Sample records for air force-nasa x-24

  1. X-24B launch - air drop from mothership

    NASA Technical Reports Server (NTRS)

    1974-01-01

    A fleet of lifting bodies flown at the NASA Flight Research Center, Edwards, California, from 1963 to l975 demonstrated the ability of pilots to maneuver (in the atmosphere) and safely land a wingless vehicle. These lifting bodies were basically designed so they could fly back to Earth from space and be landed like an aircraft at a pre-determined site. (In 1976 NASA renamed the FRC as the NASA Dryden Flight Research Center in honor of Hugh L. Dryden.) In 1962, FRC Director Paul Bikle approved a program to build a lightweight, unpowered lifting body as a prototype to flight test the wingless concept. It would look like a 'flying bathtub,' and was designated the M2-F1. It featured a plywood shell, built by Gus Briegleb (a sailplane builder from El Mirage, California) placed over a tubular steel frame crafted at the FRC. Construction was completed in 1963. The success of the Flight Research Center M2-F1 program led to NASA development and construction of two heavyweight lifting bodies based on studies at the NASA Ames and Langley research centers--the M2-F2 and the HL-10, both built by the Northrop Corporation, Hawthorne, California. The Air Force also became interested in lifting body research and had a third design concept built, the X-24A, built by the Martin Company, Denver, Colorado. It was later modified into the X-24B and both configurations were flown in the joint NASA-Air Force lifting body program located at Dryden. The X-24B design evolved from a family of potential reentry shapes, each with higher lift-to-drag ratios, proposed by the Air Force Flight Dynamics Laboratory. To reduce the costs of constructing a research vehicle, the Air Force returned the X-24A to Martin for modifications that converted its bulbous shape into one resembling a 'flying flatiron' -- rounded top, flat bottom, and a double-delta planform that ended in a pointed nose. First to fly the X-24B was John A. Manke, a glide flight on August 1, 1973. He was also the pilot on the first

  2. NASA/Air Force Cost Model: NAFCOM

    NASA Technical Reports Server (NTRS)

    Winn, Sharon D.; Hamcher, John W. (Technical Monitor)

    2002-01-01

    The NASA/Air Force Cost Model (NAFCOM) is a parametric estimating tool for space hardware. It is based on historical NASA and Air Force space projects and is primarily used in the very early phases of a development project. NAFCOM can be used at the subsystem or component levels.

  3. X-24B with Test Pilot Michael V. Love

    NASA Technical Reports Server (NTRS)

    1973-01-01

    This photo shows Air Force Lieutenant Colonel Michael V. Love in front of the X-24B lifting-body research vehicle at Edwards Air Force Base in 1973. Love was assigned as a project pilot on the joint NASA-USAF X-24B Lifting Body flight test program at the NASA Flight Research Center. He made a total of 12 flights in the plane from October 4, 1973 until July 15, 1975. Love flew it to a speed of Mach 1.76 on October 25, 1974, a record for the X-24B. Love attended the USAF Test Pilot School and remained as an instructor there from 1969 through 1971. He was a test pilot at Edwards when assigned to fly to the X-24B. Love was a combat veteran of Vietnam and was awarded the Distinguished Flying Cross with two Oak Leaf clusters. Love perished while attempting an emergency landing in an RF-4C on March 1, 1976. The X-24B was the last aircraft to fly in the Dryden Flight Research Center's manned lifting body program. The X-24 was one of a group of lifting bodies flown by the NASA Flight Research Center (now Dryden Flight Research Center), Edwards, California, in a joint program with the U.S. Air Force at Edwards Air Force Base from 1963 to 1975. The lifting bodies were used to demonstrate the ability of pilots to maneuver and safely land wingless vehicles designed to fly back to Earth from space and be landed like an airplane at a predetermined site. Lifting bodies' aerodynamic lift, essential to flight in the atmosphere, was obtained from their shape. The addition of fins and control surfaces allowed the pilots to stabilize and control the vehicles and regulate their flight paths. Built by Martin Aircraft Company, Maryland, for the U.S. Air Force, the X-24A was a bulbous vehicle shaped like a teardrop with three vertical fins at the rear for directional control. It weighed 6,270 pounds, was 24.5 feet long and 11.5 feet wide (measuring just the fuselage, not the distance between the tips of the outboard fins). Its first unpowered glide flight was on April 17, 1969, with Air

  4. X-24B on Lakebed Showing Upper Body Shape

    NASA Technical Reports Server (NTRS)

    1972-01-01

    The sleek, futuristic shape of the X-24B lifting body research vehicle can be clearly seen in this look-down view of the aircraft on Rogers Dry Lake, adjacent to the NASA Flight Research Center, Edwards, California. The X-24 was one of a group of lifting bodies flown by the NASA Flight Research Center (now Dryden Flight Research Center), Edwards, California, in a joint program with the U.S. Air Force at Edwards Air Force Base from 1963 to 1975. The lifting bodies were used to demonstrate the ability of pilots to maneuver and safely land wingless vehicles designed to fly back to Earth from space and be landed like an airplane at a predetermined site. Lifting bodies' aerodynamic lift, essential to flight in the atmosphere, was obtained from their shape. The addition of fins and control surfaces allowed the pilots to stabilize and control the vehicles and regulate their flight paths. Built by Martin Aircraft Company, Maryland, for the U.S. Air Force, the X-24A was a bulbous vehicle shaped like a teardrop with three vertical fins at the rear for directional control. It weighed 6,270 pounds, was 24.5 feet long and 11.5 feet wide (measuring just the fuselage, not the distance between the tips of the outboard fins). Its first unpowered glide flight was on April 17, 1969, with Air Force Maj. Jerauld Gentry at the controls. Gentry also piloted its first powered flight on March 19, 1970. The X-24A was flown 28 times in the program that, like the HL-10, validated the concept that a Space Shuttle vehicle could be landed unpowered. The fastest speed achieved by the X-24A was 1,036 miles per hour (mph-Mach 1.6). Its maximum altitude was 71,400 feet. It was powered by an XLR-11 rocket engine with a maximum theoretical vacuum thrust of 8,480 pounds. The X-24A was later modified into the X-24B. The bulbous shape of the X-24A was converted into a 'flying flatiron' shape with a rounded top, flat bottom, and double delta platform that ended in a pointed nose. The X-24B demonstrated

  5. X-24B with Test Pilot Lt. Col. Michael V. Love

    NASA Technical Reports Server (NTRS)

    1976-01-01

    This photo shows Air Force Lieutenant Colonel Michael V. Love in front of the X-24B lifting body research vehicle at Edwards Air Force Base in 1976. Love was assigned as a project pilot on the joint NASA-USAF X-24B Lifting Body flight test program at the NASA Flight Research Center. He made a total of 12 flights in the plane from October 4, 1973 until July 15, 1975. Love flew it to a speed of Mach 1.76 on October 25, 1974, a record for the X-24B. Love attended the USAF Test Pilot School and remained as an instructor there from 1969 through 1971. He was a test pilot at Edwards when assigned to fly to the X-24B. Love was a combat veteran of Vietnam and was awarded the Distinguished Flying Cross with two Oak Leaf clusters. Love perished while attempting an emergency landing in an RF-4C on March 1, 1976 - less than a month after this photo was taken. The X-24B was the last aircraft to fly in the Dryden Flight Research Center's manned lifting body program. The X-24 was one of a group of lifting bodies flown by the NASA Flight Research Center (now Dryden Flight Research Center), Edwards, California, in a joint program with the U.S. Air Force at Edwards Air Force Base from 1963 to 1975. The lifting bodies were used to demonstrate the ability of pilots to maneuver and safely land wingless vehicles designed to fly back to Earth from space and be landed like an airplane at a predetermined site. Lifting bodies' aerodynamic lift, essential to flight in the atmosphere, was obtained from their shape. The addition of fins and control surfaces allowed the pilots to stabilize and control the vehicles and regulate their flight paths. Built by Martin Aircraft Company, Maryland, for the U.S. Air Force, the X-24A was a bulbous vehicle shaped like a teardrop with three vertical fins at the rear for directional control. It weighed 6,270 pounds, was 24.5 feet long and 11.5 feet wide (measuring just the fuselage, not the distance between the tips of the outboard fins). Its first unpowered

  6. NASA's B377SGT Super Guppy Turbine cargo aircraft touches down at Edwards Air Force Base, Calif. on

    NASA Technical Reports Server (NTRS)

    2000-01-01

    NASA's B377SGT Super Guppy Turbine cargo aircraft touches down at Edwards Air Force Base, Calif. on June 11, 2000 to deliver the latest version of the X-38 flight test vehicle to NASA's Dryden Flight Research Center. The B-377SGT Super Guppy Turbine evolved from the 1960s-vintage Pregnant Guppy, Mini Guppy and Super Guppy, used for transporting sections of the Saturn rocket used for the Apollo program moon launches and other outsized cargo. The various Guppies were modified from 1940's and 50's-vintage Boeing Model 377 and C-97 Stratocruiser airframes by Aero Spacelines, Inc., which operated the aircraft for NASA. NASA's Flight Research Center assisted in certification testing of the first Pregnant Guppy in 1962. One of the turboprop-powered Super Guppies, built up from a YC-97J airframe, last appeared at Dryden in May, 1976 when it was used to transport the HL-10 and X-24B lifting bodies from Dryden to the Air Force Museum at Wright-Patterson Air Force Base, Ohio. NASA's present Super Guppy Turbine, the fourth and last example of the final version, first flew in its outsized form in 1980. It and its three sister ships were built in the 1970s for Europe's Airbus Industrie to ferry outsized structures for Airbus jetliners to the final assembly plant in Toulouse, France. It later was acquired by the European Space Agency, and then acquired by NASA in late 1997 for transport of large structures for the International Space Station to the launch site. It replaced the earlier-model Super Guppy, which has been retired and is used for spare parts. NASA's Super Guppy Turbine carries NASA registration number N941NA, and is based at Ellington Field near the Johnson Space Center. For more information on NASA's Super Guppy Turbine, log onto the Johnson Space Center Super Guppy web page at http://spaceflight.nasa.gov/station/assembly/superguppy/

  7. The Third Air Force/NASA Symposium on Recent Advances in Multidisciplinary Analysis and Optimization

    NASA Technical Reports Server (NTRS)

    1990-01-01

    The third Air Force/NASA Symposium on Recent Advances in Multidisciplinary Analysis and Optimization was held on 24-26 Sept. 1990. Sessions were on the following topics: dynamics and controls; multilevel optimization; sensitivity analysis; aerodynamic design software systems; optimization theory; analysis and design; shape optimization; vehicle components; structural optimization; aeroelasticity; artificial intelligence; multidisciplinary optimization; and composites.

  8. X-24A in Powered Flight after Drop from B-52 Mothership

    NASA Technical Reports Server (NTRS)

    1970-01-01

    The X-24A lights its XLR-11 rocket engine and begins its powered flight after being drop launched from its B-52 mothership, seen here with high-altitude contrails streaming from its wings against a piercingly dark blue sky. The X-24 was one of a group of lifting bodies flown by the NASA Flight Research Center (now Dryden Flight Research Center), Edwards, California, in a joint program with the U.S. Air Force at Edwards Air Force Base from 1963 to 1975. The lifting bodies were used to demonstrate the ability of pilots to maneuver and safely land wingless vehicles designed to fly back to Earth from space and be landed like an airplane at a predetermined site. Lifting bodies' aerodynamic lift, essential to flight in the atmosphere, was obtained from their shape. The addition of fins and control surfaces allowed the pilots to stabilize and control the vehicles and regulate their flight paths. Built by Martin Aircraft Company, Maryland, for the U.S. Air Force, the X-24A was a bulbous vehicle shaped like a teardrop with three vertical fins at the rear for directional control. It weighed 6,270 pounds, was 24.5 feet long and 11.5 feet wide (measuring just the fuselage, not the distance between the tips of the outboard fins). Its first unpowered glide flight was on April 17, 1969, with Air Force Maj. Jerauld Gentry at the controls. Gentry also piloted its first powered flight on March 19, 1970. The X-24A was flown 28 times in the program that, like the HL-10, validated the concept that a Space Shuttle vehicle could be landed unpowered. The fastest speed achieved by the X-24A was 1,036 miles per hour (mph-Mach 1.6). Its maximum altitude was 71,400 feet. It was powered by an XLR-11 rocket engine with a maximum theoretical vacuum thrust of 8,480 pounds. The X-24A was later modified into the X-24B. The bulbous shape of the X-24A was converted into a 'flying flatiron' shape with a rounded top, flat bottom, and double delta platform that ended in a pointed nose. The X-24B

  9. Aero Spacelines B377SG Super Guppy on Ramp Loading the X-24B and HL-10 Lifting Bodies.

    NASA Technical Reports Server (NTRS)

    1976-01-01

    The Aero Spacelines B377SG Super Guppy was at Dryden in May, 1976, to ferry the X-24 and HL-10 lifting bodies from the Center to the Air Force Museum at Wright-Patterson Air Force Base, Ohio. The oversized cargo aircraft is a further modification of the B377PG Pregnant Guppy, which was built to transport outsized cargo for NASA's Apollo program, primarily to carry portions of the Saturn V rockets from the manufacturer to Cape Canaveral. The original Guppy modification incorporated the wings, engines, lower fuselage and tail from a Boeing 377 Stratocruiser with a huge upper fuselage more than 20 feet in diameter. The Super Guppy further expanded the fuselage added a taller vertical tail for better lateral stability. A later version, the Super Guppy Turbine, is still in occasional use by NASA to transport oversize structures. The X-24 was one of a group of lifting bodies flown by the NASA Flight Research Center (now Dryden Flight Research Center), Edwards, California, in a joint program with the U.S. Air Force at Edwards Air Force Base from 1963 to 1975. The lifting bodies were used to demonstrate the ability of pilots to maneuver and safely land wingless vehicles designed to fly back to Earth from space and be landed like an airplane at a predetermined site. Lifting bodies' aerodynamic lift, essential to flight in the atmosphere, was obtained from their shape. The addition of fins and control surfaces allowed the pilots to stabilize and control the vehicles and regulate their flight paths. Built by Martin Aircraft Company, Maryland, for the U.S. Air Force, the X-24A was a bulbous vehicle shaped like a teardrop with three vertical fins at the rear for directional control. It weighed 6,270 pounds, was 24.5 feet long and 11.5 feet wide (measuring just the fuselage, not the distance between the tips of the outboard fins). Its first unpowered glide flight was on April 17, 1969, with Air Force Maj. Jerauld Gentry at the controls. Gentry also piloted its first powered

  10. The X-40A immediately after release from its harness suspended from a helicopter 15,000 feet above NASA's Dryden Flight Research Center at Edwards Air Force Base, California, on March 14, 2001

    NASA Image and Video Library

    2001-03-14

    The X-40A immediately after release from its harness suspended from a helicopter 15,000 feet above NASA's Dryden Flight Research Center at Edwards Air Force Base, California, on March 14, 2001. The unpiloted X-40 is a risk-reduction vehicle for the X-37, which is intended to be a reusable space vehicle. NASA's Marshall Space Flight Center in Huntsville, Ala, manages the X-37 project. At Dryden, the X-40A will undergo a series of ground and air tests to reduce possible risks to the larger X-37, including drop tests from a helicopter to check guidance and navigation systems planned for use in the X-37. The X-37 is designed to demonstrate technologies in the orbital and reentry environments for next-generation reusable launch vehicles that will increase both safety and reliability, while reducing launch costs from $10,000 per pound to $1,000 per pound.

  11. Hitching a ride on NASA's B-52 mother ship, the X-43A scramjet performed a captive carry evaluation flight from Edwards Air Force Base, California, January 26, 2004

    NASA Image and Video Library

    2004-01-26

    Hitching a ride on the same B-52 mother ship that once launched X-15 research aircraft in the 1960s, NASA's X-43A scramjet and it's Pegasus booster rocket performed a captive carry evaluation flight from Edwards Air Force Base, California, January 26, 2004. The X-43 and it's booster remained mated to the B-52 throughout this mission, intended to check its readiness for launch. The hydrogen-fueled aircraft is autonomous and has a wingspan of approximately 5 feet, measures 12 feet long and weighs about 2,800 pounds.

  12. NASA X-57 Simulator Prepares Pilots, Engineers for Flight of Electric X-Plane

    NASA Image and Video Library

    2016-11-29

    NASA Administrator Charlie Bolden, a former pilot and astronaut who flew on four shuttle missions, appeared natural at the controls of the X-57 simulator cockpit, and flew a pair of simulations where he landed on the Edwards Air Force Base runway.

  13. TRW Ships NASA's Chandra X-ray Observatory To Kennedy Space Center

    NASA Astrophysics Data System (ADS)

    1999-04-01

    Two U.S. Air Force C-5 Galaxy transport planes carrying the observatory and its ground support equipment landed at Kennedy's Space Shuttle Landing Facility at 2:40 p.m. EST this afternoon. REDONDO BEACH, CA.--(Business Wire)--Feb. 4, 1999--TRW has shipped NASA's Chandra X-ray Observatory ("Chandra") to the Kennedy Space Center (KSC), in Florida, in preparation for a Space Shuttle launch later this year. The 45-foot-tall, 5-ton science satellite will provide astronomers with new information on supernova remnants, the surroundings of black holes, and other celestial phenomena that produce vast quantities of X-rays. Cradled safely in the cargo hold of a tractor-trailer rig called the Space Cargo Transportation System (SCTS), NASA's newest space telescope was ferried on Feb. 4 from Los Angeles International Airport to KSC aboard an Air Force C-5 Galaxy transporter. The SCTS, an Air Force container, closely resembles the size and shape of the Shuttle cargo bay. Over the next few months, Chandra will undergo final tests at KSC and be mated to a Boeing-provided Inertial Upper Stage for launch aboard Space Shuttle Columbia. A launch date for the Space Shuttle STS-93 mission is expected to be announced later this week. The third in NASA's family of Great Observatories that includes the Hubble Space Telescope and the TRW-built Compton Gamma Ray observatory, Chandra will use the world's most powerful X-ray telescope to allow scientists to "see" and monitor cosmic events that are invisible to conventional optical telescopes. Chandra's X-ray images will yield new insight into celestial phenomena such as the temperature and extent of gas clouds that comprise clusters of galaxies and the superheating of gas and dust particles as they swirl into black holes. A TRW-led team that includes the Eastman Kodak Co., Raytheon Optical Systems Inc., and Ball Aerospace & Technologies Corp. designed and built the Chandra X-ray Observatory for NASA's Marshall Space Flight Center. The

  14. NASA Air Force Cost Model (NAFCOM): Capabilities and Results

    NASA Technical Reports Server (NTRS)

    McAfee, Julie; Culver, George; Naderi, Mahmoud

    2011-01-01

    NAFCOM is a parametric estimating tool for space hardware. Uses cost estimating relationships (CERs) which correlate historical costs to mission characteristics to predict new project costs. It is based on historical NASA and Air Force space projects. It is intended to be used in the very early phases of a development project. NAFCOM can be used at the subsystem or component levels and estimates development and production costs. NAFCOM is applicable to various types of missions (crewed spacecraft, uncrewed spacecraft, and launch vehicles). There are two versions of the model: a government version that is restricted and a contractor releasable version.

  15. Spacecraft environmental interactions: A joint Air Force and NASA research and technology program

    NASA Technical Reports Server (NTRS)

    Pike, C. P.; Purvis, C. K.; Hudson, W. R.

    1985-01-01

    A joint Air Force/NASA comprehensive research and technology program on spacecraft environmental interactions to develop technology to control interactions between large spacecraft systems and the charged-particle environment of space is described. This technology will support NASA/Department of Defense operations of the shuttle/IUS, shuttle/Centaur, and the force application and surveillance and detection missions, planning for transatmospheric vehicles and the NASA space station, and the AFSC military space system technology model. The program consists of combined contractual and in-house efforts aimed at understanding spacecraft environmental interaction phenomena and relating results of ground-based tests to space conditions. A concerted effort is being made to identify project-related environmental interactions of concern. The basic properties of materials are being investigated to develop or modify the materials as needed. A group simulation investigation is evaluating basic plasma interaction phenomena to provide inputs to the analytical modeling investigation. Systems performance is being evaluated by both groundbased tests and analysis.

  16. NASA/SpaceX TESS Rollout

    NASA Image and Video Library

    2018-04-16

    The SpaceX Falcon 9 rocket is ready to roll out to Space Launch Complex 40 at Cape Canaveral Air Force Station in Florida, with NASA's Transiting Exoplanet Survey Satellite (TESS) secured in its payload fairing. TESS will launch on the Falcon 9 no earlier than 6:51 p.m. EDT on April 18. TESS will search for planets outside of our solar system. The mission will find exoplanets that periodically block part of the light from their host stars, events called transits. The satellite will survey the nearest and brightest stars for two years to search for transiting exoplanets.

  17. NASA's SR-71B and F-18 HARV aircraft left Edwards Air Force Base, Calif., on March 24, 2003

    NASA Image and Video Library

    2003-03-24

    Dryden Flight Research Center's SR-71B Blackbird aircraft, NASA tail number 831, is destined for the Kalamazoo Air Zoo museum in Kalamazoo, Mich., and the F-18 High Angle-of-Attack Research Vehicle (HARV) aircraft, NASA tail number 840, is going to the Virginia Air and Space Center in Hampton, Va. NASA's SR-71B was one of only two SR-71 trainer aircraft built, and served NASA in that role, as well as for some high-speed research, from 1991 to 1999. The F-18 HARV provided some of the most comprehensive data on the high-angle-of-attack flight regime, flying at angles of up to 70 degrees from the horizontal. The HARV flew 385 research flights at Dryden from 1987 through 1996.

  18. X-38 flies free from NASA's B-52 mothership, July 10, 2001

    NASA Technical Reports Server (NTRS)

    2001-01-01

    The second free-flight test of an evolving series of X-38 prototypes took place July 10, 2001 when the X-38 was released from NASA's B-52 mothership over the Edwards Air Force Base range in California's Mojave Desert. Shortly after the photo was taken, a sequenced deployment of a drogue parachute followed by a large parafoil fabric wing slowed the X-38 to enable it to land safely on Rogers Dry Lake at Edwards. NASA engineers from the Dryden Flight Research Center at Edwards, and the Johnson Space Center, Houston, Texas, are developing a 'lifeboat' for the International Space Station based on X-38 research.

  19. X-38 flies free from NASA's B-52 mothership, July 10, 2001

    NASA Image and Video Library

    2001-07-10

    The second free-flight test of an evolving series of X-38 prototypes took place July 10, 2001 when the X-38 was released from NASA's B-52 mothership over the Edwards Air Force Base range in California's Mojave Desert. Shortly after the photo was taken, a sequenced deployment of a drogue parachute followed by a large parafoil fabric wing slowed the X-38 to enable it to land safely on Rogers Dry Lake at Edwards. NASA engineers from the Dryden Flight Research Center at Edwards, and the Johnson Space Center, Houston, Texas, are developing a "lifeboat" for the International Space Station based on X-38 research.

  20. A water-cannon salute from two Air Force fire trucks heralds NASA research pilot Gordon Fullerton's final mission as his NASA F/A-18 taxis beneath the spray.

    NASA Image and Video Library

    2007-12-21

    Long-time NASA Dryden research pilot and former astronaut C. Gordon Fullerton capped an almost 50-year flying career, including more than 38 years with NASA, with a final flight in a NASA F/A-18 on Dec. 21, 2007. Fullerton and Dryden research pilot Jim Smolka flew a 90-minute pilot proficiency formation aerobatics flight with another Dryden F/A-18 and a Dryden T-38 before concluding with two low-level formation flyovers of Dryden before landing. Fullerton was honored with a water-cannon spray arch provided by two fire trucks from the Edwards Air Force Base fire department as he taxied the F/A-18 up to the Dryden ramp, and was then greeted by his wife Marie and several hundred Dryden staff after his final flight. Fullerton began his flying career with the U.S. Air Force in 1958 after earning bachelor's and master's degrees in mechanical engineering from the California Institute of Technology. Initially trained as a fighter pilot, he later transitioned to multi-engine bombers and became a bomber operations test pilot after attending the Air Force Aerospace Research Pilot School at Edwards Air Force Base, Calif. He then was assigned to the flight crew for the planned Air Force Manned Orbital Laboratory in 1966. Upon cancellation of that program, the Air Force assigned Fullerton to NASA's astronaut corps in 1969. He served on the support crews for the Apollo 14, 15, 16 and 17 lunar missions, and was later assigned to one of the two flight crews that piloted the space shuttle prototype Enterprise during the Approach and Landing Test program at Dryden. He then logged some 382 hours in space when he flew on two early space shuttle missions, STS-3 on Columbia in 1982 and STS-51F on Challenger in 1985. He joined the flight crew branch at NASA Dryden after leaving the astronaut corps in 1986. During his 21 years at Dryden, Fullerton was project pilot on a number of high-profile research efforts, including the Propulsion Controlled Aircraft, the high-speed landing tests of

  1. NASA ATP Force Measurement Technology Capability Strategic Plan

    NASA Technical Reports Server (NTRS)

    Rhew, Ray D.

    2008-01-01

    The Aeronautics Test Program (ATP) within the National Aeronautics and Space Administration (NASA) Aeronautics Research Mission Directorate (ARMD) initiated a strategic planning effort to re-vitalize the force measurement capability within NASA. The team responsible for developing the plan included members from three NASA Centers (Langley, Ames and Glenn) as well as members from the Air Force s Arnold Engineering and Development Center (AEDC). After visiting and discussing force measurement needs and current capabilities at each participating facility as well as selected force measurement companies, a strategic plan was developed to guide future NASA investments. This paper will provide the details of the strategic plan and include asset management, organization and technology research and development investment priorities as well as efforts to date.

  2. NASA Dryden's T-38 Talon trainer jet in flight over the main base complex at Edwards Air Force Base

    NASA Image and Video Library

    2006-05-05

    NASA Dryden's T-38 Talon trainer jet in flight over the main base complex at Edwards Air Force Base. Formerly at NASA's Langley Research Center, this Northrop T-38 Talon is now used for mission support and pilot proficiency at the Dryden Flight Research Center.

  3. X-31 Unloading Returning from Paris Air Show

    NASA Technical Reports Server (NTRS)

    1995-01-01

    After being flown in the Paris Air Show in June 1995, the X-31 Enhanced Fighter Maneuverability Technology Demonstrator Aircraft, based at the NASA Dryden Flight Research Center, Edwards Air Force Base, California, is off-loaded from an Air Force Reserve C-5 transport after the ferry flight back to Edwards. At the air show, the X-31 demonstrated the value of using thrust vectoring (directing engine exhaust flow) coupled with advanced flight control systems to provide controlled flight at very high angles of attack. The X-31 Enhanced Fighter Maneuverability (EFM) demonstrator flew at the Ames- Dryden Flight Research Facility, Edwards, California (redesignated the Dryden Flight Research Center in 1994) from February 1992 until 1995 and before that at the Air Force's Plant 42 in Palmdale, California. The goal of the project was to provide design information for the next generation of highly maneuverable fighter aircraft. This program demonstrated the value of using thrust vectoring (directing engine exhaust flow) coupled with an advanced flight control system to provide controlled flight to very high angles of attack. The result was a significant advantage over most conventional fighters in close-in combat situations. The X-31 flight program focused on agile flight within the post-stall regime, producing technical data to give aircraft designers a better understanding of aerodynamics, effectiveness of flight controls and thrust vectoring, and airflow phenomena at high angles of attack. Stall is a condition of an airplane or an airfoil in which lift decreases and drag increases due to the separation of airflow. Thrust vectoring compensates for the loss of control through normal aerodynamic surfaces that occurs during a stall. Post-stall refers to flying beyond the normal stall angle of attack, which in the X-31 was at a 30-degree angle of attack. During Dryden flight testing, the X-31 aircraft established several milestones. On November 6, 1992, the X-31 achieved

  4. Future Directions of Supersonic Combustion Research: Air Force/NASA Workshop on Supersonic Combustion

    NASA Technical Reports Server (NTRS)

    Tishkoff, Julian M.; Drummond, J. Philip; Edwards, Tim; Nejad, Abdollah S.

    1997-01-01

    The Air Force Office of Scientific Research, the Air Force Wright Laboratory Aero Propulsion and Power Directorate, and the NASA Langley Research Center held a joint supersonic combustion workshop on 14-16 May 1996. The intent of this meeting was to: (1) examine the current state-of-the-art in hydrocarbon and/or hydrogen fueled scramjet research; (2) define the future direction and needs of basic research in support of scramjet technology; and (3) when appropriate, help transition basic research findings to solve the needs of developmental engineering programs in the area of supersonic combustion and fuels. A series of topical sessions were planned. Opening presentations were designed to focus and encourage group discussion and scientific exchange. The last half-day of the workshop was set aside for group discussion of the issues that were raised during the meeting for defining future research opportunities and directions. The following text attempts to summarize the discussions that took place at the workshop.

  5. X-38 vehicle #131R arrives at NASA Dryden via NASA'S Super Guppy transport aircraft

    NASA Technical Reports Server (NTRS)

    2000-01-01

    NASA's Super Guppy transport aircraft landed at Edwards Air Force Base, Calif. on July 11, 2000, to deliver the latest version of the X-38 drop vehicle to Dryden. The X-38s are intended as prototypes for a possible 'crew lifeboat' for the International Space Station. The X-38 vehicle 131R will demonstrate a huge 7,500 square-foot parafoil that will that will enable the potential crew return vehicle to land on the length of a football field after returning from space. The crew return vehicle is intended to serve as a possible emergency transport to carry a crew to safety in the event of problems with the International Space Station. The Super Guppy evolved from the 1960s-vintage Pregnant Guppy, used for transporting outsized sections of the Apollo moon rocket. The Super Guppy was modified from 1950s-vintage Boeing C-97. NASA acquired its Super Guppy from the European Space Agency in 1997.

  6. A NASA painter applies the first primer coat to NASA's Orion full-scale abort flight test crew module in the Edwards Air Force Base paint hangar.

    NASA Image and Video Library

    2008-03-29

    A full-scale flight-test mockup of the Constellation program's Orion crew vehicle arrived at NASA's Dryden Flight Research Center in late March 2008 to undergo preparations for the first short-range flight test of the spacecraft's astronaut escape system later that year. Engineers and technicians at NASA's Langley Research Center fabricated the structure, which precisely represents the size, outer shape and mass characteristics of the Orion space capsule. The Orion crew module mockup was ferried to NASA Dryden on an Air Force C-17. After painting in the Edwards Air Force Base paint hangar, the conical capsule was taken to Dryden for installation of flight computers, instrumentation and other electronics prior to being sent to the U.S. Army's White Sands Missile Range in New Mexico for integration with the escape system and the first abort flight test in late 2008. The tests were designed to ensure a safe, reliable method of escape for astronauts in case of an emergency.

  7. X-38 sails to a landing at NASA Dryden Flight Research Center July 10, 2001

    NASA Technical Reports Server (NTRS)

    2001-01-01

    The seventh free flight of an X-38 prototype for an emergency space station crew return vehicle culminated in a graceful glide to landing under the world's largest parafoil. The mission began when the X-38 was released from NASA's B-52 mother ship over Edwards Air Force Base, California, where NASA Dryden Flight Research Center is located. The July 10, 2001 flight helped researchers evaluate software and deployment of the X-38's drogue parachute and subsequent parafoil. NASA intends to create a space-worthy Crew Return Vehicle (CRV) to be docked to the International Space Station as a 'lifeboat' to enable a full seven-person station crew to evacuate in an emergency.

  8. X-38 sails to a landing at NASA Dryden Flight Research Center July 10, 2001

    NASA Image and Video Library

    2001-07-10

    The seventh free flight of an X-38 prototype for an emergency space station crew return vehicle culminated in a graceful glide to landing under the world's largest parafoil. The mission began when the X-38 was released from NASA's B-52 mother ship over Edwards Air Force Base, California, where NASA Dryden Flight Research Center is located. The July 10, 2001 flight helped researchers evaluate software and deployment of the X-38's drogue parachute and subsequent parafoil. NASA intends to create a space-worthy Crew Return Vehicle (CRV) to be docked to the International Space Station as a "lifeboat" to enable a full seven-person station crew to evacuate in an emergency.

  9. United States Air Force Wipe Solvent Testing

    NASA Technical Reports Server (NTRS)

    Hornung, Steven D.; Beeson, Harold D.

    2000-01-01

    The Wright-Patterson Air Force Base (WPAFB), as part of the Air Force Material Command, requested that NASA Johnson Space Center (JSC) White Sands Test Facility (WSTF) conduct testing and analyses in support of the United States Air Force Wipe Solvent Development Project. The purpose of the wipe solvent project is to develop an alternative to be used by Air Force flight line and maintenance personnel for the wipe cleaning of oxygen equipment. This report provides material compatibility, liquid oxygen (LOX) mechanical impact, autogenous ignition temperature (AIT), and gauge cleaning test data for some of the currently available solvents that may be used to replace CFC-113 and methyl chloroform. It provides data from previous WSTF test programs sponsored by the Naval Sea Systems Command, the Kennedy Space Center, and other NASA programs for the purpose of assisting WP AFB in identifying the best alternative solvents for validation testing.

  10. United States Air Force Statistical Digest, Fiscal Year 1951. Sixth Edition

    DTIC Science & Technology

    1952-11-18

    2 2 2 Mili tary Air Transport Service Squadron - Total 2 2 g 2 g g 2 s 1 ! 1 ! , curce a Qrganhat10n geccr- de (AFASC-6F)j oenerea orden from Major...STATISTICAL SERVICES DeS COMPTROLLER", USAF WASHINGTON, DC .J DEPARTMENT OF THE AIR FORCE WASHINGTON, 20 SEPTEMBER 1948 Am FORCE REGULATION) NO. 5-24...AND LUBES. 223 PART V III STOCKPILING •. 235 PART IX INDUSTRIAL RESERVE’ 241 PART X TRANSPORTATION ..• Z8S PART X I RESEARCH AND DEVELOPMENT 2𔄁 t

  11. NASA's B-52 takes the X-38 aloft for the seventh free flight of the program, July 10, 2001

    NASA Image and Video Library

    2001-07-10

    The X-38, mounted beneath the right wing of NASA's B-52, climbed from the runway at Edwards Air Force Base for the seventh free flight test of the X-38, July 10, 2001. The X-38 was released at 37,500 feet and completed a thirteen minute glide flight to a landing on Rogers Dry Lake.

  12. NASA's B-52 takes the X-38 aloft for the seventh free flight of the program, July 10, 2001

    NASA Technical Reports Server (NTRS)

    2001-01-01

    The X-38, mounted beneath the right wing of NASA's B-52, climbed from the runway at Edwards Air Force Base for the seventh free flight test of the X-38, July 10, 2001. The X-38 was released at 37,500 feet and completed a thirteen minute glide flight to a landing on Rogers Dry Lake.

  13. NASA's space shuttle Atlantis and its 747 carrier taxied on the Edwards Air Force Base flightline as

    NASA Technical Reports Server (NTRS)

    2001-01-01

    NASA's space shuttle Atlantis and its 747 carrier taxied on the Edwards Air Force Base flightline as the unusual combination left for Kennedy Space Center, Florida, on March 1, 2001. Atlantis and the shuttle Columbia were both airborne on the same day as they migrated from California to Florida. Columbia underwent refurbishing at nearby Palmdale, California.

  14. Pilot Bill Brockett (left) and Chilean Air Force Captain Saez with school children in the cockpit of NASA Dryden's DC-8 flying laboratory

    NASA Image and Video Library

    2004-03-10

    Pilot Bill Brockett (left) and Chilean Air Force Captain Saez with school children in the cockpit of NASA Dryden's DC-8 flying laboratory. Brockett explained NASA's AirSAR 2004 mission in Chile. AirSAR 2004 is a three-week expedition by an international team of scientists that uses an all-weather imaging tool, called the Airborne Synthetic Aperture Radar (AirSAR) which is located onboard NASA's DC-8 airborne laboratory. Scientists from many parts of the world including NASA's Jet Propulsion Laboratory are combining ground research done in several areas in Central and South America with NASA's AirSAR technology to improve and expand on the quality of research they are able to conduct. In South America and Antarctica, AirSAR collected imagery and data to help determine the contribution of Southern Hemisphere glaciers to sea level rise due to climate change. In Patagonia, researchers found this contribution had more than doubled from 1995 to 2000, compared to the previous 25 years. AirSAR data will make it possible to determine whether that trend is continuing or accelerating. AirSAR will also provide reliable information on ice shelf thickness to measure the contribution of the glaciers to sea level.

  15. X-43A departs NASA Dryden Flight Research Center for first free-flight attempt

    NASA Image and Video Library

    2001-06-02

    The first X-43A hypersonic research aircraft and its modified Pegasus booster rocket were carried aloft by NASA's NB-52B carrier aircraft from Dryden Flight Research Center at Edwards Air Force Base, Calif., on June 2, 2001 for the first of three high-speed free flight attempts. About an hour and 15 minutes later the Pegasus booster was released from the B-52 to accelerate the X-43A to its intended speed of Mach 7. Before this could be achieved, the combined Pegasus and X-43A "stack" lost control about eight seconds after ignition of the Pegasus rocket motor. The mission was terminated and explosive charges ensured the Pegasus and X-43A fell into the Pacific Ocean in a cleared Navy range area. A NASA investigation board is being assembled to determine the cause of the incident. Work continues on two other X-43A vehicles, the first of which could fly by late 2001. Central to the X-43A program is its integration of an air-breathing "scramjet" engine that could enable a variety of high-speed aerospace craft, and promote cost-effective access to space. The 12-foot, unpiloted research vehicle was developed and built for NASA by MicroCraft Inc., Tullahoma, Tenn. The booster was built by Orbital Sciences Corp. at Chandler, Ariz.

