Sample records for air flow excitation

  1. Transport coefficients in high-temperature ionized air flows with electronic excitation

    NASA Astrophysics Data System (ADS)

    Istomin, V. A.; Oblapenko, G. P.

    2018-01-01

    Transport coefficients are studied in high-temperature ionized air mixtures using the modified Chapman-Enskog method. The 11-component mixture N2/N2+/N /N+/O2/O2+/O /O+/N O /N O+/e- , taking into account the rotational and vibrational degrees of freedom of molecules and electronic degrees of freedom of both atomic and molecular species, is considered. Using the PAINeT software package, developed by the authors of the paper, in wide temperature range calculations of the thermal conductivity, thermal diffusion, diffusion, and shear viscosity coefficients for an equilibrium ionized air mixture and non-equilibrium flow conditions for mixture compositions, characteristic of those in shock tube experiments and re-entry conditions, are performed. For the equilibrium air case, the computed transport coefficients are compared to those obtained using simplified kinetic theory algorithms. It is shown that neglecting electronic excitation leads to a significant underestimation of the thermal conductivity coefficient at temperatures higher than 25 000 K. For non-equilibrium test cases, it is shown that the thermal diffusion coefficients of neutral species and the self-diffusion coefficients of all species are strongly affected by the mixture composition, while the thermal conductivity coefficient is most strongly influenced by the degree of ionization of the flow. Neglecting electronic excitation causes noticeable underestimation of the thermal conductivity coefficient at temperatures higher than 20 000 K.

  2. Non-contact ultrasonic gas flow metering using air-coupled leaky Lamb waves.

    PubMed

    Fan, Zichuan; Jiang, Wentao; Wright, William M D

    2018-04-23

    This paper describes a completely non-contact ultrasonic method of gas flow metering using air-coupled leaky Lamb waves. To show proof of principle, a simplified representation of gas flow in a duct, comprising two separated thin isotropic plates with a gas flowing between them, has been modelled and investigated experimentally. An airborne compression wave emitted from an air-coupled capacitive ultrasonic transducer excited a leaky Lamb wave in the first plate in a non-contact manner. The leakage of this Lamb wave crossed the gas flow at an angle between the two plates as a compression wave, and excited a leaky Lamb wave in the second plate. An air-coupled capacitive ultrasonic transducer on the opposite side of this second plate then detected the airborne compression wave leakage from the second Lamb wave. As the gas flow shifted the wave field between the two plates, the point of Lamb wave excitation in the second plate was displaced in proportion to the gas flow rate. Two such measurements, in opposite directions, formed a completely non-contact contra-propagating Lamb wave flow meter, allowing measurement of the flow velocity between the plates. A COMSOL Multiphysics® model was used to visualize the wave fields, and accurately predicted the time differences that were then measured experimentally. Experiments using different Lamb wave frequencies and plate materials were also similarly verified. This entirely non-contact airborne approach to Lamb wave flow metering could be applied in place of clamp-on techniques in thin-walled ducts or pipes. Copyright © 2018 Elsevier B.V. All rights reserved.

  3. Analysis of UV-excited fluorochromes by flow cytometry using near-ultraviolet laser diodes.

    PubMed

    Telford, William G

    2004-09-01

    Violet laser diodes have become common and reliable laser sources for benchtop flow cytometers. While these lasers are very useful for a variety of violet and some ultraviolet-excited fluorochromes (e.g., DAPI), they do not efficiently excite most UV-stimulated probes. In this study, the next generation of InGaN near-UV laser diodes (NUVLDs) emitting in the 370-375-nm range have been evaluated as laser sources for cuvette-based flow cytometers. Several NUVLDs, ranging in wavelength from 370 to 374 nm and in power level from 1.5 to 10 mW, were mounted on a BD Biosciences LSR II and evaluated for their ability to excite cells labeled with the UV DNA binding dye DAPI, several UV phenotyping fluorochromes (including Alexa Fluor 350, Marina Blue, and quantum dots), and the fluorescent calcium chelator indo-1. NUVLDs at the 8-10-mW power range gave detection sensitivity levels comparable to more powerful solid-state and ion laser sources, using low-fluorescence microsphere beads as measurement standards. NUVLDs at all tested power levels allowed extremely high-resolution DAPI cell cycle analysis, and sources in the 8-10-mW power range excited Alexa Fluor 350, Marina Blue, and a variety of quantum dots at virtually the same signal-to-noise ratios as more powerful UV sources. These evaluations indicate that near-UV laser diodes installed on a cuvette-based flow cytometer performed nearly as well as more powerful solid-state UV lasers on the same instrumentation, and comparably to more powerful ion lasers on a jet-in-air system, and. Despite their limited power, integration of these small and inexpensive lasers into benchtop flow cytometers should allow the use of flow cytometric applications requiring UV excitation on a wide variety of instruments. Copyright 2004 Wiley-Liss, Inc.

  4. Enhanced viscous flow drag reduction using acoustic excitation

    NASA Technical Reports Server (NTRS)

    Nagel, R. T.

    1988-01-01

    Large eddy break up devices (LEBUs) constitute a promising method of obtaining drag reduction in a turbulent boundary layer. Enhancement of the LEBU effectiveness by exciting its trailing edge with acoustic waves phase locked to the large scale structure influencing the momentum transfer to the wall is sought. An initial estimate of the required sound pressure level for an effective pulse was obtained by considering the magnitude of the pressure perturbations at the near wake of a thin plate in inviscid flow. Detailed skin friction measurments were obtained in the flow region downstream of a LEBU excited with acoustic waves. The data are compared with skin friction measurements of a simply manipulated flow, without acoustic excitation and with a plain flow configuration. The properties and the scales of motion in the flow regime downstream of the acoustically excited LEBU are studied. A parametric study based upon the characteristics of the acoustic input was pursued in addition to the careful mapping of the drag reduction phenomenon within the acoustically manipulated boundary layer. This study of boundary layer manipulation has lead to improved skin friction drag reduction and further understanding of the turbulent boundary layer.

  5. Vibrational response of a rectangular duct of finite length excited by a turbulent internal flow

    NASA Astrophysics Data System (ADS)

    David, Antoine; Hugues, Florian; Dauchez, Nicolas; Perrey-Debain, Emmanuel

    2018-05-01

    Gas transport ductwork in industrial plants or air conditioning networks can be subject to vibrations induced by the internal flow. Most studies in this matter have been carried out on circular ducts. This paper focuses specifically on the vibratory response of a rectangular duct of finite length excited by an internal turbulent flow. A semi-analytical model taking into account the modal response of the structure due to both aerodynamic and acoustic contributions is derived. The aerodynamic component of the excitation is applied on the basis of Corcos model where the power spectral density of the wall pressure is determined experimentally. The acoustic component is based on the propagating modes in the duct where the acoustic modal contribution are extracted via cross-spectral densities. The vibrational response is given for a 0.2 × 0.1 × 0.5 m3 duct made of 3 mm steel plates excited by 20 m/s or 30 m/s flows. Comparisons between experimental results and numerical predictions show a good agreement. The competition between acoustic and aerodynamic components is highlighted.

  6. The Use of Air Injection Nozzles for the Forced Excitation of Axial Compressor Blades

    NASA Astrophysics Data System (ADS)

    Raubenheimer, G. A.; van der Spuy, S. J.; von Backström, T. W.

    2013-03-01

    Turbomachines are exposed to many factors which may cause failure of its components. One of these, high cycle fatigue, can be caused by blade flutter. This paper evaluates the use of an air injection nozzle as a means of exciting vibrations on the first stage rotor blades of a rotating axial compressor. Unsteady simulations of the excitation velocity perturbations were performed on the Computational Fluid Dynamics (CFD) software, Numeca FINE™/Turbo. Experimental testing on a three-stage, low Mach number axial flow compressor provided data that was used to implement boundary conditions and to verify certain aspects of the unsteady simulation results.

  7. Measurement of the resistivity of porous materials with an alternating air-flow method.

    PubMed

    Dragonetti, Raffaele; Ianniello, Carmine; Romano, Rosario A

    2011-02-01

    Air-flow resistivity is a main parameter governing the acoustic behavior of porous materials for sound absorption. The international standard ISO 9053 specifies two different methods to measure the air-flow resistivity, namely a steady-state air-flow method and an alternating air-flow method. The latter is realized by the measurement of the sound pressure at 2 Hz in a small rigid volume closed partially by the test sample. This cavity is excited with a known volume-velocity sound source implemented often with a motor-driven piston oscillating with prescribed area and displacement magnitude. Measurements at 2 Hz require special instrumentation and care. The authors suggest an alternating air-flow method based on the ratio of sound pressures measured at frequencies higher than 2 Hz inside two cavities coupled through a conventional loudspeaker. The basic method showed that the imaginary part of the sound pressure ratio is useful for the evaluation of the air-flow resistance. Criteria are discussed about the choice of a frequency range suitable to perform simplified calculations with respect to the basic method. These criteria depend on the sample thickness, its nonacoustic parameters, and the measurement apparatus as well. The proposed measurement method was tested successfully with various types of acoustic materials.

  8. Excitation of vertical coronal loop oscillations by impulsively driven flows

    NASA Astrophysics Data System (ADS)

    Kohutova, P.; Verwichte, E.

    2018-05-01

    Context. Flows of plasma along a coronal loop caused by the pressure difference between loop footpoints are common in the solar corona. Aims: We aim to investigate the possibility of excitation of loop oscillations by an impulsively driven flow triggered by an enhanced pressure in one of the loop footpoints. Methods: We carry out 2.5D magnetohydrodynamic (MHD) simulations of a coronal loop with an impulsively driven flow and investigate the properties and evolution of the resulting oscillatory motion of the loop. Results: The action of the centrifugal force associated with plasma moving at high speeds along the curved axis of the loop is found to excite the fundamental harmonic of a vertically polarised kink mode. We analyse the dependence of the resulting oscillations on the speed and kinetic energy of the flow. Conclusions: We find that flows with realistic speeds of less than 100 km s-1 are sufficient to excite oscillations with observable amplitudes. We therefore propose plasma flows as a possible excitation mechanism for observed transverse loop oscillations.

  9. Acoustically excited heated jets. 1: Internal excitation

    NASA Technical Reports Server (NTRS)

    Lepicovsky, J.; Ahuja, K. K.; Brown, W. H.; Salikuddin, M.; Morris, P. J.

    1988-01-01

    The effects of relatively strong upstream acoustic excitation on the mixing of heated jets with the surrounding air are investigated. To determine the extent of the available information on experiments and theories dealing with acoustically excited heated jets, an extensive literature survey was carried out. The experimental program consisted of flow visualization and flowfield velocity and temperature measurements for a broad range of jet operating and flow excitation conditions. A 50.8-mm-diam nozzle was used for this purpose. Parallel to the experimental study, an existing theoretical model of excited jets was refined to include the region downstream of the jet potential core. Excellent agreement was found between theory and experiment in moderately heated jets. However, the theory has not yet been confirmed for highly heated jets. It was found that the sensitivity of heated jets to upstream acoustic excitation varies strongly with the jet operating conditions and that the threshold excitation level increases with increasing jet temperature. Furthermore, the preferential Strouhal number is found not to change significantly with a change of the jet operating conditions. Finally, the effects of the nozzle exit boundary layer thickness appear to be similar for both heated and unheated jets at low Mach numbers.

  10. Numerical investigation of the air injection effect on the cavitating flow in Francis hydro turbine

    NASA Astrophysics Data System (ADS)

    Chirkov, D. V.; Shcherbakov, P. K.; Cherny, S. G.; Skorospelov, V. A.; Turuk, P. A.

    2017-09-01

    At full and over load operating points, some Francis turbines experience strong self-excited pressure and power oscillations. These oscillations are occuring due to the hydrodynamic instability of the cavitating fluid flow. In many cases, the amplitude of such pulsations may be reduced substantially during the turbine operation by the air injection/ admission below the runner. Such an effect is investigated numerically in the present work. To this end, the hybrid one-three-dimensional model of the flow of the mixture "liquid-vapor" in the duct of a hydroelectric power station, which was proposed previously by the present authors, is augmented by the second gaseous component — the noncondensable air. The boundary conditions and the numerical method for solving the equations of the model are described. To check the accuracy of computing the interface "liquid-gas", the numerical method was applied at first for solving the dam break problem. The algorithm was then used for modeling the flow in a hydraulic turbine with air injection below the runner. It is shown that with increasing flow rate of the injected air, the amplitude of pressure pulsations decreases. The mechanism of the flow structure alteration in the draft tube cone has been elucidated, which leads to flow stabilization at air injection.

  11. Parameters of the plasma of a dc pulsating discharge in a supersonic air flow

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shibkov, V. M., E-mail: shibkov@phys.msu.ru; Shibkova, L. V.; Logunov, A. A.

    A dc discharge in a cold (T = 200 K) supersonic air flow at a static pressure of 200–400 Torr was studied experimentally. The excited unsteady pulsating discharge has the form of a thin plasma channel with a diameter of ≤1 mm, stretched downstream the flow. Depending on the discharge current, the pulsation frequency varies from 800 to 1600 Hz and the electron temperature varies from 8000 to 15000 K.

  12. Closed-loop Separation Control Using Oscillatory Flow Excitation

    NASA Technical Reports Server (NTRS)

    Allan, Brian G.; Juang, Jer-Nan; Raney, David L.; Seifert, Avi; Pack, latunia G.; Brown, Donald E.

    2000-01-01

    Design and implementation of a digital feedback controller for a flow control experiment was performed. The experiment was conducted in a cryogenic pressurized wind tunnel on a generic separated configuration at a chord Reynolds number of 16 million and a Mach number of 0.25. The model simulates the upper surface of a 20% thick airfoil at zero angle-of-attack. A moderate favorable pressure gradient, up to 55% of the chord, is followed by a severe adverse pressure gradient which is relaxed towards the trailing edge. The turbulent separation bubble, behind the adverse pressure gradient, is then reduced by introducing oscillatory flow excitation just upstream of the point of flow separation. The degree of reduction in the separation region can be controlled by the amplitude of the oscillatory excitation. A feedback controller was designed to track a given trajectory for the desired degree of flow reattachment and to improve the transient behavior of the flow system. Closed-loop experiments demonstrated that the feedback controller was able to track step input commands and improve the transient behavior of the open-loop response.

  13. Optical Air Flow Measurements for Flight Tests and Flight Testing Optical Air Flow Meters

    NASA Technical Reports Server (NTRS)

    Jentink, Henk W.; Bogue, Rodney K.

    2005-01-01

    Optical air flow measurements can support the testing of aircraft and can be instrumental to in-flight investigations of the atmosphere or atmospheric phenomena. Furthermore, optical air flow meters potentially contribute as avionics systems to flight safety and as air data systems. The qualification of these instruments for the flight environment is where we encounter the systems in flight testing. An overview is presented of different optical air flow measurement techniques applied in flight and what can be achieved with the techniques for flight test purposes is reviewed. All in-flight optical airflow velocity measurements use light scattering. Light is scattered on both air molecules and aerosols entrained in the air. Basic principles of making optical measurements in flight, some basic optical concepts, electronic concepts, optoelectronic interfaces, and some atmospheric processes associated with natural aerosols are reviewed. Safety aspects in applying the technique are shortly addressed. The different applications of the technique are listed and some typical examples are presented. Recently NASA acquired new data on mountain rotors, mountain induced turbulence, with the ACLAIM system. Rotor position was identified using the lidar system and the potentially hazardous air flow profile was monitored by the ACLAIM system.

  14. Ultraviolet 320 nm laser excitation for flow cytometry.

    PubMed

    Telford, William; Stickland, Lynn; Koschorreck, Marco

    2017-04-01

    Although multiple lasers and high-dimensional analysis capability are now standard on advanced flow cytometers, ultraviolet (UV) lasers (usually 325-365 nm) remain an uncommon excitation source for cytometry. This is primarily due to their cost, and the small number of applications that require this wavelength. The development of the Brilliant Ultraviolet (BUV fluorochromes, however, has increased the importance of this formerly niche excitation wavelength. Historically, UV excitation was usually provided by water-cooled argon- and krypton-ion lasers. Modern flow cytometers primary rely on diode pumped solid state lasers emitting at 355 nm. While useful for all UV-excited applications, DPSS UV lasers are still large by modern solid state laser standards, and remain very expensive. Smaller and cheaper near UV laser diodes (NUVLDs) emitting at 375 nm make adequate substitutes for 355 nm sources in many situations, but do not work as well with very short wavelength probes like the fluorescent calcium chelator indo-1. In this study, we evaluate a newly available UV 320 nm laser for flow cytometry. While shorter in wavelength that conventional UV lasers, 320 is close to the 325 nm helium-cadmium wavelength used in the past on early benchtop cytometers. A UV 320 nm laser was found to excite almost all Brilliant Ultraviolet dyes to nearly the same level as 355 nm sources. Both 320 nm and 355 nm sources worked equally well for Hoechst and DyeCycle Violet side population analysis of stem cells in mouse hematopoetic tissue. The shorter wavelength UV source also showed excellent excitation of indo-1, a probe that is not compatible with NUVLD 375 nm sources. In summary, a 320 nm laser module made a suitable substitute for conventional 355 nm sources. This laser technology is available in a smaller form factor than current 355 nm units, making it useful for small cytometers with space constraints. © 2017 International Society for Advancement of Cytometry. © 2017 International

  15. Control of flow separation and mixing by aerodynamic excitation

    NASA Technical Reports Server (NTRS)

    Rice, Edward J.; Abbott, John M.

    1990-01-01

    The recent research in the control of shear flows using unsteady aerodynamic excitation conducted at the NASA Lewis Research Center is reviewed. The program is of a fundamental nature, concentrating on the physics of the unsteady aerodynamic processes. This field of research is a fairly new development with great promise in the areas of enhanced mixing and flow separation control. Enhanced mixing research includes influence of core turbulence, forced pairing of coherent structures, and saturation of mixing enhancement. Separation flow control studies included are for a two-dimensional diffuser, conical diffusers, and single airfoils. Ultimate applications include aircraft engine inlet flow control at high angle of attack, wide angle diffusers, highly loaded airfoils as in turbomachinery, and ejector/suppressor nozzles for the supersonic transport. An argument involving the Coanda Effect is made that all of the above mentioned application areas really only involve forms of shear layer mixing enhancement. The program also includes the development of practical excitation devices which might be used in aircraft applications.

  16. Analysis of particle in liquid using excitation-fluorescence spectral flow cytometer

    NASA Astrophysics Data System (ADS)

    Takenaka, Kei; Togashi, Shigenori

    2018-01-01

    We have developed a new flow cytometer that can measure the excitation-fluorescence spectra of a single particle. This system consists of a solution-transmitting unit and an optical unit. The solution-transmitting unit allows a sample containing particles to flow through the center of a flow cell by hydrodynamic focusing. The optical unit irradiates particles with dispersed white light (wavelength band: 400-650 nm) along the flow direction and measures their fluorescence spectra (wavelength band: 400-700 nm) using a spectroscopic photodetector array. The fluorescence spectrum of a particle changes with the shift of the wavelength of the excitation light. Using this system, the excitation-fluorescence spectra of a fluorescent particle were measured. Additionally, a homogenized tomato suspension and a homogenized spinach suspension were measured using the system. Measurement results show that it is possible to determine the components of vegetables by comparing measured fluorescence spectra of particles in a vegetable suspension.

  17. Numerical simulation of seismic wave propagation from land-excited large volume air-gun source

    NASA Astrophysics Data System (ADS)

    Cao, W.; Zhang, W.

    2017-12-01

    The land-excited large volume air-gun source can be used to study regional underground structures and to detect temporal velocity changes. The air-gun source is characterized by rich low frequency energy (from bubble oscillation, 2-8Hz) and high repeatability. It can be excited in rivers, reservoirs or man-made pool. Numerical simulation of the seismic wave propagation from the air-gun source helps to understand the energy partitioning and characteristics of the waveform records at stations. However, the effective energy recorded at a distance station is from the process of bubble oscillation, which can not be approximated by a single point source. We propose a method to simulate the seismic wave propagation from the land-excited large volume air-gun source by finite difference method. The process can be divided into three parts: bubble oscillation and source coupling, solid-fluid coupling and the propagation in the solid medium. For the first part, the wavelet of the bubble oscillation can be simulated by bubble model. We use wave injection method combining the bubble wavelet with elastic wave equation to achieve the source coupling. Then, the solid-fluid boundary condition is implemented along the water bottom. And the last part is the seismic wave propagation in the solid medium, which can be readily implemented by the finite difference method. Our method can get accuracy waveform of land-excited large volume air-gun source. Based on the above forward modeling technology, we analysis the effect of the excited P wave and the energy of converted S wave due to different water shapes. We study two land-excited large volume air-gun fields, one is Binchuan in Yunnan, and the other is Hutubi in Xinjiang. The station in Binchuan, Yunnan is located in a large irregular reservoir, the waveform records have a clear S wave. Nevertheless, the station in Hutubi, Xinjiang is located in a small man-made pool, the waveform records have very weak S wave. Better understanding of

  18. Analysis of violet-excited fluorochromes by flow cytometry using a violet laser diode.

    PubMed

    Telford, William G; Hawley, Teresa S; Hawley, Robert G

    2003-07-01

    Low power violet laser diodes (VLDs) have been evaluated as potential replacements for water-cooled argon-ion and krypton-ion ultraviolet and violet lasers for DNA content analysis using the Hoechst dyes and 4,6-diamidino-2-phenylindole (Shapiro HMN, Perlmutter NG: Cytometry 44:133-136, 2001). In this study, we used a VLD to excite a variety of violet-excited fluorescent molecules important in biomedical analysis, including the fluorochromes Cascade Blue and Pacific Blue, the expressible fluorescent protein cyan fluorescent protein (CFP), and the fluorogenic alkaline phosphatase (AP) substrate 2-(5'-chloro-2'-phosphoryloxyphenyl)-6-chloro-4-(3H)-quinazoline (ELF-97; for endogenous AP detection and cell surface labeling with AP-conjugated antibodies). Comparisons were made between VLD excitation and a krypton-ion laser emitting at 407 nm (both at higher power levels and with the beam attenuated at levels approximating the VLD) on the same FACSVantage SE stream-in-air flow cytometer. We evaluated a Power Technology 408-nm VLD (30 mW) equipped with circularization optics (18 mW maximum output, set to 15 mW) and a Coherent I-302C krypton-ion laser emitting at power levels ranging from 15 to 75 mW. Cascade Blue, Pacific Blue, and CFP showed comparable signal-to-noise ratios and levels of sensitivity with VLD excitation versus the krypton-ion laser at high and VLD-matched power outputs. Multicolor fluorescent protein analysis with 488-nm excitation of green fluorescent protein and DsRed and VLD excitation of CFP was therefore feasible and was demonstrated. Similar levels of excitation efficiency between krypton-ion and VLD sources also were observed for ELF-97 detection. These evaluations confirmed that VLDs may be cost- and maintenance-effective replacements for water-cooled gas lasers for applications requiring violet excitation in addition to DNA binding dyes. Published 2003 Wiley-Liss, Inc.

  19. Contact resonance atomic force microscopy imaging in air and water using photothermal excitation.

    PubMed

    Kocun, Marta; Labuda, Aleksander; Gannepalli, Anil; Proksch, Roger

    2015-08-01

    Contact Resonance Force Microscopy (CR-FM) is a leading atomic force microscopy technique for measuring viscoelastic nano-mechanical properties. Conventional piezo-excited CR-FM measurements have been limited to imaging in air, since the "forest of peaks" frequency response associated with acoustic excitation methods effectively masks the true cantilever resonance. Using photothermal excitation results in clean contact, resonance spectra that closely match the ideal frequency response of the cantilever, allowing unambiguous and simple resonance frequency and quality factor measurements in air and liquids alike. This extends the capabilities of CR-FM to biologically relevant and other soft samples in liquid environments. We demonstrate CR-FM in air and water on both stiff silicon/titanium samples and softer polystyrene-polyethylene-polypropylene polymer samples with the quantitative moduli having very good agreement between expected and measured values.

  20. Coherent motion in excited free shear flows

    NASA Technical Reports Server (NTRS)

    Wygnanski, Israel J.; Petersen, Robert A.

    1987-01-01

    The application of the inviscid instability approach to externally excited turbulent free shear flows at high Reynolds numbers is explored. Attention is given to the cases of a small-deficit plane turbulent wake, a plane turbulent jet, an axisymmetric jet, the nonlinear evolution of instabilities in free shear flows, the concept of the 'preferred mode', vortex pairing in turbulent mixing layers, and experimental results for the control of free turbulent shear layers. The special features often attributed to pairing or to the preferred mode are found to be difficult to comprehend; the concept of feedback requires further substantiation in the case of incompressible flow.

  1. Contact resonance atomic force microscopy imaging in air and water using photothermal excitation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kocun, Marta; Labuda, Aleksander; Gannepalli, Anil

    2015-08-15

    Contact Resonance Force Microscopy (CR-FM) is a leading atomic force microscopy technique for measuring viscoelastic nano-mechanical properties. Conventional piezo-excited CR-FM measurements have been limited to imaging in air, since the “forest of peaks” frequency response associated with acoustic excitation methods effectively masks the true cantilever resonance. Using photothermal excitation results in clean contact, resonance spectra that closely match the ideal frequency response of the cantilever, allowing unambiguous and simple resonance frequency and quality factor measurements in air and liquids alike. This extends the capabilities of CR-FM to biologically relevant and other soft samples in liquid environments. We demonstrate CR-FM inmore » air and water on both stiff silicon/titanium samples and softer polystyrene-polyethylene-polypropylene polymer samples with the quantitative moduli having very good agreement between expected and measured values.« less

  2. 40 CFR 89.414 - Air flow measurement specifications.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 21 2013-07-01 2013-07-01 false Air flow measurement specifications. 89.414 Section 89.414 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Emission Test Procedures § 89.414 Air flow measurement specifications. (a) The air flow measurement method...

  3. 40 CFR 89.414 - Air flow measurement specifications.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 21 2012-07-01 2012-07-01 false Air flow measurement specifications. 89.414 Section 89.414 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Emission Test Procedures § 89.414 Air flow measurement specifications. (a) The air flow measurement method...

  4. 40 CFR 89.414 - Air flow measurement specifications.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Air flow measurement specifications. 89.414 Section 89.414 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Emission Test Procedures § 89.414 Air flow measurement specifications. (a) The air flow measurement method...

  5. 40 CFR 89.414 - Air flow measurement specifications.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 20 2011-07-01 2011-07-01 false Air flow measurement specifications. 89.414 Section 89.414 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Emission Test Procedures § 89.414 Air flow measurement specifications. (a) The air flow measurement method...

  6. 40 CFR 89.414 - Air flow measurement specifications.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 20 2014-07-01 2013-07-01 true Air flow measurement specifications. 89.414 Section 89.414 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS... Test Procedures § 89.414 Air flow measurement specifications. (a) The air flow measurement method used...

  7. Investigations on the self-excited oscillations in a kerosene spray flame

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    de la Cruz Garcia, M.; Mastorakos, E.; Dowling, A.P.

    2009-02-15

    A laboratory scale gas turbine type burner at atmospheric pressure and with air preheat was operated with aviation kerosene Jet-A1 injected from a pressure atomiser. Self-excited oscillations were observed and analysed to understand better the relationship between the spray and thermo-acoustic oscillations. The fluctuations of CH{sup *} chemiluminescence measured simultaneously with the pressure were used to determine the flame transfer function. The Mie scattering technique was used to record spray fluctuations in reacting conditions with a high speed camera. Integrating the Mie intensity over the imaged region gave a temporal signal acquired simultaneously with pressure fluctuations and the transfer functionmore » between the light scattered from the spray and the velocity fluctuations in the plenum was evaluated. Phase Doppler anemometry was used for axial velocity and drop size measurements at different positions downstream the injection plane and for various operating conditions. Pressure spectra showed peaks at a frequency that changed with air mass flow rate. The peak for low air mass flow rate operation was at 220 Hz and was associated with a resonance of the supply plenum. At the same global equivalence ratio but at high air mass flow rates, the pressure spectrum peak was at 323 Hz, a combustion chamber resonant frequency. At low air flow rates, the spray fluctuation motion was pronounced and followed the frequency of the pressure oscillation. At high air flow rates, more effective evaporation resulted in a complete disappearance of droplets at an axial distance of about 1/3 burner diameters from the injection plane, leading to a different flame transfer function and frequency of the self-excited oscillation. The results highlight the sensitivity of the self-excited oscillation to the degree of mixing achieved before the main recirculation zone. (author)« less

  8. 40 CFR 1065.225 - Intake-air flow meter.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... flow meter. (a) Application. You may use an intake-air flow meter in combination with a chemical..., you may use an intake-air flow meter signal that does not give the actual value of raw exhaust, as... requirements. We recommend that you use an intake-air flow meter that meets the specifications in Table 1 of...

  9. Natural Flow Air Cooled Photovoltaics

    NASA Astrophysics Data System (ADS)

    Tanagnostopoulos, Y.; Themelis, P.

    2010-01-01

    Our experimental study aims to investigate the improvement in the electrical performance of a photovoltaic installation on buildings through cooling of the photovoltaic panels with natural air flow. Our experimental study aims to investigate the improvement in the electrical performance of a photovoltaic installation on buildings through cooling of the photovoltaic panels with natural air flow. We performed experiments using a prototype based on three silicon photovoltaic modules placed in series to simulate a typical sloping building roof with photovoltaic installation. In this system the air flows through a channel on the rear side of PV panels. The potential for increasing the heat exchange from the photovoltaic panel to the circulating air by the addition of a thin metal sheet (TMS) in the middle of air channel or metal fins (FIN) along the air duct was examined. The operation of the device was studied with the air duct closed tightly to avoid air circulation (CLOSED) and the air duct open (REF), with the thin metal sheet (TMS) and with metal fins (FIN). In each case the experiments were performed under sunlight and the operating parameters of the experimental device determining the electrical and thermal performance of the system were observed and recorded during a whole day and for several days. We collected the data and form PV panels from the comparative diagrams of the experimental results regarding the temperature of solar cells, the electrical efficiency of the installation, the temperature of the back wall of the air duct and the temperature difference in the entrance and exit of the air duct. The comparative results from the measurements determine the improvement in electrical performance of the photovoltaic cells because of the reduction of their temperature, which is achieved by the naturally circulating air.

  10. 40 CFR 91.416 - Intake air flow measurement specifications.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Intake air flow measurement... Procedures § 91.416 Intake air flow measurement specifications. (a) If used, the engine intake air flow measurement method used must have a range large enough to accurately measure the air flow over the engine...

  11. Air-flow regulation system for a coal gasifier

    DOEpatents

    Fasching, George E.

    1984-01-01

    An improved air-flow regulator for a fixed-bed coal gasifier is provided which allows close air-flow regulation from a compressor source even though the pressure variations are too rapid for a single primary control loop to respond. The improved system includes a primary controller to control a valve in the main (large) air supply line to regulate large slow changes in flow. A secondary controller is used to control a smaller, faster acting valve in a secondary (small) air supply line parallel to the main line valve to regulate rapid cyclic deviations in air flow. A low-pass filter with a time constant of from 20 to 50 seconds couples the output of the secondary controller to the input of the primary controller so that the primary controller only responds to slow changes in the air-flow rate, the faster, cyclic deviations in flow rate sensed and corrected by the secondary controller loop do not reach the primary controller due to the high frequency rejection provided by the filter. This control arrangement provides at least a factor of 5 improvement in air-flow regulation for a coal gasifier in which air is supplied by a reciprocating compressor through a surge tank.

  12. Changes in air flow patterns using surfactants and thickeners during air sparging: bench-scale experiments.

    PubMed

    Kim, Juyoung; Kim, Heonki; Annable, Michael D

    2015-01-01

    Air injected into an aquifer during air sparging normally flows upward according to the pressure gradients and buoyancy, and the direction of air flow depends on the natural hydrogeologic setting. In this study, a new method for controlling air flow paths in the saturated zone during air sparging processes is presented. Two hydrodynamic parameters, viscosity and surface tension of the aqueous phase in the aquifer, were altered using appropriate water-soluble reagents distributed before initiating air sparging. Increased viscosity retarded the travel velocity of the air front during air sparging by modifying the viscosity ratio. Using a one-dimensional column packed with water-saturated sand, the velocity of air intrusion into the saturated region under a constant pressure gradient was inversely proportional to the viscosity of the aqueous solution. The air flow direction, and thus the air flux distribution was measured using gaseous flux meters placed at the sand surface during air sparging experiments using both two-, and three-dimensional physical models. Air flow was found to be influenced by the presence of an aqueous patch of high viscosity or suppressed surface tension in the aquifer. Air flow was selective through the low-surface tension (46.5 dyn/cm) region, whereas an aqueous patch of high viscosity (2.77 cP) was as an effective air flow barrier. Formation of a low-surface tension region in the target contaminated zone in the aquifer, before the air sparging process is inaugurated, may induce air flow through the target zone maximizing the contaminant removal efficiency of the injected air. In contrast, a region with high viscosity in the air sparging influence zone may minimize air flow through the region prohibiting the region from de-saturating. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. Air conditioning system and component therefore distributing air flow from opposite directions

    NASA Technical Reports Server (NTRS)

    Obler, H. D.; Bauer, H. B. (Inventor)

    1974-01-01

    The air conditioning system comprises a plurality of separate air conditioning units coupled to a common supply duct such that air may be introduced into the supply duct in two opposite flow directions. A plurality of outlets such as registers or auxiliary or branch ducts communicate with the supply duct and valve means are disposed in the supply duct at at least some of the outlets for automatically channelling a controllable amount of air from the supply duct to the associated outlet regardless of the direction of air flow within the supply duct. The valve means comprises an automatic air volume control apparatus for distribution within the air supply duct into which air may be introduced from two opposite directions. The apparatus incorporates a freely swinging movable vane in the supply duct to automatically channel into the associated outlet only the deflected air flow which has the higher relative pressure.

  14. Needle-array to Plate DBD Plasma Using Sine AC and Nanosecond Pulse Excitations for Purpose of Improving Indoor Air Quality

    PubMed Central

    Zhang, Li; Yang, Dezheng; Wang, Wenchun; Wang, Sen; Yuan, Hao; Zhao, Zilu; Sang, Chaofeng; Jia, Li

    2016-01-01

    In this study, needle-array to plate electrode configuration was employed to generate an atmospheric air diffuse discharge using both nanosecond pulse and sine AC voltage as excitation voltage for the purpose of improving indoor air quality. Different types of voltage sources and electrode configurations are employed to optimize electrical field distribution and improve discharge stability. Discharge images, electrical characteristics, optical emission spectra, and plasma gas temperatures in both sine AC discharge and nanosecond pulse discharge were compared and the discharge stability during long operating time were discussed. Compared with the discharge excited by sine AC voltage, the nanosecond pulsed discharge is more homogenous and stable, besides, the plasma gas temperature of nanosecond pulse discharge is much lower. Using packed-bed structure, where γ- Al2O3 pellets are filled in the electrode gap, has obvious efficacy in the production of homogenous discharge. Furthermore, both sine AC discharge and nanosecond pulse discharge were used for removing formaldehyde from flowing air. It shows that nanosecond pulse discharge has a significant advantage in energy cost. And the main physiochemical processes for the generation of active species and the degradation of formaldehyde were discussed. PMID:27125663

  15. Large-volume excitation of air, argon, nitrogen and combustible mixtures by thermal jets produced by nanosecond spark discharges

    NASA Astrophysics Data System (ADS)

    Stepanyan, Sergey; Hayashi, Jun; Salmon, Arthur; Stancu, Gabi D.; Laux, Christophe O.

    2017-04-01

    This work presents experimental observations of strong expanding thermal jets following the application of nanosecond spark discharges. These jets propagate in a toroidal shape perpendicular to the interelectrode axis, with high velocities of up to 30 m s-1 and over distances of the order of a cm. Their propagation length is much larger than the thermal expansion region produced by the conventional millisecond sparks used in car engine ignition, thus greatly improving the volumetric excitation of gas mixtures. The shape and velocity of the jets is found to be fairly insensitive to the shape of the electrodes. In addition, their spatial extent is found to increase with the number of nanosecond sparks and with the discharge voltage, and to decrease slightly with the pressure between 1 and 7 atm at constant applied voltage. Finally, this thermal jet phenomenon is observed in experiments conducted with many types of gas mixtures, including air, nitrogen, argon, and combustible CH4/air mixtures. This makes nanosecond repetitively pulsed discharges particularly attractive for aerodynamic flow control or plasma-assisted combustion because of their ability to excite large volumes of gas, typically about 100 times the volume of the discharge.

  16. Combustor air flow control method for fuel cell apparatus

    DOEpatents

    Clingerman, Bruce J.; Mowery, Kenneth D.; Ripley, Eugene V.

    2001-01-01

    A method for controlling the heat output of a combustor in a fuel cell apparatus to a fuel processor where the combustor has dual air inlet streams including atmospheric air and fuel cell cathode effluent containing oxygen depleted air. In all operating modes, an enthalpy balance is provided by regulating the quantity of the air flow stream to the combustor to support fuel cell processor heat requirements. A control provides a quick fast forward change in an air valve orifice cross section in response to a calculated predetermined air flow, the molar constituents of the air stream to the combustor, the pressure drop across the air valve, and a look up table of the orifice cross sectional area and valve steps. A feedback loop fine tunes any error between the measured air flow to the combustor and the predetermined air flow.

  17. Characteristics of coal mine ventilation air flows.

    PubMed

    Su, Shi; Chen, Hongwei; Teakle, Philip; Xue, Sheng

    2008-01-01

    Coal mine methane (CMM) is not only a greenhouse gas but also a wasted energy resource if not utilised. Underground coal mining is by far the most important source of fugitive methane emissions, and approximately 70% of all coal mining related methane is emitted to the atmosphere through mine ventilation air. Therefore, research and development on mine methane mitigation and utilisation now focuses on methane emitted from underground coal mines, in particular ventilation air methane (VAM) capture and utilisation. To date, most work has focused on the oxidation of very low concentration methane. These processes may be classified based on their combustion kinetic mechanisms into thermal oxidation and catalytic oxidation. VAM mitigation/utilisation technologies are generally divided into two basic categories: ancillary uses and principal uses. However, it is possible that the characteristics of ventilation air flows, for example the variations in methane concentration and the presence of certain compounds, which have not been reported so far, could make some potential VAM mitigation and utilisation technologies unfeasible if they cannot cope with the characteristics of mine site ventilation air flows. Therefore, it is important to understand the characteristics of mine ventilation air flows. Moreover, dust, hydrogen sulphide, sulphur dioxide, and other possible compounds emitted through mine ventilation air into the atmosphere are also pollutants. Therefore, this paper presents mine-site experimental results on the characteristics of mine ventilation air flows, including methane concentration and its variations, dust loadings, particle size, mineral matter of the dust, and other compounds in the ventilation air flows. The paper also discusses possible correlations between ventilation air characteristics and underground mining activities.

  18. 30 CFR 57.22213 - Air flow (III mines).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Air flow (III mines). 57.22213 Section 57.22213... Methane in Metal and Nonmetal Mines Ventilation § 57.22213 Air flow (III mines). The quantity of air... longwall and continuous miner sections. The quantity of air across each face at a work place shall be at...

  19. 30 CFR 57.22213 - Air flow (III mines).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Air flow (III mines). 57.22213 Section 57.22213... Methane in Metal and Nonmetal Mines Ventilation § 57.22213 Air flow (III mines). The quantity of air... longwall and continuous miner sections. The quantity of air across each face at a work place shall be at...

  20. Transport coefficients and heat fluxes in non-equilibrium high-temperature flows with electronic excitation

    NASA Astrophysics Data System (ADS)

    Istomin, V. A.; Kustova, E. V.

    2017-02-01

    The influence of electronic excitation on transport processes in non-equilibrium high-temperature ionized mixture flows is studied. Two five-component mixtures, N 2 / N2 + / N / N + / e - and O 2 / O2 + / O / O + / e - , are considered taking into account the electronic degrees of freedom for atomic species as well as the rotational-vibrational-electronic degrees of freedom for molecular species, both neutral and ionized. Using the modified Chapman-Enskog method, the transport coefficients (thermal conductivity, shear viscosity and bulk viscosity, diffusion and thermal diffusion) are calculated in the temperature range 500-50 000 K. Thermal conductivity and bulk viscosity coefficients are strongly affected by electronic states, especially for neutral atomic species. Shear viscosity, diffusion, and thermal diffusion coefficients are not sensible to electronic excitation if the size of excited states is assumed to be constant. The limits of applicability for the Stokes relation are discussed; at high temperatures, this relation is violated not only for molecular species but also for electronically excited atomic gases. Two test cases of strongly non-equilibrium flows behind plane shock waves corresponding to the spacecraft re-entry (Hermes and Fire II) are simulated numerically. Fluid-dynamic variables and heat fluxes are evaluated in gases with electronic excitation. In inviscid flows without chemical-radiative coupling, the flow-field is weakly affected by electronic states; however, in viscous flows, their influence can be more important, in particular, on the convective heat flux. The contribution of different dissipative processes to the heat transfer is evaluated as well as the effect of reaction rate coefficients. The competition of diffusion and heat conduction processes reduces the overall effect of electronic excitation on the convective heating, especially for the Fire II test case. It is shown that reliable models of chemical reaction rates are of great

  1. 40 CFR 1065.225 - Intake-air flow meter.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 33 2014-07-01 2014-07-01 false Intake-air flow meter. 1065.225 Section 1065.225 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS ENGINE-TESTING PROCEDURES Measurement Instruments Flow-Related Measurements § 1065.225 Intake-air...

  2. 40 CFR 1065.225 - Intake-air flow meter.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 34 2013-07-01 2013-07-01 false Intake-air flow meter. 1065.225 Section 1065.225 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS ENGINE-TESTING PROCEDURES Measurement Instruments Flow-Related Measurements § 1065.225 Intake-air...

  3. 40 CFR 1065.225 - Intake-air flow meter.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 33 2011-07-01 2011-07-01 false Intake-air flow meter. 1065.225 Section 1065.225 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS ENGINE-TESTING PROCEDURES Measurement Instruments Flow-Related Measurements § 1065.225 Intake-air...

  4. 40 CFR 90.416 - Intake air flow measurement specifications.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Intake air flow measurement... Gaseous Exhaust Test Procedures § 90.416 Intake air flow measurement specifications. (a) If used, the engine intake air flow measurement method used must have a range large enough to accurately measure the...

  5. Excitation of nonlinear wave patterns in flowing complex plasmas

    NASA Astrophysics Data System (ADS)

    Jaiswal, S.; Bandyopadhyay, P.; Sen, A.

    2018-01-01

    We describe experimental observations of nonlinear wave structures excited by a supersonic mass flow of dust particles over an electrostatic potential hill in a dusty plasma medium. The experiments have been carried out in a Π- shaped experimental (DPEx) device in which micron sized Kaolin particles are embedded in a DC glow discharge Argon plasma. An equilibrium dust cloud is formed by maintaining the pumping speed and gas flow rate and the dust flow is induced either by suddenly reducing the height of a potential hill or by suddenly reducing the gas flow rate. For a supersonic flow of the dust fluid precursor solitons are seen to propagate in the upstream direction while wake structures propagate in the downstream direction. For flow speeds with a Mach number greater than 2 the dust particles flowing over the potential hill give rise to dispersive dust acoustic shock waves. The experimental results compare favorably with model theories based on forced K-dV and K-dV Burger's equations.

  6. [Application of laminar air flow techniques in burn treatment].

    PubMed

    Chen, Hua-de; Lai, Wen; Zheng, Shao-yi; Gao, Hui; Xiong, Bing; Bian, Hui-ning; Liu, Zuo-An; Wei, Li-jun

    2005-12-01

    To evaluate the value of laminar flow in the treatment of burns. The air in the laminar flow chamber and the wound tissues of the patients were sampled for bacterial detection. The number and stains of bacterial colony from different classes of laminar air flow chambers at different time points were inspected and compared. The bacterial number was 0 in the laminar flow chamber of 1000 grade, which was obviously different from that in the public area. The mortality was obviously decreased in the laminar air flow chamber with shorter treatment time and hospitalization. No wound infection occurred and the wounds healed smoothly in all these patients. The application of laminar air flow can be helpful for the treatment of severe burns.

  7. Investigations on the Aerodynamic Characteristics and Blade Excitations of the Radial Turbine with Pulsating Inlet Flow

    NASA Astrophysics Data System (ADS)

    Liu, Yixiong; Yang, Ce; Yang, Dengfeng; Zhang, Rui

    2016-04-01

    The aerodynamic performance, detailed unsteady flow and time-based excitations acting on blade surfaces of a radial flow turbine have been investigated with pulsation flow condition. The results show that the turbine instantaneous performance under pulsation flow condition deviates from the quasi-steady value significantly and forms obvious hysteretic loops around the quasi-steady conditions. The detailed analysis of unsteady flow shows that the characteristic of pulsation flow field in radial turbine is highly influenced by the pulsation inlet condition. The blade torque, power and loading fluctuate with the inlet pulsation wave in a pulse period. For the blade excitations, the maximum and the minimum blade excitations conform to the wave crest and wave trough of the inlet pulsation, respectively, in time-based scale. And toward blade chord direction, the maximum loading distributes along the blade leading edge until 20% chord position and decreases from the leading to trailing edge.

  8. Effect of air flow on tubular solar still efficiency

    PubMed Central

    2013-01-01

    Background An experimental work was reported to estimate the increase in distillate yield for a compound parabolic concentrator-concentric tubular solar still (CPC-CTSS). The CPC dramatically increases the heating of the saline water. A novel idea was proposed to study the characteristic features of CPC for desalination to produce a large quantity of distillate yield. A rectangular basin of dimension 2 m × 0.025 m × 0.02 m was fabricated of copper and was placed at the focus of the CPC. This basin is covered by two cylindrical glass tubes of length 2 m with two different diameters of 0.02 m and 0.03 m. The experimental study was operated with two modes: without and with air flow between inner and outer tubes. The rate of air flow was fixed throughout the experiment at 4.5 m/s. On the basis of performance results, the water collection rate was 1445 ml/day without air flow and 2020 ml/day with air flow and the efficiencies were 16.2% and 18.9%, respectively. Findings The experimental study was operated with two modes: without and with air flow between inner and outer tubes. The rate of air flow was fixed throughout the experiment at 4.5 m/s. Conclusions On the basis of performance results, the water collection rate was 1445 ml/day without air flow and 2020 ml/day with air flow and the efficiencies were 16.2% and 18.9%, respectively. PMID:23587020

  9. Effect of air flow on tubular solar still efficiency.

    PubMed

    Thirugnanasambantham, Arunkumar; Rajan, Jayaprakash; Ahsan, Amimul; Kandasamy, Vinothkumar

    2013-01-01

    An experimental work was reported to estimate the increase in distillate yield for a compound parabolic concentrator-concentric tubular solar still (CPC-CTSS). The CPC dramatically increases the heating of the saline water. A novel idea was proposed to study the characteristic features of CPC for desalination to produce a large quantity of distillate yield. A rectangular basin of dimension 2 m × 0.025 m × 0.02 m was fabricated of copper and was placed at the focus of the CPC. This basin is covered by two cylindrical glass tubes of length 2 m with two different diameters of 0.02 m and 0.03 m. The experimental study was operated with two modes: without and with air flow between inner and outer tubes. The rate of air flow was fixed throughout the experiment at 4.5 m/s. On the basis of performance results, the water collection rate was 1445 ml/day without air flow and 2020 ml/day with air flow and the efficiencies were 16.2% and 18.9%, respectively. THE EXPERIMENTAL STUDY WAS OPERATED WITH TWO MODES: without and with air flow between inner and outer tubes. The rate of air flow was fixed throughout the experiment at 4.5 m/s. On the basis of performance results, the water collection rate was 1445 ml/day without air flow and 2020 ml/day with air flow and the efficiencies were 16.2% and 18.9%, respectively.

  10. 30 CFR 57.22213 - Air flow (III mines).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Air flow (III mines). 57.22213 Section 57.22213... Methane in Metal and Nonmetal Mines Ventilation § 57.22213 Air flow (III mines). The quantity of air coursed through the last open crosscut in pairs or sets of entries, or through other ventilation openings...

  11. Shear layer excitation, experiment versus theory

    NASA Technical Reports Server (NTRS)

    Bechert, D. W.; Stahl, B.

    1984-01-01

    The acoustical excitation of shear layers is investigated. Acoustical excitation causes the so-called orderly structures in shear layers and jets. Also, the deviations in the spreading rate between different shear layer experiments are due to the same excitation mechanism. Measurements in the linear interaction region close to the edge from which the shear layer is shed are examined. Two sets of experiments (Houston 1981 and Berlin 1983/84) are discussed. The measurements were carried out with shear layers in air using hot wire anemometers and microphones. The agreement between these measurements and the theory is good. Even details of the fluctuating flow field correspond to theoretical predictions, such as the local occurrence of negative phase speeds.

  12. Mobility power flow analysis of an L-shaped plate structure subjected to acoustic excitation

    NASA Technical Reports Server (NTRS)

    Cuschieri, J. M.

    1989-01-01

    An analytical investigation based on the Mobility Power Flow method is presented for the determination of the vibrational response and power flow for two coupled flat plate structures in an L-shaped configuration, subjected to acoustical excitation. The principle of the mobility power flow method consists of dividing the global structure into a series of subsystems coupled together using mobility functions. Each separate subsystem is analyzed independently to determine the structural mobility functions for the junction and excitation locations. The mobility functions, together with the characteristics of the junction between the subsystems, are then used to determine the response of the global structure and the power flow. In the coupled plate structure considered here, mobility power flow expressions are derived for excitation by an incident acoustic plane wave. In this case, the forces (acoustic pressures) acting on the structure are dependent on the response of the structure because of the scattered pressure component. The interaction between the structure and the fluid leads to the derivation of a corrected mode shape for the plates' normal surface velocity and also for the structure mobility functions. The determination of the scattered pressure components in the expressions for the power flow represents an additional component in the power flow balance for the source plate and the receiver plate. This component represents the radiated acoustical power from the plate structure.

  13. En route air traffic flow simulation.

    DOT National Transportation Integrated Search

    1971-01-01

    The report covers the conception, design, development, and initial implementation of an advanced simulation technique applied to a study of national air traffic flow and its control by En Route Air Route Traffic Control Centers (ARTCC). It is intende...

  14. Analysis of the stochastic excitability in the flow chemical reactor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bashkirtseva, Irina

    2015-11-30

    A dynamic model of the thermochemical process in the flow reactor is considered. We study an influence of the random disturbances on the stationary regime of this model. A phenomenon of noise-induced excitability is demonstrated. For the analysis of this phenomenon, a constructive technique based on the stochastic sensitivity functions and confidence domains is applied. It is shown how elaborated technique can be used for the probabilistic analysis of the generation of mixed-mode stochastic oscillations in the flow chemical reactor.

  15. Analysis of the stochastic excitability in the flow chemical reactor

    NASA Astrophysics Data System (ADS)

    Bashkirtseva, Irina

    2015-11-01

    A dynamic model of the thermochemical process in the flow reactor is considered. We study an influence of the random disturbances on the stationary regime of this model. A phenomenon of noise-induced excitability is demonstrated. For the analysis of this phenomenon, a constructive technique based on the stochastic sensitivity functions and confidence domains is applied. It is shown how elaborated technique can be used for the probabilistic analysis of the generation of mixed-mode stochastic oscillations in the flow chemical reactor.

  16. Oscillatory Excitation of Unsteady Compressible Flows over Airfoils at Flight Reynolds Numbers

    NASA Technical Reports Server (NTRS)

    Seifert, Avi; Pack, LaTunia G.

    1999-01-01

    An experimental investigation, aimed at delaying flow separation due to the occurrence of a shock-wave-boundary-layer interaction, is reported. The experiment was performed using a NACA 0012 airfoil and a NACA 0015 airfoil at high Reynolds number incompressible and compressible flow conditions. The effects of Mach and Reynolds numbers were identified, using the capabilities of the cryogenic-pressurized facility to maintain one parameter fixed and change the other. Significant Reynolds number effects were identified in the baseline compressible flow conditions even at Reynolds number of 10 and 20 million. The main objectives of the experiment were to study the effects of periodic excitation on airfoil drag-divergence and to alleviate the severe unsteadiness associated with shock-induced separation (known as "buffeting"). Zero-mass-flux oscillatory blowing was introduced through a downstream directed slot located at 10% chord on the upper surface of the NACA 0015 airfoil. The effective frequencies generated 2-4 vortices over the separated region, regardless of the Mach number. Even though the excitation was introduced upstream of the shock-wave, due to experimental limitations, it had pronounced effects downstream of it. Wake deficit (associated with drag) and unsteadiness (associated with buffeting) were significantly reduced. The spectral content of the wake pressure fluctuations indicates of steadier flow throughout the frequency range when excitation was applied. This is especially important at low frequencies which are more likely to interact with the airframe.

  17. Monte Carlo calculations of diatomic molecule gas flows including rotational mode excitation

    NASA Technical Reports Server (NTRS)

    Yoshikawa, K. K.; Itikawa, Y.

    1976-01-01

    The direct simulation Monte Carlo method was used to solve the Boltzmann equation for flows of an internally excited nonequilibrium gas, namely, of rotationally excited homonuclear diatomic nitrogen. The semi-classical transition probability model of Itikawa was investigated for its ability to simulate flow fields far from equilibrium. The behavior of diatomic nitrogen was examined for several different nonequilibrium initial states that are subjected to uniform mean flow without boundary interactions. A sample of 1000 model molecules was observed as the gas relaxed to a steady state starting from three specified initial states. The initial states considered are: (1) complete equilibrium, (2) nonequilibrium, equipartition (all rotational energy states are assigned the mean energy level obtained at equilibrium with a Boltzmann distribution at the translational temperature), and (3) nonequipartition (the mean rotational energy is different from the equilibrium mean value with respect to the translational energy states). In all cases investigated the present model satisfactorily simulated the principal features of the relaxation effects in nonequilibrium flow of diatomic molecules.

  18. Formation of an optical pulsed discharge in a supersonic air flow by radiation of a repetitively pulsed CO{sub 2} laser

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Malov, Aleksei N; Orishich, Anatolii M

    Results of optimisation of repetitively pulsed CO{sub 2}-laser generation are presented for finding physical conditions of forming stable burning of an optical pulsed discharge (OPD) in a supersonic air flow and for studying the influence of pulse parameters on the energy absorption efficiency of laser radiation in plasma. The optical discharge in a supersonic air flow was formed by radiation of a repetitively pulsed CO{sub 2} laser with mechanical Q-switching excited by a discharge with a convective cooling of the working gas. For the first time the influence of radiation pulse parameters on the ignition conditions and stable burning ofmore » the OPD in a supersonic air flow was investigated and the efficiency of laser radiation absorption in plasma was studied. The influence of the air flow velocity on stability of plasma production was investigated. It was shown that stable burning of the OPD in a supersonic flow is realised at a high pulse repetition rate where the interval between radiation pulses is shorter than the time of plasma blowing-off. Study of the instantaneous value of the absorption coefficient shows that after a breakdown in a time lapse of 100 - 150 ns, a quasi-stationary 'absorption phase' is formed with the duration of {approx}1.5 ms, which exists independently of air flow and radiation pulse repetition rate. This phase of strong absorption is, seemingly, related to evolution of the ionisation wave. (laser applications and other topics in quantum electronics)« less

  19. Transport coefficients in nonequilibrium gas-mixture flows with electronic excitation.

    PubMed

    Kustova, E V; Puzyreva, L A

    2009-10-01

    In the present paper, a one-temperature model of transport properties in chemically nonequilibrium neutral gas-mixture flows with electronic excitation is developed. The closed set of governing equations for the macroscopic parameters taking into account electronic degrees of freedom of both molecules and atoms is derived using the generalized Chapman-Enskog method. The transport algorithms for the calculation of the thermal-conductivity, diffusion, and viscosity coefficients are proposed. The developed theoretical model is applied for the calculation of the transport coefficients in the electronically excited N/N(2) mixture. The specific heats and transport coefficients are calculated in the temperature range 50-50,000 K. Two sets of data for the collision integrals are applied for the calculations. An important contribution of the excited electronic states to the heat transfer is shown. The Prandtl number of atomic species is found to be substantially nonconstant.

  20. 30 CFR 57.22211 - Air flow (I-A mines).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Air flow (I-A mines). 57.22211 Section 57.22211... Methane in Metal and Nonmetal Mines Ventilation § 57.22211 Air flow (I-A mines). The average air velocity in the last open crosscut in pairs or sets of developing entries, or through other ventilation...

  1. Real-Time Aerodynamic Parameter Estimation without Air Flow Angle Measurements

    NASA Technical Reports Server (NTRS)

    Morelli, Eugene A.

    2010-01-01

    A technique for estimating aerodynamic parameters in real time from flight data without air flow angle measurements is described and demonstrated. The method is applied to simulated F-16 data, and to flight data from a subscale jet transport aircraft. Modeling results obtained with the new approach using flight data without air flow angle measurements were compared to modeling results computed conventionally using flight data that included air flow angle measurements. Comparisons demonstrated that the new technique can provide accurate aerodynamic modeling results without air flow angle measurements, which are often difficult and expensive to obtain. Implications for efficient flight testing and flight safety are discussed.

  2. A uniform laminar air plasma plume with large volume excited by an alternating current voltage

    NASA Astrophysics Data System (ADS)

    Li, Xuechen; Bao, Wenting; Chu, Jingdi; Zhang, Panpan; Jia, Pengying

    2015-12-01

    Using a plasma jet composed of two needle electrodes, a laminar plasma plume with large volume is generated in air through an alternating current voltage excitation. Based on high-speed photography, a train of filaments is observed to propagate periodically away from their birth place along the gas flow. The laminar plume is in fact a temporal superposition of the arched filament train. The filament consists of a negative glow near the real time cathode, a positive column near the real time anode, and a Faraday dark space between them. It has been found that the propagation velocity of the filament increases with increasing the gas flow rate. Furthermore, the filament lifetime tends to follow a normal distribution (Gaussian distribution). The most probable lifetime decreases with increasing the gas flow rate or decreasing the averaged peak voltage. Results also indicate that the real time peak current decreases and the real time peak voltage increases with the propagation of the filament along the gas flow. The voltage-current curve indicates that, in every discharge cycle, the filament evolves from a Townsend discharge to a glow one and then the discharge quenches. Characteristic regions including a negative glow, a Faraday dark space, and a positive column can be discerned from the discharge filament. Furthermore, the plasma parameters such as the electron density, the vibrational temperature and the gas temperature are investigated based on the optical spectrum emitted from the laminar plume.

  3. Spool Valve for Switching Air Flows Between Two Beds

    NASA Technical Reports Server (NTRS)

    Dean, W. Clark

    2005-01-01

    U.S. Patent 6,142,151 describes a dual-bed ventilation system for a space suit, with emphasis on a multiport spool valve that switches air flows between two chemical beds that adsorb carbon dioxide and water vapor. The valve is used to alternately make the air flow through one bed while exposing the other bed to the outer-space environment to regenerate that bed through vacuum desorption of CO2 and H2O. Oxygen flowing from a supply tank is routed through a pair of periodically switched solenoid valves to drive the spool valve in a reciprocating motion. The spool valve equalizes the pressures of air in the beds and the volumes of air flowing into and out of the beds during the alternations between the adsorption and desorption phases, in such a manner that the volume of air that must be vented to outer space is half of what it would be in the absence of pressure equalization. Oxygen that has been used to actuate the spool valve in its reciprocating motion is released into the ventilation loop to replenish air lost to vacuum during the previous desorption phase of the operating cycle.

  4. Thermal imaging for cold air flow visualisation and analysis

    NASA Astrophysics Data System (ADS)

    Grudzielanek, M.; Pflitsch, A.; Cermak, J.

    2012-04-01

    In this work we present first applications of a thermal imaging system for animated visualization and analysis of cold air flow in field studies. The development of mobile thermal imaging systems advanced very fast in the last decades. The surface temperature of objects, which is detected with long-wave infrared radiation, affords conclusions in different problems of research. Modern thermal imaging systems allow infrared picture-sequences and a following data analysis; the systems are not exclusive imaging methods like in the past. Thus, the monitoring and analysing of dynamic processes became possible. We measured the cold air flow on a sloping grassland area with standard methods (sonic anemometers and temperature loggers) plus a thermal imaging system measuring in the range from 7.5 to 14µm. To analyse the cold air with the thermal measurements, we collected the surface infrared temperatures at a projection screen, which was located in cold air flow direction, opposite the infrared (IR) camera. The intention of using a thermal imaging system for our work was: 1. to get a general idea of practicability in our problem, 2. to assess the value of the extensive and more detailed data sets and 3. to optimise visualisation. The results were very promising. Through the possibility of generating time-lapse movies of the image sequences in time scaling, processes of cold air flow, like flow waves, turbulence and general flow speed, can be directly identified. Vertical temperature gradients and near-ground inversions can be visualised very well. Time-lapse movies will be presented. The extensive data collection permits a higher spatial resolution of the data than standard methods, so that cold air flow attributes can be explored in much more detail. Time series are extracted from the IR data series, analysed statistically, and compared to data obtained using traditional systems. Finally, we assess the usefulness of the additional measurement of cold air flow with thermal

  5. Excitation condition analysis of guided wave on PFA tubes for ultrasonic flow meter.

    PubMed

    Li, Xuan; Xiao, Xufeng; Cao, Li

    2016-12-01

    Impurity accumulation, which decreases the accuracy of flow measurement, is a critical problem when applying Z-shaped or U-shaped ultrasonic flow meters on straight PFA tubes. It can be expected that the guided wave can be used to implement flow measurement on straight PFA tubes. In this paper, the propagation of guided wave is explained by finite element simulations for the flow meter design. Conditions of guided wave generation, including the excitation frequency and the wedge structure, are studied in the simulations. The wedge is designed as a cone which is friendly to be manufactured and installed. The cone angle, the piezoelectric wafer's resonant frequency and the vibration directions are studied in the simulations. The simulations shows that the propagation of guided wave in thin PFA tubes is influenced by the piezoelectric wafers' resonant frequency and the vibration direction when the mode is on the 'water line'. Based on the results of the simulations, an experiment is conducted to verify the principles of excitation conditions, which performs flow measurement on a straight PFA tube well. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. COMIS -- an international multizone air-flow and contaminant transport model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Feustel, H.E.

    1998-08-01

    A number of interzonal models have been developed to calculate air flows and pollutant transport mechanisms in both single and multizone buildings. A recent development in multizone air-flow modeling, the COMIS model, has a number of capabilities that go beyond previous models, much as COMIS can be used as either a stand-alone air-flow model with input and output features or as an infiltration module for thermal building simulation programs. COMIS was designed during a 12 month workshop at Lawrence Berkeley National Laboratory (LBNL) in 1988-89. In 1990, the Executive Committee of the International Energy Agency`s Energy Conservation in Buildings andmore » Community Systems program created a working group on multizone air-flow modeling, which continued work on COMIS. The group`s objectives were to study physical phenomena causing air flow and pollutant (e.g., moisture) transport in multizone buildings, develop numerical modules to be integrated in the previously designed multizone air flow modeling system, and evaluate the computer code. The working group supported by nine nations, officially finished in late 1997 with the release of IISiBat/COMIS 3.0, which contains the documented simulation program COMIS, the user interface IISiBat, and reports describing the evaluation exercise.« less

  7. Experimental and Numerical Investigation of Air Radiation in Superorbital Expanding Flow

    NASA Technical Reports Server (NTRS)

    Wei, Han; Morgan, Richard G.; McIntyre, Timothy J.; Brandis, Aaron M.; Johnston, Christopher O.

    2017-01-01

    To investigate air radiation in expanding flows and provide experimental data for validating associated computational models, experiments were conducted in the X2 expansion tunnel facility at the Centre for Hypersonics of the University of Queensland. A 54 turning angle wedge model was employed to generate steady expanding flows with in flow total enthalpies of 50.7, 63.4 and 75.4 MJkg. VUV spectra from 118 to 180 nm were acquired across the wedge at three equispaced distances away from the top of the model, as well as through its top surface. High speed filtered images were also obtained by coupling a Shimadzu 1 MHz high speed camera to a bandpass filter to obtain calibrated images of the 777 nm oxygen triplet. Both the across-wedge VUV spectra and filtered images of the 777 nm atomic oxygen were compared with NEQAIR simulations, which were performed using flow field data from two-dimensional CFD simulations with two-temperature 11-species air chemistry utilizing the in-house Navier-Stokes flow solver Eilmer3. Data extracted from consecutive frames of the filtered high speed images confirmed up to 8 s of available test time for the flow conditions tested. For the strongly radiating 149 and 174 nm atomic nitrogen lines, large disagreement between experimental data and NEQAIR predictions can be observed from the start of the expansion fan where the electron-ion recombination process commences. The spatial extent, or spans of the radiance profiles of the 149 and 174 nm N lines are significantly under predicted by NEQAIR, and are very close to those of N, N+ and electron number density profiles, which follow that of flow density. The electron-ion recombination process is proposed as the main reason for these discrepancies. The comparisons between NEQAIR simulations and filtered images of the 777 nm oxygen triplet show good agreement in the post-shock compression region and the start of the expansion fan for the 63.4 MJkg condition, but with up to a factor of three

  8. Compressed-air flow control system.

    PubMed

    Bong, Ki Wan; Chapin, Stephen C; Pregibon, Daniel C; Baah, David; Floyd-Smith, Tamara M; Doyle, Patrick S

    2011-02-21

    We present the construction and operation of a compressed-air driven flow system that can be used for a variety of microfluidic applications that require rapid dynamic response and precise control of multiple inlet streams. With the use of inexpensive and readily available parts, we describe how to assemble this versatile control system and further explore its utility in continuous- and pulsed-flow microfluidic procedures for the synthesis and analysis of microparticles.

  9. Terminal Air Flow Planning

    NASA Technical Reports Server (NTRS)

    Denery, Dallas G.; Erzberger, Heinz; Edwards, Thomas A. (Technical Monitor)

    1998-01-01

    The Center TRACON Automation System (CTAS) will be the basis for air traffic planning and control in the terminal area. The system accepts arriving traffic within an extended terminal area and optimizes the flow based on current traffic and airport conditions. The operational use of CTAS will be presented together with results from current operations.

  10. Rotating permanent magnet excitation for blood flow measurement.

    PubMed

    Nair, Sarath S; Vinodkumar, V; Sreedevi, V; Nagesh, D S

    2015-11-01

    A compact, portable and improved blood flow measurement system for an extracorporeal circuit having a rotating permanent magnetic excitation scheme is described in this paper. The system consists of a set of permanent magnets rotating near blood or any conductive fluid to create high-intensity alternating magnetic field in it and inducing a sinusoidal varying voltage across the column of fluid. The induced voltage signal is acquired, conditioned and processed to determine its flow rate. Performance analysis shows that a sensitivity of more than 250 mV/lpm can be obtained, which is more than five times higher than conventional flow measurement systems. Choice of rotating permanent magnet instead of an electromagnetic core generates alternate magnetic field of smooth sinusoidal nature which in turn reduces switching and interference noises. These results in reduction in complex electronic circuitry required for processing the signal to a great extent and enable the flow measuring device to be much less costlier, portable and light weight. The signal remains steady even with changes in environmental conditions and has an accuracy of greater than 95%. This paper also describes the construction details of the prototype, the factors affecting sensitivity and detailed performance analysis at various operating conditions.

