports Server (NTRS)

    Patterson, Sarah Stock

    1997-01-01

    In 1995, over six hundred thousand licensed pilots flew nearly thirty-five million flights into over eighteen thousand U.S. airports, logging more than 519 billion passenger miles. Since demand for air travel has increased by more than 50% in the last decade while capacity has stagnated, congestion is a problem of undeniable practical significance. In this thesis, we will develop optimization techniques that reduce the impact of congestion on the national airspace. We start by determining the optimal release times for flights into the airspace and the optimal speed adjustment while airborne taking into account the capacitated airspace. This is called the Air Traffic Flow Management Problem (TFMP). We address the complexity, showing that it is NP-hard. We build an integer programming formulation that is quite strong as some of the proposed inequalities are facet defining for the convex hull of solutions. For practical problems, the solutions of the LP relaxation of the TFMP are very often integral. In essence, we reduce the problem to efficiently solving large scale linear programming problems. Thus, the computation times are reasonably small for large scale, practical problems involving thousands of flights. Next, we address the problem of determining how to reroute aircraft in the airspace system when faced with dynamically changing weather conditions. This is called the Air Traffic Flow Management Rerouting Problem (TFMRP) We present an integrated mathematical programming approach for the TFMRP, which utilizes several methodologies, in order to minimize delay costs. In order to address the high dimensionality, we present an aggregate model, in which we formulate the TFMRP as a multicommodity, integer, dynamic network flow problem with certain side constraints. Using Lagrangian relaxation, we generate aggregate flows that are decomposed into a collection of flight paths using a randomized rounding heuristic. This collection of paths is used in a packing integer

  3. Changes in air flow patterns using surfactants and thickeners during air sparging: Bench-scale experiments

    NASA Astrophysics Data System (ADS)

    Kim, Juyoung; Kim, Heonki; Annable, Michael D.

    2015-01-01

    Air injected into an aquifer during air sparging normally flows upward according to the pressure gradients and buoyancy, and the direction of air flow depends on the natural hydrogeologic setting. In this study, a new method for controlling air flow paths in the saturated zone during air sparging processes is presented. Two hydrodynamic parameters, viscosity and surface tension of the aqueous phase in the aquifer, were altered using appropriate water-soluble reagents distributed before initiating air sparging. Increased viscosity retarded the travel velocity of the air front during air sparging by modifying the viscosity ratio. Using a one-dimensional column packed with water-saturated sand, the velocity of air intrusion into the saturated region under a constant pressure gradient was inversely proportional to the viscosity of the aqueous solution. The air flow direction, and thus the air flux distribution was measured using gaseous flux meters placed at the sand surface during air sparging experiments using both two-, and three-dimensional physical models. Air flow was found to be influenced by the presence of an aqueous patch of high viscosity or suppressed surface tension in the aquifer. Air flow was selective through the low-surface tension (46.5 dyn/cm) region, whereas an aqueous patch of high viscosity (2.77 cP) was as an effective air flow barrier. Formation of a low-surface tension region in the target contaminated zone in the aquifer, before the air sparging process is inaugurated, may induce air flow through the target zone maximizing the contaminant removal efficiency of the injected air. In contrast, a region with high viscosity in the air sparging influence zone may minimize air flow through the region prohibiting the region from de-saturating.

  4. Experimental investigations on flow induced vibration of an externally excited flexible plate

    NASA Astrophysics Data System (ADS)

    Purohit, Ashish; Darpe, Ashish K.; Singh, S. P.

    2016-06-01

    Flow-induced vibration of a harmonically actuated flexible plate in the wake of an upstream bluff body is experimentally investigated. The experiments are performed in an open-ended wind tunnel. A flexible plate trailing a bluff body is under fluid induced excitation due to the flowing fluid. The additional external excitation to the trailing plate is applied using an electro-magnetic exciter. The frequency and amplitude of the external harmonic excitation are selected as variable parameters in the experiments and their effect on the plate vibration and is investigated. To know the nature of acoustic pressure wave generated from the vibrating system, near-field acoustic pressure is also measured. A laser vibrometer, a pressure microphone and a high-speed camera are employed to measure the plate vibration, pressure signal, and instantaneous images of the plate motion respectively. The results obtained indicate that the dynamics of the plate is influenced by both the flow-induced excitation and external harmonic excitation. When frequency of the two excitations is close enough, a large vibration level and a high tonal sound pressure are observed. At higher amplitude of external excitation, the frequency component corresponding to the flow-induced excitation is found to reduce significantly in the frequency spectrum of the vibration signal. It is observed that, for certain range of excitation frequency, the plate vibration first reduces, reaches a minimum value and then increases with increase in the level of external excitation. A fair qualitative agreement of the experimental results with numerical simulation result of the past study has been noted. In addition to the experiments, the role of phase difference between the flow-induced excitation generated from the front obstacle and externally applied harmonic excitation is investigated through numerical simulations. The result obtained reveals that the final steady state vibration of the coupled system is

  5. Flow and mixing characteristics of swirling double-concentric jets subject to acoustic excitation

    NASA Astrophysics Data System (ADS)

    Huang, R. F.; Jufar, S. R.; Hsu, C. M.

    2013-01-01

    Characteristic flow modes, flow evolution processes, jet spread width, turbulence properties, and dispersion characteristics of swirling double-concentric jets were studied experimentally. Jet pulsations were induced by means of acoustic excitation. Streak pictures of smoke flow patterns, illuminated by a laser-light sheet, were recorded by a high-speed digital camera. A hot-wire anemometer was used to digitize instantaneous velocity instabilities in the flow. Jet spread width was obtained through a binary edge identification technique. Tracer-gas concentrations were measured for information on jet dispersions. Two characteristic flow patterns were observed: (1) synchronized vortex rings appeared in the low excitation intensity regime (the excitation intensity less than one) and (2) synchronized puffing turbulent jets appeared in the high excitation intensity regime (the excitation intensity greater than one). In the high excitation intensity regime, the "suction back" phenomenon occurred and therefore induced in-tube mixing. The jet spread width and turbulent fluctuation intensity exhibited particularly large values in the high excitation intensity regime at the excitation Strouhal numbers smaller than 0.85. At the excitation Strouhal numbers >0.85, the high-frequency effect caused significant decay of jet breakup and dispersion—the jet spread width and fluctuation intensity decreased sharply and may, at very high Strouhal numbers, asymptotically approach values almost the same as the values associated with unexcited jets. Exciting the jets at the high excitation intensity regime, the effects of puffing motion and in-tube mixing caused breakup of the jet in the near field and therefore resulted in a small Lagrangian integral time and small length scales of fluctuating eddies. This effect, in turn, caused drastic dispersion of the central jet fluids. It is possible that the excited jets can attain 90 % more improvements than the unexcited jets. We provide a

  6. Flow and mixing characteristics of swirling double-concentric jets subject to acoustic excitation

    NASA Astrophysics Data System (ADS)

    Huang, R. F.; Jufar, S. R.; Hsu, C. M.

    2012-12-01

    Characteristic flow modes, flow evolution processes, jet spread width, turbulence properties, and dispersion characteristics of swirling double-concentric jets were studied experimentally. Jet pulsations were induced by means of acoustic excitation. Streak pictures of smoke flow patterns, illuminated by a laser-light sheet, were recorded by a high-speed digital camera. A hot-wire anemometer was used to digitize instantaneous velocity instabilities in the flow. Jet spread width was obtained through a binary edge identification technique. Tracer-gas concentrations were measured for information on jet dispersions. Two characteristic flow patterns were observed: (1) synchronized vortex rings appeared in the low excitation intensity regime (the excitation intensity less than one) and (2) synchronized puffing turbulent jets appeared in the high excitation intensity regime (the excitation intensity greater than one). In the high excitation intensity regime, the "suction back" phenomenon occurred and therefore induced in-tube mixing. The jet spread width and turbulent fluctuation intensity exhibited particularly large values in the high excitation intensity regime at the excitation Strouhal numbers smaller than 0.85. At the excitation Strouhal numbers >0.85, the high-frequency effect caused significant decay of jet breakup and dispersion—the jet spread width and fluctuation intensity decreased sharply and may, at very high Strouhal numbers, asymptotically approach values almost the same as the values associated with unexcited jets. Exciting the jets at the high excitation intensity regime, the effects of puffing motion and in-tube mixing caused breakup of the jet in the near field and therefore resulted in a small Lagrangian integral time and small length scales of fluctuating eddies. This effect, in turn, caused drastic dispersion of the central jet fluids. It is possible that the excited jets can attain 90 % more improvements than the unexcited jets. We provide a

  7. A Study on the Air flow outside Ambient Vaporizer Fin

    NASA Astrophysics Data System (ADS)

    Oh, G.; Lee, T.; Jeong, H.; Chung, H.

    2015-09-01

    In this study, we interpreted Fog's Fluid that appear in the Ambient Vaporizer and predict the point of change Air to Fog. We interpreted using Analysis working fluid was applied to LNG and Air. We predict air flow when there is chill of LNG in the air Temperature and that makes fog. Also, we interpreted based on Summer and Winter criteria in the air temperature respectively. Finally, we can check the speed of the fog when fog excreted.

  8. Contact resonance atomic force microscopy imaging in air and water using photothermal excitation

    NASA Astrophysics Data System (ADS)

    Kocun, Marta; Labuda, Aleksander; Gannepalli, Anil; Proksch, Roger

    2015-08-01

    Contact Resonance Force Microscopy (CR-FM) is a leading atomic force microscopy technique for measuring viscoelastic nano-mechanical properties. Conventional piezo-excited CR-FM measurements have been limited to imaging in air, since the "forest of peaks" frequency response associated with acoustic excitation methods effectively masks the true cantilever resonance. Using photothermal excitation results in clean contact, resonance spectra that closely match the ideal frequency response of the cantilever, allowing unambiguous and simple resonance frequency and quality factor measurements in air and liquids alike. This extends the capabilities of CR-FM to biologically relevant and other soft samples in liquid environments. We demonstrate CR-FM in air and water on both stiff silicon/titanium samples and softer polystyrene-polyethylene-polypropylene polymer samples with the quantitative moduli having very good agreement between expected and measured values.

  9. Contact resonance atomic force microscopy imaging in air and water using photothermal excitation

    SciTech Connect

    Kocun, Marta; Labuda, Aleksander; Gannepalli, Anil; Proksch, Roger

    2015-08-15

    Contact Resonance Force Microscopy (CR-FM) is a leading atomic force microscopy technique for measuring viscoelastic nano-mechanical properties. Conventional piezo-excited CR-FM measurements have been limited to imaging in air, since the “forest of peaks” frequency response associated with acoustic excitation methods effectively masks the true cantilever resonance. Using photothermal excitation results in clean contact, resonance spectra that closely match the ideal frequency response of the cantilever, allowing unambiguous and simple resonance frequency and quality factor measurements in air and liquids alike. This extends the capabilities of CR-FM to biologically relevant and other soft samples in liquid environments. We demonstrate CR-FM in air and water on both stiff silicon/titanium samples and softer polystyrene-polyethylene-polypropylene polymer samples with the quantitative moduli having very good agreement between expected and measured values.

  10. 40 CFR 1065.225 - Intake-air flow meter.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 34 2013-07-01 2013-07-01 false Intake-air flow meter. 1065.225 Section 1065.225 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS ENGINE-TESTING PROCEDURES Measurement Instruments Flow-Related Measurements § 1065.225...

  11. 40 CFR 1065.225 - Intake-air flow meter.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 33 2011-07-01 2011-07-01 false Intake-air flow meter. 1065.225 Section 1065.225 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS ENGINE-TESTING PROCEDURES Measurement Instruments Flow-Related Measurements § 1065.225...

  12. 40 CFR 1065.225 - Intake-air flow meter.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 34 2012-07-01 2012-07-01 false Intake-air flow meter. 1065.225 Section 1065.225 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS ENGINE-TESTING PROCEDURES Measurement Instruments Flow-Related Measurements § 1065.225...

  13. 40 CFR 1065.225 - Intake-air flow meter.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 33 2014-07-01 2014-07-01 false Intake-air flow meter. 1065.225 Section 1065.225 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS ENGINE-TESTING PROCEDURES Measurement Instruments Flow-Related Measurements § 1065.225...

  14. 40 CFR 1065.225 - Intake-air flow meter.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 32 2010-07-01 2010-07-01 false Intake-air flow meter. 1065.225 Section 1065.225 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS ENGINE-TESTING PROCEDURES Measurement Instruments Flow-Related Measurements § 1065.225...

  15. Particle displacement tracking applied to air flows

    NASA Technical Reports Server (NTRS)

    Wernet, Mark P.

    1991-01-01

    Electronic Particle Image Velocimeter (PIV) techniques offer many advantages over conventional photographic PIV methods such as fast turn around times and simplified data reduction. A new all electronic PIV technique was developed which can measure high speed gas velocities. The Particle Displacement Tracking (PDT) technique employs a single cw laser, small seed particles (1 micron), and a single intensified, gated CCD array frame camera to provide a simple and fast method of obtaining two-dimensional velocity vector maps with unambiguous direction determination. Use of a single CCD camera eliminates registration difficulties encountered when multiple cameras are used to obtain velocity magnitude and direction information. An 80386 PC equipped with a large memory buffer frame-grabber board provides all of the data acquisition and data reduction operations. No array processors of other numerical processing hardware are required. Full video resolution (640x480 pixel) is maintained in the acquired images, providing high resolution video frames of the recorded particle images. The time between data acquisition to display of the velocity vector map is less than 40 sec. The new electronic PDT technique is demonstrated on an air nozzle flow with velocities less than 150 m/s.

  16. Integrated turbine-compressor provides air flow for cooling

    NASA Technical Reports Server (NTRS)

    Ferri, A.

    1970-01-01

    Modified supersonic turbine cycle provides cooling air to surrounding structures. Simplified mechanical design assures correct balance of air flow, allows direct issue of cool air to the structure, and assists in matching turbine work output to work input required by the compressor.

  17. Research on Air Flow Measurement and Optimization of Control Algorithm in Air Disinfection System

    NASA Astrophysics Data System (ADS)

    Bing-jie, Li; Jia-hong, Zhao; Xu, Wang; Amuer, Mohamode; Zhi-liang, Wang

    2013-01-01

    As the air flow control system has the characteristics of delay and uncertainty, this research designed and achieved a practical air flow control system by using the hydrodynamic theory and the modern control theory. Firstly, the mathematical model of the air flow distribution of the system is analyzed from the hydrodynamics perspective. Then the model of the system is transformed into a lumped parameter state space expression by using the Galerkin method. Finally, the air flow is distributed more evenly through the estimation of the system state and optimal control. The simulation results show that this algorithm has good robustness and anti-interference ability

  18. Three-dimensional freezing of flowing water in a tube cooled by air flow

    NASA Astrophysics Data System (ADS)

    Sugawara, M.; Komatsu, Y.; Beer, H.

    2015-05-01

    The 3-D freezing of flowing water in a copper tube cooled by air flow is investigated by means of a numerical analysis. The air flows normal to the tube axis. Several parameters as inlet water mean velocity w m , inlet water temperature T iℓ t , air flow temperature T a and air flow velocity u a are selected in the calculations to adapt it to a winter season actually encountered. The numerical results present the development of the ice layer mean thickness and its 3-D morphologies as well as the critical ice layer thickness in the tube choked by the ice layer.

  19. Air-flow regulation system for a coal gasifier

    DOEpatents

    Fasching, George E.

    1984-01-01

    An improved air-flow regulator for a fixed-bed coal gasifier is provided which allows close air-flow regulation from a compressor source even though the pressure variations are too rapid for a single primary control loop to respond. The improved system includes a primary controller to control a valve in the main (large) air supply line to regulate large slow changes in flow. A secondary controller is used to control a smaller, faster acting valve in a secondary (small) air supply line parallel to the main line valve to regulate rapid cyclic deviations in air flow. A low-pass filter with a time constant of from 20 to 50 seconds couples the output of the secondary controller to the input of the primary controller so that the primary controller only responds to slow changes in the air-flow rate, the faster, cyclic deviations in flow rate sensed and corrected by the secondary controller loop do not reach the primary controller due to the high frequency rejection provided by the filter. This control arrangement provides at least a factor of 5 improvement in air-flow regulation for a coal gasifier in which air is supplied by a reciprocating compressor through a surge tank.

  20. Investigations on the Aerodynamic Characteristics and Blade Excitations of the Radial Turbine with Pulsating Inlet Flow

    NASA Astrophysics Data System (ADS)

    Liu, Yixiong; Yang, Ce; Yang, Dengfeng; Zhang, Rui

    2016-04-01

    The aerodynamic performance, detailed unsteady flow and time-based excitations acting on blade surfaces of a radial flow turbine have been investigated with pulsation flow condition. The results show that the turbine instantaneous performance under pulsation flow condition deviates from the quasi-steady value significantly and forms obvious hysteretic loops around the quasi-steady conditions. The detailed analysis of unsteady flow shows that the characteristic of pulsation flow field in radial turbine is highly influenced by the pulsation inlet condition. The blade torque, power and loading fluctuate with the inlet pulsation wave in a pulse period. For the blade excitations, the maximum and the minimum blade excitations conform to the wave crest and wave trough of the inlet pulsation, respectively, in time-based scale. And toward blade chord direction, the maximum loading distributes along the blade leading edge until 20% chord position and decreases from the leading to trailing edge.

  1. Application of DSMC Electronic Excitation Modeling to Radiation Calculation of Hypersonic Reentry Flows

    NASA Astrophysics Data System (ADS)

    Li, Zheng; Sohn, Ilyoup; Levin, Deborah A.; Modest, Michael F.

    2011-05-01

    The current work implemented excited levels of atomic N and corresponding electron impact excitation/de-excitation and ionization processes in DSMC. Results show that when excitation models are included, the Stardust 68.9 km re-entry flow has an observable change in the ion number densities and electron temperature. Adding in the excited levels of atoms improves the degree of ionization by providing additional intermediate steps to ionization. The extra ionization reactions consume the electron energy and reduce the electron temperature. The DSMC results of number densities of excited levels are lower than the prediction of quasi steady state calculation. Comparison of radiation calculations using electronic excited populations from DSMC and QSS indicates that, at the stagnation point, there is about 20% difference of the radiative heat flux between DSMC and QSS.

  2. The identification of excited species in arc jet flow

    NASA Technical Reports Server (NTRS)

    Willey, Ronald J.

    1987-01-01

    Spectrographic work done at the Atmospheric Reentry Material and Structures Facility (arc jet) located at the Johnson Space Center has led to the identification of several excited molecular and atomic states. The excited molecular states identified are: first positive nitrogen system, second positive nitrogen system, the first negative nitrogen system, the gamma system for nitric oxide, and the 306.4 nm system of OH. Excited atoms identified were nitrogen, oxygen, hydrogen, silicon, copper, sodium, barium, potassium, and calcium. The latter five are considered contaminants. Excited molecular states of oxygen were not seen, suggesting full dissociation of oxygen molecules to oxygen atoms within the arc column and nozzle. Further, evidence exists that O(-) may be present since a background continuum is seen, and because of the existence of positive species (first negative system of N2(+)). Interpretation of spectrographic plates was enhanced by the use of a microdensitometer, and by the application of a second order least squares routine which determined wavelength as a function of plate location. Results of this work will ultimately improve models used in the calculation of heat transfer rates to the space shuttle and the aerobraking orbit transfer vehicles.

  3. Position paper -- Tank ventilation system design air flow rates

    SciTech Connect

    Goolsby, G.K.

    1995-01-04

    The purpose of this paper is to document a project position on required ventilation system design air flow rates for the waste storage tanks currently being designed by project W-236A, the Multi-Function Waste Tank Facility (MWTF). The Title 1 design primary tank heat removal system consists of two systems: a primary tank vapor space ventilation system; and an annulus ventilation system. At the conclusion of Title 1 design, air flow rates for the primary and annulus ventilation systems were 960 scfm and 4,400 scfm, respectively, per tank. These design flow rates were capable of removing 1,250,000 Btu/hr from each tank. However, recently completed and ongoing studies have resulted in a design change to reduce the extreme case heat load to 700,000 Btu/hr. This revision of the extreme case heat load, coupled with results of scale model evaporative testing performed by WHC Thermal Hydraulics, allow for a reduction of the design air flow rates for both primary and annulus ventilation systems. Based on the preceding discussion, ICF Kaiser Hanford Co. concludes that the design should incorporate the following design air flow rates: Primary ventilation system--500 scfm maximum and Annulus ventilation system--1,100 scfm maximum. In addition, the minimum air flow rates in the primary and annulus ventilation systems will be investigated during Title 2 design. The results of the Title 2 investigation will determine the range of available temperature control using variable air flows to both ventilation systems.

  4. Electron-impact vibrational excitation rates in the flow field of aeroassisted orbital transfer vehicles

    NASA Technical Reports Server (NTRS)

    Lee, J.-H.

    1985-01-01

    This paper examines the vibrational excitation rate processes expected in the flow field of aeroassisted orbital transfer vehicles (AOTVs). An analysis of the multiple-quantum vibrational excitation processes by electron impact is made to predict the vibrational excitation cross sections, rate coefficients, and relaxation times which control vibrational temperature. The expression for the rate of electron-vibration energy transfer is derived by solving the system of master equations which account for the multiple-level transitions. The vibrational excitation coefficients, which are the prerequisite physical quantities in solving the obtained vibrational equation, are calculated based on the theoretically predicted cross sections. These cross sections are obtained from quantum mechanical calculations, based on the concept that vibrational excitation of molecules by electron impact occurs through formation of an intermediate negative ion state. Finally, the modified Landau-Teller-type rate equation, which is suitable for the numerical calculations for the AOTV flow fields, is suggested.

  5. Modeling of electronic excitation and radiation in non-continuum hypersonic reentry flows

    NASA Astrophysics Data System (ADS)

    Li, Zheng; Ozawa, Takashi; Sohn, Ilyoup; Levin, Deborah A.

    2011-06-01

    The modeling of hypersonic radiation in non-equilibrium, non-continuum flows is considered in the framework of the direct simulation Monte Carlo (DSMC) approach. The study explores the influence of electronic states on the flow chemistry and degree of ionization as well as the assumption that the electronic states can be described by a steady state solution to a system of rate equations of excitation, de-excitation, and radiative transfer processes. The work implements selected excited levels of atomic nitrogen and oxygen and the corresponding electron impact excitation/de-excitation and ionization processes in DSMC. The simulations show that when excitation models are included, the degree of ionization in the Stardust transitional re-entry flow increases due to additional intermediate steps to ionization. The extra ionization reactions consume the electron energy to reduce the electron temperature. The DSMC predicted excited state level populations are lower than those predicted by a quasi steady state calculation, but the differences can be understood in terms of the flow distribution functions.

  6. Effect of air flow on tubular solar still efficiency

    PubMed Central

    2013-01-01

    Background An experimental work was reported to estimate the increase in distillate yield for a compound parabolic concentrator-concentric tubular solar still (CPC-CTSS). The CPC dramatically increases the heating of the saline water. A novel idea was proposed to study the characteristic features of CPC for desalination to produce a large quantity of distillate yield. A rectangular basin of dimension 2 m × 0.025 m × 0.02 m was fabricated of copper and was placed at the focus of the CPC. This basin is covered by two cylindrical glass tubes of length 2 m with two different diameters of 0.02 m and 0.03 m. The experimental study was operated with two modes: without and with air flow between inner and outer tubes. The rate of air flow was fixed throughout the experiment at 4.5 m/s. On the basis of performance results, the water collection rate was 1445 ml/day without air flow and 2020 ml/day with air flow and the efficiencies were 16.2% and 18.9%, respectively. Findings The experimental study was operated with two modes: without and with air flow between inner and outer tubes. The rate of air flow was fixed throughout the experiment at 4.5 m/s. Conclusions On the basis of performance results, the water collection rate was 1445 ml/day without air flow and 2020 ml/day with air flow and the efficiencies were 16.2% and 18.9%, respectively. PMID:23587020

  7. Experimental study on exciting force by two-phase cross flow

    SciTech Connect

    Nakamura, T.; Fujita, K.; Shiraki, K.; Kanazawa, H.; Sakata, K.

    1982-01-01

    Buffeting forces acting on tube arrays and induced by air-water two-phase cross flow, in the range of bubble flow and slug flow (or froth flow), are experimentally examined. Experimental results are treated by statistical modal analysis for use in design calculation. Based on these results, a hypothesis, especially applicable in the region of slug flow, is proposed to explain the experimental results. 9 refs.

  8. Two-photon vibrational excitation of air by long-wave infrared laser pulses

    NASA Astrophysics Data System (ADS)

    Palastro, J. P.; Peñano, J.; Johnson, L. A.; Hafizi, B.; Wahlstrand, J. K.; Milchberg, H. M.

    2016-08-01

    Ultrashort long-wave infrared (LWIR) laser pulses can resonantly excite vibrations in N2 and O2 through a two-photon transition. The absorptive vibrational component of the ultrafast optical nonlinearity grows in time, starting smaller than but quickly surpassing the electronic, rotational, and vibrational refractive components. The growth of the vibrational component results in a novel mechanism of third-harmonic generation, providing an additional two-photon excitation channel, fundamental + third harmonic. The original and emergent two-photon excitations drive the resonance exactly out of phase, causing spatial decay of the absorptive vibrational nonlinearity. This nearly eliminates two-photon vibrational absorption. Here we present simulations and analytical calculations demonstrating how these processes modify the ultrafast optical nonlinearity in air. The results reveal nonlinear optical phenomena unique to the LWIR regime of ultrashort pulse propagation in the atmosphere.

  9. Excitation of flow instabilities due to nonlinear scale invariance

    SciTech Connect

    Prasad Datta, Dhurjati; Sen, Sudip

    2014-05-15

    A novel route to instabilities and turbulence in fluid and plasma flows is presented in kinetic Vlasov-Maxwell model. New kind of flow instabilities is shown to arise due to the availability of new kinetic energy sources which are absent in conventional treatments. The present approach is based on a scale invariant nonlinear analytic formalism developed to address irregular motions on a chaotic attractor or in turbulence in a more coherent manner. We have studied two specific applications of this turbulence generating mechanism. The warm plasma Langmuir wave dispersion relation is shown to become unstable in the presence of these multifractal measures. In the second application, these multifractal measures are shown to induce naturally non-Gaussian, i.e., a stretched, Gaussian distribution and anomalous transport for tracer particles from the turbulent advection-diffusion transport equation in a Vlasov plasma flow.

  10. Beam focusing and unidirectional excitation from four nanoslits filled with air and non-linear material

    NASA Astrophysics Data System (ADS)

    Kong, Yan; Quan, Wei; Wei, Qi; Qiu, Peng

    2016-05-01

    We theoretically design a device composed of four nanoslits to dynamically modulate the propagation direction of light beam by embedding non-linear material and air, respectively. Directions of radiation fields are determined by the phase difference of the surface waves at the exit interface and distance of each slit. Numerical simulations using finite element method verify that the unidirectional excitation and beam focusing can be achieved easily by changing the intensity of incident light.

  11. Supersonic Air Flow due to Solid-Liquid Impact

    NASA Astrophysics Data System (ADS)

    Gekle, Stephan; Peters, Ivo R.; Gordillo, José Manuel; van der Meer, Devaraj; Lohse, Detlef

    2010-01-01

    A solid object impacting on liquid creates a liquid jet due to the collapse of the impact cavity. Using visualization experiments with smoke particles and multiscale simulations, we show that in addition, a high-speed air jet is pushed out of the cavity. Despite an impact velocity of only 1m/s, this air jet attains supersonic speeds already when the cavity is slightly larger than 1 mm in diameter. The structure of the air flow closely resembles that of compressible flow through a nozzle—with the key difference that here the “nozzle” is a liquid cavity shrinking rapidly in time.

  12. Computational and experimental study of spin coater air flow

    NASA Astrophysics Data System (ADS)

    Zhu, Xiaoguang; Liang, Faqiu; Haji-Sheikh, A.; Ghariban, N.

    1998-06-01

    An extensive 2- and 3-D analysis of air flow in a POLARISTM 2200 Microlithography Cluster spin coater was conducted using FLUENTTM Computational Fluid Dynamics (CFD) software. To supplement this analysis, direct measurement of air flow velocity was also performed using a DantecTM Hot Wire Anemometer. Velocity measurements were made along two major planes across the entire flow field in the spin coater at various operating conditions. It was found that the flow velocity at the spin coater inlet is much lower than previously assumed and quite nonuniform. Based on this observation, a pressure boundary condition rather than a velocity boundary condition was used for subsequent CFD analysis. A comparison between calculated results and experimental data shows that the 3D model accurately predicts the air flow field in the spin coater. An added advantage of this approach is that the CFD model can be easily generated from the mechanical design database and used to analyze the effect of design changes. The modeled and measured results show that the flow pattern in the spin bowl is affected by interactions between the spinning wafer, exhaust flow, and the gap between the spin head and surrounding baffle. Different operating conditions such as spin speed, inlet pressure, and exhaust pressure were found to generate substantially different flow patterns. It was also found that backflow of air could be generated under certain conditions.

  13. Low-noise flow valve for air ducts

    NASA Technical Reports Server (NTRS)

    Gallo, E. A.

    1970-01-01

    Valve assembly controls air flow from feeder into main duct, with minimum of turbulence, friction, pressure differential, and noise. Valve consists of damper, deflector, and spring. Streamlining of damper and deflector merges flow smoothly, while spring keeps damper and deflector in contact and eliminates valve chatter and damping vibrations.

  14. Impacts of electronically photo-excited NO2 on air pollution in the South Coast Air Basin of California

    NASA Astrophysics Data System (ADS)

    Ensberg, J. J.; Carreras-Sospedra, M.; Dabdub, D.

    2010-02-01

    A new path for hydroxyl radical formation via photo-excitation of nitrogen dioxide (NO2) and the reaction of photo-excited NO2 with water is evaluated using the UCI-CIT model for the South Coast Air Basin of California (SoCAB). Two separate studies predict different reaction rates, which differ by nearly an order of magnitude, for the reaction of photo-excited NO2 with water. Impacts of this new chemical mechanism on ozone and particulate matter formation, while utilizing both reaction rates, are quantified by simulating two summer episodes. First, sensitivity simulations are conducted to evaluate the uncertainty in the rate of reaction of photo-excited NO2 with water reported in the literature. Results indicate that the addition of photo-excited NO2 chemistry increases peak 8-h average ozone and particulate matter concentrations. The importance of this new chemistry is then evaluated in the context of pollution control strategies. A series of simulations are conducted to generate isopleths for ozone and particulate matter concentrations, varying baseline nitrogen oxides (NOx) and volatile organic compounds (VOC) emissions. Isopleths are obtained using 1987 emissions, to represent past conditions, and 2005, to represent current conditions in the SoCAB. Results show that the sensitivity of modeled pollutant control strategies due to photoexcitation decreases with the decrease in baseline emissions from 1987 to 2005. Results show that including NO2 photo-excitation, increases the sensitivity of ozone concentration with respect to changes in NOx emissions for both years. In particular, decreasing NOx emissions in 2005 when NO2 photo-excitation is included, while utilizing the higher reaction rate, leads to ozone relative reduction factors that are 15% lower than in a case without photo-excited NO2. This implies that photoexcitation increases the effectiveness in reducing ozone through NOx emissions reductions alone, which has implications for the assessment of future

  15. Flow Separation Side Loads Excitation of Rocket Nozzle FEM

    NASA Technical Reports Server (NTRS)

    Smalley, Kurt B.; Brown, Andrew; Ruf, Joseph; Gilbert, John

    2007-01-01

    Modern rocket nozzles are designed to operate over a wide range of altitudes, and are also built with large aspect ratios to enable high efficiencies. Nozzles designed to operate over specific regions of a trajectory are being replaced in modern launch vehicles by those that are designed to operate from earth to orbit. This is happening in parallel with modern manufacturing and wall cooling techniques allowing for larger aspect ratio nozzles to be produced. Such nozzles, though operating over a large range of altitudes and ambient pressures, are typically designed for one specific altitude. Above that altitude the nozzle flow is 'underexpanded' and below that altitude, the nozzle flow is 'overexpanded'. In both conditions the nozzle produces less than the maximum possible thrust at that altitude. Usually the nozzle design altitude is well above sea level, leaving the nozzle flow in an overexpanded state for its start up as well as for its ground testing where, if it is a reusable nozzle such as the Space Shuttle Main Engine (SSME), the nozzle will operate for the majority of its life. Overexpansion in a rocket nozzle presents the critical, and sometimes design driving, problem of flow separation induced side loads. To increase their understanding of nozzle side loads, engineers at MSFC began an investigation in 2000 into the phenomenon through a task entitled "Characterization and Accurate Modeling of Rocket Engine Nozzle Side Loads", led by A. Brown. The stated objective of this study was to develop a methodology to accurately predict the character and magnitude of nozzle side loads. The study included further hot-fire testing of the MC-l engine, cold flow testing of subscale nozzles, CFD analyses of both hot-fire and cold flow nozzle testing, and finite element (fe.) analysis of the MC-1 engine and cold flow tested nozzles. A follow on task included an effort to formulate a simplified methodology for modeling a side load during a two nodal diameter fluid

  16. Low power, constant-flow air pump systems

    SciTech Connect

    Polito, M.D.; Albert, B.

    1994-01-01

    A rugged, yet small and lightweight constant-flow air pump system has been designed. Flow control is achieved using a novel approach which is three times more power efficient than previous designs. The resultant savings in battery size and weight makes these pumps ideal for sampling air on balloon platforms. The pump package includes meteorological sensors and an onboard computer that stores time and sensor data and turns the constant-flow pump circuit on/off. Some applications of these systems are also presented in this report.

  17. Visualization of the air flow behind the automotive benchmark vent

    NASA Astrophysics Data System (ADS)

    Pech, Ondrej; Jedelsky, Jan; Caletka, Petr; Jicha, Miroslav

    2015-05-01

    Passenger comfort in cars depends on appropriate function of the cabin HVAC system. A great attention is therefore paid to the effective function of automotive vents and proper formation of the flow behind the ventilation outlet. The article deals with the visualization of air flow from the automotive benchmark vent. The visualization was made for two different shapes of the inlet channel connected to the benchmark vent. The smoke visualization with the laser knife was used. The influence of the shape of the inlet channel to the airflow direction, its enlargement and position of air flow axis were investigated.

  18. Evaporation of stationary alcohol layer in minichannel under air flow

    NASA Astrophysics Data System (ADS)

    Afanasyev, Ilya; Orlova, Evgenija; Feoktistov, Dmitriy

    2015-01-01

    This paper presents experimental investigation of effect of the gas flow rate moving parallel to the stationary liquid layer on the evaporation rate under the conditions of formation of a stable plane "liquid-gas" interface. The average evaporation flow rate of liquid layer (ethanol) by the gas flow (air) has been calculated using two independent methods. Obtained results have been compared with previously published data.

  19. Fluorescence in air excited by electrons from a 90Sr source

    NASA Astrophysics Data System (ADS)

    Sakaki, N.; Watanabe, Y.; Nagano, M.; Kobayakawa, K.

    2008-11-01

    The air fluorescence technique is used to observe ultra-high energy cosmic rays (UHECRs). In this technique, fluorescence from air excited by electrons within an extensive air shower (EAS) under various pressure and temperature conditions is detected by a telescope. The primary energy of the UHECR is estimated from the amount of fluorescence. Since ground-based experiments, such as Fly's Eye, HiRes, Auger, Telescope Array, are carried out at high altitudes, the effects of water vapor may be negligible and the photon yields in dry air, which we have measured and reported so far, will be applicable. However, in case of space-based experiments such as JEM-EUSO, most events will be observed above the sea. Photon yields in moist air are measured with a 90Sr β source and compared to those in dry air at wavelengths of 337, 358 and 391 nm. The presence of water vapor considerably reduces the photon yield. The decrease in the photon yield in moist air should be taken into account to interpret the longitudinal development of EASs near the sea surface, although the effects around the shower maximum for most showers might be small.

  20. Optimal Control of Airfoil Flow Separation using Fluidic Excitation

    NASA Astrophysics Data System (ADS)

    Shahrabi, Arireza F.

    This thesis deals with the control of flow separation around a symmetric airfoils with the aid of multiple synthetic jet actuators (SJAs). CFD simulation methods have been implemented to uncover the flow separation regimes and associated properties such as frequencies and momentum ratio. In the first part of the study, the SJA was studied thoroughly. Large Eddy Simulations (LES) were performed for one individual cavity; the time history of SJA of the outlet velocity profile and the net momentum imparted to the flow were analyzed. The studied SJA is asymmetrical and operates with the aid of a piezoelectric (PZT) ceramic circular plate actuator. A three-dimensional mesh for the computational domain of the SJA and the surrounding volume was developed and was used to evaluate the details of the airflow conditions inside the SJA as well as at the outlet. The vibration of the PZT ceramic actuator was used as a boundary condition in the computational model to drive the SJA. Particular attention was given to developing a predictive model of the SJA outlet velocity. Results showed that the SJA velocity output is correlated to the PZT ceramic plate vibration, especially for the first frequency mode. SJAs are a particular class of zero net mass flux (ZNMF) fluidic devices with net imparted momentum to the flow. The net momentum imparted to the flow in the separated region is such that positive enhancement during AFC operations is achieved. Flows around the NACA 0015 airfoil were simulated for a range of operating conditions. Attention was given to the active open and closed loop control solutions for an airfoil with SJA at different angles of attack and flap angles. A large number of simulations using RANS & LES models were performed to study the effects of the momentum ratio (Cμ) in the range of 0 to 11% and of the non-dimensional frequency, F+, in the range of 0 to 2 for the control of flow separation at a practical angle of attack and flap angle. The optimum value of C

  1. Annular fuel and air co-flow premixer

    SciTech Connect

    Stevenson, Christian Xavier; Melton, Patrick Benedict; York, William David

    2013-10-15

    Disclosed is a premixer for a combustor including an annular outer shell and an annular inner shell. The inner shell defines an inner flow channel inside of the inner shell and is located to define an outer flow channel between the outer shell and the inner shell. A fuel discharge annulus is located between the outer flow channel and the inner flow channel and is configured to inject a fuel flow into a mixing area in a direction substantially parallel to an outer airflow through the outer flow channel and an inner flow through the inner flow channel. Further disclosed are a combustor including a plurality of premixers and a method of premixing air and fuel in a combustor.

  2. Computation of flow and heat transfer in rotating cavities with peripheral flow of cooling air.

    PubMed

    Kiliç, M

    2001-05-01

    Numerical solutions of the Navier-Stokes equations have been used to model the flow and the heat transfer that occurs in the internal cooling-air systems of gas turbines. Computations are performed to study the effect of gap ratio, Reynolds number and the mass flow rate on the flow and the heat transfer structure inside isothermal and heated rotating cavities with peripheral flow of cooling air. Computations are compared with some of the recent experimental work on flow and heat transfer in rotating-cavities. The agreement between the computed and the available experimental data is reasonably good. PMID:11460668

  3. Spool Valve for Switching Air Flows Between Two Beds

    NASA Technical Reports Server (NTRS)

    Dean, W. Clark

    2005-01-01

    U.S. Patent 6,142,151 describes a dual-bed ventilation system for a space suit, with emphasis on a multiport spool valve that switches air flows between two chemical beds that adsorb carbon dioxide and water vapor. The valve is used to alternately make the air flow through one bed while exposing the other bed to the outer-space environment to regenerate that bed through vacuum desorption of CO2 and H2O. Oxygen flowing from a supply tank is routed through a pair of periodically switched solenoid valves to drive the spool valve in a reciprocating motion. The spool valve equalizes the pressures of air in the beds and the volumes of air flowing into and out of the beds during the alternations between the adsorption and desorption phases, in such a manner that the volume of air that must be vented to outer space is half of what it would be in the absence of pressure equalization. Oxygen that has been used to actuate the spool valve in its reciprocating motion is released into the ventilation loop to replenish air lost to vacuum during the previous desorption phase of the operating cycle.

  4. Equipment for Measuring Air Flow, Air Temperature, Relative Humidity, and Carbon Dioxide in Schools. Technical Bulletin.

    ERIC Educational Resources Information Center

    Jacobs, Bruce W.

    Information on equipment and techniques that school facility personnel may use to evaluate IAQ conditions are discussed. Focus is placed on the IAQ parameters of air flow, air temperature, relative humidity, as well as carbon dioxide and the equipment used to measure these factors. Reasons for measurement and for when the measurement of these…

  5. Cross-flow versus counterflow air-stripping towers

    SciTech Connect

    Little, J.C.; Marinas, B.J.

    1997-07-01

    Mass-transfer and pressure-drop packing performance correlations are used together with tower design equations and detailed cost models to compare the effectiveness of cross-flow and counterflow air stripping towers over a wide range of contaminant volatility. Cross-flow towers are shown to offer a significant economic advantage over counterflow towers when stripping low volatility organic contaminants primarily due to savings in energy costs. These savings increase as contaminant volatility decreases and as water flow rate increases. A further advantage of the cross-flow configuration is that it extends the feasible operating range for air stripping as cross-flow towers can accommodate higher air-to-water flow ratios than conventional counterflow towers. Finally it is shown that the optimized least-cost design for both counterflow and cross-flow towers varies with Henry`s law constant, water flow rate, and percent removal, but that the optimum is virtually insensitive to other cost and operating variables. This greatly simplifies the tower design procedure.

  6. Natural laminar flow hits smoother air

    NASA Technical Reports Server (NTRS)

    Holmes, B. J.

    1985-01-01

    Natural laminar flow (NLF) may be attained in aircraft with lower cost, weight, and maintenance penalties than active flow laminarization by means of a slot suction system. A high performance general aviation jet aircraft possessing a moderate degree of NLF over wing, fuselage, empennage and engine nacelles will accrue a 24 percent reduction in total aircraft drag in the cruise regime. NASA-Langley has conducted NLF research centered on the use of novel airfoil profiles as well as composite and milled aluminum alloy construction methods which minimize three-dimensional aerodynamic surface roughness and waviness. It is noted that higher flight altitudes intrinsically reduce unit Reynolds numbers, thereby minimizing turbulence for a given cruise speed.

  7. Flow angle dependent photoacoustic Doppler power spectra under intensity-modulated continuous wave laser excitation

    NASA Astrophysics Data System (ADS)

    Tong, Yu; Zhao, Hongcai; Fang, Hui; Zhao, Youquan; Yuan, Xiaocong

    2016-02-01

    Photoacoustic Doppler (PAD) power spectra showing an evident Doppler shift represent the major characteristics of the continuous wave-excited or burst wave-excited versions of PAD flow measurements. In this paper, the flow angle dependences of the PAD power spectra are investigated using an experiment setup that was established based on intensity-modulated continuous wave laser excitation. The setup has an overall configuration that is similar to a previously reported configuration, but is more sophisticated in that it accurately aligns the laser illumination with the ultrasound detection process, and in that it picks up the correct sample position. In the analysis of the power spectra data, we find that the background power spectra can be extracted by combining the output signals from the two channels of the lock-in amplifier, which is very useful for identification of the PAD power spectra. The power spectra are presented and analyzed in opposite flow directions, at different flow speeds, and at different flow angles. The power spectra at a 90° flow angle show the unique properties of symmetrical shapes due to PAD broadening. For the other flow angles, the smoothed power spectra clearly show a flow angle cosine relationship.

  8. Optical Air Flow Measurements in Flight

    NASA Technical Reports Server (NTRS)

    Bogue, Rodney K.; Jentink, Henk W.

    2004-01-01

    This document has been written to assist the flight-test engineer and researcher in using optical flow measurements in flight applications. The emphasis is on describing tradeoffs in system design to provide desired measurement performance as currently understood. Optical system components are discussed with examples that illustrate the issues. The document concludes with descriptions of optical measurement systems designed for a variety of applications including aeronautics research, airspeed measurement, and turbulence hazard detection. Theoretical discussion is minimized, but numerous references are provided to supply ample opportunity for the reader to understand the theoretical underpinning of optical concepts.

  9. Fluid mechanics and passive control of the flow-excited Helmholtz resonator

    NASA Astrophysics Data System (ADS)

    Slaboch, Paul Edward

    A flow excited Helmholtz resonator was investigated experimentally and theoretically. The analysis was focused on a simplified momentum balance integrated over the region of the orifice. The resulting expressions were used to guide an experimental program designed to obtain measurements of the resonator pressure under flow excitation, as well as the dynamics of the shear layer in the orifice using Particle Image Velocimetry. The PIV results provided a detailed representation of the shear layer vorticity field, as well as the equivalent hydrodynamic forcing of the resonator. The forcing magnitude was found to increase with speed over a range of flow speeds. A model was proposed that provides a prediction of the resonator pressure fluctuations based on the thickness of the approach boundary layer, the free stream speed, the acoustic properties of the resonator and the spatial growth rate of the shear layer across the orifice. The model was shown to provide an accurate representation of the resonating frequency as well as the magnitude of the resonance to within a few dB. Various passive flow control methods were examined to reduce the flow-excited resonance. Foam and tuned absorbers were employed to control the acoustic properties of the resonator. Both methods succeeded in reducing the flow-excited resonance. The hydrodynamic forcing was controlled through both changes to the orifice geometry and with the disruption of the approach flow. Most changes to the orifice geometry resulted in significant decreases in the magnitude of the resonance. Thickening and rounding the upstream and down stream edges of the orifice was found to increase the resonance. Obstructions placed upstream of the orifice to disrupt the approach flow decreased the resonance to varying levels of success. Comparisons were made to a full-scale vehicle. Both microphone and PIV measurements were acquired for a full-scale vehicle and compared to simplified small scale models. The fundamental flow

  10. Mobility power flow analysis of an L-shaped plate structure subjected to acoustic excitation

    NASA Technical Reports Server (NTRS)

    Cuschieri, J. M.

    1989-01-01

    An analytical investigation based on the Mobility Power Flow method is presented for the determination of the vibrational response and power flow for two coupled flat plate structures in an L-shaped configuration, subjected to acoustical excitation. The principle of the mobility power flow method consists of dividing the global structure into a series of subsystems coupled together using mobility functions. Each separate subsystem is analyzed independently to determine the structural mobility functions for the junction and excitation locations. The mobility functions, together with the characteristics of the junction between the subsystems, are then used to determine the response of the global structure and the power flow. In the coupled plate structure considered here, mobility power flow expressions are derived for excitation by an incident acoustic plane wave. In this case, the forces (acoustic pressures) acting on the structure are dependent on the response of the structure because of the scattered pressure component. The interaction between the structure and the fluid leads to the derivation of a corrected mode shape for the plates' normal surface velocity and also for the structure mobility functions. The determination of the scattered pressure components in the expressions for the power flow represents an additional component in the power flow balance for the source plate and the receiver plate. This component represents the radiated acoustical power from the plate structure.

  11. A model for the pressure excitation spectrum and acoustic impedance of sound absorbers in the presence of grazing flow

    NASA Technical Reports Server (NTRS)

    Rice, E. J.

    1973-01-01

    The acoustic impedance of sound absorbers in the presence of grazing flow is essential information when analyzing sound propagation within ducts. A unification of the theory of the nonlinear acoustic resistance of Helmholtz resonators including grazing flow is presented. The nonlinear resistance due to grazing flow is considered to be caused by an exciting pressure spectrum produced by the interaction of the grazing flow and the jets flowing from the resonator orifices. With this exciting pressure spectrum the resonator can be treated in the same manner as a resonator without grazing flow but with an exciting acoustic spectrum.

  12. Air flow management in an internal combustion engine through the use of electronically controlled air jets

    SciTech Connect

    Swain, M.R.

    1988-12-27

    This patent describes a means for producing an air/fuel mixture in the valve pocket and means for directing the air/fuel mixture past the intake valve into the combustion chamber, the improvement comprising a device for generating a swirling flow of the air/fuel mixture in the combustion chamber to thereby obtain greater combustion stability. The device has a nozzle positioned within the valve pocket and directed at an acute angle toward the intake valve comprising at least one opening for receiving air, connected to a first pathway, and at least one opening for expelling air, connected, to a second pathway joined to the first pathway and extending to the expulsion opening. The device also includes a means for controlling the flow of air through the pathway and out the expulsion opening comprising: (i) a stopper having sides complementary in shape to the pair of opposed arcuate walls movable from an open position allowing air through the pathway to a closed position, wherein the sides of the stopper are in a sealed relationship with the opposed arcaute sides of the junction thereby preventing the flow of air through the second pathway and out of the expulsion opening; and (ii) an electronic computer which determines the size and duration of the pathway opening.

  13. Numerical simulation of the excitation of a Helmholtz resonator by a grazing flow.

    PubMed

    Mallick, S; Shock, R; Yakhot, V

    2003-10-01

    The process of noise generation in a flow-excited Helmholtz resonator involves strong interaction between a time-dependent fluid flow and acoustic resonance. Quantitative prediction of this effect, requiring accurate prediction of time-dependent features of a flow over complex three-dimensional bodies, turbulence modeling, compressibility and Mach number effects, is one of the major challenges to computational fluid dynamics. In this paper a numerical procedure based on the lattice kinetic equation, combined with the RNG turbulence model, is applied to describe a well-controlled experiment on acoustic resonance excitation by a grazing flow [Nelson et al., J. Sound Vib. 78, 15-27 (1981)]. The achieved agreement between numerical and physical experiments is very good. The simulations reveal a universality transformation enabling comparison of the data for different inlet conditions. PMID:14587584

  14. Velocity-Field Measurements of an Axisymmetric Separated Flow Subjected to Amplitude-Modulated Excitation

    NASA Technical Reports Server (NTRS)

    Trosin, Barry James

    2007-01-01

    Active flow control was applied at the point of separation of an axisymmetric, backward-facing-step flow. The control was implemented by employing a Helmholtz resonator that was externally driven by an amplitude-modulated, acoustic disturbance from a speaker located upstream of the wind tunnel. The velocity field of the separating/reattaching flow region downstream of the step was characterized using hotwire velocity measurements with and without flow control. Conventional statistics of the data reveal that the separating/reattaching flow is affected by the imposed forcing. Triple decomposition along with conditional averaging was used to distinguish periodic disturbances from random turbulence in the fluctuating velocity component. A significant outcome of the present study is that it demonstrates that amplitude-modulated forcing of the separated flow alters the flow in the same manner as the more conventional method of periodic excitation.

  15. Airway blood flow response to dry air hyperventilation in sheep

    SciTech Connect

    Parsons, G.H.; Baile, E.M.; Pare, P.D.

    1986-03-01

    Airway blood flow (Qaw) may be important in conditioning inspired air. To determine the effect of eucapneic dry air hyperventilation (hv) on Qaw in sheep the authors studied 7 anesthetized open-chest sheep after 25 min. of warm dry air hv. During each period of hv the authors have recorded vascular pressures, cardiac output (CO), and tracheal mucosal and inspired air temperature. Using a modification of the reference flow technique radiolabelled microspheres were injected into the left atrium to make separate measurements after humid air and dry air hv. In 4 animals a snare around the left main pulmonary artery was used following microsphere injection to prevent recirculation (entry into L lung of microspheres from the pulmonary artery). Qaw to the trachea and L lung as measured and Qaw for the R lung was estimated. After the final injection the sheep were killed and bronchi (Br) and lungs removed. Qaw (trachea plus L lung plus R lung) in 4 sheep increased from a mean of 30.8 to 67.0 ml/min. Airway mucosal temp. decreased from 39/sup 0/ to 33/sup 0/C. The authors conclude that dry air hv cools airway mucosa and increases Qaw in sheep.

  16. Analytical prediction of labyrinth-seal-flow-induced arotor excitation forces

    NASA Technical Reports Server (NTRS)

    Rajakumar, C.; Sisto, E.

    1985-01-01

    An analytical method to calculate the rotor excitation forces arising from labyrinth seals is presented. The objective is to model the gas flow through the seal clearance passages and cavities when the rotor is positioned eccentricly relative to the stator center. The seal flow model used in the analysis yields solutions which validate the experimentally observed influence of seal parameters on seal forces reported in the literature. The analytically predicted seal pressure distributions and forces were compared with published experimental results.

  17. UV Raman spectroscopy of H2-air flames excited with a narrowband KrF laser

    NASA Technical Reports Server (NTRS)

    Shirley, John A.

    1990-01-01

    Raman spectra of H2 and H2O in flames excited by a narrowband KrF excimer laser are reported. Observations are made over a porous-plug, flat-flame burner reacting H2 in air, fuel-rich with nitrogen dilution to control the temperature, and with an H2 diffusion flame. Measurements made from UV Raman spectra show good agreement with measurements made by other means, both for gas temperature and relative major species concentrations. Laser-induced fluorescence interferences arising from OH and O2 are observed in emission near the Raman spectra. These interferences do not preclude Raman measurements, however.

  18. Evolutionary Concepts for Decentralized Air Traffic Flow Management

    NASA Technical Reports Server (NTRS)

    Adams, Milton; Kolitz, Stephan; Milner, Joseph; Odoni, Amedeo

    1997-01-01

    Alternative concepts for modifying the policies and procedures under which the air traffic flow management system operates are described, and an approach to the evaluation of those concepts is discussed. Here, air traffic flow management includes all activities related to the management of the flow of aircraft and related system resources from 'block to block.' The alternative concepts represent stages in the evolution from the current system, in which air traffic management decision making is largely centralized within the FAA, to a more decentralized approach wherein the airlines and other airspace users collaborate in air traffic management decision making with the FAA. The emphasis in the discussion is on a viable medium-term partially decentralized scenario representing a phase of this evolution that is consistent with the decision-making approaches embodied in proposed Free Flight concepts for air traffic management. System-level metrics for analyzing and evaluating the various alternatives are defined, and a simulation testbed developed to generate values for those metrics is described. The fundamental issue of modeling airline behavior in decentralized environments is also raised, and an example of such a model, which deals with the preservation of flight bank integrity in hub airports, is presented.

  19. Glow Discharge Characteristics in Transverse Supersonic Air Flow

    NASA Astrophysics Data System (ADS)

    Timerkaev, B. A.; Zalyaliev, B. R.; Saifutdinov, A. I.

    2014-11-01

    A low pressure glow discharge in a transverse supersonic gas flow of air at pressures of the order 1 torr has been experimentally studied for the case where the flow only partially fills the inter electrode gap. It is shown that the space region with supersonic gas flow has a higher concentration of gas particles and, therefore, works as a charged particle generator. The near electrode regions of glow discharge are concentrated specifically in this region. This structure of glow discharge is promising for plasma deposition of coatings under ultralow pressures

  20. Split-flow regeneration in absorptive air separation

    DOEpatents

    Weimer, Robert F.

    1987-01-01

    A chemical absorptive separation of air in multiple stage of absorption and desorption is performed with partial recycle of absorbent between stages of desorption necessary to match equilibrium conditions in the various stages of absorption. This allows reduced absorbent flow, reduced energy demand and reduced capital costs.

  1. The Wells turbine in an oscillating air flow

    SciTech Connect

    Raghunathan, S.; Ombaka,

    1984-08-01

    An experimental study of the performance of a 0.2 m diameter Wells self rectifying air turbine with NACA 0021 blades is presented. Experiments were conducted in an oscillating flowrig. The effects of Reynolds number and Strouhal number on the performance of the turbine were investigated. Finally comparison between the results with the predictions from uni-directional flow tests are made.

  2. Split-flow regeneration in absorptive air separation

    DOEpatents

    Weimer, R.F.

    1987-11-24

    A chemical absorptive separation of air in multiple stage of absorption and desorption is performed with partial recycle of absorbent between stages of desorption necessary to match equilibrium conditions in the various stages of absorption. This allows reduced absorbent flow, reduced energy demand and reduced capital costs. 4 figs.

  3. 30 CFR 57.22213 - Air flow (III mines).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Air flow (III mines). 57.22213 Section 57.22213 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES Safety Standards...

  4. 30 CFR 57.22213 - Air flow (III mines).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Air flow (III mines). 57.22213 Section 57.22213 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES Safety Standards...

  5. 30 CFR 57.22213 - Air flow (III mines).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Air flow (III mines). 57.22213 Section 57.22213 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES Safety Standards...

  6. 30 CFR 57.22213 - Air flow (III mines).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Air flow (III mines). 57.22213 Section 57.22213 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES Safety Standards...

  7. 30 CFR 57.22213 - Air flow (III mines).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Air flow (III mines). 57.22213 Section 57.22213 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES Safety Standards...

  8. Nonlinear dynamics of harmonically excited circular cylindrical shells containing fluid flow

    NASA Astrophysics Data System (ADS)

    Karagiozis, K.; Amabili, M.; Païdoussis, M. P.

    2010-08-01

    In the present study, the geometrically nonlinear vibrations of circular cylindrical shells, subjected to internal fluid flow and to a radial harmonic excitation in the spectral neighbourhood of one of the lowest frequency modes, are investigated for different flow velocities. The shell is modelled by Donnell's nonlinear shell theory, retaining in-plane inertia and geometric imperfections; the fluid is modelled as a potential flow with the addition of unsteady viscous terms obtained by using the time-averaged Navier-Stokes equations. A harmonic concentrated force is applied at mid-length of the shell, acting in the radial direction. The shell is considered to be immersed in an external confined quiescent liquid and to contain a fluid flow, in order to reproduce conditions in previous water-tunnel experiments. For the same reason, complex boundary conditions are applied at the shell ends simulating conditions intermediate between clamped and simply supported ends. Numerical results obtained by using pseudo-arclength continuation methods and bifurcation analysis show the nonlinear response at different flow velocities for (i) a fixed excitation amplitude and variable excitation frequency, and (ii) fixed excitation frequency by varying the excitation amplitude. Bifurcation diagrams of Poincaré maps obtained from direct time integration are presented, as well as the maximum Lyapunov exponent, in order to classify the system dynamics. In particular, periodic, quasi-periodic, sub-harmonic and chaotic responses have been detected. The full spectrum of the Lyapunov exponents and the Lyapunov dimension have been calculated for the chaotic response; they reveal the occurrence of large-dimension hyperchaos.

  9. A stagnation pressure probe for droplet-laden air flow

    NASA Technical Reports Server (NTRS)

    Murthy, S. N. B.; Leonardo, M.; Ehresman, C. M.

    1985-01-01

    It is often of interest in a droplet-laden gas flow to obtain the stagnation pressure of both the gas phase and the mixture. A flow-decelerating probe (TPF), with separate, purged ports for the gas phase and the mixture and with a bleed for accumulating liquid at the closed end, has been developed. Measurements obtained utilizing the TPF in a nearly isothermal air-water droplet mixture flow in a smooth circular pipe under various conditions of flow velocity, pressure, liquid concentration and droplet size are presented and compared with data obtained under identical conditions with a conventional, gas phase stagnation pressure probe (CSP). The data obtained with the CSP and TPF probes are analyzed to determine the applicability of the two probes in relation to the multi-phase characteristics of the flow and the geometry of the probe.

  10. Strouhal numbers of flow-excited resonance of closed side branches

    SciTech Connect

    Ziada, S.; Shine, S.

    1995-12-01

    Flow-excited acoustic resonances of piping systems containing closed side-branches are often encountered in engineering applications. They are excited by the unstable shear layer which separates the mean flow in the main pipe from the stagnant fluid in the branch. The object of this paper is to provide design charts which can be used to predict the critical velocity at which an acoustic resonance may be initiated. Model tests were carried out on three different configurations of side-branches (single, tandem and coaxial branches). For each of these pipe configurations, the effects of the diameter ratio (d/D), the distance from an upstream elbow (L) and the acoustic damping are investigated in some detail. The test results are embodied into a design chart to predict the flow velocity at the onset of resonance as a function of the system operational and geometric parameters.

  11. Parametric Studies of Flow Separation using Air Injection

    NASA Technical Reports Server (NTRS)

    Zhang, Wei

    2004-01-01

    Boundary Layer separation causes the airfoil to stall and therefore imposes dramatic performance degradation on the airfoil. In recent years, flow separation control has been one of the active research areas in the field of aerodynamics due to its promising performance improvements on the lifting device. These active flow separation control techniques include steady and unsteady air injection as well as suction on the airfoil surface etc. This paper will be focusing on the steady and unsteady air injection on the airfoil. Although wind tunnel experiments revealed that the performance improvements on the airfoil using injection techniques, the details of how the key variables such as air injection slot geometry and air injection angle etc impact the effectiveness of flow separation control via air injection has not been studied. A parametric study of both steady and unsteady air injection active flow control will be the main objective for this summer. For steady injection, the key variables include the slot geometry, orientation, spacing, air injection velocity as well as the injection angle. For unsteady injection, the injection frequency will also be investigated. Key metrics such as lift coefficient, drag coefficient, total pressure loss and total injection mass will be used to measure the effectiveness of the control technique. A design of experiments using the Box-Behnken Design is set up in order to determine how each of the variables affects each of the key metrics. Design of experiment is used so that the number of experimental runs will be at minimum and still be able to predict which variables are the key contributors to the responses. The experiments will then be conducted in the 1ft by 1ft wind tunnel according to the design of experiment settings. The data obtained from the experiments will be imported into JMP, statistical software, to generate sets of response surface equations which represent the statistical empirical model for each of the metrics as

  12. Flow over a Modern Ram-Air Parachute Canopy

    NASA Astrophysics Data System (ADS)

    Mohammadi, Mohammad; Johari, Hamid

    2010-11-01

    The flow field on the central section of a modern ram-air parachute canopy was examined numerically using a finite-volume flow solver coupled with the one equation Spalart-Allmaras turbulence model. Ram-air parachutes are used for guided airdrop applications, and the canopy resembles a wing with an open leading edge for inflation. The canopy surfaces were assumed to be impermeable and rigid. The flow field consisted of a vortex inside the leading edge opening which effectively closed off the canopy and diverted the flow around the leading edge. The flow experienced a rather bluff leading edge in contrast to the smooth leading of an airfoil, leading to a separation bubble on the lower lip of the canopy. The flow inside the canopy was stagnant beyond the halfway point. The section lift coefficient increased linearly with the angle of attack up to 8.5 and the lift curve slope was about 8% smaller than the baseline airfoil. The leading edge opening had a major effect on the drag prior to stall; the drag is at least twice the baseline airfoil drag. The minimum drag of the section occurs over the angle of attack range of 3 -- 7 .