  16. NASA's Boeing 747 SCA with the Space Shuttle Endeavour on top climbs out after takeoff from Edwards Air Force Base

    NASA Image and Video Library

    2001-05-08

    NASA's modified Boeing 747 Shuttle Carrier Aircraft with the Space Shuttle Endeavour on top climbs out after takeoff from Edwards Air Force Base on the first leg of its ferry flight back to the Kennedy Space Center in Florida.

  17. X-38 Arrival at NASA Dryden on June 4, 1997

    NASA Technical Reports Server (NTRS)

    1997-01-01

    durable than those used on the space shuttles. The X-38 itself was an unpiloted lifting body designed at 80 percent of the size of a projected emergency crew return vehicle for the International Space Station, although two later versions were planned at 100 percent of the CRV size. The X-38 and the actual CRV are patterned after a lifting-body shape first employed in the Air Force-NASA X-24 lifting-body project in the early to mid-1970s. The current vehicle design is base lined with life support supplies for about nine hours of orbital free flight from the space station. It's landing will be fully automated with backup systems which allow the crew to control orientation in orbit, select a deorbit site, and steer the parafoil, if necessary. The X-38 vehicles (designated V131, V132, and V-131R) are 28.5 feet long, 14.5 feet wide, and weigh approximately 16,000 pounds on average. The vehicles have a nitrogen-gas-operated attitude control system and a bank of batteries for internal power. The actual CRV to be flown in space was expected to be 30 feet long. The X-38 project is a joint effort between the Johnson Space Center, Houston, Texas (JSC), Langley Research Center, Hampton, Virginia (LaRC) and Dryden Flight Research Center, Edwards, California (DFRC) with the program office located at JSC. A contract was awarded to Scaled Composites, Inc., Mojave, California, for construction of the X-38 test airframes. The first vehicle was delivered to the JSC in September 1996. The vehicle was fitted with avionics, computer systems and other hardware at Johnson. A second vehicle was delivered to JSC in December 1996. Flight research with the X-38 at Dryden began with an unpiloted captive-carry flight in which the vehicle remained attached to its future launch vehicle, Dryden's B-52 008. There were four captive flights in 1997 and three in 1998, plus the first drop test on March 12, 1998, using the parachutes and parafoil. Further captive and drop tests occurred in 1999. In March 2000

  18. NASA Social

    NASA Image and Video Library

    2012-05-18

    NASA Social participants are reflected in the sunglasses of former NASA astronaut Garrett Reisman, now a senior engineer working on astronaut safety and mission assurance for Space Exploration Technologies, or SpaceX, as he speaks with them, Friday, May 18, 2012, at the launch complex where the company's Falcon 9 rocket is set to launch early Friday morning at Cape Canaveral Air Force Station in Cape Canaveral, Fla. Photo Credit: (NASA/Paul E. Alers)

  19. The Lifting Body Legacy...X-33

    NASA Technical Reports Server (NTRS)

    Barret, Chris

    1999-01-01

    NASA has a technology program in place to enable the development of a next generation Reusable Launch Vehicle that will carry our future payloads into orbit at a much-reduced cost. The VentureStar, Lifting Body (LB) flight vehicle, is one of the potential reusable launch vehicle configurations being studied. A LB vehicle has no wings and derives its lift solely from the shape of its body, and has the unique advantages of superior volumetric efficiency, better aerodynamic efficiency at high angles-of-attack and hypersonic speeds, and reduced thermal protection system weight. Classically, in a ballistic vehicle, drag has been employed to control the level of deceleration in reentry. In the LB, lift enables the vehicle to decelerate at higher altitudes for the same velocity and defines the reentry corridor which includes a greater cross range. This paper outlines the flight stability and control aspects of our LB heritage which was utilized in the design of the VentureStar LB and its test version, the X-33. NASA and the U.S. Air Force have a rich heritage of LB vehicle design and flight experience. In the initial LB Program, eight LB's were built and over 225 LB test flights were conducted through 1975. Three LB series were most significant in the advancement of today's LB technolocy: the M2-F; the HL-10; and the X-24 series. The M2-F series was designed by NASA Ames Research Center, the HL-10 series by NASA Langley Research Center, and the X-24 series by the U. S. Air Force. LB vehicles are alive again today with the X- 33, X-38, and VentureStar.

  20. The Space Shuttle Endeavour, mounted securely atop one of NASA's modified Boeing 747 Shuttle Carrier Aircraft, left NASA's Dryden Flight Research Center at Edwards Air Force Base in Southern California at sunrise on Friday, June 28

    NASA Image and Video Library

    2002-06-28

    The Space Shuttle Endeavour, mounted securely atop one of NASA's modified Boeing 747 Shuttle Carrier Aircraft, left NASA's Dryden Flight Research Center at Edwards Air Force Base in Southern California at sunrise on Friday, June 28.

  1. Air Force seal activities

    NASA Astrophysics Data System (ADS)

    Mayhew, Ellen R.

    1994-07-01

    Seal technology development is an important part of the Air Force's participation in the Integrated High Performance Turbine Engine Technology (IHPTET) initiative, the joint DOD, NASA, ARPA, and industry endeavor to double turbine engine capabilities by the turn of the century. Significant performance and efficiency improvements can be obtained through reducing internal flow system leakage, but seal environment requirements continue to become more extreme as the engine thermodynamic cycles advance towards these IHPTET goals. Brush seal technology continues to be pursued by the Air Force to reduce leakage at the required conditions. Likewise, challenges in engine mainshaft air/oil seals are also being addressed. Counter-rotating intershaft applications within the IHPTET initiative involve very high rubbing velocities. This viewgraph presentation briefly describes past and current seal research and development programs and gives a summary of seal applications in demonstrator and developmental engine testing.

  2. Rehabilitation of the Rocket Vehicle Integration Test Stand at Edwards Air Force Base

    NASA Technical Reports Server (NTRS)

    Jones, Daniel S.; Ray, Ronald J.; Phillips, Paul

    2005-01-01

    Since initial use in 1958 for the X-15 rocket-powered research airplane, the Rocket Engine Test Facility has proven essential for testing and servicing rocket-powered vehicles at Edwards Air Force Base. For almost two decades, several successful flight-test programs utilized the capability of this facility. The Department of Defense has recently demonstrated a renewed interest in propulsion technology development with the establishment of the National Aerospace Initiative. More recently, the National Aeronautics and Space Administration is undergoing a transformation to realign the organization, focusing on the Vision for Space Exploration. These initiatives provide a clear indication that a very capable ground-test stand at Edwards Air Force Base will be beneficial to support the testing of future access-to-space vehicles. To meet the demand of full integration testing of rocket-powered vehicles, the NASA Dryden Flight Research Center, the Air Force Flight Test Center, and the Air Force Research Laboratory have combined their resources in an effort to restore and upgrade the original X-15 Rocket Engine Test Facility to become the new Rocket Vehicle Integration Test Stand. This report describes the history of the X-15 Rocket Engine Test Facility, discusses the current status of the facility, and summarizes recent efforts to rehabilitate the facility to support potential access-to-space flight-test programs. A summary of the capabilities of the facility is presented and other important issues are discussed.

  3. NASA paint shop technicians prepare the Orion full-scale flight test crew module for painting in the Edwards Air Force Base paint hangar.

    NASA Image and Video Library

    2008-03-29

    A full-scale flight-test mockup of the Constellation program's Orion crew vehicle arrived at NASA's Dryden Flight Research Center in late March 2008 to undergo preparations for the first short-range flight test of the spacecraft's astronaut escape system later that year. Engineers and technicians at NASA's Langley Research Center fabricated the structure, which precisely represents the size, outer shape and mass characteristics of the Orion space capsule. The Orion crew module mockup was ferried to NASA Dryden on an Air Force C-17. After painting in the Edwards Air Force Base paint hangar, the conical capsule was taken to Dryden for installation of flight computers, instrumentation and other electronics prior to being sent to the U.S. Army's White Sands Missile Range in New Mexico for integration with the escape system and the first abort flight test in late 2008. The tests were designed to ensure a safe, reliable method of escape for astronauts in case of an emergency.

  4. NASA's Big Data Task Force

    NASA Astrophysics Data System (ADS)

    Holmes, C. P.; Kinter, J. L.; Beebe, R. F.; Feigelson, E.; Hurlburt, N. E.; Mentzel, C.; Smith, G.; Tino, C.; Walker, R. J.

    2017-12-01

    Two years ago NASA established the Ad Hoc Big Data Task Force (BDTF - https://science.nasa.gov/science-committee/subcommittees/big-data-task-force), an advisory working group with the NASA Advisory Council system. The scope of the Task Force included all NASA Big Data programs, projects, missions, and activities. The Task Force focused on such topics as exploring the existing and planned evolution of NASA's science data cyber-infrastructure that supports broad access to data repositories for NASA Science Mission Directorate missions; best practices within NASA, other Federal agencies, private industry and research institutions; and Federal initiatives related to big data and data access. The BDTF has completed its two-year term and produced several recommendations plus four white papers for NASA's Science Mission Directorate. This presentation will discuss the activities and results of the TF including summaries of key points from its focused study topics. The paper serves as an introduction to the papers following in this ESSI session.

  5. Air Force Special Operations Command > Home > POTFF

    Science.gov Websites

    Air Force Special Operations Command Air Force Special Operations Command Join the Air Force Home Sheets AFSOC Senior Leaders AFSOC Heritage Units 1st Special Operations Wing 24th Special Operations Wing 27th Special Operations Wing 352nd Special Operations Wing 353rd Special Operations Group 492nd Special

  6. he second X-43A and its modified Pegasus booster rocket accelerate after launch from NASA's B-52B launch aircraft over the Pacific Ocean

    NASA Image and Video Library

    2004-03-27

    The second X-43A hypersonic research aircraft and its modified Pegasus booster rocket accelerate after launch from NASA's B-52B launch aircraft over the Pacific Ocean on March 27, 2004. The mission originated from the NASA Dryden Flight Research Center at Edwards Air Force Base, Calif. Minutes later the X-43A separated from the Pegasus booster and accelerated to its intended speed of Mach 7.

  7. A summary of NASA/Air Force Full Scale Engine Research programs using the F100 engine

    NASA Technical Reports Server (NTRS)

    Deskin, W. J.; Hurrell, H. G.

    1979-01-01

    This paper summarizes a joint NASA/Air Force Full Scale Engine Research (FSER) program conducted with the F100 engine during the period 1974 through 1979. The program mechanism is described and the F100 test vehicles utilized are illustrated. Technology items which have been addressed in the areas of swirl augmentation, flutter phenomenon, advanced electronic control logic theory, strain gage technology, and distortion sensitivity are identified and the associated test programs conducted at the NASA-Lewis Research Center are described. Results presented show that the FSER approach, which utilizes existing state-of-the-art engine hardware to evaluate advanced technology concepts and problem areas, can contribute a significant data base for future system applications. Aerodynamic phenomenon previously not considered by current design systems have been identified and incorporated into current industry design tools.

  8. X-43A departs NASA Dryden Flight Research Center for first free-flight attempt.

    NASA Technical Reports Server (NTRS)

    2001-01-01

    The first X-43A hypersonic research aircraft and its modified Pegasus booster rocket were carried aloft by NASA's NB-52B carrier aircraft from Dryden Flight Research Center at Edwards Air Force Base, Calif., on June 2, 2001 for the first of three high-speed free flight attempts. About an hour and 15 minutes later the Pegasus booster was released from the B-52 to accelerate the X-43A to its intended speed of Mach 7. Before this could be achieved, the combined Pegasus and X-43A 'stack' lost control about eight seconds after ignition of the Pegasus rocket motor. The mission was terminated and explosive charges ensured the Pegasus and X-43A fell into the Pacific Ocean in a cleared Navy range area. A NASA investigation board is being assembled to determine the cause of the incident. Work continues on two other X-43A vehicles, the first of which could fly by late 2001. Central to the X-43A program is its integration of an air-breathing 'scramjet' engine that could enable a variety of high-speed aerospace craft, and promote cost-effective access to space. The 12-foot, unpiloted research vehicle was developed and built for NASA by MicroCraft Inc., Tullahoma, Tenn. The booster was built by Orbital Sciences Corp. at Chandler, Ariz. The X-43A flights are the first actual flight tests of an aircraft powered by a scramjet engine capable of operating at hypersonic speeds (above Mach 5, or five times the speed of sound). Some 90 minutes after takeoff, the Pegasus will launch from a B-52, rocketing the X-43A to Mach 7 at 95,000 feet altitude, or Mach 10 at 105,000 feet altitude. The X-43A will be powered by its revolutionary air-breathing supersonic-combustion ramjet or 'scramjet' engine. The X-43A will then fly a pre-programmed trajectory, conducting aerodynamic and propulsion experiments as it descends until it splashes into the Pacific Ocean.

  9. Forced Boundary-Layer Transition on X-43 (Hyper-X) in NASA LaRC 20-Inch Mach 6 Air Tunnel

    NASA Technical Reports Server (NTRS)

    Berry, Scott A.; DiFulvio, Michael; Kowalkowski, Matthew K.

    2000-01-01

    Aeroheating and boundary layer transition characteristics for the X-43 (Hyper-X) configuration have been experimentally examined in the Langley 20-Inch Mach 6 Air Tunnel. Global surface heat transfer distributions, and surface streamline patterns were measured on a 0.333-scale model of the Hyper-X forebody. Parametric variations include angles-of-attack of 0-deg, 2-deg, and 4-deg; Reynolds numbers based on model length of 1.2 to 15.4 million; and inlet cowl door both open and closed. The effects of discrete roughness elements on the forebody boundary layer, which included variations in trip configuration and height, were investigated. This document is intended to serve as a release of preliminary data to the Hyper-X program; analysis is limited to observations of the experimental trends in order to expedite dissemination.

  10. The Digital Twin Paradigm for Future NASA and U.S. Air Force Vehicles

    NASA Technical Reports Server (NTRS)

    Glaessgen, Edward H.; Stargel, D. S.

    2012-01-01

    Future generations of NASA and U.S. Air Force vehicles will require lighter mass while being subjected to higher loads and more extreme service conditions over longer time periods than the present generation. Current approaches for certification, fleet management and sustainment are largely based on statistical distributions of material properties, heuristic design philosophies, physical testing and assumed similitude between testing and operational conditions and will likely be unable to address these extreme requirements. To address the shortcomings of conventional approaches, a fundamental paradigm shift is needed. This paradigm shift, the Digital Twin, integrates ultra-high fidelity simulation with the vehicle s on-board integrated vehicle health management system, maintenance history and all available historical and fleet data to mirror the life of its flying twin and enable unprecedented levels of safety and reliability.

  11. Teacher Kim Cantrell from the Edwards Air Force Base Middle School, Edwards, Calif., participating in a live uplink at NASA Dryden as part of NASA's Explorer Schools program, asks the crew of the International Space Station a question

    NASA Image and Video Library

    2003-07-15

    Teacher Kim Cantrell from the Edwards Air Force Base Middle School, Edwards, Calif., participating in a live uplink at NASA Dryden as part of NASA's Explorer Schools program, asks the crew of the International Space Station a question.

  12. Using C-Band Dual-Polarization Radar Signatures to Improve Convective Wind Forecasting at Cape Canaveral Air Force Station and NASA Kennedy Space Center

    NASA Technical Reports Server (NTRS)

    Amiot, Corey G.; Carey, Lawrence D.; Roeder, William P.; McNamara, Todd M.; Blakeslee, Richard J.

    2017-01-01

    The United States Air Force's 45th Weather Squadron (45WS) is the organization responsible for monitoring atmospheric conditions at Cape Canaveral Air Force Station and NASA Kennedy Space Center (CCAFS/KSC) and issuing warnings for hazardous weather conditions when the need arises. One such warning is issued for convective wind events, for which lead times of 30 and 60 minutes are desired for events with peak wind gusts of 35 knots or greater (i.e., Threshold-1) and 50 knots or greater (i.e., Threshold-2), respectively (Roeder et al. 2014).

  13. Building a QC Database of Meteorological Data from NASA KSC and the United States Air Force's Eastern Range

    NASA Technical Reports Server (NTRS)

    Brenton, J. C.; Barbre, R. E.; Decker, R. K.; Orcutt, J. M.

    2018-01-01

    The National Aeronautics and Space Administration's (NASA) Marshall Space Flight Center (MSFC) Natural Environments Branch (EV44) provides atmospheric databases and analysis in support of space vehicle design and day-of-launch operations for NASA and commercial launch vehicle programs launching from the NASA Kennedy Space Center (KSC), co-located on the United States Air Force's Eastern Range (ER) at the Cape Canaveral Air Force Station. The ER complex is one of the most heavily instrumented sites in the United States with over 31 towers measuring various atmospheric parameters on a continuous basis. An inherent challenge with large datasets consists of ensuring erroneous data are removed from databases, and thus excluded from launch vehicle design analyses. EV44 has put forth great effort in developing quality control (QC) procedures for individual meteorological instruments, however no standard QC procedures for all databases currently exists resulting in QC databases that have inconsistencies in variables, development methodologies, and periods of record. The goal of this activity is to use the previous efforts to develop a standardized set of QC procedures from which to build meteorological databases from KSC and the ER, while maintaining open communication with end users from the launch community to develop ways to improve, adapt and grow the QC database. Details of the QC procedures will be described. As the rate of launches increases with additional launch vehicle programs, It is becoming more important that weather databases are continually updated and checked for data quality before use in launch vehicle design and certification analyses.

  14. Forced Boundary-Layer Transition on X-43 (Hyper-X) in NASA LaRC 31-Inch Mach 10 Air Tunnel

    NASA Technical Reports Server (NTRS)

    Berry, Scott A.; DiFulvio, Michael; Kowalkowski, Matthew K.

    2000-01-01

    Aeroheating and boundary layer transition characteristics for the X-43 (Hyper-X) configuration have been experimentally examined in the Langley 31-Inch Mach 10 Air Tunnel. Global surface heat transfer distributions, and surface streamline patterns were measured on a 0.333-scale model of the Hyper-X forebody. Parametric variations include angles-of-attack of 0-deg, 2-deg, 3-deg, and 4-deg; Reynolds numbers based on model length of 1.2 to 5.1 million; and inlet cowl door both open and closed. The effects of discrete roughness elements on the forebody boundary layer, which included variations in trip configuration and height, were investigated. This document is intended to serve as a release of preliminary data to the Hyper-X program; analysis is limited to observations of the experimental trends in order to expedite dissemination.

  15. A modified Pegasus rocket drops steadily away after release from NASA's B-52B, before accelerating the X-43A over the Pacific Ocean on March 27, 2004

    NASA Image and Video Library

    2004-03-27

    The second X-43A hypersonic research aircraft and its modified Pegasus booster rocket drop away from NASA's B-52B launch aircraft over the Pacific Ocean on March 27, 2004. The mission originated from the NASA Dryden Flight Research Center at Edwards Air Force Base, Calif. Moments later the Pegasus booster ignited to accelerate the X-43A to its intended speed of Mach 7.

  16. NASA's B-52B launch aircraft takes off carrying the second X-43A hypersonic research vehicle attached to a modified Pegasus rocket, on March 27, 2004

    NASA Image and Video Library

    2004-03-27

    The second X-43A hypersonic research aircraft and its modified Pegasus booster rocket left the runway, carried aloft by NASA's B-52B launch aircraft from the NASA Dryden Flight Research Center at Edwards Air Force Base, Calif., on March 27, 2004. About an hour later the Pegasus booster was launched from the B-52 to accelerate the X-43A to its intended speed of Mach 7.

  17. NASA's B-52B launch aircraft takes off carrying the third X-43A hypersonic research vehicle attached to a modified Pegasus rocket, on November 16, 2004

    NASA Image and Video Library

    2004-11-16

    The third X-43A hypersonic research aircraft and its modified Pegasus booster rocket left the runway, carried aloft by NASA's B-52B launch aircraft from the NASA Dryden Flight Research Center at Edwards Air Force Base, California, on November 16, 2004. About an hour later the Pegasus booster was launched from the B-52 to accelerate the X-43A to its intended speed of Mach 10.

  18. A modified Pegasus rocket drops away after release from NASA's B-52B before accelerating the X-43A over a Pacific Ocean test range on Nov. 16, 2004

    NASA Image and Video Library

    2004-11-16

    The third X-43A hypersonic research aircraft and its modified Pegasus booster rocket drop away from NASA's B-52B launch aircraft over the Pacific Ocean on November 16, 2004. The mission originated from the NASA Dryden Flight Research Center at Edwards Air Force Base, California. Moments later the Pegasus booster ignited to accelerate the X-43A to its intended speed of Mach 10.

  19. X-15A-2 and HL-10 parked on NASA ramp

    NASA Technical Reports Server (NTRS)

    1966-01-01

    Both the HL-10 and X-15A2, shown here parked beside one another on the NASA ramp in 1966, underwent modifications. The X-15 No. 2 had been damaged in a crash landing in November 1962. Subsequently, the fuselage was lengthened, and it was outfitted with two large drop tanks. These modifications allowed the X-15A-2 to reach the speed of Mach 6.7. On the HL-10, the stability problems that appeared on the first flight at the end of 1966 required a reshaping of the fins' leading edges to eliminate the separated airflow that was causing the unstable flight. By cambering the leading edges of the fins, the HL-10 team achieved attached flow and stable flight. The HL-10 was one of five heavyweight lifting-body designs flown at NASA's Flight Research Center (FRC--later Dryden Flight Research Center), Edwards, California, from July 1966 to November 1975 to study and validate the concept of safely maneuvering and landing a low lift-over-drag vehicle designed for reentry from space. Northrop Corporation built the HL-10 and M2-F2, the first two of the fleet of 'heavy' lifting bodies flown by the NASA Flight Research Center. The contract for construction of the HL-10 and the M2-F2 was $1.8 million. 'HL' stands for horizontal landing, and '10' refers to the tenth design studied by engineers at NASA's Langley Research Center, Hampton, Va. After delivery to NASA in January 1966, the HL-10 made its first flight on Dec. 22, 1966, with research pilot Bruce Peterson in the cockpit. Although an XLR-11 rocket engine was installed in the vehicle, the first 11 drop flights from the B-52 launch aircraft were powerless glide flights to assess handling qualities, stability, and control. In the end, the HL-10 was judged to be the best handling of the three original heavy-weight lifting bodies (M2-F2/F3, HL-10, X-24A). The HL-10 was flown 37 times during the lifting body research program and logged the highest altitude and fastest speed in the Lifting Body program. On Feb. 18, 1970, Air Force

  20. X-43A/Hyper-X Vehicle Arrives at NASA Dryden

    NASA Technical Reports Server (NTRS)

    1999-01-01

    The X-43A Hypersonic Experimental Vehicle, or 'Hyper-X,' carefully packed in a protective shipping framework, is unloaded from a container after its arrival at NASA's Dryden Flight Research Center in October 1999. The X-43A was developed to research a dual-mode ramjet/scramjet propulsion system at speeds from Mach 7 up to Mach 10 (7 to 10 times the speed of sound, which varies with temperature and altitude). Hyper-X, the flight vehicle for which is designated as X-43A, is an experimental flight-research program seeking to demonstrate airframe-integrated, 'air-breathing' engine technologies that promise to increase payload capacity for future vehicles, including hypersonic aircraft (faster than Mach 5) and reusable space launchers. This multiyear program is currently underway at NASA Dryden Flight Research Center, Edwards, California. The Hyper-X schedule calls for its first flight later this year (2000). Hyper-X is a joint program, with Dryden sharing responsibility with NASA's Langley Research Center, Hampton, Virginia. Dryden's primary role is to fly three unpiloted X-43A research vehicles to validate engine technologies and hypersonic design tools as well as the hypersonic test facility at Langley. Langley manages the program and leads the technology development effort. The Hyper-X Program seeks to significantly expand the speed boundaries of air-breathing propulsion by being the first aircraft to demonstrate an airframe-integrated, scramjet-powered free flight. Scramjets (supersonic-combustion ramjets) are ramjet engines in which the airflow through the whole engine remains supersonic. Scramjet technology is challenging because only limited testing can be performed in ground facilities. Long duration, full-scale testing requires flight research. Scramjet engines are air-breathing, capturing their oxygen from the atmosphere. Current spacecraft, such as the Space Shuttle, are rocket powered, so they must carry both fuel and oxygen for propulsion. Scramjet

  1. NASA DC-8 Mission Manager Walter Klein and Chilean Air Force Advisor Captain Saez review maps of the Antarctic Peninsula during an AirSAR 2004 mission

    NASA Image and Video Library

    2004-03-13

    NASA DC-8 Mission Manager Walter Klein and Chilean Air Force Advisor Captain Saez review maps of the Antarctic Peninsula during an AirSAR 2004 mission. AirSAR 2004 is a three-week expedition in Central and South America by an international team of scientists that is using an all-weather imaging tool, called the Airborne Synthetic Aperture Radar (AirSAR), located onboard NASA's DC-8 airborne laboratory. Scientists from many parts of the world are combining ground research with NASA's AirSAR technology to improve and expand on the quality of research they are able to conduct. These photos are from the DC-8 aircraft while flying an AirSAR mission over Antarctica. The Antarctic Peninsula is more similar to Alaska and Patagonia than to the rest of the Antarctic continent. It is drained by fast glaciers, receives abundant precipitation, and melts significantly in the summer months. In recent decades, the Peninsula has experienced significant atmospheric warming (about 2 degrees C since 1950), which has triggered a vast and spectacular retreat of its floating ice shelves, glacier reduction, a decrease in permanent snow cover and a lengthening of the melt season. As a result, the contribution to sea level from this region could be rapid and substantial. With an area of 120,000 km, or ten times the Patagonia ice fields, the Peninsula could contribute as much as 0.4mm/yr sea level rise, which would be the largest single contribution to sea level from anywhere in the world. This region is being studied by NASA using a DC-8 equipped with the Airborne Synthetic Aperture Radar developed by scientists from NASA’s Jet Propulsion Laboratory. AirSAR will provide a baseline model and unprecedented mapping of the region. This data will make it possible to determine whether the warming trend is slowing, continuing or accelerating. AirSAR will also provide reliable information on ice shelf thickness to measure the contribution of the glaciers to sea level.

  2. X-15 and XB-70 parked on NASA ramp

    NASA Technical Reports Server (NTRS)

    1967-01-01

    The X-15A-2 with drop tanks and ablative coating is shown parked on the NASA ramp in front of the XB-70. These aircraft represent two different approaches to flight research. The X-15 was a research airplane in the purest sense, whereas the XB-70 was an experimental bomber intended for production but diverted to research when production was cancelled by changes in the Department of Defense's offensive doctrine. The X-15A-2 had been modified from its original configuration with a longer fuselage and drop tanks. To protect it against aerodynamic heating, researchers had coated it with an ablative coating covered by a layer of white paint. These changes allowed the X-15A-2 to reach a maximum speed of Mach 6.7, although it could be sustained for only a brief period. The XB-70, by contrast, was designed for prolonged high-altitude cruise flight at Mach 3. The aircraft's striking shape--with a long forward fuselage, canards, a large delta wing, twin fins, and a box-like engine bay--allowed it to ride its own Mach 3 shockwave, so to speak. A joint NASA-Air Force program used the aircraft to collect data in support of the U.S supersonic transport (SST) program, which never came to fruition because of environmental concerns. X-15: The X-15 was a rocket-powered aircraft. The original three aircraft were about 50 ft long with a wingspan of 22 ft. The modified #2 aircraft (X-15A-2 was longer.) They were a missile-shaped vehicles with unusual wedge-shaped vertical tails, thin stubby wings, and unique side fairings that extended along the side of the fuselage. The X-15 weighed about 14,000 lb empty and approximately 34,000 lb at launch. The XLR-99 rocket engine, manufactured by Thiokol Chemical Corp., was pilot controlled and was rated at 57,000 lb of thrust, although there are indications that it actually achieved up to 60,000 lb. North American Aviation built three X-15 aircraft for the program. The X-15 research aircraft was developed to provide in-flight information and data

  3. Shipping InSight Mars Spacecraft to Buckley Air Force Base

    NASA Image and Video Library

    2018-02-28

    A truck carrying NASA s InSight spacecraft leaves Lockheed Martin Space, Denver, where the spacecraft was built and tested, on February 28, 2018. InSight was driven to Buckley Air Force Base, where it was loaded into a C-17 cargo aircraft and flown to Vandenberg Air Force Base, California. There, it will be prepared for a May launch. InSight, short for Interior Exploration using Seismic Investigations, Geodesy and Heat Transport, is the first mission dedicated to studying the deep interior of Mars. Its findings will advance understanding of the early history of all rocky planets, including Earth. https://photojournal.jpl.nasa.gov/catalog/PIA22225

  4. NASA Names Premier X-Ray Observatory and Schedules Launch

    NASA Astrophysics Data System (ADS)

    1998-12-01

    Chicago until his death in 1995. The Chandra X-ray Observatory will help astronomers worldwide better understand the structure and evolution of the universe by studying powerful sources of X rays such as exploding stars, matter falling into black holes and other exotic celestial objects. X-radiation is an invisible form of light produced by multimillion degree gas. Chandra will provide X-ray images that are fifty times more detailed than previous missions. At more than 45 feet in length and weighing more than five tons, it will be one of the largest objects ever placed in Earth orbit by the Space Shuttle. Tyrel Johnson, a student at Priest River Lamanna High School in Priest River, Idaho, and Jatila van der Veen, a physics and astronomy teacher at Adolfo Camarillo High School in Camarillo, California, who submitted the winning name and essays, will receive a trip to the Kennedy Space Center in Florida to view the launch of the Chandra X-ray Observatory, a prize donated by TRW. Members of the contest's selection committee were Timothy Hannemann, executive vice president and general manager, TRW Space & Electronics Group; the late CNN correspondent John Holliman; former Secretary of the Air Force Sheila Widnall, professor of aeronautics at MIT; Charles Petit, senior writer for U.S. News & World Report; Sidney Wolff, Director, National Optical Astronomy Observatories; Martin Weisskopf, Advanced X-ray Astrophysics Facility project scientist, Marshall Space Flight Center, Huntsville, AL.; and Harvey Tananbaum, director of the Advanced X-ray Astrophysics Facility Science Center, Smithsonian Astrophysical Observatory, Cambridge, MA. The Chandra X-ray Observatory program is managed by the Marshall Center for the Office of Space Science, NASA Headquarters, Washington, DC. TRW Space and Electronics Group, Redondo Beach, CA, is NASA's prime contractor for the observatory. The Smithsonian Astrophysical Observatory controls science and flight operations of the observatory for NASA

  5. Investigation of X24C-2 10-Stage Axial-Flow Compressor. 2; Effect of Inlet-Air Pressure and Temperature of Performance

    NASA Technical Reports Server (NTRS)

    Finger, Harold B.; Schum, Harold J.; Buckner, Howard Jr.

    1947-01-01

    Effect of inlet-air pressure and temperature on the performance of the X24-2 10-Stage Axial-Flow Compressor from the X24C-2 turbojet engine was evaluated. Speeds of 80, 89, and 100 percent of equivalent design speed with inlet-air pressures of 6 and 12 inches of mercury absolute and inlet-air temperaures of approximately 538 degrees, 459 degrees,and 419 degrees R ( 79 degrees, 0 degrees, and minus 40 degrees F). Results were compared with prior investigations.

  6. Treatability Study in Support of Intrinsic Remediation for Site OT 24 at MacDill Air Force Base, Florida. Volume 2

    DTIC Science & Technology

    1997-01-01

    Not Sampled f PJ)ll PARSONS SAA - Some As Above Y Water level drilled LF-JENGINEERING SCIENCE.INC. Denver, Colorado L:\\45021\\,DRAWINGS\\BORELOGS\\OT-24...Remnediotion TS TOC - Top of Cosing G - GRAB MacDill Air Force Base, Florida NS- Not Sampled .PARUONU SAA - Same As Above VWater level drilled L!LJ...GRAB MacDill Air Force Base. Florida NS - Not Sampled fj•--PAMMMNuI SAA - Some As Above Y Water level drilled *NIIN I N Denver. Colorado L:\\45021

  7. NASA Telescopes Join Forces To Observe Unprecedented Explosion

    NASA Image and Video Library

    2017-12-08

    NASA image release April 6, 2011 NASA's Chandra X-ray Observatory completed this four-hour exposure of GRB 110328A on April 4. The center of the X-ray source corresponds to the very center of the host galaxy imaged by Hubble (red cross). Credit: NASA/CXC/ Warwick/A. Levan NASA's Swift, Hubble Space Telescope and Chandra X-ray Observatory have teamed up to study one of the most puzzling cosmic blasts yet observed. More than a week later, high-energy radiation continues to brighten and fade from its location. Astronomers say they have never seen anything this bright, long-lasting and variable before. Usually, gamma-ray bursts mark the destruction of a massive star, but flaring emission from these events never lasts more than a few hours. Although research is ongoing, astronomers say that the unusual blast likely arose when a star wandered too close to its galaxy's central black hole. Intense tidal forces tore the star apart, and the infalling gas continues to stream toward the hole. According to this model, the spinning black hole formed an outflowing jet along its spin axis. A powerful blast of X- and gamma rays is seen if this jet is pointed in our direction. To read more go to: www.nasa.gov/topics/universe/features/star-disintegration... NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Join us on Facebook

  8. Building a QC Database of Meteorological Data From NASA KSC and the United States Air Force's Eastern Range

    NASA Technical Reports Server (NTRS)

    Brenton, James C.; Barbre, Robert E.; Orcutt, John M.; Decker, Ryan K.

    2018-01-01

    The National Aeronautics and Space Administration's (NASA) Marshall Space Flight Center (MSFC) Natural Environments Branch (EV44) has provided atmospheric databases and analysis in support of space vehicle design and day-of-launch operations for NASA and commercial launch vehicle programs launching from the NASA Kennedy Space Center (KSC), co-located on the United States Air Force's Eastern Range (ER) at the Cape Canaveral Air Force Station. The ER is one of the most heavily instrumented sites in the United States measuring various atmospheric parameters on a continuous basis. An inherent challenge with the large databases that EV44 receives from the ER consists of ensuring erroneous data are removed from the databases, and thus excluded from launch vehicle design analyses. EV44 has put forth great effort in developing quality control (QC) procedures for individual meteorological instruments; however, no standard QC procedures for all databases currently exist resulting in QC databases that have inconsistencies in variables, methodologies, and periods of record. The goal of this activity is to use the previous efforts by EV44 to develop a standardized set of QC procedures from which to build flags within the meteorological databases from KSC and the ER, while maintaining open communication with end users from the launch community to develop ways to improve, adapt and grow the QC database. Details of the QC checks are described. The flagged data points will be plotted in a graphical user interface (GUI) as part of a manual confirmation that the flagged data do indeed need to be removed from the archive. As the rate of launches increases with additional launch vehicle programs, more emphasis is being placed to continually update and check weather databases for data quality before use in launch vehicle design and certification analyses.

  9. Catalog of Air Force Weather Technical Documents 1941-2008

    DTIC Science & Technology

    2008-06-19

    provided infrared data to a NASA central readout station. High-resolution infrared data (HRIR) recorded on 70mm film is of photographic quality...Monmouth, New Jersey. Authors represented Army, Navy, and Air Force meteorological activities and their contractors, as well as ESSA, NASA , and... NASA , ESSA, USDA, NCAR, several universities, and an airline. Contents: • “Data Gathering Systems of the 70’s—A Survey,” by J. Giraytys, pp 5-31

  10. NASA's B-52B launch aircraft takes off carrying the third X-43A hypersonic research vehicle on a captive carry evaluation flight September 27, 2004

    NASA Image and Video Library

    2004-09-27

    Attached to the same B-52B mothership that once launched X-15 research aircraft in the 1960s, NASA's third X-43A performed a captive carry evaluation flight from Edwards Air Force Base, California on September 27, 2004. The X-43 remained mated to the B-52 throughout this mission, intended to check its readiness for launch scheduled later in the fall.

  11. A worker attaches covers for the nose pitot boom before removing the unpiloted X-40 from the runway at Edwards Air Force Base, California, following its successful free-flight on March 14, 2001

    NASA Image and Video Library

    2001-03-14

    A worker attaches covers for the nose pitot boom before removing the unpiloted X-40 from the runway at Edwards Air Force Base, California, following its successful free-flight on March 14, 2001. The unpiloted X-40 is a risk-reduction vehicle for the X-37, which is intended to be a reusable space vehicle. NASA's Marshall Space Flight Center in Huntsville, Ala, manages the X-37 project. At Dryden, the X-40A will undergo a series of ground and air tests to reduce possible risks to the larger X-37, including drop tests from a helicopter to check guidance and navigation systems planned for use in the X-37. The X-37 is designed to demonstrate technologies in the orbital and reentry environments for next-generation reusable launch vehicles that will increase both safety and reliability, while reducing launch costs from $10,000 per pound to $1,000 per pound.

  12. NASA's B-52B launch aircraft cruises to a test range over the Pacific Ocean carrying the third X-43A vehicle attached to a Pegasus rocket on November 16, 2004

    NASA Image and Video Library

    2004-11-16

    The third X-43A hypersonic research aircraft, attached to a modified Pegasus booster rocket, was taken to launch altitude by NASA's B-52B launch aircraft from the NASA Dryden Flight Research Center at Edwards Air Force Base, California, on November 16, 2004. About an hour later the Pegasus booster was released from the B-52 to accelerate the X-43A to its intended speed of Mach 10.