  11. Diagnostics development for E-beam excited air channels

    NASA Astrophysics Data System (ADS)

    Eckstrom, D. J.; Dickenson, J. S.

    1982-02-01

    As the tempo of development of particle beam weapons increases, more detailed diagnostics of the interaction of the particle beam with the atmosphere are being proposed and implemented. Some of these diagnostics involve probing of the excited air channel with visible wavelength laser radiation. Examples include the use of visible wavelength interferometry to measure electron density profiles in the nose of the beam Ri81 and Stark shift measurements to determine self-induced electric fields Hi81, DR81. In these diagnostics, the change in laser intensity due to the desired diagnostic effect can be quite small, leading to the possibility that other effects, such as gas phase absorption, could seriously interfere with the measurement.

  12. Evolutionary Concepts for Decentralized Air Traffic Flow Management

    NASA Technical Reports Server (NTRS)

    Adams, Milton; Kolitz, Stephan; Milner, Joseph; Odoni, Amedeo

    1997-01-01

    Alternative concepts for modifying the policies and procedures under which the air traffic flow management system operates are described, and an approach to the evaluation of those concepts is discussed. Here, air traffic flow management includes all activities related to the management of the flow of aircraft and related system resources from 'block to block.' The alternative concepts represent stages in the evolution from the current system, in which air traffic management decision making is largely centralized within the FAA, to a more decentralized approach wherein the airlines and other airspace users collaborate in air traffic management decision making with the FAA. The emphasis in the discussion is on a viable medium-term partially decentralized scenario representing a phase of this evolution that is consistent with the decision-making approaches embodied in proposed Free Flight concepts for air traffic management. System-level metrics for analyzing and evaluating the various alternatives are defined, and a simulation testbed developed to generate values for those metrics is described. The fundamental issue of modeling airline behavior in decentralized environments is also raised, and an example of such a model, which deals with the preservation of flight bank integrity in hub airports, is presented.

  13. Interrelationships of petiolar air canal architecture, water depth, and convective air flow in Nymphaea odorata (Nymphaeaceae).

    PubMed

    Richards, Jennifer H; Kuhn, David N; Bishop, Kristin

    2012-12-01

    Nymphaea odorata grows in water up to 2 m deep, producing fewer larger leaves in deeper water. This species has a convective flow system that moves gases from younger leaves through submerged parts to older leaves, aerating submerged parts. Petiolar air canals are the convective flow pathways. This study describes the structure of these canals, how this structure varies with water depth, and models how convective flow varies with depth. • Nymphaea odorata plants were grown at water depths from 30 to 90 cm. Lamina area, petiolar cross-sectional area, and number and area of air canals were measured. Field-collected leaves and leaves from juvenile plants were analyzed similarly. Using these data and data from the literature, we modeled how convective flow changes with water depth. • Petioles of N. odorata produce two central pairs of air canals; additional pairs are added peripherally, and succeeding pairs are smaller. The first three pairs account for 96% of air canal area. Air canals form 24% of petiolar cross-sectional area. Petiolar and air canal cross-sectional areas increase with water depth. Petiolar area scales with lamina area, but the slope of this relationship is lower in 90 cm water than at shallower depths. In our model, the rate of convective flow varied with depth and with the balance of influx to efflux leaves. • Air canals in N. odorata petioles increase in size and number in deeper water but at a decreasing amount in relation to lamina area. Convective flow also depends on the number of influx to efflux laminae.

  14. Enhanced viscous flow drag reduction using acoustic excitation

    NASA Technical Reports Server (NTRS)

    Nagel, Robert T.

    1987-01-01

    Proper acoustic excitation of a single large-eddy break-up device can increase the resulting drag reduction and, after approximately 40 to 50 delta downstream, provide net drag reduction. Precise optimization of the input time delay, amplitude and response threshold is difficult but possible to achieve. Drag reduction is improved with optimized conditions. The possibility of optimized processing strongly suggests a mechanism which involves interaction of the acoustic waves and large eddies at the trailing edge of the large eddy break-up device. Although the mechanism for spreading of this phenomenon is unknown, it is apparent that the drag reduction effect does tend to spread spanwise as the flow convects downstream. The phenomenon is not unique to a particular blade configuration or flow velocity, although all data have been obtained at relatively low Reynolds numbers. The general repeatibility of the results for small configuration changes serves as verification of the phenomenon.

  15. Measurement of activated species generated by AC power excited non-equilibrium atmospheric pressure Ar plasma jet with air engulfment

    NASA Astrophysics Data System (ADS)

    Takeda, Keigo; Ishikawa, Kenji; Tanaka, Hiromasa; Kano, Hiroyuki; Sekine, Makoto; Hori, Masaru

    2013-09-01

    Non-equilibrium atmospheric pressure plasma jet (NEAPPJ) is very attractive tool for bio and medical applications. In the plasma treatments, samples are typically located at a far region from main discharge, and treated in open air without purge gases. Influence of air engulfment on generation of activated species in the NEAPPJ in open air is a large issue for the application. In this study, the AC excited argon NEAPPJ with the gas flow rate of 2 slm was generated under the open air condition. The densities of the grand state nitrogen monoxide (NO) and the ground state O atom generated by the NEAPPJ were measured by laser induced fluorescence spectroscopy and vacuum ultraviolet absorption spectroscopy. The length of the plasma jet was around 10 mm. Up to 10 mm, the NO density increased with increasing the distance from plasma head, and then saturated in remote region of plasma. On the other hand, the O atom density decreased from 1014 to 1013 cm-3 with increasing the distance. Especially, the amount of decrease in O atom density became the largest at the plasma edge. We will discuss the generation and loss processes of activated species generated in the NEAPPJ with the measurement results using spectroscopic methods.

  16. Doubly-excited pulse-waves on flowing liquid films: experiments and numerical simulations

    NASA Astrophysics Data System (ADS)

    Adebayo, Idris; Xie, Zhihua; Che, Zhizhao; Wray, Alex; Matar, Omar

    2016-11-01

    The interaction patterns between doubly-excited pulse waves on a flowing liquid film are studied both experimentally and numerically. The flowing film is constituted on an inclined glass substrate while pulse-waves are excited on the film surface by means of a solenoid valve connected to a relay which receives signals from customised Matlab routines. The effect of varying the system parameters i.e. film flow rate, inter-pulse interval and substrate inclination angle on the pulse interaction patterns are then studied. Results show that different interaction patterns exist for these binary pulses; which include a singular behaviour, complete merger, partial merger and total non-coalescence. A regime map of these patterns is then plotted for each inclination angles examined, based on the film Re and the inter-pulse interval. Finally, the individual effect of the system parameters on the merging distance of these binary pulses in the merger mode is then studied and the results validated using both numerical simulations and mathematical modelling. Funding from the Nigerian Government (for Idris Adebayo), and the EPSRC through a programme Grant MEMPHIS (EP/K003976/1) gratefully acknowledged.

  17. Simulation of air-droplet mixed phase flow in icing wind-tunnel

    NASA Astrophysics Data System (ADS)

    Mengyao, Leng; Shinan, Chang; Menglong, Wu; Yunhang, Li

    2013-07-01

    Icing wind-tunnel is the main ground facility for the research of aircraft icing, which is different from normal wind-tunnel for its refrigeration system and spraying system. In stable section of icing wind-tunnel, the original parameters of droplets and air are different, for example, to keep the nozzles from freezing, the droplets are heated while the temperature of air is low. It means that complex mass and heat transfer as well as dynamic interactive force would happen between droplets and air, and the parameters of droplet will acutely change along the passageway. Therefore, the prediction of droplet-air mixed phase flow is necessary in the evaluation of icing researching wind-tunnel. In this paper, a simplified droplet-air mixed phase flow model based on Lagrangian method was built. The variation of temperature, diameter and velocity of droplet, as well as the air flow field, during the flow process were obtained under different condition. With calculating three-dimensional air flow field by FLUENT, the droplet could be traced and the droplet distribution could also be achieved. Furthermore, the patterns about how initial parameters affect the parameters in test section were achieved. The numerical simulation solving the flow and heat and mass transfer characteristics in the mixing process is valuable for the optimization of experimental parameters design and equipment adjustment.

  18. 7 CFR 28.603 - Procedures for air flow tests of micronaire reading.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... of the United States for Fiber Fineness and Maturity § 28.603 Procedures for air flow tests of... 7 Agriculture 2 2010-01-01 2010-01-01 false Procedures for air flow tests of micronaire reading...) Air flow instrument complete with accessories to measure the fineness and maturity, in combination, of...

  19. Hypervelocity Air Flows With Finite Rate Chemistry

    DTIC Science & Technology

    1994-07-01

    run over a range of freestream con- ditions in both air and nitrogen to obtain conditions to examine flows from frozen to fully equilibrium gas flow ... chemistry . Currently, electron-beam equipment and instrumentation are being prepared at USC, Imperial College, and CUBRC for these studies. Also, instru

  20. Flow and performance of an air-curtain biological safety cabinet.

    PubMed

    Huang, Rong Fung; Chou, Chun I

    2009-06-01

    Using laser-assisted smoke flow visualization and tracer gas concentration detection techniques, this study examines aerodynamic flow properties and the characteristics of escape from containment, inward dispersion, and cross-cabinet contamination of a biological safety cabinet installed with an air curtain across the front aperture. The experimental method partially simulates the NSF/ANSI 49 standards with the difference that the biological tracer recommended by these standards is replaced by a mixture of 10% SF(6) in N(2). The air curtain is set up across the cabinet aperture plane by means of a narrow planar jet issued from the lower edge of the sash and a suction flow going through a suction slot installed at the front edge of the work surface. Varying the combination of jet velocity, suction flow velocity, and descending flow velocity reveals three types of characteristic flow modes: 'straight curtain', 'slightly concave curtain', and 'severely concave curtain'. Operating the cabinet in the straight curtain mode causes the air curtain to impinge on the doorsill and therefore induces serious escape from containment. In the severely concave curtain mode, drastically large inward dispersion and cross-cabinet contamination were observed because environmental air entered into the cabinet and a three-dimensional vortical flow structure formed in the cabinet. The slightly concave curtain mode presents a smooth and two-dimensional flow pattern with an air curtain separating the outside atmosphere from the inside space of the cabinet, and therefore exhibited negligibly small escape from containment, inward dispersion, and cross-cabinet contamination.

  1. Parametric Studies of Flow Separation using Air Injection

    NASA Technical Reports Server (NTRS)

    Zhang, Wei

    2004-01-01

    Boundary Layer separation causes the airfoil to stall and therefore imposes dramatic performance degradation on the airfoil. In recent years, flow separation control has been one of the active research areas in the field of aerodynamics due to its promising performance improvements on the lifting device. These active flow separation control techniques include steady and unsteady air injection as well as suction on the airfoil surface etc. This paper will be focusing on the steady and unsteady air injection on the airfoil. Although wind tunnel experiments revealed that the performance improvements on the airfoil using injection techniques, the details of how the key variables such as air injection slot geometry and air injection angle etc impact the effectiveness of flow separation control via air injection has not been studied. A parametric study of both steady and unsteady air injection active flow control will be the main objective for this summer. For steady injection, the key variables include the slot geometry, orientation, spacing, air injection velocity as well as the injection angle. For unsteady injection, the injection frequency will also be investigated. Key metrics such as lift coefficient, drag coefficient, total pressure loss and total injection mass will be used to measure the effectiveness of the control technique. A design of experiments using the Box-Behnken Design is set up in order to determine how each of the variables affects each of the key metrics. Design of experiment is used so that the number of experimental runs will be at minimum and still be able to predict which variables are the key contributors to the responses. The experiments will then be conducted in the 1ft by 1ft wind tunnel according to the design of experiment settings. The data obtained from the experiments will be imported into JMP, statistical software, to generate sets of response surface equations which represent the statistical empirical model for each of the metrics as

  2. Effect of groundwater flow on remediation of dissolved-phase VOC contamination using air sparging.

    PubMed

    Reddy, K R; Adams, J A

    2000-02-25

    This paper presents two-dimensional laboratory experiments performed to study how groundwater flow may affect the injected air zone of influence and remedial performance, and how injected air may alter subsurface groundwater flow and contaminant migration during in situ air sparging. Tests were performed by subjecting uniform sand profiles contaminated with dissolved-phase benzene to a hydraulic gradient and two different air flow rates. The results of the tests were compared to a test subjected to a similar air flow rate but a static groundwater condition. The test results revealed that the size and shape of the zone of influence were negligibly affected by groundwater flow, and as a result, similar rates of contaminant removal were realized within the zone of influence with and without groundwater flow. The air flow, however, reduced the hydraulic conductivity within the zone of influence, reducing groundwater flow and subsequent downgradient contaminant migration. The use of a higher air flow rate further reduced the hydraulic conductivity and decreased groundwater flow and contaminant migration. Overall, this study demonstrated that air sparging may be effectively implemented to intercept and treat a migrating contaminant plume.

  3. Annular fuel and air co-flow premixer

    DOEpatents

    Stevenson, Christian Xavier; Melton, Patrick Benedict; York, William David

    2013-10-15

    Disclosed is a premixer for a combustor including an annular outer shell and an annular inner shell. The inner shell defines an inner flow channel inside of the inner shell and is located to define an outer flow channel between the outer shell and the inner shell. A fuel discharge annulus is located between the outer flow channel and the inner flow channel and is configured to inject a fuel flow into a mixing area in a direction substantially parallel to an outer airflow through the outer flow channel and an inner flow through the inner flow channel. Further disclosed are a combustor including a plurality of premixers and a method of premixing air and fuel in a combustor.

  4. Experimental and Numerical Investigation of Air Radiation in Superorbital Expanding Flow

    NASA Technical Reports Server (NTRS)

    Wei, Han; Morgan, Richard G.; Mcintyre, Timothy J.; Brandis, Aaron M.; Johnston, Christopher O.

    2017-01-01

    To investigate air radiation in expanding flows and provide experimental data for validating associated computational models, experiments were conducted in the X2 expansion tunnel facility at the Centre for Hypersonics of the University of Queensland. A 54deg turning angle wedge model was employed to generate steady expanding flows with in flow total enthalpies of 50.7, 63.4 and 75.4 MJ/kg. VUV spectra from 118 to 180 nm were acquired across the wedge at three equispaced distances away from the top of the model, as well as through its top surface. High speed filtered images were also obtained by coupling a Shimadzu 1 MHz high speed camera to a bandpass filter to obtain calibrated images of the 777 nm oxygen triplet. Both the across-wedge VUV spectra and filtered images of the 777 nm atomic oxygen were compared with NEQAIR simulations, which were performed using flow field data from two-dimensional CFD simulations with two-temperature 11-species air chemistry utilising the in-house Navier-Stokes flow solver Eilmer3. Data extracted from consecutive frames of the filtered high speed images confirmed up to 8 s of available test time for the flow conditions tested. For the strongly radiating 149 and 174 nm atomic nitrogen lines, large disagreement between experimental data and NEQAIR predictions can be observed from the start of the expansion fan where the electron-ion recombination process commences. The spatial extent, or spans of the radiance profiles of the 149 and 174 nm N lines are significantly underpredicted by NEQAIR, and are very close to those of N, N+ and electron number density profiles, which follow that of flow density. The electron-ion recombination process is proposed as the main reason for these discrepancies. The comparisons between NEQAIR simulations and filtered images of the 777 nm oxygen triplet show good agreement in the post-shock compression region and the start of the expansion fan for the 63.4 MJ/kg condition, but with up to a factor of three

  5. Rapid Induction of Therapeutic Hypothermia Using Transnasal High Flow Dry Air

    PubMed Central

    Chava, Raghuram; Raghavan, Madhavan Srinivas; Halperin, Henry; Maqbool, Farhan; Geocadin, Romergryko; Quinones-Hinojosa, Alfredo; Kolandaivelu, Aravindan; Rosen, Benjamin A.

    2017-01-01

    Early induction of therapeutic hypothermia (TH) is recommended in out-of-hospital cardiac arrest (CA); however, currently no reliable methods exist to initiate cooling. We investigated the effect of high flow transnasal dry air on brain and body temperatures in adult porcine animals. Adult porcine animals (n = 23) under general anesthesia were subject to high flow of transnasal dry air. Mouth was kept open to create a unidirectional airflow, in through the nostrils and out through the mouth. Brain, internal jugular, and aortic temperatures were recorded. The effect of varying airflow rate and the air humidity (0% or 100%) on the temperature profiles were recorded. The degree of brain cooling was measured as the differential temperature from baseline. A 10-minute exposure of high flow dry air caused rapid cooling of brain and gradual cooling of the jugular and the aortic temperatures in all animals. The degree of brain cooling was flow dependent and significantly higher at higher airflow rates (0.8°C ± 0.3°C, 1.03°C ± 0.6°C, and 1.3°C ± 0.7°C for 20, 40, and 80 L, respectively, p < 0.05 for all comparisons). Air temperature had minimal effect on the brain cooling over 10 minutes with similar decrease in temperature at 4°C and 30°C. At a constant flow rate (40 LPM) and temperature, the degree of cooling over 10 minutes during dry air exposure was significantly higher compared to humid air (100% saturation) (1.22°C ± 0.35°C vs. 0.21°C ± 0.12°C, p < 0.001). High flow transnasal dry air causes flow dependent cooling of the brain and the core temperatures in intubated porcine animals. The mechanism of cooling appears to be evaporation of nasal mucus as cooling is mitigated by humidifying the air. This mechanism may be exploited to initiate TH in CA. PMID:27635468

  6. Rapid Induction of Therapeutic Hypothermia Using Transnasal High Flow Dry Air.

    PubMed

    Chava, Raghuram; Zviman, Menekhem; Raghavan, Madhavan Srinivas; Halperin, Henry; Maqbool, Farhan; Geocadin, Romergryko; Quinones-Hinojosa, Alfredo; Kolandaivelu, Aravindan; Rosen, Benjamin A; Tandri, Harikrishna

    2017-03-01

    Early induction of therapeutic hypothermia (TH) is recommended in out-of-hospital cardiac arrest (CA); however, currently no reliable methods exist to initiate cooling. We investigated the effect of high flow transnasal dry air on brain and body temperatures in adult porcine animals. Adult porcine animals (n = 23) under general anesthesia were subject to high flow of transnasal dry air. Mouth was kept open to create a unidirectional airflow, in through the nostrils and out through the mouth. Brain, internal jugular, and aortic temperatures were recorded. The effect of varying airflow rate and the air humidity (0% or 100%) on the temperature profiles were recorded. The degree of brain cooling was measured as the differential temperature from baseline. A 10-minute exposure of high flow dry air caused rapid cooling of brain and gradual cooling of the jugular and the aortic temperatures in all animals. The degree of brain cooling was flow dependent and significantly higher at higher airflow rates (0.8°C ± 0.3°C, 1.03°C ± 0.6°C, and 1.3°C ± 0.7°C for 20, 40, and 80 L, respectively, p < 0.05 for all comparisons). Air temperature had minimal effect on the brain cooling over 10 minutes with similar decrease in temperature at 4°C and 30°C. At a constant flow rate (40 LPM) and temperature, the degree of cooling over 10 minutes during dry air exposure was significantly higher compared to humid air (100% saturation) (1.22°C ± 0.35°C vs. 0.21°C ± 0.12°C, p < 0.001). High flow transnasal dry air causes flow dependent cooling of the brain and the core temperatures in intubated porcine animals. The mechanism of cooling appears to be evaporation of nasal mucus as cooling is mitigated by humidifying the air. This mechanism may be exploited to initiate TH in CA.

  7. Characteristics Air Flow in Room Chamber Test Refrigerator Household Energy Consumption with Inlet Flow Variation

    NASA Astrophysics Data System (ADS)

    Susanto, Edy; Idrus Alhamid, M.; Nasruddin; Budihardjo

    2018-03-01

    Room Chamber is the most important in making a good Testing Laboratory. In this study, the 2-D modeling conducted to assess the effect placed the inlet on designing a test chamber room energy consumption of household refrigerators. Where the geometry room chamber is rectangular and approaching the enclosure conditions. Inlet varied over the side parallel to the outlet and compared to the inlet where the bottom is made. The purpose of this study was to determine and define the characteristics of the airflow in the room chamber using CFD simulation. CFD method is used to obtain flow characteristics in detail, in the form of vector flow velocity and temperature distribution inside the chamber room. The result found that the position of the inlet parallel to the outlet causes air flow cannot move freely to the side of the floor, even flow of air moves up toward the outlet. While by making the inlet is below, the air can move freely from the bottom up to the side of the chamber room wall as well as to help uniform flow.

  8. Velocity-Field Measurements of an Axisymmetric Separated Flow Subjected to Amplitude-Modulated Excitation

    NASA Technical Reports Server (NTRS)

    Trosin, Barry James

    2007-01-01

    Active flow control was applied at the point of separation of an axisymmetric, backward-facing-step flow. The control was implemented by employing a Helmholtz resonator that was externally driven by an amplitude-modulated, acoustic disturbance from a speaker located upstream of the wind tunnel. The velocity field of the separating/reattaching flow region downstream of the step was characterized using hotwire velocity measurements with and without flow control. Conventional statistics of the data reveal that the separating/reattaching flow is affected by the imposed forcing. Triple decomposition along with conditional averaging was used to distinguish periodic disturbances from random turbulence in the fluctuating velocity component. A significant outcome of the present study is that it demonstrates that amplitude-modulated forcing of the separated flow alters the flow in the same manner as the more conventional method of periodic excitation.

  9. CFD study on the effects of boundary conditions on air flow through an air-cooled condenser

    NASA Astrophysics Data System (ADS)

    Sumara, Zdeněk; Šochman, Michal

    2018-06-01

    This study focuses on the effects of boundary conditions on effectiveness of an air-cooled condenser (ACC). Heat duty of ACC is very often calculated for ideal uniform velocity field which does not correspond to reality. Therefore, this study studies the effect of wind and different landscapes on air flow through ACC. For this study software OpenFOAM was used and the flow was simulated with the use of RANS equations. For verification of numerical setup a model of one ACC cell with dimensions of platform 1.5×1.5 [m] was used. In this experiment static pressures behind fan and air flows through a model of surface of condenser for different rpm of fan were measured. In OpenFOAM software a virtual clone of this experiment was built and different meshes, turbulent models and numerical schemes were tested. After tuning up numerical setup virtual model of real ACC system was built. Influence of wind, landscape and height of ACC on air flow through ACC has been investigated.

  10. Air Flow and Pressure Drop Measurements Across Porous Oxides

    NASA Technical Reports Server (NTRS)

    Fox, Dennis S.; Cuy, Michael D.; Werner, Roger A.

    2008-01-01

    This report summarizes the results of air flow tests across eight porous, open cell ceramic oxide samples. During ceramic specimen processing, the porosity was formed using the sacrificial template technique, with two different sizes of polystyrene beads used for the template. The samples were initially supplied with thicknesses ranging from 0.14 to 0.20 in. (0.35 to 0.50 cm) and nonuniform backside morphology (some areas dense, some porous). Samples were therefore ground to a thickness of 0.12 to 0.14 in. (0.30 to 0.35 cm) using dry 120 grit SiC paper. Pressure drop versus air flow is reported. Comparisons of samples with thickness variations are made, as are pressure drop estimates. As the density of the ceramic material increases the maximum corrected flow decreases rapidly. Future sample sets should be supplied with samples of similar thickness and having uniform surface morphology. This would allow a more consistent determination of air flow versus processing parameters and the resulting porosity size and distribution.

  11. Density Measurements in Air by Optically Exciting the Cordes Bands of I2

    NASA Technical Reports Server (NTRS)

    Balla, R. Jeffrey; Exton, Reginald J.

    2000-01-01

    We describe an optical method based on laser-induced fluorescence for obtaining instantaneous measurements of density along a line in low-density air seeded with I2. The Cordes bands of I2 (D(sup 1)sigma(sup +, sub u)) left arrow X(sup 1)sigma(sup +, sub g)) are excited with a tunable ArF excimer laser. air densities in the range (0.1-6.5) x 10(exp 17) cm(exp -3) are measured over 295-583 K using the density-dependent emission ratio of two emission bands of I2; the 340 nm bands and the diffuse-structured McLennan bands near 320 nm.

  12. A Low-Power Thermal-Based Sensor System for Low Air Flow Detection

    PubMed Central

    Arifuzzman, AKM; Haider, Mohammad Rafiqul; Allison, David B.

    2016-01-01

    Being able to rapidly detect a low air flow rate with high accuracy is essential for various applications in the automotive and biomedical industries. We have developed a thermal-based low air flow sensor with a low-power sensor readout for biomedical applications. The thermal-based air flow sensor comprises a heater and three pairs of temperature sensors that sense temperature differences due to laminar air flow. The thermal-based flow sensor was designed and simulated by using laminar flow, heat transfer in solids and fluids physics in COMSOL MultiPhysics software. The proposed sensor can detect air flow as low as 0.0064 m/sec. The readout circuit is based on a current- controlled ring oscillator in which the output frequency of the ring oscillator is proportional to the temperature differences of the sensors. The entire readout circuit was designed and simulated by using a 130-nm standard CMOS process. The sensor circuit features a small area and low-power consumption of about 22.6 µW with an 800 mV power supply. In the simulation, the output frequency of the ring oscillator and the change in thermistor resistance showed a high linearity with an R2 value of 0.9987. The low-power dissipation, high linearity and small dimensions of the proposed flow sensor and circuit make the system highly suitable for biomedical applications. PMID:28435186

  13. MODELING AIR FLOW DYNAMICS IN RADON MITIGATION SYSTEMS: A SIMPLIFIED APPROACH

    EPA Science Inventory

    The paper refines and extends an earlier study--relating to the design of optimal radon mitigation systems based on subslab depressurization-- that suggested that subslab air flow induced by a central suction point be treated as radial air flow through a porous bed contained betw...

  14. 40 CFR 1065.240 - Dilution air and diluted exhaust flow meters.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...) AIR POLLUTION CONTROLS ENGINE-TESTING PROCEDURES Measurement Instruments Flow-Related Measurements... interval. You may use the difference between a diluted exhaust flow meter and a dilution air meter to... compression-ignition engines, two-stroke spark-ignition engines, or four-stroke spark-ignition engines at or...

  15. Design and Implementation of Automatic Air Flow Rate Control System

    NASA Astrophysics Data System (ADS)

    Akbar, A.; Saputra, C.; Munir, M. M.; Khairurrijal

    2016-08-01

    Venturimeter is an apparatus that can be used to measure the air flow rate. In this experiment we designed a venturimeter which equipped with a valve that is used to control the air flow rate. The difference of pressure between the cross sections was measured with the differential pressure sensor GA 100-015WD which can calculate the difference of pressures from 0 to 3737.33 Pa. A 42M048C Z36 stepper motor was used to control the valve. The precision of this motor rotation is about 0.15 °. A Graphical User Interface (GUI) was developed to monitor and set the value of flow rate then an 8-bit microcontroller was used to process the control system In this experiment- the venturimeter has been examined to get the optimal parameter of controller. The results show that the controller can set the stable output air flow rate.

  16. 40 CFR 86.313-79 - Air flow measurement specifications; diesel engines.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...; diesel engines. 86.313-79 Section 86.313-79 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Emission Regulations for New Gasoline-Fueled and Diesel-Fueled Heavy-Duty Engines; Gaseous Exhaust Test Procedures § 86.313-79 Air flow measurement specifications; diesel engines. (a) The air flow measurement...

  17. 40 CFR 86.313-79 - Air flow measurement specifications; diesel engines.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...; diesel engines. 86.313-79 Section 86.313-79 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Emission Regulations for New Gasoline-Fueled and Diesel-Fueled Heavy-Duty Engines; Gaseous Exhaust Test Procedures § 86.313-79 Air flow measurement specifications; diesel engines. (a) The air flow measurement...

  18. 40 CFR 86.313-79 - Air flow measurement specifications; diesel engines.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...; diesel engines. 86.313-79 Section 86.313-79 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Emission Regulations for New Gasoline-Fueled and Diesel-Fueled Heavy-Duty Engines; Gaseous Exhaust Test Procedures § 86.313-79 Air flow measurement specifications; diesel engines. (a) The air flow measurement...

  19. 40 CFR 86.313-79 - Air flow measurement specifications; diesel engines.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...; diesel engines. 86.313-79 Section 86.313-79 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Emission Regulations for New Gasoline-Fueled and Diesel-Fueled Heavy-Duty Engines; Gaseous Exhaust Test Procedures § 86.313-79 Air flow measurement specifications; diesel engines. (a) The air flow measurement...

  20. 40 CFR 1065.240 - Dilution air and diluted exhaust flow meters.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...) AIR POLLUTION CONTROLS ENGINE-TESTING PROCEDURES Measurement Instruments Flow-Related Measurements... interval. You may use the difference between a diluted exhaust flow meter and a dilution air meter to... compression-ignition engines, 2-stroke spark-ignition engines, and 4-stroke spark-ignition engines below 19 kW...

  1. 40 CFR 1065.240 - Dilution air and diluted exhaust flow meters.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...) AIR POLLUTION CONTROLS ENGINE-TESTING PROCEDURES Measurement Instruments Flow-Related Measurements... interval. You may use the difference between a diluted exhaust flow meter and a dilution air meter to... compression-ignition engines, 2-stroke spark-ignition engines, and 4-stroke spark-ignition engines below 19 kW...

  2. 40 CFR 1065.240 - Dilution air and diluted exhaust flow meters.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...) AIR POLLUTION CONTROLS ENGINE-TESTING PROCEDURES Measurement Instruments Flow-Related Measurements... interval. You may use the difference between a diluted exhaust flow meter and a dilution air meter to... compression-ignition engines, 2-stroke spark-ignition engines, and 4-stroke spark-ignition engines below 19 kW...

  3. Flow development through HP & LP turbines, Part II: Effects of the hub endwall secondary sealing air flow on the turbine's mainstream flow

    NASA Astrophysics Data System (ADS)

    Hu, Jialin; Du, Qiang; Liu, Jun; Wang, Pei; Liu, Guang; Liu, Hongrui; Du, Meimei

    2017-08-01

    Although many literatures have been focused on the underneath flow and loss mechanism, very few experiments and simulations have been done under the engines' representative working conditions or considering the real cavity structure as a whole. This paper aims at realizing the goal of design of efficient turbine and scrutinizing the velocity distribution in the vicinity of the rim seal. With the aid of numerical method, a numerical model describing the flow pattern both in the purge flow spot and within the mainstream flow path is established, fluid migration and its accompanied flow mechanism within the realistic cavity structure (with rim seal structure and considering mainstream & secondary air flow's interaction) is used to evaluate both the flow pattern and the underneath flow mechanism within the inward rotating cavity. Meanwhile, the underneath flow and loss mechanism are also studied in the current paper. The computational results show that the sealing air flow's ingestion and ejection are highly interwound with each other in both upstream and downstream flow of the rim seal. Both the down-stream blades' potential effects as well as the upstream blades' wake trajectory can bring about the ingestion of the hot gas flow within the cavity, abrupt increase of the static pressure is believed to be the main reason. Also, the results indicate that sealing air flow ejected through the rear cavity will cause unexpected loss near the outlet section of the blades in the downstream of the HP rotor passages.

  4. Plasma-chemical processes accompanying discharge in air excited by a microwave beam

    NASA Astrophysics Data System (ADS)

    Askar'ian, G. A.; Batanov, G. M.; Gritsinin, S. I.; Kossyi, I. A.; Kostinskii, A. Iu.

    1990-11-01

    Experimental results are presented on plasma-chemical processes of nitrogen oxidation and ozone production accompanying microwave discharge in dry air and in nitrogen-oxygen mixtures. The degree of nitrogen oxidation and the energy expenditure toward the formation of oxides as a function of discharge conditions are established. The experimental results can be explained by assuming oxidation reactions of electron-excited metastable nitrogen molecules by oxygen atoms. Low ozone concentrations in the discharge indicate a significant energy input into the gas.

  5. Visualization of the air flow behind the automotive benchmark vent

    NASA Astrophysics Data System (ADS)

    Pech, Ondrej; Jedelsky, Jan; Caletka, Petr; Jicha, Miroslav

    2015-05-01

    Passenger comfort in cars depends on appropriate function of the cabin HVAC system. A great attention is therefore paid to the effective function of automotive vents and proper formation of the flow behind the ventilation outlet. The article deals with the visualization of air flow from the automotive benchmark vent. The visualization was made for two different shapes of the inlet channel connected to the benchmark vent. The smoke visualization with the laser knife was used. The influence of the shape of the inlet channel to the airflow direction, its enlargement and position of air flow axis were investigated.

  6. Studies of acoustic effects on a flow boundary layer in air

    NASA Technical Reports Server (NTRS)

    Mechel, F.; Schilz, W.

    1986-01-01

    Effects of sound fields on the flow boundary layer on a flat plate subjected to a parallel flow are studied. The boundary layer is influenced by controlling the stagnation point flow at the front edge of the plate. Depending on the Reynolds number and sound frequency, excitation or suppression of turbulent is observed. Measurements were taken at wind velocities between 10 and 30 m/sec and sound frequencies between 0.2 and 3.0 kHz.

  7. Intercooler cooling-air weight flow and pressure drop for minimum drag loss

    NASA Technical Reports Server (NTRS)

    Reuter, J George; Valerino, Michael F

    1944-01-01

    An analysis has been made of the drag losses in airplane flight of cross-flow plate and tubular intercoolers to determine the cooling-air weight flow and pressure drop that give a minimum drag loss for any given cooling effectiveness and, thus, a maximum power-plant net gain due to charge-air cooling. The drag losses considered in this analysis are those due to (1) the extra drag imposed on the airplane by the weight of the intercooler, its duct, and its supports and (2) the drag sustained by the cooling air in flowing through the intercooler and its duct. The investigation covers a range of conditions of altitude, airspeed, lift-drag ratio, supercharger-pressure ratio, and supercharger adiabatic efficiency. The optimum values of cooling air pressure drop and weight flow ratio are tabulated. Curves are presented to illustrate the results of the analysis.

  8. Groundwater remediation engineering sparging using acetylene--study on the flow distribution of air.

    PubMed

    Zheng, Yan-Mei; Zhang, Ying; Huang, Guo-Qiang; Jiang, Bin; Li, Xin-Gang

    2005-01-01

    Air sparging (AS) is an emerging method to remove VOCs from saturated soils and groundwater. Air sparging performance highly depends on the air distribution resulting in the aquifer. In order to study gas flow characterization, a two-dimensional experimental chamber was designed and installed. In addition, the method by using acetylene as the tracer to directly image the gas distribution results of AS process has been put forward. Experiments were performed with different injected gas flow rates. The gas flow patterns were found to depend significantly on the injected gas flow rate, and the characterization of gas flow distributions in porous media was very different from the acetylene tracing study. Lower and higher gas flow rates generally yield more irregular in shape and less effective gas distributions.

  9. An experimental investigation of gas jets in confined swirling air flow

    NASA Technical Reports Server (NTRS)

    Mongia, H.; Ahmed, S. A.; Mongia, H. C.

    1984-01-01

    The fluid dynamics of jets in confined swirling flows which is of importance to designers of turbine combustors and solid fuel ramjets used to power missiles fired from cannons were examined. The fluid dynamics of gas jets of different densities in confined swirling flows were investigated. Mean velocity and turbulence measurements are made with a one color, one component laser velocimeter operating in the forward scatter mode. It is shown that jets in confined flow with large area ratio are highly dissipative which results in both air and helium/air jet centerline velocity decays. For air jets, the jet like behavior in the tube center disappears at about 20 diameters downstream of the jet exit. This phenomenon is independent of the initial jet velocity. The turbulence field at this point also decays to that of the background swirling flow. A jet like behavior in the tube center is noticed even at 40 diameters for the helium/air jets. The subsequent flow and turbulence field depend highly on the initial jet velocity. The jets are fully turbulent, and the cause of this difference in behavior is attributed to the combined action swirl and density difference. This observation can have significant impact on the design of turbine combustors and solid fuel ramjets subject to spin.

  10. Gas dynamics and mixture formation in swirled flows with precession of air flow

    NASA Astrophysics Data System (ADS)

    Tretyakov, V. V.; Sviridenkov, A. A.

    2017-10-01

    The effect of precessing air flow on the processes of mixture formation in the wake of the front winding devices of the combustion chambers is considered. Visual observations have shown that at different times the shape of the atomized jet is highly variable and has signs of precessing motion. The experimental data on the distribution of the velocity and concentration fields of the droplet fuel in the working volume of the flame tube of a typical combustion chamber are obtained. The method of calculating flows consisted in integrating the complete system of Reynolds equations written in Euler variables and closed with the two-parameter model of turbulence k-ε. Calculation of the concentration fields of droplet and vapor fuel is based on the use of models for disintegration into droplets of fuel jets, fragmentation of droplets and analysis of motion and evaporation of individual droplets in the air flow. Comparison of the calculation results with experimental data showed their good agreement.

  11. The fabrication of plastic cages for suspension in mass air flow racks.

    PubMed

    Nielsen, F H; Bailey, B

    1979-08-01

    A cage for suspension in mass air flow racks was constructed of plastic and used to house rats. Little or no difficulty was encountered with the mass air flow rack-suspended cage system during the 4 years it was used for the study of trace elements.

  12. Experimental and analytical dynamic flow characteristics of an axial-flow fan from an air cushion landing system model

    NASA Technical Reports Server (NTRS)

    Thompson, W. C.; Boghani, A. B.; Leland, T. J. W.

    1977-01-01

    An investigation was conducted to compare the steady-state and dynamic flow characteristics of an axial-flow fan which had been used previously as the air supply fan for some model air cushion landing system studies. Steady-state flow characteristics were determined in the standard manner by using differential orifice pressures for the flow regime from free flow to zero flow. In this same regime, a correlative technique was established so that fan inlet and outlet pressures could be used to measure dynamic flow as created by a rotating damper. Dynamic tests at damper frequencies up to 5 Hz showed very different flow characteristics when compared with steady-state flow, particularly with respect to peak pressures and the pressure-flow relationship at fan stall and unstall. A generalized, rational mathematical fan model was developed based on physical fan parameters and a steady-state flow characteristic. The model showed good correlation with experimental tests at damper frequencies up to 5 Hz.

  13. Concentration Measurements in Self-Excited Momentum Dominated Low-Density Gas Jets

    NASA Technical Reports Server (NTRS)

    Yildirim, B. S.; Pasumarthi, K. S.; Agrawal, A. K.

    2004-01-01

    Flow structure of self-excited, laminar, axisymmetric, momentum-dominated helium jets discharged vertically into ambient air was investigated using high-speed rainbow schlieren deflectometry technique. Measurements were obtained at temporal resolution of 1 ms and spatial resolution of 0.19 mm for two test cases with Richardson number of 0.034 and 0.018. Power spectra revealed that the oscillation frequency was independent of spatial coordinates, suggesting global oscillations in the flow. Abel inversion algorithm was used to reconstruct the concentration field of helium. Instantaneous concentration contours revealed changes in the flow field and evolution of vortical structures during an oscillation cycle. Temporal evolution plots of helium concentration at different axial locations provided detailed information about the instability in the flow field.

  14. Split-flow regeneration in absorptive air separation

    DOEpatents

    Weimer, Robert F.

    1987-01-01

    A chemical absorptive separation of air in multiple stage of absorption and desorption is performed with partial recycle of absorbent between stages of desorption necessary to match equilibrium conditions in the various stages of absorption. This allows reduced absorbent flow, reduced energy demand and reduced capital costs.

  15. Effects of flow on insulin fibril formation at an air/water interface

    NASA Astrophysics Data System (ADS)

    Posada, David; Heldt, Caryn; Sorci, Mirco; Belfort, Georges; Hirsa, Amir

    2009-11-01

    The amyloid fibril formation process, which is implicated in several diseases such as Alzheimer's and Huntington's, is characterized by the conversion of monomers to oligomers and then to fibrils. Besides well-studied factors such as pH, temperature and concentration, the kinetics of this process are significantly influenced by the presence of solid or fluid interfaces and by flow. By studying the nucleation and growth of a model system (insulin fibrils) in a well-defined flow field with an air/water interface, we can identify the flow conditions that impact protein aggregation kinetics both in the bulk solution and at the air/water interface. The present flow system (deep-channel surface viscometer) consists of an annular region bounded by stationary inner and outer cylinders, an air/water interface, and a floor driven at constant rotation. We show the effects of Reynolds number on the kinetics of the fibrillation process both in the bulk solution and at the air/water interface, as well as on the structure of the resultant amyloid aggregates.

  16. Asymptotic theory of neutral stability of the Couette flow of a vibrationally excited gas

    NASA Astrophysics Data System (ADS)

    Grigor'ev, Yu. N.; Ershov, I. V.

    2017-01-01

    An asymptotic theory of the neutral stability curve for a supersonic plane Couette flow of a vibrationally excited gas is developed. The initial mathematical model consists of equations of two-temperature viscous gas dynamics, which are used to derive a spectral problem for a linear system of eighth-order ordinary differential equations within the framework of the classical linear stability theory. Unified transformations of the system for all shear flows are performed in accordance with the classical Lin scheme. The problem is reduced to an algebraic secular equation with separation into the "inviscid" and "viscous" parts, which is solved numerically. It is shown that the thus-calculated neutral stability curves agree well with the previously obtained results of the direct numerical solution of the original spectral problem. In particular, the critical Reynolds number increases with excitation enhancement, and the neutral stability curve is shifted toward the domain of higher wave numbers. This is also confirmed by means of solving an asymptotic equation for the critical Reynolds number at the Mach number M ≤ 4.

  17. SIMPLIFIED MODELING OF AIR FLOW DYNAMICS IN SSD RADON MITIGATION SYSTEMS FOR RESIDENCES WITH GRAVEL BEDS

    EPA Science Inventory

    In an attempt to better understand the dynamics of subslab air flow, the report suggests that subslab air flow induced by a central suction point be treated as radial air flow through a porous bed contained between two impermeable disks. (NOTE: Many subslab depressurization syste...

  18. Nonlinear Excitation of Inviscid Stationary Vortex in a Boundary-Layer Flow

    NASA Technical Reports Server (NTRS)

    Choudhari, Meelan; Duck, Peter W.

    1996-01-01

    We examine the excitation of inviscid stationary crossflow instabilities near an isolated surface hump (or indentation) underneath a three-dimensional boundary layer. As the hump height (or indentation depth) is increased from zero, the receptivity process becomes nonlinear even before the stability characteristics of the boundary layer are modified to a significant extent. This behavior contrasts sharply with earlier findings on the excitation of the lower branch Tollmien-Schlichting modes and is attributed to the inviscid nature of the crossflow modes, which leads to a decoupling between the regions of receptivity and stability. As a result of this decoupling, similarity transformations exist that allow the nonlinear receptivity of a general three-dimensional boundary layer to be studied with a set of canonical solutions to the viscous sublayer equations. The parametric study suggests that the receptivity is likely to become nonlinear even before the hump height becomes large enough for flow reversal to occur in the canonical solution. We also find that the receptivity to surface humps increases more rapidly as the hump height increases than is predicted by linear theory. On the other hand, receptivity near surface indentations is generally smaller in comparison with the linear approximation. Extension of the work to crossflow receptivity in compressible boundary layers and to Gortler vortex excitation is also discussed.

  19. 40 CFR 1065.225 - Intake-air flow meter.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... concentrations, if the same signal is used in a chemical-balance calculation to determine work from brake... tube, or a hot-wire anemometer. Note that your overall system for measuring intake-air flow must meet...

  20. Split-flow regeneration in absorptive air separation

    DOEpatents

    Weimer, R.F.

    1987-11-24

    A chemical absorptive separation of air in multiple stage of absorption and desorption is performed with partial recycle of absorbent between stages of desorption necessary to match equilibrium conditions in the various stages of absorption. This allows reduced absorbent flow, reduced energy demand and reduced capital costs. 4 figs.

  1. Boeing engineers perform air flow balance testing.

    NASA Image and Video Library

    2017-10-05

    Boeing engineers, Chris Chapman, left, Greg Clark, center, and Ashesh Patel, right, perform air flow balance testing on NASA's new Basic Express Racks. The racks, developed at Marshall, will expand the capabilities for science research aboard the International Space Station. Delivery to the station is scheduled for late 2018.

  2. Effect of a surface tension gradient on the slip flow along a superhydrophobic air-water interface

    NASA Astrophysics Data System (ADS)

    Song, Dong; Song, Baowei; Hu, Haibao; Du, Xiaosong; Du, Peng; Choi, Chang-Hwan; Rothstein, Jonathan P.

    2018-03-01

    Superhydrophobic surfaces have been shown to produce significant drag reduction in both laminar and turbulent flows by introducing an apparent slip velocity along an air-water interface trapped within the surface roughness. In the experiments presented within this study, we demonstrate the existence of a surface tension gradient associated with the resultant Marangoni flow along an air-water interface that causes the slip velocity and slip length to be significantly reduced. In this study, the slip velocity along a millimeter-sized air-water interface was investigated experimentally. This large-scale air-water interface facilitated a detailed investigation of the interfacial velocity profiles as the flow rate, interfacial curvature, and interface geometry were varied. For the air-water interfaces supported above continuous grooves (concentric rings within a torsional shear flow) where no surface tension gradient exists, a slip velocity as high as 30% of the bulk velocity was observed. However, for the air-water interfaces supported above discontinuous grooves (rectangular channels in a Poiseuille flow), the presence of a surface tension gradient reduced the slip velocity and in some cases resulted in an interfacial velocity that was opposite to the main flow direction. The curvature of the air-water interface in the spanwise direction was found to dictate the details of the interfacial flow profile with reverse flow in the center of the interface for concave surfaces and along the outside of the interface for convex surfaces. The deflection of the air-water interface was also found to greatly affect the magnitude of the slip. Numerical simulations imposed with a relatively small surface tension gradient along the air-water interface were able to predict both the reduced slip velocity and back flow along the air-water interface.

  3. Phase 2: HGM air flow tests in support of HEX vane investigation

    NASA Technical Reports Server (NTRS)

    Cox, G. B., Jr.; Steele, L. L.; Eisenhart, D. W.

    1993-01-01

    Following the start of SSME certification testing for the Pratt and Whitney Alternate Turbopump Development (ATD) High Pressure Oxidizer Turbopump (HPOTP), cracking of the leading edge of the inner HEX vane was experienced. The HEX vane, at the inlet of the oxidizer bowl in the Hot Gas Manifold (HGM), accepts the HPOTP turbine discharge flow and turns it toward the Gaseous Oxidizer Heat Exchanger (GOX HEX) coil. The cracking consistently initiated over a specific circumferential region of the hex vane, with other circumferential locations appearing with increased run time. Since cracking had not to date been seen with the baseline HPOTP, a fluid-structural interaction involving the ATD HPOTP turbine exit flowfield and the HEX inner vane was suspected. As part of NASA contract NAS8-36801, Pratt and Whitney conducted air flow tests of the ATD HPOTP turbine turnaround duct flowpath in the MSFC Phase 2 HGM air flow model. These tests included HEX vane strain gages and additional fluctuating pressure gages in the turnaround duct and HEX vane flowpath area. Three-dimensional flow probe measurements at two stations downstream of the turbine simulator exit plane were also made. Modifications to the HPOTP turbine simulator investigated the effects on turbine exit flow profile and velocity components, with the objective of reproducing flow conditions calculated for the actual ATD HPOTP hardware. Testing was done at the MSFC SSME Dynamic Fluid Air Flow (Dual-Leg) Facility, at air supply pressures between 50 and 250 psia. Combinations of turbine exit Mach number and pressure level were run to investigate the effect of flow regime. Information presented includes: (1) Descriptions of turbine simulator modifications to produce the desired flow environment; (2) Types and locations for instrumentation added to the flow model for improved diagnostic capability; (3) Evaluation of the effect of changes to the turbine simulator flowpath on the turbine exit flow environment; and (4

  4. Aerodynamic excitation and sound production of blown-closed free reeds without acoustic coupling: the example of the accordion reed.

    PubMed

    Ricot, Denis; Caussé, René; Misdariis, Nicolas

    2005-04-01

    The accordion reed is an example of a blown-closed free reed. Unlike most oscillating valves in wind musical instruments, self-sustained oscillations occur without acoustic coupling. Flow visualizations and measurements in water show that the flow can be supposed incompressible and potential. A model is developed and the solution is calculated in the time domain. The excitation force is found to be associated with the inertial load of the unsteady flow through the reed gaps. Inertial effect leads to velocity fluctuations in the reed opening and then to an unsteady Bernoulli force. A pressure component generated by the local reciprocal air movement around the reed is added to the modeled aerodynamic excitation pressure. Since the model is two-dimensional, only qualitative comparisons with air flow measurements are possible. The agreement between the simulated pressure waveforms and measured pressure in the very near-field of the reed is reasonable. In addition, an aeroacoustic model using the permeable Ffowcs Williams-Hawkings integral method is presented. The integral expressions of the far-field acoustic pressure are also computed in the time domain. In agreement with experimental data, the sound is found to be dominated by the dipolar source associated by the strong momentum fluctuations of the flow through the reed gaps.

  5. Aerodynamic excitation and sound production of blown-closed free reeds without acoustic coupling: The example of the accordion reed

    NASA Astrophysics Data System (ADS)

    Ricot, Denis; Caussé, René; Misdariis, Nicolas

    2005-04-01

    The accordion reed is an example of a blown-closed free reed. Unlike most oscillating valves in wind musical instruments, self-sustained oscillations occur without acoustic coupling. Flow visualizations and measurements in water show that the flow can be supposed incompressible and potential. A model is developed and the solution is calculated in the time domain. The excitation force is found to be associated with the inertial load of the unsteady flow through the reed gaps. Inertial effect leads to velocity fluctuations in the reed opening and then to an unsteady Bernoulli force. A pressure component generated by the local reciprocal air movement around the reed is added to the modeled aerodynamic excitation pressure. Since the model is two-dimensional, only qualitative comparisons with air flow measurements are possible. The agreement between the simulated pressure waveforms and measured pressure in the very near-field of the reed is reasonable. In addition, an aeroacoustic model using the permeable Ffowcs Williams-Hawkings integral method is presented. The integral expressions of the far-field acoustic pressure are also computed in the time domain. In agreement with experimental data, the sound is found to be dominated by the dipolar source associated by the strong momentum fluctuations of the flow through the reed gaps. .

  6. Visualization of an air-water interface on superhydrophobic surfaces in turbulent channel flows

    NASA Astrophysics Data System (ADS)

    Kim, Hyunseok; Park, Hyungmin

    2017-11-01

    In the present study, three-dimensional deformation of air-water interface on superhydrophobic surfaces in turbulent channel flows at the Reynolds numbers of Re = 3000 and 10000 is measured with RICM (Reflection Interference Contrast Microscopy) technique. Two different types of roughness feature of circular hole and rectangular grate are considered, whose depth is 20 μm and diameter (or width) is varied between 20-200 μm. Since the air-water interface is always at de-pinned state at the considered condition, air-water interface shape and its sagging velocity is maintained to be almost constant as time goes one. In comparison with the previous results under the laminar flow, due to turbulent characteristics of the flow, sagging velocity is much faster. Based on the measured sagging profiles, a modified model to describe the air-water interface dynamics under turbulent flows is suggested. Supported by City of Seoul through Seoul Urban Data Science Laboratory Project (Grant No 0660-20170004) administered by SNU Big Data Institute.

  7. Elasto-Aerodynamics-Driven Triboelectric Nanogenerator for Scavenging Air-Flow Energy.

    PubMed

    Wang, Shuhua; Mu, Xiaojing; Wang, Xue; Gu, Alex Yuandong; Wang, Zhong Lin; Yang, Ya

    2015-10-27

    Efficient scavenging the kinetic energy from air-flow represents a promising approach for obtaining clean, sustainable electricity. Here, we report an elasto-aerodynamics-driven triboelectric nanogenerator (TENG) based on contact electrification. The reported TENG consists of a Kapton film with two Cu electrodes at each side, fixed on two ends in an acrylic fluid channel. The relationship between the TENG output power density and its fluid channel dimensions is systematically studied. TENG with a fluid channel size of 125 × 10 × 1.6 mm(3) delivers the maximum output power density of about 9 kW/m(3) under a loading resistance of 2.3 MΩ. Aero-elastic flutter effect explains the air-flow induced vibration of Kapton film well. The output power scales nearly linearly with parallel wiring of multiple TENGs. Connecting 10 TENGs in parallel gives an output power of 25 mW, which allows direct powering of a globe light. The TENG is also utilized to scavenge human breath induced air-flow energy to sustainably power a human body temperature sensor.

  8. An experimental study of geyser-like flows induced by a pressurized air pocket

    NASA Astrophysics Data System (ADS)

    Elayeb, I. S.; Leon, A.; Choi, Y.; Alnahit, A. O.

    2015-12-01

    Previous studies argues that the entrapment of pressurized air pockets within combined sewer systems can produce geyser flows, which is an oscillating jetting of a mixture of gas-liquid flows. To verify that pressurized air pockets can effectively produce geysers, laboratory experiments were conducted. However, past experiments were conducted in relatively small-scale apparatus (i.e. maximum φ2" vertical shaft). This study conducted a set of experiments in a larger apparatus. The experimental setup consists of an upstream head tank, a downstream head tank, a horizontal pipe (46.5ft long, φ6") and a vertical pipe (10ft long, φ6"). The initial condition for the experiments is constant flow discharge through the horizontal pipe. The experiments are initiated by injecting an air pocket with pre-determined volume and pressure at the upstream end of the horizontal pipe. The air pocket propagates through the horizontal pipe until it arrives to the vertical shaft, where it is released producing a geyser-like flow. Three flow rates in the horizontal pipe and three injected air pressures were tested. The variables measured were pressure at two locations in the horizontal pipe and two locations in the vertical pipe. High resolution videos at two regions in the vertical shaft were also recorded. To gain further insights in the physics of air-water interaction, the laboratory experiments were complemented with numerical simulations conducted using a commercial 3D CFD model, previously validated with experiments.

  9. Estimation of Flow Channel Parameters for Flowing Gas Mixed with Air in Atmospheric-pressure Plasma Jets

    NASA Astrophysics Data System (ADS)

    Yambe, Kiyoyuki; Saito, Hidetoshi

    2017-12-01

    When the working gas of an atmospheric-pressure non-equilibrium (cold) plasma flows into free space, the diameter of the resulting flow channel changes continuously. The shape of the channel is observed through the light emitted by the working gas of the atmospheric-pressure plasma. When the plasma jet forms a conical shape, the diameter of the cylindrical shape, which approximates the conical shape, defines the diameter of the flow channel. When the working gas flows into the atmosphere from the inside of a quartz tube, the gas mixes with air. The molar ratio of the working gas and air is estimated from the corresponding volume ratio through the relationship between the diameter of the cylindrical plasma channel and the inner diameter of the quartz tube. The Reynolds number is calculated from the kinematic viscosity of the mixed gas and the molar ratio. The gas flow rates for the upper limit of laminar flow and the lower limit of turbulent flow are determined by the corresponding Reynolds numbers estimated from the molar ratio. It is confirmed that the plasma jet length and the internal plasma length associated with strong light emission increase with the increasing gas flow rate until the rate for the upper limit of laminar flow and the lower limit of turbulent flow, respectively. Thus, we are able to explain the increasing trend in the plasma lengths with the diameter of the flow channel and the molar ratio by using the cylindrical approximation.

  10. An Open-Access Modeled Passenger Flow Matrix for the Global Air Network in 2010

    PubMed Central

    Huang, Zhuojie; Wu, Xiao; Garcia, Andres J.; Fik, Timothy J.; Tatem, Andrew J.

    2013-01-01

    The expanding global air network provides rapid and wide-reaching connections accelerating both domestic and international travel. To understand human movement patterns on the network and their socioeconomic, environmental and epidemiological implications, information on passenger flow is required. However, comprehensive data on global passenger flow remain difficult and expensive to obtain, prompting researchers to rely on scheduled flight seat capacity data or simple models of flow. This study describes the construction of an open-access modeled passenger flow matrix for all airports with a host city-population of more than 100,000 and within two transfers of air travel from various publicly available air travel datasets. Data on network characteristics, city population, and local area GDP amongst others are utilized as covariates in a spatial interaction framework to predict the air transportation flows between airports. Training datasets based on information from various transportation organizations in the United States, Canada and the European Union were assembled. A log-linear model controlling the random effects on origin, destination and the airport hierarchy was then built to predict passenger flows on the network, and compared to the results produced using previously published models. Validation analyses showed that the model presented here produced improved predictive power and accuracy compared to previously published models, yielding the highest successful prediction rate at the global scale. Based on this model, passenger flows between 1,491 airports on 644,406 unique routes were estimated in the prediction dataset. The airport node characteristics and estimated passenger flows are freely available as part of the Vector-Borne Disease Airline Importation Risk (VBD-Air) project at: www.vbd-air.com/data. PMID:23691194

  11. An open-access modeled passenger flow matrix for the global air network in 2010.

    PubMed

    Huang, Zhuojie; Wu, Xiao; Garcia, Andres J; Fik, Timothy J; Tatem, Andrew J

    2013-01-01

    The expanding global air network provides rapid and wide-reaching connections accelerating both domestic and international travel. To understand human movement patterns on the network and their socioeconomic, environmental and epidemiological implications, information on passenger flow is required. However, comprehensive data on global passenger flow remain difficult and expensive to obtain, prompting researchers to rely on scheduled flight seat capacity data or simple models of flow. This study describes the construction of an open-access modeled passenger flow matrix for all airports with a host city-population of more than 100,000 and within two transfers of air travel from various publicly available air travel datasets. Data on network characteristics, city population, and local area GDP amongst others are utilized as covariates in a spatial interaction framework to predict the air transportation flows between airports. Training datasets based on information from various transportation organizations in the United States, Canada and the European Union were assembled. A log-linear model controlling the random effects on origin, destination and the airport hierarchy was then built to predict passenger flows on the network, and compared to the results produced using previously published models. Validation analyses showed that the model presented here produced improved predictive power and accuracy compared to previously published models, yielding the highest successful prediction rate at the global scale. Based on this model, passenger flows between 1,491 airports on 644,406 unique routes were estimated in the prediction dataset. The airport node characteristics and estimated passenger flows are freely available as part of the Vector-Borne Disease Airline Importation Risk (VBD-Air) project at: www.vbd-air.com/data.

  12. Downstream boundary effects on the frequency of self-excited oscillations in transonic diffuser flows

    NASA Astrophysics Data System (ADS)

    Hsieh, T.

    1986-10-01

    Investigation of downstream boundary effects on the frequency of self-excited oscillations in two-dimensional, separated transonic diffuser flows were conducted numerically by solving the compressible, Reynolds-averaged, thin-layer Navier-Stokes equation with two equation turbulence models. It was found that the flow fields are very sensitive to the location of the downstream boundary. Extension of the diffuser downstream boundary significantly reduces the frequency and amplitude of oscillations for pressure, velocity, and shock. The existence of a suction slot in the experimental setpup obscures the physical downstream boundary and therefore presents a difficulty for quantitative comparisons between computation and experiment.

  13. Plant pneumatics: stem air flow is related to embolism - new perspectives on methods in plant hydraulics.

    PubMed

    Pereira, Luciano; Bittencourt, Paulo R L; Oliveira, Rafael S; Junior, Mauro B M; Barros, Fernanda V; Ribeiro, Rafael V; Mazzafera, Paulo

    2016-07-01

    Wood contains a large amount of air, even in functional xylem. Air embolisms in the xylem affect water transport and can determine plant growth and survival. Embolisms are usually estimated with laborious hydraulic methods, which can be prone to several artefacts. Here, we describe a new method for estimating embolisms that is based on air flow measurements of entire branches. To calculate the amount of air flowing out of the branch, a vacuum was applied to the cut bases of branches under different water potentials. We first investigated the source of air by determining whether it came from inside or outside the branch. Second, we compared embolism curves according to air flow or hydraulic measurements in 15 vessel- and tracheid-bearing species to test the hypothesis that the air flow is related to embolism. Air flow came almost exclusively from air inside the branch during the 2.5-min measurements and was strongly related to embolism. We propose a new embolism measurement method that is simple, effective, rapid and inexpensive, and that allows several measurements on the same branch, thus opening up new possibilities for studying plant hydraulics. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.

  14. Experimental and Numerical Investigation of Flow Properties of Supersonic Helium-Air Jets

    NASA Technical Reports Server (NTRS)

    Miller, Steven A. E.; Veltin, Jeremy

    2010-01-01

    Heated high speed subsonic and supersonic jets operating on- or off-design are a source of noise that is not yet fully understood. Helium-air mixtures can be used in the correct ratio to simulate the total temperature ratio of heated air jets and hence have the potential to provide inexpensive and reliable flow and acoustic measurements. This study presents a combination of flow measurements of helium-air high speed jets and numerical simulations of similar helium-air mixture and heated air jets. Jets issuing from axisymmetric convergent and convergent-divergent nozzles are investigated, and the results show very strong similarity with heated air jet measurements found in the literature. This demonstrates the validity of simulating heated high speed jets with helium-air in the laboratory, together with the excellent agreement obtained in the presented data between the numerical predictions and the experiments. The very close match between the numerical and experimental data also validates the frozen chemistry model used in the numerical simulation.

  15. Aerodynamic Flow Control by Thermoacoustic Excitation from the Constituent Nanomaterials on the Platform Surface

    DTIC Science & Technology

    2016-02-01

    Nanomaterials on the Platform Surface by Bryan Glaz Approved for public release; distribution is unlimited...Research Laboratory Aerodynamic Flow Control by Thermoacoustic Excitation from the Constituent Nanomaterials on the Platform Surface by Bryan Glaz...shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number

  16. Experimental Investigations of Exciting Forces Caused by Flow in Labyrinth Seals

    NASA Technical Reports Server (NTRS)

    Thieleke, G.; Stetter, H.

    1991-01-01

    The interaction of the flow through the labyrinth seals with the shaft of the rotor can have an effect on the stability of turbomachines. Thus, the excited forces, so-called cross forces or nonconservative forces, arise, which act perpendicular to the rotor eccentricity. This effect is caused by an unsymmetrical pressure distribution within the labyrinth cavities. Experimental studies were carried out for different types of labyrinth geometries: two staggered labyrinths with teeth on the stator and grooved rotor as well as a full and a convergent stepped labyrinth. These labyrinths can be found on the tip shrouding of bladings in steam or gas turbines. The following parameters were varied in the test facility: geometry of the labyrinth seals (number of cavities, inlet region), shaft rotation, pressure difference on the seal, entry swirl and eccentricity of the rotor. The results are presented for stiffness coefficients of the labyrinth seals, leakage flow and circumferential flow in each cavity which was measured with special probes. Generally, the inlet swirl has the greatest influence on the coefficients of the seals. The experimental results were compared with theoretical results and were in good agreement.

  17. Design and analysis of Air flow duct for improving the thermal performance of disc brake rotor

    NASA Astrophysics Data System (ADS)

    Raja, T.; Mathiselvan, G.; Sreenivasulureddy, M.; Goldwin Xavier, X.

    2017-05-01

    safety in automotive engineering has been considered as a number one priority in development of new vehicle. A brake system is one of the most critical systems in the vehicle, without which the vehicle will put a passenger in an unsafe position. Temperature distribution on disc rotor brake and the performance brake of disc rotor is influenced by the air flow around the disc rotor. In this paper, the effect of air flow over the disc rotor is analyzed using the CFD software. The air flow over the disc rotor is increased by using a duct to supply more air flow over the disc rotor. The duct is designed to supply more air to the rotor surface and it can be placed in front of the vehicle for better performance. Increasing the air flow around the rotor will maximize the heat convection from the rotor surface. The rotor life and the performance can be improved.

  18. 30 CFR 57.22212 - Air flow (I-C, II-A, and V-A mines).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Standards for Methane in Metal and Nonmetal Mines Ventilation § 57.22212 Air flow (I-C, II-A, and V-A mines). Air flow across each working face shall be sufficient to carry away any accumulation of methane, smoke...

  19. [Effect on tranquilizing and allaying excitement needling method on brain blood flow in the patients of insomnia of heart and spleen deficiency].

    PubMed

    Yan, Xing-ke; Zhang, Yan; Yu, Lu; Yue, Gong-lei; Li, Tie; Chen, Cheng; Cui, Hai-fu; Wang, Fu-chun

    2010-02-01

    To observe the therapeutic effect of tranquilizing and allaying excitement needling method on insomnia of heart and spleen deficiency and the effect of brain blood flow. Sixty cases were randomly divided into a tranquilizing and allaying excitement needling method group (observation group) and an eight confluence points selected group (control group), 30 cases in each group. The observation group was treated by acupuncture at Sishencong (EX-HN 1), Shenmen (HT 7), and Sanyinjiao (SP 6) with tranquilizing and allaying excitement needling method. The control group was treated by acupuncture at Shenmai (BL 62) and Zhaohai (KI 6). Their therapeutic effects and changes of brain blood flow were observed. The total effective rate was 93.3% (28/30) in the observation group which was better than 83.3% (25/30) in the control group (P < 0.05). After treatment, the peak velocity of systolic (Vp) and diastolic blood flow velocity (Vd) of middle cerebral artery, basilar artery and vertebral artery were increased in the both groups (P < 0.01, P < 0.05), with more obvious increase in the observation group (P < 0.01, P < 0.05), except the Vd of left vertebral artery. Both the tranquilizing and allaying excitement needling method and the eight confluence points selected needling method can improve the clinical signs and symptoms. Meanwhile, the therapeutic effect of acupuncture is related with improvement of brain blood flow. However, the tranquilizing and allaying excitement needling method has better therapeutic effect on insomnia of heart and spleen deficiency.

  20. Relief, nocturnal cold-air flow and air quality in Kigali, Rwanda

    NASA Astrophysics Data System (ADS)

    Henninger, Sascha

    2013-04-01

    , this result is not reassuringly, because all measured residential districts in Kigali exceeded the recommendations of the WHO, too. This suggests that the inhabitants of Kigali are exposed to enormous levels of PM10 during most of their time outdoors. So PM10 levels are increasing in areas with high rates of traffic due to the exhaust of the vehicles and the stirring up of dust from the ground, but also in fact of burning wood for cooking etc. within the residential districts. Hazardous measuring trips could be detected for nighttime measurements. Because of high temperatures, high solar radiation and a non-typical missing cloud cover the urban surface could heat up extremely, which produced a cold-air flow from the ridges and the slopes down to the "Marais" at night. This cold-air flow takes away the suspended particulate matters, which tends to accumulate within the "Marais" on the bottom of the hills, the places where most residential neighborhoods could be found and agricultural fields were used. The distinctive relief caused an accumulation within small valleys. Unfortunately, these are the favourite places of living and agriculture and this tends to high indoor-air pollution.

  1. Experimental study and empirical prediction of fuel flow parameters under air evolution conditions

    NASA Astrophysics Data System (ADS)

    Kitanina, E. E.; Kitanin, E. L.; Bondarenko, D. A.; Kravtsov, P. A.; Peganova, M. M.; Stepanov, S. G.; Zherebzov, V. L.

    2017-11-01

    Air evolution in kerosene under the effect of gravity flow with various hydraulic resistances in the pipeline was studied experimentally. The study was conducted at pressure ranging from 0.2 to 1.0 bar and temperature varying between -20°C and +20°C. Through these experiments, the oversaturation limit beyond which dissolved air starts evolving intensively from the fuel was established and the correlations for the calculation of pressure losses and air evolution on local loss elements were obtained. A method of calculating two-phase flow behaviour in a titled pipeline segment with very low mass flow quality and fairly high volume flow quality was developed. The complete set of empirical correlations obtained by experimental analysis was implemented in the engineering code. The software simulation results were repeatedly verified against our experimental findings and Airbus test data to show that the two-phase flow simulation agrees quite well with the experimental results obtained in the complex branched pipelines.