  13. Properties of a constricted-tube air-flow levitator

    NASA Technical Reports Server (NTRS)

    Rush, J. E.; Stephens, W. K.; Ethridge, E. C.

    1982-01-01

    The properties of a constricted-tube gas flow levitator first developed by Berge et al. (1981) have been investigated experimentally in order to predict its behavior in a gravity-free environment and at elevated temperatures. The levitator consists of a constricted (quartz) tube fed at one end by a source of heated air or gas. A spherical sample is positioned by the air stream on the downstream side of the constriction, where it can be melted and resolidified without touching the tube. It is shown experimentally that the kinematic viscosity is the important fluid parameter for operation in thermal equilibrium at high temperatures. If air is heated from room temperature to 1200 C, the kinematic viscosity increases by a factor of 14. To maintain a given value of the Reynolds number, the flow rate would have to be increased by the same factor for a specific geometry of tube and sample. Thus, to maintain stable equilibrium, the flow rate should be increased as the air or other gas is heated. The other stability problem discussed is associated with changes in the shape of a cylindrical sample as it melts.

  14. Air Flow and Pressure Drop Measurements Across Porous Oxides

    NASA Technical Reports Server (NTRS)

    Fox, Dennis S.; Cuy, Michael D.; Werner, Roger A.

    2008-01-01

    This report summarizes the results of air flow tests across eight porous, open cell ceramic oxide samples. During ceramic specimen processing, the porosity was formed using the sacrificial template technique, with two different sizes of polystyrene beads used for the template. The samples were initially supplied with thicknesses ranging from 0.14 to 0.20 in. (0.35 to 0.50 cm) and nonuniform backside morphology (some areas dense, some porous). Samples were therefore ground to a thickness of 0.12 to 0.14 in. (0.30 to 0.35 cm) using dry 120 grit SiC paper. Pressure drop versus air flow is reported. Comparisons of samples with thickness variations are made, as are pressure drop estimates. As the density of the ceramic material increases the maximum corrected flow decreases rapidly. Future sample sets should be supplied with samples of similar thickness and having uniform surface morphology. This would allow a more consistent determination of air flow versus processing parameters and the resulting porosity size and distribution.

  15. Oscillatory Excitation of Unsteady Compressible Flows over Airfoils at Flight Reynolds Numbers

    NASA Technical Reports Server (NTRS)

    Seifert, Avi; Pack, LaTunia G.

    1999-01-01

    An experimental investigation, aimed at delaying flow separation due to the occurrence of a shock-wave-boundary-layer interaction, is reported. The experiment was performed using a NACA 0012 airfoil and a NACA 0015 airfoil at high Reynolds number incompressible and compressible flow conditions. The effects of Mach and Reynolds numbers were identified, using the capabilities of the cryogenic-pressurized facility to maintain one parameter fixed and change the other. Significant Reynolds number effects were identified in the baseline compressible flow conditions even at Reynolds number of 10 and 20 million. The main objectives of the experiment were to study the effects of periodic excitation on airfoil drag-divergence and to alleviate the severe unsteadiness associated with shock-induced separation (known as "buffeting"). Zero-mass-flux oscillatory blowing was introduced through a downstream directed slot located at 10% chord on the upper surface of the NACA 0015 airfoil. The effective frequencies generated 2-4 vortices over the separated region, regardless of the Mach number. Even though the excitation was introduced upstream of the shock-wave, due to experimental limitations, it had pronounced effects downstream of it. Wake deficit (associated with drag) and unsteadiness (associated with buffeting) were significantly reduced. The spectral content of the wake pressure fluctuations indicates of steadier flow throughout the frequency range when excitation was applied. This is especially important at low frequencies which are more likely to interact with the airframe.

  16. Linear stability of the Couette flow of a vibrationally excited gas. 2. viscous problem

    NASA Astrophysics Data System (ADS)

    Grigor'ev, Yu. N.; Ershov, I. V.

    2016-03-01

    Based on the linear theory, stability of viscous disturbances in a supersonic plane Couette flow of a vibrationally excited gas described by a system of linearized equations of two-temperature gas dynamics including shear and bulk viscosity is studied. It is demonstrated that two sets are identified in the spectrum of the problem of stability of plane waves, similar to the case of a perfect gas. One set consists of viscous acoustic modes, which asymptotically converge to even and odd inviscid acoustic modes at high Reynolds numbers. The eigenvalues from the other set have no asymptotic relationship with the inviscid problem and are characterized by large damping decrements. Two most unstable viscous acoustic modes (I and II) are identified; the limits of these modes were considered previously in the inviscid approximation. It is shown that there are domains in the space of parameters for both modes, where the presence of viscosity induces appreciable destabilization of the flow. Moreover, the growth rates of disturbances are appreciably greater than the corresponding values for the inviscid flow, while thermal excitation in the entire considered range of parameters increases the stability of the viscous flow. For a vibrationally excited gas, the critical Reynolds number as a function of the thermal nonequilibrium degree is found to be greater by 12% than for a perfect gas.

  17. Flow regime classification in air magnetic fluid two-phase flow

    NASA Astrophysics Data System (ADS)

    Kuwahara, T.; DeVuyst, F.; Yamaguchi, H.

    2008-05-01

    A new experimental/numerical technique of classification of flow regimes (flow patterns) in air-magnetic fluid two-phase flow is proposed in the present paper. The proposed technique utilizes the electromagnetic induction to obtain time-series signals of the electromotive force, allowing us to make a non-contact measurement. Firstly, an experiment is carried out to obtain the time-series signals in a vertical upward air-magnetic fluid two-phase flow. The signals obtained are first treated using two kinds of wavelet transforms. The data sets treated are then used as input vectors for an artificial neural network (ANN) with supervised training. In the present study, flow regimes are classified into bubbly, slug, churn and annular flows, which are generally the main flow regimes. To validate the flow regimes, a visualization experiment is also performed with a glycerin solution that has roughly the same physical properties, i.e., kinetic viscosity and surface tension, as a magnetic fluid used in the present study. The flow regimes from the visualization are used as targets in an ANN and also used in the estimation of the accuracy of the present method. As a result, ANNs using radial basis functions are shown to be the most appropriate for the present classification of flow regimes, leading to small classification errors.

  18. Flow regime classification in air-magnetic fluid two-phase flow.

    PubMed

    Kuwahara, T; De Vuyst, F; Yamaguchi, H

    2008-05-21

    A new experimental/numerical technique of classification of flow regimes (flow patterns) in air-magnetic fluid two-phase flow is proposed in the present paper. The proposed technique utilizes the electromagnetic induction to obtain time-series signals of the electromotive force, allowing us to make a non-contact measurement. Firstly, an experiment is carried out to obtain the time-series signals in a vertical upward air-magnetic fluid two-phase flow. The signals obtained are first treated using two kinds of wavelet transforms. The data sets treated are then used as input vectors for an artificial neural network (ANN) with supervised training. In the present study, flow regimes are classified into bubbly, slug, churn and annular flows, which are generally the main flow regimes. To validate the flow regimes, a visualization experiment is also performed with a glycerin solution that has roughly the same physical properties, i.e., kinetic viscosity and surface tension, as a magnetic fluid used in the present study. The flow regimes from the visualization are used as targets in an ANN and also used in the estimation of the accuracy of the present method. As a result, ANNs using radial basis functions are shown to be the most appropriate for the present classification of flow regimes, leading to small classification errors. PMID:21694270

  19. Interrelationships of petiole air canal architecture, water depth and convective air flow in Nymphaea odorata (Nymphaeaceae)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Premise of the study--Nymphaea odorata grows in water up to 2 m deep, producing fewer, larger leaves in deeper water. This species has a convective flow system that moves gases from younger leaves through submerged parts to older leaves, aerating submerged parts. Petiole air canals are in the conv...

  20. Character of energy flow in air shower core

    NASA Technical Reports Server (NTRS)

    Mizushima, K.; Asakimori, K.; Maeda, T.; Kameda, T.; Misaki, Y.

    1985-01-01

    Energy per charged particle near the core of air showers was measured by 9 energy flow detectors, which were the combination of Cerenkov counters and scintillators. Energy per particle of each detector was normalized to energy at 2m from the core. The following results were obtained as to the energy flow: (1) integral frequency distribution of mean energy per particle (averaged over 9 detectors) is composed of two groups separated distinctly; and (2) showers contained in one group show an anisotropy of arrival direction.

  1. DEVELOPMENT OF A LOW PRESSURE, AIR ATOMIZED OIL BURNER WITH HIGH ATOMIZER AIR FLOW

    SciTech Connect

    BUTCHER,T.A.

    1998-01-01

    This report describes technical advances made to the concept of a low pressure, air atomized oil burner for home heating applications. Currently all oil burners on the market are of the pressure atomized, retention head type. These burners have a lower firing rate limit of about 0.5 gallons per hour of oil, due to reliability problems related to small flow passage sizes. High pressure air atomized burners have been shown to be one route to avoid this problem but air compressor cost and reliability have practically eliminated this approach. With the low pressure air atomized burner the air required for atomization can be provided by a fan at 5--8 inches of water pressure. A burner using this concept, termed the Fan-Atomized Burner or FAB has been developed and is currently being commercialized. In the head of the FAB, the combustion air is divided into three parts, much like a conventional retention head burner. This report describes development work on a new concept in which 100% of the air from the fan goes through the atomizer. The primary advantage of this approach is a great simplification of the head design. A nozzle specifically sized for this concept was built and is described in the report. Basic flow pressure tests, cold air velocity profiles, and atomization performance have been measured. A burner head/flame tube has been developed which promotes a torroidal recirculation zone near the nozzle for flame stability. The burner head has been tested in several furnace and boiler applications over the tiring rate range 0.2 to 0.28 gallons per hour. In all cases the burner can operate with very low excess air levels (under 10%) without producing smoke. Flue gas NO{sub x} concentration varied from 42 to 62 ppm at 3% 0{sub 2}. The concept is seen as having significant potential and planned development efforts are discussed.

  2. Effects of air flow directions on composting process temperature profile

    SciTech Connect

    Kulcu, Recep; Yaldiz, Osman

    2008-07-01

    In this study, chicken manure mixed with carnation wastes was composted by using three different air flow directions: R1-sucking (downward), R2-blowing (upward) and R3-mixed. The aim was to find out the most appropriate air flow direction type for composting to provide more homogenous temperature distribution in the reactors. The efficiency of each aeration method was evaluated by monitoring the evolution of parameters such as temperature, moisture content, CO{sub 2} and O{sub 2} ratio in the material and dry material losses. Aeration of the reactors was managed by radial fans. The results showed that R3 resulted in a more homogenous temperature distribution and high dry material loss throughout the composting process. The most heterogeneous temperature distribution and the lowest dry material loss were obtained in R2.

  3. Vision and air flow combine to streamline flying honeybees

    PubMed Central

    Taylor, Gavin J.; Luu, Tien; Ball, David; Srinivasan, Mandyam V.

    2013-01-01

    Insects face the challenge of integrating multi-sensory information to control their flight. Here we study a ‘streamlining' response in honeybees, whereby honeybees raise their abdomen to reduce drag. We find that this response, which was recently reported to be mediated by optic flow, is also strongly modulated by the presence of air flow simulating a head wind. The Johnston's organs in the antennae were found to play a role in the measurement of the air speed that is used to control the streamlining response. The response to a combination of visual motion and wind is complex and can be explained by a model that incorporates a non-linear combination of the two stimuli. The use of visual and mechanosensory cues increases the strength of the streamlining response when the stimuli are present concurrently. We propose this multisensory integration will make the response more robust to transient disturbances in either modality. PMID:24019053

  4. Numerical characterization of the hydrodynamics and thermal behavior of air flow in flexible air distribution system

    NASA Astrophysics Data System (ADS)

    Gharehdaghi, Samad; Moujaes, Samir

    2013-10-01

    Flexible duct air distribution systems are used in a large percentage of residential and small commercial buildings in the United States . Very few empirical or predictive data are available though to help provide the HVAC design engineer with reliable information . Moreover, because of the ducts flexibility, the shapes of these ducts offer a different set of operating fluid flow and thermal conditions from traditional smooth metal ducts. Hence, both the flow field and heat transfer through this kind of ducts are much more complex and merit to be analyzed from a numerical predictive approach. The aim of this research paper is to compute some of the hydrodynamic and heat transfer characteristics of the air flow inside these ducts over a range of Re numbers commonly used in the flow conditions of these air distribution systems. The information resulting from this CFD simulation, where a κ-ɛ turbulent model is used to predict the flow conditions, provide pressure drop and average convective heat transfer coefficients that exist in these ducts and was compared to previously found data. Circulation zones in the depressions of these ducts are found to exist which are suspected of influencing the pressured drop and heat transfer coefficients as compared to smooth ducts. The results show that fully developed conditions exist much earlier with regard to the inlet for both hydrodynamic and thermal entrance regions than what would be expected in smooth ducts under the same turbulent conditions.

  5. Development of an air flow thermal balance calorimeter

    NASA Technical Reports Server (NTRS)

    Sherfey, J. M.

    1972-01-01

    An air flow calorimeter, based on the idea of balancing an unknown rate of heat evolution with a known rate of heat evolution, was developed. Under restricted conditions, the prototype system is capable of measuring thermal wattages from 10 milliwatts to 1 watt, with an error no greater than 1 percent. Data were obtained which reveal system weaknesses and point to modifications which would effect significant improvements.

  6. Electron concentration distribution in a glow discharge in air flow

    NASA Astrophysics Data System (ADS)

    Mukhamedzianov, R. B.; Gaisin, F. M.; Sabitov, R. A.

    1989-04-01

    Electron concentration distributions in a glow discharge in longitudinal and vortex air flows are determined from the attenuation of the electromagnetic wave passing through the plasma using microwave probes. An analysis of the distribution curves obtained indicates that electron concentration decreases in the direction of the anode. This can be explained by charge diffusion toward the chamber walls and electron recombination and sticking within the discharge.

  7. Methods of Visually Determining the Air Flow Around Airplanes

    NASA Technical Reports Server (NTRS)

    Gough, Melvin N; Johnson, Ernest

    1932-01-01

    This report describes methods used by the National Advisory Committee for Aeronautics to study visually the air flow around airplanes. The use of streamers, oil and exhaust gas streaks, lampblack and kerosene, powdered materials, and kerosene smoke is briefly described. The generation and distribution of smoke from candles and from titanium tetrachloride are described in greater detail because they appear most advantageous for general application. Examples are included showing results of the various methods.

  8. On the impact of entrapped air in infiltration under ponding conditions. Part a: Preferential air flow path effects on infiltration

    NASA Astrophysics Data System (ADS)

    Mizrahi, Guy; Weisbrod, Noam; Furman, Alex

    2015-04-01

    Entrapped air effects on infiltration under ponding conditions could be important for massive infiltration of managed aquifer recharge (MAR) or soil aquifer treatment (SAT) of treated wastewater. Earlier studies found that under ponding conditions, air is being entrapped and compressed until it reaches a pressure which will enable the air to escape (unstable air flow). They also found that entrapped air could reduce infiltration by 70-90%. Most studies have dealt with entrapped air effects when soil surface topography is flat. The objective of this study is to investigate, under ponding conditions, the effects of: (1) irregular surface topography on preferential air flow path development (stable air flow); (2) preferential air flow path on infiltration; and (3) hydraulic head on infiltration when air is trapped. Column experiments were used to investigate these particular effects. A 140 cm deep and 30 cm wide column packed with silica sand was used under two boundary conditions: in the first, air can only escape vertically upward through the soil surface; in the second, air is free to escape through 20 ports installed along the column perimeter. The surface was flooded with 13 liters of water, with ponding depth decreasing with time. Two soil surface conditions were tested: flat surface and irregular surface (high and low surface zones). Additionally, Helle-show experiments were conducted in order to obtain a visual observation of preferential air flow path development. The measurements were carried out using a tension meter, air pressure transducers, TDR and video cameras. It was found that in irregular surfaces, stable air flow through preferential paths was developed in the high altitude zones. Flat surface topography caused unstable air flow through random paths. Comparison between irregular and flat surface topography showed that the entrapped air pressure was lower and the infiltration rate was about 40% higher in the irregular surface topography than in the

  9. Excitation condition analysis of guided wave on PFA tubes for ultrasonic flow meter.

    PubMed

    Li, Xuan; Xiao, Xufeng; Cao, Li

    2016-12-01

    Impurity accumulation, which decreases the accuracy of flow measurement, is a critical problem when applying Z-shaped or U-shaped ultrasonic flow meters on straight PFA tubes. It can be expected that the guided wave can be used to implement flow measurement on straight PFA tubes. In this paper, the propagation of guided wave is explained by finite element simulations for the flow meter design. Conditions of guided wave generation, including the excitation frequency and the wedge structure, are studied in the simulations. The wedge is designed as a cone which is friendly to be manufactured and installed. The cone angle, the piezoelectric wafer's resonant frequency and the vibration directions are studied in the simulations. The simulations shows that the propagation of guided wave in thin PFA tubes is influenced by the piezoelectric wafers' resonant frequency and the vibration direction when the mode is on the 'water line'. Based on the results of the simulations, an experiment is conducted to verify the principles of excitation conditions, which performs flow measurement on a straight PFA tube well. PMID:27529137

  10. Equations for the kinetic modeling of supersonically flowing electrically excited lasers

    NASA Technical Reports Server (NTRS)

    Lind, R. C.

    1973-01-01

    The equations for the kinetic modeling of a supersonically flowing electrically excited laser system are presented. The work focuses on the use of diatomic gases, in particular carbon monoxide mixtures. The equations presented include the vibrational rate equation which describes the vibrational population distribution, the electron, ion and electronic level rate equations, the gasdynamic equations for an ionized gas in the presence of an applied electric field, and the free electron Boltzmann equation including flow and gradient coupling terms. The model developed accounts for vibration-vibration collisions, vibration-translation collisions, electron-molecule inelastic excitation and superelastic de-excitation collisions, charge particle collisions, ionization and three body recombination collisions, elastic collisions, and radiative decay, all of which take place in such a system. A simplified form of the free electron Boltzmann equation is developed and discussed with emphasis placed on its coupling with the supersonic flow. A brief description of a possible solution procedure for the set of coupled equations is then discussed.

  11. Flow over a Ram-Air Parachute Canopy

    NASA Astrophysics Data System (ADS)

    Eslambolchi, Ali; Johari, Hamid

    2012-11-01

    The flow field over a full-scale, ram-air personnel parachute canopy was investigated numerically using a finite-volume flow solver coupled with the Spalart-Allmaras turbulence model. Ram-air parachute canopies resemble wings with arc-anhedral, surface protuberances, and an open leading edge for inflation. The rectangular planform canopy had an aspect ratio of 2.2 and was assumed to be rigid and impermeable. The chord-based Reynolds number was 3.2 million. Results indicate that the oncoming flow barely penetrates the canopy opening, and creates a large separation bubble below the lower lip of canopy. A thick boundary layer exists over the entire lower surface of the canopy. The flow over the upper surface of the canopy remains attached for an extended fraction of the chord. Lift increases linearly with angle of attack up to about 12 degrees. To assess the capability of lifting-line theory in predicting the forces on the canopy, the lift and drag data from a two-dimensional simulation of the canopy profile were extended using finite-wing expressions and compared with the forces from the present simulations. The finite-wing predicted lift and drag trends compare poorly against the full-span simulation, and the maximum lift-to-drag ratio is over-predicted by 36%. Sponsored by the US Army NRDEC.

  12. Thermistor based, low velocity isothermal, air flow sensor

    NASA Astrophysics Data System (ADS)

    Cabrita, Admésio A. C. M.; Mendes, Ricardo; Quintela, Divo A.

    2016-03-01

    The semiconductor thermistor technology is applied as a flow sensor to measure low isothermal air velocities (<2 ms-1). The sensor is subjected to heating and cooling cycles controlled by a multifunctional timer. In the heating stage, the alternating current of a main AC power supply source guarantees a uniform thermistor temperature distribution. The conditioning circuit assures an adequate increase of the sensors temperature and avoids the thermal disturbance of the flow. The power supply interruption reduces the consumption from the source and extends the sensors life time. In the cooling stage, the resistance variation of the flow sensor is recorded by the measuring chain. The resistive sensor parameters proposed vary significantly and feature a high sensitivity to the flow velocity. With the aid of a computer, the data transfer, storage and analysis provides a great advantage over the traditional local anemometer readings. The data acquisition chain has a good repeatability and low standard uncertainties. The proposed method measures isothermal air mean velocities from 0.1 ms-1 to 2 ms-1 with a standard uncertainty error less than 4%.

  13. SIMPLIFIED MODELING OF AIR FLOW DYNAMICS IN SSD RADON MITIGATION SYSTEMS FOR RESIDENCES WITH GRAVEL BEDS

    EPA Science Inventory

    In an attempt to better understand the dynamics of subslab air flow, the report suggests that subslab air flow induced by a central suction point be treated as radial air flow through a porous bed contained between two impermeable disks. (NOTE: Many subslab depressurization syste...

  14. 30 CFR 75.152 - Tests of air flow; qualified person.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Tests of air flow; qualified person. 75.152....152 Tests of air flow; qualified person. A person is a qualified person within the meaning of the provisions of Subpart D—Ventilation of this part requiring that tests of air flow be made by a...

  15. Acoustic resonance excitation of turbulent heat transfer and flow reattachment downstream of a fence

    NASA Astrophysics Data System (ADS)

    Selcan, Claudio; Cukurel, Beni; Shashank, Judah

    2015-12-01

    The current work investigates the aero-thermal impact of standing sound waves, excited in a straight channel geometry, on turbulent, separating and reattaching flow over a fence. Effects of distinct frequency resonant forcing (ReH = 10,050 and f = 122 Hz) are quantified by wall static pressure measurements and detailed convective heat transfer distributions via liquid crystal thermometry. Acoustic boundary conditions are numerically predicted and the computed longitudinal resonance mode shapes are experimentally verified by surface microphone measurements. Findings indicate the presence of a resonant sound field to exert strong influence on local heat transfer downstream of the fence, whereas the boundary layer upstream of the obstacle remains notable unaffected. Upstream shift of the maximum heat transfer location and an earlier pressure recovery indicate a reduction in time averaged flow reattachment length of up to 37 %. Although the streamwise peak Nusselt increased by only 5 %, the heat transfer level in the vicinity of the unexcited reattachment zone was locally enhanced up to 25 %. Despite prominent impact of resonant forcing on the fence wake flow, the total pressure drop penalty remained invariant. Observations demonstrate the significant aero-thermal implications of shear layer excitation by standing sound waves superimposed on the channel flow field.

  16. Monte Carlo calculations of diatomic molecule gas flows including rotational mode excitation

    NASA Technical Reports Server (NTRS)

    Yoshikawa, K. K.; Itikawa, Y.

    1976-01-01

    The direct simulation Monte Carlo method was used to solve the Boltzmann equation for flows of an internally excited nonequilibrium gas, namely, of rotationally excited homonuclear diatomic nitrogen. The semi-classical transition probability model of Itikawa was investigated for its ability to simulate flow fields far from equilibrium. The behavior of diatomic nitrogen was examined for several different nonequilibrium initial states that are subjected to uniform mean flow without boundary interactions. A sample of 1000 model molecules was observed as the gas relaxed to a steady state starting from three specified initial states. The initial states considered are: (1) complete equilibrium, (2) nonequilibrium, equipartition (all rotational energy states are assigned the mean energy level obtained at equilibrium with a Boltzmann distribution at the translational temperature), and (3) nonequipartition (the mean rotational energy is different from the equilibrium mean value with respect to the translational energy states). In all cases investigated the present model satisfactorily simulated the principal features of the relaxation effects in nonequilibrium flow of diatomic molecules.

  17. Blade design loads on the flow exciting force in centrifugal pump

    NASA Astrophysics Data System (ADS)

    Xu, Y.; Yang, A. L.; Langand, D. P.; Dai, R.

    2012-11-01

    The three-dimensional viscous flow field of two centrifugal pumps, which have the same volute, design head, design flow rate and rotational speed but the blade design load, are analyzed based on large eddy simulation. The comparisons are implemented including the hydraulic efficiencies, flow field characteristics, pressure pulsations and unsteady forces applied on the impellers to investigate the effect of the design blade load on hydraulic performance and flow exciting force. The numerical results show that the efficiency of the pump, the impeller blade of which has larger design load, is improved by 1.1%~2.9% compared to the centrifugal pump with lower blade design load. The pressure fluctuation of the pump with high design load is more remarkable. Its maximum amplitude of coefficient of static pressure is higher by 43% than the latter. At the same time the amplitude of unsteady radial force is increased by 11.6% in the time domain. The results also imply that the blade design load is an important factor on the excitation force in centrifugal pumps.

  18. Optical observation of ultrafine droplets and air flows from newly designed supersonic air assist spray nozzles

    NASA Astrophysics Data System (ADS)

    Miyashiro, Seiji S.; Mori, H.; Takechi, H.

    2001-04-01

    One of the authors developed a new spray drying nozzle (special quadruplet fluid spray nozzle) for drug manufacturing and it has succeeded in manufacturing fine particles of 2 micrometer diameter of 1/15 ratios to those currently in use. The flow visualization results show that the two air jets become under-expanded on both edge sides of the nozzle, generate shock and expansion waves alternately on each side and reach the edge tip, where they collide, unite, and spout out while shock and expansion waves are again formed in the mixed jet. When the edge surfaces are supplied with water, the water is extended into thin film by the air jet and intensely disturbed. At the nozzle tip it is torn into droplets, which are further atomized afterwards in shock waves. At the spray tip, the friction with ambient air shears the droplets furthermore, and they decrease further in size.

  19. Non-equilibrium Flows of Reacting Air Components in Nozzles

    NASA Astrophysics Data System (ADS)

    Bazilevich, S. S.; Sinitsyn, K. A.; Nagnibeda, E. A.

    2008-12-01

    The paper presents the results of the investigation of non-equilibrium flows of reacting air mixtures in nozzles. State-to-state approach based on the solution of the equations for vibrational level populations of molecules and atomic concentrations coupled to the gas dynamics equations is used. For the 5-component air mixture (N2, O2, NO, N, O) non-equilibrium distributions and gasdynamical parameters are calculated for different conditions in a nozzle throat. The influence of various kinetic processes on distributions and gas dynamics parameters is studied. The paper presents the comparison of the results with ones obtained for binary mixtures of molecules and atoms and various models of elementary processes.

  20. Downstream boundary effects on the frequency of self-excited oscillations in transonic diffuser flows

    NASA Technical Reports Server (NTRS)

    Hsieh, T.; Coakley, T. J.

    1987-01-01

    An investigation of downstream boundary effects on the frequency of self-excited oscillations in two-dimensional, separated transonic diffuser flows has been conducted numerically by solving the compressible, Reynolds-averaged, thin-layer Navier-Stokes equation with a two-equation turbulence model. It was found that the unsteady diffuser flowfields are very sensitive to the location of the downstream boundary. Extension of the diffuser downstream boundary significantly reduces the frequency and amplitude of oscillations for pressure, velocity and shock. Computational results suggest that the mechanism causing the self-excited oscillation changes from viscous convective wave dominated oscillations to inviscid acoustic wave dominated oscillations when the location of downstream boundary varies from 8.66 to 134.7 throat height. The existence of a suction slot in the experimental setup obscures the physical downstream boundary and, therefore, presents a difficulty for quantitative comparisons between computation and experiment.

  1. Numerical simulations of current generation and dynamo excitation in a mechanically forced turbulent flow.

    PubMed

    Bayliss, R A; Forest, C B; Nornberg, M D; Spence, E J; Terry, P W

    2007-02-01

    The role of turbulence in current generation and self-excitation of magnetic fields has been studied in the geometry of a mechanically driven, spherical dynamo experiment, using a three-dimensional numerical computation. A simple impeller model drives a flow that can generate a growing magnetic field, depending on the magnetic Reynolds number Rm=micro0sigmaVa and the fluid Reynolds number Re=Vanu of the flow. For Re<420, the flow is laminar and the dynamo transition is governed by a threshold of Rmcrit=100, above which a growing magnetic eigenmode is observed that is primarily a dipole field transverse to the axis of symmetry of the flow. In saturation, the Lorentz force slows the flow such that the magnetic eigenmode becomes marginally stable. For Re>420 and Rm approximately 100 the flow becomes turbulent and the dynamo eigenmode is suppressed. The mechanism of suppression is a combination of a time varying large-scale field and the presence of fluctuation driven currents (such as those predicted by the mean-field theory), which effectively enhance the magnetic diffusivity. For higher Rm, a dynamo reappears; however, the structure of the magnetic field is often different from the laminar dynamo. It is dominated by a dipolar magnetic field aligned with the axis of symmetry of the mean-flow, which is apparently generated by fluctuation-driven currents. The magnitude and structure of the fluctuation-driven currents have been studied by applying a weak, axisymmetric seed magnetic field to laminar and turbulent flows. An Ohm's law analysis of the axisymmetric currents allows the fluctuation-driven currents to be identified. The magnetic fields generated by the fluctuations are significant: a dipole moment aligned with the symmetry axis of the mean-flow is generated similar to those observed in the experiment, and both toroidal and poloidal flux expulsion are observed. PMID:17358418

  2. The Hagen-Poiseuille, Plane Couette and Poiseuille Flows Linear Instability and Rogue Waves Excitation Mechanism

    NASA Astrophysics Data System (ADS)

    Chefranov, Sergey; Chefranov, Alexander

    2016-04-01

    Linear hydrodynamic stability theory for the Hagen-Poiseuille (HP) flow yields a conclusion of infinitely large threshold Reynolds number, Re, value. This contradiction to the observation data is bypassed using assumption of the HP flow instability having hard type and possible for sufficiently high-amplitude disturbances. HP flow disturbance evolution is considered by nonlinear hydrodynamic stability theory. Similar is the case of the plane Couette (PC) flow. For the plane Poiseuille (PP) flow, linear theory just quantitatively does not agree with experimental data defining the threshold Reynolds number Re= 5772 ( S. A. Orszag, 1971), more than five-fold exceeding however the value observed, Re=1080 (S. J. Davies, C. M. White, 1928). In the present work, we show that the linear stability theory conclusions for the HP and PC on stability for any Reynolds number and evidently too high threshold Reynolds number estimate for the PP flow are related with the traditional use of the disturbance representation assuming the possibility of separation of the longitudinal (along the flow direction) variable from the other spatial variables. We show that if to refuse from this traditional form, conclusions on the linear instability for the HP and PC flows may be obtained for finite Reynolds numbers (for the HP flow, for Re>704, and for the PC flow, for Re>139). Also, we fit the linear stability theory conclusion on the PP flow to the experimental data by getting an estimate of the minimal threshold Reynolds number as Re=1040. We also get agreement of the minimal threshold Reynolds number estimate for PC with the experimental data of S. Bottin, et.al., 1997, where the laminar PC flow stability threshold is Re = 150. Rogue waves excitation mechanism in oppositely directed currents due to the PC flow linear instability is discussed. Results of the new linear hydrodynamic stability theory for the HP, PP, and PC flows are published in the following papers: 1. S.G. Chefranov, A

  3. Boltzmann rovibrational collisional coarse-grained model for internal energy excitation and dissociation in hypersonic flows.

    PubMed

    Munafò, A; Panesi, M; Magin, T E

    2014-02-01

    A Boltzmann rovibrational collisional coarse-grained model is proposed to reduce a detailed kinetic mechanism database developed at NASA Ames Research Center for internal energy transfer and dissociation in N(2)-N interactions. The coarse-grained model is constructed by lumping the rovibrational energy levels of the N(2) molecule into energy bins. The population of the levels within each bin is assumed to follow a Boltzmann distribution at the local translational temperature. Excitation and dissociation rate coefficients for the energy bins are obtained by averaging the elementary rate coefficients. The energy bins are treated as separate species, thus allowing for non-Boltzmann distributions of their populations. The proposed coarse-grained model is applied to the study of nonequilibrium flows behind normal shock waves and within converging-diverging nozzles. In both cases, the flow is assumed inviscid and steady. Computational results are compared with those obtained by direct solution of the master equation for the rovibrational collisional model and a more conventional multitemperature model. It is found that the proposed coarse-grained model is able to accurately resolve the nonequilibrium dynamics of internal energy excitation and dissociation-recombination processes with only 20 energy bins. Furthermore, the proposed coarse-grained model provides a superior description of the nonequilibrium phenomena occurring in shock heated and nozzle flows when compared with the conventional multitemperature models. PMID:25353565

  4. Boltzmann rovibrational collisional coarse-grained model for internal energy excitation and dissociation in hypersonic flows

    NASA Astrophysics Data System (ADS)

    Munafò, A.; Panesi, M.; Magin, T. E.

    2014-02-01

    A Boltzmann rovibrational collisional coarse-grained model is proposed to reduce a detailed kinetic mechanism database developed at NASA Ames Research Center for internal energy transfer and dissociation in N2-N interactions. The coarse-grained model is constructed by lumping the rovibrational energy levels of the N2 molecule into energy bins. The population of the levels within each bin is assumed to follow a Boltzmann distribution at the local translational temperature. Excitation and dissociation rate coefficients for the energy bins are obtained by averaging the elementary rate coefficients. The energy bins are treated as separate species, thus allowing for non-Boltzmann distributions of their populations. The proposed coarse-grained model is applied to the study of nonequilibrium flows behind normal shock waves and within converging-diverging nozzles. In both cases, the flow is assumed inviscid and steady. Computational results are compared with those obtained by direct solution of the master equation for the rovibrational collisional model and a more conventional multitemperature model. It is found that the proposed coarse-grained model is able to accurately resolve the nonequilibrium dynamics of internal energy excitation and dissociation-recombination processes with only 20 energy bins. Furthermore, the proposed coarse-grained model provides a superior description of the nonequilibrium phenomena occurring in shock heated and nozzle flows when compared with the conventional multitemperature models.

  5. Flow Analysis over Batten Reinforced Wings for Micro Air Vehicles

    NASA Astrophysics Data System (ADS)

    Townsend, Kurtis; Hicks, Travis; Hubner, James P.

    2008-11-01

    Flexible membrane wings modify the flow separation of low Reynolds number micro air vehicles (MAVs). A specific type of fixed-wing geometry is a batten-reinforced configuration in which the membrane is attached to a rigid frame with chordwise battens, allowing the vibration of the membrane at the trailing-edge. In this study, smoke-wire visualization and hot-wire anemometry, both near the trailing-edge and further downstream in the wake, are used to quantify the frequency and energy of these fluctuations for various cell geometries and flow angles-of-attack. Improvement in the wake momentum deficit will be analyzed to determine preferred membrane cell geometries for MAV flight conditions.

  6. Surface-slip equations for multicomponent, nonequilibrium air flow

    NASA Technical Reports Server (NTRS)

    Gupta, Roop N.; Scott, Carl D.; Moss, James N.; Goglia, Gene

    1985-01-01

    Equations are presented for the surface slip (or jump) values of species concentration, pressure, velocity, and temperature in the low-Reynolds-number, high-altitude flight regime of a space vehicle. These are obtained from closed-form solutions of the mass, momentum, and energy flux equations using the Chapman-Enskog velocity distribution function. This function represents a solution of the Boltzmann equation in the Navier-Stokes approximation. The analysis, obtained for nonequilibrium multicomponent air flow, includes the finite-rate surface catalytic recombination and changes in the internal energy during reflection from the surface. Expressions for the various slip quantities have been obtained in a form which can readily be employed in flow-field computations. A consistent set of equations is provided for multicomponent, binary, and single species mixtures. Expression is also provided for the finite-rate species-concentration boundary condition for a multicomponent mixture in absence of slip.

  7. Laboratory Evaluation of Air Flow Measurement Methods for Residential HVAC Returns

    SciTech Connect

    Walker, Iain; Stratton, Chris

    2015-07-01

    This project improved the accuracy of air flow measurements used in commissioning California heating and air conditioning systems in Title 24 (Building and Appliance Efficiency Standards), thereby improving system performance and efficiency of California residences. The research team at Lawrence Berkeley National Laboratory addressed the issue that typical tools used by contractors in the field to test air flows may not be accurate enough to measure return flows used in Title 24 applications. The team developed guidance on performance of current diagnostics as well as a draft test method for use in future evaluations. The series of tests performed measured air flow using a range of techniques and devices. The measured air flows were compared to reference air flow measurements using inline air flow meters built into the test apparatus. The experimental results showed that some devices had reasonable results (typical errors of 5 percent or less) but others had much bigger errors (up to 25 percent).

  8. Recirculation zone dynamics of a transversely excited swirl flow and flame

    NASA Astrophysics Data System (ADS)

    O'Connor, Jacqueline; Lieuwen, Tim

    2012-07-01

    This work investigates the response of the vortex breakdown region of a swirling, annular jet to transverse acoustic excitation for both non-reacting and reacting flows. This swirling flow field consists of a central vortex breakdown region, two shear layers, and an annular fluid jet. The vortex breakdown bubble, a region of highly turbulent recirculating flow in the center of the flowfield, is the result of a global instability of the swirling jet. Additionally, the two shear layers originating from the inner and outer edge of the annular nozzle are convectively unstable and rollup due to the Kelvin-Helmholtz instability. Unlike the convectively unstable shear layers that respond in a monotonic manner to acoustic forcing, the recirculation zone exhibits a range of response characteristics, ranging from minimal response to exhibiting abrupt bifurcations at large forcing amplitudes. In this study, the response of the time-average and fluctuating recirculation zone is measured as a function of forcing frequency, amplitude, and symmetry. The time-average flow field is shown to exhibit both monotonically varying and abrupt bifurcation features as acoustic forcing amplitude is increased. The unsteady motion in the recirculation zone is dominated by the low frequency precession of the vortex breakdown bubble. In the unforced flow, the azimuthal m = -2 and m = -1 modes (i.e., disturbances rotating in the same direction as the swirl flow) dominate the velocity disturbance field. These modes correspond to large scale deformation of the jet column and two small-scale precessing vortical structures in the recirculation zone, respectively. The presence of high amplitude acoustic forcing changes the relative amplitude of these two modes, as well as the character of the self-excited motion. For the reacting flow problem, we argue that the direct effect of these recirculation zone fluctuations on the flame response to flow forcing is not significant. Rather, flame wrinkling in

  9. Upper air teleconnections to Ob River flows and tree rings

    NASA Astrophysics Data System (ADS)

    Meko, David; Panyushkina, Irina; Agafonov, Leonid

    2015-04-01

    The Ob River, one of the world's greatest rivers, with a catchment basin about the size of Western Europe, contributes 12% or more of the annual freshwater inflow to the Arctic Ocean. The input of heat and fresh water is important to the global climate system through effects on sea ice, salinity, and the thermohaline circulation of the ocean. As part of a tree-ring project to obtain multi-century long information on variability of Ob River flows, a network of 18 sites of Pinus, Larix, Populus and Salix has been collected along the Ob in the summers of 2013 and 2014. Analysis of collections processed so far indicates a significant relationship of tree-growth to river discharge. Moderation of the floodplain air temperature regime by flooding appears to be an important driver of the tree-ring response. In unraveling the relationship of tree-growth to river flows, it is important to identify atmospheric circulation features directly linked to observed time series variations of flow and tree growth. In this study we examine statistical links between primary teleconnection modes of Northern Hemisphere upper-air (500 mb) circulation, Ob River flow, and tree-ring chronologies. Annual discharge at the mouth of the Ob River is found to be significantly positively related to the phase of the East Atlantic (EA) pattern, the second prominent mode of low-frequency variability over the North Atlantic. The EA pattern, consisting of a north-south dipole of pressure-anomaly centers spanning the North Atlantic from east to west, is associated with a low-pressure anomaly centered over the Ob River Basin, and with a pattern of positive precipitation anomaly of the same region. The positive correlation of discharge and EA is consistent with these know patterns, and is contrasted with generally negative (though smaller) correlations between EA and tree-ring chronologies. The signs of correlations are consistent with a conceptual model of river influence on tree growth through air

  10. Noise emission and propagation in an air flow

    NASA Astrophysics Data System (ADS)

    Legendre, R.

    1983-01-01

    Sound propagation from a jet engine on an aircraft moving at a constant airspeed is examined in terms of the turbulent field, the near field, and the far field. The near and far fields are irrotational disturbances of a permanently adiabatic flow for which the entropy and enthalpy are the critical parameters. The propagation velocity of the noise is formulated, together with the extent of the acoustic field. The acoustic excitation is shown to dominate the extent of the acoustic field, while the pseudo-noise and the sound density are equal to the sound pressure and are not noise sources. The unsteady part of the turbulence noise is controlled by the pressure gradient, particularly that around the axes of the eddies.

  11. Needle-array to Plate DBD Plasma Using Sine AC and Nanosecond Pulse Excitations for Purpose of Improving Indoor Air Quality

    PubMed Central

    Zhang, Li; Yang, Dezheng; Wang, Wenchun; Wang, Sen; Yuan, Hao; Zhao, Zilu; Sang, Chaofeng; Jia, Li

    2016-01-01

    In this study, needle-array to plate electrode configuration was employed to generate an atmospheric air diffuse discharge using both nanosecond pulse and sine AC voltage as excitation voltage for the purpose of improving indoor air quality. Different types of voltage sources and electrode configurations are employed to optimize electrical field distribution and improve discharge stability. Discharge images, electrical characteristics, optical emission spectra, and plasma gas temperatures in both sine AC discharge and nanosecond pulse discharge were compared and the discharge stability during long operating time were discussed. Compared with the discharge excited by sine AC voltage, the nanosecond pulsed discharge is more homogenous and stable, besides, the plasma gas temperature of nanosecond pulse discharge is much lower. Using packed-bed structure, where γ- Al2O3 pellets are filled in the electrode gap, has obvious efficacy in the production of homogenous discharge. Furthermore, both sine AC discharge and nanosecond pulse discharge were used for removing formaldehyde from flowing air. It shows that nanosecond pulse discharge has a significant advantage in energy cost. And the main physiochemical processes for the generation of active species and the degradation of formaldehyde were discussed. PMID:27125663

  12. Needle-array to Plate DBD Plasma Using Sine AC and Nanosecond Pulse Excitations for Purpose of Improving Indoor Air Quality

    NASA Astrophysics Data System (ADS)

    Zhang, Li; Yang, Dezheng; Wang, Wenchun; Wang, Sen; Yuan, Hao; Zhao, Zilu; Sang, Chaofeng; Jia, Li

    2016-04-01

    In this study, needle-array to plate electrode configuration was employed to generate an atmospheric air diffuse discharge using both nanosecond pulse and sine AC voltage as excitation voltage for the purpose of improving indoor air quality. Different types of voltage sources and electrode configurations are employed to optimize electrical field distribution and improve discharge stability. Discharge images, electrical characteristics, optical emission spectra, and plasma gas temperatures in both sine AC discharge and nanosecond pulse discharge were compared and the discharge stability during long operating time were discussed. Compared with the discharge excited by sine AC voltage, the nanosecond pulsed discharge is more homogenous and stable, besides, the plasma gas temperature of nanosecond pulse discharge is much lower. Using packed-bed structure, where γ- Al2O3 pellets are filled in the electrode gap, has obvious efficacy in the production of homogenous discharge. Furthermore, both sine AC discharge and nanosecond pulse discharge were used for removing formaldehyde from flowing air. It shows that nanosecond pulse discharge has a significant advantage in energy cost. And the main physiochemical processes for the generation of active species and the degradation of formaldehyde were discussed.

  13. Needle-array to Plate DBD Plasma Using Sine AC and Nanosecond Pulse Excitations for Purpose of Improving Indoor Air Quality.

    PubMed

    Zhang, Li; Yang, Dezheng; Wang, Wenchun; Wang, Sen; Yuan, Hao; Zhao, Zilu; Sang, Chaofeng; Jia, Li

    2016-01-01

    In this study, needle-array to plate electrode configuration was employed to generate an atmospheric air diffuse discharge using both nanosecond pulse and sine AC voltage as excitation voltage for the purpose of improving indoor air quality. Different types of voltage sources and electrode configurations are employed to optimize electrical field distribution and improve discharge stability. Discharge images, electrical characteristics, optical emission spectra, and plasma gas temperatures in both sine AC discharge and nanosecond pulse discharge were compared and the discharge stability during long operating time were discussed. Compared with the discharge excited by sine AC voltage, the nanosecond pulsed discharge is more homogenous and stable, besides, the plasma gas temperature of nanosecond pulse discharge is much lower. Using packed-bed structure, where γ- Al2O3 pellets are filled in the electrode gap, has obvious efficacy in the production of homogenous discharge. Furthermore, both sine AC discharge and nanosecond pulse discharge were used for removing formaldehyde from flowing air. It shows that nanosecond pulse discharge has a significant advantage in energy cost. And the main physiochemical processes for the generation of active species and the degradation of formaldehyde were discussed. PMID:27125663

  14. Ozone concentrations in air flowing into New York State

    NASA Astrophysics Data System (ADS)

    Aleksic, Nenad; Kent, John; Walcek, Chris

    2016-09-01

    Ozone (O3) concentrations measured at Pinnacle State Park (PSPNY), very close to the southern border of New York State, are used to estimate concentrations in air flowing into New York. On 20% of the ozone season (April-September) afternoons from 2004 to 2015, mid-afternoon 500-m back trajectories calculated from PSPNY cross New York border from the south and spend less than three hours in New York State, in this area of negligible local pollution emissions. One-hour (2p.m.-3p.m.) O3 concentrations during these inflowing conditions were 46 ± 13 ppb, and ranged from a minimum of 15 ppb to a maximum of 84 ppb. On average during 2004-2015, each year experienced 11.8 days with inflowing 1-hr O3 concentrations exceeding 50 ppb, 4.3 days with O3 > 60 ppb, and 1.5 days had O3 > 70 ppb. During the same period, 8-hr average concentrations (10a.m. to 6p.m.) exceeded 50 ppb on 10.0 days per season, while 3.9 days exceeded 60 ppb, and 70 ppb was exceeded 1.2 days per season. Two afternoons of minimal in-state emission influences with high ozone concentrations were analyzed in more detail. Synoptic and back trajectory analysis, including comparison with upwind ozone concentrations, indicated that the two periods were characterized as photo-chemically aged air containing high inflowing O3 concentrations most likely heavily influenced by pollution emissions from states upwind of New York including Pennsylvania, Tennessee, West Virginia, and Ohio. These results suggest that New York state-level attempts to comply with National Ambient Air Quality Standards by regulating in-state O3 precursor NOx and organic emissions would be very difficult, since air frequently enters New York State very close to or in excess of Federal Air Quality Standards.

  15. Air-flow separation over unsteady breaking wind waves

    NASA Astrophysics Data System (ADS)

    Saxena, Gaurav

    2005-11-01

    In air-sea interaction processes, when considering wind stress over small-scale breaking waves, there are few direct quantitative experimental investigations into the role of air-flow separation on the interfacial momentum flux. Reul et. al, (1999), found multiple coherent patches of vorticity downwind of the crest that were strongly influenced by the geometric characteristics of the breaker. However, their breakers were generated by dispersive focusing techniques and, therefore, independent of the wind stress. We present experimental results obtained with particle image velocimetry (PIV) where moderate to strong winds directly generate unsteady small-scale breaking waves, a scenario commonly found in the open ocean. Particular attention has been devoted to capturing the spatio-temporal evolution of the air-water interface. Specifically, texture segmentation algorithms typically used for face recognition (Grey Level Co-occurrence Matrix (GLCM) and the Cross-Diagonal Texture Matrix (CDTM)) have been combined to yield robust and accurate estimates of the instantaneous breaker geometry.

  16. Numerical simulation of air flow in a model of lungs with mouth cavity

    NASA Astrophysics Data System (ADS)

    Elcner, Jakub; Lizal, Frantisek; Jedelsky, Jan; Jicha, Miroslav

    2012-04-01

    The air flow in a realistic geometry of human lung is simulated with computational flow dynamics approach as stationary inspiration. Geometry used for the simulation includes oral cavity, larynx, trachea and bronchial tree up to the seventh generation of branching. Unsteady RANS approach was used for the air flow simulation. Velocities corresponding to 15, 30 and 60 litres/min of flow rate were set as boundary conditions at the inlet to the model. These flow rates are frequently used as a representation of typical human activities. Character of air flow in the model for these different flow rates is discussed with respect to future investigation of particle deposition.

  17. New formulation of Magnetization Equation for Flowing Nuclear Spin under NMR/MRI Excitation(I)

    NASA Astrophysics Data System (ADS)

    de, Dilip; Emetere, Moses; Omotosho, Victor

    2015-03-01

    We have obtained for the first time from the Bloch NMR equations the correct dependence of the single component of magnetization, My and Mz at resonance (NMR/MRI) on relaxation times, rf B1 field (pulsed or continuous), blood(nuclear spin) flow velocity, etc. in the rotating frame of reference. The equations are applicable for both CW and pulsed NMR experiments with or without flow of spins. Our approaches can be extended easily to include gradient fields and diffusion of spins, if needed in NMR/MRI experiments. We also discuss the application of our equations to a specific case of MR excitation scheme: Free induction decay. The first time new equations of single component of MR magnetization and further equations that can be derived with the methodologies used here, can be applied towards accurate simulation of MR images/signals and extraction of parameters of clinical importance through comparison of the measured and the simulated images/signals.

  18. Asymptotic theory of neutral stability curve of the Couette flow of vibrationally excited gas

    NASA Astrophysics Data System (ADS)

    Grigor'ev, Yu N.; Ershov, I. V.

    2016-06-01

    The asymptotic theory of neutral stability curve of the supersonic plane Couette flow of vibrationally excited gas is constructed. The system of two-temperature viscous gas dynamics equations was used as original mathematical model. Spectral problem for an eighth order linear system of ordinary differential equations was obtained from the system within framework of classical theory of linear stability. Transformations of the spectral problem universal for all shear flows were carried along the classical Dunn — Lin scheme. As a result the problem was reduced to secular algebraic equation with a characteristic division on “inviscid” and “viscous” parts which was solved numerically. The calculated neutral stability curves coincide in limits of 10% with corresponding results of direct numerical solution of original spectral problem.

  19. Spatially resolved excitation temperature measurements in a hypersonic flow using the hook method.

    PubMed

    Sandeman, R J; Ebrahim, N A

    1977-05-01

    The extension of the hook method to include spatial resolution of nonuniformities in the test plane as suggested by Huber (1971) and Sandeman (1971) is demonstrated experimentally by measurements of the variation of the integrated line density of ground state sodium in a flame. Experiments are also described in which the variations in the flow of CO(2) in a hypersonic shock tunnel are spatially resolved along the spectrometer slit. The variations in the hook separations of the 425.4-nm Cr1 resonance and the 434.4-nm CrI 1-eV lower state line are simultaneously measured. The chromium exists as an impurity in the hypersonic flow of CO(2) over a cylinder in a shock tunnel. The populations of the levels so obtained have enabled the comparison of the excitation temperature of the Cr 1-eV level with the calculated gas temperature. PMID:20168704

  20. Nonlinear Excitation of Inviscid Stationary Vortex in a Boundary-Layer Flow

    NASA Technical Reports Server (NTRS)

    Choudhari, Meelan; Duck, Peter W.

    1996-01-01

    We examine the excitation of inviscid stationary crossflow instabilities near an isolated surface hump (or indentation) underneath a three-dimensional boundary layer. As the hump height (or indentation depth) is increased from zero, the receptivity process becomes nonlinear even before the stability characteristics of the boundary layer are modified to a significant extent. This behavior contrasts sharply with earlier findings on the excitation of the lower branch Tollmien-Schlichting modes and is attributed to the inviscid nature of the crossflow modes, which leads to a decoupling between the regions of receptivity and stability. As a result of this decoupling, similarity transformations exist that allow the nonlinear receptivity of a general three-dimensional boundary layer to be studied with a set of canonical solutions to the viscous sublayer equations. The parametric study suggests that the receptivity is likely to become nonlinear even before the hump height becomes large enough for flow reversal to occur in the canonical solution. We also find that the receptivity to surface humps increases more rapidly as the hump height increases than is predicted by linear theory. On the other hand, receptivity near surface indentations is generally smaller in comparison with the linear approximation. Extension of the work to crossflow receptivity in compressible boundary layers and to Gortler vortex excitation is also discussed.

  1. Graphical User Interface Development for Representing Air Flow Patterns

    NASA Technical Reports Server (NTRS)

    Chaudhary, Nilika

    2004-01-01

    In the Turbine Branch, scientists carry out experimental and computational work to advance the efficiency and diminish the noise production of jet engine turbines. One way to do this is by decreasing the heat that the turbine blades receive. Most of the experimental work is carried out by taking a single turbine blade and analyzing the air flow patterns around it, because this data indicates the sections of the turbine blade that are getting too hot. Since the cost of doing turbine blade air flow experiments is very high, researchers try to do computational work that fits the experimental data. The goal of computational fluid dynamics is for scientists to find a numerical way to predict the complex flow patterns around different turbine blades without physically having to perform tests or costly experiments. When visualizing flow patterns, scientists need a way to represent the flow conditions around a turbine blade. A researcher will assign specific zones that surround the turbine blade. In a two-dimensional view, the zones are usually quadrilaterals. The next step is to assign boundary conditions which define how the flow enters or exits one side of a zone. way of setting up computational zones and grids, visualizing flow patterns, and storing all the flow conditions in a file on the computer for future computation. Such a program is necessary because the only method for creating flow pattern graphs is by hand, which is tedious and time-consuming. By using a computer program to create the zones and grids, the graph would be faster to make and easier to edit. Basically, the user would run a program that is an editable graph. The user could click and drag with the mouse to form various zones and grids, then edit the locations of these grids, add flow and boundary conditions, and finally save the graph for future use and analysis. My goal this summer is to create a graphical user interface (GUI) that incorporates all of these elements. I am writing the program in

  2. Considerations of Air Flow in Combustion Chambers of High-Speed Compression-Ignition Engines

    NASA Technical Reports Server (NTRS)

    Spanogle, J A; Moore, C S

    1932-01-01

    The air flow in combustion chambers is divided into three fundamental classes - induced, forced, and residual. A generalized resume is given of the present status of air flow investigations and of the work done at this and other laboratories to determine the direction and velocity of air movement in auxiliary and integral combustion chambers. The effects of air flow on engine performance are mentioned to show that although air flow improves the combustion efficiency, considerable induction, friction, and thermal losses must be guarded against.

  3. Dry Flowing Abrasive Decontamination Technique for Pipe Systems with Swirling Air Flow

    SciTech Connect

    Kameo, Yutaka; Nakashima, Mikio; Hirabayashi, Takakuni

    2003-10-15

    A dry abrasive decontamination method was developed for removing radioactive corrosion products from surfaces of coolant pipe systems in decommissioning of a nuclear power plant. Erosion behavior of inside surfaces of stainless and carbon steel pipes by a swirling air flow containing alumina or cast-iron grit abrasive was studied. Erosion depths of the test pipes were approximately proportional to an abrasive concentration in air and an exponent of flow rate of airstream. The experimental results indicated that the present method could keep satisfactory erosion ability of abrasives even for a large-size pipe. The present method was successfully applied to {sup 60}Co-contaminated specimens sampled from a pipe of the water cleanup system of the Japan Power Demonstration Reactor.

  4. Laser ignition of hypersonic air-hydrogen flow

    NASA Astrophysics Data System (ADS)

    Brieschenk, S.; Kleine, H.; O'Byrne, S.

    2013-09-01

    An experimental investigation of the behaviour of laser-induced ignition in a hypersonic air-hydrogen flow is presented. A compression-ramp model with port-hole injection, fuelled with hydrogen gas, is used in the study. The experiments were conducted in the T-ADFA shock tunnel using a flow condition with a specific total enthalpy of 2.5 MJ/kg and a freestream velocity of 2 km/s. This study is the first comprehensive laser spark study in a hypersonic flow and demonstrates that laser-induced ignition at the fuel-injection site can be effective in terms of hydroxyl production. A semi-empirical method to estimate the conditions in the laser-heated gas kernel is presented in the paper. This method uses blast-wave theory together with an expansion-wave model to estimate the laser-heated gas conditions. The spatially averaged conditions found with this approach are matched to enthalpy curves generated using a standard chemical equilibrium code (NASA CEA). This allows us to account for differences that are introduced due to the idealised description of the blast wave, the isentropic expansion wave as well as thermochemical effects.

  5. Use of thermoacoustic excitation for control of turbulent flow over a wall-mounted hump

    NASA Astrophysics Data System (ADS)

    Yeh, Chi-An; Munday, Phillip; Taira, Kunihiko

    2014-11-01

    We numerically examine the effectiveness of high-frequency acoustic excitation for drag reduction control of turbulent flow over a wall-mounted hump at a free stream Reynolds number of 500,000 and Mach number of 0.25. Actuation frequencies around Helmholtz number of 3 are considered based on the characteristics of recently developed graphene/carbon nanotube-based surface compliant loud speakers. The present study utilizes LES (CharLES) with an oscillatory heat flux boundary condition to produce high-intensity acoustic waves, which interact with the turbulent flow structures by introducing small-scale perturbations to the shear layer in the wake of the hump. With thermoacoustic control, the recirculation zone downstream of the hump becomes elongated with thinner shear layer profile compared to the uncontrolled case. This change in the flow shifts the low-pressure region of the wake further downstream and results in reduction in drag by 10% for two-dimensional and 15% for three-dimensional flows. The influence of actuation frequency and amplitude is also examined. This work is supported by the US Army Research Office (W911NF-13-1-0062, W911NF-14-1-0224).

  6. Mobility power flow analysis of coupled plate structure subjected to mechanical and acoustic excitation

    NASA Technical Reports Server (NTRS)

    Cuschieri, J. M.

    1992-01-01

    The mobility power flow approach that was previously applied in the derivation of expressions for the vibrational power flow between coupled plate substructures forming an L configuration and subjected to mechanical loading is generalized. Using the generalized expressions, both point and distributed mechanical loads on one or both of the plates can be considered. The generalized approach is extended to deal with acoustic excitation of one of the plate substructures. In this case, the forces (acoustic pressures) acting on the structure are dependent on the response of the structure because of the scattered pressure component. The interaction between the plate structure and the acoustic fluid leads to the derivation of a corrected mode shape for the plates' normal surface velocity and also for the structure mobility functions. The determination of the scattered pressure components in the expressions for the power flow represents an additional component in the power flow balance for the source plate and the receiver plate. This component represents the radiated acoustical power from the plate structure. For a number of coupled plate substrates, the acoustic pressure generated by one substructure will interact with the motion of another substructure. That is, in the case of the L-shaped plate, acoustic interaction exists between the two plate substructures due to the generation of the acoustic waves by each of the substructures. An approach to deal with this phenomena is described.

  7. 40 CFR 1065.240 - Dilution air and diluted exhaust flow meters.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... meter, a thermal-mass meter, an averaging Pitot tube, or a hot-wire anemometer. (c) Flow conditioning... 40 Protection of Environment 33 2011-07-01 2011-07-01 false Dilution air and diluted exhaust flow...) AIR POLLUTION CONTROLS ENGINE-TESTING PROCEDURES Measurement Instruments Flow-Related...

  8. 40 CFR 1065.240 - Dilution air and diluted exhaust flow meters.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... meter, a thermal-mass meter, an averaging Pitot tube, or a hot-wire anemometer. (c) Flow conditioning... 40 Protection of Environment 32 2010-07-01 2010-07-01 false Dilution air and diluted exhaust flow...) AIR POLLUTION CONTROLS ENGINE-TESTING PROCEDURES Measurement Instruments Flow-Related...

  9. 40 CFR 1065.240 - Dilution air and diluted exhaust flow meters.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... meter, a thermal-mass meter, an averaging Pitot tube, or a hot-wire anemometer. (c) Flow conditioning... 40 Protection of Environment 34 2012-07-01 2012-07-01 false Dilution air and diluted exhaust flow...) AIR POLLUTION CONTROLS ENGINE-TESTING PROCEDURES Measurement Instruments Flow-Related...

  10. 40 CFR 1065.240 - Dilution air and diluted exhaust flow meters.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... meter, a thermal-mass meter, an averaging Pitot tube, or a hot-wire anemometer. (c) Flow conditioning... 40 Protection of Environment 34 2013-07-01 2013-07-01 false Dilution air and diluted exhaust flow...) AIR POLLUTION CONTROLS ENGINE-TESTING PROCEDURES Measurement Instruments Flow-Related...

  11. 40 CFR 1065.240 - Dilution air and diluted exhaust flow meters.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... meter, a thermal-mass meter, an averaging Pitot tube, or a hot-wire anemometer. (c) Flow conditioning... 40 Protection of Environment 33 2014-07-01 2014-07-01 false Dilution air and diluted exhaust flow...) AIR POLLUTION CONTROLS ENGINE-TESTING PROCEDURES Measurement Instruments Flow-Related...

  12. On the impact of entrapped air in infiltration under ponding conditions: Part a: Preferential air flow path effects on infiltration

    NASA Astrophysics Data System (ADS)

    Weisbord, N.; Mizrahi, G.; Furman, A.