  13. X-15A-2 and HL-10 parked on NASA ramp

    NASA Technical Reports Server (NTRS)

    1966-01-01

    The HL-10 is shown next to the X-15A-2 in 1966. Both aircraft later went on to set records. On October 3, 1967, the X-15A-2 reached a speed of Mach 6.7, which was the highest speed achieved by a piloted aircraft until the Space Shuttles far exceeded that speed in 1981 and afterwards. The HL-10 later became the fastest piloted lifting body when it flew at a speed of Mach 1.86 on February 18, 1970. The HL-10 was one of five heavyweight lifting-body designs flown at NASA's Flight Research Center (FRC--later Dryden Flight Research Center), Edwards, California, from July 1966 to November 1975 to study and validate the concept of safely maneuvering and landing a low lift-over-drag vehicle designed for reentry from space. Northrop Corporation built the HL-10 and M2-F2, the first two of the fleet of 'heavy' lifting bodies flown by the NASA Flight Research Center. The contract for construction of the HL-10 and the M2-F2 was $1.8 million. 'HL' stands for horizontal landing, and '10' refers to the tenth design studied by engineers at NASA's Langley Research Center, Hampton, Va. After delivery to NASA in January 1966, the HL-10 made its first flight on Dec. 22, 1966, with research pilot Bruce Peterson in the cockpit. Although an XLR-11 rocket engine was installed in the vehicle, the first 11 drop flights from the B-52 launch aircraft were powerless glide flights to assess handling qualities, stability, and control. In the end, the HL-10 was judged to be the best handling of the three original heavy-weight lifting bodies (M2-F2/F3, HL-10, X-24A). The HL-10 was flown 37 times during the lifting body research program and logged the highest altitude and fastest speed in the Lifting Body program. On Feb. 18, 1970, Air Force test pilot Peter Hoag piloted the HL-10 to Mach 1.86 (1,228 mph). Nine days later, NASA pilot Bill Dana flew the vehicle to 90,030 feet, which became the highest altitude reached in the program. Some new and different lessons were learned through the successful

  14. Range Environmental Assessment Overland Air Operations, Eglin Air Force Base, Florida

    DTIC Science & Technology

    2014-11-12

    Level AICUZ Air Installation Compatible Use Zones ALANG Alabama Air National Guard ALARNG Alabama Army National Guard ASC Aeronautical Systems Center...7th Special Forces Group (Airborne) (7 SFG): x 2 − Alabama Air National Guard ( ALANG ): x 2 − Other Units: x 2 − 53rd Wing (53 WG): x 1.5...N&P 3 6 CH47 CH-47D 2 4 C23 HS748 1 2 U28A JPATS 2 4 CASA212 HS748 1 2 ALANG UH60 UH60A 4 8 Total for R-2915A 7575 14293 R-2915B AFSOC A10 A

  15. The Space Shuttle Atlantis is towed from the runway at Edwards Air Force Base to NASA Dryden's Mate-Demate Device (MDD) for post-flight processing

    NASA Image and Video Library

    2007-06-22

    Following its landing on June 22, 2007, the Space Shuttle Atlantis is towed from the runway at Edwards Air Force Base to NASA Dryden's Mate-Demate Device (MDD) for post-flight processing in preparation for its return to the Kennedy Space Center in Florida.

  16. NASA Telescopes Join Forces To Observe Unprecedented Explosion

    NASA Image and Video Library

    2017-12-08

    NASA image release April 6, 2011 Images from Swift's Ultraviolet/Optical (white, purple) and X-ray telescopes (yellow and red) were combined in this view of GRB 110328A. The blast was detected only in X-rays, which were collected over a 3.4-hour period on March 28. Credit: NASA/Swift/Stefan Immler NASA's Swift, Hubble Space Telescope and Chandra X-ray Observatory have teamed up to study one of the most puzzling cosmic blasts yet observed. More than a week later, high-energy radiation continues to brighten and fade from its location. Astronomers say they have never seen anything this bright, long-lasting and variable before. Usually, gamma-ray bursts mark the destruction of a massive star, but flaring emission from these events never lasts more than a few hours. Although research is ongoing, astronomers say that the unusual blast likely arose when a star wandered too close to its galaxy's central black hole. Intense tidal forces tore the star apart, and the infalling gas continues to stream toward the hole. According to this model, the spinning black hole formed an outflowing jet along its spin axis. A powerful blast of X- and gamma rays is seen if this jet is pointed in our direction. To read more go to: www.nasa.gov/topics/universe/features/star-disintegration... NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Join us on Facebook

  17. X-43A/Hyper-X Vehicle Arrives at NASA Dryden

    NASA Technical Reports Server (NTRS)

    1999-01-01

    A close-up of the X-43A Hypersonic Experimental Vehicle, or 'Hyper-X,' in its protective shipping framework as it arrives at the Dryden Flight Research Center in October 1999. The X-43A was developed to research a dual-mode ramjet/scramjet propulsion system at speeds from Mach 7 up to Mach 10 (7 to 10 times the speed of sound, which varies with temperature and altitude). Hyper-X, the flight vehicle for which is designated as X-43A, is an experimental flight-research program seeking to demonstrate airframe-integrated, 'air-breathing' engine technologies that promise to increase payload capacity for future vehicles, including hypersonic aircraft (faster than Mach 5) and reusable space launchers. This multiyear program is currently underway at NASA Dryden Flight Research Center, Edwards, California. The Hyper-X schedule calls for its first flight later this year (2000). Hyper-X is a joint program, with Dryden sharing responsibility with NASA's Langley Research Center, Hampton, Virginia. Dryden's primary role is to fly three unpiloted X-43A research vehicles to validate engine technologies and hypersonic design tools as well as the hypersonic test facility at Langley. Langley manages the program and leads the technology development effort. The Hyper-X Program seeks to significantly expand the speed boundaries of air-breathing propulsion by being the first aircraft to demonstrate an airframe-integrated, scramjet-powered free flight. Scramjets (supersonic-combustion ramjets) are ramjet engines in which the airflow through the whole engine remains supersonic. Scramjet technology is challenging because only limited testing can be performed in ground facilities. Long duration, full-scale testing requires flight research. Scramjet engines are air-breathing, capturing their oxygen from the atmosphere. Current spacecraft, such as the Space Shuttle, are rocket powered, so they must carry both fuel and oxygen for propulsion. Scramjet technology-based vehicles need to carry only

  18. Aircraft accident report: NASA 712, Convair 990, N712NA, March Air Force Base, California, July 17, 1985, executive summary

    NASA Technical Reports Server (NTRS)

    Batthauer, Byron E.; Mccarthy, G. T.; Hannah, Michael; Hogan, Robert J.; Marlow, Frank J.; Reynard, William D.; Stoklosa, Janis H.; Yager, Thomas J.

    1986-01-01

    On July 17, l985, NASA 712, a Convair 990 aircraft, was destroyed by fire during an aborted takeoff at March Air Force Base in California. Material ejected from a blowout in the tires of the right main landing gear penetrated the right-wing fuel tank. The leaking fuel ignited. Fire engulfed the right wing and fuselage as the aircraft stopped its forward motion. The crew of four and the 15 scientists and technicians aboard escaped without serious injury.

  19. C-17 Shipping InSight Mars Spacecraft to Vandenberg Air Force Base

    NASA Image and Video Library

    2018-02-28

    A C-17 cargo aircraft carrying NASA's InSight spacecraft flew from Buckley Air Force Base, Denver, to Vandenberg Air Force Base, California, on February 28, 2018. The spacecraft was being shipped from Lockheed Martin Space, Denver, where InSight was built and tested. Its launch period opens May 5, 2018. InSight, short for Interior Exploration using Seismic Investigations, Geodesy and Heat Transport, is the first mission dedicated to studying the deep interior of Mars. Its findings will advance understanding of the early history of all rocky planets, including Earth. https://photojournal.jpl.nasa.gov/catalog/PIA22251

  20. Air force Thunderbirds

    NASA Image and Video Library

    2007-02-01

    Silhouetted against the cloud-strewn sky over NASA's Kennedy Space Center, a U.S. Air Force Thunderbird F-16D aircraft displays its prowess. The pilot is Maj. Tad Clark, who, after landing at the Shuttle Landing Facility, announced that Kennedy Space Center Visitor Complex will host the inaugural World Space Expo from Nov. 3 to 11, featuring an aerial salute by the Thunderbirds on its opening weekend. The Expo will create one of the largest displays of space artifacts, hardware and personalities ever assembled in one location with the objective to inspire, educate and engage the public by highlighting the achievements and benefits of space exploration.

  1. Two X-38 Ship Demonstrators in Development at NASA Johnson Space Flight Center

    NASA Technical Reports Server (NTRS)

    1999-01-01

    for the International Space Station, although two later versions were planned at 100 percent of the CRV size. The X-38 and the actual CRV are patterned after a lifting-body shape first employed in the Air Force-NASA X-24 lifting-body project in the early to mid-1970s. The current vehicle design is base lined with life support supplies for about nine hours of orbital free flight from the space station. It's landing will be fully automated with backup systems which allow the crew to control orientation in orbit, select a deorbit site, and steer the parafoil, if necessary. The X-38 vehicles (designated V131, V132, and V-131R) are 28.5 feet long, 14.5 feet wide, and weigh approximately 16,000 pounds on average. The vehicles have a nitrogen-gas-operated attitude control system and a bank of batteries for internal power. The actual CRV to be flown in space was expected to be 30 feet long. The X-38 project is a joint effort between the Johnson Space Center, Houston, Texas (JSC), Langley Research Center, Hampton, Virginia (LaRC) and Dryden Flight Research Center, Edwards, California (DFRC) with the program office located at JSC. A contract was awarded to Scaled Composites, Inc., Mojave, California, for construction of the X-38 test airframes. The first vehicle was delivered to the JSC in September 1996. The vehicle was fitted with avionics, computer systems and other hardware at Johnson. A second vehicle was delivered to JSC in December 1996. Flight research with the X-38 at Dryden began with an unpiloted captive-carry flight in which the vehicle remained attached to its future launch vehicle, Dryden's B-52 008. There were four captive flights in 1997 and three in 1998, plus the first drop test on March 12, 1998, using the parachutes and parafoil. Further captive and drop tests occurred in 1999. In March 2000 Vehicle 132 completed its third and final free flight in the highest, fastest, and longest X-38 flight to date. It was released at an altitude of 39,000 feet and flew

  2. The Space Shuttle Endeavour, mounted securely atop one of NASA's modified Boeing 747 Shuttle Carrier Aircraft, left NASA's Dryden Flight Research Center at Edwards Air Force Base in Southern California at sunrise on Friday, June 28, nine days after conclu

    NASA Image and Video Library

    2002-06-28

    The Space Shuttle Endeavour, mounted securely atop one of NASA's modified Boeing 747 Shuttle Carrier Aircraft, left NASA's Dryden Flight Research Center at Edwards Air Force Base in Southern California at sunrise on Friday, June 28, nine days after concluding mission STS-111 to the International Space Station with a landing at Edwards.

  3. The Official Home Page of the U.S. Air Force

    Science.gov Websites

    : May 24 Air Force directs one-day operational safety review SecAF LOI SecAF LOI Letter of Intent AF and members using two C-130 and one C-17 training airframes. (U.S. Air Force photo by Richard Eldridge) The Transport Team crew members using two C-130 and one C-17 training airframes. (U.S. Air Force photo by

  4. NASA's B-52 mother ship carries the X-43A and its booster rocket on a captive carry flight Jan. 26, 2004

    NASA Image and Video Library

    2004-01-26

    NASA's historic B-52 mother ship carried the X-43A and its Pegasus booster rocket on a captive carry flight from Edwards Air Force Base Jan. 26, 2004. The X-43A and its booster remained mated to the B-52 throughout the two-hour flight, intended to check its readiness for launch. The hydrogen-fueled aircraft is autonomous and has a wingspan of approximately 5 feet, measures 12 feet long and weighs about 2,800 pounds.

  5. SpaceX leading investigation of mishap on This Week @NASA – July 3, 2015

    NASA Image and Video Library

    2015-07-03

    SpaceX, with Federal Aviation Administration oversight, is leading the investigation of what caused the June 28 mishap shortly after the company’s Falcon 9 rocket and Dragon cargo spacecraft launched from Cape Canaveral Air Force Station in Florida. The flight was SpaceX’s seventh contracted resupply mission to the International Space Station. Although important supplies and cargo were lost aboard the Dragon, the station crew has sufficient supplies into the Fall. Also, Progress on crew access tower at Cape, New Horizons’ final flight path, Forever Remembered exhibit, Health and Safety Fair and NASA Week and the Essence Festival!

  6. Building a Quality Controlled Database of Meteorological Data from NASA Kennedy Space Center and the United States Air Force's Eastern Range

    NASA Technical Reports Server (NTRS)

    Brenton, James C.; Barbre. Robert E., Jr.; Decker, Ryan K.; Orcutt, John M.

    2018-01-01

    The National Aeronautics and Space Administration's (NASA) Marshall Space Flight Center (MSFC) Natural Environments Branch (EV44) has provided atmospheric databases and analysis in support of space vehicle design and day-of-launch operations for NASA and commercial launch vehicle programs launching from the NASA Kennedy Space Center (KSC), co-located on the United States Air Force's Eastern Range (ER) at the Cape Canaveral Air Force Station. The ER complex is one of the most heavily instrumented sites in the United States with over 31 towers measuring various atmospheric parameters on a continuous basis. An inherent challenge with large sets of data consists of ensuring erroneous data is removed from databases, and thus excluded from launch vehicle design analyses. EV44 has put forth great effort in developing quality control (QC) procedures for individual meteorological instruments, however no standard QC procedures for all databases currently exists resulting in QC databases that have inconsistencies in variables, methodologies, and periods of record. The goal of this activity is to use the previous efforts by EV44 to develop a standardized set of QC procedures from which to build meteorological databases from KSC and the ER, while maintaining open communication with end users from the launch community to develop ways to improve, adapt and grow the QC database. Details of the QC procedures will be described. As the rate of launches increases with additional launch vehicle programs, it is becoming more important that weather databases are continually updated and checked for data quality before use in launch vehicle design and certification analyses.

  7. NASA, Air Force, and Industry Team Up to Improve Flying Safety

    NASA Image and Video Library

    2001-12-04

    The Air Force provided a C-17 Globemaster III for use in the Vehicle Integrated Propulsion Research (VIPR) effort. Researchers are using the airplane for ground testing of new engine health monitoring technologies.

  8. ARES I-X Launch Prep

    NASA Image and Video Library

    2009-10-25

    A launch countdown sign showing one day until launch of the NASA ARES I-X rocket is seen along the road between Cape Canaveral Air Force Base and the NASA Kennedy Space Center in Cape Canaveral, Florida on Monday, Oct. 26, 2009. The flight test of Ares I-X, scheduled for Tuesday, Oct. 27, 2009, will provide NASA with an early opportunity to test and prove flight characteristics, hardware, facilities and ground operations associated with the Ares I. Photo Credit: (NASA/Bill Ingalls)

  9. The Maharaja’s New AVTAAR: Air-Refuelling Strategy for the Indian Air Force

    DTIC Science & Technology

    2013-06-01

    and Lolita C Baldor, "Boeing gets $35 Billion Air Force Tanker Order," Aviation on NBC News.com. Feruary 24, 2011. http://www.nbcnews.com/id/41766812...rakshak.com/NAVY/Ships/Active/156-Nicobar-Class.html (accessed March 23, 2013). Cassata, Donna, and Lolita C Baldor. "Boeing gets $35 Billion Air Force

  10. X-43A/Hyper-X Vehicle Arrives at NASA Dryden

    NASA Technical Reports Server (NTRS)

    1999-01-01

    A head-on view of the X-43A Hypersonic Experimental Vehicle, or 'Hyper-X,' in its protective shipping framework as it arrives at the Dryden Flight Research Center in October 1999. The X-43A was developed to research a dual-mode ramjet/scramjet propulsion system at speeds from Mach 7 up to Mach 10 (7 to 10 times the speed of sound, which varies with temperature and altitude). Hyper-X, the flight vehicle for which is designated as X-43A, is an experimental flight-research program seeking to demonstrate airframe-integrated, 'air-breathing' engine technologies that promise to increase payload capacity for future vehicles, including hypersonic aircraft (faster than Mach 5) and reusable space launchers. This multiyear program is currently underway at NASA Dryden Flight Research Center, Edwards, California. The Hyper-X schedule calls for its first flight later this year (2000). Hyper-X is a joint program, with Dryden sharing responsibility with NASA's Langley Research Center, Hampton, Virginia. Dryden's primary role is to fly three unpiloted X-43A research vehicles to validate engine technologies and hypersonic design tools as well as the hypersonic test facility at Langley. Langley manages the program and leads the technology development effort. The Hyper-X Program seeks to significantly expand the speed boundaries of air-breathing propulsion by being the first aircraft to demonstrate an airframe-integrated, scramjet-powered free flight. Scramjets (supersonic-combustion ramjets) are ramjet engines in which the airflow through the whole engine remains supersonic. Scramjet technology is challenging because only limited testing can be performed in ground facilities. Long duration, full-scale testing requires flight research. Scramjet engines are air-breathing, capturing their oxygen from the atmosphere. Current spacecraft, such as the Space Shuttle, are rocket powered, so they must carry both fuel and oxygen for propulsion. Scramjet technology-based vehicles need to carry

  11. X-48C Hybrid - Blended Wing Body Demonstrator

    NASA Image and Video Library

    2013-02-28

    The NASA-Boeing X-48C Hybrid/Blended Wing Body research aircraft banked left during one of its final test flights over Edwards Air Force Base from NASA's Dryden Flight Research Center on Feb. 28, 2013.

  12. 1999 NASA Seal/secondary Air System Workshop. Volume 1

    NASA Technical Reports Server (NTRS)

    Steinetz, Bruce M. (Editor); Hendricks, Robert C. (Editor)

    2000-01-01

    NASA Glenn hosted the Seals/Secondary Air System Workshop on October 28-29, 1999. Each year NASA and our industry and university partners share their respective seal technology development. We use these workshops as a technical forum to exchange recent advancements and "lessons-leamed" in advancing seal technology and solving problems of common interest. As in the past we are publishing two volumes. Volume 1 will be publicly available and volume 2 will be restricted under International Traffic and Arms Regulations (I.T.A.R.). The 1999 NASA Seal/Secondary Air System Workshop was divided into four areas; (i) overviews of the government-sponsored gas turbine programs (NASA Ultra Efficient Engine Technology program and DOE Advanced Turbine System program) and the general aviation program (GAP) with emphasis on program goals and seal needs; (ii) turbine engine seal issues from the perspective of an airline customer (i.e., United Airlines), (iii) sealing concepts, methods and results including experimental facilities and numerical predictions; and (iv) reviews of seal requirements for next generation aerospace vehicles (Trailblazer, Bantam and X-38).

  13. NASA and Canadian Snowbirds Aircrafts

    NASA Image and Video Library

    2018-05-09

    Several types of aircraft are on the tarmac at the Shuttle Landing Facility (SLF) at NASA's Kennedy Space in Florida. From left, are two Canadian Forces Snowbird CF-18 jets, a NASA Huey helicopter, and two NASA T-38 trainer aircraft. The Canadian Forces Snowbirds performed aerial maneuvers over Kennedy and Cape Canaveral Air Force Station during a practice flight on May 9, 2018, between their scheduled air shows.

  14. Air Force Research Laboratory, Edwards Air Force Base, CA

    DTIC Science & Technology

    2011-06-27

    Air Force Research Laboratory (AFMC) AFRL /RZS 1 Ara Road Edwards AFB CA 93524-7013 AFRL -RZ-ED-VG-2011-269 9...SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S) Air Force Research Laboratory (AFMC) AFRL /RZS 11. SPONSOR...Form 298 (Rev. 8-98) Prescribed by ANSI Std. 239.18 Air Force Research Laboratory Ed d Ai F B CA Col Mike Platt war s r orce

  15. Air Force Air Refueling for Naval Operations: History, Practice, and Recommendations

    DTIC Science & Technology

    1990-08-01

    Air Force Air Refueling 0 ELECTE C4 N 910U for BU Naval Operations History, Practice, and Recommendations UtMON STA~IMENT X [ Apov.e ,opu,. Lt Col...as three hose reels provide redundancy over just one. 13. Be used in coordination with carriler -launched buddy tankers, there- by providing the

  16. NASA AIRS Movies Show Evolution of U.S. 2011 Heat Wave

    NASA Image and Video Library

    2011-07-26

    NASA Aqua spacecraft has illustrated surface air and skin temperature for the period from July 16-24, showing movement of a dome of heat across the eastern two-thirds of the country. See More Details for the movies.

  17. X-class Flare Erupts from Sun on April 24

    NASA Image and Video Library

    2017-12-08

    The sun emitted a significant solar flare, peaking at 8:27 p.m. EDT on April 24, 2014. Images of the flare were captured by NASA's Solar Dynamics Observatory. Solar flares are powerful bursts of radiation. Harmful radiation from a flare cannot pass through Earth's atmosphere to physically affect humans on the ground, however -- when intense enough -- they can disturb the atmosphere in the layer where GPS and communications signals travel. To see how this event may impact Earth, please visit NOAA's Space Weather Prediction Center at spaceweather.gov, the U.S. government's official source for space weather forecasts, alerts, watches and warnings. This flare is classified as an X1.4 flare. X-class denotes the most intense flares, while the number provides more information about its strength. An X2 is twice as intense as an X1, an X3 is three times as intense, etc. Credit: NASA/Goddard/SDO Credit: NASA/SDO

  18. NASA KingAir #801 during takeoff

    NASA Technical Reports Server (NTRS)

    1999-01-01

    NASA KingAir N801NA during takeoff. The Beechcraft Beech 200 Super KingAir aircraft N7NA, known as NASA 7, has been a support aircraft for many years, flying 'shuttle' missions to Ames Research Center. It once flew from the Jet Propulsion Laboratory and back each day but now (2001) flies between the Dryden Flight Research Center and Ames. Dryden assumed the mission and aircraft in September 1996. A second Beechcraft Beech 200 Super King Air, N701NA, redesignated N801NA, transferred to Dryden on 3 Oct. 1997 and is used for research missions but substitutes for NASA 7 on shuttle missions when NASA 7 is not available.

  19. Members of the flight and ground crews prepare to unload equipment from NASA's B377SGT Super Guppy T

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Members of the flight and ground crews prepare to unload equipment from NASA's B377SGT Super Guppy Turbine cargo aircraft on the ramp at NASA's Dryden Flight Research Center at Edwards Air Force Base, Calif. The outsize cargo plane had delivered the latest version of the X-38 flight test vehicle to NASA Dryden when this photo was taken on June 11, 2000. The B-377SGT Super Guppy Turbine evolved from the 1960s-vintage Pregnant Guppy, Mini Guppy and Super Guppy, used for transporting sections of the Saturn rocket used for the Apollo program moon launches and other outsized cargo. The various Guppies were modified from 1940's and 50's-vintage Boeing Model 377 and C-97 Stratocruiser airframes by Aero Spacelines, Inc., which operated the aircraft for NASA. NASA's Flight Research Center assisted in certification testing of the first Pregnant Guppy in 1962. One of the turboprop-powered Super Guppies, built up from a YC-97J airframe, last appeared at Dryden in May, 1976 when it was used to transport the HL-10 and X-24B lifting bodies from Dryden to the Air Force Museum at Wright-Patterson Air Force Base, Ohio. NASA's present Super Guppy Turbine, the fourth and last example of the final version, first flew in its outsized form in 1980. It and its three sister ships were built in the 1970s for Europe's Airbus Industrie to ferry outsized structures for Airbus jetliners to the final assembly plant in Toulouse, France. It later was acquired by the European Space Agency, and then acquired by NASA in late 1997 for transport of large structures for the International Space Station to the launch site. It replaced the earlier-model Super Guppy, which has been retired and is used for spare parts. NASA's Super Guppy Turbine carries NASA registration number N941NA, and is based at Ellington Field near the Johnson Space Center. For more information on NASA's Super Guppy Turbine, log onto the Johnson Space Center Super Guppy web page at http://spaceflight.nasa.gov/station/assembly/superguppy/

  20. Air Force Cyber Outreach

    DTIC Science & Technology

    2017-09-17

    design process requires teams to analyze and organize information in a manner that communicates efficiently with stakeholders. This communication is...share information (with each other and local school districts) on available/applicable grants b. How to help school districts identify and/or...graphed below. The graph compares the advance’s relative impact on the ability of the Air Force to maintain 12 information and decision dominance (x

  1. X-48C Hybrid - Blended Wing Body Demonstrator

    NASA Image and Video Library

    2013-02-28

    NASA X-48C Hybrid Wing Body aircraft flew over one of the runways laid out on Rogers Dry Lake at Edwards Air Force Base, CA, during a test flight from NASA's Dryden Flight Research Center on Feb. 28, 2013.

  2. Air Force loadmasters oversee unloading of the full-scale Orion abort test crew module mockup from a C-17 cargo aircraft at Edwards Air Force Base March 28.

    NASA Image and Video Library

    2008-03-28

    A full-scale flight-test mockup of the Constellation program's Orion crew vehicle arrived at NASA's Dryden Flight Research Center in late March 2008 to undergo preparations for the first short-range flight test of the spacecraft's astronaut escape system later that year. Engineers and technicians at NASA's Langley Research Center fabricated the structure, which precisely represents the size, outer shape and mass characteristics of the Orion space capsule. The Orion crew module mockup was ferried to NASA Dryden on an Air Force C-17. After painting in the Edwards Air Force Base paint hangar, the conical capsule was taken to Dryden for installation of flight computers, instrumentation and other electronics prior to being sent to the U.S. Army's White Sands Missile Range in New Mexico for integration with the escape system and the first abort flight test in late 2008. The tests were designed to ensure a safe, reliable method of escape for astronauts in case of an emergency.

  3. NASA Telescopes Join Forces To Observe Unprecedented Explosion

    NASA Image and Video Library

    2011-04-06

    NASA image releaes April 6, 2011 This is a visible-light image of GRB 110328A's host galaxy (arrow) taken on April 4 by the Hubble Space Telescope's Wide Field Camera 3. The galaxy is 3.8 billion light-years away. Credit: NASA/ESA/A. Fruchter (STScI) NASA's Swift, Hubble Space Telescope and Chandra X-ray Observatory have teamed up to study one of the most puzzling cosmic blasts yet observed. More than a week later, high-energy radiation continues to brighten and fade from its location. Astronomers say they have never seen anything this bright, long-lasting and variable before. Usually, gamma-ray bursts mark the destruction of a massive star, but flaring emission from these events never lasts more than a few hours. Although research is ongoing, astronomers say that the unusual blast likely arose when a star wandered too close to its galaxy's central black hole. Intense tidal forces tore the star apart, and the infalling gas continues to stream toward the hole. According to this model, the spinning black hole formed an outflowing jet along its spin axis. A powerful blast of X- and gamma rays is seen if this jet is pointed in our direction. To read more go to: www.nasa.gov/topics/universe/features/star-disintegration... NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Join us on Facebook

  4. Moments after release from NASA's B-52 carrier aircraft, the X-43A/Pegasus "stack" is seen before ignition of the Pegasus rocket motor on

    NASA Image and Video Library

    2001-06-02

    The first X-43A hypersonic research aircraft and its modified Pegasus booster rocket were carried aloft by NASA's NB-52B carrier aircraft from Dryden Flight Research Center at Edwards Air Force Base, Calif., on June 2, 2001 for the first of three high-speed free flight attempts. About an hour and 15 minutes later the Pegasus booster was released from the B-52 to accelerate the X-43A to its intended speed of Mach 7. Before this could be achieved, the combined Pegasus and X-43A "stack" lost control about eight seconds after ignition of the Pegasus rocket motor. The mission was terminated and explosive charges ensured the Pegasus and X-43A fell into the Pacific Ocean in a cleared Navy range area. A NASA investigation board is being assembled to determine the cause of the incident. Work continues on two other X-43A vehicles, the first of which could fly by late 2001. Central to the X-43A program is its integration of an air-breathing "scramjet" engine that could enable a variety of high-speed aerospace craft, and promote cost-effective access to space. The 12-foot, unpiloted research vehicle was developed and built for NASA by MicroCraft Inc., Tullahoma, Tenn. The booster was built by Orbital Sciences Corp. at Chandler, Ariz.

  5. SpaceX CRS-14 Prelaunch News Conference

    NASA Image and Video Library

    2018-04-01

    In the Kennedy Space Center’s Press Site auditorium, agency and industry leaders speak to members of the media during a prelaunch news conference for the SpaceX CRS-14 commercial resupply services mission to the International Space Station. Stephanie Schierholz of NASA Communications; Joel Montalbano, NASA Deputy Manager of the International Space Station Program; Jessica Jensen, Director of Dragon Mission Management for SpaceX; Pete Hasbrook, Associate Program Scientist for the ISS Program Science Office; and Mike McAleenan the Launch Weather Officer from the U.S. Air Force 45th Weather Squadron. A Dragon spacecraft is scheduled to be launched from Space Launch Complex 40 at Cape Canaveral Air Force Station in Florida atop a SpaceX Falcon 9 rocket on the company's 14th Commercial Resupply Services mission to the space station.

  6. SpaceX CRS-13 Prelaunch News Conference

    NASA Image and Video Library

    2017-12-11

    In the Kennedy Space Center’s Press Site auditorium, agency and industry leaders speak to members of the media during a prelaunch news conference for the SpaceX CRS-13 commercial resupply services mission to the International Space Station. Cheryl Warner of NASA Communications; Kirk Shireman, NASA Manager of the International Space Station Program; Jessica Jensen, Director of Dragon Mission Management for SpaceX; Kirt Costello, Deputy Chief Scientist for the ISS Program Science Office; and David Myers the Launch Weather Officer from the U.S. Air Force 45th Weather Squadron. A Dragon spacecraft is scheduled to be launched from Space Launch Complex 40 at Cape Canaveral Air Force Station in Florida atop a SpaceX Falcon 9 rocket on the company's 13th Commercial Resupply Services mission to the space station.

  7. Ground crewmen prepare to load the crated SOFIA primary mirror assembly into an Air Force C-17 for shipment to NASA Ames Research Center for finish coating

    NASA Image and Video Library

    2008-05-01

    Technicians at NASA's Dryden Aircraft Operations Facility in Palmdale, Calif., loaded the German-built primary mirror assembly of the Stratospheric Observatory for Infrared Astronomy, or SOFIA, onto an Air Force C-17 for shipment to NASA's Ames Research Center on May 1, 2008. In preparation for the final finish coating of the mirror, the more than two-ton mirror assembly had been removed from its cavity in the rear fuselage of the highly modified SOFIA Boeing 747SP two weeks earlier. After arrival at NASA Ames at Moffett Field near Mountain View, Calif., the mirror would receive its aluminized finish coating before being re-installed in the SOFIA aircraft.

  8. Air Reserve Component: Key to the Air Force’s Future

    DTIC Science & Technology

    2013-03-01

    REPORT TYPE STRATEGY RESEARCH PROJECT .33 3. DATES COVERED (From - To) 4. TITLE AND SUBTITLE Air Reserve Component: Key to the Air Force’s...b. ABSTRACT UU c. THIS PAGE UU 19b. TELEPHONE NUMBER (Include area code) USAWC STRATEGY RESEARCH PROJECT...RAND Corporation, Prepared for the Office of Secretary of Defense, 2008), XV. 64 T.X. Hammes, "Offshore Control: A Proposed Strategy ," Infinity

  9. X-31 wing removal

    NASA Image and Video Library

    1995-05-18

    U.S. and German personnel of the X-31 Enhanced Fighter Maneuverability Technology Demonstrator aircraft program removing the right wing of the aircraft, which was ferried from Edwards Air Force Base, California, to Europe on May 22, 1995 aboard an Air Force Reserve C-5 transport. The X-31, based at the NASA Dryden Flight Research Center was ferried to Europe and flown in the Paris Air Show in June. The wing of the X-31 was removed on May 18, 1995, to allow the aircraft to fit inside the C-5 fuselage. Officials of the X-31 project used Manching, Germany, as a staging base to prepare the aircraft for the flight demonstration. At the air show, the X-31 demonstrated the value of using thrust vectoring (directing engine exhaust flow) coupled with advanced flight control systems to provide controlled flight at very high angles of attack. The aircraft arrived back at Edwards in a Air Force Reserve C-5 on June 25, 1995 and off loaded at Dryden June 27. The X-31 aircraft was developed jointly by Rockwell International's North American Aircraft Division (now part of Boeing) and Daimler-Benz Aerospace (formerly Messerschmitt-Bolkow-Blohm), under sponsorship by the U.S. Department of Defense and the German Federal Ministry of Defense.

  10. NASA engineer Wayne Peterson from the Johnson Space Center reviews postflight checklists following a

    NASA Technical Reports Server (NTRS)

    2001-01-01

    NASA engineer Wayne Peterson from the Johnson Space Center reviews postflight checklists following a spectacular flight of the X-38 prototype for a crew recovery vehicle that may be built for the International Space Station. The X-38 tested atmospheric flight characteristics on December 13, 2001, in a descent from 45,000 feet to Rogers Dry Lake at the NASA Dryden Flight Research Center/Edwards Air Force Base complex in California.

  11. NASA Beechcraft KingAir #801 in flight

    NASA Technical Reports Server (NTRS)

    1998-01-01

    NASA 801 Beechcraft Beech Super KingAir in flight. The Beechcraft Beech 200 Super KingAir aircraft N7NA, known as NASA 7, has been a support aircraft for many years, flying 'shuttle' missions to Ames Research Center. It once flew from the Jet Propulsion Laboratory and back each day but now (2001) flies between the Dryden Flight Research Center and Ames. A second Beechcraft Beech 200 Super King Air, N701NA, redesignated N801NA, transferred to Dryden on 3 Oct. 1997 and is used for research missions but substitutes for NASA 7 on shuttle missions when NASA 7 is not available.

  12. X-33 Integrated Test Facility Extended Range Simulation

    NASA Technical Reports Server (NTRS)

    Sharma, Ashley

    1998-01-01

    In support of the X-33 single-stage-to-orbit program, NASA Dryden Flight Research Center was selected to provide continuous range communications of the X-33 vehicle from launch at Edwards Air Force Base, California, through landing at Malmstrom Air Force Base Montana, or at Michael Army Air Field, Utah. An extensive real-time range simulation capability is being developed to ensure successful communications with the autonomous X-33 vehicle. This paper provides an overview of various levels of simulation, integration, and test being developed to support the X-33 extended range subsystems. These subsystems include the flight termination system, L-band command uplink subsystem, and S-band telemetry downlink subsystem.

  13. Parachute Testing for the NASA X-38 Crew Return Vehicle

    NASA Technical Reports Server (NTRS)

    Stein, Jenny M.

    2005-01-01

    NASA's X-38 program was an in-house technology demonstration program to develop a Crew Return Vehicle (CRV) for the International Space Station capable of returning seven crewmembers to Earth when the Space Shuttle was not present at the station. The program, managed out of NASA's Johnson Space Center, was started in 1995 and was cancelled in 2003. Eight flights with a prototype atmospheric vehicle were successfully flown at Edwards Air Force Base, demonstrating the feasibility of a parachute landing system for spacecraft. The intensive testing conducted by the program included testing of large ram-air parafoils. The flight test techniques, instrumentation, and simulation models developed during the parachute test program culminated in the successful demonstration of a guided parafoil system to land a 25,000 Ib spacecraft. The test program utilized parafoils of sizes ranging from 750 to 7500 p. The guidance, navigation, and control system (GN&C) consisted of winches, laser or radar altimeter, global positioning system (GPS), magnetic compass, barometric altimeter, flight computer, and modems for uplink commands and downlink data. The winches were used to steer the parafoil and to perform the dynamic flare maneuver for a soft landing. The laser or radar altimeter was used to initiate the flare. In the event of a GPS failure, the software navigated by dead reckoning using the compass and barometric altimeter data. The GN&C test beds included platforms dropped from cargo aircraft, atmospheric vehicles released from a 8-52, and a Buckeye powered parachute. This paper will describe the test program and significant results.

  14. NASA TESS Prelaunch News Conference

    NASA Image and Video Library

    2018-04-15

    Members of the news media gathered in the Kennedy Space Center press site auditorium Sunday, April 15 for an update on the Transiting Exoplanet Survey Satellite, or TESS. NASA, Orbital ATK, SpaceX and the 45th Space Wing discussed the launch status and weather forecast for the launch of the agency’s next-generation planet hunting satellite. It is slated to launch April 16 on a SpaceX Falcon 9 rocket, from Space Launch Complex 40 on Cape Canaveral Air Force Station in Florida.

  15. NASA's NB-52B carrier aircraft rolls down a taxiway with the X-43A hypersonic research aircraft and its modified Pegasus® booster rocket attached to a pylon under its right wing.

    NASA Image and Video Library

    2001-03-15

    As part of a combined systems test conducted by NASA Dryden Flight Research Center, NASA's NB-52B carrier aircraft rolls down a taxiway at Edwards Air Force Base with the X-43A hypersonic research aircraft and its modified Pegasus® booster rocket attached to a pylon under its right wing. The taxi test was one of the last major milestones in the Hyper-X research program before the first X-43A flight. The X-43A flights will be the first actual flight tests of an aircraft powered by a revolutionary supersonic-combustion ramjet ("scramjet") engine capable of operating at hypersonic speeds (above Mach 5, or five times the speed of sound). The 12-foot, unpiloted research vehicle was developed and built by MicroCraft Inc., Tullahoma, Tenn., under NASA contract. The booster was built by Orbital Sciences Corp., Dulles, Va. After being air-launched from NASA's venerable NB-52 mothership, the booster will accelerate the X-43A to test speed and altitude. The X-43A will then separate from the rocket and fly a pre-programmed trajectory, conducting aerodynamic and propulsion experiments until it descends into the Pacific Ocean. Three research flights are planned, two at Mach 7 and one at Mach 10.

  16. The chocolate-colored expanse of Rogers Dry Lake frames the sleek lines of the Boeing / NASA X-48B subscale demonstrator during a test flight at Edwards AFB

    NASA Image and Video Library

    2007-08-14

    Boeing Phantom Works' subscale Blended Wing Body technology demonstration aircraft began its initial flight tests from NASA's Dryden Flight Research Center at Edwards Air Force Base, Calif. in the summer of 2007. The 8.5 percent dynamically scaled unmanned aircraft, designated the X-48B by the Air Force, is designed to mimic the aerodynamic characteristics of a full-scale large cargo transport aircraft with the same blended wing body shape. The initial flight tests focused on evaluation of the X-48B's low-speed flight characteristics and handling qualities. About 25 flights were planned to gather data in these low-speed flight regimes. Based on the results of the initial flight test series, a second set of flight tests was planned to test the aircraft's low-noise and handling characteristics at transonic speeds.