  2. Use of exhaust gas as sweep flow to enhance air separation membrane performance

    DOEpatents

    Dutart, Charles H.; Choi, Cathy Y.

    2003-01-01

    An intake air separation system for an internal combustion engine is provided with purge gas or sweep flow on the permeate side of separation membranes in the air separation device. Exhaust gas from the engine is used as a purge gas flow, to increase oxygen flux in the separation device without increasing the nitrogen flux.

  3. Flow control of a centrifugal fan in a commercial air conditioner

    NASA Astrophysics Data System (ADS)

    Kim, Jiyu; Bang, Kyeongtae; Choi, Haecheon; Seo, Eung Ryeol; Kang, Yonghun

    2015-11-01

    Air-conditioning fans require a low noise level to provide user comfort and quietness. The aerodynamic noise sources are generated by highly unsteady, turbulent structures near the fan blade. In this study, we investigate the flow characteristics of a centrifugal fan in an air-conditioner indoor unit and suggest control ideas to develop a low noise fan. The experiment is conducted at the operation condition where the Reynolds number is 163000 based on the blade tip velocity and chord length. Intermittent separation occurs at the blade leading edge and thus flow significantly fluctuates there, whereas vortex shedding occurs at the blade trailing edge. Furthermore, the discharge flow observed in the axial plane near the shroud shows low-frequency intermittent behaviors, resulting in high Reynolds stresses. To control these flow structures, we modify the shapes of the blade leading edge and shroud of the centrifugal fan and obtain noise reduction. The flow characteristics of the base and modified fans will be discussed. Supported by 0420-20130051.

  4. Flow immune photoacoustic sensor for real-time and fast sampling of trace gases

    NASA Astrophysics Data System (ADS)

    Petersen, Jan C.; Balslev-Harder, David; Pelevic, Nikola; Brusch, Anders; Persijn, Stefan; Lassen, Mikael

    2018-02-01

    A photoacoustic (PA) sensor for fast and real-time gas sensing is demonstrated. The PA cell has been designed for flow noise immunity using computational fluid dynamics (CFD) analysis. PA measurements were conducted at different flow rates by exciting molecular C-H stretch vibrational bands of hexane (C6H14) in clean air at 2950cm-1 (3.38 μm) with a custom made mid-infrared interband cascade laser (ICL). The PA sensor will contribute to solve a major problem in a number of industries using compressed air by the detection of oil contaminants in high purity compressed air. We observe a (1σ, standard deviation) sensitivity of 0.4 +/-0.1 ppb (nmol/mol) for hexane in clean air at flow rates up to 2 L/min, corresponding to a normalized noise equivalent absorption (NNEA) coefficient of 2.5×10-9 W cm-1 Hz1/2, thus demonstrating high sensitivity and fast and real-time gas analysis. The PA sensor is not limited to molecules with C-H stretching modes, but can be tailored to measure any trace gas by simply changing the excitation wavelength (i.e. the laser source) making it useful for many different applications where fast and sensitive trace gas measurements are needed.

  5. Experimental Study on the Flow Regimes and Pressure Gradients of Air-Oil-Water Three-Phase Flow in Horizontal Pipes

    PubMed Central

    Al-Hadhrami, Luai M.; Shaahid, S. M.; Tunde, Lukman O.; Al-Sarkhi, A.

    2014-01-01

    An experimental investigation has been carried out to study the flow regimes and pressure gradients of air-oil-water three-phase flows in 2.25 ID horizontal pipe at different flow conditions. The effects of water cuts, liquid and gas velocities on flow patterns and pressure gradients have been studied. The experiments have been conducted at 20°C using low viscosity Safrasol D80 oil, tap water and air. Superficial water and oil velocities were varied from 0.3 m/s to 3 m/s and air velocity varied from 0.29 m/s to 52.5 m/s to cover wide range of flow patterns. The experiments were performed for 10% to 90% water cuts. The flow patterns were observed and recorded using high speed video camera while the pressure drops were measured using pressure transducers and U-tube manometers. The flow patterns show strong dependence on water fraction, gas velocities, and liquid velocities. The observed flow patterns are stratified (smooth and wavy), elongated bubble, slug, dispersed bubble, and annular flow patterns. The pressure gradients have been found to increase with the increase in gas flow rates. Also, for a given superficial gas velocity, the pressure gradients increased with the increase in the superficial liquid velocity. The pressure gradient first increases and then decreases with increasing water cut. In general, phase inversion was observed with increase in the water cut. The experimental results have been compared with the existing unified Model and a good agreement has been noticed. PMID:24523645

  6. Experimental study on the flow regimes and pressure gradients of air-oil-water three-phase flow in horizontal pipes.

    PubMed

    Al-Hadhrami, Luai M; Shaahid, S M; Tunde, Lukman O; Al-Sarkhi, A

    2014-01-01

    An experimental investigation has been carried out to study the flow regimes and pressure gradients of air-oil-water three-phase flows in 2.25 ID horizontal pipe at different flow conditions. The effects of water cuts, liquid and gas velocities on flow patterns and pressure gradients have been studied. The experiments have been conducted at 20 °C using low viscosity Safrasol D80 oil, tap water and air. Superficial water and oil velocities were varied from 0.3 m/s to 3 m/s and air velocity varied from 0.29 m/s to 52.5 m/s to cover wide range of flow patterns. The experiments were performed for 10% to 90% water cuts. The flow patterns were observed and recorded using high speed video camera while the pressure drops were measured using pressure transducers and U-tube manometers. The flow patterns show strong dependence on water fraction, gas velocities, and liquid velocities. The observed flow patterns are stratified (smooth and wavy), elongated bubble, slug, dispersed bubble, and annular flow patterns. The pressure gradients have been found to increase with the increase in gas flow rates. Also, for a given superficial gas velocity, the pressure gradients increased with the increase in the superficial liquid velocity. The pressure gradient first increases and then decreases with increasing water cut. In general, phase inversion was observed with increase in the water cut. The experimental results have been compared with the existing unified Model and a good agreement has been noticed.

  7. Experimental study on the flow separation and self-excited oscillation phenomenon in a rectangular duct

    NASA Astrophysics Data System (ADS)

    Xiong, Bing; Wang, Zhen-Guo; Fan, Xiao-Qiang; Wang, Yi

    2017-04-01

    To study the characteristics of flow separation and self-excited oscillation of a shock train in a rectangular duct, a simple test case has been conducted and analyzed. The high-speed Schlieren technique and high-frequency pressure measurements have been adopted to collect the data. The experimental results show that there are two separation modes in the duct under M3 incoming condition. The separation mode switch has great effects on the flow effects, such as the pressure distribution, the standard deviation distribution and so on. The separation mode switch can be judged by the history of pressure standard deviation. When it comes to the self-excited oscillation of a shock train, the frequency contents in the undisturbed region, the intermittent region, and the separated bubble have been compared. It was found that the low-frequency disturbance induced by the upstream shock foot motions can travel downstream and the frequency will be magnified by the separation bubble. The oscillation of the small shock foot and the oscillation of the large shock foot are associated with each other rather than oscillating independently.

  8. Flow diagnostics in unseeded air

    NASA Technical Reports Server (NTRS)

    Miles, R.; Lempert, W.

    1990-01-01

    Several approaches are presented for the quantitative measurement of flowfield parameters in high-speed flows. The techniques are developed for the study of air flows in the Mach 2 to Mach 3 regime and can be extended to the hypersonic and subsonic regimes in a straightforward manner. Instantaneous two-dimensional cross-sectional images of the density using UV Rayleigh scattering and the measurement of velocity profiles using the RELIEF technique are shown. The RELIEF technique employs two high-powered lasers separated in frequency by the vibrational frequency of oxygen molecules to write lines across the flowfield by stimulated Raman scattering. The preliminary results indicate that the UV Rayleigh scattering may also be extended to the measurement of velocity and temperature fields by using an atomic or molecular absorption filter window, and that the RELIEF technique can be extended to marking shaped volumetric points or arrays of points in the flowfield for velocity and vorticity measurements.

  9. Dynamic Flow Management Problems in Air Transportation

    NASA Technical Reports Server (NTRS)

    Patterson, Sarah Stock

    1997-01-01

    In 1995, over six hundred thousand licensed pilots flew nearly thirty-five million flights into over eighteen thousand U.S. airports, logging more than 519 billion passenger miles. Since demand for air travel has increased by more than 50% in the last decade while capacity has stagnated, congestion is a problem of undeniable practical significance. In this thesis, we will develop optimization techniques that reduce the impact of congestion on the national airspace. We start by determining the optimal release times for flights into the airspace and the optimal speed adjustment while airborne taking into account the capacitated airspace. This is called the Air Traffic Flow Management Problem (TFMP). We address the complexity, showing that it is NP-hard. We build an integer programming formulation that is quite strong as some of the proposed inequalities are facet defining for the convex hull of solutions. For practical problems, the solutions of the LP relaxation of the TFMP are very often integral. In essence, we reduce the problem to efficiently solving large scale linear programming problems. Thus, the computation times are reasonably small for large scale, practical problems involving thousands of flights. Next, we address the problem of determining how to reroute aircraft in the airspace system when faced with dynamically changing weather conditions. This is called the Air Traffic Flow Management Rerouting Problem (TFMRP) We present an integrated mathematical programming approach for the TFMRP, which utilizes several methodologies, in order to minimize delay costs. In order to address the high dimensionality, we present an aggregate model, in which we formulate the TFMRP as a multicommodity, integer, dynamic network flow problem with certain side constraints. Using Lagrangian relaxation, we generate aggregate flows that are decomposed into a collection of flight paths using a randomized rounding heuristic. This collection of paths is used in a packing integer

  10. Interior Permanent Magnet Reluctance Machine with Brushless Field Excitation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wiles, R.H.

    2005-10-07

    In a conventional permanent magnet (PM) machine, the air-gap flux produced by the PM is fixed. It is difficult to enhance the air-gap flux density due to limitations of the PM in a series-magnetic circuit. However, the air-gap flux density can be weakened by using power electronic field weakening to the limit of demagnetization of the PMs. This paper presents the test results of controlling the PM air-gap flux density through the use of a stationary brushless excitation coil in a reluctance interior permanent magnet with brushless field excitation (RIPM-BFE) motor. Through the use of this technology the air-gap fluxmore » density can be either enhanced or weakened. There is no concern with demagnetizing the PMs during field weakening. The leakage flux of the excitation coil through the PMs is blocked. The prototype motor built on this principle confirms the concept of flux enhancement and weakening through the use of excitation coils.« less

  11. Comparison of Descemet stripping under continuous air flow, manual air injection and balanced salt solution for DMEK: a pilot study.

    PubMed

    Gabbay, I E; Bahar, I; Nahum, Y; Livny, E

    2017-08-01

    Descemet's membrane endothelial keratoplasty (DMEK) involves removal of the recipient's Descemet membrane (DM) prior to transplanting the donor's DM. When using balanced salt solution (BSS) or ophthalmic viscosurgical devices (OVDs), visualization of the host's DM during its stripping may be inadequate and may result in Descemet remnants and could lead to sub-optimal surgical results. Previous articles described excellent visualization when utilizing air injection but this requires repeated air injection into the anterior chamber (AC). We present a pilot study that compares different techniques under which DM stripping can be performed: with continuous automated air infusion, with manual air infusion, and with BSS. We retrospectively compared video footage of DM stripping with BSS, with continuous air and with manual injection of air into the AC to determine DM stripping duration and the number of times the surgeon had to insert and retrieve a surgical instrument from the AC. Thirty videos of 10 consecutive cases of the three DM stripping techniques were evaluated. DM stripping duration was 3.26 (±1.32), 3.92 (±1.2) and 12.9 (±3.98) minutes for BSS, continuous air flow, and manual air injection, respectively. Frequency of instrument retrieval (FIR) was 3.6 (±1.71), 1.5 (±0.71) and 15.1 (±3.28) for BSS, continuous air flow, and manual air injection, respectively. Continuous air flow and BSS were both statistically different than manual air injection into the AC (p < 0.05), but did not differ from one another statistically. DM stripping during posterior lamellar surgery is imperative for favorable post-operative results and prevention of complications. Performing this step under air in the AC contributes to better visualization and an efficient surgery.

  12. Program and charts for determining shock tube, and expansion tunnel flow quantities for real air

    NASA Technical Reports Server (NTRS)

    Miller, C. G., III; Wilder, S. E.

    1975-01-01

    A computer program in FORTRAN 4 language was written to determine shock tube, expansion tube, and expansion tunnel flow quantities for real-air test gas. This program permits, as input data, a number of possible combinations of flow quantities generally measured during a test. The versatility of the program is enhanced by the inclusion of such effects as a standing or totally reflected shock at the secondary diaphragm, thermochemical-equilibrium flow expansion and frozen flow expansion for the expansion tube and expansion tunnel, attenuation of the flow in traversing the acceleration section of the expansion tube, real air as the acceleration gas, and the effect of wall boundary layer on the acceleration section air flow. Charts which provide a rapid estimation of expansion tube performance prior to a test are included.

  13. Character of energy flow in air shower core

    NASA Technical Reports Server (NTRS)

    Mizushima, K.; Asakimori, K.; Maeda, T.; Kameda, T.; Misaki, Y.

    1985-01-01

    Energy per charged particle near the core of air showers was measured by 9 energy flow detectors, which were the combination of Cerenkov counters and scintillators. Energy per particle of each detector was normalized to energy at 2m from the core. The following results were obtained as to the energy flow: (1) integral frequency distribution of mean energy per particle (averaged over 9 detectors) is composed of two groups separated distinctly; and (2) showers contained in one group show an anisotropy of arrival direction.

  14. A MEMS-based Air Flow Sensor with a Free-standing Micro-cantilever Structure

    PubMed Central

    Wang, Yu-Hsiang; Lee, Chia-Yen; Chiang, Che-Ming

    2007-01-01

    This paper presents a micro-scale air flow sensor based on a free-standing cantilever structure. In the fabrication process, MEMS techniques are used to deposit a silicon nitride layer on a silicon wafer. A platinum layer is deposited on the silicon nitride layer to form a piezoresistor, and the resulting structure is then etched to create a freestanding micro-cantilever. When an air flow passes over the surface of the cantilever beam, the beam deflects in the downward direction, resulting in a small variation in the resistance of the piezoelectric layer. The air flow velocity is determined by measuring the change in resistance using an external LCR meter. The experimental results indicate that the flow sensor has a high sensitivity (0.0284 Ω/ms-1), a high velocity measurement limit (45 ms-1) and a rapid response time (0.53 s). PMID:28903233

  15. Permanent-magnet-less machine having an enclosed air gap

    DOEpatents

    Hsu, John S [Oak Ridge, TN

    2012-02-07

    A permanent magnet-less, brushless synchronous system includes a stator that generates a magnetic rotating field when sourced by an alternating current. An uncluttered rotor disposed within the magnetic rotating field is spaced apart from the stator to form an air gap relative to an axis of rotation. A stationary excitation core spaced apart from the uncluttered rotor by an axial air gap and a radial air gap substantially encloses the stationary excitation core. Some permanent magnet-less, brushless synchronous systems include stator core gaps to reduce axial flux flow. Some permanent magnet-less, brushless synchronous systems include an uncluttered rotor coupled to outer laminations. The quadrature-axis inductance may be increased in some synchronous systems. Some synchronous systems convert energy such as mechanical energy into electrical energy (e.g., a generator); other synchronous systems may convert any form of energy into mechanical energy (e.g., a motor).

  16. Permanent-magnet-less machine having an enclosed air gap

    DOEpatents

    Hsu, John S.

    2013-03-05

    A permanent magnet-less, brushless synchronous system includes a stator that generates a magnetic rotating field when sourced by an alternating current. An uncluttered rotor disposed within the magnetic rotating field is spaced apart from the stator to form an air gap relative to an axis of rotation. A stationary excitation core spaced apart from the uncluttered rotor by an axial air gap and a radial air gap substantially encloses the stationary excitation core. Some permanent magnet-less, brushless synchronous systems include stator core gaps to reduce axial flux flow. Some permanent magnet-less, brushless synchronous systems include an uncluttered rotor coupled to outer laminations. The quadrature-axis inductance may be increased in some synchronous systems. Some synchronous systems convert energy such as mechanical energy into electrical energy (e.g., a generator); other synchronous systems may convert any form of energy into mechanical energy (e.g., a motor).

  17. In-cylinder air-flow characteristics of different intake port geometries using tomographic PIV

    NASA Astrophysics Data System (ADS)

    Agarwal, Avinash Kumar; Gadekar, Suresh; Singh, Akhilendra Pratap

    2017-09-01

    For improving the in-cylinder flow characteristics of intake air/charge and for strengthening the turbulence intensity, specific intake port geometries have shown significant potential in compression ignition engines. In this experimental study, effects of intake port geometries on air-flow characteristics were investigated using tomographic particle imaging velocimetry (TPIV). Experiments were performed using three experimental conditions, namely, swirl port open (SPO), tangential port open (TPO), and both port open (BPO) configurations in a single cylinder optical research engine. Flow investigations were carried out in a volumetric section located in the middle of the intake and exhaust valves. Particle imaging velocimetry (PIV) images were captured using two high speed cameras at a crank angle resolution of 2° in the intake and compression strokes. The captured PIV images were then pre-processed and post-processed to obtain the final air-flow-field. Effects of these two intake ports on flow-field are presented for air velocity, vorticity, average absolute velocity, and turbulent kinetic energy. Analysis of these flow-fields suggests the dominating nature of the swirl port over the tangential port for the BPO configuration and higher rate of flow energy dissipation for the TPO configuration compared to the SPO and BPO configurations. These findings of TPIV investigations were experimentally verified by combustion and particulate characteristics of the test engine in thermal cylinder head configuration. Combustion results showed that the SPO configuration resulted in superior combustion amongst all three port configurations. Particulate characteristics showed that the TPO configuration resulted in higher particulate compared to other port configurations.

  18. Study of Mouthguard Design for Endurance and Air-Flow Intake

    NASA Astrophysics Data System (ADS)

    Zaman, I.; Rozlan, S. A. M.; Manshoor, B.; Ngali, M. Z.; Khalid, A.; Amin, N. A. M.

    2017-08-01

    Mouthguard is one of the important device for athletes. Wearing a mouthguard is a must to prevent them from any orofacial injuries occurs during their sport activities. Therefore, to make sure it is safe and comfort, a study on the mouthguard design is carried out to investigate the performance of the mouthguard, in term of stress distribution and air flow path by improving the pressure difference between ambient and the oral cavity pressure. A preliminary design has been study to simulate its total deformation and stress, in terms of Von Mises Stress by using ANSYS 15.0 Workbench. From the results, the critical parts are identified on the preliminary design and later being used to improve the design to the new one. By increasing the thickness of the preliminary design, the total deformation has been decreased for about 0.20 mm to 0.16 mm for the exerted external forces ranging from 50-500 N, whereas, for internal forces ranging from 100-600 N have reduced deformation from 0.24 mm to 1.44 mm. The simulation process is then followed by the air flow study in the oral cavity with an open mouth about 0.5 mm when the athlete is doing exercise with speed 4.43 m/s of air flow into a mouth. The finding indicates that the modified mouthguard has large value of velocity streamline compared to the preliminary design which is supported by significant pressure difference of 401.86 Pa, compared to 140.09 Pa of the preliminary design. Velocity stream line also shows that the higher speeds occur in the near mouthguard, that is, between the bottom surfaces of the mouthguard and the lower teeth. The results demonstrated that the thicker the mouthguard, the better it is for prevention but less in air flow distribution into the oral cavity.

  19. Numerical analysis of air-flow and temperature field in a passenger car compartment

    NASA Astrophysics Data System (ADS)

    Kamar, Haslinda Mohamed; Kamsah, Nazri; Mohammad Nor, Ahmad Miski

    2012-06-01

    This paper presents a numerical study on the temperature field inside a passenger's compartment of a Proton Wira saloon car using computational fluid dynamics (CFD) method. The main goal is to investigate the effects of different glazing types applied onto the front and rear windscreens of the car on the distribution of air-temperature inside the passenger compartment in the steady-state conditions. The air-flow condition in the passenger's compartment is also investigated. Fluent CFD software was used to develop a three-dimensional symmetrical model of the passenger's compartment. Simplified representations of the driver and one rear passenger were incorporated into the CFD model of the passenger's compartment. Two types of glazing were considered namely clear insulated laminated tint (CIL) with a shading coefficient of 0.78 and green insulated laminate tint (GIL) with a shading coefficient of 0.5. Results of the CFD analysis were compared with those obtained when the windscreens are made up of clear glass having a shading coefficient of 0.86. Results of the CFD analysis show that for a given glazing material, the temperature of the air around the driver is slightly lower than the air around the rear passenger. Also, the use of GIL glazing material on both the front and rear windscreens significantly reduces the air temperature inside the passenger's compartment of the car. This contributes to a better thermal comfort condition to the occupants. Swirling air flow condition occurs in the passenger compartment. The air-flow intensity and velocity are higher along the side wall of the passenger's compartment compared to that along the middle section of the compartment. It was also found that the use of glazing materials on both the front and rear windscreen has no significant effects on the air-flow condition inside the passenger's compartment of the car.

  20. Fuel Spray and Flame Formation in a Compression-Ignition Engine Employing Air Flow

    NASA Technical Reports Server (NTRS)

    Rothrock, A M; Waldron, C D

    1937-01-01

    The effects of air flow on fuel spray and flame formation in a high-speed compression-ignition engine have been investigated by means of the NACA combustion apparatus. The process was studied by examining high-speed motion pictures taken at the rate of 2,200 frames a second. The combustion chamber was of the flat-disk type used in previous experiments with this apparatus. The air flow was produced by a rectangular displacer mounted on top of the engine piston. Three fuel-injection nozzles were tested: a 0.020-inch single-orifice nozzle, a 6-orifice nozzle, and a slit nozzle. The air velocity within the combustion chamber was estimated to reach a value of 425 feet a second. The results show that in no case was the form of the fuel spray completely destroyed by the air jet although in some cases the direction of the spray was changed and the spray envelope was carried away by the moving air. The distribution of the fuel in the combustion chamber of a compression-ignition engine can be regulated to some extent by the design of the combustion chamber, by the design of the fuel-injection nozzle, and by the use of air flow.

  1. Effect of Turbulence Modeling on an Excited Jet

    NASA Technical Reports Server (NTRS)

    Brown, Clifford A.; Hixon, Ray

    2010-01-01

    The flow dynamics in a high-speed jet are dominated by unsteady turbulent flow structures in the plume. Jet excitation seeks to control these flow structures through the natural instabilities present in the initial shear layer of the jet. Understanding and optimizing the excitation input, for jet noise reduction or plume mixing enhancement, requires many trials that may be done experimentally or computationally at a significant cost savings. Numerical simulations, which model various parts of the unsteady dynamics to reduce the computational expense of the simulation, must adequately capture the unsteady flow dynamics in the excited jet for the results are to be used. Four CFD methods are considered for use in an excited jet problem, including two turbulence models with an Unsteady Reynolds Averaged Navier-Stokes (URANS) solver, one Large Eddy Simulation (LES) solver, and one URANS/LES hybrid method. Each method is used to simulate a simplified excited jet and the results are evaluated based on the flow data, computation time, and numerical stability. The knowledge gained about the effect of turbulence modeling and CFD methods from these basic simulations will guide and assist future three-dimensional (3-D) simulations that will be used to understand and optimize a realistic excited jet for a particular application.

  2. Cold air drainage flows subsidize montane valley ecosystem productivity.

    PubMed

    Novick, Kimberly A; Oishi, A Christopher; Miniat, Chelcy Ford

    2016-12-01

    In mountainous areas, cold air drainage from high to low elevations has pronounced effects on local temperature, which is a critical driver of many ecosystem processes, including carbon uptake and storage. Here, we leverage new approaches for interpreting ecosystem carbon flux observations in complex terrain to quantify the links between macro-climate condition, drainage flows, local microclimate, and ecosystem carbon cycling in a southern Appalachian valley. Data from multiple long-running climate stations and multiple eddy covariance flux towers are combined with simple models for ecosystem carbon fluxes. We show that cold air drainage into the valley suppresses local temperature by several degrees at night and for several hours before and after sunset, leading to reductions in growing season respiration on the order of ~8%. As a result, we estimate that drainage flows increase growing season and annual net carbon uptake in the valley by >10% and >15%, respectively, via effects on microclimate that are not be adequately represented in regional- and global-scale terrestrial ecosystem models. Analyses driven by chamber-based estimates of soil and plant respiration reveal cold air drainage effects on ecosystem respiration are dominated by reductions to the respiration of aboveground biomass. We further show that cold air drainage proceeds more readily when cloud cover and humidity are low, resulting in the greatest enhancements to net carbon uptake in the valley under clear, cloud-free (i.e., drought-like) conditions. This is a counterintuitive result that is neither observed nor predicted outside of the valley, where nocturnal temperature and respiration increase during dry periods. This result should motivate efforts to explore how topographic flows may buffer eco-physiological processes from macroscale climate change. © 2016 John Wiley & Sons Ltd.

  3. A MEMS-based Air Flow Sensor with a Free-standing Micro-cantilever Structure.

    PubMed

    Wang, Yu-Hsiang; Lee, Chia-Yen; Chiang, Che-Ming

    2007-10-17

    This paper presents a micro-scale air flow sensor based on a free-standingcantilever structure. In the fabrication process, MEMS techniques are used to deposit asilicon nitride layer on a silicon wafer. A platinum layer is deposited on the silicon nitridelayer to form a piezoresistor, and the resulting structure is then etched to create afreestanding micro-cantilever. When an air flow passes over the surface of the cantileverbeam, the beam deflects in the downward direction, resulting in a small variation in theresistance of the piezoelectric layer. The air flow velocity is determined by measuring thechange in resistance using an external LCR meter. The experimental results indicate that theflow sensor has a high sensitivity (0.0284 ω/ms -1 ), a high velocity measurement limit (45ms -1 ) and a rapid response time (0.53 s).

  4. Air-Flow-Driven Triboelectric Nanogenerators for Self-Powered Real-Time Respiratory Monitoring.

    PubMed

    Wang, Meng; Zhang, Jiahao; Tang, Yingjie; Li, Jun; Zhang, Baosen; Liang, Erjun; Mao, Yanchao; Wang, Xudong

    2018-06-04

    Respiration is one of the most important vital signs of humans, and respiratory monitoring plays an important role in physical health management. A low-cost and convenient real-time respiratory monitoring system is extremely desirable. In this work, we demonstrated an air-flow-driven triboelectric nanogenerator (TENG) for self-powered real-time respiratory monitoring by converting mechanical energy of human respiration into electric output signals. The operation of the TENG was based on the air-flow-driven vibration of a flexible nanostructured polytetrafluoroethylene (n-PTFE) thin film in an acrylic tube. This TENG can generate distinct real-time electric signals when exposed to the air flow from different breath behaviors. It was also found that the accumulative charge transferred in breath sensing corresponds well to the total volume of air exchanged during the respiration process. Based on this TENG device, an intelligent wireless respiratory monitoring and alert system was further developed, which used the TENG signal to directly trigger a wireless alarm or dial a cell phone to provide timely alerts in response to breath behavior changes. This research offers a promising solution for developing self-powered real-time respiratory monitoring devices.

  5. Full-Field Measurements of Self-Excited Oscillations in Momentum-Dominated Helium Jets

    NASA Technical Reports Server (NTRS)

    Yildirim, B. S.; Agrawal, A. K.

    2005-01-01

    Flow structure of momentum-dominated helium jets discharged vertically into ambient air was investigated using a high-speed rainbow schlieren deflectometry (RSD) apparatus operated at up to 2000 Hz. The operating parameters, i.e., Reynolds number and Richardson number were varied independently to examine the self-excited, flow oscillatory behavior over a range of experimental conditions. Measurements revealed highly periodic oscillations in the laminar region at a unique frequency as well as high regularity in the flow transition and initial turbulent regions. The buoyancy was shown to affect the oscillation frequency and the distance from the jet exit to the flow transition plane. Instantaneous helium concentration contours across the field of view revealed changes in the jet flow structure and the evolution of the vortical structures during an oscillation cycle. A cross-correlation technique was applied to track the vortices and to find their convection velocity. Time-traces of helium concentration at different axial locations provided detailed information about the oscillating flow.

  6. Planar temperature measurement in compressible flows using laser-induced iodine fluorescence

    NASA Technical Reports Server (NTRS)

    Hartfield, Roy J., Jr.; Hollo, Steven D.; Mcdaniel, James C.

    1991-01-01

    A laser-induced iodine fluorescence technique that is suitable for the planar measurement of temperature in cold nonreacting compressible air flows is investigated analytically and demonstrated in a known flow field. The technique is based on the temperature dependence of the broadband fluorescence from iodine excited by the 514-nm line of an argon-ion laser. Temperatures ranging from 165 to 245 K were measured in the calibration flow field. This technique makes complete, spatially resolved surveys of temperature practical in highly three-dimensional, low-temperature compressible flows.

  7. Study of Various Slanted Air-Gap Structures of Interior Permanent Magnet Synchronous Motor with Brushless Field Excitation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tolbert, Leon M; Lee, Seong T

    2010-01-01

    This paper shows how to maximize the effect of the slanted air-gap structure of an interior permanent magnet synchronous motor with brushless field excitation (BFE) for application in a hybrid electric vehicle. The BFE structure offers high torque density at low speed and weakened flux at high speed. The unique slanted air-gap is intended to increase the output torque of the machine as well as to maximize the ratio of the back-emf of a machine that is controllable by BFE. This irregularly shaped air-gap makes a flux barrier along the d-axis flux path and decreases the d-axis inductance; as amore » result, the reluctance torque of the machine is much higher than a uniform air-gap machine, and so is the output torque. Also, the machine achieves a higher ratio of the magnitude of controllable back-emf. The determination of the slanted shape was performed by using magnetic equivalent circuit analysis and finite element analysis (FEA).« less

  8. Propulsive jet simulation with air and helium in launcher wake flows

    NASA Astrophysics Data System (ADS)

    Stephan, Sören; Radespiel, Rolf

    2017-06-01

    The influence on the turbulent wake of a generic space launcher model due to the presence of an under-expanded jet is investigated experimentally. Wake flow phenomena represent a significant source of uncertainties in the design of a space launcher. Especially critical are dynamic loads on the structure. The wake flow is investigated at supersonic (M=2.9) and hypersonic (M=5.9) flow regimes. The jet flow is simulated using air and helium as working gas. Due to the lower molar mass of helium, higher jet velocities are realized, and therefore, velocity ratios similar to space launchers can be simulated. The degree of under-expansion of the jet is moderate for the supersonic case (p_e/p_∞ ≈ 5) and high for the hypersonic case (p_e/p_∞ ≈ 90). The flow topology is described by Schlieren visualization and mean-pressure measurements. Unsteady pressure measurements are performed to describe the dynamic wake flow. The influences of the under-expanded jet and different jet velocities are reported. On the base fluctuations at a Strouhal number, around St_D ≈ 0.25 dominate for supersonic free-stream flows. With air jet, a fluctuation-level increase on the base is observed for Strouhal numbers above St_D ≈ 0.75 in hypersonic flow regime. With helium jet, distinct peaks at higher frequencies are found. This is attributed to the interactions of wake flow and jet.

  9. Neutron imaging of diabatic two-phase flows relevant to air conditioning

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Geoghegan, Patrick J; Sharma, Vishaldeep

    The design of the evaporator of an air conditioning system relies heavily on heat transfer coefficients and pressure drop correlations that predominantly involve an estimate of the changing void fraction and the underlying two-phase flow regime. These correlations dictate whether the resulting heat exchanger is oversized or not and the amount of refrigerant charge necessary to operate. The latter is particularly important when dealing with flammable or high GWP refrigerants. Traditional techniques to measure the void fraction and visualize the flow are either invasive to the flow or occur downstream of the evaporator, where some of the flow distribution willmore » have changed. Neutron imaging has the potential to visualize two-phase flow in-situ where an aluminium heat exchanger structure becomes essentially transparent to the penetrating neutrons. The subatomic particles are attenuated by the passing refrigerant flow. The resulting image may be directly related to the void fraction and the overall picture provides a clear insight into the flow regime present. This work presents neutron images of the refrigerant Isopentane as it passes through the flow channels of an aluminium evaporator at flowrates relevant to air conditioning. The flow in a 4mm square macro channel is compared to that in a 250 m by 750 m rectangular microchannel in terms of void fraction and regime. All neutron imaging experiments were conducted at the High Flux Isotope Reactor, an Oak Ridge National Laboratory facility« less

  10. Experimental and Numerical Analysis of Air Flow, Heat Transfer and Thermal Comfort in Buildings with Different Heating Systems

    NASA Astrophysics Data System (ADS)

    Sabanskis, A.; Virbulis, J.

    2016-04-01

    Monitoring of temperature, humidity and air flow velocity is performed in 5 experimental buildings with the inner size of 3×3×3 m3 located in Riga, Latvia. The buildings are equipped with different heating systems, such as an air-air heat pump, air-water heat pump, capillary heating mat on the ceiling and electric heater. Numerical simulation of air flow and heat transfer by convection, conduction and radiation is carried out using OpenFOAM software and compared with experimental data. Results are analysed regarding the temperature and air flow distribution as well as thermal comfort.

  11. Excitation/Detection Strategies for OH Planar Laser-Induced Fluorescence Measurements in the Presence of Interfering Fuel Signal and Absorption Effects

    NASA Technical Reports Server (NTRS)

    Heath, Christopher M.; Anderson, Robert C.; Hicks, Yolanda R.

    2011-01-01

    Planar laser-induced fluorescence (PLIF) excitation/detection methods have been applied to obtain spatial distributions of the hydroxyl [OH] reacting intermediary and hydrocarbon [HC] primary species in laminar and turbulent combustion reactions. In this report, broadband and narrowband excitation/filtering techniques are explored to identify an optimal experimental configuration yielding significant fluorescent signal with low absorption losses. The combustion environments analyzed include 1) a laminar non-premixed methane/air flame and 2) a turbulent, non-premixed Jet-A/air fueled flame within a lean flame tube combustor. Hydrocarbon-based fuel and OH were excited via the R1 (1), R1(10) and R2(7) transitions of the A(sup 2)Epsilon(+) X(sup 2)pi(1,0) band using a broadband Nd:YAG pumped optical parametric oscillator (OPO) and narrowband Nd:YAG/dye laser with ultraviolet frequency extension (UVX) package. Variables tested for influence on fluorescent signal and absorption characteristics were excitation line, laser energy, exciting linewidth, combustion reactants, and test flow conditions. Results are intended to guide the transition from a dye/UVX laser to an OPO system for performing advanced diagnostics of low-emission combustion concepts.

  12. Flow visualization study of grooved surface/surfactant/air sheet interaction

    NASA Technical Reports Server (NTRS)

    Reed, Jason C.; Weinstein, Leonard M.

    1989-01-01

    The effects of groove geometry, surfactants, and airflow rate have been ascertained by a flow-visualization study of grooved-surface models which addresses the possible conditions for skin friction-reduction in marine vehicles. It is found that the grooved surface geometry holds the injected bubble stream near the wall and, in some cases, results in a 'tube' of air which remains attached to the wall. It is noted that groove dimension and the use of surfactants can substantially affect the stability of this air tube; deeper grooves, surfactants with high contact angles, and angled air injection, are all found to increase the stability of the attached air tube, while convected disturbances and high shear increase interfacial instability.

  13. Measurements of C V flows from thermal charge-exchange excitation in divertor plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zaniol, B.; Isler, R. C.; Brooks, N. H.

    2001-10-01

    Certain transitions of C IV (C{sup 3+}) from n=7 to n=6 ({approx}7226 {angstrom}) and from n=6 to n=5 ({approx}4660 {angstrom}) sometimes appear much brighter in tokamak divertors than expected for electron-impact excitation from the ground state. This situation occurs because of charge exchange between C V (C{sup 4+}) and recycling thermal deuterium atoms in the n=2 level. As a result, it is possible to extend parallel flow measurements of carbon, which have previously been performed on C II--C IV ions using Doppler shift spectroscopy, to include flows of the He-like C V ions. The work described here includes modeling ofmore » the spectral features, correlation of state populations with classical Monte Carlo trajectory (CTMC) predictions, and applications to flow measurements in the DIII-D divertor [Plasma Physics Controlled Nuclear Fusion Research 1986 (International Atomic Energy Agency, Vienna, 1987), Vol. I, p. 159; Proceedings of the 18th IEEE/NPSS Symposium on Fusion Engineering, Albuquerque (Institute of Electrical and Electronic Engineers, Piscataway, 1999), p. 515].« less

  14. Measurements of C V flows from thermal charge-exchange excitation in divertor plasmas

    NASA Astrophysics Data System (ADS)

    Zaniol, B.; Isler, R. C.; Brooks, N. H.; West, W. P.; Olson, R. E.

    2001-10-01

    Certain transitions of C IV (C3+) from n=7 to n=6 (≈7226 Å) and from n=6 to n=5 (≈4660 Å) sometimes appear much brighter in tokamak divertors than expected for electron-impact excitation from the ground state. This situation occurs because of charge exchange between C V (C4+) and recycling thermal deuterium atoms in the n=2 level. As a result, it is possible to extend parallel flow measurements of carbon, which have previously been performed on C II-C IV ions using Doppler shift spectroscopy, to include flows of the He-like C V ions. The work described here includes modeling of the spectral features, correlation of state populations with classical Monte Carlo trajectory (CTMC) predictions, and applications to flow measurements in the DIII-D divertor [Plasma Physics Controlled Nuclear Fusion Research 1986 (International Atomic Energy Agency, Vienna, 1987), Vol. I, p. 159; Proceedings of the 18th IEEE/NPSS Symposium on Fusion Engineering, Albuquerque (Institute of Electrical and Electronic Engineers, Piscataway, 1999), p. 515].

  15. Transition to chaos of a vertical collapsible tube conveying air flow

    NASA Astrophysics Data System (ADS)

    Castillo Flores, F.; Cros, A.

    2009-05-01

    "Sky dancers", the large collapsible tubes used as advertising, are studied in this work through a simple experimental device. Our study is devoted to the nonlinear dynamics of this system and to its transition to chaos. Firstly, we have shown that after a collapse occurs, the air fills the tube at a different speed rate from the flow velocity. Secondly, the temporal intermittency is studied as the flow rate is increased. A statistical analysis shows that the chaotic times maintain roughly the same value by increasing air speed. On the other hand, laminar times become shorter, until the system reaches a completely chaotic state.

  16. Over atmospheric pressure flowing afterglow

    NASA Astrophysics Data System (ADS)

    Ganciu, Mihai; Orphal, Johannes; Vervloet, Michel; Pointu, Anne-Marie; Touzeau, Michel

    2002-10-01

    A Tabletop discharge * created above atmospheric pressure in a N2 gas flow, uses some 10 kV very fast high voltage pulses applied between needle electrodes with some 10 kHz repetition rate. It is followed by a post-discharge, in a plastic tube with 6-mm internal diameter. Adjusting the flow and the repetition rate, the post-discharge exhibits a surprisingly long size, 9-10 m, as shown by the tube fluorescence. Preliminary spectroscopic measurements demonstrate that fluorescence is due to internal gas excited molecules (CN and NH) that are locally created by active species interaction with organic impurities. The discharge emission spectrum evidences a high nitrogen atom production rate, much higher than attainable rate with a Dielectric Barrier Discharge with same applied voltage pulses. For small air quantities added in the post-discharge, spectrum exhibits rich UV range corresponding to NO excited states. Further studies will be devoted to the post-discharge kinetics and to possible applications to medical sterilization. *M. Ganciu, private communication

  17. 30 CFR 57.22212 - Air flow (I-C, II-A, and V-A mines).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Air flow (I-C, II-A, and V-A mines). 57.22212 Section 57.22212 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND... Standards for Methane in Metal and Nonmetal Mines Ventilation § 57.22212 Air flow (I-C, II-A, and V-A mines...

  18. Tracheostomy Tube Type and Inner Cannula Selection Impact Pressure and Resistance to Air Flow.

    PubMed

    Pryor, Lee N; Baldwin, Claire E; Ward, Elizabeth C; Cornwell, Petrea L; O'Connor, Stephanie N; Chapman, Marianne J; Bersten, Andrew D

    2016-05-01

    Advancements in tracheostomy tube design now provide clinicians with a range of options to facilitate communication for individuals receiving ventilator assistance through a cuffed tube. Little is known about the impact of these modern design features on resistance to air flow. We undertook a bench model test to measure pressure-flow characteristics and resistance of a range of tubes of similar outer diameter, including those enabling subglottic suction and speech. A constant inspiratory ± expiratory air flow was generated at increasing flows up to 150 L/min through each tube (with or without optional, mandatory, or interchangeable inner cannula). Driving pressures were measured, and resistance was calculated (cm H2O/L/s). Pressures changed with increasing flow (P < .001) and tube type (P < .001), with differing patterns of pressure change according to the type of tube (P < .001) and direction of air flow. The single-lumen reference tube encountered the lowest inspiratory and expiratory pressures compared with all double-lumen tubes (P < .001); placement of an optional inner cannula increased bidirectional tube resistance by a factor of 3. For a tube with interchangeable inner cannulas, the type of cannula altered pressure and resistance differently (P < .001); the speech cannula in particular amplified pressure-flow changes and increased tube resistance by more than a factor of 4. Tracheostomy tube type and inner cannula selection imposed differing pressures and resistance to air flow during inspiration and expiration. These differences may be important when selecting airway equipment or when setting parameters for monitoring, particularly for patients receiving supported ventilation or during the weaning process. Copyright © 2016 by Daedalus Enterprises.

  19. Comparative Study of Convective Heat Transfer Performance of Steam and Air Flow in Rib Roughened Channels

    NASA Astrophysics Data System (ADS)

    Ma, Chao; Ji, Yongbin; Ge, Bing; Zang, Shusheng; Chen, Hua

    2018-04-01

    A comparative experimental study of heat transfer characteristics of steam and air flow in rectangular channels roughened with parallel ribs was conducted by using an infrared camera. Effects of Reynolds numbers and rib angles on the steam and air convective heat transfer have been obtained and compared with each other for the Reynolds number from about 4,000 to 15,000. For all the ribbed channels the rib pitch to height ratio (p/e) is 10, and the rib height to the channel hydraulic diameter ratio is 0.078, while the rib angles are varied from 90° to 45°. Based on experimental results, it can be found that, even though the heat transfer distributions of steam and air flow in the ribbed channels are similar to each other, the steam flow can obtain higher convective heat transfer enhancement capability, and the heat transfer enhancement of both the steam and air becomes greater with the rib angle deceasing from 90° to 45°. At Reynolds number of about 12,000, the area-averaged Nusselt numbers of the steam flow is about 13.9%, 14.2%, 19.9% and 23.9% higher than those of the air flow for the rib angles of 90°, 75°, 60° and 45° respectively. With the experimental results the correlations for Nusselt number in terms of Reynolds number and rib angle for the steam and air flow in the ribbed channels were developed respectively.

  20. Flow characteristics of an inclined air-curtain range hood in a draft

    PubMed Central

    CHEN, Jia-Kun

    2015-01-01

    The inclined air-curtain technology was applied to build an inclined air-curtain range hood. A draft generator was applied to affect the inclined air-curtain range hood in three directions: lateral (θ=0°), oblique (θ=45°), and front (θ=90°). The three suction flow rates provided by the inclined air-curtain range hood were 10.1, 10.9, and 12.6 m3/min. The laser-assisted flow visualization technique and the tracer-gas test method were used to investigate the performance of the range hood under the influence of a draft. The results show that the inclined air-curtain range hood has a strong ability to resist the negative effect of a front draft until the draft velocity is greater than 0.5 m/s. The oblique draft affected the containment ability of the inclined air-curtain range hood when the draft velocity was larger than 0.3 m/s. When the lateral draft effect was applied, the capture efficiency of the inclined air-curtain range hood decreased quickly in the draft velocity from 0.2 m/s to 0.3 m/s. However, the capture efficiencies of the inclined air-curtain range hood under the influence of the front draft were higher than those under the influence of the oblique draft from 0.3 m/s to 0.5 m/s. PMID:25810445

  1. Flow characteristics of an inclined air-curtain range hood in a draft.

    PubMed

    Chen, Jia-Kun

    2015-01-01

    The inclined air-curtain technology was applied to build an inclined air-curtain range hood. A draft generator was applied to affect the inclined air-curtain range hood in three directions: lateral (θ=0°), oblique (θ=45°), and front (θ=90°). The three suction flow rates provided by the inclined air-curtain range hood were 10.1, 10.9, and 12.6 m(3)/min. The laser-assisted flow visualization technique and the tracer-gas test method were used to investigate the performance of the range hood under the influence of a draft. The results show that the inclined air-curtain range hood has a strong ability to resist the negative effect of a front draft until the draft velocity is greater than 0.5 m/s. The oblique draft affected the containment ability of the inclined air-curtain range hood when the draft velocity was larger than 0.3 m/s. When the lateral draft effect was applied, the capture efficiency of the inclined air-curtain range hood decreased quickly in the draft velocity from 0.2 m/s to 0.3 m/s. However, the capture efficiencies of the inclined air-curtain range hood under the influence of the front draft were higher than those under the influence of the oblique draft from 0.3 m/s to 0.5 m/s.

  2. Determination of ethane, pentane and isoprene in exhaled air--effects of breath-holding, flow rate and purified air.

    PubMed

    Lärstad, M A E; Torén, K; Bake, B; Olin, A-C

    2007-01-01

    Exhaled ethane, pentane and isoprene have been proposed as biomarkers of oxidative stress. The objectives were to explore whether ethane, pentane and isoprene are produced within the airways and to explore the effect of different sampling parameters on analyte concentrations. The flow dependency of the analyte concentrations, the concentrations in dead-space and alveolar air after breath-holding and the influence of inhaling purified air on analyte concentrations were investigated. The analytical method involved thermal desorption from sorbent tubes and gas chromatography. The studied group comprised 13 subjects with clinically stable asthma and 14 healthy controls. Ethane concentrations decreased slightly, but significantly, at higher flow rates in subjects with asthma (P = 0.0063) but not in healthy controls. Pentane levels were increased at higher flow rates both in healthy and asthmatic subjects (P = 0.022 and 0.0063 respectively). Isoprene levels were increased at higher flow rates, but only significantly in healthy subjects (P = 0.0034). After breath-holding, no significant changes in ethane levels were observed. Pentane and isoprene levels increased significantly after 20 s of breath-holding. Inhalation of purified air before exhalation resulted in a substantial decrease in ethane levels, a moderate decrease in pentane levels and an increase in isoprene levels. The major fractions of exhaled ethane, pentane and isoprene seem to be of systemic origin. There was, however, a tendency for ethane to be flow rate dependent in asthmatic subjects, although to a very limited extent, suggesting that small amounts of ethane may be formed in the airways.

  3. Experimental and numerical investigations on reliability of air barrier on oil containment in flowing water.

    PubMed

    Lu, Jinshu; Xu, Zhenfeng; Xu, Song; Xie, Sensen; Wu, Haoxiao; Yang, Zhenbo; Liu, Xueqiang

    2015-06-15

    Air barriers have been recently developed and employed as a new type of oil containment boom. This paper presents systematic investigations on the reliability of air barriers on oil containments with the involvement of flowing water, which represents the commonly-seen shearing current in reality, by using both laboratory experiments and numerical simulations. Both the numerical and experimental investigations are carried out in a model scale. In the investigations, a submerged pipe with apertures is installed near the bottom of a tank to generate the air bubbles forming the air curtain; and, the shearing water flow is introduced by a narrow inlet near the mean free surface. The effects of the aperture configurations (including the size and the spacing of the aperture) and the location of the pipe on the effectiveness of the air barrier on preventing oil spreading are discussed in details with consideration of different air discharges and velocities of the flowing water. The research outcome provides a foundation for evaluating and/or improve the reliability of a air barrier on preventing spilled oil from further spreading. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Influence of ventilation structure on air flow distribution of large turbo-generator

    NASA Astrophysics Data System (ADS)

    Zhang, Liying; Ding, Shuye; Zhao, Zhijun; Yang, Jingmo

    2018-04-01

    For the 350 MW air - cooled turbo—generator, the rotor body is ventilated by sub -slots and 94 radial ventilation ducts and the end adopts arc segment and the straight section to acquire the wind. The stator is ventilated with five inlets and eight outlet air branches. In order to analyze the cooling effect of different ventilation schemes, a global physical model including the stator, rotor, casing and fan is established, and the assumptions and boundary conditions of the solution domain are given. the finite volume method is used to solve the problem, and the air flow distribution characteristics of each part of the motor under different ventilation schemes are obtained. The results show that the baffle at the end of the rotor can eliminate the eddy current at the end of the rotor, and make the flow distribution of cooling air more uniform and reasonable. The conclusions can provide reference for the design of motor ventilation structure.

  5. Vision and air flow combine to streamline flying honeybees

    PubMed Central

    Taylor, Gavin J.; Luu, Tien; Ball, David; Srinivasan, Mandyam V.

    2013-01-01

    Insects face the challenge of integrating multi-sensory information to control their flight. Here we study a ‘streamlining' response in honeybees, whereby honeybees raise their abdomen to reduce drag. We find that this response, which was recently reported to be mediated by optic flow, is also strongly modulated by the presence of air flow simulating a head wind. The Johnston's organs in the antennae were found to play a role in the measurement of the air speed that is used to control the streamlining response. The response to a combination of visual motion and wind is complex and can be explained by a model that incorporates a non-linear combination of the two stimuli. The use of visual and mechanosensory cues increases the strength of the streamlining response when the stimuli are present concurrently. We propose this multisensory integration will make the response more robust to transient disturbances in either modality. PMID:24019053

  6. 40 CFR 1065.240 - Dilution air and diluted exhaust flow meters.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... interval. You may use the difference between a diluted exhaust flow meter and a dilution air meter to.... We recommend that you use a diluted exhaust flow meter that meets the specifications in Table 1 of... verification in § 1065.307 and the calibration and verifications in § 1065.340 and § 1065.341. You may use the...

  7. Preliminary analysis of problem of determining experimental performance of air-cooled turbine II : methods for determining cooling-air-flow characteristics

    NASA Technical Reports Server (NTRS)

    Ellerbrock, Herman H , Jr

    1950-01-01

    In the determination of the performance of an air-cooled turbine, the cooling-air-flow characteristics between the root and the tip of the blades must be evaluated. The methods, which must be verified and the unknown functions evaluated, that are expected to permit the determination of pressure, temperature, and velocity through the blade cooling-air passages from specific investigation are presented.

  8. Effect of flow velocity on the process of air-steam condensation in a vertical tube condenser

    NASA Astrophysics Data System (ADS)

    Havlík, Jan; Dlouhý, Tomáš

    2018-06-01

    This article describes the influence of flow velocity on the condensation process in a vertical tube. For the case of condensation in a vertical tube condenser, both the pure steam condensation process and the air-steam mixture condensation process were theoretically and experimentally analyzed. The influence of steam flow velocity on the value of the heat transfer coefficient during the condensation process was evaluated. For the condensation of pure steam, the influence of flow velocity on the value of the heat transfer coefficient begins to be seen at higher speeds, conversely, this effect is negligible at low values of steam velocity. On the other hand, for the air-steam mixture condensation, the influence of flow velocity must always be taken into account. The flow velocity affects the water vapor diffusion process through non-condensing air. The presence of air significantly reduces the value of the heat transfer coefficient. This drop in the heat transfer coefficient is significant at low velocities; on the contrary, the decrease is relatively small at high values of the velocity.

  9. Characteristics of inhomogeneous jets in confined swirling air flows

    NASA Technical Reports Server (NTRS)

    So, R. M. C.; Ahmed, S. A.

    1984-01-01

    An experimental program to study the characteristics of inhomogeneous jets in confined swirling flows to obtain detailed and accurate data for the evaluation and improvement of turbulent transport modeling for combustor flows is discussed. The work was also motivated by the need to investigate and quantify the influence of confinement and swirl on the characteristics of inhomogeneous jets. The flow facility was constructed in a simple way which allows easy interchange of different swirlers and the freedom to vary the jet Reynolds number. The velocity measurements were taken with a one color, one component DISA Model 55L laser-Doppler anemometer employing the forward scatter mode. Standard statistical methods are used to evaluate the various moments of the signals to give the flow characteristics. The present work was directed at the understanding of the velocity field. Therefore, only velocity and turbulence data of the axial and circumferential components are reported for inhomogeneous jets in confined swirling air flows.

  10. Use of thermoacoustic excitation for control of turbulent flow over a wall-mounted hump

    NASA Astrophysics Data System (ADS)

    Yeh, Chi-An; Munday, Phillip; Taira, Kunihiko

    2014-11-01

    We numerically examine the effectiveness of high-frequency acoustic excitation for drag reduction control of turbulent flow over a wall-mounted hump at a free stream Reynolds number of 500,000 and Mach number of 0.25. Actuation frequencies around Helmholtz number of 3 are considered based on the characteristics of recently developed graphene/carbon nanotube-based surface compliant loud speakers. The present study utilizes LES (CharLES) with an oscillatory heat flux boundary condition to produce high-intensity acoustic waves, which interact with the turbulent flow structures by introducing small-scale perturbations to the shear layer in the wake of the hump. With thermoacoustic control, the recirculation zone downstream of the hump becomes elongated with thinner shear layer profile compared to the uncontrolled case. This change in the flow shifts the low-pressure region of the wake further downstream and results in reduction in drag by 10% for two-dimensional and 15% for three-dimensional flows. The influence of actuation frequency and amplitude is also examined. This work is supported by the US Army Research Office (W911NF-13-1-0062, W911NF-14-1-0224).

  11. Effects of air flow directions on composting process temperature profile

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kulcu, Recep; Yaldiz, Osman

    2008-07-01

    In this study, chicken manure mixed with carnation wastes was composted by using three different air flow directions: R1-sucking (downward), R2-blowing (upward) and R3-mixed. The aim was to find out the most appropriate air flow direction type for composting to provide more homogenous temperature distribution in the reactors. The efficiency of each aeration method was evaluated by monitoring the evolution of parameters such as temperature, moisture content, CO{sub 2} and O{sub 2} ratio in the material and dry material losses. Aeration of the reactors was managed by radial fans. The results showed that R3 resulted in a more homogenous temperaturemore » distribution and high dry material loss throughout the composting process. The most heterogeneous temperature distribution and the lowest dry material loss were obtained in R2.« less

  12. Flow and Acoustic Features of a Mach 0.9 Free Jet Using High-Frequency Excitation

    NASA Astrophysics Data System (ADS)

    Upadhyay, Puja; Alvi, Farrukh

    2016-11-01

    This study focuses on active control of a Mach 0.9 (ReD = 6 ×105) free jet using high-frequency excitation for noise reduction. Eight resonance-enhanced microjet actuators with nominal frequencies of 25 kHz (StD 2 . 2) are used to excite the shear layer at frequencies that are approximately an order of magnitude higher than the jet preferred frequency. The influence of control on mean and turbulent characteristics of the jet is studied using Particle Image Velocimetry. Additionally, far-field acoustic measurements are acquired to estimate the effect of pulsed injection on noise characteristics of the jet. Flow field measurements revealed that strong streamwise vortex pairs, formed as a result of control, result in a significantly thicker initial shear layer. This excited shear layer is also prominently undulated, resulting in a modified initial velocity profile. Also, the distribution of turbulent kinetic energy revealed that forcing results in increased turbulence levels for near-injection regions, followed by a global reduction for all downstream locations. Far-field acoustic measurements showed noise reductions at low to moderate frequencies. Additionally, an increase in high-frequency noise, mostly dominated by the actuators' resonant noise, was observed. AFOSR and ARO.

  13. Flow-excited acoustic resonance of a Helmholtz resonator: Discrete vortex model compared to experiments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dai, Xiwen; Jing, Xiaodong, E-mail: jingxd@buaa.edu.cn; Sun, Xiaofeng

    The acoustic resonance in a Helmholtz resonator excited by a low Mach number grazing flow is studied theoretically. The nonlinear numerical model is established by coupling the vortical motion at the cavity opening with the cavity acoustic mode through an explicit force balancing relation between the two sides of the opening. The vortical motion is modeled in the potential flow framework, in which the oscillating motion of the thin shear layer is described by an array of convected point vortices, and the unsteady vortex shedding is determined by the Kutta condition. The cavity acoustic mode is obtained from the one-dimensionalmore » acoustic propagation model, the time-domain equivalent of which is given by means of a broadband time-domain impedance model. The acoustic resistances due to radiation and viscous loss at the opening are also taken into account. The physical processes of the self-excited oscillations, at both resonance and off-resonance states, are simulated directly in the time domain. Results show that the shear layer exhibits a weak flapping motion at the off-resonance state, whereas it rolls up into large-scale vortex cores when resonances occur. Single and dual-vortex patterns are observed corresponding to the first and second hydrodynamic modes. The simulation also reveals different trajectories of the two vortices across the opening when the first and second hydrodynamic modes co-exist. The strong modulation of the shed vorticity by the acoustic feedback at the resonance state is demonstrated. The model overestimates the pressure pulsation amplitude by a factor 2, which is expected to be due to the turbulence of the flow which is not taken into account. The model neglects vortex shedding at the downstream and side edges of the cavity. This will also result in an overestimation of the pulsation amplitude.« less

  14. Development of an air flow thermal balance calorimeter

    NASA Technical Reports Server (NTRS)

    Sherfey, J. M.

    1972-01-01

    An air flow calorimeter, based on the idea of balancing an unknown rate of heat evolution with a known rate of heat evolution, was developed. Under restricted conditions, the prototype system is capable of measuring thermal wattages from 10 milliwatts to 1 watt, with an error no greater than 1 percent. Data were obtained which reveal system weaknesses and point to modifications which would effect significant improvements.

  15. Performance of a Compression-ignition Engine with a Precombustion Chamber Having High-Velocity Air Flow

    NASA Technical Reports Server (NTRS)

    Spanogle, J A; Moore, C S

    1931-01-01

    Presented here are the results of performance tests made with a single-cylinder, four stroke cycle, compression-ignition engine. These tests were made on a precombustion chamber type of cylinder head designed to have air velocity and tangential air flow in both the chamber and cylinder. The performance was investigated for variable load and engine speed, type of fuel spray, valve opening pressure, injection period and, for the spherical chamber, position of the injection spray relative to the air flow. The pressure variations between the pear-shaped precombustion chamber and the cylinder for motoring and full load conditions were determined with a Farnboro electric indicator. The combustion chamber designs tested gave good mixing of a single compact fuel spray with the air, but did not control the ensuing combustion sufficiently. Relative to each other, the velocity of air flow was too high, the spray dispersion by injection too great, and the metering effect of the cylinder head passage insufficient. The correct relation of these factors is of the utmost importance for engine performance.

  16. Enhancement of the water flow velocity through carbon nanotubes resulting from the radius dependence of the friction due to electron excitations

    NASA Astrophysics Data System (ADS)

    Sokoloff, J. B.

    2018-03-01

    Secchi et al. [Nature (London) 537, 210 (2016), 10.1038/nature19315] observed a large enhancement of the permeability and slip length in carbon nanotubes when the tube radius is of the order of 15 nm, but not in boron nitride nanotubes. It will be pointed out that none of the parameters that appear in the usual molecular dynamics treatments of water flow in carbon nanotubes have a length scale comparable to 15 nm, which could account for the observed flow velocity enhancement. It will be demonstrated here, however, that if the friction force between the water and the tube walls in carbon nanotubes is dominated by friction due to electron excitations in the tube walls, the enhanced flow can be accounted for by a reduction in the contribution to the friction due to electron excitations in the wall, resulting from the dependence of the electron energy band gap on the tube radius.

  17. Characterization of aquatic dissolved organic matter by asymmetrical flow field-flow fractionation coupled to UV-Visible diode array and excitation emission matrix fluorescence.

    PubMed

    Guéguen, Céline; Cuss, Chad W

    2011-07-08

    Flow field-flow fractionation (FlFFF) with on-line UV/Visible diode array detector (DAD) and excitation emission matrix (EEM) fluorescence detector has been developed for the characterization of optical properties of aquatic dissolved organic matter (DOM) collected in the Otonabee River (Ontario, Canada) and Athabasca River (Alberta, Canada). The molecular weight (MW) distribution of DOM was estimated using a series of organic macromolecules ranging from 479 to 66,000 Da. Both the number-average (M(n)) and weight-average (M(w)) molecular weights of Suwannee River fulvic acid (SRFA) and Suwannee River humic acid (SRHA) determined using these macromolecular standards were comparable to those obtained using polystyrenesulfonate (PSS) standards, suggesting that organic macromolecules can be used to estimate MW of natural organic colloids. The MW of eight river DOM samples determined by this method was found to have an M(n) range of 0.8-1.1 kDa, which agrees with available literature estimates. The FlFFF-DAD-EEM system provided insight into the MW components of river DOM including the optical properties by on-line absorbance and fluorescence measurement. A red-shift in emission and excitation wavelength maxima associated with lower spectral slope ratios (S(R)=S₂₇₅₋₂₉₅:S₃₅₀₋₄₀₀) was related to higher MW DOM. However, DOM of different origins at similar MW also showed significant difference in optical properties. A difference of 47 and 40 nm in excitation and emission peak C maxima was found. This supports the hypothesis that river DOM is not uniform in size and optical composition. Copyright © 2010 Elsevier B.V. All rights reserved.

  18. On the calculation of air flow rates to ventilate closed-type stations in subway with the double-track tunnel

    NASA Astrophysics Data System (ADS)

    Kiyanitsa, LA

    2018-03-01

    Metro is not only the most promising kind of public transport but also an important part of infrastructure in a modern city. As a place where large groups of people gather, subway is to ensure the required air exchange at the passenger platforms of the stations. The air flow rate for airing the stations is also determined based on the required temperature, humidity and MAC of gases. The present study estimates the required air flow rate at the passenger platform of the closed-type subway station with the double-track tunnel given the standard air temperature, humidity and gas concentration, as well as based on the condition of the specified air flow feed and air changes per hour. The article proposes the scheme of air recirculation from the double-track tunnel to the station.

  19. Charged particle capturing in air flow by linear Paul trap

    NASA Astrophysics Data System (ADS)

    Lapitsky, D. S.; Filinov, V. S.; Vladimirov, V. I.; Syrovatka, R. A.; Vasilyak, L. M.; Pecherkin, V. Ya; Deputatova, L. V.

    2018-01-01

    The paper presents the simulation results of micro- and nanoparticle capturing in an air flows by linear Paul traps in assumption that particles gain their charges in corona discharge, its electric field strength is restricted by Paschen equation and spherical shape of particles.

  20. UV Raman spectroscopy of H2-air flames excited with a narrowband KrF laser

    NASA Technical Reports Server (NTRS)

    Shirley, John A.

    1990-01-01

    Raman spectra of H2 and H2O in flames excited by a narrowband KrF excimer laser are reported. Observations are made over a porous-plug, flat-flame burner reacting H2 in air, fuel-rich with nitrogen dilution to control the temperature, and with an H2 diffusion flame. Measurements made from UV Raman spectra show good agreement with measurements made by other means, both for gas temperature and relative major species concentrations. Laser-induced fluorescence interferences arising from OH and O2 are observed in emission near the Raman spectra. These interferences do not preclude Raman measurements, however.

  1. Do terrestrial hermit crabs sniff? Air flow and odorant capture by flicking antennules

    PubMed Central

    Koehl, M. A. R.

    2016-01-01

    Capture of odorant molecules by olfactory organs from the surrounding fluid is the first step of smelling. Sniffing intermittently moves fluid across sensory surfaces, increasing delivery rates of molecules to chemosensory receptors and providing discrete odour samples. Aquatic malacostracan crustaceans sniff by flicking olfactory antennules bearing arrays of chemosensory hairs (aesthetascs), capturing water in the arrays during downstroke and holding the sample during return stroke. Terrestrial malacostracans also flick antennules, but how their flicking affects odour capture from air is not understood. The terrestrial hermit crab, Coenobita rugosus, uses antennules bearing shingle-shaped aesthetascs to capture odours. We used particle image velocimetry to measure fine-scale fluid flow relative to a dynamically scaled physical model of a flicking antennule, and computational simulations to calculate diffusion to aesthetascs by odorant molecules carried in that flow. Air does not flow into the aesthetasc array during flick downstrokes or recovery strokes. Odorants are captured from air flowing around the outside of the array during flick downstrokes, when aesthetascs face upstream and molecule capture rates are 21% higher than for stationary antennules. Bursts of flicking followed by pauses deliver discrete odour samples to olfactory sensors, causing intermittency in odour capture by a different mechanism than aquatic crustaceans use. PMID:26763332

  2. Do terrestrial hermit crabs sniff? Air flow and odorant capture by flicking antennules.

    PubMed

    Waldrop, Lindsay D; Koehl, M A R

    2016-01-01

    Capture of odorant molecules by olfactory organs from the surrounding fluid is the first step of smelling. Sniffing intermittently moves fluid across sensory surfaces, increasing delivery rates of molecules to chemosensory receptors and providing discrete odour samples. Aquatic malacostracan crustaceans sniff by flicking olfactory antennules bearing arrays of chemosensory hairs (aesthetascs), capturing water in the arrays during downstroke and holding the sample during return stroke. Terrestrial malacostracans also flick antennules, but how their flicking affects odour capture from air is not understood. The terrestrial hermit crab, Coenobita rugosus, uses antennules bearing shingle-shaped aesthetascs to capture odours. We used particle image velocimetry to measure fine-scale fluid flow relative to a dynamically scaled physical model of a flicking antennule, and computational simulations to calculate diffusion to aesthetascs by odorant molecules carried in that flow. Air does not flow into the aesthetasc array during flick downstrokes or recovery strokes. Odorants are captured from air flowing around the outside of the array during flick downstrokes, when aesthetascs face upstream and molecule capture rates are 21% higher than for stationary antennules. Bursts of flicking followed by pauses deliver discrete odour samples to olfactory sensors, causing intermittency in odour capture by a different mechanism than aquatic crustaceans use. © 2016 The Author(s).