    2015-12-01

    Entrapped air effects on infiltration under ponding conditions could be important for massive infiltration of managed aquifer recharge or soil aquifer treatment. Earlier studies found that under ponding conditions air could reduce infiltration by 70-90%. Most studies have dealt with entrapped air effects when soil surface topography is flat. The objective of this study is to investigate the effects of: (1) irregular surface topography on preferential air flow path development; (2) preferential air flow path on infiltration; and (3) hydraulic head on infiltration when air is trapped. Column experiments were used to investigate these particular effects. A 140 cm deep and 30 cm wide column packed with silica sand was used under two boundary conditions: in the first, air can only escape vertically upward through the soil surface; in the second, air is free to escape. The surface was flooded with 13 liters of water, with ponding depth decreasing with time. Two soil surface conditions were tested: flat surface and irregular. It was found that in irregular surfaces, stable air flow through preferential paths was developed in the high altitude zones. Flat surface topography caused unstable air flow through random paths. Comparison between irregular and flat surface topography showed that the entrapped air pressure was lower and the infiltration rate was about 40% higher in the irregular surface topography than in the flat surface topography. No difference of infiltration rate between flat and irregular surface topography was observed when air was free to escape along the infiltration path. It was also found that at the first stage of infiltration, higher hydraulic heads caused higher entrapped air pressures and lower infiltration rates. In contrast, higher hydraulic head results in higher infiltration rate, when air was free to escape. Our results suggest that during ponding conditions: (1) preferential air flow paths develop at high surface zones of irregular topography

  13. Flow-excited acoustic resonance of a Helmholtz resonator: Discrete vortex model compared to experiments

    SciTech Connect

    Dai, Xiwen; Jing, Xiaodong Sun, Xiaofeng

    2015-05-15

    The acoustic resonance in a Helmholtz resonator excited by a low Mach number grazing flow is studied theoretically. The nonlinear numerical model is established by coupling the vortical motion at the cavity opening with the cavity acoustic mode through an explicit force balancing relation between the two sides of the opening. The vortical motion is modeled in the potential flow framework, in which the oscillating motion of the thin shear layer is described by an array of convected point vortices, and the unsteady vortex shedding is determined by the Kutta condition. The cavity acoustic mode is obtained from the one-dimensional acoustic propagation model, the time-domain equivalent of which is given by means of a broadband time-domain impedance model. The acoustic resistances due to radiation and viscous loss at the opening are also taken into account. The physical processes of the self-excited oscillations, at both resonance and off-resonance states, are simulated directly in the time domain. Results show that the shear layer exhibits a weak flapping motion at the off-resonance state, whereas it rolls up into large-scale vortex cores when resonances occur. Single and dual-vortex patterns are observed corresponding to the first and second hydrodynamic modes. The simulation also reveals different trajectories of the two vortices across the opening when the first and second hydrodynamic modes co-exist. The strong modulation of the shed vorticity by the acoustic feedback at the resonance state is demonstrated. The model overestimates the pressure pulsation amplitude by a factor 2, which is expected to be due to the turbulence of the flow which is not taken into account. The model neglects vortex shedding at the downstream and side edges of the cavity. This will also result in an overestimation of the pulsation amplitude.

  14. Flow-excited acoustic resonance of a Helmholtz resonator: Discrete vortex model compared to experiments

    NASA Astrophysics Data System (ADS)

    Dai, Xiwen; Jing, Xiaodong; Sun, Xiaofeng

    2015-05-01

    The acoustic resonance in a Helmholtz resonator excited by a low Mach number grazing flow is studied theoretically. The nonlinear numerical model is established by coupling the vortical motion at the cavity opening with the cavity acoustic mode through an explicit force balancing relation between the two sides of the opening. The vortical motion is modeled in the potential flow framework, in which the oscillating motion of the thin shear layer is described by an array of convected point vortices, and the unsteady vortex shedding is determined by the Kutta condition. The cavity acoustic mode is obtained from the one-dimensional acoustic propagation model, the time-domain equivalent of which is given by means of a broadband time-domain impedance model. The acoustic resistances due to radiation and viscous loss at the opening are also taken into account. The physical processes of the self-excited oscillations, at both resonance and off-resonance states, are simulated directly in the time domain. Results show that the shear layer exhibits a weak flapping motion at the off-resonance state, whereas it rolls up into large-scale vortex cores when resonances occur. Single and dual-vortex patterns are observed corresponding to the first and second hydrodynamic modes. The simulation also reveals different trajectories of the two vortices across the opening when the first and second hydrodynamic modes co-exist. The strong modulation of the shed vorticity by the acoustic feedback at the resonance state is demonstrated. The model overestimates the pressure pulsation amplitude by a factor 2, which is expected to be due to the turbulence of the flow which is not taken into account. The model neglects vortex shedding at the downstream and side edges of the cavity. This will also result in an overestimation of the pulsation amplitude.

  15. Shear-flow excitation mechanisms of recessed localized arc-filament plasma actuators

    NASA Astrophysics Data System (ADS)

    Kleinman, R. R.; Bodony, D. J.; Freund, J. B.

    2010-11-01

    Localized arc-filament plasma actuators, placed near the nozzle lip of a laboratory jet, have recently been demonstrated to have sufficient control authority to significantly excite the jet downstream [M. Samimy et al., J. Fluid Mech. 578, 305 (2007)]. This class of plasma actuator, which in this application is recessed in a small cavity near the nozzle lip, causes intense local heating. This heating is thought to be the root mechanism of its influence on the flow, but how this principally entropic thermal source couples with the vortical jet shear layer turbulence downstream is unclear. We investigate this using direct numerical simulations, which match the flow conditions of the corresponding experiment, including Reynolds number, but are two-dimensional to ease computational expense. Despite this obvious modeling approximation, the simulations include the key features of the laboratory system: a thin boundary layer, a plasma-like thermal source in a small recessed cavity, a nozzle lip, and a downstream free shear layer. Results are shown to match the temperature and near-field pressure measured in the laboratory actuators. It is found that the cavity, which was initially included to shield the actuator plasma from the flow, is essential for its action. Thermal expansion within the cavity leads to an ejection of fluid from it, which perturbs the boundary layer and the downstream mixing layer. There is a finite baroclinic torque, but its effects are relatively minor. An alternate actuator designed to mimic the pressure effects of the full actuator, without its concomitant thermal heating, is nearly as effective at exciting the shear layer. An actuator model without the cavity recess does not provide effective actuation. These results suggest that there is significant potential to optimize the actuation authority through design of cavity recesses that augment its effect.

  16. Relief, nocturnal cold-air flow and air quality in Kigali, Rwanda

    NASA Astrophysics Data System (ADS)

    Henninger, Sascha

    2013-04-01

    , this result is not reassuringly, because all measured residential districts in Kigali exceeded the recommendations of the WHO, too. This suggests that the inhabitants of Kigali are exposed to enormous levels of PM10 during most of their time outdoors. So PM10 levels are increasing in areas with high rates of traffic due to the exhaust of the vehicles and the stirring up of dust from the ground, but also in fact of burning wood for cooking etc. within the residential districts. Hazardous measuring trips could be detected for nighttime measurements. Because of high temperatures, high solar radiation and a non-typical missing cloud cover the urban surface could heat up extremely, which produced a cold-air flow from the ridges and the slopes down to the "Marais" at night. This cold-air flow takes away the suspended particulate matters, which tends to accumulate within the "Marais" on the bottom of the hills, the places where most residential neighborhoods could be found and agricultural fields were used. The distinctive relief caused an accumulation within small valleys. Unfortunately, these are the favourite places of living and agriculture and this tends to high indoor-air pollution.

  17. New sensor for measurement of low air flow velocity. Phase I final report

    SciTech Connect

    Hashemian, H.M.; Hashemian, M.; Riggsbee, E.T.

    1995-08-01

    The project described here is the Phase I feasibility study of a two-phase program to integrate existing technologies to provide a system for determining air flow velocity and direction in radiation work areas. Basically, a low air flow sensor referred to as a thermocouple flow sensor has been developed. The sensor uses a thermocouple as its sensing element. The response time of the thermocouple is measured using an existing in-situ method called the Loop Current Step Response (LCSR) test. The response time results are then converted to a flow signal using a response time-versus-flow correlation. The Phase I effort has shown that a strong correlation exists between the response time of small diameter thermocouples and the ambient flow rate. As such, it has been demonstrated that thermocouple flow sensors can be used successfully to measure low air flow rates that can not be measured with conventional flow sensors. While the thermocouple flow sensor developed in this project was very successful in determining air flow velocity, determining air flow direction was beyond the scope of the Phase I project. Nevertheless, work was performed during Phase I to determine how the new flow sensor can be used to determine the direction, as well as the velocity, of ambient air movements. Basically, it is necessary to use either multiple flow sensors or move a single sensor in the monitoring area and make flow measurements at various locations sweeping the area from top to bottom and from left to right. The results can then be used with empirical or physical models, or in terms of directional vectors to estimate air flow patterns. The measurements can be made continuously or periodically to update the flow patterns as they change when people and objects are moved in the monitoring area. The potential for using multiple thermocouple flow sensors for determining air flow patterns will be examined in Phase II.

  18. Surface-slip equations for multicomponent nonequilibrium air flow

    NASA Technical Reports Server (NTRS)

    Gupta, R. N.; Scott, C. D.; Moss, J. N.

    1985-01-01

    Equations are presented for the surface-slip (or jump) values of species concentration, pressure, velocity, and temperature in the low-Reynolds number, high-altitude flight regime of a space vehicle. The equations are obtained from closed form solutions of the mass, momentum, and energy flux equations using the Chapman-Enskog velocity distribution function. This function represents a solution of the Boltzmann equation in the Navier-Stokes approximation. The analysis, obtained for nonequilibrium multicomponent air flow, includes the finite-rate surface catalytic recombination and changes in the internal energy during reflection from the surface. Expressions for the various slip quantities were obtained in a form which can be employed in flowfield computations. A consistent set of equations is provided for multicomponent, binary, and single species mixtures. Expression is also provided for the finite-rate, species-concentration boundary condition for a multicomponent mixture in absence of slip.

  19. An atmospheric air gas-liquid diffuse discharge excited by bipolar nanosecond pulse in quartz container used for water sterilization

    NASA Astrophysics Data System (ADS)

    Wang, Sen; Yang, De-Zheng; Wang, Wen-Chun; Zhang, Shuai; Liu, Zhi-Jie; Tang, Kai; Song, Ying

    2013-12-01

    In this Letter, we report that the air gas-liquid diffuse discharge plasma excited by bipolar nanosecond pulse in quartz container with different bottom structures at atmospheric pressure. Optical diagnostic measurements show that bountiful chemically and biologically active species, which are beneficial for effective sterilization in some areas, are produced. Such diffuse plasmas are then used to treat drinking water containing the common microorganisms (Candida albicans and Escherichia coli). It is found that these plasmas can sterilize the microorganisms efficiently.

  20. Excitation of shear layer instability in flow past a cylinder at low Reynolds number

    NASA Astrophysics Data System (ADS)

    Mittal, S.

    2005-12-01

    The instability of the separated shear layer for flow past a cylinder, in two dimensions, is investigated for low Reynolds numbers (Re 350). The line of symmetry, downstream of the cylinder, in the wake is forced to be a streamline. This hypothetical situation allows slip of velocity along the wake centreline but prevents any flow normal to it. With this arrangement the flow is completely stable for Re 250. It suppresses the primary instability of the wake that is responsible for the von Karman vortex shedding. Unlike the conventional splitter plate such an arrangement does not have a wake of its own. At Re = 300 and above the wake instability and the shear layer instability are observed. The fluctuations due to the instabilities are intermittent in nature. The shear layer frequency is smaller than the frequency of the von Karman vortex shedding for the regular flow past a cylinder. It is also found that flow past half a cylinder, with symmetry conditions at the wake centreline, at Re = 300 is stable. However, when a secondary cylinder with one-fifth the diameter of the half-cylinder is placed close to it, the vortex shedding from the smaller cylinder again leads to instability of the separated shear layer of the half-cylinder. This suggests that although the separated shear layer is stable, at such low Re, the shear layer instability can be excited by some other disturbances. It is found that even at such low Re, the normalized shear layer frequency follows the Re0.67 power law. All the computations have been carried out using a stabilized finite element formulation.

  1. Optimum design of bipolar plates for separate air flow cooling system of PEM fuel cells stacks

    NASA Astrophysics Data System (ADS)

    Franco, Alessandro

    2015-12-01

    The paper discusses about thermal management of PEM fuel cells. The objective is to define criteria and guidelines for the design of the air flow cooling system of fuel cells stacks for different combination of power density, bipolar plates material, air flow rate, operating temperature It is shown that the optimization of the geometry of the channel permits interesting margins for maintaining the use of separate air flow cooling systems for high power density PEM fuel cells.

  2. Continuous flow real-time PCR device using multi-channel fluorescence excitation and detection.

    PubMed

    Hatch, Andrew C; Ray, Tathagata; Lintecum, Kelly; Youngbull, Cody

    2014-02-01

    High throughput automation is greatly enhanced using techniques that employ conveyor belt strategies with un-interrupted streams of flow. We have developed a 'conveyor belt' analog for high throughput real-time quantitative Polymerase Chain Reaction (qPCR) using droplet emulsion technology. We developed a low power, portable device that employs LED and fiber optic fluorescence excitation in conjunction with a continuous flow thermal cycler to achieve multi-channel fluorescence detection for real-time fluorescence measurements. Continuously streaming fluid plugs or droplets pass through tubing wrapped around a two-temperature zone thermal block with each wrap of tubing fluorescently coupled to a 64-channel multi-anode PMT. This work demonstrates real-time qPCR of 0.1-10 μL droplets or fluid plugs over a range of 7 orders of magnitude concentration from 1 × 10(1) to 1 × 10(7). The real-time qPCR analysis allows dynamic range quantification as high as 1 × 10(7) copies per 10 μL reaction, with PCR efficiencies within the range of 90-110% based on serial dilution assays and a limit of detection of 10 copies per rxn. The combined functionality of continuous flow, low power thermal cycling, high throughput sample processing, and real-time qPCR improves the rates at which biological or environmental samples can be continuously sampled and analyzed. PMID:24297040

  3. Experimental Investigations of Exciting Forces Caused by Flow in Labyrinth Seals

    NASA Technical Reports Server (NTRS)

    Thieleke, G.; Stetter, H.

    1991-01-01

    The interaction of the flow through the labyrinth seals with the shaft of the rotor can have an effect on the stability of turbomachines. Thus, the excited forces, so-called cross forces or nonconservative forces, arise, which act perpendicular to the rotor eccentricity. This effect is caused by an unsymmetrical pressure distribution within the labyrinth cavities. Experimental studies were carried out for different types of labyrinth geometries: two staggered labyrinths with teeth on the stator and grooved rotor as well as a full and a convergent stepped labyrinth. These labyrinths can be found on the tip shrouding of bladings in steam or gas turbines. The following parameters were varied in the test facility: geometry of the labyrinth seals (number of cavities, inlet region), shaft rotation, pressure difference on the seal, entry swirl and eccentricity of the rotor. The results are presented for stiffness coefficients of the labyrinth seals, leakage flow and circumferential flow in each cavity which was measured with special probes. Generally, the inlet swirl has the greatest influence on the coefficients of the seals. The experimental results were compared with theoretical results and were in good agreement.

  4. Gas and liquid measurements in air-water bubbly flows

    SciTech Connect

    Zhou, X.; Doup, B.; Sun, X.

    2012-07-01

    Local measurements of gas- and liquid-phase flow parameters are conducted in an air-water two-phase flow loop. The test section is a vertical pipe with an inner diameter of 50 mm and a height of 3.2 m. The measurements are performed at z/D = 10. The gas-phase measurements are performed using a four-sensor conductivity probe. The data taken from this probe are processed using a signal processing program to yield radial profiles of the void fraction, bubble velocity, and interfacial area concentration. The velocity measurements of the liquid-phase are performed using a state-of-the-art Particle Image Velocimetry (PIV) system. The raw PIV images are acquired using fluorescent particles and an optical filtration device. Image processing is used to remove noise in the raw PIV images. The statistical cross correlation is introduced to determine the axial velocity field and turbulence intensity of the liquid-phase. Measurements are currently being performed at z/D = 32 to provide a more complete data set. These data can be used for computational fluid dynamic model development and validation. (authors)

  5. Some Effects of Air Flow on the Penetration and Distribution of Oil Sprays

    NASA Technical Reports Server (NTRS)

    Rothrock, A M; Beardsley, E G

    1929-01-01

    Tests were made to determine the effects of air flow on the characteristics of fuel sprays from fuel injection valves. Curves and photographs are presented showing the airflow throughout the chamber and the effects of the air flow on the fuel spray characteristics. It was found that the moving air had little effect on the spray penetration except with the 0.006 inch orifice. The moving air did, however, affect the oil particles on the outside of the spray cone. After spray cut-off, the air flow rapidly distributed the atomized fuel throughout the spray chamber.

  6. Integrated OLED as excitation light source in fluorescent lateral flow immunoassays.

    PubMed

    Venkatraman, Vishak; Steckl, Andrew J

    2015-12-15

    The integration of organic light emitting diodes (OLEDs) as excitation light sources for quantum dot-based fluorescent lateral flow immunoassay systems (LFIA) was investigated. This approach has the potential to deliver a sensitive visible detection scheme for low-cost, disposable lab-on-chip point-of-care (POC) diagnosis system. Thin film phosphorescent green OLEDs fabricated on plastic substrates were integrated on-chip to excite the test line of a quantum dot-based LFIA (QD-LFIA). OLEDs were fabricated by sequential deposition of organic thin films (total of ~100 nm) onto ITO-coated PET substrates. CdSe/ZnS QDs emitting at 655 nm and Au nanoparticles (NP - 10 nm size) conjugated antibodies were used for the fluorescence QD-LFIA and conventional reflection-mode Au NP-LFIA, respectively. Thin plastic color light filters were integrated for filtering the excitation light source and, thereby, increasing the contrast of the emitted light for optimized visual detection. Integration of the OLED and color filters with the analytical membrane was achieved using adhesive techniques facilitated by the planar nature of the layers, which suggests possible large scale manufacturing using roll-to-roll processing. Gray scale analysis from digital images captured with a digital camera was used to quantify the visual sensitivity. The signal intensity, signal-to-noise ratio (SNR) and the limit of detection (LOD) of OLED integrated QD-LFIAs were compared to Au NP LFIAs. OLED QD-LFIA exhibited superior performance in all signal aspects: 7-8× higher signal intensity and SNR, and a 7× lower LOD of 3 nM (measured at S/N=3). These results demonstrate the potential of OLED-integrated in LFIA devices for obtaining sensitive, fast and low-cost POC diagnostics. PMID:26134292

  7. Real-Time Aerodynamic Parameter Estimation without Air Flow Angle Measurements

    NASA Technical Reports Server (NTRS)

    Morelli, Eugene A.

    2010-01-01

    A technique for estimating aerodynamic parameters in real time from flight data without air flow angle measurements is described and demonstrated. The method is applied to simulated F-16 data, and to flight data from a subscale jet transport aircraft. Modeling results obtained with the new approach using flight data without air flow angle measurements were compared to modeling results computed conventionally using flight data that included air flow angle measurements. Comparisons demonstrated that the new technique can provide accurate aerodynamic modeling results without air flow angle measurements, which are often difficult and expensive to obtain. Implications for efficient flight testing and flight safety are discussed.

  8. Guard Flow-enhanced Organic Vapor Jet Printing of Molecular Materials in Air

    NASA Astrophysics Data System (ADS)

    Biswas, Shaurjo

    Rapid advances in the research and development of organic electronics have re-sulted in many exciting discoveries and applications, including OLEDs, OPVs and OTFTs. Devices based on small molecular organic materials often call for sharp interfaces and highly pure materials for improved device performance. Solvent-free deposition and additive patterning of the active layers without the use of vacuum is preferred, calling for specialized processing approaches. Guard flow-enhanced organic vapor jet printing (GF-OVJP), enables addi-tive, rapid, mask-free, solvent-free printing of molecular organic semiconductors in ambient atmosphere by evaporating organic source material into an inert carrier gas jet and collimating and impinging it onto a substrate where the organic molecules condense. A surrounding annular "guard flow" hydrodynamically focuses the primary jet carrying the hot organic vapor and shields it from contact with the ambient oxygen and moisture, enabling device-quality deposits. Deposition in air entails non-trivial effects at the boundary between ambient surroundings and the gas jet carrying the semiconductor vapor that influence the morphology and properties of the resulting electronic devices. This thesis demonstrates the deposition of active layers of OLEDs, OPVs and OTFTs by GF-OVJP in air. Process-structure-property relationships are elucidated, using a combination of film deposition and structural characterization (e.g. AFM, XRD, SEM, spectroscopies), device fabrication and testing, as well as compressible fluid flow, heat and mass transport modeling, thus laying the groundwork for rigorous, quantitative design of film deposition apparatus and small molecular organic semiconductor processing.

  9. A low-power nitriding technique utilizing a microwave-excited radical flow

    NASA Astrophysics Data System (ADS)

    Itagaki, Hirotomo; Hirose, Shingo; Kim, Jaeho; Ogura, Mutsuo; Wang, Xuelun; Nonaka, Atsushi; Ogiso, Hisato; Sakakita, Hajime

    2016-06-01

    We report a novel low-power nitriding technique by utilizing a 2.45 GHz microwave-excited nitrogen radical flow system. Nitrogen plasma was produced at the nozzle with dimensions of 50 × 0.5 mm2 and blown onto the surface of a target substrate. A titanium substrate has been used as a target plate since it is easy to visualize a nitriding effect. The titanium substrate was treated under the conditions of 60 W microwave power, 20 Torr of nitrogen gas pressure, and a plate temperature of ∼800 °C. As a result, we have succeeded in nitriding of the titanium substrate in a quasi-atmospheric region of 20 Torr and of a very low power of 60 W with the hardness kept high, which is almost the same as the hardness processed by conventional nitriding methods.

  10. Fuel Cell Manufacturing Diagnostic Techniques: IR Thermography with Reactive Flow through Excitation

    SciTech Connect

    Manak, A. J.; Ulsh, M.; Bender, G.

    2012-01-01

    While design and material considerations for PEMFCs have a large impact on cost, it is also necessary to consider a transition to high volume production of fuel cell systems, including MEA components, to enable economies of scale and reduce per unit cost. One of the critical manufacturing tasks is developing and deploying techniques to provide in‐process measurement of fuel cell components for quality control. This effort requires a subsidiary task: The study of the effect of manufacturing defects on performance and durability with the objective to establish validated manufacturing tolerances for fuel cell components. This work focuses on the development of a potential quality control method for gas diffusion electrodes (GDEs). The method consists of infrared (IR) thermography combined with reactive flow through (RFT) excitation. Detection of catalyst loading reduction defects in GDE catalyst layers will be presented.

  11. Remote lasing in air by recombination and electron impact excitation of molecular nitrogen

    NASA Astrophysics Data System (ADS)

    Peñano, Joseph; Sprangle, Phillip; Hafizi, Bahman; Gordon, Daniel; Fernsler, Richard; Scully, Marlan

    2012-02-01

    We analyze and simulate the physical mechanisms for a remote atmospheric lasing configuration which utilizes a combination of an ultrashort pulse laser to form a plasma filament of seed electrons, and a heater beam to heat the seed electrons. Nitrogen molecules are excited by electron impact and recombination processes to induce lasing in the ultraviolet. Recombination excitation, thermal excitation, gain, and saturation are analyzed and simulated. The lasing gain is sufficiently high to reach saturation within the length of the plasma filament. A remotely generated ultraviolet source may have applications for standoff detection of biological and chemical agents.

  12. Investigation of Countercurrent Helium-Air Flows in Air-ingress Accidents for VHTRs

    SciTech Connect

    Sun, Xiaodong; Christensen, Richard; Oh, Chang

    2013-10-03

    The primary objective of this research is to develop an extensive experimental database for the air- ingress phenomenon for the validation of computational fluid dynamics (CFD) analyses. This research is intended to be a separate-effects experimental study. However, the project team will perform a careful scaling analysis prior to designing a scaled-down test facility in order to closely tie this research with the real application. As a reference design in this study, the team will use the 600 MWth gas turbine modular helium reactor (GT-MHR) developed by General Atomic. In the test matrix of the experiments, researchers will vary the temperature and pressure of the helium— along with break size, location, shape, and orientation—to simulate deferent scenarios and to identify potential mitigation strategies. Under support of the Department of Energy, a high-temperature helium test facility has been designed and is currently being constructed at Ohio State University, primarily for high- temperature compact heat exchanger testing for the VHTR program. Once the facility is in operation (expected April 2009), this study will utilize high-temperature helium up to 900°C and 3 MPa for loss-of-coolant accident (LOCA) depressurization and air-ingress experiments. The project team will first conduct a scaling study and then design an air-ingress test facility. The major parameter to be measured in the experiments is oxygen (or nitrogen) concentration history at various locations following a LOCA scenario. The team will use two measurement techniques: 1) oxygen (or similar type) sensors employed in the flow field, which will introduce some undesirable intrusiveness, disturbing the flow, and 2) a planar laser-induced fluorescence (PLIF) imaging technique, which has no physical intrusiveness to the flow but requires a transparent window or test section that the laser beam can penetrate. The team will construct two test facilities, one for high-temperature helium tests with

  13. Dynamic stochastic optimization models for air traffic flow management

    NASA Astrophysics Data System (ADS)

    Mukherjee, Avijit

    This dissertation presents dynamic stochastic optimization models for Air Traffic Flow Management (ATFM) that enables decisions to adapt to new information on evolving capacities of National Airspace System (NAS) resources. Uncertainty is represented by a set of capacity scenarios, each depicting a particular time-varying capacity profile of NAS resources. We use the concept of a scenario tree in which multiple scenarios are possible initially. Scenarios are eliminated as possibilities in a succession of branching points, until the specific scenario that will be realized on a particular day is known. Thus the scenario tree branching provides updated information on evolving scenarios, and allows ATFM decisions to be re-addressed and revised. First, we propose a dynamic stochastic model for a single airport ground holding problem (SAGHP) that can be used for planning Ground Delay Programs (GDPs) when there is uncertainty about future airport arrival capacities. Ground delays of non-departed flights can be revised based on updated information from scenario tree branching. The problem is formulated so that a wide range of objective functions, including non-linear delay cost functions and functions that reflect equity concerns can be optimized. Furthermore, the model improves on existing practice by ensuring efficient use of available capacity without necessarily exempting long-haul flights. Following this, we present a methodology and optimization models that can be used for decentralized decision making by individual airlines in the GDP planning process, using the solutions from the stochastic dynamic SAGHP. Airlines are allowed to perform cancellations, and re-allocate slots to remaining flights by substitutions. We also present an optimization model that can be used by the FAA, after the airlines perform cancellation and substitutions, to re-utilize vacant arrival slots that are created due to cancellations. Finally, we present three stochastic integer programming

  14. Flow-excited acoustic resonances of coaxial side-branches in an annular duct

    NASA Astrophysics Data System (ADS)

    Arthurs, D.; Ziada, S.

    2009-01-01

    This paper investigates the aeroacoustic response of an annular duct with closed coaxial side-branches, and examines the effect of several passive countermeasures on the resonance intensity. The investigated geometry is inspired by the design of the Roll-Posts in the Rolls-Royce LiftSystem® engine, which is currently being developed for the Lockheed Martin Joint Strike Fighter (JSF®) aircraft. The effects of design parameters, such as diameter ratio, branch length ratio and thickness of the annular flow on the frequency and resonance intensity of the first acoustic mode are studied experimentally. Numerical simulations of the acoustic mode shapes and frequencies are also performed. The annular flow has been found to excite several acoustic modes, the strongest in all cases being the first acoustic mode, which consists of a quarter wavelength along the length of each branch. The ratios of the branch length and diameter, with respect to the main duct diameter, have been found to have strong effects on the frequency of the acoustic modes.

  15. Acoustically excited heated jets. 1: Internal excitation

    NASA Technical Reports Server (NTRS)

    Lepicovsky, J.; Ahuja, K. K.; Brown, W. H.; Salikuddin, M.; Morris, P. J.

    1988-01-01

    The effects of relatively strong upstream acoustic excitation on the mixing of heated jets with the surrounding air are investigated. To determine the extent of the available information on experiments and theories dealing with acoustically excited heated jets, an extensive literature survey was carried out. The experimental program consisted of flow visualization and flowfield velocity and temperature measurements for a broad range of jet operating and flow excitation conditions. A 50.8-mm-diam nozzle was used for this purpose. Parallel to the experimental study, an existing theoretical model of excited jets was refined to include the region downstream of the jet potential core. Excellent agreement was found between theory and experiment in moderately heated jets. However, the theory has not yet been confirmed for highly heated jets. It was found that the sensitivity of heated jets to upstream acoustic excitation varies strongly with the jet operating conditions and that the threshold excitation level increases with increasing jet temperature. Furthermore, the preferential Strouhal number is found not to change significantly with a change of the jet operating conditions. Finally, the effects of the nozzle exit boundary layer thickness appear to be similar for both heated and unheated jets at low Mach numbers.

  16. Effect of electronic excitation on high-temperature flows behind strong shock waves

    SciTech Connect

    Istomin, V. A.; Kustova, E. V.

    2014-12-09

    In the present paper, a strongly non-equilibrium one-dimensional steady-state flow behind the plane shock wave is studied. We consider a high-temperature chemically reacting five-component ionized mixture of nitrogen species (N{sub 2}/N{sub 2}{sup 2}/N/N{sup +}/e{sup −}) taking into account electronic degrees of freedom in N and N{sup +} (170 and 625 electronic energy levels respectively), and electronic-rotational-vibrational modes in N{sub 2} and N{sub 2}{sup +} (5 and 7 electronic terms). Non-equilibrium reactions of ionization, dissociation, recombination and charge-transfer are included to the kinetic scheme. The system of governing equations is written under the assumption that translation and internal energy relaxation is fast whereas chemical reactions and ionization proceed on the macroscopic gas-dynamics time-scale. The developed model is applied to simulate the flow behind a plane shock wave under initial conditions characteristic for the spacecraft re-entry from an interplanetary flight (Hermes and Fire II experiments). Fluid-dynamic parameters behind the shock wave as well as transport coefficients and the heat flux are calculated for the (N{sub 2}/N{sub 2}{sup +}/N/N{sup +}/e{sup −}) mixture. The effect of electronic excitation on kinetics, dynamics and heat transfer is analyzed. Whereas the contribution of electronic degrees of freedom to the flow macroparameters is negligible, their influence on the heat flux is found to be important under conditions of Hermes re-entry.

  17. MODELING AIR FLOW DYNAMICS IN RADON MITIGATION SYSTEMS: A SIMPLIFIED APPROACH

    EPA Science Inventory

    The paper refines and extends an earlier study--relating to the design of optimal radon mitigation systems based on subslab depressurization-- that suggested that subslab air flow induced by a central suction point be treated as radial air flow through a porous bed contained betw...

  18. Use of exhaust gas as sweep flow to enhance air separation membrane performance

    DOEpatents

    Dutart, Charles H.; Choi, Cathy Y.

    2003-01-01

    An intake air separation system for an internal combustion engine is provided with purge gas or sweep flow on the permeate side of separation membranes in the air separation device. Exhaust gas from the engine is used as a purge gas flow, to increase oxygen flux in the separation device without increasing the nitrogen flux.

  19. Ignition of hydrocarbon-air supersonic flow by volumetric ionization

    NASA Astrophysics Data System (ADS)

    Goldfeld, Marat A.; Pozdnyakov, George A.

    2015-11-01

    The paper describes the results of the electron-beam initiation of the combustion in the mixtures of hydrogen, natural gas or kerosene vapors with air. Electron beam characteristics were studied in closed volume with immobile gas. The researches included definition of an integrated current of an electronic beam, distribution of a current density and an estimation of average energy of electrons. Possibility of fuel mixtures ignition by means of this approach in the combustor at high velocity at the entrance was demonstrated. Experiments were carried out at Mach numbers of 4 and 5. Process of ignition and combustion under electron beam action was researched. It was revealed that ignition of mixture occurs after completion of electron gun operation. Data obtained have confirmed effectiveness of electron beam application for ignition of hydrogen and natural gas. The numerical simulation of the combustion of mixture in channel was carried out by means of ANSYS CFD 12.0 instrumentation on the basis of Reynolds averaged Navier-Stokes equation using SST/k-ω turbulence model. For combustion modeling, a detailed kinetic scheme with 38 reactions of 8 species was implemented taking into account finite rate chemistry. Computations have shown that the developed model allow to predict ignition of a mixture and flame propagation even at low flow temperatures.

  20. Simultaneous identification of multi-combustion-intermediates of alkanol-air flames by femtosecond filament excitation for combustion sensing

    PubMed Central

    Li, Helong; Chu, Wei; Xu, Huailiang; Cheng, Ya; Chin, See-Leang; Yamanouchi, Kaoru; Sun, Hong-Bo

    2016-01-01

    Laser filamentation produced by the propagation of intense laser pulses in flames is opening up new possibility in application to combustion diagnostics that can provide useful information on understanding combustion processes, enhancing combustion efficiency and reducing pollutant products. Here we present simultaneous identification of multiple combustion intermediates by femtosecond filament excitation for five alkanol-air flames fueled by methanol, ethanol, n-propanol, n-butanol, and n-pentanol. We experimentally demonstrate that the intensities of filament-induced photoemission signals from the combustion intermediates C, C2, CH, CN increase with the increasing number of carbons in the fuel molecules, and the signal ratios between the intermediates (CH/C, CH/C2, CN/C, CH/C2, CN/CH) are different for different alkanol combustion flames. Our observation provides a way for sensing multiple combustion components by femtosecond filament excitation in various combustion conditions that strongly depend on the fuel species. PMID:27250021

  1. Simultaneous identification of multi-combustion-intermediates of alkanol-air flames by femtosecond filament excitation for combustion sensing.

    PubMed

    Li, Helong; Chu, Wei; Xu, Huailiang; Cheng, Ya; Chin, See-Leang; Yamanouchi, Kaoru; Sun, Hong-Bo

    2016-01-01

    Laser filamentation produced by the propagation of intense laser pulses in flames is opening up new possibility in application to combustion diagnostics that can provide useful information on understanding combustion processes, enhancing combustion efficiency and reducing pollutant products. Here we present simultaneous identification of multiple combustion intermediates by femtosecond filament excitation for five alkanol-air flames fueled by methanol, ethanol, n-propanol, n-butanol, and n-pentanol. We experimentally demonstrate that the intensities of filament-induced photoemission signals from the combustion intermediates C, C2, CH, CN increase with the increasing number of carbons in the fuel molecules, and the signal ratios between the intermediates (CH/C, CH/C2, CN/C, CH/C2, CN/CH) are different for different alkanol combustion flames. Our observation provides a way for sensing multiple combustion components by femtosecond filament excitation in various combustion conditions that strongly depend on the fuel species. PMID:27250021

  2. Simultaneous identification of multi-combustion-intermediates of alkanol-air flames by femtosecond filament excitation for combustion sensing

    NASA Astrophysics Data System (ADS)

    Li, Helong; Chu, Wei; Xu, Huailiang; Cheng, Ya; Chin, See-Leang; Yamanouchi, Kaoru; Sun, Hong-Bo

    2016-06-01

    Laser filamentation produced by the propagation of intense laser pulses in flames is opening up new possibility in application to combustion diagnostics that can provide useful information on understanding combustion processes, enhancing combustion efficiency and reducing pollutant products. Here we present simultaneous identification of multiple combustion intermediates by femtosecond filament excitation for five alkanol-air flames fueled by methanol, ethanol, n-propanol, n-butanol, and n-pentanol. We experimentally demonstrate that the intensities of filament-induced photoemission signals from the combustion intermediates C, C2, CH, CN increase with the increasing number of carbons in the fuel molecules, and the signal ratios between the intermediates (CH/C, CH/C2, CN/C, CH/C2, CN/CH) are different for different alkanol combustion flames. Our observation provides a way for sensing multiple combustion components by femtosecond filament excitation in various combustion conditions that strongly depend on the fuel species.

  3. Flow of Compressible Fluids Through Cracks in Elastic Bodies and Excitation of Volcanic Tremor

    NASA Astrophysics Data System (ADS)

    Dunham, E. M.; Ogden, D. E.

    2010-12-01

    We investigate the eruption of fluids through conduits in elastic bodies, with particular focus on the excitation of seismic waves by conduit wall oscillations induced by fluid flow. The models are presently two-dimensional with plane strain elastic response, such that the conduits most closely represent magma-filled dikes. The fluid response is idealized using quasi-one-dimensional mass and momentum balance equations for isothermal compressible flows, including both gravity and frictional drag. The mixture of exsolved gas and liquid melt is treated as a single phase fluid with an equation of state that captures the extreme changes in compressibility that occur as gas exsolves. Both the elastic wave equation and the fluid equations are solved with high order finite differences. The fluid and solid response is fully coupled: elastic deformation changes the cross-sectional area of the conduit through which fluid flows, and changes in fluid pressure push the conduit walls in and out. Because elastic wave speeds are nearly an order of magnitude faster than the fluid sound speed, elastic equilibrium is approached very rapidly over the time scale of fluid flow. We have conducted a preliminary study of a dike filled with overpressurized magma breaking Earth's surface. Contact with the much lower atmospheric pressure at the surface drives a rarefaction down into fluid at the fluid sound speed; in the rarefaction, fluid pressure drops and gas exsolves. This induces a suction on the conduit walls that pulls them together. The reduction in conduit width occurs not only within the rarefaction, but also ahead of it due to the nearly instantaneous elastic response. This compresses the fluid ahead of the rarefaction, increasing its pressure. The resulting pressure gradient decelerates the rarefaction and appears to limit the depth extent to which the gas exsolution processes occurs (at least over short time scales). We also see that as the rarefaction continues to propagate, the

  4. Flow measurement in base cooling air passages of a rotating turbine blade

    NASA Technical Reports Server (NTRS)

    Liebert, C. H.; Pollack, F. G.

    1974-01-01

    The operational performance is decribed of a shaft-mounted system for measuring the air mass flow rate in the base cooling passages of a rotating turbine blade. Shaft speeds of 0 to 9000 rpm, air mass flow rates of 0.0035 to 0.039 kg/sec (0.0077 to 0.085 lbm/sec), and blade air temperatures of 300 to 385 K (80 to 233 F) were measured. Comparisons of individual rotating blade flows and corresponding stationary supply orifice flows agreed to within 10 percent.

  5. Permissible overheating of the gaseous medium in a gas-flow laser excited by fission fragments from uranium nuclei

    SciTech Connect

    Prikhod'ko, E V; Sizov, A N

    1999-09-30

    The limits on the permissible overheating of the gaseous mixtures in gas-flow lasers excited by uranium-nuclear-fission fragments are examined. The first limit is associated with the possibility of growth of a heat-removal zone near the walls and the second arises from the need to preserve the cavity stability. (active media)

  6. Experimental verification of the four-sensor probe model for flow diagnosis in air water flow in vertical pipe

    NASA Astrophysics Data System (ADS)

    Pradhan, S.; Mishra, R.

    2012-05-01

    Measuring the volumetric flow rate of each of the flowing components is required to be monitored in production logging applications. Hence it is necessary to measure the flow rates of gas, oil and water in vertical and inclined oil wells. An increasing level of interest has been shown by the researchers in developing system for the flow rate measurement in multiphase flows. This paper describes the experimental methodology using a miniature, local four-sensor probe for the measurement of dispersed flow parameters in bubbly two-phase flow for spherical bubbles. To establish interdependent among different parameters corresponding to dispersed flow, the available model has been used to experimentally obtain different parameters such as volume fraction, velocity and bubble shape of the dispersed phase in the bubbly air-water flow.

  7. Managing the Drivers of Air Flow and Water Vapor Transport in Existing Single Family Homes (Revised)

    SciTech Connect

    Cummings, J.; Withers, C.; Martin, E.; Moyer, N.

    2012-10-01

    This document focuses on managing the driving forces which move air and moisture across the building envelope. While other previously published Measure Guidelines focus on elimination of air pathways, the ultimate goal of this Measure Guideline is to manage drivers which cause air flow and water vapor transport across the building envelope (and also within the home), control air infiltration, keep relative humidity (RH) within acceptable limits, avoid combustion safety problems, improve occupant comfort, and reduce house energy use.

  8. A Miniature Radial-Flow Wind Turbine Using Piezoelectric Transducers and Magnetic Excitation

    NASA Astrophysics Data System (ADS)

    Fu, H.; Yeatman, E. M.

    2015-12-01

    This paper presents a miniature radial-flow piezoelectric wind turbine for harvesting airflow energy. The turbine's transduction is achieved by magnetic “plucking”of a piezoelectric beam by the passing rotor. The magnetic coupling is formed by two magnets on the beam's free end and on the rotor plate. Frequency up-conversion is realized by the magnetic excitation, allowing the rotor to rotate at any low frequency while the beam can vibrate at its resonant frequency after each plucking. The operating range of the device is, therefore, expanded by this mechanism. Two arrangements of magnetic orientation have been investigated, showing that the repulsive arrangement has higher output power. The influence of the vertical gap between magnets was also examined, providing guidance for the final design. A prototype was built and tested in a wind tunnel. A peak power output of 159 μW was obtained with a 270 kΩ load at 2.7 m/s airflow speed. The device started working at 3.5 m/s and kept operating when the airflow speed fell to 1.84 m/s.

  9. Two-phase air-water stratified flow measurement using ultrasonic techniques

    SciTech Connect

    Fan, Shiwei; Yan, Tinghu; Yeung, Hoi

    2014-04-11

    In this paper, a time resolved ultrasound system was developed for investigating two-phase air-water stratified flow. The hardware of the system includes a pulsed wave transducer, a pulser/receiver, and a digital oscilloscope. The time domain cross correlation method is used to calculate the velocity profile along ultrasonic beam. The system is able to provide velocities with spatial resolution of around 1mm and the temporal resolution of 200μs. Experiments were carried out on single phase water flow and two-phase air-water stratified flow. For single phase water flow, the flow rates from ultrasound system were compared with those from electromagnetic flow (EM) meter, which showed good agreement. Then, the experiments were conducted on two-phase air-water stratified flow and the results were given. Compared with liquid height measurement from conductance probe, it indicated that the measured velocities were explainable.

  10. Flow properties in expansion tube with helium, argon, air, and CO2

    NASA Technical Reports Server (NTRS)

    Miller, C. G.

    1974-01-01

    Test flow velocities from 5 to 7 km/sec were generated in a 6-in. expansion tube using helium, argon, air, and CO2 test gases. Pitot pressure profiles across the flow at the test section are presented for the four test gases, and measured flow quantities are compared to computer predicted values. Comparison of predicted and measured flow quantities suggests the expansion to be near thermochemical equilibrium for all test gases and implies the existence of a totally reflected shock at the secondary diaphragm. Argon, air, and CO2 flows were observed to attenuate while traversing the acceleration section, whereas no attenuation was observed for helium.

  11. Laboratory Evaluation of Air Flow Measurement Methods for Residential HVAC Returns for New Instrument Standards

    SciTech Connect

    Walker, Iain; Stratton, Chris

    2015-08-01

    This project improved the accuracy of air flow measurements used in commissioning California heating and air conditioning systems in Title 24 (Building and Appliance Efficiency Standards), thereby improving system performance and efficiency of California residences. The research team at Lawrence Berkeley National Laboratory addressed the issue that typical tools used by contractors in the field to test air flows may not be accurate enough to measure return flows used in Title 24 applications. The team developed guidance on performance of current diagnostics as well as a draft test method for use in future evaluations. The study team prepared a draft test method through ASTM International to determine the uncertainty of air flow measurements at residential heating ventilation and air conditioning returns and other terminals. This test method, when finalized, can be used by the Energy Commission and other entities to specify required accuracy of measurement devices used to show compliance with standards.

  12. Numerical Simulation of Two-phase Flow in a Microchannel with Air Gap

    NASA Astrophysics Data System (ADS)

    Liu, Xiaojun; Meinhart, Carl D.

    2001-11-01

    Fluid transport in nano- and micro-scale devices becomes more and more important. The potential advantages of micro-channel with air gap are studied. A simple one-dimensional model of air-water two-phase flow is investigated theoretically. The flow of water is driven by pressure drop. The air in the gap is driven by surface tension and friction forces that exist at the interface between the water and air. With the limitation that air flow rate is zero, the theoretical results are obtained based on continuity and Navier-Stokes equations. Because the viscosity of air is much less than that of water, under same pressure drop, the flow rate of water can be increased to as 4.76 times as that of normal channel without air gap. The theoretical results are tested by numerical simulation with three different software package (CFD2000, FEMLab and CFDRC) using a two-dimensional model. The interface shape, interface velocity, water flow rate and optimum height ratio are studied. Thenumerical results for different package match each other very well. The numerical results show that increasing water flow rate by adding air gap in the micro channel is practicable.

  13. Plant pneumatics: stem air flow is related to embolism - new perspectives on methods in plant hydraulics.

    PubMed

    Pereira, Luciano; Bittencourt, Paulo R L; Oliveira, Rafael S; Junior, Mauro B M; Barros, Fernanda V; Ribeiro, Rafael V; Mazzafera, Paulo

    2016-07-01

    Wood contains a large amount of air, even in functional xylem. Air embolisms in the xylem affect water transport and can determine plant growth and survival. Embolisms are usually estimated with laborious hydraulic methods, which can be prone to several artefacts. Here, we describe a new method for estimating embolisms that is based on air flow measurements of entire branches. To calculate the amount of air flowing out of the branch, a vacuum was applied to the cut bases of branches under different water potentials. We first investigated the source of air by determining whether it came from inside or outside the branch. Second, we compared embolism curves according to air flow or hydraulic measurements in 15 vessel- and tracheid-bearing species to test the hypothesis that the air flow is related to embolism. Air flow came almost exclusively from air inside the branch during the 2.5-min measurements and was strongly related to embolism. We propose a new embolism measurement method that is simple, effective, rapid and inexpensive, and that allows several measurements on the same branch, thus opening up new possibilities for studying plant hydraulics. PMID:26918522

  14. Study of Various Slanted Air-Gap Structures of Interior Permanent Magnet Synchronous Motor with Brushless Field Excitation

    SciTech Connect

    Tolbert, Leon M; Lee, Seong T

    2010-01-01

    This paper shows how to maximize the effect of the slanted air-gap structure of an interior permanent magnet synchronous motor with brushless field excitation (BFE) for application in a hybrid electric vehicle. The BFE structure offers high torque density at low speed and weakened flux at high speed. The unique slanted air-gap is intended to increase the output torque of the machine as well as to maximize the ratio of the back-emf of a machine that is controllable by BFE. This irregularly shaped air-gap makes a flux barrier along the d-axis flux path and decreases the d-axis inductance; as a result, the reluctance torque of the machine is much higher than a uniform air-gap machine, and so is the output torque. Also, the machine achieves a higher ratio of the magnitude of controllable back-emf. The determination of the slanted shape was performed by using magnetic equivalent circuit analysis and finite element analysis (FEA).

  15. Indoor air flow and pollutant removal in a room with desk-top ventilation

    SciTech Connect

    Faulkner, D.; Fisk, W.J.; Sullivan, D.P.

    1993-04-01

    In a furnished experimental facility with three workstations separated by partitions, we studied indoor air flow patterns and tobacco smoke removal efficiency of a desk-top task ventilation system. The task ventilation system permits occupant control of the temperature, flow rate and direction of air supplied through two desk-mounted supply nozzles. In the configuration evaluated, air exited the ventilated space through a ceiling-mounted return grill. To study indoor air flow patterns, we measured the age of air at multiple indoor locations using the tracer gas step-up procedure. To study the intra-room transport of tobacco smoke particles and the efficiency of panicle removal by ventilation, a cigarette was smoked mechanically in one workstation and particle concentrations were measured at multiple indoor locations including the exhaust airstream. Test variables included the direction of air supply from the nozzles, supply nozzle area, supply flow rate and temperature, percent recirculation of chamber air, and internal heatloads. With nozzles pointed toward the occupants, 100% outside air supplied at the desk-top, and air supply rates of approximately 40 L/s per workstation, the age of air at the breathing level of ventilated workstations was approximately 30% less than the age of air that would occur throughout the test space with perfectly mixed indoor air. With smaller air supply rates and/or air supplied parallel to the edges of the desk, ages of air at breathing locations were not significantly lower than the age with perfect mixing. Indoor tobacco smoke particle concentrations at specific locations were generally within 12% of the average measured indoor concentration and concentrations of particles in the exhaust airstream were not significantly different from concentration of particles at breathing locations.

  16. Cold air performance of a 12.766-centimeter-tip-diameter axial-flow cooled turbine. 2: Effect of air ejection on turbine performance

    NASA Technical Reports Server (NTRS)

    Haas, J. E.; Kofskey, M. G.

    1977-01-01

    An air cooled version of a single-stage, axial-flow turbine was investigated to determine aerodynamic performance with and without air ejection from the stator and rotor blades surfaces to simulate the effect of cooling air discharge. Air ejection rate was varied from 0 to 10 percent of turbine mass flow for both the stator and the rotor. A primary-to-air ejection temperature ratio of about 1 was maintained.

  17. Kinetics of excited states and radicals in a nanosecond pulse discharge and afterglow in nitrogen and air

    NASA Astrophysics Data System (ADS)

    Shkurenkov, Ivan; Burnette, David; Lempert, Walter R.; Adamovich, Igor V.

    2014-12-01

    The present kinetic modelling calculation results provide key new insights into the kinetics of vibrational excitation of nitrogen and plasma chemical reactions in nanosecond pulse, ‘diffuse filament’ discharges in nitrogen and dry air at a moderate energy loading per molecule, ˜0.1 eV per molecule. It is shown that it is very important to take into account Coulomb collisions between electrons because they change the electron energy distribution function and, as a result, strongly affect populations of excited states and radical concentrations in the discharge. The results demonstrate that the apparent transient rise of N2 ‘first level’ vibrational temperature after the discharge pulse, as detected in the experiments, is due to the net downward V-V energy transfer in N2-N2 collisions, which increases the N2(X 1Σ, v = 1) population. Finally, a comparison of the model's predictions with the experimental data shows that NO formation in the afterglow occurs via reactive quenching of multiple excited electronic levels of nitrogen molecule, N2\\ast , by O atoms. ) published in this volume, which focuses on the kinetic modelling of the experiments. This paper presents the results of the experiments.

  18. Experimental and analytical dynamic flow characteristics of an axial-flow fan from an air cushion landing system model

    NASA Technical Reports Server (NTRS)

    Thompson, W. C.; Boghani, A. B.; Leland, T. J. W.

    1977-01-01

    An investigation was conducted to compare the steady-state and dynamic flow characteristics of an axial-flow fan which had been used previously as the air supply fan for some model air cushion landing system studies. Steady-state flow characteristics were determined in the standard manner by using differential orifice pressures for the flow regime from free flow to zero flow. In this same regime, a correlative technique was established so that fan inlet and outlet pressures could be used to measure dynamic flow as created by a rotating damper. Dynamic tests at damper frequencies up to 5 Hz showed very different flow characteristics when compared with steady-state flow, particularly with respect to peak pressures and the pressure-flow relationship at fan stall and unstall. A generalized, rational mathematical fan model was developed based on physical fan parameters and a steady-state flow characteristic. The model showed good correlation with experimental tests at damper frequencies up to 5 Hz.

  19. Computational modeling of air-breathing microfluidic fuel cells with flow-over and flow-through anodes

    NASA Astrophysics Data System (ADS)

    Zhang, Biao; Ye, Ding-ding; Sui, Pang-Chieh; Djilali, Ned; Zhu, Xun

    2014-08-01

    A three-dimensional computational model for air-breathing microfluidic fuel cells (AMFCs) with flow-over and flow-through anodes is developed. The coupled multiphysics phenomena of fluid flow, species transport and electrochemical reactions are resolved numerically. The model has been validated against experimental data using an in-house AMFC prototype with a flow-through anode. Characteristics of fuel transfer and fuel crossover for both types of anodes are investigated. The model results reveal that the fuel transport to the flow-over anode is intrinsically limited by the fuel concentration boundary layer. Conversely, fuel transport for the flow-through anode is convectively enhanced by the permeate flow, and no concentration boundary layer is observed. An unexpected additional advantage of the flow-through anode configuration is lower parasitic (crossover) current density than the flow-over case at practical low flow rates. Cell performance of the flow-through case is found to be limited by reaction kinetics. The present model provides insights into the fuel transport and fuel crossover in air-breathing microfluidic fuel cells and provides guidance for further design and operation optimization.

  20. Program and charts for determining shock tube, and expansion tunnel flow quantities for real air

    NASA Technical Reports Server (NTRS)

    Miller, C. G., III; Wilder, S. E.

    1975-01-01

    A computer program in FORTRAN 4 language was written to determine shock tube, expansion tube, and expansion tunnel flow quantities for real-air test gas. This program permits, as input data, a number of possible combinations of flow quantities generally measured during a test. The versatility of the program is enhanced by the inclusion of such effects as a standing or totally reflected shock at the secondary diaphragm, thermochemical-equilibrium flow expansion and frozen flow expansion for the expansion tube and expansion tunnel, attenuation of the flow in traversing the acceleration section of the expansion tube, real air as the acceleration gas, and the effect of wall boundary layer on the acceleration section air flow. Charts which provide a rapid estimation of expansion tube performance prior to a test are included.

  1. Performance improvement of a cross-flow hydro turbine by air layer effect

    NASA Astrophysics Data System (ADS)

    Choi, Y. D.; Yoon, H. Y.; Inagaki, M.; Ooike, S.; Kim, Y. J.; Lee, Y. H.

    2010-08-01

    The purpose of this study is not only to investigate the effects of air layer in the turbine chamber on the performance and internal flow of the cross-flow turbine, but also to suggest a newly developed air supply method. Field test is performed in order to measure the output power of the turbine by a new air supply method. CFD analysis on the performance and internal flow of the turbine is conducted by an unsteady state calculation using a two-phase flow model in order to embody the air layer effect on the turbine performance effectively.The result shows that air layer effect on the performance of the turbine is considerable. The air layer located in the turbine runner passage plays the role of preventing a shock loss at the runner axis and suppressing a recirculation flow in the runner. The location of air suction hole on the chamber wall is very important factor for the performance improvement. Moreover, the ratio between air from suction pipe and water from turbine inlet is also significant factor of the turbine performance.

  2. LABORATORY EVALUATION OF AIR FLOW MEASUREMENT METHODS FOR RESIDENTIAL HVAC RETURNS

    SciTech Connect

    Walker, Iain; Stratton, Chris

    2015-02-01

    This project improved the accuracy of air flow measurements used in commissioning California heating and air conditioning systems in Title 24 (Building and Appliance Efficiency Standards), thereby improving system performance and efficiency of California residences. The research team at Lawrence Berkeley National Laboratory addressed the issue that typical tools used by contractors in the field to test air flows may not be accurate enough to measure return flows used in Title 24 applications. The team developed guidance on performance of current diagnostics as well as a draft test method for use in future evaluations. The series of tests performed measured air flow using a range of techniques and devices. The measured air flows were compared to reference air flow measurements using inline air flow meters built into the test apparatus. The experimental results showed that some devices had reasonable results (typical errors of 5 percent or less) but others had much bigger errors (up to 25 percent). Because manufacturers’ accuracy estimates for their equipment do not include many of the sources of error found in actual field measurements (and replicated in the laboratory testing in this study) it is essential for a test method that could be used to determine the actual uncertainty in this specific application. The study team prepared a draft test method through ASTM International to determine the uncertainty of air flow measurements at residential heating ventilation and air conditioning returns and other terminals. This test method, when finalized, can be used by the Energy Commission and other entities to specify required accuracy of measurement devices used to show compliance with standards.

  3. Simulation of air-droplet mixed phase flow in icing wind-tunnel

    NASA Astrophysics Data System (ADS)

    Mengyao, Leng; Shinan, Chang; Menglong, Wu; Yunhang, Li

    2013-07-01

    Icing wind-tunnel is the main ground facility for the research of aircraft icing, which is different from normal wind-tunnel for its refrigeration system and spraying system. In stable section of icing wind-tunnel, the original parameters of droplets and air are different, for example, to keep the nozzles from freezing, the droplets are heated while the temperature of air is low. It means that complex mass and heat transfer as well as dynamic interactive force would happen between droplets and air, and the parameters of droplet will acutely change along the passageway. Therefore, the prediction of droplet-air mixed phase flow is necessary in the evaluation of icing researching wind-tunnel. In this paper, a simplified droplet-air mixed phase flow model based on Lagrangian method was built. The variation of temperature, diameter and velocity of droplet, as well as the air flow field, during the flow process were obtained under different condition. With calculating three-dimensional air flow field by FLUENT, the droplet could be traced and the droplet distribution could also be achieved. Furthermore, the patterns about how initial parameters affect the parameters in test section were achieved. The numerical simulation solving the flow and heat and mass transfer characteristics in the mixing process is valuable for the optimization of experimental parameters design and equipment adjustment.

  4. 42 CFR 84.155 - Airflow resistance test; Type C supplied-air respirator, continuous flow class and Type CE...

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... respirator, continuous flow class and Type CE supplied-air respirator; minimum requirements. 84.155 Section... Respirators § 84.155 Airflow resistance test; Type C supplied-air respirator, continuous flow class and Type... shall not exceed 25 mm. (1 inch) of water-column height when the air flow into the...

  5. Excitation and separation of vortex modes in twisted air-core fiber.

    PubMed

    Ye, Jingfu; Li, Yan; Han, Yanhua; Deng, Duo; Guo, Zhongyi; Gao, Jianmin; Sun, Qiaoqun; Liu, Yi; Qu, Shiliang

    2016-04-18

    An air-core fiber imposed by torsion is investigated in this paper. We refer to this kind of fiber as twisted air-core fiber (TAF). It has been demonstrated that the eigenstates of the TAF consist of guided optical vortex waves with different propagation constants of a different effective index. With the increase of the twist rate, TAF could separate the OAM modes which are near degenerate or degenerate in the air-core fiber. The separation of OAM modes in TAF is conductive to ultralong distance propagation with low crosstalk. TAF could be considered as an ideal candidate fiber for OAM based optical communication. Moreover, we investigated the twisted air-core photonic crystal fiber (TAPCF) which can improve the relative energy distribution of the OAM modes. Compared with TAF, more energy is located in the ring shaped core, which is conductive to ultralong distance propagation. TAF and TAPCF are of potential interest for increasing channel capacity in optical telecommunications, and the result is also of interest to the photonic crystal community. PMID:27137269

  6. Reduction effect of neutral density on the excitation of turbulent drift waves in a linear magnetized plasma with flow

    SciTech Connect

    Saitou, Y.; Yonesu, A.; Shinohara, S.; Ignatenko, M. V.; Kasuya, N.; Kawaguchi, M.; Terasaka, K.; Nishijima, T.; Nagashima, Y.; Kawai, Y.; Yagi, M.; Itoh, S.-I.; Azumi, M.; Itoh, K.

    2007-07-15

    The importance of reducing the neutral density to reach strong drift wave turbulence is clarified from the results of the extended magnetohydrodynamics and Monte Carlo simulations in a linear magnetized plasma. An upper bound of the neutral density relating to the ion-neutral collision frequency for the excitation of drift wave instability is shown, and the necessary flow velocity to excite this instability is also estimated from the neutral distributions. Measurements of the Mach number and the electron density distributions using Mach probe in the large mirror device (LMD) of Kyushu University [S. Shinohara et al., Plasma Phys. Control. Fusion 37, 1015 (1995)] are reported as well. The obtained results show a controllability of the neutral density and provide the basis for neutral density reduction and a possibility to excite strong drift wave turbulence in the LMD.

  7. Laser sheet light flow visualization for evaluating room air flowsfrom Registers

    SciTech Connect

    Walker, Iain S.; Claret, Valerie; Smith, Brian

    2006-04-01

    Forced air heating and cooling systems and whole house ventilation systems deliver air to individual rooms in a house via supply registers located on walls ceilings or floors; and occasionally less straightforward locations like toe-kicks below cabinets. Ideally, the air velocity out of the registers combined with the turbulence of the flow, vectoring of air by register vanes and geometry of register placement combine to mix the supply air within the room. A particular issue that has been raised recently is the performance of multiple capacity and air flow HVAC systems. These systems vary the air flow rate through the distribution system depending on the system load, or if operating in a ventilation rather than a space conditioning mode. These systems have been developed to maximize equipment efficiency, however, the high efficiency ratings do not include any room mixing effects. At lower air flow rates, there is the possibility that room air will be poorly mixed, leading to thermal stratification and reduced comfort for occupants. This can lead to increased energy use as the occupants adjust the thermostat settings to compensate and parts of the conditioned space have higher envelope temperature differences than for the well mixed case. In addition, lack of comfort can be a barrier to market acceptance of these higher efficiency systems To investigate the effect on room mixing of reduced air flow rates requires the measurement of mixing of supply air with room air throughout the space to be conditioned. This is a particularly difficult exercise if we want to determine the transient performance of the space conditioning system. Full scale experiments can be done in special test chambers, but the spatial resolution required to fully examine the mixing problem is usually limited by the sheer number of thermal sensors required. Current full-scale laboratory testing is therefore severely limited in its resolution. As an alternative, we used a water-filled scale model

  8. Mitigation of electron attachment to oxygen in high pressure air plasmas by vibrational excitation

    NASA Astrophysics Data System (ADS)

    Frederickson, K.; Lee, W.; Palm, P.; Adamovich, I. V.; Rich, J. W.; Lempert, W. R.

    2007-05-01

    A series of time resolved microwave attenuation measurements are performed of the electron number density of an electron beam generated, CO laser excited nonequilibrium O2/N2 plasma. Resonant absorption of infrared radiation from the CO laser produces the nonequilibrium state, in which the heavy species vibrational modes are disproportionately excited, compared to the rotational and translational modes (Tvib≈2000-3000K vs TR /T≈300K). It is shown that this results in an increase in the plasma free electron lifetime by two orders of magnitude compared to the unexcited cold gas, an effect which is ascribed to complete mitigation of rapid three-body electron attachment to molecular oxygen. A series of heavy species filtered pure rotational Raman scattering measurements are also presented, which exhibit minimal temperature change (+50K), indicating that the observed lifetime increase cannot be due to heavy-species thermal effects. Finally, computational modeling results infer an increase in the rate of O2- detachment by four to five orders of magnitude, compared to the equilibrium value.