  17. Change in anthropometrics and aerobic fitness in Air Force cadets during 3 years of academy studies.

    PubMed

    Aandstad, Anders; Hageberg, Rune; Saether, Øystein; Nilsen, Rune O

    2012-01-01

    Favorable anthropometrical status and aerobic fitness levels are emphasized in Norwegian Air Force personnel. However, it is unknown how these variables develop in Air Force cadets. Thus, the main aim of the present study was to examine how anthropometrics and maximal oxygen uptake (VO2(max)) change among Norwegian Air Force cadets during 3 yr of Academy studies. There were 30 male cadets included in the study. Bodyweight, body mass index (BMI), estimated percent body fat, and VO2(max) were measured at entry and at the end of the first year of Academy studies. After the first year, 14 cadets left the Academy, while the remaining cadets were retested at the end of the second and third years. RESULTS63: At entry, mean (95% CI) bodyweight, BMI, percent body fat, and VO2(max) were 78.4 (75.2, 81.6) kg, 24.3 (23.5, 25.1) kg x m(-2), 17.8 (16.3, 19.3)%, and 4.48 (4.25, 4.72) L x min(-1), respectively. Percent body fat decreased significantly by 1.1 (0.2, 2.0) percentage points at the end of the first year, while the other variables did not change during the first year. Between entry and end of third year there was no change in any of the main outcome variables. Anthropometrical status and VO2(max) did not change in Norwegian Air Force cadets between entry and the end of 3 yr of Air Force Academy studies. From the 1- and 3-yr follow-up analysis, the only significant change was a small reduction in estimated percent body fat from entry to the end of the first year.

  18. Air Force Leadership Diversity

    DTIC Science & Technology

    2017-04-06

    AIR WAR COLLEGE AIR UNIVERSITY AIR FORCE LEADERSHIP DIVERSITY by G. Hall Sebren, Jr., Col, USAF A Research Report Submitted to the...both in HAF/A8 (Strategic Plans and Programs). iv Abstract The Air Force is not drawing upon its full talent pool for leadership in its...promotions boards, but the Air Force promotion system itself is not the problem. Leadership decisions to only allow officers selected for promotion from

  19. U.S. Air Force Radiation in Space experiment for Gemini 6 flight

    NASA Image and Video Library

    1965-12-10

    S65-58941 (27 Aug. 1965) --- U.S. Air Force Weapons Laboratory D-8 (Radiation in Space) experiment for Gemini-6 spaceflight. Kennedy Space Center alternative photo number is 104-KSC-65C-5533. Photo credit: NASA

  20. Small Satellites and the DARPA/Air Force Falcon Program

    NASA Technical Reports Server (NTRS)

    Weeks, David J.; Walker, Steven H.; Sackheim, Robert L.

    2004-01-01

    The FALCON ((Force Application and Launch from CONUS) program is a technology demonstration effort with three major components: a Small Launch Vehicle (SLV), a Common Aero Vehicle (CAV), and a Hypersonic Cruise Vehicle (HCV). Sponsored by DARPA and executed jointly by the United States Air Force and DARPA with NASA participation, the objectives are to develop and demonstrate technologies that will enable both near-term and far-term capability to execute time-critical, global reach missions. The focus of this paper is on the SLV as it relates to small satellites and the implications of lower cost to orbit for small satellites. The target recurring cost for placing 1000 pounds payloads into a circular reference orbit of 28.5 degrees at 100 nautical miles is $5,000,000 per launch. This includes range costs but not the payload or payload integration costs. In addition to the nominal 1000 pounds to LEO, FALCON is seeking delivery of a range of orbital payloads from 220 pounds to 2200 pounds to the reference orbit. Once placed on alert status, the SLV must be capable of launch within 24 hours.

  1. X-43C Plans and Status

    NASA Technical Reports Server (NTRS)

    Moses, Paul L.

    2003-01-01

    X-43C Project is a hypersonic flight demonstration being executed as a collaboration between the National Aeronautics and Space Administration (NASA) and the United States Air Force (USAF). X-43C will expand the hypersonic flight envelope for air breathing engines beyond the history making efforts of the Hyper-X Program (X-43A). X-43C will demonstrate sustained accelerating flight during three flight tests of expendable X-43C Demonstrator Vehicles (DVs). The approximately 16-foot long X-43C DV will be boosted to the starting test conditions, separate from the booster, and accelerate from Mach 5 to Mach 7 under its own power and autonomous control. The DVs are to be powered by a liquid hydrocarbon-fueled, fuel-cooled, dual-mode, airframe integrated scramjet engine system developed under the USAF HyTech Program. The Project is managed by NASA Langley Research Center as part of NASA s Next Generation Launch Technology Program. Flight tests will be conducted by NASA Dryden Flight Research Center over water off the coast of California in the Pacific Test Range. The NASA/USAF/industry project is a natural extension of the Hyper-X Program (X-43A), which will demonstrate short duration ( 10 seconds) gaseous hydrogen-fueled scramjet powered flight at Mach 7 and Mach 10 using a heavyweight, largely heat sink construction, experimental engine. The X-43C Project will demonstrate sustained accelerating flight from Mach 5 to Mach 7 ( 4 minutes) using a flight-weight, fuel-cooled, scramjet engine powered by much denser liquid hydrocarbon fuel. The X-43C DV design flows from integrating USAF HyTech developed engine technologies with a NASA Air Breathing Launch Vehicle accelerator-class configuration and Hyper-X heritage vehicle systems designs. This paper describes the X-43C Project and provides background for NASA s current hypersonic flight demonstration efforts.

  2. Air Force TV

    Science.gov Websites

    Speeches Archive Former AF Top 3 Viewpoints and Speeches Air Force Warrior Games 2017 Events 2018 Air Force Strategic Documents Desert Storm 25th Anniversary Observances DoD Warrior Games Portraits in Courage

  3. SpaceX CRS-14 Post Launch Conference

    NASA Image and Video Library

    2018-04-02

    In the Press Site auditorium of NASA's Kennedy Space Center in Florida, NASA and industry leaders speak to media at a post-launch news conference following the successful liftoff of SpaceX CRS-14, a commercial resupply services mission to the International Space Station. Participants included Josh Finch of NASA Communications, Joel Montalbano, deputy manager of the International Space Station Program, and Jessica Jensen, director of Dragon Mission Management at SpaceX. SpaceX CRS-14 lifted off atop a Falcon 9 rocket from Space Launch Complex 40 at Cape Canaveral Air Force Station in Florida at 4:30 p.m. EDT.

  4. 78 FR 49484 - Exchange of Air Force Real Property for Non-Air Force Real Property

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-14

    ... DEPARTMENT OF DEFENSE Department of Air Force Exchange of Air Force Real Property for Non-Air Force Real Property SUMMARY: Notice identifies excess Federal real property under administrative jurisdiction of the United States Air Force it intends to exchange for real property not currently owned by the...

  5. NASA Social Briefing on Planet-Hunting Mission Launch

    NASA Image and Video Library

    2018-04-15

    Social Media participants gathered at NASA’s Kennedy Space Center Sunday, April 15 to hear from NASA and its partners about the agnecy’s next-generation planet hunting satellite. NASA’s Transiting Exoplanet Survey Satellite (TESS) is scheduled to launch April 16 on a SpaceX Falcon 9 rocket, from Cape Canaveral Air Force Station in Florida.

  6. Space Shuttle Atlantis landing at 12:33 p.m. February 20, 2001, on the runway at Edwards Air Force B

    NASA Technical Reports Server (NTRS)

    2001-01-01

    Space Shuttle Atlantis landed at 12:33 p.m. February 20, 2001, on the runway at Edwards Air Force Base, California, where NASA's Dryden Flight Research Center is located. The mission, which began February 7, logged 5.3 million miles as the shuttle orbited earth while delivering the Destiny science laboratory to the International Space Station. Inclement weather conditions in Florida prompted the decision to land Atlantis at Edwards. The last time a space shuttle landed at Edwards was Oct. 24, 2000.

  7. Space Shuttle Atlantis landing at 12:33 p.m. February 20 on the runway at Edwards Air Force Base, Ca

    NASA Technical Reports Server (NTRS)

    2001-01-01

    Space Shuttle Atlantis landed at 12:33 p.m. February 20 on the runway at Edwards Air Force Base, California, where NASA's Dryden Flight Research Center is located. The mission, which began February 7, logged 5.3 million miles as the shuttle orbited earth while delivering the Destiny science laboratory to the International Space Station. Inclement weather conditions in Florida prompted the decision to land Atlantis at Edwards. The last time a space shuttle landed at Edwards was Oct. 24, 2000.

  8. STS-92 - Landing at Edwards Air Force Base

    NASA Image and Video Library

    2000-10-24

    With its drag parachute deployed to help slow it down, the Space Shuttle Discovery rolls down the runway after landing at Edwards Air Force Base in Southern California at the conclusion of mission STS-92 on October 24, 2000.

  9. Four Years of Sex Integration at the United States Air Force Academy: Problems and Issues

    DTIC Science & Technology

    1985-08-15

    attrition of women graduates . Research is now underway at both the Air Force Academy and Military Personnel Center to determine what exactly is transpiring...Statistic Professional 14.8 25.6 x2 -4.99 Manager 47.4 41.3 df-3 Skilled 31.1 25.6 p=. 7l1 Unskilled 6.7 7.4 Fathers Education 2 Graduate School 18.7 34.7...Skilled 30.9 24.1 p=.007 Unskilled 4.3 4.8 Never Employed 37.2 32.5 Mothers Education Graduate School 8.6 17.0 x’=8.048 College 50.7 57.1 df=2 High School

  10. SpaceX CRS-13 Post Launch News Conference

    NASA Image and Video Library

    2017-12-15

    In the Press Site auditorium of NASA's Kennedy Space Center in Florida, NASA and industry leaders speak to media at a post-launch news conference following the successful liftoff of SpaceX CRS-13, a commercial resupply services mission to the International Space Station. Participants included Stephanie Martin of NASA Communications, Ven Feng, NASA manager of the Transportation Integration Office with the International Space Station Program, and Jessica Jensen, director of Dragon Mission Management at SpaceX. SpaceX CRS-13 lifted off atop a Falcon 9 rocket from Space Launch Complex 40 at Cape Canaveral Air Force Station in Florida at 10:36 a.m. EST.

  11. NASA's NB-52B carrier aircraft rolls down a taxiway with the X-43A hypersonic research aircraft and its modified Pegasus® booster rocket slung from a pylon under its right wing

    NASA Image and Video Library

    2001-03-15

    NASA's NB-52B carrier aircraft rolls down a taxiway at Edwards Air Force Base with the X-43A hypersonic research aircraft and its modified Pegasus® booster rocket slung from a pylon under its right wing. Part of a combined systems test conducted by NASA's Dryden Flight Research Center at Edwards, the taxi test was one of the last major milestones in the Hyper-X research program before the first X-43A flight. The X-43A flights will be the first actual flight tests of an aircraft powered by a revolutionary supersonic-combustion ramjet ("scramjet") engine capable of operating at hypersonic speeds (above Mach 5, or five times the speed of sound). The 12-foot, unpiloted research vehicle was developed and built by MicroCraft Inc., Tullahoma, Tenn., under NASA contract. The booster was built by Orbital Sciences Corp., Dulles, Va.,After being air-launched from NASA's venerable NB-52 mothership, the booster will accelerate the X-43A to test speed and altitude. The X-43A will then separate from the rocket and fly a pre-programmed trajectory, conducting aerodynamic and propulsion experiments until it descends into the Pacific Ocean. Three research flights are planned, two at Mach 7 and one at Mach 10, with the first tentatively scheduled for late spring to early summer, 2001.

  12. X-37 Space Vehicle: Starting a New Age in Space Control?

    NASA Astrophysics Data System (ADS)

    Jameson, Austin D.

    2001-04-01

    The U.S. can no longer rely on the "space as a sanctuary" policy, initiated by the Eisenhower Administration, to continue to exploit space for economic and military advantages. The X-37 space maneuvering vehicle demonstrator is an opportunity for the U.S. to begin to develop methods to more strategically defend and control the space environment. The X-37 is the first of NASA's x-vehicles intended to demonstrate leading edge technologies in orbit. This prototype space maneuvering vehicle co-sponsored by NASA, the Air Force and the Boeing Company is being designed to achieve the goals of reducing the cost to access space from 10,000 to 1000 per pound while improving reliability. The current project is funded to build an autonomous space maneuvering vehicle with on-orbit testing scheduled in 2002, The X-37 is an unmanned space plane that can carry a payload, and can conduct missions while orbiting, loitering, or rendezvousing with objects in space and then autonomously return to earth by landing on a conventional runway. If the Air Force develops the X-37 to its full potential the system could strategically support each of the Air Force's four space mission areas of force enhancement, space support, space control, and force application. Transition of the space maneuvering demonstrator into a space control platform will require a change in national policy. Capitalizing on the lessons from NASA's x-vehicles and partnering with the commercial sector can potentially save costs and shorten the development of a viable space platform that could be used for space control. Strategic development and funded evolution of the X-37 space vehicle is an immediate, tangible step the United States can take to actively pursue a more aggressive program to respond to threats in the space arena.

  13. CloudSat Preps for Launch at Vandenberg Air Force Base, CA

    NASA Technical Reports Server (NTRS)

    2005-01-01

    The CloudSat spacecraft sits encapsulated within its Boeing Delta launch vehicle dual payload attach fitting at Vandenberg Air Force Base, Calif. CloudSat will share its ride to orbit late next month with NASA's CALIPSO spacecraft. The two spacecraft are designed to reveal the secrets of clouds and aerosols.

  14. A digital beamforming processor for the joint DoD/NASA space based radar mission

    NASA Technical Reports Server (NTRS)

    Fischman, Mark A.; Le, Charles; Rosen, Paul A.

    2004-01-01

    The Space Based Radar (SBR) program includes a joint technology demonstration between NASA and the Air Force to design a low-earth orbiting, 2x50 m L-band radar system for both Earth science and intelligence related observations.

  15. NASA's B-52B launch aircraft cruises to a test range over the Pacific Ocean carrying the second X-43A vehicle attached to a Pegasus rocket on March 27, 2004

    NASA Image and Video Library

    2004-03-27

    The second X-43A hypersonic research aircraft, attached to a modified Pegasus booster rocket and followed by a chase F-18, was taken to launch altitude by NASA's B-52B launch aircraft from the NASA Dryden Flight Research Center at Edwards Air Force Base, Calif., on March 27, 2004. About an hour later the Pegasus booster was released from the B-52 to accelerate the X-43A to its intended speed of Mach 7. In a combined research effort involving Dryden, Langley, and several industry partners, NASA demonstrated the value of its X-43A hypersonic research aircraft, as it became the first air-breathing, unpiloted, scramjet-powered plane to fly freely by itself. The March 27 flight, originating from NASA's Dryden Flight Research Center, began with the Agency's B-52B launch aircraft carrying the X-43A out to the test range over the Pacific Ocean off the California coast. The X-43A was boosted up to its test altitude of about 95,000 feet, where it separated from its modified Pegasus booster and flew freely under its own power. Two very significant aviation milestones occurred during this test flight: first, controlled accelerating flight at Mach 7 under scramjet power, and second, the successful stage separation at high dynamic pressure of two non-axisymmetric vehicles. To top it all off, the flight resulted in the setting of a new aeronautical speed record. The X-43A reached a speed of over Mach 7, or about 5,000 miles per hour faster than any known aircraft powered by an air-breathing engine has ever flown.

  16. Parachute Testing for NASA InSight Mission

    NASA Image and Video Library

    2015-05-27

    This parachute testing for NASA's InSight mission to Mars was conducted inside the world's largest wind tunnel, at NASA Ames Research Center, Moffett Field, California, in February 2015. The wind tunnel is 80 feet (24 meters) tall and 120 feet (37 meters) wide. It is part of the National Full-Scale Aerodynamics Complex, operated by the Arnold Engineering Development Center of the U.S. Air Force. Note: After thorough examination, NASA managers have decided to suspend the planned March 2016 launch of the Interior Exploration using Seismic Investigations Geodesy and Heat Transport (InSight) mission. The decision follows unsuccessful attempts to repair a leak in a section of the prime instrument in the science payload. http://photojournal.jpl.nasa.gov/catalog/PIA19405

  17. Capillary Discharge Soft X-ray Laser Experiments at Air Force Research Laboratory

    NASA Astrophysics Data System (ADS)

    Ruden, E. L.; Gale, D. G.

    1997-11-01

    The Air Force Research Laboratory (previously Phillips Laboratory) is presently attempting to reproduce the high gain laser results of J.J. Rocca's capillary discharge z-pinch pumped 46.9 nm Ne-like Ar laser. This poster presents progress to date at measuring our laser's intensity and gain. The capillary circuit consists of a low inductance 3 nH water capacitor discharged by a coaxial spark gap into a 12 cm long, 4 mm ID plastic capillary. The capillary is supplied with 39 kA of current with a 20 ns risetime. The principle radiation diagnostic consists of a VUV monochrometer coupled to a custom high speed vacuum X-ray diode with an aluminum cathode. The signal is recorded on a fast transient digitizer (Tektronix SCD 5000). The total detector system's analog bandwidth is about 3 GHz.

  18. SpaceX CRS-14 Liftoff

    NASA Image and Video Library

    2018-04-02

    A SpaceX Falcon 9 rocket soars upward after lifting off from Space Launch Complex 40 at Cape Canaveral Air Force Station in Florida at 4:30 p.m. EST, carrying the SpaceX Dragon resupply spacecraft. On its 14th commercial resupply services mission for NASA, Dragon will deliver supplies, equipment and new science experiments for technology research to the space station.

  19. SpaceX CRS-14 Liftoff

    NASA Image and Video Library

    2018-04-02

    A SpaceX Falcon 9 rocket lifts off from Space Launch Complex 40 at Cape Canaveral Air Force Station in Florida at 4:30 p.m. EST, carrying the SpaceX Dragon resupply spacecraft. On its 14th commercial resupply services mission for NASA, Dragon will deliver supplies, equipment and new science experiments for technology research to the space station.

  20. SpaceX CRS-14 Liftoff

    NASA Image and Video Library

    2018-04-02

    A SpaceX Falcon 9 rocket lifts off from Space Launch Complex 40 at Cape Canaveral Air Force Station in Florida at 4:30 p.m. EDT, carrying the SpaceX Dragon resupply spacecraft. On its 14th commercial resupply services mission for NASA, Dragon will deliver supplies, equipment and new science experiments for technology research to the space station.

  1. SpaceX CRS-14 Liftoff

    NASA Image and Video Library

    2018-04-02

    A SpaceX Falcon 9 rocket soars upward after lifting off from Space Launch Complex 40 at Cape Canaveral Air Force Station in Florida at 4:30 p.m. EDT, carrying the SpaceX Dragon resupply spacecraft. On its 14th commercial resupply services mission for NASA, Dragon will deliver supplies, equipment and new science experiments for technology research to the space station.

  2. CONTROL BUILDING, WEST FRONT SHOWING ENTRANCE Edwards Air Force ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    CONTROL BUILDING, WEST FRONT SHOWING ENTRANCE - Edwards Air Force Base, X-15 Engine Test Complex, Firing Control Building, Rogers Dry Lake, east of runway between North Base & South Base, Boron, Kern County, CA

  3. Around the Air Force: April 26 > U.S. Air Force > Article Display

    Science.gov Websites

    Speeches Archive Former AF Top 3 Viewpoints and Speeches Air Force Warrior Games 2017 Events 2018 Air Force Strategic Documents Desert Storm 25th Anniversary Observances DoD Warrior Games Portraits in Courage

  4. X-15 #2 on lakebed after engine failure forced pilot Jack McKay to make an emergency landing at Mud

    NASA Technical Reports Server (NTRS)

    1962-01-01

    On 9 November 1962, an engine failure forced Jack McKay, a NASA research pilot, to make an emergency landing at Mud Lake, Nevada, in the second X-15 (56-6671); its landing gear collapsed and the X-15 flipped over on its back. McKay was promptly rescued by an Air Force medical team standing by near the launch site, and eventually recovered to fly the X-15 again. But his injuries, more serious than at first thought, eventually forced his retirement from NASA. The aircraft was sent back to the manufacturer, where it underwent extensive repairs and modifications. It returned to Edwards in February 1964 as the X-15A-2, with a longer fuselage (52 ft 5 in) and external fuel tanks. The basic X-15 was a rocket-powered aircraft 50 ft long with a wingspan of 22 ft. It was a missile-shaped vehicle with an unusual wedge-shaped vertical tail, thin stubby wings, and unique side fairings that extended along the side of the fuselage. The X-15 weighed about 14,000 lb empty and approximately 34,000 lb at launch. The XLR-99 rocket engine, manufactured by Thiokol Chemical Corp., was pilot controlled and was capable of developing 57,000 lb of thrust. North American Aviation built three X-15 aircraft for the program. The X-15 research aircraft was developed to provide in-flight information and data on aerodynamics, structures, flight controls, and the physiological aspects of high-speed, high-altitude flight. A follow-on program used the aircraft as a testbed to carry various scientific experiments beyond the Earth's atmosphere on a repeated basis. For flight in the dense air of the usable atmosphere, the X-15 used conventional aerodynamic controls such as rudder surfaces on the vertical stabilizers to control yaw and movable horizontal stabilizers to control pitch when moving in synchronization or roll when moved differentially. For flight in the thin air outside of the appreciable Earth's atmosphere, the X-15 used a reaction control system. Hydrogen peroxide thrust rockets located on

  5. 2002 NASA Seal/Secondary Air System Workshop. Volume 1

    NASA Technical Reports Server (NTRS)

    Steinetz, Bruce M. (Editor); Hendricks, Robert C. (Editor)

    2003-01-01

    The 2002 NASA Seal/Secondary Air System Workshop covered the following topics: (i) Overview of NASA s perspective of aeronautics and space technology for the 21st century; (ii) Overview of the NASA-sponsored Ultra-Efficient Engine Technology (UEET), Turbine-Based Combined-Cycle (TBCC), and Revolutionary Turbine Accelator (RTA) programs; (iii) Overview of NASA Glenn's seal program aimed at developing advanced seals for NASA's turbomachinery, space propulsion, and reentry vehicle needs; (iv) Reviews of sealing concepts, test results, experimental facilities, and numerical predictions; and (v) Reviews of material development programs relevant to advanced seals development. The NASA UEET and TBCC/RTA program overviews illustrated for the reader the importance of advanced technologies, including seals, in meeting future turbine engine system efficiency and emission goals. For example, the NASA UEET program goals include an 8- to 15-percent reduction in fuel burn, a 15-percent reduction in CO2, a 70-percent reduction in NOx, CO, and unburned hydrocarbons, and a 30-dB noise reduction relative to program baselines. The workshop also covered several programs NASA is funding to investigate advanced reusable space vehicle technologies (X-38) and advanced space ram/scramjet propulsion systems. Seal challenges posed by these advanced systems include high-temperature operation, resiliency at the operating temperature to accommodate sidewall flexing, and durability to last many missions.

  6. NASA/Air Force/Environmental Protection Agency Interagency Depainting Study

    NASA Technical Reports Server (NTRS)

    Clark-Ingram, Marceia

    1998-01-01

    Many popular and widely used paint stripping products have traditionally contained methylene chloride as their main active ingredient. However, the Environmental Protection Agency (EPA) has critically curved the allowable use of methylene chloride under the National Emission Standard for Hazardous Air Pollutants regulating Aerospace Manufacturing and Rework Facilities . Compliance with this rule was mandatory by September 1998 for affected facilities. An effort is underway to identify and evaluate alternative depainting technologies emphasizing those believed both effective and environmentally benign. On behalf of the EPA and in cooperation with the United States Air Force, the National Aeronautics and Space Administration is conducting a technical assessment of several alternative technologies ( i.e. : chemical stripping, two CO2 blasting processes, CO2 xenon lamp coating removal, CO2 Laser stripping, plastic media blasting, sodium bicarbonate wet stripping, high pressure water stripping, and wheat starch blasting). These depainting processes represent five removal method categories, namely abrasive, impact, cryogenic, thermal, and/or molecular bonding dissociation. This paper discusses the test plan and parameters for this interagency study. Several thicknesses of clad and non-clad aluminum substrates were used to prepare test specimens. Each depainting process has been assigned a specimen lot, all of which have completed three to five stripping cycles. Numerous metallurgical evaluations are underway to assess the impact of these alternative depainting processes upon the structural integrity of the substrate.

  7. The Three Main Rings of the X-38 Vehicle 201 Shown under Construction at NASA Johnson Space Flight C

    NASA Technical Reports Server (NTRS)

    1999-01-01

    for the International Space Station, although two later versions were planned at 100 percent of the CRV size. The X-38 and the actual CRV are patterned after a lifting-body shape first employed in the Air Force-NASA X-24 lifting-body project in the early to mid-1970s. The current vehicle design is base lined with life support supplies for about nine hours of orbital free flight from the space station. It's landing will be fully automated with backup systems which allow the crew to control orientation in orbit, select a deorbit site, and steer the parafoil, if necessary. The X-38 vehicles (designated V131, V132, and V-131R) are 28.5 feet long, 14.5 feet wide, and weigh approximately 16,000 pounds on average. The vehicles have a nitrogen-gas-operated attitude control system and a bank of batteries for internal power. The actual CRV to be flown in space was expected to be 30 feet long. The X-38 project is a joint effort between the Johnson Space Center, Houston, Texas (JSC), Langley Research Center, Hampton, Virginia (LaRC) and Dryden Flight Research Center, Edwards, California (DFRC) with the program office located at JSC. A contract was awarded to Scaled Composites, Inc., Mojave, California, for construction of the X-38 test airframes. The first vehicle was delivered to the JSC in September 1996. The vehicle was fitted with avionics, computer systems and other hardware at Johnson. A second vehicle was delivered to JSC in December 1996. Flight research with the X-38 at Dryden began with an unpiloted captive-carry flight in which the vehicle remained attached to its future launch vehicle, Dryden's B-52 008. There were four captive flights in 1997 and three in 1998, plus the first drop test on March 12, 1998, using the parachutes and parafoil. Further captive and drop tests occurred in 1999. In March 2000 Vehicle 132 completed its third and final free flight in the highest, fastest, and longest X-38 flight to date. It was released at an altitude of 39,000 feet and flew

  8. STS 51-G Discovery lands at Edwards Air Force Base, California

    NASA Image and Video Library

    1985-06-24

    51G-S-224 (24 June 1985) --- Discovery, with its seven-member 51-G crew aboard, touches down on a dry lakebed at Edwards Air Force Base in California. Landing was noted at 6:11:53 a.m. (PDT), June 24, 1985.

  9. STS 51-G Discovery lands at Edwards Air Force Base, California

    NASA Image and Video Library

    1985-06-24

    51G-S-225 (24 June 1985) --- Discovery, with its seven-member 51-G crew aboard, touches down on a dry lakebed at Edwards Air Force Base in California. Landing was noted at 6:11:53 a.m. (PDT), June 24, 1985.

  10. Space Shuttle orbiter Columbia touches down at Edwards Air Force Base

    NASA Image and Video Library

    1981-04-14

    S81-30744 (14 April 1981) --- The rear wheels of the space shuttle orbiter Columbia are about to touch down on Rogers Lake (a dry bed) at Edwards Air Force Base in southern California to successfully complete a stay in space of more than two days. Astronauts John W. Young, STS-1 commander, and Robert L. Crippen, pilot, are aboard the vehicle. The mission marked the first NASA flight to end with a wheeled landing and represents the beginning of a new age of spaceflight that will employ the same hardware repeatedly. Photo credit: NASA

  11. Air Force Research Laboratory

    DTIC Science & Technology

    2009-06-08

    Air Force Research Laboratory 8 June 2009 Mr. Leo Marple Ai F R h L b t r orce esearc a ora ory Leo.Marple@wpafb.af.mil DISTRIBUTION STATEMENT A...TITLE AND SUBTITLE Air Force Research Laboratory 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER...5e. TASK NUMBER 5f. WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) Air Force Research Laboratory ,Wright

  12. NASA's space shuttle Atlantis and its 747 carrier taxied on the Edwards Air Force Base flightline as the unusual combination left for Kennedy Space Center, Florida, on March 1, 2001

    NASA Image and Video Library

    2001-03-01

    NASA's space shuttle Atlantis and its 747 carrier taxied on the Edwards Air Force Base flightline as the unusual combination left for Kennedy Space Center, Florida, on March 1, 2001. Atlantis and the shuttle Columbia were both airborne on the same day as they migrated from California to Florida. Columbia underwent refurbishing at nearby Palmdale, California.

  13. Computer graphic of Lockheed Martin X-33 Reusable Launch Vehicle (RLV) mounted on NASA 747 ferry air

    NASA Technical Reports Server (NTRS)

    1997-01-01

    This is an artist's conception of the NASA/Lockheed Martin X-33 Advanced Technology Demonstrator being carried on the back of the 747 Shuttle Carrier Aircraft. This was a concept for moving the X-33 from its landing site back to NASA's Dryden Flight Research Center, Edwards, California. The X-33 was a technology demonstrator vehicle for the Reusable Launch Vehicle (RLV). The RLV technology program was a cooperative agreement between NASA and industry. The goal of the RLV technology program was to enable significant reductions in the cost of access to space, and to promote the creation and delivery of new space services and other activities that will improve U.S. economic competitiveness. NASA Headquarter's Office of Space Access and Technology oversaw the RLV program, which was being managed by the RLV Office at NASA's Marshall Space Flight Center, located in Huntsville, Alabama. Responsibilities of other NASA Centers included: Johnson Space Center, Houston, Texas, guidance navigation and control technology, manned space systems, and health technology; Ames Research Center, Mountain View, CA., thermal protection system testing; Langley Research Center, Langley, Virginia, wind tunnel testing and aerodynamic analysis; and Kennedy Space Center, Florida, RLV operations and health management. Lockheed Martin's industry partners in the X-33 program are: Astronautics, Inc., Denver, Colorado, and Huntsville, Alabama; Engineering & Science Services, Houston, Texas; Manned Space Systems, New Orleans, LA; Sanders, Nashua, NH; and Space Operations, Titusville, Florida. Other industry partners are: Rocketdyne, Canoga Park, California; Allied Signal Aerospace, Teterboro, NJ; Rohr, Inc., Chula Vista, California; and Sverdrup Inc., St. Louis, Missouri.

  14. Air Force is Developing Risk-Mitigation Strategies to Manage Potential Loss of the RD-180 Engine (REDACTED)

    DTIC Science & Technology

    2015-03-05

    launched on its rocket- estimated completion date of May 2015. Air Force will require verification that SpaceX can meet payload integration...design and accelerate integration capability at Space Exploration Technologies Corporation ( SpaceX )1 launch sites. o The Air Force does not intend to...accelerate integration capabilities at SpaceX launch sites because of the studies it directed, but will require verification that SpaceX can meet

  15. JANNAF 24th Airbreathing Propulsion Subcommittee and 36th Combustion Subcommittee Joint Meeting. Volume 1

    NASA Technical Reports Server (NTRS)

    Fry, Ronald S. (Editor); Gannaway, Mary T. (Editor)

    1999-01-01

    Volume 1, the first of three volumes is a compilation of 16 unclassified/unlimited-technical papers presented at the Joint Army-Navy-NASA-Air Force (JANNAF) 24th Airbreathing Propulsion Subcommittee and 36th Combustion Subcommittee held jointly with the 181 Propulsion Systems Hazards Subcommittee. The meeting was held on 18-21 October 1999 at NASA Kennedy Space Center and The DoubleTree Oceanfront Hotel, Cocoa Beach, Florida. Topics covered include overviews of RBCC and PDE hypersonic technology, Hyper-X propulsion ground testing, development of JP-8 for hypersonic vehicle applications, numerical simulation of dual-mode SJ combustion, V&V of M&S computer codes, MHD SJ and Rocket Based Combined Cycle (RBCC) launch vehicle concepts, and Pulse Detonation Engine (PDE) propulsion technology development including fundamental investigations, modeling, aerodynamics, operation and performance.

  16. NASA Lewis Research Center Workshop on Forced Response in Turbomachinery

    NASA Technical Reports Server (NTRS)

    Stefko, George L. (Compiler); Murthy, Durbha V. (Compiler); Morel, Michael (Compiler); Hoyniak, Dan (Compiler); Gauntner, Jim W. (Compiler)

    1994-01-01

    A summary of the NASA Lewis Research Center (LeRC) Workshop on Forced Response in Turbomachinery in August, 1993 is presented. It was sponsored by the following NASA organizations: Structures, Space Propulsion Technology, and Propulsion Systems Divisions of NASA LeRC and the Aeronautics and Advanced Concepts & Technology Offices of NASA Headquarters. In addition, the workshop was held in conjunction with the GUIde (Government/Industry/Universities) Consortium on Forced Response. The workshop was specifically designed to receive suggestions and comments from industry on current research at NASA LeRC in the area of forced vibratory response of turbomachinery blades which includes both computational and experimental approaches. There were eight presentations and a code demonstration. Major areas of research included aeroelastic response, steady and unsteady fluid dynamics, mistuning, and corresponding experimental work.

  17. Mass Properties Measurement in the X-38 Project

    NASA Technical Reports Server (NTRS)

    Peterson, Wayne L.

    2004-01-01

    This paper details the techniques used in measuring the mass properties for the X-38 family of test vehicles. The X-38 Project was a NASA internal venture in which a series of test vehicles were built in order to develop a Crew Return Vehicle (CRV) for the International Space Station. Three atmospheric test vehicles and one spaceflight vehicle were built to develop the technologies required for a CRV. The three atmospheric test vehicles have undergone flight-testing by a combined team from the NASA Johnson Space Center and the NASA Dryden Flight Research Center. The flight-testing was performed at Edward's Air Force Base in California. The X-38 test vehicles are based on the X-24A, which flew in the '60s and '70s. Scaled Composites, Inc. of Mojave, California, built the airframes and the vehicles were outfitted at the NASA Johnson Space Center in Houston, Texas. Mass properties measurements on the atmospheric test vehicles included weight and balance by the three-point suspension method, four-point suspension method, three load cells on jackstands, and on three in-ground platform scales. Inertia measurements were performed as well in which Ixx, Iyy, Izz, and Ixz were obtained. This paper describes each technique and the relative merits of each. The proposed measurement methods for an X-38 spaceflight test vehicle will also be discussed. This vehicle had different measurement challenges, but integrated vehicle measurements were never conducted. The spaceflight test vehicle was also developed by NASA and was scheduled to fly on the Space Shuttle before the project was cancelled.

  18. Air Force Senior Leaders

    Science.gov Websites

    Speeches Archive Former AF Top 3 Viewpoints and Speeches Air Force Warrior Games 2017 Events 2018 Air Force Strategic Documents Desert Storm 25th Anniversary Observances DoD Warrior Games Portraits in Courage

  19. Air Force Radio News

    Science.gov Websites

    Speeches Archive Former AF Top 3 Viewpoints and Speeches Air Force Warrior Games 2017 Events 2018 Air Force Strategic Documents Desert Storm 25th Anniversary Observances DoD Warrior Games Portraits in Courage

  20. Analysis of data on Air Force personnel collected at Lackland Air Force Base

    DOT National Transportation Integrated Search

    1969-10-01

    In July, 1967, a report was published by the Personnel Research Laboratory, Lackland Air Force Base, entitled "An Attempt to Predict Automobile Accidents Among Air Force Personnnel". Approximately twelve thousand basic airmen and eleven hundred offic...