  3. Experimental Studies of Active and Passive Flow Control Techniques Applied in a Twin Air-Intake

    PubMed Central

    Joshi, Shrey; Jindal, Aman; Maurya, Shivam P.; Jain, Anuj

    2013-01-01

    The flow control in twin air-intakes is necessary to improve the performance characteristics, since the flow traveling through curved and diffused paths becomes complex, especially after merging. The paper presents a comparison between two well-known techniques of flow control: active and passive. It presents an effective design of a vortex generator jet (VGJ) and a vane-type passive vortex generator (VG) and uses them in twin air-intake duct in different combinations to establish their effectiveness in improving the performance characteristics. The VGJ is designed to insert flow from side wall at pitch angle of 90 degrees and 45 degrees. Corotating (parallel) and counterrotating (V-shape) are the configuration of vane type VG. It is observed that VGJ has the potential to change the flow pattern drastically as compared to vane-type VG. While the VGJ is directed perpendicular to the side walls of the air-intake at a pitch angle of 90 degree, static pressure recovery is increased by 7.8% and total pressure loss is reduced by 40.7%, which is the best among all other cases tested for VGJ. For bigger-sized VG attached to the side walls of the air-intake, static pressure recovery is increased by 5.3%, but total pressure loss is reduced by only 4.5% as compared to all other cases of VG. PMID:23935422

  4. Three-Dimensional Mapping of Air Flow at an Urban Canyon Intersection

    NASA Astrophysics Data System (ADS)

    Carpentieri, Matteo; Robins, Alan G.; Baldi, Sandro

    2009-11-01

    In this experimental work both qualitative (flow visualisation) and quantitative (laser Doppler anemometry) methods were applied in a wind tunnel in order to describe the complex three-dimensional flow field in a real environment (a street canyon intersection). The main aim was an examination of the mean flow, turbulence and flow pathlines characterising a complex three-dimensional urban location. The experiments highlighted the complexity of the observed flows, particularly in the upwind region of the intersection. In this complex and realistic situation some details of the upwind flow, such as the presence of two tall towers, play an important role in defining the flow field within the intersection, particularly at roof level. This effect is likely to have a strong influence on the mass exchange mechanism between the canopy flow and the air aloft, and therefore the distribution of pollutants. This strong interaction between the flows inside and outside the urban canopy is currently neglected in most state-of-the-art local scale dispersion models.

  5. Air flow quality analysis of modenas engine exhaust system

    NASA Astrophysics Data System (ADS)

    Shahriman A., B.; Mohamad Syafiq A., K.; Hashim, M. S. M.; Razlan, Zuradzman M.; Khairunizam W. A., N.; Hazry, D.; Afendi, Mohd; Daud, R.; Rahman, M. D. Tasyrif Abdul; Cheng, E. M.; Zaaba, S. K.

    2017-09-01

    The simulation process being conducted to determine the air flow effect between the original exhaust system and modified exhaust system. The simulations are conducted to investigate the flow distribution of exhaust gases that will affect the performance of the engine. The back flow pressure in the original exhaust system is predicted toward this simulation. The design modification to the exhaust port, exhaust pipe, and exhaust muffler has been done during this simulation to reduce the back flow effect. The new designs are introduced by enlarging the diameter of the exhaust port, enlarge the diameter of the exhaust pipe and created new design for the exhaust muffler. Based on the result obtained, there the pulsating flow form at the original exhaust port that will increase the velocity and resulting the back pressure occur. The result for new design of exhaust port, the velocity is lower at the valve guide in the exhaust port. New design muffler shows that the streamline of the exhaust flow move smoothly compare to the original muffler. It is proved by using the modification exhaust system, the back pressure are reduced and the engine performance can be improve.

  6. Low-Flow Liquid Desiccant Air-Conditioning: Demonstrated Performance and Cost Implications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kozubal, E.; Herrmann, L.; Deru, M.

    2014-09-01

    Cooling loads must be dramatically reduced when designing net-zero energy buildings or other highly efficient facilities. Advances in this area have focused primarily on reducing a building's sensible cooling loads by improving the envelope, integrating properly sized daylighting systems, adding exterior solar shading devices, and reducing internal heat gains. As sensible loads decrease, however, latent loads remain relatively constant, and thus become a greater fraction of the overall cooling requirement in highly efficient building designs, particularly in humid climates. This shift toward latent cooling is a challenge for heating, ventilation, and air-conditioning (HVAC) systems. Traditional systems typically dehumidify by firstmore » overcooling air below the dew-point temperature and then reheating it to an appropriate supply temperature, which requires an excessive amount of energy. Another dehumidification strategy incorporates solid desiccant rotors that remove water from air more efficiently; however, these systems are large and increase fan energy consumption due to the increased airside pressure drop of solid desiccant rotors. A third dehumidification strategy involves high flow liquid desiccant systems. These systems require a high maintenance separator to protect the air distribution system from corrosive desiccant droplet carryover and so are more commonly used in industrial applications and rarely in commercial buildings. Both solid desiccant systems and most high-flow liquid desiccant systems (if not internally cooled) add sensible energy which must later be removed to the air stream during dehumidification, through the release of sensible heat during the sorption process.« less

  7. Numerical simulations of current generation and dynamo excitation in a mechanically forced turbulent flow.

    PubMed

    Bayliss, R A; Forest, C B; Nornberg, M D; Spence, E J; Terry, P W

    2007-02-01

    The role of turbulence in current generation and self-excitation of magnetic fields has been studied in the geometry of a mechanically driven, spherical dynamo experiment, using a three-dimensional numerical computation. A simple impeller model drives a flow that can generate a growing magnetic field, depending on the magnetic Reynolds number Rm=micro0sigmaVa and the fluid Reynolds number Re=Vanu of the flow. For Re<420, the flow is laminar and the dynamo transition is governed by a threshold of Rmcrit=100, above which a growing magnetic eigenmode is observed that is primarily a dipole field transverse to the axis of symmetry of the flow. In saturation, the Lorentz force slows the flow such that the magnetic eigenmode becomes marginally stable. For Re>420 and Rm approximately 100 the flow becomes turbulent and the dynamo eigenmode is suppressed. The mechanism of suppression is a combination of a time varying large-scale field and the presence of fluctuation driven currents (such as those predicted by the mean-field theory), which effectively enhance the magnetic diffusivity. For higher Rm, a dynamo reappears; however, the structure of the magnetic field is often different from the laminar dynamo. It is dominated by a dipolar magnetic field aligned with the axis of symmetry of the mean-flow, which is apparently generated by fluctuation-driven currents. The magnitude and structure of the fluctuation-driven currents have been studied by applying a weak, axisymmetric seed magnetic field to laminar and turbulent flows. An Ohm's law analysis of the axisymmetric currents allows the fluctuation-driven currents to be identified. The magnetic fields generated by the fluctuations are significant: a dipole moment aligned with the symmetry axis of the mean-flow is generated similar to those observed in the experiment, and both toroidal and poloidal flux expulsion are observed.

  8. Steady film flow over a substrate with rectangular trenches forming air inclusions

    NASA Astrophysics Data System (ADS)

    Varchanis, S.; Dimakopoulos, Y.; Tsamopoulos, J.

    2017-12-01

    Film flow along an inclined, solid substrate featuring periodic rectangular trenches may either completely wet the trench floor (Wenzel state) or get pinned on the entrance and exit corners of the trench (Cassie state) or assume other configurations in between these two extremes. Such intermediate configurations are examined in the present study. They are bounded by a second gas-liquid interface inside the trench, which adheres to its walls forming two three-phase contact lines, and encloses a different amount of air under different physical conditions. The Galerkin finite-element method is used to solve the Navier-Stokes equations in a physical domain, which is adaptively remeshed. Multiple steady solutions, connected by turning points and transcritical bifurcations as well as isolated solution branches, are revealed by pseudo-arc-length continuation. Two possible configurations of a single air inclusion inside the trench are examined: the inclusion either surrounds the upstream convex corner or is attached to the upstream trench wall. The penetration of the liquid inside the trench is enhanced primarily by increasing either the wettability of the substrate or capillary over viscous forces or by decreasing the flow rate. Flow hysteresis may occur when the liquid wetting of the upstream wall decreases abruptly, leading to drastically different flow patterns for the same parameter values. The interplay of inertia, viscous, gravity, and capillary forces along with substrate wettability determines the volume of the air encapsulated in the trench and the extent of deformation of the outer free surface.

  9. [Aerodynamics study on pressure changes inside pressure-type whole-body plethysmograph produced by flowing air].

    PubMed

    Xu, Wei-Hua; Shen, Hua-Hao

    2010-02-25

    When using pressure-type plethysmography to test lung function of rodents, calculation of lung volume is always based on Boyle's law. The precondition of Boyle's law is that perfect air is static. However, air in the chamber is flowing continuously when a rodent breathes inside the chamber. Therefore, Boyle's law, a principle of air statics, may not be appropriate for measuring pressure changes of flowing air. In this study, we deduced equations for pressure changes inside pressure-type plethysmograph and then designed three experiments to testify the theoretic deduction. The results of theoretic deduction indicated that increased pressure was generated from two sources: one was based on Boyle's law, and the other was based on the law of conservation of momentum. In the first experiment, after injecting 0.1 mL, 0.2 mL, 0.4 mL of air into the plethysmograph, the pressure inside the chamber increased sharply to a peak value, then promptly decreased to horizontal pressure. Peak values were significantly higher than the horizontal values (P<0.001). This observation revealed that flowing air made an extra effect on air pressure in the plethysmograph. In the second experiment, the same volume of air was injected into the plethysmograph at different frequencies (0, 0.5, 1, 2, 3 Hz) and pressure changes inside were measured. The results showed that, with increasing frequencies, the pressure changes in the chamber became significantly higher (P<0.001). In the third experiment, small animal ventilator and pipette were used to make two types of airflow with different functions of time. The pressure changes produced by the ventilator were significantly greater than those produced by the pipette (P<0.001). Based on the data obtained, we draw the conclusion that, the flow of air plays a role in pressure changes inside the plethysmograph, and the faster the airflow is, the higher the pressure changes reach. Furthermore, the type of airflow also influences the pressure changes.

  10. Boundary layer flow of air over water on a flat plate

    NASA Technical Reports Server (NTRS)

    Nelson, John; Alving, Amy E.; Joseph, Daniel D.

    1993-01-01

    A non-similar boundary layer theory for air blowing over a water layer on a flat plate is formulated and studied as a two-fluid problem in which the position of the interface is unknown. The problem is considered at large Reynolds number (based on x), away from the leading edge. A simple non-similar analytic solution of the problem is derived for which the interface height is proportional to x(sub 1/4) and the water and air flow satisfy the Blasius boundary layer equations, with a linear profile in the water and a Blasius profile in the air. Numerical studies of the initial value problem suggests that this asymptotic, non-similar air-water boundary layer solution is a global attractor for all initial conditions.

  11. Effect of pyrolysis temperature and air flow on toxicity of gases from a polycarbonate polymer

    NASA Technical Reports Server (NTRS)

    Hilado, C. J.; Brick, V. E.; Brauer, D. P.

    1978-01-01

    A polycarbonate polymer was evaluated for toxicity of pyrolysis gases generated at various temperatures without forced air flow and with 1 L/min air flow, using the toxicity screening test method developed at the University of San Francisco. Time to various animal responses decreased with increasing pyrolysis temperature over the range from 500 C to 800 C. There appeared to be no significant toxic effects at 400 C and lower temperatures.

  12. An air flow sensor for neonatal mechanical ventilation applications based on a novel fiber-optic sensing technique

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Battista, L.; Sciuto, S. A.; Scorza, A.

    2013-03-15

    In this work, a simple and low-cost air flow sensor, based on a novel fiber-optic sensing technique has been developed for monitoring air flows rates supplied by a neonatal ventilator to support infants in intensive care units. The device is based on a fiber optic sensing technique allowing (a) the immunity to light intensity variations independent by measurand and (b) the reduction of typical shortcomings affecting all biomedical fields (electromagnetic interference and patient electrical safety). The sensing principle is based on the measurement of transversal displacement of an emitting fiber-optic cantilever due to action of air flow acting on it;more » the fiber tip displacement is measured by means of a photodiode linear array, placed in front of the entrance face of the emitting optical fiber in order to detect its light intensity profile. As the measurement system is based on a detection of the illumination pattern, and not on an intensity modulation technique, it results less sensitive to light intensity fluctuation independent by measurand than intensity-based sensors. The considered technique is here adopted in order to develop two different configurations for an air flow sensor suitable for the measurement of air flow rates typically occurring during mechanical ventilation of newborns: a mono-directional and a bi-directional transducer have been proposed. A mathematical model for the air flow sensor is here proposed and a static calibration of two different arrangements has been performed: a measurement range up to 3.00 Multiplication-Sign 10{sup -4} m{sup 3}/s (18.0 l/min) for the mono-directional sensor and a measurement range of {+-}3.00 Multiplication-Sign 10{sup -4} m{sup 3}/s ({+-}18.0 l/min) for the bi-directional sensor are experimentally evaluated, according to the air flow rates normally encountered during tidal breathing of infants with a mass lower than 10 kg. Experimental data of static calibration result in accordance with the proposed

  13. An air flow sensor for neonatal mechanical ventilation applications based on a novel fiber-optic sensing technique.

    PubMed

    Battista, L; Sciuto, S A; Scorza, A

    2013-03-01

    In this work, a simple and low-cost air flow sensor, based on a novel fiber-optic sensing technique has been developed for monitoring air flows rates supplied by a neonatal ventilator to support infants in intensive care units. The device is based on a fiber optic sensing technique allowing (a) the immunity to light intensity variations independent by measurand and (b) the reduction of typical shortcomings affecting all biomedical fields (electromagnetic interference and patient electrical safety). The sensing principle is based on the measurement of transversal displacement of an emitting fiber-optic cantilever due to action of air flow acting on it; the fiber tip displacement is measured by means of a photodiode linear array, placed in front of the entrance face of the emitting optical fiber in order to detect its light intensity profile. As the measurement system is based on a detection of the illumination pattern, and not on an intensity modulation technique, it results less sensitive to light intensity fluctuation independent by measurand than intensity-based sensors. The considered technique is here adopted in order to develop two different configurations for an air flow sensor suitable for the measurement of air flow rates typically occurring during mechanical ventilation of newborns: a mono-directional and a bi-directional transducer have been proposed. A mathematical model for the air flow sensor is here proposed and a static calibration of two different arrangements has been performed: a measurement range up to 3.00 × 10(-4) m(3)∕s (18.0 l∕min) for the mono-directional sensor and a measurement range of ±3.00 × 10(-4) m(3)∕s (±18.0 l∕min) for the bi-directional sensor are experimentally evaluated, according to the air flow rates normally encountered during tidal breathing of infants with a mass lower than 10 kg. Experimental data of static calibration result in accordance with the proposed theoretical model: for the mono

  14. An air flow sensor for neonatal mechanical ventilation applications based on a novel fiber-optic sensing technique

    NASA Astrophysics Data System (ADS)

    Battista, L.; Sciuto, S. A.; Scorza, A.

    2013-03-01

    In this work, a simple and low-cost air flow sensor, based on a novel fiber-optic sensing technique has been developed for monitoring air flows rates supplied by a neonatal ventilator to support infants in intensive care units. The device is based on a fiber optic sensing technique allowing (a) the immunity to light intensity variations independent by measurand and (b) the reduction of typical shortcomings affecting all biomedical fields (electromagnetic interference and patient electrical safety). The sensing principle is based on the measurement of transversal displacement of an emitting fiber-optic cantilever due to action of air flow acting on it; the fiber tip displacement is measured by means of a photodiode linear array, placed in front of the entrance face of the emitting optical fiber in order to detect its light intensity profile. As the measurement system is based on a detection of the illumination pattern, and not on an intensity modulation technique, it results less sensitive to light intensity fluctuation independent by measurand than intensity-based sensors. The considered technique is here adopted in order to develop two different configurations for an air flow sensor suitable for the measurement of air flow rates typically occurring during mechanical ventilation of newborns: a mono-directional and a bi-directional transducer have been proposed. A mathematical model for the air flow sensor is here proposed and a static calibration of two different arrangements has been performed: a measurement range up to 3.00 × 10-4 m3/s (18.0 l/min) for the mono-directional sensor and a measurement range of ±3.00 × 10-4 m3/s (±18.0 l/min) for the bi-directional sensor are experimentally evaluated, according to the air flow rates normally encountered during tidal breathing of infants with a mass lower than 10 kg. Experimental data of static calibration result in accordance with the proposed theoretical model: for the mono-directional configuration, the

  15. Analysis of the power flow in nonlinear oscillators driven by random excitation using the first Wiener kernel

    NASA Astrophysics Data System (ADS)

    Hawes, D. H.; Langley, R. S.

    2018-01-01

    Random excitation of mechanical systems occurs in a wide variety of structures and, in some applications, calculation of the power dissipated by such a system will be of interest. In this paper, using the Wiener series, a general methodology is developed for calculating the power dissipated by a general nonlinear multi-degree-of freedom oscillatory system excited by random Gaussian base motion of any spectrum. The Wiener series method is most commonly applied to systems with white noise inputs, but can be extended to encompass a general non-white input. From the extended series a simple expression for the power dissipated can be derived in terms of the first term, or kernel, of the series and the spectrum of the input. Calculation of the first kernel can be performed either via numerical simulations or from experimental data and a useful property of the kernel, namely that the integral over its frequency domain representation is proportional to the oscillating mass, is derived. The resulting equations offer a simple conceptual analysis of the power flow in nonlinear randomly excited systems and hence assist the design of any system where power dissipation is a consideration. The results are validated both numerically and experimentally using a base-excited cantilever beam with a nonlinear restoring force produced by magnets.

  16. Upper air teleconnections to Ob River flows and tree rings

    NASA Astrophysics Data System (ADS)

    Meko, David; Panyushkina, Irina; Agafonov, Leonid

    2015-04-01

    The Ob River, one of the world's greatest rivers, with a catchment basin about the size of Western Europe, contributes 12% or more of the annual freshwater inflow to the Arctic Ocean. The input of heat and fresh water is important to the global climate system through effects on sea ice, salinity, and the thermohaline circulation of the ocean. As part of a tree-ring project to obtain multi-century long information on variability of Ob River flows, a network of 18 sites of Pinus, Larix, Populus and Salix has been collected along the Ob in the summers of 2013 and 2014. Analysis of collections processed so far indicates a significant relationship of tree-growth to river discharge. Moderation of the floodplain air temperature regime by flooding appears to be an important driver of the tree-ring response. In unraveling the relationship of tree-growth to river flows, it is important to identify atmospheric circulation features directly linked to observed time series variations of flow and tree growth. In this study we examine statistical links between primary teleconnection modes of Northern Hemisphere upper-air (500 mb) circulation, Ob River flow, and tree-ring chronologies. Annual discharge at the mouth of the Ob River is found to be significantly positively related to the phase of the East Atlantic (EA) pattern, the second prominent mode of low-frequency variability over the North Atlantic. The EA pattern, consisting of a north-south dipole of pressure-anomaly centers spanning the North Atlantic from east to west, is associated with a low-pressure anomaly centered over the Ob River Basin, and with a pattern of positive precipitation anomaly of the same region. The positive correlation of discharge and EA is consistent with these know patterns, and is contrasted with generally negative (though smaller) correlations between EA and tree-ring chronologies. The signs of correlations are consistent with a conceptual model of river influence on tree growth through air

  17. Two dimensional numerical analysis of aerodynamic characteristics for rotating cylinder on concentrated air flow

    NASA Astrophysics Data System (ADS)

    Alias, M. S.; Rafie, A. S. Mohd; Marzuki, O. F.; Hamid, M. F. Abdul; Chia, C. C.

    2017-12-01

    Over the years, many studies have demonstrated the feasibility of the Magnus effect on spinning cylinder to improve lift production, which can be much higher than the traditional airfoil shape. With this characteristic, spinning cylinder might be used as a lifting device for short take-off distance aircraft or unmanned aerial vehicle (UAV). Nonetheless, there is still a gap in research to explain the use of spinning cylinder as a good lifting device. Computational method is used for this study to analyse the Magnus effect, in which two-dimensional finite element numerical analysis method is applied using ANSYS FLUENT software to examine the coefficients of lift and drag, and to investigate the flow field around the rotating cylinder surface body. Cylinder size of 30mm is chosen and several configurations in steady and concentrated air flows have been evaluated. All in all, it can be concluded that, with the right configuration of the concentrated air flow setup, the rotating cylinder can be used as a lifting device for very short take-off since it can produce very high coefficient of lift (2.5 times higher) compared with steady air flow configuration.

  18. Piloted Ignition of Polypropylene/Glass Composites in a Forced Air Flow

    NASA Technical Reports Server (NTRS)

    Fernandez-Pello, A. C.; Rich, D.; Lautenberger, C.; Stefanovich, A.; Metha, S.; Torero, J.; Yuan, Z.; Ross, H.

    2003-01-01

    The Forced Ignition and Spread Test (FIST) is being used to study the flammability characteristics of combustible materials in forced convective flows. The FIST methodology is based on the ASTM E-1321, Lateral Ignition and Flame Spread Test (LIFT) which is used to determine the ignition and flame spread characteristics of materials, and to produce 'Flammability Diagrams' of materials. The LIFT apparatus, however, relies on natural convection to bring air to the combustion zone and the fuel vapor to the pilot flame, and thus cannot describe conditions where the oxidizer flow velocity may change. The FIST on the other hand, by relying on a forced flow as the dominant transport mechanism, can be used to examine variable oxidizer flow characteristics, such as velocity, oxygen concentration, and turbulence intensity, and consequently has a wider applicability. Particularly important is its ability to determine the flammability characteristics of materials used in spacecraft since in the absence of gravity the only flow present is that forced by the HVAC of the space facility. In this paper, we report work on the use of the FIST approach on the piloted ignition of a blended polypropylene fiberglass (PP/GL) composite material exposed to an external radiant flux in a forced convective flow of air. The effect of glass concentration under varying external radiant fluxes is examined and compared qualitatively with theoretical predictions of the ignition process. The results are used to infer the effect of glass content on the fire safety characteristics of composites.

  19. Flow-field differences and electromagnetic-field properties of air and N2 inductively coupled plasmas

    NASA Astrophysics Data System (ADS)

    Yu, Minghao; Yamada, Kazuhiko; Takahashi, Yusuke; Liu, Kai; Zhao, Tong

    2016-12-01

    A numerical model for simulating air and nitrogen inductively coupled plasmas (ICPs) was developed considering thermochemical nonequilibrium and the third-order electron transport properties. A modified far-field electromagnetic model was introduced and tightly coupled with the flow field equations to describe the Joule heating and inductive discharge phenomena. In total, 11 species and 49 chemical reactions of air, which include 5 species and 8 chemical reactions of nitrogen, were employed to model the chemical reaction process. The internal energy transfers among translational, vibrational, rotational, and electronic energy modes of chemical species were taken into account to study thermal nonequilibrium effects. The low-Reynolds number Abe-Kondoh-Nagano k-ɛ turbulence model was employed to consider the turbulent heat transfer. In this study, the fundamental characteristics of an ICP flow, such as the weak ionization, high temperature but low velocity in the torch, and wide area of the plasma plume, were reproduced by the developed numerical model. The flow field differences between the air and nitrogen ICP flows inside the 10-kW ICP wind tunnel were made clear. The interactions between the electromagnetic and flow fields were also revealed for an inductive discharge.

  20. Air sampling to assess potential generation of aerosolized viable bacteria during flow cytometric analysis of unfixed bacterial suspensions

    PubMed Central

    Carson, Christine F; Inglis, Timothy JJ

    2018-01-01

    This study investigated aerosolized viable bacteria in a university research laboratory during operation of an acoustic-assisted flow cytometer for antimicrobial susceptibility testing by sampling room air before, during and after flow cytometer use. The aim was to assess the risk associated with use of an acoustic-assisted flow cytometer analyzing unfixed bacterial suspensions. Air sampling in a nearby clinical laboratory was conducted during the same period to provide context for the existing background of microorganisms that would be detected in the air. The three species of bacteria undergoing analysis by flow cytometer in the research laboratory were Klebsiella pneumoniae, Burkholderia thailandensis and Streptococcus pneumoniae. None of these was detected from multiple 1000 L air samples acquired in the research laboratory environment. The main cultured bacteria in both locations were skin commensal and environmental bacteria, presumed to have been disturbed or dispersed in laboratory air by personnel movements during routine laboratory activities. The concentrations of bacteria detected in research laboratory air samples were reduced after interventional cleaning measures were introduced and were lower than those in the diagnostic clinical microbiology laboratory. We conclude that our flow cytometric analyses of unfixed suspensions of K. pneumoniae, B. thailandensis and S. pneumoniae do not pose a risk to cytometer operators or other personnel in the laboratory but caution against extrapolation of our results to other bacteria and/or different flow cytometric experimental procedures. PMID:29608197

  1. A steadying effect of acoustic excitation on transitory stall

    NASA Technical Reports Server (NTRS)

    Zaman, K. B. M. Q.

    1991-01-01

    The effect of acoustic excitation on a class of separated flows with a transitional boundary layer at the point of separation is considered. Experimental results on the flow over airfoils, a two-dimensional backward-facing step, and through large angle conical diffusers are presented. In all cases, the separated flow undergoes large amplitude fluctuations, much of the energy being concentrated at unusually low frequencies. In each case, an appropriate high frequency acoustic excitation is found to be effective in reducing the fluctuations substantially. The effective excitation frequency scales on the initial boundary layer thickness and the effect is apparently achieved through acoustic tripping of the separating boundary layer.

  2. Simultaneous identification of multi-combustion-intermediates of alkanol-air flames by femtosecond filament excitation for combustion sensing

    PubMed Central

    Li, Helong; Chu, Wei; Xu, Huailiang; Cheng, Ya; Chin, See-Leang; Yamanouchi, Kaoru; Sun, Hong-Bo

    2016-01-01

    Laser filamentation produced by the propagation of intense laser pulses in flames is opening up new possibility in application to combustion diagnostics that can provide useful information on understanding combustion processes, enhancing combustion efficiency and reducing pollutant products. Here we present simultaneous identification of multiple combustion intermediates by femtosecond filament excitation for five alkanol-air flames fueled by methanol, ethanol, n-propanol, n-butanol, and n-pentanol. We experimentally demonstrate that the intensities of filament-induced photoemission signals from the combustion intermediates C, C2, CH, CN increase with the increasing number of carbons in the fuel molecules, and the signal ratios between the intermediates (CH/C, CH/C2, CN/C, CH/C2, CN/CH) are different for different alkanol combustion flames. Our observation provides a way for sensing multiple combustion components by femtosecond filament excitation in various combustion conditions that strongly depend on the fuel species. PMID:27250021

  3. Simultaneous identification of multi-combustion-intermediates of alkanol-air flames by femtosecond filament excitation for combustion sensing.

    PubMed

    Li, Helong; Chu, Wei; Xu, Huailiang; Cheng, Ya; Chin, See-Leang; Yamanouchi, Kaoru; Sun, Hong-Bo

    2016-06-02

    Laser filamentation produced by the propagation of intense laser pulses in flames is opening up new possibility in application to combustion diagnostics that can provide useful information on understanding combustion processes, enhancing combustion efficiency and reducing pollutant products. Here we present simultaneous identification of multiple combustion intermediates by femtosecond filament excitation for five alkanol-air flames fueled by methanol, ethanol, n-propanol, n-butanol, and n-pentanol. We experimentally demonstrate that the intensities of filament-induced photoemission signals from the combustion intermediates C, C2, CH, CN increase with the increasing number of carbons in the fuel molecules, and the signal ratios between the intermediates (CH/C, CH/C2, CN/C, CH/C2, CN/CH) are different for different alkanol combustion flames. Our observation provides a way for sensing multiple combustion components by femtosecond filament excitation in various combustion conditions that strongly depend on the fuel species.

  4. Role of mixed boundaries on flow in open capillary channels with curved air-water interfaces.

    PubMed

    Zheng, Wenjuan; Wang, Lian-Ping; Or, Dani; Lazouskaya, Volha; Jin, Yan

    2012-09-04

    Flow in unsaturated porous media or in engineered microfluidic systems is dominated by capillary and viscous forces. Consequently, flow regimes may differ markedly from conventional flows, reflecting strong interfacial influences on small bodies of flowing liquids. In this work, we visualized liquid transport patterns in open capillary channels with a range of opening sizes from 0.6 to 5.0 mm using laser scanning confocal microscopy combined with fluorescent latex particles (1.0 μm) as tracers at a mean velocity of ∼0.50 mm s(-1). The observed velocity profiles indicate limited mobility at the air-water interface. The application of the Stokes equation with mixed boundary conditions (i.e., no slip on the channel walls and partial slip or shear stress at the air-water interface) clearly illustrates the increasing importance of interfacial shear stress with decreasing channel size. Interfacial shear stress emerges from the velocity gradient from the adjoining no-slip walls to the center where flow is trapped in a region in which capillary forces dominate. In addition, the increased contribution of capillary forces (relative to viscous forces) to flow on the microscale leads to increased interfacial curvature, which, together with interfacial shear stress, affects the velocity distribution and flow pattern (e.g., reverse flow in the contact line region). We found that partial slip, rather than the commonly used stress-free condition, provided a more accurate description of the boundary condition at the confined air-water interface, reflecting the key role that surface/interface effects play in controlling flow behavior on the nanoscale and microscale.

  5. Simulation analysis of air flow and turbulence statistics in a rib grit roughened duct.

    PubMed

    Vogiatzis, I I; Denizopoulou, A C; Ntinas, G K; Fragos, V P

    2014-01-01

    The implementation of variable artificial roughness patterns on a surface is an effective technique to enhance the rate of heat transfer to fluid flow in the ducts of solar air heaters. Different geometries of roughness elements investigated have demonstrated the pivotal role that vortices and associated turbulence have on the heat transfer characteristics of solar air heater ducts by increasing the convective heat transfer coefficient. In this paper we investigate the two-dimensional, turbulent, unsteady flow around rectangular ribs of variable aspect ratios by directly solving the transient Navier-Stokes and continuity equations using the finite elements method. Flow characteristics and several aspects of turbulent flow are presented and discussed including velocity components and statistics of turbulence. The results reveal the impact that different rib lengths have on the computed mean quantities and turbulence statistics of the flow. The computed turbulence parameters show a clear tendency to diminish downstream with increasing rib length. Furthermore, the applied numerical method is capable of capturing small-scale flow structures resulting from the direct solution of Navier-Stokes and continuity equations.

  6. Interrelationships of petiole air canal architecture, water depth and convective air flow in Nymphaea odorata (Nymphaeaceae)

    USDA-ARS?s Scientific Manuscript database

    Premise of the study--Nymphaea odorata grows in water up to 2 m deep, producing fewer, larger leaves in deeper water. This species has a convective flow system that moves gases from younger leaves through submerged parts to older leaves, aerating submerged parts. Petiole air canals are in the conv...

  7. Two-Photon Flow Cytometry

    NASA Technical Reports Server (NTRS)

    Zhog, Cheng Frank; Ye, Jing Yong; Norris, Theodore B.; Myc, Andrzej; Cao, Zhengyl; Bielinska, Anna; Thomas, Thommey; Baker, James R., Jr.

    2004-01-01

    Flow cytometry is a powerful technique for obtaining quantitative information from fluorescence in cells. Quantitation is achieved by assuring a high degree of uniformity in the optical excitation and detection, generally by using a highly controlled flow such as is obtained via hydrodynamic focusing. In this work, we demonstrate a two-beam, two- channel detection and two-photon excitation flow cytometry (T(sup 3)FC) system that enables multi-dye analysis to be performed very simply, with greatly relaxed requirements on the fluid flow. Two-photon excitation using a femtosecond near-infrared (NIR) laser has the advantages that it enables simultaneous excitation of multiple dyes and achieves very high signal-to-noise ratio through simplified filtering and fluorescence background reduction. By matching the excitation volume to the size of a cell, single-cell detection is ensured. Labeling of cells by targeted nanoparticles with multiple fluorophores enables normalization of the fluorescence signal and thus ratiometric measurements under nonuniform excitation. Quantitative size measurements can also be done even under conditions of nonuniform flow via a two-beam layout. This innovative detection scheme not only considerably simplifies the fluid flow system and the excitation and collection optics, it opens the way to quantitative cytometry in simple and compact microfluidics systems, or in vivo. Real-time detection of fluorescent microbeads in the vasculature of mouse ear demonstrates the ability to do flow cytometry in vivo. The conditions required to perform quantitative in vivo cytometry on labeled cells will be presented.

  8. Bioaerosol detection and classification using dual excitation wavelength laser-induced fluorescence

    NASA Astrophysics Data System (ADS)

    Jonsson, Per; Wästerby, Pär.; Gradmark, Per-Åke; Hedborg, Julia; Larsson, Anders; Landström, Lars

    2015-05-01

    We present results obtained by a detection system designed to measure laser-induced fluorescence from individual aerosol particles using dual excitation wavelengths. The aerosol is sampled from ambient air and via a 1 mm diameter nozzle, surrounded by a sheath air flow, confined into a particle beam. A continuous wave blue laser at 404 nm is focused on the aerosol beam and two photomultiplier tubes monitor the presence of individual particles by simultaneous measuring the scattered light and any induced fluorescence. When a particle is present in the detection volume, a laser pulse is triggered from an ultraviolet laser at 263 nm and the corresponding fluorescence spectrum is acquired with a spectrometer based on a diffraction grating and a 32 channel photomultiplier tube array with single-photon sensitivity. The spectrometer measures the fluorescence spectra in the wavelength region from 250 to 800 nm. In the present report, data were measured on different monodisperse reference aerosols, simulants of biological warfare agents, and different interference aerosol particles, e.g. pollen. In the analysis of the experimental data, i.e., the time-resolved scattered and fluorescence signals from 404 nm c.w. light excitation and the fluorescence spectra obtained by a pulsed 263 nm laser source, we use multivariate data analysis methods to classify each individual aerosol particle.

  9. Chaotic dynamics in premixed hydrogen/air channel flow combustion

    NASA Astrophysics Data System (ADS)

    Pizza, Gianmarco; Frouzakis, Christos E.; Mantzaras, John

    2012-04-01

    The complex oscillatory behaviour observed in fuel-lean premixed hydrogen/air atmospheric pressure flames in an open planar channel with prescribed wall temperature is investigated by means of direct numerical simulations, employing detailed chemistry descriptions and species transport, and nonlinear dynamics analysis. As the inflow velocity is varied, the sequence of transitions includes harmonic single frequency oscillations, intermittency, mixed mode oscillations, and finally a period-doubling cascade leading to chaotic dynamics. The observed modes are described and characterised by means of phase-space portraits and next amplitude maps. It is shown that the interplay of chemistry, transport, and wall-bounded developing flow leads to considerably richer dynamics compared to fuel-lean hydrogen/air continuously stirred tank reactor studies.

  10. Decentralized and Tactical Air Traffic Flow Management

    NASA Technical Reports Server (NTRS)

    Odoni, Amedeo R.; Bertsimas, Dimitris

    1997-01-01

    This project dealt with the following topics: 1. Review and description of the existing air traffic flow management system (ATFM) and identification of aspects with potential for improvement. 2. Identification and review of existing models and simulations dealing with all system segments (enroute, terminal area, ground) 3. Formulation of concepts for overall decentralization of the ATFM system, ranging from moderate decentralization to full decentralization 4. Specification of the modifications to the ATFM system required to accommodate each of the alternative concepts. 5. Identification of issues that need to be addressed with regard to: determination of the way the ATFM system would be operating; types of flow management strategies that would be used; and estimation of the effectiveness of ATFM with regard to reducing delay and re-routing costs. 6. Concept evaluation through identification of criteria and methodologies for accommodating the interests of stakeholders and of approaches to optimization of operational procedures for all segments of the ATFM system.

  11. Semi-empirical analysis of liquid fuel distribution downstream of a plain orifice injector under cross-stream air flow

    NASA Astrophysics Data System (ADS)

    Cao, M.-H.; Jiang, H.-K.; Chin, J.-S.

    1982-04-01

    An improved flat-fan spray model is used for the semi-empirical analysis of liquid fuel distribution downstream of a plain orifice injector under cross-stream air flow. The model assumes that, due to the aerodynamic force of the high-velocity cross air flow, the injected fuel immediately forms a flat-fan liquid sheet perpendicular to the cross flow. Once the droplets have been formed, the trajectories of individual droplets determine fuel distribution downstream. Comparison with test data shows that the proposed model accurately predicts liquid fuel distribution at any point downstream of a plain orifice injector under high-velocity, low-temperature uniform cross-stream air flow over a wide range of conditions.

  12. Simulation of 3-D Nonequilibrium Seeded Air Flow in the NASA-Ames MHD Channel

    NASA Technical Reports Server (NTRS)

    Gupta, Sumeet; Tannehill, John C.; Mehta, Unmeel B.

    2004-01-01

    The 3-D nonequilibrium seeded air flow in the NASA-Ames experimental MHD channel has been numerically simulated. The channel contains a nozzle section, a center section, and an accelerator section where magnetic and electric fields can be imposed on the flow. In recent tests, velocity increases of up to 40% have been achieved in the accelerator section. The flow in the channel is numerically computed us ing a 3-D parabolized Navier-Stokes (PNS) algorithm that has been developed to efficiently compute MHD flows in the low magnetic Reynolds number regime: The MHD effects are modeled by introducing source terms into the PNS equations which can then be solved in a very efficient manner. The algorithm has been extended in the present study to account for nonequilibrium seeded air flows. The electrical conductivity of the flow is determined using the program of Park. The new algorithm has been used to compute two test cases that match the experimental conditions. In both cases, magnetic and electric fields are applied to the seeded flow. The computed results are in good agreement with the experimental data.

  13. Interactions between gravity waves and cold air outflows in a stably stratified uniform flow

    NASA Technical Reports Server (NTRS)

    Lin, Yuh-Lang; Wang, Ting-An; Weglarz, Ronald P.

    1993-01-01

    Interactions between gravity waves and cold air outflows in a stably stratified uniform flow forced by various combinations of prescribed heat sinks and sources are studied using a hydrostatic two-dimensional nonlinear numerical model. The formation time for the development of a stagnation point or reversed flow at the surface is not always directly proportional to the Froude number when wave reflections exist from upper levels. A density current is able to form by the wave-otuflow interaction, even though the Froude number is greater than a critical value. This is the result of the wave-outflow interaction shifting the flow response to a different location in the characteristic parameter space. A density current is able to form or be destroyed due to the wave-outflow interaction between a traveling gravity wave and cold air outflow. This is proved by performing experiments with a steady-state heat sink and an additional transient heat source. In a quiescent fluid, a region of cold air, convergence, and upward motion is formed after the collision between two outflows produced by two prescribed heat sinks. After the collision, the individual cold air outflows lose their own identity and merge into a single, stationary, cold air outflow region. Gravity waves tend to suppress this new stationary cold air outflow after the collision. The region of upward motion associated with the collision is confined to a very shallow layer. In a moving airstream, a density current produced by a heat sink may be suppressed or enhanced nonlinearly by an adjacent heat sink due to the wave-outflow interaction.

  14. Toward the Experimental Characterization of an Unmanned Air System Flow Field

    NASA Astrophysics Data System (ADS)

    Velarde, John-Michael; Connors, Jacob; Glauser, Mark

    2017-11-01

    The velocity flow field around a small unmanned air system (sUAS) is investigated in a series of experiments at Syracuse University. Experiments are conducted in the 2'x2' sub-sonic wind tunnel at Syracuse University and the Indoor Flow Lab. The goal of these experiments is to gain a better understanding of the rich, turbulent flow field that a sUAS creates. Comparison to large, multi-rotor manned vehicles is done to gain a better understanding of the flow physics that could be occurring with the sUAS. Regions of investigation include the downwash, above the vehicle, and far downstream. Characterization of the flow is performed using hotwire anemometry. Investigation of several locations around the sUAS show that dominant frequencies exist within the flow field. Analysis of the flow field using power spectral density will be presented as well as looking at which parameters have an effect on these dominant frequencies.

  15. Laser excitation dynamics of argon metastables generated in atmospheric pressure flows by microwave frequency microplasma arrays

    NASA Astrophysics Data System (ADS)

    Rawlins, W. T.; Galbally-Kinney, K. L.; Davis, S. J.; Hoskinson, A. R.; Hopwood, J. A.

    2014-03-01

    The optically pumped rare-gas metastable laser is a chemically inert analogue to diode-pumped alkali (DPAL) and alkali-exciplex (XPAL) laser systems. Scaling of these devices requires efficient generation of electronically excited metastable atoms in a continuous-wave electric discharge in flowing gas mixtures at atmospheric pressure. This paper describes initial investigations of the use of linear microwave micro-discharge arrays to generate metastable rare-gas atoms at atmospheric pressure in optical pump-and-probe experiments for laser development. Power requirements to ignite and sustain the plasma at 1 atm are low, <30 W. We report on the laser excitation dynamics of argon metastables, Ar (4s, 1s5) (Paschen notation), generated in flowing mixtures of Ar and He at 1 atm. Tunable diode laser absorption measurements indicate Ar(1s5) concentrations near 3 × 1012 cm-3 at 1 atm. The metastables are optically pumped by absorption of a focused beam from a continuous-wave Ti:S laser, and spectrally selected fluorescence is observed with an InGaAs camera and an InGaAs array spectrometer. We observe the optical excitation of the 1s5-->2p9 transition at 811.5 nm and the corresponding laser-induced fluorescence on the 2p10-->1s5 transition at 912.3 nm; the 2p10 state is efficiently populated by collisional energy transfer from 2p9. Using tunable diode laser absorption/gain spectroscopy, we observe small-signal gains of ~1 cm-1 over a 1.9 cm path. We also observe stable, continuous-wave laser oscillation at 912.3 nm, with preliminary optical efficiency ~55%. These results are consistent with efficient collisional coupling within the Ar(4s) manifold.

  16. Dependence of charge transfer phenomena during solid-air two-phase flow on particle disperser

    NASA Astrophysics Data System (ADS)

    Tanoue, Ken-ichiro; Suedomi, Yuuki; Honda, Hirotaka; Furutani, Satoshi; Nishimura, Tatsuo; Masuda, Hiroaki

    2012-12-01

    An experimental investigation of the tribo-electrification of particles has been conducted during solid-air two-phase turbulent flow. The current induced in a metal plate by the impact of polymethylmethacrylate (PMMA) particles in a high-speed air flow was measured for two different plate materials. The results indicated that the contact potential difference between the particles and a stainless steel plate was positive, while for a nickel plate it was negative. These results agreed with theoretical contact charge transfer even if not only the particle size but also the kind of metal plate was changed. The specific charge of the PMMA particles during solid-air two-phase flow using an ejector, a stainless steel branch pipe, and a stainless steel straight pipe was measured using a Faraday cage. Although the charge was negative in the ejector, the particles had a positive specific charge at the outlet of the branch pipe, and this positive charge increased in the straight pipe. The charge decay along the flow direction could be reproduced by the charging and relaxation theory. However, the proportional coefficients in the theory changed with the particle size and air velocity. Therefore, an unexpected charge transfer occurred between the ejector and the branch pipe, which could not be explained solely by the contact potential difference. In the ejector, an electrical current in air might have been produced by self-discharge of particles with excess charge between the nickel diffuser in the ejector and the stainless steel nozzle or the stainless steel pipe due to a reversal in the contact potential difference between the PMMA and the stainless steel. The sign of the current depended on the particle size, possibly because the position where the particles impacted depended on their size. When dual coaxial glass pipes were used as a particle disperser, the specific charge of the PMMA particles became more positive along the particle flow direction due to the contact

  17. Fluid flow and fuel-air mixing in a motored two-dimensional Wankel rotary engine

    NASA Technical Reports Server (NTRS)

    Shih, T. I.-P.; Nguyen, H. L.; Stegeman, J.

    1986-01-01

    The implicit-factored method of Beam and Warming was employed to obtain numerical solutions to the conservation equations of mass, species, momentum, and energy to study the unsteady, multidimensional flow and mixing of fuel and air inside the combustion chambers of a two-dimensional Wankel rotary engine under motored conditions. The effects of the following engine design and operating parameters on fluid flow and fuel-air mixing during the intake and compression cycles were studied: engine speed, angle of gaseous fuel injection during compression cycle, and speed of the fuel leaving fuel injector.

  18. Fluid flow and fuel-air mixing in a motored two-dimensional Wankel rotary engine

    NASA Astrophysics Data System (ADS)

    Shih, T. I.-P.; Nguyen, H. L.; Stegeman, J.

    1986-06-01

    The implicit-factored method of Beam and Warming was employed to obtain numerical solutions to the conservation equations of mass, species, momentum, and energy to study the unsteady, multidimensional flow and mixing of fuel and air inside the combustion chambers of a two-dimensional Wankel rotary engine under motored conditions. The effects of the following engine design and operating parameters on fluid flow and fuel-air mixing during the intake and compression cycles were studied: engine speed, angle of gaseous fuel injection during compression cycle, and speed of the fuel leaving fuel injector.

  19. Selective Two-Photon Absorptive Resonance Femtosecond-Laser Electronic-Excitation Tagging (STARFLEET) Velocimetry in Flow and Combustion Diagnostics

    NASA Technical Reports Server (NTRS)

    Jiang, Naibo; Halls, Benjamin R.; Stauffer, Hans U.; Roy, Sukesh; Danehy, Paul M.; Gord, James R.

    2016-01-01

    Selective Two-Photon Absorptive Resonance Femtosecond-Laser Electronic-Excitation Tagging (STARFLEET), a non-seeded ultrafast-laser-based velocimetry technique, is demonstrated in reactive and non-reactive flows. STARFLEET is pumped via a two-photon resonance in N2 using 202.25-nm 100-fs light. STARFLEET greatly reduces the per-pulse energy required (30 µJ/pulse) to generate the signature FLEET emission compared to the conventional FLEET technique (1.1 mJ/pulse). This reduction in laser energy results in less energy deposited in the flow, which allows for reduced flow perturbations (reactive and non-reactive), increased thermometric accuracy, and less severe damage to materials. Velocity measurements conducted in a free jet of N2 and in a premixed flame show good agreement with theoretical velocities and further demonstrate the significantly less-intrusive nature of STARFLEET.

  20. Rapid granular flows on a rough incline: phase diagram, gas transition, and effects of air drag.

    PubMed

    Börzsönyi, Tamás; Ecke, Robert E

    2006-12-01

    We report experiments on the overall phase diagram of granular flows on an incline with emphasis on high inclination angles where the mean layer velocity approaches the terminal velocity of a single particle free falling in air. The granular flow was characterized by measurements of the surface velocity, the average layer height, and the mean density of the layer as functions of the hopper opening, the plane inclination angle, and the downstream distance x of the flow. At high inclination angles the flow does not reach an x -invariant steady state over the length of the inclined plane. For low volume flow rates, a transition was detected between dense and very dilute (gas) flow regimes. We show using a vacuum flow channel that air did not qualitatively change the phase diagram and did not quantitatively modify mean flow velocities of the granular layer except for small changes in the very dilute gaslike phase.

  1. Define and Quantify the Physics of Air Flow, Pressure Drop and Aerosol Collection in Nuclear Grade HEPA Filters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moore, Murray E.

    Objective: Develop a set of peer-review and verified analytical methods to adjust HEPA filter performance to different flow rates, temperatures and altitudes. Experimental testing will measure HEPA filter flow rate, pressure drop and efficiency to verify the analytical approach. Nuclear facilities utilize HEPA (High Efficiency Particulate Air) filters to purify air flow for workspace ventilation. However, the ASME AG-1 technical standard (Code on Nuclear Air and Gas Treatment) does not adequately describe air flow measurement units for HEPA filter systems. Specifically, the AG-1 standard does not differentiate between volumetric air flow in ACFM (actual cubic feet per minute)compared to massmore » flow measured in SCFM (standard cubic feet per minute). More importantly, the AG-1 standard has an overall deficiency for using HEPA filter devices at different air flow rates, temperatures, and altitudes. Technical Approach: The collection efficiency and pressure drops of 18 different HEPA filters will be measured over a range of flow rates, temperatures and altitudes. The experimental results will be compared to analytical scoping calculations. Three manufacturers have allocated six HEPA filters each for this effort. The 18 filters will be tested at two different flow rates, two different temperatures and two different altitudes. The 36 total tests will be conducted at two different facilities: the ATI Test facilities (Baltimore MD) and the Los Alamos National Laboratory (Los Alamos NM). The Radiation Protection RP-SVS group at Los Alamos has an aerosol wind tunnel that was originally designed to evaluate small air samplers. In 2010, modifications were started to convert the wind tunnel for HEPA filter testing. (Extensive changes were necessary for the required aerosol generators, HEPA test fixtures, temperature control devices and measurement capabilities.) To this date, none of these modification activities have been funded through a specific DOE or NNSA program

  2. Mobility power flow analysis of coupled plate structure subjected to mechanical and acoustic excitation

    NASA Technical Reports Server (NTRS)

    Cuschieri, J. M.

    1992-01-01

    The mobility power flow approach that was previously applied in the derivation of expressions for the vibrational power flow between coupled plate substructures forming an L configuration and subjected to mechanical loading is generalized. Using the generalized expressions, both point and distributed mechanical loads on one or both of the plates can be considered. The generalized approach is extended to deal with acoustic excitation of one of the plate substructures. In this case, the forces (acoustic pressures) acting on the structure are dependent on the response of the structure because of the scattered pressure component. The interaction between the plate structure and the acoustic fluid leads to the derivation of a corrected mode shape for the plates' normal surface velocity and also for the structure mobility functions. The determination of the scattered pressure components in the expressions for the power flow represents an additional component in the power flow balance for the source plate and the receiver plate. This component represents the radiated acoustical power from the plate structure. For a number of coupled plate substrates, the acoustic pressure generated by one substructure will interact with the motion of another substructure. That is, in the case of the L-shaped plate, acoustic interaction exists between the two plate substructures due to the generation of the acoustic waves by each of the substructures. An approach to deal with this phenomena is described.

  3. Practical Strategies for Stable Operation of HFF-QCM in Continuous Air Flow

    PubMed Central

    Wessels, Alexander; Klöckner, Bernhard; Siering, Carsten; Waldvogel, Siegfried R.

    2013-01-01

    Currently there are a few fields of application using quartz crystal microbalances (QCM). Because of environmental conditions and insufficient resolution of the microbalance, chemical sensing of volatile organic compounds in an open system was as yet not possible. In this study we present strategies on how to use 195 MHz fundamental quartz resonators for a mobile sensor platform to detect airborne analytes. Commonly the use of devices with a resonant frequency of about 10 MHz is standard. By increasing the frequency to 195 MHz the frequency shift increases by a factor of almost 400. Unfortunately, such kinds of quartz crystals tend to exhibit some challenges to obtain a reasonable signal-to-noise ratio. It was possible to reduce the noise in frequency in a continuous air flow of 7.5 m/s to 0.4 Hz [i.e., σ(τ) = 2 × 10−9] by elucidating the major source of noise. The air flow in the vicinity of the quartz was analyzed to reduce turbulences. Furthermore, we found a dependency between the acceleration sensitivity and mechanical stress induced by an internal thermal gradient. By reducing this gradient, we achieved reduction of the sensitivity to acceleration by more than one decade. Hence, the resulting sensor is more robust to environmental conditions such as temperature, acceleration and air flow. PMID:24021970

  4. Practical strategies for stable operation of HFF-QCM in continuous air flow.

    PubMed

    Wessels, Alexander; Klöckner, Bernhard; Siering, Carsten; Waldvogel, Siegfried R

    2013-09-09

    Currently there are a few fields of application using quartz crystal microbalances (QCM). Because of environmental conditions and insufficient resolution of the microbalance, chemical sensing of volatile organic compounds in an open system was as yet not possible. In this study we present strategies on how to use 195 MHz fundamental quartz resonators for a mobile sensor platform to detect airborne analytes. Commonly the use of devices with a resonant frequency of about 10 MHz is standard. By increasing the frequency to 195 MHz the frequency shift increases by a factor of almost 400. Unfortunately, such kinds of quartz crystals tend to exhibit some challenges to obtain a reasonable signal-to-noise ratio. It was possible to reduce the noise in frequency in a continuous air flow of 7.5 m/s to 0.4 Hz [i.e., σ(τ) = 2 × 10-9] by elucidating the major source of noise. The air flow in the vicinity of the quartz was analyzed to reduce turbulences. Furthermore, we found a dependency between the acceleration sensitivity and mechanical stress induced by an internal thermal gradient. By reducing this gradient, we achieved reduction of the sensitivity to acceleration by more than one decade. Hence, the resulting sensor is more robust to environmental conditions such as temperature, acceleration and air flow.

  5. Influence of relative air/water flow velocity on oxygen mass transfer in gravity sewers.

    PubMed

    Carrera, Lucie; Springer, Fanny; Lipeme-Kouyi, Gislain; Buffiere, Pierre

    2017-04-01

    Problems related to hydrogen sulfide may be serious for both network stakeholders and the public in terms of health, sustainability of the sewer structure and urban comfort. H 2 S emission models are generally theoretical and simplified in terms of environmental conditions. Although air transport characteristics in sewers must play a role in the fate of hydrogen sulfide, only a limited number of studies have investigated this issue. The aim of this study was to better understand H 2 S liquid to gas transfer by highlighting the link between the mass transfer coefficient and the turbulence in the air flow and the water flow. For experimental safety reasons, O 2 was taken as a model compound. The oxygen mass transfer coefficients were obtained using a mass balance in plug flow. The mass transfer coefficient was not impacted by the range of the interface air-flow velocity values tested (0.55-2.28 m·s -1 ) or the water velocity values (0.06-0.55 m·s -1 ). Using the ratio between k L,O 2 to k L,H 2 S , the H 2 S mass transfer behavior in a gravity pipe in the same hydraulic conditions can be predicted.

  6. Numerical simulation for the air entrainment of aerated flow with an improved multiphase SPH model

    NASA Astrophysics Data System (ADS)

    Wan, Hang; Li, Ran; Pu, Xunchi; Zhang, Hongwei; Feng, Jingjie

    2017-11-01

    Aerated flow is a complex hydraulic phenomenon that exists widely in the field of environmental hydraulics. It is generally characterised by large deformation and violent fragmentation of the free surface. Compared to Euler methods (volume of fluid (VOF) method or rigid-lid hypothesis method), the existing single-phase Smooth Particle Hydrodynamics (SPH) method has performed well for solving particle motion. A lack of research on interphase interaction and air concentration, however, has affected the application of SPH model. In our study, an improved multiphase SPH model is presented to simulate aeration flows. A drag force was included in the momentum equation to ensure accuracy of the air particle slip velocity. Furthermore, a calculation method for air concentration is developed to analyse the air entrainment characteristics. Two studies were used to simulate the hydraulic and air entrainment characteristics. And, compared with the experimental results, the simulation results agree with the experimental results well.

  7. Relationship between spontaneous expiratory flow-volume curve pattern and air-flow obstruction in elderly COPD patients.

    PubMed

    Nozoe, Masafumi; Mase, Kyoshi; Murakami, Shigefumi; Okada, Makoto; Ogino, Tomoyuki; Matsushita, Kazuhiro; Takashima, Sachie; Yamamoto, Noriyasu; Fukuda, Yoshihiro; Domen, Kazuhisa

    2013-10-01

    Assessment of the degree of air-flow obstruction is important for determining the treatment strategy in COPD patients. However, in some elderly COPD patients, measuring FVC is impossible because of cognitive dysfunction or severe dyspnea. In such patients a simple test of airways obstruction requiring only a short run of tidal breathing would be useful. We studied whether the spontaneous expiratory flow-volume (SEFV) curve pattern reflects the degree of air-flow obstruction in elderly COPD patients. In 34 elderly subjects (mean ± SD age 80 ± 7 y) with stable COPD (percent-of-predicted FEV(1) 39.0 ± 18.5%), and 12 age-matched healthy subjects, we measured FVC and recorded flow-volume curves during quiet breathing. We studied the SEFV curve patterns (concavity/convexity), spirometry results, breathing patterns, and demographics. The SEFV curve concavity/convexity prediction accuracy was examined by calculating the receiver operating characteristic curves, cutoff values, area under the curve, sensitivity, and specificity. Fourteen subjects with COPD had a concave SEFV curve. All the healthy subjects had convex SEFV curves. The COPD subjects who had concave SEFV curves often had very severe airway obstruction. The percent-of-predicted FEV(1)% (32.4%) was the most powerful SEFV curve concavity predictor (area under the curve 0.92, 95% CI 0.83-1.00), and had the highest sensitivity (0.93) and specificity (0.88). Concavity of the SEFV curve obtained during tidal breathing may be a useful test for determining the presence of very severe obstruction in elderly patients unable to perform a satisfactory FVC maneuver.

  8. Novel Air Flow Meter for an Automobile Engine Using a Si Sensor with Porous Si Thermal Isolation

    PubMed Central

    Hourdakis, Emmanouel; Sarafis, Panagiotis; Nassiopoulou, Androula G.

    2012-01-01

    An air flow meter for measuring the intake air of an automobile engine is presented. It is based on a miniaturized silicon thermal mass flow sensor using a thick porous Si (Po-Si) layer for local thermal isolation from the Si substrate, on which the sensor active elements are integrated. The sensor is mounted on one side of a printed circuit board (PCB), on the other side of which the readout and control electronics of the meter are mounted. The PCB is fixed on a housing containing a semi-cylindrical flow tube, in the middle of which the sensor is situated. An important advantage of the present air flow meter is that it detects with equal sensitivity both forward and reverse flows. Two prototypes were fabricated, a laboratory prototype for flow calibration using mass flow controllers and a final demonstrator with the housing mounted in an automobile engine inlet tube. The final demonstrator was tested in real life conditions in the engine inlet tube of a truck. It shows an almost linear response in a large flow range between –6,500 kg/h and +6,500 kg/h, which is an order of magnitude larger than the ones usually encountered in an automobile engine. PMID:23202189

  9. Novel air flow meter for an automobile engine using a Si sensor with porous Si thermal isolation.

    PubMed

    Hourdakis, Emmanouel; Sarafis, Panagiotis; Nassiopoulou, Androula G

    2012-11-02

    An air flow meter for measuring the intake air of an automobile engine is presented. It is based on a miniaturized silicon thermal mass flow sensor using a thick porous Si (Po-Si) layer for local thermal isolation from the Si substrate, on which the sensor active elements are integrated. The sensor is mounted on one side of a printed circuit board (PCB), on the other side of which the readout and control electronics of the meter are mounted. The PCB is fixed on a housing containing a semi-cylindrical flow tube, in the middle of which the sensor is situated. An important advantage of the present air flow meter is that it detects with equal sensitivity both forward and reverse flows. Two prototypes were fabricated, a laboratory prototype for flow calibration using mass flow controllers and a final demonstrator with the housing mounted in an automobile engine inlet tube. The final demonstrator was tested in real life conditions in the engine inlet tube of a truck. It shows an almost linear response in a large flow range between –6,500 kg/h and +6,500 kg/h, which is an order of magnitude larger than the ones usually encountered in an automobile engine.

  10. Numerical study of the thermo-flow performances of novel finned tubes for air-cooled condensers in power plant

    NASA Astrophysics Data System (ADS)

    Guo, Yonghong; Du, Xiaoze; Yang, Lijun

    2018-02-01

    Air-cooled condenser is the main equipment of the direct dry cooling system in a power plant, which rejects heat of the exhaust steam with the finned tube bundles. Therefore, the thermo-flow performances of the finned tubes have an important effect on the optimal operation of the direct dry cooling system. In this paper, the flow and heat transfer characteristics of the single row finned tubes with the conventional flat fins and novel jagged fins are investigated by numerical method. The flow and temperature fields of cooling air for the finned tubes are obtained. Moreover, the variations of the flow resistance and average convection heat transfer coefficient under different frontal velocity of air and jag number are presented. Finally, the correlating equations of the friction factor and Nusselt number versus the Reynolds number are fitted. The results show that with increasing the frontal velocity of air, the heat transfer performances of the finned tubes are enhanced but the pressure drop will increase accordingly, resulting in the average convection heat transfer coefficient and friction factor increasing. Meanwhile, with increasing the number of fin jag, the heat transfer performance is intensified. The present studies provide a reference in optimal designing for the air-cooled condenser of direct air cooling system.

  11. Continuous flow real-time PCR device using multi-channel fluorescence excitation and detection.

    PubMed

    Hatch, Andrew C; Ray, Tathagata; Lintecum, Kelly; Youngbull, Cody

    2014-02-07

    High throughput automation is greatly enhanced using techniques that employ conveyor belt strategies with un-interrupted streams of flow. We have developed a 'conveyor belt' analog for high throughput real-time quantitative Polymerase Chain Reaction (qPCR) using droplet emulsion technology. We developed a low power, portable device that employs LED and fiber optic fluorescence excitation in conjunction with a continuous flow thermal cycler to achieve multi-channel fluorescence detection for real-time fluorescence measurements. Continuously streaming fluid plugs or droplets pass through tubing wrapped around a two-temperature zone thermal block with each wrap of tubing fluorescently coupled to a 64-channel multi-anode PMT. This work demonstrates real-time qPCR of 0.1-10 μL droplets or fluid plugs over a range of 7 orders of magnitude concentration from 1 × 10(1) to 1 × 10(7). The real-time qPCR analysis allows dynamic range quantification as high as 1 × 10(7) copies per 10 μL reaction, with PCR efficiencies within the range of 90-110% based on serial dilution assays and a limit of detection of 10 copies per rxn. The combined functionality of continuous flow, low power thermal cycling, high throughput sample processing, and real-time qPCR improves the rates at which biological or environmental samples can be continuously sampled and analyzed.

  12. Performance of a combined three-hole conductivity probe for void fraction and velocity measurement in air-water flows

    NASA Astrophysics Data System (ADS)

    Borges, João Eduardo; Pereira, Nuno H. C.; Matos, Jorge; Frizell, Kathleen H.

    2010-01-01

    The development of a three-hole pressure probe with back-flushing combined with a conductivity probe, used for measuring simultaneously the magnitude and direction of the velocity vector in complex air-water flows, is described in this paper. The air-water flows envisaged in the current work are typically those occurring around the rotors of impulse hydraulic turbines (like the Pelton and Cross-Flow turbines), where the flow direction is not known prior to the data acquisition. The calibration of both the conductivity and three-hole pressure components of the combined probe in a rig built for the purpose, where the probe was placed in a position similar to that adopted for the flow measurements, will be reported. After concluding the calibration procedure, the probe was utilized in the outside region of a Cross-Flow turbine rotor. The experimental results obtained in the present study illustrate the satisfactory performance of the combined probe, and are encouraging toward its use for characterizing the velocity field of other complex air-water flows.

  13. A large-area diffuse air discharge plasma excited by nanosecond pulse under a double hexagon needle-array electrode.

    PubMed

    Liu, Zhi-Jie; Wang, Wen-Chun; Yang, De-Zheng; Wang, Sen; Zhang, Shuai; Tang, Kai; Jiang, Peng-Chao

    2014-01-01

    A large-area diffuse air discharge plasma excited by bipolar nanosecond pulse is generated under a double hexagon needle-array electrode at atmospheric pressure. The images of the diffuse discharge, electric characteristics, and the optical emission spectra emitted from the diffuse air discharge plasma are obtained. Based on the waveforms of pulse voltage and current, the power consumption, and the power density of the diffuse air discharge plasma are investigated under different pulse peak voltages. The electron density and the electron temperature of the diffuse plasma are estimated to be approximately 1.42×10(11) cm(-3) and 4.4 eV, respectively. The optical emission spectra are arranged to determine the rotational and vibrational temperatures by comparing experimental with simulated spectra. Meanwhile, the rotational and vibrational temperatures of the diffuse discharge plasma are also discussed under different pulse peak voltages and pulse repetition rates, respectively. In addition, the diffuse air discharge plasma can form an area of about 70×50 mm(2) on the surface of dielectric layer and can be scaled up to the required size. Crown Copyright © 2013. Published by Elsevier B.V. All rights reserved.

  14. Computation of two-dimensional flows past ram-air parachutes

    NASA Astrophysics Data System (ADS)

    Mittal, S.; Saxena, P.; Singh, A.

    2001-03-01

    Computational results for flow past a two-dimensional model of a ram-air parachute with leading edge cut are presented. Both laminar (Re=104) and turbulent (Re=106) flows are computed. A well-proven stabilized finite element method (FEM), which has been applied to various flow problems earlier, is utilized to solve the incompressible Navier-Stokes equations in the primitive variables formulation. The Baldwin-Lomax model is employed for turbulence closure. Turbulent flow computations past a Clarck-Y airfoil without a leading edge cut, for =7.5°, result in an attached flow. The leading edge cut causes the flow to become unsteady and leads to a significant loss in lift and an increase in drag. The flow inside the parafoil cell remains almost stagnant, resulting in a high value of pressure, which is responsible for giving the parafoil its shape. The value of the lift-to-drag ratio obtained with the present computations is in good agreement with those reported in the literature. The effect of the size and location of the leading edge cut is studied. It is found that the flow on the upper surface of the parafoil is fairly insensitive to the configuration of the cut. However, the flow quality on the lower surface improves as the leading edge cut becomes smaller. The lift-to-drag ratio for various configurations of the leading edge cut varies between 3.4 and 5.8. It is observed that even though the time histories of the aerodynamic coefficients from the laminar and turbulent flow computations are quite different, their time-averaged values are quite similar. Copyright

  15. Negative DC corona discharge current characteristics in a flowing two-phase (air + suspended smoke particles) fluid

    NASA Astrophysics Data System (ADS)

    Berendt, Artur; Domaszka, Magdalena; Mizeraczyk, Jerzy

    2017-04-01

    The electrical characteristics of a steady-state negative DC corona discharge in a two-phase fluid (air with suspended cigarette smoke particles) flowing along a chamber with a needle-to-plate electrode arrangement were experimentally investigated. The two-phase flow was transverse in respect to the needle-to-plate axis. The velocity of the transverse two-phase flow was limited to 0.8 m/s, typical of the electrostatic precipitators. We found that three discharge current modes of the negative corona exist in the two-phase (air + smoke particles) fluid: the Trichel pulses mode, the "Trichel pulses superimposed on DC component" mode and the DC component mode, similarly as in the corona discharge in air (a single-phase fluid). The shape of Trichel pulses in the air + suspended particles fluid is similar to that in air. However, the Trichel pulse amplitudes are higher than those in "pure" air while their repetition frequency is lower. As a net consequence of that the averaged corona discharge current in the two-phase fluid is lower than in "pure" air. It was also found that the average discharge current decreases with increasing suspended particle concentration. The calculations showed that the dependence of the average negative corona current (which is a macroscopic corona discharge parameter) on the particle concentration can be explained by the particle-concentration dependencies of the electric charge of Trichel pulse and the repetition frequency of Trichel pulses, both giving a microscopic insight into the electrical phenomena in the negative corona discharge. Our investigations showed also that the average corona discharge current in the two-phase fluid is almost unaffected by the transverse fluid flow up to a velocity of 0.8 m/s. Contribution to the topical issue "The 15th International Symposium on High Pressure Low Temperature Plasma Chemistry (HAKONE XV)", edited by Nicolas Gherardi and Tomáš Hoder

  16. Zonal Flow Velocimetry in Spherical Couette Flow using Acoustic Modes

    NASA Astrophysics Data System (ADS)

    Adams, Matthew M.; Mautino, Anthony R.; Stone, Douglas R.; Triana, Santiago A.; Lekic, Vedran; Lathrop, Daniel P.

    2015-11-01

    We present studies of spherical Couette flows using the technique of acoustic mode Doppler velocimetry. This technique uses rotational splittings of acoustic modes to infer the azimuthal velocity profile of a rotating flow, and is of special interest in experiments where direct flow visualization is impractical. The primary experimental system consists of a 60 cm diameter outer spherical shell concentric with a 20 cm diameter sphere, with air or nitrogen gas serving as the working fluid. The geometry of the system approximates that of the Earth's core, making these studies geophysically relevant. A turbulent shear flow is established in the system by rotating the inner sphere and outer shell at different rates. Acoustic modes of the fluid volume are excited using a speaker and measured via microphones, allowingdetermination of rotational splittings. Preliminary results comparing observed splittings with those predicted by theory are presented. While the majority of these studies were performed in the 60 cm diameter device using nitrogen gas, some work has also been done looking at acoustic modes in the 3 m diameter liquid sodium spherical Couette experiment. Prospects for measuring zonal velocity profiles in a wide variety of experiments are discussed.