  9. Intercooler cooling-air weight flow and pressure drop for minimum drag loss

    NASA Technical Reports Server (NTRS)

    Reuter, J George; Valerino, Michael F

    1944-01-01

    An analysis has been made of the drag losses in airplane flight of cross-flow plate and tubular intercoolers to determine the cooling-air weight flow and pressure drop that give a minimum drag loss for any given cooling effectiveness and, thus, a maximum power-plant net gain due to charge-air cooling. The drag losses considered in this analysis are those due to (1) the extra drag imposed on the airplane by the weight of the intercooler, its duct, and its supports and (2) the drag sustained by the cooling air in flowing through the intercooler and its duct. The investigation covers a range of conditions of altitude, airspeed, lift-drag ratio, supercharger-pressure ratio, and supercharger adiabatic efficiency. The optimum values of cooling air pressure drop and weight flow ratio are tabulated. Curves are presented to illustrate the results of the analysis.

  10. Experimental study on bi-phase flow Air-Oil in Water Emulsion

    NASA Astrophysics Data System (ADS)

    Arnone, Davide; Poesio, Pietro

    2015-11-01

    Bi-phase slug flow oil-in-water emulsion [5%-20%] and air through a horizontal pipe (inner diameter 22mm) is experimentally studied. A test with water and air has been performed as comparison. First we create and analyze the flow pattern map to identify slug flow liquid and air inlet conditions. Flow maps are similar for all the used liquid. A video analysis procedure using an high speed camera has been created to obtain all the characteristics of unit slugs: slug velocity, slug length, bubble velocity, bubbles length and slug frequency. We compare translational velocity and frequency with models finding a good agreement. We calculate the pdfs of the lengths to find the correlations between mean values and STD on different air and liquid superficial velocities. We also perform pressure measurements along the pipe. We conclude that the percentage of oil-in- water has no influence on results in terms of velocity, lengths, frequency and pressure drop.

  11. Study of flow fields induced by surface dielectric barrier discharge actuator in low-pressure air

    SciTech Connect

    Che, Xueke E-mail: st@mail.iee.ac.cn; Nie, Wansheng; Tian, Xihui; Hou, Zhiyong; He, Haobo; Zhou, Penghui; Zhou, Siyin; Yang, Chao; Shao, Tao E-mail: st@mail.iee.ac.cn

    2014-04-15

    Surface dielectric barrier discharge (SDBD) is a promising method for a flow control. Flow fields induced by a SDBD actuator driven by the ac voltage in static air at low pressures varying from 1.0 to 27.7 kPa are measured by the particle image velocimetry method. The influence of the applied ac voltage frequency and magnitude on the induced flow fields is studied. The results show that three different classes of flow fields (wall jet flow field, complex flow field, and vortex-shape flow field) can be induced by the SDBD actuator in the low-pressure air. Among them, the wall jet flow field is the same as the tangential jet at atmospheric pressure, which is, together with the vertical jet, the complex flow field. The vortex-shape flow field is composed of one vertical jet which points towards the wall and two opposite tangential jets. The complex and the vortex-shape flow fields can be transformed to the wall jet flow field when the applied ac voltage frequency and magnitude are changed. It is found that the discharge power consumption increases initially, decreases, and then increases again at the same applied ac voltage magnitude when the air pressure decreases. The tangential velocity of the wall jet flow field increases when the air pressure decreases. It is however opposite for the complex flow field. The variation of the applied ac voltage frequency influences differently three different flow fields. When the applied ac voltage magnitude increases at the same applied ac voltage frequency, the maximal jet velocity increases, while the power efficiency increases only initially and then decreases again. The discharge power shows either linear or exponential dependences on the applied ac voltage magnitude.

  12. High efficiency, down flow air filter sealing and support system

    SciTech Connect

    Mattison, A.H.

    1986-07-15

    An assembly of high efficiency air filter units through which essentially all air entering a clean space below the units must pass to remove particulate matter down to sub-micron size from the air, the assembly comprising: (a) a plurality of air filter units each having a filter core of pleated media sealed in air-tight engagement on four sides to a surrounding, box-like, rigid frame, having side and end members; (b) means for supporting the filter units adjacent the upper surfaces thereof from structure above the space with adjacent units having the side and end members thereof providing adjoining vertical surfaces in closely spaced relation with the lower surfaces of the units in essentially the same horizontal plane to form at least a portion of the top of the space; and (c) a caulking material filling all spaces between the adjoining vertical surfaces of adjacent filter units, effectively sealing the spaces and providing the sole means preventing passage of air around the units.

  13. Development of a Low Pressure, Air Atomized Oil Burner with High Atomizer Air Flow: Progress Report FY 1997

    SciTech Connect

    Butcher, T.A.

    1998-01-01

    This report describes technical advances made to the concept of a low pressure, air atomized oil burner for home heating applications. Currently all oil burners on the market are of the pressure atomized, retention head type. These burners have a lower firing rate limit of about 0.5 gallons per hour of oil, due to reliability problems related to small flow passage sizes. High pressure air atomized burners have been shown to be one route to avoid this problem but air compressor cost and reliability have practically eliminated this approach. With the low pressure air atomized burner the air required for atomization can be provided by a fan at 5-8 inches of water pressure. A burner using this concept, termed the Fan-Atomized Burner or ''FAB'' has been developed and is currently being commercialized. In the head of the FAB, the combustion air is divided into three parts, much like a conventional retention head burner. This report describes development work on a new concept in which 100% of the air from the fan goes through the atomizer. The primary advantage of this approach is a great simplification of the head design. A nozzle specifically sized for this concept was built and is described in the report. Basic flow pressure tests, cold air velocity profiles, and atomization performance have been measured. A burner head/flame tube has been developed which promotes a toroidal recirculation zone near the nozzle for flame stability. The burner head has been tested in several furnace and boiler applications over the firing rate range 0.2 to 0.28 gallons per hour. In all cases the burner can operate with very low excess air levels (under 10%) without producing smoke. Flue gas NO{sub x} concentration varied from 42 to 62 ppm at 3% O{sub 2}. The concept is seen as having significant potential and planned development efforts are discussed.

  14. Effect of pyrolysis temperature and air flow on toxicity of gases from a polycarbonate polymer

    NASA Technical Reports Server (NTRS)

    Hilado, C. J.; Brick, V. E.; Brauer, D. P.

    1978-01-01

    A polycarbonate polymer was evaluated for toxicity of pyrolysis gases generated at various temperatures without forced air flow and with 1 L/min air flow, using the toxicity screening test method developed at the University of San Francisco. Time to various animal responses decreased with increasing pyrolysis temperature over the range from 500 C to 800 C. There appeared to be no significant toxic effects at 400 C and lower temperatures.

  15. Flow distribution in unglazed transpired plate solar air heaters of large area

    SciTech Connect

    Gunnewiek, L.H.; Brundrett, E.; Hollands, K.G.T.

    1996-10-01

    Unglazed transpired plate solar air heaters have proven to be effective in heating outside air on a once-through basis for ventilation and drying applications. Outside air is sucked through unglazed plates having uniformly distributed perforations. The air is drawn into a plenum behind the plate and then supplied to the application by fans. Large collectors have been built that cover the sides of sizable buildings, and the problem of designing the system so that the air is sucked uniformly everywhere (or nearly so) has proven to be a challenging one. This article describes an analytical tool that has been developed to predict the flow distribution over the collector. It is based on modelling the flow-field in the plenum by means of a commercial CFD (computational fluid mechanics) code, incorporating a special set of boundary conditions to model the plate and the ambient air. The article presents the 2D version of the code, and applies it to the problem of predicting the flow distribution in still air (no wind) conditions, a situation well treated by a 2D code. Results are presented for a wide range of conditions, and design implications are discussed. An interesting finding of the study is that the heat transfer at the back of the plate can play an important role, and because of this heat transfer, the efficiency of a collector in nonuniform flow can actually be greater than that of the same collector in uniform flow. 15 refs., 7 figs.

  16. the nature of air flow near the inlets of blunt dust sampling probes

    NASA Astrophysics Data System (ADS)

    Vincent, J. H.; Hutson, D.; Mark, D.

    This paper sets out to describe the nature of air flow near blunt dust samplers in a way which allows a relatively simple assessment of their performances for collecting dust particles. Of particular importance is the shape of the limiting stream surface which divides the sampled air from that which passes outside the sampler, and how this is affected by the free-stream air velocity, the sampling flow rate, and the shape of the sampler body. This was investigated for two-dimensional and axially-symmetric sampler systems by means of complementary experiments using electrolytic tank potential flow analogues and a wind tunnel respectively. For extreme conditions the flow of air entering the sampling orifice may be wholly divergent or wholly convergent. For a wide range of intermediate conditions, however, the flow first diverges then converges, exhibiting a so-called "spring onion effect". Whichever of these applies for a particular situation, the flow may be considered to consist of two parts, the outer one dominated by the flow about the sampler body and the inner one dominated by the flow into the sampling orifice. Particle transport in this two-part flow may be assessed using ideas borrowed from thin-walled probe theory.

  17. COMIS -- an international multizone air-flow and contaminant transport model

    SciTech Connect

    Feustel, H.E.

    1998-08-01

    A number of interzonal models have been developed to calculate air flows and pollutant transport mechanisms in both single and multizone buildings. A recent development in multizone air-flow modeling, the COMIS model, has a number of capabilities that go beyond previous models, much as COMIS can be used as either a stand-alone air-flow model with input and output features or as an infiltration module for thermal building simulation programs. COMIS was designed during a 12 month workshop at Lawrence Berkeley National Laboratory (LBNL) in 1988-89. In 1990, the Executive Committee of the International Energy Agency`s Energy Conservation in Buildings and Community Systems program created a working group on multizone air-flow modeling, which continued work on COMIS. The group`s objectives were to study physical phenomena causing air flow and pollutant (e.g., moisture) transport in multizone buildings, develop numerical modules to be integrated in the previously designed multizone air flow modeling system, and evaluate the computer code. The working group supported by nine nations, officially finished in late 1997 with the release of IISiBat/COMIS 3.0, which contains the documented simulation program COMIS, the user interface IISiBat, and reports describing the evaluation exercise.

  18. Apparatus and method for generating large mass flow of high temperature air at hypersonic speeds

    NASA Technical Reports Server (NTRS)

    Sabol, A. P.; Stewart, R. B. (Inventor)

    1973-01-01

    High temperature, high mass air flow and a high Reynolds number test air flow in the Mach number 8-10 regime of adequate test flow duration is attained by pressurizing a ceramic-lined storage tank with air to a pressure of about 100 to 200 atmospheres. The air is heated to temperatures of 7,000 to 8,000 R prior to introduction into the tank by passing the air over an electric arc heater means. The air cools to 5,500 to 6,000 R while in the tank. A decomposable gas such as nitrous oxide or a combustible gas such as propane is injected into the tank after pressurization and the heated pressurized air in the tank is rapidly released through a Mach number 8-10 nozzle. The injected gas medium upon contact with the heated pressurized air effects an exothermic reaction which maintains the pressure and temperature of the pressurized air during the rapid release.

  19. Atmospheric air homogenous DBD plasma excited by bipolar nanosecond pulse used for improving the hydrophilic property of polypropylene

    NASA Astrophysics Data System (ADS)

    Yang, Dezheng; Wang, Wenchun; Zhang, Shuai; Liu, Zhijie; Jia, Li; Dai, Leyang

    2013-06-01

    In this paper, an air homogenous dielectric barrier discharge excited by bipolar nanosecond pulse voltage is obtained and used for the surface modification of polypropylene non-woven fabric at atmospheric pressure. Compared with the DBD plasma excited by sine alternating current (AC) voltage, nanosecond pulsed dielectric barrier discharge exhibits obvious advantages, e.g., better discharge homogeneity, lower energy cost, and lower plasma gas temperature etc. Hence it presents the potential application in improving the hydrophilic property of polypropylene non-woven fabric with high energy efficiency and without surface damage. To reduce the water contact angle of the polypropylene surface from 145° to 110°, the average energy cost of the nanosecond pulsed dielectric barrier discharge is only about 0.1 J/cm2, which is about 1/20 of AC dielectric barrier discharge. On the other hand, the surface damage of non-woven fabric induced by nanosecond pulsed dielectric barrier discharge plasma cannot be distinguished by SEM photographs.

  20. Laminar Flow Supersonic Wind Tunnel primary air injector

    NASA Technical Reports Server (NTRS)

    Smith, Brooke Edward

    1993-01-01

    This paper describes the requirements, design, and prototype testing of the flex-section and hinge seals for the Laminar Flow Supersonic Wind Tunnel Primary Injector. The supersonic atmospheric primary injector operates between Mach 1.8 and Mach 2.2 with mass-flow rates of 62 to 128 lbm/s providing the necessary pressure reduction to operate the tunnel in the desired Reynolds number (Re) range.

  1. Technique for measuring air flow and carbon dioxide flux in large, open-top chambers

    SciTech Connect

    Ham, J.M.; Owensby, C.E.; Coyne, P.I.

    1993-10-01

    Open-Top Chambers (OTCs) are commonly used to evaluate the effect of CO{sub 2},O{sub 3}, and other trace gases on vegetation. This study developed and tested a new technique for measuring forced air flow and net CO{sub 2} flux from OTCs. Experiments were performed with a 4.5-m diam. OTC with a sealed floor and a specialized air delivery system. Air flow through the chamber was computed with the Bernoulli equation using measurements of the pressure differential between the air delivery ducts and the chamber interior. An independent measurement of air flow was made simultaneously to calibrate and verify the accuracy of the Bernoulli relationship. The CO{sub 2} flux density was calculated as the product of chamber air flow and the difference in CO{sub 2} concentration between the air entering and exhausting from the OTC (C{sub in}-C{sub out}). Accuracy was evaluated by releasing CO{sub 2} within the OTC at known rates. Data were collected with OTCs at ambient and elevated CO{sub 2} ({approx}700 {mu}mol{sup -1}). Results showed the Bernoulli equation, with a flow coefficient of 0.7, accurately measured air flow in the OTC within {+-}5% regardless of flow rate and air duct geometry. Experiments in ambient OTCs showed CO{sub 2} flux density ({mu}mol m{sup -2} s{sup -1}), computed from 2-min averages of air flow and C{sub in} - C{sub out,} was typically within {+-} 10% of actual flux, provided that the exit air velocity at the top of the OTC was greater than 0.6 m s{sup -1}. Obtaining the same accuracy in CO{sub 2}-enriched OTCs required a critical exit velocity near 1.2 m s{sup -1} to minimize the incursion of ambient air and prevent contamination of exit gas sample. When flux data were integrated over time to estimate daily CO{sub 2} flux ({mu}mol m{sup -2} d{sup -1}), actual and measured values agreed to within {+-}2% for both ambient and CO{sub 2}-enriched chambers, suggesting that accurate measurements of daily net C exchange are possible with this technique.

  2. Propagation of density disturbances in air-water flow

    NASA Technical Reports Server (NTRS)

    Nassos, G. P.

    1969-01-01

    Study investigated the behavior of density waves propagating vertically in an atmospheric pressure air-water system using a technique based on the correlation between density change and electric resistivity. This information is of interest to industries working with heat transfer systems and fluid power and control systems.

  3. A criterion for the onset of slugging in horizontal stratified air-water countercurrent flow

    SciTech Connect

    Chun, Moon-Hyun; Lee, Byung-Ryung; Kim, Yang-Seok

    1995-09-01

    This paper presents an experimental and theoretical investigation of wave height and transition criterion from wavy to slug flow in horizontal air-water countercurrent stratified flow conditions. A theoretical formula for the wave height in a stratified wavy flow regime has been developed using the concept of total energy balance over a wave crest to consider the shear stress acting on the interface of two fluids. From the limiting condition of the formula for the wave height, a necessary criterion for transition from a stratified wavy flow to a slug flow has been derived. A series of experiments have been conducted changing the non-dimensional water depth and the flow rates of air in a horizontal pipe and a duct. Comparisons between the measured data and the predictions of the present theory show that the agreement is within {plus_minus}8%.

  4. An experimental study of geyser-like flows induced by a pressurized air pocket

    NASA Astrophysics Data System (ADS)

    Elayeb, I. S.; Leon, A.; Choi, Y.; Alnahit, A. O.

    2015-12-01

    Previous studies argues that the entrapment of pressurized air pockets within combined sewer systems can produce geyser flows, which is an oscillating jetting of a mixture of gas-liquid flows. To verify that pressurized air pockets can effectively produce geysers, laboratory experiments were conducted. However, past experiments were conducted in relatively small-scale apparatus (i.e. maximum φ2" vertical shaft). This study conducted a set of experiments in a larger apparatus. The experimental setup consists of an upstream head tank, a downstream head tank, a horizontal pipe (46.5ft long, φ6") and a vertical pipe (10ft long, φ6"). The initial condition for the experiments is constant flow discharge through the horizontal pipe. The experiments are initiated by injecting an air pocket with pre-determined volume and pressure at the upstream end of the horizontal pipe. The air pocket propagates through the horizontal pipe until it arrives to the vertical shaft, where it is released producing a geyser-like flow. Three flow rates in the horizontal pipe and three injected air pressures were tested. The variables measured were pressure at two locations in the horizontal pipe and two locations in the vertical pipe. High resolution videos at two regions in the vertical shaft were also recorded. To gain further insights in the physics of air-water interaction, the laboratory experiments were complemented with numerical simulations conducted using a commercial 3D CFD model, previously validated with experiments.

  5. Flow and containment characteristics of an air-curtain fume hood operated at high temperatures.

    PubMed

    Chen, Jia-Kun; Huang, Rong Fung; Hsin, Pei-Yi; Hsu, Ching Min; Chen, Chun-Wann

    2012-01-01

    The flow and leakage characteristics of the air-curtain fume hood under high temperature operation (between 100°C and 250°C) were studied. Laser-assisted flow visualization technique was used to reveal the hot plume movements in the cabinet and the critical conditions for the hood-top leakage. The sulfur hexafluoride tracer-gas concentration test method was employed to examine the containment spillages from the sash opening and the hood top. It was found that the primary parameters dominating the behavior of the flow field and hood performance are the sash height and the suction velocity as an air-curtain hood is operated at high temperatures. At large sash height and low suction velocity, the air curtain broke down and accompanied with three-dimensional flow in the cabinet. Since the suction velocity was low and the sash opening was large, the makeup air drawn down from the hood top became insufficient to counter act the rising hot plume. Under this situation, containment leakage from the sash opening and the hood top was observed. At small sash opening and high suction velocity, the air curtain presented robust characteristics and the makeup air flow from the hood top was sufficiently large. Therefore the containment leakages from the sash opening and the hood top were not observed. According to the results of experiments, quantitative operation sash height and suction velocity corresponding to the operation temperatures were suggested. PMID:22293724

  6. Vertical air circulation in a low-speed lateral flow wind turbine with rotary blades

    NASA Astrophysics Data System (ADS)

    Cheboxarov, Vik. V.; Cheboxarov, Val. V.

    2008-01-01

    The model of a large-scale lateral flow wind turbine with rotary blades is presented and the conditions of numerical aerodynamic investigation of this turbine are described. The results of numerical experiments show that air flowing past the turbine exhibits a considerable vertical (axial) circulation, which increases the power coefficient of the turbine. In the inner space of the turbine, two stable vortices are formed through which retarded streams partly leave the turbine upon flowing past the windward side, to be replaced by faster streams from adjacent layers of air.

  7. Thin-Film Air-Mass-Flow Sensor of Improved Design Developed

    NASA Technical Reports Server (NTRS)

    Fralick, Gustave C.; Wrbanek, John D.; Hwang, Danny P.

    2003-01-01

    Researchers at the NASA Glenn Research Center have developed a new air-mass-flow sensor to solve the problems of existing mass flow sensor designs. NASA's design consists of thin-film resistors in a Wheatstone bridge arrangement. The resistors are fabricated on a thin, constant-thickness airfoil to minimize disturbance to the airflow being measured. The following photograph shows one of NASA s prototype sensors. In comparison to other air-mass-flow sensor designs, NASA s thin-film sensor is much more robust than hot wires, causes less airflow disturbance than pitot tubes, is more accurate than vane anemometers, and is much simpler to operate than thermocouple rakes. NASA s thin-film air-mass-flow sensor works by converting the temperature difference seen at each leg of the thin-film Wheatstone bridge into a mass-flow rate. The following figure shows a schematic of this sensor with air flowing around it. The sensor operates as follows: current is applied to the bridge, which increases its temperature. If there is no flow, all the arms are heated equally, the bridge remains in balance, and there is no signal. If there is flow, the air passing over the upstream legs of the bridge reduces the temperature of the upstream legs and that leads to reduced electrical resistance for those legs. After the air has picked up heat from the upstream legs, it continues and passes over the downstream legs of the bridge. The heated air raises the temperature of these legs, increasing their electrical resistance. The resistance difference between the upstream and downstream legs unbalances the bridge, causing a voltage difference that can be amplified and calibrated to the airflow rate. Separate sensors mounted on the airfoil measure the temperature of the airflow, which is used to complete the calculation for the mass of air passing by the sensor. A current application for air-mass-flow sensors is as part of the intake system for an internal combustion engine. A mass-flow sensor is

  8. Phase 2: HGM air flow tests in support of HEX vane investigation

    NASA Technical Reports Server (NTRS)

    Cox, G. B., Jr.; Steele, L. L.; Eisenhart, D. W.

    1993-01-01

    Following the start of SSME certification testing for the Pratt and Whitney Alternate Turbopump Development (ATD) High Pressure Oxidizer Turbopump (HPOTP), cracking of the leading edge of the inner HEX vane was experienced. The HEX vane, at the inlet of the oxidizer bowl in the Hot Gas Manifold (HGM), accepts the HPOTP turbine discharge flow and turns it toward the Gaseous Oxidizer Heat Exchanger (GOX HEX) coil. The cracking consistently initiated over a specific circumferential region of the hex vane, with other circumferential locations appearing with increased run time. Since cracking had not to date been seen with the baseline HPOTP, a fluid-structural interaction involving the ATD HPOTP turbine exit flowfield and the HEX inner vane was suspected. As part of NASA contract NAS8-36801, Pratt and Whitney conducted air flow tests of the ATD HPOTP turbine turnaround duct flowpath in the MSFC Phase 2 HGM air flow model. These tests included HEX vane strain gages and additional fluctuating pressure gages in the turnaround duct and HEX vane flowpath area. Three-dimensional flow probe measurements at two stations downstream of the turbine simulator exit plane were also made. Modifications to the HPOTP turbine simulator investigated the effects on turbine exit flow profile and velocity components, with the objective of reproducing flow conditions calculated for the actual ATD HPOTP hardware. Testing was done at the MSFC SSME Dynamic Fluid Air Flow (Dual-Leg) Facility, at air supply pressures between 50 and 250 psia. Combinations of turbine exit Mach number and pressure level were run to investigate the effect of flow regime. Information presented includes: (1) Descriptions of turbine simulator modifications to produce the desired flow environment; (2) Types and locations for instrumentation added to the flow model for improved diagnostic capability; (3) Evaluation of the effect of changes to the turbine simulator flowpath on the turbine exit flow environment; and (4

  9. Phase 2: HGM air flow tests in support of HEX vane investigation

    NASA Astrophysics Data System (ADS)

    Cox, G. B., Jr.; Steele, L. L.; Eisenhart, D. W.

    1993-07-01

    Following the start of SSME certification testing for the Pratt and Whitney Alternate Turbopump Development (ATD) High Pressure Oxidizer Turbopump (HPOTP), cracking of the leading edge of the inner HEX vane was experienced. The HEX vane, at the inlet of the oxidizer bowl in the Hot Gas Manifold (HGM), accepts the HPOTP turbine discharge flow and turns it toward the Gaseous Oxidizer Heat Exchanger (GOX HEX) coil. The cracking consistently initiated over a specific circumferential region of the hex vane, with other circumferential locations appearing with increased run time. Since cracking had not to date been seen with the baseline HPOTP, a fluid-structural interaction involving the ATD HPOTP turbine exit flowfield and the HEX inner vane was suspected. As part of NASA contract NAS8-36801, Pratt and Whitney conducted air flow tests of the ATD HPOTP turbine turnaround duct flowpath in the MSFC Phase 2 HGM air flow model. These tests included HEX vane strain gages and additional fluctuating pressure gages in the turnaround duct and HEX vane flowpath area. Three-dimensional flow probe measurements at two stations downstream of the turbine simulator exit plane were also made. Modifications to the HPOTP turbine simulator investigated the effects on turbine exit flow profile and velocity components, with the objective of reproducing flow conditions calculated for the actual ATD HPOTP hardware. Testing was done at the MSFC SSME Dynamic Fluid Air Flow (Dual-Leg) Facility, at air supply pressures between 50 and 250 psia. Combinations of turbine exit Mach number and pressure level were run to investigate the effect of flow regime. Information presented includes: (1) Descriptions of turbine simulator modifications to produce the desired flow environment; (2) Types and locations for instrumentation added to the flow model for improved diagnostic capability; (3) Evaluation of the effect of changes to the turbine simulator flowpath on the turbine exit flow environment; and (4

  10. Bifurcations of a creeping air-water flow in a conical container

    NASA Astrophysics Data System (ADS)

    Balci, Adnan; Brøns, Morten; Herrada, Miguel A.; Shtern, Vladimir N.

    2016-04-01

    This numerical study describes the eddy emergence and transformations in a slow steady axisymmetric air-water flow, driven by a rotating top disk in a vertical conical container. As water height Hw and cone half-angle β vary, numerous flow metamorphoses occur. They are investigated for β =30°, 45°, and 60°. For small Hw , the air flow is multi-cellular with clockwise meridional circulation near the disk. The air flow becomes one cellular as Hw exceeds a threshold depending on β . For all β , the water flow has an unbounded number of eddies whose size and strength diminish as the cone apex is approached. As the water level becomes close to the disk, the outmost water eddy with clockwise meridional circulation expands, reaches the interface, and induces a thin layer with anticlockwise circulation in the air. Then this layer expands and occupies the entire air domain. The physical reasons for the flow transformations are provided. The results are of fundamental interest and can be relevant for aerial bioreactors.

  11. The Nature of Air Flow About the Tail of an Airplane in a Spin

    NASA Technical Reports Server (NTRS)

    Scudder, N F; Miller, M P

    1932-01-01

    Air flow about the fuselage and empennage during a high-angle-of-attack spin was made visible in flight by means of titanium-tetrachloride smoke and was photographed with a motion-picture camera. The angular relation of the direction of the smoke streamer to the airplane axes was computed and compared with the angular direction of the motion in space derived from instrument measurement of the spin of the airplane for a nearly identical mass distribution. The results showed that the fin and upper part of the rudder were almost completely surrounded by dead air, which would render them inoperative; that the flow around the lower portion of the rudder and the fuselage was nonturbulent; and that air flowing past the cockpit in a high-angle-of-attack spin could not subsequently flow around control surfaces.

  12. A MEMS-based Air Flow Sensor with a Free-standing Micro-cantilever Structure

    PubMed Central

    Wang, Yu-Hsiang; Lee, Chia-Yen; Chiang, Che-Ming

    2007-01-01

    This paper presents a micro-scale air flow sensor based on a free-standing cantilever structure. In the fabrication process, MEMS techniques are used to deposit a silicon nitride layer on a silicon wafer. A platinum layer is deposited on the silicon nitride layer to form a piezoresistor, and the resulting structure is then etched to create a freestanding micro-cantilever. When an air flow passes over the surface of the cantilever beam, the beam deflects in the downward direction, resulting in a small variation in the resistance of the piezoelectric layer. The air flow velocity is determined by measuring the change in resistance using an external LCR meter. The experimental results indicate that the flow sensor has a high sensitivity (0.0284 Ω/ms-1), a high velocity measurement limit (45 ms-1) and a rapid response time (0.53 s).

  13. Analysis of parameters of air passing through the rain zone in a cross-flow

    NASA Astrophysics Data System (ADS)

    Dvořák, Lukáš; Čížek, Jan; Nožička, Jiří

    2015-05-01

    The research in the field of cooling towers shows that a rigorous determination of each parameter of air passing through areas with water drops is increasingly important. The transfer of heat, mass and momentum is represented, on the side of the air, as temperature and humidity increase and static pressure decrease due to the interaction between the flowing air and falling drops. The present article focuses on the description of the experimental setup allowing the measurement of these parameters on both the air and the water side, and possible ways to analyze measured values.

  14. In vivo micro-vascular imaging and flow cytometry in zebrafish using two-photon excited endogenous fluorescence

    PubMed Central

    Zeng, Yan; Yan, Bo; Sun, Qiqi; He, Sicong; Jiang, Jun; Wen, Zilong; Qu, Jianan Y.

    2014-01-01

    Zebrafish has rapidly evolved as a powerful vertebrate model organism for studying human diseases. Here we first demonstrate a new label-free approach for in vivo imaging of microvasculature, based on the recent discovery and detailed characterization of the two-photon excited endogenous fluorescence in the blood plasma of zebrafish. In particular, three-dimensional reconstruction of the microvascular networks was achieved with the depth-resolved two-photon excitation fluorescence (TPEF) imaging. Secondly, the blood flow images, obtained by perpendicularly scanning the focal point across the blood vessel, provided accurate information for characterizing the hemodynamics of the circulatory system. The endogenous fluorescent signals of reduced nicotinamide adenine dinucleotide (NADH) enabled visualization of the circulating granulocytes (neutrophils) in the blood vessel. The development of acute sterile inflammation could be detected by the quantitative counting of circulating neutrophils. Finally, we found that by utilizing a short wavelength excitation at 650 nm, the commonly used fluorescent proteins, such as GFP and DsRed, could be efficiently excited together with the endogenous fluorophores to achieve four-color TPEF imaging of the vascular structures and blood cells. The results demonstrated that the multi-color imaging could potentially yield multiple view angles of important processes in living biological systems. PMID:24688803

  15. Periodic and chaotic responses of an sdf system with piecewise linear stiffness subjected to combined harmonic and flow induced excitations

    NASA Astrophysics Data System (ADS)

    Narayanan, S.; Sekar, P.

    1995-07-01

    The response of a single-degree-of-freedom (sdf) vibrating system with unsymmetrical piecewise linear stiffness subjected to combined harmonic and flow induced excitations is investigated. Motion limiting stops, different tension and compression behavior, etc., may introduce an unsymmetrical piecewise linear stiffness characteristic. A multi-harmonic balance cum Newton-Raphson procedure in conjunction with an FFT algorithm is adopted to determine the stable and unstable periodic solutions. The stability of the periodic solutions is investigated by using Floquet theory. Digital simulation results reveal periodic, quasi-periodic and chaotic motions of the system in a range of flow velocities. Mode locked oscillations with period 5 motions are found to occur in certain range of flow velocities. Bifurcation diagrams and Lyapunov exponents are also presented.

  16. An Open-Access Modeled Passenger Flow Matrix for the Global Air Network in 2010

    PubMed Central

    Huang, Zhuojie; Wu, Xiao; Garcia, Andres J.; Fik, Timothy J.; Tatem, Andrew J.

    2013-01-01

    The expanding global air network provides rapid and wide-reaching connections accelerating both domestic and international travel. To understand human movement patterns on the network and their socioeconomic, environmental and epidemiological implications, information on passenger flow is required. However, comprehensive data on global passenger flow remain difficult and expensive to obtain, prompting researchers to rely on scheduled flight seat capacity data or simple models of flow. This study describes the construction of an open-access modeled passenger flow matrix for all airports with a host city-population of more than 100,000 and within two transfers of air travel from various publicly available air travel datasets. Data on network characteristics, city population, and local area GDP amongst others are utilized as covariates in a spatial interaction framework to predict the air transportation flows between airports. Training datasets based on information from various transportation organizations in the United States, Canada and the European Union were assembled. A log-linear model controlling the random effects on origin, destination and the airport hierarchy was then built to predict passenger flows on the network, and compared to the results produced using previously published models. Validation analyses showed that the model presented here produced improved predictive power and accuracy compared to previously published models, yielding the highest successful prediction rate at the global scale. Based on this model, passenger flows between 1,491 airports on 644,406 unique routes were estimated in the prediction dataset. The airport node characteristics and estimated passenger flows are freely available as part of the Vector-Borne Disease Airline Importation Risk (VBD-Air) project at: www.vbd-air.com/data. PMID:23691194

  17. An open-access modeled passenger flow matrix for the global air network in 2010.

    PubMed

    Huang, Zhuojie; Wu, Xiao; Garcia, Andres J; Fik, Timothy J; Tatem, Andrew J

    2013-01-01

    The expanding global air network provides rapid and wide-reaching connections accelerating both domestic and international travel. To understand human movement patterns on the network and their socioeconomic, environmental and epidemiological implications, information on passenger flow is required. However, comprehensive data on global passenger flow remain difficult and expensive to obtain, prompting researchers to rely on scheduled flight seat capacity data or simple models of flow. This study describes the construction of an open-access modeled passenger flow matrix for all airports with a host city-population of more than 100,000 and within two transfers of air travel from various publicly available air travel datasets. Data on network characteristics, city population, and local area GDP amongst others are utilized as covariates in a spatial interaction framework to predict the air transportation flows between airports. Training datasets based on information from various transportation organizations in the United States, Canada and the European Union were assembled. A log-linear model controlling the random effects on origin, destination and the airport hierarchy was then built to predict passenger flows on the network, and compared to the results produced using previously published models. Validation analyses showed that the model presented here produced improved predictive power and accuracy compared to previously published models, yielding the highest successful prediction rate at the global scale. Based on this model, passenger flows between 1,491 airports on 644,406 unique routes were estimated in the prediction dataset. The airport node characteristics and estimated passenger flows are freely available as part of the Vector-Borne Disease Airline Importation Risk (VBD-Air) project at: www.vbd-air.com/data. PMID:23691194

  18. Experimental and Numerical Analysis of Air Flow, Heat Transfer and Thermal Comfort in Buildings with Different Heating Systems

    NASA Astrophysics Data System (ADS)

    Sabanskis, A.; Virbulis, J.

    2016-04-01

    Monitoring of temperature, humidity and air flow velocity is performed in 5 experimental buildings with the inner size of 3×3×3 m3 located in Riga, Latvia. The buildings are equipped with different heating systems, such as an air-air heat pump, air-water heat pump, capillary heating mat on the ceiling and electric heater. Numerical simulation of air flow and heat transfer by convection, conduction and radiation is carried out using OpenFOAM software and compared with experimental data. Results are analysed regarding the temperature and air flow distribution as well as thermal comfort.

  19. 42 CFR 84.155 - Airflow resistance test; Type C supplied-air respirator, continuous flow class and Type CE...

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 42 Public Health 1 2011-10-01 2011-10-01 false Airflow resistance test; Type C supplied-air respirator, continuous flow class and Type CE supplied-air respirator; minimum requirements. 84.155 Section... Respirators § 84.155 Airflow resistance test; Type C supplied-air respirator, continuous flow class and...

  20. Spectroscopic and electrical characters of SBD plasma excited by bipolar nanosecond pulse in atmospheric air.

    PubMed

    Zhao, Zi-Lu; Yang, De-Zheng; Wang, Wen-Chun; Yuan, Hao; Zhang, Li; Wang, Sen; Liu, Zhi-Jie; Zhang, Shuai

    2016-05-15

    In this paper, an atmospheric surface barrier discharge (SBD) generated by annular electrodes in quartz tube is presented through employing bipolar nanosecond pulse voltage in air. The discharge images, waveforms of pulse voltage and discharge current, and optical emission spectra emitted from the discharges are recorded and calculated. A spectra simulation method is developed to separate the overlap of the secondary diffraction spectra which are produced by grating in monochromator, and N2 (B(3)Πg→A(3)Σu(+)) and O (3p(5)P→3s(5)S2(o)) are extracted. The effects of pulse voltage and discharge power on the emission intensities of OH (A(2)Σ(+)→X(2)Пi), N2(+) (B(2)Σu(+)→X(2)Σg(+)), N2 (C(3)Πu→B(3)Πg), N2 (B(3)Πg→A(3)Σu(+)), and O (3p(5)P→3s(5)S2(o)) are investigated. It is found that increasing the pulse peak voltage can lead to an easier formation of N2(+) (B(2)Σu(+)) than that of N2 (C(3)Πu). Additionally, vibrational and rotational temperatures of the plasma are determined by comparing the experimental and simulated spectra of N2(+) (B(2)Σu(+)→X(2)Σg(+)), and the results show that the vibrational and rotational temperatures are 3250±20K and 350±5K under the pulse peak voltage of 28kV, respectively. PMID:26924210

  1. Spectroscopic and electrical characters of SBD plasma excited by bipolar nanosecond pulse in atmospheric air

    NASA Astrophysics Data System (ADS)

    Zhao, Zi-Lu; Yang, De-Zheng; Wang, Wen-Chun; Yuan, Hao; Zhang, Li; Wang, Sen; Liu, Zhi-Jie; Zhang, Shuai

    2016-05-01

    In this paper, an atmospheric surface barrier discharge (SBD) generated by annular electrodes in quartz tube is presented through employing bipolar nanosecond pulse voltage in air. The discharge images, waveforms of pulse voltage and discharge current, and optical emission spectra emitted from the discharges are recorded and calculated. A spectra simulation method is developed to separate the overlap of the secondary diffraction spectra which are produced by grating in monochromator, and N2 (B3Πg → A3Σu+) and O (3p5P → 3s5S2o) are extracted. The effects of pulse voltage and discharge power on the emission intensities of OH (A2Σ+ → X2Пi), N2+ (B2Σu+ → X2Σg+), N2 (C3Πu → B3Πg), N2 (B3Πg → A3Σu+), and O (3p5P → 3s5S2o) are investigated. It is found that increasing the pulse peak voltage can lead to an easier formation of N2+ (B2Σu+) than that of N2 (C3Πu). Additionally, vibrational and rotational temperatures of the plasma are determined by comparing the experimental and simulated spectra of N2+ (B2Σu+ → X2Σg+), and the results show that the vibrational and rotational temperatures are 3250 ± 20 K and 350 ± 5 K under the pulse peak voltage of 28 kV, respectively.

  2. Air Flow in a Separating Laminar Boundary Layer

    NASA Technical Reports Server (NTRS)

    Schubauer, G B

    1936-01-01

    The speed distribution in a laminar boundary layer on the surface of an elliptic cylinder, of major and minor axes 11.78 and 3.98 inches, respectively, has been determined by means of a hot-wire anemometer. The direction of the impinging air stream was parallel to the major axis. Special attention was given to the region of separation and to the exact location of the point of separation. An approximate method, developed by K. Pohlhausen for computing the speed distribution, the thickness of the layer, and the point of separation, is described in detail; and speed-distribution curves calculated by this method are presented for comparison with experiment.

  3. Flow of excitation energy in the cryptophyte light-harvesting antenna phycocyanin 645.

    PubMed

    Marin, Alessandro; Doust, Alexander B; Scholes, Gregory D; Wilk, Krystyna E; Curmi, Paul M G; van Stokkum, Ivo H M; van Grondelle, Rienk

    2011-08-17

    We report a detailed description of the energy migration dynamics in the phycocyanin 645 (PC645) antenna complex from the photosynthetic alga Chroomonas CCMP270. Many of the cryptophyceae are known to populate greater depths than most other algal families, having developed a 99.5% efficient light-harvesting system. In this study, we used femtosecond time-resolved spectroscopy and global analysis to characterize the excited-state dynamics of PC645. Several different pump colors were selected to excite different fractions of the four phycobiliprotein pairs present in the complex. Measurements were also performed at cryogenic temperature to enhance spectral resolution and selectively promote downhill energy transfers. Upon excitation of the highest-energy bilins (dihydrobiliverdins), energy is transferred from the core of the complex to the periphery within 0.82 ps. Four bilins (mesobiliverdin (MBV) A/B and phycocyanobilins (PCB) 158C/D), which are responsible for the central band of the absorption spectrum, show concerted spectral dynamics. These chromophores show a biphasic decay with lifetimes of 0.6 ps (MBV) and 5-7 ps (PCB 158) to the lowest bilin pair (PCB 82C/D) absorbing around 650-657 nm. Within this lifetime of several picoseconds, the excitations reach the PCB 82 bilins on the two poles at the smaller sides of PC645. A slow 44-46 ps energy transfer step to the lowest-energy PCB 82 bilin concludes the dynamics. PMID:21843493

  4. A modeling of air flow in a street canyon

    NASA Astrophysics Data System (ADS)

    Nuterman, R. B.; Starchenko, Alexander V.

    2004-02-01

    Steady plane-parallel isothermal turbulent flow of a viscous incompressible liquid above a surface with elements of a roughness is considered. Buildings and road with vehicle emissions for a city canyon. Reynolds equations and Boussinesq assumption are used to solve the considered problem. We apply the no-slip boundary conditions on the rigid walls, simple gradient conditions on the upper and outflow boundaries and known distributions of flow parameters on inflow boundary. Turbulent parameters are calculated on the basis of "k--ɛ" model of turbulence with near-wall functions approach for energy of turbulence k and dissipation ɛ. A numerical solution of the problem is found with using of finite-volume method and the SIMPLE algorithm. Influence of atmospheric parameters on pollutant dispersion in a street canyon is investigated. Also influences of the geometrical factors of a city street canyon on a pattern of turbulent flow and distribution of harmful impurity concentration emitting from urban vehicles are investigated. The adverse meteorological situations resulting in accumulation of the harmful substances in street canyon are shown.

  5. Numerical simulation and analysis of the internal flow in a Francis turbine with air admission

    NASA Astrophysics Data System (ADS)

    Yu, A.; Luo, X. W.; Ji, B.

    2015-01-01

    In case of hydro turbines operated at part-load condition, vortex ropes usually occur in the draft tube, and consequently generate violent pressure fluctuation. This unsteady flow phenomenon is believed harmful to hydropower stations. This paper mainly treats the internal flow simulation in the draft tube of a Francis turbine. In order to alleviate the pressure fluctuation induced by the vortex rope, air admission from the main shaft center is applied, and the water-air two phase flow in the entire flow passage of a model turbine is simulated based on a homogeneous flow assumption and SST k-ω turbulence model. It is noted that the numerical simulation reasonably predicts the pressure fluctuations in the draft tube, which agrees fairly well with experimental data. The analysis based on the vorticity transport equation shows that the vortex dilation plays a major role in the vortex evolution with air admission in the turbine draft tube, and there is large value of vortex dilation along the vortex rope. The results show that the aeration with suitable air volume fraction can depress the vortical flow, and alleviate the pressure fluctuation in the draft tube.

  6. Flow and performance of an air-curtain biological safety cabinet.

    PubMed

    Huang, Rong Fung; Chou, Chun I

    2009-06-01

    Using laser-assisted smoke flow visualization and tracer gas concentration detection techniques, this study examines aerodynamic flow properties and the characteristics of escape from containment, inward dispersion, and cross-cabinet contamination of a biological safety cabinet installed with an air curtain across the front aperture. The experimental method partially simulates the NSF/ANSI 49 standards with the difference that the biological tracer recommended by these standards is replaced by a mixture of 10% SF(6) in N(2). The air curtain is set up across the cabinet aperture plane by means of a narrow planar jet issued from the lower edge of the sash and a suction flow going through a suction slot installed at the front edge of the work surface. Varying the combination of jet velocity, suction flow velocity, and descending flow velocity reveals three types of characteristic flow modes: 'straight curtain', 'slightly concave curtain', and 'severely concave curtain'. Operating the cabinet in the straight curtain mode causes the air curtain to impinge on the doorsill and therefore induces serious escape from containment. In the severely concave curtain mode, drastically large inward dispersion and cross-cabinet contamination were observed because environmental air entered into the cabinet and a three-dimensional vortical flow structure formed in the cabinet. The slightly concave curtain mode presents a smooth and two-dimensional flow pattern with an air curtain separating the outside atmosphere from the inside space of the cabinet, and therefore exhibited negligibly small escape from containment, inward dispersion, and cross-cabinet contamination. PMID:19398506

  7. Investigation on Plasma Jet Flow Phenomena During DC Air Arc Motion in Bridge-Type Contacts

    NASA Astrophysics Data System (ADS)

    Zhai, Guofu; Bo, Kai; Chen, Mo; Zhou, Xue; Qiao, Xinlei

    2016-05-01

    Arc plasma jet flow in the air was investigated under a bridge-type contacts in a DC 270 V resistive circuit. We characterized the arc plasma jet flow appearance at different currents by using high-speed photography, and two polished contacts were used to search for the relationship between roughness and plasma jet flow. Then, to make the nature of arc plasma jet flow phenomena clear, a simplified model based on magnetohydrodynamic (MHD) theory was established and calculated. The simulated DC arc plasma was presented with the temperature distribution and the current density distribution. Furthermore, the calculated arc flow velocity field showed that the circular vortex was an embodiment of the arc plasma jet flow progress. The combined action of volume force and contact surface was the main reason of the arc jet flow. supported by National Natural Science Foundation of China (Nos. 51307030, 51277038)

  8. Effect of Moist Air on Transonic Internal Flow around a Plate

    NASA Astrophysics Data System (ADS)

    Hasan, A. B. M. Toufique; Matsuo, Shigeru; Setoguchi, Toshiaki; Kim, Heuy Dong

    The unsteady phenomena in the transonic flow around airfoils are observed in the flow field of fan, compressor blades and butterfly valves, and this causes often serious problems such as the aeroacoustic noise and the vibration. In the transonic or supersonic flow where vapor is contained in the main flow, the rapid expansion of the flow may give rise to a non-equilibrium condensation. In the present study, the effect of non-equilibrium condensation of moist air on the shock induced flow field oscillation around a plate was investigated numerically. The results showed that in the case with non-equilibrium condensation, the flow field aerodynamic unsteadiness is reduced significantly compared with those without the non-equilibrium condensation.

  9. Flow characteristics of an inclined air-curtain range hood in a draft

    PubMed Central

    CHEN, Jia-Kun

    2015-01-01

    The inclined air-curtain technology was applied to build an inclined air-curtain range hood. A draft generator was applied to affect the inclined air-curtain range hood in three directions: lateral (θ=0°), oblique (θ=45°), and front (θ=90°). The three suction flow rates provided by the inclined air-curtain range hood were 10.1, 10.9, and 12.6 m3/min. The laser-assisted flow visualization technique and the tracer-gas test method were used to investigate the performance of the range hood under the influence of a draft. The results show that the inclined air-curtain range hood has a strong ability to resist the negative effect of a front draft until the draft velocity is greater than 0.5 m/s. The oblique draft affected the containment ability of the inclined air-curtain range hood when the draft velocity was larger than 0.3 m/s. When the lateral draft effect was applied, the capture efficiency of the inclined air-curtain range hood decreased quickly in the draft velocity from 0.2 m/s to 0.3 m/s. However, the capture efficiencies of the inclined air-curtain range hood under the influence of the front draft were higher than those under the influence of the oblique draft from 0.3 m/s to 0.5 m/s. PMID:25810445

  10. Implications of Air Ingress Induced by Density-Difference Driven Stratified Flow

    SciTech Connect

    Chang Oh; Eung Soo Kim; Richard Schultz; David Petti; C. P. Liou

    2008-06-01

    One of the design basis accidents for the Next Generation Nuclear Plant (NGNP), a high temperature gas-cooled reactor, is air ingress subsequent to a pipe break. Following a postulated double-ended guillotine break in the hot duct, and the subsequent depressurization to nearly reactor cavity pressure levels, air present in the reactor cavity will enter the reactor vessel via density-gradient-driven-stratified flow. Because of the significantly higher molecular weight and lower initial temperature of the reactor cavity air-helium mixture, in contrast to the helium in the reactor vessel, the air-helium mixture in the cavity always has a larger density than the helium discharging from the reactor vessel through the break into the reactor cavity. In the later stages of the helium blowdown, the momentum of the helium flow decreases sufficiently for the heavier cavity air-helium mixture to intrude into the reactor vessel lower plenum through the lower portion of the break. Once it has entered, the heavier gas will pool at the bottom of the lower plenum. From there it will move upwards into the core via diffusion and density-gradient effects that stem from heating the air-helium mixture and from the pressure differences between the reactor cavity and the reactor vessel. This scenario (considering density-gradient-driven stratified flow) is considerably different from the heretofore commonly used scenario that attributes movement of air into the reactor vessel and from thence to the core region via diffusion. When density-gradient-driven stratified flow is considered as a contributing phenomena for air ingress into the reactor vessel, the following factors contribute to a much earlier natural circulation-phase in the reactor vessel: (a) density-gradient-driven stratified flow is a much more rapid mechanism (at least one order of magnitude) for moving air into the reactor vessel lower plenum than diffusion, and consequently, (b) the diffusion dominated phase begins with a

  11. Air flow phenomena in the model of the blind drift

    NASA Astrophysics Data System (ADS)

    Jaszczur, Marek; Karch, Michał; Zych, Marcin; Hanus, Robert; Petryka, Leszek; Świsulski, Dariusz

    2016-03-01

    In the presented paper, Particle Image Velocimetry (PIV) has been used to investigate flow pattern and turbulent structure in the model of blind drift. The presented model exist in mining, and has been analyzed to resolve ventilation issues. Blind region is particularly susceptible to unsafe methane accumulation. The measurement system allows us to evaluate all components of the velocity vector in channel cross-section simultaneously. First order and second order statistic of the velocity fields from different channel cross-section are computed and analyzed.

  12. Modeling Air Flow in the Lungs during In-exsufflation

    NASA Astrophysics Data System (ADS)

    Bukiet, Bruce; Chaudhry, Hans; Kirshblum, Steven; Bach, John

    2003-11-01

    Patients with weak respiratory systems experience build-up of fluid in the lungs. This can lead to infection and hospitalization. Although endotracheal suctioning can help relieve this problem, it is invasive and uncomfortable. Patients prefer the non-invasive mechanical in-exsufflation technique. In this talk, we describe these techniques for easing the problem of mucus build-up and present ideas for mathematical and computational modeling of the flow in the branches of the lungs during mechanical in-exsufflation. The implications of the results of the computations on the safety of the technique and on patient treatment are also discussed.

  13. Responses of the rat olfactory epithelium to retronasal air flow.

    PubMed

    Scott, John W; Acevedo, Humberto P; Sherrill, Lisa; Phan, Maggie

    2007-03-01

    Responses of the rat olfactory epithelium were assessed with the electroolfactogram while odorants were presented to the external nares with an artificial sniff or to the internal nares by positive pressure. A series of seven odorants that varied from very polar, hydrophilic odorants to very nonpolar, hydrophobic odorants were used. Although the polar odorants activated the dorsal olfactory epithelium when presented by the external nares (orthonasal presentation), they were not effective when forced through the nasal cavity from the internal nares (retronasal presentation). However, the nonpolar odorants were effective in both stimulus modes. These results were independent of stimulus concentration or of humidity of the carrier air. Similar results were obtained with multiunit recordings from olfactory bulb. These results help to explain why human investigations often report differences in the sensation or ability to discriminate odorants presented orthonasally versus retronasally. The results also strongly support the importance of odorant sorption in normal olfactory processes. PMID:17215498

  14. Responses of the Rat Olfactory Epithelium to Retronasal Air Flow

    PubMed Central

    Scott, John W.; Acevedo, Humberto P.; Sherrill, Lisa; Phan, Maggie

    2008-01-01

    Responses of the rat olfactory epithelium were assessed with the electroolfactogram while odorants were presented to the external nares with an artificial sniff or to the internal nares by positive pressure. A series of seven odorants that varied from very polar, hydrophilic odorants to very non-polar, hydrophobic odorants were used. While the polar odorants activated the dorsal olfactory epithelium when presented by the external nares (orthonasal presentation), they were not effective when forced through the nasal cavity from the internal nares (retronasal presentation). However, the non-polar odorants were effective in both stimulus modes. These results were independent of stimulus concentration or of humidity of the carrier air. Similar results were obtained with multiunit recording from olfactory bulb. These results help to explain why human investigations often report differences in the sensation or ability to discriminate odorants presented orthonasally vs. retronasally. The results also strongly support the importance of odorant sorption in normal olfactory processes. PMID:17215498

  15. Drainage of the air film during drop impact on flowing liquid films

    NASA Astrophysics Data System (ADS)

    Che, Zhizhao; Matar, Omar

    2015-11-01

    Immediately upon the impact of a droplet on a liquid or a solid, a thin air cushion is formed by trapping air beneath the droplet. The drainage of the air film is critical in determining the eventual outcome of the impact. Here we propose a model to study the drainage of the gas film between a droplet and a flowing liquid film. The effects of a wide range of parameters influencing the drainage process are studied, such as the fluid viscosities, the surface tension, the velocity of the droplet, the velocity of the liquid film. The results show that the tangential movement of the liquid film can delay the drainage of the air film and promote the bouncing of droplets. This confirms our previous experimental results, which show that during the impact of droplets on flow liquid films, the probability of bouncing increases with the Reynolds number of the liquid film. EPSRC Programme Grant, MEMPHIS, EP/K0039761/1.

  16. Experimental study on corrugated cross-flow air-cooled plate heat exchangers

    SciTech Connect

    Kim, Minsung; Baik, Young-Jin; Park, Seong-Ryong; Ra, Ho-Sang; Lim, Hyug

    2010-11-15

    Experimental study on cross-flow air-cooled plate heat exchangers (PHEs) was performed. The two prototype PHEs were manufactured in a stack of single-wave plates and double-wave plates in parallel. Cooling air flows through the PHEs in a crosswise direction against internal cooling water. The heat exchanger aims to substitute open-loop cooling towers with closed-loop water circulation, which guarantees cleanliness and compactness. In this study, the prototype PHEs were tested in a laboratory scale experiments. From the tests, double-wave PHE shows approximately 50% enhanced heat transfer performance compared to single-wave PHE. However, double-wave PHE costs 30% additional pressure drop. For commercialization, a wide channel design for air flow would be essential for reliable performance. (author)

  17. Improving the performance of a compression ignition engine by directing flow of inlet air

    NASA Technical Reports Server (NTRS)

    Kemper, Carlton

    1946-01-01

    The object of this report is to present the results of tests performed by the National Advisory Committee for Aeronautics to determine the effect on engine performance of directing the flow of the inlet air to a 5-inch by 7-inch cylinder, solid injection, compression ignition engine, After a few preliminary tests, comparative runs were made at a speed of 1500 r.p.m. with and without directed air flow. It was found that directing the flow of the inlet air toward the fuel injection valve gave steadier engine operation, and an appreciable increase in power, and decreased fuel consumption. The results indicate the possibility of improving the performance of a given type of combustion chamber without changing its shape and with no change in valve timing. They would also seem to prove that directional turbulence, set up before the inlet valve of a four-stroke cycle engine, continues in the engine cylinder throughout the compression stroke.

  18. Air

    MedlinePlus

    ... do to protect yourself from dirty air . Indoor air pollution and outdoor air pollution Air can be polluted indoors and it can ... this chart to see what things cause indoor air pollution and what things cause outdoor air pollution! Indoor ...

  19. Air shear driven flow of thin perfluoropolyether polymer films

    NASA Astrophysics Data System (ADS)

    Scarpulla, Michael A.; Mate, C. Mathew; Carter, Malika D.

    2003-02-01

    We have studied the wind driven movement of thin perfluoropolyether (PFPE) polymer films on silicon wafers and CNx overcoats using the blow-off technique. The ease with which a liquid polymer film moves across a surface when sheared is described by a shear mobility χS, which can be interpreted both in terms of continuum flow and in terms of wind driven diffusion. Generally, we find that the movement of PFPE films can be described as a flow process with an effective viscosity, even when the film thickness is smaller than the polymer's diameter of gyration. Only in the special case of sparse coverage of a polymer with neutral end groups is the motion better described by a wind driven diffusion process. The addition of alcohol end groups to the PFPE polymer chain results in strong interactions with the substrate, creating a restricted layer having an effective viscosity an order of magnitude larger than the mobile layer that sits on top of the restricted layer.

  20. Numerical analysis of air-flow and temperature field in a passenger car compartment

    NASA Astrophysics Data System (ADS)

    Kamar, Haslinda Mohamed; Kamsah, Nazri; Mohammad Nor, Ahmad Miski

    2012-06-01

    This paper presents a numerical study on the temperature field inside a passenger's compartment of a Proton Wira saloon car using computational fluid dynamics (CFD) method. The main goal is to investigate the effects of different glazing types applied onto the front and rear windscreens of the car on the distribution of air-temperature inside the passenger compartment in the steady-state conditions. The air-flow condition in the passenger's compartment is also investigated. Fluent CFD software was used to develop a three-dimensional symmetrical model of the passenger's compartment. Simplified representations of the driver and one rear passenger were incorporated into the CFD model of the passenger's compartment. Two types of glazing were considered namely clear insulated laminated tint (CIL) with a shading coefficient of 0.78 and green insulated laminate tint (GIL) with a shading coefficient of 0.5. Results of the CFD analysis were compared with those obtained when the windscreens are made up of clear glass having a shading coefficient of 0.86. Results of the CFD analysis show that for a given glazing material, the temperature of the air around the driver is slightly lower than the air around the rear passenger. Also, the use of GIL glazing material on both the front and rear windscreens significantly reduces the air temperature inside the passenger's compartment of the car. This contributes to a better thermal comfort condition to the occupants. Swirling air flow condition occurs in the passenger compartment. The air-flow intensity and velocity are higher along the side wall of the passenger's compartment compared to that along the middle section of the compartment. It was also found that the use of glazing materials on both the front and rear windscreen has no significant effects on the air-flow condition inside the passenger's compartment of the car.

  1. Accurate burner air flow measurement for low NO{sub x} burners

    SciTech Connect

    Earley, D.; Penterson, C.

    1998-07-01

    In 1990, Congress enacted an amendment to the Clean Air Act that required reductions in NO{sub x} emissions through the application of low NO{sub x} burner systems on fossil fueled utility steam generators. For most of the existing steam generator population, the original burning equipment incorporated highly turbulent burners that created significant in-furnace flame interaction. Thus, the measurement and control of air flow to the individual burners was much less critical than in recent years with low NO{sub x} combustion systems. With low NO{sub x} systems, the reduction of NO{sub x} emissions, as well as minimizing flyash unburned carbon levels, is very much dependent on the ability to control the relative ratios of air and fuel on a per-burner basis and their rate of mixing, particularly in the near burner zones. Air Monitor Corporation (AMC) and DB Riley, Inc. (DBR), and a large Midwestern electric utility have successfully developed and applied AMC's equipment to low NO{sub x} coal burners in order to enhance NO{sub x} control combustion systems. The results have improved burner optimization and provided real time continuous air flow balancing capability and the control of individual burner stoichiometries. To date, these enhancements have been applied to wall-fired low NO{sub x} systems for balancing individual burner air flows in a common windbox and to staged combustion systems. Most recently, calibration testing in a wind tunnel facility of AMC's individual burner air measurement (IBAM{trademark}) probes installed in DB Riley's low NO{sub x} CCV{reg{underscore}sign} burners has demonstrated the ability to produce reproducible and consistent air flow measurement accurate to within 5%. This paper will summarize this product development and quantify the benefits of its application to low NO{sub x} combustion systems.

  2. Excitational energy transfer enhancing ionization and spatial-temporal evolution of air breakdown with UV laser radiation

    NASA Astrophysics Data System (ADS)

    Hummelt, Jason S.; Scharer, John E.

    2010-11-01

    This paper examines the role multiphoton excitation of oxygen has on the ionization of nitrogen in laser air breakdown. Plasma is created by focusing a 193 nm ArF excimer laser using an 18 cm focal length lens, producing a cylindrical 540 μm wide spot of intensity 6.5 GW/cm2, well below the classical limit for collisional cascade (CC) breakdown. By spectroscopically monitoring the B Σ2u+ to X Σ2g+ transition at 391.4 nm of N2+ in N2 and O2 mixes, collisions between N2 and metastable O2 states that have undergone 1+1 absorption processes are shown to lower the degree of nonlinearity (i.e., the number of photons involved in the rate limiting multiphoton absorption process) in the ionization of N2. This process is also found to dominate the 2+1 resonant enhanced multiphoton ionization of N2 in air and be the primary source for ionization of N2 to the B Σ2u+ state. Plasma formation and evolution is also examined using a 1.3 cm focal length objective lens creating a 40 μm wide spot of intensity 1.25 TW/cm2, above the classical limit for breakdown. This plasma is imaged with a fast (1.2 ns) gating intensified charge coupled device camera. Early plasma formation is seen to be inhomogeneous in nature, and significant ion density is found to exist up to 20 μs after the laser pulse.

  3. Effects of saline-water flow rate and air speed on leakage current in RTV coatings

    SciTech Connect

    Kim, S.H.; Hackam, R.

    1995-10-01

    Room temperature vulcanizing (RTV) silicone rubber is increasingly being used to coat porcelain and glass insulators in order to improve their electrical performance in the presence of pollution and moisture. A study of the dependence of leakage current, pulse current count and total charge flowing across the surface of RTV on the flow rate of the saline water and on the compressed air pressure used to create the salt-fog is reported. The fog was directed at the insulating rods either from one or two sides. The RTV was fabricated from polydimethylsiloxane polymer, a filler of alumina trihydrate (ATH), a polymerization catalyst and fumed silica reinforcer, all dispersed in 1,1,1-trichloroethane solvent. The saline water flow rate was varied in the range 0.4 to 2.0 l/min. The compressed air pressure at the input of the fog nozzles was varied from 0.20 to 0.63 MPa. The air speed at the surface of the insulating rods was found to depend linearly on the air pressure measured at the inlet to the nozzles and varied in the range 3 to 14 km/hr. The leakage current increased with increasing flow rate and increasing air speed. This is attributed to the increased loss of hydrophobicity with a larger quantity of saline fog and a larger impact velocities of fog droplets interacting with the surface of the RTV coating.