  1. Air Force officials name SARC of the year > U.S. Air Force > Article

    Science.gov Websites

    The Book Speeches Archive Former AF Top 3 Viewpoints and Speeches Air Force Warrior Games 2017 Events 2018 Air Force Strategic Documents Desert Storm 25th Anniversary Observances DoD Warrior Games

  2. X-29 Research Pilot Rogers Smith

    NASA Technical Reports Server (NTRS)

    1988-01-01

    Rogers Smith, a NASA research pilot, is seen here at the cockpit of the X-29 forward-swept-wing technology demonstrator at NASA's Ames-Dryden Flight Research Facility (later the Dryden Flight Research Center), Edwards, California, in 1988. The X-29 explored the use of advanced composites in aircraft construction; variable camber wing surfaces; the unique forward-swept-wing and its thin supercritical airfoil; strake flaps; and a computerized fly-by-wire flight control system that overcame the aircraft's instability. Grumman Aircraft Corporation built two X-29s. They were flight tested at Dryden from 1984 to 1992 in a joint NASA, DARPA (Defense Advanced Research Projects Agency) and U.S. Air Force program. Two X-29 aircraft, featuring one of the most unusual designs in aviation history, flew at the Ames-Dryden Flight Research Facility (now the Dryden Flight Research Center, Edwards, California) from 1984 to 1992. The fighter-sized X-29 technology demonstrators explored several concepts and technologies including: the use of advanced composites in aircraft construction; variable-camber wing surfaces; a unique forward- swept wing and its thin supercritical airfoil; strakes; close-coupled canards; and a computerized fly-by-wire flight control system used to maintain control of the otherwise unstable aircraft. Research results showed that the configuration of forward-swept wings, coupled with movable canards, gave pilots excellent control response at angles of attack of up to 45 degrees. During its flight history, the X-29 aircraft flew 422 research missions and a total of 436 missions. Sixty of the research flights were part of the X-29 follow-on 'vortex control' phase. The forward-swept wing of the X-29 resulted in reverse airflow, toward the fuselage rather than away from it, as occurs on the usual aft-swept wing. Consequently, on the forward-swept wing, the ailerons remained unstalled at high angles of attack. This provided better airflow over the ailerons and

  3. Sections. March Air Force Base, Riverside, California, Combat Operations Center, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Sections. March Air Force Base, Riverside, California, Combat Operations Center, Combat Operations Building. By Moffatt and Nichol, Engineers, 122 West Fifth Street, Long Beach, California; for the Corps of Engineers, U.S. Army, Office of the District Engineer, Los Angeles, California. Drawing no. AW-60-02-03, sheet no. 14, approved March, 1962; specifications no. ENG-04-353-62-66; D.O. series AW 1596/15, Rev. "A"; file drawer 1290. Last revised 3 October 1966. Scale one-eighth inch to one foot. 30x36 inches. pencil on paper - March Air Force Base, Strategic Air Command, Combat Operations Center, 5220 Riverside Drive, Moreno Valley, Riverside County, CA

  4. Elevations. March Air Force Base, Riverside, California, Combat Operations Center, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Elevations. March Air Force Base, Riverside, California, Combat Operations Center, Combat Operations Building. By Moffatt and Nichol, Engineers, 122 West Fifth Street, Long Beach, California; for the Corps of Engineers, U.S. Army, Office of the District Engineer, Los Angeles, California. Drawing no. AW-60-02-03, sheet no. 14, approved March, 1962; specifications no. ENG-04-353-62-66; D.O. series AW 1596/14, Rev. "B"; file drawer 77-1/102. Last revised 3 October 1966. Scale one-eighth inch to one foot. 30x36 inches. photocopy on paper - March Air Force Base, Strategic Air Command, Combat Operations Center, 5220 Riverside Drive, Moreno Valley, Riverside County, CA

  5. Utility Building Plan, elevations and sections. March Air Force Base, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Utility Building Plan, elevations and sections. March Air Force Base, Riverside, California, COmbat Operations Center, Utility Building. By Moffatt and Nichol, Engineers, 122 West Fifth Street, Long Beach, California; for the Corps of Engineers, U.S. Army, Office of the District Engineer, Los Angeles, California. Drawing no. AW-60-02-03, sheet no. 57, approved March, 1962; specifications no. ENG-04-353-62-66; D.O. series AW 1596/57, Rev. "B"; file drawer 1290. Last revised 3 October 1966 "drawings updated." Various scales. 29 x 41 inches. pencil on paper - March Air Force Base, Strategic Air Command, Utility Building, 5220 Riverside Drive, Moreno Valley, Riverside County, CA

  6. SpaceX Falcon Heavy Demo Flight - Landing

    NASA Image and Video Library

    2018-02-06

    The SpaceX Falcon Heavy rocket’s two side cores descend toward landing at Cape Canaveral Air Force Station in Florida following a successful liftoff at 3:45 p.m. EST from Launch Complex 39A at NASA's Kennedy Space Center. This demonstration flight is a significant milestone for the world's premier multi-user spaceport. In 2014, NASA signed a property agreement with SpaceX for the use and operation of the center's pad 39A, where the company has launched Falcon 9 rockets and prepared for the first Falcon Heavy. NASA also has Space Act Agreements in place with partners, such as SpaceX, to provide services needed to process and launch rockets and spacecraft.

  7. NASA TESS Prelaunch News Conference

    NASA Image and Video Library

    2018-04-15

    In Kennedy Space Center's Press Site auditorium, members of the media participate in a mission briefing on NASA's Transiting Exoplanet Survey Satellite (TESS). Josh Finch, NASA Communications, moderates the briefing. TESS is the next step in the search for planets outside of our solar system. The mission will find exoplanets that periodically block part of the light from their host stars, events called transits. The satellite will survey the nearest and brightest stars for two years to search for transiting exoplanets. TESS will launch on a SpaceX Falcon 9 rocket from Space Launch Complex 40 at Cape Canaveral Air Force Station no earlier than 6:32 p.m. EDT on Monday, April 16.

  8. 2001 NASA Seal/secondary Air System Workshop, Volume 1. Volume 1

    NASA Technical Reports Server (NTRS)

    Steinetz, Bruce M. (Editor); Hendricks, Robert C. (Editor)

    2002-01-01

    The 2001 NASA Seal/Secondary Air System Workshop covered the following topics: (i) overview of NASA's Vision for 21st Century Aircraft; (ii) overview of NASA-sponsored Ultra-Efficient Engine Technology (UEET); (iii) reviews of sealing concepts, test results, experimental facilities, and numerical predictions; and (iv) reviews of material development programs relevant to advanced seals development. The NASA UEET overview illustrates for the reader the importance of advanced technologies, including seals, in meeting future turbine engine system efficiency and emission goals. The NASA UEET program goals include an 8-to 15-percent reduction in fuel burn, a 15-percent reduction in CO2, a 70-percent reduction in NOx, CO, and unburned hydrocarbons, and a 30-dB noise reduction relative to program baselines. The workshop also covered several programs NASA is funding to investigate advanced reusable space vehicle technologies (X-38) and advanced space ram/scramjet propulsion systems. Seal challenges posed by these advanced systems include high-temperature operation, resiliency at the operating temperature to accommodate sidewall flexing, and durability to last many missions.

  9. Bob Meyer (right), acting deputy director of NASA Dryden, shakes hands with Les Bordelon, executive

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Bob Meyer (on the right), acting deputy director of NASA's Dryden Flight Research Center, Edwards, California, shakes hands with Les Bordelon, executive director of Edwards Air Force Base. The handshake represents Dryden's acceptance of an Air Force C-20A delivered from Ramstein Air Base, Germany. The aircraft will be modified to carry equipment and experiments in support of both NASA and U.S. Air Force projects. The joint use of this aircraft is a result of the NASA Dryden/Edwards Air Force Base Alliance which shares some resources as cost-cutting measures.

  10. Final Environmental Assessment: Proposed Composite Aircraft Inspection Facilities, Hill Air Force Base, Utah

    DTIC Science & Technology

    2008-10-02

    radiography . Two large inspection bays would each accommodate one F-22 aircraft and robotic x-ray inspection equipment. Six smaller bays would accommodate...large aircraft components (two ultrasonic inspection bays, two laser shearography inspection bays, and two digital radiography inspection bays...Hill Air Force Base, Utah Final Environmental Assessment: Proposed Composite Aircraft Inspection Facilities, Hill Air Force Base, Utah

  11. NASA Managers Set July 20 As Launch Date for Chandra Telescope

    NASA Astrophysics Data System (ADS)

    1999-07-01

    NASA managers set Tuesday, July 20, 1999, as the official launch date for NASA's second Space Shuttle Mission of the year that will mark the launch of the first female Shuttle Commander and the Chandra X-Ray Observatory. Columbia is scheduled to liftoff from Launch Pad 39-B at the Kennedy Space Center on July 20 at the opening of a 46-minute launch window at 12:36 a.m. EDT. Columbia's planned five-day mission is scheduled to end with a night landing at the Kennedy Space Center just after 11:30 p.m. EDT on July 24. Following its deployment from the Shuttle, Chandra will join the Hubble Space Telescope and the Compton Gamma Ray Observatory as the next in NASA's series of "Great Observatories." Chandra will spend at least five years in a highly elliptical orbit which will carry it one-third of the way to the moon to observe invisible and often violent realms of the cosmos containing some of the most intriguing mysteries in astronomy ranging from comets in our solar system to quasars at the edge of the universe. Columbia's 26th flight is led by Air Force Col. Eileen Collins, who will command a Space Shuttle mission following two previous flights as a pilot. The STS-93 Pilot is Navy Captain Jeff Ashby who will be making his first flight into space. The three mission specialists for the flight are: Air Force Lt. Col. Catherine "Cady" Coleman, who will be making her second flight into space; Steven A. Hawley, Ph.D, making his fifth flight; and French Air Force Col. Michel Tognini of the French Space Agency (CNES), who is making his first Space Shuttle flight and second trip into space after spending two weeks on the Mir Space Station as a visiting cosmonaut in 1992. NASA press releases and other information are available automatically by sending an Internet electronic mail message to domo@hq.nasa.gov. In the body of the message (not the subject line) users should type the words "subscribe press-release" (no quotes). The system will reply with a confirmation via E-mail of

  12. 33 CFR 334.590 - Atlantic Ocean off Cape Canaveral, Fla.; Air Force missile testing area, Patrick Air Force Base...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ..., Fla.; Air Force missile testing area, Patrick Air Force Base, Fla. 334.590 Section 334.590 Navigation... RESTRICTED AREA REGULATIONS § 334.590 Atlantic Ocean off Cape Canaveral, Fla.; Air Force missile testing area... during firing periods to be specified by the Commander, Air Force Missile Test Center, Patrick Air Force...

  13. 33 CFR 334.590 - Atlantic Ocean off Cape Canaveral, Fla.; Air Force missile testing area, Patrick Air Force Base...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ..., Fla.; Air Force missile testing area, Patrick Air Force Base, Fla. 334.590 Section 334.590 Navigation... RESTRICTED AREA REGULATIONS § 334.590 Atlantic Ocean off Cape Canaveral, Fla.; Air Force missile testing area... during firing periods to be specified by the Commander, Air Force Missile Test Center, Patrick Air Force...

  14. 33 CFR 334.590 - Atlantic Ocean off Cape Canaveral, Fla.; Air Force missile testing area, Patrick Air Force Base...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ..., Fla.; Air Force missile testing area, Patrick Air Force Base, Fla. 334.590 Section 334.590 Navigation... RESTRICTED AREA REGULATIONS § 334.590 Atlantic Ocean off Cape Canaveral, Fla.; Air Force missile testing area... during firing periods to be specified by the Commander, Air Force Missile Test Center, Patrick Air Force...

  15. 33 CFR 334.590 - Atlantic Ocean off Cape Canaveral, Fla.; Air Force missile testing area, Patrick Air Force Base...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ..., Fla.; Air Force missile testing area, Patrick Air Force Base, Fla. 334.590 Section 334.590 Navigation... RESTRICTED AREA REGULATIONS § 334.590 Atlantic Ocean off Cape Canaveral, Fla.; Air Force missile testing area... during firing periods to be specified by the Commander, Air Force Missile Test Center, Patrick Air Force...

  16. Independent Auditors Report on the Air Force Working Capital Fund FY 2015 and FY 2014 Basic Financial Statements for United States Air Force Agency Financial Report 2015

    DTIC Science & Technology

    2015-11-09

    missile warning, weather and intelligence warfighting support. AFSPC operates sensors that provide direct attack warning and assessment to U.S...toughness combinations. AFRL conducted low-speed wind tunnel tests of 9%-scale model completed at NASA Langley Research Center (LaRC); data validated... wireless mobile monitoring capability designed for dismounted Pararescue Jumpers (PJ) called United States Air Force 89 Battlefield Airmen Trauma

  17. Finding of No Significant Impact: First Air Force Air Operations Center, First Air Force Headquarters/Air Force Forces Center, and Highway 98 Overpass at Tyndall Air Force Base, Florida

    DTIC Science & Technology

    2004-11-10

    found at the following web address: <http://dep.state.fl.us/air/forms/asbestos.htm#asbestos>. The Air Force is advised to contact Sandra Veazey at...advised to contact Sandra Veazey at (850) 595·8300 for additional information on asbestos issues. http://tlhora6.dep.state.fl.us/clearinghouse/agency

  18. NASA - Johnson Space Center's New Capabilities for Air Purification

    NASA Technical Reports Server (NTRS)

    Graf, John

    2015-01-01

    NASA has some unique and challenging air purification problems that cannot be adequately met with COTS technology: 1) ammonia removal from air, 2) hydrazine removal from air, 3) CO conversion to CO2 in low temperature, high humidity environments. NASA has sponsored the development of new sorbents and new catalysts. These new sorbents and catalysts work better than COTS technology for our application. If attendees have a need for an effective ammonia sorbent, an effective hydrazine sorbent, or an effective CO conversion catalyst, we should learn to see if NASA sponsored technology development can help.

  19. Air Traffic Management Research at NASA

    NASA Technical Reports Server (NTRS)

    Farley, Todd

    2012-01-01

    The U.S. air transportation system is the most productive in the world, moving far more people and goods than any other. It is also the safest system in the world, thanks in part to its venerable air traffic control system. But as demand for air travel continues to grow, the air traffic control systems aging infrastructure and labor-intensive procedures are impinging on its ability to keep pace with demand. And that impinges on the growth of our economy. Part of NASA's current mission in aeronautics research is to invent new technologies and procedures for ATC that will enable our national airspace system to accommodate the increasing demand for air transportation well into the next generation while still maintaining its excellent record for safety. It is a challenging mission, as efforts to modernize have, for decades, been hamstrung by the inability to assure safety to the satisfaction of system operators, system regulators, and/or the traveling public. In this talk, we'll provide a brief history of air traffic control, focusing on the tension between efficiency and safety assurance, and we'll highlight some new NASA technologies coming down the pike.

  20. Air Force Medical Service > Resources > Suicide Prevention

    Science.gov Websites

    Air Force Medical Service Air Force Medical Service Join the Air Force Home Your Healthcare Healthy Videos MHS Genesis AFMS Priorities Trusted Care Vision Air Force Medical Home Full Spectrum Medical ) Air Force EFMP Who is an EFM? Who must enroll? EFMP-Medical EFMP-M Objectives Family Criteria EFMP-M

  1. NASA Advisory Council Task Force on the Shuttle-Mir Rendezvous and Docking Missions

    NASA Technical Reports Server (NTRS)

    1994-01-01

    The NASA Advisory Council Task Force on the Shuttle-Mir rendezvous and docking convened on May 24 and 25, 1994. Based on the meetings, the Task Force made the following recommendations: at a minimum, the mission commander and payload commander for all subsequent Shuttle-Mir missions should be named at least 18 months in advance of the scheduled launch date; in order to derive early operational experience in advance of the first Mir docking mission, the primary objective of STS-63 should be Mir rendezvous and proximity operations; and if at all possible, the launch date for STS-63 should be moved forward.

  2. 32 CFR 855.22 - Air Force procedures.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 32 National Defense 6 2013-07-01 2013-07-01 false Air Force procedures. 855.22 Section 855.22 National Defense Department of Defense (Continued) DEPARTMENT OF THE AIR FORCE AIRCRAFT CIVIL AIRCRAFT USE OF UNITED STATES AIR FORCE AIRFIELDS Agreements for Civil Aircraft Use of Air Force Airfields § 855...

  3. 32 CFR 855.22 - Air Force procedures.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 32 National Defense 6 2010-07-01 2010-07-01 false Air Force procedures. 855.22 Section 855.22 National Defense Department of Defense (Continued) DEPARTMENT OF THE AIR FORCE AIRCRAFT CIVIL AIRCRAFT USE OF UNITED STATES AIR FORCE AIRFIELDS Agreements for Civil Aircraft Use of Air Force Airfields § 855...

  4. 32 CFR 855.22 - Air Force procedures.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 32 National Defense 6 2011-07-01 2011-07-01 false Air Force procedures. 855.22 Section 855.22 National Defense Department of Defense (Continued) DEPARTMENT OF THE AIR FORCE AIRCRAFT CIVIL AIRCRAFT USE OF UNITED STATES AIR FORCE AIRFIELDS Agreements for Civil Aircraft Use of Air Force Airfields § 855...

  5. U.S. Air Force > SAPR

    Science.gov Websites

    for treatment in the military health system, and Air Force civilian (appropriated and non-appropriated (or equivalent) or installation vice wing commander, executing the Air Force's Sexual Assault

  6. NASA Science Review of Next Planet-Hunting Mission Launch

    NASA Image and Video Library

    2018-04-15

    Members of the news media gathered in the Kennedy Space Center press site auditorium Sunday, April 15 for an update on the Transiting Exoplanet Survey Satellite, or TESS. NASA and the Massachusetts Institute of Technology discussed the science and technology behind the agency’s next-generation planet hunting satellite, which is slated to launch April 16 on a SpaceX Falcon 9 rocket from Cape Canaveral Air Force Station in Florida.

  7. SpaceX CRS-13 Post Launch News Conference

    NASA Image and Video Library

    2017-12-15

    In the Press Site auditorium of NASA's Kennedy Space Center in Florida, from left, Stephanie Martin of NASA Communications, speaks to media at a post-launch news conference following the liftoff of SpaceX CRS-13. The flight is a commercial resupply services mission to the International Space Station. SpaceX CRS-13 lifted off atop a Falcon 9 rocket from Space Launch Complex 40 at Cape Canaveral Air Force Station at 10:36 a.m. EST with supplies and equipment and new science experiments for technology research.

  8. Preliminary Computational Study for Future Tests in the NASA Ames 9 foot' x 7 foot Wind Tunnel

    NASA Technical Reports Server (NTRS)

    Pearl, Jason M.; Carter, Melissa B.; Elmiligui, Alaa A.; WInski, Courtney S.; Nayani, Sudheer N.

    2016-01-01

    The NASA Advanced Air Vehicles Program, Commercial Supersonics Technology Project seeks to advance tools and techniques to make over-land supersonic flight feasible. In this study, preliminary computational results are presented for future tests in the NASA Ames 9 foot x 7 foot supersonic wind tunnel to be conducted in early 2016. Shock-plume interactions and their effect on pressure signature are examined for six model geometries. Near- field pressure signatures are assessed using the CFD code USM3D to model the proposed test geometries in free-air. Additionally, results obtained using the commercial grid generation software Pointwise Reigistered Trademark are compared to results using VGRID, the NASA Langley Research Center in-house mesh generation program.

  9. Retired NASA research pilot and former astronaut Gordon Fullerton was greeted by scores of NASA Dryden staff who bid him farewell after his final NASA flight.

    NASA Image and Video Library

    2007-12-21

    Long-time NASA Dryden research pilot and former astronaut C. Gordon Fullerton capped an almost 50-year flying career, including more than 38 years with NASA, with a final flight in a NASA F/A-18 on Dec. 21, 2007. Fullerton and Dryden research pilot Jim Smolka flew a 90-minute pilot proficiency formation aerobatics flight with another Dryden F/A-18 and a Dryden T-38 before concluding with two low-level formation flyovers of Dryden before landing. Fullerton was honored with a water-cannon spray arch provided by two fire trucks from the Edwards Air Force Base fire department as he taxied the F/A-18 up to the Dryden ramp, and was then greeted by his wife Marie and several hundred Dryden staff after his final flight. Fullerton began his flying career with the U.S. Air Force in 1958 after earning bachelor's and master's degrees in mechanical engineering from the California Institute of Technology. Initially trained as a fighter pilot, he later transitioned to multi-engine bombers and became a bomber operations test pilot after attending the Air Force Aerospace Research Pilot School at Edwards Air Force Base, Calif. He then was assigned to the flight crew for the planned Air Force Manned Orbital Laboratory in 1966. Upon cancellation of that program, the Air Force assigned Fullerton to NASA's astronaut corps in 1969. He served on the support crews for the Apollo 14, 15, 16 and 17 lunar missions, and was later assigned to one of the two flight crews that piloted the space shuttle prototype Enterprise during the Approach and Landing Test program at Dryden. He then logged some 382 hours in space when he flew on two early space shuttle missions, STS-3 on Columbia in 1982 and STS-51F on Challenger in 1985. He joined the flight crew branch at NASA Dryden after leaving the astronaut corps in 1986. During his 21 years at Dryden, Fullerton was project pilot on a number of high-profile research efforts, including the Propulsion Controlled Aircraft, the high-speed landing tests of

  10. Establishing Criteria for Assigning Personnel to Air Force Jobs Requiring Heavy Work

    DTIC Science & Technology

    1978-07-01

    loads (for example, carrying meat at the slaughterhouse , carrying of sacks, loading wood by hand) wood cutting in the forest by hand tools, agricultural...8217 factor history. Medical Service Digest (United States Air Force), 27(2), 1976, pp. 14-16. 186 Trimeloni, Col. B.D. The Role of Women in the Air Force...Rahden. Effect of training on maximum oxygen intake and on anaerobic metabolism in man. Int. Z. Angew Physiol., 24(2), 1967, pp. 102-110. 188 Wyndham, C.H

  11. Improving AirNow Air Quality Products with NASA Near-Real-Time Remote Sensing Data (Invited)

    NASA Astrophysics Data System (ADS)

    Dye, T.; Pasch, A. N.; DeWinter, J. L.; Haderman, M.; Szykman, J.; White, J. E.; van Donkelaar, A.; Martin, R.

    2013-12-01

    The U.S. Environmental Protection Agency's (EPA) AirNow program provides the public with real-time and forecasted air quality conditions. Millions of people each day use it to protect their health. The AirNow program (http://www.airnow.gov), reports ground-level ozone (O3) and fine particulate matter (PM2.5) in a standardized index called the Air Quality Index (AQI). AirNow aggregates information from over 130 state, local, and federal air quality agencies and provides tools for over 2,000 agency staff responsible for monitoring, forecasting, and communicating local air quality. Each hour, AirNow systems generate thousands of maps and products. This presentation will describe how AirNow is benefiting from NASA's remote sensing data. We will describe two applications of NASA near-real-time remote sensing data within AirNow through case studies, focusing specifically on days when large spatial gradients in AQI and wildfire smoke impacts were observed. The first case study will show how AirNow is merging satellite-estimated PM2.5 concentrations into the AQI maps via the AirNow Satellite Data Processor (ASDP). AirNow derives these satellite estimates using NASA/NOAA satellite aerosol optical depth (AOD) retrievals and GEOS-Chem modeled ratios of surface PM2.5 concentrations to AOD. The second case study will show how NASA's Global Image Browse Services (GIBS) provides a near-real-time satellite product in AirNow-Tech for agency users to quickly identify smoke plumes and access air quality conditions in data-sparse areas during wildland fires.

  12. NASA Social Briefing on Planet-Hunting Mission Launch

    NASA Image and Video Library

    2018-04-15

    NASA and industry leaders speak to NASA Social participants about the agency's Transiting Exoplanet Survey Satellite (TESS) in the Press Site auditorium at Kennedy Space Center in Florida. Speaking to the group, at left is Hans Koenigsmann, vice president of Build and Flight Reliability at SpaceX. TESS is the next step in the search for planets outside of our solar system. The mission will find exoplanets that periodically block part of the light from their host stars, events called transits. The satellite will survey the nearest and brightest stars for two years to search for transiting exoplanets. TESS will launch on a SpaceX Falcon 9 rocket from Space Launch Complex 40 at Cape Canaveral Air Force Station no earlier than 6:32 p.m. EDT on Monday, April 16.

  13. NASA Social Briefing on Planet-Hunting Mission Launch

    NASA Image and Video Library

    2018-04-15

    NASA and industry leaders speak to NASA Social participants about the agency's Transiting Exoplanet Survey Satellite (TESS) in the Press Site auditorium at Kennedy Space Center in Florida. Speaking to the group is Hans Koenigsmann, vice president of Build and Flight Reliability at SpaceX. TESS is the next step in the search for planets outside of our solar system. The mission will find exoplanets that periodically block part of the light from their host stars, events called transits. The satellite will survey the nearest and brightest stars for two years to search for transiting exoplanets. TESS will launch on a SpaceX Falcon 9 rocket from Space Launch Complex 40 at Cape Canaveral Air Force Station no earlier than 6:32 p.m. EDT on Monday, April 16.

  14. 33 CFR 334.590 - Atlantic Ocean off Cape Canaveral, Fla.; Air Force missile testing area, Patrick Air Force Base...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ..., Fla.; Air Force missile testing area, Patrick Air Force Base, Fla. 334.590 Section 334.590 Navigation... RESTRICTED AREA REGULATIONS § 334.590 Atlantic Ocean off Cape Canaveral, Fla.; Air Force missile testing area, Patrick Air Force Base, Fla. (a) The danger zone. An area in the Atlantic Ocean immediately offshore from...

  15. Environmental Assessment:Security and Safety Upgrades to Entry Control Facilities Vandenberg Air Force Base, California

    DTIC Science & Technology

    2009-07-08

    meters; noisy urban daytime 70 – 80 Shouting at one meter; vacuum cleaner at three meters Gas lawnmower at 30 meters 60 – 70 Normal speech at one...military and political leaders during the Cold War. Since the National Aeronautics and Space Administration ( NASA ) was established in 1958, the...Preservation Needs with the Operation of Highly Technical or Scientific Facilities, specifically refers to the many active NASA and U.S. Air Force

  16. NASA Social Briefing on Planet-Hunting Mission Launch

    NASA Image and Video Library

    2018-04-15

    NASA and industry leaders speak to NASA Social participants about the agency's Transiting Exoplanet Survey Satellite (TESS) in the Press Site auditorium at Kennedy Space Center in Florida. Speaking to the group is Elisa Quintana, TESS scientist, NASA's Goddard Space Flight Center. TESS is the next step in the search for planets outside of our solar system. The mission will find exoplanets that periodically block part of the light from their host stars, events called transits. The satellite will survey the nearest and brightest stars for two years to search for transiting exoplanets. TESS will launch on a SpaceX Falcon 9 rocket from Space Launch Complex 40 at Cape Canaveral Air Force Station no earlier than 6:32 p.m. EDT on Monday, April 16.

  17. KSC technicians on team to modify X-34

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Six of the KSC workers who supported recent X-34 modifications pose in front of the modified A-1A vehicle at Edwards Air Force Base, Calif. From left are Mike Lane, Roger Cartier, Dave Rowell, Mike Dininny, Bryan Taylor and James Niehoff Jr. Not shown are Kevin Boughner and Jerry Moscoso. Since September, the eight NASA engineering technicians from KSC's Engineering Prototype Lab have assisted Orbital Sciences Corporation and NASA's Dryden Flight Research Center in the complex process of converting the X-34 A-1 vehicle from captive carry status to unpowered flight status, known as A-1A. The X-34 is 58.3 feet long, 27.7 feet wide from wing tip to wing tip, and 11.5 feet tall from the bottom of the fuselage to the top of the tail. The autonomously operated technology demonstrator will be air-launched from an L-1011 airplane and should be capable of flying eight times the speed of sound, reaching an altitude of 250,000 feet. The X-34 Project is managed by NASA's Marshall Space Flight Center in Huntsville, Ala.

  18. The second X-45A Unmanned Combat Air Vehicle (UCAV) technology demonstrator aircraft during its maiden flight. The flight marks another milestone for the UCAV program, and verified the aircraft's flight control software

    NASA Image and Video Library

    2002-11-21

    The second X-45A Unmanned Combat Air Vehicle (UCAV) technology demonstrator completed its first flight on November 21, 2002, after taking off from a dry lakebed at NASA's Dryden Flight Research Center, Edwards Air Force Base, California. X-45A vehicle two flew for approximately 30 minutes and reached an airspeed of 195 knots and an altitude of 7500 feet. This flight validated the functionality of the UCAV flight software on the second air vehicle. Dryden is supporting the DARPA/Boeing team in the design, development, integration, and demonstration of the critical technologies, processes, and system attributes leading to an operational UCAV system. Dryden support of the X-45A demonstrator system includes analysis, component development, simulations, ground and flight tests.

  19. Inspector General, DoD, Oversight of the Air Force Audit Agency Audit of the FY 1996 Air Force Consolidated Financial Statements.

    DTIC Science & Technology

    1997-04-10

    financial statements . We delegated the audit of the FY 1996 Air Force consolidated financial statements to the Air Force Audit Agency on May 17, 1996...This report provides our endorsement of the Air Force Audit Agency disclaimer of opinion on the Air Force consolidated financial statements for FY...1996, along with the Air Force Audit Agency Report of Audit, ’Opinion on Fiscal Year 1996 Air Force Consolidated Financial Statements .’

  20. Secretary of the Air Force

    Science.gov Websites

    Speeches Archive Former AF Top 3 Viewpoints and Speeches Air Force Warrior Games 2017 Events 2018 Air Force Strategic Documents Desert Storm 25th Anniversary Observances DoD Warrior Games Portraits in Courage

  1. Air Force Research Laboratory Preparation for Year 2000.

    DTIC Science & Technology

    1998-10-05

    Air Force Research Laboratory , Phillips Research Site , Kirkland Air Force Base, New...Pentagon, Washington, D.C. 20301-1900. The identity of each writer and caller is fully protected. Acronym AFRL Air Force Research Laboratory INSPECTOR...completion of the implementation phase was May 31, 1999. Air Force Research Laboratory . The Air Force Research

  2. Environmental Assessment, Balloon Launch and Landing Operations, Air Force Research Laboratory, Space Vehicles Directorate, Kirtland Air Force Base, New Mexico

    DTIC Science & Technology

    2012-06-01

    Force Research Laboratory , Space Vehicles Directorate ( AFRL /RV) located at Kirtland Air Force Base is preparing an Environmental Assessment (EA) for...United States Air Force Research Laboratory , Space Vehicles Directorate ( AFRL /RV) located at Kirtland Air Force Base is preparing an Environmental...United States Air Force Research Laboratory , Space Vehicles Directorate ( AFRL

  3. List of EPA Certified Forced-Air Furnaces

    EPA Pesticide Factsheets

    The EPA-Certified Forced-Air Furnace list contains EPA-certified forced-air furnaces that meet the 2015 NSPS for New Residential Wood Heaters, New Residential Hydronic Heaters and Forced-Air Furnaces.

  4. The Air Force Nurse Intern Program.

    PubMed

    Smith, R H

    1991-08-01

    The Air Force Nurse Intern Program is a 5-month-long introduction to Air Force nursing for BSN-prepared graduate nurses. The program is designed to facilitate the transition from civilian nursing student to practicing Air Force Nurse Corps Officer. After attending Military Indoctrination for Medical Service Officers, newly commissioned nurses attend the program at one of 10 Air Force medical centers before going to their permanent duty stations. Preceptors guide and instruct the interns at each of four clinical rotation sites. The author, a former nurse intern, describes some of the many opportunities available to nurse interns.

  5. X-48C Hybrid - Blended Wing Body Demonstrator

    NASA Image and Video Library

    2013-02-28

    Earth and sky met as the X-48C Hybrid Wing Body aircraft flew over Edwards Air Force Base on Feb. 28, 2013, from NASA's Dryden Flight Research Center, Edwards, CA. The long boom protruding from between the tails is part of the aircraft's parachute-deployment flight termination system.

  6. SpaceX CRS-14 Prelaunch News Conference

    NASA Image and Video Library

    2018-04-01

    In the Kennedy Space Center’s Press Site auditorium, NASA and industry leaders speak to members of the media during a prelaunch news conference for the SpaceX CRS-14 commercial resupply services mission to the International Space Station. Stephanie Schierholz, of NASA Communications, moderates the news conference. A Dragon spacecraft is scheduled to be launched from Space Launch Complex 40 at Cape Canaveral Air Force Station at 4:30 p.m. EST, on April 2, 2018. The SpaceX Falcon 9 rocket will lift off on the company's 14th Commercial Resupply Services mission to the space station.

  7. Space Shuttle orbiter Columbia on the ground at Edwards Air Force Base

    NASA Image and Video Library

    1981-04-14

    S81-30749 (14 April 1981) --- This high angle view shows the scene at Edwards Air Force Base in southern California soon after the successful landing of the space shuttle orbiter Columbia to end STS-1. Service vehicles approach the spacecraft to perform evaluations for safety, egress preparedness, etc. Astronauts John W. Young, commander, and Robert L. Crippen, pilot, are still inside the spacecraft. Photo credit: NASA

  8. A Look at Hurricane Matthew from NASA AIRS

    NASA Image and Video Library

    2016-10-06

    Hurricane Matthew, currently an extremely dangerous Category 4 storm on the Saffir-Simpson Hurricane Wind Scale, continues to bear down on the southeastern United States. At 11:27 a.m. PDT (2:27 p.m. EDT and 18:23 UT) today, NASA's Atmospheric Infrared Sounder (AIRS) instrument aboard NASA's Aqua satellite observed the storm as its eye was passing over the Bahamas. An AIRS false-color infrared image shows that the northeast and southwest quadrants of the storm had the coldest cloud tops, denoting the regions of the storm where the strongest precipitation was occurring at the time. Data from the Advanced Microwave Sounding Unit (AMSU), another of AIRS' suite of instruments, indicate that the northeast quadrant, which appears smaller in the infrared image, likely had the most intense rain bands at the time. The AIRS infrared image shows that at the time of the image the storm had full circulation, with a small eye surrounded by a thick eye wall and can be seen at http://photojournal.jpl.nasa.gov/catalog/PIA21092.

  9. Inspector General, DOD, Oversight of the Air Force Audit Agency Audit of the FY 1995 Air Force Consolidated Financial Statements.

    DTIC Science & Technology

    1996-04-18

    financial statements . We delegated the audit of the FY 1995 Air Force consolidated financial statements to the Air Force Audit Agency. On March 1...1996, the Air Force Audit Agency issued its "Report of Audit: Opinion on Fiscal Year 1995 Air Force Consolidated Financial Statements " (Project 94053001...disclaimer of opinion. The audit objective was to determine the accuracy and completeness of the audit of the FY 1995 Air Force consolidated financial statements conducted

  10. NASA Social Briefing on Planet-Hunting Mission Launch

    NASA Image and Video Library

    2018-04-15

    NASA and industry leaders speak to NASA Social participants about the agency's Transiting Exoplanet Survey Satellite (TESS) in the Press Site auditorium at Kennedy Space Center in Florida. Speaking to the group from center, are Martin Still, TESS Program Scientist, NASA Headquarters, and Jessie Christiansen, Staff scientist, NASA Exoplanet Science Institute, California Institute of Technology. At far left is Jason Townsend, NASA Communications. TESS is the next step in the search for planets outside of our solar system. The mission will find exoplanets that periodically block part of the light from their host stars, events called transits. The satellite will survey the nearest and brightest stars for two years to search for transiting exoplanets. TESS will launch on a SpaceX Falcon 9 rocket from Space Launch Complex 40 at Cape Canaveral Air Force Station no earlier than 6:32 p.m. EDT on Monday, April 16.

  11. Air Traffic Management Research at NASA Ames Research Center

    NASA Technical Reports Server (NTRS)

    Lee, Katharine

    2005-01-01

    Since the late 1980's, NASA Ames researchers have been investigating ways to improve the air transportation system through the development of decision support automation. These software advances, such as the Center-TRACON Automation System (eTAS) have been developed with teams of engineers, software developers, human factors experts, and air traffic controllers; some ASA Ames decision support tools are currently operational in Federal Aviation Administration (FAA) facilities and some are in use by the airlines. These tools have provided air traffic controllers and traffic managers the capabilities to help reduce overall delays and holding, and provide significant cost savings to the airlines as well as more manageable workload levels for air traffic service providers. NASA is continuing to collaborate with the FAA, as well as other government agencies, to plan and develop the next generation of decision support tools that will support anticipated changes in the air transportation system, including a projected increase to three times today's air-traffic levels by 2025. The presentation will review some of NASA Ames' recent achievements in air traffic management research, and discuss future tool developments and concepts currently under consideration.

  12. 40 CFR 258.24 - Air criteria.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 25 2014-07-01 2014-07-01 false Air criteria. 258.24 Section 258.24... SOLID WASTE LANDFILLS Operating Criteria § 258.24 Air criteria. (a) Owners or operators of all MSWLFs... Implementation Plan (SIP) approved or promulgated by the Administrator pursuant to section 110 of the Clean Air...

  13. 40 CFR 258.24 - Air criteria.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 26 2013-07-01 2013-07-01 false Air criteria. 258.24 Section 258.24... SOLID WASTE LANDFILLS Operating Criteria § 258.24 Air criteria. (a) Owners or operators of all MSWLFs... Implementation Plan (SIP) approved or promulgated by the Administrator pursuant to section 110 of the Clean Air...

  14. 40 CFR 258.24 - Air criteria.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 26 2012-07-01 2011-07-01 true Air criteria. 258.24 Section 258.24... SOLID WASTE LANDFILLS Operating Criteria § 258.24 Air criteria. (a) Owners or operators of all MSWLFs... Implementation Plan (SIP) approved or promulgated by the Administrator pursuant to section 110 of the Clean Air...

  15. Remodeling Air Force Cyber Command and Control

    DTIC Science & Technology

    2017-10-10

    AIR FORCE CYBERWORX REPORT: REMODELING AIR FORCE CYBER COMMAND & CONTROL COURSE DESIGN PROJECT CONDUCTED 5 Jan – 5 May 17 Produced...For the Air Force Cyber Command and Control (C2) Design Project, CyberWorx brought together 25 cadets from the United States Air Force Academy...warfighting based upon the findings of the design teams. Participants The design course was attended by a diverse group of civilians from industry

  16. United States Air Force Academy get-away-special flexible beam experiment

    NASA Technical Reports Server (NTRS)

    Bubb, Keith W.; Lamberson, Steven E.; Lash, Thomas A.

    1989-01-01

    The Department of Astronautics at the United States Air Force Academy is currently planning to fly an experiment in a NASA Get-Away-Special (GAS) canister. The experiment was named the flex beam experiment. The primary technical objective of the flex beam experiment is to measure the damping of a thin beam in the vacuum and zero G environment of space. By measuring the damping in space, it is hoped to determine the amount of damping the beam normally experiences due to the gravitational forces present on Earth. This will allow validation of models which predict the dynamics of thin beams in the space environment. The experiment will also allow the Academy to develop and improve its ability to perform experiments within the confines of a NASA GAS canister. Several experiments, of limited technical difficulty, were flown by the Academy. More complex experiments are currently planned and it is hoped to learn techniques with each space shuttle flight.

  17. 33 CFR 334.1280 - Bristol Bay, Alaska; air-to-air weapon range, Alaskan Air Command, U.S. Air Force.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... weapon range, Alaskan Air Command, U.S. Air Force. 334.1280 Section 334.1280 Navigation and Navigable... REGULATIONS § 334.1280 Bristol Bay, Alaska; air-to-air weapon range, Alaskan Air Command, U.S. Air Force. (a... enforced by the Commander, Alaskan Air Command, U.S. Air Force, Seattle, Washington, or such agencies as he...