  17. Root-soil air gap and resistance to water flow at the soil-root interface of Robinia pseudoacacia.

    PubMed

    Liu, X P; Zhang, W J; Wang, X Y; Cai, Y J; Chang, J G

    2015-12-01

    During periods of water deficit, growing roots may shrink, retaining only partial contact with the soil. In this study, known mathematical models were used to calculate the root-soil air gap and water flow resistance at the soil-root interface, respectively, of Robinia pseudoacacia L. under different water conditions. Using a digital camera, the root-soil air gap of R. pseudoacacia was investigated in a root growth chamber; this root-soil air gap and the model-inferred water flow resistance at the soil-root interface were compared with predictions based on a separate outdoor experiment. The results indicated progressively greater root shrinkage and loss of root-soil contact with decreasing soil water potential. The average widths of the root-soil air gap for R. pseudoacacia in open fields and in the root growth chamber were 0.24 and 0.39 mm, respectively. The resistance to water flow at the soil-root interface in both environments increased with decreasing soil water potential. Stepwise regression analysis demonstrated that soil water potential and soil temperature were the best predictors of variation in the root-soil air gap. A combination of soil water potential, soil temperature, root-air water potential difference and soil-root water potential difference best predicted the resistance to water flow at the soil-root interface. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  18. Numerical Simulations of Laminar Air-Water Flow of a Non-linear Progressive Wave at Low Wind Speed

    NASA Astrophysics Data System (ADS)

    Wen, X.; Mobbs, S.

    2014-03-01

    A numerical simulation for two-dimensional laminar air-water flow of a non-linear progressive water wave with large steepness is performed when the background wind speed varies from zero to the wave phase speed. It is revealed that in the water the difference between the analytical solution of potential flow and numerical solution of viscous flow is very small, indicating that both solutions of the potential flow and viscous flow describe the water wave very accurately. In the air the solutions of potential and viscous flows are very different due to the effects of viscosity. The velocity distribution in the airflow is strongly influenced by the background wind speed and it is found that three wind speeds, , (the maximum orbital velocity of a water wave), and (the wave phase speed), are important in distinguishing different features of the flow patterns.

  19. Effect of electronic excitation on high-temperature flows behind strong shock waves

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Istomin, V. A.; Kustova, E. V.

    2014-12-09

    In the present paper, a strongly non-equilibrium one-dimensional steady-state flow behind the plane shock wave is studied. We consider a high-temperature chemically reacting five-component ionized mixture of nitrogen species (N{sub 2}/N{sub 2}{sup 2}/N/N{sup +}/e{sup −}) taking into account electronic degrees of freedom in N and N{sup +} (170 and 625 electronic energy levels respectively), and electronic-rotational-vibrational modes in N{sub 2} and N{sub 2}{sup +} (5 and 7 electronic terms). Non-equilibrium reactions of ionization, dissociation, recombination and charge-transfer are included to the kinetic scheme. The system of governing equations is written under the assumption that translation and internal energy relaxation ismore » fast whereas chemical reactions and ionization proceed on the macroscopic gas-dynamics time-scale. The developed model is applied to simulate the flow behind a plane shock wave under initial conditions characteristic for the spacecraft re-entry from an interplanetary flight (Hermes and Fire II experiments). Fluid-dynamic parameters behind the shock wave as well as transport coefficients and the heat flux are calculated for the (N{sub 2}/N{sub 2}{sup +}/N/N{sup +}/e{sup −}) mixture. The effect of electronic excitation on kinetics, dynamics and heat transfer is analyzed. Whereas the contribution of electronic degrees of freedom to the flow macroparameters is negligible, their influence on the heat flux is found to be important under conditions of Hermes re-entry.« less

  20. Internal air flow analysis of a bladeless micro aerial vehicle hemisphere body using computational fluid dynamic

    NASA Astrophysics Data System (ADS)

    Othman, M. N. K.; Zuradzman, M. Razlan; Hazry, D.; Khairunizam, Wan; Shahriman, A. B.; Yaacob, S.; Ahmed, S. Faiz; Hussain, Abadalsalam T.

    2014-12-01

    This paper explain the analysis of internal air flow velocity of a bladeless vertical takeoff and landing (VTOL) Micro Aerial Vehicle (MAV) hemisphere body. In mechanical design, before produce a prototype model, several analyses should be done to ensure the product's effectiveness and efficiency. There are two types of analysis method can be done in mechanical design; mathematical modeling and computational fluid dynamic. In this analysis, I used computational fluid dynamic (CFD) by using SolidWorks Flow Simulation software. The idea came through to overcome the problem of ordinary quadrotor UAV which has larger size due to using four rotors and the propellers are exposed to environment. The bladeless MAV body is designed to protect all electronic parts, which means it can be used in rainy condition. It also has been made to increase the thrust produced by the ducted propeller compare to exposed propeller. From the analysis result, the air flow velocity at the ducted area increased to twice the inlet air. This means that the duct contribute to the increasing of air velocity.

  1. Internal air flow analysis of a bladeless micro aerial vehicle hemisphere body using computational fluid dynamic

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Othman, M. N. K., E-mail: najibkhir86@gmail.com, E-mail: zuradzman@unimap.edu.my, E-mail: hazry@unimap.edu.my, E-mail: khairunizam@unimap.edu.my, E-mail: shahriman@unimap.edu.my, E-mail: s.yaacob@unimap.edu.my, E-mail: syedfaiz@unimap.edu.my, E-mail: abadal@unimap.edu.my; Zuradzman, M. Razlan, E-mail: najibkhir86@gmail.com, E-mail: zuradzman@unimap.edu.my, E-mail: hazry@unimap.edu.my, E-mail: khairunizam@unimap.edu.my, E-mail: shahriman@unimap.edu.my, E-mail: s.yaacob@unimap.edu.my, E-mail: syedfaiz@unimap.edu.my, E-mail: abadal@unimap.edu.my; Hazry, D., E-mail: najibkhir86@gmail.com, E-mail: zuradzman@unimap.edu.my, E-mail: hazry@unimap.edu.my, E-mail: khairunizam@unimap.edu.my, E-mail: shahriman@unimap.edu.my, E-mail: s.yaacob@unimap.edu.my, E-mail: syedfaiz@unimap.edu.my, E-mail: abadal@unimap.edu.my

    2014-12-04

    This paper explain the analysis of internal air flow velocity of a bladeless vertical takeoff and landing (VTOL) Micro Aerial Vehicle (MAV) hemisphere body. In mechanical design, before produce a prototype model, several analyses should be done to ensure the product's effectiveness and efficiency. There are two types of analysis method can be done in mechanical design; mathematical modeling and computational fluid dynamic. In this analysis, I used computational fluid dynamic (CFD) by using SolidWorks Flow Simulation software. The idea came through to overcome the problem of ordinary quadrotor UAV which has larger size due to using four rotors andmore » the propellers are exposed to environment. The bladeless MAV body is designed to protect all electronic parts, which means it can be used in rainy condition. It also has been made to increase the thrust produced by the ducted propeller compare to exposed propeller. From the analysis result, the air flow velocity at the ducted area increased to twice the inlet air. This means that the duct contribute to the increasing of air velocity.« less

  2. Analysis of the chemiluminescence from electronically excited lead oxide generated in a flow tube reactor

    NASA Astrophysics Data System (ADS)

    Dorko, E. A.; Glessner, J. W.; Ritchey, C. M.; Rutger, L. L.; Pow, J. J.; Brasure, L. D.; Duray, J. P.; Snyder, S. R.

    1986-03-01

    The chemiluminescence from electronically excited lead oxide formed during the reaction between lead vapor and either 3Σ O 2 or 1Δ O 2 has been studied. The reactions were accomplished in a flow tube reactor. A microwave discharge was used to generate 1Δ O 2. The vibronic spectrum was analyzed and the band head assignments were used in a linear least-squares calculation to obtain the vibronic molecular constants for the X, a, b, A, B, C, C', D, and E electronic states of lead oxide. Based on these and other molecular constants, Franck-Condon factors were calculated for the transitions to the ground state and also for the A-a and D-a transitions. Evidence was presented to support a kinetic analysis of the mechanism leading to chemiluminescence under the experimental conditions encountered in the flow tube reactor. Mechanisms presented earlier were verified by the present data.

  3. Experimental setup for investigation of two-phase (water-air) flows in a tube

    NASA Astrophysics Data System (ADS)

    Kazunin, D. V.; Lashkov, V. A.; Mashek, I. Ch.; Khoronzhuk, R. S.

    2018-05-01

    A special setup was designed and built at St. Petersburg State University for providing experimental research in flow dynamics of the of air-water mixtures in a pipeline. The test section of the setup allows simulating a wide range of flow regimes of a gas-liquid mixture. The parameters of the experimental setup are given; the initial test results are discussed.

  4. Methods of Visually Determining the Air Flow Around Airplanes

    NASA Technical Reports Server (NTRS)

    Gough, Melvin N; Johnson, Ernest

    1932-01-01

    This report describes methods used by the National Advisory Committee for Aeronautics to study visually the air flow around airplanes. The use of streamers, oil and exhaust gas streaks, lampblack and kerosene, powdered materials, and kerosene smoke is briefly described. The generation and distribution of smoke from candles and from titanium tetrachloride are described in greater detail because they appear most advantageous for general application. Examples are included showing results of the various methods.

  5. Thermal effects on bacterial bioaerosols in continuous air flow.

    PubMed

    Jung, Jae Hee; Lee, Jung Eun; Kim, Sang Soo

    2009-08-01

    Exposure to bacterial bioaerosols can have adverse effects on health, such as infectious diseases, acute toxic effects, and allergies. The search for ways of preventing and curing the harmful effects of bacterial bioaerosols has created a strong demand for the study and development of an efficient method of controlling bioaerosols. We investigated the thermal effects on bacterial bioaerosols of Escherichia coli and Bacillus subtilis by using a thermal electric heating system in continuous air flow. The bacterial bioaerosols were exposed to a surrounding temperature that ranged from 20 degrees C to 700 degrees C for about 0.3 s. Both E. coli and B. subtilis vegetative cells were rendered more than 99.9% inactive at 160 degrees C and 350 degrees C of wall temperature of the quartz tube, respectively. Although the data on bacterial injury showed that the bacteria tended to sustain greater damage as the surrounding temperature increased, Gram-negative E. coli was highly sensitive to structural injury but Gram-positive B. subtilis was slightly more sensitive to metabolic injury. In addition, the inactivation of E. coli endotoxins was found to range from 9.2% (at 200 degrees C) to 82.0% (at 700 degrees C). However, the particle size distribution and morphology of both bacterial bioaerosols were maintained, despite exposure to a surrounding temperature of 700 degrees C. Our results show that thermal heating in a continuous air flow can be used with short exposure time to control bacterial bioaerosols by rendering the bacteria and endotoxins to a large extent inactive. This result could also be useful for developing more effective thermal treatment strategies for use in air purification or sterilization systems to control bioaerosols.

  6. Liquid phase evaporation on the normal shock wave in moist air transonic flows in nozzles

    NASA Astrophysics Data System (ADS)

    Dykas, Sławomir; Szymański, Artur; Majkut, Mirosław

    2017-06-01

    This paper presents a numerical analysis of the atmospheric air transonic flow through de Laval nozzles. By nature, atmospheric air always contains a certain amount of water vapor. The calculations were made using a Laval nozzle with a high expansion rate and a convergent-divergent (CD) "half-nozzle", referred to as a transonic diffuser, with a much slower expansion rate. The calculations were performed using an in-house CFD code. The computational model made it possible to simulate the formation of the liquid phase due to spontaneous condensation of water vapor contained in moist air. The transonic flow calculations also take account of the presence of a normal shock wave in the nozzle supersonic part to analyze the effect of the liquid phase evaporation.

  7. Metal-air flow batteries using oxygen enriched electrolyte

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zheng, Jian-ping; Andrei, Petru; Shellikeri, Annadanesh

    A metal air flow battery includes an electrochemical reaction unit and an oxygen exchange unit. The electrochemical reaction unit includes an anode electrode, a cathode electrode, and an ionic conductive membrane between the anode and the cathode, an anode electrolyte, and a cathode electrolyte. The oxygen exchange unit contacts the cathode electrolyte with oxygen separate from the electrochemical reaction unit. At least one pump is provided for pumping cathode electrolyte between the electrochemical reaction unit and the oxygen exchange unit. A method for producing an electrical current is also disclosed.

  8. Flowing Air-Water Cooled Slab Nd: Glass Laser

    NASA Astrophysics Data System (ADS)

    Lu, Baida; Cai, Bangwei; Liao, Y.; Xu, Shifa; Xin, Z.

    1989-03-01

    A zig-zag optical path slab geometry Nd: glass laser cooled through flowing air-water is developed by us. Theoretical studies on temperature distribution of slab and rod configurations in the unsteady state clarify the advantages of the slab geometry laser. The slab design and processing are also reported. In our experiments main laser output characteristics, e. g. laser efficiency, polarization, far-field divergence angle as well as resonator misalignment are investigated. The slab phosphate glass laser in combination with a crossed Porro-prism resonator demonstrates a good laser performance.

  9. Metal-air flow batteries using oxygen enriched electrolyte

    DOEpatents

    Zheng, Jian-ping; Andrei, Petru; Shellikeri, Annadanesh; Chen, Xujie

    2017-08-01

    A metal air flow battery includes an electrochemical reaction unit and an oxygen exchange unit. The electrochemical reaction unit includes an anode electrode, a cathode electrode, and an ionic conductive membrane between the anode and the cathode, an anode electrolyte, and a cathode electrolyte. The oxygen exchange unit contacts the cathode electrolyte with oxygen separate from the electrochemical reaction unit. At least one pump is provided for pumping cathode electrolyte between the electrochemical reaction unit and the oxygen exchange unit. A method for producing an electrical current is also disclosed.

  10. Surface-slip equations for multicomponent, nonequilibrium air flow

    NASA Technical Reports Server (NTRS)

    Gupta, Roop N.; Scott, Carl D.; Moss, James N.; Goglia, Gene

    1985-01-01

    Equations are presented for the surface slip (or jump) values of species concentration, pressure, velocity, and temperature in the low-Reynolds-number, high-altitude flight regime of a space vehicle. These are obtained from closed-form solutions of the mass, momentum, and energy flux equations using the Chapman-Enskog velocity distribution function. This function represents a solution of the Boltzmann equation in the Navier-Stokes approximation. The analysis, obtained for nonequilibrium multicomponent air flow, includes the finite-rate surface catalytic recombination and changes in the internal energy during reflection from the surface. Expressions for the various slip quantities have been obtained in a form which can readily be employed in flow-field computations. A consistent set of equations is provided for multicomponent, binary, and single species mixtures. Expression is also provided for the finite-rate species-concentration boundary condition for a multicomponent mixture in absence of slip.

  11. Effects of lung disease on the three-dimensional structure and air flow pattern in the human airway tree

    NASA Astrophysics Data System (ADS)

    van de Moortele, Tristan; Nemes, Andras; Wendt, Christine; Coletti, Filippo

    2016-11-01

    The morphological features of the airway tree directly affect the air flow features during breathing, which determines the gas exchange and inhaled particle transport. Lung disease, Chronic Obstructive Pulmonary Disease (COPD) in this study, affects the structural features of the lungs, which in turn negatively affects the air flow through the airways. Here bronchial tree air volume geometries are segmented from Computed Tomography (CT) scans of healthy and diseased subjects. Geometrical analysis of the airway centerlines and corresponding cross-sectional areas provide insight into the specific effects of COPD on the airway structure. These geometries are also used to 3D print anatomically accurate, patient specific flow models. Three-component, three-dimensional velocity fields within these models are acquired using Magnetic Resonance Imaging (MRI). The three-dimensional flow fields provide insight into the change in flow patterns and features. Additionally, particle trajectories are determined using the velocity fields, to identify the fate of therapeutic and harmful inhaled aerosols. Correlation between disease-specific and patient-specific anatomical features with dysfunctional airflow patterns can be achieved by combining geometrical and flow analysis.

  12. Turbulent swirling jets with excitation

    NASA Technical Reports Server (NTRS)

    Taghavi, Rahmat; Farokhi, Saeed

    1988-01-01

    An existing cold-jet facility at NASA Lewis Research Center was modified to produce swirling flows with controllable initial tangential velocity distribution. Two extreme swirl profiles, i.e., one with solid-body rotation and the other predominated by a free-vortex distribution, were produced at identical swirl number of 0.48. Mean centerline velocity decay characteristics of the solid-body rotation jet flow exhibited classical decay features of a swirling jet with S - 0.48 reported in the literature. However, the predominantly free-vortex distribution case was on the verge of vortex breakdown, a phenomenon associated with the rotating flows of significantly higher swirl numbers, i.e., S sub crit greater than or equal to 0.06. This remarkable result leads to the conclusion that the integrated swirl effect, reflected in the swirl number, is inadequate in describing the mean swirling jet behavior in the near field. The relative size (i.e., diameter) of the vortex core emerging from the nozzle and the corresponding tangential velocity distribution are also controlling factors. Excitability of swirling jets is also investigated by exciting a flow with a swirl number of 0.35 by plane acoustic waves at a constant sound pressure level and at various frequencies. It is observed that the cold swirling jet is excitable by plane waves, and that the instability waves grow about 50 percent less in peak r.m.s. amplitude and saturate further upstream compared to corresponding waves in a jet without swirl having the same axial mass flux. The preferred Strouhal number based on the mass-averaged axial velocity and nozzle exit diameter for both swirling and nonswirling flows is 0.4.

  13. The Hagen-Poiseuille, Plane Couette and Poiseuille Flows Linear Instability and Rogue Waves Excitation Mechanism

    NASA Astrophysics Data System (ADS)

    Chefranov, Sergey; Chefranov, Alexander

    2016-04-01

    Linear hydrodynamic stability theory for the Hagen-Poiseuille (HP) flow yields a conclusion of infinitely large threshold Reynolds number, Re, value. This contradiction to the observation data is bypassed using assumption of the HP flow instability having hard type and possible for sufficiently high-amplitude disturbances. HP flow disturbance evolution is considered by nonlinear hydrodynamic stability theory. Similar is the case of the plane Couette (PC) flow. For the plane Poiseuille (PP) flow, linear theory just quantitatively does not agree with experimental data defining the threshold Reynolds number Re= 5772 ( S. A. Orszag, 1971), more than five-fold exceeding however the value observed, Re=1080 (S. J. Davies, C. M. White, 1928). In the present work, we show that the linear stability theory conclusions for the HP and PC on stability for any Reynolds number and evidently too high threshold Reynolds number estimate for the PP flow are related with the traditional use of the disturbance representation assuming the possibility of separation of the longitudinal (along the flow direction) variable from the other spatial variables. We show that if to refuse from this traditional form, conclusions on the linear instability for the HP and PC flows may be obtained for finite Reynolds numbers (for the HP flow, for Re>704, and for the PC flow, for Re>139). Also, we fit the linear stability theory conclusion on the PP flow to the experimental data by getting an estimate of the minimal threshold Reynolds number as Re=1040. We also get agreement of the minimal threshold Reynolds number estimate for PC with the experimental data of S. Bottin, et.al., 1997, where the laminar PC flow stability threshold is Re = 150. Rogue waves excitation mechanism in oppositely directed currents due to the PC flow linear instability is discussed. Results of the new linear hydrodynamic stability theory for the HP, PP, and PC flows are published in the following papers: 1. S.G. Chefranov, A

  14. Mechanical Design of a Performance Test Rig for the Turbine Air-Flow Task (TAFT)

    NASA Technical Reports Server (NTRS)

    Forbes, John C.; Xenofos, George D.; Farrow, John L.; Tyler, Tom; Williams, Robert; Sargent, Scott; Moharos, Jozsef

    2004-01-01

    To support development of the Boeing-Rocketdyne RS84 rocket engine, a full-flow, reaction turbine geometry was integrated into the NASA-MSFC turbine air-flow test facility. A mechanical design was generated which minimized the amount of new hardware while incorporating all test and instrumentation requirements. This paper provides details of the mechanical design for this Turbine Air-Flow Task (TAFT) test rig. The mechanical design process utilized for this task included the following basic stages: Conceptual Design. Preliminary Design. Detailed Design. Baseline of Design (including Configuration Control and Drawing Revision). Fabrication. Assembly. During the design process, many lessons were learned that should benefit future test rig design projects. Of primary importance are well-defined requirements early in the design process, a thorough detailed design package, and effective communication with both the customer and the fabrication contractors.

  15. Installation of a flow control device in an inclined air-curtain fume hood to control wake-induced exposure.

    PubMed

    Chen, Jia-Kun

    2016-08-01

    An inclined plate for flow control was installed at the lower edge of the sash of an inclined air-curtain fume hood to reduce the effects of the wake around a worker standing in front of the fume hood. Flow inside the fume hood is controlled by the inclined air-curtain and deflection plates, thereby forming a quad-vortex flow structure. Controlling the face velocity of the fume hood resulted in convex, straight, concave, and attachment flow profiles in the inclined air-curtain. We used the flow visualization and conducted a tracer gas test with a mannequin to determine the performance of two sash geometries, namely, the half-cylinder and inclined plate designs. When the half-cylinder design was used, the tracer gas test registered a high leakage concentration at Vf ≦ 57.1 fpm or less. This concentration occurred at the top of the sash opening, which was close to the breathing zone of the mannequin placed in front of the fume hood. When the inclined plate design was used, the containment was good, with concentrations of 0.002-0.004 ppm, at Vf ≦ 63.0 fpm. Results indicate that an inclined plate effectively reduces the leakage concentration induced by recirculation flow structures that form in the wake of a worker standing in front of an inclined air-curtain fume hood.

  16. Air flow measurement techniques applied to noise reduction of a centrifugal blower

    NASA Astrophysics Data System (ADS)

    Laage, John W.; Armstrong, Ashli J.; Eilers, Daniel J.; Olsen, Michael G.; Mann, J. Adin

    2005-09-01

    The air flow in a centrifugal blower was studied using a variety of flow and sound measurement techniques. The flow measurement techniques employed included Particle Image Velocimetry (PIV), pitot tubes, and a five hole spherical probe. PIV was used to measure instantaneous and ensemble-averaged velocity fields over large area of the outlet duct as a function of fan position, allowing for the visualization of the flow as it leave the fan blades and progressed downstream. The results from the flow measurements were reviewed along side the results of the sound measurements with the goal of identifying sources of noise and inefficiencies in flow performance. The radiated sound power was divided into broadband and tone noise and measures of the flow. The changes in the tone and broadband sound were compared to changes in flow quantities such as the turbulent kinetic energy and Reynolds stress. Results for each method will be presented to demonstrate the strengths of each flow measurement technique as well as their limitations. Finally, the role that each played in identifying noise sources is described.

  17. Near-ultraviolet laser diodes for brilliant ultraviolet fluorophore excitation.

    PubMed

    Telford, William G

    2015-12-01

    Although multiple lasers are now standard equipment on most modern flow cytometers, ultraviolet (UV) lasers (325-365 nm) remain an uncommon excitation source for cytometry. Nd:YVO4 frequency-tripled diode pumped solid-state lasers emitting at 355 nm are now the primary means of providing UV excitation on multilaser flow cytometers. Although a number of UV excited fluorochromes are available for flow cytometry, the cost of solid-state UV lasers remains prohibitively high, limiting their use to all but the most sophisticated multilaser instruments. The recent introduction of the brilliant ultraviolet (BUV) series of fluorochromes for cell surface marker detection and their importance in increasing the number of simultaneous parameters for high-dimensional analysis has increased the urgency of including UV sources in cytometer designs; however, these lasers remain expensive. Near-UV laser diodes (NUVLDs), a direct diode laser source emitting in the 370-380 nm range, have been previously validated for flow cytometric analysis of most UV-excited probes, including quantum nanocrystals, the Hoechst dyes, and 4',6-diamidino-2-phenylindole. However, they remain a little-used laser source for cytometry, despite their significantly lower cost. In this study, the ability of NUVLDs to excite the BUV dyes was assessed, along with their compatibility with simultaneous brilliant violet (BV) labeling. A NUVLD emitting at 375 nm was found to excite most of the available BUV dyes at least as well as a UV 355 nm source. This slightly longer wavelength did produce some unwanted excitation of BV dyes, but at sufficiently low levels to require minimal additional compensation. NUVLDs are compact, relatively inexpensive lasers that have higher power levels than the newest generation of small 355 nm lasers. They can, therefore, make a useful, cost-effective substitute for traditional UV lasers in multicolor analysis involving the BUV and BV dyes. Published 2015 Wiley Periodicals Inc. on

  18. Effect of cold air inhalation and isometric exercise on coronary blood flow and myocardial function in humans

    PubMed Central

    Muller, Matthew D.; Gao, Zhaohui; Drew, Rachel C.; Herr, Michael D.; Leuenberger, Urs A.

    2011-01-01

    The effects of cold air inhalation and isometric exercise on coronary blood flow are currently unknown, despite the fact that both cold air and acute exertion trigger angina in clinical populations. In this study, we used transthoracic Doppler echocardiography to measure coronary blood flow velocity (CBV; left anterior descending coronary artery) and myocardial function during cold air inhalation and handgrip exercise. Ten young healthy subjects underwent the following protocols: 5 min of inhaling cold air (cold air protocol), 5 min of inhaling thermoneutral air (sham protocol), 2 min of isometric handgrip at 30% of maximal voluntary contraction (grip protocol), and 5 min of isometric handgrip at 30% maximal voluntary contraction while breathing cold air (cold + grip protocol). Heart rate, blood pressure, inspired air temperature, CBV, myocardial function (tissue Doppler imaging), O2 saturation, and pulmonary function were measured. The rate-pressure product (RPP) was used as an index of myocardial O2 demand, whereas CBV was used as an index of myocardial O2 supply. Compared with the sham protocol, the cold air protocol caused a significantly higher RPP, but there was a significant reduction in CBV. The cold + grip protocol caused a significantly greater increase in RPP compared with the grip protocol (P = 0.045), but the increase in CBV was significantly less (P = 0.039). However, myocardial function was not impaired during the cold + grip protocol relative to the grip protocol alone. Collectively, these data indicate that there is a supply-demand mismatch in the coronary vascular bed when cold ambient air is breathed during acute exertion but myocardial function is preserved, suggesting an adequate redistribution of blood flow. PMID:21940852

  19. A Novel Biobjective Risk-Based Model for Stochastic Air Traffic Network Flow Optimization Problem.

    PubMed

    Cai, Kaiquan; Jia, Yaoguang; Zhu, Yanbo; Xiao, Mingming

    2015-01-01

    Network-wide air traffic flow management (ATFM) is an effective way to alleviate demand-capacity imbalances globally and thereafter reduce airspace congestion and flight delays. The conventional ATFM models assume the capacities of airports or airspace sectors are all predetermined. However, the capacity uncertainties due to the dynamics of convective weather may make the deterministic ATFM measures impractical. This paper investigates the stochastic air traffic network flow optimization (SATNFO) problem, which is formulated as a weighted biobjective 0-1 integer programming model. In order to evaluate the effect of capacity uncertainties on ATFM, the operational risk is modeled via probabilistic risk assessment and introduced as an extra objective in SATNFO problem. Computation experiments using real-world air traffic network data associated with simulated weather data show that presented model has far less constraints compared to stochastic model with nonanticipative constraints, which means our proposed model reduces the computation complexity.

  20. Demonstration of Split-Flow Ventilation and Recirculation as Flow- Reduction Methods in an Air Force Paint Spray Booth. Volume 1

    DTIC Science & Technology

    1994-07-27

    of the split-flow and recirculation modifications in typical Air Force painting operations; itwas a proof-of- concept study only. It is recognized...recirculating ventilation. 4 To Implement this flow-reduction concept , it must first be established that recirculation does not cause an accumulation of toxic...ventilation concept . The concentration gradient is determined by height and direction of paint application. If the concentration in the top portion is

  1. Comparison of Space Shuttle Hot Gas Manifold analysis to air flow data

    NASA Technical Reports Server (NTRS)

    Mcconnaughey, P. K.

    1988-01-01

    This paper summarizes several recent analyses of the Space Shuttle Main Engine Hot Gas Manifold and compares predicted flow environments to air flow data. Codes used in these analyses include INS3D, PAGE, PHOENICS, and VAST. Both laminar (Re = 250, M = 0.30) and turbulent (Re = 1.9 million, M = 0.30) results are discussed, with the latter being compared to data for system losses, outer wall static pressures, and manifold exit Mach number profiles. Comparison of predicted results for the turbulent case to air flow data shows that the analysis using INS3D predicted system losses within 1 percent error, while the PHOENICS, PAGE, and VAST codes erred by 31, 35, and 47 percent, respectively. The INS3D, PHOENICS, and PAGE codes did a reasonable job of predicting outer wall static pressure, while the PHOENICS code predicted exit Mach number profiles with acceptable accuracy. INS3D was approximately an order of magnitude more efficient than the other codes in terms of code speed and memory requirements. In general, it is seen that complex internal flows in manifold-like geometries can be predicted with a limited degree of confidence, and further development is necessary to improve both efficiency and accuracy of codes if they are to be used as design tools for complex three-dimensional geometries.

  2. Electron concentration distribution in a glow discharge in air flow

    NASA Astrophysics Data System (ADS)

    Mukhamedzianov, R. B.; Gaisin, F. M.; Sabitov, R. A.

    1989-04-01

    Electron concentration distributions in a glow discharge in longitudinal and vortex air flows are determined from the attenuation of the electromagnetic wave passing through the plasma using microwave probes. An analysis of the distribution curves obtained indicates that electron concentration decreases in the direction of the anode. This can be explained by charge diffusion toward the chamber walls and electron recombination and sticking within the discharge.

  3. High enthalpy, hypervelocity flows of air and argon in an expansion tube

    NASA Technical Reports Server (NTRS)

    Neely, A. J; Stalker, R. J.; Paull, A.

    1991-01-01

    An expansion tube with a free piston driver has been used to generate quasi-steady hypersonic flows in argon and air at flow velocities in excess of 9 km/s. Irregular test flow unsteadiness has limited the performance of previous expansion tubes, and it has been found that this can be avoided by attention to the interaction between the test gas accelerating expansion and the contact surface in the primary shock tube. Test section measurements of pitot pressure, static pressure and flat plate heat transfer are reported. An approximate analytical theory has been developed for predicting the velocities achieved in the unsteady expansion of the ionizing or dissociating test gas.

  4. Formation of a strong electric field resulting in the excitation of microplasma discharges at the edge of a dielectric film on a metal in a plasma flow

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ivanov, V. A., E-mail: ivanov@fpl.gpi.ru; Sakharov, A. S.; Konyzhev, M. E.

    2016-06-15

    Results are presented from experimental and analytical studies of the processes resulting in the excitation of microplasma discharges (MPDs) on a metal surface partially covered with a thin dielectric film under the action of an external plasma flow in vacuum. It is shown experimentally that MPDs are excited at the interface between the open metal surface and the region covered by the dielectric film. The probability of MPD excitation is investigated as a function of the thickness of the dielectric film deposited on the metal. It is found that, for a film thickness of 1 μm, the probability of MPDmore » excitation is close to unity. As the film thickness decreases below ~10 nm or increases above ~10 μm, the probability of MPD excitation is reduced by more than two orders of magnitude. A two-dimensional kinetic numerical code is developed that allows one to model the processes of Debye sheath formation and generation of a strong electric field near the edge of a finite-thickness dielectric film on a metal surface in a plasma flow for different configurations of the film edge. It is shown that the maximum value of the tangential component of the electric field is reached at the film edge and amounts to E{sub max} ≈ |φ{sub 0}|/2d (where φ{sub 0} < 0 is the electric potential applied to the metal and d is the film thickness), which for typical conditions of experiments on the excitation of MPDs on metal surfaces (φ{sub 0} ≈–400 V, d ≈ 1 μm) yields E{sub max} ≈ 2 MV/cm. The results of kinetic simulations confirm the qualitative idea about the mechanism of the formation of a strong electric field resulting in the excitation of MPDs at the edge of a dielectric film on a metal surface in a plasma flow and agree with experimental data.« less

  5. Effect of real-time boundary wind conditions on the air flow and pollutant dispersion in an urban street canyon—Large eddy simulations

    NASA Astrophysics Data System (ADS)

    Zhang, Yun-Wei; Gu, Zhao-Lin; Cheng, Yan; Lee, Shun-Cheng

    2011-07-01

    Air flow and pollutant dispersion characteristics in an urban street canyon are studied under the real-time boundary conditions. A new scheme for realizing real-time boundary conditions in simulations is proposed, to keep the upper boundary wind conditions consistent with the measured time series of wind data. The air flow structure and its evolution under real-time boundary wind conditions are simulated by using this new scheme. The induced effect of time series of ambient wind conditions on the flow structures inside and above the street canyon is investigated. The flow shows an obvious intermittent feature in the street canyon and the flapping of the shear layer forms near the roof layer under real-time wind conditions, resulting in the expansion or compression of the air mass in the canyon. The simulations of pollutant dispersion show that the pollutants inside and above the street canyon are transported by different dispersion mechanisms, relying on the time series of air flow structures. Large scale air movements in the processes of the air mass expansion or compression in the canyon exhibit obvious effects on pollutant dispersion. The simulations of pollutant dispersion also show that the transport of pollutants from the canyon to the upper air flow is dominated by the shear layer turbulence near the roof level and the expansion or compression of the air mass in street canyon under real-time boundary wind conditions. Especially, the expansion of the air mass, which features the large scale air movement of the air mass, makes more contribution to the pollutant dispersion in this study. Comparisons of simulated results under different boundary wind conditions indicate that real-time boundary wind conditions produces better condition for pollutant dispersion than the artificially-designed steady boundary wind conditions.

  6. Fluid-elastic instability in tube arrays subjected to air-water and steam-water cross-flow

    NASA Astrophysics Data System (ADS)

    Mitra, D.; Dhir, V. K.; Catton, I.

    2009-10-01

    Flow induced vibrations in heat exchanger tubes have led to numerous accidents and economic losses in the past. Efforts have been made to systematically study the cause of these vibrations and develop remedial design criteria for their avoidance. In this research, experiments were systematically carried out with air-water and steam-water cross-flow over horizontal tubes. A normal square tube array of pitch-to-diameter ratio of 1.4 was used in the experiments. The tubes were suspended from piano wires and strain gauges were used to measure the vibrations. Tubes made of aluminum; stainless steel and brass were systematically tested by maintaining approximately the same stiffness in the tube-wire systems. Instability was clearly seen in single phase and two-phase flow and the critical flow velocity was found to be proportional to tube mass. The present study shows that fully flexible arrays become unstable at a lower flow velocity when compared to a single flexible tube surrounded by rigid tubes. It is also found that tubes are more stable in steam-water flow as compared to air-water flow. Nucleate boiling on the tube surface is also found to have a stabilizing effect on fluid-elastic instability.

  7. Air Change Rates and Interzonal Flows in Residences, and the Need for Multi-Zone Models for Exposure and Health Analysis

    EPA Science Inventory

    Air change rates (ACRs) and interzonal flows are key determinants of indoor air quality (IAQ) and building energy use. This paper characterizes ACRs and interzonal flows in 126 houses, and evaluates effects of these parameters on IAQ. ACRs measured using weeklong tracer measureme...

  8. Infrared imaging results of an excited planar jet

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Farrington, R.B.

    1991-12-01

    Planar jets are used for many applications including heating, cooling, and ventilation. Generally such a jet is designed to provide good mixing within an enclosure. In building applications, the jet provides both thermal comfort and adequate indoor air quality. Increased mixing rates may lead to lower short-circuiting of conditioned air, elimination of dead zones within the occupied zone, reduced energy costs, increased occupant comfort, and higher indoor air quality. This paper discusses using an infrared imaging system to show the effect of excitation of a jet on the spread angle and on the jet mixing efficiency. Infrared imaging captures amore » large number of data points in real time (over 50,000 data points per image) providing significant advantages over single-point measurements. We used a screen mesh with a time constant of approximately 0.3 seconds as a target for the infrared camera to detect temperature variations in the jet. The infrared images show increased jet spread due to excitation of the jet. Digital data reduction and analysis show change in jet isotherms and quantify the increased mixing caused by excitation. 17 refs., 20 figs.« less

  9. OH and CH luminescence in opposed flow methane oxy-flames

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    De Leo, Maurizio; Saveliev, Alexei; Kennedy, Lawrence A.

    Emission spectroscopy is a 2-D nonintrusive diagnostic technique that offers spatially resolved data for combustion optimization and control. The UV and visible chemiluminescence of the excited radicals CH(A{sup 2}{delta},B{sup 2}{sigma}{sup -}) and OH(A{sup 2}{sigma}{sup +}) is studied experimentally and numerically in opposed-flow diffusion flames of methane and oxygen-enriched air. The oxidized oxygen content is varied from 21 to 100% while the range of the studied strain rates spans from 20 to 40 s{sup -1}. The spectrally resolved imaging is obtained by two different methods: scattering through a grating monochromator and interposition of interference filters along the optical path. Absolute measuredmore » chemiluminescence intensities, coupled with a numerical model based on the opposed flow flame code, are used to evaluate the chemical kinetics of the excited species. The predictions of the selected model are in good agreement with the experimental data over the range of the studied flame conditions. (author)« less

  10. Graphical User Interface Development for Representing Air Flow Patterns

    NASA Technical Reports Server (NTRS)

    Chaudhary, Nilika

    2004-01-01

    In the Turbine Branch, scientists carry out experimental and computational work to advance the efficiency and diminish the noise production of jet engine turbines. One way to do this is by decreasing the heat that the turbine blades receive. Most of the experimental work is carried out by taking a single turbine blade and analyzing the air flow patterns around it, because this data indicates the sections of the turbine blade that are getting too hot. Since the cost of doing turbine blade air flow experiments is very high, researchers try to do computational work that fits the experimental data. The goal of computational fluid dynamics is for scientists to find a numerical way to predict the complex flow patterns around different turbine blades without physically having to perform tests or costly experiments. When visualizing flow patterns, scientists need a way to represent the flow conditions around a turbine blade. A researcher will assign specific zones that surround the turbine blade. In a two-dimensional view, the zones are usually quadrilaterals. The next step is to assign boundary conditions which define how the flow enters or exits one side of a zone. way of setting up computational zones and grids, visualizing flow patterns, and storing all the flow conditions in a file on the computer for future computation. Such a program is necessary because the only method for creating flow pattern graphs is by hand, which is tedious and time-consuming. By using a computer program to create the zones and grids, the graph would be faster to make and easier to edit. Basically, the user would run a program that is an editable graph. The user could click and drag with the mouse to form various zones and grids, then edit the locations of these grids, add flow and boundary conditions, and finally save the graph for future use and analysis. My goal this summer is to create a graphical user interface (GUI) that incorporates all of these elements. I am writing the program in

  11. Air-cooled, hydrogen-air fuel cell

    NASA Technical Reports Server (NTRS)

    Shelekhin, Alexander B. (Inventor); Bushnell, Calvin L. (Inventor); Pien, Michael S. (Inventor)

    1999-01-01

    An air-cooled, hydrogen-air solid polymer electrolyte (SPE) fuel cell with a membrane electrode assembly operatively associated with a fluid flow plate having at least one plate cooling channel extending through the plate and at least one air distribution hole extending from a surface of the cathode flow field into the plate cooling channel.

  12. Ring waves as a mass transport mechanism in air-driven core-annular flows.

    PubMed

    Camassa, Roberto; Forest, M Gregory; Lee, Long; Ogrosky, H Reed; Olander, Jeffrey

    2012-12-01

    Air-driven core-annular fluid flows occur in many situations, from lung airways to engineering applications. Here we study, experimentally and theoretically, flows where a viscous liquid film lining the inside of a tube is forced upwards against gravity by turbulent airflow up the center of the tube. We present results on the thickness and mean speed of the film and properties of the interfacial waves that develop from an instability of the air-liquid interface. We derive a long-wave asymptotic model and compare properties of its solutions with those of the experiments. Traveling wave solutions of this long-wave model exhibit evidence of different mass transport regimes: Past a certain threshold, sufficiently large-amplitude waves begin to trap cores of fluid which propagate upward at wave speeds. This theoretical result is then confirmed by a second set of experiments that show evidence of ring waves of annular fluid propagating over the underlying creeping flow. By tuning the parameters of the experiments, the strength of this phenomenon can be adjusted in a way that is predicted qualitatively by the model.

  13. Air flow analysis in the upper Río Negro Valley (Argentina)

    NASA Astrophysics Data System (ADS)

    Cogliati, M. G.; Mazzeo, N. A.

    2006-06-01

    The so called Upper Río Negro Valley in Argentina is one of the most important fruit and vegetable production regions of the country. It comprises the lower valleys of the Limay and Neuquén rivers and the upper Negro river valley. Out of the 41,671 cultivated hectares, 84.6% are cultivated with fruit trees, especially apple, pear and stone fruit trees. Late frosts occurring when trees are sensitive to low temperatures have a significant impact on the regional production. This study presents an analysis of air flow characteristics in the Upper Río Negro Valley and its relationship with ambient air flow. To such effect, observations made when synoptic-scale weather patterns were favorable for radiative frosts (light wind and clear sky) or nocturnal temperature inversion in the lower layer were used. In the Negro river valley, both wind channeling and downward horizontal momentum transport from ambient wind were observed; in nighttime, very light wind events occurred, possibly associated with drainage winds from the nearby higher levels of the barda. In the Neuquén river valley, the prevailing effect appeared to be forced channeling, consistent with the results obtained in valleys where the synoptic scale wind crossed the axis of the valley. In the Limay river valley, the flow was observed to blow parallel to the longitudinal valley axis, possibly influenced by pressure gradient and forced channeling.

  14. Aircraft Carrier Turbulence Study for Predicting Air Flow Dynamics with Increasing Wind-Over-Deck Velocities

    DTIC Science & Technology

    1968-03-28

    AD-A020 223 AIRCRAFT CARRIER TURBULENCE STUDY FOR PREDICTING AIR FLOW DYNAMICS WITH INCREASING WIND-OVER-DECK VELOCITIES S. Frost Naval Air...Copy NAVAL AIR ENGINEERING CENTERElPILAOUPHBA, PENNSYLVANIA 19112 Q Had-NG7~ CODE IDEN NO. *OOM 28 MARCH 4fe AIRCRAFT CARRIER TUJRBULENCE STUDY FOR...carrier dynamics. Ike- comirendations for future experimental and theoretical studies are give,. DD 1473 EDITIOIN 0F I NOV SS IS O@SOLETE S - ’i02

  15. Hybridized electromagnetic-triboelectric nanogenerator for scavenging air-flow energy to sustainably power temperature sensors.

    PubMed

    Wang, Xue; Wang, Shuhua; Yang, Ya; Wang, Zhong Lin

    2015-04-28

    We report a hybridized nanogenerator with dimensions of 6.7 cm × 4.5 cm × 2 cm and a weight of 42.3 g that consists of two triboelectric nanogenerators (TENGs) and two electromagnetic generators (EMGs) for scavenging air-flow energy. Under an air-flow speed of about 18 m/s, the hybridized nanogenerator can deliver largest output powers of 3.5 mW for one TENG (in correspondence of power per unit mass/volume: 8.8 mW/g and 14.6 kW/m(3)) at a loading resistance of 3 MΩ and 1.8 mW for one EMG (in correspondence of power per unit mass/volume: 0.3 mW/g and 0.4 kW/m(3)) at a loading resistance of 2 kΩ, respectively. The hybridized nanogenerator can be utilized to charge a capacitor of 3300 μF to sustainably power four temperature sensors for realizing self-powered temperature sensor networks. Moreover, a wireless temperature sensor driven by a hybridized nanogenerator charged Li-ion battery can work well to send the temperature data to a receiver/computer at a distance of 1.5 m. This work takes a significant step toward air-flow energy harvesting and its potential applications in self-powered wireless sensor networks.

  16. Time-resolved Fast Neutron Radiography of Air-water Two-phase Flows

    NASA Astrophysics Data System (ADS)

    Zboray, Robert; Dangendorf, Volker; Mor, Ilan; Tittelmeier, Kai; Bromberger, Benjamin; Prasser, Horst-Michael

    Neutron imaging, in general, is a useful technique for visualizing low-Z materials (such as water or plastics) obscured by high-Z materials. However, when significant amounts of both materials are present and full-bodied samples have to be examined, cold and thermal neutrons rapidly reach their applicability limit as the samples become opaque. In such cases one can benefit from the high penetrating power of fast neutrons. In this work we demonstrate the feasibility of time-resolved, fast neutron radiography of generic air-water two-phase flows in a 1.5 cm thick flow channel with Aluminum walls and rectangular cross section. The experiments have been carried out at the high-intensity, white-beam facility of the Physikalisch-Technische Bundesanstalt, Germany. Exposure times down to 3.33 ms have been achieved at reasonable image quality and acceptable motion artifacts. Different two-phase flow regimes such as bubbly slug and churn flows have been examined. Two-phase flow parameters like the volumetric gas fraction, bubble size and bubble velocities have been measured.

  17. 7 CFR 28.603 - Procedures for air flow tests of micronaire reading.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 2 2012-01-01 2012-01-01 false Procedures for air flow tests of micronaire reading. 28.603 Section 28.603 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing Practices), DEPARTMENT OF AGRICULTURE COMMODITY STANDARDS AND STANDARD CONTAINER REGULATIONS COTTON...

  18. 7 CFR 28.603 - Procedures for air flow tests of micronaire reading.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 2 2013-01-01 2013-01-01 false Procedures for air flow tests of micronaire reading. 28.603 Section 28.603 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing Practices), DEPARTMENT OF AGRICULTURE COMMODITY STANDARDS AND STANDARD CONTAINER REGULATIONS COTTON...

  19. 7 CFR 28.603 - Procedures for air flow tests of micronaire reading.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 2 2014-01-01 2014-01-01 false Procedures for air flow tests of micronaire reading. 28.603 Section 28.603 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing Practices), DEPARTMENT OF AGRICULTURE COMMODITY STANDARDS AND STANDARD CONTAINER REGULATIONS COTTON...

  20. 7 CFR 28.603 - Procedures for air flow tests of micronaire reading.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 2 2011-01-01 2011-01-01 false Procedures for air flow tests of micronaire reading. 28.603 Section 28.603 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing Practices), DEPARTMENT OF AGRICULTURE COMMODITY STANDARDS AND STANDARD CONTAINER REGULATIONS COTTON...

  1. A measurement device for electromagnetic flow tomography

    NASA Astrophysics Data System (ADS)

    Vauhkonen, M.; Hänninen, A.; Lehtikangas, O.

    2018-01-01

    Electromagnetic flow meters have succesfully been used in many industries to measure the mean flow velocity of conductive liquids. This technology works reliably in single phase flows with axisymmetric flow profiles but can be inaccurate with asymmetric flows, which are encountered, for example, in multiphase flows, pipe elbows and T-junctions. Some computational techniques and measurement devices with multiple excitation coils and measurement electrodes have recently been proposed to be used in cases of asymmetric flows. In earlier studies, we proposed a computational approach for electromagnetic flow tomography (EMFT) for estimating velocity fields utilizing several excitation coils and a set of measurement electrodes attached to the surface of the pipe. This approach has been shown to work well with simulated data but has not been tested extensively with real measurements. In this paper, an EMFT system with four excitation coils and 16 measurement electrodes is introduced. The system is capable of using both square wave and sinusoidal coil current excitations and all the coils can be excited individually, also enabling parallel excitations with multiple frequencies. The studies undertaken in the paper demonstrate that the proposed EMFT system, together with the earlier introduced velocity field reconstruction approach, is capable of producing reliable velocify field estimates in a laboratory environment with both axisymmetric and asymmetric single phase flows.

  2. Simultaneous velocity and pressure quantification using pressure-sensitive flow tracers in air

    NASA Astrophysics Data System (ADS)

    Zhang, Peng; Peterson, Sean; Porfiri, Maurizio

    2017-11-01

    Particle-based measurement techniques for assessing the velocity field of a fluid have advanced rapidly over the past two decades. Full-field pressure measurement techniques have remained elusive, however. In this work, we aim to demonstrate the possibility of direct simultaneous planar velocity and pressure measurement of a high speed aerodynamic flow by employing novel pressure-sensitive tracer particles for particle image velocimetry (PIV). Specifically, the velocity and pressure variations of an airflow through a converging-diverging channel are studied. Polystyrene microparticles embedded with a pressure-sensitive phosphorescent dye-platinum octaethylporphyrin (PtOEP)-are used as seeding particles. Due to the oxygen quenching effect, the emission lifetime of PtOEP is highly sensitive to the oxygen concentration, that is, the partial pressure of oxygen, in the air. Since the partial pressure of oxygen is linearly proportional to the air pressure, we can determine the air pressure through the phosphorescence emission lifetime of the dye. The velocity field is instead obtained using traditional PIV methods. The particles have a pressure resolution on the order of 1 kPa, which may be improved by optimizing the particle size and dye concentration to suit specific flow scenarios. This work was supported by the National Science Foundation under Grant Number CBET-1332204.

  3. Mechanistic understanding of monosaccharide-air flow battery electrochemistry

    NASA Astrophysics Data System (ADS)

    Scott, Daniel M.; Tsang, Tsz Ho; Chetty, Leticia; Aloi, Sekotilani; Liaw, Bor Yann

    Recently, an inexpensive monosaccharide-air flow battery configuration has been demonstrated to utilize a strong base and a mediator redox dye to harness electrical power from the partial oxidation of glucose. Here the mechanistic understanding of glucose oxidation in this unique glucose-air power source is further explored by acid-base titration experiments, 13C NMR, and comparison of results from chemically different redox mediators (indigo carmine vs. methyl viologen) and sugars (fructose vs. glucose) via studies using electrochemical techniques. Titration results indicate that gluconic acid is the main product of the cell reaction, as supported by evidence in the 13C NMR spectra. Using indigo carmine as the mediator dye and fructose as the energy source, an abiotic cell configuration generates a power density of 1.66 mW cm -2, which is greater than that produced from glucose under similar conditions (ca. 1.28 mW cm -2). A faster transition from fructose into the ene-diol intermediate than from glucose likely contributed to this difference in power density.

  4. Air flow optimization for energy efficient blower of biosafety cabinet class II A2

    NASA Astrophysics Data System (ADS)

    Ibrahim, M. D.; Mohtar, M. Z.; Alias, A. A.; Wong, L. K.; Yunos, Y. S.; Rahman, M. R. A.; Zulkharnain, A.; Tan, C. S.; Thayan, R.

    2017-04-01

    An energy efficient Biosafety Cabinet (BSC) has become a big challenge for manufacturers to develop BSC with the highest level of protection. The objective of research is to increase air flow velocity discharge from centrifugal blower. An aerodynamic duct shape inspired by the shape of Peregrine Falcon’s wing during diving flight is added to the end of the centrifugal blower. Investigation of air movement is determined by computational fluid dynamics (CFD) simulation. The results showed that air velocity can be increased by double compared to typical manufactured BSC and no air recirculation. As conclusion, a novel design of aerodynamic duct shape successfully developed and proved that air velocity can be increase naturally with same impeller speed. It can contribute in increasing energy efficiency of the centrifugal blower. It is vital to BSC manufacturer and can be apply to Heating, Air Ventilation and Air Conditioning (HVAC) industries.

  5. Effect of flow on the acoustic performance of extended reaction lined ducts

    NASA Technical Reports Server (NTRS)

    Hersh, A. S.; Walker, B.

    1983-01-01

    A model is developed for the effects of uniform and boundary-layer mean flow on the attenuation and propagation of harmonically excited sound waves in an extended reaction lined cylindrical duct. A duct geometry consisting of an annular outer region of bulk material surrounding an inner cylinder of air is utilized. A numerical solution is obtained for the coupled wave equations governing the motion of the sound in both the inner and annular regions. It is found that the numerically predicted attenuation and propagations constants are in excellent agreement with measured values using Kevlar as the liner material for plane-wave mode (O,O) excitation over a wide range of mean flows and sound frequency. The boundary-layer effects are determined to be unimportant, at least for plane-wave sound. In addition, numerical studies indicate small differences between the use of either the radial velocity or the radial displacement boundary conditions.

  6. Numerical investigation of air flow in a supersonic wind tunnel

    NASA Astrophysics Data System (ADS)

    Drozdov, S. M.; Rtishcheva, A. S.

    2017-11-01

    In the framework of TsAGI’s supersonic wind tunnel modernization program aimed at improving flow quality and extending the range of test regimes it was required to design and numerically validate a new test section and a set of shaped nozzles: two flat nozzles with flow Mach number at nozzle exit M=4 and M=5 and two axisymmetric nozzles with M=5 and M=6. Geometric configuration of the nozzles, the test section (an Eiffel chamber) and the diffuser was chosen according to the results of preliminary calculations of two-dimensional air flow in the wind tunnel circuit. The most important part of the work are three-dimensional flow simulation results obtained using ANSYS Fluent software. The following flow properties were investigated: Mach number, total and static pressure, total and static temperature and turbulent viscosity ratio distribution, heat flux density at wind tunnel walls (for high-temperature flow regimes). It is demonstrated that flow perturbations emerging from the junction of the nozzle with the test section and spreading down the test section behind the boundaries of characteristic rhomb’s reverse wedge are nearly impossible to eliminate. Therefore, in order to perform tests under most uniform flow conditions, the model’s center of rotation and optical window axis should be placed as close to the center of the characteristic rhomb as possible. The obtained results became part of scientific and technical basis of supersonic wind tunnel design process and were applied to a generalized class of similar wind tunnels.

  7. Jet flow issuing from an axisymmetric pipe-cavity-orifice nozzle

    NASA Astrophysics Data System (ADS)

    Broučková, Zuzana; Pušková, Pavlína; Trávníček, Zdeněk; Šafařík, Pavel

    2016-03-01

    An axisymmetric air jet flow is experimentally investigated under passive flow control. The jet issues from a pipe of the inner diameter and length of 10 mm and 150 mm which is equipped with an axisymmetric cavity at the pipe end. The cavity operates as a resonator creating self-sustained acoustic excitations of the jet flow. A mechanism of excitations is rather complex - in comparison with a common Helmholtz resonator. The experiments were performed using flow visualization, microphone measurements and time-mean velocity measurements by the Pitot probe. The power spectral density (PSD) and the sound pressure level (SPL) were evaluated from microphone measurements. The jet Reynolds number ranged Re = 1600-18 000. Distinguishable peaks in PSD indicated a function of the resonator. Because the most effective acoustic response was found at higher Re, a majority of experiments focused on higher Re regime. The results demonstrate effects of the passive control on the jet behavior. Fluid mixing and velocity decay along the axis is intensified. It causes shortening of the jet transition region. On the other hand, an inverse proportionality of the velocity decay (u ~ 1/x) in the fully developed region is not changed. The momentum and kinetic energy fluxes decrease more intensively in the controlled jets in comparison with common jets.

  8. Mid-section of a can-annular gas turbine engine with an improved rotation of air flow from the compressor to the turbine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Little, David A.; Schilp, Reinhard; Ross, Christopher W.

    A midframe portion (313) of a gas turbine engine (310) is presented and includes a compressor section with a last stage blade to orient an air flow (311) at a first angle (372). The midframe portion (313) further includes a turbine section with a first stage blade to receive the air flow (311) oriented at a second angle (374). The midframe portion (313) further includes a manifold (314) to directly couple the air flow (311) from the compressor section to a combustor head (318) upstream of the turbine section. The combustor head (318) introduces an offset angle in the airmore » flow (311) from the first angle (372) to the second angle (374) to discharge the air flow (311) from the combustor head (318) at the second angle (374). While introducing the offset angle, the combustor head (318) at least maintains or augments the first angle (372).« less

  9. Identify temporal trend of air temperature and its impact on forest stream flow in Lower Mississippi River Alluvial Valley using wavelet analysis

    Treesearch

    Ying Ouyang; Prem B. Parajuli; Yide Li; Theodor D. Leininger; Gary Feng

    2017-01-01

    Characterization of stream flow is essential to water resource management, water supply planning, environmental protection, and ecological restoration; while air temperature variation due to climate change can exacerbate stream flow and add instability to the flow. In this study, the wavelet analysis technique was employed to identify temporal trend of air temperature...

  10. Solvent dependence of the steady-state rate of 1O 2 generation upon excitation of dissolved oxygen by cw 1267 nm laser radiation in air-saturated solutions: Estimates of the absorbance and molar absorption coefficients of oxygen at the excitation wavelength

    NASA Astrophysics Data System (ADS)

    Krasnovsky, A. A., Jr.; Roumbal, Ya. V.; Ivanov, A. V.; Ambartzumian, R. V.

    2006-10-01

    The rates of oxygenation of the 1O 2 trap, 1,3-diphenylisobenzofuran were measured in air-saturated organic solvents and heterogeneous D 2O-sodium dodecyl sulfate dispersions upon infrared (1267 ± 4 nm) laser irradiation. The absorbance and molar absorption coefficients of oxygen corresponding to this wavelength were estimated from the observed oxygenation rates. The data suggest that 1O 2 was formed due to direct oxygen excitation without appreciable involvement of vibrationally excited solvent molecules. The minor 'pseudophase' of detergent micelles was shown to strongly enhance overall 1O 2 production in D 2O-detergent dispersions.

  11. Industrial 30-kW CO2 laser with fast axial gas flow and rf excitation

    NASA Astrophysics Data System (ADS)

    Habich, Uwe; Loosen, Peter; Hertzler, Christoph; Wollermann-Windgasse, Reinhard

    1996-03-01

    A CO2 laser with fast axial gas flow was set up and operated with a maximum cw output power above 30 kW. The laser makes use of 8 rf-excited discharges which were optimized regarding to the gas-flow, to the discharge homogeneity and to the optical properties of the gain medium. Results of experimental investigation of these topics are described as well as performance characteristics of the laser system equipped with a stable and an unstable resonator, respectively. With an unstable resonator and an aerodynamic window for the extraction of the beam the laser system gives a beam quality which is close to the diffraction limit for this type of resonator. Disregarding the difficulties which are related to the definition and measurement of beam quality for unstable resonators, the beam quality could be described as M2 equals 3. Measured far field intensity profiles in the focal plane of a focusing optics are presented as well as the beam propagation behavior near focus. First results of applications in materials processing are discussed.

  12. Mass flow sensor utilizing a resistance bridge

    NASA Technical Reports Server (NTRS)

    Fralick, Gustave C. (Inventor); Hwang, Danny P. (Inventor); Wrbanek, John D. (Inventor)

    2004-01-01

    A mass flow sensor to be mounted within a duct and measures the mass flow of a fluid stream moving through the duct. The sensor is an elongated thin quartz substrate having a plurality of platinum strips extending in a parallel relationship on the strip, with certain of the strips being resistors connected to an excitation voltage. The resistors form the legs of a Wheatstone bridge. The resistors are spaced a sufficient distance inwardly from the leading and trailing edges of the substrate to lie within the velocity recovery region so that the measured flow is the same as the actual upstream flow. The resistor strips extend at least half-way through the fluid stream to include a substantial part of the velocity profile of the stream. Certain of the resistors detect a change in temperature as the fluid stream moves across the substrate to provide an output signal from the Wheatstone bridge which is representative of the fluid flow. A heater is located in the midst of the resistor array to heat the air as it passes over the array.

  13. Green fiber lasers: An alternative to traditional DPSS green lasers for flow cytometry

    PubMed Central

    Telford, William G.; Babin, Sergey A.; Khorev, Serge V.; Rowe, Stephen H.

    2009-01-01

    Green and yellow diode-pumped solid state (DPSS) lasers (532 and 561 nm) have become common fixtures on flow cytometers, due to their efficient excitation of phycoerythrin (PE) and its tandems, and their ability to excite an expanding array of expressible red fluorescent proteins. Nevertheless, they have some disadvantages. DPSS 532 nm lasers emit very close to the fluorescein bandwidth, necessitating optical modifications to permit detection of fluorescein and GFP. DPSS 561 nm lasers likewise emit very close to the PE detection bandwidth, and also cause unwanted excitation of APC and its tandems, requiring high levels of crossbeam compensation to reduce spectral overlap into the PE tandems. In this paper, we report the development of a new generation of green fiber lasers that can be engineered to emit in the range between 532 and 561 nm. A 550 nm green fiber laser was integrated into both a BD LSR II™ cuvette and FACSVantage DiVa™ jet-in-air cell sorter. This laser wavelength avoided both the fluorescein and PE bandwidths, and provided better excitation of PE and the red fluorescent proteins DsRed and dTomato than a power-matched 532 nm source. Excitation at 550 nm also caused less incidental excitation of APC and its tandems, reducing the need for crossbeam compensation. Excitation in the 550 nm range therefore proved to be a good compromise between 532 and 561 nm sources. Fiber laser technology is therefore providing the flexibility necessary for precisely matching laser wavelengths to our flow cytometry applications. PMID:19777600

  14. Investigation of air stream from combustor-liner air entry holes, 3

    NASA Technical Reports Server (NTRS)

    Aiba, T.; Nakano, T.

    1979-01-01

    Jets flowing from air entry holes of the combustor liner of a gas turbine were investigated. Cold air was supplied through the air entry holes into the primary hot gas flows. The mass flow of the primary hot gas and issuing jets was measured, and the behavior of the air jets was studied by the measurement of the temperature distribution of the gas mixture. The air jets flowing from three circular air entry holes, single streamwise long holes, and two opposing circular holes, parallel to the primary flow were studied along with the effects of jet and gas stream velocities, and of gas temperature. The discharge coefficient, the maximum penetration of the jets, the jet flow path, the mixing of the jets, and temperature distribution across the jets were investigated. Empirical expressions which describe the characteristics of the jets under the conditions of the experiments were formulated.

  15. A catheter-type flow sensor for measurement of aspirated- and inspired-air characteristics in the bronchial region

    NASA Astrophysics Data System (ADS)

    Shikida, M.; Naito, J.; Yokota, T.; Kawabe, T.; Hayashi, Y.; Sato, K.

    2009-10-01

    We developed a novel catheter-type flow sensor for measuring the aspirated- and inspired-air characteristics trans-bronchially. An on-wall in-tube thermal flow sensor is mounted inside the tube, and it is used as a measurement tool in a bronchoscope. The external diameter of the tube is less than a few mm, and therefore, it can evaluate the flow characteristics in the small bronchial region. We newly developed a fabrication process to miniaturize it to less than 2.0 mm in the external diameter by using a heat shrinkable tube. A film sensor fabricated by photolithography was inserted into the tube by hand. By applying a heat shrinking process, the film was automatically mounted on the inner wall surface, and the outer size of the tube was miniaturized to almost half its original size. The final inner and outer diameters of the tube were 1.0 mm and 1.8 mm, respectively. The relationship between the input power of the sensor and the flow rate obeyed King's equation in both forward and reverse flow conditions. The sensor output dependence on ambient temperature was also studied, and the curve obtained at 39.2 °C was used as the calibration curve in animal experiments. The sensor characteristics under reciprocating flow were studied by using a ventilator, and we confirmed that the sensor was able to measure the reciprocating flow at 2.0 Hz. Finally, we successfully measured the aspirated- and inspired-air characteristics in the air passage of a rat.

  16. Low flow fume hood

    DOEpatents

    Bell, Geoffrey C.; Feustel, Helmut E.; Dickerhoff, Darryl J.

    2002-01-01

    A fume hood is provided having an adequate level of safety while reducing the amount of air exhausted from the hood. A displacement flow fume hood works on the principal of a displacement flow which displaces the volume currently present in the hood using a push-pull system. The displacement flow includes a plurality of air supplies which provide fresh air, preferably having laminar flow, to the fume hood. The displacement flow fume hood also includes an air exhaust which pulls air from the work chamber in a minimally turbulent manner. As the displacement flow produces a substantially consistent and minimally turbulent flow in the hood, inconsistent flow patterns associated with contaminant escape from the hood are minimized. The displacement flow fume hood largely reduces the need to exhaust large amounts of air from the hood. It has been shown that exhaust air flow reductions of up to 70% are possible without a decrease in the hood's containment performance. The fume hood also includes a number of structural adaptations which facilitate consistent and minimally turbulent flow within a fume hood.

  17. A simple analytical method to estimate all exit parameters of a cross-flow air dehumidifier using liquid desiccant

    PubMed Central

    Bassuoni, M.M.

    2013-01-01

    The dehumidifier is a key component in liquid desiccant air-conditioning systems. Analytical solutions have more advantages than numerical solutions in studying the dehumidifier performance parameters. This paper presents the performance results of exit parameters from an analytical model of an adiabatic cross-flow liquid desiccant air dehumidifier. Calcium chloride is used as desiccant material in this investigation. A program performing the analytical solution is developed using the engineering equation solver software. Good accuracy has been found between analytical solution and reliable experimental results with a maximum deviation of +6.63% and −5.65% in the moisture removal rate. The method developed here can be used in the quick prediction of the dehumidifier performance. The exit parameters from the dehumidifier are evaluated under the effects of variables such as air temperature and humidity, desiccant temperature and concentration, and air to desiccant flow rates. The results show that hot humid air and desiccant concentration have the greatest impact on the performance of the dehumidifier. The moisture removal rate is decreased with increasing both air inlet temperature and desiccant temperature while increases with increasing air to solution mass ratio, inlet desiccant concentration, and inlet air humidity ratio. PMID:25685485

  18. A simple analytical method to estimate all exit parameters of a cross-flow air dehumidifier using liquid desiccant.

    PubMed

    Bassuoni, M M

    2014-03-01

    The dehumidifier is a key component in liquid desiccant air-conditioning systems. Analytical solutions have more advantages than numerical solutions in studying the dehumidifier performance parameters. This paper presents the performance results of exit parameters from an analytical model of an adiabatic cross-flow liquid desiccant air dehumidifier. Calcium chloride is used as desiccant material in this investigation. A program performing the analytical solution is developed using the engineering equation solver software. Good accuracy has been found between analytical solution and reliable experimental results with a maximum deviation of +6.63% and -5.65% in the moisture removal rate. The method developed here can be used in the quick prediction of the dehumidifier performance. The exit parameters from the dehumidifier are evaluated under the effects of variables such as air temperature and humidity, desiccant temperature and concentration, and air to desiccant flow rates. The results show that hot humid air and desiccant concentration have the greatest impact on the performance of the dehumidifier. The moisture removal rate is decreased with increasing both air inlet temperature and desiccant temperature while increases with increasing air to solution mass ratio, inlet desiccant concentration, and inlet air humidity ratio.

  19. Oscillatory fluid flow in deformable tubes: Implications for pore-scale hydromechanics from comparing experimental observations with theoretical predictions.

    PubMed

    Kurzeja, Patrick; Steeb, Holger; Strutz, Marc A; Renner, Jörg

    2016-12-01

    Oscillatory flow of four fluids (air, water, two aqueous sodium-tungstate solutions) was excited at frequencies up to 250 Hz in tubes of two materials (steel, silicone) covering a wide range in length, diameter, and thickness. The hydrodynamical response was characterized by phase shift and amplitude ratio between pressures in an upstream (pressure excitation) and a downstream reservoir connected by the tubes. The resulting standing flow waves reflect viscosity-controlled diffusive behavior and inertia-controlled wave behavior for oscillation frequencies relatively low and high compared to Biot's critical frequency, respectively. Rigid-tube theories correspond well with the experimental results for steel tubes filled with air or water. The wave modes observed for silicone tubes filled with the rather incompressible liquids or air, however, require accounting for the solid's shear and bulk modulus to correctly predict speed of pressure propagation and deformation mode. The shear mode may be responsible for significant macroscopic attenuation in porous materials with effective frame-shear moduli lower than the bulk modulus of the pore fluid. Despite notable effects of the ratio of densities and of acoustic and shear velocity of fluid and solid, Biot's frequency remains an approximate indicator of the transition from the viscosity to the inertia controlled regime.