  4. Fuel Spray and Flame Formation in a Compression-Ignition Engine Employing Air Flow

    NASA Technical Reports Server (NTRS)

    Rothrock, A M; Waldron, C D

    1937-01-01

    The effects of air flow on fuel spray and flame formation in a high-speed compression-ignition engine have been investigated by means of the NACA combustion apparatus. The process was studied by examining high-speed motion pictures taken at the rate of 2,200 frames a second. The combustion chamber was of the flat-disk type used in previous experiments with this apparatus. The air flow was produced by a rectangular displacer mounted on top of the engine piston. Three fuel-injection nozzles were tested: a 0.020-inch single-orifice nozzle, a 6-orifice nozzle, and a slit nozzle. The air velocity within the combustion chamber was estimated to reach a value of 425 feet a second. The results show that in no case was the form of the fuel spray completely destroyed by the air jet although in some cases the direction of the spray was changed and the spray envelope was carried away by the moving air. The distribution of the fuel in the combustion chamber of a compression-ignition engine can be regulated to some extent by the design of the combustion chamber, by the design of the fuel-injection nozzle, and by the use of air flow.

  5. 30 CFR 57.22212 - Air flow (I-C, II-A, and V-A mines).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Air flow (I-C, II-A, and V-A mines). 57.22212... Standards for Methane in Metal and Nonmetal Mines Ventilation § 57.22212 Air flow (I-C, II-A, and V-A mines). Air flow across each working face shall be sufficient to carry away any accumulation of methane,...

  6. Viscous computations of cold air/air flow around scramjet nozzle afterbody

    NASA Technical Reports Server (NTRS)

    Baysal, Oktay; Engelund, Walter C.

    1991-01-01

    The flow field in and around the nozzle afterbody section of a hypersonic vehicle was computationally simulated. The compressible, Reynolds averaged, Navier Stokes equations were solved by an implicit, finite volume, characteristic based method. The computational grids were adapted to the flow as the solutions were developing in order to improve the accuracy. The exhaust gases were assumed to be cold. The computational results were obtained for the two dimensional longitudinal plane located at the half span of the internal portion of the nozzle for over expanded and under expanded conditions. Another set of results were obtained, where the three dimensional simulations were performed for a half span nozzle. The surface pressures were successfully compared with the data obtained from the wind tunnel tests. The results help in understanding this complex flow field and, in turn, should help the design of the nozzle afterbody section.

  7. Numerical Study on a Detailed Air Flows in an Urban Area Using a CFD model

    NASA Astrophysics Data System (ADS)

    Kwon, A.

    2014-12-01

    In this study, detailed air flows in an urban area were analyzed using a computational fluid dynamics (CFD) model. For this model buildings used as the surface boundary in the model were constructed using Los Angeles Region Imagery Acquisition Consortium 2 Geographic Information System (LARIAC2 GIS) data. Three target areas centered at the cross roads of Broadway & 7th St., Olive & 12th St., and Wilshire blvd. & Carondelet, Los Angeles, California were considered. The size of each numerical domain is 400 m, 400 m, and 200 m in the x‒, y‒, and z‒directions, respectively. The grid sizes in the x‒, y‒, and z‒directions are 2 m, 2 m, and 2 m, respectively. Based on the inflow wind data provided by California Air Resources Board, detailed flow characteristics were investigated for each target area. Descending air flow were developed at the leeward area of tall building and ascending air current were occurred on the windward area of tall building. Vertically rotating vortices were formed in spaces between buildings, so-called, street canyons and horizontally rotating vortices appeared near cross roads. When flows came into narrow street canyon from wide street canyon, channeling effects appeared and flow speed increased for satisfying mass continuity.

  8. An experimental investigation of gas jets in confined swirling air flow

    NASA Technical Reports Server (NTRS)

    Mongia, H.; Ahmed, S. A.; Mongia, H. C.

    1984-01-01

    The fluid dynamics of jets in confined swirling flows which is of importance to designers of turbine combustors and solid fuel ramjets used to power missiles fired from cannons were examined. The fluid dynamics of gas jets of different densities in confined swirling flows were investigated. Mean velocity and turbulence measurements are made with a one color, one component laser velocimeter operating in the forward scatter mode. It is shown that jets in confined flow with large area ratio are highly dissipative which results in both air and helium/air jet centerline velocity decays. For air jets, the jet like behavior in the tube center disappears at about 20 diameters downstream of the jet exit. This phenomenon is independent of the initial jet velocity. The turbulence field at this point also decays to that of the background swirling flow. A jet like behavior in the tube center is noticed even at 40 diameters for the helium/air jets. The subsequent flow and turbulence field depend highly on the initial jet velocity. The jets are fully turbulent, and the cause of this difference in behavior is attributed to the combined action swirl and density difference. This observation can have significant impact on the design of turbine combustors and solid fuel ramjets subject to spin.

  9. Experimental Studies of Active and Passive Flow Control Techniques Applied in a Twin Air-Intake

    PubMed Central

    Joshi, Shrey; Jindal, Aman; Maurya, Shivam P.; Jain, Anuj

    2013-01-01

    The flow control in twin air-intakes is necessary to improve the performance characteristics, since the flow traveling through curved and diffused paths becomes complex, especially after merging. The paper presents a comparison between two well-known techniques of flow control: active and passive. It presents an effective design of a vortex generator jet (VGJ) and a vane-type passive vortex generator (VG) and uses them in twin air-intake duct in different combinations to establish their effectiveness in improving the performance characteristics. The VGJ is designed to insert flow from side wall at pitch angle of 90 degrees and 45 degrees. Corotating (parallel) and counterrotating (V-shape) are the configuration of vane type VG. It is observed that VGJ has the potential to change the flow pattern drastically as compared to vane-type VG. While the VGJ is directed perpendicular to the side walls of the air-intake at a pitch angle of 90 degree, static pressure recovery is increased by 7.8% and total pressure loss is reduced by 40.7%, which is the best among all other cases tested for VGJ. For bigger-sized VG attached to the side walls of the air-intake, static pressure recovery is increased by 5.3%, but total pressure loss is reduced by only 4.5% as compared to all other cases of VG. PMID:23935422

  10. Magnetohydrodynamic flow excited by rotating permanent magnets in an orthogonal container

    NASA Astrophysics Data System (ADS)

    Ben-David, O.; Levy, A.; Mikhailovich, B.; Azulay, A.

    2014-09-01

    Liquid metal magnetohydrodynamic flow driven by a system of rotating permanent magnets in a container of orthogonal cross-section has been studied. The main objective of the work is to research the impact of magnetic forcing parameters (magnetic field value, magnets arrangement, and angular velocity of their rotation) on the generated hydrodynamic structures and flow modes. On this basis, we contemplate realizing required flow features by setting certain parameters of the driving magnetic system. A numerical study of the problem in the induction-free approximation without taking into account the effect of the variable component of electromagnetic force is presented. The parameters of spin-up modes and steady-state flow regimes have been calculated by three-dimensional direct numerical simulation based on COMSOL Multiphysics 4.3a software and experimentally verified on a specially designed setup using noninvasive Doppler ultrasound technique.

  11. Experimental and Numerical Investigation of Flow Properties of Supersonic Helium-Air Jets

    NASA Technical Reports Server (NTRS)

    Miller, Steven A. E.; Veltin, Jeremy

    2010-01-01

    Heated high speed subsonic and supersonic jets operating on- or off-design are a source of noise that is not yet fully understood. Helium-air mixtures can be used in the correct ratio to simulate the total temperature ratio of heated air jets and hence have the potential to provide inexpensive and reliable flow and acoustic measurements. This study presents a combination of flow measurements of helium-air high speed jets and numerical simulations of similar helium-air mixture and heated air jets. Jets issuing from axisymmetric convergent and convergent-divergent nozzles are investigated, and the results show very strong similarity with heated air jet measurements found in the literature. This demonstrates the validity of simulating heated high speed jets with helium-air in the laboratory, together with the excellent agreement obtained in the presented data between the numerical predictions and the experiments. The very close match between the numerical and experimental data also validates the frozen chemistry model used in the numerical simulation.

  12. Air-side flow and heat transfer in compact heat exchangers: A discussion of enhancement mechanisms

    SciTech Connect

    Jacobi, A.M.; Shah, R.K.

    1998-10-01

    The behavior of air flows in complex heat exchanger passages is reviewed with a focus on the heat transfer effects of boundary-layer development, turbulence, spanwise and streamwise vortices, and wake management. Each of these flow features is discussed for the plain, wavy, and interrupted passages found in contemporary compact heat exchanger designs. Results from the literature are used to help explain the role of these mechanisms in heat transfer enhancement strategies.

  13. Experimental investigation of the magnetohydrodynamic parachute effect in a hypersonic air flow

    NASA Astrophysics Data System (ADS)

    Fomichev, V. P.; Yadrenkin, M. A.

    2013-01-01

    New data on experimental implementation of the magnetohydrodynamic (MHD) parachute configuration in an air flow with Mach number M = 6 about a flat plate are considered. It is shown that MHD interaction near a flat plate may transform an attached oblique shock wave into a normal detached one, which considerably extends the area of body-incoming flow interaction. This effect can be employed in optimizing return space vehicle deceleration conditions in the upper atmosphere.

  14. Cloud-based large-scale air traffic flow optimization

    NASA Astrophysics Data System (ADS)

    Cao, Yi

    The ever-increasing traffic demand makes the efficient use of airspace an imperative mission, and this paper presents an effort in response to this call. Firstly, a new aggregate model, called Link Transmission Model (LTM), is proposed, which models the nationwide traffic as a network of flight routes identified by origin-destination pairs. The traversal time of a flight route is assumed to be the mode of distribution of historical flight records, and the mode is estimated by using Kernel Density Estimation. As this simplification abstracts away physical trajectory details, the complexity of modeling is drastically decreased, resulting in efficient traffic forecasting. The predicative capability of LTM is validated against recorded traffic data. Secondly, a nationwide traffic flow optimization problem with airport and en route capacity constraints is formulated based on LTM. The optimization problem aims at alleviating traffic congestions with minimal global delays. This problem is intractable due to millions of variables. A dual decomposition method is applied to decompose the large-scale problem such that the subproblems are solvable. However, the whole problem is still computational expensive to solve since each subproblem is an smaller integer programming problem that pursues integer solutions. Solving an integer programing problem is known to be far more time-consuming than solving its linear relaxation. In addition, sequential execution on a standalone computer leads to linear runtime increase when the problem size increases. To address the computational efficiency problem, a parallel computing framework is designed which accommodates concurrent executions via multithreading programming. The multithreaded version is compared with its monolithic version to show decreased runtime. Finally, an open-source cloud computing framework, Hadoop MapReduce, is employed for better scalability and reliability. This framework is an "off-the-shelf" parallel computing model

  15. Eliminating primary air axial flow fan stall at the D. B. Wilson station

    SciTech Connect

    Studley, B.C. ); Schmidt, E. ); Foreman, J.D. )

    1990-01-01

    Having originally chosen two axial flow primary air fans operating in parallel to deliver pulverized coal to this 440 Mw facility because of their high efficiencies and precise flow control, a program for first controlling and then eliminating fan stall was undertaken. An axial flow fan stalls when air flow separation occurs around the blades. This results in heavy turbulence with the fan no longer operating on its normal performance curve and consequently a rapid decrease in both pressure and flow is experienced. In addition, this condition results in high vibration which over time can be destructive to the fan. The immediate effect is obviously a sudden decrease in fuel flow followed b y both steam flow and electrical output. Although fan stall is a potential drawback of axial flow fans, the program implemented, which is described in this paper, has been successful at first controlling and recently eliminating fan stall all together. This was possible through an extensive test program and finally the installation of anti-stall rings on both fans. The net result of this operating improvement has been improved availability, reliability and capacity, in addition to higher fan discharge pressures as the anti-stall rings have modified the pressure-versus-volume curves of the fan similar to the characteristics of a cof a centrifugal fan.

  16. Analysis of breathing air flow patterns in thermal imaging.

    PubMed

    Fei, Jin; Pavlidis, Ioannis

    2006-01-01

    We introduce a novel methodology to characterize breathing patterns based on thermal infrared imaging. We have retrofitted a Mid-Wave Infra-Red (MWIR) imaging system with a narrow band-pass filter in the CO(2) absorption band (4130 - 4427 nm). We use this system to record the radiation information from within the breathing flow region. Based on this information we compute the mean dynamic thermal signal of breath. The breath signal is quasi-periodic due to the interleaving of high and low intensities corresponding to expirations and inspirations respectively. We sample the signal at a constant rate and then filter the high frequency noise due to tracking instability. We detect the breathing cycles through zero cross thresholding, which is insensitive to noise around the zero line. We normalize the breathing cycles and align them at the transition point from inhalation to exhalation. Then, we compute the mean breathing cycle. We use the first eight (8) harmonic components of the mean cycle to characterize the breathing pattern. The harmonic analysis highlights the intra-individual similarity of breathing patterns. Our method opens the way for desktop, unobtrusive monitoring of human respiration and may find widespread applications in clinical studies of chronic ailments. It also brings up the intriguing possibility of using breathing patterns as a novel biometric. PMID:17945610

  17. Imaging of the Self-Excited Oscillation of Flow Past a Cavity During Generation of a Flow Tone

    SciTech Connect

    M. Geveci; P. Oshkai; D. Rockwell; J-C. Lin; M. Pollack

    2002-05-21

    Flow through a pipeline-cavity system can give rise to pronounced flow tones, even when the inflow boundary layer is fully turbulent. Such tones arise from the coupling between the inherent instability of the shear flow past the cavity and a resonant acoustic mode of the system. A technique of high-image-density particle image velocimetry is employed in conjunction with a special test section, which allows effective laser illumination and digital acquisition of patterns of particle images. This approach leads to patterns of velocity, vorticity, streamline topology and hydrodynamic contributions to the acoustic power integral. Comparison of global, instantaneous images with time- and phase-averaged representations provides insight into the small-scale and large-scale concentrations of vorticity, and their consequences on the topological features of Streamline patterns, as well as the streamwise and transverse projections of the hydrodynamic contribution to the acoustic power integral. Furthermore, these global approaches allow the definition of effective wavelengths and phase speeds of the vortical structures, which can lead to guidance for physical models of the dimensionless frequency of oscillation.

  18. Excitation and decay of flows in the magnetosphere-ionosphere system due to magnetic reconnection at the dayside magnetospause and in the geomagnetic tail

    NASA Technical Reports Server (NTRS)

    Cowley, Stanley W. H.; Morelli, J. P.; Freeman, M. P.; Lockwood, M.; Smith, M. F.

    1992-01-01

    The excitation and decay of flows in the magnetosphere-ionosphere system which are caused by magnetic reconnection at the dayside magnetopause and in the geomagnetic tail are applied. Following an outline of the theoretical framework recently introduced by Cowley and Lockwood, their ideas are applied to the discussion of the time dependent flows generated by both impulsive and quasicontinuous reconnection.

  19. Convective heat transfer characteristics of laminar pulsating pipe air flow

    NASA Astrophysics Data System (ADS)

    Habib, M. A.; Attya, A. M.; Eid, A. I.; Aly, A. Z.

    Heat transfer characteristics to laminar pulsating pipe flow under different conditions of Reynolds number and pulsation frequency were experimentally investigated. The tube wall of uniform heat flux condition was considered. Reynolds number was varied from 780 to 1987 while the frequency of pulsation ranged from 1 to 29.5Hz. The results showed that the relative mean Nusselt number is strongly affected by pulsation frequency while it is slightly affected by Reynolds number. The results showed enhancements in the relative mean Nusselt number. In the frequency range of 1-4Hz, an enhancement up to 30% (at Reynolds number of 1366 and pulsation frequency of 1.4Hz) was obtained. In the frequency range of 17-25Hz, an enhancement up to 9% (at Reynolds number of 1366 and pulsation frequency of 17.5Hz) was indicated. The rate of enhancement of the relative mean Nusselt number decreased as pulsation frequency increased or as Reynolds number increased. A reduction in relative mean Nusselt number occurred outside these ranges of pulsation frequencies. A reduction in relative mean Nusselt number up to 40% for pulsation frequency range of 4.1-17Hz and a reduction up to 20% for pulsation frequency range of 25-29.5Hz for Reynolds numbers range of 780-1987 were considered. This reduction is directly proportional to the pulsation frequency. Empirical dimensionless equations have been developed for the relative mean Nusselt number that related to Reynolds number (750

  20. Stochastic flow modeling : Quasi-Geostrophy, Taylor state and torsional wave excitation

    NASA Astrophysics Data System (ADS)

    gillet, N.; Jault, D.; Finlay, C. C.

    2013-12-01

    We reconstruct the core flow evolution over the period 1840-2010 under the quasi-geostrophic assumption, from the stochastic magnetic field model COV-OBS and its full model error covariance matrix. We make use of a prior information on the flow temporal power spectrum compatible with that of observed geomagnetic series. We account for errors of representativeness (subgrid processes associated with the unresolved field at small length-scales) that are correlated in space and time, using an iterative scheme. An ensemble approach allows us to measure the uncertainties within the recovered motions. Large length-scales flow features are naturally dominated by their equatorially symmetric component from about 1900 when the symmetry constraint is relaxed. Equipartition of the kinetic energy in both symmetries coincides with the poor prediction of decadal length-of-day changes in the XIXth century. We interpret this as an evidence for quasi-geostrophic rapid flow changes, and the consequence of a too loose data constraint during the oldest period. We manage to retrieve rapid flow changes over the past 60 yrs, and in particular modulated torsional waves predicting correctly interannual length-of day variations from 1950 onward. We propose a triggering mechanism for these waves involving non-zonal motions in the framework of Taylor's state.

  1. An experimental study on the effect of air bubble injection on the flow induced rotational hub

    SciTech Connect

    Nouri, N.M.; Sarreshtehdari, A.

    2009-01-15

    Modification of shear stress due to air bubbles injection in a rotary device was investigated experimentally. Air bubbles inject to the water flow crosses the neighbor of the hub which can rotate just by water flow shear stresses, in this device. Increasing air void fraction leads to decrease of shear stresses exerted on the hub surface until in high void fractions, the hub motion stopped as observed. Amount of skin friction decrease has been estimated by counting central hub rotations. Wall shear stress was decreased by bubble injection in all range of tested Reynolds number, changing from 50,378 to 71,238, and also by increasing air void fraction from zero to 3.06%. Skin friction reduction more than 85% was achieved in this study as maximum measured volume of air fraction injected to fluid flow while bubbles are distinct and they do not make a gas layer. Significant skin friction reduction obtained in this special case indicate that using small amount of bubble injection causes large amount of skin friction reduction in some rotary parts in the liquid phases like as water. (author)

  2. A blunted cone in a supersonic high-enthalpy nonequilibrium air flow

    NASA Astrophysics Data System (ADS)

    Sakharov, V. I.; Shtapov, V. V.; Vasilevskiy, E. B.; Zhestkov, B. E.

    2015-06-01

    A calculation and experimental study was conducted with the flow, heat flux, and pressure distributions over the front and side surfaces of a blunt cone in a nonequilibrium high-enthalpy (h0 = 25 MJ/kg) supersonic (M = 4) air flow. The experiments were performed in a VAT-104 wind tunnel (WT), TsAGI. The nose part of the model with a small-radius nose Rw = 10 mm and half angle θ = 10° was inside the "Mach cone" of the underexpanded jet flowing out from the WT nozzle. Numerical and experimental results are in good agreement.

  3. High enthalpy, hypervelocity flows of air and argon in an expansion tube

    NASA Technical Reports Server (NTRS)

    Neely, A. J; Stalker, R. J.; Paull, A.

    1991-01-01

    An expansion tube with a free piston driver has been used to generate quasi-steady hypersonic flows in argon and air at flow velocities in excess of 9 km/s. Irregular test flow unsteadiness has limited the performance of previous expansion tubes, and it has been found that this can be avoided by attention to the interaction between the test gas accelerating expansion and the contact surface in the primary shock tube. Test section measurements of pitot pressure, static pressure and flat plate heat transfer are reported. An approximate analytical theory has been developed for predicting the velocities achieved in the unsteady expansion of the ionizing or dissociating test gas.

  4. Brazing retort manifold design concept may minimize air contamination and enhance uniform gas flow

    NASA Technical Reports Server (NTRS)

    Ruppe, E. P.

    1966-01-01

    Brazing retort manifold minimizes air contamination, prevents gas entrapment during purging, and provides uniform gas flow into the retort bell. The manifold is easily cleaned and turbulence within the bell is minimized because all manifold construction lies outside the main enclosure.

  5. 7 CFR 28.603 - Procedures for air flow tests of micronaire reading.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 2 2011-01-01 2011-01-01 false Procedures for air flow tests of micronaire reading... micronaire reading. In determining in terms of micronaire readings, the fiber fineness and maturity, in... cotton in terms of micronaire reading on the curvilinear scale adopted in September 1950 by...

  6. 7 CFR 28.603 - Procedures for air flow tests of micronaire reading.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Procedures for air flow tests of micronaire reading... micronaire reading. In determining in terms of micronaire readings, the fiber fineness and maturity, in... cotton in terms of micronaire reading on the curvilinear scale adopted in September 1950 by...

  7. Wind Tunnel Evaluation of Vegetative Buffer Effects on Air Flow near Swine Production Facilities

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Increasing concerns about generation and transport of swine odor constituents have substantiated wind tunnel simulation studies on air flow dynamics near swine production facilities. A possible odor mitigation strategy is a forest vegetative buffer as a windbreak barrier near swine facilities becaus...

  8. 42 CFR 84.148 - Type C supplied-air respirator, continuous flow class; minimum requirements.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 42 Public Health 1 2010-10-01 2010-10-01 false Type C supplied-air respirator, continuous flow class; minimum requirements. 84.148 Section 84.148 Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF HEALTH AND HUMAN SERVICES OCCUPATIONAL SAFETY AND HEALTH RESEARCH AND RELATED ACTIVITIES APPROVAL OF RESPIRATORY PROTECTIVE DEVICES...

  9. 30 CFR 57.22211 - Air flow (I-A mines).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Air flow (I-A mines). 57.22211 Section 57.22211 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES Safety Standards...

  10. 30 CFR 57.22211 - Air flow (I-A mines).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Air flow (I-A mines). 57.22211 Section 57.22211 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES Safety Standards...

  11. 30 CFR 57.22211 - Air flow (I-A mines).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Air flow (I-A mines). 57.22211 Section 57.22211 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES Safety Standards...

  12. 30 CFR 57.22211 - Air flow (I-A mines).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Air flow (I-A mines). 57.22211 Section 57.22211 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES Safety Standards...

  13. 30 CFR 57.22211 - Air flow (I-A mines).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Air flow (I-A mines). 57.22211 Section 57.22211 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES Safety Standards...

  14. Investigation of Flow in an Axially Symmetrical Heated Jet of Air

    NASA Technical Reports Server (NTRS)

    Corrsin, Stanley

    1943-01-01

    The work done under this contract falls essentially into two parts: the first part was the design and construction of the equipment and the running of preliminary tests on the 3-inch jet, carried out by Mr. Carl Thiele in 1940; the second part consisting in the measurement in the 1-inch jet flow in an axially symmetrical heated jet of air. (author)

  15. Two-phase air/oil flow in aero engine bearing chambers: Characterization of oil film flows

    SciTech Connect

    Glahn, A.; Wittig, S.

    1996-07-01

    For the design of secondary air and lubrication oil systems, a sufficient knowledge of two-phase flow and heat transfer phenomena under bearing chamber flow conditions is required. The characterization of oil film flows at the bearing chamber walls is one of the major tasks for a better understanding of these processes and, therefore, a necessity for improvements of the efficiency of aero engines. The present paper gives a contribution to this subject. Utilizing a fiber-optic LDV setup, measurements of oil film velocity profiles have been performed in the high-speed bearing chamber rig simulating real engine conditions. All data have been compared with different theoretical approaches, which have been derived from a force balance at a liquid film element, including geometric conditions and temperature dependent fluid properties, and by approaches for the eddy viscosity available in the literature.

  16. Uncertainty Analysis for a Virtual Flow Meter Using an Air-Handling Unit Chilled Water Valve

    SciTech Connect

    Song, Li; Wang, Gang; Brambley, Michael R.

    2013-04-28

    A virtual water flow meter is developed that uses the chilled water control valve on an air-handling unit as a measurement device. The flow rate of water through the valve is calculated using the differential pressure across the valve and its associated coil, the valve command, and an empirically determined valve characteristic curve. Thus, the probability of error in the measurements is significantly greater than for conventionally manufactured flow meters. In this paper, mathematical models are developed and used to conduct uncertainty analysis for the virtual flow meter, and the results from the virtual meter are compared to measurements made with an ultrasonic flow meter. Theoretical uncertainty analysis shows that the total uncertainty in flow rates from the virtual flow meter is 1.46% with 95% confidence; comparison of virtual flow meter results with measurements from an ultrasonic flow meter yielded anuncertainty of 1.46% with 99% confidence. The comparable results from the theoretical uncertainty analysis and empirical comparison with the ultrasonic flow meter corroborate each other, and tend to validate the approach to computationally estimating uncertainty for virtual sensors introduced in this study.

  17. A Novel Biobjective Risk-Based Model for Stochastic Air Traffic Network Flow Optimization Problem

    PubMed Central

    Cai, Kaiquan; Jia, Yaoguang; Zhu, Yanbo; Xiao, Mingming

    2015-01-01

    Network-wide air traffic flow management (ATFM) is an effective way to alleviate demand-capacity imbalances globally and thereafter reduce airspace congestion and flight delays. The conventional ATFM models assume the capacities of airports or airspace sectors are all predetermined. However, the capacity uncertainties due to the dynamics of convective weather may make the deterministic ATFM measures impractical. This paper investigates the stochastic air traffic network flow optimization (SATNFO) problem, which is formulated as a weighted biobjective 0-1 integer programming model. In order to evaluate the effect of capacity uncertainties on ATFM, the operational risk is modeled via probabilistic risk assessment and introduced as an extra objective in SATNFO problem. Computation experiments using real-world air traffic network data associated with simulated weather data show that presented model has far less constraints compared to stochastic model with nonanticipative constraints, which means our proposed model reduces the computation complexity. PMID:26180842

  18. A Novel Biobjective Risk-Based Model for Stochastic Air Traffic Network Flow Optimization Problem.

    PubMed

    Cai, Kaiquan; Jia, Yaoguang; Zhu, Yanbo; Xiao, Mingming

    2015-01-01

    Network-wide air traffic flow management (ATFM) is an effective way to alleviate demand-capacity imbalances globally and thereafter reduce airspace congestion and flight delays. The conventional ATFM models assume the capacities of airports or airspace sectors are all predetermined. However, the capacity uncertainties due to the dynamics of convective weather may make the deterministic ATFM measures impractical. This paper investigates the stochastic air traffic network flow optimization (SATNFO) problem, which is formulated as a weighted biobjective 0-1 integer programming model. In order to evaluate the effect of capacity uncertainties on ATFM, the operational risk is modeled via probabilistic risk assessment and introduced as an extra objective in SATNFO problem. Computation experiments using real-world air traffic network data associated with simulated weather data show that presented model has far less constraints compared to stochastic model with nonanticipative constraints, which means our proposed model reduces the computation complexity. PMID:26180842

  19. The measurement error analysis when a pitot probe is used in supersonic air flow

    NASA Astrophysics Data System (ADS)

    Zhang, XiWen; Hao, PengFei; Yao, ZhaoHui

    2011-04-01

    Pitot probes enable a simple and convenient way of measuring mean velocity in air flow. The contrastive numerical simulation between free supersonic airflow and pitot tube at different positions in supersonic air flow was performed using Navier-Stokes equations, the ENN scheme with time-dependent boundary conditions (TDBC) and the Spalart-Allmaras turbulence model. The physical experimental results including pitot pressure and shadowgraph are also presented. Numerical results coincide with the experimental data. The flow characteristics of the pitot probe on the supersonic flow structure show that the measurement gives actually the total pressure behind the detached shock wave by using the pitot probe to measure the total pressure. The measurement result of the distribution of the total pressure can still represent the real free jet flow. The similar features of the intersection and reflection of shock waves can be identified. The difference between the measurement results and the actual ones is smaller than 10%. When the pitot probe is used to measure the region of L=0-4 D, the measurement is smaller than the real one due to the increase of the shock wave strength. The difference becomes larger where the waves intersect. If the pitot probe is put at L=8 D-10 D, where the flow changes from supersonic to subsonic, the addition of the pitot probe turns the original supersonic flow region subsonic and causes bigger measurement errors.

  20. Simulation of 3-D Nonequilibrium Seeded Air Flow in the NASA-Ames MHD Channel

    NASA Technical Reports Server (NTRS)

    Gupta, Sumeet; Tannehill, John C.; Mehta, Unmeel B.

    2004-01-01

    The 3-D nonequilibrium seeded air flow in the NASA-Ames experimental MHD channel has been numerically simulated. The channel contains a nozzle section, a center section, and an accelerator section where magnetic and electric fields can be imposed on the flow. In recent tests, velocity increases of up to 40% have been achieved in the accelerator section. The flow in the channel is numerically computed us ing a 3-D parabolized Navier-Stokes (PNS) algorithm that has been developed to efficiently compute MHD flows in the low magnetic Reynolds number regime: The MHD effects are modeled by introducing source terms into the PNS equations which can then be solved in a very efficient manner. The algorithm has been extended in the present study to account for nonequilibrium seeded air flows. The electrical conductivity of the flow is determined using the program of Park. The new algorithm has been used to compute two test cases that match the experimental conditions. In both cases, magnetic and electric fields are applied to the seeded flow. The computed results are in good agreement with the experimental data.

  1. Calibration of a system for measuring low air flow velocity in a wind tunnel

    NASA Astrophysics Data System (ADS)

    Krach, Andrzej; Kruczkowski, Janusz

    2016-08-01

    This article presents the calibration of a system for measuring air flow velocity in a wind tunnel with a multiple-hole orifice. The comparative method was applied for the calibration. The method consists in equalising the air flow velocity in a test section of the tunnel with that of the hot-wire anemometer probe which should then read zero value. The hot-wire anemometer probe moves reciprocally in the tunnel test section with a constant velocity, aligned and opposite to the air velocity. Air velocity in the tunnel test section is adjusted so that the minimum values of a periodic hot-wire anemometer signal displayed on an oscilloscope screen reach the lowest position (the minimum method). A sinusoidal component can be superimposed to the probe constant velocity. Then, the air flow velocity in the tunnel test section is adjusted so that, when the probe moves in the direction of air flow, only the second harmonic of the periodically variable velocity superimposed on the constant velocity (second harmonic method) remains at the output of the low-pass filter to which the hot-wire anemometer signal, displayed on the oscilloscope screen, is supplied. The velocity of the uniform motion of the hot-wire anemometer probe is measured with a magnetic linear encoder. The calibration of the system for the measurement of low air velocities in the wind tunnel was performed in the following steps: 1. Calibration of the linear encoder for the measurement of the uniform motion velocity of the hot-wire anemometer probe in the test section of the tunnel. 2. Calibration of the system for measurement of low air velocities with a multiple-hole orifice for the velocities of 0.1 and 0.25 m s‑1: - (a) measurement of the probe movement velocity setting; - (b) measurement of air velocity in the tunnel test section with comparison according to the second harmonic method; - (c) measurement of air velocity in the tunnel with comparison according to the minimum method. The calibration

  2. Pressure probe and hot-film probe rsponses to acoustic excitation in mean flow

    NASA Technical Reports Server (NTRS)

    Parrott, T. L.; Jones, M. G.

    1986-01-01

    An experiment was conducted to compare the relative responses of a hot-film probe and a pressure probe positioned in a flow duct carrying mean flow and progressive acoustic waves. The response of each probe was compared with that of a condenser-type microphone flush mounted in the duct wall for flow Mach numbers up to about 0.5. The response of the pressure probe was less than that of the flush-mounted microphone by not more than about 2.1 dB at the highest centerline Mach number. This decreased response of the probe can likely be attributed to flow-induced impedance changes at the probe sensor orifices. The response of the hot-film probe, expressed in terms of fluctuating pressure, was greater than that of the flush-mounted microphone by as much as 6.0 dB at the two higher centerline Mach numbers. Removal of the contribution from fluctuating temperature in the hot-film analytical model greatly improved the agreement between the two transducer responses.

  3. Laser filamentation induced air-flow motion in a diffusion cloud chamber.

    PubMed

    Sun, Haiyi; Liu, Jiansheng; Wang, Cheng; Ju, Jingjing; Wang, Zhanxin; Wang, Wentao; Ge, Xiaochun; Li, Chuang; Chin, See Leang; Li, Ruxin; Xu, Zhizhan

    2013-04-22

    We numerically simulated the air-flow motion in a diffusion cloud chamber induced by femtosecond laser filaments for different chopping rates. A two dimensional model was employed, where the laser filaments were treated as a heat flux source. The simulated patterns of flow fields and maximum velocity of updraft compare well with the experimental results for the chopping rates of 1, 5, 15 and 150 Hz. A quantitative inconsistency appears between simulated and experimental maximum velocity of updraft for 1 kHz repetition rate although a similar pattern of flow field is obtained, and the possible reasons were analyzed. Based on the present simulated results, the experimental observation of more water condensation/snow at higher chopping rate can be explained. These results indicate that the specific way of laser filament heating plays a significant role in the laser-induced motion of air flow, and at the same time, our previous conclusion of air flow having an important effect on water condensation/snow is confirmed. PMID:23609636

  4. Mechanical Design of a Performance Test Rig for the Turbine Air-Flow Task (TAFT)

    NASA Technical Reports Server (NTRS)

    Forbes, John C.; Xenofos, George D.; Farrow, John L.; Tyler, Tom; Williams, Robert; Sargent, Scott; Moharos, Jozsef

    2004-01-01

    To support development of the Boeing-Rocketdyne RS84 rocket engine, a full-flow, reaction turbine geometry was integrated into the NASA-MSFC turbine air-flow test facility. A mechanical design was generated which minimized the amount of new hardware while incorporating all test and instrumentation requirements. This paper provides details of the mechanical design for this Turbine Air-Flow Task (TAFT) test rig. The mechanical design process utilized for this task included the following basic stages: Conceptual Design. Preliminary Design. Detailed Design. Baseline of Design (including Configuration Control and Drawing Revision). Fabrication. Assembly. During the design process, many lessons were learned that should benefit future test rig design projects. Of primary importance are well-defined requirements early in the design process, a thorough detailed design package, and effective communication with both the customer and the fabrication contractors.

  5. Air, bone and soft tissue excitation of the cochlea in the presence of severe impediments to ossicle and window mobility.

    PubMed

    Perez, Ronen; Adelman, Cahtia; Chordekar, Shai; Ishai, Reuven; Sohmer, Haim

    2015-04-01

    Clinical conditions have been described in which one of the two cochlear windows is immobile (otosclerosis) or absent (round window atresia), but nevertheless bone conduction (BC) thresholds are relatively unaffected. To clarify this apparent paradox, experimental manipulations which would severely impede several of the classical osseous mechanisms of BC were induced in fat sand rats, including discontinuity or immobilization of the ossicular chain, coupled with window fixation. Effects of these manipulations were assessed by recording auditory nerve brainstem evoked response (ABR) thresholds to stimulation by air conduction (AC), by osseous BC and by non-osseous BC (also called soft tissue conduction-STC) in which the BC bone vibrator is applied to skin sites. Following the immobilization, discontinuity and window fixation, auditory stimulation was also delivered to cerebro-spinal fluid (CSF) and to saline applied to the middle ear cavity. While the manipulations (immobilization, discontinuity, window fixation) led to an elevation of AC thresholds, nevertheless, there was no change in osseous and non-osseous BC thresholds. On the other hand, ABR could be elicited in response to fluid pressure stimulation to CSF and middle ear saline, even in the presence of the severe restriction of ossicular chain and window mobility. The results of these experiments in which osseous and non-osseous BC thresholds remained unchanged in the presence of severe restriction of the classical middle ear mechanisms and in the absence of an efficient release window, while ABR could be recorded in response to fluid pressure auditory stimulation to fluid sites, indicate that it is possible that the inner ear may be activated at low sound intensities by fast fluid pressure stimulation. At higher sound intensities, a slower passive basilar membrane traveling wave may serve to excite the inner ear. PMID:24452773

  6. Flow visualization study of grooved surface/surfactant/air sheet interaction

    NASA Astrophysics Data System (ADS)

    Reed, Jason C.; Weinstein, Leonard M.

    1989-03-01

    The effects of groove geometry, surfactants, and airflow rate have been ascertained by a flow-visualization study of grooved-surface models which addresses the possible conditions for skin friction-reduction in marine vehicles. It is found that the grooved surface geometry holds the injected bubble stream near the wall and, in some cases, results in a 'tube' of air which remains attached to the wall. It is noted that groove dimension and the use of surfactants can substantially affect the stability of this air tube; deeper grooves, surfactants with high contact angles, and angled air injection, are all found to increase the stability of the attached air tube, while convected disturbances and high shear increase interfacial instability.

  7. Boundary layer flow of air over water on a flat plate

    NASA Technical Reports Server (NTRS)

    Nelson, John; Alving, Amy E.; Joseph, Daniel D.

    1993-01-01

    A non-similar boundary layer theory for air blowing over a water layer on a flat plate is formulated and studied as a two-fluid problem in which the position of the interface is unknown. The problem is considered at large Reynolds number (based on x), away from the leading edge. A simple non-similar analytic solution of the problem is derived for which the interface height is proportional to x(sub 1/4) and the water and air flow satisfy the Blasius boundary layer equations, with a linear profile in the water and a Blasius profile in the air. Numerical studies of the initial value problem suggests that this asymptotic, non-similar air-water boundary layer solution is a global attractor for all initial conditions.

  8. Flow visualization study of grooved surface/surfactant/air sheet interaction

    NASA Technical Reports Server (NTRS)

    Reed, Jason C.; Weinstein, Leonard M.

    1989-01-01

    The effects of groove geometry, surfactants, and airflow rate have been ascertained by a flow-visualization study of grooved-surface models which addresses the possible conditions for skin friction-reduction in marine vehicles. It is found that the grooved surface geometry holds the injected bubble stream near the wall and, in some cases, results in a 'tube' of air which remains attached to the wall. It is noted that groove dimension and the use of surfactants can substantially affect the stability of this air tube; deeper grooves, surfactants with high contact angles, and angled air injection, are all found to increase the stability of the attached air tube, while convected disturbances and high shear increase interfacial instability.

  9. Combined experimental and computational investigation of sterile air flows in surgical environments

    NASA Astrophysics Data System (ADS)

    McNeill, James; Hertzberg, Jean; Zhai, Zhiqiang

    2010-11-01

    Surgical environments in hospitals utilize downward, low-turbulence, sterile air flow across the patient to inhibit transmission of infectious diseases to the surgical site. Full-scale laboratory experiments using particle image velocimetry were conducted to investigate the air distribution above the patient area. Computational fluid dynamics models were developed to further investigate the air distribution within the operating room in order to determine the impact of ventilation design of airborne infectious disease pathways. Both Reynolds-averaged Navier-Stokes equations and large eddy simulation techniques are currently being used in the computational modeling to study the effect of turbulence modeling on the indoor air distribution. CFD models are being calibrated based on the experimental data and will be used to study the probability of infectious particles entering the sterile region of the room.

  10. An Integrative Model of Excitation Driven Fluid Flow in a 2D Uterine Channel

    NASA Astrophysics Data System (ADS)

    Maggio, Charles; Fauci, Lisa; Chrispell, John

    2009-11-01

    We present a model of intra-uterine fluid flow in a sagittal cross-section of the uterus by inducing peristalsis in a 2D channel. This is an integrative multiscale computational model that takes as input fluid viscosity, passive tissue properties of the uterine channel and a prescribed wave of membrane depolarization. This voltage pulse is coupled to a model of calcium dynamics inside a uterine smooth muscle cell, which in turn drives a kinetic model of myosin phosphorylation governing contractile muscle forces. Using the immersed boundary method, these muscle forces are communicated to a fluid domain to simulate the contractions which occur in a human uterus. An analysis of the effects of model parameters on the flow properties and emergent geometry of the peristaltic channel will be presented.

  11. Three-Dimensional Mapping of Air Flow at an Urban Canyon Intersection

    NASA Astrophysics Data System (ADS)

    Carpentieri, Matteo; Robins, Alan G.; Baldi, Sandro

    2009-11-01

    In this experimental work both qualitative (flow visualisation) and quantitative (laser Doppler anemometry) methods were applied in a wind tunnel in order to describe the complex three-dimensional flow field in a real environment (a street canyon intersection). The main aim was an examination of the mean flow, turbulence and flow pathlines characterising a complex three-dimensional urban location. The experiments highlighted the complexity of the observed flows, particularly in the upwind region of the intersection. In this complex and realistic situation some details of the upwind flow, such as the presence of two tall towers, play an important role in defining the flow field within the intersection, particularly at roof level. This effect is likely to have a strong influence on the mass exchange mechanism between the canopy flow and the air aloft, and therefore the distribution of pollutants. This strong interaction between the flows inside and outside the urban canopy is currently neglected in most state-of-the-art local scale dispersion models.

  12. Air flow measurement techniques applied to noise reduction of a centrifugal blower

    NASA Astrophysics Data System (ADS)

    Laage, John W.; Armstrong, Ashli J.; Eilers, Daniel J.; Olsen, Michael G.; Mann, J. Adin

    2005-09-01

    The air flow in a centrifugal blower was studied using a variety of flow and sound measurement techniques. The flow measurement techniques employed included Particle Image Velocimetry (PIV), pitot tubes, and a five hole spherical probe. PIV was used to measure instantaneous and ensemble-averaged velocity fields over large area of the outlet duct as a function of fan position, allowing for the visualization of the flow as it leave the fan blades and progressed downstream. The results from the flow measurements were reviewed along side the results of the sound measurements with the goal of identifying sources of noise and inefficiencies in flow performance. The radiated sound power was divided into broadband and tone noise and measures of the flow. The changes in the tone and broadband sound were compared to changes in flow quantities such as the turbulent kinetic energy and Reynolds stress. Results for each method will be presented to demonstrate the strengths of each flow measurement technique as well as their limitations. Finally, the role that each played in identifying noise sources is described.

  13. Measurement of air distribution and void fraction of an upwards air-water flow using electrical resistance tomography and a wire-mesh sensor

    NASA Astrophysics Data System (ADS)

    Olerni, Claudio; Jia, Jiabin; Wang, Mi

    2013-03-01

    Measurements on an upwards air-water flow are reported that were obtained simultaneously with a dual-plane electrical resistance tomograph (ERT) and a wire-mesh sensor (WMS). The ultimate measurement target of both ERT and WMS is the same, the electrical conductivity of the medium. The ERT is a non-intrusive device whereas the WMS requires a net of wires that physically crosses the flow. This paper presents comparisons between the results obtained simultaneously from the ERT and the WMS for evaluation and calibration of the ERT. The length of the vertical testing pipeline section is 3 m with an internal diameter of 50 mm. Two distinct sets of air-water flow rate scenarios, bubble and slug regimes, were produced in the experiments. The fast impedance camera ERT recorded the data at an approximate time resolution of 896 frames per second (fps) per plane in contrast with the 1024 fps of the wire-mesh sensor WMS200. The set-up of the experiment was based on well established knowledge of air-water upwards flow, particularly the specific flow regimes and wall peak effects. The local air void fraction profiles and the overall air void fraction were produced from two systems to establish consistency for comparison of the data accuracy. Conventional bulk flow measurements in air mass and electromagnetic flow metering, as well as pressure and temperature, were employed, which brought the necessary calibration to the flow measurements. The results show that the profiles generated from the two systems have a certain level of inconsistency, particularly in a wall peak and a core peak from the ERT and WMS respectively, whereas the two tomography instruments achieve good agreement on the overall air void fraction for bubble flow. For slug flow, when the void fraction is over 30%, the ERT underestimates the void fraction, but a linear relation between ERT and WMS is still observed.

  14. Base-flow data in the Arnold Air Force Base area, Tennessee, June and October 2002

    USGS Publications Warehouse

    Robinson, John A.; Haugh, Connor J.

    2004-01-01

    Arnold Air Force Base (AAFB) occupies about 40,000 acres in Coffee and Franklin Counties, Tennessee. The primary mission of AAFB is to support the development of aerospace systems. This mission is accomplished through test facilities at Arnold Engineering Development Center (AEDC), which occupies about 4,000 acres in the center of AAFB. Base-flow data including discharge, temperature, and specific conductance were collected for basins in and near AAFB during high base-flow and low base-flow conditions. Data representing high base-flow conditions from 109 sites were collected on June 3 through 5, 2002, when discharge measurements at sites with flow ranged from 0.005 to 46.4 ft3/s. Data representing low base-flow conditions from 109 sites were collected on October 22 and 23, 2002, when discharge measurements at sites with flow ranged from 0.02 to 44.6 ft3/s. Discharge from the basin was greater during high base-flow conditions than during low base-flow conditions. In general, major tributaries on the north side and southeastern side of the study area (Duck River and Bradley Creek, respectively) had the highest flows during the study. Discharge data were used to categorize stream reaches and sub-basins. Stream reaches were categorized as gaining, losing, wet, dry, or unobserved for each base-flow measurement period. Gaining stream reaches were more common during the high base-flow period than during the low base-flow period. Dry stream reaches were more common during the low base-flow period than during the high base-flow period. Losing reaches were more predominant in Bradley Creek and Crumpton Creek. Values of flow per square mile for the study area of 0.55 and 0.37 (ft3/s)/mi2 were calculated using discharge data collected on June 3 through 5, 2002, and October 22 and 23, 2002, respectively. Sub-basin areas with surplus or deficient flow were defined within the basin. Drainage areas for each stream measurement site were delineated and measured from topographic maps

  15. Piloted Ignition of Polypropylene/Glass Composites in a Forced Air Flow

    NASA Technical Reports Server (NTRS)

    Fernandez-Pello, A. C.; Rich, D.; Lautenberger, C.; Stefanovich, A.; Metha, S.; Torero, J.; Yuan, Z.; Ross, H.

    2003-01-01

    The Forced Ignition and Spread Test (FIST) is being used to study the flammability characteristics of combustible materials in forced convective flows. The FIST methodology is based on the ASTM E-1321, Lateral Ignition and Flame Spread Test (LIFT) which is used to determine the ignition and flame spread characteristics of materials, and to produce 'Flammability Diagrams' of materials. The LIFT apparatus, however, relies on natural convection to bring air to the combustion zone and the fuel vapor to the pilot flame, and thus cannot describe conditions where the oxidizer flow velocity may change. The FIST on the other hand, by relying on a forced flow as the dominant transport mechanism, can be used to examine variable oxidizer flow characteristics, such as velocity, oxygen concentration, and turbulence intensity, and consequently has a wider applicability. Particularly important is its ability to determine the flammability characteristics of materials used in spacecraft since in the absence of gravity the only flow present is that forced by the HVAC of the space facility. In this paper, we report work on the use of the FIST approach on the piloted ignition of a blended polypropylene fiberglass (PP/GL) composite material exposed to an external radiant flux in a forced convective flow of air. The effect of glass concentration under varying external radiant fluxes is examined and compared qualitatively with theoretical predictions of the ignition process. The results are used to infer the effect of glass content on the fire safety characteristics of composites.

  16. Flow Regimes of Air-Water Counterflow Through Cross Corrugated Parallel Plates

    SciTech Connect

    de Almeida, V.F.

    2000-06-07

    Heretofore unknown flow regimes of air-water counterflow through a pair of transparent vertical parallel cross corrugated plates were observed via high-speed video. Air flows upward driven by pressure gradient and water, downward driven by gravity. The crimp geometry of the corrugations was drawn from typical corrugated sheets used as filling material in modern structured packed towers. Four regimes were featured, namely, rivulet, bicontinuous, flooding fronts, and flooding waves. It is conceivable that the regimes observed might constitute the basis for understanding how gas and liquid phases contend for available space in the interstices of structured packings in packed towers. Flow regime transitions were expressed in terms of liquid load (liquid superficial velocity) and gas flow factor parameters commonly used in pressure drop and capacity curves. We have carefully examined the range of parameters equivalent to the ill-understood high-liquid-flow operation in packed towers. More importantly, our findings should prove valuable in validating improved first-principles modeling of gas-liquid flows in these industrially important devices.

  17. Simulation Analysis of Air Flow and Turbulence Statistics in a Rib Grit Roughened Duct

    PubMed Central

    Vogiatzis, I. I.; Denizopoulou, A. C.; Ntinas, G. K.; Fragos, V. P.

    2014-01-01

    The implementation of variable artificial roughness patterns on a surface is an effective technique to enhance the rate of heat transfer to fluid flow in the ducts of solar air heaters. Different geometries of roughness elements investigated have demonstrated the pivotal role that vortices and associated turbulence have on the heat transfer characteristics of solar air heater ducts by increasing the convective heat transfer coefficient. In this paper we investigate the two-dimensional, turbulent, unsteady flow around rectangular ribs of variable aspect ratios by directly solving the transient Navier-Stokes and continuity equations using the finite elements method. Flow characteristics and several aspects of turbulent flow are presented and discussed including velocity components and statistics of turbulence. The results reveal the impact that different rib lengths have on the computed mean quantities and turbulence statistics of the flow. The computed turbulence parameters show a clear tendency to diminish downstream with increasing rib length. Furthermore, the applied numerical method is capable of capturing small-scale flow structures resulting from the direct solution of Navier-Stokes and continuity equations. PMID:25057511

  18. Excitation of zonal flow and magnetic field by Rossby-Khantadze electromagnetic planetary waves in the ionospheric E-layer

    NASA Astrophysics Data System (ADS)

    Kaladze, T. D.; Kahlon, L. Z.; Tsamalashvili, L. V.

    2012-02-01

    Nonlinear dynamics of Rossby-Khantadze electromagnetic planetary waves in the weakly ionized ionospheric E-layer is investigated. Along with the prevalent effect of Hall conductivity for these waves, the latitudinal inhomogeneity of both the Earth's angular velocity and the geomagnetic field becomes essential. It is shown that such short wavelength turbulence of Rossby-Khantadze waves is unstable with respect to the excitation of low-frequency and large-scale perturbations of the zonal flow and magnetic field. The nonlinear mechanism of the instability is driven by the advection of vorticity, leading to the inverse energy cascade toward the longer wavelength. The growth rate of the corresponding instability is found. It is shown that the generation of the intense mean magnetic field is caused by the latitudinal gradient of the geomagnetic field.

  19. CFD analyses of flow structures in air-ingress and rod bundle problems

    NASA Astrophysics Data System (ADS)

    Wei, Hong-Chan

    Two topics from nuclear engineering field are included in this dissertation. One study is the air-ingress phenomenon during a loss of coolant accident (LOCA) scenario, and the other is a 5-by-5 bundle assembly with a PWR design. The objectives were to investigate the Kelvin-Helmholtz instability of the gravity-driven stratified flows inside a coaxial pipe and the effects caused by two types of spacers at the downstream of the rod bundle. Richardson extrapolation was used for the grid independent study. The simulation results show good agreements with the experiments. Wavelet analysis and Proper Orthogonal Decomposition (POD) were used to study the flow behaviors and flow patterns. For the air-ingress phenomenon, Brunt-Vaisala frequency, or buoyancy frequency, predicts a frequency of 2.34 Hz; this is confirmed by the dominant frequency of 2.4 Hz obtained from the wavelet analysis between times 1.2 s and 1.85 s. For the rod bundle study, the dominant frequency at the center of the subchannel was determined to be 2.4 Hz with a secondary dominant frequency of 4 Hz and a much minor frequency of 6 Hz. Generally, wavelet analysis has much better performance than POD, in the air-ingress phenomenon, for a strongly transient scenario; they are both appropriate for the rod bundle study. Based on this study, when the fluid pair in a real condition is used, the time which air intrudes into the reactor is predictable.

  20. Effect of the Entrapped air on Water Flow in Heterogeneous Soil: Experimental Set- up

    NASA Astrophysics Data System (ADS)

    Snehota, M.; Sobotkova, M.; Cislerova, M.

    2008-12-01

    Temporal variations of steady state water flow rates were observed in laboratory infiltration experiments done on a sample of compacted sand and on an undisturbed soil sample (Eutric Cambisol). These variations are found to be in relation with entrapped air content. Infiltration-outflow experiments consisted of a series of ponded infiltration runs with seepage face boundary condition at the lower end of columns. The amount of the entrapped was derived from continuous weighing of the sample. The initial water contents were different for each run, which led to different amount of the air trapped in the soil during the first stages of infiltrations. The results of the experiments done on undisturbed soil showed that the flux rates and water contents varied during quasi-steady state. This finding contradicts the standard theory. The fluctuations of the water content during the steady state flow can be ascribed to the variations in volume of the entrapped air. Similarly, shape of the bromide breakthrough curve, which were performed simultaneously during the quasi-steady state varied for undisturbed soil. The same behaviour was not observed in the sample of homogeneous sand. Computer tomography was used to characterize the structure of the undisturbed soil sample with focus on potential preferential flow pathways, which are likely to host the entrapped air. To formulate more general conclusions, an extended series of infiltration outflow and bromide breakthrough experiments is in progress. This research has been supported by research project GACR 103/08/1552 and MSMT CEZ MSM 6840770002.

  1. Internal air flow analysis of a bladeless micro aerial vehicle hemisphere body using computational fluid dynamic

    NASA Astrophysics Data System (ADS)

    Othman, M. N. K.; Zuradzman, M. Razlan; Hazry, D.; Khairunizam, Wan; Shahriman, A. B.; Yaacob, S.; Ahmed, S. Faiz; Hussain, Abadalsalam T.

    2014-12-01

    This paper explain the analysis of internal air flow velocity of a bladeless vertical takeoff and landing (VTOL) Micro Aerial Vehicle (MAV) hemisphere body. In mechanical design, before produce a prototype model, several analyses should be done to ensure the product's effectiveness and efficiency. There are two types of analysis method can be done in mechanical design; mathematical modeling and computational fluid dynamic. In this analysis, I used computational fluid dynamic (CFD) by using SolidWorks Flow Simulation software. The idea came through to overcome the problem of ordinary quadrotor UAV which has larger size due to using four rotors and the propellers are exposed to environment. The bladeless MAV body is designed to protect all electronic parts, which means it can be used in rainy condition. It also has been made to increase the thrust produced by the ducted propeller compare to exposed propeller. From the analysis result, the air flow velocity at the ducted area increased to twice the inlet air. This means that the duct contribute to the increasing of air velocity.

  2. Computing Isentropic Flow Properties of Air/R-134a Mixtures

    NASA Technical Reports Server (NTRS)

    Kvaternik, Ray

    2006-01-01

    MACHRK is a computer program that calculates isentropic flow properties of mixtures of air and refrigerant R-134a (tetrafluoroethane), which are used in transonic aerodynamic testing in a wind tunnel at Langley Research Center. Given the total temperature, total pressure, static pressure, and mole fraction of R-134a in a mixture, MACHRK calculates the Mach number and the following associated flow properties: dynamic pressure, velocity, density, static temperature, speed of sound, viscosity, ratio of specific heats, Reynolds number, and Prandtl number. Real-gas effects are taken into account by treating the gases comprising the mixture as both thermally and calorically imperfect. The Redlich-Kwong equation of state for mixtures and the constant-pressure ideal heat-capacity equation for the mixture are used in combination with the departure- function approach of thermodynamics to obtain the equations for computing the flow properties. In addition to the aforementioned calculations for air/R-134a mixtures, a research version of MACHRK can perform the corresponding calculations for mixtures of air and R-12 (dichlorodifluoromethane) and for air/SF6 mixtures. [R-12 was replaced by R-134a because of environmental concerns. SF6 has been considered for use in increasing the Reynolds-number range.

  3. Internal air flow analysis of a bladeless micro aerial vehicle hemisphere body using computational fluid dynamic

    SciTech Connect

    Othman, M. N. K. E-mail: zuradzman@unimap.edu.my E-mail: khairunizam@unimap.edu.my E-mail: s.yaacob@unimap.edu.my E-mail: abadal@unimap.edu.my; Zuradzman, M. Razlan E-mail: zuradzman@unimap.edu.my E-mail: khairunizam@unimap.edu.my E-mail: s.yaacob@unimap.edu.my E-mail: abadal@unimap.edu.my; Hazry, D. E-mail: zuradzman@unimap.edu.my E-mail: khairunizam@unimap.edu.my E-mail: s.yaacob@unimap.edu.my E-mail: abadal@unimap.edu.my; Khairunizam, Wan E-mail: zuradzman@unimap.edu.my E-mail: khairunizam@unimap.edu.my E-mail: s.yaacob@unimap.edu.my E-mail: abadal@unimap.edu.my; Shahriman, A. B. E-mail: zuradzman@unimap.edu.my E-mail: khairunizam@unimap.edu.my E-mail: s.yaacob@unimap.edu.my E-mail: abadal@unimap.edu.my; Yaacob, S. E-mail: zuradzman@unimap.edu.my E-mail: khairunizam@unimap.edu.my E-mail: s.yaacob@unimap.edu.my E-mail: abadal@unimap.edu.my; Ahmed, S. Faiz E-mail: zuradzman@unimap.edu.my E-mail: khairunizam@unimap.edu.my E-mail: s.yaacob@unimap.edu.my E-mail: abadal@unimap.edu.my; and others

    2014-12-04

    This paper explain the analysis of internal air flow velocity of a bladeless vertical takeoff and landing (VTOL) Micro Aerial Vehicle (MAV) hemisphere body. In mechanical design, before produce a prototype model, several analyses should be done to ensure the product's effectiveness and efficiency. There are two types of analysis method can be done in mechanical design; mathematical modeling and computational fluid dynamic. In this analysis, I used computational fluid dynamic (CFD) by using SolidWorks Flow Simulation software. The idea came through to overcome the problem of ordinary quadrotor UAV which has larger size due to using four rotors and the propellers are exposed to environment. The bladeless MAV body is designed to protect all electronic parts, which means it can be used in rainy condition. It also has been made to increase the thrust produced by the ducted propeller compare to exposed propeller. From the analysis result, the air flow velocity at the ducted area increased to twice the inlet air. This means that the duct contribute to the increasing of air velocity.

  4. Effects of building-roof cooling on flow and air temperature in urban street canyons

    NASA Astrophysics Data System (ADS)

    Kim, Jae-Jin; Pardyjak, Eric; Kim, Do-Yong; Han, Kyoung-Soo; Kwon, Byung-Hyuk

    2014-05-01

    The effects of building-roof cooling on flow and air temperature in 3D urban street canyons are numerically investigated using a computational fluid dynamics (CFD) model. The aspect ratios of the building and street canyon considered are unity. For investigating the building-roof cooling effects, the building-roof temperatures are systematically changed. The traditional flow pattern including a portal vortex appears in the spanwise canyon. Compared with the case of the control run, there are minimal differences in flow pattern in the cases in which maximum building-roof cooling is considered. However, as the building roof becomes cooler, the mean kinetic energy increases and the air temperature decreases in the spanwise canyon. Building-roof cooling suppresses the upward and inward motions above the building roof, resultantly increasing the horizontal velocity near the roof level. The increase in wind velocity above the roof level intensifies the secondarily driven vortex circulation as well as the inward (outward) motion into (out of) the spanwise canyon. Finally, building-roof cooling reduces the air temperature in the spanwise canyon, supplying much relatively cool air from the streamwise canyon into the spanwise canyon.

  5. Air release measurements of V-oil 1404 downstream of a micro orifice at choked flow conditions

    NASA Astrophysics Data System (ADS)

    Freudigmann, H.-A.; Iben, U.; Pelz, P. F.

    2015-12-01

    This study presents measurements on air release of V-oil 1404 in the back flow of a micro orifice at choked flow conditions using a shadowgraph imaging method. The released air was determined at three positions downstream of the orifice for different pressure conditions. It was found that more than 23% of the initially dissolved air is released and appears downstream of the orifice in the form of bubbles.

  6. Low-Flow Liquid Desiccant Air-Conditioning: Demonstrated Performance and Cost Implications

    SciTech Connect

    Kozubal, E.; Herrmann, L.; Deru, M.; Clark, J.; Lowenstein, A.

    2014-09-01

    Cooling loads must be dramatically reduced when designing net-zero energy buildings or other highly efficient facilities. Advances in this area have focused primarily on reducing a building's sensible cooling loads by improving the envelope, integrating properly sized daylighting systems, adding exterior solar shading devices, and reducing internal heat gains. As sensible loads decrease, however, latent loads remain relatively constant, and thus become a greater fraction of the overall cooling requirement in highly efficient building designs, particularly in humid climates. This shift toward latent cooling is a challenge for heating, ventilation, and air-conditioning (HVAC) systems. Traditional systems typically dehumidify by first overcooling air below the dew-point temperature and then reheating it to an appropriate supply temperature, which requires an excessive amount of energy. Another dehumidification strategy incorporates solid desiccant rotors that remove water from air more efficiently; however, these systems are large and increase fan energy consumption due to the increased airside pressure drop of solid desiccant rotors. A third dehumidification strategy involves high flow liquid desiccant systems. These systems require a high maintenance separator to protect the air distribution system from corrosive desiccant droplet carryover and so are more commonly used in industrial applications and rarely in commercial buildings. Both solid desiccant systems and most high-flow liquid desiccant systems (if not internally cooled) add sensible energy which must later be removed to the air stream during dehumidification, through the release of sensible heat during the sorption process.

  7. Interactions between gravity waves and cold air outflows in a stably stratified uniform flow

    NASA Technical Reports Server (NTRS)

    Lin, Yuh-Lang; Wang, Ting-An; Weglarz, Ronald P.

    1993-01-01

    Interactions between gravity waves and cold air outflows in a stably stratified uniform flow forced by various combinations of prescribed heat sinks and sources are studied using a hydrostatic two-dimensional nonlinear numerical model. The formation time for the development of a stagnation point or reversed flow at the surface is not always directly proportional to the Froude number when wave reflections exist from upper levels. A density current is able to form by the wave-otuflow interaction, even though the Froude number is greater than a critical value. This is the result of the wave-outflow interaction shifting the flow response to a different location in the characteristic parameter space. A density current is able to form or be destroyed due to the wave-outflow interaction between a traveling gravity wave and cold air outflow. This is proved by performing experiments with a steady-state heat sink and an additional transient heat source. In a quiescent fluid, a region of cold air, convergence, and upward motion is formed after the collision between two outflows produced by two prescribed heat sinks. After the collision, the individual cold air outflows lose their own identity and merge into a single, stationary, cold air outflow region. Gravity waves tend to suppress this new stationary cold air outflow after the collision. The region of upward motion associated with the collision is confined to a very shallow layer. In a moving airstream, a density current produced by a heat sink may be suppressed or enhanced nonlinearly by an adjacent heat sink due to the wave-outflow interaction.