  18. 33 CFR 334.1280 - Bristol Bay, Alaska; air-to-air weapon range, Alaskan Air Command, U.S. Air Force.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... weapon range, Alaskan Air Command, U.S. Air Force. 334.1280 Section 334.1280 Navigation and Navigable... REGULATIONS § 334.1280 Bristol Bay, Alaska; air-to-air weapon range, Alaskan Air Command, U.S. Air Force. (a... enforced by the Commander, Alaskan Air Command, U.S. Air Force, Seattle, Washington, or such agencies as he...

  19. 33 CFR 334.1280 - Bristol Bay, Alaska; air-to-air weapon range, Alaskan Air Command, U.S. Air Force.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... weapon range, Alaskan Air Command, U.S. Air Force. 334.1280 Section 334.1280 Navigation and Navigable... REGULATIONS § 334.1280 Bristol Bay, Alaska; air-to-air weapon range, Alaskan Air Command, U.S. Air Force. (a... enforced by the Commander, Alaskan Air Command, U.S. Air Force, Seattle, Washington, or such agencies as he...

  20. 33 CFR 334.1280 - Bristol Bay, Alaska; air-to-air weapon range, Alaskan Air Command, U.S. Air Force.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... weapon range, Alaskan Air Command, U.S. Air Force. 334.1280 Section 334.1280 Navigation and Navigable... REGULATIONS § 334.1280 Bristol Bay, Alaska; air-to-air weapon range, Alaskan Air Command, U.S. Air Force. (a... enforced by the Commander, Alaskan Air Command, U.S. Air Force, Seattle, Washington, or such agencies as he...

  1. 33 CFR 334.1280 - Bristol Bay, Alaska; air-to-air weapon range, Alaskan Air Command, U.S. Air Force.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... weapon range, Alaskan Air Command, U.S. Air Force. 334.1280 Section 334.1280 Navigation and Navigable... REGULATIONS § 334.1280 Bristol Bay, Alaska; air-to-air weapon range, Alaskan Air Command, U.S. Air Force. (a... enforced by the Commander, Alaskan Air Command, U.S. Air Force, Seattle, Washington, or such agencies as he...

  2. The X-43A hypersonic research aircraft and its modified Pegasus booster rocket mounted to NASA's NB

    NASA Technical Reports Server (NTRS)

    2001-01-01

    The first of three X-43A hypersonic research aircraft and its modified Pegasus booster rocket recently underwent combined systems testing while mounted to NASA's NB-52B carrier aircraft at the Dryden Flight Research Center, Edwards, California. The combined systems test was one of the last major milestones in the Hyper-X research program before the first X-43A flight. One of the major goals of the Hyper-X program is flight validation of airframe-integrated, air-breathing propulsion system, which so far have only been tested in ground facilities, such as wind tunnels. The X-43A flights will be the first actual flight tests of an aircraft powered by a revolutionary supersonic-combustion ramjet ('scramjet') engine capable of operating at hypersonic speeds above Mach 5 (five times the speed of sound). The X-43A design uses the underbody of the aircraft to form critical elements of the engine. The forebody shape helps compress the intake airflow, while the aft section acts as a nozzle to direct thrust. The 12-foot, unpiloted research vehicle was developed and built by MicroCraft Inc., Tullahoma, Tenn., under NASA contract. The booster, built by Orbital Sciences Corp., Dulles, Va., will accelerate the X-43A after the X-43A/booster 'stack' is air-launched from NASA's venerable NB-52 mothership. The X-43A will separate from the rocket at a predetermined altitude and speed and fly a pre-programmed trajectory, conducting aerodynamic and propulsion experiments until it descends into the Pacific Ocean. Three research flights are planned, two at Mach 7 and one at Mach 10.

  3. A long telephoto lens captured Space Shuttle Endeavour landing at Edwards Air Force Base, California

    NASA Technical Reports Server (NTRS)

    2001-01-01

    A long telephoto lens captured Space Shuttle Endeavour landing at Edwards Air Force Base, California, on May 1, 2001. NASA's Dryden Flight Research Center at Edwards would subsequently service the shuttle and mount it on a 747 for the ferry flight to the Kennedy Space Center in Florida.

  4. Environmental Assessment for Air Force Research Laboratory Space Vehicles Integrated Experiments Division Office Space at Kirtland Air Force Base, Albuquerque, New Mexico

    DTIC Science & Technology

    2005-06-01

    AIR FORCE RESEARCH LABORATORY SPACE VEHICLES INTEGRATED EXPERMENTS DIVISION OFFICE SPACE AT KIRTLAND AIR FORCE ... Kirtland Air Force Base (KAFB). The office building would house the Air Force Research Laboratory Space Vehicles Integrated Experiments Division...ADDRESS(ES) Air Force Research Laboratory ,Space Vehicles Directorate,3550 Aberdeen Ave. SE, Kirtland

  5. Historical Lessons of Air Force Communications

    DTIC Science & Technology

    2010-12-01

    AU/ACSC/ CUSTINE /AY10 AIR COMMAND AND STAFF COLLEGE AIR UNIVERSITY HISTORICAL LESSONS OF AIR FORCE COMMUNICATIONS...by Jay D. Custine , Civ, DAF A Research Report Submitted to the Faculty In Partial Fulfillment of the Graduation...Requirements Advisor: Lt Col Paul E. Griffith Maxwell Air Force Base, Alabama December 2010 AU/ACSC/ CUSTINE /AY10 ii

  6. Vandenberg Air Force Base Pressure Gradient Wind Study

    NASA Technical Reports Server (NTRS)

    Shafer, Jaclyn A.

    2013-01-01

    Warning category winds can adversely impact day-to-day space lift operations at Vandenberg Air Force Base (VAFB) in California. NASA's Launch Services Program and other programs at VAFB use wind forecasts issued by the 30 Operational Support Squadron Weather Flight (30 OSSWF) to determine if they need to limit activities or protect property such as a launch vehicle. The 30 OSSWF tasked the AMU to develop an automated Excel graphical user interface that includes pressure gradient thresholds between specific observing stations under different synoptic regimes to aid forecasters when issuing wind warnings. This required the AMU to determine if relationships between the variables existed.

  7. X-15 test pilots - Engle, Rushworth, McKay, Knight, Thompson, and Dana

    NASA Technical Reports Server (NTRS)

    1966-01-01

    The X-15 flight crew, left to right; Air Force Captain Joseph H. Engle, Air Force Major Robert A. Rushworth, NASA pilot John B. 'Jack' McKay, Air Force pilot William J. 'Pete' Knight, NASA pilot Milton O. Thompson, and NASA pilot Bill Dana. of their 125 X-15 flights, 8 were above the 50 miles that constituted the Air Force's definition of the beginning of space (Engle 3, Dana 2, Rushworth, Knight, and McKay one each). NASA used the international definition of space as beginning at 62 miles above the earth. The X-15 was a rocket-powered aircraft 50 ft long with a wingspan of 22 ft. It was a missile-shaped vehicle with an unusual wedge-shaped vertical tail, thin stubby wings, and unique fairings that extended along the side of the fuselage. The X-15 weighed about 14,000 lb empty and approximately 34,000 lb at launch. The XLR-99 rocket engine, manufactured by Thiokol Chemical Corp., was pilot controlled and was capable of developing 57,000 lb of rated thrust (actual thrust reportedly climbed to 60,000 lb). North American Aviation built three X-15 aircraft for the program. The X-15 research aircraft was developed to provide in-flight information and data on aerodynamics, structures, flight controls, and the physiological aspects of high-speed, high-altitude flight. A follow-on program used the aircraft as a testbed to carry various scientific experiments beyond the Earth's atmosphere on a repeated basis. For flight in the dense air of the usable atmosphere, the X-15 used conventional aerodynamic controls such as rudder surfaces on the vertical stabilizers to control yaw and canted horizontal surfaces on the tail to control pitch when moving in synchronization or roll when moved differentially. For flight in the thin air outside of the appreciable Earth's atmosphere, the X-15 used a reaction control system. Hydrogen peroxide thrust rockets located on the nose of the aircraft provided pitch and yaw control. Those on the wings provided roll control. Because of the large

  8. 2000 NASA Seal/Secondary Air System Workshop. Volume 1

    NASA Technical Reports Server (NTRS)

    Steinetz, Bruce M. (Editor); Hendricks, Robert C. (Editor)

    2001-01-01

    The 2000 NASA Seal/Secondary Air System Workshop covered four main areas: (1) overviews of NASA-sponsored Ultra-Efficient Engine Technology (UEET) and Access to Space Programs, with emphasis on program goals and seal needs; (2) review of turbine engine seal issues from the perspective of end users such as United Airlines; (3) reviews of sealing concepts, test results, experimental facilities, and numerical predictions; and (4) reviews of material development programs relevant to advanced seals development. The NASA UEET overview illustrates for the reader the importance of advanced technologies, including seals, in meeting future engine system efficiency and emission goals. GE, Pratt & Whitney, and Honeywell presented advanced seal development work being performed within their organizations. The NASA-funded GE/Stein Seal team has successfully demonstrated a large (3-ft. diam) aspirating seal that can withstand all anticipated pressures, speeds, and rotor runouts anticipated for a GE90 L.P. turbine balance piston location. GE/Stein Seal are fabricating a full-scale seal to be tested in a GE-90 ground test engine in early 2002. Pratt & Whitney and Stein Seal are investigating carbon seals to accommodate large radial movements anticipated in future geared-fan gearbox locations. Honeywell presented a finger seal design being considered for a high-temperature static combustor location incorporating ceramic finger elements. Successful demonstration of the braided carbon rope thermal barriers to extreme temperatures (5500 F) for short durations provide a new form of very high temperature thermal barrier for future Shuttle solid rocket motor nozzle joints. The X-37, X-38, and future highly reusable launch vehicles pose challenging control surface seal demands that require new seal concepts made from emerging high temperature ceramics and other materials.

  9. NASA Social Briefing on Planet-Hunting Mission Launch

    NASA Image and Video Library

    2018-04-15

    NASA and industry leaders speak to NASA Social participants about the agency's Transiting Exoplanet Survey Satellite (TESS) in the Press Site auditorium at Kennedy Space Center in Florida. Speaking to the group is Jessie Christiansen, staff scientiest, NASA Exoplaneet Science Institute, California Institute of Technology. TESS is the next step in the search for planets outside of our solar system. The mission will find exoplanets that periodically block part of the light from their host stars, events called transits. The satellite will survey the nearest and brightest stars for two years to search for transiting exoplanets. TESS will launch on a SpaceX Falcon 9 rocket from Space Launch Complex 40 at Cape Canaveral Air Force Station no earlier than 6:32 p.m. EDT on Monday, April 16.

  10. SACCON Forced Oscillation Tests at DNW-NWB and NASA Langley 14x22-Foot Tunnel

    NASA Technical Reports Server (NTRS)

    Vicroy Dan D.; Loeser, Thomas D.; Schuette, Andreas

    2010-01-01

    A series of three wind tunnel static and forced oscillation tests were conducted on a generic unmanned combat air vehicle (UCAV) geometry. These tests are part of an international research effort to assess the state-of-the-art of computational fluid dynamics (CFD) methods to predict the static and dynamic stability and control characteristics. The experimental dataset includes not only force and moment time histories but surface pressure and off body particle image velocimetry measurements as well. The extent of the data precludes a full examination within the scope of this paper. This paper provides some examples of the dynamic force and moment data available as well as some of the observed trends.

  11. NASA TESS Prelaunch News Conference

    NASA Image and Video Library

    2018-04-15

    In Kennedy Space Center's Press Site auditorium, members of the media participate in a mission briefing on NASA's Transiting Exoplanet Survey Satellite (TESS). Hans Koenigsmann, vice president of Build and Flight Reliability at SpaceX, answers questions during the briefing. TESS is the next step in the search for planets outside of our solar system. The mission will find exoplanets that periodically block part of the light from their host stars, events called transits. The satellite will survey the nearest and brightest stars for two years to search for transiting exoplanets. TESS will launch on a SpaceX Falcon 9 rocket from Space Launch Complex 40 at Cape Canaveral Air Force Station no earlier than 6:32 p.m. EDT on Monday, April 16.

  12. Supplemental Environmental Assessment: Lighthouse Substation Cape Canaveral Air Force Station Florida

    DTIC Science & Technology

    2007-10-01

    associated with transmission lines is generally due to either corona or “spark gap” discharges. When the electric field at the surface of a conductor... corona , will be initiated from the conductor into the Chapter 3: Affected Environment Supplemental Environmental Assessment – Lighthouse Substation at...Cape Canaveral Air Force Station 24 surrounding air. The intensity of the corona increases with the voltage of the line and is dependent on the

  13. Wreckage of the X-2 rocket plane was taken to NACA's High Speed Flight Station for analysis following the 1956 crash that killed Air Force pilot Capt. Mel Apt

    NASA Image and Video Library

    1956-11-21

    The X-2, initially an Air Force program, was scheduled to be transferred to the civilian National Advisory Committee for Aeronautics (NACA) for scientific research. The Air Force delayed turning the aircraft over to the NACA in the hope of attaining Mach 3 in the airplane. The service requested and received a two-month extension to qualify another Air Force test pilot, Capt. Miburn "Mel" Apt, in the X-2 and attempt to exceed Mach 3. After several ground briefings in the simulator, Apt (with no previous rocket plane experience) made his flight on 27 September 1956. Apt raced away from the B-50 under full power, quickly outdistancing the F-100 chase planes. At high altitude, he nosed over, accelerating rapidly. The X-2 reached Mach 3.2 (2,094 mph) at 65,000 feet. Apt became the first man to fly more than three times the speed of sound. Still above Mach 3, he began an abrupt turn back to Edwards. This maneuver proved fatal as the X-2 began a series of diverging rolls and tumbled out of control. Apt tried to regain control of the aircraft. Unable to do so, Apt separated the escape capsule. Too late, he attempted to bail out and was killed when the capsule impacted on the Edwards bombing range. The rest of the X-2 crashed five miles away. The wreckage of the X-2 rocket plane was later taken to NACA's High Speed Flight Station for analysis following the crash.

  14. NASA Dryden research pilot Gordon Fullerton flies his final mission in NASA F/A-18B #852 in formation with NASA F/A-18A #850 on Dec. 21, 2007.

    NASA Image and Video Library

    2007-12-21

    Long-time NASA Dryden research pilot and former astronaut C. Gordon Fullerton capped an almost 50-year flying career, including more than 38 years with NASA, with a final flight in a NASA F/A-18 on Dec. 21, 2007. Fullerton and Dryden research pilot Jim Smolka flew a 90-minute pilot proficiency formation aerobatics flight with another Dryden F/A-18 and a Dryden T-38 before concluding with two low-level formation flyovers of Dryden before landing. Fullerton was honored with a water-cannon spray arch provided by two fire trucks from the Edwards Air Force Base fire department as he taxied the F/A-18 up to the Dryden ramp, and was then greeted by his wife Marie and several hundred Dryden staff after his final flight. Fullerton began his flying career with the U.S. Air Force in 1958 after earning bachelor's and master's degrees in mechanical engineering from the California Institute of Technology. Initially trained as a fighter pilot, he later transitioned to multi-engine bombers and became a bomber operations test pilot after attending the Air Force Aerospace Research Pilot School at Edwards Air Force Base, Calif. He then was assigned to the flight crew for the planned Air Force Manned Orbital Laboratory in 1966. Upon cancellation of that program, the Air Force assigned Fullerton to NASA's astronaut corps in 1969. He served on the support crews for the Apollo 14, 15, 16 and 17 lunar missions, and was later assigned to one of the two flight crews that piloted the space shuttle prototype Enterprise during the Approach and Landing Test program at Dryden. He then logged some 382 hours in space when he flew on two early space shuttle missions, STS-3 on Columbia in 1982 and STS-51F on Challenger in 1985. He joined the flight crew branch at NASA Dryden after leaving the astronaut corps in 1986. During his 21 years at Dryden, Fullerton was project pilot on a number of high-profile research efforts, including the Propulsion Controlled Aircraft, the high-speed landing tests of sp

  15. NASA Principal Center for Review of Clean Air Act Regulations

    NASA Technical Reports Server (NTRS)

    Clark-Ingram, Marceia; Munafo, Paul M. (Technical Monitor)

    2002-01-01

    The Clean Air Act (CAA) regulations have greatly impacted materials and processes utilized in the manufacture of aerospace hardware. Code JE/ NASA's Environmental Management Division at NASA Headquarters recognized the need for a formal, Agency-wide review process of CAA regulations. Marshall Space Flight Center (MSFC) was selected as the 'Principal Center for Review of Clean Air Act Regulations'. This presentation describes the centralized support provided by MSFC for the management and leadership of NASA's CAA regulation review process.

  16. Survival Analysis of US Air Force Officer Retention Rate

    DTIC Science & Technology

    2017-03-23

    Air Force Institute of Technology AFIT Scholar Theses and Dissertations 3-23-2017 Survival Analysis of US Air Force Officer Retention Rate Courtney N...AIR UNIVERSITY AIR FORCE INSTITUTE OF TECHNOLOGY Wright-Patterson Air Force Base, Ohio DISTRIBUTION STATEMENT A. APPROVED FOR PUBLIC RELEASE...to the Faculty Department of Operational Sciences Graduate School of Engineering and Management Air Force Institute of Technology Air University

  17. Rebalancing the Air Force: A Comprehensive Solution

    DTIC Science & Technology

    2011-02-16

    the consequences can be significant. High Tempo (Figure 4) Lt Gen Charles E. Stenner , Jr., Chief of the Air Force Reserve, stated while...29 January 2010. 14 Lt Gen Charles E. Stenner Jr., Chief of the Air Force Reserve, ―Total Force Policy 21: A 21 st Century Framework for...Military Force Mix Decisions,‖ White Paper, 15 July 2010. 15 Lt Gen Charles E. Stenner Jr., Chief of the Air Force Reserve, ―Testimony Before the House

  18. Aircraft accident report: NASA 712, Convair 990, N712NA, March Air Force Base, California, July 17, 1985, facts and analysis

    NASA Technical Reports Server (NTRS)

    Batthauer, Byron E.; Mccarthy, G. T.; Hannah, Michael; Hogan, Robert J.; Marlow, Frank J.; Reynard, William D.; Stoklosa, Janis H.; Yager, Thomas J.

    1986-01-01

    On July 17, l985, at 1810 P.d.t., NASA 712, a Convair 990 aircraft, was destroyed by fire at March Air Force Base, California. The fire started during the rollout after the pilot rejected the takeoff on runway 32. The rejected takeoff was initiated during the takeoff roll because of blown tires on the right landing gear. During the rollout, fragments of either the blown tires or the wheel/brake assemblies penetrated a right-wing fuel tank forward of the right main landing gear. Leaking fuel ignited while the aircraft was rolling, and fire engulfed the right wing and the fuselage after the aircraft was stopped on the runway. The 4-man flightcrew and the 15 scientists and technicians seated in the cabin evacuated the aircraft without serious injury. The fire was not extinguished by crash/rescue efforts and the aircraft was destroyed.

  19. Air Force Historical Research Agency

    Science.gov Websites

    Command Capt Joseph J Merhar Jr collection Early Wright Brothers Flying Machines History of the 3rd Organizations Wings and Groups Squadrons and Flights Studies Documents Personal Papers Oral History Catalogue S. Fairchild Research Information Center Military Sites Air Force Link DefenseLINK Air Force History

  20. Space Shuttle Endeavour flares for landing at Edwards Air Force Base, California to conclude STS-100

    NASA Technical Reports Server (NTRS)

    2001-01-01

    At the conclusion of Space Shuttle Mission STS-100, Endeavour landed at Edwards Air Force Base, California, May 1, 2001. There the Orbiter would be readied by technicians at NASA's Dryden Flight Research Center for return to Kennedy Space Center, Florida, atop a 747 carrier aircraft.

  1. Space Shuttle Endeavour flares for landing at Edwards Air Force Base, California to conclude STS-100

    NASA Image and Video Library

    2001-05-01

    At the conclusion of Space Shuttle Mission STS-100, Endeavour landed at Edwards Air Force Base, California, May 1, 2001. There the Orbiter would be readied by technicians at NASA's Dryden Flight Research Center for return to Kennedy Space Center, Florida, atop a 747 carrier aircraft.

  2. 32 CFR 855.22 - Air Force procedures.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 32 National Defense 6 2012-07-01 2012-07-01 false Air Force procedures. 855.22 Section 855.22 National Defense Department of Defense (Continued) DEPARTMENT OF THE AIR FORCE AIRCRAFT CIVIL AIRCRAFT USE... is located. AFI 13-201, Air Force Airspace Management, 8 lists the AFREPs and their addresses. The...

  3. 32 CFR 855.22 - Air Force procedures.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 32 National Defense 6 2014-07-01 2014-07-01 false Air Force procedures. 855.22 Section 855.22 National Defense Department of Defense (Continued) DEPARTMENT OF THE AIR FORCE AIRCRAFT CIVIL AIRCRAFT USE... is located. AFI 13-201, Air Force Airspace Management, 8 lists the AFREPs and their addresses. The...

  4. 32 CFR 631.15 - Air Force policy.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 32 National Defense 4 2014-07-01 2013-07-01 true Air Force policy. 631.15 Section 631.15 National...-Installation Operations (Military Patrols and Investigative Activities) and Policy § 631.15 Air Force policy. (a) Airmen, military and/or Department of the Air Force Civilian (DAFC) police performing off...

  5. 32 CFR 631.15 - Air Force policy.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 32 National Defense 4 2013-07-01 2013-07-01 false Air Force policy. 631.15 Section 631.15 National...-Installation Operations (Military Patrols and Investigative Activities) and Policy § 631.15 Air Force policy. (a) Airmen, military and/or Department of the Air Force Civilian (DAFC) police performing off...

  6. 32 CFR 631.15 - Air Force policy.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 32 National Defense 4 2011-07-01 2011-07-01 false Air Force policy. 631.15 Section 631.15 National...-Installation Operations (Military Patrols and Investigative Activities) and Policy § 631.15 Air Force policy. (a) Airmen, military and/or Department of the Air Force Civilian (DAFC) police performing off...

  7. 78 FR 55686 - U.S. Air Force Scientific Advisory Board Notice of Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-11

    ... 23-24 Sep 2013 at the Secretary of the Air Force Technical and Analytical Support Conference Center... a written statement in accordance with 41 CFR 102-3.140(c) and section 10(a)(3) of the Federal.... Written statements received after this date may not be provided to or considered by the United States Air...

  8. SpaceX CRS-14 Prelaunch News Conference

    NASA Image and Video Library

    2018-04-01

    In the Kennedy Space Center’s Press Site auditorium, NASA and industry leaders speak to members of the media during a prelaunch news conference for the SpaceX CRS-14 commercial resupply services mission to the International Space Station. Pete Hasbrook, associate program scientist, ISS Program Science Office at NASA's Johnson Space Center in Houston; participates in the news conference. A Dragon spacecraft is scheduled to be launched from Space Launch Complex 40 at Cape Canaveral Air Force Station at 4:30 p.m. EST, on April 2, 2018. The SpaceX Falcon 9 rocket will lift off on the company's 14th Commercial Resupply Services mission to the space station.

  9. Validation of Force Limited Vibration Testing at NASA Langley Research Center

    NASA Technical Reports Server (NTRS)

    Rice, Chad; Buehrle, Ralph D.

    2003-01-01

    Vibration tests were performed to develop and validate the forced limited vibration testing capability at the NASA Langley Research Center. The force limited vibration test technique has been utilized at the Jet Propulsion Laboratory and other NASA centers to provide more realistic vibration test environments for aerospace flight hardware. In standard random vibration tests, the payload is mounted to a rigid fixture and the interface acceleration is controlled to a specified level based on a conservative estimate of the expected flight environment. In force limited vibration tests, both the acceleration and force are controlled at the mounting interface to compensate for differences between the flexible flight mounting and rigid test fixture. This minimizes the over test at the payload natural frequencies and results in more realistic forces being transmitted at the mounting interface. Force and acceleration response data was provided by NASA Goddard Space Flight Center for a test article that was flown in 1998 on a Black Brant sounding rocket. The measured flight interface acceleration data was used as the reference acceleration spectrum. Using this acceleration spectrum, three analytical methods were used to estimate the force limits. Standard random and force limited vibration tests were performed and the results are compared with the flight data.

  10. X-31 Wing Storage for Shipping

    NASA Image and Video Library

    1995-05-18

    The right wing of the X-31 Enhanced Fighter Maneuverability Technology Demonstrator Aircraft is seen here being put into a shipping container May 18, 1995, at NASA's Dryden Flight Research Center, Edwards, California, by U.S. and German members of the program. To fit inside an Air Force Reserve C-5 transport, which was used to ferry the X-31 to Europe on May 22, 1995, the right wing had to be removed. Manching, Germany, was used as a staging base to prepare the aircraft for participation in the Paris Air Show. At the air show on June 11 through the 18th, the X-31 demonstrated the value of using thrust vectoring (directing engine exhaust flow) coupled with advanced flight control systems to provide controlled flight at very high angles of attack. The aircraft arrived back at Edwards in an Air Force Reserve C-5 on June 25, 1995, and off loaded at Dryden the 27th. The X-31 aircraft was developed jointly by Rockwell International's North American Aircraft Division (now part of Boeing) and Daimler-Benz Aerospace (formerly Messerschmitt-Bolkow-Blohm), under sponsorship by the U.S. Department of Defense and the German Federal Ministry of Defense.

  11. X43 Hyper-X

    NASA Image and Video Library

    2004-02-11

    NASA's Hyper-x Program Manager, Vince Rausch talks about the upcoming launch of the X43A vehicle over the Pacific Ocean later this month from his office at NASA Langley Research Center in Hampton, VA. Hyper X is a high risk, high payoff program. The flight of the X43 A will demonstrated in flight for the first time, air breathing hypersonic propulsion technology. (Photo by Jeff Caplan)

  12. Final Environmental Assessment for the First Air Force Air Operations Center, First Air Force Headquarters/Air Force Forces Center, and Highway 98 Overpass at Tyndall Air Force Base, Florida

    DTIC Science & Technology

    2004-01-01

    to contact Sandra Veazey at (850) 595-8300 for additional information on asbestos issues. The Florida Department of Transportation (FDOT) supports...The notification form for the Department can be found at the following web address:. The Air Force is advised to contact Sandra Veazey at (850) 595

  13. Air Force UAVs: The Secret History

    DTIC Science & Technology

    2010-07-01

    iA Mitchell Institute Study i Air Force UAVs The Secret History A Mitchell Institute Study July 2010 By Thomas P. Ehrhard Report Documentation Page...DATES COVERED 00-00-2010 to 00-00-2010 4. TITLE AND SUBTITLE Air Force UAVs The Secret History 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c...opening phases of Operation Enduring Freedom in Afghanistan. By Thomas P. Ehrhard a miTchEll insTiTuTE sTudy July 2010 Air Force UAVs The Secret History

  14. 32 CFR 842.11 - Air Force claims organization.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 32 National Defense 6 2013-07-01 2013-07-01 false Air Force claims organization. 842.11 Section 842.11 National Defense Department of Defense (Continued) DEPARTMENT OF THE AIR FORCE CLAIMS AND LITIGATION ADMINISTRATIVE CLAIMS Functions and Responsibilities § 842.11 Air Force claims organization. Air...

  15. 32 CFR 842.11 - Air Force claims organization.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 32 National Defense 6 2010-07-01 2010-07-01 false Air Force claims organization. 842.11 Section 842.11 National Defense Department of Defense (Continued) DEPARTMENT OF THE AIR FORCE CLAIMS AND LITIGATION ADMINISTRATIVE CLAIMS Functions and Responsibilities § 842.11 Air Force claims organization. Air...

  16. 32 CFR 842.11 - Air Force claims organization.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 32 National Defense 6 2011-07-01 2011-07-01 false Air Force claims organization. 842.11 Section 842.11 National Defense Department of Defense (Continued) DEPARTMENT OF THE AIR FORCE CLAIMS AND LITIGATION ADMINISTRATIVE CLAIMS Functions and Responsibilities § 842.11 Air Force claims organization. Air...

  17. Air Force Office of Scientific Research 1991 Research Highlights

    DTIC Science & Technology

    1991-01-01

    research at Air Force Europe, allied victory in the Persian Gulf con- programs totaling nearly $300 million annual- laboratories . Air Force ...transitioning nological environment? laboratories and research centers into four research accomplishments for Air Force use. In this added role as... Air Force’s saries; maintaining a strong research Organizationally, AFOSR has also glo ehran gol per infrastructure among Air Force

  18. AirMSPI Level 2 V001 New Data for NASA's ORACLES Campaign

    Atmospheric Science Data Center

    2018-05-07

    AirMSPI Level 2 V001 New Data for NASA's ORACLES Campaign Friday, February 2, 2018 The NASA Langley Atmospheric Sciences Data Center (ASDC) and Jet Propulsion ... ) flight campaign.   AirMSPI flies in the nose of NASA's high-altitude ER-2 aircraft. The instrument was built by JPL and the ...

  19. KSC technicians on team to modify X-34

    NASA Technical Reports Server (NTRS)

    1999-01-01

    The modified X-34, known as A-1A, rests in the background of the Dryden Flight Research Center at Edwards Air Force Base, Calif., while an integrated team of KSC, Dryden Flight Research Center and Orbital Sciences Corporation engineers and technicians bring the X-34 A-1A vehicle closer to test flight readiness. Since September, eight NASA engineering technicians from KSC's Engineering Prototype Lab have assisted in the complex process of converting the X-34 A-1 vehicle from captive carry status to unpowered flight status, the A-1A. The X-34 is 58.3 feet long, 27.7 feet wide from wing tip to wing tip, and 11.5 feet tall from the bottom of the fuselage to the top of the tail. The autonomously operated technology demonstrator will be air- launched from an L-1011 airplane and should be capable of flying eight times the speed of sound, reaching an altitude of 250,000 feet. The X-34 Project is managed by NASA's Marshall Space Flight Center in Huntsville, Ala.

  20. NASA STS-132 Air and Space Museum

    NASA Image and Video Library

    2010-07-26

    Dr. John Mather, NASA Goddard Space Flight Center scientist and Nobel Laureate, center, presents Gen. John R. “Jack” Dailey, director of the Smithsonian National Air and Space Museum, left, with a a replica of Mather’s Nobel Prize medal that flew in space aboard STS-132, as astronaut Piers Sellers looks on, during a ceremony at the museum, Tuesday, July 27, 2010, in Washington. Photo Credit: (NASA/Paul E. Alers)

  1. NASA technology program for future civil air transports

    NASA Technical Reports Server (NTRS)

    Wright, H. T.

    1983-01-01

    An assessment is undertaken of the development status of technology, applicable to future civil air transport design, which is currently undergoing conceptual study or testing at NASA facilities. The NASA civil air transport effort emphasizes advanced aerodynamic computational capabilities, fuel-efficient engines, advanced turboprops, composite primary structure materials, advanced aerodynamic concepts in boundary layer laminarization and aircraft configuration, refined control, guidance and flight management systems, and the integration of all these design elements into optimal systems. Attention is given to such novel transport aircraft design concepts as forward swept wings, twin fuselages, sandwich composite structures, and swept blade propfans.

  2. NASA's SDO Observes an X-class Solar Flare

    NASA Image and Video Library

    2017-12-08

    The sun emitted a significant solar flare, peaking at 1:01 a.m. EDT on Oct. 19, 2014. NASA's Solar Dynamics Observatory, which is always observing the sun, captured an image of the event. Solar flares are powerful bursts of radiation. Harmful radiation from a flare cannot pass through Earth's atmosphere to physically affect humans on the ground, however -- when intense enough -- they can disturb the atmosphere in the layer where GPS and communications signals travel. To see how this event may affect Earth, please visit NOAA's Space Weather Prediction Center at spaceweather.gov, the U.S. government's official source for space weather forecasts, alerts, watches and warnings. This flare is classified as an X1.1-class flare. X-class denotes the most intense flares, while the number provides more information about its strength. An X2 is twice as intense as an X1, an X3 is three times as intense, etc. Credit: NASA/SDO NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  3. Chandra X-ray Observatory - NASA's flagship X-ray telescope

    Science.gov Websites

    astronomy, taking its place in the fleet of "Great Observatories." Who we are NASA's Chandra X-ray astronomy, distances are measured in units of light years, where one light year is the distance that light gravity? The answer is still out there. By studying clusters of galaxies, X-ray astronomy is tackling this

  4. X-29 vortex flow control tests

    NASA Technical Reports Server (NTRS)

    Hancock, Regis; Fullerton, Gordon

    1992-01-01

    A joint Air Force/NASA X-29 aircraft program to improve yaw control at high angle of attack using vortex flow control (VFC) is described. Directional VFC blowing proved to a be a powerful yaw moment generator and was very effective in overriding natural asymmetries, but was essentially ineffective in suppressing wing rock. Symmetric aft blowing also had little effect on suppressing wing rock.

  5. NASA AIRS Examines Hurricane Matthew Cloud Top Temperatures

    NASA Image and Video Library

    2016-10-07

    At 11:29 p.m. PDT on Oct. 6 (2:29 a.m. EDT on Oct. 7), NASA's Atmospheric Infrared Sounder (AIRS) instrument on NASA's Aqua satellite produced this false-color infrared image of Matthew as the storm moved up Florida's central coast. The image shows the temperature of Matthew's cloud tops or the surface of Earth in cloud-free regions, with the most intense thunderstorms shown in purples and blues. http://photojournal.jpl.nasa.gov/catalog/PIA21097

  6. X-24C research vehicle

    NASA Technical Reports Server (NTRS)

    1974-01-01

    A group of experiments that might be accomplished on the X-24C research vehicle are discussed indicating in each case the technology development needed to ready the experiments for flight, and also indicating interface problems between the vehicle and the experiment. Experiments that could be cheaply done using test platforms other than the X-24C have been eliminated. Experiments that are clearly applicable only to the X-24C research vehicle are, of course, included. Experiments that might be accomplished on either the X-24C or some other platform requiring further investigation concerning proper applicability are included for consideration.

  7. Installation Restoration Program. Phase 2. Confirmation/Quantification. Stage 1. Air Force Plant 6, Cobb County, Georgia. Volume 3.

    DTIC Science & Technology

    1986-08-09

    WATER ASSESSMENT PROGRAM AIR FOsEa PLANT 6, L0CKED-GEOCIA CONPANY MARIETTA, GMO IA PROJECT NO. 611059 WELL 4W-22 WELL 4W-23 WELL MW-24 WELL 4W-25 Dace...PROGRAMo PHASE II--CONFIRMATION/QUANTIFICATION 0STAGE I Final Report for AIR FORCE PLANT 6, COBB COUNTY, GA. U.S. AIR FORCE OCCUPATIONAL AND ENVIRONMENTAL...Con uet on reverse 4 necessary arc .entir’y ay )lcx "UrCer) I;;EL_0 GROUP I SUB-GROuP Air Force Plant , Hazardous materialsI oilS’ DeB Ground water, S

  8. 14 CFR 389.24 - Foreign air carriers.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 4 2012-01-01 2012-01-01 false Foreign air carriers. 389.24 Section 389.24...) ORGANIZATION FEES AND CHARGES FOR SPECIAL SERVICES Filing and Processing License Fees § 389.24 Foreign air carriers. A foreign air carrier, or such carriers, if from the same country, acting jointly, may apply for...

  9. 14 CFR 389.24 - Foreign air carriers.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 4 2014-01-01 2014-01-01 false Foreign air carriers. 389.24 Section 389.24...) ORGANIZATION FEES AND CHARGES FOR SPECIAL SERVICES Filing and Processing License Fees § 389.24 Foreign air carriers. A foreign air carrier, or such carriers, if from the same country, acting jointly, may apply for...

  10. 14 CFR 389.24 - Foreign air carriers.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 4 2013-01-01 2013-01-01 false Foreign air carriers. 389.24 Section 389.24...) ORGANIZATION FEES AND CHARGES FOR SPECIAL SERVICES Filing and Processing License Fees § 389.24 Foreign air carriers. A foreign air carrier, or such carriers, if from the same country, acting jointly, may apply for...

  11. SpaceX CRS-14 Prelaunch News Conference

    NASA Image and Video Library

    2018-04-01

    In the Kennedy Space Center’s Press Site auditorium, NASA and industry leaders speak to members of the media during a prelaunch news conference for the SpaceX CRS-14 commercial resupply services mission to the International Space Station. From left, are Stephanie Schierholz, of NASA Communications; Jessica Jensen, director, Dragon Mission Management, SpaceX; Pete Hasbrook, associate program scientist, ISS Program Science Office at NASA's Johnson Space Center in Houston; and Mike McAleenan, weather officer, 45th Weather Squadron. Joining on the phone is Joel Montalbano, deputy manager, ISS Program at Johnson. A Dragon spacecraft is scheduled to be launched from Space Launch Complex 40 at Cape Canaveral Air Force Station at 4:30 p.m. EST, on April 2, 2018. The SpaceX Falcon 9 rocket will lift off on the company's 14th Commercial Resupply Services mission to the space station.