  20. Excitation and propagation of nonlinear waves in a rotating fluid

    NASA Astrophysics Data System (ADS)

    Hanazaki, Hideshi

    1993-09-01

    A numerical study of the nonlinear waves excited in an axisymmetric rotating flow through a circular tube is described. The waves are excited by either an undulation of the tube wall or an obstacle on the axis of the tube. The results are compared with the weakly nonlinear theory (forced KdV equation). The computations are done when the upstream swirling velocity is that of Burgers' vortex type. The flow behaves like the solution of the forced KdV equation, and the upstream advancing of the waves appear even when the flow is critical or slightly supercritical to the fastest inertial wave mode.

  1. Air filtration in the free molecular flow regime: a review of high-efficiency particulate air filters based on carbon nanotubes.

    PubMed

    Li, Peng; Wang, Chunya; Zhang, Yingying; Wei, Fei

    2014-11-01

    Air filtration in the free molecular flow (FMF) regime is important and challenging because a higher filtration efficiency and lower pressure drop are obtained when the fiber diameter is smaller than the gas mean free path in the FMF regime. In previous studies, FMF conditions have been obtained by increasing the gas mean free path through reducing the pressure and increasing the temperature. In the case of carbon nanotubes (CNTs) with nanoscale diameters, it is possible to filtrate in the FMF regime under normal conditions. This paper reviews recent progress in theoretical and experimental studies of air filtration in the FMF regime. Typical structure models of high-efficiency particulate (HEPA) air filters based on CNTs are introduced. The pressure drop in air filters operated in the FMF regime is less than that predicted by the conventional air filtration theory. The thinnest HEPA filters fabricated from single-walled CNT films have an extremely low pressure drop. CNT air filters with a gradient nanostructure are shown to give a much better filtration performance in dynamic filtration. CNT air filters with a hierarchical structure and an agglomerated CNT fluidized bed air filter are also introduced. Finally, the challenges and opportunities for the application of CNTs in air filtration are discussed. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Effects of core turbulence on jet excitability

    NASA Technical Reports Server (NTRS)

    Mankbadi, Reda R.; Raman, Ganesh; Rice, Edward J.

    1989-01-01

    The effects of varying freestream core turbulence on the evolution of a circular jet with and without tonal excitation are examined. Measurements are made on an 8.8 cm diameter jet at a Mach number of 0.3. The jet is excitated by plane waves at Strouhal number 0.5. For the excited and unexcited cases the turbulence level is varied by screens and grids placed upstream of the nozzle exit. The experiment results are compared with a theoretical model which incorporates a variable core turbulence and considers the energy interactions between the mean flow, the turbulence and the forced component. Both data and theory indicate that increasing the freestream turbulence diminishes the excitability of the jet and reduces the effect of excitation on the spreading rate of the jet.

  3. Effect of air flow rate on the polyphenols content and antioxidant capacity of convective dried cactus pear cladodes (Opuntia ficus indica).

    PubMed

    Gallegos-Infante, José-Alberto; Rocha-Guzman, Nuria-Elizabeth; González-Laredo, Ruben-Francisco; Reynoso-Camacho, Rosalia; Medina-Torres, Luis; Cervantes-Cardozo, Veronica

    2009-01-01

    The interest in nopal has encouraged the use of dehydration; there are few studies about the effect of process parameters on the nopal polyphenol content and antioxidant activity. The objective of the present work was to evaluate the effect of air-drying flow rates on the amount and antioxidant capacity of extracts of Opuntia ficus indica cladodes. Nopal was dried at 45 degrees C and air flow rates of 3 and 5 m/sec. Samples were analyzed for moisture, total polyphenol, flavonoid, and flavonol contents, chain-breaking activity, inhibition of low-density lipoprotein and deoxyribose oxidation. Nopal drying at an air flow rate of 3 m/sec showed higher values of phenols, flavonoids and flavonols. The best value of low-density lipoprotein inhibition and deoxyribose was found at 1,000 microg/ml. The air flow rate affected the amount of polyphenols and the OH( . ) radical scavenging, but did not modify the chain-breaking activity and the low-density lipoprotein inhibition activity.

  4. State-to-state modeling of non-equilibrium air nozzle flows

    NASA Astrophysics Data System (ADS)

    Nagnibeda, E.; Papina, K.; Kunova, O.

    2018-05-01

    One-dimensional non-equilibrium air flows in nozzles are studied on the basis of the state-to-state description of vibrational-chemical kinetics. Five-component mixture N2/O2/NO/N/O is considered taking into account Zeldovich exchange reactions of NO formation, dissociation, recombination and vibrational energy transitions. The equations for vibrational and chem-ical kinetics in a flow are coupled to the conservation equations of momentum and total energy and solved numerically for different conditions in a nozzle throat. The vibrational distributions of nitrogen and oxygen molecules, number densities of species as well as the gas temperature and flow velocity along a nozzle axis are analysed using the detailed state-to-state flow description and in the frame of the simplified one-temperature thermal equilibrium kinetic model. The comparison of the results showed the influence of non-equilibrium kinetics on macroscopic nozzle flow parameters. In the state-to-state approach, non-Boltzmann vibrational dis-tributions of N2 and O2 molecules with a plateau part at intermediate levels are found. The results are found with the use of the complete and simplified schemes of reactions and the impact of exchange reactions, dissociation and recombination on variation of vibrational level populations, mixture composition, gas velocity and temperature along a nozzle axis is shown.

  5. Modelling of air flow supply in a room at variable regime by using both K - E and spalart - allmaras turbulent model

    NASA Astrophysics Data System (ADS)

    Korbut, Vadim; Voznyak, Orest; Sukholova, Iryna; Myroniuk, Khrystyna

    2017-12-01

    The abstract is to The article is devoted to the decision of actual task of air distribution efficiency increasing with the help of swirl and spread air jets to provide normative parameters of air in the production apartments. The mathematical model of air supply with swirl and spread air jets in that type of apartments is improved. It is shown that for reachin of air distribution maximal efficiency it is necessary to supply air by air jets, that intensively extinct before entering into a working area. Simulation of air flow performed with the help of CFD FLUENT (Ansys FLUENT). Calculations of the equation by using one-parameter model of turbulence Spalart-Allmaras are presented. The graphical and the analytical dependences on the basis of the conducted experimental researches, which can be used in subsequent engineering calculations, are shown out. Dynamic parameters of air flow that is created due to swirl and spread air jets at their leakage at variable regime and creation of dynamic microclimate in a room has been determined. Results of experimental investigations of air supply into the room by air distribution device which creates swirl air jets for creation more intensive turbulization air flow in the room are presented. Obtained results of these investigations give possibility to realize engineer calculations of air distribution with swirl air jets. The results of theoretical researches of favourable influence of dynamic microclimate to the man are presented. When using dynamic microclimate, it's possible to decrease conditioning and ventilation system expenses. Human organism reacts favourably on short lasting deviations from the rationed parameters of air environment.

  6. Mechanical Design of a Performance Test Rig for the Turbine Air-Flow Task (TAFT)

    NASA Technical Reports Server (NTRS)

    Xenofos, George; Forbes, John; Farrow, John; Williams, Robert; Tyler, Tom; Sargent, Scott; Moharos, Jozsef

    2003-01-01

    To support development of the Boeing-Rocketdyne RS84 rocket engine, a fill-flow, reaction turbine geometry was integrated into the NASA-MSFC turbine air-flow test facility. A mechanical design was generated which minimized the amount of new hardware while incorporating all test and instrUmentation requirements. This paper provides details of the mechanical design for this Turbine Air-Flow Task (TAFT) test rig. The mechanical design process utilized for this task included the following basic stages: Conceptual Design. Preliminary Design. Detailed Design. Baseline of Design (including Configuration Control and Drawing Revision). Fabrication. Assembly. During the design process, many lessons were learned that should benefit future test rig design projects. Of primary importance are well-defined requirements early in the design process, a thorough detailed design package, and effective communication with both the customer and the fabrication contractors. The test rig provided steady and unsteady pressure data necessary to validate the computational fluid dynamics (CFD) code. The rig also helped characterize the turbine blade loading conditions. Test and CFD analysis results are to be presented in another JANNAF paper.

  7. Vibration and acoustic noise emitted by dry-type air-core reactors under PWM voltage excitation

    NASA Astrophysics Data System (ADS)

    Li, Jingsong; Wang, Shanming; Hong, Jianfeng; Yang, Zhanlu; Jiang, Shengqian; Xia, Shichong

    2018-05-01

    According to coupling way between the magnetic field and the structural order, structure mode is discussed by engaging finite element (FE) method and both natural frequency and modal shape for a dry-type air-core reactor (DAR) are obtained in this paper. On the basis of harmonic response analysis, electromagnetic force under PWM (Pulse Width Modulation) voltage excitation is mapped with the structure mesh, the vibration spectrum is gained and the consequences represents that the whole structure vibration predominates in the radial direction, with less axial vibration. Referring to the test standard of reactor noise, the rules of emitted noise of the DAR are measured and analyzed at chosen switching frequency matches the sample resonant frequency and the methods of active vibration and noise reduction are put forward. Finally, the low acoustic noise emission of a prototype DAR is verified by measurement.

  8. Coherent transport and energy flow patterns in photosynthesis under incoherent excitation.

    PubMed

    Pelzer, Kenley M; Can, Tankut; Gray, Stephen K; Morr, Dirk K; Engel, Gregory S

    2014-03-13

    Long-lived coherences have been observed in photosynthetic complexes after laser excitation, inspiring new theories regarding the extreme quantum efficiency of photosynthetic energy transfer. Whether coherent (ballistic) transport occurs in nature and whether it improves photosynthetic efficiency remain topics of debate. Here, we use a nonequilibrium Green's function analysis to model exciton transport after excitation from an incoherent source (as opposed to coherent laser excitation). We find that even with an incoherent source, the rate of environmental dephasing strongly affects exciton transport efficiency, suggesting that the relationship between dephasing and efficiency is not an artifact of coherent excitation. The Green's function analysis provides a clear view of both the pattern of excitonic fluxes among chromophores and the multidirectionality of energy transfer that is a feature of coherent transport. We see that even in the presence of an incoherent source, transport occurs by qualitatively different mechanisms as dephasing increases. Our approach can be generalized to complex synthetic systems and may provide a new tool for optimizing synthetic light harvesting materials.

  9. REVIEWS OF TOPICAL PROBLEMS: Gas lasers with solar excitation

    NASA Astrophysics Data System (ADS)

    Gordiets, B. F.; Panchenko, Vladislav Ya

    1986-07-01

    CONTENTS 1. Introduction 703 2. General requirements for laser media using solar excitation 704 3. Lasers with direct excitation by solar light 705 3.1. Basic characteristics of laser media. 3.2. Photodissociation Br2-CO2 lasers. 3.3. Interhalogen molecule lasers. 3.4. Iodine lasers. 3.5. Alkali metal vapor lasers. 4. Lasers with thermal conversion of solar pumping 709 4.1. General considerations. 4.2. CO2 laser with excitation in a black body cavity and with gas flow. 4.3. cw CO2 laser without gas flow. 5. Space laser media with solar excitation 713 5.1. Population inversion of molecular levels in the outer atmosphere of the Earth. 5.2. Laser effect in the atmospheres of Venus and Mars. 5.3. Terrestrial experimental technique for observing infrared emission in the atmospheres of planets. 5.4. Designs for laser systems in the atmospheres of Venus and Mars. 6. Conclusions 717 References 717

  10. Air ejector augmented compressed air energy storage system

    DOEpatents

    Ahrens, F.W.; Kartsounes, G.T.

    Energy is stored in slack demand periods by charging a plurality of underground reservoirs with air to the same peak storage pressure, during peak demand periods throttling the air from one storage reservoir into a gas turbine system at a constant inlet pressure until the air presure in the reservoir falls to said constant inlet pressure, thereupon permitting air in a second reservoir to flow into said gas turbine system while drawing air from the first reservoir through a variable geometry air ejector and adjusting said variable geometry air ejector, said air flow being essentially at the constant inlet pressure of the gas turbine system.

  11. Air ejector augmented compressed air energy storage system

    DOEpatents

    Ahrens, Frederick W.; Kartsounes, George T.

    1980-01-01

    Energy is stored in slack demand periods by charging a plurality of underground reservoirs with air to the same peak storage pressure, during peak demand periods throttling the air from one storage reservoir into a gas turbine system at a constant inlet pressure until the air pressure in the reservoir falls to said constant inlet pressure, thereupon permitting air in a second reservoir to flow into said gas turbine system while drawing air from the first reservoir through a variable geometry air ejector and adjusting said variable geometry air ejector, said air flow being essentially at the constant inlet pressure of the gas turbine system.

  12. Improved Apparatus for the Measurement of Fluctuations of Air Speed in Turbulent Flow

    NASA Technical Reports Server (NTRS)

    Mock, W C , Jr; Dryden, H L

    1934-01-01

    This report describes recent improvements in the design of the equipment associated with the hot-wire anemometer for the measurement of fluctuating air speeds in turbulent air flow, and presents the results of some experimental investigations dealing with the response of the hot wire to speed fluctuations of various frequencies. Attempts at measuring the frequency of the fluctuations encountered in the Bureau of Standards' 54-inch wind tunnel are also reported. In addition, the difficulties encountered in the use of such apparatus and the precautions found helpful in avoiding them are discussed.

  13. Rate coefficients of exchange reactions accounting for vibrational excitation of reagents and products

    NASA Astrophysics Data System (ADS)

    Kustova, E. V.; Savelev, A. S.; Kunova, O. V.

    2018-05-01

    Theoretical models for the vibrational state-resolved Zeldovich reaction are assessed by comparison with the results of quasi-classical trajectory (QCT) calculations. An error in the model of Aliat is corrected; the model is generalized taking into account NO vibrational states. The proposed model is fairly simple and can be easily implemented to the software for non-equilibrium flow modeling. It provides a good agreement with the QCT rate coefficients in the whole range of temperatures and reagent/product vibrational states. The developed models are tested in simulations of vibrational and chemical relaxation of air mixture behind a shock wave. The importance of accounting for excitated NO vibrational states and accurate prediction of Zeldovich reactions rates is shown.

  14. Experimental study on burning rates of square/rectangular gasoline and methanol pool fires under longitudinal air flow in a wind tunnel.

    PubMed

    Hu, L H; Liu, S; Peng, W; Huo, R

    2009-09-30

    Square pool fires with length of 5, 7.5, 10, 15, 20, 25 and 30 cm and rectangular pool fires with dimensions of 10 cm x 20 cm and 10 cm x 40 cm were burned in a wind tunnel, under a longitudinal air flow ranged from 0 to 3m/s with incremental change of about 0.5m/s. Methanol and gasoline were burned and compared, with results indicated that their burning rates showed different response to the longitudinal air flow. With the increase of the longitudinal air flow speed, the burning rates of methanol pool fires, except the 5 cm square one, first decreased and then increased, but those of the 5 cm methanol square one and the gasoline pool fires increased monotonously. The burning rate of smaller square pool fires increased more significantly than that of the larger ones, as well as the enlargement of their flame attachment length along the ground. The burning rate of a rectangular pool fire with longer rim parallel to the longitudinal flow increased faster, but the flame attachment length seemed to increase more gradually, with the increase of the longitudinal air flow speed than that perpendicular to.

  15. Flow control in axial fan inlet guide vanes by synthetic jets

    NASA Astrophysics Data System (ADS)

    Cyrus, V.; Trávníček, Z.; Wurst, P.; Kordík, J.

    2013-04-01

    Tested high pressure axial flow fan with hub/tip ratio of 0.70 and external diameter of 600 mm consisted of inlet guide vanes (IGV), rotor and stator blade rows. Fan peripheral velocity was 47 m/s. Air volume flow rate was changed by turning of rear part of the inlet guide vanes. At turning of 20 deg the flow was separated on the IGV profiles. The synthetic jets were introduced through radial holes in machine casing in the location before flow separation origin. Synthetic jet actuator was designed with the use of a speaker by UT AVCR. Its membrane had diameter of 63 mm. Excitation frequency was chosen in the range of 500 Hz - 700 Hz. Synthetic jets favourably influenced separated flow on the vane profiles in the distance of (5 - 12) mm from the casing surface. The reduction of flow separation area caused in the region near the casing the decrease of the profile loss coefficient approximately by 20%.

  16. Air-Flow Navigated Crystal Growth for TIPS Pentacene-Based Organic Thin-Film Transistors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    He, Zhengran; Chen, Jihua; Sun, Zhenzhong

    2012-01-01

    6,13-bis(triisopropylsilylethynyl)pentacene (TIPS pentacene) is a promising active channel material of organic thin-film transistors (OTFTs) due to its solubility, stability, and high mobility. However, the growth of TIPS pentacene crystals is intrinsically anisotropic and thus leads to significant variation in the performance of OTFTs. In this paper, air flow is utilized to effectively reduce the TIPS pentacene crystal anisotropy and enhance performance consistency in OTFTs, and the resulted films are examined with optical microscopy, grazing-incidence X-ray diffraction, and thin-film transistor measurements. Under air-flow navigation (AFN), TIPS pentacene drop-cast from toluene solution has been observed to form thin films with improved crystalmore » orientation and increased areal coverage on substrates, which subsequently lead to a four-fold increase of average hole mobility and one order of magnitude enhancement in performance consistency defined by the ratio of average mobility to the standard deviation of the field-effect mobilities.« less

  17. Ion-Flow-Induced Excitation of Electrostatic Cyclotron Mode in Magnetized Dusty Plasma

    NASA Astrophysics Data System (ADS)

    Bezbaruah, P.; Das, N.

    2018-05-01

    The stability of electrostatic cyclotron mode is investigated in a flowing magnetized dusty plasma in the presence of strong ion-neutral collisions. In the high magnetic field limit, when the dust magnetization becomes important, it is expected that the collective behavior of magnetized dust grains suspended in the near-sheath region substantially influences the dispersion properties of electrostatic modes. The growth/damping of the collective excitation is significantly controlled by such parameters as the ion-neutral collision frequency, Mach number, and magnetic field strength. In our case, the explicit dependence of the Mach number on the magnetic field and collision frequency has been taken into account and possible implications on the stability of the mode is analyzed. Streaming instability of cyclotron modes may be important to understand issues related to the interaction mechanism between dust grains and other associated phenomena like Coulomb crystallization, phase behavior, transport properties, etc., in the relatively strong magnetic field limit, which is currently accessible in the DPD (Kiel University) and MDPX (PSL, Auburn University) experiments.

  18. Ground-to-air flow visualization using Solar Calcium-K line Background-Oriented Schlieren

    NASA Astrophysics Data System (ADS)

    Hill, Michael A.; Haering, Edward A.

    2017-01-01

    The Calcium-K Eclipse Background-Oriented Schlieren experiment was performed as a proof of concept test to evaluate the effectiveness of using the solar disk as a background to perform the Background-Oriented Schlieren (BOS) method of flow visualization. A ground-based imaging system was equipped with a Calcium-K line optical etalon filter to enable the use of the chromosphere of the sun as the irregular background to be used for BOS. A US Air Force T-38 aircraft performed three supersonic runs which eclipsed the sun as viewed from the imaging system. The images were successfully post-processed using optical flow methods to qualitatively reveal the density gradients in the flow around the aircraft.

  19. Flow and air conditioning simulations of computer turbinectomized nose models.

    PubMed

    Pérez-Mota, J; Solorio-Ordaz, F; Cervantes-de Gortari, J

    2018-04-16

    Air conditioning for the human respiratory system is the most important function of the nose. When obstruction occurs in the nasal airway, turbinectomy is used to correct such pathology. However, mucosal atrophy may occur sometime after this surgery when it is overdone. There is not enough information about long-term recovery of nasal air conditioning performance after partial or total surgery. The purpose of this research was to assess if, based on the flow and temperature/humidity characteristics of the air intake to the choana, partial resection of turbinates is better than total resection. A normal nasal cavity geometry was digitized from tomographic scans and a model was printed in 3D. Dynamic (sinusoidal) laboratory tests and computer simulations of airflow were conducted with full agreement between numerical and experimental results. Computational adaptations were subsequently performed to represent six turbinectomy variations and a swollen nasal cavity case. Streamlines along the nasal cavity and temperature and humidity distributions at the choana indicated that the middle turbinate partial resection is the best alternative. These findings may facilitate the diagnosis of nasal obstruction and can be useful both to plan a turbinectomy and to reduce postoperative discomfort. Graphical Abstract ᅟ.

  20. Evaluation of flow hydrodynamics in a pilot-scale dissolved air flotation tank: a comparison between CFD and experimental measurements.

    PubMed

    Lakghomi, B; Lawryshyn, Y; Hofmann, R

    2015-01-01

    Computational fluid dynamics (CFD) models of dissolved air flotation (DAF) have shown formation of stratified flow (back and forth horizontal flow layers at the top of the separation zone) and its impact on improved DAF efficiency. However, there has been a lack of experimental validation of CFD predictions, especially in the presence of solid particles. In this work, for the first time, both two-phase (air-water) and three-phase (air-water-solid particles) CFD models were evaluated at pilot scale using measurements of residence time distribution, bubble layer position and bubble-particle contact efficiency. The pilot-scale results confirmed the accuracy of the CFD model for both two-phase and three-phase flows, but showed that the accuracy of the three-phase CFD model would partly depend on the estimation of bubble-particle attachment efficiency.

  1. Control of pseudo-shock oscillation in scramjet inlet-isolator using periodical excitation

    NASA Astrophysics Data System (ADS)

    Su, Wei-Yi; Chen, Yun; Zhang, Feng-Rui; Tang, Piao-Ping

    2018-02-01

    To suppress the pressure oscillation, stabilize the shock train in the scramjet isolator and delay the hypersonic inlet unstart, flow control using periodic excitation was investigated with unsteady Reynolds averaged Navier-Stokes simulations. The results showed that by injecting air to manipulate the cowl reflected shock wave, the separation bubble induced by it was diminished and the pressure oscillations of the shock train were markedly suppressed. The power spectral density and standard deviation of wall pressure were significantly reduced. The simulations revealed that this active control method can raise the critical back pressure by 17.5% compared with the baseline, which would successfully delay the hypersonic inlet unstarts. The results demonstrated that this active control method is effective in suppressing pressure oscillation and delaying hypersonic inlet unstarts.

  2. Mid-section of a can-annular gas turbine engine with a radial air flow discharged from the compressor section

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Little, David A.; McQuiggan, Gerard; Wasdell, David L.

    A midframe portion (213) of a gas turbine engine (210) is presented, and includes a compressor section (212) configured to discharge an air flow (211) directed in a radial direction from an outlet of the compressor section (212). Additionally, the midframe portion (213) includes a manifold (214) to directly couple the air flow (211) from the compressor section (212) outlet to an inlet of a respective combustor head (218) of the midframe portion (213).

  3. Drop size distribution and air velocity measurements in air assist swirl atomizer sprays

    NASA Technical Reports Server (NTRS)

    Mao, C.-P.; Oechsle, V.; Chigier, N.

    1987-01-01

    Detailed measurements of mean drop size (SMD) and size distribution parameters have been made using a Fraunhofer diffraction particle sizing instrument in a series of sprays generated by an air assist swirl atomizer. Thirty-six different combinations of fuel and air mass flow rates were examined with liquid flow rates up to 14 lbm/hr and atomizing air flow rates up to 10 lbm/hr. Linear relationships were found between SMD and liquid to air mass flow rate ratios. SMD increased with distance downstream along the center line and also with radial distance from the axis. Increase in obscuration with distance downstream was due to an increase in number density of particles as the result of deceleration of drops and an increase in the exposed path length of the laser beam. Velocity components of the atomizing air flow field measured by a laser anemometer show swirling jet air flow fields with solid body rotation in the core and free vortex flow in the outer regions.

  4. 42 CFR 84.162 - Man test for gases and vapors; Type C respirators, continuous-flow class and Type CE supplied-air...

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 42 Public Health 1 2011-10-01 2011-10-01 false Man test for gases and vapors; Type C respirators, continuous-flow class and Type CE supplied-air respirators; test requirements. 84.162 Section 84.162 Public....162 Man test for gases and vapors; Type C respirators, continuous-flow class and Type CE supplied-air...

  5. 42 CFR 84.162 - Man test for gases and vapors; Type C respirators, continuous-flow class and Type CE supplied-air...

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 42 Public Health 1 2014-10-01 2014-10-01 false Man test for gases and vapors; Type C respirators, continuous-flow class and Type CE supplied-air respirators; test requirements. 84.162 Section 84.162 Public....162 Man test for gases and vapors; Type C respirators, continuous-flow class and Type CE supplied-air...

  6. 42 CFR 84.162 - Man test for gases and vapors; Type C respirators, continuous-flow class and Type CE supplied-air...

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 42 Public Health 1 2013-10-01 2013-10-01 false Man test for gases and vapors; Type C respirators, continuous-flow class and Type CE supplied-air respirators; test requirements. 84.162 Section 84.162 Public....162 Man test for gases and vapors; Type C respirators, continuous-flow class and Type CE supplied-air...

  7. 42 CFR 84.162 - Man test for gases and vapors; Type C respirators, continuous-flow class and Type CE supplied-air...

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 42 Public Health 1 2012-10-01 2012-10-01 false Man test for gases and vapors; Type C respirators, continuous-flow class and Type CE supplied-air respirators; test requirements. 84.162 Section 84.162 Public....162 Man test for gases and vapors; Type C respirators, continuous-flow class and Type CE supplied-air...

  8. Active flow separation control by a position-based iterative learning control algorithm with experimental validation

    NASA Astrophysics Data System (ADS)

    Cai, Zhonglun; Chen, Peng; Angland, David; Zhang, Xin

    2014-03-01

    A novel iterative learning control (ILC) algorithm was developed and applied to an active flow control problem. The technique uses pulsed air jets to delay flow separation on a two-element high-lift wing. The ILC algorithm uses position-based pressure measurements to update the actuation. The method was experimentally tested on a wing model in a 0.9 m × 0.6 m low-speed wind tunnel at the University of Southampton. Compressed air and fast switching solenoid valves were used as actuators to excite the flow, and the pressure distribution around the chord of the wing was measured as a feedback control signal for the ILC controller. Experimental results showed that the actuation was able to delay the separation and increase the lift by approximately 10%-15%. By using the ILC algorithm, the controller was able to find the optimum control input and maintain the improvement despite sudden changes of the separation position.

  9. Air change rates and interzonal flows in residences, and the need for multi-zone models for exposure and health analyses.

    PubMed

    Du, Liuliu; Batterman, Stuart; Godwin, Christopher; Chin, Jo-Yu; Parker, Edith; Breen, Michael; Brakefield, Wilma; Robins, Thomas; Lewis, Toby

    2012-12-12

    Air change rates (ACRs) and interzonal flows are key determinants of indoor air quality (IAQ) and building energy use. This paper characterizes ACRs and interzonal flows in 126 houses, and evaluates effects of these parameters on IAQ. ACRs measured using weeklong tracer measurements in several seasons averaged 0.73 ± 0.76 h(-1) (median = 0.57 h(-1), n = 263) in the general living area, and much higher, 1.66 ± 1.50 h(-1) (median = 1.23 h(-1), n = 253) in bedrooms. Living area ACRs were highest in winter and lowest in spring; bedroom ACRs were highest in summer and lowest in spring. Bedrooms received an average of 55 ± 18% of air from elsewhere in the house; the living area received only 26 ± 20% from the bedroom. Interzonal flows did not depend on season, indoor smoking or the presence of air conditioners. A two-zone IAQ model calibrated for the field study showed large differences in pollutant levels between the living area and bedroom, and the key parameters affecting IAQ were emission rates, emission source locations, air filter use, ACRs, interzonal flows, outdoor concentrations, and PM penetration factors. The single-zone models that are commonly used for residences have substantial limitations and may inadequately represent pollutant concentrations and exposures in bedrooms and potentially other environments other where people spend a substantial fraction of time.

  10. Air Change Rates and Interzonal Flows in Residences, and the Need for Multi-Zone Models for Exposure and Health Analyses

    PubMed Central

    Du, Liuliu; Batterman, Stuart; Godwin, Christopher; Chin, Jo-Yu; Parker, Edith; Breen, Michael; Brakefield, Wilma; Robins, Thomas; Lewis, Toby

    2012-01-01

    Air change rates (ACRs) and interzonal flows are key determinants of indoor air quality (IAQ) and building energy use. This paper characterizes ACRs and interzonal flows in 126 houses, and evaluates effects of these parameters on IAQ. ACRs measured using weeklong tracer measurements in several seasons averaged 0.73 ± 0.76 h−1 (median = 0.57 h−1, n = 263) in the general living area, and much higher, 1.66 ± 1.50 h−1 (median = 1.23 h−1, n = 253) in bedrooms. Living area ACRs were highest in winter and lowest in spring; bedroom ACRs were highest in summer and lowest in spring. Bedrooms received an average of 55 ± 18% of air from elsewhere in the house; the living area received only 26 ± 20% from the bedroom. Interzonal flows did not depend on season, indoor smoking or the presence of air conditioners. A two-zone IAQ model calibrated for the field study showed large differences in pollutant levels between the living area and bedroom, and the key parameters affecting IAQ were emission rates, emission source locations, air filter use, ACRs, interzonal flows, outdoor concentrations, and PM penetration factors. The single-zone models that are commonly used for residences have substantial limitations and may inadequately represent pollutant concentrations and exposures in bedrooms and potentially other environments other where people spend a substantial fraction of time. PMID:23235286

  11. Brazing retort manifold design concept may minimize air contamination and enhance uniform gas flow

    NASA Technical Reports Server (NTRS)

    Ruppe, E. P.

    1966-01-01

    Brazing retort manifold minimizes air contamination, prevents gas entrapment during purging, and provides uniform gas flow into the retort bell. The manifold is easily cleaned and turbulence within the bell is minimized because all manifold construction lies outside the main enclosure.

  12. Characteristics of an aerosol photometer while automatically controlling chamber dilution-air flow rate.

    PubMed

    O'Shaughnessy, P T; Hemenway, D R

    2000-10-01

    Trials were conducted to determine those factors that affect the accuracy of a direct-reading aerosol photometer when automatically controlling airflow rate within an exposure chamber to regulate airborne dust concentrations. Photometer response was affected by a shift in the aerosol size distribution caused by changes in chamber flow rate. In addition to a dilution effect, flow rate also determined the relative amount of aerosol lost to sedimentation within the chamber. Additional calculations were added to a computer control algorithm to compensate for these effects when attempting to automatically regulate flow based on a proportional-integral-derivative (PID) feedback control algorithm. A comparison between PID-controlled trials and those performed with a constant generator output rate and dilution-air flow rate demonstrated that there was no significant decrease in photometer accuracy despite the many changes in flow rate produced when using PID control. Likewise, the PID-controlled trials produced chamber aerosol concentrations within 1% of a desired level.

  13. The impact of traffic-flow patterns on air quality in urban street canyons.

    PubMed

    Thaker, Prashant; Gokhale, Sharad

    2016-01-01

    We investigated the effect of different urban traffic-flow patterns on pollutant dispersion in different winds in a real asymmetric street canyon. Free-flow traffic causes more turbulence in the canyon facilitating more dispersion and a reduction in pedestrian level concentration. The comparison of with and without a vehicle-induced-turbulence revealed that when winds were perpendicular, the free-flow traffic reduced the concentration by 73% on the windward side with a minor increase of 17% on the leeward side, whereas for parallel winds, it reduced the concentration by 51% and 29%. The congested-flow traffic increased the concentrations on the leeward side by 47% when winds were perpendicular posing a higher risk to health, whereas reduced it by 17-42% for parallel winds. The urban air quality and public health can, therefore, be improved by improving the traffic-flow patterns in street canyons as vehicle-induced turbulence has been shown to contribute significantly to dispersion. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. The Effects of Air Preheat and Number of Orifices on Flow and Emissions in an RQL Mixing Section

    NASA Technical Reports Server (NTRS)

    Holdeman, James D.; Chang, Clarence T.

    2007-01-01

    This study was motivated by a goal to understand the mixing and emissions in the rich-burn/quick-mix/lean-burn (RQL) combustor scheme that has been proposed to minimize the formation of oxides of nitrogen (NOx) in gas turbine combustors. The study reported in this paper was a reacting jet-in-crossflow experiment at atmospheric pressure in a cylindrical duct. The jets were injected from the perimeter of the duct through round-hole orifices into a fuel-rich mainstream flow. The number of orifices investigated in this study gave over- to optimum to underpenetrating jets at a jet-to-mainstream momentum-flux ratio of 57. The size of individual orifices was decreased as their number increased to maintain a constant total area. The jet-to-mainstream mass-flow ratio was held constant at 2.5. The experiments focused on the effects of the number of orifices and inlet air preheat and were conducted in a facility that provided the capability for independent variation of jet and main inlet air preheat temperature. The number of orifices was found to have a significant effect on mixing and the distributions of species, but very little effect on overall NOx emissions, suggesting that an aerodynamically optimum mixer may not minimize NOx emissions. Air preheat was found to have very little effect on mixing and the distributions of major species, but preheat did increase NOx emissions significantly. Although the air jets injected in the quick-mix section of a RQL combustor may comprise over 70% of the total air flow, the overall NOx emission levels were found to be more sensitive to mainstream air preheat than to jet stream air preheat.

  15. Mixed-mode VLSI optic flow sensors for micro air vehicles

    NASA Astrophysics Data System (ADS)

    Barrows, Geoffrey Louis

    We develop practical, compact optic flow sensors. To achieve the desired weight of 1--2 grams, mixed-mode and mixed-signal VLSI techniques are used to develop compact circuits that directly perform computations necessary to measure optic flow. We discuss several implementations, including a version fully integrated in VLSI, and several "hybrid sensors" in which the front end processing is performed with an analog chip and the back end processing is performed with a microcontroller. We extensively discuss one-dimensional optic flow sensors based on the linear competitive feature tracker (LCFT) algorithm. Hardware implementations of this algorithm are shown able to measure visual motion with contrast levels on the order of several percent. We argue that the development of one-dimensional optic flow sensors is therefore reduced to a problem of engineering. We also introduce two related two-dimensional optic flow algorithms that are amenable to implementation in VLSI. This includes the planar competitive feature tracker (PCFT) algorithm and the trajectory method. These sensors are being developed to solve small-scale navigation problems in micro air vehicles, which are autonomous aircraft whose maximum dimension is on the order of 15 cm. We obtain a proof-of-principle of small-scale navigation by mounting a prototype sensor onto a toy glider and programming the sensor to control a rudder or an elevator to affect the glider's path during flight. We demonstrate the determination of altitude by measuring optic flow in the downward direction. We also demonstrate steering to avoid a collision with a wall, when the glider is tossed towards the wall at a shallow angle, by measuring the optic flow in the direction of the glider's left and right side.

  16. Fuel cell stack with passive air supply

    DOEpatents

    Ren, Xiaoming; Gottesfeld, Shimshon

    2006-01-17

    A fuel cell stack has a plurality of polymer electrolyte fuel cells (PEFCs) where each PEFC includes a rectangular membrane electrode assembly (MEA) having a fuel flow field along a first axis and an air flow field along a second axis perpendicular to the first axis, where the fuel flow field is long relative to the air flow field. A cathode air flow field in each PEFC has air flow channels for air flow parallel to the second axis and that directly open to atmospheric air for air diffusion within the channels into contact with the MEA.

  17. Electro-hydrodynamic force field and flow patterns generated by a DC corona discharge in the air

    NASA Astrophysics Data System (ADS)

    Monrolin, Nicolas; Plouraboue, Franck; Praud, Olivier

    2016-11-01

    Ionic wind refers to the electro-convection of ionised air between high voltage electrodes. Microscopic ion-neutral collisions are responsible for momentum transfer from accelerated ions, subjected to the electric field, to the neutral gas molecules resulting in a macroscopic airflow acceleration. In the past decades it has been investigated for various purposes from food drying through aerodynamic flow control and eventually laptop cooling. One consequence of air acceleration between the electrodes is thrust generation, often referred to as the Biefeld-Brown effect or electro-hydrodynamic thrust. In this experimental study, the ionic wind velocity field is measured with the PIV method. From computing the acceleration of the air we work out the electrostatic force field for various electrodes configurations. This enables an original direct evaluation of the force distribution as well as the influence of electrodes shape and position. Thrust computation based on the flow acceleration are compared with digital scale measurements. Complex flow features are highlighted such as vortex shedding, indicating that aerodynamic effects may play a significant role. Furthermore, the aerodynamic drag force exerted on the electrodes is quantified by choosing an appropriate control volume. Authors thank Region Midi-Pyrenee and CNES Launcher Directorate for financial support.

  18. Mathematical modeling of vortex induced vibrations of an elastic rod under air flow influence

    NASA Astrophysics Data System (ADS)

    Pogudalina, S. V.; Fedorova, N. N.

    2018-03-01

    The results of simulations of the oscillations of an elastic rod placed normally to the external air flow and rigidly fixed on a substrate are presented. The computations were carried out in ANSYS using the technology of two-way fluid-structure interaction (2FSI). Calculations of the problem were performed for various flow velocities, geometric parameters and properties of the rod material. The frequencies, amplitudes and shapes of vortex induced vibration were studied including those that are close to the lock-in mode.

  19. A unified planar measurement technique for compressible flows using laser-induced iodine fluorescence

    NASA Technical Reports Server (NTRS)

    Hartfield, Roy J., Jr.; Hollo, Steven D.; Mcdaniel, James C.

    1992-01-01

    A unified laser-induced fluorescence technique for conducting planar measurements of temperature, pressure and velocity in nonreacting, highly compressible flows has been developed, validated and demonstrated. Planar fluorescence from iodine, seeded into air, was induced by an argon-ion laser and collected using a liquid-nitrogen cooled CCD camera. In the measurement technique, temperature is determined from the fluorescence induced with the laser operated broad band. Pressure and velocity are determined from the shape and position of the fluorescence excitation spectrum which is measured with the laser operated narrow band. The measurement approach described herein provides a means of obtaining accurate, spatially-complete maps of the primary flow field parameters in a wide variety of cold supersonic and transonic flows.

  20. Calculated effects of turbine rotor-blade cooling-air flow, altitude, and compressor bleed point on performance of a turbojet engine

    NASA Technical Reports Server (NTRS)

    Arne, Vernon L; Nachtigall, Alfred J

    1951-01-01

    Effects of air-cooling turbine rotor blades on performance of a turbojet engine were calculated for a range of altitudes from sea level to 40,000 feet and a range of coolant flows up to 3 percent of compressor air flow, for two conditions of coolant bleed from the compressor. Bleeding at required coolant pressure resulted in a sea-level thrust reduction approximately twice the percentage coolant flow and in an increase in specific fuel consumption approximately equal to percentage coolant flow. For any fixed value of coolant flow ratio the percentage thrust reduction and percentage increase in specific fuel consumption decreased with altitude. Bleeding coolant at the compressor discharge resulted in an additional 1 percent loss in performance at sea level and in smaller increase in loss of performance at higher altitudes.

  1. Characteristics of a DC-Driven Atmospheric Pressure Air Microplasma Jet

    NASA Astrophysics Data System (ADS)

    Choi, Jaegu; Matsuo, Keita; Yoshida, Hidekazu; Namihira, Takao; Katsuki, Sunao; Akiyama, Hidenori

    2008-08-01

    A dc-driven atmospheric pressure air plasma jet has been investigated for some applications, such as local dental treatment, the inner surface treatment of capillaries, stimuli for microorganisms, and the local cleaning of semiconductor devices. The main experimental results are as follows. The discharge in the pulsed mode occurs repetitively despite of the dc input, and the pulsed mode transfers to the continuous mode as the current exceeds a threshold. The measured emission spectrum from the arc column of the air discharge reveals that most energy of activated electrons is used for the excitation of N2 (second positive system bands) and part of the energy for the dissociation of O2. The length of the plasma torch depends on the tube length, inner gap distance, and flow rate. The maximum torch length of about 40 mm is obtained under certain conditions. The spatial distributions of plasma gas temperature are measured and confirmed by the visualization of the gas flow using Schlieren images. Furthermore, surface treatment and decolorization using the generated plasma torch are carried out, focusing on industrial applications.

  2. Alpha-environmental continuous air monitor inlet

    DOEpatents

    Rodgers, John C.

    2003-01-01

    A wind deceleration and protective shroud that provides representative samples of ambient aerosols to an environmental continuous air monitor (ECAM) has a cylindrical enclosure mounted to an input on the continuous air monitor, the cylindrical enclosure having shrouded nozzles located radially about its periphery. Ambient air flows, often along with rainwater flows into the nozzles in a sampling flow generated by a pump in the continuous air monitor. The sampling flow of air creates a cyclonic flow in the enclosure that flows up through the cylindrical enclosure until the flow of air reaches the top of the cylindrical enclosure and then is directed downward to the continuous air monitor. A sloped platform located inside the cylindrical enclosure supports the nozzles and causes any moisture entering through the nozzle to drain out through the nozzles.

  3. Influence of sonication conditions on the efficiency of ultrasonic cleaning with flowing micrometer-sized air bubbles.

    PubMed

    Tuziuti, Toru

    2016-03-01

    This paper describes the sizes of cleaned areas under different sonication conditions with the addition of flowing micrometer-sized air bubbles. The differences in the cleaned area of a glass plate pasted with silicon grease as a dirty material under different sonication conditions were investigated after tiny bubbles were blown on the dirty plate placed in an underwater sound field. The ultrasound was applied perpendicular to the bubble flow direction. The shape of the cleaned areas was nearly elliptical, so the lengths of the minor and major axes were measured. The length of the minor axis under sweep conditions (amplitude modulation), for which the average power was lower than that for continuous wave (CW) irradiation, was comparable to that for CW irradiation and was slightly larger than under bubble flow only. Not only the relatively high power for CW irradiation, but also the larger angular change of the bubble flow direction under sweep conditions contributed to the enlargement of the cleaned area in the direction of the minor axis. The combination of bubble flow and sonication under sweep or CW conditions produced a larger cleaned area compared with bubble flow only, although the increase was not higher than 20%. A rapid change from an air to water interface caused by the bubble flow and water jets caused by the collapse of bubbles due to violent pulsation is the main cleaning mechanism under a combination of ultrasound and bubble flow. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Viscous flow past a collapsible channel as a model for self-excited oscillation of blood vessels.

    PubMed

    Tang, Chao; Zhu, Luoding; Akingba, George; Lu, Xi-Yun

    2015-07-16

    Motivated by collapse of blood vessels for both healthy and diseased situations under various circumstances in human body, we have performed computational studies on an incompressible viscous fluid past a rigid channel with part of its upper wall being replaced by a deformable beam. The Navier-Stokes equations governing the fluid flow are solved by a multi-block lattice Boltzmann method and the structural equation governing the elastic beam motion by a finite difference method. The mutual coupling of the fluid and solid is realized by the momentum exchange scheme. The present study focuses on the influences of the dimensionless parameters controlling the fluid-structure system on the collapse and self-excited oscillation of the beam and fluid dynamics downstream. The major conclusions obtained in this study are described as follows. The self-excited oscillation can be intrigued by application of an external pressure on the elastic portion of the channel and the part of the beam having the largest deformation tends to occur always towards the end portion of the deformable wall. The blood pressure and wall shear stress undergo significant variations near the portion of the greatest oscillation. The stretching motion has the most contribution to the total potential elastic energy of the oscillating beam. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Traffic flow in the operating room: an explorative and descriptive study on air quality during orthopedic trauma implant surgery.

    PubMed

    Andersson, Annette Erichsen; Bergh, Ingrid; Karlsson, Jón; Eriksson, Bengt I; Nilsson, Kerstin

    2012-10-01

    Understanding the protective potential of operating room (OR) ventilation under different conditions is crucial to optimizing the surgical environment. This study investigated the air quality, expressed as colony-forming units (CFU)/m(3), during orthopedic trauma surgery in a displacement-ventilated OR; explored how traffic flow and the number of persons present in the OR affects the air contamination rate in the vicinity of surgical wounds; and identified reasons for door openings in the OR. Data collection, consisting of active air sampling and observations, was performed during 30 orthopedic procedures. In 52 of the 91 air samples collected (57%), the CFU/m(3) values exceeded the recommended level of <10 CFU/m(3). In addition, the data showed a strongly positive correlation between the total CFU/m(3) per operation and total traffic flow per operation (r = 0.74; P = .001; n = 24), after controlling for duration of surgery. A weaker, yet still positive correlation between CFU/m(3) and the number of persons present in the OR (r = 0.22; P = .04; n = 82) was also found. Traffic flow, number of persons present, and duration of surgery explained 68% of the variance in total CFU/m(3) (P = .001). Traffic flow has a strong negative impact on the OR environment. The results of this study support interventions aimed at preventing surgical site infections by reducing traffic flow in the OR. Copyright © 2012 Association for Professionals in Infection Control and Epidemiology, Inc. Published by Mosby, Inc. All rights reserved.

  6. Flow on Magnetizable Particles in Turbulent Air Streams. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Davey, K. R.

    1979-01-01

    The flow of magnetizable particles in a turbulent air stream in the presence of an imposed magnetic field and the phenomenon of drag reduction produced by the introduction of particles in turbulent boundary layer are investigated. The nature of the particle magnetic force is discussed and the inherent difference between electric and magnetic precipitation is considered. The incorporation of turbulent diffusion theory with an imposed magnetic migration process both with and without inertia effects is examined.

  7. Investigation on Plasma Jet Flow Phenomena During DC Air Arc Motion in Bridge-Type Contacts

    NASA Astrophysics Data System (ADS)

    Zhai, Guofu; Bo, Kai; Chen, Mo; Zhou, Xue; Qiao, Xinlei

    2016-05-01

    Arc plasma jet flow in the air was investigated under a bridge-type contacts in a DC 270 V resistive circuit. We characterized the arc plasma jet flow appearance at different currents by using high-speed photography, and two polished contacts were used to search for the relationship between roughness and plasma jet flow. Then, to make the nature of arc plasma jet flow phenomena clear, a simplified model based on magnetohydrodynamic (MHD) theory was established and calculated. The simulated DC arc plasma was presented with the temperature distribution and the current density distribution. Furthermore, the calculated arc flow velocity field showed that the circular vortex was an embodiment of the arc plasma jet flow progress. The combined action of volume force and contact surface was the main reason of the arc jet flow. supported by National Natural Science Foundation of China (Nos. 51307030, 51277038)

  8. Line-Focused Optical Excitation of Parallel Acoustic Focused Sample Streams for High Volumetric and Analytical Rate Flow Cytometry.

    PubMed

    Kalb, Daniel M; Fencl, Frank A; Woods, Travis A; Swanson, August; Maestas, Gian C; Juárez, Jaime J; Edwards, Bruce S; Shreve, Andrew P; Graves, Steven W

    2017-09-19

    Flow cytometry provides highly sensitive multiparameter analysis of cells and particles but has been largely limited to the use of a single focused sample stream. This limits the analytical rate to ∼50K particles/s and the volumetric rate to ∼250 μL/min. Despite the analytical prowess of flow cytometry, there are applications where these rates are insufficient, such as rare cell analysis in high cellular backgrounds (e.g., circulating tumor cells and fetal cells in maternal blood), detection of cells/particles in large dilute samples (e.g., water quality, urine analysis), or high-throughput screening applications. Here we report a highly parallel acoustic flow cytometer that uses an acoustic standing wave to focus particles into 16 parallel analysis points across a 2.3 mm wide optical flow cell. A line-focused laser and wide-field collection optics are used to excite and collect the fluorescence emission of these parallel streams onto a high-speed camera for analysis. With this instrument format and fluorescent microsphere standards, we obtain analysis rates of 100K/s and flow rates of 10 mL/min, while maintaining optical performance comparable to that of a commercial flow cytometer. The results with our initial prototype instrument demonstrate that the integration of key parallelizable components, including the line-focused laser, particle focusing using multinode acoustic standing waves, and a spatially arrayed detector, can increase analytical and volumetric throughputs by orders of magnitude in a compact, simple, and cost-effective platform. Such instruments will be of great value to applications in need of high-throughput yet sensitive flow cytometry analysis.

  9. Kinetics Analysis of Synthesis Reaction of Struvite With Air-Flow Continous Vertical Reactors

    NASA Astrophysics Data System (ADS)

    Edahwati, L.; Sutiyono, S.; Muryanto, S.; Jamari, J.; Bayuseno, dan A. P.

    2018-01-01

    Kinetics reaction is a knowledge about a rate of chemical reaction. The differential of the reaction rate can be determined from the reactant material or the formed material. The reaction mechanism of a reactor may include a stage of reaction occurring sequentially during the process of converting the reactants into products. In the determination of reaction kinetics, the order of reaction and the rate constant reaction must be recognized. This study was carried out using air as a stirrer as a medium in the vertical reactor for crystallization of struvite. Stirring is one of the important aspects in struvite crystallization process. Struvite crystals or magnesium ammonium phosphate hexahydrates (MgNH4PO4·6H2O) is commonly formed in reversible reactions and can be generated as an orthorhombic crystal. Air is selected as a stirrer on the existing flow pattern in the reactor determining the reaction kinetics of the crystal from the solution. The experimental study was conducted by mixing an equimolar solution of 0.03 M NH4OH, MgCl2 and H3PO4 with a ratio of 1: 1: 1. The crystallization process of the mixed solution was observed in an inside reactor at the flow rate ranges of 16-38 ml/min and the temperature of 30°C was selected in the study. The air inlet rate was kept constant at 0.25 liters/min. The pH solution was adjusted to be 8, 9 and 10 by dropping wisely of 1 N KOH solution. The crystallization kinetics was examined until the steady state of the reaction was reached. The precipitates were filtered and dried at a temperature for subsequent material characterization, including Scanning Electron Microscope (SEM) and XRD (X-Ray diffraction) method. The results show that higher flow rate leads to less mass of struvite.

  10. CNT Based Artificial Hair Sensors for Predictable Boundary Layer Air Flow Sensing (Postscript)

    DTIC Science & Technology

    2016-11-07

    hairs. The moment sensitivity is shown to scale inversely with the CNT length and stiffness to a typical maximum of 1.3 ± 0.4% resistance change nN−1...determined air flow is obtained using theory and measurement for various lengths of hairs. The moment sensitivity is shown to scale inversely with the

  11. Simultaneous measurements of temperature and density in air flows using UV laser spectroscopy

    NASA Technical Reports Server (NTRS)

    Fletcher, D. G.; Mckenzie, R. L.

    1991-01-01

    The simultaneous measurement of temperature and density using laser-induced fluorescence of oxygen in combination with Q-branch Raman scattering of nitrogen and oxygen is demonstrated in a low-speed air flow. The lowest density and temperature measured in the experiment correspond to the freestream values at Mach 5 in the Ames 3.5-Foot Hypersonic Wind Tunnel for stagnation conditions of 100 atm and 1000 K. The experimental results demonstrate the viability of the optical technique for measurements that support the study of compressible turbulence and the validation of numerical codes in supersonic and hypersonic wind tunnel flows.

  12. The effect of compressed air massage on skin blood flow and temperature.

    PubMed

    Mars, Maurice; Maharaj, Sunil S; Tufts, Mark

    2005-01-01

    Compressed air massage is a new treatment modality that uses air under pressure to massage skin and muscle. It is claimed to improve skin blood flow but this has not been verified. Several pilot studies were undertaken to determine the effects of compressed air massage on skin blood flow and temperature. Skin blood flow (SBF), measured using laser Doppler fluxmetry and skin temperature was recorded under several different situations: (i) treatment, at 1 Bar pressure using a single-hole (5-mm) applicator head, for 1 min at each of several sites on the right and left lower legs, with SBF measured on the dorsum of the left foot; (ii) at the same treatment pressure, SBF was measured over the left tibialis anterior when treatment was performed at different distances from the probe; (iii) SBF and skin temperature of the lower leg were measured with treatment at 0 or 1 Bar for 45 min, using two different applicator heads; (iv) SBF was measured on the dorsum of the foot of 10 subjects with treatment for 1 min at 0, 0.5, 1, 1.5 and 2 Bar using three different applicator heads. (i) SBF of the left foot was not altered by treatment of the right leg or chest, but was significantly increased during treatment of the left sole and first web, p < 0.0001. (ii) SBF over the tibialis anterior was increased when treatment was 5 cm from the probe, p < 0.0001, but not when 10 cm away. iii) SBF was significantly elevated throughout the 45-min treatments at 1 Bar and returned to normal within 1 min of stopping treatment. Skin temperature fell by 6.8 degrees C and 4.3 degrees C after 45-min treatments at 1 Bar, and slight rewarming occurred within 15 min. At 0 Bar, no change in SBF or temperature was noted. (iv) A near-linear increase in SBF was noted with increasing treatment pressure for two of the three applicator heads. Compressed air massage causes an immediate increase in SBF, and an immediate fall in SBF when treatment is stopped. The effect appears to be locally and not centrally

  13. An evolutionary outlook of air traffic flow management techniques

    NASA Astrophysics Data System (ADS)

    Kistan, Trevor; Gardi, Alessandro; Sabatini, Roberto; Ramasamy, Subramanian; Batuwangala, Eranga

    2017-01-01

    In recent years Air Traffic Flow Management (ATFM) has become pertinent even in regions without sustained overload conditions caused by dense traffic operations. Increasing traffic volumes in the face of constrained resources has created peak congestion at specific locations and times in many areas of the world. Increased environmental awareness and economic drivers have combined to create a resurgent interest in ATFM as evidenced by a spate of recent ATFM conferences and workshops mediated by official bodies such as ICAO, IATA, CANSO the FAA and Eurocontrol. Significant ATFM acquisitions in the last 5 years include South Africa, Australia and India. Singapore, Thailand and Korea are all expected to procure ATFM systems within a year while China is expected to develop a bespoke system. Asia-Pacific nations are particularly pro-active given the traffic growth projections for the region (by 2050 half of all air traffic will be to, from or within the Asia-Pacific region). National authorities now have access to recently published international standards to guide the development of national and regional operational concepts for ATFM, geared to Communications, Navigation, Surveillance/Air Traffic Management and Avionics (CNS+A) evolutions. This paper critically reviews the field to determine which ATFM research and development efforts hold the best promise for practical technological implementations, offering clear benefits both in terms of enhanced safety and efficiency in times of growing air traffic. An evolutionary approach is adopted starting from an ontology of current ATFM techniques and proceeding to identify the technological and regulatory evolutions required in the future CNS+A context, as the aviation industry moves forward with a clearer understanding of emerging operational needs, the geo-political realities of regional collaboration and the impending needs of global harmonisation.

  14. Field study of air change and flow rate in six automobiles.

    PubMed

    Knibbs, L D; de Dear, R J; Atkinson, S E

    2009-08-01

    For many people, a relatively large proportion of daily exposure to a multitude of pollutants may occur inside an automobile. A key determinant of exposure is the amount of outdoor air entering the cabin (i.e. air change or flow rate). We have quantified this parameter in six passenger vehicles ranging in age from 18 years to <1 year, at three vehicle speeds and under four different ventilation settings. Average infiltration into the cabin with all operable air entry pathways closed was between 1 and 33.1 air changes per hour (ACH) at a vehicle speed of 60 km/h, and between 2.6 and 47.3 ACH at 110 km/h, with these results representing the most (2005 Volkswagen Golf) and least air-tight (1989 Mazda 121) vehicles, respectively. Average infiltration into stationary vehicles parked outdoors varied between approximately 0 and 1.4 ACH and was moderately related to wind speed. Measurements were also performed under an air recirculation setting with low fan speed, while airflow rate measurements were conducted under two non-recirculate ventilation settings with low and high fan speeds. The windows were closed in all cases, and over 200 measurements were performed. The results can be applied to estimate pollutant exposure inside vehicles. There is increasing recognition of the often disproportionately large contribution of in-vehicle pollutant exposures to overall measures. This has highlighted the need for accurate and representative quantification of determinant factors to facilitate exposure estimation and mitigation. The ventilation rate in a vehicle cabin is a key parameter affecting the transfer of pollutants from outdoors to the cabin interior, and vice-versa. New data regarding this variable are presented here, and the results indicate substantial variability in outdoor air infiltration into vehicles of differing age. The efficacy of simple measures to reduce outdoor air infiltration into 'leaky' vehicles to increase occupant protection would be a worthwhile avenue

  15. Sound transmission through double cylindrical shells lined with porous material under turbulent boundary layer excitation

    NASA Astrophysics Data System (ADS)

    Zhou, Jie; Bhaskar, Atul; Zhang, Xin

    2015-11-01

    This paper investigates sound transmission through double-walled cylindrical shell lined with poroelastic material in the core, excited by pressure fluctuations due to the exterior turbulent boundary layer (TBL). Biot's model is used to describe the sound wave propagating in the porous material. Three types of constructions, bonded-bonded, bonded-unbonded and unbonded-unbonded, are considered in this study. The power spectral density (PSD) of the inner shell kinetic energy is predicted for two turbulent boundary layer models, different air gap depths and three types of polyimide foams, respectively. The peaks of the inner shell kinetic energy due to shell resonance, hydrodynamic coincidence and acoustic coincidence are discussed. The results show that if the frequency band over the ring frequency is of interest, an air gap, even if very thin, should exist between the two elastic shells for better sound insulation. And if small density foam has a high flow resistance, a superior sound insulation can still be maintained.

  16. Acoustics of Excited Jets: A Historical Perspective

    NASA Technical Reports Server (NTRS)

    Brown, Cliffard A.

    2005-01-01

    The idea that a jet may be excited by external forcing is not new. The first published demonstration of a jet responding to external pressure waves occurred in the mid-1800's. It was not, however, until the 1950's, with the advent of commercial jet aircraft, that interest in the subject greatly increased. Researchers first used excited jets to study the structure of the jet and attempt to determine the nature of the noise sources. The jet actuators of the time limited the range (Reynolds and Mach numbers) of jets that could be excited. As the actuators improved, more realistic jets could be studied. This has led to a better understanding of how jet excitation may be used not only as a research tool to understand the flow properties and noise generation process, but also as a method to control jet noise.

  17. Low Dimensional Tools for Flow-Structure Interaction Problems: Application to Micro Air Vehicles

    NASA Technical Reports Server (NTRS)

    Schmit, Ryan F.; Glauser, Mark N.; Gorton, Susan A.

    2003-01-01

    A low dimensional tool for flow-structure interaction problems based on Proper Orthogonal Decomposition (POD) and modified Linear Stochastic Estimation (mLSE) has been proposed and was applied to a Micro Air Vehicle (MAV) wing. The method utilizes the dynamic strain measurements from the wing to estimate the POD expansion coefficients from which an estimation of the velocity in the wake can be obtained. For this experiment the MAV wing was set at five different angles of attack, from 0 deg to 20 deg. The tunnel velocities varied from 44 to 58 ft/sec with corresponding Reynolds numbers of 46,000 to 70,000. A stereo Particle Image Velocimetry (PIV) system was used to measure the wake of the MAV wing simultaneously with the signals from the twelve dynamic strain gauges mounted on the wing. With 20 out of 2400 POD modes, a reasonable estimation of the flow flow was observed. By increasing the number of POD modes, a better estimation of the flow field will occur. Utilizing the simultaneously sampled strain gauges and flow field measurements in conjunction with mLSE, an estimation of the flow field with lower energy modes is reasonable. With these results, the methodology for estimating the wake flow field from just dynamic strain gauges is validated.

  18. Bio-inspired multi-mode optic flow sensors for micro air vehicles

    NASA Astrophysics Data System (ADS)

    Park, Seokjun; Choi, Jaehyuk; Cho, Jihyun; Yoon, Euisik

    2013-06-01

    Monitoring wide-field surrounding information is essential for vision-based autonomous navigation in micro-air-vehicles (MAV). Our image-cube (iCube) module, which consists of multiple sensors that are facing different angles in 3-D space, can be applied to the wide-field of view optic flows estimation (μ-Compound eyes) and to attitude control (μ- Ocelli) in the Micro Autonomous Systems and Technology (MAST) platforms. In this paper, we report an analog/digital (A/D) mixed-mode optic-flow sensor, which generates both optic flows and normal images in different modes for μ- Compound eyes and μ-Ocelli applications. The sensor employs a time-stamp based optic flow algorithm which is modified from the conventional EMD (Elementary Motion Detector) algorithm to give an optimum partitioning of hardware blocks in analog and digital domains as well as adequate allocation of pixel-level, column-parallel, and chip-level signal processing. Temporal filtering, which may require huge hardware resources if implemented in digital domain, is remained in a pixel-level analog processing unit. The rest of the blocks, including feature detection and timestamp latching, are implemented using digital circuits in a column-parallel processing unit. Finally, time-stamp information is decoded into velocity from look-up tables, multiplications, and simple subtraction circuits in a chip-level processing unit, thus significantly reducing core digital processing power consumption. In the normal image mode, the sensor generates 8-b digital images using single slope ADCs in the column unit. In the optic flow mode, the sensor estimates 8-b 1-D optic flows from the integrated mixed-mode algorithm core and 2-D optic flows with an external timestamp processing, respectively.

  19. Supercontinuum white light lasers for flow cytometry

    PubMed Central

    Telford, William G.; Subach, Fedor V.; Verkhusha, Vladislav V.

    2009-01-01

    Excitation of fluorescent probes for flow cytometry has traditionally been limited to a few discrete laser lines, an inherent limitation in our ability to excite the vast array of fluorescent probes available for cellular analysis. In this report, we have used a supercontinuum (SC) white light laser as an excitation source for flow cytometry. By selectively filtering the wavelength of interest, almost any laser wavelength in the visible spectrum can be separated and used for flow cytometric analysis. The white light lasers used in this study were integrated into a commercial flow cytometry platform, and a series of high-transmission bandpass filters used to select wavelength ranges from the blue (~480 nm) to the long red (>700 nm). Cells labeled with a variety of fluorescent probes or expressing fluorescent proteins were then analyzed, in comparison with traditional lasers emitting at wavelengths similar to the filtered SC source. Based on a standard sensitivity metric, the white light laser bandwidths produced similar excitation levels to traditional lasers for a wide variety of fluorescent probes and expressible proteins. Sensitivity assessment using fluorescent bead arrays confirmed that the SC laser and traditional sources resulted in similar levels of detection sensitivity. Supercontinuum white light laser sources therefore have the potential to remove a significant barrier in flow cytometric analysis, namely the limitation of excitation wavelengths. Almost any visible wavelength range can be made available for excitation, allowing access to virtually any fluorescent probe, and permitting “fine-tuning” of excitation wavelength to particular probes. PMID:19072836

  20. Effect of forced-air warming on the performance of operating theatre laminar flow ventilation.

    PubMed

    Dasari, K B; Albrecht, M; Harper, M

    2012-03-01

    Forced-air warming exhaust may disrupt operating theatre airflows via formation of convection currents, which depends upon differences in exhaust and operating room air temperatures. We investigated whether the floor-to-ceiling temperatures around a draped manikin in a laminar-flow theatre differed when using three types of warming devices: a forced-air warming blanket (Bair Hugger™); an over-body conductive blanket (Hot Dog™); and an under-body resistive mattress (Inditherm™). With forced-air warming, mean (SD) temperatures were significantly elevated over the surgical site vs those measured with the conductive blanket (+2.73 (0.7) °C; p<0.001) or resistive mattress (+3.63 (0.7) °C; p<0.001). Air temperature differences were insignificant between devices at floor (p=0.339), knee (p=0.799) and head height levels (p=0.573). We conclude that forced-air warming generates convection current activity in the vicinity of the surgical site. The clinical concern is that these currents may disrupt ventilation airflows intended to clear airborne contaminants from the surgical site. Anaesthesia © 2012 The Association of Anaesthetists of Great Britain and Ireland.

  1. Short-term modulation of regional excitability and blood flow in human motor cortex following rapid-rate transcranial magnetic stimulation.

    PubMed

    Takano, Beatrice; Drzezga, Alexander; Peller, Martin; Sax, Iris; Schwaiger, Markus; Lee, Lucy; Siebner, Hartwig Roman

    2004-11-01

    Repetitive transcranial magnetic stimulation (rTMS) of the human primary motor cortex (M1) provides a means of inducing lasting changes in cortical excitability and synaptic activity. Here we combined rTMS with positron emission tomography of regional cerebral blood flow (rCBF) to examine how an rTMS-induced change in intracortical excitability of inhibitory circuits affects regional synaptic activity. In a first set of experiments, we gave 150 biphasic pulses of 5 Hz rTMS at 90% of active motor threshold to left M1 and used single- and paired-pulse TMS to assess the conditioning effects of rTMS on motor cortical excitability at rest. rTMS conditioning led to a selective decrease in short-latency intracortical inhibition (SICI) without affecting short-latency intracortical facilitation or corticospinal excitability. The decrease in SICI lasted for approximately 8 min. In a second experiment, we used the same rTMS protocol and measured changes in regional synaptic activity (as indexed by rCBF) during and for up to 14 min after the end of rTMS. Subthreshold 5 Hz rTMS induced a region-specific increase in resting rCBF in the stimulated M1 lasting approximately 8 min. These results suggest that in the stimulated M1, temporary attenuation of SICI is paralleled by an increase in synaptic activity, consistent with reduced efficacy of intracortical GABA(A)-ergic synapses. The present findings demonstrate that short trains of low-intensity 5 Hz rTMS can be used to induce a transient change in function within a distinct cortical area. This opens up new possibilities for studying acute reorganization at the systems level in the intact human brain.

  2. Location of acoustic emission sources generated by air flow

    PubMed

    Kosel; Grabec; Muzic

    2000-03-01

    The location of continuous acoustic emission sources is a difficult problem of non-destructive testing. This article describes one-dimensional location of continuous acoustic emission sources by using an intelligent locator. The intelligent locator solves a location problem based on learning from examples. To verify whether continuous acoustic emission caused by leakage air flow can be located accurately by the intelligent locator, an experiment on a thin aluminum band was performed. Results show that it is possible to determine an accurate location by using a combination of a cross-correlation function with an appropriate bandpass filter. By using this combination, discrete and continuous acoustic emission sources can be located by using discrete acoustic emission sources for locator learning.

  3. Experimental investigation of infiltration in soil with occurrence of preferential flow and air trapping

    NASA Astrophysics Data System (ADS)

    Snehota, Michal; Jelinkova, Vladimira; Sacha, Jan; Cislerova, Milena

    2015-04-01

    Recently, a number of infiltration experiments have not proved the validity of standard Richards' theory of the flow in soils with wide pore size distribution. Water flow in such soils under near-saturated conditions often exhibits preferential flow and temporal instability of the saturated hydraulic conductivity. An intact sample of coarse sandy loam from Cambisol series containing naturally developed vertically connected macropore was investigated during recurrent ponding infiltration (RPI) experiments conducted during period of 30 hours. RPI experiment consisted of two ponded infiltration runs, each followed by free gravitational draining of the sample. Three-dimensional neutron tomography (NT) image of the dry sample was acquired before the infiltration begun. The dynamics of the wetting front advancement was investigated by a sequence of neutron radiography (NR) images. Analysis of NR showed that water front moved preferentially through the macropore at the approximate speed of 2 mm/sec, which was significantly faster pace than the 0.3 mm/sec wetting advancement in the surrounding soil matrix. After the water started to flow out of the sample, changes in the local water content distribution were evaluated quantitatively by subtracting the NT image of the dry sample from subsequent tomography images. As a next stage, the experiment was repeated on a composed sample packed of ceramic and coarse sand. Series of infiltration runs was conducted in the sample with different initial water contents. The neutron tomography data quantitatively showed that both in natural soil sample containing the macropore and in the composed sample air was gradually transported from the region of fine soil matrix to the macropores or to the coarser material. The accumulation of the air bubbles in the large pores affected the hydraulic conductivity of the sample reducing it up to 50% of the initial value. This supports the hypothesis on strong influence of entrapped air amount and

  4. Propagation of atmospheric pressure helium plasma jet into ambient air at laminar gas flow

    NASA Astrophysics Data System (ADS)

    Pinchuk, M.; Stepanova, O.; Kurakina, N.; Spodobin, V.