  8. Interactions between gravity waves and cold air outflows in a stably stratified uniform flow

    NASA Astrophysics Data System (ADS)

    Lin, Yuh-Lang; Wang, Ting-An; Weglarz, Ronald P.

    1993-11-01

    Interactions between gravity waves and cold air outflows in a stably stratified uniform flow forced by various combinations of prescribed heat sinks and sources are studied using a hydrostatic two-dimensional nonlinear numerical model. The formation time for the development of a stagnation point or reversed flow at the surface is not always directly proportional to the Froude number when wave reflections exist from upper levels. A density current is able to form by the wave-otuflow interaction, even though the Froude number is greater than a critical value. This is the result of the wave-outflow interaction shifting the flow response to a different location in the characteristic parameter space. A density current is able to form or be destroyed due to the wave-outflow interaction between a traveling gravity wave and cold air outflow. This is proved by performing experiments with a steady-state heat sink and an additional transient heat source. In a quiescent fluid, a region of cold air, convergence, and upward motion is formed after the collision between two outflows produced by two prescribed heat sinks. After the collision, the individual cold air outflows lose their own identity and merge into a single, stationary, cold air outflow region. Gravity waves tend to suppress this new stationary cold air outflow after the collision. The region of upward motion associated with the collision is confined to a very shallow layer. In a moving airstream, a density current produced by a heat sink may be suppressed or enhanced nonlinearly by an adjacent heat sink due to the wave-outflow interaction.

  9. Measurements of farfield sound generation from a flow-excited cavity

    NASA Technical Reports Server (NTRS)

    Block, P. J. W.; Heller, H.

    1975-01-01

    Results of 1/3-octave-band spectral measurements of internal pressures and the external acoustic field of a tangentially blown rectangular cavity are compared. Proposed mechanisms for sound generation are reviewed, and spectra and directivity plots of cavity noise are presented. Directivity plots show a slightly modified monopole pattern. Frequencies of cavity response are calculated using existing predictions and are compared with those obtained experimentally. The effect of modifying the upstream boundary layer on the noise was investigated, and its effectiveness was found to be a function of cavity geometry and flow velocity.

  10. Changes in nasal air flow and school grades after rapid maxillary expansion in oral breathing children

    PubMed Central

    Torre, Hilda

    2012-01-01

    Objective: To analyse the changes in nasal air flow and school grades after rapid maxillary expansion (RME) in oral breathing children with maxillary constriction. Material and Methods: Forty-four oral breathing children (mean age 10.57 y) underwent orthodontic RME with a Hyrax screw. Forty-four age-matched children (mean age 10.64 y) with nasal physiological breathing and adequate transverse maxillary dimensions served as the control group. The maxillary widths, nasal air flow assessed via peak nasal inspiratory flow (PNIF), and school grades were recorded at baseline, and 6 months and one year following RME. Results: After RME, there were significant increases in all the maxillary widths in the study group. PNIF was reduced in the study group (60.91 ± 13.13 l/min) compared to the control group (94.50 ± 9.89 l/min) (P < 0.000) at the beginning of the study. Six months after RME, a significant improvement of PNIF was observed in the study group (36.43 ± 22.61). School grades were lower in the study group (85.52 ± 5.74) than in the control group (89.77 ± 4.44) (P < 0.05) at the baseline, but it increased six months after RME (2.77 ± 3.90) (P < 0.001) and one year later (5.02 ± 15.23) (P < 0.05). Conclusions: Nasal air flow improved in oral breathing children six months and one year after RME. School grades also improved, but not high enough to be academically significant. Key words:Maxillary constriction, oral breathing, nasal air flow, rapid maxillary expansion, school grades. PMID:22322516

  11. Thermal characteristics of air flow cooling in the lithium ion batteries experimental chamber

    SciTech Connect

    Lukhanin A.; Rohatgi U.; Belyaev, A.; Fedorchenko, D.; Khazhmuradov, M.; Lukhanin, O; Rudychev, I.

    2012-07-08

    A battery pack prototype has been designed and built to evaluate various air cooling concepts for the thermal management of Li-ion batteries. The heat generation from the Li-Ion batteries was simulated with electrical heat generation devices with the same dimensions as the Li-Ion battery (200 mm x 150 mm x 12 mm). Each battery simulator generates up to 15W of heat. There are 20 temperature probes placed uniformly on the surface of the battery simulator, which can measure temperatures in the range from -40 C to +120 C. The prototype for the pack has up to 100 battery simulators and temperature probes are recorder using a PC based DAQ system. We can measure the average surface temperature of the simulator, temperature distribution on each surface and temperature distributions in the pack. The pack which holds the battery simulators is built as a crate, with adjustable gap (varies from 2mm to 5mm) between the simulators for air flow channel studies. The total system flow rate and the inlet flow temperature are controlled during the test. The cooling channel with various heat transfer enhancing devices can be installed between the simulators to investigate the cooling performance. The prototype was designed to configure the number of cooling channels from one to hundred Li-ion battery simulators. The pack is thermally isolated which prevents heat transfer from the pack to the surroundings. The flow device can provide the air flow rate in the gap of up to 5m/s velocity and air temperature in the range from -30 C to +50 C. Test results are compared with computational modeling of the test configurations. The present test set up will be used for future tests for developing and validating new cooling concepts such as surface conditions or heat pipes.

  12. Air mass flow estimation in turbocharged diesel engines from in-cylinder pressure measurement

    SciTech Connect

    Desantes, J.M.; Galindo, J.; Guardiola, C.; Dolz, V.

    2010-01-15

    Air mass flow determination is needed for the control of current internal combustion engines. Current methods are based on specific sensors (as hot wire anemometers) or indirect estimation through manifold pressure. With the availability of cylinder pressure sensors for engine control, methods based on them can be used for replacing or complementing standard methods. Present paper uses in cylinder pressure increase during the intake stroke for inferring the trapped air mass. The method is validated on two different turbocharged diesel engines and compared with the standard methods. (author)

  13. Improved Apparatus for the Measurement of Fluctuations of Air Speed in Turbulent Flow

    NASA Technical Reports Server (NTRS)

    Mock, W C , Jr; Dryden, H L

    1934-01-01

    This report describes recent improvements in the design of the equipment associated with the hot-wire anemometer for the measurement of fluctuating air speeds in turbulent air flow, and presents the results of some experimental investigations dealing with the response of the hot wire to speed fluctuations of various frequencies. Attempts at measuring the frequency of the fluctuations encountered in the Bureau of Standards' 54-inch wind tunnel are also reported. In addition, the difficulties encountered in the use of such apparatus and the precautions found helpful in avoiding them are discussed.

  14. Steady-state response of a charcoal bed to radon in flowing air with water vapor

    SciTech Connect

    Blue, T.E.; Jarzemba, M.S.; Fentiman, A.W.

    1995-06-01

    Previously we have developed a mathematical model of radon adsorption in active air with water vapor on small U.S. Environmental Protection Agency charcoal canisters that are used for environmental measurements of radon. The purpose of this paper is to extend this mathematical model to describe the adsorption of radon by large charcoal beds with radon-laden air flowing through them. The resulting model equations are solved analytically to predict the steady-state adsorption of radon by such beds. 14 refs., 3 figs.

  15. Preliminary analysis of problem of determining experimental performance of air-cooled turbine II : methods for determining cooling-air-flow characteristics

    NASA Technical Reports Server (NTRS)

    Ellerbrock, Herman H , Jr

    1950-01-01

    In the determination of the performance of an air-cooled turbine, the cooling-air-flow characteristics between the root and the tip of the blades must be evaluated. The methods, which must be verified and the unknown functions evaluated, that are expected to permit the determination of pressure, temperature, and velocity through the blade cooling-air passages from specific investigation are presented.

  16. Numerical Simulation of Flows in a Cyclone Chamber with Different Conditions of Air Inlet and Outlet

    NASA Astrophysics Data System (ADS)

    Pitsukha, E. A.

    2014-09-01

    A numerical investigation of flows in a cyclone chamber has been carried out at the fraction of bottom blast φ =0-0.5, at the values of the dimensionless pinch diameter dout/D =0.7 with different locations and configurations of nozzles for air intake. In the simulation of swirling flows, the well-known k-ɛ and k-ω turbulence models, as well as the laminar flow model, were used. A satisfactory agreement between the results of numerical simulation and experimental data at dout/D =0.5-0.7 is obtained. For a chamber with a relative pinch diameter dout/D =0.3 the calculated flow parameters differ substantially from experimental values.

  17. Investigation of the motion and heat transfer of water droplets in the swirling air flow in weightlessness

    NASA Astrophysics Data System (ADS)

    Gubaidullin, D. A.; Fedyaev, V. L.; Morenko, I. V.; Snigerev, B. A.; Galimov, E. R.

    2016-06-01

    The motion and heat transfer of water droplets with a swirling air flow is investigated. Flow was considered in a cylindrical chamber in the absence of gravity. We created a mathematical model of this problem and made appropriate calculations. The features of the air flow at a tangential feeding it into the chamber, and the motion of the drops, their thermal behaviour are founded. We presented the recommendations for the rational choice of parameters of the apparatus and rational operation regime.

  18. Modelling Air and Water Two-Phase Annular Flow in a Small Horizontal Pipe

    NASA Astrophysics Data System (ADS)

    Yao, Jun; Yao, Yufeng; Arini, Antonino; McIiwain, Stuart; Gordon, Timothy

    2016-06-01

    Numerical simulation using computational fluid dynamics (CFD) has been carried out to study air and water two-phase flow in a small horizontal pipe of an inner diameter of 8.8mm, in order to investigate unsteady flow pattern transition behaviours and underlying physical mechanisms. The surface liquid film thickness distributions, determined by either wavy or full annular flow regime, are shown in reasonable good agreement with available experimental data. It was demonstrated that CFD simulation was able to predict wavy flow structures accurately using two-phase flow sub-models embedded in ANSYS-Fluent solver of Eulerian-Eulerian framework, together with a user defined function subroutine ANWAVER-UDF. The flow transient behaviours from bubbly to annular flow patterns and the liquid film distributions revealed the presence of gas/liquid interferences between air and water film interface. An increase of upper wall liquid film thickness along the pipe was observed for both wavy annular and full annular scenarios. It was found that the liquid wavy front can be further broken down to form the water moisture with liquid droplets penetrating upwards. There are discrepancies between CFD predictions and experimental data on the liquid film thickness determined at the bottom and the upper wall surfaces, and the obtained modelling information can be used to assist further 3D user defined function subroutine development, especially when CFD simulation becomes much more expense to model full 3D two-phase flow transient performance from a wavy annular to a fully developed annular type.

  19. Flow control of a centrifugal fan in a commercial air conditioner

    NASA Astrophysics Data System (ADS)

    Kim, Jiyu; Bang, Kyeongtae; Choi, Haecheon; Seo, Eung Ryeol; Kang, Yonghun

    2015-11-01

    Air-conditioning fans require a low noise level to provide user comfort and quietness. The aerodynamic noise sources are generated by highly unsteady, turbulent structures near the fan blade. In this study, we investigate the flow characteristics of a centrifugal fan in an air-conditioner indoor unit and suggest control ideas to develop a low noise fan. The experiment is conducted at the operation condition where the Reynolds number is 163000 based on the blade tip velocity and chord length. Intermittent separation occurs at the blade leading edge and thus flow significantly fluctuates there, whereas vortex shedding occurs at the blade trailing edge. Furthermore, the discharge flow observed in the axial plane near the shroud shows low-frequency intermittent behaviors, resulting in high Reynolds stresses. To control these flow structures, we modify the shapes of the blade leading edge and shroud of the centrifugal fan and obtain noise reduction. The flow characteristics of the base and modified fans will be discussed. Supported by 0420-20130051.

  20. Investigating the air oxidation of V(II) ions in a vanadium redox flow battery

    NASA Astrophysics Data System (ADS)

    Ngamsai, Kittima; Arpornwichanop, Amornchai

    2015-11-01

    The air oxidation of vanadium (V(II)) ions in a negative electrolyte reservoir is a major side reaction in a vanadium redox flow battery (VRB), which leads to electrolyte imbalance and self-discharge of the system during long-term operation. In this study, an 80% charged negative electrolyte solution is employed to investigate the mechanism and influential factors of the reaction in a negative-electrolyte reservoir. The results show that the air oxidation of V(II) ions occurs at the air-electrolyte solution interface area and leads to a concentration gradient of vanadium ions in the electrolyte solution and to the diffusion of V(II) and V(III) ions. The effect of the ratio of the electrolyte volume to the air-electrolyte solution interface area and the concentrations of vanadium and sulfuric acid in an electrolyte solution is investigated. A higher ratio of electrolyte volume to the air-electrolyte solution interface area results in a slower oxidation reaction rate. The high concentrations of vanadium and sulfuric acid solution also retard the air oxidation of V(II) ions. This information can be utilized to design an appropriate electrolyte reservoir for the VRB system and to prepare suitable ingredients for the electrolyte solution.

  1. Simultaneous measurements of temperature and density in air flows using UV laser spectroscopy

    NASA Technical Reports Server (NTRS)

    Fletcher, D. G.; Mckenzie, R. L.

    1991-01-01

    The simultaneous measurement of temperature and density using laser-induced fluorescence of oxygen in combination with Q-branch Raman scattering of nitrogen and oxygen is demonstrated in a low-speed air flow. The lowest density and temperature measured in the experiment correspond to the freestream values at Mach 5 in the Ames 3.5-Foot Hypersonic Wind Tunnel for stagnation conditions of 100 atm and 1000 K. The experimental results demonstrate the viability of the optical technique for measurements that support the study of compressible turbulence and the validation of numerical codes in supersonic and hypersonic wind tunnel flows.

  2. Simulation of pulmonary air flow with a subject-specific boundary condition

    PubMed Central

    Yin, Youbing; Choi, Jiwoong; Hoffman, Eric A.; Tawhai, Merryn H.; Lin, Ching-Long

    2011-01-01

    We present a novel image-based technique to estimate a subject-specific boundary condition (BC) for computational fluid dynamics (CFD) simulation of pulmonary air flow. The information of regional ventilation for an individual is derived by registering two computed tomography (CT) lung datasets and then passed to the CT-resolved airways as the flow BC. The CFD simulations show that the proposed method predicts lobar volume changes consistent with direct image-measured metrics, whereas the other two traditional BCs (uniform velocity or uniform pressure) yield lobar volume changes and regional pressure differences inconsistent with observed physiology. PMID:20483412

  3. Penetration Characteristics of Air, Carbon Dioxide and Helium Transverse Sonic Jets in Mach 5 Cross Flow

    PubMed Central

    Erdem, Erinc; Kontis, Konstantinos; Saravanan, Selvaraj

    2014-01-01

    An experimental investigation of sonic air, CO2 and Helium transverse jets in Mach 5 cross flow was carried out over a flat plate. The jet to freestream momentum flux ratio, J, was kept the same for all gases. The unsteady flow topology was examined using high speed schlieren visualisation and PIV. Schlieren visualisation provided information regarding oscillating jet shear layer structures and bow shock, Mach disc and barrel shocks. Two-component PIV measurements at the centreline, provided information regarding jet penetration trajectories. Barrel shocks and Mach disc forming the jet boundary were visualised/quantified also jet penetration boundaries were determined. Even though J is kept the same for all gases, the penetration patterns were found to be remarkably different both at the nearfield and the farfield. Air and CO2 jet resulted similar nearfield and farfield penetration pattern whereas Helium jet spread minimal in the nearfield. PMID:25494348

  4. Dependence of charge transfer phenomena during solid-air two-phase flow on particle disperser

    NASA Astrophysics Data System (ADS)

    Tanoue, Ken-ichiro; Suedomi, Yuuki; Honda, Hirotaka; Furutani, Satoshi; Nishimura, Tatsuo; Masuda, Hiroaki

    2012-12-01

    An experimental investigation of the tribo-electrification of particles has been conducted during solid-air two-phase turbulent flow. The current induced in a metal plate by the impact of polymethylmethacrylate (PMMA) particles in a high-speed air flow was measured for two different plate materials. The results indicated that the contact potential difference between the particles and a stainless steel plate was positive, while for a nickel plate it was negative. These results agreed with theoretical contact charge transfer even if not only the particle size but also the kind of metal plate was changed. The specific charge of the PMMA particles during solid-air two-phase flow using an ejector, a stainless steel branch pipe, and a stainless steel straight pipe was measured using a Faraday cage. Although the charge was negative in the ejector, the particles had a positive specific charge at the outlet of the branch pipe, and this positive charge increased in the straight pipe. The charge decay along the flow direction could be reproduced by the charging and relaxation theory. However, the proportional coefficients in the theory changed with the particle size and air velocity. Therefore, an unexpected charge transfer occurred between the ejector and the branch pipe, which could not be explained solely by the contact potential difference. In the ejector, an electrical current in air might have been produced by self-discharge of particles with excess charge between the nickel diffuser in the ejector and the stainless steel nozzle or the stainless steel pipe due to a reversal in the contact potential difference between the PMMA and the stainless steel. The sign of the current depended on the particle size, possibly because the position where the particles impacted depended on their size. When dual coaxial glass pipes were used as a particle disperser, the specific charge of the PMMA particles became more positive along the particle flow direction due to the contact

  5. Low Dimensional Tools for Flow-Structure Interaction Problems: Application to Micro Air Vehicles

    NASA Technical Reports Server (NTRS)

    Schmit, Ryan F.; Glauser, Mark N.; Gorton, Susan A.

    2003-01-01

    A low dimensional tool for flow-structure interaction problems based on Proper Orthogonal Decomposition (POD) and modified Linear Stochastic Estimation (mLSE) has been proposed and was applied to a Micro Air Vehicle (MAV) wing. The method utilizes the dynamic strain measurements from the wing to estimate the POD expansion coefficients from which an estimation of the velocity in the wake can be obtained. For this experiment the MAV wing was set at five different angles of attack, from 0 deg to 20 deg. The tunnel velocities varied from 44 to 58 ft/sec with corresponding Reynolds numbers of 46,000 to 70,000. A stereo Particle Image Velocimetry (PIV) system was used to measure the wake of the MAV wing simultaneously with the signals from the twelve dynamic strain gauges mounted on the wing. With 20 out of 2400 POD modes, a reasonable estimation of the flow flow was observed. By increasing the number of POD modes, a better estimation of the flow field will occur. Utilizing the simultaneously sampled strain gauges and flow field measurements in conjunction with mLSE, an estimation of the flow field with lower energy modes is reasonable. With these results, the methodology for estimating the wake flow field from just dynamic strain gauges is validated.

  6. Effects of Temperature, Humidity and Air Flow on Fungal Growth Rate on Loaded Ventilation Filters.

    PubMed

    Tang, W; Kuehn, T H; Simcik, Matt F

    2015-01-01

    This study compares the fungal growth ratio on loaded ventilation filters under various temperature, relative humidity (RH), and air flow conditions in a controlled laboratory setting. A new full-size commercial building ventilation filter was loaded with malt extract nutrients and conidia of Cladosporium sphaerospermum in an ASHRAE Standard 52.2 filter test facility. Small sections cut from this filter were incubated under the following conditions: constant room temperature and a high RH of 97%; sinusoidal temperature (with an amplitude of 10°C, an average of 23°C, and a period of 24 hr) and a mean RH of 97%; room temperature and step changes between 97% and 75% RH, 97% and 43% RH, and 97% and 11% RH every 12 hr. The biomass on the filter sections was measured using both an elution-culture method and by ergosterol assay immediately after loading and every 2 days up to 10 days after loading. Fungal growth was detected earlier using ergosterol content than with the elution-culture method. A student's t-test indicated that Cladosporium sphaerospermum grew better at the constant room temperature condition than at the sinusoidal temperature condition. By part-time exposure to dry environments, the fungal growth was reduced (75% and 43% RH) or even inhibited (11% RH). Additional loaded filters were installed in the wind tunnel at room temperature and an RH greater than 95% under one of two air flow test conditions: continuous air flow or air flow only 9 hr/day with a flow rate of 0.7 m(3)/s (filter media velocity 0.15 m/s). Swab tests and a tease mount method were used to detect fungal growth on the filters at day 0, 5, and 10. Fungal growth was detected for both test conditions, which indicates that when temperature and relative humidity are optimum, controlling the air flow alone cannot prevent fungal growth. In real applications where nutrients are less sufficient than in this laboratory study, fungal growth rate may be reduced under the same operating conditions

  7. Flow on Magnetizable Particles in Turbulent Air Streams. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Davey, K. R.

    1979-01-01

    The flow of magnetizable particles in a turbulent air stream in the presence of an imposed magnetic field and the phenomenon of drag reduction produced by the introduction of particles in turbulent boundary layer are investigated. The nature of the particle magnetic force is discussed and the inherent difference between electric and magnetic precipitation is considered. The incorporation of turbulent diffusion theory with an imposed magnetic migration process both with and without inertia effects is examined.

  8. Managing the Drivers of Air Flow and Water Vapor Transport in Existing Single-Family Homes

    SciTech Connect

    Cummings, James; Withers, Charles; Martin, Eric; Moyer, Neil

    2012-10-01

    This report is a revision of an earlier report titled: Measure Guideline: Managing the Drivers of Air Flow and Water Vapor Transport in Existing Single-Family Homes. Revisions include: Information in the text box on page 1 was revised to reflect the most accurate information regarding classifications as referenced in the 2012 International Residential Code. “Measure Guideline” was dropped from the title of the report. An addition was made to the reference list.

  9. Alternating-Current Equipment for the Measurement of Fluctuations of Air Speed in Turbulent Flow

    NASA Technical Reports Server (NTRS)

    Mock, W C , Jr

    1937-01-01

    Recent electrical and mechanical improvements have been made in the equipment developed at the National Bureau of Standards for measurement of fluctuations of air speed in turbulent flow. Data useful in the design of similar equipment are presented. The design of rectified alternating-current power supplies for such apparatus is treated briefly, and the effect of the power supplies on the performance of the equipment is discussed.

  10. Oxidation resistance of selected mechanical carbons at 650 deg C in dry flowing air

    NASA Technical Reports Server (NTRS)

    Allen, G. P.; Wisander, D. W.

    1973-01-01

    Oxidation experiments were conducted with several experimental mechanical carbons at 650 C in air flowing at 28 cu cm/sec (STP). Experiments indicate that boron carbide addition and zinc phosphate treatment definitely improved oxidation resistance. Impregnation with coal tar pitch before final graphitization had some beneficial effect on oxidation resistance and it markedly improved flexure strength and hardness. Graphitization temperature alone did not affect oxidation resistance, but with enough added boron carbide the oxidation resistance was increased although the hardness greatly decreased.

  11. Analytical and Experimental Investigation of the Effects of Compressor Interstage Air Bleed on Performance Characteristics of a 13-stage Axial-flow Compressor

    NASA Technical Reports Server (NTRS)

    Lucas, James G; Geye, Richard P; Calvert, Howard F

    1957-01-01

    Air was bled over the fifth-and tenth-stage rotor-blade rows through ports designed to pass 11 and 9 percent of the inlet flow, respectively, at 80 percent speed. Along the rated operating line the maximum speed at which rotating stall was encountered was lowered by either of these bleeds, and the stall patterns below these speeds were altered so that no dangerous resonant rotor-blade bending vibrations were excited. The combination of the two bleeds completely eliminated rotating stall to at least 50 percent speed. The compressor-discharge weight flow was decreased only at intermediate speeds, and the overall pressure ratio was affected only at intermediate speeds, and the overall pressure ratio was affected only by the combination bleed at intermediate speeds. Fifth-stage bleed increased compressor efficiency at low speeds, and tenth-stage bleed decreased efficiency at intermediate speeds.

  12. Thermodynamic, transport, and flow properties of gaseous products resulting from combustion of methane-air-oxygen

    NASA Technical Reports Server (NTRS)

    Klich, G. F.

    1976-01-01

    Results of calculations to determine thermodynamic, transport, and flow properties of combustion product gases are presented. The product gases are those resulting from combustion of methane-air-oxygen and methane-oxygen mixtures. The oxygen content of products resulting from the combustion of methane-air-oxygen mixtures was similiar to that of air; however, the oxygen contained in products of methane-oxygen combustion ranged from 20 percent by volume to zero for stoichiometric combustion. Calculations were made for products of reactant mixtures with fuel percentages, by mass, of 7.5 to 20. Results are presented for specific mixtures for a range of pressures varying from 0.0001 to 1,000 atm and for temperatures ranging from 200 to 3,800 K.

  13. Effect of Gravity on the Near Field Flow Structure of Helium Jet in Air

    NASA Technical Reports Server (NTRS)

    Agrawal, Ajay K.; Parthasarathy, Ramkumar; Griffin, DeVon

    2002-01-01

    Experiments have shown that a low-density jet injected into a high-density surrounding medium undergoes periodic oscillations in the near field. Although the flow oscillations in these jets at Richardson numbers about unity are attributed to the buoyancy, the direct physical evidence has not been acquired in the experiments. If the instability were indeed caused by buoyancy, the near-field flow structure would undergo drastic changes upon removal of gravity in the microgravity environment. The present study was conducted to investigate this effect by simulating microgravity environment in the 2.2-second drop tower at the NASA Glenn Research Center. The non-intrusive, rainbow schlieren deflectometry technique was used for quantitative measurements of helium concentrations in buoyant and non-buoyant jets. Results in a steady jet show that the radial growth of the jet shear layer in Earth gravity is hindered by the buoyant acceleration. The jet in microgravity was 30 to 70 percent wider than that in Earth gravity. The microgravity jet showed typical growth of a constant density jet shear layer. In case of a self-excited helium jet in Earth gravity, the flow oscillations continued as the jet flow adjusted to microgravity conditions in the drop tower. The flow oscillations were however not present at the end of the drop when steady microgravity conditions were reached.

  14. Liquid Steel at Low Pressure: Experimental Investigation of a Downward Water Air Flow

    NASA Astrophysics Data System (ADS)

    Thumfart, Maria

    2016-07-01

    In the continuous casting of steel controlling the steel flow rate to the mould is critical because a well-defined flow field at the mould level is essential for a good quality of the cast product. The stopper rod is a commonly used device to control this flow rate. Agglomeration of solid material near the stopper rod can lead to a reduced cross section and thus to a decreased casting speed or even total blockage (“clogging”). The mechanisms causing clogging are still not fully understood. Single phase considerations of the flow in the region of the stopper rod result in a low or even negative pressure at the smallest cross section. This can cause degassing of dissolved gases from the melt, evaporation of alloys and entrainment of air through the porous refractory material. It can be shown that the degassing process in liquid steel is taking place mainly at the stopper rod tip and its surrounding. The steel flow around the stopper rod tip is highly turbulent. In addition refractory material has a low wettability to liquid steel. So the first step to understand the flow situation and transport phenomena which occur near the stopper is to understand the behaviour of this two phase (steel, gas) flow. To simulate the flow situation near the stopper rod tip, water experiments are conducted using a convergent divergent nozzle with three different wall materials and three different contact angles respectively. These experiments show the high impact of the wettability of the wall material on the actual flow structure at a constant gas flow rate.

  15. Computation of two-dimensional flows past ram-air parachutes

    NASA Astrophysics Data System (ADS)

    Mittal, S.; Saxena, P.; Singh, A.

    2001-03-01

    Computational results for flow past a two-dimensional model of a ram-air parachute with leading edge cut are presented. Both laminar (Re=104) and turbulent (Re=106) flows are computed. A well-proven stabilized finite element method (FEM), which has been applied to various flow problems earlier, is utilized to solve the incompressible Navier-Stokes equations in the primitive variables formulation. The Baldwin-Lomax model is employed for turbulence closure. Turbulent flow computations past a Clarck-Y airfoil without a leading edge cut, for =7.5°, result in an attached flow. The leading edge cut causes the flow to become unsteady and leads to a significant loss in lift and an increase in drag. The flow inside the parafoil cell remains almost stagnant, resulting in a high value of pressure, which is responsible for giving the parafoil its shape. The value of the lift-to-drag ratio obtained with the present computations is in good agreement with those reported in the literature. The effect of the size and location of the leading edge cut is studied. It is found that the flow on the upper surface of the parafoil is fairly insensitive to the configuration of the cut. However, the flow quality on the lower surface improves as the leading edge cut becomes smaller. The lift-to-drag ratio for various configurations of the leading edge cut varies between 3.4 and 5.8. It is observed that even though the time histories of the aerodynamic coefficients from the laminar and turbulent flow computations are quite different, their time-averaged values are quite similar. Copyright

  16. A Subgrid Model for Predicting Air Entrainment Rates in Bubbly Flows

    NASA Astrophysics Data System (ADS)

    Ma, Jingsen; Oberai, Assad A.; Drew, Donald E.; Lahey, Richard T., Jr.; Moraga, Francisco J.

    2008-11-01

    In this talk we present a fairly simple subgrid air entrainment model that accurately predicts the rate of air entrainment, which is critical in simulating multiphase (air/water) flows. The derivation of this model begins by assuming that a thin sheet of air is carried into the water by the inertia of the liquid at the free surface. A momentum balance on the entrained gas layer results in an expression for the entrained volumetric gas flow rate, in terms of the local liquid velocity, gas viscosity etc., which are readily available from a multiphase RANS-type simulation. This model has been validated against extensive experimental data on both plunging jets and hydraulic jumps over a wide range of liquid velocities. It was implemented in a two-fluid computational fluid dynamics code (CFDShipM) to be used to predict the void fraction distribution underneath a plunging liquid jet at different depths and jet velocities. The results were found to match the experimental observations very well. The application of this model to more challenging problems, including hydraulic jumps and full-scale ship simulations, is currently underway.

  17. Elasto-Aerodynamics-Driven Triboelectric Nanogenerator for Scavenging Air-Flow Energy.

    PubMed

    Wang, Shuhua; Mu, Xiaojing; Wang, Xue; Gu, Alex Yuandong; Wang, Zhong Lin; Yang, Ya

    2015-10-27

    Efficient scavenging the kinetic energy from air-flow represents a promising approach for obtaining clean, sustainable electricity. Here, we report an elasto-aerodynamics-driven triboelectric nanogenerator (TENG) based on contact electrification. The reported TENG consists of a Kapton film with two Cu electrodes at each side, fixed on two ends in an acrylic fluid channel. The relationship between the TENG output power density and its fluid channel dimensions is systematically studied. TENG with a fluid channel size of 125 × 10 × 1.6 mm(3) delivers the maximum output power density of about 9 kW/m(3) under a loading resistance of 2.3 MΩ. Aero-elastic flutter effect explains the air-flow induced vibration of Kapton film well. The output power scales nearly linearly with parallel wiring of multiple TENGs. Connecting 10 TENGs in parallel gives an output power of 25 mW, which allows direct powering of a globe light. The TENG is also utilized to scavenge human breath induced air-flow energy to sustainably power a human body temperature sensor. PMID:26343789

  18. Practical Strategies for Stable Operation of HFF-QCM in Continuous Air Flow

    PubMed Central

    Wessels, Alexander; Klöckner, Bernhard; Siering, Carsten; Waldvogel, Siegfried R.

    2013-01-01

    Currently there are a few fields of application using quartz crystal microbalances (QCM). Because of environmental conditions and insufficient resolution of the microbalance, chemical sensing of volatile organic compounds in an open system was as yet not possible. In this study we present strategies on how to use 195 MHz fundamental quartz resonators for a mobile sensor platform to detect airborne analytes. Commonly the use of devices with a resonant frequency of about 10 MHz is standard. By increasing the frequency to 195 MHz the frequency shift increases by a factor of almost 400. Unfortunately, such kinds of quartz crystals tend to exhibit some challenges to obtain a reasonable signal-to-noise ratio. It was possible to reduce the noise in frequency in a continuous air flow of 7.5 m/s to 0.4 Hz [i.e., σ(τ) = 2 × 10−9] by elucidating the major source of noise. The air flow in the vicinity of the quartz was analyzed to reduce turbulences. Furthermore, we found a dependency between the acceleration sensitivity and mechanical stress induced by an internal thermal gradient. By reducing this gradient, we achieved reduction of the sensitivity to acceleration by more than one decade. Hence, the resulting sensor is more robust to environmental conditions such as temperature, acceleration and air flow. PMID:24021970

  19. Hybridized electromagnetic-triboelectric nanogenerator for scavenging air-flow energy to sustainably power temperature sensors.

    PubMed

    Wang, Xue; Wang, Shuhua; Yang, Ya; Wang, Zhong Lin

    2015-04-28

    We report a hybridized nanogenerator with dimensions of 6.7 cm × 4.5 cm × 2 cm and a weight of 42.3 g that consists of two triboelectric nanogenerators (TENGs) and two electromagnetic generators (EMGs) for scavenging air-flow energy. Under an air-flow speed of about 18 m/s, the hybridized nanogenerator can deliver largest output powers of 3.5 mW for one TENG (in correspondence of power per unit mass/volume: 8.8 mW/g and 14.6 kW/m(3)) at a loading resistance of 3 MΩ and 1.8 mW for one EMG (in correspondence of power per unit mass/volume: 0.3 mW/g and 0.4 kW/m(3)) at a loading resistance of 2 kΩ, respectively. The hybridized nanogenerator can be utilized to charge a capacitor of 3300 μF to sustainably power four temperature sensors for realizing self-powered temperature sensor networks. Moreover, a wireless temperature sensor driven by a hybridized nanogenerator charged Li-ion battery can work well to send the temperature data to a receiver/computer at a distance of 1.5 m. This work takes a significant step toward air-flow energy harvesting and its potential applications in self-powered wireless sensor networks. PMID:25844537

  20. Simultaneous measurement of temperature and velocity fields in convective air flows

    NASA Astrophysics Data System (ADS)

    Schmeling, Daniel; Bosbach, Johannes; Wagner, Claus

    2014-03-01

    Thermal convective air flows are of great relevance in fundamental studies and technical applications such as heat exchangers or indoor ventilation. Since these kinds of flow are driven by temperature gradients, simultaneous measurements of instantaneous velocity and temperature fields are highly desirable. A possible solution is the combination of particle image velocimetry (PIV) and particle image thermography (PIT) using thermochromic liquid crystals (TLCs) as tracer particles. While combined PIV and PIT is already state of the art for measurements in liquids, this is not yet the case for gas flows. In this study we address the adaptation of the measuring technique to gaseous fluids with respect to the generation of the tracer particles, the particle illumination and the image filtering process. Results of the simultaneous PIV/PIT stemming from application to a fluid system with continuous air exchange are presented. The measurements were conducted in a cuboidal convection sample with air in- and outlet at a Rayleigh number Ra ≈ 9.0 × 107. They prove the feasibility of the method by providing absolute and relative temperature accuracies of σT = 0.19 K and σΔT = 0.06 K, respectively. Further open issues that have to be addressed in order to mature the technique are identified.

  1. Flow Field in a Single-Stage Model Air Turbine With Seal Rings and Pre-Swirled Purge Flow

    NASA Astrophysics Data System (ADS)

    Dunn, Dennis M.

    Modern gas turbines operate at high mainstream gas temperatures and pressures, which requires high durability materials. A method of preventing these hot gases from leaking into the turbine cavities is essential for improved reliability and cost reduction. Utilizing bleed-off air from the compressor to cool internal components has been a common solution, but at the cost of decreasing turbine performance. The present work thoroughly describes the complex flow field between the mainstream gas and a single rotor-stator disk cavity, and mechanisms of mainstream gas ingestion. A combined approach of experimental measurement and numerical simulation are performed on the flow in a single-stage model gas turbine. Mainstream gas ingestion into the cavity is further reduced by utilizing two axially overlapping seal rings, one on the rotor disk and the other on the stator wall. Secondary purge air is injected into the rotor-stator cavity pre-swirled through the stator radially inboard of the two seal rings. Flow field predictions from the simulations are compared against experimental measurements of static pressure, velocity, and tracer gas concentration acquired in a nearly identical model configuration. Operational conditions were performed with a main airflow Reynolds number of 7.86e4 and a rotor disk speed of 3000rpm. Additionally the rotational Reynolds number was 8.74 e5 with a purge air nondimensional flow rate cw=4806. The simulation models a 1/14 rotationally periodic sector of the turbine rig, consisting of four rotor blades and four stator vanes. Gambit was used to generate the three-dimensional unstructured grids ranging from 10 to 20 million cells. Effects of turbulence were modeled using the single-equation Spalart-Allmaras as well as the realizable k-epsilon models. Computations were performed using FLUENT for both a simplified steady-state and subsequent time-dependent formulation. Simulation results show larger scale structures across the entire sector angle

  2. Theoretical study of the effect of liquid desiccant mass flow rate on the performance of a cross flow parallel-plate liquid desiccant-air dehumidifier

    NASA Astrophysics Data System (ADS)

    Mohammad, Abdulrahman Th.; Mat, Sohif Bin; Sulaiman, M. Y.; Sopian, K.; Al-abidi, Abduljalil A.

    2013-11-01

    A computer simulation using MATLAB is investigated to predict the distribution of air stream parameters (humidity ratio and temperature) as well as desiccant parameters (temperature and concentration) inside the parallel plate absorber. The present absorber consists of fourteen parallel plates with a surface area per unit volume ratio of 80 m2/m3. Calcium chloride as a liquid desiccant flows through the top of the plates to the bottom while the air flows through the gap between the plates making it a cross flow configuration. The model results show the effect of desiccant mass flow rate on the performance of the dehumidifier (moisture removal and dehumidifier effectiveness). Performance comparisons between present cross-flow dehumidifier and another experimental cross-flow dehumidifier in the literature are carried out. The simulation is expected to help in optimizing of a cross flow dehumidifier.

  3. High-throughput measurement of the long excited-state lifetime of quantum dots in flow cytometry

    NASA Astrophysics Data System (ADS)

    Dahal, Eshan; Cao, Ruofan; Jenkins, Patrick; Houston, Jessica P.

    2014-03-01

    The long fluorescence lifetime of quantum dots (QDs) is not often utilized in high-throughput bioassays, despite of the potential for the lifetime to be an optimum parameter for multiplexing with spectrally overlapping excitable species that have short fluorescence lifetimes. The limitation of currently available instruments that can rapidly resolve complex decay kinetics of QDs contributes to this dearth. Therefore work in our laboratory is focused on developing unique and reliable frequency-domain flow cytometry (FDFC) systems as well as QDs applications where fluorescence dynamics are exploited. In this paper we demonstrate both by simulation and experimental validation, the viability of rapidly capturing the fluorescence lifetime of QDs from single QDs-labeled cells and microspheres by employing a home-built FDFC system. With FDFC theory we simulated measurements of long-lived QDs decays and evaluated the potential to discriminate multi-exponential decay profiles of QDs from typical cellular autofluorescence lifetimes. Our FDFC simulation work included calculations of fluorescence phase-shifts at multiple modulation frequencies extracted from square wave modulation signals (i.e. similar to heterodyning frequency-domain spectroscopy). Experimental work to support the result from our simulations involved acquiring measurements from real samples and processing them for multi-frequency phase shifts. Additionally the average excited-state lifetimes of QDs (streptavidin conjugated CdSe/Zns and oleic acid coated CdSxSe1-x/ZnS) measured were found to be greater than 15 ns. The average lifetime results were consistent with published literature values as well as verified with independent time domain measurements. This work opens the possibility of developing powerful bioassays using FDFC based on the long fluorescence lifetime of QDs.

  4. Analysis of the Air Flow Generated by an Air-Assisted Sprayer Equipped with Two Axial Fans Using a 3D Sonic Anemometer

    PubMed Central

    García-Ramos, F. Javier; Vidal, Mariano; Boné, Antonio; Malón, Hugo; Aguirre, Javier

    2012-01-01

    The flow of air generated by a new design of air assisted sprayer equipped with two axial fans of reversed rotation was analyzed. For this goal, a 3D sonic anemometer has been used (accuracy: 1.5%; measurement range: 0 to 45 m/s). The study was divided into a static test and a dynamic test. During the static test, the air velocity in the working vicinity of the sprayer was measured considering the following machine configurations: (1) one activated fan regulated at three air flows (machine working as a traditional sprayer); (2) two activated fans regulated at three air flows for each fan. In the static test 72 measurement points were considered. The location of the measurement points was as follow: left and right sides of the sprayer; three sections of measurement (A, B and C); three measurement distances from the shaft of the machine (1.5 m, 2.5 m and 3.5 m); and four measurement heights (1 m, 2 m, 3 m and 4 m). The static test results have shown significant differences in the module and the vertical angle of the air velocity vector in function of the regulations of the sprayer. In the dynamic test, the air velocity was measured at 2.5 m from the axis of the sprayer considering four measurement heights (1 m, 2 m, 3 m and 4 m). In this test, the sprayer regulations were: one or two activated fans; one air flow for each fan; forward speed of 2.8 km/h. The use of one fan (back) or two fans (back and front) produced significant differences on the duration of the presence of wind in the measurement point and on the direction of the air velocity vector. The module of the air velocity vector was not affected by the number of activated fans. PMID:22969363

  5. Comparison of Space Shuttle Hot Gas Manifold analysis to air flow data

    NASA Technical Reports Server (NTRS)

    Mcconnaughey, P. K.

    1988-01-01

    This paper summarizes several recent analyses of the Space Shuttle Main Engine Hot Gas Manifold and compares predicted flow environments to air flow data. Codes used in these analyses include INS3D, PAGE, PHOENICS, and VAST. Both laminar (Re = 250, M = 0.30) and turbulent (Re = 1.9 million, M = 0.30) results are discussed, with the latter being compared to data for system losses, outer wall static pressures, and manifold exit Mach number profiles. Comparison of predicted results for the turbulent case to air flow data shows that the analysis using INS3D predicted system losses within 1 percent error, while the PHOENICS, PAGE, and VAST codes erred by 31, 35, and 47 percent, respectively. The INS3D, PHOENICS, and PAGE codes did a reasonable job of predicting outer wall static pressure, while the PHOENICS code predicted exit Mach number profiles with acceptable accuracy. INS3D was approximately an order of magnitude more efficient than the other codes in terms of code speed and memory requirements. In general, it is seen that complex internal flows in manifold-like geometries can be predicted with a limited degree of confidence, and further development is necessary to improve both efficiency and accuracy of codes if they are to be used as design tools for complex three-dimensional geometries.

  6. Gas bubble dimensions in Archean lava flows indicate low air pressure at 2.7 Ga

    NASA Astrophysics Data System (ADS)

    Som, S. M.; Buick, R.; Hagadorn, J.; Blake, T.; Perreault, J.; Harnmeijer, J.; Catling, D. C.

    2014-12-01

    Air pressure constrains atmospheric composition, which, in turn, is linked to the Earth system through biogeochemical cycles and fluxes of volatiles from and to the Earth's interior. Previous studies have only placed maximum levels on surface air pressure for the early Earth [1]. Here, we calculate an absolute value for Archean barometric pressure using gas bubble size (vesicle) distributions in uninflated basaltic lava flows that solidified at sea level 2.7 billion years ago in the Pilbara Craton, Western Australia. These vesicles have been filled in by secondary minerals deposited during metasomatism and so are now amydules, but thin sections show that infilling did not change vesicle dimensions. Amygdule dimensions are measured using high-resolution X-ray tomography from core samples obtained from the top and bottom of the lava flows. The modal size expressed at the top and at the bottom of an uninflated flow can be linked to atmospheric pressure using the ideal gas law. Such a technique has been verified as a paleoaltimeter using Hawaiian Quaternary lava flows [2]. We use statistical methods to estimate the mean and standard deviation of the volumetric size of the amygdules by applying 'bootstrap'resampling and the Central Limit Theorem. Our data indicate a surprisingly low atmospheric pressure. Greater nitrogen burial under anaerobic conditions likely explains lower pressure. Refs: [1] Som et al. (2012) Nature 484, 359-262. D. L. Sahagian et al. (2002) J. Geol., 110, 671-685.

  7. Interfacial area measurement and transport modeling in air-water two-phase flow

    NASA Astrophysics Data System (ADS)

    Fu, Xinyu

    In two-fluid model, the interfacial area concentration (IAC) is an important parameter that characterizes the interaction of two-phases at the interface. The accuracy of IAC modeling and local measurements largely affects the efficiency of designing and assessing two-phase flow systems. The prediction of the dynamical evolution of IAC is one of the most challenging tasks in research and application. This thesis is focused on developing advanced local measurement techniques to obtain reliable two-phase parameters and implementing efficient theoretical models for IAC source and sink terms in a two-group interfacial area transport equation based on experiments. In this study, an advanced local measurement technique using a four-sensor conductivity probe has been presented for obtaining IAC in air-water flows. It extends the existing conductivity probe method to slug and churn-turbulent flows with a unified probe design and comprehensive signal processing system. Sophisticated algorithm and software have been implemented that is robust in handling most practical conditions with high reliability. Systematic analyses on the issues of probe applications and benchmarks have been performed. The improved four-sensor method has also been applied to flow conditions with significant local recirculation, which was considered the most challenging situation for local measurement in two-phase flow. Using the well-established instrumentation, solid databases for a two-inch air-water loop have been built with sufficient information on the axial development and the radial distribution of the local parameters. Mechanistic models of major fluid particle interaction phenomena involving two bubble groups have been proposed, including the shearing-off of small bubbles from slug/cap bubbles, the wake entrainment of group-1 bubble into group-2 bubble, the wake acceleration and coalescence between group-2 bubbles, and the breakup of group-2 bubbles due to surface instability. Prediction of

  8. Electro-Hydrodynamics and Kinetic Modeling of Dry and Humid Air Flows Activated by Corona Discharges

    NASA Astrophysics Data System (ADS)

    P. Sarrette, J.; Eichwald, O.; Marchal, F.; Ducasse, O.; Yousfi, M.

    2016-05-01

    The present work is devoted to the 2D simulation of a point-to-plane Atmospheric Corona Discharge Reactor (ACDR) powered by a DC high voltage supply. The corona reactor is periodically crossed by thin mono filamentary streamers with a natural repetition frequency of some tens of kHz. The study compares the results obtained in dry air and in air mixed with a small amount of water vapour (humid air). The simulation involves the electro-dynamics, chemical kinetics and neutral gas hydrodynamics phenomena that influence the kinetics of the chemical species transformation. Each discharge lasts about one hundred of a nanosecond while the post-discharge occurring between two successive discharges lasts one hundred of a microsecond. The ACDR is crossed by a lateral dry or humid air flow initially polluted with 400 ppm of NO. After 5 ms, the time corresponding to the occurrence of 50 successive discharge/post-discharge phases, a higher NO removal rate and a lower ozone production rate are found in humid air. This change is due to the presence of the HO2 species formed from the H primary radical in the discharge zone.

  9. Interfacial structures of confined air-water two-phase bubbly flow

    SciTech Connect

    Kim, S.; Ishii, M.; Wu, Q.; McCreary, D.; Beus, S.G.

    2000-08-01

    The interfacial structure of the two-phase flows is of great importance in view of theoretical modeling and practical applications. In the present study, the focus is made on obtaining detailed local two-phase parameters in the air-water bubbly flow in a rectangular vertical duct using the double-sensor conductivity probe. The characteristic wall-peak is observed in the profiles of the interracial area concentration and the void fraction. The development of the interfacial area concentration along the axial direction of the flow is studied in view of the interfacial area transport and bubble interactions. The experimental data is compared with the drift flux model with C{sub 0} = 1.35.

  10. Study of interfacial area transport and sensitivity analysis for air-water bubbly flow

    SciTech Connect

    Kim, S.; Sun, X.; Ishii, M.; Beus, S.G.

    2000-09-01

    The interfacial area transport equation applicable to the bubbly flow is presented. The model is evaluated against the data acquired by the state-of-the-art miniaturized double-sensor conductivity probe in an adiabatic air-water co-current vertical test loop under atmospheric pressure condition. In general, a good agreement, within the measurement error of plus/minus 10%, is observed for a wide range in the bubbly flow regime. The sensitivity analysis on the individual particle interaction mechanisms demonstrates the active interactions between the bubbles and highlights the mechanisms playing the dominant role in interfacial area transport. The analysis employing the drift flux model is also performed for the data acquired. Under the given flow conditions, the distribution parameter of 1.076 yields the best fit to the data.

  11. Formation of a strong electric field resulting in the excitation of microplasma discharges at the edge of a dielectric film on a metal in a plasma flow

    NASA Astrophysics Data System (ADS)

    Ivanov, V. A.; Sakharov, A. S.; Konyzhev, M. E.

    2016-06-01

    Results are presented from experimental and analytical studies of the processes resulting in the excitation of microplasma discharges (MPDs) on a metal surface partially covered with a thin dielectric film under the action of an external plasma flow in vacuum. It is shown experimentally that MPDs are excited at the interface between the open metal surface and the region covered by the dielectric film. The probability of MPD excitation is investigated as a function of the thickness of the dielectric film deposited on the metal. It is found that, for a film thickness of 1 μm, the probability of MPD excitation is close to unity. As the film thickness decreases below ~10 nm or increases above ~10 μm, the probability of MPD excitation is reduced by more than two orders of magnitude. A two-dimensional kinetic numerical code is developed that allows one to model the processes of Debye sheath formation and generation of a strong electric field near the edge of a finite-thickness dielectric film on a metal surface in a plasma flow for different configurations of the film edge. It is shown that the maximum value of the tangential component of the electric field is reached at the film edge and amounts to E max ≈ |φ0|/2 d (where φ0 < 0 is the electric potential applied to the metal and d is the film thickness), which for typical conditions of experiments on the excitation of MPDs on metal surfaces (φ0 ≈-400 V, d ≈ 1 μm) yields E max ≈ 2 MV/cm. The results of kinetic simulations confirm the qualitative idea about the mechanism of the formation of a strong electric field resulting in the excitation of MPDs at the edge of a dielectric film on a metal surface in a plasma flow and agree with experimental data.

  12. Asthma ski day: cold air sports safe with peak flow monitoring.

    PubMed

    Silvers, W; Morrison, M; Wiener, M

    1994-08-01

    The Colorado Asthma Ski Day, an annual cross-country and alpine skiing event, encourages children with asthma to participate fully in outdoor winter sports. Since cold air and exercise can trigger bronchospasm, we examined the peak expiratory flow rates of 80 children who attended Asthma Ski Day 1992 or Asthma Ski Day 1993 to establish a safety profile for this event. Peak expiratory flow rates were measured prior to skiing, at lunchtime, and at the end of the day's activities. We asked the children to pretreat with their regular medications, as prescribed by their physicians, to use their bronchodilator inhalers p.r.n., and to report to our medical station if an episode of acute asthma occurred. The average age of the participants was 9.5 years, and the average baseline daytime peak flow rate was 100.03% of predicted. The average percent change in peak flow rates during the day was an increase of 5.00%. Our results demonstrate that with medical supervision, peak expiratory flow rate monitoring, and properly administered medications, peak flow rates can be stabilized and even improve during cold-weather exercise to an extent that safety concerns need not restrict children with asthma from engaging in exercise or cold-weather sports. The Colorado Asthma Ski Day can serve as a model event for other organizations that want to promote outdoor activities for children with asthma. PMID:8067591

  13. A study of the accuracy of neutrally buoyant bubbles used as flow tracers in air

    NASA Technical Reports Server (NTRS)

    Kerho, Michael F.

    1993-01-01

    Research has been performed to determine the accuracy of neutrally buoyant and near neutrally buoyant bubbles used as flow tracers in air. Theoretical, computational, and experimental results are presented to evaluate the dynamics of bubble trajectories and factors affecting their ability to trace flow-field streamlines. The equation of motion for a single bubble was obtained and evaluated using a computational scheme to determine the factors which affect a bubble's trajectory. A two-dimensional experiment was also conducted to experimentally determine bubble trajectories in the stagnation region of NACA 0012 airfoil at 0 deg angle of attack using a commercially available helium bubble generation system. Physical properties of the experimental bubble trajectories were estimated using the computational scheme. These properties included the density ratio and diameter of the individual bubbles. the helium bubble system was then used to visualize and document the flow field about a 30 deg swept semispan wing with simulated glaze ice. Results were compared to Navier-Stokes calculations and surface oil flow visualization. The theoretical and computational analysis have shown that neutrally buoyant bubbles will trace even the most complex flow patterns. Experimental analysis revealed that the use of bubbles to trace flow patterns should be limited to qualitative measurements unless care is taken to ensure neutral buoyancy. This is due to the difficulty in the production of neutrally buoyant bubbles.

  14. Onsite survey on the mechanism of passive aeration and air flow path in a semi-aerobic landfill.

    PubMed

    Matsuto, Toshihiko; Zhang, Xin; Matsuo, Takayuki; Yamada, Shuhei

    2015-02-01

    The semi-aerobic landfill is a widely accepted landfill concept in Japan because it promotes stabilization of leachates and waste via passive aeration without using any type of mechanical equipment. Ambient air is thought to be supplied to the landfill through a perforated pipe network made of leachate collection pipe laid along the bottom and a vertically erected gas vent. However, its underlying air flow path and driving forces are unclear because empirical data from real-world landfills is inadequate. The objective of this study is to establish scientific evidence about the aeration mechanisms and air flow path by an on-site survey of a full-scale, semi-aerobic landfill. First, all passive vents located in the landfill were monitored with respect to temperature level and gas velocity in different seasons. We found a linear correlation between the outflow rate and gas temperature, suggesting that air flow is driven by a buoyancy force caused by the temperature difference between waste in the landfill and the ambient temperature. Some vents located near the landfill bottom acted as air inflow vents. Second, we conducted a tracer test to determine the air flow path between two vents, by injecting tracer gas from an air sucking vent. The resulting slowly increasing gas concentration at the neighboring vent suggested that fresh air flow passes through the waste layer toward the gas vents from leachate collection pipes, as well as directly flowing through the pipe network. Third, we monitored the temperature of gas flowing out of a vent at night. Since the temperature drop of the gas was much smaller than that of the environment, the air collected at the gas vents was estimated to flow mostly through the waste layer, i.e., the semi-aerobic landfill has considerable aeration ability under the appropriate conditions. PMID:25443098

  15. Interfacial area transport across vertical elbows in air-water two-phase flow

    NASA Astrophysics Data System (ADS)

    Yadav, Mohan Singh

    The accurate prediction of two-phase flow using the two-fluid model requires closure relations for the interfacial area concentration ( ai), which can be provided by the interfacial area transport equation (IATE). Models have been developed for the IATE in straight pipe geometries. However, to analyze practical systems, it is important that the IATE accounts for flows in pipes with varying orientation that are interconnected via different flow restrictions. In view of this, the current study performs experiments to investigate the geometric effects of 90- degree vertical elbows in air-water two-phase flows and develops a one-group IATE applicable to vertical-upward-to-horizontal two-phase flows. The experimental facility consists of both vertical and horizontal sections constructed from 50.8 mm inner diameter acrylic pipes that are interconnected via 90-degree glass elbows. The elbows have a radius of curvature of Rc/D = 3 and are installed at L/D = 63 and 244.7 from the inlet. Experiments are performed to characterize the elbow-effect on both global and local two-phase flow parameters. A four-sensor conductivity probe is used to acquire detailed measurements of local two-phase flow parameters at thirteen axial locations along the test section in eight flow conditions that are within the bubbly flow regime at inlet. The measurements show that in bubbly flow conditions, the vertical-upward elbow causes a characteristic bimodal-type bubble distribution and the change in this distribution farther downstream of the elbow corresponds to the dissipation of the elbow-effects. In view of developing the IATE for vertical-upward to horizontal two-phase flows, predictive models for the dissipation length of the elbow-effect and closure relations for advection of gas-phase, pressure loss, and covariance of bubble interactions are developed. The new models are evaluated against the current experimental database. Overall, the model predictions agree with the data within +/-7

  16. Experimental investigation of infiltration in soil with occurrence of preferential flow and air trapping

    NASA Astrophysics Data System (ADS)

    Snehota, Michal; Jelinkova, Vladimira; Sacha, Jan; Cislerova, Milena

    2015-04-01

    Recently, a number of infiltration experiments have not proved the validity of standard Richards' theory of the flow in soils with wide pore size distribution. Water flow in such soils under near-saturated conditions often exhibits preferential flow and temporal instability of the saturated hydraulic conductivity. An intact sample of coarse sandy loam from Cambisol series containing naturally developed vertically connected macropore was investigated during recurrent ponding infiltration (RPI) experiments conducted during period of 30 hours. RPI experiment consisted of two ponded infiltration runs, each followed by free gravitational draining of the sample. Three-dimensional neutron tomography (NT) image of the dry sample was acquired before the infiltration begun. The dynamics of the wetting front advancement was investigated by a sequence of neutron radiography (NR) images. Analysis of NR showed that water front moved preferentially through the macropore at the approximate speed of 2 mm/sec, which was significantly faster pace than the 0.3 mm/sec wetting advancement in the surrounding soil matrix. After the water started to flow out of the sample, changes in the local water content distribution were evaluated quantitatively by subtracting the NT image of the dry sample from subsequent tomography images. As a next stage, the experiment was repeated on a composed sample packed of ceramic and coarse sand. Series of infiltration runs was conducted in the sample with different initial water contents. The neutron tomography data quantitatively showed that both in natural soil sample containing the macropore and in the composed sample air was gradually transported from the region of fine soil matrix to the macropores or to the coarser material. The accumulation of the air bubbles in the large pores affected the hydraulic conductivity of the sample reducing it up to 50% of the initial value. This supports the hypothesis on strong influence of entrapped air amount and

  17. Numerical simulation of flow in a circular duct fitted with air-jet vortex generators

    NASA Astrophysics Data System (ADS)

    Küpper, Christoph; Henry, Frank S.

    2002-04-01

    Most of the fundamental studies of the use of air-jet vortex generators (AJVGs) have concentrated on their potential ability to inhibit boundary layer separation on aerofoils. However, AJVGs may be of use in controlling or enhancing certain features of internal duct flows. For example, they may be of use in controlling the boundary layer at the entrance to engine air intakes, or as a means of increasing mixing and heat transfer. The objective of this paper is to analyse the flow field in the proximity of an air-jet vortex generator array in a duct by using two local numerical models, i.e. a simple flat plate model and a more geometrically faithful sector model. The sector model mirrors the circular nature of the duct's cross-section and the centre line conditions on the upper boundary. The flow was assumed fully turbulent and was solved using the finite volume, Navier-Stokes Code CFX 4 (CFDS, AEA Technology, Harwell) on a non-orthogonal, body-fitted, grid using the k- turbulence model and standard wall functions. Streamwise, vertical and cross-stream velocity profiles, circulation and peak vorticity decay, peak vorticity paths in cross-stream and streamwise direction, cross-stream vorticity profiles and cross-stream wall shear stress distributions were predicted. Negligible difference in results was observed between the flat plate and the sector model, since the produced vortices were small relative to the duct diameter and close to the surface. The flow field was most enhanced, i.e. maximum thinning of the boundary layer, with a configuration of 30° pitch and 75° skew angle. No significant difference in results could be observed between co- and counter-rotating vortex arrays. Copyright

  18. Measurement of vibrationally excited N2(v) in an atmospheric-pressure air pulsed corona discharge using coherent anti-Stokes Raman scattering

    NASA Astrophysics Data System (ADS)

    Teramoto, Yoshiyuki; Ono, Ryo

    2014-08-01

    Vibrationally excited N2(v = 1, 2) in an atmospheric-pressure air pulsed corona discharge was measured using coherent anti-Stokes Raman scattering (CARS). In a dry air discharge, the vibrational temperature determined from the ratio N2(v = 2)/N2(v = 0), Tv2, was approximately 500 K higher than that determined from N2(v = 1)/N2(v = 0), Tv1, immediately after the discharge pulse. Both vibrational temperatures reached equilibrium within 100 μs after the discharge pulse by the vibration-to-vibration (V-V) process of N2-N2. The translational temperature was also measured using CARS. The rise in the translational temperature due to vibration-to-translation (V-T) energy transfer was not observed for a postdischarge time of 5 μs-1 ms in the dry-air discharge. However, when the air was humidified, a significant V-T energy transfer was observed. It was due to an extremely rapid V-T process of H2O-H2O following the V-V process of N2-H2O. Measurements showed that the humidification of the ambient air accelerated the decrease in the N2 vibrational temperature and increased the translational temperature. N2(v) was generated mostly in the secondary streamer, not in the primary one, according to estimation from the measured N2(v) density.

  19. Dynamical Simulation of Cloudy Boundary Layer Flow during Cold Air Outbreaks.

    NASA Astrophysics Data System (ADS)

    Yuen, Chiu-Wai

    A two-dimensional primitive equation planetary boundary layer model has been constructed and applied to simulate downwind evolution of coupled dynamical, thermodynamical and cloud properties in the planetary boundary layer (PBL) developed during cold air outbreaks over warm ocean. A layered parametric approach is adopted to model the inversion -capped convective boundary layer filled with shallow cumuli, or topped by stratocumulus or cloud free air. Turbulent and convective cloud fluxes are determined from modifications and generalizations of recent published parameterization schemes. A one-dimensional version of the model is first applied to a local simulation of trade wind flow. Vertical distributions of momentum flux and wind in the cumulus -filled baroclinic PBL are realistically simulated compared to observations, confirming the validity of the momentum flux parameterization scheme assembled in this research. A steady-state linear analysis for a cloud-free mixed layer flowing from land over a warm ocean clarifies the basic dynamical and thermodynamical adjustments to differential friction and heating. Downwind warming and deepening of PBL produces counteracting pressure gradient forces, while heating-induced subsidence occurs only in places where boundary layer baroclinity is strong. Comparative numerical experiments for moderate intensity air-sea interaction illustrate the importance of nonprecipitating cumulus convection and large scale environmental conditions. Such factors as baroclinity, static stability, moisture content, upwind inversion strength and height exert strong controls on the downwind evolution of PBL and clouds. Boundary layer flow is influenced by the basic geostrophic wind distribution and the PBL depth is also sensitive to large scale vertical velocity. The response of an advective boundary layer to stronger wind is different from that of a horizontally homogeneous boundary layer. In a simulation of an intense air mass transformation

  20. Visualization of Rotor Tip Secondary Flows with Blade Tip Air Discharge and Suction in a Low-speed Turbine

    NASA Technical Reports Server (NTRS)

    Kofskey, Milton G; Allen, Hubert W

    1956-01-01

    Smoke was used to visualize outer-wall secondary flows in a low-speed turbine utilizing rotor tip air discharge and suction. Photographs as well as visual observations of the effect of tip air discharge and suction were made by independently varying the direction and quantity of the tip air discharge and suction, and varying tip clearance, and main-stream air speed. In addition, the cross-sectional area of the hollow blade discharge opening was varied for the case of tip air discharge.