  12. SR-71B - in Flight - View from Air Force Tanker

    NASA Technical Reports Server (NTRS)

    1997-01-01

    This look-down view shows NASA 831, an SR-71B flown by Dryden Flight Research Center, Edwards, California, as it cruises over the Mojave Desert. The photo was from an Air Force refueling tanker taken on a 1997 mission. Two SR-71 aircraft have been used by NASA as testbeds for high-speed and high-altitude aeronautical research. The aircraft, an SR-71A and an SR-71B pilot trainer aircraft, have been based here at NASA's Dryden Flight Research Center, Edwards, California. They were transferred to NASA after the U.S. Air Force program was cancelled. As research platforms, the aircraft can cruise at Mach 3 for more than one hour. For thermal experiments, this can produce heat soak temperatures of over 600 degrees Fahrenheit (F). This operating environment makes these aircraft excellent platforms to carry out research and experiments in a variety of areas -- aerodynamics, propulsion, structures, thermal protection materials, high-speed and high-temperature instrumentation, atmospheric studies, and sonic boom characterization. The SR-71 was used in a program to study ways of reducing sonic booms or over pressures that are heard on the ground, much like sharp thunderclaps, when an aircraft exceeds the speed of sound. Data from this Sonic Boom Mitigation Study could eventually lead to aircraft designs that would reduce the 'peak' overpressures of sonic booms and minimize the startling affect they produce on the ground. One of the first major experiments to be flown in the NASA SR-71 program was a laser air data collection system. It used laser light instead of air pressure to produce airspeed and attitude reference data, such as angle of attack and sideslip, which are normally obtained with small tubes and vanes extending into the airstream. One of Dryden's SR-71s was used for the Linear Aerospike Rocket Engine, or LASRE Experiment. Another earlier project consisted of a series of flights using the SR-71 as a science camera platform for NASA's Jet Propulsion Laboratory in

  13. Air Force KC-X Tanker Aircraft Program: Background and Issues for Congress

    DTIC Science & Technology

    2009-12-22

    24, 2009, the Department of Defense (DOD) announced its proposed strategy for conducting a new competition between Boeing and a team consisting of...acquire a new tanker over the past several years have ultimately failed. DOD’s proposed new KC-X acquisition competition strategy poses several...5 DOD’s Proposed New KC-X Competition Strategy ...............................................................5

  14. Dryden/Edwards 1994 Thrust-Vectoring Aircraft Fleet - F-18 HARV, X-31, F-16 MATV

    NASA Technical Reports Server (NTRS)

    1994-01-01

    The three thrust-vectoring aircraft at Edwards, California, each capable of flying at extreme angles of attack, cruise over the California desert in formation during flight in March 1994. They are, from left, NASA's F-18 High Alpha Research Vehicle (HARV), flown by the NASA Dryden Flight Research Center; the X-31, flown by the X-31 International Test Organization (ITO) at Dryden; and the Air Force F-16 Multi-Axis Thrust Vectoring (MATV) aircraft. All three aircraft were flown in different programs and were developed independently. The NASA F-18 HARV was a testbed to produce aerodynamic data at high angles of attack to validate computer codes and wind tunnel research. The X-31 was used to study thrust vectoring to enhance close-in air combat maneuvering, while the F-16 MATV was a demonstration of how thrust vectoring could be applied to operational aircraft.

  15. NASA Social Briefing on Planet-Hunting Mission Launch

    NASA Image and Video Library

    2018-04-15

    NASA and industry leaders speak to NASA Social participants about the agency's Transiting Exoplanet Survey Satellite (TESS) in the Press Site auditorium at Kennedy Space Center in Florida. Speaking to the group is Tom Barclay, TESS scientist, NASA’s Goddard Space Flight Center. TESS is the next step in the search for planets outside of our solar system. The mission will find exoplanets that periodically block part of the light from their host stars, events called transits. The satellite will survey the nearest and brightest stars for two years to search for transiting exoplanets. TESS will launch on a SpaceX Falcon 9 rocket from Space Launch Complex 40 at Cape Canaveral Air Force Station no earlier than 6:32 p.m. EDT on Monday, April 16.

  16. NASA Social Briefing on Planet-Hunting Mission Launch

    NASA Image and Video Library

    2018-04-15

    NASA and industry leaders speak to NASA Social participants about the agency's Transiting Exoplanet Survey Satellite (TESS) in the Press Site auditorium at Kennedy Space Center in Florida. Speaking to the group is Zach Berta-Thompson, assistant professor, University of Colorado Boulder. TESS is the next step in the search for planets outside of our solar system. The mission will find exoplanets that periodically block part of the light from their host stars, events called transits. The satellite will survey the nearest and brightest stars for two years to search for transiting exoplanets. TESS will launch on a SpaceX Falcon 9 rocket from Space Launch Complex 40 at Cape Canaveral Air Force Station no earlier than 6:32 p.m. EDT on Monday, April 16.

  17. NASA Social Briefing on Planet-Hunting Mission Launch

    NASA Image and Video Library

    2018-04-15

    NASA and industry leaders speak to NASA Social participants about the agency's Transiting Exoplanet Survey Satellite (TESS) in the Press Site auditorium at Kennedy Space Center in Florida. Speaking to the group is Natalia Guerrero, TESS researcher, Massachusetts Institute of Technology. TESS is the next step in the search for planets outside of our solar system. The mission will find exoplanets that periodically block part of the light from their host stars, events called transits. The satellite will survey the nearest and brightest stars for two years to search for transiting exoplanets. TESS will launch on a SpaceX Falcon 9 rocket from Space Launch Complex 40 at Cape Canaveral Air Force Station no earlier than 6:32 p.m. EDT on Monday, April 16.

  18. M2-F1 mounted in NASA Ames Research Center 40x80 foot wind tunnel

    NASA Technical Reports Server (NTRS)

    1962-01-01

    -47 aircraft and released. These initial car-tow tests produced enough flight data about the M2-F1 to proceed with flights behind the C-47 tow plane at greater altitudes. The C-47 took the craft to an altitude of 12,000 where free flights back to Rogers Dry Lake began. Pilot for the first series of flights of the M2-F1 was NASA research pilot Milt Thompson. Typical glide flights with the M2-F1 lasted about two minutes and reached speeds of 110 to l20 mph. A small solid landing rocket, referred to as the 'instant L/D rocket,' was installed in the rear base of the M2-F1. This rocket, which could be ignited by the pilot, provided about 250 pounds of thrust for about 10 seconds. The rocket could be used to extend the flight time near landing if needed. More than 400 ground tows and 77 aircraft tow flights were carried out with the M2-F1. The success of Dryden's M2-F1 program led to NASA's development and construction of two heavyweight lifting bodies based on studies at NASA's Ames and Langley research centers--the M2-F2 and the HL-10, both built by the Northrop Corporation, and the U.S. Air Force's X-24 program, with an X-24A and -B built by Martin. The Lifting Body program also heavily influenced the Space Shuttle program. The M2-F1 program demonstrated the feasibility of the lifting body concept for horizontal landings of atmospheric entry vehicles. It also demonstrated a procurement and management concept for prototype flight test vehicles that produced rapid results at very low cost (approximately $50,000, excluding salaries of government employees assigned to the project).

  19. Shuttle Astronauts Visit NASA's X-Ray Observatory Operations Control Center in Cambridge to Coordinate Plans for Launch

    NASA Astrophysics Data System (ADS)

    1998-06-01

    CAMBRIDGE, MASS.-- June 25, 1998 Eileen Collins, the first U.S. woman commanderof a Space Shuttle mission and her fellow astronauts for NASA s STS-93 mission toured the Operations Control Center (OCC) for the Advanced X-ray Astrophysics Facility (AXAF) today. AXAF is scheduled for launch on January 26, 1999 aboard the Space Shuttle Columbia. They met with the staff of the OCC and discussed how the status of the observatory will be monitored while in the shuttle bay and during deployment. "We are honored to have this historic shuttle crew visit us and familiarize themselves with the OCC," said Harvey Tananbaum, director of the AXAF Science Center, which operates the OCC for the Smithsonian Astrophysical Observatory through a contract with NASA's Marshall Space Flight Center. "It is appropriate that a pathbreaking shuttle mission will deploy the premier X-ray observatory of this century." AXAF is the third of NASA s Great Observatories along with the Hubble Space Telescope and the Compton Gamma Ray Observatory. It will observe in greater detail than ever before the hot, violent regions of the universe that cannot be seen with optical telescopes. Exploding stars, black holes and vast clouds of gas in galaxy clusters are among the fascinating objects that AXAF is designed to study. The satellite is currently in the final stages of testing at TRW Space and Electronics Group,the prime contractor, in Redondo Beach, California. In late August it will be flown aboard a specially-outfitted Air Force C-5 aircraft to Kennedy Space Center in Florida where it will be integrated with a Boeing booster and then installed in the Shuttle bay. The shuttle crew that will take AXAF into space includes Collins (Col., USAF), Jeffrey Ashby (Cmdr., USN), pilot; Steven Hawley, Ph.D., mission specialist; Catherine Cady Coleman, Ph.D. (Major, USAF), mission specialist; and Michel Tognini (Col., French Air Force), mission specialist. While visiting the OCC the crew learned how critical data

  20. Reducing Air Force Fighter Pilot Shortages

    DTIC Science & Technology

    2015-12-31

    that active-component fighter pilot requirements (particularly nonflying staff requirements) exceed its capacity to train and provide initial...pilots in the reserve components. This research was sponsored by four elements of the U.S. Air Force: the Deputy Chief of Staff for Operations (AF/A3...the Deputy Chief of Staff for Manpower, Personnel and Services (AF/A1); the Commander, Air Force Reserve Command (AFRC/CC); and the Director, Air

  1. Air Force UAV’s: The Secret History

    DTIC Science & Technology

    2010-07-01

    iA Mitchell Institute Study i Air Force UAVs The Secret History A Mitchell Institute Study July 2010 By Thomas P. Ehrhard Report Documentation Page...DATES COVERED 00-00-2010 to 00-00-2010 4. TITLE AND SUBTITLE Air Force UAVs The Secret History 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c... The Secret History 2 Air Force UAVs: The Secret History2 air Force uaVs: The secret history Has any airplane in the past decade captured the public

  2. SpaceX Dragon Air Circulation System

    NASA Technical Reports Server (NTRS)

    Hernandez, Brenda; Piatrovich, Siarhei; Prina, Mauro

    2011-01-01

    The Dragon capsule is a reusable vehicle being developed by Space Exploration Technologies (SpaceX) that will provide commercial cargo transportation to the International Space Station (ISS). Dragon is designed to be a habitable module while it is berthed to ISS. As such, the Dragon Environmental Control System (ECS) consists of pressure control and pressure equalization, air sampling, fire detection, illumination, and an air circulation system. The air circulation system prevents pockets of stagnant air in Dragon that can be hazardous to the ISS crew. In addition, through the inter-module duct, the air circulation system provides fresh air from ISS into Dragon. To utilize the maximum volume of Dragon for cargo packaging, the Dragon ECS air circulation system is designed around cargo rack optimization. At the same time, the air circulation system is designed to meet the National Aeronautics Space Administration (NASA) inter-module and intra-module ventilation requirements and acoustic requirements. A flight like configuration of the Dragon capsule including the air circulation system was recently assembled for testing to assess the design for inter-module and intra-module ventilation and acoustics. The testing included the Dragon capsule, and flight configuration in the pressure section with cargo racks, lockers, all of the air circulation components, and acoustic treatment. The air circulation test was also used to verify the Computational Fluid Dynamics (CFD) model of the Dragon capsule. The CFD model included the same Dragon internal geometry that was assembled for the test. This paper will describe the Dragon air circulation system design which has been verified by testing the system and with CFD analysis.

  3. KENNEDY SPACE CENTER, FLA. - At Cape Canaveral Air Force Station, the Space Infrared Telescope Facility (SIRTF) observatory is moved into NASA Spacecraft Hangar AE. SIRTF will remain in the clean room at Hangar AE until it returns to the pad in early August.

    NASA Image and Video Library

    2003-05-02

    KENNEDY SPACE CENTER, FLA. - At Cape Canaveral Air Force Station, the Space Infrared Telescope Facility (SIRTF) observatory is moved into NASA Spacecraft Hangar AE. SIRTF will remain in the clean room at Hangar AE until it returns to the pad in early August.

  4. JPL-20180307-INSIGHf-0001-Mars InSight Arrives at Vandenberg Air Force Base

    NASA Image and Video Library

    2018-03-07

    NASA's InSight spacecraft arrived at Vandenberg Air Force Base, California, to begin final preparations for launch. InSight will be the first mission to look deep beneath the Martian surface, studying the planet's interior by listening for marsquakes and measuring its heat output. It will be the first planetary spacecraft to launch from this west coast launch facility. The launch period for InSight opens May 5, 2018 and continues through June 8, 2018.

  5. Air Traffic Control Radar

    NASA Image and Video Library

    2003-08-13

    An Air Traffic Control radar has been constructed at Shiloh for the NASA control tower at the Shuttle Landing Facility. It will be used by NASA and the Eastern Range for surveillance of controlled air space in Kennedy Space Center and Cape Canaveral Air Force Station restricted areas. Shiloh is on the northern end of Merritt Island.

  6. Air Traffic Control Radar

    NASA Image and Video Library

    2003-08-13

    An Air Traffic Control radar is being constructed at Shiloh for the NASA control tower at the Shuttle Landing Facility. It will be used by NASA and the Eastern Range for surveillance of controlled air space in Kennedy Space Center and Cape Canaveral Air Force Station restricted areas. Shiloh is on the northern end of Merritt Island.

  7. Air Force Audit Agency Management Information System

    DTIC Science & Technology

    1990-11-01

    Support Directorate. AFAA/QL performs multilocation . Air Force-wide audits and issues reports to the SAF. It, however, specializes in the multibillion...USE ONLY (Leave blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED NOV 90 4. TITLE AND SUBTITLE S. FUNDING NUMBERS Air Force Audit Agency...appreciated. Mail them to: CADRE/RI, Building 1400, Maxwell AFB AL 36112-5532.• Air Force Audit Agency Management Hobbs Information System C 0* 0 0

  8. National Emission Standards for Hazardous Air Pollutants (NESHAP) Memorandum of Agreement (MOA) Between NASA Headquarters and MSFC (Marshall Space Flight Center) for NASA Principal Center for Review of Clean Air Regulations

    NASA Technical Reports Server (NTRS)

    Caruso, Salvadore V.; Clark-Ingram, Marceia A.

    2000-01-01

    This paper presents a memorandum of agreement on Clean Air Regulations. NASA headquarters (code JE and code M) has asked MSFC to serve as principle center for review of Clean Air Act (CAA) regulations. The purpose of the principle center is to provide centralized support to NASA headquarters for the management and leadership of NASA's CAA regulation review process and to identify the potential impact of proposed CAA reguations on NASA program hardware and supporting facilities. The materials and processes utilized in the manufacture of NASA's programmatic hardware contain HAPs (Hazardous Air Pollutants), VOCs (Volatile Organic Compounds), and ODC (Ozone Depleting Chemicals). This paper is presented in viewgraph form.

  9. Air Force Research Laboratory’s Focused Long Term Challenges

    DTIC Science & Technology

    2008-04-01

    Air Force Research Laboratory ( AFRL ) mission is to provide support to the Air Force (AF) and the warfighters with... Air Force Research Laboratory’s Focused Long Term Challenges Leo J Rose Munitions Directorate, Air Force Research Laboratory , 101 W Eglin Blvd...This technology vision, which was born in our Air Force Research Laboratory , builds on the Air Force’s traditional kill

  10. Air Force KC-X Tanker Aircraft Program: Background and Issues for Congress

    DTIC Science & Technology

    2009-12-07

    24, 2009, the Department of Defense (DOD) announced its proposed strategy for conducting a new competition between Boeing and a team consisting of...acquire a new tanker over the last several years have ultimately failed. DOD’s proposed new KC-X acquisition competition strategy poses several...5 DOD’s Proposed New KC-X Competition Strategy ...............................................................5 Response to the Draft RFP

  11. NASA's DC-8 flying laboratory takes off from Juan Santamaria International Airport in San Jose, Costa Rica, on NASA's AirSAR 2004 campaign

    NASA Image and Video Library

    2004-03-06

    NASA's DC-8 flying laboratory takes off from Juan Santamaria International Airport in San Jose, Costa Rica, on NASA's AirSAR 2004 campaign. AirSAR 2004 Mesoamerica is a three-week expedition by an international team of scientists that uses an all-weather imaging tool, called the Airborne Synthetic Aperture Radar (AirSAR) which is located onboard NASA's DC-8 airborne laboratory. Scientists from many parts of the world including NASA's Jet Propulsion Laboratory are combining ground research done in several areas in Central America with NASA's AirSAR technology to improve and expand on the quality of research they are able to conduct. The radar, developed by NASA's Jet Propulsion Laboratory, can penetrate clouds and also collect data at night. Its high-resolution sensors operate at multiple wavelengths and modes, allowing AirSAR to see beneath treetops, through thin sand, and dry snow pack. AirSAR's 2004 campaign is a collaboration of many U.S. and Central American institutions and scientists, including NASA; the National Science Foundation; the Smithsonian Institution; National Geographic; Conservation International; the Organization of Tropical Studies; the Central American Commission for Environment and Development; and the Inter-American Development Bank.

  12. Small negative cloud-to-ground lightning reports at the NASA Kennedy Space Center and Air Force Eastern Range

    NASA Astrophysics Data System (ADS)

    Wilson, Jennifer G.; Cummins, Kenneth L.; Krider, E. Philip

    2009-12-01

    The NASA Kennedy Space Center (KSC) and Air Force Eastern Range (ER) use data from two cloud-to-ground (CG) lightning detection networks, the Cloud-to-Ground Lightning Surveillance System (CGLSS) and the U.S. National Lightning Detection Network™ (NLDN), and a volumetric lightning mapping array, the Lightning Detection and Ranging (LDAR) system, to monitor and characterize lightning that is potentially hazardous to launch or ground operations. Data obtained from these systems during June-August 2006 have been examined to check the classification of small, negative CGLSS reports that have an estimated peak current, ∣Ip∣ less than 7 kA, and to determine the smallest values of Ip that are produced by first strokes, by subsequent strokes that create a new ground contact (NGC), and by subsequent strokes that remain in a preexisting channel (PEC). The results show that within 20 km of the KSC-ER, 21% of the low-amplitude negative CGLSS reports were produced by first strokes, with a minimum Ip of -2.9 kA; 31% were by NGCs, with a minimum Ip of -2.0 kA; and 14% were by PECs, with a minimum Ip of -2.2 kA. The remaining 34% were produced by cloud pulses or lightning events that we were not able to classify.

  13. The Soviet Air Force and Strategic Bombing

    DTIC Science & Technology

    1999-04-01

    to envision a British Air Force that could be totally divorced from some form of ground support role. Consequently, he saw an air campaign that would...CA: Presidio Press, 1986. Black, Steven K. The Icarus Illusion: Technology, Doctrine and the Soviet Air Force. Monterrey , CA, 1986. Cockburn, Andrew

  14. 32 CFR 631.15 - Air Force policy.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 32 National Defense 4 2010-07-01 2010-07-01 true Air Force policy. 631.15 Section 631.15 National... INVESTIGATIONS ARMED FORCES DISCIPLINARY CONTROL BOARDS AND OFF-INSTALLATION LIAISON AND OPERATIONS Off-Installation Operations (Military Patrols and Investigative Activities) and Policy § 631.15 Air Force policy...

  15. Identity Federation and Its Importance for NASA's Future: The SharePoint Extranet Pilot

    NASA Technical Reports Server (NTRS)

    Baturin, Rebecca R.

    2013-01-01

    My project at Kennedy Space Center (KSC) during the spring 2013 Project Management and Systems Engineering Internship was to functionalJy test and deploy the SharePoint Extranet system and ensure successful completion of the project's various lifecycle milestones as described by NASA Procedural Requirement (NPR) 7 120.7. I worked alongside NASA Project Managers, Systems Integration Engineers, and Information Technology (IT) Professionals to pilot this collaboration capability between NASA and its External Partners. The use of identity federation allows NASA to leverage externally-issued credentials of other federal agencies and private aerospace and defense companies, versus the traditional process of granting and maintaining full NASA identities for these individuals. This is the first system of its kind at NASA and it will serve as a pilot for the Federal Government. Recognizing the novelty of this service, NASA's initial approach for deployment included a pilot period where nearby employees of Patrick Air Force Base would assist in testing and deployment. By utilizing a credential registration process, Air Force users mapped their Air Force-issued Common Access Cards (CAC) to a NASA identity for access to the External SharePoint. Once the Air Force stands up an Active Directory Federation Services (ADFS) instance within their Data Center and establishes a direct trust with NASA, true identity federation can be established. The next partner NASA is targeting for collaboration is Lockheed Martin (LMCO), since they collaborate frequently for the ORION Program. Through the use of Exostar as an identity hub, LMCO employees will be able to access NASA data on a need to know basis, with NASA ultimately managing access. In a time when every dollar and resource is being scrutinized, this capability is an exciting new way for NASA to continue its collaboration efforts in a cost and resource effective manner.

  16. Air Traffic Management Research at NASA Ames

    NASA Technical Reports Server (NTRS)

    Davis, Thomas J.

    2012-01-01

    The Aviation Systems Division at the NASA Ames Research Center conducts leading edge research in air traffic management concepts and technologies. This overview will present concepts and simulation results for research in traffic flow management, safe and efficient airport surface operations, super density terminal area operations, separation assurance and system wide modeling and simulation. A brief review of the ongoing air traffic management technology demonstration (ATD-1) will also be presented. A panel discussion, with Mr. Davis serving as a panelist, on air traffic research will follow the briefing.

  17. A NASA technician paints NASA's first Orion full-scale abort flight test crew module.

    NASA Image and Video Library

    2008-03-31

    A full-scale flight-test mockup of the Constellation program's Orion crew vehicle arrived at NASA's Dryden Flight Research Center in late March 2008 to undergo preparations for the first short-range flight test of the spacecraft's astronaut escape system later that year. Engineers and technicians at NASA's Langley Research Center fabricated the structure, which precisely represents the size, outer shape and mass characteristics of the Orion space capsule. The Orion crew module mockup was ferried to NASA Dryden on an Air Force C-17. After painting in the Edwards Air Force Base paint hangar, the conical capsule was taken to Dryden for installation of flight computers, instrumentation and other electronics prior to being sent to the U.S. Army's White Sands Missile Range in New Mexico for integration with the escape system and the first abort flight test in late 2008. The tests were designed to ensure a safe, reliable method of escape for astronauts in case of an emergency.

  18. 77 FR 33202 - Department of the Air Force

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-05

    ... DEPARTMENT OF DEFENSE Department of the Air Force Corrected Intent To Grant a Partially Exclusive Patent License AGENCY: The United States Air Force, DoD. SUMMARY: This notice replaces the one published... implements Public Law 96- 517, as amended; the Department of the Air Force announces its intention to grant...

  19. 78 FR 63452 - Meeting of the National Commission on the Structure of the Air Force; Correction to Meetings of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-10-24

    ... witnesses scheduled to testify. October 24, 2013 Agenda from 8:00 a.m. to 12:00 p.m.: Major General Brian... General John Posner, Director of Global Power Programs in the Office of the Assistant Secretary of the Air Force, Acquisition, Headquarters U.S. Air Force, Washington DC; and Major General Mark Bartman...

  20. Air Force Technical Objective Document FY 87

    DTIC Science & Technology

    1985-12-01

    Air Force Systems Command Edwards Air Force Base. Cal ifornia 93523-5000 NOTICES THIS DOCUMENT IS FOR INFORMATION AND GUIDANCE ONL Y This...acquisition of Air Foree weapon systems . Each Air Foree laboratory annually formulates Q Research and Technology (R& T) Pion in response to available...guidance based on USAF requirements, the identification of scientific and technological opportunities, and the needs of present and projected systems

  1. X-15 test pilots - in a lighter mood

    NASA Technical Reports Server (NTRS)

    1966-01-01

    The X-15 pilots clown around in front of the #2 aircraft.From left to right: USAF Capt. Joseph Engle, USAF Maj. Robert Rushworth, NASA test pilot John 'Jack' McKay, USAF Maj. William 'Pete' Knight, NASA test pilot Milton Thompson, and NASA test pilot William Dana. First flown in 1959 from the NASA High Speed Flight Station (later renamed the Dryden Flight Research Center), the rocket powered X-15 was developed to provide data on aerodynamics, structures, flight controls and the physiological aspects of high speed, high altitude flight. Three were built by North American Aviation for NASA and the U.S. Air Force. They made a total of 199 flights during a highly successful research program lasting almost ten years, following which its speed and altitude records for winged aircraft remained unbroken until the Space Shuttle first returned from earth orbit in 1981. The X-15's main rocket engine provided thrust for the first 80 to 120 seconds of a 10 to 11 minute flight; the aircraft then glided to a 200 mph landing. The X-15 reached altitudes of 354,200 feet (67.08 miles) and a speed of 4,520 mph (Mach 6.7).

  2. Canadian Air Force Leadership and Command: Implications for the Human Dimension of Expeditionary Air Force Operations

    DTIC Science & Technology

    2006-11-01

    Project Manager : CSA: Angela Febbraro The scientific or technical validity of this Contract Report is entirely the responsibility of the...ways, for example, in leadership styles and command arrangements. Unfortunately for the Canadian Air Force, very little has been written about how its...culture and professional working environment have influenced the development of unique Canadian air force leadership styles and command

  3. NASA Social Briefing on Planet-Hunting Mission Launch

    NASA Image and Video Library

    2018-04-15

    NASA and industry leaders speak to NASA Social participants about the agency's Transiting Exoplanet Survey Satellite (TESS) in the Press Site auditorium at Kennedy Space Center in Florida. Speaking to the group from center are Natalia Guerrero, TESS researcher, Massachusetts Institute of Technology, and Robert Lockwood, TESS Spacecraft Program Manager, Orbital ATK. At far left is Jason Townsend, NASA Communications. TESS is the next step in the search for planets outside of our solar system. The mission will find exoplanets that periodically block part of the light from their host stars, events called transits. The satellite will survey the nearest and brightest stars for two years to search for transiting exoplanets. TESS will launch on a SpaceX Falcon 9 rocket from Space Launch Complex 40 at Cape Canaveral Air Force Station no earlier than 6:32 p.m. EDT on Monday, April 16.

  4. A convoy of specialized support vehicles follow the Space Shuttle Endeavour as it is towed up a taxiway at NASA's Dryden Flight Research Center on Edwards Air Force Base, California, after landing on May 1, 2001

    NASA Image and Video Library

    2001-05-01

    A convoy of specialized support vehicles follow the Space Shuttle Endeavour as it is towed up a taxiway at NASA's Dryden Flight Research Center on Edwards Air Force Base, California, after landing on May 1, 2001. The two largest vehicles trailing the shuttle provide electrical power and air conditioning to the shuttle's systems during post-flight recovery operations. The Endeavour had just completed mission STS-100, an almost 12-day mission to install the Canadarm 2 robotic arm and deliver some three tons of supplies and experiments to the International Space Station. The landing was the 48th shuttle landing at Edwards since shuttle flights began in 1981. After post-flight processing, the Endeavour was mounted atop one of NASA's modified Boeing 747 shuttle carrier aircraft and ferried back to the Kennedy Space Center in Florida on May 8, 2001.

  5. X-2 on Transportation Dolly

    NASA Technical Reports Server (NTRS)

    1952-01-01

    , and made a total of 17 (4 glide and 13 powered) flights before it was lost Sept. 27, 1956. The pilot on Flight 17, Capt. Milburn Apt, had flown the aircraft to a record speed of Mach 3.2 (2,094 mph), thus becoming the first person to exceed Mach 3. During that last flight, inertial coupling occurred and the pilot was killed. The aircraft suffered little damage in the crash, resulting in proposals (never implemented) from the Langley Memorial Aeronautical Laboratory, Hampton, Virginia, to rebuild it for use in a hypersonic (Mach 5+) test program. In 1953, X-2 Number 2 was lost in an in-flight explosion while at the Bell Aircraft Company during captive flight trials and was jettisoned into Lake Ontario. The Air Force had previously flown the aircraft on three glide flights at Edwards Air Force Base, California, in 1952. Although the NACA's High-Speed Flight Station, Edwards, California, (predecessor of NASA's Dryden Flight Research Center) never actually flew the X-2 aircraft, the NACA did support the program primarily through Langley Memorial Aeronautical Laboratory wind-tunnel tests and Wallops Island, Virginia, rocket-model tests. The NACA High-Speed Flight Station also provided stability-and-control recording instrumentation and simulator support for the Air Force flights. In the latter regard, the NACA worked with the Air Force in using a special computer to extrapolate and predict aircraft behavior from flight data.

  6. 24 CFR 968.120 - Force account.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 24 Housing and Urban Development 4 2010-04-01 2010-04-01 false Force account. 968.120 Section 968... PUBLIC HOUSING MODERNIZATION General § 968.120 Force account. (a) For both CIAP and CGP, a PHA may undertake the activities using force account labor, only where specifically approved by HUD in the CIAP...

  7. 2008 NASA Seal/Secondary Air System Workshop

    NASA Technical Reports Server (NTRS)

    Steinetz, Bruce M. (Editor); Hendricks, Robert C. (Editor); Delgado, Irebert R. (Editor)

    2009-01-01

    The 2008 NASA Seal/Secondary Air System Workshop covered the following topics: (i) Overview of NASA s new Orion project aimed at developing a new spacecraft that will fare astronauts to the International Space Station, the Moon, Mars, and beyond; (ii) Overview of NASA s fundamental aeronautics technology project; (iii) Overview of NASA Glenn s seal project aimed at developing advanced seals for NASA s turbomachinery, space, and reentry vehicle needs; (iv) Reviews of NASA prime contractor, vendor, and university advanced sealing concepts, test results, experimental facilities, and numerical predictions; and (v) Reviews of material development programs relevant to advanced seals development. Turbine engine studies have shown that reducing seal leakage as well as high-pressure turbine (HPT) blade tip clearances will reduce fuel burn, lower emissions, retain exhaust gas temperature margin, and increase range. Turbine seal development topics covered include a method for fast-acting HPT blade tip clearance control, noncontacting low-leakage seals, intershaft seals, and a review of engine seal performance requirements for current and future Army engine platforms.

  8. Joseph A. Walker after X-15 flight #2-14-28

    NASA Image and Video Library

    1961-03-30

    Joseph A. Walker was a Chief Research Pilot at the NASA Dryden Flight Research Center during the mid-1960s. He joined the NACA in March 1945, and served as project pilot at the Edwards flight research facility on such pioneering research projects as the D-558-1, D-558-2, X-1, X-3, X-4, X-5, and the X-15. He also flew programs involving the F-100, F-101, F-102, F-104, and the B-47. Walker made the first NASA X-15 flight on March 25, 1960. He flew the research aircraft 24 times and achieved its fastest speed and highest altitude. He attained a speed of 4,104 mph (Mach 5.92) during a flight on June 27, 1962, and reached an altitude of 354,300 feet on August 22, 1963 (his last X-15 flight). He was the first man to pilot the Lunar Landing Research Vehicle (LLRV) that was used to develop piloting and operational techniques for lunar landings. Walker was born February 20, 1921, in Washington, Pa. He lived there until graduating from Washington and Jefferson College in 1942, with a B.A. degree in Physics. During World War II he flew P-38 fighters for the Air Force, earning the Distinguished Flying Cross and the Air Medal with Seven Oak Clusters. Walker was the recipient of many awards during his 21 years as a research pilot. These include the 1961 Robert J. Collier Trophy, 1961 Harmon International Trophy for Aviators, the 1961 Kincheloe Award and 1961 Octave Chanute Award. He received an honorary Doctor of Aeronautical Sciences degree from his alma mater in June of 1962. Walker was named Pilot of the Year in 1963 by the National Pilots Association. He was a charter member of the Society of Experimental Test Pilots, and one of the first to be designated a Fellow. He was fatally injured on June 8, 1966, in a mid-air collision between an F-104 he was piloting and the XB-70.

  9. Severe Air Pollution in New Delhi View by NASA MISR

    NASA Image and Video Library

    2016-11-16

    New Delhi, India's capital city, is currently suffering though a period of particularly poor air quality. In early November 2016, monitors at various locations in the area posted air quality index measurements as high as the 900s (the most severe ranking, "hazardous," is any air quality index measurement over 300). Thousands of schools have been closed, and a survey by the Associate Chambers of Commerce and Industry of India reports that 10 percent of the city's workers called in sick due to air-pollution-related health issues. According to several published news reports, the extreme air pollution may be due to a combination of nearby agricultural burning after harvest, urban construction and solid-waste burning, as well as remnants of firecracker smoke and additional car emissions after the celebration of Diwali, the Hindu festival of lights, on October 30. The Multi-angle Imaging SpectroRadiometer (MISR) instrument aboard NASA's Terra satellite passed over the region on Saturday, Nov. 5, 2016, at around 11:05 a.m. local time. At left is an image acquired from MISR's vertical viewing camera. The Himalayas stretch across the northern portion of the image. This towering mountain range tends to concentrate pollution in the region immediately to the south, including New Delhi, by preventing pollutants from blowing northwards. New Delhi, whose location is indicated on the image, is under a patch of especially thick haze. At 6:00 a.m. local time on that date, the U.S. Mission India NowCast Air Quality Index for New Delhi was reported at 751, more than twice the threshold for hazardous air quality. At right, a map of aerosol optical depth is superimposed on the image. Optical depth is a quantitative measure of the abundance of aerosols (tiny particles in the atmosphere). Optical depths for the area around New Delhi have not been calculated because the haze is so thick that the algorithm has classified the area as a cloud. In the region immediately surrounding the thick

  10. Air Force and Diversity: The Awkward Embrace

    DTIC Science & Technology

    2013-02-14

    Streeter is a U.S. Air Force intelligence officer assigned to the Air War College, Air University, Maxwell AFB, AL. She graduated from the United States...future leaders.” Princeton University Office of Human Resources Web site; Wilson et al, Grooming Top Leaders, 4. 28 45. Dr Fil J . Arenas...Air Force Diversity Strategic Roadmap (2012), 14. 86. Dr. Fil J . Arenas (Associate Professor, Organizational Leadership Studies, Squadron

  11. Air force Thunderbirds flying above the Kennedy Space Center

    NASA Image and Video Library

    2007-02-01

    Look -- It's a bird and a plane! A U.S. Air Force Thunderbird F-16D aircraft streaks through the sky past a slower-flying stork over the NASA News Center. The pilot is Maj. Tad Clark, who, after landing at the Shuttle Landing Facility, announced that Kennedy Space Center Visitor Complex will host the inaugural World Space Expo from Nov. 3 to 11, featuring an aerial salute by the Thunderbirds on its opening weekend. The Expo will create one of the largest displays of space artifacts, hardware and personalities ever assembled in one location with the objective to inspire, educate and engage the public by highlighting the achievements and benefits of space exploration.

  12. NASA Announces Contest to Name X-Ray Observatory

    NASA Astrophysics Data System (ADS)

    1998-04-01

    NASA is searching for a new name for the Advanced X-ray Astrophysics Facility (AXAF), currently scheduled for launch Dec. 3, 1998, from the Space Shuttle Columbia. AXAF is the third of NASA's Great Observatories, after the Hubble Space Telescope and the Compton Gamma Ray Observatory. Once in orbit around Earth, it will explore hot, turbulent regions in the universe where X-rays are produced. Dr. Alan Bunner, director of NASA's Structure and Evolution of the universe science program, will announce April 18 at the National Science Teacher's Association meeting in Las Vegas, NV, the start of a contest, open to people worldwide, to find a new name for the observatory. Entries should contain the name of a person (not living), place, or thing from history, mythology, or fiction. Contestants should describe in a few sentences why this choice would be a good name for AXAF. The name must not have been used before on space missions by NASA or other organizations or countries. The grand prize will be a trip to NASA's Kennedy Space Center in Cape Canaveral, FL, to see the launch of the satellite aboard the Space Shuttle. Ten runner-up prizes will be awarded and all entrants will receive an AXAF poster. The grand prize is sponsored by TRW Inc., AXAF's prime contractor. The AXAF Science Center in Cambridge, MA, will run the contest for NASA. NASA will announce the final selection of the winning name later this year. Entries also can be mailed to: AXAF Contest, AXAF Science Center, Office of Education and Public Outreach, 60 Garden Street, MS 83, Cambridge, MA 02138. Mailed entries must be postmarked no later than June 30, 1998. All entries must state a name for the mission, along with the reason the name would make a good choice. The observatory, now in the final stages of assembly and testing at TRW's facility in Redondo Beach, CA, is more than 45 feet long and weighs 10,500 pounds. AXAF is the largest and most powerful X-ray observatory ever constructed, and its images will be

  13. Air Force Weapons Laboratory Computational Requirements for 1976 Through 1980

    DTIC Science & Technology

    1976-01-01

    Air Force Weapons Laboratory , Attn: DYS, Kirtland AFB, NM 87117...final report was prepared by the Air Force Weapons Laboratory , Kirtland Air Force Base, New Mexico under Job Order 06CB. Dr. Clifford E. Rhoades, Jr... Force Base, New Mexico 87117 62601F, 06CB II. CONTROLLING OFFICE NAME AND ADDRESS Ai"- Force Weapons Laboratory / Jan 1076 Kirtland Air Force Base,

  14. X-31 Loaded in C-5 Cargo Bay

    NASA Technical Reports Server (NTRS)

    1995-01-01

    The X-31 Enhanced Fighter Maneuverability Technology Demonstrator Aircraft, based at the NASA Dryden Flight Research Center, Edwards Air Force Base, California, is secured inside the fuselage of an Air Force Reserve C-5 transport. The C-5 was used to ferry the X-31 from Europe back to Edwards, after being flown in the Paris Air Show in June 1995. The X-31's right wing, removed so the aircraft could fit inside the C-5, is in the shipping container in the foreground. At the air show, the X-31 demonstrated the value of using thrust vectoring (directing engine exhaust flow) coupled with advanced flight control systems to provide controlled flight at very high angles of attack. The X-31 Enhanced Fighter Maneuverability (EFM) demonstrator flew at the Ames- Dryden Flight Research Facility, Edwards, California (redesignated the Dryden Flight Research Center in 1994) from February 1992 until 1995 and before that at the Air Force's Plant 42 in Palmdale, California. The goal of the project was to provide design information for the next generation of highly maneuverable fighter aircraft. This program demonstrated the value of using thrust vectoring (directing engine exhaust flow) coupled with an advanced flight control system to provide controlled flight to very high angles of attack. The result was a significant advantage over most conventional fighters in close-in combat situations. The X-31 flight program focused on agile flight within the post-stall regime, producing technical data to give aircraft designers a better understanding of aerodynamics, effectiveness of flight controls and thrust vectoring, and airflow phenomena at high angles of attack. Stall is a condition of an airplane or an airfoil in which lift decreases and drag increases due to the separation of airflow. Thrust vectoring compensates for the loss of control through normal aerodynamic surfaces that occurs during a stall. Post-stall refers to flying beyond the normal stall angle of attack, which in the X-31

  15. Securing the High Ground: Dominant Combat Air Force for America. 2008 Combat Air Force Strategic Plan

    DTIC Science & Technology

    2008-07-28

    continue to be beyond our technical ability to realize aggresively pursue advanced technical solutions to stay at the leading edge of technological...inherent to each caf Way and to seek continual improvement through exploration of innovative concepts, advanced capabilities, game -changing...available online at the air force portal: https://wwwd.my.af.mil/afknprod/strat_plan COMBAT AIR FORCE STRATEGIC PLAN Points of Contact securing the high

  16. NASA Science Review of Next Planet-Hunting Mission Launch

    NASA Image and Video Library

    2018-04-15

    NASA and science investigators from MIT participate in a science briefing for the agency's Transiting Exoplanet Survey Satellite (TESS) in the Press Site auditorium at Kennedy Space Center in Florida. Claire Saravia, NASA Communications, moderated the briefing. TESS is the next step in the search for planets outside of our solar system. The mission will find exoplanets that periodically block part of the light from their host stars, events called transits. The satellite will survey the nearest and brightest stars for two years to search for transiting exoplanets. TESS will launch on a SpaceX Falcon 9 rocket from Space Launch Complex 40 at Cape Canaveral Air Force Station no earlier than 6:32 p.m. EDT on Monday, April 16.