    2017-05-01

    The formation of an atmospheric pressure plasma jet (APPJ) in a gas flow passing through the discharge gap depends on both gas-dynamic properties and electrophysical parameters of the plasma jet generator. The paper presents the results of experimental and numerical study of the propagation of the APPJ in a laminar flow of helium. A dielectric-barrier discharge (DBD) generated inside a quartz tube equipped with a coaxial electrode system, which provided gas passing through it, served as a plasma source. The transition of the laminar regime of gas flow into turbulent one was controlled by the photography of a formed plasma jet. The corresponding gas outlet velocity and Reynolds numbers were revealed experimentally and were used to simulate gas dynamics with OpenFOAM software. The data of the numerical simulation suggest that the length of plasma jet at the unvarying electrophysical parameters of DBD strongly depends on the mole fraction of ambient air in a helium flow, which is established along the direction of gas flow.

  5. Concentric Split Flow Filter

    NASA Technical Reports Server (NTRS)

    Stapleton, Thomas J. (Inventor)

    2015-01-01

    A concentric split flow filter may be configured to remove odor and/or bacteria from pumped air used to collect urine and fecal waste products. For instance, filter may be designed to effectively fill the volume that was previously considered wasted surrounding the transport tube of a waste management system. The concentric split flow filter may be configured to split the air flow, with substantially half of the air flow to be treated traveling through a first bed of filter media and substantially the other half of the air flow to be treated traveling through the second bed of filter media. This split flow design reduces the air velocity by 50%. In this way, the pressure drop of filter may be reduced by as much as a factor of 4 as compare to the conventional design.

  6. Breakdown characteristics of atmospheric dielectric barrier discharge in gas flow condition

    NASA Astrophysics Data System (ADS)

    Fan, Zhihui; Yan, Huijie; Wang, Yuying; Liu, Yidi; Guo, Hongfei; Ren, Chunsheng

    2018-05-01

    Experimental investigations of the breakdown characteristics of plate-to-plate dielectric barrier discharge excited by an AC source at different gas flow conditions are carried out. The ignition voltage for the appearance of the very first discharge filament and the breakdown voltage in each discharge half cycle in continuous operation are examined. As revealed by the results of the indoor air experiment, the ignition voltage manifests a monotonous increase with the increase in the gas flow rate, while the breakdown voltage has a marked decline at the low gas flow rate and increases slightly as the gas flow rate is higher than 10 m/s. As regards the obvious decreases in the ignition voltage and breakdown voltage, the decrease in the humidity with the increase in the gas flow rate plays a dominant role. As regards the increase in breakdown voltage, the memory effect from the preceding discharge is considered. The losses of metastable particles, together with particles having high translational energy in the gas flow, are considered to be the most critical factors.

  7. Experimental and computational study and development of the bituminous coal entrained-flow air-blown gasifier for IGCC

    NASA Astrophysics Data System (ADS)

    Abaimov, N. A.; Osipov, P. V.; Ryzhkov, A. F.

    2016-10-01

    In the paper the development of the advanced bituminous coal entrained-flow air- blown gasifier for the high power integrated gasification combined cycle is considered. The computational fluid dynamics technique is used as the basic development tool. The experiment on the pressurized entrained-flow gasifier was performed by “NPO CKTI” JSC for the thermochemical processes submodel verification. The kinetic constants for Kuznetsk bituminous coal (flame coal), obtained by thermal gravimetric analysis method, are used in the model. The calculation results obtained by the CFD model are in satisfactory agreements with experimental data. On the basis of the verified model the advanced gasifier structure was suggested which permits to increase the hydrogen content in the synthesis gas and consequently to improve the gas turbine efficiency. In order to meet the specified requirements vapor is added on the second stage of MHI type gasifier and heat necessary for air gasification is compensated by supplemental heating of the blasting air.

  8. Numerical simulation of the flow and fuel-air mixing in an axisymmetric piston-cylinder arrangement

    NASA Technical Reports Server (NTRS)

    Shih, T. I. P.; Smith, G. E.; Springer, G. S.

    1982-01-01

    The implicit factored method of Beam and Warming was employed to describe the flow and the fuel-air mixing in an axisymmetric piston-cylinder configuration during the intake and compression strokes. The governing equations were established on the basis of laminar flow. The increased mixing due to turbulence was simulated by appropriately chosen effective transport properties. Calculations were performed for single-component gases and for two-component gases and for two-component gas mixtures. The flow field was calculated as functions of time and position for different geometries, piston speeds, intake-charge-to-residual-gas-pressure ratios, and species mass fractions of the intake charge. Results are presented in graphical form which show the formation, growth, and break-up of those vortices which form during the intake stroke and the mixing of fuel and air throughout the intake and compression strokes. It is shown that at bore-to-stroke ratio of less than unity, the vortices may break-up during the intake stroke. It is also shown that vortices which do not break-up during the intake stroke coalesce during the compression stroke. The results generated were compared to existing numerical solutions and to available experimental data.

  9. Lifecycle of laser-produced air sparks

    DOE PAGES

    Harilal, S. S.; Brumfield, B. E.; Phillips, M. C.

    2015-06-03

    Here, we investigated the lifecycle of laser-generated air sparks or plasmas using multiple plasma diagnostic tools. The sparks were generated by focusing the fundamental radiation from an Nd:YAG laser in air, and studies included early and late time spark dynamics, decoupling of the shock wave from the plasma core, emission from the spark kernel, cold gas excitation by UV radiation, shock waves produced by the air spark, and the spark's final decay and turbulence formation. The shadowgraphic and self-emission images showed similar spark morphology at earlier and late times of its lifecycle; however, significant differences are seen in the midlifemore » images. Spectroscopic studies in the visible region showed intense blackbody-type radiation at early times followed by clearly resolved ionic, atomic, and molecular emission. The detected spectrum at late times clearly contained emission from both CN and N 2 +. Additional spectral features have been identified at late times due to emission from O and N atoms, indicating some degree of molecular dissociation and excitation. Detailed spatially and temporally resolved emission analysis provides insight about various physical mechanisms leading to molecular and atomic emission by air sparks, including spark plasma excitation, heating of cold air by UV radiation emitted by the spark, and shock-heating.« less

  10. Lifecycle of laser-produced air sparks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harilal, S. S., E-mail: hari@pnnl.gov; Brumfield, B. E.; Phillips, M. C.

    2015-06-15

    We investigated the lifecycle of laser-generated air sparks or plasmas using multiple plasma diagnostic tools. The sparks were generated by focusing the fundamental radiation from an Nd:YAG laser in air, and studies included early and late time spark dynamics, decoupling of the shock wave from the plasma core, emission from the spark kernel, cold gas excitation by UV radiation, shock waves produced by the air spark, and the spark's final decay and turbulence formation. The shadowgraphic and self-emission images showed similar spark morphology at earlier and late times of its lifecycle; however, significant differences are seen in the midlife images.more » Spectroscopic studies in the visible region showed intense blackbody-type radiation at early times followed by clearly resolved ionic, atomic, and molecular emission. The detected spectrum at late times clearly contained emission from both CN and N{sub 2}{sup +}. Additional spectral features have been identified at late times due to emission from O and N atoms, indicating some degree of molecular dissociation and excitation. Detailed spatially and temporally resolved emission analysis provides insight about various physical mechanisms leading to molecular and atomic emission by air sparks, including spark plasma excitation, heating of cold air by UV radiation emitted by the spark, and shock-heating.« less

  11. Concept for a Satellite-Based Advanced Air Traffic Management System : Volume 8. Operational Logic Flow Diagrams for a Generic Advanced Air Traffic Management system

    DOT National Transportation Integrated Search

    1974-02-01

    The volume presents a description of the services a generic Advanced Air Traffic Management System (AATMS) should provide to the useres of the system to facilitate the safe, efficient flow of traffic. It provides a definition of the functions which t...

  12. Experimental investigation and CFD simulation of multi-pipe earth-to-air heat exchangers (EAHEs) flow performance

    NASA Astrophysics Data System (ADS)

    Amanowicz, Łukasz; Wojtkowiak, Janusz

    2017-11-01

    In this paper the experimentally obtained flow characteristics of multi-pipe earth-to-air heat exchangers (EAHEs) were used to validate the EAHE flow performance numerical model prepared by means of CFD software Ansys Fluent. The cut-cell meshing and the k-ɛ realizable turbulence model with default coefficients values and enhanced wall treatment was used. The total pressure losses and airflow in each pipe of multi-pipe exchangers was investigated both experimentally and numerically. The results show that airflow in each pipe of multi-pipe EAHE structures is not equal. The validated numerical model can be used for a proper designing of multi-pipe EAHEs from the flow characteristics point of view. The influence of EAHEs geometrical parameters on the total pressure losses and airflow division between the exchanger pipes can be also analysed. Usage of CFD for designing the EAHEs can be helpful for HVAC engineers (Heating Ventilation and Air Conditioning) for optimizing the geometrical structure of multi-pipe EAHEs in order to save the energy and decrease operational costs of low-energy buildings.

  13. An experimental study of tone excited heated jets

    NASA Technical Reports Server (NTRS)

    Lepicovsky, J.; Ahuja, K. K.; Salikuddin, M.

    1984-01-01

    The objective of this investigation was to obtain detailed experimental data on the effects of upstream acoustic excitation on the mixing of heated jets with the surrounding air. Based on the information gathered in the literature survey, a technical approach was developed to carry out a systematic set of mean flowfield measurements for a broad range of jet operating and acoustic excitation conditions. Most of the results were obtained at Mach numbers of 0.3 and 0.8 and total temperatures of up to 800 K. Some measurements were made also for the fully expanded supersonic jet of Mj = 1.15. The maximum level of excitation was Le equal to or less than 150 dB and a range of excitation frequencies up to fe = 4 kHz was used. The important results derived from this study can be summarized as follows: (1) the sensitivity of heated jets to upstream acoustic excitation varies strongly with the jet operating conditions, (2) the threshold excitation level increases with increasing jet temperature, and (3) the preferred Strouhal number does not change significantly with a change of the jet operating conditions.

  14. Normal- and oblique-shock flow parameters in equilibrium air including attached-shock solutions for surfaces at angles of attack, sweep, and dihedral

    NASA Technical Reports Server (NTRS)

    Hunt, J. L.; Souders, S. W.

    1975-01-01

    Normal- and oblique-shock flow parameters for air in thermochemical equilibrium are tabulated as a function of shock angle for altitudes ranging from 15.24 km to 91.44 km in increments of 7.62 km at selected hypersonic speeds. Post-shock parameters tabulated include flow-deflection angle, velocity, Mach number, compressibility factor, isentropic exponent, viscosity, Reynolds number, entropy difference, and static pressure, temperature, density, and enthalpy ratios across the shock. A procedure is presented for obtaining oblique-shock flow properties in equilibrium air on surfaces at various angles of attack, sweep, and dihedral by use of the two-dimensional tabulations. Plots of the flow parameters against flow-deflection angle are presented at altitudes of 30.48, 60.96, and 91.44 km for various stream velocities.

  15. Determination of the air w-value in proton beams using ionization chambers with gas flow capability.

    PubMed

    Moyers, M F; Vatnitsky, S M; Miller, D W; Slater, J M

    2000-10-01

    The purpose of this work was to determine the w-value of air for protons using the paired gas method. Several plastic- and magnesium-walled chambers were used with air, synthetic air, nitrogen, and argon flowing gases. Using argon as a reference gas, the w-value of air was measured and ranged from 32.7 to 34.5 J/C for protons with energies encountered in radiotherapy. Using nitrogen as a reference gas, the w-value of air ranged from 35.2 to 35.4 J/C over the same range of proton energies. The w-value was found, at a given energy, to be independent of the ion chamber used. The uncertainty in these measurements was estimated at 5.2% at the 2sigma level. This uncertainty was dominated by the 4.4% uncertainty in the w-value of the reference gas.

  16. Reversal in Spreading of a Tabbed Circular Jet Under Controlled Excitation

    NASA Technical Reports Server (NTRS)

    Zaman, K. B. M. Q.; Raman, G.

    1997-01-01

    Detailed flow field measurements have been carried out for a turbulent circular jet perturbed by tabs and artificial excitation. Two "delta tabs" were placed at the nozzle exit at diametricall opposite y locations. The excitation condition involved subharmonic resonance that manifested in a periodic vortex pairing in the near flow field. While the excitation and the tabs independently increased jet spreading, a combination of the two diminished the effect. The jet spreading was most pronounced with the tabs but was reduced when excitation was applied to the tabbed jet. The tabs generated streamwise vortex pairs that caused a lateral spreading of the jet in a direction perpendicular to the plane containing the tabs. ne excitation, on the other hand, organized the azimuthal vorticity into coherent ring structures whose evolution and pairing also increased entrainment by the jet. In the tabbed case, the excitation produced coherent azimuthal structures that were distorted and asymmetric in shape. The self-induction of these structures produced an effect that opposed the tendency for the lateral spreading of the streamwise vortex pairs. The passage of the distorted vortices, and their pairing, also had a cancellation effect on the time-averaged streamwise vorticity field. These led to the reduction in jet spreading.

  17. Dynamic Analysis of a Rotor System Supported on Squeeze Film Damper with Air Entrainment

    NASA Astrophysics Data System (ADS)

    Zhang, Wei; Han, Bingbing; Zhang, Kunpeng; Ding, Qian

    2017-12-01

    Squeeze film dampers (SFDs) are widely used in compressors and turbines to suppress the vibration while traversing critical speeds. In practical applications, air ingestion from the outside environment and cavitation may lead to a foamy lubricant that weakens oil film damping and dynamic performance of rotor system. In this paper, a rigid rotor model is established considering both lateral and pitching vibration under different imbalance excitations to evaluate the effect of air entrainment on rotor system. Tests with three different imbalances are carried out on a rotor-SFD apparatus. Volume controlled air in mixture ranging from pure oil to all air are supplied to the SFD. The transient response of rotor is measured in the experiments. The results show that two-phase flow produces significant influence on the system stability and dynamical response. The damping properties are weakened by entrained air, such as the damping on high frequency components of rolling ball bearing. Super-harmonic resonance and bifurcation are observed, as well as the low frequency components due to air entrainment.

  18. OH and O radicals production in atmospheric pressure air/Ar/H2O gliding arc discharge plasma jet

    NASA Astrophysics Data System (ADS)

    N, C. ROY; M, R. TALUKDER; A, N. CHOWDHURY

    2017-12-01

    Atmospheric pressure air/Ar/H2O gliding arc discharge plasma is produced by a pulsed dc power supply. An optical emission spectroscopic (OES) diagnostic technique is used for the characterization of plasmas and for identifications of {{OH}} and {{O}} radicals along with other species in the plasmas. The OES diagnostic technique reveals the excitation T x ≈ 5550-9000 K, rotational T r ≈ 1350-2700 K and gas T g ≈ 850-1600 K temperatures, and electron density {n}{{e}}≈ ({1.1-1.9})× {10}14 {{{cm}}}-3 under different experimental conditions. The production and destruction of {{OH}} and {{O}} radicals are investigated as functions of applied voltage and air flow rate. Relative intensities of {{OH}} and {{O}} radicals indicate that their production rates are increased with increasing {{Ar}} content in the gas mixture and applied voltage. {n}{{e}} reveals that the higher densities of {{OH}} and {{O}} radicals are produced in the discharge due to more effective electron impact dissociation of {{{H}}}2{{O}} and {{{O}}}2 molecules caused by higher kinetic energies as gained by electrons from the enhanced electric field as well as by enhanced {n}{{e}}. The productions of {{OH}} and {{O}} are decreasing with increasing air flow rate due to removal of Joule heat from the discharge region but enhanced air flow rate significantly modifies discharge maintenance properties. Besides, {T}{{g}} significantly reduces with the enhanced air flow rate. This investigation reveals that {{Ar}} plays a significant role in the production of {{OH}} and {{O}} radicals.

  19. On the transient flow inside and around a deforming millimetre class oil droplet falling under the action of gravity in stagnant air

    NASA Astrophysics Data System (ADS)

    Bergeles, K.; Hardalupas, Y.; Taylor, A. M. K. P.

    2018-01-01

    The liquid flow inside, and the induced air flow around, a falling droplet in stagnant air was numerically investigated using the volume of fluid method to describe the droplet interface. The droplet consisted of oil with the same surface tension and with viscosity as parameter. It was injected into stagnant air with an initial velocity of 1 m/s; therefore, the initial Weber (We = 0.14), Reynolds (Re = 141), and Bond (Bo = 2.4) numbers remained constant during the parametric study whilst the initial Capillary (Ca) and Ohnesorge (Oh) numbers varied by an order of magnitude from 0.46 to 4.6 and from 0.044 to 0.44, respectively. We examined the effect of viscosity on the flow inside, and around, the droplet as well as on the droplet deformation and its natural frequency. This investigation showed a strong dependence of the deformation with liquid viscosity. Specifically, the droplets achieved their final deformation in under-damped, for low viscosity, and in over-damped, for high viscosity, oscillation modes. After a critical time tcrit (or Recrit), the instantaneous air flow symmetry was disturbed, initially in the wake and soon after in the interior of the droplet and in the vortex shedding downstream of the droplet. The air flow in the wake region detached from the droplet surface and resulted in a wake which was approximately 1.5 times longer and wider than the wake behind a solid sphere at the same Re number at steady state conditions. A roller-vortex structure (called rollex) was established upon injection in the immediate wake of the droplet, forming the necessary kinematic link between the directions of the internal circulation in the droplet (Hill vortex) and of the external recirculating air flow in the droplet's wake. The droplet drag coefficients were compared with corresponding values used in droplet breakup models: although, ultimately, the droplet drag coefficient converged to the values given by the models, the initial magnitudes after injection were

  20. A synthesis approach for reproducing the response of aircraft panels to a turbulent boundary layer excitation.

    PubMed

    Bravo, Teresa; Maury, Cédric

    2011-01-01

    Random wall-pressure fluctuations due to the turbulent boundary layer (TBL) are a feature of the air flow over an aircraft fuselage under cruise conditions, creating undesirable effects such as cabin noise annoyance. In order to test potential solutions to reduce the TBL-induced noise, a cost-efficient alternative to in-flight or wind-tunnel measurements involves the laboratory simulation of the response of aircraft sidewalls to high-speed subsonic TBL excitation. Previously published work has shown that TBL simulation using a near-field array of loudspeakers is only feasible in the low frequency range due to the rapid decay of the spanwise correlation length with frequency. This paper demonstrates through theoretical criteria how the wavenumber filtering capabilities of the radiating panel reduces the number of sources required, thus dramatically enlarging the frequency range over which the response of the TBL-excited panel is accurately reproduced. Experimental synthesis of the panel response to high-speed TBL excitation is found to be feasible over the hydrodynamic coincidence frequency range using a reduced set of near-field loudspeakers driven by optimal signals. Effective methodologies are proposed for an accurate reproduction of the TBL-induced sound power radiated by the panel into a free-field and when coupled to a cavity.

  1. FAST TRACK COMMUNICATION: Contrasting characteristics of sub-microsecond pulsed atmospheric air and atmospheric pressure helium-oxygen glow discharges

    NASA Astrophysics Data System (ADS)

    Walsh, J. L.; Liu, D. X.; Iza, F.; Rong, M. Z.; Kong, M. G.

    2010-01-01

    Glow discharges in air are often considered to be the ultimate low-temperature atmospheric pressure plasmas for numerous chamber-free applications. This is due to the ubiquitous presence of air and the perceived abundance of reactive oxygen and nitrogen species in air plasmas. In this paper, sub-microsecond pulsed atmospheric air plasmas are shown to produce a low concentration of excited oxygen atoms but an abundance of excited nitrogen species, UV photons and ozone molecules. This contrasts sharply with the efficient production of excited oxygen atoms in comparable helium-oxygen discharges. Relevant reaction chemistry analysed with a global model suggests that collisional excitation of O2 by helium metastables is significantly more efficient than electron dissociative excitation of O2, electron excitation of O and ion-ion recombination. These results suggest different practical uses of the two oxygen-containing atmospheric discharges, with air plasmas being well suited for nitrogen and UV based chemistry and He-O2 plasmas for excited atomic oxygen based chemistry.

  2. Instantaneous three-dimensional visualization of concentration distributions in turbulent flows with crossed-plane laser-induced fluorescence imaging

    NASA Astrophysics Data System (ADS)

    Hoffmann, A.; Zimmermann, F.; Scharr, H.; Krömker, S.; Schulz, C.

    2005-01-01

    A laser-based technique for measuring instantaneous three-dimensional species concentration distributions in turbulent flows is presented. The laser beam from a single laser is formed into two crossed light sheets that illuminate the area of interest. The laser-induced fluorescence (LIF) signal emitted from excited species within both planes is detected with a single camera via a mirror arrangement. Image processing enables the reconstruction of the three-dimensional data set in close proximity to the cutting line of the two light sheets. Three-dimensional intensity gradients are computed and compared to the two-dimensional projections obtained from the two directly observed planes. Volume visualization by digital image processing gives unique insight into the three-dimensional structures within the turbulent processes. We apply this technique to measurements of toluene-LIF in a turbulent, non-reactive mixing process of toluene and air and to hydroxyl (OH) LIF in a turbulent methane-air flame upon excitation at 248 nm with a tunable KrF excimer laser.

  3. Reciprocating air flow for Li-ion battery thermal management to improve temperature uniformity

    NASA Astrophysics Data System (ADS)

    Mahamud, Rajib; Park, Chanwoo

    The thermal management of traction battery systems for electrical-drive vehicles directly affects vehicle dynamic performance, long-term durability and cost of the battery systems. In this paper, a new battery thermal management method using a reciprocating air flow for cylindrical Li-ion (LiMn 2O 4/C) cells was numerically analyzed using (i) a two-dimensional computational fluid dynamics (CFD) model and (ii) a lumped-capacitance thermal model for battery cells and a flow network model. The battery heat generation was approximated by uniform volumetric joule and reversible (entropic) losses. The results of the CFD model were validated with the experimental results of in-line tube-bank systems which approximates the battery cell arrangement considered for this study. The numerical results showed that the reciprocating flow can reduce the cell temperature difference of the battery system by about 4 °C (72% reduction) and the maximum cell temperature by 1.5 °C for a reciprocation period of τ = 120 s as compared with the uni-directional flow case (τ = ∞). Such temperature improvement attributes to the heat redistribution and disturbance of the boundary layers on the formed on the cells due to the periodic flow reversal.

  4. Benefit Analysis of the Automated Flow Control Function of the Air Traffic Control Systems Command Center

    DOT National Transportation Integrated Search

    1977-06-01

    This report summarizes the findings of a benefit analysis study of the present and proposed Air Traffic Control Systems Command Center automation systems. The benefits analyzed were those associated with Fuel Advisory Departure and Quota Flow procedu...

  5. Pattern Formation in Diffusion Flames Embedded in von Karman Swirling Flows

    NASA Technical Reports Server (NTRS)

    Nayagam, Vedha

    2006-01-01

    Pattern formation is observed in nature in many so-called excitable systems that can support wave propagation. It is well-known in the field of combustion that premixed flames can exhibit patterns through differential diffusion mechanism between heat and mass. However, in the case of diffusion flames where fuel and oxidizer are separated initially there have been only a few observations of pattern formation. It is generally perceived that since diffusion flames do not possess an inherent propagation speed they are static and do not form patterns. But in diffusion flames close to their extinction local quenching can occur and produce flame edges which can propagate along stoichiometric surfaces. Recently, we reported experimental observations of rotating spiral flame edges during near-limit combustion of a downward-facing polymethylmethacrylate disk spinning in quiescent air. These spiral flames, though short-lived, exhibited many similarities to patterns commonly found in quiescent excitable media including compound tip meandering motion. Flame disks that grow or shrink with time depending on the rotational speed and in-depth heat loss history of the fuel disk have also been reported. One of the limitations of studying flame patterns with solid fuels is that steady-state conditions cannot be achieved in air at normal atmospheric pressure for experimentally reasonable fuel thickness. As a means to reproduce the flame patterns observed earlier with solid fuels, but under steady-state conditions, we have designed and built a rotating, porous-disk burner through which gaseous fuels can be injected and burned as diffusion flames. The rotating porous disk generates a flow of air toward the disk by a viscous pumping action, generating what is called the von K rm n boundary layer which is of constant thickness over the entire burner disk. In this note we present a map of the various dynamic flame patterns observed during the combustion of methane in air as a function of

  6. Using color intensity projections to visualize air flow in operating theaters with the goal of reducing infections

    NASA Astrophysics Data System (ADS)

    Cover, Keith S.; van Asperen, Niek; de Jong, Joost; Verdaasdonk, Rudolf M.

    2013-03-01

    Infection following neurosurgery is all too common. One possible source of infection is the transportation of dust and other contaminates into the open wound by airflow within the operating theatre. While many modern operating theatres have a filtered, uniform and gentle flow of air cascading down over the operating table from a large area fan in the ceiling, many obstacles might introduce turbulence into the laminar flow including lights, equipment and personal. Schlieren imaging - which is sensitive to small disturbances in the laminar flow such as breathing and turbulence caused by air warmed by a hand at body temperature - was used to image the air flow due to activities in an operating theatre. Color intensity projections (CIPs) were employed to reduce the workload of analyzing the large amount of video data. CIPs - which has been applied to images in angiography, 4D CT, nuclear medicine and astronomy - summarizes the changes over many gray scale images in a single color image in a way which most interpreters find intuitive. CIPs uses the hue, saturation and brightness of the color image to encode the summary. Imaging in an operating theatre showed substantial disruptions to the airflow due to equipment such as the lighting. When these disruptions are combined with such minor factors as heat from the hand, reversal of the preferred airflow patterns can occur. These reversals of preferred airflow patterns have the potential to transport contaminates into the open wound. Further study is required to understand both the frequency of the reversed airflow patterns and the impact they may have on infection rates.

  7. Calculation and measurement of a neutral air flow velocity impacting a high voltage capacitor with asymmetrical electrodes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Malík, M., E-mail: michal.malik@tul.cz; Primas, J.; Kopecký, V.

    2014-01-15

    This paper deals with the effects surrounding phenomenon of a mechanical force generated on a high voltage asymmetrical capacitor (the so called Biefeld-Brown effect). A method to measure this force is described and a formula to calculate its value is also given. Based on this the authors derive a formula characterising the neutral air flow velocity impacting an asymmetrical capacitor connected to high voltage. This air flow under normal circumstances lessens the generated force. In the following part this velocity is measured using Particle Image Velocimetry measuring technique and the results of the theoretically calculated velocity and the experimentally measuredmore » value are compared. The authors found a good agreement between the results of both approaches.« less

  8. Simplified configuration for the combustor of an oil burner using a low pressure, high flow air-atomizing nozzle

    DOEpatents

    Butcher, Thomas A.; Celebi, Yusuf; Fisher, Leonard

    2000-09-15

    The invention relates to clean burning of fuel oil with air. More specifically, to a fuel burning combustion head using a low-pressure, high air flow atomizing nozzle so that there will be a complete combustion of oil resulting in a minimum emission of pollutants. The improved fuel burner uses a low pressure air atomizing nozzle that does not result in the use of additional compressors or the introduction of pressurized gases downstream, nor does it require a complex design. Inventors:

  9. Investigating the air oxidation of V(II) ions in a vanadium redox flow battery

    NASA Astrophysics Data System (ADS)

    Ngamsai, Kittima; Arpornwichanop, Amornchai

    2015-11-01

    The air oxidation of vanadium (V(II)) ions in a negative electrolyte reservoir is a major side reaction in a vanadium redox flow battery (VRB), which leads to electrolyte imbalance and self-discharge of the system during long-term operation. In this study, an 80% charged negative electrolyte solution is employed to investigate the mechanism and influential factors of the reaction in a negative-electrolyte reservoir. The results show that the air oxidation of V(II) ions occurs at the air-electrolyte solution interface area and leads to a concentration gradient of vanadium ions in the electrolyte solution and to the diffusion of V(II) and V(III) ions. The effect of the ratio of the electrolyte volume to the air-electrolyte solution interface area and the concentrations of vanadium and sulfuric acid in an electrolyte solution is investigated. A higher ratio of electrolyte volume to the air-electrolyte solution interface area results in a slower oxidation reaction rate. The high concentrations of vanadium and sulfuric acid solution also retard the air oxidation of V(II) ions. This information can be utilized to design an appropriate electrolyte reservoir for the VRB system and to prepare suitable ingredients for the electrolyte solution.

  10. Design and experimental verification of a photoacoustic flow sensor using computational fluid dynamics.

    PubMed

    Lassen, Mikael; Balslev-Harder, David; Brusch, Anders; Pelevic, Nikola; Persijn, Stefan; Petersen, Jan C

    2018-02-01

    A photoacoustic (PA) sensor for fast and real-time gas sensing is demonstrated. The PA sensor is a stand-alone system controlled by a field-programmable gate array. The PA cell has been designed for flow noise immunity using computational fluid dynamics (CFD) analysis. The aim of the CFD analysis was to investigate and minimize the influence of the gas distribution and flow noise on the PA signal. PA measurements were conducted at different flow rates by exciting molecular C-H stretch vibrational bands of hexane (C 6 H 14 ) and decane (C 10 H 22 ) molecules in clean air at 2950  cm -1 (3.38 μm) with a custom-made mid-infrared interband cascade laser. We observe a (1σ, standard deviation) sensitivity of 0.4±0.1  ppb (nmol/mol) for hexane in clean air at flow rates up to 1.7 L/min, corresponding to a normalized noise equivalent absorption coefficient of 2.5×10 -9   W cm -1   Hz -1/2 , demonstrating high sensitivity and fast real-time gas analysis. An Allan deviation analysis for decane shows that the detection limit at optimum integration time is 0.25 ppbV (nmol/mol).

  11. Numerical simulation of air hypersonic flows with equilibrium chemical reactions

    NASA Astrophysics Data System (ADS)

    Emelyanov, Vladislav; Karpenko, Anton; Volkov, Konstantin

    2018-05-01

    The finite volume method is applied to solve unsteady three-dimensional compressible Navier-Stokes equations on unstructured meshes. High-temperature gas effects altering the aerodynamics of vehicles are taken into account. Possibilities of the use of graphics processor units (GPUs) for the simulation of hypersonic flows are demonstrated. Solutions of some test cases on GPUs are reported, and a comparison between computational results of equilibrium chemically reacting and perfect air flowfields is performed. Speedup of solution on GPUs with respect to the solution on central processor units (CPUs) is compared. The results obtained provide promising perspective for designing a GPU-based software framework for practical applications.

  12. Integrated LTCC pressure/flow/temperature multisensor for compressed air diagnostics.

    PubMed

    Fournier, Yannick; Maeder, Thomas; Boutinard-Rouelle, Grégoire; Barras, Aurélie; Craquelin, Nicolas; Ryser, Peter

    2010-01-01

    We present a multisensor designed for industrial compressed air diagnostics and combining the measurement of pressure, flow, and temperature, integrated with the corresponding signal conditioning electronics in a single low-temperature co-fired ceramic (LTCC) package. The developed sensor may be soldered onto an integrated electro-fluidic platform by using standard surface mount device (SMD) technology, e.g., as a standard electronic component would be on a printed circuit board, obviating the need for both wires and tubes and thus paving the road towards low-cost integrated electro-fluidic systems. Several performance aspects of this device are presented and discussed, together with electronics design issues.

  13. Integrated LTCC Pressure/Flow/Temperature Multisensor for Compressed Air Diagnostics†

    PubMed Central

    Fournier, Yannick; Maeder, Thomas; Boutinard-Rouelle, Grégoire; Barras, Aurélie; Craquelin, Nicolas; Ryser, Peter

    2010-01-01

    We present a multisensor designed for industrial compressed air diagnostics and combining the measurement of pressure, flow, and temperature, integrated with the corresponding signal conditioning electronics in a single low-temperature co-fired ceramic (LTCC) package. The developed sensor may be soldered onto an integrated electro-fluidic platform by using standard surface mount device (SMD) technology, e.g., as a standard electronic component would be on a printed circuit board, obviating the need for both wires and tubes and thus paving the road towards low-cost integrated electro-fluidic systems. Several performance aspects of this device are presented and discussed, together with electronics design issues. PMID:22163518

  14. Static Flow Characteristics of a Mass Flow Injecting Valve

    NASA Technical Reports Server (NTRS)

    Mattern, Duane; Paxson, Dan

    1995-01-01

    A sleeve valve is under development for ground-based forced response testing of air compression systems. This valve will be used to inject air and to impart momentum to the flow inside the first stage of a multi-stage compressor. The valve was designed to deliver a maximum mass flow of 0.22 lbm/s (0.1 kg/s) with a maximum valve throat area of 0.12 sq. in (80 sq. mm), a 100 psid (689 KPA) pressure difference across the valve and a 68 F, (20 C) air supply. It was assumed that the valve mass flow rate would be proportional to the valve orifice area. A static flow calibration revealed a nonlinear valve orifice area to mass flow relationship which limits the maximum flow rate that the valve can deliver. This nonlinearity was found to be caused by multiple choking points in the flow path. A simple model was used to explain this nonlinearity and the model was compared to the static flow calibration data. Only steady flow data is presented here. In this report, the static flow characteristics of a proportionally controlled sleeve valve are modelled and validated against experimental data.

  15. Concerning the flow about ring-shaped cowlings Part IX : the influence of oblique oncoming flow on the incremental velocities and air forces at the front part of circular cowls

    NASA Technical Reports Server (NTRS)

    Kuchemann, Dietrich; Weber, Johanna

    1952-01-01

    The dependence of the maximum incremental velocities and air forces on a circular cowling on the mass flow and the angle of attack of the oblique flow is determined with the aid of pressure-distribution measurements. The particular cowling tested had been partially investigated in NACA TM 1327.

  16. Numerical modeling of a glow discharge through a supersonic bow shock in air

    NASA Astrophysics Data System (ADS)

    Rassou, S.; Packan, D.; Elias, P.-Q.; Tholin, F.; Chemartin, L.; Labaune, J.

    2017-03-01

    The interaction between a glow discharge and the bow shock of a Mach 3 air flow around a truncated conical model with a central spike is modeled, and comparison is made with prior experimental results. The KRONOS workflow for plasma modeling in flow fields, which has recently been developed at ONERA, was used for the modeling. Based on the quasi-neutral approximation, it couples hypersonic and reactive flow fields with electron chemistry, including the effect of non-Maxwellian electron energy distribution function. The model used for the discharge involves 12 species and 82 reactions, including ionization, electronic and vibrational excitation, and attachment. The simulations reproduce the main features of the discharge observed experimentally well, in particular, the very recognizable topology of the discharge. It was found from the simulations that behind the bow shock, in the afterglow, the negative ion flow ensures the electrical conduction and the establishment of the glow discharge. The influence of kinetic rates on the voltage-current characteristics is discussed.

  17. On the basically single-type excitation source of resonance in the wind tunnel and in the hydroturbine channel of a hydraulic power plant

    NASA Astrophysics Data System (ADS)

    Karavosov, R. K.; Prozorov, A. G.

    2012-01-01

    We have investigated the spectra of pressure pulsations in the near field of the open working section of the wind tunnel with a vortex flow behind the tunnel blower formed like the flow behind the hydroturbine of a hydraulic power plant. We have made a comparison between the measurement data for pressure pulsations and the air stream velocity in tunnels of the above type and in tunnels in which a large-scale vortex structure behind the blower is not formed. It has been established that the large-scale vortex formation in the incompressible medium behind the blade system in the wind tunnel is a source of narrow-band acoustic radiation capable of exciting resonance self-oscillations in the tunnel channel.

  18. Flow Velocity Profiles in Actively-Driven 2D Nozzle Experiments using Freely-Suspended Smectic Liquid Crystal Films

    NASA Astrophysics Data System (ADS)

    Dutch, Evan; Briggs, Corrina; Ferguson, Kyle; Green, Adam; Park, Cheol; Glaser, Matt; Maclennan, Joe; Clark, Noel

    Freely-suspended smectic A liquid crystal films have been used to explore a large range of interesting flow phenomena. Passive microrheology experiments have confirmed previously that such films are ideal systems with which to investigate two-dimensional (2D) hydrodynamics. Here we describe an experiment that uses smectic films to study actively-driven 2D flows. Flow excited by blowing air over a film of smectic liquid crystal material containing small inclusions is captured using digital video microscopy. The flow fields are extracted using particle imaging velocimetry. We have measured the velocity field generated by flow through a thin nozzle into a large rectangular reservoir and compared this to a theoretical model based on 2D complex potential flows. The observations confirm that there is parabolic flow in straight channels, and that the theory accurately models the film velocity flow field in the reservoir. This work was supported by NASA Grant No. NNX-13AQ81G, and NSF MRSEC Grants No. DMR-0820579 and DMR-1420736.

  19. Boundary Conditions for Jet Flow Computations

    NASA Technical Reports Server (NTRS)

    Hayder, M. E.; Turkel, E.

    1994-01-01

    Ongoing activities are focused on capturing the sound source in a supersonic jet through careful large eddy simulation (LES). One issue that is addressed is the effect of the boundary conditions, both inflow and outflow, on the predicted flow fluctuations, which represent the sound source. In this study, we examine the accuracy of several boundary conditions to determine their suitability for computations of time-dependent flows. Various boundary conditions are used to compute the flow field of a laminar axisymmetric jet excited at the inflow by a disturbance given by the corresponding eigenfunction of the linearized stability equations. We solve the full time dependent Navier-Stokes equations by a high order numerical scheme. For very small excitations, the computed growth of the modes closely corresponds to that predicted by the linear theory. We then vary the excitation level to see the effect of the boundary conditions in the nonlinear flow regime.

  20. Surface-slip equations for multicomponent nonequilibrium air flow

    NASA Technical Reports Server (NTRS)

    Gupta, R. N.; Scott, C. D.; Moss, J. N.

    1985-01-01

    Equations are presented for the surface-slip (or jump) values of species concentration, pressure, velocity, and temperature in the low-Reynolds number, high-altitude flight regime of a space vehicle. The equations are obtained from closed form solutions of the mass, momentum, and energy flux equations using the Chapman-Enskog velocity distribution function. This function represents a solution of the Boltzmann equation in the Navier-Stokes approximation. The analysis, obtained for nonequilibrium multicomponent air flow, includes the finite-rate surface catalytic recombination and changes in the internal energy during reflection from the surface. Expressions for the various slip quantities were obtained in a form which can be employed in flowfield computations. A consistent set of equations is provided for multicomponent, binary, and single species mixtures. Expression is also provided for the finite-rate, species-concentration boundary condition for a multicomponent mixture in absence of slip.

  1. Stabilized three-stage oxidation of DME/air mixture in a micro flow reactor with a controlled temperature profile

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oshibe, Hiroshi; Nakamura, Hisashi; Tezuka, Takuya

    Ignition and combustion characteristics of a stoichiometric dimethyl ether (DME)/air mixture in a micro flow reactor with a controlled temperature profile which was smoothly ramped from room temperature to ignition temperature were investigated. Special attention was paid to the multi-stage oxidation in low temperature condition. Normal stable flames in a mixture flow in the high velocity region, and non-stationary pulsating flames and/or repetitive extinction and ignition (FREI) in the medium velocity region were experimentally confirmed as expected from our previous study on a methane/air mixture. In addition, stable double weak flames were observed in the low velocity region for themore » present DME/air mixture case. It is the first observation of stable double flames by the present methodology. Gas sampling was conducted to obtain major species distributions in the flow reactor. The results indicated that existence of low-temperature oxidation was conjectured by the production of CH{sub 2}O occured in the upstream side of the experimental first luminous flame, while no chemiluminescence from it was seen. One-dimensional computation with detailed chemistry and transport was conducted. At low mixture velocities, three-stage oxidation was confirmed from profiles of the heat release rate and major chemical species, which was broadly in agreement with the experimental results. Since the present micro flow reactor with a controlled temperature profile successfully presented the multi-stage oxidations as spatially separated flames, it is shown that this flow reactor can be utilized as a methodology to separate sets of reactions, even for other practical fuels, at different temperature. (author)« less

  2. Friedel-Crafts Crosslinked Highly Sulfonated Polyether Ether Ketone (SPEEK) Membranes for a Vanadium/Air Redox Flow Battery.

    PubMed

    Merle, Géraldine; Ioana, Filipoi Carmen; Demco, Dan Eugen; Saakes, Michel; Hosseiny, Seyed Schwan

    2013-12-30

    Highly conductive and low vanadium permeable crosslinked sulfonated poly(ether ether ketone) (cSPEEK) membranes were prepared by electrophilic aromatic substitution for a Vanadium/Air Redox Flow Battery (Vanadium/Air-RFB) application. Membranes were synthesized from ethanol solution and crosslinked under different temperatures with 1,4-benzenedimethanol and ZnCl2 via the Friedel-Crafts crosslinking route. The crosslinking mechanism under different temperatures indicated two crosslinking pathways: (a) crosslinking on the sulfonic acid groups; and (b) crosslinking on the backbone. It was observed that membranes crosslinked at a temperature of 150 °C lead to low proton conductive membranes, whereas an increase in crosslinking temperature and time would lead to high proton conductive membranes. High temperature crosslinking also resulted in an increase in anisotropy and water diffusion. Furthermore, the membranes were investigated for a Vanadium/Air Redox Flow Battery application. Membranes crosslinked at 200 °C for 30 min with a molar ratio between 2:1 (mol repeat unit:mol benzenedimethanol) showed a proton conductivity of 27.9 mS/cm and a 100 times lower VO2+ crossover compared to Nafion.

  3. Numerical Simulation on the Induced Voltage Across the Coil Terminal by the Segmented Flow of Ferrofluid and Air-Layer.

    PubMed

    Lee, Won-Ho; Lee, Sangyoup; Lee, Jong-Chul

    2018-09-01

    Nanoparticles and nanofluids have been implemented in energy harvesting devices, and energy harvesting based on magnetic nanofluid flow was recently achieved by using a layer-built magnet and microbubble injection to induce a voltage on the order of 10-1 mV. However, this is not yet suitable for some commercial purpose. The air bubbles must be segmented in the base fluid, and the magnetic flux of the ferrofluids should change over time to increase the amount of electric voltage and current from energy harvesting. In this study, we proposed a novel technique to achieve segmented flow of the ferrofluids and the air layers. This segmented ferrofluid flow linear generator can increase the magnitude of the induced voltage from the energy harvesting system. In our experiments, a ferrofluid-filled capsule produced time-dependent changes in the magnetic flux through a multi-turn coil, and the induced voltage was generated on the order of about 101 mV at a low frequency of 2 Hz. A finite element analysis was used to describe the time-dependent change of the magnetic flux through the coil according to the motion of the segmented flow of the ferrofluid and the air-layer, and the induced voltage was generated to the order of 102 mV at a high frequency of 12.5 Hz.

  4. Thermography of volcanic areas on Piton de la Fournaise, Reunion Island : Mapping surface properties and possible detection of convective air flow within volcanic debris

    NASA Astrophysics Data System (ADS)

    Antoine, R.; Baratoux, D.; Rabinowicz, M.; Saracco, G.; Bachelery, P.; Staudacher, T.; Fontaine, F.

    2007-12-01

    We report on the detection of air convection in a couple of quasi circular cavities forming the 300 years old volcanically inactive cone of Formica Leo (Piton de la Fournaise, Reunion Island) [1]. Infrared thermal images of the cone have been acquired in 2006 from a hand held camera at regular time interval during a complete diurnal cycle. During night and dawn, the data display hot rims and cold centers. Both the conductivity contrasts of the highly porous soils filling the cavities and their 30° slopes are unable to explain the systematic rim to center temperature drop. Accordingly, this signal could be attributed to an air convection dipping inside the highly porous material at the center of each cavity, then flowing upslope along the base of the soil layer, before exiting it along the rims. Anemometrical and electrical data acquired in 2007 allow for the first time the direct detection of this air flow on the field: dipping gas velocities are measured at the center of the cone and self-potentials anomalies [2] generated by the humid air flow in the porous medium are detected. To quantify this process, we present 2D/3D numerical models of air convection in a sloped volcanic soil with a surface temperature evolving between day and night and taking into account electrical phenomena created by the air flow. At this present stage, this work constitutes a first step to investigate the deep structure of the active caldera of Bory-Dolomieu. The detection of the air flow at the surface could be of paramount importance for the understanding of volcanic hazards of the Reunion volcano. [1] Antoine et. al, submitted to G-Cubed [2] Darnet, PhD, Université Louis Pasteur (2003)

  5. Electromagnetic Flow Meter Having a Driver Circuit Including a Current Transducer

    NASA Technical Reports Server (NTRS)

    Patel, Sandeep K. (Inventor); Karon, David M. (Inventor); Cushing, Vincent (Inventor)

    2014-01-01

    An electromagnetic flow meter (EMFM) accurately measures both the complete flow rate and the dynamically fluctuating flow rate of a fluid by applying a unipolar DC voltage to excitation coils for a predetermined period of time, measuring the electric potential at a pair of electrodes, determining a complete flow rate and independently measuring the dynamic flow rate during the "on" cycle of the DC excitation, and correcting the measurements for errors resulting from galvanic drift and other effects on the electric potential. The EMFM can also correct for effects from the excitation circuit induced during operation of the EMFM.

  6. Air permeability and trapped-air content in two soils

    USGS Publications Warehouse

    Stonestrom, David A.; Rubin, Jacob

    1989-01-01

    To improve understanding of hysteretic air permeability relations, a need exists for data on the water content dependence of air permeability, matric pressure, and air trapping (especially for wetting-drying cycles). To obtain these data, a special instrument was designed. The instrument is a combination of a gas permeameter (for air permeability determination), a suction plate apparatus (for retentivity curve determination), and an air pycnometer (for trapped-air-volume determination). This design allowed values of air permeability, matric pressure, and air trapping to be codetermined, i.e., determined at the same values of water content using the same sample and the same inflow-outflow boundaries. Such data were obtained for two nonswelling soils. The validity of the air permeability determinations was repeatedly confirmed by rigorous tests of Darcy's law. During initial drying from complete water saturation, supplementary measurements were made to assess the magnitude of gas slip. The extended Darcy equation accurately described the measured flux gradient relations for each condition of absolute gas pressure tested. Air permeability functions exhibited zero-permeability regions at high water contents as well as an abruptly appearing hysteresis at low water contents. Measurements in the zero-permeability regions revealed that the total amount of air in general exceeded the amount of trapped air. This indicates that the medium' s air space is partitioned into three measurable domains: through-flowing air, locally accessible air (i.e., air accessible from only one flow boundary), and trapped air. During repeated wetting and drying, the disappearance and reappearance of air permeability coincided closely with the reappearance and disappearance, respectively, of trapped air. The observed relation between critical features of the air permeability functions and those of the air-trapping functions suggest that water-based blockages play a significant role in the

  7. Numerical modelling of convective heat transport by air flow in permafrost talus slopes

    NASA Astrophysics Data System (ADS)

    Wicky, Jonas; Hauck, Christian

    2017-06-01

    Talus slopes are a widespread geomorphic feature in the Alps. Due to their high porosity a gravity-driven internal air circulation can be established which is forced by the gradient between external (air) and internal (talus) temperature. The thermal regime is different from the surrounding environment, leading to the occurrence of permafrost below the typical permafrost zone. This phenomenon has mainly been analysed by field studies and only few explicit numerical modelling studies exist. Numerical simulations of permafrost sometimes use parameterisations for the effects of convection but mostly neglect the influence of convective heat transfer in air on the thermal regime. In contrast, in civil engineering many studies have been carried out to investigate the thermal behaviour of blocky layers and to improve their passive cooling effect. The present study further develops and applies these concepts to model heat transfer in air flows in a natural-scale talus slope. Modelling results show that convective heat transfer has the potential to develop a significant temperature difference between the lower and the upper parts of the talus slope. A seasonally alternating chimney-effect type of circulation develops. Modelling results also show that this convective heat transfer leads to the formation of a cold reservoir in the lower part of the talus slope, which can be crucial for maintaining the frozen ground conditions despite increasing air temperatures caused by climate change.

  8. Targeting specific azimuthal modes using wall changes in turbulent pipe flow

    NASA Astrophysics Data System (ADS)

    van Buren, Tyler; Hellström, Leo; Marusic, Ivan; Smits, Alexander

    2017-11-01

    We experimentally study turbulent pipe flow at Re =3486 using stereoscopic particle image velocimetry. Using pipe inserts with non-circular geometry to perturb the flow upstream of the measurement location, we excite specific naturally occurring energetic modes. We consider inserts that directly manipulate the flow momentum (vortex generators), and/or induce secondary flows through Reynolds stresses (sinusoidally varying wall shape). These inserts substantially change the mean flow, and produce distinct regions of low and high momentum corresponding to the mode being excited. The inserts add energy in the targeted modes while simultaneously reducing the energy in the non-excited azimuthal modes. In addition, inserts designed to excite two modes simultaneously exhibit non-linear interactions. Supported under ONR Grant N00014-15-1-2402, Program Manager/Director Thomas Fu and the Australian Research Council.

  9. Numerical Investigation on the Effects of Self-Excited Tip Flow Unsteadiness and Blade Row Interactions on the Performance Predictions of Low Speed and Transonic Compressor Rotors

    NASA Astrophysics Data System (ADS)

    Lee, Daniel H.

    The impact blade row interactions can have on the performance of compressor rotors has been well documented. It is also well known that rotor tip clearance flows can have a large effect on compressor performance and stall margin and recent research has shown that tip leakage flows can exhibit self-excited unsteadiness at near stall conditions. However, the impact of tip leakage flow on the performance and operating range of a compressor rotor, relative to other important flow features such as upstream stator wakes or downstream potential effects, has not been explored. To this end, a numerical investigation has been conducted to determine the effects of self-excited tip flow unsteadiness, upstream stator wakes, and downstream blade row interactions on the performance prediction of low speed and transonic compressor rotors. Calculations included a single blade-row rotor configuration as well as two multi-blade row configurations: one where the rotor was modeled with an upstream stator and a second where the rotor was modeled with a downstream stator. Steady-state and time accurate calculations were performed using a RANS solver and the results were compared with detailed experimental data obtained in the GE Low Speed Research Compressor and the Notre Dame Transonic Rig at several operating conditions including near stall. Differences in the performance predictions between the three configurations were then used to determine the effect of the upstream stator wakes and the downstream blade row interactions. Results obtained show that for both the low speed and transonic research compressors used in this investigation time-accurate RANS analysis is necessary to accurately predict the stalling character of the rotor. Additionally, for the first time it is demonstrated that capturing the unsteady tip flow can have a larger impact on rotor performance predictions than adjacent blade row interactions.

  10. Experimental study of forced convective heat transfer from a vertical tube conveying dilute Ag/DI water nanofluids in a cross flow of air

    NASA Astrophysics Data System (ADS)

    Mohammadian, Shahabeddin Keshavarz; Layeghi, Mohammad; Hemmati, Mansor

    2013-03-01

    Forced convective heat transfer from a vertical circular tube conveying deionized (DI) water or very dilute Ag-DI water nanofluids (less than 0.02% volume fraction) in a cross flow of air has been investigated experimentally. Some experiments have been performed in a wind tunnel and heat transfer characteristics such as thermal conductance, effectiveness, and external Nusselt number has been measured at different air speeds, liquid flow rates, and nanoparticle concentrations. The cross flow of air over the tube and the liquid flow in the tube were turbulent in all cases. The experimental results have been compared and it has been found that suspending Ag nanoparticles in the base fluid increases thermal conductance, external Nusselt number, and effectiveness. Furthermore, by increasing the external Reynolds number, the external Nusselt number, effectiveness, and thermal conductance increase. Also, by increasing internal Reynolds number, the thermal conductance and external Nusselt number enhance while the effectiveness decreases.

  11. Air Coupled Acoustic Thermography (ACAT) Inspection Technique

    NASA Technical Reports Server (NTRS)

    Zalameda, Joseph; Winfree, William P.; Yost, William T.

    2007-01-01

    The scope of this effort is to determine the viability of a new heating technique using a noncontact acoustic excitation source. Because of low coupling between air and the structure, a synchronous detection method is employed. Any reduction in the out of plane stiffness improves the acoustic coupling efficiency and as a result, defective areas have an increase in temperature relative to the surrounding area. Hence a new measurement system, based on air-coupled acoustic energy and synchronous detection is presented. An analytical model of a clamped circular plate is given, experimentally tested, and verified. Repeatability confirms the technique with a measurement uncertainty of plus or minus 6.2 percent. The range of frequencies used was 800-2,000 Hertz. Acoustic excitation and consequent thermal detection of flaws in a helicopter blade is examined and results indicate that air coupled acoustic excitation enables the detection of core damage in sandwich honeycomb structures.

  12. Heat transfer and pressure drop for air flow through enhanced passages

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Obot, N.T.; Esen, E.B.

    1992-06-01

    An extensive experimental investigation was carried out to determine the pressure drop and heat transfer characteristics for laminar, transitional and turbulent flow of air through a smooth passage and twenty-three enhanced passages. The internal surfaces of all enhanced passages had spirally shaped geometries; these included fluted, finned/ribbed and indented surfaces. The Reynolds number (Re) was varied between 400 and 50000. The effect of heat transfer (wall cooling or fluid heating) on pressure drop is most significant within the transition region; the recorded pressure drop with heat transfer is much higher than that without heat transfer. The magnitude of this effectmore » depends markedly on the average surface temperature and, to a lesser extent, on the geometric characteristics of the enhanced surfaces. When the pressure drop data are reduced as values of the Fanning friction factor(f), the results are about the same with and without heat transfer for turbulent flow, with moderate differences in the laminar and transition regions.« less

  13. Can the collapse of a fly ash heap develop into an air-fluidized flow? - Reanalysis of the Jupille accident (1961)

    NASA Astrophysics Data System (ADS)

    Stilmant, Frédéric; Pirotton, Michel; Archambeau, Pierre; Erpicum, Sébastien; Dewals, Benjamin

    2015-01-01

    A fly ash heap collapse occurred in Jupille (Liege, Belgium) in 1961. The subsequent flow of fly ash reached a surprisingly long runout and had catastrophic consequences. Its unprecedented degree of fluidization attracted scientific attention. As drillings and direct observations revealed no water-saturated zone at the base of the deposits, scientists assumed an air-fluidization mechanism, which appeared consistent with the properties of the material. In this paper, the air-fluidization assumption is tested based on two-dimensional numerical simulations. The numerical model has been developed so as to focus on the most prominent processes governing the flow, with parameters constrained by their physical interpretation. Results are compared to accurate field observations and are presented for different stages in the model enhancement, so as to provide a base for a discussion of the relative influence of pore pressure dissipation and pore pressure generation. These results show that the apparently high diffusion coefficient that characterizes the dissipation of air pore pressures is in fact sufficiently low for an important degree of fluidization to be maintained during a flow of hundreds of meters.

  14. Radiation mechanism for the aerodynamic sound of gears - An explanation for the radiation process by air flow observation

    NASA Astrophysics Data System (ADS)

    Houjoh, Haruo

    1992-12-01

    One specific feature of the aerodynamic sound produced at the face end region is that the radiation becomes equally weak by filling root spaces as by shortening the center distance. However, one can easily expect that such actions make the air flow faster, and consequently make the sound louder. This paper attempts to reveal the reason for such a feature. First, air flow induced by the pumping action of the gear pair was analyzed regarding a series of root spaces as volume varying cavities which have channels to adjacent cavities as well as the exit/inlet at the face ends. The numerical analysis was verified by the hot wire anemometer measurement. Next, from the obtained flow response, the sound source was estimated to be a combination of symmetrically distributed simple sources. Taking the effect of either the center distance or root filling into consideration, it is shown that the simplified model can explain such a feature rationally.

  15. Penetration Characteristics of Air, Carbon Dioxide and Helium Transverse Sonic Jets in Mach 5 Cross Flow.

    PubMed

    Erdem, Erinc; Kontis, Konstantinos; Saravanan, Selvaraj

    2014-12-08

    An experimental investigation of sonic air, CO 2 and Helium transverse jets in Mach 5 cross flow was carried out over a flat plate. The jet to freestream momentum flux ratio, J, was kept the same for all gases. The unsteady flow topology was examined using high speed schlieren visualisation and PIV. Schlieren visualisation provided information regarding oscillating jet shear layer structures and bow shock, Mach disc and barrel shocks. Two-component PIV measurements at the centreline, provided information regarding jet penetration trajectories. Barrel shocks and Mach disc forming the jet boundary were visualised/quantified also jet penetration boundaries were determined. Even though J is kept the same for all gases, the penetration patterns were found to be remarkably different both at the nearfield and the farfield. Air and CO 2 jet resulted similar nearfield and farfield penetration pattern whereas Helium jet spread minimal in the nearfield.

  16. Penetration Characteristics of Air, Carbon Dioxide and Helium Transverse Sonic Jets in Mach 5 Cross Flow

    PubMed Central

    Erdem, Erinc; Kontis, Konstantinos; Saravanan, Selvaraj

    2014-01-01

    An experimental investigation of sonic air, CO2 and Helium transverse jets in Mach 5 cross flow was carried out over a flat plate. The jet to freestream momentum flux ratio, J, was kept the same for all gases. The unsteady flow topology was examined using high speed schlieren visualisation and PIV. Schlieren visualisation provided information regarding oscillating jet shear layer structures and bow shock, Mach disc and barrel shocks. Two-component PIV measurements at the centreline, provided information regarding jet penetration trajectories. Barrel shocks and Mach disc forming the jet boundary were visualised/quantified also jet penetration boundaries were determined. Even though J is kept the same for all gases, the penetration patterns were found to be remarkably different both at the nearfield and the farfield. Air and CO2 jet resulted similar nearfield and farfield penetration pattern whereas Helium jet spread minimal in the nearfield. PMID:25494348

  17. Catalytic combustion of hydrogen-air mixtures in stagnation flows

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ikeda, H.; Libby, P.A.; Williams, F.A.

    1993-04-01

    The interaction between heterogeneous and homogeneous reactions arising when a mixture of hydrogen and air impinges on a platinum plate at elevated temperature is studied. A reasonably complete description of the kinetic mechanism for homogeneous reactions is employed along with a simplified model for heterogeneous reactions. Four regimes are identified depending on the temperature of the plate, on the rate of strain imposed on the flow adjacent to the plate and on the composition and temperature of the reactant stream: (1) surface reaction alone; (2) surface reaction inhibiting homogeneous reaction; (3) homogeneous reaction inhibiting surface reaction; and (4) homogeneous reactionmore » alone. These regimes are related to those found earlier for other chemical systems and form the basis of future experimental investigation of the chemical system considered in the present study.« less

  18. Nonlinear piezoelectric devices for broadband air-flow energy harvesting

    NASA Astrophysics Data System (ADS)

    Bai, Y.; Havránek, Z.; Tofel, P.; Meggs, C.; Hughes, H.; Button, T. W.

    2015-11-01

    This paper presents preliminary work on an investigation of a nonlinear air-flow energy harvester integrating magnets and a piezoelectric cantilever array. Two individual piezoelectric cantilevers with the structure of free-standing multi-layer thick-films have been fabricated and assembled with a free-spinning fan. The cantilevers were attached with different tip masses thereby achieving separated resonant frequencies. Also, permanent magnets were fixed onto the blades of the fan as well as the tips of the cantilevers, in order to create nonlinear coupling and transfer fluidic movement into mechanical oscillation. The device has been tested in a wind tunnel. Bifurcations in the spectra of the blade rotation speed of the fan as a function of output voltage have been observed, and a bandwidth (blade rotation speed range) widening effect has been achieved.

  19. Trajectories of thermospheric air parcels flowing over Alaska, reconstructed from ground-based wind measurements

    NASA Astrophysics Data System (ADS)

    Dhadly, Manbharat; Conde, Mark

    2017-06-01

    It is widely presumed that the convective stability and enormous kinematic viscosity of Earth's upper thermosphere hinders development of both horizontal and vertical wind shears and other gradients. Any strong local structure (over scale sizes of several hundreds of kilometers) that might somehow form would be expected to dissipate rapidly. Air flow in such an atmosphere should be relatively simple, and transport effects only slowly disperse and mix air masses. However, our observations show that wind fields in Earth's thermosphere have much more local-scale structure than usually predicated by current modeling techniques, at least at auroral latitudes; they complicate air parcel trajectories enormously, relative to typical expectations. For tracing air parcels, we used wind measurements of an all-sky Scanning Doppler Fabry-Perot interferometer and reconstructed time-resolved two-dimensional maps of the horizontal vector wind field to infer forward and backward air parcel trajectories over time. This is the first comprehensive study to visualize the complex motions of thermospheric air parcels carried through the actual observed local-scale structures in the high-latitude winds. Results show that thermospheric air parcel transport is a very difficult observational problem, because the trajectories followed are very sensitive to the detailed features of the driving wind field. To reconstruct the actual motion of a given air parcel requires wind measurements everywhere along the trajectory followed, with spatial resolutions of 100 km or less, and temporal resolutions of a few minutes or better. Understanding such transport is important, for example, in predicting the global-scale impacts of aurorally generated composition perturbations.

  20. Turbine blade-tip clearance excitation forces

    NASA Technical Reports Server (NTRS)

    Martinez-Sanchez, M.; Greitzer, E. M.

    1985-01-01

    The results of an effort to assess the existing knowledge and plan the required experimentation in the area of turbine blade tip excitation forces is summarized. The work was carried out in three phases. The first was a literature search and evaluation, which served to highlight the state of the art and to expose the need for an articulated theoretical experimental effort to provide not only design data, but also a rational framework for their extrapolation to new configurations and regimes. The second phase was a start in this direction, in which several of the explicit or implicit assumptions contained in the usual formulations of the Alford force effect were removed and a rigorous linearized flow analysis of the behavior of a nonsymmetric actuator disc was carried out. In the third phase a preliminary design of a turbine test facility that would be used to measure both the excitation forces themselves and the flow patterns responsible for them were conducted and do so over a realistic range of dimensionless parameters.

  1. Temporal and spatial evolution of EHD particle flow onset in air in a needle-to-plate negative DC corona discharge

    NASA Astrophysics Data System (ADS)

    Mizeraczyk, J.; Berendt, A.; Podlinski, J.

    2016-05-01

    In this paper we present images showing the temporal and spatial evolution of the electrohydrodynamic (EHD) flow of dust particles (cigarette smoke) suspended in still air in a needle-to-plate negative DC corona discharge arrangement just after the corona onset, i.e. in the first stage of development of the EHD particle flow. The experimental apparatus for our study of the EHD flow onset consisted of a needle-to-plate electrode arrangement, high voltage power supply and time-resolved EHD imaging system based on 2D time-resolved particle image velocimetry equipment. The time-resolved flow images clearly show the formation of a ball-like flow structure at the needle tip just after the corona discharge onset, and its evolution into a mushroom-like object moving to the collecting electrode. After a certain time, when the mushroom-like object is still present in the interelectrode gap a second mushroom-like object forms near the needle electrode and starts to move towards the collecting electrode. Before the first mushroom-like object reaches the collecting electrode several similar mushroom-like objects can be formed and presented simultaneously in the interelectrode gap. They look like a series of mushroom-like minijets shot from the needle electrode vicinity towards the collecting electrode. The simultaneous presence of mushroom-like minijets in the interelectrode gap in the corona discharge in particle-seeded air resembles the negative-ion-charged ‘clouds’ (induced by the Trichel pulses) traversing simultaneously the interelectrode gap of the corona discharge in air, predicted a long time ago by Loeb, and Lama and Gallo and recently by Dordizadeh et al. Analysing the time behaviours of the mushroom-like minijets and current waveform in the corona discharge in particle-seeded air, we found that the Trichel pulse trains, formed just after the corona onset initiates the mushroom-like minijets. The first stage of development of the EHD particle flow, the area of

  2. Efficient Ionization Investigation for Flow Control and Energy Extraction

    NASA Technical Reports Server (NTRS)

    Schneider, Steven J.; Kamhawi, Hani; Blankson, Isaiah M.

    2009-01-01

    Nonequilibrium ionization of air by nonthermal means is explored for hypersonic vehicle applications. The method selected for evaluation generates a weakly ionized plasma using pulsed nanosecond, high-voltage discharges sustained by a lower dc voltage. These discharges promise to provide a means of energizing and sustaining electrons in the air while maintaining a nearly constant ion/neutral molecule temperature. This paper explores the use of short approx.5 nsec, high-voltage approx.12 to 22 kV, repetitive (40 to 100 kHz) discharges in generating a weakly ionized gas sustained by a 1 kV dc voltage in dry air at pressures from 10 to 80 torr. Demonstrated lifetimes of the sustainer discharge current approx.10 to 25 msec are over three orders of magnitude longer than the 5 nsec pulse that generates the electrons. This life is adequate for many high speed flows, enabling the possibility of exploiting weakly ionized plasma phenomena in flow-fields such as those in hypersonic inlets, combustors, and nozzles. Results to date are obtained in a volume of plasma between electrodes in a bell jar. The buildup and decay of the visible emission from the pulser excited air is photographed on an ICCD camera with nanosecond resolution and the time constants for visible emission decay are observed to be between 10 to 15 nsec decreasing as pressure increases. The application of the sustainer voltage does not change the visible emission decay time constant. Energy consumption as indicated by power output from the power supplies is 194 to 669 W depending on pulse repetition rate.

  3. Electromagnetic toroidal excitations in matter and free space.

    PubMed

    Papasimakis, N; Fedotov, V A; Savinov, V; Raybould, T A; Zheludev, N I

    2016-03-01

    The toroidal dipole is a localized electromagnetic excitation, distinct from the magnetic and electric dipoles. While the electric dipole can be understood as a pair of opposite charges and the magnetic dipole as a current loop, the toroidal dipole corresponds to currents flowing on the surface of a torus. Toroidal dipoles provide physically significant contributions to the basic characteristics of matter including absorption, dispersion and optical activity. Toroidal excitations also exist in free space as spatially and temporally localized electromagnetic pulses propagating at the speed of light and interacting with matter. We review recent experimental observations of resonant toroidal dipole excitations in metamaterials and the discovery of anapoles, non-radiating charge-current configurations involving toroidal dipoles. While certain fundamental and practical aspects of toroidal electrodynamics remain open for the moment, we envision that exploitation of toroidal excitations can have important implications for the fields of photonics, sensing, energy and information.

  4. Optimizing airport capacity utilization in air traffic flow management subject to constraints at arrival and departure fixes

    DOT National Transportation Integrated Search

    1997-09-01

    This paper formulates a new approach for improvement : of air traffic flow management at airports, which leads to : more efficient utilization of existing airport capacity to alleviate : the consequences of congestion. A new model is presented, : whi...

  5. Vertical flow chemical detection portal

    DOEpatents

    Linker, K.L.; Hannum, D.W.; Conrad, F.J.