  1. On the potential importance of transient air flow in advective radon entry into buildings

    SciTech Connect

    Narasimhan, T.N.; Tsang, Y.W.; Holman, H.Y. )

    1990-05-01

    The authors have investigated, using a mathematical model, the temporal variations of air flux within the soil mass surrounding a basement in the presence of time dependent periodic variations of barometric pressure and a persistent under-pressure at the basement. The results of transient air flow show that for a homogeneous soil medium, the effects of barometric fluctuations are most significant in the cases where soil permeability to air is low and the fluctuation frequency is high. In these cases, the barometric fluctuation can greatly enhance the magnitude of fluxes as well as introduce flow direction reversals from surrounding soil into the basement. These large fluxes with direction reversals have strong implications in regard to advective transport of radon. The results suggest that the transient oscillations have to be accounted for in quantifying radon entry into buildings. In the actual field set up, the transient behavior will be further influenced by soil permeability heterogeneity, by soil moisture variations, and by the effects of multiple periodic components in the barometric pressure fluctuations.

  2. Flow mechanism for the long-range transport of air pollutants by the sea breeze causing inland nighttime high oxidants

    SciTech Connect

    Ueda, H.; Mitsumoto, S.; Kurita, H.

    1988-02-01

    Flow mechanism causing nightttime smog was investigated by analyzing 1) continuous records of meteorological data and concentration of oxidants (Ox) for 15 days and 2) aircraft data along the transportation route of a polluted air mass.

  3. Inverted optical intrinsic response accompanied by decreased cerebral blood flow are related to both neuronal inhibition and excitation

    PubMed Central

    Ma, Zengguang; Cao, Pengjia; Sun, Pengcheng; Zhao, Linna; Li, Liming; Tong, Shanbao; Lu, Yiliang; Yan, Yan; Chen, Yao; Chai, Xinyu

    2016-01-01

    Negative hemodynamic response has been widely reported in blood oxygenation level-dependent (BOLD) functional magnetic resonance imaging studies, however its origin is still controversial. Optical intrinsic signal (OIS) imaging can be used to study brain activity by simultaneously recording hemodynamic signals at different wavelengths with high spatial resolution. In this study, we found transcorneal electrical stimulation (TcES) could elicit both positive OIS response (POR) and negative OIS response (NOR) in cats’ visual cortex. We then investigated the property of this negative response to TcES and its relationship with cerebral blood flow (CBF) and neuronal activity. Results from laser speckle contrast imaging showed decreased CBF in the NOR region while increased CBF in the POR region. Both planar and laminar electrophysiological recordings in the middle (500–700 μm) cortical layers demonstrated that decreased and increased neuronal activities were coexisted in the NOR region. Furthermore, decreased neuronal activity was also detected in the deep cortical layers in the NOR region. This work provides evidence that the negative OIS together with the decreased CBF should be explained by mechanisms of both neuronal inhibition and excitation within middle cortical layers. Our results would be important for interpreting neurophysiological mechanisms underlying the negative BOLD signals. PMID:26860040

  4. Air and groundwater flow at the interface between fractured host rock and a bentonite buffer

    NASA Astrophysics Data System (ADS)

    Dessirier, B.; Jarsjo, J.; Frampton, A.

    2014-12-01

    Designs of deep geological repositories for spent nuclear fuel include several levels of confinement. The Swedish and Finnish concept KBS-3 targets for example sparsely fractured crystalline bedrock as host formation and would have the waste canisters embedded in an engineered buffer of compacted MX-80 bentonite. The host rock is a highly heterogeneous dual porosity material containing fractures and a rock matrix. Bentonite is a complex expansive porous material. Its water content and mechanical properties are interdependent. Beyond the specific physics of unsaturated flow and transport in each medium, the interface between them is critical. Detailed knowledge of the transitory two-phase flow regime, induced by the insertion of the unsaturated buffer in a saturated rock environment, is necessary to assess the performance of planned KBS-3 deposition holes. A set of numerical simulations based on the equations of two-phase flow for water and air in porous media were conducted to investigate the dynamics of air and groundwater flow near the rock/bentonite interface in the period following installation of the unsaturated bentonite buffer. We assume state of the two-phase flow parameter values for bentonite from laboratory water uptake tests and typical fracture and rock properties from the Äspö Hard rock laboratory (Sweden) gathered under several field characterization campaigns. The results point to desaturation of the rock domain as far as 10 cm away from the interface into matrix-dominated regions for up to 160 days. Similar observations were made during the Bentonite Rock Interaction Experiment (BRIE) at the Äspö HRL, with a desaturation sustained for even longer times. More than the mere time to mechanical and hydraulic equilibrium, the occurrence of sustained unsaturated conditions opens the possibility for biogeochemical processes that could be critical in the safety assessment of the planned repository.

  5. The impact of traffic-flow patterns on air quality in urban street canyons.

    PubMed

    Thaker, Prashant; Gokhale, Sharad

    2016-01-01

    We investigated the effect of different urban traffic-flow patterns on pollutant dispersion in different winds in a real asymmetric street canyon. Free-flow traffic causes more turbulence in the canyon facilitating more dispersion and a reduction in pedestrian level concentration. The comparison of with and without a vehicle-induced-turbulence revealed that when winds were perpendicular, the free-flow traffic reduced the concentration by 73% on the windward side with a minor increase of 17% on the leeward side, whereas for parallel winds, it reduced the concentration by 51% and 29%. The congested-flow traffic increased the concentrations on the leeward side by 47% when winds were perpendicular posing a higher risk to health, whereas reduced it by 17-42% for parallel winds. The urban air quality and public health can, therefore, be improved by improving the traffic-flow patterns in street canyons as vehicle-induced turbulence has been shown to contribute significantly to dispersion. PMID:26412198

  6. Test Data of Flow Field of Shuttle SRM Nozzle Joint with Bond Defects, Using Unheated Air

    NASA Technical Reports Server (NTRS)

    Hair, Leroy M.; McAnally, James V.; Hengel, John E.

    1989-01-01

    The nozzle-to-case joint on the Shuttle SRM (as redesigned after the Challenger accident) features an adhesive sealant filling and bonding the joint, with a wiper O-ring to prevent the adhesive from reaching and disabling the closure O-ring. Flawless implementation of that joint design would ensure that hot, corrosive propellant combustion gases never reach the closure O-ring. However, understanding the flow field related to bonding defects is prudent. A comprehensive test program was conducted to quantify such flow fields and associated heating environments. A two-dimensional, full-scale model represented 65 inches of the nozzle joint, using unheated air as the test medium, in a blowdown mode. Geometry variations modeled RSRM assembly tolerances, and two types of bonding defects: pullaways and blowholes. A range of the magnitude of each type defect was tested. Also a range of operational parameters was tested, representative of the RSRM flow environment, including duplication of RSRM Mach and Reynolds numbers. Extensive instrumentation was provided to quantify pressures, heat rates, and velocities. The resulting data established that larger geometric defects cause larger pressure and larger heating, at the closure O-ring region. Velocity trends were not so straight-forward. Variations in assembly tolerances did not generally affect flow fields or heating. Operational parameters affected flow fields and heating as might be expected, increasing density or velocity increased heating. Complete details of this test effort are presented.

  7. Time-resolved Fast Neutron Radiography of Air-water Two-phase Flows

    NASA Astrophysics Data System (ADS)

    Zboray, Robert; Dangendorf, Volker; Mor, Ilan; Tittelmeier, Kai; Bromberger, Benjamin; Prasser, Horst-Michael

    Neutron imaging, in general, is a useful technique for visualizing low-Z materials (such as water or plastics) obscured by high-Z materials. However, when significant amounts of both materials are present and full-bodied samples have to be examined, cold and thermal neutrons rapidly reach their applicability limit as the samples become opaque. In such cases one can benefit from the high penetrating power of fast neutrons. In this work we demonstrate the feasibility of time-resolved, fast neutron radiography of generic air-water two-phase flows in a 1.5 cm thick flow channel with Aluminum walls and rectangular cross section. The experiments have been carried out at the high-intensity, white-beam facility of the Physikalisch-Technische Bundesanstalt, Germany. Exposure times down to 3.33 ms have been achieved at reasonable image quality and acceptable motion artifacts. Different two-phase flow regimes such as bubbly slug and churn flows have been examined. Two-phase flow parameters like the volumetric gas fraction, bubble size and bubble velocities have been measured.

  8. Experimental Validation of Stratified Flow Phenomena, Graphite Oxidation, and Mitigation Strategies of Air Ingress Accidents

    SciTech Connect

    Chang Ho Oh; Eung Soo Kim; Hee Cheon No; Nam Zin Cho

    2008-12-01

    The US Department of Energy is performing research and development (R&D) that focuses on key phenomena that are important during challenging scenarios that may occur in the Next Generation Nuclear Plant (NGNP) Program / GEN-IV Very High Temperature Reactor (VHTR). Phenomena identification and ranking studies (PIRT) to date have identified the air ingress event, following on the heels of a VHTR depressurization, as very important (Schultz et al., 2006). Consequently, the development of advanced air ingress-related models and verification and validation (V&V) are very high priority for the NGNP program. Following a loss of coolant and system depressurization, air will enter the core through the break. Air ingress leads to oxidation of the in-core graphite structure and fuel. The oxidation will accelerate heat-up of the bottom reflector and the reactor core and will cause the release of fission products eventually. The potential collapse of the bottom reflector because of burn-off and the release of CO lead to serious safety problems. For estimation of the proper safety margin we need experimental data and tools, including accurate multi-dimensional thermal-hydraulic and reactor physics models, a burn-off model, and a fracture model. We also need to develop effective strategies to mitigate the effects of oxidation. The results from this research will provide crucial inputs to the INL NGNP/VHTR Methods R&D project. This project is focused on (a) analytical and experimental study of air ingress caused by density-driven, stratified, countercurrent flow, (b) advanced graphite oxidation experiments, (c) experimental study of burn-off in the bottom reflector, (d) structural tests of the burnt-off bottom reflector, (e) implementation of advanced models developed during the previous tasks into the GAMMA code, (f) full air ingress and oxidation mitigation analyses, (g) development of core neutronic models, (h) coupling of the core neutronic and thermal hydraulic models, and (i

  9. Numerical simulation of cantilevered ramp injector flow fields for hypervelocity fuel/air mixing enhancement

    NASA Astrophysics Data System (ADS)

    Schumacher, Jurgen Christian

    Increasing demand for affordable access to space and high speed terrestrial transport has spawned research interest into various air-breathing hypersonic propulsion systems. Propulsion concepts such as the supersonic combustion ramjet (scramjet) and the shock-induced combustion ramjet (shcramjet) utilize oxygen freely available in the atmosphere and thereby substantially reduce the weight penalty of on-board oxidizer tankage used in rocket based systems. Of key importance to the ultimate success of an air-breathing concept is the ability to efficiently mix the fuel with atmospheric air. In the case of a hypersonic air-breather the challenge is accentuated due to the requirement of supersonic combustion. Flow velocities through the combustor on the order of thousands of meters per second provide the fuel and air with only a brief time to adequately combine. Contemporary mixing augmentation methods to address this issue have focused on fuel injection devices which promote axial vortices to enhance the mixing process. Much research effort has been expended on investigation of ramp injectors for this purpose. The present study introduces a new ramp injector design, based on the conventional ramp injector, dubbed the cantilevered ramp injector. A two-pronged numerical approach was employed to investigate the mixing performance and characteristics of the cantilevered injector consisting of, (1) comparison with conventional designs and (2) a parametric study of various cantilevered injector geometries. A laminar, three-dimensional, multispecies flowsolver was developed in generalized coordinates to solve the Navier-Stokes equations for the flow fields of injected H2 into high-enthalpy air. The scheme consists of an upwind TVD scheme for discretization of the convective fluxes coupled with a semi-implicit LU-SGS scheme for temporal discretization. Through analysis of the numerical solutions, it has been shown that the cantilevered ramp injector is a viable fuel injection

  10. Nonuniform air flow in inlets: the effect on filter deposits in the fiber sampling cassette.

    PubMed

    Baron, P A; Chen, C C; Hemenway, D R; O'Shaughnessy, P

    1994-08-01

    Smoke stream studies were combined with a new technique for visualizing a filter deposit from samples used to monitor asbestos or other fibers. Results clearly show the effect of secondary flow vortices within the sampler under anisoaxial sampling conditions. The vortices observed at low wind velocities occur when the inlet axis is situated at angles between 45 degrees and 180 degrees to the motion of the surrounding air. It is demonstrated that the vortices can create a complex nonuniform pattern in the filter deposit, especially when combined with particle settling or electrostatic interactions between the particles and the sampler. Inertial effects also may play a role in the deposit nonuniformity, as well as causing deposition on the cowl surfaces. Changes in the sampler, such as its placement, may reduce these biases. The effects noted are not likely to occur in all sampling situations, but may explain some reports of high variability on asbestos fiber filter samples. The flow patterns observed in this study are applicable to straight, thin-walled inlets. Although only compact particles were used, the air flow patterns and forces involved will have similar effects on fibers of the same aerodynamic diameter. PMID:7942509

  11. Three-dimensional visualization of air flow in infant incubators using computational fluid mechanics.

    PubMed

    Hasegawa, T; Horio, H; Okino, H; Taylor, T W; Yamaguchi, T

    1993-01-01

    An application of three-dimensional (3D) computational fluid mechanics to the air flow in infant incubators is presented. The air flows in two numerical models were simulated by directly solving the Navier-Stokes equations for incompressible gases. The method used was a finite-volume method incorporating a body-fitted coordinate system. The basic model was based on a real infant incubator, which was slightly simplified and included a model of a baby. The number of computation grids was 56 (width) x 21 (depth) x 21 (height) = 24,696. There were several very-large-scale eddies in the incubator free space. In addition to the global structure, small-scale eddies were shown to be produced at many locations scattered in the free space. From these results, it is evident that the conventional assumption of steady and uniform flows in incubators is not always justified when considering heat loss from the body of a baby in an incubator. PMID:8369866

  12. Mechanical Design of a Performance Test Rig for the Turbine Air-Flow Task (TAFT)

    NASA Technical Reports Server (NTRS)

    Xenofos, George; Forbes, John; Farrow, John; Williams, Robert; Tyler, Tom; Sargent, Scott; Moharos, Jozsef

    2003-01-01

    To support development of the Boeing-Rocketdyne RS84 rocket engine, a fill-flow, reaction turbine geometry was integrated into the NASA-MSFC turbine air-flow test facility. A mechanical design was generated which minimized the amount of new hardware while incorporating all test and instrUmentation requirements. This paper provides details of the mechanical design for this Turbine Air-Flow Task (TAFT) test rig. The mechanical design process utilized for this task included the following basic stages: Conceptual Design. Preliminary Design. Detailed Design. Baseline of Design (including Configuration Control and Drawing Revision). Fabrication. Assembly. During the design process, many lessons were learned that should benefit future test rig design projects. Of primary importance are well-defined requirements early in the design process, a thorough detailed design package, and effective communication with both the customer and the fabrication contractors. The test rig provided steady and unsteady pressure data necessary to validate the computational fluid dynamics (CFD) code. The rig also helped characterize the turbine blade loading conditions. Test and CFD analysis results are to be presented in another JANNAF paper.

  13. Air flow analysis in the upper Río Negro Valley (Argentina)

    NASA Astrophysics Data System (ADS)

    Cogliati, M. G.; Mazzeo, N. A.

    2006-06-01

    The so called Upper Río Negro Valley in Argentina is one of the most important fruit and vegetable production regions of the country. It comprises the lower valleys of the Limay and Neuquén rivers and the upper Negro river valley. Out of the 41,671 cultivated hectares, 84.6% are cultivated with fruit trees, especially apple, pear and stone fruit trees. Late frosts occurring when trees are sensitive to low temperatures have a significant impact on the regional production. This study presents an analysis of air flow characteristics in the Upper Río Negro Valley and its relationship with ambient air flow. To such effect, observations made when synoptic-scale weather patterns were favorable for radiative frosts (light wind and clear sky) or nocturnal temperature inversion in the lower layer were used. In the Negro river valley, both wind channeling and downward horizontal momentum transport from ambient wind were observed; in nighttime, very light wind events occurred, possibly associated with drainage winds from the nearby higher levels of the barda. In the Neuquén river valley, the prevailing effect appeared to be forced channeling, consistent with the results obtained in valleys where the synoptic scale wind crossed the axis of the valley. In the Limay river valley, the flow was observed to blow parallel to the longitudinal valley axis, possibly influenced by pressure gradient and forced channeling.

  14. Two-phase flow and transport in the air cathode of proton exchange membrane fuel cells

    SciTech Connect

    WANG,Z.H.; WANG,C.Y.; CHEN,KEN S.

    2000-03-20

    Two-phase flow and transport of reactants and products in the air cathode of proton exchange membrane (PEM) fuel cells is studied analytically and numerically. Four regimes of water distribution and transport are classified by defining three threshold current densities and a maximum current density. They correspond to first appearance of liquid water at the membrane/cathode interface, extension of the gas-liquid two-phase zone to the cathode/channel interface, saturated moist air exiting the gas channel, and complete consumption of oxygen by the electrochemical reaction. When the cell operates above the first threshold current density, liquid water appears and a two-phase zone forms within the porous cathode. A two-phase, multi-component mixture model in conjunction with a finite-volume-based computational fluid dynamics (CFD) technique is applied to simulate the cathode operation in this regime. The model is able to handle the situation where a single-phase region co-exists with a two-phase zone in the air cathode. For the first time, the polarization curve as well as water and oxygen concentration distributions encompassing both single- and two-phase regimes of the air cathode are presented. Capillary action is found to be the dominant mechanism for water transport inside the two-phase zone. The liquid water saturation within the cathode is predicted to reach 6.3% at 1.4 A/cm{sup 2}.

  15. Bio-inspired multi-mode optic flow sensors for micro air vehicles

    NASA Astrophysics Data System (ADS)

    Park, Seokjun; Choi, Jaehyuk; Cho, Jihyun; Yoon, Euisik

    2013-06-01

    Monitoring wide-field surrounding information is essential for vision-based autonomous navigation in micro-air-vehicles (MAV). Our image-cube (iCube) module, which consists of multiple sensors that are facing different angles in 3-D space, can be applied to the wide-field of view optic flows estimation (μ-Compound eyes) and to attitude control (μ- Ocelli) in the Micro Autonomous Systems and Technology (MAST) platforms. In this paper, we report an analog/digital (A/D) mixed-mode optic-flow sensor, which generates both optic flows and normal images in different modes for μ- Compound eyes and μ-Ocelli applications. The sensor employs a time-stamp based optic flow algorithm which is modified from the conventional EMD (Elementary Motion Detector) algorithm to give an optimum partitioning of hardware blocks in analog and digital domains as well as adequate allocation of pixel-level, column-parallel, and chip-level signal processing. Temporal filtering, which may require huge hardware resources if implemented in digital domain, is remained in a pixel-level analog processing unit. The rest of the blocks, including feature detection and timestamp latching, are implemented using digital circuits in a column-parallel processing unit. Finally, time-stamp information is decoded into velocity from look-up tables, multiplications, and simple subtraction circuits in a chip-level processing unit, thus significantly reducing core digital processing power consumption. In the normal image mode, the sensor generates 8-b digital images using single slope ADCs in the column unit. In the optic flow mode, the sensor estimates 8-b 1-D optic flows from the integrated mixed-mode algorithm core and 2-D optic flows with an external timestamp processing, respectively.

  16. Simplified configuration for the combustor of an oil burner using a low pressure, high flow air-atomizing nozzle

    DOEpatents

    Butcher, Thomas A.; Celebi, Yusuf; Fisher, Leonard

    2000-09-15

    The invention relates to clean burning of fuel oil with air. More specifically, to a fuel burning combustion head using a low-pressure, high air flow atomizing nozzle so that there will be a complete combustion of oil resulting in a minimum emission of pollutants. The improved fuel burner uses a low pressure air atomizing nozzle that does not result in the use of additional compressors or the introduction of pressurized gases downstream, nor does it require a complex design. Inventors:

  17. [Estimation of average traffic emission factor based on synchronized incremental traffic flow and air pollutant concentration].

    PubMed

    Li, Run-Kui; Zhao, Tong; Li, Zhi-Peng; Ding, Wen-Jun; Cui, Xiao-Yong; Xu, Qun; Song, Xian-Feng

    2014-04-01

    On-road vehicle emissions have become the main source of urban air pollution and attracted broad attentions. Vehicle emission factor is a basic parameter to reflect the status of vehicle emissions, but the measured emission factor is difficult to obtain, and the simulated emission factor is not localized in China. Based on the synchronized increments of traffic flow and concentration of air pollutants in the morning rush hour period, while meteorological condition and background air pollution concentration retain relatively stable, the relationship between the increase of traffic and the increase of air pollution concentration close to a road is established. Infinite line source Gaussian dispersion model was transformed for the inversion of average vehicle emission factors. A case study was conducted on a main road in Beijing. Traffic flow, meteorological data and carbon monoxide (CO) concentration were collected to estimate average vehicle emission factors of CO. The results were compared with simulated emission factors of COPERT4 model. Results showed that the average emission factors estimated by the proposed approach and COPERT4 in August were 2.0 g x km(-1) and 1.2 g x km(-1), respectively, and in December were 5.5 g x km(-1) and 5.2 g x km(-1), respectively. The emission factors from the proposed approach and COPERT4 showed close values and similar seasonal trends. The proposed method for average emission factor estimation eliminates the disturbance of background concentrations and potentially provides real-time access to vehicle fleet emission factors. PMID:24946571

  18. Mathematical and experimental modelling of flow of air-saturated water through a convergent-divergent nozzle

    NASA Astrophysics Data System (ADS)

    Jablonská, Jana; Bojko, Marian

    2016-03-01

    In hydraulic elements an under-pressure is generated during fluid flow around sharp edges or changing the flow cross-section (e.g. for valves, switchgear, nozzles). In these locations air suction by leakages or release of air from the liquid during cavitation may occur. When flow modelling using classical mathematical model of cavitation at higher flow rates there is disagreement in the measured and calculated hydraulic variables before and behind hydraulic element. Therefore, it is necessary to use a mathematical model of cavitation applied to the three-phase flow (water, vapour, air). Nowadays it is necessary to look for mathematical approaches, which are suitable for quick engineering use in sufficiently precision numerical calculations. The article is devoted to theoretical investigation of multiphase mathematical model of cavitation and its verification using a laboratory experiment. At first case the k-ɛ RNG turbulent mathematical model with cavitation was chosen in accordance [9] and was applied on water flow with cavitation (water and vapour) in a convergent-divergent nozzle. In other cases a solution of water flow with cavitation and air saturation was investigated. Subsequently, the results of mathematical modelling and experimental investigation focused on monitoring of air content and its impact on the value of hydraulic parameters and the size of the cavitation area were verified.

  19. Modeling the Air Flow in the 3410 Building Filtered Exhaust Stack System

    SciTech Connect

    Recknagle, Kurtis P.; Barnett, J. Matthew; Suffield, Sarah R.

    2013-01-23

    Additional ventilation capacity has been designed for the 3410 Building filtered exhaust stack system. The updated system will increase the number of fans from two to three and will include ductwork to incorporate the new fan into the existing stack. Stack operations will involve running various two-fan combinations at any given time. The air monitoring system of the existing two-fan stack was previously found to be in compliance with the ANSI/HPS N13.1-1999 standard, however it is not known if the modified (three-fan) system will comply. Subsequently, a full-scale three-dimensional (3-D) computational fluid dynamics (CFD) model of the modified stack system has been created to examine the sampling location for compliance with the standard. The CFD modeling results show good agreement with testing data collected from the existing 3410 Building stack and suggest that velocity uniformity and flow angles will remain well within acceptance criteria when the third fan and associated ductwork is installed. This includes two-fan flow rates up to 31,840 cfm for any of the two-fan combinations. For simulation cases in which tracer gas and particles are introduced in the main duct, the model predicts that both particle and tracer gas coefficients of variance (COVs) may be larger than the acceptable 20 percent criterion of the ANSI/HPS N13.1-1999 standard for each of the two-fan, 31,840 cfm combinations. Simulations in which the tracers are introduced near the fans result in improved, though marginally acceptable, COV values for the tracers. Due to the remaining uncertainty that the stack will qualify with the addition of the third fan and high flow rates, a stationary air blender from Blender Products, Inc. is considered for inclusion in the stack system. A model of the air blender has been developed and incorporated into the CFD model. Simulation results from the CFD model that includes the air blender show striking improvements in tracer gas mixing and tracer particle

  20. Study on law of negative corona discharge in microparticle-air two-phase flow media

    NASA Astrophysics Data System (ADS)

    He, Bo; Li, Tianwei; Xiu, Yaping; Zhao, Heng; Peng, Zongren; Meng, Yongpeng

    2016-03-01

    To study the basic law of negative corona discharge in solid particle-air two-phase flow, corona discharge experiments in a needle-plate electrode system at different voltage levels and different wind speed were carried out in the wind tunnel. In this paper, the change law of average current and current waveform were analyzed, and the observed phenomena were systematically explained from the perspectives of airflow, particle charging, and particle motion with the help of PIV (particle image velocity) measurements and ultraviolet observations.

  1. Temperature measurements in hypersonic air flows using laser-induced O2 fluorescence

    NASA Technical Reports Server (NTRS)

    Laufer, Gabriel; Mckenzie, Robert L.

    1988-01-01

    An investigation is reported of the use of laser-induced fluorescence on oxygen for the measurement of air temperature and its fluctuations owing to turbulence in hypersonic wind tunnel flows. The results show that for temperatures higher than 60 K and densities higher than 0.01 amagat, the uncertainty in the temperature measurement can be less than 2 percent if it is limited by photon-statistical noise. The measurement is unaffected by collisional quenching and, if the laser fluence is kept below 1.5 J/sq cm, it is also unaffected by nonlinear effects which are associated with depletion of the absorbing states.

  2. Theoretical and experimental investigation of the destruction of graphites in a flow of dissociated air

    NASA Technical Reports Server (NTRS)

    Bovina, T. A.; Zviagin, Y. V.; Markelov, N. V.; Chudetskiy, Y. V.

    1986-01-01

    A method is presented for calculating the heating and erosion of blunt bodies made of graphite in a high-enthalpy flow of dissociated air, assuming chemical equilibrium on the surface and taking account of the thermal effects of combustion and sublimation of graphite. The analysis involves the use of a finite difference scheme to solve an equation of unsteady heat conduction. Attention is given to the equilibrium vaporization of C, C2 and C3 molecules. The calculations agree well with experimental data for a wide range of temperatures and stagnation pressures.

  3. Integrated LTCC Pressure/Flow/Temperature Multisensor for Compressed Air Diagnostics†

    PubMed Central

    Fournier, Yannick; Maeder, Thomas; Boutinard-Rouelle, Grégoire; Barras, Aurélie; Craquelin, Nicolas; Ryser, Peter

    2010-01-01

    We present a multisensor designed for industrial compressed air diagnostics and combining the measurement of pressure, flow, and temperature, integrated with the corresponding signal conditioning electronics in a single low-temperature co-fired ceramic (LTCC) package. The developed sensor may be soldered onto an integrated electro-fluidic platform by using standard surface mount device (SMD) technology, e.g., as a standard electronic component would be on a printed circuit board, obviating the need for both wires and tubes and thus paving the road towards low-cost integrated electro-fluidic systems. Several performance aspects of this device are presented and discussed, together with electronics design issues. PMID:22163518

  4. The potential for air flow reduction in fume hoods at Hanford

    SciTech Connect

    Enderlin, W.I.

    1988-12-01

    The objective of this task is to investigate the feasibility of reducing air flow at the face of laboratory hoods at Hanford during off shift hours for the purpose of energy conservation. Identifying strategies and systems currently available on the market that would facilitate such a reduction, should it be deemed feasible, is also an objective. This report discusses the methodology employed in performing this investigation and the findings resulting therefrom and sets forth conclusions and recommendations derived from these findings. A bibliography and list of references are included. 9 refs.

  5. Heat transfer and pressure drop for air flow through enhanced passages

    SciTech Connect

    Obot, N.T.; Esen, E.B.

    1992-06-01

    An extensive experimental investigation was carried out to determine the pressure drop and heat transfer characteristics for laminar, transitional and turbulent flow of air through a smooth passage and twenty-three enhanced passages. The internal surfaces of all enhanced passages had spirally shaped geometries; these included fluted, finned/ribbed and indented surfaces. The Reynolds number (Re) was varied between 400 and 50000. The effect of heat transfer (wall cooling or fluid heating) on pressure drop is most significant within the transition region; the recorded pressure drop with heat transfer is much higher than that without heat transfer. The magnitude of this effect depends markedly on the average surface temperature and, to a lesser extent, on the geometric characteristics of the enhanced surfaces. When the pressure drop data are reduced as values of the Fanning friction factor(f), the results are about the same with and without heat transfer for turbulent flow, with moderate differences in the laminar and transition regions.

  6. Heat transfer and pressure drop for air flow through enhanced passages. Final report

    SciTech Connect

    Obot, N.T.; Esen, E.B.

    1992-06-01

    An extensive experimental investigation was carried out to determine the pressure drop and heat transfer characteristics for laminar, transitional and turbulent flow of air through a smooth passage and twenty-three enhanced passages. The internal surfaces of all enhanced passages had spirally shaped geometries; these included fluted, finned/ribbed and indented surfaces. The Reynolds number (Re) was varied between 400 and 50000. The effect of heat transfer (wall cooling or fluid heating) on pressure drop is most significant within the transition region; the recorded pressure drop with heat transfer is much higher than that without heat transfer. The magnitude of this effect depends markedly on the average surface temperature and, to a lesser extent, on the geometric characteristics of the enhanced surfaces. When the pressure drop data are reduced as values of the Fanning friction factor(f), the results are about the same with and without heat transfer for turbulent flow, with moderate differences in the laminar and transition regions.

  7. Blown Away: The Shedding and Oscillation of Sessile Drops by Cross Flowing Air

    NASA Astrophysics Data System (ADS)

    Milne, Andrew James Barnabas

    For drops sessile on a solid surface, cross flowing air can drive drop oscillation or shedding, based on the balance and interaction of aerodynamic drag force (based on drop size/shape and air speed) and adhesion/capillary forces (based on surface tension and drop size/shape). Better understanding of the above has applications to, e.g., fuel cell flooding, airfoil icing, and visibility in rain. To understand the basic physics, experiments studying individual sessile drops in a low speed wind tunnel were performed in this thesis. Analysis of high speed video gave time resolved profiles and airspeed for shedding. Testing 0.5 mul to 100 mul drops of water and hexadecane on poly(methyl methacrylate) PMMA, Teflon, and a superhydrophobic surface (SHS) yielded a master curve describing critical airspeed for shedding for water drops on all surface tested. This curve predicts behavior for new surfaces, and explains experimental results published previously. It also indicates that the higher contact angle leads to easier shedding due to decreased adhesion and increased drag. Developing a novel floating element differential drag sensor gave the first measurements of the microNewton drag force experienced by drops. Forces magnitude is comparable to gravitational shedding from a tilted plate and to simplified models for drop adhesion, with deviations that suggest effects due to the air flow. Fluid properties are seen to have little effect on drag versus airspeed, and decreased adhesion is seen to be more important than increased drag for easing shedding. The relation between drag coefficient and Reynolds number increases slightly with liquid-solid contact angle, and with drop volume. Results suggest that the drop experiences increased drag compared to similarly shaped solid bodies due to drop oscillations aeroelasticly coupling into the otherwise laminar flow. The bulk and surface oscillations of sessile drops in cross flow was also studied, using a full profile analysis

  8. Radioisotope Deposition on Interior Building Surfaces: Air Flow and Surface Roughness Influences

    SciTech Connect

    Leonard, Bobby E

    2005-12-15

    Interior surface deposition effects of vaporized radioactive aerosols are important in understanding their behavior in accident conditions such as the Japanese nuclear laboratory accident in 1999 and the Chernobyl nuclear power plant accident in 1986, where entire communities had to be abandoned because of surface contamination, and the hopefully unlikelihood of a terrorist dirty nuclear bomb attack. Airborne radon progeny offers an opportunity to study radioisotope surface deposition. A significant annual lung cancer rate is also attributed to airborne radon progeny in the interior domestic environment. Surface deposition rates influence the airborne progeny levels. Here, we report extensive {sup 218}Po deposition rates over typical air change rates (ACHs) from 0.02 to 1.0 h{sup -1} for interior furnishings surfaces in a 0.283-m{sup 3} test chamber to supplement earlier reported deposition rates for interior wall, ceiling, and floor surfaces. In analyzing the deposition results from the different materials, it is found that they correlate in terms of roughness with relative static friction and aerodynamic shear stress. Extrapolation to perfectly smooth surfaces provides a good estimate of the Fick's law value. Contrary to prior radon analysis at higher air flow, where the Crump and Seinfeld (CS) turbulent deposition models seemed to fit, at low ACH below 0.5 h{sup -1} the deposition data found excellent agreement with a new Brownian diffusive deposition model for laminar flow. A composite model using the Brownian diffusive laminar flow and the CS turbulent flow models provides an excellent fit to all data. These results provide insight into contamination issues relative to other airborne radioisotopes, with the relative effects being dependent on the airborne contaminant particle sizes and their respective diffusion coefficients as seen in the two deposition models.

  9. Formation of Nano-Bacteria-Like Flow Textures Formed at Oxygen-Rich Air Condition of Shock Wave Reaction

    NASA Astrophysics Data System (ADS)

    Miura, Y.; Tanosaki, T.

    2011-03-01

    Nano-flow textures with irregular shapes are obtained by shock impact on carbon-fibers with oxygen-rich air condition (not at vacuum condition), which are different with nano-bacteria texture of the martian meteorite with regular nano-flow textures.

  10. Computer Programs for Calculating the Isentropic Flow Properties for Mixtures of R-134a and Air

    NASA Technical Reports Server (NTRS)

    Kvaternik, Raymond G.

    2000-01-01

    Three computer programs for calculating the isentropic flow properties of R-134a/air mixtures which were developed in support of the heavy gas conversion of the Langley Transonic Dynamics Tunnel (TDT) from dichlorodifluoromethane (R-12) to 1,1,1,2 tetrafluoroethane (R-134a) are described. The first program calculates the Mach number and the corresponding flow properties when the total temperature, total pressure, static pressure, and mole fraction of R-134a in the mixture are given. The second program calculates tables of isentropic flow properties for a specified set of free-stream Mach numbers given the total pressure, total temperature, and mole fraction of R-134a. Real-gas effects are accounted for in these programs by treating the gases comprising the mixture as both thermally and calorically imperfect. The third program is a specialized version of the first program in which the gases are thermally perfect. It was written to provide a simpler computational alternative to the first program in those cases where real-gas effects are not important. The theory and computational procedures underlying the programs are summarized, the equations used to compute the flow quantities of interest are given, and sample calculated results that encompass the operating conditions of the TDT are shown.

  11. Air-structure coupling features analysis of mining contra-rotating axial flow fan cascade

    NASA Astrophysics Data System (ADS)

    Chen, Q. G.; Sun, W.; Li, F.; Zhang, Y. J.

    2013-12-01

    The interaction between contra-rotating axial flow fan blade and working gas has been studied by means of establishing air-structure coupling control equation and combining Computational Fluid Dynamics (CFD) and Computational solid mechanics (CSM). Based on the single flow channel model, the Finite Volume Method was used to make the field discrete. Additionally, the SIMPLE algorithm, the Standard k-ε model and the Arbitrary Lagrangian-Eulerian dynamic grids technology were utilized to get the airflow motion by solving the discrete governing equations. At the same time, the Finite Element Method was used to make the field discrete to solve dynamic response characteristics of blade. Based on weak coupling method, data exchange from the fluid solver and the solid solver was processed on the coupling interface. Then interpolation was used to obtain the coupling characteristics. The results showed that the blade's maximum amplitude was on the tip of the last-stage blade and aerodynamic force signal could reflect the blade working conditions to some extent. By analyzing the flow regime in contra-rotating axial flow fan, it could be found that the vortex core region was mainly in the blade surface, the hub and the blade clearance. In those regions, the turbulence intensity was very high. The last-stage blade's operating life is shorter than that of the pre-stage blade due to the fatigue fracture occurs much more easily on the last-stage blade which bears more stress.

  12. An experimental investigation on the effects of surface gravity waves on the water evaporation rate in different air flow regimes

    NASA Astrophysics Data System (ADS)

    Jodat, Amin; Moghiman, Mohammad; Shirkhani, Golshad

    2013-12-01

    Estimating rate of evaporation from undisturbed water surfaces to moving and quiet air has been the topic a vast number of research activities. The obvious presence of various shapes of gravity waves on the water body surfaces was the motivation of this experimental investigation. In this investigation experimental measurements have been done to quantify evaporation rate from wavy water surfaces in free, mixed and forced convection regimes. The effects of a wide range of surface gravity waves from low steepness, round shaped crest with slow celerity, to steep and very slight spilling crest waves, on the water evaporation rate have been investigated. A wide range of was achieved by applying different air flow velocities on a large heated wave flume equipped with a wind tunnel. Results reveal that wave motion on the water surface increase the rate of evaporation for all air flow regimes. For free convection, due to the effect of wave motion for pumping rotational airflows at the wave troughs and the dominant effect of natural convection for the air flow advection, the maximum evaporation increment percentage from wavy water surface is about 70 %. For mixed and forced convection, water evaporation rate increment is more sensitive to the air flow velocity for the appearance of very slight spilling on the steep wave crests and the leeward air flow structures.

  13. Semi-empirical analysis of liquid fuel distribution downstream of a plain orifice injector under cross-stream air flow

    NASA Astrophysics Data System (ADS)

    Chin, J. S.; Jiang, H. K.; Cao, M. H.

    1981-07-01

    A simple, flat-fan spray model is proposed, which can with two empirical parameters predict both the value and the position of liquid fuel distribution curve maximums downstream of a plain orifice injector under high-velocity cross flow. It was found that the model is useful in the preliminary design of the fan air flow portion of a turbofan afterburner, due to its ability to predict the influence on liquid fuel distribution of (1) such flow parameters as air velocity and viscosity, pressure and temperature; (2) injector parameters such as diameter and injection velocity; and (3) liquid properties including viscosity, density, and surface tension.

  14. Exploratory investigation of the use of area suction to eliminate air-flow separation in diffusers having large expansion angles

    NASA Technical Reports Server (NTRS)

    Holzhauser, Curt A; Hall, Leo P

    1956-01-01

    Tests were made at a mean inlet Mach number of 0.2 with area suction applied to conical diffusers with expansion angles of 30 degrees and 50 degrees and exit to inlet area ratios of 2. Air-flow separation was eliminated with suction mass flows of 3 and 4 percent of the inlet mass flows for the 30 degrees and 50 degrees diffusers, respectively.

  15. Performance evaluation on an air-cooled heat exchanger for alumina nanofluid under laminar flow

    PubMed Central

    2011-01-01

    This study analyzes the characteristics of alumina (Al2O3)/water nanofluid to determine the feasibility of its application in an air-cooled heat exchanger for heat dissipation for PEMFC or electronic chip cooling. The experimental sample was Al2O3/water nanofluid produced by the direct synthesis method at three different concentrations (0.5, 1.0, and 1.5 wt.%). The experiments in this study measured the thermal conductivity and viscosity of nanofluid with weight fractions and sample temperatures (20-60°C), and then used the nanofluid in an actual air-cooled heat exchanger to assess its heat exchange capacity and pressure drop under laminar flow. Experimental results show that the nanofluid has a higher heat exchange capacity than water, and a higher concentration of nanoparticles provides an even better ratio of the heat exchange. The maximum enhanced ratio of heat exchange and pressure drop for all the experimental parameters in this study was about 39% and 5.6%, respectively. In addition to nanoparticle concentration, the temperature and mass flow rates of the working fluid can affect the enhanced ratio of heat exchange and pressure drop of nanofluid. The cross-section aspect ratio of tube in the heat exchanger is another important factor to be taken into consideration. PMID:21827644

  16. Performance evaluation on an air-cooled heat exchanger for alumina nanofluid under laminar flow.

    PubMed

    Teng, Tun-Ping; Hung, Yi-Hsuan; Teng, Tun-Chien; Chen, Jyun-Hong

    2011-01-01

    This study analyzes the characteristics of alumina (Al2O3)/water nanofluid to determine the feasibility of its application in an air-cooled heat exchanger for heat dissipation for PEMFC or electronic chip cooling. The experimental sample was Al2O3/water nanofluid produced by the direct synthesis method at three different concentrations (0.5, 1.0, and 1.5 wt.%). The experiments in this study measured the thermal conductivity and viscosity of nanofluid with weight fractions and sample temperatures (20-60°C), and then used the nanofluid in an actual air-cooled heat exchanger to assess its heat exchange capacity and pressure drop under laminar flow. Experimental results show that the nanofluid has a higher heat exchange capacity than water, and a higher concentration of nanoparticles provides an even better ratio of the heat exchange. The maximum enhanced ratio of heat exchange and pressure drop for all the experimental parameters in this study was about 39% and 5.6%, respectively. In addition to nanoparticle concentration, the temperature and mass flow rates of the working fluid can affect the enhanced ratio of heat exchange and pressure drop of nanofluid. The cross-section aspect ratio of tube in the heat exchanger is another important factor to be taken into consideration. PMID:21827644

  17. Direct numerical simulation of a turbulent stably stratified air flow above a wavy water surface

    NASA Astrophysics Data System (ADS)

    Druzhinin, O. A.; Troitskaya, Yu. I.; Zilitinkevich, S. S.

    2016-01-01

    The influence of the roughness of the underlaying water surface on turbulence is studied in a stably stratified boundary layer (SSBL). Direct numerical simulation (DNS) is conducted at various Reynolds (Re) and Richardson (Ri) numbers and the wave steepness ka. It is shown that, at constant Re, the stationary turbulent regime is set in at Ri below the threshold value Ri c depending on Re. At Ri > Ri c , in the absence of turbulent fluctuations near the wave water surface, three-dimensional quasiperiodical structures are identified and their threshold of origin depends on the steepness of the surface wave on the water surface. This regime is called a wave pumping regime. The formation of three-dimensional structures is explained by the development of parametric instability of the disturbances induced by the surface water in the air flow. The DNS results are quite consistent with prediction of the theoretical model of the SSBL flow, in which solutions for the disturbances of the fields of velocity and temperature in the wave pumping regime are found to be a solution of a two-dimensional linearized system with the heterogeneous boundary condition, which is caused by the presence of the surface wave. In addition to the turbulent fluctuations, the three-dimensional structures in the wave pumping regime provide for the transfer of impulse and heat, i.e., the increase in the roughness of the water-air boundary caused by the presence of waves intensifies the exchange in the SSBL.

  18. Time-dependent response of a charcoal bed to radon and water vapor in flowing air

    SciTech Connect

    Henkel, J.A.; Fentiman, A.W.; Blue, T.E.

    1995-12-31

    Extremely high airborne concentrations of radon gas may be encountered during the remediation of uranium mill tailings storage facilities. Radon is also a constituent of the off-gas of mill-tailing vitrification. An effective way to remove radon from either gas is to pass the gas through a packed bed containing activated charcoal. Measurements of radon concentrations in the environment using charcoal canisters were first described by George. Canisters similar to those used by George in his first experiments have become the U.S. Environmental Protection Agency`s (EPA`s) standard for measuring environmental radon and were described in the EPA protocol for environmental radon measurement. The dynamic behavior of EPA charcoal canisters has been previously described with a mathematical model for the kinetics of radon gas adsorption in air in the presence of water vapor. This model for charcoal canisters has been extended to large charcoal beds with flowing air containing radon and water vapor. The mathematical model for large charcoal beds can be used to evaluate proposed bed designs or to model existing beds. Parameters that affect the radon distribution within a charcoal bed that can be studied using the mathematical model include carrier gas relative humidity and flow velocity, and input radon concentration. In addition, the relative performances of several different charcoals can be studied, provided sufficient information about their adsorption, desorption, and diffusion constants is known.

  19. Development of an Analytical Method for Predicting Flow in a Supersonic Air Ejector

    NASA Astrophysics Data System (ADS)

    Kracik, Jan; Dvorak, Vaclav

    2016-03-01

    The article deals with development of an analytical method for predicting flow in an ejector with twelve supersonic nozzles, which are located at the periphery of the mixing chamber of the ejector. Supersonic primary air stream makes the investigation more complex. The secondary air (atmospheric) is sucked in direction of the ejector axis. The shape of the mixing chamber is convergent - divergent and a throat is formed behind the primary nozzles. Each of the primary nozzles can be treated independently so there can be various number of nozzles under operation in the ejector. According to previous investigations, constant pressure mixing is assumed to occur inside a part of the mixing chamber. The method under investigation is considered for isentropic flow in the first approximation and after that the stagnation pressure corrections at the inlets are considered. Furthermore, the decrease in stagnation pressure in the mixing chamber is considered to take losses in the mixing chamber and diffuser into account. The numerical data of the stagnation pressure has been obtained from Ansys Fluent software. In addition, a comparison with previous experimental results is introduced.

  20. Numerical simulations and experimental comparisons for high-speed nonequilibrium air flows

    NASA Astrophysics Data System (ADS)

    Men'shov, Igor S.; Nakamura, Yoshiaki

    2000-11-01

    A computational fluid dynamics (CFD) technique is employed to study hypersonic high-enthalpy air flows around blunt bodies with the purpose of predicting convective heat transfer on the body surface for a range of flow velocities relevant to suborbital flight of re-entry vehicles such as the Space Shuttle Orbiter (USA), and the Buran (Russia). The method uses Park's two-temperature model for the description of thermochemical nonequilibrium processes in high-temperature air and solves the full Navier-Stokes equations for a model of multicomponent reacting gas mixture in the finite volume formulation. The calculations performed in this research are intended to simulate some experiments carried out in the high-energy shock tunnels of the DLR, Germany, and the CALSPAN, USA, where the heat flux distribution over a model surface was measured at several freestream conditions related to the range of velocities mentioned above. The main emphasis is on comparing numerical and experimental results in order to verify adequacy of the heat flux data predicted by the CFD technique for suborbital flight speeds of re-entry vehicles.

  1. Air-Flow Navigated Crystal Growth for TIPS Pentacene-Based Organic Thin-Film Transistors

    SciTech Connect

    He, Zhengran; Chen, Jihua; Sun, Zhenzhong; Szulczewski, Greg; Li, Dawen

    2012-01-01

    6,13-bis(triisopropylsilylethynyl)pentacene (TIPS pentacene) is a promising active channel material of organic thin-film transistors (OTFTs) due to its solubility, stability, and high mobility. However, the growth of TIPS pentacene crystals is intrinsically anisotropic and thus leads to significant variation in the performance of OTFTs. In this paper, air flow is utilized to effectively reduce the TIPS pentacene crystal anisotropy and enhance performance consistency in OTFTs, and the resulted films are examined with optical microscopy, grazing-incidence X-ray diffraction, and thin-film transistor measurements. Under air-flow navigation (AFN), TIPS pentacene drop-cast from toluene solution has been observed to form thin films with improved crystal orientation and increased areal coverage on substrates, which subsequently lead to a four-fold increase of average hole mobility and one order of magnitude enhancement in performance consistency defined by the ratio of average mobility to the standard deviation of the field-effect mobilities.

  2. Mitigating the Impacts of Uncontrolled Air Flow on Indoor Environmental Quality and Energy Demand in Non-Residential Buildings

    SciTech Connect

    Hugh I. Henderson; Jensen Zhang; James B. Cummings; Terry Brennan

    2006-07-31

    This multi-faceted study evaluated several aspects of uncontrolled air flows in commercial buildings in both Northern and Southern climates. Field data were collected from 25 small commercial buildings in New York State to understand baseline conditions for Northern buildings. Laboratory wall assembly testing was completed at Syracuse University to understand the impact of typical air leakage pathways on heat and moisture transport within wall assemblies for both Northern and Southern building applications. The experimental data from the laboratory tests were used to verify detailed heat and moisture (HAM) simulation models that could be used to evaluate a wider array of building applications and situations. Whole building testing at FSEC's Building Science Laboratory (BSL) systematically evaluated the energy and IAQ impacts of duct leakage with various attic and ceiling configurations. This systematic test carefully controlled all aspects of building performance to quantify the impact of duct leakage and unbalanced flow. The newest features of the EnergyPlus building simulation tool were used to model the combined impacts of duct leakage, ceiling leakage, unbalanced flows, and air conditioner performance. The experimental data provided the basis to validate the simulation model so it could be used to study the impact of duct leakage over a wide range of climates and applications. The overall objective of this project was to transfer work and knowledge that has been done on uncontrolled air flow in non-residential buildings in Florida to a national basis. This objective was implemented by means of four tasks: (1) Field testing and monitoring of uncontrolled air flow in a sample of New York buildings; (2) Detailed wall assembly laboratory measurements and modeling; (3) Whole building experiments and simulation of uncontrolled air flows; and (4) Develop and implement training on uncontrolled air flows for Practitioners in New York State.

  3. Daily air pollution effects on children's respiratory symptoms and peak expiratory flow

    SciTech Connect

    Vedal, S.; Schenker, M.B.; Munoz, A.; Samet, J.M.; Batterman, S.; Speizer, F.E.

    1987-06-01

    To identify acute respiratory health effects associated with air pollution due to coal combustion, a subgroup of elementary school-aged children was selected from a large cross-sectional study and followed daily for eight months. Children were selected to obtain three equal-sized groups: one without respiratory symptoms, one with symptoms of persistent wheeze, and one with cough or phlegm production but without persistent wheeze. Parents completed a daily diary of symptoms from which illness constellations of upper respiratory illness (URI) and lower respiratory illness (LRI) and the symptom of wheeze were derived. Peak expiratory flow rate (PEFR) was measured daily for nine consecutive weeks during the eight-month study period. Maximum hourly concentrations of sulfur dioxide, nitrogen dioxide, ozone, and coefficient of haze for each 24-hour period, as well as minimum hourly temperature, were correlated with daily URI, LRI, wheeze, and PEFR using multiple regression models adjusting for illness occurrence or level of PEFR on the immediately preceding day. Respiratory illness on the preceding day was the most important predictor of current illness. A drop in temperature was associated with increased URI and LRI but not with increased wheeze or with a decrease in level of PEFR. No air pollutant was strongly associated with respiratory illness or with level of PEFR, either in the group of children as a whole, or in either of the symptomatic subgroups; the pollutant concentrations observed, however, were uniformly lower than current ambient air quality standards.

  4. The Role of Design-of-Experiments in Managing Flow in Compact Air Vehicle Inlets

    NASA Technical Reports Server (NTRS)

    Anderson, Bernhard H.; Miller, Daniel N.; Gridley, Marvin C.; Agrell, Johan

    2003-01-01

    It is the purpose of this study to demonstrate the viability and economy of Design-of-Experiments methodologies to arrive at microscale secondary flow control array designs that maintain optimal inlet performance over a wide range of the mission variables and to explore how these statistical methods provide a better understanding of the management of flow in compact air vehicle inlets. These statistical design concepts were used to investigate the robustness properties of low unit strength micro-effector arrays. Low unit strength micro-effectors are micro-vanes set at very low angles-of-incidence with very long chord lengths. They were designed to influence the near wall inlet flow over an extended streamwise distance, and their advantage lies in low total pressure loss and high effectiveness in managing engine face distortion. The term robustness is used in this paper in the same sense as it is used in the industrial problem solving community. It refers to minimizing the effects of the hard-to-control factors that influence the development of a product or process. In Robustness Engineering, the effects of the hard-to-control factors are often called noise , and the hard-to-control factors themselves are referred to as the environmental variables or sometimes as the Taguchi noise variables. Hence Robust Optimization refers to minimizing the effects of the environmental or noise variables on the development (design) of a product or process. In the management of flow in compact inlets, the environmental or noise variables can be identified with the mission variables. Therefore this paper formulates a statistical design methodology that minimizes the impact of variations in the mission variables on inlet performance and demonstrates that these statistical design concepts can lead to simpler inlet flow management systems.

  5. Temperature, humidity and air flow in the emplacement drifts using convection and dispersion transport models

    SciTech Connect

    Danko, G.; Birkholzer, J.T.; Bahrami, D.; Halecky, N.

    2009-10-01

    A coupled thermal-hydrologic-airflow model is developed, solving for the transport processes within a waste emplacement drift and the surrounding rockmass together at the proposed nuclear waste repository at Yucca Mountain. Natural, convective air flow as well as heat and mass transport in a representative emplacement drift during post-closure are explicitly simulated, using the MULTIFLUX model. The conjugate, thermal-hydrologic transport processes in the rockmass are solved with the TOUGH2 porous-media simulator in a coupled way to the in-drift processes. The new simulation results show that large-eddy turbulent flow, as opposed to small-eddy flow, dominate the drift air space for at least 5000 years following waste emplacement. The size of the largest, longitudinal eddy is equal to half of the drift length, providing a strong axial heat and moisture transport mechanism from the hot to the cold drift sections. The in-drift results are compared to those from simplified models using a surrogate, dispersive model with an equivalent dispersion coefficient for heat and moisture transport. Results from the explicit, convective velocity simulation model provide higher axial heat and moisture fluxes than those estimated from the previously published, simpler, equivalent-dispersion models, in addition to showing differences in temperature, humidity and condensation rate distributions along the drift length. A new dispersive model is also formulated, giving a time- and location-variable function that runs generally about ten times higher in value than the highest dispersion coefficient currently used in the Yucca Mountain Project as an estimate for the equivalent dispersion coefficient in the emplacement drift. The new dispersion coefficient variation, back-calculated from the convective model, can adequately describe the heat and mass transport processes in the emplacement drift example.

  6. Effect of particle size, air flow and inhaler device on the aerosolisation of disodium cromoglycate powders.

    PubMed

    Chew, N Y; Bagster, D F; Chan, H K

    2000-09-25

    Recently, the dispersion of mannitol powders has demonstrated the importance of particle size, air flow and inhaler device (Chew and Chan, 1999). The aim of the present study is to extend our investigation to a different compound, disodium cromoglycate (DSCG) powders. Solid state characteristics of the powders were assessed by particle sizing, scanning electron microscopy, X-ray powder diffraction, moisture content, particle density determination and freeze fracture. The aerosol behaviour of the powders was studied by dispersion using Rotahaler(R) and Dinkihaler(R), connected to a four-stage liquid impinger operating at 30-120 l/min. Three amorphous powders with a mass median diameter (MMD) of 2.3, 3.7, 5.2 microm and a similar polydispersity were prepared. The particles were nearly spherical with a particle density of 1.6 g/cm(3) and moisture content of 6.6 wt.%. Using Rotahaler(R), the maximum fine particle fraction (FPF(max)) for all three powders was only 15 wt.%, attained at the highest flow of 120 l/min. Using Dinkihaler(R), the FPF(max) was two to four times higher, being 36 and 29 wt.% for the 2.3 and 3.7 microm powder, respectively, at 60 l/min; and 18 wt.% for the 5.2 microm powder at 120 l/min. Hence, the study shows that the FPF in the DSCG powder aerosols was determined by the interaction of the particle size, air flow and inhaler design. The attribution of the amorphous nature and the different physico-chemical properties of the powder may explain the incomplete and low dispersibility of DSCG. PMID:11058812

  7. Turbulent flow field and air entrainment in laboratory plunging breaking waves

    NASA Astrophysics Data System (ADS)

    Na, Byoungjoon; Chang, Kuang-An; Huang, Zhi-Cheng; Lim, Ho-Joon

    2016-05-01

    This paper presents laboratory measurements of turbulent flow fields and void fraction in deep-water plunging breaking waves using imaging and optical fiber techniques. Bubble-size distributions are also determined based on combined measurements of velocity and bubble residence time. The most excited mode of the local intermittency measure of the turbulent flow and its corresponding length scale are obtained using a wavelet-based method and found to correlate with the swirling strength and vorticity. Concentrated vortical structures with high intermittency are observed near the lower boundaries of the aerated rollers where the velocity shear is high; the length scale of the deduced eddies ranges from 0.05 to 0.15 times the wave height. The number of bubbles with a chord length less than 2 mm demonstrates good correlation with the swirling strength. The power-law scaling and the Hinze scale of the bubbles determined from the bubble chord length distribution compare favorably with existing measurements. The turbulent dissipation rate, accounting for void fraction, is estimated using mixture theory. When void fraction is not considered, the turbulent dissipation rate is underestimated by more than 70% in the initial impinging and the first splash-up roller. A significant discrepancy of approximately 67% between the total energy dissipation rate and the turbulence dissipation rate is found. Of this uncounted dissipation, 23% is caused by bubble-induced dissipation.

  8. Excitation of N2(C3 Πu,v) and N2 +(B2 Σu +,v) vibronic levels by streamer discharge in atmospheric pressure air

    NASA Astrophysics Data System (ADS)

    Hoder, Tomas; Simek, Milan; Bonaventura, Zdenek

    2015-09-01

    Ionizing waves in air often take the form of thin filaments called streamers. Propagating streamer head is a place where the major part of reactive species is produced and that is of considerable interest for various applications, such as pollution control, ozone formation, etc. Knowledge of vibrational distributions of N2(C3 Πu,v) and N2 +(B2 Σu +,v) electronic states induced by the streamer head electrons is of particular interest, namely for determination of the self-enhanced electric field in the nitrogen/air streamer discharge. Indeed, vibrational distributions of N2(C3 Πu,v) and N2 +(B2 Σu +,v) states are very sensitive to the electric field variations occurring due to the streamer head action and might be used as a complementary spectrometric tool for monitoring streamer head parameters. In this work, a numerical study on streamer induced excitation of N2(C3 Πu,v =0-4) and N2 +(B2 Σu +,v =0-4) vibronic levels in air is presented and discussed from the point of view of improved determination of the streamer head parameters. This research has been supported by the Czech Science Foundation research project 15-04023S.

  9. Conservation equations and physical models for hypersonic air flows over the aeroassist flight experiment vehicle

    NASA Technical Reports Server (NTRS)

    Gnoffo, Peter A.

    1989-01-01

    The code development and application program for the Langley Aerothermodynamic Upwind Relaxation Algorithm (LAURA), with emphasis directed toward support of the Aeroassist Flight Experiment (AFE) in the near term and Aeroassisted Space Transfer Vehicle (ASTV) design in the long term is reviewed. LAURA is an upwind-biased, point-implicit relaxation algorithm for obtaining the numerical solution to the governing equations for 3-D, viscous, hypersonic flows in chemical and thermal nonequilibrium. The algorithm is derived using a finite volume formulation in which the inviscid components of flux across cell walls are described with Roe's averaging and Harten's entropy fix with second-order corrections based on Yee's Symmetric Total Variation Diminishing scheme. Because of the point-implicit relaxation strategy, the algorithm remains stable at large Courant numbers without the necessity of solving large, block tri-diagonal systems. A single relaxation step depends only on information from nearest neighbors. Predictions for pressure distributions, surface heating, and aerodynamic coefficients compare well with experimental data for Mach 10 flow over an AFE wind tunnel model. Predictions for the hypersonic flow of air in chemical and thermal nonequilibrium over the full scale AFE configuration obtained on a multi-domain grid are discussed.

  10. Evaluation of ground-water flow by particle tracking, Wright-Patterson Air Force Base, Ohio

    USGS Publications Warehouse

    Cunningham, W.L.; Sheets, R.A.; Schalk, C.W.

    1994-01-01

    The U.S. Geological Survey (USGS) and Wright-Patterson Air Force Base (WPAFB) began a Basewide Monitoring Program (BMP) in 1992. The purpose of the BMP was to establish a long-term ground-water and surface- water sampling network in order to (1) characterize current ground-water and surface-water quality; (2) describe water-quality changes as water enters, flows across, and exits Base boundaries; (3) conduct statistical analyses of water quality; and (4) estimate the effect of WPAFB on regional water quality. As part of the BMP, the USGS conducted ground-water particle-tracking analyses based on a ground-water-flow model produced during a previous USGS study. This report briefly describes the previous USGS study, the inherent assumptions of particle-tracking analyses, and information on the regional ground-water-flow field as inferred from particle pathlines. Pathlines for particles placed at the Base boundary and particles placed within identified Installation Restoration Program sites are described.

  11. Application of an adsorptive-thermocatalytic process for BTX removal from polluted air flow

    PubMed Central

    2014-01-01

    Background Zero valent iron and copper oxide nanoparticles (30-60 nm) were coated on a bed of natural zeolite (Clinoptilolite) with 1-2 mm grains and arranged as a dual filter in a stainless steel cylindrical reactor (I.D 4.5 cm and L = 30 cm) to investigating the coated bed removal efficiency for BTX. The experiments were conducted in three steps. First, with an air flow of 1.5 L/min and temperature range of 38 (ambient temperature) to 600°C the BTX removal and mineralization was surveyed. Then, in an optimized temperature the effect of flow rate and pollution loading rate were surveyed on BTX removal. Results The BTX removal at 300 and 400°C were respectively up to 87.47% and 94.03%. Also in these temperatures respectively 37.21% and 90.42% of BTX mineralization were achieved. In the retention times of 14.1 s and 7.05 s, respectively 96.18% and 78.42% of BTX was removed. Conclusions According to the results, this adsorptive-thermocatalytic process with using Clinoptilolite as an adsorbent bed and combined Fe0 and Cu2O nanoparticles as catalysts can be an efficient and competitive process in the condition of high flow rate and high pollution loading rate with an adequate process temperature of 350°C. PMID:24955244

  12. Effect of attack and cone angels on air flow characteristics for staggered wing shaped tubes bundle

    NASA Astrophysics Data System (ADS)

    Sayed Ahmed, Sayed E.; Ibrahiem, Emad Z.; Mesalhy, Osama M.; Abdelatief, Mohamed A.

    2014-12-01

    An experimental and numerical study has been conducted to clarify fluid flow characteristics and pressure drop distributions of a cross-flow heat exchanger employing staggered wing-shaped tubes at different angels of attack. The water-side Rew and the air-side Rea were at 5 × 102 and at from 1.8 × 103 to 9.7 × 103, respectively. Three cases of the tubes arrangements with various angles of attack, row angles of attack and 90° cone angles were employed at the considered Rea range. Correlation of pressure drop coefficient Pdc in terms of Rea, design parameters for the studied cases were presented. The flow pattern around the staggered wing-shaped tubes bundle were predicted using the commercial CFD FLUENT 6.3.26 software package. Results indicated that the values of Pdc increased with the angle of attack from 0° to 45°, while the opposite was true for angles of attack from 135° to 180°. The values of Pdc for the arrangements of (θ1,2,3 = 45°), (θ1 = 45°, θ2 = 0°, θ3 = 45°), and (θ1,2,3 = 0°) were lower than those for the arrangement of (ϕ1 = ϕ2 = ϕ3 = 90°) by about 33, 53, and 91 %, respectively. Comparisons between the experimental and numerical results of the present study and those obtained by similar previous studies showed good agreements.

  13. An air flow sensor for neonatal mechanical ventilation applications based on a novel fiber-optic sensing technique

    NASA Astrophysics Data System (ADS)

    Battista, L.; Sciuto, S. A.; Scorza, A.

    2013-03-01

    In this work, a simple and low-cost air flow sensor, based on a novel fiber-optic sensing technique has been developed for monitoring air flows rates supplied by a neonatal ventilator to support infants in intensive care units. The device is based on a fiber optic sensing technique allowing (a) the immunity to light intensity variations independent by measurand and (b) the reduction of typical shortcomings affecting all biomedical fields (electromagnetic interference and patient electrical safety). The sensing principle is based on the measurement of transversal displacement of an emitting fiber-optic cantilever due to action of air flow acting on it; the fiber tip displacement is measured by means of a photodiode linear array, placed in front of the entrance face of the emitting optical fiber in order to detect its light intensity profile. As the measurement system is based on a detection of the illumination pattern, and not on an intensity modulation technique, it results less sensitive to light intensity fluctuation independent by measurand than intensity-based sensors. The considered technique is here adopted in order to develop two different configurations for an air flow sensor suitable for the measurement of air flow rates typically occurring during mechanical ventilation of newborns: a mono-directional and a bi-directional transducer have been proposed. A mathematical model for the air flow sensor is here proposed and a static calibration of two different arrangements has been performed: a measurement range up to 3.00 × 10-4 m3/s (18.0 l/min) for the mono-directional sensor and a measurement range of ±3.00 × 10-4 m3/s (±18.0 l/min) for the bi-directional sensor are experimentally evaluated, according to the air flow rates normally encountered during tidal breathing of infants with a mass lower than 10 kg. Experimental data of static calibration result in accordance with the proposed theoretical model: for the mono-directional configuration, the

  14. An air flow sensor for neonatal mechanical ventilation applications based on a novel fiber-optic sensing technique.

    PubMed

    Battista, L; Sciuto, S A; Scorza, A

    2013-03-01

    In this work, a simple and low-cost air flow sensor, based on a novel fiber-optic sensing technique has been developed for monitoring air flows rates supplied by a neonatal ventilator to support infants in intensive care units. The device is based on a fiber optic sensing technique allowing (a) the immunity to light intensity variations independent by measurand and (b) the reduction of typical shortcomings affecting all biomedical fields (electromagnetic interference and patient electrical safety). The sensing principle is based on the measurement of transversal displacement of an emitting fiber-optic cantilever due to action of air flow acting on it; the fiber tip displacement is measured by means of a photodiode linear array, placed in front of the entrance face of the emitting optical fiber in order to detect its light intensity profile. As the measurement system is based on a detection of the illumination pattern, and not on an intensity modulation technique, it results less sensitive to light intensity fluctuation independent by measurand than intensity-based sensors. The considered technique is here adopted in order to develop two different configurations for an air flow sensor suitable for the measurement of air flow rates typically occurring during mechanical ventilation of newborns: a mono-directional and a bi-directional transducer have been proposed. A mathematical model for the air flow sensor is here proposed and a static calibration of two different arrangements has been performed: a measurement range up to 3.00 × 10(-4) m(3)∕s (18.0 l∕min) for the mono-directional sensor and a measurement range of ±3.00 × 10(-4) m(3)∕s (±18.0 l∕min) for the bi-directional sensor are experimentally evaluated, according to the air flow rates normally encountered during tidal breathing of infants with a mass lower than 10 kg. Experimental data of static calibration result in accordance with the proposed theoretical model: for the mono

  15. Novel Air Flow Meter for an Automobile Engine Using a Si Sensor with Porous Si Thermal Isolation

    PubMed Central

    Hourdakis, Emmanouel; Sarafis, Panagiotis; Nassiopoulou, Androula G.

    2012-01-01

    An air flow meter for measuring the intake air of an automobile engine is presented. It is based on a miniaturized silicon thermal mass flow sensor using a thick porous Si (Po-Si) layer for local thermal isolation from the Si substrate, on which the sensor active elements are integrated. The sensor is mounted on one side of a printed circuit board (PCB), on the other side of which the readout and control electronics of the meter are mounted. The PCB is fixed on a housing containing a semi-cylindrical flow tube, in the middle of which the sensor is situated. An important advantage of the present air flow meter is that it detects with equal sensitivity both forward and reverse flows. Two prototypes were fabricated, a laboratory prototype for flow calibration using mass flow controllers and a final demonstrator with the housing mounted in an automobile engine inlet tube. The final demonstrator was tested in real life conditions in the engine inlet tube of a truck. It shows an almost linear response in a large flow range between –6,500 kg/h and +6,500 kg/h, which is an order of magnitude larger than the ones usually encountered in an automobile engine. PMID:23202189

  16. Experimental study on the flow regimes and pressure gradients of air-oil-water three-phase flow in horizontal pipes.

    PubMed

    Al-Hadhrami, Luai M; Shaahid, S M; Tunde, Lukman O; Al-Sarkhi, A

    2014-01-01

    An experimental investigation has been carried out to study the flow regimes and pressure gradients of air-oil-water three-phase flows in 2.25 ID horizontal pipe at different flow conditions. The effects of water cuts, liquid and gas velocities on flow patterns and pressure gradients have been studied. The experiments have been conducted at 20 °C using low viscosity Safrasol D80 oil, tap water and air. Superficial water and oil velocities were varied from 0.3 m/s to 3 m/s and air velocity varied from 0.29 m/s to 52.5 m/s to cover wide range of flow patterns. The experiments were performed for 10% to 90% water cuts. The flow patterns were observed and recorded using high speed video camera while the pressure drops were measured using pressure transducers and U-tube manometers. The flow patterns show strong dependence on water fraction, gas velocities, and liquid velocities. The observed flow patterns are stratified (smooth and wavy), elongated bubble, slug, dispersed bubble, and annular flow patterns. The pressure gradients have been found to increase with the increase in gas flow rates. Also, for a given superficial gas velocity, the pressure gradients increased with the increase in the superficial liquid velocity. The pressure gradient first increases and then decreases with increasing water cut. In general, phase inversion was observed with increase in the water cut. The experimental results have been compared with the existing unified Model and a good agreement has been noticed. PMID:24523645

  17. Experimental Study on the Flow Regimes and Pressure Gradients of Air-Oil-Water Three-Phase Flow in Horizontal Pipes

    PubMed Central

    Al-Hadhrami, Luai M.; Shaahid, S. M.; Tunde, Lukman O.; Al-Sarkhi, A.

    2014-01-01

    An experimental investigation has been carried out to study the flow regimes and pressure gradients of air-oil-water three-phase flows in 2.25 ID horizontal pipe at different flow conditions. The effects of water cuts, liquid and gas velocities on flow patterns and pressure gradients have been studied. The experiments have been conducted at 20°C using low viscosity Safrasol D80 oil, tap water and air. Superficial water and oil velocities were varied from 0.3 m/s to 3 m/s and air velocity varied from 0.29 m/s to 52.5 m/s to cover wide range of flow patterns. The experiments were performed for 10% to 90% water cuts. The flow patterns were observed and recorded using high speed video camera while the pressure drops were measured using pressure transducers and U-tube manometers. The flow patterns show strong dependence on water fraction, gas velocities, and liquid velocities. The observed flow patterns are stratified (smooth and wavy), elongated bubble, slug, dispersed bubble, and annular flow patterns. The pressure gradients have been found to increase with the increase in gas flow rates. Also, for a given superficial gas velocity, the pressure gradients increased with the increase in the superficial liquid velocity. The pressure gradient first increases and then decreases with increasing water cut. In general, phase inversion was observed with increase in the water cut. The experimental results have been compared with the existing unified Model and a good agreement has been noticed. PMID:24523645

  18. Installation of a flow control device in an inclined air-curtain fume hood to control wake-induced exposure.

    PubMed

    Chen, Jia-Kun

    2016-08-01

    An inclined plate for flow control was installed at the lower edge of the sash of an inclined air-curtain fume hood to reduce the effects of the wake around a worker standing in front of the fume hood. Flow inside the fume hood is controlled by the inclined air-curtain and deflection plates, thereby forming a quad-vortex flow structure. Controlling the face velocity of the fume hood resulted in convex, straight, concave, and attachment flow profiles in the inclined air-curtain. We used the flow visualization and conducted a tracer gas test with a mannequin to determine the performance of two sash geometries, namely, the half-cylinder and inclined plate designs. When the half-cylinder design was used, the tracer gas test registered a high leakage concentration at Vf ≦ 57.1 fpm or less. This concentration occurred at the top of the sash opening, which was close to the breathing zone of the mannequin placed in front of the fume hood. When the inclined plate design was used, the containment was good, with concentrations of 0.002-0.004 ppm, at Vf ≦ 63.0 fpm. Results indicate that an inclined plate effectively reduces the leakage concentration induced by recirculation flow structures that form in the wake of a worker standing in front of an inclined air-curtain fume hood. PMID:26950527

  19. A simple analytical method to estimate all exit parameters of a cross-flow air dehumidifier using liquid desiccant.

    PubMed

    Bassuoni, M M

    2014-03-01

    The dehumidifier is a key component in liquid desiccant air-conditioning systems. Analytical solutions have more advantages than numerical solutions in studying the dehumidifier performance parameters. This paper presents the performance results of exit parameters from an analytical model of an adiabatic cross-flow liquid desiccant air dehumidifier. Calcium chloride is used as desiccant material in this investigation. A program performing the analytical solution is developed using the engineering equation solver software. Good accuracy has been found between analytical solution and reliable experimental results with a maximum deviation of +6.63% and -5.65% in the moisture removal rate. The method developed here can be used in the quick prediction of the dehumidifier performance. The exit parameters from the dehumidifier are evaluated under the effects of variables such as air temperature and humidity, desiccant temperature and concentration, and air to desiccant flow rates. The results show that hot humid air and desiccant concentration have the greatest impact on the performance of the dehumidifier. The moisture removal rate is decreased with increasing both air inlet temperature and desiccant temperature while increases with increasing air to solution mass ratio, inlet desiccant concentration, and inlet air humidity ratio. PMID:25685485

  20. A simple analytical method to estimate all exit parameters of a cross-flow air dehumidifier using liquid desiccant

    PubMed Central

    Bassuoni, M.M.

    2013-01-01

    The dehumidifier is a key component in liquid desiccant air-conditioning systems. Analytical solutions have more advantages than numerical solutions in studying the dehumidifier performance parameters. This paper presents the performance results of exit parameters from an analytical model of an adiabatic cross-flow liquid desiccant air dehumidifier. Calcium chloride is used as desiccant material in this investigation. A program performing the analytical solution is developed using the engineering equation solver software. Good accuracy has been found between analytical solution and reliable experimental results with a maximum deviation of +6.63% and −5.65% in the moisture removal rate. The method developed here can be used in the quick prediction of the dehumidifier performance. The exit parameters from the dehumidifier are evaluated under the effects of variables such as air temperature and humidity, desiccant temperature and concentration, and air to desiccant flow rates. The results show that hot humid air and desiccant concentration have the greatest impact on the performance of the dehumidifier. The moisture removal rate is decreased with increasing both air inlet temperature and desiccant temperature while increases with increasing air to solution mass ratio, inlet desiccant concentration, and inlet air humidity ratio. PMID:25685485

  1. High temperature air-blown woody biomass gasification model for the estimation of an entrained down-flow gasifier.

    PubMed

    Kobayashi, Nobusuke; Tanaka, Miku; Piao, Guilin; Kobayashi, Jun; Hatano, Shigenobu; Itaya, Yoshinori; Mori, Shigekatsu

    2009-01-01

    A high temperature air-blown gasification model for woody biomass is developed based on an air-blown gasification experiment. A high temperature air-blown gasification experiment on woody biomass in an entrained down-flow gasifier is carried out, and then the simple gasification model is developed based on the experimental results. In the experiment, air-blown gasification is conducted to demonstrate the behavior of this process. Pulverized wood is used as the gasification fuel, which is injected directly into the entrained down-flow gasifier by the pulverized wood banner. The pulverized wood is sieved through 60 mesh and supplied at rates of 19 and 27kg/h. The oxygen-carbon molar ratio (O/C) is employed as the operational condition instead of the air ratio. The maximum temperature achievable is over 1400K when the O/C is from 1.26 to 1.84. The results show that the gas composition is followed by the CO-shift reaction equilibrium. Therefore, the air-blown gasification model is developed based on the CO-shift reaction equilibrium. The simple gasification model agrees well with the experimental results. From calculations in large-scale units, the cold gas is able to achieve 80% efficiency in the air-blown gasification, when the woody biomass feedrate is over 1000kg/h and input air temperature is 700K. PMID:18653324

  2. Whole-Body Water Flow Stimulation to the Lower Limbs Modulates Excitability of Primary Motor Cortical Regions Innervating the Hands: A Transcranial Magnetic Stimulation Study

    PubMed Central

    Sato, Daisuke; Yamashiro, Koya; Onishi, Hideaki; Baba, Yasuhiro; Nakazawa, Sho; Shimoyama, Yoshimitsu; Maruyama, Atsuo

    2014-01-01

    Whole-body water immersion (WI) has been reported to change sensorimotor integration. However, primary motor cortical excitability is not affected by low-intensity afferent input. Here we explored the effects of whole-body WI and water flow stimulation (WF) on corticospinal excitability and intracortical circuits. Eight healthy subjects participated in this study. We measured the amplitude of motor-evoked potentials (MEPs) produced by single transcranial magnetic stimulation (TMS) pulses and examined conditioned MEP amplitudes by paired-pulse TMS. We evaluated short-interval intracortical inhibition (SICI) and intracortical facilitation (ICF) using the paired-TMS technique before and after 15-min intervention periods. Two interventions used were whole-body WI with water flow to the lower limbs (whole-body WF) and whole-body WI without water flow to the lower limbs (whole-body WI). The experimental sequence included a baseline TMS assessment (T0), intervention for 15 min, a second TMS assessment immediately after intervention (T1), a 10 min resting period, a third TMS assessment (T2), a 10 min resting period, a fourth TMS assessment (T3), a 10 min resting period, and the final TMS assessment (T4). SICI and ICF were evaluated using a conditioning stimulus of 90% active motor threshold and a test stimulus adjusted to produce MEPs of approximately 1–1.2 mV, and were tested at intrastimulus intervals of 3 and 10 ms, respectively. Whole-body WF significantly increased MEP amplitude by single-pulse TMS and led to a decrease in SICI in the contralateral motor cortex at T1, T2 and T3. Whole-body WF also induced increased corticospinal excitability and decreased SICI. In contrast, whole-body WI did not change corticospinal excitability or intracortical circuits. PMID:25025129

  3. Using nocturnal cold air drainage flow to monitor ecosystem processes in complex terrain.

    PubMed

    Pypker, Thomas G; Unsworth, Michael H; Mix, Alan C; Rugh, William; Ocheltree, Troy; Alstad, Karrin; Bond, Barbara J

    2007-04-01

    This paper presents initial investigations of a new approach to monitor ecosystem processes in complex terrain on large scales. Metabolic processes in mountainous ecosystems are poorly represented in current ecosystem monitoring campaigns because the methods used for monitoring metabolism at the ecosystem scale (e.g., eddy covariance) require flat study sites. Our goal was to investigate the potential for using nocturnal down-valley winds (cold air drainage) for monitoring ecosystem processes in mountainous terrain from two perspectives: measurements of the isotopic composition of ecosystem-respired CO2 (delta13C(ER)) and estimates of fluxes of CO2 transported in the drainage flow. To test if this approach is plausible, we monitored the wind patterns, CO2 concentrations, and the carbon isotopic composition of the air as it exited the base of a young (approximately 40 yr-old) and an old (>450 yr-old) steeply sided Douglas-fir watershed. Nocturnal cold air drainage within these watersheds was strong, deep, and occurred on more than 80% of summer nights. The depth of cold air drainage rapidly increased to tower height or greater when the net radiation at the top of the tower approached zero. The carbon isotope composition of CO2 in the drainage system holds promise as an indicator of variation in basin-scale physiological processes. Although there was little vertical variation in CO2 concentration at any point in time, we found that the range of CO2 concentration over a single evening was sufficient to estimate delta 13C(ER) from Keeling plot analyses. The seasonal variation in delta 13C(ER) followed expected trends: during the summer dry season delta 13C(ER) became less negative (more enriched in 13C), but once rain returned in the fall, delta 13C(ER) decreased. However, we found no correlation between recent weather (e.g., vapor pressure deficit) and delta 13C(ER) either concurrently or with up to a one-week lag. Preliminary estimates suggest that the nocturnal CO2

  4. Effects of air stacking on pulmonary function and peak cough flow in patients with cervical spinal cord injury.

    PubMed

    Jeong, Jong-Hwa; Yoo, Won-Gyu

    2015-06-01

    [Purpose] This study evaluated the effects of air stacking on pulmonary function and peak cough flow in patients with cervical spinal cord injury. [Subjects] Twenty-six patients were included in the study and were randomized into experimental (n = 14) and control (n = 12) groups. [Methods] Both groups performed therapeutic exercises: the control group performed incentive spirometry, while the experimental group performed 20 repetitions of air stacking exercise twice a day. The training for both groups continued for 5 days a week for 6 weeks. [Results] Forced vital capacity and peak cough flow increased significantly in the experimental group compared to the controls. All within-group variables in the experimental group differed significantly at 6 weeks compared to baseline, while in the control group only Forced vital capacity differed significantly at 6 weeks compared to baseline. [Conclusion] Air stacking exercise significantly improved pulmonary function and peak cough flow in patients with a cervical spinal cord injury. PMID:26180355

  5. Estimated Performance of Radial-Flow Exit Nozzles for Air in Chemical Equilibrium

    NASA Technical Reports Server (NTRS)

    Englert, Gerald W.; Kochendorfer, Fred D.

    1959-01-01

    The thrust, boundary-layer, and heat-transfer characteristics were computed for nozzles having radial flow in the divergent part. The working medium was air in chemical equilibrium, and the boundary layer was assumed to be all turbulent. Stagnation pressure was varied from 1 to 32 atmospheres, stagnation temperature from 1000 to 6000 R, and wall temperature from 1000 to 3000 R. Design pressure ratio was varied from 5 to 320, and operating pressure ratio was varied from 0.25 to 8 times the design pressure ratio. Results were generalized independent of divergence angle and were also generalized independent of stagnation pressure in the temperature range of 1000 to 3000 R. A means of determining the aerodynamically optimum wall angle is provided.

  6. E-ɛ modelling of turbulent air flow downwind of a model forest edge

    NASA Astrophysics Data System (ADS)

    Liu, J.; Chen, J. M.; Black, T. A.; Novak, M. D.

    1996-01-01

    A two-dimensional E-ɛ model, which included the effects of plant-atmosphere interaction, was used to simulate air flow downwind of forest edges for the purpose of predicting the microclimate in forest openings. A suitable set of wall functions was selected to consider the aerodynamic effects of the ground in the opening. The model with discretization and parameter schemes was validated using a set of data from a wind-tunnel experiment. The simulated wind speed and turbulence kinetic energy closely agreed with the measured values. After validation, the model was used to predict eddy diffusivity in the lee of the forest edge. The modelled spatial distribution of the eddy diffusivity agreed in general with that calculated using wind-tunnel measurements. The usefulness and limitations of the E-ɛ model are discussed.

  7. Stabilized Alumina/Ethanol Colloidal Dispersion for Seeding High Temperature Air Flows

    NASA Technical Reports Server (NTRS)

    Wernet, Judith H.; Wernet, Mark P.

    1994-01-01

    Seeding air flows with particles to enable measurements of gas velocities via laser anemometry and/or particle image velocimetry techniques can be quite exasperating. The seeding requirements are compounded when high temperature environments are encountered and special care must be used in selecting a refractory seed material. The pH stabilization techniques commonly employed in ceramic processing are used to obtain stable dispersions for generating aerosols of refractory seed material. By adding submicron alumina particles to a preadjusted pH solution of ethanol, a stable dispersion is obtained which when atomized produces a high quality aerosol. Commercial grade alumina powder is used with a moderate size distribution. The technique is not limited to alumina/ethanol and is also demonstrated with an alumina/H2O system. Other ceramic powders in various polar solvents could also be used once the point of zero charge (pH(sub pzc)) of the powder in the solvent has been determined.

  8. Effects of oblique air flow on burning rates of square ethanol pool fires.

    PubMed

    Tao, Changfa; He, Yaping; Li, Yuan; Wang, Xishi

    2013-09-15

    The effects of downward airflow on the burning rate and/or burning intensity of square alcohol pool fires for different airflow speeds and directions have been studied experimentally in an inclined wind tunnel. An interesting flame-wrapping phenomenon, caused by impingement of air flow, was observed. The mass burning intensity was found to increase with the airflow speed and the impinging angle. The fuel pan rim temperatures were also measured to study the effect of wind direction and speed on heat transfer from the flame to the fuel source. A model based on heat transfer analysis was developed to correlate the burning intensity with the pan rim characteristic temperature. A good correlation was established between the model results and the experimental results. PMID:23811377

  9. Performance potential of air turbo-ramjet employing supersonic through-flow fan

    NASA Technical Reports Server (NTRS)

    Kepler, C. E.; Champagne, G. A.

    1989-01-01

    A study was conducted to assess the performance potential of a supersonic through-flow fan in an advanced engine designed to power a Mach-5 cruise vehicle. It included a preliminary evaluation of fan performance requirements and the desirability of supersonic versus subsonic combustion, the design and performance of supersonic fans, and the conceptual design of a single-pass air-turbo-rocket/ramjet engine for a Mach 5 cruise vehicle. The study results showed that such an engine could provide high thrust over the entire speed range from sea-level takeoff to Mach 5 cruise, especially over the transonic speed range, and high fuel specific impulse at the Mach 5 cruise condition, with the fan windmilling.

  10. High accuracy acoustic relative humidity measurement in duct flow with air.

    PubMed

    van Schaik, Wilhelm; Grooten, Mart; Wernaart, Twan; van der Geld, Cees

    2010-01-01

    An acoustic relative humidity sensor for air-steam mixtures in duct flow is designed and tested. Theory, construction, calibration, considerations on dynamic response and results are presented. The measurement device is capable of measuring line averaged values of gas velocity, temperature and relative humidity (RH) instantaneously, by applying two ultrasonic transducers and an array of four temperature sensors. Measurement ranges are: gas velocity of 0-12 m/s with an error of ± 0.13 m/s, temperature 0-100 °C with an error of ± 0.07 °C and relative humidity 0-100% with accuracy better than 2 % RH above 50 °C. Main advantage over conventional humidity sensors is the high sensitivity at high RH at temperatures exceeding 50 °C, with accuracy increasing with increasing temperature. The sensors are non-intrusive and resist highly humid environments. PMID:22163610

  11. High Accuracy Acoustic Relative Humidity Measurement in Duct Flow with Air

    PubMed Central

    van Schaik, Wilhelm; Grooten, Mart; Wernaart, Twan; van der Geld, Cees

    2010-01-01

    An acoustic relative humidity sensor for air-steam mixtures in duct flow is designed and tested. Theory, construction, calibration, considerations on dynamic response and results are presented. The measurement device is capable of measuring line averaged values of gas velocity, temperature and relative humidity (RH) instantaneously, by applying two ultrasonic transducers and an array of four temperature sensors. Measurement ranges are: gas velocity of 0–12 m/s with an error of ±0.13 m/s, temperature 0–100 °C with an error of ±0.07 °C and relative humidity 0–100% with accuracy better than 2 % RH above 50 °C. Main advantage over conventional humidity sensors is the high sensitivity at high RH at temperatures exceeding 50 °C, with accuracy increasing with increasing temperature. The sensors are non-intrusive and resist highly humid environments. PMID:22163610

  12. Conservation equations and physical models for hypersonic air flows in thermal and chemical nonequilibrium

    SciTech Connect

    Gnoffo, P.A.; Gupta, R.N.; Shinn, J.L.

    1989-02-01

    The conservation equations for simulating hypersonic flows in thermal and chemical nonequilibrium and details of the associated physical models are presented. These details include the curve fits used for defining thermodynamic properties of the 11 species air model, curve fits for collision cross sections, expressions for transport properties, the chemical kinetics models, and the vibrational and electronic energy relaxation models. The expressions are formulated in the context of either a two or three temperature model. Greater emphasis is placed on the two temperature model in which it is assumed that the translational and rotational energy models are in equilibrium at the translational temperature, T, and the vibrational, electronic, and electron translational energy modes are in equilibrium at the vibrational temperature, T sub v. The eigenvalues and eigenvectors associated with the Jacobian of the flux vector are also presented in order to accommodate the upwind based numerical solutions of the complete equation set.

  13. Conservation equations and physical models for hypersonic air flows in thermal and chemical nonequilibrium

    NASA Technical Reports Server (NTRS)

    Gnoffo, Peter A.; Gupta, Roop N.; Shinn, Judy L.

    1989-01-01

    The conservation equations for simulating hypersonic flows in thermal and chemical nonequilibrium and details of the associated physical models are presented. These details include the curve fits used for defining thermodynamic properties of the 11 species air model, curve fits for collision cross sections, expressions for transport properties, the chemical kinetics models, and the vibrational and electronic energy relaxation models. The expressions are formulated in the context of either a two or three temperature model. Greater emphasis is placed on the two temperature model in which it is assumed that the translational and rotational energy models are in equilibrium at the translational temperature, T, and the vibrational, electronic, and electron translational energy modes are in equilibrium at the vibrational temperature, T sub v. The eigenvalues and eigenvectors associated with the Jacobian of the flux vector are also presented in order to accommodate the upwind based numerical solutions of the complete equation set.

  14. Investigation of statistical parameters of turbulent air flow over waved water surface by direct numerical simulation

    NASA Astrophysics Data System (ADS)

    Troitskaya, Yuliya; Druzhinin, Oleg

    2013-04-01

    averaging over wavelength. The preliminary DNS results show that the wind flow is significantly affected by the stratification. If the Richardson number is sufficiently small, the instantaneous vector velocity fields manifest considerable airflow separation at the crests of the surface waves similar to that observed in physical experiments by PIV-technique. Alternatively the ensemble averaged velocity fields are non-separating and have typical structures similar to those observed in shear flows near critical levels, where the phase velocity of the disturbance coincides with the flow velocity. On the other hand, for large Richardson numbers the wind flow turbulence is superseded by internal lee waves radiated from the wave crests and dissipating at a critical level, at some distance above the crests. The DNS results are compared with the prediction of a theoretical model of a turbulent boundary layer, based on the system of Reynolds-averaged equations with the first-order closure hypothesis. The wind-wave interaction is considered within the quasi-linear approximation, i.e., wave-induced disturbances in the air flow are considered in the linear approximation, but the resistive effect of the wave momentum flux on the mean flow velocity profile is taken into account. This paper was supported by RFBR (project codes 10-05-00339-A, 10-05-91177-GFEN_A, 09-05-00779-A;, 11-05-00455-A).

  15. Biofiltration of air contaminated by styrene: Effect of nitrogen supply, gas flow rate, and inlet concentration

    SciTech Connect

    Jorio, H.; Bibeau, L.; Heitz, M.

    2000-05-01

    The biofiltration process is a promising technology for the treatment of dilute styrene emissions in air. The efficiency of this process is however strongly dependent upon various operational parameters such as the filter bed characteristics, nutrient supplies, input contaminant concentrations, and gas flow rates. The biofiltration of air containing styrene vapors was therefore investigated, employing a novel biomass filter material, in two identical but separate laboratory scale biofiltration units (units 1 and 2), both biofilters being initially inoculated with a microbial consortium. Each biofilter was irrigated with a nutrient solution supplying nitrogen in one of two forms; i.e., mainly as ammonia for unit 1 and exclusively as nitrate for unit 2. The experimental results have revealed that greater styrene elimination rates are achieved in the biofilter supplied with ammonia as the major nitrogen source in comparison to the lesser elimination performance obtained with the nitrate provided biofilter. However, in achieving the high styrene removal rates in the ammonia supplied biofilter, the excess of biomass accumulates on the filtering pellets and causes progressive clogging of the filter media. Furthermore, the effectiveness of nitrate supply as the sole nitrogen nutrient form, on reducing or controlling the biomass accumulation in the filter media in comparison to ammonia, could not be satisfactorily demonstrated because the two biofilters operated with very different styrene elimination capacities. The monitoring of the carbon dioxide concentration profile through both biofilters revealed that the ratio of carbon dioxide produced to the styrene removed was approximately 3/1, which confirms the complete biodegradation of removed styrene, given that some of the organic carbon consumed is also used for the microbial growth. The effects of the most important design parameters, namely styrene input concentrations and gas flow rates, were investigated for each

  16. Flow and containment characteristics of a sash-less, variable-height inclined air-curtain fume hood.

    PubMed

    Huang, Rong Fung; Chen, Jia-Kun; Hung, Wei-Lun

    2013-08-01

    To increase containment efficiency and reduce energy consumption, a sash-less, variable-height inclined air-curtain fume hood (sIAC hood) was developed and tested by a laser-assisted flow visualization technique and tracer-gas detection method. This novel design requires neither sash nor baffle. The sIAC hood employed the inclined push-pull air-curtain technique and two deflection plates installed on the side walls of the hood to induce a tetra-vortex flow structure. The results of flow visualization showed that the slot for suction flow, offset from the slot for the up-blowing jet, caused the air curtain to incline towards the rear wall, thus enhancing the robustness of the tetra-vortex flow structure. Such a flow structure could reduce the influence of draught and human walk-by across the hood face. The containment around the central area of the hood was isolated by the inclined push-pull air curtain. The pollutants carried by the reverse flow induced by the flow separation were guided by the deflection plates from the side walls towards the rear, thus contributing to the formation of the tetra-vortex flow structure. The up/down movable ceiling positioned the suction slot close to the device's pollutant emission opening, but left room (less than 50 cm) for unrestricted hand movement. Testing was carried out based on the methodology described in EN14175. The results of a static test showed that small face velocities of 0.25 and 0.16 m s(-1) were enough to obtain nearly null leakage levels for low and tall pollutant sources. The results of a traversing plate test showed that the face velocity, 0.32 m s(-1), would cause negligibly small leakage levels. The sIAC hood could obtain significantly higher containment efficiency than a conventional hood by operating at a face velocity significantly lower than that of conventional hoods. PMID:23519947

  17. Performance of a combined three-hole conductivity probe for void fraction and velocity measurement in air-water flows

    NASA Astrophysics Data System (ADS)

    Borges, João Eduardo; Pereira, Nuno H. C.; Matos, Jorge; Frizell, Kathleen H.

    2010-01-01

    The development of a three-hole pressure probe with back-flushing combined with a conductivity probe, used for measuring simultaneously the magnitude and direction of the velocity vector in complex air-water flows, is described in this paper. The air-water flows envisaged in the current work are typically those occurring around the rotors of impulse hydraulic turbines (like the Pelton and Cross-Flow turbines), where the flow direction is not known prior to the data acquisition. The calibration of both the conductivity and three-hole pressure components of the combined probe in a rig built for the purpose, where the probe was placed in a position similar to that adopted for the flow measurements, will be reported. After concluding the calibration procedure, the probe was utilized in the outside region of a Cross-Flow turbine rotor. The experimental results obtained in the present study illustrate the satisfactory performance of the combined probe, and are encouraging toward its use for characterizing the velocity field of other complex air-water flows.

  18. Influence Of The Vibrational Dissociation Model On The Relaxation Of The Excited States Calculated With The CORIA's Collisional- Radiative Model CoRaM-Air

    NASA Astrophysics Data System (ADS)

    Butel, Arnaud; Annaloro, Julien; Schneider, Ioan F.; Benredgem, Djamel

    2011-08-01

    In relation with the problem of space vehicles re-entry into the earth atmosphere, we have developed a nonlinear electronic and vibrational specific time-dependent Collisional-Radiative (CR) model for air plasma working between 100 Pa and atmospheric pressure and between 2000 K and 20000 K for the translation temperatures. 13 species are considered: N2, O2, NO, N, O, Ar, N+2 , O+2 , NO+ , N+ , O+ , Ar+ and electrons. This model takes into account a total of 335 different states separated in excited electronic states and vibrational states of N2, O2 and NO on their electronic ground state. Owing to the temperature levels involved, many elementary processes are considered. The CR model is partially validated by comparison with experimental results under atmospheric pressure. Time scales to reach the final steady state are derived. Two models of dissociation are tested with respect to the vibration-translation transfers. The excitation and vibrational temperature results are analyzed in a typical Heaviside-like case at constant pressure and temperature.

  19. Theoretical Evaluation of Electroactive Polymer Based Micropump Diaphragm for Air Flow Control

    NASA Technical Reports Server (NTRS)

    Xu, Tian-Bing; Su, Ji; Zhang, Qiming

    2004-01-01

    An electroactive polymer (EAP), high energy electron irradiated poly(vinylidene fluoride-trifluoroethylene) [P(VDFTrFE)] copolymer, based actuation micropump diaphragm (PAMPD) have been developed for air flow control. The displacement strokes and profiles as a function of amplifier and frequency of electric field have been characterized. The volume stroke rates (volume rate) as function of electric field, driving frequency have been theoretically evaluated, too. The PAMPD exhibits high volume rate. It is easily tuned with varying of either amplitude or frequency of the applied electric field. In addition, the performance of the diaphragms were modeled and the agreement between the modeling results and experimental data confirms that the response of the diaphragms follow the design parameters. The results demonstrated that the diaphragm can fit some future aerospace applications to replace the traditional complex mechanical systems, increase the control capability and reduce the weight of the future air dynamic control systems. KEYWORDS: Electroactive polymer (EAP), micropump, diaphragm, actuation, displacement, volume rate, pumping speed, clamping ratio.

  20. Influence mechanism on flow and heat transfer characteristics for air-cooled steam condenser cells

    NASA Astrophysics Data System (ADS)

    He, Wei Feng; Dai, Yi Ping; Li, Mao Qing; Ma, Qing Zhong

    2012-09-01

    Air-cooled steam condensers (ACSCs) have been extensively utilized to reject waste heat in power industry to save water resources. However, ACSC performance is so sensitive to ambient wind that almost all the air-cooled power plants in China are less efficient compared to design conditions. It is shown from previous research that the influence of ambient wind on the cell performance differs from its location in the condenser. As a result, a numerical model including two identical ACSC cells are established, and the different influence on the performance of the cells is demonstrated and analyzed through the computational fluid dynamics method. Despite the great influence from the wind speeds, similar cell performance is obtained for the two cells under both windless and wind speed conditions when the wind parallels to the steam duct. Fan volumetric effectiveness which characterizes the fan performance, as well as the exchanger heat transfer rate, drops obviously with the increasing wind speed, and performance difference between the exchanger pair in the same A-frame also rises continuously. Furthermore, different flow and heat transfer characteristics of the windward and leeward cell are obtained at different wind angles, and ambient wind enhances the performance of the leeward cell, while that of the windward one changes little.

  1. Thermal analysis and two-directional air flow thermal management for lithium-ion battery pack

    NASA Astrophysics Data System (ADS)

    Yu, Kuahai; Yang, Xi; Cheng, Yongzhou; Li, Changhao

    2014-12-01

    Thermal management is a routine but crucial strategy to ensure thermal stability and long-term durability of the lithium-ion batteries. An air-flow-integrated thermal management system is designed in the present study to dissipate heat generation and uniformize the distribution of temperature in the lithium-ion batteries. The system contains of two types of air ducts with independent intake channels and fans. One is to cool the batteries through the regular channel, and the other minimizes the heat accumulations in the middle pack of batteries through jet cooling. A three-dimensional anisotropic heat transfer model is developed to describe the thermal behavior of the lithium-ion batteries with the integration of heat generation theory, and validated through both simulations and experiments. Moreover, the simulations and experiments show that the maximum temperature can be decreased to 33.1 °C through the new thermal management system in comparison with 42.3 °C through the traditional ones, and temperature uniformity of the lithium-ion battery packs is enhanced, significantly.

  2. Effect of Marangoni Flows on the Shape of Thin Sessile Droplets Evaporating into Air

    NASA Astrophysics Data System (ADS)

    Tsoumpas, Yannis; Dehaeck, Sam; Rednikov, Alexey; Colinet, Pierre

    2015-11-01

    With the help of Mach-Zehnder interferometry, we study the (largely) axisymmetric shapes of freely receding evaporating sessile droplets of various HFE liquids. The droplets evaporate into ambient air and, although the liquids are perfectly wetting, possess small finite contact angles reckoned to be evaporation-induced. The experimentally determined droplet profiles are shown here to deviate, under some conditions, from the classical macroscopic static profile of a sessile droplet, as this is determined by gravity and capillarity. These deviations are attributed to a Marangoni flow, due to evaporation-induced thermal gradients along the liquid-air interface, and are mostly observed in conditions of high evaporation. Unlike the classical static shapes, the distorted experimental profiles exhibit an inflection point at the contact line area. When a poorly volatile liquid is considered, however, the temperature differences and the Marangoni stresses are weak, and the measurements are found to be in a good agreement with the classical static shape. Overall, the experimental findings are quantitatively confirmed by the predictions of a lubrication model accounting for the impact of the Marangoni effect on the droplet shape. Financial support of FP7 Marie Curie MULTIFLOW Network (PITNGA-2008-214919), ESA/BELSPO-PRODEX, BELSPO- μMAST (IAP 7/38) & FRS-FNRS is gratefully acknowledged.

  3. Experimental study on gas-liquid flow characteristics of submerged air jets

    NASA Astrophysics Data System (ADS)

    Qin, S. J.; Liu, J. T.; Miao, T. C.; Wu, D. Z.

    2016-05-01

    The gas-liquid flow structure and interfacial behavior of submerged air jets were investigated experimentally using high speed digital video camera and image processing techniques. The jet pressure ratio varied from 1.8 to 4.8 in the experiment. And results from different jet nozzles were processed and compared. Statistical characteristics of the jet diameters along the axial distance were obtained and analyzed. Time series analysis was implemented to study the interface unsteadiness by calculating the gas-liquid interface deviation. The results showed that the jet diameters increase first linearly then nonlinearly and its growth rate decreases along the axial distance. The reason for the divergence between the result of this experiment and those done by other researchers was analyzed. Comparing the results of different pressure ratios and nozzle diameters, we found that larger jet pressure ratios have larger jet diameters and nozzle diameters nearly have no bearing on the distribution of dimensionless jet diameters. The interface unsteadiness in low and high pressure ratios exhibited totally distinct properties. And a minimum unsteady value was found along the axis of the air jets.

  4. A crystal detector for measuring beta and internal conversion electrons in flowing air containing fission gases

    NASA Astrophysics Data System (ADS)

    Schell, W. R.; Vives-Batlle, J.; Yoon, S. R.; Tobin, M. J.

    1999-02-01

    Low levels of radioactive gases are released from nuclear electric power generation, nuclear fuel reprocessing plants, nuclear weapons tests and from diagnostic medical uses of radioactive gas tracers. A prototype model of an inorganic scintillator - Crystal Gas Electron Detector (CGED) - was built for measurements of xenon isotopes in-line by detecting the beta and internal conversion (IC) electrons present in atmospheric samples. The detection and quantification of the radionuclide spectra are accomplished, during air flow, without complete purification of the fission gases. Initial operational tests and calibrations made permit the integration of the CGED into a portable Gas Analysis, Separation and Purification (GASP) system [1-3]. The CGED detector, Pulse Shaping and Timing (PSA) electronics, and mathematical treatment of the accumulated spectra are used to resolve the K and LMNO-IC electrons and beta continuum. These data are used, in-line, for dating the age of an air parcel containing fission gases released from nuclear reactors and/or from nuclear weapons tests, as part of the monitoring equipment required to enforce the Comprehensive Test Ban Treaty, CTBT. This report is one of a series of papers providing the design features, operational methods, calibration, and applications of radioactive gas analysis system to the International CTBT.

  5. Hydrogeology and simulation of ground-water flow at Dover Air Force Base, Delaware

    USGS Publications Warehouse

    Hinaman, Kurt C.; Tenbus, Frederick J.

    2000-01-01

    Dover Air Force Base in Kent County, Delaware, has many contaminated sites that are in active remediation. To assist in this remediation, a steady-state model of ground-water flow was developed to aid in understanding the hydrology of the system, and for use as a ground-watermanagement tool. This report describes the hydrology on which the model is based, a description of the model itself, and some applications of the model.Dover Air Force Base is underlain by unconsolidated sediments of the Atlantic Coastal Plain. The primary units that were investigated include the upper Calvert Formation and the overlying Columbia Formation. The uppermost sand unit in the Calvert Formation at Dover Air Force Base is the Frederica aquifer, which is the deepest unit investigated in this report. A confining unit of clayey silt in the upper Calvert Formation separates the Frederica aquifer from the lower surficial aquifer, which is the basal Columbia Formation. North and northwest of Dover Air Force Base, the Frederica aquifer subcrops beneath the Columbia Formation and the upper Calvert Formation confining unit is absent. The Calvert Formation dips to the southeast. The Columbia Formation consists predominately of sands, silts, and gravels, although in places there are clay layers that separate the surficial aquifer into an upper and lower surficial aquifer. The areal extent of these clay layers has been mapped by use of gamma logs. Long-term hydrographs reveal substantial changes in both seasonal and annual ground-water recharge. These variations in recharge are related to temporal changes in evaporation, transpiration, and precipitation. The hydrographs show areas where extensive silts and clays are present in the surficial aquifer. In these areas, the vertical gradient between water levels in wells screened above and below the clays can be as large as several feet, and local ground-water highs typically form during normal recharge conditions. When drought conditions persist

  6. Turbulent Boundary Layer on a Finely Perforated Surface Under Conditions of Air Injection at the Expense of External Flow Resources

    NASA Astrophysics Data System (ADS)

    Kornilov, V. I.; Boiko, A. V.; Kavun, I. N.

    2015-11-01

    The characteristics of an incompressible turbulent boundary layer on a flat plate with air blown in though a finely perforated surface from an external confined flow through an input device, located on the "idle" side of the plate, have been investigated experimentally and numerically. A stable decrease in the local values of the coefficient of surface friction along the plate length that attains 85% at the end of the perforated portion is shown. The experimental and calculated data obtained point to the possibility of modeling, under earth conditions, the process of controlling a turbulent boundary layer with air injection by using the resources of an external confined flow.

  7. PAN AIR - A higher order panel method for predicting subsonic or supersonic linear potential flows about arbitrary configurations

    NASA Technical Reports Server (NTRS)

    Carmichael, R. L.; Erickson, L. L.

    1981-01-01

    PAN AIR is a computer program for predicting subsonic or supersonic linear potential flow about arbitrary configurations. It uses linear source and quadratic doublet strength distributions. These higher-order distributions have been implemented in a manner that greatly reduces the numerical stability problems that have plagued earlier attempts to make surface paneling methods work successfully for supersonic flow. PAN AIR's problem-solving capability, numerical approach, modeling features, and program architecture are described. Numerical results are presented for a variety of geometries at supersonic Mach numbers.

  8. The influence of surface sorption and air flow rate on phthalate emissions from vinyl flooring: Measurement and modeling

    NASA Astrophysics Data System (ADS)

    Liang, Yirui; Xu, Ying

    2015-02-01

    This study investigated the influences of surface sorption and air flow rate on the emission of phthalates from building materials. Controlled tests were conducted in specially designed stainless steel and wood chambers, and the steady-state concentration in the stainless steel chamber was about 2-3 times higher than that in the wood chamber for di(2-ethylhexyl) phthalate (DEHP) and diisononyl phthalate (DINP). The emission rate of phthalates increased in the wood chamber due to the diffusion mass flow through the chamber wall (i.e., surface absorption). The adsorption isotherm of phthalates on the stainless steel surface and the absorption parameters (i.e., diffusion and partition coefficients) of phthalates on the wood surface were determined experimentally, and the values were comparable to those in the literature. The equilibration time scale for phthalates absorbed to the sink reservoir in actual indoor environments was estimated and can be substantial (approximately 80 years), indicating that surface absorption may continuously drive phthalates from their indoor sources to various sinks and thus significantly increase the emission rate of phthalates. The gas-phase concentration of DEHP was measured in two stainless steel chambers operated at flow rates of 300 mL/min and 3000 mL/min, respectively, which were both adjusted to 1000 mL/min after steady state was reached. The gas-phase concentration of DEHP in the chamber was very sensitive to the chamber air flow rate, and higher air flow rates resulted in lower concentration levels. However, the increased emission rate compensated for the dilution in the gas phase and made the DEHP concentration not drop substantially with an increase in the air flow rate. Independently measured or calculated parameters were used to validate a semi-volatile organic compounds (SVOCs) emission model that included absorptive surfaces and for a range of air flow rates, with excellent agreement between the model predictions and the

  9. Define and Quantify the Physics of Air Flow, Pressure Drop and Aerosol Collection in Nuclear Grade HEPA Filters

    SciTech Connect

    Moore, Murray E.

    2015-02-23

    Objective: Develop a set of peer-review and verified analytical methods to adjust HEPA filter performance to different flow rates, temperatures and altitudes. Experimental testing will measure HEPA filter flow rate, pressure drop and efficiency to verify the analytical approach. Nuclear facilities utilize HEPA (High Efficiency Particulate Air) filters to purify air flow for workspace ventilation. However, the ASME AG-1 technical standard (Code on Nuclear Air and Gas Treatment) does not adequately describe air flow measurement units for HEPA filter systems. Specifically, the AG-1 standard does not differentiate between volumetric air flow in ACFM (actual cubic feet per minute)compared to mass flow measured in SCFM (standard cubic feet per minute). More importantly, the AG-1 standard has an overall deficiency for using HEPA filter devices at different air flow rates, temperatures, and altitudes. Technical Approach: The collection efficiency and pressure drops of 18 different HEPA filters will be measured over a range of flow rates, temperatures and altitudes. The experimental results will be compared to analytical scoping calculations. Three manufacturers have allocated six HEPA filters each for this effort. The 18 filters will be tested at two different flow rates, two different temperatures and two different altitudes. The 36 total tests will be conducted at two different facilities: the ATI Test facilities (Baltimore MD) and the Los Alamos National Laboratory (Los Alamos NM). The Radiation Protection RP-SVS group at Los Alamos has an aerosol wind tunnel that was originally designed to evaluate small air samplers. In 2010, modifications were started to convert the wind tunnel for HEPA filter testing. (Extensive changes were necessary for the required aerosol generators, HEPA test fixtures, temperature control devices and measurement capabilities.) To this date, none of these modification activities have been funded through a specific DOE or NNSA program. This is

  10. A Critical Survey of Optimization Models for Tactical and Strategic Aspects of Air Traffic Flow Management

    NASA Technical Reports Server (NTRS)

    Bertsimas, Dimitris; Odoni, Amedeo

    1997-01-01

    This document presents a critical review of the principal existing optimization models that have been applied to Air Traffic Flow Management (TFM). Emphasis will be placed on two problems, the Generalized Tactical Flow Management Problem (GTFMP) and the Ground Holding Problem (GHP), as well as on some of their variations. To perform this task, we have carried out an extensive literature review that has covered more than 40 references, most of them very recent. Based on the review of this emerging field our objectives were to: (i) identify the best available models; (ii) describe typical contexts for applications of the models; (iii) provide illustrative model formulations; and (iv) identify the methodologies that can be used to solve the models. We shall begin our presentation below by providing a brief context for the models that we are reviewing. In Section 3 we shall offer a taxonomy and identify four classes of models for review. In Sections 4, 5, and 6 we shall then review, respectively, models for the Single-Airport Ground Holding Problem, the Generalized Tactical FM P and the Multi-Airport Ground Holding Problem (for the definition of these problems see Section 3 below). In each section, we identify the best available models and discuss briefly their computational performance and applications, if any, to date. Section 7 summarizes our conclusions about the state of the art.

  11. Numerical Analysis of Flow Evolution in a Helium Jet Injected into Ambient Air

    NASA Technical Reports Server (NTRS)

    Satti, Rajani P.; Agrawal, Ajay K.

    2005-01-01

    A computational model to study the stability characteristics of an evolving buoyant helium gas jet in ambient air environment is presented. Numerical formulation incorporates a segregated approach to solve for the transport equations of helium mass fraction coupled with the conservation equations of mixture mass and momentum using a staggered grid method. The operating parameters correspond to the Reynolds number varying from 30 to 300 to demarcate the flow dynamics in oscillating and non-oscillating regimes. Computed velocity and concentration fields were used to analyze the flow structure in the evolving jet. For Re=300 case, results showed that an instability mode that sets in during the evolution process in Earth gravity is absent in zero gravity, signifying the importance of buoyancy. Though buoyancy initiates the instability, below a certain jet exit velocity, diffusion dominates the entrainment process to make the jet non-oscillatory as observed for the Re=30 case. Initiation of the instability was found to be dependent on the interaction of buoyancy and momentum forces along the jet shear layer.

  12. A microfluidic device to apply shear stresses to polarizing ciliated airway epithelium using air flow

    PubMed Central

    Trieu, Dennis; Waddell, Thomas K.; McGuigan, Alison P.

    2014-01-01

    Organization of airway epithelium determines ciliary beat direction and coordination for proper mucociliary clearance. Fluidic shear stresses have the potential to influence ciliary organization. Here, an in vitro fluidic flow system was developed for inducing long-term airflow shear stresses on airway epithelium with a view to influencing epithelial organization. Our system consists of a fluidic device for cell culture, integrated into a humidified airflow circuit. The fluidic device has a modular design and is made from a combination of polystyrene and adhesive components incorporated into a 6-well filter membrane insert. We demonstrate the system operates within physiologically relevant shear and pressure ranges and estimate the shear stress exerted on the epithelial cell layer as a result of air flow using a computational model. For both the bronchial epithelial cell line BEAS2B and primary human tracheal airway epithelial cells, we demonstrate that cells remain viable within the device when exposed to airflow for 24 h and that normal differentiation and cilia formation occurs. Furthermore, we demonstrate the utility of our device for exploring the impact of exposing cells to airflow: our tool enables quantification of cytoskeletal organization, and is compatible with in situ bead assays to assess the orientation of cilia beating. PMID:25553181

  13. Air flow and concentration fields at urban road intersections for improved understanding of personal exposure.

    PubMed

    Tiwary, Abhishek; Robins, Alan; Namdeo, Anil; Bell, Margaret

    2011-07-01

    This paper reviews the state of knowledge on modelling air flow and concentration fields at road intersections. The first part covers the available literature from the past two decades on experimental (both field and wind tunnel) and modelling activities in order to provide insight into the physical basis of flow behaviour at a typical cross-street intersection. This is followed by a review of associated investigations of the impact of traffic-generated localised turbulence on the concentration fields due to emissions from vehicles. There is a discussion on the role of adequate characterisation of vehicle-induced turbulence in making predictions using hybrid models, combining the merits of conventional approaches with information obtained from more detailed modelling. This concludes that, despite advancements in computational techniques, there are crucial knowledge gaps affecting the parameterisations used in current models for individual exposure. This is specifically relevant to the growing impetus on walking and cycling activities on urban roads in the context of current drives for sustainable transport and healthy living. Due to inherently longer travel times involved during such trips, compared to automotive transport, pedestrians and cyclists are subjected to higher levels of exposure to emissions. Current modelling tools seem to under-predict this exposure because of limitations in their design and in the empirical parameters employed. PMID:21435722

  14. On the relationship between air entrainment, internal flows and closure mechanism in a ventilated supercavity

    NASA Astrophysics Data System (ADS)

    Karn, Ashish; Arndt, Roger; Hong, Jiarong

    2015-11-01

    An understanding of underlying physics behind ventilation demand is critical for the operation of underwater vehicles based on ventilated supercavitation for a number of reasons viz. gas entrainment requirements for cavity formation and sustenance. The prior studies on the ventilation demand have reported that the gas entrainment requirement to form a supercavity is substantially larger than that needed to sustain it. This phenomenon, known as ventilation hysteresis, is particularly important from the viewpoint of reduction in gas requirements. However, little physical insights into this phenomenon has yet been provided. In this study, systematic investigations are conducted into ventilation hysteresis with respect to the formation and collapse behaviors of ventilated supercavities. It is suggested that the supercavity formation process is driven by bubble coalescence, whereas its collapse is related to the pressure difference across the supercavity interface at its rear portion. Further, we examine the relationship between ventilation hysteresis, supercavity closures and air entrainment requirements for supercavity formation and sustenance under steady and unsteady flow conditions. These observations are directly related to the internal flows inside the supercavity.

  15. Simplified Configuration for the Combustor of an oil Burner using a low Pressure, high flow air-atomizing Nozzle

    SciTech Connect

    Butcher, Thomas; Celebi, Yusuf; Fisher, Leonard

    1998-09-28

    The invention relates to clean burning of fuel oil with air. More specifically, to a fuel burning combustion head using a low-pressure, high air flow atomizing nozzle so that there will be a complete combustion oil resulting in a minimum emission of pollutants. The inventors have devised a fuel burner that uses a low pressure air atomizing nozzle. The improved fuel burner does not result in the use of additional compressors or the introduction of pressurized gases downstream, nor does it require a complex design.

  16. Optical and application study of gas-liquid discharge excited by bipolar nanosecond pulse in atmospheric air

    NASA Astrophysics Data System (ADS)

    Wang, Sen; Wang, Wen-chun; Yang, De-zheng; Liu, Zhi-jie; Zhang, Shuai

    2014-10-01

    In this study, a bipolar nanosecond pulse with 20 ns rising time is employed to generate air gas-liquid diffuse discharge plasma with room gas temperature in quartz tube at atmospheric pressure. The image of the discharge and optical emission spectra of active species in the plasma are recorded. The plasma gas temperature is determined to be approximately 390 K by compared the experimental spectra with the simulated spectra, which is slightly higher than the room temperature. The result indicated that the gas temperature rises gradually with pulse peak voltage increasing, while decreases slightly with the electrode gap distance increasing. As an important application, bipolar nanosecond pulse discharge is used to sterilize the common microorganisms (Actinomycetes, Candida albicans and Escherichia coli) existing in drinking water, which performs high sterilization efficiency.

  17. Surfactant-Induced Flow in Unsaturated Porous Media: Implications for Air-Water Interfacial Area Determination

    NASA Astrophysics Data System (ADS)

    Costanza-Robinson, M. S.; Zheng, Z.; Estabrook, B.; Henry, E. J.; Littlefield, M. H.

    2011-12-01

    Air-water interfacial area (AI) in porous media is an important factor governing equilibrium contaminant retention, as well as the kinetics of interphase mass transfer. Interfacial-partitioning tracer (IPT) tests are a common technique for measuring AI at a given moisture saturation (SW), where AI is calculated based on the ratio of arrival times of a surfactant and a non-reactive tracer. At surfactant concentrations often used, the aqueous surface tension of the interfacial tracer solution is ~30% lower than that of the resident porewater in the system, creating transient surface tension gradients during the IPT measurement. Because surface tension gradients create capillary pressure gradients, surfactant-induced unsaturated flow may occur during IPT tests, a process that would violate fundamental assumptions of constant SW, of steady-state flow, and of nonreactive and surfactant tracers experiencing the same transport conditions. To examine the occurrence and magnitude of surfactant-induced flow, we conducted IPT tests for unsaturated systems at ~84% initial SW using surfactant input concentrations that bracket concentrations commonly used. Despite constant boundary conditions (constant inlet flux and outlet pressure), the introduction of the surfactant solution induced considerable transience in column effluent flowrate and SW. Real-time system mass measurements revealed drainage of 20-40% SW, with the amount of drainage and the maximum rate of drainage proportional to the influent surfactant concentration, as would be expected. Because AI is inversely related to SW, the use of higher surfactant concentrations should yield larger AI estimates. Measured AI values, however, showed no clear relationship to surfactant concentration or the time-averaged SW of the system. These findings cast doubt on the reliability of IPT for AI determination.

  18. High-Speed Rainbow Schlieren Deflectometry Analysis of Helium Jets Flowing into Air for Microgravity Applications

    NASA Technical Reports Server (NTRS)

    Leptuch, Peter A.

    2002-01-01

    The flow phenomena of buoyant jets have been analyzed by many researchers in recent years. Few, however have studied jets in microgravity conditions, and the exact nature of the flow under these conditions has until recently been unknown. This study seeks to extend the work done by researchers at the university of Oklahoma in examining and documenting the behavior of helium jets in micro-gravity conditions. Quantitative rainbow schlieren deflectometry data have been obtained for helium jets discharging vertically into quiescent ambient air from tubes of several diameters at various flow rates using a high-speed digital camera. These data have obtained before, during and after the onset of microgravity conditions. High-speed rainbow schlieren deflectometry has been developed for this study with the installation and use of a high-speed digital camera and modifications to the optical setup. Higher temporal resolution of the transitional phase between terrestrial and micro-gravity conditions has been obtained which has reduced the averaging effect of longer exposure times used in all previous schlieren studies. Results include color schlieren images, color time-space images (temporal evolution images), frequency analyses, contour plots of hue and contour plots of helium mole fraction. The results, which focus primarily on the periods before and during the onset of microgravity conditions, show that the pulsation of the jets normally found in terrestrial gravity ("earth"-gravity) conditions cease, and the gradients in helium diminish to produce a widening of the jet in micro-gravity conditions. In addition, the results show that the disturbance propagate upstream from a downstream source.

  19. The Impact of Refrigerant Charge, Air Flow and Expansion Devices on the Measured Performance of an Air-Source Heat Pump Part I

    SciTech Connect

    Shen, Bo

    2011-01-01

    This paper describes extensive tests performed on a 3-ton R-22 split heat pump in heating mode. The tests contain 150 steady-state performance tests, 18 cyclic tests and 18 defrost tests. During the testing work, the refrigerant charge level was varied from 70 % to 130% relative to the nominal value; the outdoor temperature was altered by three levels at 17 F (-8.3 C), 35 F (1.7 C) and 47 F (8.3 C); indoor air flow rates ranged from 60% to 150% of the rated air flow rate; and the expansion device was switched from a fixed-orifice to a thermal expansion value. Detailed performance data from the extensive steady state cyclic and defrost testing performed were presented and compared.

  20. Expanding NevCAN capabilities: monitoring cold air drainage flow along a narrow wash within a Montane to PJ ecotone

    NASA Astrophysics Data System (ADS)

    Bird, B. M.; Devitt, D.

    2012-12-01

    Cold air drainage flows are a naturally occurring physical process of mountain systems. Plant communities that exist in cold air drainage basins respond to these localized cold air trends, and have been shown to be decoupled from larger global climate weather systems. The assumption that air temperature decreases with altitude is violated within these systems and climate model results based on this assumption would ultimately be inaccurate. In arid regions, high radiation loads lead to significant long wave radiation being emitted from the ground later in the day. As incoming radiation ceases, the surface very quickly loses energy through radiative processes, leading to surface inversions and enhanced cold air drainage opportunities. This study is being conducted in the Mojave desert on Sheep Mountain located between sites 3 and 4 of the NSF EPSCoR network. Monitoring of cold air drainage was initiated in September of 2011within a narrow ravine located between the 2164 and 2350 meter elevation. We have installed 25 towers (5 towers per location situated at the central low point in a ravine and at equal distances up the sides of the ravine on both the N and S facing slopes) to assess air temperatures from 0.1 meters to a height of 3 meters at 25m intervals. Our goal is to better understand the connection between cold air movement and plant physiological response. The species monitored in this study include: Pinus ponderosa (common name: Ponderosa Pine), Pinus pinyon (Pinyon Pine), Juniperus osteosperma (Utah juniper), Cercocarpus intricatus (Mountain Mahogany) and Symphoricarpos (snowberry). Hourly air temperature measurements within the wash are being captured from 100 ibuttons placed within PVC solar radiation shields. We are also developing a modeling approach to assess the three dimensional movement of cold air over time by incorporating wind vectors captured from 5 2D sonic anemometers. Wind velocities will be paired with air temperatures to better understand