    1999-06-22

    A portal apparatus is described for screening objects or persons for the presence of trace amounts of chemical substances such as illicit drugs or explosives. The apparatus has a test space, in which a person may stand, defined by two generally upright sides spanned by a horizontal transom. One or more fans in the transom generate a downward air flow (uni-directional) within the test space. The air flows downwardly from a high pressure upper zone, past the object or person to be screened. Air moving past the object dislodges from the surface thereof both volatile and nonvolatile particles of the target substance. The particles are entrained into the air flow which continues flowing downward to a lower zone of reduced pressure, where the particle-bearing air stream is directed out of the test space and toward preconcentrator and detection components. The sides of the portal are specially configured to partially contain and maintain the air flow. 3 figs.

  6. Vertical flow chemical detection portal

    DOEpatents

    Linker, Kevin L.; Hannum, David W.; Conrad, Frank James

    1999-01-01

    A portal apparatus for screening objects or persons for the presence of trace amounts of chemical substances such as illicit drugs or explosives. The apparatus has a test space, in which a person may stand, defined by two generally upright sides spanned by a horizontal transom. One or more fans in the transom generate a downward air flow (uni-directional) within the test space. The air flows downwardly from a high pressure upper zone, past the object or person to be screened. Air moving past the object dislodges from the surface thereof both volatile and nonvolatile particles of the target substance. The particles are entrained into the air flow which continues flowing downward to a lower zone of reduced pressure, where the particle-bearing air stream is directed out of the test space and toward preconcentrator and detection components. The sides of the portal are specially configured to partially contain and maintain the air flow.

  7. FIBER AND INTEGRATED OPTICS: Noncollinear geometry for highly efficient excitation of a corrugated waveguide

    NASA Astrophysics Data System (ADS)

    Klimov, M. S.; Sychugov, V. A.; Tishchenko, A. V.

    1992-02-01

    An analysis is made of the process of light emission from a corrugated waveguide into air and into a substrate in a noncollinear geometry, i.e., when the direction along which the waveguide mode propagates does not coincide with the plane in which the emitted wave lies. Calculations show that when a TE mode is excited in a corrugated waveguide by a light beam with the TM polarization incident from air on the waveguide at a grazing angle, one can achieve a high waveguide excitation efficiency (~ 60%) if the waveguide mode propagates along the normal to the plane of incidence.

  8. Hydrogeology, simulated ground-water flow, and ground-water quality, Wright-Patterson Air Force Base, Ohio

    USGS Publications Warehouse

    Dumouchelle, D.H.; Schalk, C.W.; Rowe, G.L.; De Roche, J.T.

    1993-01-01

    Ground water is the primary source of water in the Wright-Patterson Air Force Base area. The aquifer consists of glacial sands and gravels that fill a buried bedrock-valley system. Consolidated rocks in the area consist of poorly permeable Ordovician shale of the Richmondian stage, in the upland areas, the Brassfield Limestone of Silurian age. The valleys are filled with glacial sediments of Wisconsinan age consisting of clay-rich tills and coarse-grained outwash deposits. Estimates of hydraulic conductivity of the shales based on results of displacement/recovery tests range from 0.0016 to 12 feet per day; estimates for the glacial sediments range from less than 1 foot per day to more than 1,000 feet per day. Ground water flow from the uplands towards the valleys and the major rivers in the region, the Great Miami and the Mad Rivers. Hydraulic-head data indicate that ground water flows between the bedrock and unconsolidated deposits. Data from a gain/loss study of the Mad River System and hydrographs from nearby wells reveal that the reach of the river next to Wright-Patterson Air Force Base is a ground-water discharge area. A steady-state, three-dimensional ground-water-flow model was developed to simulate ground-water flow in the region. The model contains three layers and encompasses about 100 square miles centered on Wright-Patterson Air Force Base. Ground water enters the modeled area primarily by river leakage and underflow at the model boundary. Ground water exits the modeled area primarily by flow through the valleys at the model boundaries and through production wells. A model sensitivity analysis involving systematic changes in values of hydrologic parameters in the model indicates that the model is most sensitive to decreases in riverbed conductance and vertical conductance between the upper two layers. The analysis also indicates that the contribution of water to the buried-valley aquifer from the bedrock that forms the valley walls is about 2 to 4

  9. Air and groundwater flow at the interface between fractured host rock and a bentonite buffer

    NASA Astrophysics Data System (ADS)

    Dessirier, B.; Jarsjo, J.; Frampton, A.

    2014-12-01

    Designs of deep geological repositories for spent nuclear fuel include several levels of confinement. The Swedish and Finnish concept KBS-3 targets for example sparsely fractured crystalline bedrock as host formation and would have the waste canisters embedded in an engineered buffer of compacted MX-80 bentonite. The host rock is a highly heterogeneous dual porosity material containing fractures and a rock matrix. Bentonite is a complex expansive porous material. Its water content and mechanical properties are interdependent. Beyond the specific physics of unsaturated flow and transport in each medium, the interface between them is critical. Detailed knowledge of the transitory two-phase flow regime, induced by the insertion of the unsaturated buffer in a saturated rock environment, is necessary to assess the performance of planned KBS-3 deposition holes. A set of numerical simulations based on the equations of two-phase flow for water and air in porous media were conducted to investigate the dynamics of air and groundwater flow near the rock/bentonite interface in the period following installation of the unsaturated bentonite buffer. We assume state of the two-phase flow parameter values for bentonite from laboratory water uptake tests and typical fracture and rock properties from the Äspö Hard rock laboratory (Sweden) gathered under several field characterization campaigns. The results point to desaturation of the rock domain as far as 10 cm away from the interface into matrix-dominated regions for up to 160 days. Similar observations were made during the Bentonite Rock Interaction Experiment (BRIE) at the Äspö HRL, with a desaturation sustained for even longer times. More than the mere time to mechanical and hydraulic equilibrium, the occurrence of sustained unsaturated conditions opens the possibility for biogeochemical processes that could be critical in the safety assessment of the planned repository.

  10. Some unresolved questions on hot-jet mixing control through artificial excitation

    NASA Technical Reports Server (NTRS)

    Ahuja, K. K.; Lepicovsky, J.; Brown, W. H.

    1986-01-01

    The problem of the mixing enhancement of heated jets through acoustic excitation is addressed using a 5.08 cm diameter jet operating at Mach numbers as high as 1.12 and at temperatures reaching 670 K. An experimental investigation is carried out to determine why high-speed heated jets are not as responsive to internal excitation as low-speed heated jets. Results are also presented which are related to the flow structure in the presence of screech and under the influence of external excitation. It is shown that, if sufficiently high excitation levels are used, the heated jets, even at high levels, can be modified by artificial excitation. Nonetheless, it is concluded that, for the test facility and test conditions used in the present study, the high-Mach-number heated jets are considerably less excitable than the similarly heated low-Mach-number jets.

  11. Alternating-Current Equipment for the Measurement of Fluctuations of Air Speed in Turbulent Flow

    NASA Technical Reports Server (NTRS)

    Mock, W C , Jr

    1937-01-01

    Recent electrical and mechanical improvements have been made in the equipment developed at the National Bureau of Standards for measurement of fluctuations of air speed in turbulent flow. Data useful in the design of similar equipment are presented. The design of rectified alternating-current power supplies for such apparatus is treated briefly, and the effect of the power supplies on the performance of the equipment is discussed.

  12. Unsteady Analysis of Turbine Main Flow Coupled with Secondary Air Flow

    NASA Technical Reports Server (NTRS)

    Hah, Chunill

    2006-01-01

    Two numerical approaches are used to model the interaction between the turbine main gas flow and the wheelspace cavity seal flow. The 3-D, unsteady Reynolds-averaged Navier-Stokes equations are solved with a CFD code based on a structured grid to study the interaction between the turbine main gas flow and the wheelspace cavity seal flow. A CFD code based on an unstructured grid is used to solve detailed flow feature in the cavity seal which has a complex geometry. The numerical results confirm various observations from earlier experimental studies under similar flow conditions. When the flow rate through the rim cavity seal is increased, the ingestion of the main turbine flow into the rim seal area decreases drastically. However, a small amount of main gas flow is ingested to the rim seal area even with very high level of seal flow rate. This is due to the complex nature of 3-D, unsteady flow interaction near the hub of the turbine stage.

  13. Non-Aqueous Primary Li-Air Flow Battery and Optimization of its Cathode through Experiment and Modeling.

    PubMed

    Kim, Byoungsu; Takechi, Kensuke; Ma, Sichao; Verma, Sumit; Fu, Shiqi; Desai, Amit; Pawate, Ashtamurthy S; Mizuno, Fuminori; Kenis, Paul J A

    2017-09-22

    A primary Li-air battery has been developed with a flowing Li-ion free ionic liquid as the recyclable electrolyte, boosting power capability by promoting superoxide diffusion and enhancing discharge capacity through separately stored discharge products. Experimental and computational tools are used to analyze the cathode properties, leading to a set of parameters that improve the discharge current density of the non-aqueous Li-air flow battery. The structure and configuration of the cathode gas diffusion layers (GDLs) are systematically modified by using different levels of hot pressing and the presence or absence of a microporous layer (MPL). These experiments reveal that the use of thinner but denser MPLs is key for performance optimization; indeed, this leads to an improvement in discharge current density. Also, computational results indicate that the extent of electrolyte immersion and porosity of the cathode can be optimized to achieve higher current density. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Image processing analysis on the air-water slug two-phase flow in a horizontal pipe

    NASA Astrophysics Data System (ADS)

    Dinaryanto, Okto; Widyatama, Arif; Majid, Akmal Irfan; Deendarlianto, Indarto

    2016-06-01

    Slug flow is a part of intermittent flow which is avoided in industrial application because of its irregularity and high pressure fluctuation. Those characteristics cause some problems such as internal corrosion and the damage of the pipeline construction. In order to understand the slug characteristics, some of the measurement techniques can be applied such as wire-mesh sensors, CECM, and high speed camera. The present study was aimed to determine slug characteristics by using image processing techniques. Experiment has been carried out in 26 mm i.d. acrylic horizontal pipe with 9 m long. Air-water flow was recorded 5 m from the air-water mixer using high speed video camera. Each of image sequence was processed using MATLAB. There are some steps including image complement, background subtraction, and image filtering that used in this algorithm to produce binary images. Special treatments also were applied to reduce the disturbance effect of dispersed bubble around the bubble. Furthermore, binary images were used to describe bubble contour and calculate slug parameter such as gas slug length, gas slug velocity, and slug frequency. As a result the effect of superficial gas velocity and superficial liquid velocity on the fundamental parameters can be understood. After comparing the results to the previous experimental results, the image processing techniques is a useful and potential technique to explain the slug characteristics.

  15. Vibrational Power Flow Analysis of Rods and Beams

    NASA Technical Reports Server (NTRS)

    Wohlever, James Christopher; Bernhard, R. J.

    1988-01-01

    A new method to model vibrational power flow and predict the resulting energy density levels in uniform rods and beams is investigated. This method models the flow of vibrational power in a manner analogous to the flow of thermal power in a heat conduction problem. The classical displacement solutions for harmonically excited, hysteretically damped rods and beams are used to derive expressions for the vibrational power flow and energy density in the rod and beam. Under certain conditions, the power flow in these two structural elements will be shown to be proportional to the energy density gradient. Using the relationship between power flow and energy density, an energy balance on differential control volumes in the rod and beam leads to a Poisson's equation which models the energy density distribution in the rod and beam. Coupling the energy density and power flow solutions for rods and beams is also discussed. It is shown that the resonant behavior of finite structures complicates the coupling of solutions, especially when the excitations are single frequency inputs. Two coupling formulations are discussed, the first based on the receptance method, and the second on the travelling wave approach used in Statistical Energy Analysis. The receptance method is the more computationally intensive but is capable of analyzing single frequency excitation cases. The traveling wave approach gives a good approximation of the frequency average of energy density and power flow in coupled systems, and thus, is an efficient technique for use with broadband frequency excitation.

  16. Tone-excited jet: Theory and experiments

    NASA Technical Reports Server (NTRS)

    Ahuja, K. K.; Lepicovsky, J.; Tam, C. K. W.; Morris, P. J.; Burrin, R. H.

    1982-01-01

    A detailed study to understand the phenomenon of broadband jet-noise amplification produced by upstream discrete-tone sound excitation has been carried out. This has been achieved by simultaneous acquisition of the acoustic, mean velocity, turbulence intensities, and instability-wave pressure data. A 5.08 cm diameter jet has been tested for this purpose under static and also flight-simulation conditions. An open-jet wind tunnel has been used to simulate the flight effects. Limited data on heated jets have also been obtained. To improve the physical understanding of the flow modifications brought about by the upstream discrete-tone excitation, ensemble-averaged schlieren photographs of the jets have also been taken. Parallel to the experimental study, a mathematical model of the processes that lead to broadband-noise amplification by upstream tones has been developed. Excitation of large-scale turbulence by upstream tones is first calculated. A model to predict the changes in small-scale turbulence is then developed. By numerically integrating the resultant set of equations, the enhanced small-scale turbulence distribution in a jet under various excitation conditions is obtained. The resulting changes in small-scale turbulence have been attributed to broadband amplification of jet noise. Excellent agreement has been found between the theory and the experiments. It has also shown that the relative velocity effects are the same for the excited and the unexcited jets.

  17. Excitation of high density surface plasmon polariton vortex array

    NASA Astrophysics Data System (ADS)

    Kuo, Chun-Fu; Chu, Shu-Chun

    2018-06-01

    This study proposes a method to excite surface plasmon polariton (SPP) vortex array of high spatial density on metal/air interface. A doughnut vector beam was incident at four rectangularly arranged slits to excite SPP vortex array. The doughnut vector beam used in this study has the same field intensity distribution as the regular doughnut laser mode, TEM01* mode, but a different polarization distribution. The SPP vortex array is achieved through the matching of both polarization state and phase state of the incident doughnut vector beam with the four slits. The SPP field distribution excited in this study contains stable array-distributed time-varying optical vortices. Theoretical derivation, analytical calculation and numerical simulation were used to discuss the characteristics of the induced SPP vortex array. The period of the SPP vortex array induced by the proposed method had only half SPPs wavelength. In addition, the vortex number in an excited SPP vortex array can be increased by enlarging the structure.

  18. Fabrication of a polyvinylidene difluoride fiber with a metal core and its application as directional air flow sensor

    NASA Astrophysics Data System (ADS)

    Bian, Yixiang; Liu, Rongrong; Hui, Shen

    2016-09-01

    We fabricated a sensitive air flow detector that mimic the sensing mechanism found at the tail of some insects. [see Y. Yang, A. Klein, H. Bleckmann and C. Liu, Appl. Phys. Lett. 99(2) (2011); J. J. Heys, T. Gedeon, B. C. Knott and Y. Kim, J. Biomech. 41(5), 977 (2008); J. Tao and X. Yu, Smart Mat. Struct. 21(11) (2012)]. Our bionic airflow sensor uses a polyvinylidene difluoride (PVDF) microfiber with a molybdenum core which we produced with the hot extrusion tensile method. The surface of the fiber is partially coated with conductive silver adhesive that serve as surface electrodes. A third electrode, the metal core is used to polarize polyvinylidene difluoride (PVDF) under the surface electrodes. The cantilever beam structure of the prepared symmetric electrodes of metal core piezoelectric fiber (SMPF) is used as the artificial hair airflow sensor. The surface electrodes are used to measure output voltage. Our theoretical and experimental results show that the SMPF responds fast to air flow changes, the output charge has an exponential correlation with airflow velocity and a cosine relation with the direction of airflow. Our bionic airflow sensor with directional sensing ability can also measure air flow amplitude. [see H. Droogendijk, R. G. P. Sanders and G. J. M. Krijnen, New J. Phys. 15 (2013)]. By using two surface electrodes, our sensing circuit further improves sensitivity.

  19. Reverse Flow Engine Core Having a Ducted Fan with Integrated Secondary Flow Blades

    NASA Technical Reports Server (NTRS)

    Kisska, Michael K. (Inventor); Princen, Norman H. (Inventor); Kuehn, Mark S. (Inventor); Cosentino, Gary B. (Inventor)

    2014-01-01

    Secondary air flow is provided for a ducted fan having a reverse flow turbine engine core driving a fan blisk. The fan blisk incorporates a set of thrust fan blades extending from an outer hub and a set of integral secondary flow blades extending intermediate an inner hub and the outer hub. A nacelle provides an outer flow duct for the thrust fan blades and a secondary flow duct carries flow from the integral secondary flow blades as cooling air for components of the reverse flow turbine engine.

  20. Investigation of Infra-red and Nonequilibrium Air Radiation

    NASA Technical Reports Server (NTRS)

    Kruger, Charles H.; Laux, Christophe O.

    1994-01-01

    This report summarizes the results obtained during a research program on the infrared radiation of air plasmas conducted in the High Temperature Gasdynamics Laboratory at Stanford University. This program was intended to investigate the masking of infrared signatures by the air plasma formed behind the bow shock of high velocity missiles. Prior to this work, the radiative emission of air plasmas in the infrared had been the object of few experimental investigations, and although several infrared systems were already modeled in radiation codes such as NEQAIR, measurements were required to validate numerical predictions and indicate whether all transitions of importance were accounted for in the model. The program was further motivated by the fact that 9 excited states (A, B, C, D, B', F, H, and H') of NO radiate in the infrared, especially between 1 and 1.5 microns where at least 9 transitions involving can be observed. Because these IR transitions are relatively well separated from each other, excited NO states concentrations can be easily measured, thus providing essential information on excited-state chemistry for use in optical diagnostics or in electronic excitation model validation. Detailed comparisons between measured and simulated spectra are presented.

  1. Electro-Hydrodynamics and Kinetic Modeling of Dry and Humid Air Flows Activated by Corona Discharges

    NASA Astrophysics Data System (ADS)

    P. Sarrette, J.; Eichwald, O.; Marchal, F.; Ducasse, O.; Yousfi, M.

    2016-05-01

    The present work is devoted to the 2D simulation of a point-to-plane Atmospheric Corona Discharge Reactor (ACDR) powered by a DC high voltage supply. The corona reactor is periodically crossed by thin mono filamentary streamers with a natural repetition frequency of some tens of kHz. The study compares the results obtained in dry air and in air mixed with a small amount of water vapour (humid air). The simulation involves the electro-dynamics, chemical kinetics and neutral gas hydrodynamics phenomena that influence the kinetics of the chemical species transformation. Each discharge lasts about one hundred of a nanosecond while the post-discharge occurring between two successive discharges lasts one hundred of a microsecond. The ACDR is crossed by a lateral dry or humid air flow initially polluted with 400 ppm of NO. After 5 ms, the time corresponding to the occurrence of 50 successive discharge/post-discharge phases, a higher NO removal rate and a lower ozone production rate are found in humid air. This change is due to the presence of the HO2 species formed from the H primary radical in the discharge zone.

  2. Particle displacement tracking applied to air flows

    NASA Technical Reports Server (NTRS)

    Wernet, Mark P.

    1991-01-01

    Electronic Particle Image Velocimeter (PIV) techniques offer many advantages over conventional photographic PIV methods such as fast turn around times and simplified data reduction. A new all electronic PIV technique was developed which can measure high speed gas velocities. The Particle Displacement Tracking (PDT) technique employs a single cw laser, small seed particles (1 micron), and a single intensified, gated CCD array frame camera to provide a simple and fast method of obtaining two-dimensional velocity vector maps with unambiguous direction determination. Use of a single CCD camera eliminates registration difficulties encountered when multiple cameras are used to obtain velocity magnitude and direction information. An 80386 PC equipped with a large memory buffer frame-grabber board provides all of the data acquisition and data reduction operations. No array processors of other numerical processing hardware are required. Full video resolution (640x480 pixel) is maintained in the acquired images, providing high resolution video frames of the recorded particle images. The time between data acquisition to display of the velocity vector map is less than 40 sec. The new electronic PDT technique is demonstrated on an air nozzle flow with velocities less than 150 m/s.

  3. Wind tunnel experiments on flow separation control of an Unmanned Air Vehicle by nanosecond discharge plasma aerodynamic actuation

    NASA Astrophysics Data System (ADS)

    Kang, Chen; Hua, Liang

    2016-02-01

    Plasma flow control (PFC) is a new kind of active flow control technology, which can improve the aerodynamic performances of aircrafts remarkably. The flow separation control of an unmanned air vehicle (UAV) by nanosecond discharge plasma aerodynamic actuation (NDPAA) is investigated experimentally in this paper. Experimental results show that the applied voltages for both the nanosecond discharge and the millisecond discharge are nearly the same, but the current for nanosecond discharge (30 A) is much bigger than that for millisecond discharge (0.1 A). The flow field induced by the NDPAA is similar to a shock wave upward, and has a maximal velocity of less than 0.5 m/s. Fast heating effect for nanosecond discharge induces shock waves in the quiescent air. The lasting time of the shock waves is about 80 μs and its spread velocity is nearly 380 m/s. By using the NDPAA, the flow separation on the suction side of the UAV can be totally suppressed and the critical stall angle of attack increases from 20° to 27° with a maximal lift coefficient increment of 11.24%. The flow separation can be suppressed when the discharge voltage is larger than the threshold value, and the optimum operation frequency for the NDPAA is the one which makes the Strouhal number equal one. The NDPAA is more effective than the millisecond discharge plasma aerodynamic actuation (MDPAA) in boundary layer flow control. The main mechanism for nanosecond discharge is shock effect. Shock effect is more effective in flow control than momentum effect in high speed flow control. Project supported by the National Natural Science Foundation of China (Grant Nos. 61503302, 51207169, and 51276197), the China Postdoctoral Science Foundation (Grant No. 2014M562446), and the Natural Science Foundation of Shaanxi Province, China (Grant No. 2015JM1001).

  4. Method and apparatus for cold gas reinjection in through-flow and reverse-flow wave rotors

    NASA Technical Reports Server (NTRS)

    Nalim, M. Razi (Inventor); Paxson, Daniel E. (Inventor)

    1999-01-01

    A method and apparatus for cold gas reinjection in through-flow and reverse-flow wave rotors having a plurality of channels formed around a periphery thereof. A first port injects a supply of cool air into the channels. A second port allows the supply of cool air to exit the channels and flow to a combustor. A third port injects a supply of hot gas from the combustor into the channels. A fourth port allows the supply of hot gas to exit the channels and flow to a turbine. A diverting port and a reinjection port are connected to the second and third ports, respectively. The diverting port diverts a portion of the cool air exiting through the second port as reinjection air. The diverting port is fluidly connected to the reinjection port which reinjects the reinjection air back into the channels. The reinjection air evacuates the channels of the hot gas resident therein and cools the channel walls, a pair of end walls of the rotor, ducts communicating with the rotor and subsequent downstream components. In a second embodiment, the second port receives all of the cool air exiting the channels and the diverting port diverts a portion of the cool air just prior to the cool air flowing to the combustor.

  5. Friedel–Crafts Crosslinked Highly Sulfonated Polyether Ether Ketone (SPEEK) Membranes for a Vanadium/Air Redox Flow Battery

    PubMed Central

    Merle, Géraldine; Ioana, Filipoi Carmen; Demco, Dan Eugen; Saakes, Michel; Hosseiny, Seyed Schwan

    2014-01-01

    Highly conductive and low vanadium permeable crosslinked sulfonated poly(ether ether ketone) (cSPEEK) membranes were prepared by electrophilic aromatic substitution for a Vanadium/Air Redox Flow Battery (Vanadium/Air-RFB) application. Membranes were synthesized from ethanol solution and crosslinked under different temperatures with 1,4-benzenedimethanol and ZnCl2 via the Friedel–Crafts crosslinking route. The crosslinking mechanism under different temperatures indicated two crosslinking pathways: (a) crosslinking on the sulfonic acid groups; and (b) crosslinking on the backbone. It was observed that membranes crosslinked at a temperature of 150 °C lead to low proton conductive membranes, whereas an increase in crosslinking temperature and time would lead to high proton conductive membranes. High temperature crosslinking also resulted in an increase in anisotropy and water diffusion. Furthermore, the membranes were investigated for a Vanadium/Air Redox Flow Battery application. Membranes crosslinked at 200 °C for 30 min with a molar ratio between 2:1 (mol repeat unit:mol benzenedimethanol) showed a proton conductivity of 27.9 mS/cm and a 100 times lower VO2+ crossover compared to Nafion. PMID:24957118

  6. The effect of a miniature argon flow rate on the spectral characteristics of a direct current atmospheric pressure glow micro-discharge between an argon microjet and a small sized flowing liquid cathode

    NASA Astrophysics Data System (ADS)

    Jamróz, Piotr; Żyrnicki, Wiesław; Pohl, Paweł

    2012-07-01

    A stable direct current atmospheric pressure glow microdischarge (dc-μAPGD) was generated between a miniature Ar flow microjet and a small sized flowing liquid cathode. The microdischarge was operated in the open to air atmosphere. High energy species, including OH, NH, NO, N2, H, O and Ar were identified in the emission spectra of this microdischarge. Additionally, atomic lines of metals dissolved in water solutions were easily excited. The near cathode and the near anode zones of the microdischarge were investigated as a function of an Ar flow rate up to 300 sccm. The spectroscopic parameters, i.e., the excitation, the vibrational and the rotational temperatures as well as the electron number density, were determined in the near cathode and the near anode regions of the microdischarge. In the near cathode region, the rotational temperatures obtained for OH (2000-2600 K) and N2 bands (1600-1950 K) were significantly lower than the excitation temperatures of Ar (7400 K-7800 K) and H (11 000-15 500 K) atoms. Vibrational temperatures of N2, OH and NO varied from 3400 to 4000 K, from 2900 to 3400 K and from 2700 to 3000 K, respectively. In the near anode region, rotational temperatures of OH (350-1750 K) and N2 (400-1350 K) and excitation temperatures of Ar (5200-5500 K) and H (3600-12 600 K) atoms were lower than those measured in the near cathode region. The effect of the introduction of a liquid sample on the microdischarge radiation and spectroscopic parameters was also investigated in the near cathode zone. The electron number density was calculated from the Stark broadening of the Hβ line and equals to (0.25-1.1) × 1015 cm- 3 and (0.68-1.2) × 1015 cm- 3 in the near cathode and the near anode zones, respectively. The intensity of the Na I emission line and the signal to background ratio (SBR) of this line were investigated in both zones to evaluate the excitation properties of the developed excitation microsource. The limit of detection for Na was determined

  7. The simulated air flow pattern around a moving animal transport vehicle as the basis for a prospective biosecurity risk assessment.

    PubMed

    Seedorf, Jens; Schmidt, Ralf-Gunther

    2017-08-01

    Research that investigates bioaerosol emissions from animal transport vehicles (ATVs) and their importance in the spread of harmful airborne agents while the ATVs travel on roads is limited. To investigate the dynamical behaviour of theoretically released particles from a moving ATV, the open-source computational fluid dynamics (CFD) software OpenFOAM was used to calculate the external and internal air flow fields with passive and forced ventilated openings of a common ATV moving at a speed of 80 km/h. In addition to a computed flow rate of approximately 40,000 m 3 /h crossing the interior of the ATV, the visualization of the trajectories has demonstrated distinct patterns of the spatial distribution of potentially released bioaerosols in the vicinity of the ATV. Although the front openings show the highest air flow to the outside, the recirculations of air masses between the interior of the ATV and the atmosphere also occur, which complicate the emission and the dispersion characterizations. To specify the future emission rates of ATVs, a database of bioaerosol concentrations within the ATV is necessary in conjunction with high-performance computing resources to simulate the potential dispersion of bioaerosols in the environment.

  8. Theoretical Evaluation of Electroactive Polymer Based Micropump Diaphragm for Air Flow Control

    NASA Technical Reports Server (NTRS)

    Xu, Tian-Bing; Su, Ji; Zhang, Qiming

    2004-01-01

    An electroactive polymer (EAP), high energy electron irradiated poly(vinylidene fluoride-trifluoroethylene) [P(VDFTrFE)] copolymer, based actuation micropump diaphragm (PAMPD) have been developed for air flow control. The displacement strokes and profiles as a function of amplifier and frequency of electric field have been characterized. The volume stroke rates (volume rate) as function of electric field, driving frequency have been theoretically evaluated, too. The PAMPD exhibits high volume rate. It is easily tuned with varying of either amplitude or frequency of the applied electric field. In addition, the performance of the diaphragms were modeled and the agreement between the modeling results and experimental data confirms that the response of the diaphragms follow the design parameters. The results demonstrated that the diaphragm can fit some future aerospace applications to replace the traditional complex mechanical systems, increase the control capability and reduce the weight of the future air dynamic control systems. KEYWORDS: Electroactive polymer (EAP), micropump, diaphragm, actuation, displacement, volume rate, pumping speed, clamping ratio.

  9. Energy transfer model and its applications of ultrasonic gas flow-meter under static and dynamic flow rates

    NASA Astrophysics Data System (ADS)

    Fang, Min; Xu, Ke-Jun; Zhu, Wen-Jiao; Shen, Zi-Wen

    2016-01-01

    Most of the ultrasonic gas flow-meters measure the gas flow rate by calculating the ultrasonic transmission time difference between the downstream and upstream. Ultrasonic energy attenuation occurs in the processes of the ultrasonic generation, conversion, transmission, and reception. Additionally, at the same time, the gas flow will also affect the ultrasonic propagation during the measurement, which results in the ultrasonic energy attenuation and the offset of ultrasonic propagation path. Thus, the ultrasonic energy received by the transducer is weaker. When the gas flow rate increases, this effect becomes more apparent. It leads to the measurement accuracy reduced, and the measurement range narrowed. An energy transfer model, where the ultrasonic gas flow-meter under without/with the gas flow, is established by adopting the statistical analysis and curve fitting based on a large amount of experimental data. The static sub model without the gas flow expresses the energy conversion efficiency of ultrasonic gas transducers, and the dynamic sub model with the gas flow reflects the energy attenuation pattern following the flow rate variations. The mathematical model can be used to determine the minimum energy of the excitation signal for meeting the requirement of specific measurement range, and predict the maximum measurable flow rate in the case of fixed energy of excitation signal. Based on the above studies, a method to enhance the excitation signal energy is proposed under the output power of the transmitting circuit being a finite value so as to extend the measurement rage of ultrasonic gas flow-meter.

  10. Measurements of KrF laser-induced O2 fluorescence in high-temperature atmospheric air

    NASA Technical Reports Server (NTRS)

    Grinstead, Jay H.; Laufer, Gabriel; Mcdaniel, James C., Jr.

    1993-01-01

    Conditions for obtaining laser-induced O2 fluorescence using a tunable KrF laser has been determined theoretically and experimentally. With this laser source, O2 rotational temperature measurement is possible even in the absence of vibrational equilibrium. Temperature measurement using a two-line excitation scheme has been demonstrated in a high-temperature atmospheric-air furnace. A measurement uncertainty of 10.7 percent for the temperature range 1325-1725 K was realized. At atmospheric pressure, O2 LIF measurements are possible for air temperatures above 1250 K. Interference from OH fluorescence in reacting flows can be avoided by the proper selection of O2 transitions. Depletion of the ground state population by the incident laser is negligible for intensities below 7.5 x 10 to the 6th W/sq cm/per cm.

  11. Advanced Architectures and Relatives of Air Electrodes in Zn–Air Batteries

    PubMed Central

    Pan, Jing; Xu, Yang Yang; Yang, Huan; Dong, Zehua; Liu, Hongfang

    2018-01-01

    Abstract Zn–air batteries are becoming the promising power sources for portable and wearable electronic devices and hybrid/electric vehicles because of their high specific energy density and the low cost for next‐generation green and sustainable energy technologies. An air electrode integrated with an oxygen electrocatalyst is the most important component and inevitably determines the performance and cost of a Zn–air battery. This article presents exciting advances and challenges related to air electrodes and their relatives. After a brief introduction of the Zn–air battery, the architectures and oxygen electrocatalysts of air electrodes and relevant electrolytes are highlighted in primary and rechargeable types with different configurations, respectively. Moreover, the individual components and major issues of flexible Zn–air batteries are also highlighted, along with the strategies to enhance the battery performance. Finally, a perspective for design, preparation, and assembly of air electrodes is proposed for the future innovations of Zn–air batteries with high performance. PMID:29721418

  12. Advanced Architectures and Relatives of Air Electrodes in Zn-Air Batteries.

    PubMed

    Pan, Jing; Xu, Yang Yang; Yang, Huan; Dong, Zehua; Liu, Hongfang; Xia, Bao Yu

    2018-04-01

    Zn-air batteries are becoming the promising power sources for portable and wearable electronic devices and hybrid/electric vehicles because of their high specific energy density and the low cost for next-generation green and sustainable energy technologies. An air electrode integrated with an oxygen electrocatalyst is the most important component and inevitably determines the performance and cost of a Zn-air battery. This article presents exciting advances and challenges related to air electrodes and their relatives. After a brief introduction of the Zn-air battery, the architectures and oxygen electrocatalysts of air electrodes and relevant electrolytes are highlighted in primary and rechargeable types with different configurations, respectively. Moreover, the individual components and major issues of flexible Zn-air batteries are also highlighted, along with the strategies to enhance the battery performance. Finally, a perspective for design, preparation, and assembly of air electrodes is proposed for the future innovations of Zn-air batteries with high performance.

  13. Food for thought: Impact of metabolism on neuronal excitability.

    PubMed

    Katsu-Jiménez, Yurika; Alves, Renato M P; Giménez-Cassina, Alfredo

    2017-11-01

    Neuronal excitability is a highly demanding process that requires high amounts of energy and needs to be exquisitely regulated. For this reason, brain cells display active energy metabolism to support their activity. Independently of their roles as energy substrates, compelling evidence shows that the nature of the fuels that neurons use contribute to fine-tune neuronal excitability. Crosstalk of neurons with glial populations also plays a prominent role in shaping metabolic flow in the brain. In this review, we provide an overview on how different carbon substrates and metabolic pathways impact neurotransmission, and the potential implications for neurological disorders in which neuronal excitability is deregulated, such as epilepsy. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Characterization of argon direct-current glow discharge with a longitudinal electric field applied at ambient air

    NASA Astrophysics Data System (ADS)

    Jiang, Weiman; Tang, Jie; Wang, Yishan; Zhao, Wei; Duan, Yixiang

    2014-09-01

    A direct-current-driven plasma jet is developed by applying a longitudinal electric field on the flowing argon at ambient air. This plasma shows a torch shape with its cross-section increased from the anode to the cathode. Comparison with its counterparts indicates that the gas flow plays a key role in variation of the plasma structure and contributes much to enlarging the plasma volume. It is also found that the circular hollow metal base promotes generation of plasma with a high-power volume density in a limited space. The optical emission spectroscopy (OES) diagnosis indicates that the plasma comprises many reactive species, such as OH, O, excited N2, and Ar metastables. Examination of the rotational and vibrational temperature indicates that the plasma is under nonequilibrium condition and the excited species OH(A 2Σ+), O(5P), and N2(C 3Πu) are partly generated by energy transfer from argon metastables. The spatially resolved OES of plasma reveals that the negative glow, Faraday dark space, and positive column are distributed across the gas gap. The absence of the anode glow is attributed to the fact that many electrons in the vicinity of the anode follow ions into the positive column due to the ambipolar diffusion in the flowing gas.

  15. Creation of the reduced-density region by a pulsing optical discharge in the supersonic air flow

    NASA Astrophysics Data System (ADS)

    Kiseleva, T. A.; Orishich, A. M.; Chirkashenko, V. F.; Yakovlev, V. I.

    2016-10-01

    As a result of optical and pneumometric measurements is defined the flow shock wave structure that is formed by the optical breakdown, due to focused repetitively pulsed CO2 laser radiation when entering perpendicular to a supersonic (M = 1.36, 1.9) air flow direction. The dynamics of the bow shock formation in front of the energy input area is shown, depending on the frequency of energy impulse sequence. A flow structure is defined in the thermal wake behind pulsing laser plasma as well as wake's length with low thermal heterogeneity. A three-dimensional configuration of the energy area is defined in accordance with pneumometric and optical measuring results. It is shown that Pitot pressure decreases in thermal wake at a substantially constant static pressure, averaged flow parameters weakly depend on the energy impulse's frequency in range of 45-150 kHz.

  16. An air brake model for longitudinal train dynamics studies

    NASA Astrophysics Data System (ADS)

    Wei, Wei; Hu, Yang; Wu, Qing; Zhao, Xubao; Zhang, Jun; Zhang, Yuan

    2017-04-01

    Experience of heavy haul train operation shows that heavy haul train fatigue fracture of coupler and its related components, even the accidents are caused by excessive coupler force. The most economical and effective method to study on train longitudinal impulse by reducing the coupler force is simulation method. The characteristics of train air brake system is an important excitation source for the study of longitudinal impulse. It is very difficult to obtain the braking characteristic by the test method, a better way to get the input parameters of the excitation source in the train longitudinal dynamics is modelling the train air brake system. In this paper, the air brake system model of integrated system of air brake and longitudinal dynamics is introduced. This introduce is focus on the locomotive automatic brake valve and vehicle distribution valve model, and the comparative analysis of the simulation and test results of the braking system is given. It is proved that the model can predict the characteristics of train braking system. This method provides a good solution for the excitation source of longitudinal dynamic analysis system.

  17. [Estimation of average traffic emission factor based on synchronized incremental traffic flow and air pollutant concentration].

    PubMed

    Li, Run-Kui; Zhao, Tong; Li, Zhi-Peng; Ding, Wen-Jun; Cui, Xiao-Yong; Xu, Qun; Song, Xian-Feng

    2014-04-01

    On-road vehicle emissions have become the main source of urban air pollution and attracted broad attentions. Vehicle emission factor is a basic parameter to reflect the status of vehicle emissions, but the measured emission factor is difficult to obtain, and the simulated emission factor is not localized in China. Based on the synchronized increments of traffic flow and concentration of air pollutants in the morning rush hour period, while meteorological condition and background air pollution concentration retain relatively stable, the relationship between the increase of traffic and the increase of air pollution concentration close to a road is established. Infinite line source Gaussian dispersion model was transformed for the inversion of average vehicle emission factors. A case study was conducted on a main road in Beijing. Traffic flow, meteorological data and carbon monoxide (CO) concentration were collected to estimate average vehicle emission factors of CO. The results were compared with simulated emission factors of COPERT4 model. Results showed that the average emission factors estimated by the proposed approach and COPERT4 in August were 2.0 g x km(-1) and 1.2 g x km(-1), respectively, and in December were 5.5 g x km(-1) and 5.2 g x km(-1), respectively. The emission factors from the proposed approach and COPERT4 showed close values and similar seasonal trends. The proposed method for average emission factor estimation eliminates the disturbance of background concentrations and potentially provides real-time access to vehicle fleet emission factors.

  18. Heterogeneities in Myocardial Flow and Metabolism: Exacerbation with Abnormal Excitation

    PubMed Central

    Bassingthwaighte, James B.; Li, Zheng

    2010-01-01

    Because regional myocardial blood flows are remarkably heterogeneous—with a 6- to 10-fold range of flows in normal hearts—and because the spatial profiles of the flows are stable over long periods and over a range of conditions, the relation between flows and other physiologic functions has been explored. Local fatty acid uptake and oxygen consumption are almost linearly related to the flows. Coronary network structure and hydrodynamic resistances give suitable flow heterogeneity but are thought to be a response to local needs rather than being causative. Presumably the cause is the need for adenosine triphosphate (ATP) synthesis locally, and therefore flows, substrate delivery, and oxygen utilization are driven primarily by local rates of ATP hydrolysis, mainly by contractile proteins. This hypothesis is by no means fully tested. Data on pacing dog hearts from different sites, on patients with left bundle branch block, and on unloading transplanted rat hearts, all point in the same direction: unloading ventricular muscle leads to diminished flow and exaggeratedly diminished glucose uptake. The mechanism is likely to be that discovered by Taegtmeyer and colleagues, namely, the expression of fetal genes in regions where the muscle is unloaded and particular metabolic enzymes and transporters are downregulated. PMID:10750580

  19. Blades Forced Vibration Under Aero-Elastic Excitation Modeled by Van der Pol

    NASA Astrophysics Data System (ADS)

    Pust, Ladislav; Pesek, Ludek

    This paper employs a new analytical approach to model the influence of aerodynamic excitation on the dynamics of a bladed cascade at the flutter state. The flutter is an aero-elastic phenomenon that is linked to the interaction of the flow and the traveling deformation wave in the cascade when only the damping of the cascade changes. As a case study the dynamic properties of the five-blade-bunch excited by the running harmonic external forces and aerodynamic self-excited forces are investigated. This blade-bunch is linked in the shroud by means of the viscous-elastic damping elements. The external running excitation depends on the ratio of stator and rotor blade numbers and corresponds to the real type of excitation in the steam turbine. The aerodynamic self-excited forces are modeled by two types of Van der Pol nonlinear models. The influence of the interaction of both types of self-excitation with the external running excitation is investigated on the response curves.

  20. Marangoni-flow-induced partial coalescence of a droplet on a liquid/air interface

    NASA Astrophysics Data System (ADS)

    Sun, Kai; Zhang, Peng; Che, Zhizhao; Wang, Tianyou

    2018-02-01

    The coalescence of a droplet and a liquid/air interface of lower surface tension was numerically studied by using the lattice Boltzmann phase-field method. The experimental phenomenon of droplet ejection observed by Blanchette et al. [Phys. Fluids 21, 072107 (2009), 10.1063/1.3177339] at sufficiently large surface tension differences was successfully reproduced for the first time. Furthermore, the emergence, disappearance, and re-emergence of "partial coalescence" with increasing surface tension difference was observed and explained. The re-emergence of partial coalescence under large surface tension differences is caused by the remarkable lifting motion of the Marangoni flow, which significantly retards the vertical collapse. Two different modes of partial coalescence were identified by the simulation, namely peak injection occurs at lower Ohnesorge numbers and bottom pinch-off at higher Ohnesorge numbers. By comparing the characteristic timescales of the upward Marangoni flow with that of the downward flow driven by capillary pressure, a criterion for the transition from partial to total coalescence was derived based on scaling analysis and numerically validated.

  1. Reversible inactivation and excitation of nucleus raphe magnus can modulate tail blood flow of male Wistar rats in response to hypothermia.

    PubMed

    Malakouti, Seyed Mansour; Kourosh Arami, Masoomeh; Sarihi, Abdorahman; Hajizadeh, Sohrab; Behzadi, Gila; Shahidi, Siamak; Komaki, Alireza; Heshmatian, Behnam; Vahabian, Mehrangiz

    2008-10-01

    The nucleus raphe magnus (NRM) is involved in thermoregulatory processing. There is a correlation between changes in the firing rates of the cells in the NRM and the application of the peripheral thermal stimulus. we examined the effect of reversible inactivation and excitation of NRM on mechanisms involved in tail blood flow (TBF) regulation in hypothermia. Hypothermia was induced in Male Wistar rats and cannula was implanted above the NRM. To evaluate the effect of nucleus inactivation on TBF, the amount of TBF was measured by Laser Doppler in hypothermic rats, before and after lidocaine microinjection into NRM. TBF was also measured after glutamate microinjection to assess the effect of nucleus excitation in hypothermic rats. Results indicated that after dropping TBF by hypothermia, microinjection of lidocaine into NRM significantly decreased TBF from 54.43 +- 5.7 to 46.81 +- 3.4, whereas glutamate microinjection caused a significant increase from 44.194 +- 0.6 to 98 +- 10.0 CONCLUSION: These data suggest that NRM have thermoregulatory effect in response to hypothermia.

  2. Moxa-stick suffumigation for disinfecting air in hematology and hematopoietic stem cell transplantation wards with class 100 laminar flow.

    PubMed

    He, Jing-song; Yang, Qing; Huang, Wei-jia; Hu, Xiao-rong

    2014-04-01

    To evaluate the effect of moxa-stick suffumigation in the hematology and hematopoietic stem cell transplantation (HSCT) wards with luminar flow. The plate exposure method was used to measure the effect of air-disinfection of moxa-stick suffumigation in hematology and HSCT wards. The yearly average qualified rates of air sampling in HSCT wards were evaluated from 2007 to 2010. To further investigate the disinfecting effect of moxa-stick suffumigation, the colony counts of common pathogens (including Staphylcoccus aureus and Pseudomonas aeruginosa) before and after moxa-stick suffumigation were compared. The mean air quality rates of the HSCT wards with class 100 laminar flow were all above 90.0% (91.2%-96.2%) from 2007 to 2010. Moxa-stick suffumigation effectively decreased the presence of bacteria in the hematology ward's air (P<0.01). The most notable effect was the drastic reduction in the colony counts of Staphylococcus aureus and Pseudomonas aeruginosa on the blood plates exposed to air treated with moxa-stick suffumigation (77.1±52.9 cfu/m(2) vs 196.1±87.5 cfu/m(2), P<0.01; and 100.2±35.3 cfu/m(2) vs 371.5±35.3 cfu/m(2), P<0.01). Moxa-stick suffumigation proved to be a reliable and effective airdisinfection method for hematology and HSCT wards, and hence, it should be employed extensively.

  3. Simplifications of the RELIEF flow tagging system for laboratory use. [Raman Excitation plus Laser Induced Electronic Fluorescence

    NASA Technical Reports Server (NTRS)

    Lempert, Walter R.; Zhang, Boying; Miles, Richard B.; Diskin, Glenn

    1991-01-01

    The use of an O2:He stimulated Raman cell to generate the Stokes beam for the Raman vibrational pumping step of the RELIEF (Raman Excitation plus Laser-Induced Electronic Fluorescence) flow tagging method is reported. Use of the Raman cell rather than a dye laser provides pump and Stokes beams which are automatically frequency matched and temporally and spatially overlapped. The Nd:YAG pump laser is operated multilongitudinal mode, which eliminates the need for injection seeding, resulting in decreased operation complexity and improved stability with respect to acoustic noise. Results are presented for 1st Stokes conversion efficiency and stimulated Brillouin backscattering loss and are compared to the case of pure O2. Scanning CARS measurements of the Q-branch lineshape for both pure O2 and the O2:He mixture are also presented.

  4. Flow and free running speed characterization of dental air turbine handpieces.

    PubMed

    Dyson, J E; Darvell, B W

    1999-09-01

    Dental air turbine handpieces have been widely used in clinical dentistry for over 30 years, yet little work has been reported on their performance. A few studies have been concerned with measurement of speed (i.e. rotation rate), torque and power performance of these devices, but neither investigations of functional relationships between controlling variables nor theory dealing specifically with this class of turbine have been reported. This has hindered the development of satisfactory methods of handpiece specification and of testing dental rotary cutting tools. It was the intention of the present work to remedy that deficiency. Measurements of pressure, temperature, gas flow rate and rotation rate were made with improved accuracy and precision for 14 ball bearing turbine handpieces on several gases. Functional relationships between gas properties, supply pressure, flow rate, turbine design factors and free running speed were identified and equations describing these aspects of behaviour of this class of turbine developed. The rotor radius, through peripheral Mach number, was found to be a major determinant of speed performance. In addition, gas flow was found to be an important limiting factor through the effect of choke. Each dental handpiece can be treated as a simple orifice of a characteristic cross-sectional area. Free running speed can be explained in terms of gas properties and pressure, with allowance for a design-specific performance coefficient.

  5. Method and apparatus for monitoring characteristics of a flow path having solid components flowing therethrough

    DOEpatents

    Hoskinson, Reed L [Rigby, ID; Svoboda, John M [Idaho Falls, ID; Bauer, William F [Idaho Falls, ID; Elias, Gracy [Idaho Falls, ID

    2008-05-06

    A method and apparatus is provided for monitoring a flow path having plurality of different solid components flowing therethrough. For example, in the harvesting of a plant material, many factors surrounding the threshing, separating or cleaning of the plant material and may lead to the inadvertent inclusion of the component being selectively harvested with residual plant materials being discharged or otherwise processed. In accordance with the present invention the detection of the selectively harvested component within residual materials may include the monitoring of a flow path of such residual materials by, for example, directing an excitation signal toward of flow path of material and then detecting a signal initiated by the presence of the selectively harvested component responsive to the excitation signal. The detected signal may be used to determine the presence or absence of a selected plant component within the flow path of residual materials.

  6. Monitoring Temperature in High Enthalpy Arc-heated Plasma Flows using Tunable Diode Laser Absorption Spectroscopy

    NASA Technical Reports Server (NTRS)

    Martin, Marcel Nations; Chang, Leyen S.; Jeffries, Jay B.; Hanson, Ronald K.; Nawaz, Anuscheh; Taunk, Jaswinder S.; Driver, David M.; Raiche, George

    2013-01-01

    A tunable diode laser sensor was designed for in situ monitoring of temperature in the arc heater of the NASA Ames IHF arcjet facility (60 MW). An external cavity diode laser was used to generate light at 777.2 nm and laser absorption used to monitor the population of electronically excited oxygen atoms in an air plasma flow. Under the assumption of thermochemical equilibrium, time-resolved temperature measurements were obtained on four lines-of-sight, which enabled evaluation of the temperature uniformity in the plasma column for different arcjet operating conditions.

  7. Electron-Beam Diagnostic Methods for Hypersonic Flow Diagnostics

    NASA Technical Reports Server (NTRS)

    1994-01-01

    The purpose of this work was the evaluation of the use of electron-bean fluorescence for flow measurements during hypersonic flight. Both analytical and numerical models were developed in this investigation to evaluate quantitatively flow field imaging concepts based upon the electron beam fluorescence technique for use in flight research and wind tunnel applications. Specific models were developed for: (1) fluorescence excitation/emission for nitrogen, (2) rotational fluorescence spectrum for nitrogen, (3) single and multiple scattering of electrons in a variable density medium, (4) spatial and spectral distribution of fluorescence, (5) measurement of rotational temperature and density, (6) optical filter design for fluorescence imaging, and (7) temperature accuracy and signal acquisition time requirements. Application of these models to a typical hypersonic wind tunnel flow is presented. In particular, the capability of simulating the fluorescence resulting from electron impact ionization in a variable density nitrogen or air flow provides the capability to evaluate the design of imaging instruments for flow field mapping. The result of this analysis is a recommendation that quantitative measurements of hypersonic flow fields using electron-bean fluorescence is a tractable method with electron beam energies of 100 keV. With lower electron energies, electron scattering increases with significant beam divergence which makes quantitative imaging difficult. The potential application of the analytical and numerical models developed in this work is in the design of a flow field imaging instrument for use in hypersonic wind tunnels or onboard a flight research vehicle.

  8. Harnessing the Flow of Excitation: TRP, Voltage-Gated Na(+), and Voltage-Gated Ca(2+) Channels in Contemporary Medicine.

    PubMed

    Frolov, Roman V; Weckström, Matti

    2016-01-01

    Cellular signaling in both excitable and nonexcitable cells involves several classes of ion channels. Some of them are of minor importance, with very specialized roles in physiology, but here we concentrate on three major channel classes: TRP (transient receptor potential channels), voltage-gated sodium channels (Nav), and voltage-gated calcium channels (Cav). Here, we first propose a conceptual framework binding together all three classes of ion channels, a "flow-of-excitation model" that takes into account the inputs mediated by TRP and other similar channels, the outputs invariably provided by Cav channels, and the regenerative transmission of signals in the neural networks, for which Nav channels are responsible. We use this framework to examine the function, structure, and pharmacology of these channel classes both at cellular and also at whole-body physiological level. Building on that basis we go through the pathologies arising from the direct or indirect malfunction of the channels, utilizing ion channel defects, the channelopathies. The pharmacological interventions affecting these channels are numerous. Part of those are well-established treatments, like treatment of hypertension or some forms of epilepsy, but many other are deeply problematic due to poor drug specificity, ion channel diversity, and widespread expression of the channels in tissues other than those actually targeted. © 2016 Elsevier Inc. All rights reserved.

  9. High enthalpy arc-heated plasma flow diagnostics by tunable diode laser absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Lin, Xin; Chen, Lianzhong; Zeng, Hui; Ou, Dongbin; Dong, Yonghui

    2017-05-01

    This paper reports the laser absorption measurements of atomic oxygen in the FD04 arc-heater at China Academy of Aerospace Aerodynamics (CAAA). An atomic oxygen absorption line at 777.19 nm is utilizied for detecting the population of electronically excited oxygen atom in an air plasma flow. A scanned-wavelength direct absorption mode is used in this study. The laser is scanned in wavelength across the absorption feature at a rate of 200 Hz. Under the assumption of thermal equilibrium, time-resolved temperature measurements are obtained on one line-of-sight in the arc-heater. The good agreement of the temperature inferred from the sonic throat method suggests the equilibrium assumption is valid. These results illustrate the feasibility of the diode laser sensors for flow parameters in high enthalpy arc-heated facilities.

  10. Flow Separation Side Loads Excitation of Rocket Nozzle FEM

    NASA Technical Reports Server (NTRS)

    Smalley, Kurt B.; Brown, Andrew; Ruf, Joseph; Gilbert, John

    2007-01-01

    Modern rocket nozzles are designed to operate over a wide range of altitudes, and are also built with large aspect ratios to enable high efficiencies. Nozzles designed to operate over specific regions of a trajectory are being replaced in modern launch vehicles by those that are designed to operate from earth to orbit. This is happening in parallel with modern manufacturing and wall cooling techniques allowing for larger aspect ratio nozzles to be produced. Such nozzles, though operating over a large range of altitudes and ambient pressures, are typically designed for one specific altitude. Above that altitude the nozzle flow is 'underexpanded' and below that altitude, the nozzle flow is 'overexpanded'. In both conditions the nozzle produces less than the maximum possible thrust at that altitude. Usually the nozzle design altitude is well above sea level, leaving the nozzle flow in an overexpanded state for its start up as well as for its ground testing where, if it is a reusable nozzle such as the Space Shuttle Main Engine (SSME), the nozzle will operate for the majority of its life. Overexpansion in a rocket nozzle presents the critical, and sometimes design driving, problem of flow separation induced side loads. To increase their understanding of nozzle side loads, engineers at MSFC began an investigation in 2000 into the phenomenon through a task entitled "Characterization and Accurate Modeling of Rocket Engine Nozzle Side Loads", led by A. Brown. The stated objective of this study was to develop a methodology to accurately predict the character and magnitude of nozzle side loads. The study included further hot-fire testing of the MC-l engine, cold flow testing of subscale nozzles, CFD analyses of both hot-fire and cold flow nozzle testing, and finite element (fe.) analysis of the MC-1 engine and cold flow tested nozzles. A follow on task included an effort to formulate a simplified methodology for modeling a side load during a two nodal diameter fluid

  11. Performance evaluation on an air-cooled heat exchanger for alumina nanofluid under laminar flow.

    PubMed

    Teng, Tun-Ping; Hung, Yi-Hsuan; Teng, Tun-Chien; Chen, Jyun-Hong

    2011-08-09

    This study analyzes the characteristics of alumina (Al2O3)/water nanofluid to determine the feasibility of its application in an air-cooled heat exchanger for heat dissipation for PEMFC or electronic chip cooling. The experimental sample was Al2O3/water nanofluid produced by the direct synthesis method at three different concentrations (0.5, 1.0, and 1.5 wt.%). The experiments in this study measured the thermal conductivity and viscosity of nanofluid with weight fractions and sample temperatures (20-60°C), and then used the nanofluid in an actual air-cooled heat exchanger to assess its heat exchange capacity and pressure drop under laminar flow. Experimental results show that the nanofluid has a higher heat exchange capacity than water, and a higher concentration of nanoparticles provides an even better ratio of the heat exchange. The maximum enhanced ratio of heat exchange and pressure drop for all the experimental parameters in this study was about 39% and 5.6%, respectively. In addition to nanoparticle concentration, the temperature and mass flow rates of the working fluid can affect the enhanced ratio of heat exchange and pressure drop of nanofluid. The cross-section aspect ratio of tube in the heat exchanger is another important factor to be taken into consideration.

  12. Performance evaluation on an air-cooled heat exchanger for alumina nanofluid under laminar flow

    PubMed Central

    2011-01-01

    This study analyzes the characteristics of alumina (Al2O3)/water nanofluid to determine the feasibility of its application in an air-cooled heat exchanger for heat dissipation for PEMFC or electronic chip cooling. The experimental sample was Al2O3/water nanofluid produced by the direct synthesis method at three different concentrations (0.5, 1.0, and 1.5 wt.%). The experiments in this study measured the thermal conductivity and viscosity of nanofluid with weight fractions and sample temperatures (20-60°C), and then used the nanofluid in an actual air-cooled heat exchanger to assess its heat exchange capacity and pressure drop under laminar flow. Experimental results show that the nanofluid has a higher heat exchange capacity than water, and a higher concentration of nanoparticles provides an even better ratio of the heat exchange. The maximum enhanced ratio of heat exchange and pressure drop for all the experimental parameters in this study was about 39% and 5.6%, respectively. In addition to nanoparticle concentration, the temperature and mass flow rates of the working fluid can affect the enhanced ratio of heat exchange and pressure drop of nanofluid. The cross-section aspect ratio of tube in the heat exchanger is another important factor to be taken into consideration. PMID:21827644

  13. Calculation of air movement in ice caves by using the CalcFlow method

    NASA Astrophysics Data System (ADS)

    Meyer, Christiane; Pflitsch, Andreas; Maggi, Valter

    2017-04-01

    We present a method to determine the air flow regime within ice caves by temperature loggers. Technical capabilities of conducting airflow measurements are restricted by the availability of energy at the ice cave study sites throughout the year. Though the knowledge of the airflow regime is a prerequisite for the understanding of the cave climate. By cross-correlating different time series of air temperature measurements inside a cave, we define the travel time of the air between the loggers, which corresponds to the time shift of best correlation, and use this result to derive the airflow speed. Then we estimate the temperature biases and scale factors for the temperature variations observed by the different loggers by a least squares adjustment. As quality control for bias and scale we use the formal errors of the estimation process. For the calculated airflow speed quality criteria are developed by use of a simulation study. Furthermore we will apply the method to temperature measurements in the static ice cave Schellenberger Eishöhle (Germany). In the end we show how the method can be used as an advanced filter for the separation of different signal contents of the temperature measurements.

  14. Mixed-mode VLSI optic flow sensors for in-flight control of a micro air vehicle

    NASA Astrophysics Data System (ADS)

    Barrows, Geoffrey L.; Neely, C.

    2000-11-01

    NRL is developing compact optic flow sensors for use in a variety of small-scale navigation and collision avoidance tasks. These sensors are being developed for use in micro air vehicles (MAVs), which are autonomous aircraft whose maximum dimension is on the order of 15 cm. To achieve desired weight specifications of 1 - 2 grams, mixed-signal VLSI circuitry is being used to develop compact focal plane sensors that directly compute optic flow. As an interim proof of principle, we have constructed a sensor comprising a focal plane sensor head with on-chip processing and a back-end PIC microcontroller. This interim sensors weighs approximately 25 grams and is able to measure optic flow with real-world and low-contrast textures. Variations of this sensor have been used to control the flight of a glider in real-time to avoid collisions with walls.

  15. Bellows flow-induced vibrations

    NASA Technical Reports Server (NTRS)

    Tygielski, P. J.; Smyly, H. M.; Gerlach, C. R.

    1983-01-01

    The bellows flow excitation mechanism and results of comprehensive test program are summarized. The analytical model for predicting bellows flow induced stress is refined. The model includes the effects of an upstream elbow, arbitrary geometry, and multiple piles. A refined computer code for predicting flow induced stress is described which allows life prediction if a material S-N diagram is available.

  16. Flow visualization and acoustic consequences of the air moving through a static model of the human larynx.

    PubMed

    Kucinschi, Bogdan R; Scherer, Ronald C; DeWitt, Kenneth J; Ng, Terry T M

    2006-06-01

    Flow visualization with smoke particles illuminated by a laser sheet was used to obtain a qualitative description of the air flow structures through a dynamically similar 7.5x symmetric static scale model of the human larynx (divergence angle of 10 deg, minimal diameter of 0.04 cm real life). The acoustic level downstream of the vocal folds was measured by using a condenser microphone. False vocal folds (FVFs) were included. In general, the glottal flow was laminar and bistable. The glottal jet curvature increased with flow rate and decreased with the presence of the FVFs. The glottal exit flow for the lowest flow rate showed a curved jet which remained laminar for all geometries. For the higher flow rates, the jet flow patterns exiting the glottis showed a laminar jet core, transitioning to vortical structures, and leading spatially to turbulent dissipation. This structure was shortened and tightened with an increase in flow rate. The narrow FVF gap lengthened the flow structure and reduced jet curvature via acceleration of the flow. These results suggest that laryngeal flow resistance and the complex jet flow structure exiting the glottis are highly affected by flow rate and the presence of the false vocal folds. Acoustic consequences are discussed in terms of the quadrupole- and dipole-type sound sources due to ordered flow structures.

  17. Corticospinal excitability is associated with hypocapnia but not changes in cerebral blood flow

    PubMed Central

    Hartley, Geoffrey L.; Watson, Cody L.; Ainslie, Philip N.; Tokuno, Craig D.; Greenway, Matthew J.; Gabriel, David A.; O'Leary, Deborah D.

    2016-01-01

    Key points Reductions in cerebral blood flow (CBF) may be implicated in the development of neuromuscular fatigue; however, the contribution from hypocapnic‐induced reductions (i.e. P ETC O2) in CBF versus reductions in CBF per se has yet to be isolated.We assessed neuromuscular function while using indomethacin to selectively reduce CBF without changes in P ETC O2 and controlled hyperventilation‐induced hypocapnia to reduce both CBF and P ETC O2.Increased corticospinal excitability appears to be exclusive to reductions in P ETC O2 but not reductions in CBF, whereas sub‐optimal voluntary output from the motor cortex is moderately associated with decreased CBF independent of changes in P ETC O2.These findings suggest that changes in CBF and P ETC O2 have distinct roles in modulating neuromuscular function. Abstract Although reductions in cerebral blood flow (CBF) may be involved in central fatigue, the contribution from hypocapnia‐induced reductions in CBF versus reductions in CBF per se has not been isolated. This study examined whether reduced arterial PCO2 (P aC O2), independent of concomitant reductions in CBF, impairs neuromuscular function. Neuromuscular function, as indicated by motor‐evoked potentials (MEPs), maximal M‐wave (M max) and cortical voluntary activation (cVA) of the flexor carpi radialis muscle during isometric wrist flexion, was assessed in ten males (29 ± 10 years) during three separate conditions: (1) cyclooxygenase inhibition using indomethacin (Indomethacin, 1.2 mg kg−1) to selectively reduce CBF by 28.8 ± 10.3% (estimated using transcranial Doppler ultrasound) without changes in end‐tidal PCO2 (P ETC O2); (2) controlled iso‐oxic hyperventilation‐induced reductions in P aC O2 (Hypocapnia), P ETC O2  = 30.1 ± 4.5 mmHg with related reductions in CBF (21.7 ± 6.3%); and (3) isocapnic hyperventilation (Isocapnia) to examine the potential direct influence of hyperventilation‐mediated activation of respiratory

  18. Modal forced vibration analysis of aerodynamically excited turbosystems

    NASA Technical Reports Server (NTRS)

    Elchuri, V.

    1985-01-01

    Theoretical aspects of a new capability to determine the vibratory response of turbosystems subjected to aerodynamic excitation are presented. Turbosystems such as advanced turbopropellers with highly swept blades, and axial-flow compressors and turbines can be analyzed using this capability. The capability has been developed and implemented in the April 1984 release of the general purpose finite element program NASTRAN. The dynamic response problem is addressed in terms of the normal modal coordinates of these tuned rotating cyclic structures. Both rigid and flexible hubs/disks are considered. Coriolis and centripetal accelerations, as well as differential stiffness effects are included. Generally non-uniform steady inflow fields and uniform flow fields arbitrarily inclined at small angles with respect to the axis of rotation of the turbosystem are considered sources of aerodynamic excitation. The spatial non-uniformities are considered to be small deviations from a principally uniform inflow. Subsonic and supersonic relative inflows are addressed, with provision for linearly interpolating transonic airloads.

  19. High-Flow, Heated, Humidified Air Via Nasal Cannula Treats CPAP-Intolerant Children With Obstructive Sleep Apnea

    PubMed Central

    Hawkins, Stephen; Huston, Stephanie; Campbell, Kristen; Halbower, Ann

    2017-01-01

    Study Objectives: Continuous positive airway pressure (CPAP) is effective but challenging for children with obstructive sleep apnea (OSA). High-flow air via open nasal cannula (HFNC) as treatment in children remains controversial. We report the efficacy of HFNC in children with OSA and CPAP intolerance, a titration protocol, and a discussion of potential mechanisms. Methods: Patients aged 1 to 18 years with OSA (defined by obstructive apnea-hypopnea index [OAHI] greater than 1 event/h) and CPAP intolerance were enrolled. Routine polysomnography data obtained during 1 night wearing HFNC was compared with diagnostic data by Wilcoxon rank-sum test. Results: Ten school-age subjects (representing all patients attempting HFNC at our institution to date) with varied medical conditions, moderate to severe OSA, and CPAP intolerance wore HFNC from 10 to 50 L/min of room air with oxygen supplementation if needed (room air alone for 6 of the 10). HFNC reduced median OAHI from 11.1 events/h (interquartile range 8.7–18.8 events/h) to 2.1 events/h (1.7–2.2 events/h; P = .002); increased oxyhemoglobin saturation (SpO2) mean from 91.3% (89.6% to 93.5%) to 94.9% (92.4% to 96.0%; P < .002); increased SpO2 nadir from 76.0% (67.3% to 82.3%) to 79.5% (77.2% to 86.0%; P = .032); decreased SpO2 desaturation index from 19.2 events/h (12.7–25.8 events/h) to 6.4 events/h (4.7–10.7 events/h; P = .013); and reduced heart rate from 88 bpm (86–91 bpm) to 74 bpm (67–81 bpm; P = .004). Stratified analysis of the 6 subjects with only room air via HFNC, the OAHI, obstructive hypopnea index, and mean SpO2 still demonstrated improvements (P = .031). Conclusions: High-flow nasal cannula reduces respiratory events, improves oxygenation, reduces heart rate, and may be effective for CPAP intolerant children with moderate to severe OSA. Our data suggest HFNC warrants further study and consideration by payers as OSA therapy. Citation: Hawkins S, Huston S, Campbell K, Halbower A. High-flow

  20. Chemical Production of Vibrationally Excited Carbon Monoxide from Carbon Vapor and Molecular Oxygen Precursors

    NASA Astrophysics Data System (ADS)

    Frederickson, Kraig; Musci, Ben; Rich, J. William; Adamovich, Igor

    2015-09-01

    Recent results demonstrating the formation of vibrationally excited carbon monoxide from carbon vapor and molecular oxygen will be presented. Previous reaction dynamics simulations and crossed molecular beam experiments have shown that gas-phase reaction of carbon atoms and molecular oxygen produces vibrationally excited carbon monoxide. The present work examines the product distribution of this reaction in a collision dominated environment, at a pressure of several Torr. Carbon vapor is produced in an AC arc discharge in argon buffer operated at a voltage of approximately 1 kV and current of 10 A, and mixed with molecular oxygen, which may also be excited by an auxiliary RF discharge, in a flowing chemical reactor. Identification of chemical reaction products and inference of their vibrational populations is performed by comparing infrared emission spectra of the flow in the reactor, taken by a Fourier Transform IR spectrometer, with synthetic spectra. Estimates of vibrationally excited carbon monoxide concentration and relative vibrational level populations will be presented.