  17. NASA Science Review of Next Planet-Hunting Mission Launch

    NASA Image and Video Library

    2018-04-15

    NASA and science investigators from MIT participate in a science briefing for the agency's Transiting Exoplanet Survey Satellite (TESS) in the Press Site auditorium at Kennedy Space Center in Florida. Paul Hertz, Astrophysics Division director, NASA Headquarters, answered questions during the briefing. TESS is the next step in the search for planets outside of our solar system. The mission will find exoplanets that periodically block part of the light from their host stars, events called transits. The satellite will survey the nearest and brightest stars for two years to search for transiting exoplanets. TESS will launch on a SpaceX Falcon 9 rocket from Space Launch Complex 40 at Cape Canaveral Air Force Station no earlier than 6:32 p.m. EDT on Monday, April 16.

  18. NASA Science Review of Next Planet-Hunting Mission Launch

    NASA Image and Video Library

    2018-04-15

    NASA and science investigators from MIT participate in a science briefing for the agency's Transiting Exoplanet Survey Satellite (TESS) in the Press Site auditorium at Kennedy Space Center in Florida. Felicia Chou, NASA Communications, asks questions from online participants during the briefing. TESS is the next step in the search for planets outside of our solar system. The mission will find exoplanets that periodically block part of the light from their host stars, events called transits. The satellite will survey the nearest and brightest stars for two years to search for transiting exoplanets. TESS will launch on a SpaceX Falcon 9 rocket from Space Launch Complex 40 at Cape Canaveral Air Force Station no earlier than 6:32 p.m. EDT on Monday, April 16.

  19. UAS Related Activities at NASA's Dryden Flight Research Center

    NASA Technical Reports Server (NTRS)

    Bauer, Jeffrey E.

    2009-01-01

    NASA s Dryden Flight Research Center is completing its refurbishment and initial flights of one the pre-production Global Hawk aircraft it received from the U.S. Air Force. NASA Dryden has an agreement with the Global Hawk s manufacturer, Northrop Grumman, to partner in the refurbishment and flight operations of the vehicles. The National Oceanic and Atmospheric Administration (NOAA) has also partnered on the project and is assisting NASA with project management and pilot responsibilities for the aircraft. NASA and NOAA will be using the Global Hawks to conduct earth science research. The earth science community is increasing utilizing UAS of all sizes and capabilities to collect important data on a variety of issues including important global climate change issues. To pursue the data collection needs of the science community there is a growing demand for international collaboration with respect to operating UAS in global airspace. Operations of NASA s Ikhana aircraft continued this past year. The Ikhana is a modified Predator B UAS. A UAS dedicated to research at NASA Dryden is the X-48B blended wing body research aircraft. Flight tests with the 500- pound, remotely piloted test vehicle are now in a block 4 phase involving parameter identification and maneuvers to research the limits of the engine in stall situations. NASA s participation in the blended wing body research effort is focused on fundamental, advanced flight dynamics and structural design concepts within the Subsonic Fixed Wing project, part of the Fundamental Aeronautics program managed through NASA s Aeronautics Research Mission Directorate. Potential benefits of the aircraft include increased volume for carrying capacity, efficient aerodynamics for reduced fuel burn and possibly significant reductions in noise due to propulsion integration options. NASA Dryden continues to support the UAS industry by facilitating access to three specially designated test areas on Edwards Air Force Base for the

  20. Cognitive Evaluation of Israeli Air Force Pilot Cadets.

    PubMed

    Gordon, Shirley; Goren, Chen; Carmon, Erez; Shelef, Leah

    2017-04-01

    In aviation psychology, there is a constant need for the cognitive evaluation of pilots as part of operational fitness and safety criteria. A cross-sectional study with comparison between the performance of Israeli Air Force pilot cadets (N = 318) and U.S. Air Force pilot training candidates (N = 512) as assessed by a cognitive battery was undertaken. The data of the comparison group was collected from Callister, King, and Retzlaff, as published in 1996. In general, the means in the three components composing the battery-speed, accuracy, and throughput variables-indicated that the Israeli Air Force pilot cadets' scores were higher than those of the U.S. Air Force pilot candidates' scores in 50 of 53 variables. Nonsignificant differences were found in Accuracy of shifting attention-arrow color (SATAC), pathfinder-combined (PFC), and pathfinder-letter (PFL). The difference in performance between the two groups may be due to differences in population characteristics. However, these results need to be considered cautiously, as the groups were sampled at a sizeable time gap (1996 for the U.S. Air Force vs. 2013 for the Israeli Air Force), with each time period characterized by different cultural and technological influences.Gordon S, Goren C, Carmon E, Shelef L. Cognitive evaluation of Israeli Air Force pilot cadets. Aerosp Med Hum Perform. 2017; 88(4):392-398.

  1. Chief of Staff of the Air Force

    Science.gov Websites

    Speeches Archive Former AF Top 3 Viewpoints and Speeches Air Force Warrior Games 2017 Events 2018 Air Force Strategic Documents Desert Storm 25th Anniversary Observances DoD Warrior Games Portraits in Courage

  2. Chief Master Sergeant of the Air Force

    Science.gov Websites

    Speeches Archive Former AF Top 3 Viewpoints and Speeches Air Force Warrior Games 2017 Events 2018 Air Force Strategic Documents Desert Storm 25th Anniversary Observances DoD Warrior Games Portraits in Courage

  3. 14 CFR 389.24 - Foreign air carriers.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 4 2011-01-01 2011-01-01 false Foreign air carriers. 389.24 Section 389.24 Aeronautics and Space OFFICE OF THE SECRETARY, DEPARTMENT OF TRANSPORTATION (AVIATION PROCEEDINGS) ORGANIZATION FEES AND CHARGES FOR SPECIAL SERVICES Filing and Processing License Fees § 389.24 Foreign air...

  4. 14 CFR 389.24 - Foreign air carriers.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 4 2010-01-01 2010-01-01 false Foreign air carriers. 389.24 Section 389.24 Aeronautics and Space OFFICE OF THE SECRETARY, DEPARTMENT OF TRANSPORTATION (AVIATION PROCEEDINGS) ORGANIZATION FEES AND CHARGES FOR SPECIAL SERVICES Filing and Processing License Fees § 389.24 Foreign air...

  5. Air Force Integrated Personnel and Pay System (AFIPPS)

    DTIC Science & Technology

    2016-03-01

    2016 Major Automated Information System Annual Report Air Force Integrated Personnel and Pay System (AFIPPS) Defense Acquisition Management...DSN Fax: 665-1207 Date Assigned: February 1, 2016 Program Information Program Name Air Force Integrated Personnel and Pay System (AFIPPS) DoD...therefore, no Original Estimate has been established. AFIPPS 2016 MAR UNCLASSIFIED 4 Program Description Air Force Integrated Personnel and Pay

  6. SpaceX TESS Liftoff

    NASA Image and Video Library

    2018-04-18

    A SpaceX Falcon 9 rocket lifts off from Space Launch Complex 40 at Cape Canaveral Air Force Station in Florida, carrying NASA's Transiting Exoplanet Survey Satellite (TESS). Liftoff was at 6:51 p.m. EDT. TESS will search for planets outside of our solar system. The mission will find exoplanets that periodically block part of the light from their host stars, events called transits. The satellite will survey the nearest and brightest stars for two years to search for transiting exoplanets.

  7. Aeronautics in NACA and NASA

    NASA Technical Reports Server (NTRS)

    1991-01-01

    Initiated in 1915, the National Advisory Committee for Aeronautics/National Aeronautics and Space Administration (NACA/NASA) aeronautical programs have been the keystone of a sustained U.S. Government, industry, and university research effort which has been a primary factor in the development of our remarkable air transportation systems, the country's largest positive trade balance component, and the world's finest military Air Force. This overview summarizes the flow of events, and the major trends, that have led from the NACA origins to the present NASA Aeronautics program, and indicates some important directions for the years ahead.

  8. SpaceX CRS-14 Prelaunch News Conference

    NASA Image and Video Library

    2018-04-01

    In the Kennedy Space Center’s Press Site auditorium, NASA and industry leaders speak to members of the media during a prelaunch news conference for the SpaceX CRS-14 commercial resupply services mission to the International Space Station. Jessica Jensen, director, Dragon Mission Management, SpaceX, participates in the news conference. A Dragon spacecraft is scheduled to be launched from Space Launch Complex 40 at Cape Canaveral Air Force Station at 4:30 p.m. EST, on April 2, 2018. The SpaceX Falcon 9 rocket will lift off on the company's 14th Commercial Resupply Services mission to the space station.

  9. Calibration of NASA Turbulent Air Motion Measurement System

    NASA Technical Reports Server (NTRS)

    Barrick, John D. W.; Ritter, John A.; Watson, Catherine E.; Wynkoop, Mark W.; Quinn, John K.; Norfolk, Daniel R.

    1996-01-01

    A turbulent air motion measurement system (TAMMS) was integrated onboard the Lockheed 188 Electra airplane (designated NASA 429) based at the Wallops Flight Facility in support of the NASA role in global tropospheric research. The system provides air motion and turbulence measurements from an airborne platform which is capable of sampling tropospheric and planetary boundary-layer conditions. TAMMS consists of a gust probe with free-rotating vanes mounted on a 3.7-m epoxy-graphite composite nose boom, a high-resolution inertial navigation system (INS), and data acquisition system. A variation of the tower flyby method augmented with radar tracking was implemented for the calibration of static pressure position error and air temperature probe. Additional flight calibration maneuvers were performed remote from the tower in homogeneous atmospheric conditions. System hardware and instrumentation are described and the calibration procedures discussed. Calibration and flight results are presented to illustrate the overall ability of the system to determine the three-component ambient wind fields during straight and level flight conditions.

  10. The NASA Lightning Nitrogen Oxides Model (LNOM): Application to Air Quality Modeling

    NASA Technical Reports Server (NTRS)

    Koshak, William; Peterson, Harold; Khan, Maudood; Biazar, Arastoo; Wang, Lihua

    2011-01-01

    Recent improvements to the NASA Marshall Space Flight Center Lightning Nitrogen Oxides Model (LNOM) and its application to the Community Multiscale Air Quality (CMAQ) modeling system are discussed. The LNOM analyzes Lightning Mapping Array (LMA) and National Lightning Detection Network(TradeMark)(NLDN) data to estimate the raw (i.e., unmixed and otherwise environmentally unmodified) vertical profile of lightning NO(x) (= NO + NO2). The latest LNOM estimates of lightning channel length distributions, lightning 1-m segment altitude distributions, and the vertical profile of lightning NO(x) are presented. The primary improvement to the LNOM is the inclusion of non-return stroke lightning NOx production due to: (1) hot core stepped and dart leaders, (2) stepped leader corona sheath, K-changes, continuing currents, and M-components. The impact of including LNOM-estimates of lightning NO(x) for an August 2006 run of CMAQ is discussed.

  11. JPL-20180522-GRACFOf-0001-NASAs GRACE FO Satellite Launches Aboard a SpaceX Falcon 9 Rocket

    NASA Image and Video Library

    2018-05-22

    3-2-1 liftoff of Falcon 9 with GRACE-FO! NASA's Gravity Recovery and Climate Experiment Follow-on, or GRACE-FO, launched from Vandenberg Air Force Base on California's Central Coast on May 22, 2018. The twin orbiters shared a ride to space with five Iridium NEXT communications satellites. GRACE-FO will continue a study begun by the original GRACE mission, which proved that water movement can be tracked with high precision by its effect on Earth's gravitational field. GRACE-FO will continue the record of regional variations in gravity, telling us about changes in glaciers, ground water, sea levels and the health of our planet as a whole. For more, visit https://gracefo.jpl.nasa.gov .

  12. Rise of the Functionals?: Mobility Air Force Developmental Teams and their Impact on Officer Education and Advancement

    DTIC Science & Technology

    2014-06-01

    Specialists (43X/44X/45X) Chaplain (52R) Civil Engineer (32E) Combat Air Force Contracting (64P) Cyber Operations (17D) Dental (47X) Finance (65 F...assume the principal has a perfect decision making calculus . The MAF DT may actually have asymmetric information, and given the opportunity, they could

  13. Air Force Air Refueling: The KC-X Aircraft Acquisition Program

    DTIC Science & Technology

    2008-08-04

    7 Boom vs . Probe and Drogue Air Refueling . . . . . . . . . . . . . . . . . . . . . . 7 Capacity vs ...consideration must be given to a few key attributes. For example, a tanker aircraft’s method of dispensing fuel – flying boom vs . probe and drogue – is a key...flight, which can add considerable flexibility to certain air operations. Boom vs . Probe and Drogue Air Refueling.32 Aircraft can be equipped to be

  14. Pacific Air Forces > Home

    Science.gov Websites

    headquarters staff at Joint Base Pearl Harbor-Hickam, Hawaii, May 16, 2016. U.S. Air Force Maj. Gen. Russell L Tarin Punsri (center left), and attendees pose for a photo in the Courtyard of Heroes at Joint Base commander's call at Misawa Air Base, Japan, May 11, 2018. The general highlighted the strategic importance of

  15. 24 CFR 1003.509 - Force account construction.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 24 Housing and Urban Development 4 2010-04-01 2010-04-01 false Force account construction. 1003... Administration § 1003.509 Force account construction. (a) The use of tribal work forces for construction or... Area ONAP before the start of project implementation. In reviewing requests for an approval of force...

  16. Using PHM to measure equipment usable life on the Air Force's next generation reusable space booster

    NASA Astrophysics Data System (ADS)

    Blasdel, A.

    The U.S. Air Force procures many launch vehicles and launch vehicle services to place their satellites at their desired location in space. The equipment on-board these satellite and launch vehicle often suffer from premature failures that result in the total loss of the satellite or a shortened mission life sometimes requiring the purchase of a replacement satellite and launch vehicle. The Air Force uses its EELV to launch its high priority satellites. Due to a rise in the cost of purchasing a launch using the Air Force's EELV from 72M in 1997 to as high as 475M per launch today, the Air Force is working to replace the EELV with a reusable space booster (RSB). The RSB will be similar in design and operations to the recently cancelled NASA reusable space booster known as the Space Shuttle. If the Air Force uses the same process that procures the EELV and other launch vehicles and satellites, the RSB will also suffer from premature equipment failures thus putting the payloads at a similar high risk of mission failure. The RSB is expected to lower each launch cost by 50% compared to the EELV. The development of the RSB offers the Air Force an opportunity to use a new reliability paradigm that includes a prognostic and health management program and a condition-based maintenance program. These both require using intelligent, decision making self-prognostic equipment The prognostic and health management program and its condition-based maintenance program allows increases in RSB equipment usable life, lower logistics and maintenance costs, while increasing safety and mission assurance. The PHM removes many decisions from personnel that, in the past resulted in catastrophic failures and loss of life. Adding intelligent, decision-making self-prognostic equipment to the RSB will further decrease launch costs while decreasing risk and increasing safety and mission assurance.

  17. The NASA X-Ray Mission Concepts Study

    NASA Technical Reports Server (NTRS)

    Petre, Robert; Ptak, A.; Bookbinder, J.; Garcia, M.; Smith, R.; Bautz, M.; Bregman, J.; Burrows, D.; Cash, W.; Jones-Forman, C.; hide

    2012-01-01

    The 2010 Astrophysics Decadal Survey recommended a significant technology development program towards realizing the scientific goals of the International X-ray Observatory (IXO). NASA has undertaken an X-ray mission concepts study to determine alternative approaches to accomplishing IXO's high ranking scientific objectives over the next decade given the budget realities, which make a flagship mission challenging to implement. The goal of the study is to determine the degree to which missions in various cost ranges from $300M to $2B could fulfill these objectives. The study process involved several steps. NASA released a Request for Information in October 2011, seeking mission concepts and enabling technology ideas from the community. The responses included a total of 14 mission concepts and 13 enabling technologies. NASA also solicited membership for and selected a Community Science Team (CST) to guide the process. A workshop was held in December 2011 in which the mission concepts and technology were presented and discussed. Based on the RFI responses and the workshop, the CST then chose a small group of notional mission concepts, representing a range of cost points, for further study. These notional missions concepts were developed through mission design laboratory activities in early 2012. The results of all these activities were captured in the final X-ray mission concepts study report, submitted to NASA in July 2012. In this presentation, we summarize the outcome of the study. We discuss background, methodology, the notional missions, and the conclusions of the study report.

  18. 24 CFR 3280.505 - Air infiltration.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 24 Housing and Urban Development 5 2014-04-01 2014-04-01 false Air infiltration. 3280.505 Section... DEVELOPMENT MANUFACTURED HOME CONSTRUCTION AND SAFETY STANDARDS Thermal Protection § 3280.505 Air infiltration. (a) Envelope air infiltration. The opaque envelope shall be designed and constructed to limit air...

  19. 24 CFR 3280.505 - Air infiltration.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 24 Housing and Urban Development 5 2012-04-01 2012-04-01 false Air infiltration. 3280.505 Section... DEVELOPMENT MANUFACTURED HOME CONSTRUCTION AND SAFETY STANDARDS Thermal Protection § 3280.505 Air infiltration. (a) Envelope air infiltration. The opaque envelope shall be designed and constructed to limit air...

  20. 24 CFR 3280.505 - Air infiltration.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 24 Housing and Urban Development 5 2013-04-01 2013-04-01 false Air infiltration. 3280.505 Section... DEVELOPMENT MANUFACTURED HOME CONSTRUCTION AND SAFETY STANDARDS Thermal Protection § 3280.505 Air infiltration. (a) Envelope air infiltration. The opaque envelope shall be designed and constructed to limit air...

  1. 24 CFR 3280.505 - Air infiltration.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 24 Housing and Urban Development 5 2011-04-01 2011-04-01 false Air infiltration. 3280.505 Section... DEVELOPMENT MANUFACTURED HOME CONSTRUCTION AND SAFETY STANDARDS Thermal Protection § 3280.505 Air infiltration. (a) Envelope air infiltration. The opaque envelope shall be designed and constructed to limit air...

  2. 24 CFR 3280.505 - Air infiltration.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 24 Housing and Urban Development 5 2010-04-01 2010-04-01 false Air infiltration. 3280.505 Section... DEVELOPMENT MANUFACTURED HOME CONSTRUCTION AND SAFETY STANDARDS Thermal Protection § 3280.505 Air infiltration. (a) Envelope air infiltration. The opaque envelope shall be designed and constructed to limit air...

  3. Summary of NASA Support of the F-111 Development Program. Part 1; December 1962 - December 1965

    NASA Technical Reports Server (NTRS)

    1966-01-01

    The F-111 is a biservice, multimission, tactical aircraft being developed for the Air Force and Navy by General Dynamics and Grumman. The general arrangement of the F-111 is shown in figure 1. This aircraft, through the use of the "variable sweep wing" concept, offers the possibility of combining a wide range of mission capabilities into a single aircraft. The F-111 is a direct outgrowth of the Langley Research Center's variable sweep research which began in 1947. The early research culminated in the X-5 variable sweep research airplane which demonstrated the advantage and feasibility of in-flight sweep variation The X-5 utilized the translating wing concept to offset the longitudinal stability variation with sweep changes. Later Langley research beginning in 1958 resulted in the "outboard pivot" concept which eliminated the need for wing translation and led .to the TFX (F-111) concept. A chronology of the NACA/NASA variable sweep research effort and direct suport of the TFX up to the awarding of the contract to General Dynamics/Grumman on November 24, 1962, is presented in refer'ence 1. Since the awarding of the contract, the Langley, Ames, Lewis, and Flight Research Centers have been actively supporting the F-111 development program. Because of the strong NASA interest in this aircraft and the large magnitude of NASA support involved, it was felt desirable to document this support. The purpose of this paper therefore is to present a brief summary of the NASA support, in chronological order, through December 1965, beginning with the awarding of the contract in November 1962.

  4. Recent Investments by NASA's National Force Measurement Technology Capability

    NASA Technical Reports Server (NTRS)

    Commo, Sean A.; Ponder, Jonathan D.

    2016-01-01

    The National Force Measurement Technology Capability (NFMTC) is a nationwide partnership established in 2008 and sponsored by NASA's Aeronautics Evaluation and Test Capabilities (AETC) project to maintain and further develop force measurement capabilities. The NFMTC focuses on force measurement in wind tunnels and provides operational support in addition to conducting balance research. Based on force measurement capability challenges, strategic investments into research tasks are designed to meet the experimental requirements of current and future aerospace research programs and projects. This paper highlights recent and force measurement investments into several areas including recapitalizing the strain-gage balance inventory, developing balance best practices, improving calibration and facility capabilities, and researching potential technologies to advance balance capabilities.

  5. U.S. Air Force Doctrine: A Perspective

    DTIC Science & Technology

    1990-01-01

    of Air Power." This document provided the independence long desired by proponents of a separate air force. It recognized the role of air superiority...guidance. First, AFM 1-1 fails to adequately address the corduct of war across the spectrum of conflict. The document tails to address the Vietnam war...have made it possible--in deed necessary-to update the doctrine;" "Air Force puts 3-2 in a class by itself and has given it superstar status billing

  6. NASA and X PRIZE Announce Winners of Lunar Lander Challenge

    NASA Image and Video Library

    2009-11-05

    NASA and the X PRIZE Foundation announced the winners of the Northrop Grumman Lunar Lander Challenge at an awards ceremony at the Rayburn House Office Building, Thursday, Nov. 5, 2009 in Washington, DC. From left to right, George Nield, Associate Administrator of Commercial Space Transportation, FAA; Charles Bolden, NASA Administrator; Doug Comstock, Director, Innovative Partnerships Program, NASA; David Masten, CEO, Masten Space Systems; Phil Eaton, VP, Operations, Armadillo Aerospace; U.S. Rep. Ralph Hall (R-TX); Peter Diamandis, Chairman and CEO, X PRIZE Foundation and Mitch Waldman, VP, Advanced Programs & Technology, Northrop Grumman. Photo Credit: (NASA/Carla Cioffi)

  7. SpaceX CRS-11 Prelaunch News Conference

    NASA Image and Video Library

    2017-05-31

    In the Kennedy Space Center’s Press Site auditorium, agency and industry leaders speak to members of the media during a prelaunch news conference for the SpaceX CRS-11 commercial resupply services mission to the International Space Station. From left are: Mike Curie of NASA Communications, Kirk Shireman, NASA's International Space Station Program manager, Hans Koenigsmann, vice president of Flight Reliability for SpaceX, Camille Alleyne, associate program scientist for the International Space Station at NASA’s Johnson Space Center, and Mike McAleenan, launch weather officer for the U.S. Air Force 45th Weather Squadron. A Dragon spacecraft is scheduled to be launched from Kennedy’s Launch Complex 39A on June 1 atop a SpaceX Falcon 9 rocket on the company's 11th Commercial Resupply Services mission to the space station.

  8. Air Force KC-X Tanker Aircraft Program: Background and Issues for Congress

    DTIC Science & Technology

    2009-10-05

    General ..................................................................................................................... 12 Best Value vs . Lowest...Druyan was a single “bad apple ” and that her actions did not negate the merits of leasing Boeing 767s for use as tankers. In February 2005, however...Force KC-X Tanker Aircraft Program: Background and Issues for Congress Congressional Research Service 17 Best Value vs . Lowest Cost The question of

  9. 77 FR 55465 - US Air Force Exclusive Patent License

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-10

    ...: Air Force Research Laboratory Information Directorate, Rome, New York, Department of the Air Force.... Written objections should be sent to: Air Force Research Laboratory, Office of the Staff Judge Advocate, AFRL/RIJ, 26 Electronic Parkway, Rome, New York 13441-4514. Telephone: (315) 330-2087; Facsimile (315...

  10. A long telephoto lens captured Space Shuttle Endeavour landing at Edwards Air Force Base, California, on May 1, 2001

    NASA Image and Video Library

    2001-05-01

    A long telephoto lens captured Space Shuttle Endeavour landing at Edwards Air Force Base, California, on May 1, 2001. NASA's Dryden Flight Research Center at Edwards would subsequently service the shuttle and mount it on a 747 for the ferry flight to the Kennedy Space Center in Florida.

  11. Combat Squadrons of the Air Force, World War II,

    DTIC Science & Technology

    1982-01-01

    1952. Inactivated on 1 Jul 1957. Redes- of a paddle wheel river boat, Air Force ignated 7o2d Troop Carrier Squadron blue, the windows lighted Air Force ...782d Bombard- hitched to a red wagon with wheels red, ment Squadron (Heavy) on 19 May hub yellow, tires and axles black, the 1943. Activated on 1 Aug...AD-A128 026 COMBAT SQUADRONS OF TOE AIR FORCE WORLD WAR IU) 1OFFICEOF AIR FORCE HISTORY WASHINGTON DC M MAURER UNCLASSIFIED F/G 15/7 NL

  12. Department of the Air Force Justification of Estimates for Fiscal Year 1986 Submitted to Congress February 1985. Aircraft Procurement, Air Force

    DTIC Science & Technology

    1985-02-01

    air-to-grurod cruise missile planned for use c-i the bomber force. IAs one of the zany i,,eapons iu the manned tmorer’s arsenal, t.L AO’ stresses the...29.4 78.4 SPX Cuminication Replacent 8.9 - - tIL OIR PRO•XUJfIN C&X4 ES 1413.3 1877.4 2683.7 3382.3 i ," / Justification for the various line items is...COntROL SYSTEMS DJE TO THE STRESS CORROSION CRACKING TiAT DEVELOPS. THI$ MODIFICATION REPLACES ThE MAGNESIUM COMPONENTS IN THE FLIGHT CONTROL SYSTEM WITH

  13. NASA and Canadian Snowbirds Aircrafts

    NASA Image and Video Library

    2018-05-09

    Workers watch as the Canadian Forces Snowbirds fly in formation over the Shuttle Landing Facility at NASA's Kennedy Space Center in Florida, during a practice flight on May 9, 2018, between their scheduled U.S. air shows.

  14. SpaceX TESS Liftoff

    NASA Image and Video Library

    2018-04-18

    A SpaceX Falcon 9 rocket soars upward after lifting off from Space Launch Complex 40 at Cape Canaveral Air Force Station in Florida, carrying NASA's Transiting Exoplanet Survey Satellite (TESS). Liftoff was at 6:51 p.m. EDT. TESS will search for planets outside of our solar system. The mission will find exoplanets that periodically block part of the light from their host stars, events called transits. The satellite will survey the nearest and brightest stars for two years to search for transiting exoplanets.

  15. Air Force Strategy Study 2020-2030

    DTIC Science & Technology

    2011-01-01

    shocks (also known as “black swans”), having 2 │ introduction the potential to radically alter the utility of the capability, as a way of highlighting... utilized by its expeditionary air units.”5 The Air Force must present strategic and operational options along with forces capable of operating and...Emer- gency Management Agency (FEMA) regional staffs, in part representing the service and USNORTHCOM. The imagery analysts’ utility is largely due

  16. Advanced Robotics for Air Force Operations

    DTIC Science & Technology

    1989-06-01

    evaluated current and potential uses of advanced robotics to support Air Force systems, (2) recommended the most effective aplications of advanced robotics...manpower. Such a robot system would The boom would not only transfer fuel, be considerably more mobile and effi- 10 ADVANCED ROBOTICS FOR AIR FORCE...increased manpower resources in war tive clothing reduce vision, hearing, and make this an attractive potential appli- mobility , which further reduce

  17. Air Force Physician and Dentist Multiyear Special Pay: Current Status and Potential Reforms

    DTIC Science & Technology

    2009-01-01

    A general practice physi- cian in the pre -1993 system would have been a 932X, a neurosurgeon would have been a 941XF. 22 Air Force Physician and...years of residency training. Those in surgical specialties (including obstet- rics and orthopedics) sometimes completed longer residencies and were...11.5 years), but, as noted, surgical specialties carry residencies of seven years or longer, and surgeons may have also taken time from their Air

  18. Aft-End Flow of a Large-Scale Lifting Body During Free-Flight Tests

    NASA Technical Reports Server (NTRS)

    Banks, Daniel W.; Fisher, David F.

    2006-01-01

    Free-flight tests of a large-scale lifting-body configuration, the X-38 aircraft, were conducted using tufts to characterize the flow on the aft end, specifically in the inboard region of the vertical fins. Pressure data was collected on the fins and base. Flow direction and movement were correlated with surface pressure and flight condition. The X-38 was conceived to be a rescue vehicle for the International Space Station. The vehicle shape was derived from the U.S. Air Force X-24 lifting body. Free-flight tests of the X-38 configuration were conducted at the NASA Dryden Flight Research Center at Edwards Air Force Base, California from 1997 to 2001.

  19. (Environmental investigation of ground water contamination at Wright-Patterson Air Force Base, Ohio)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1992-03-01

    This report presents information related to the sampling of ground water at the Wright-Patterson Air Force Base. It is part of an investigation into possible ground water contamination. Information concerns well drilling/construction; x-ray diffraction and sampling; soil boring logs; and chain-of-custody records.

  20. The Air Force and the Cold War

    DTIC Science & Technology

    2005-09-01

    March 2001. 49An Air Force Association Special Report 49An Air Force As ociation Special Report CANAN , James. War in Space. Harper & Row, 1982...Press, 1989. GARDNER, Lloyd C. Spheres of Influence: The Great Powers Partition Europe, From Munich to Yalta. Ivan R. Dee Publisher, 1993. GARTHOFF

  1. X-45A Air Vehicle #1 during flight #13, with weapons bay door open

    NASA Image and Video Library

    2003-02-21

    The DARPA/U.S. Air Force X-45A Unmanned Combat Air Vehicle (UCAV) system demonstration program completed the first phase of demonstrations, known as Block I, on Feb. 28, 2003. The final Block I activities included two flights at Dryden, during which safe operation of the weapons bay door was verified at 35,000 feet and speeds of Mach 0.75, the maximum planned altitude and speed for the two X-45A demonstrator vehicles.

  2. Air Force Civil Engineer, Volume 15, Number 2, 2007

    DTIC Science & Technology

    2007-01-01

    painter wearing this gear in an atmosphere that measures 50 x TLV experiences the same level of exposure as an unprotected painter exposed to the TLV ...It’s a huge challenge, but if anyone was going to be able to do this, or had the experience , it was us. We have the most diversity; we go from...helps clear a path through a minefield near Bagram Airfield. (photo by SSgt Marcus McDonald) their last return date. During May 2006, the Air Force

  3. Forecasting Foreign Currency Exchange Rates for Air Force Budgeting

    DTIC Science & Technology

    2015-03-26

    FORECASTING FOREIGN CURRENCY EXCHANGE RATES FOR AIR FORCE BUDGETING THESIS MARCH 2015...States. AFIT-ENV-MS-15-M-178 FORECASTING FOREIGN CURRENCY EXCHANGE RATES FOR AIR FORCE BUDGETING THESIS Presented to the Faculty...FORECASTING FOREIGN CURRENCY EXCHANGE RATES FOR AIR FORCE BUDGETING Nicholas R. Gardner, BS Captain, USAF Committee Membership: Lt Col Jonathan

  4. 32 CFR 644.516 - Clearance of Air Force lands.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 32 National Defense 4 2010-07-01 2010-07-01 true Clearance of Air Force lands. 644.516 Section 644... Excess Land and Improvements § 644.516 Clearance of Air Force lands. The Chief of Engineers has no responsibility for inspecting or clearing excess Air Force land of explosives or chemical/biological contaminants...

  5. Obstacles to the Termination of Air Force Activities.

    DTIC Science & Technology

    1986-04-01

    sugsts how. it the Air Force leadership con- eludes that termination is necessary the Air Force can surmount the obstacles.’ The stud v was cMIduct ed...the Air Force leadership concludes that the termination of a major activity is a promising or necessary management option, the report suggests that it...complicated inter- nal political process; it takes time to work out. The top leadership should begin the process of corporate strategy building and priority

  6. NASA's Principal Center for Review of Clean Air Act Regulations

    NASA Technical Reports Server (NTRS)

    Clark-Ingram, Marceia

    2003-01-01

    Marshall Space Flight Center (MSFC) was selected as the Principal Center for review of Clean Air Act (CAA) regulations. The CAA Principal Center is tasked to: 1) Provide centralized support to NASA/HDQ Code JE for the management and leadership of NASA's CAA regulation review process; 2) Identify potential impact from proposed CAA regulations to NASA program hardware and supporting facilities. The Shuttle Environmental Assurance Initiative, one of the responsibilities of the NASA CAA Working Group (WG), is described in part of this viewgraph presentation.

  7. NASA STS-132 Air and Space Museum

    NASA Image and Video Library

    2010-07-26

    STS-132 astronaut Piers Sellers, at podium, acknowleges museum director Ret. Gen. John R. "Jack" Dailey, seated left, and NASA astrophycisist Dr. John Mather, center, during a presentation, Tuesday, July 27, 2010, at the Smithsonian National Air and Space Museum in Washington. Sellers returned a replica of the Nobel Prize that is in the museum's collection and was flown aboard STS-132 Atlantis. The prize was won by Mather and University of California, Berkeley researcher George Smoot in 2006 for their work using the Cosmic Background Explorer Satellite to understand the big-bang theory of the universe.Photo Credit: (NASA/Paul E. Alers)

  8. Key Metrics and Goals for NASA's Advanced Air Transportation Technologies Program

    NASA Technical Reports Server (NTRS)

    Kaplan, Bruce; Lee, David

    1998-01-01

    NASA's Advanced Air Transportation Technologies (AATT) program is developing a set of decision support tools to aid air traffic service providers, pilots, and airline operations centers in improving operations of the National Airspace System (NAS). NASA needs a set of unifying metrics to tie these efforts together, which it can use to track the progress of the AATT program and communicate program objectives and status within NASA and to stakeholders in the NAS. This report documents the results of our efforts and the four unifying metrics we recommend for the AATT program. They are: airport peak capacity, on-route sector capacity, block time and fuel, and free flight-enabling.

  9. NASA Science Review of Next Planet-Hunting Mission Launch

    NASA Image and Video Library

    2018-04-15

    NASA and science investigators from MIT participate in a science briefing for the agency's Transiting Exoplanet Survey Satellite (TESS) in the Press Site auditorium at Kennedy Space Center in Florida. Diana Dragomir, NASA Hubble Postdoctoral Fellow, Massachusetts Institute of Technology, answered questions during the briefing. TESS is the next step in the search for planets outside of our solar system. The mission will find exoplanets that periodically block part of the light from their host stars, events called transits. The satellite will survey the nearest and brightest stars for two years to search for transiting exoplanets. TESS will launch on a SpaceX Falcon 9 rocket from Space Launch Complex 40 at Cape Canaveral Air Force Station no earlier than 6:32 p.m. EDT on Monday, April 16.

  10. NASA Sees Typhoon Chan-Hom's Strongest Winds in Northern and Eastern Quadrants

    NASA Image and Video Library

    2015-07-09

    On July 9 at 02:05 UTC (July 8 at 10:05 p.m. EDT) the MODIS instrument aboard NASA's Terra satellite captured an image of Typhoon Chan-Hom east of Taiwan. The image clearly showed an eye with powerful bands of thunderstorms spiraling into the center of circulation. At 1500 UTC (11 a.m. EDT) on July 9, Typhoon Chan-Hom's maximum sustained winds were near 100 knots (115.1 mph/185.2 kph) and the storm continued to strengthen. Chan-Hom was centered near 24.2 North latitude and 127.6 East longitude, about 138 nautical miles (158.8 miles/255.6 km) southwest of Kadena Air Force Base, Iwo to, and has tracked westward at 13 knots (15 mph/24 kph). Read more: go.nasa.gov/1LYNdr0 NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  11. NASA Unveils First Images From Chandra X-Ray Observatory

    NASA Astrophysics Data System (ADS)

    1999-08-01

    Extraordinary first images from NASA's Chandra X-ray Observatory trace the aftermath of a gigantic stellar explosion in such stunning detail that scientists can see evidence of what may be a neutron star or black hole near the center. Another image shows a powerful X-ray jet blasting 200,000 light years into intergalactic space from a distant quasar. Released today, both images confirm that NASA's newest Great Observatory is in excellent health and its instruments and optics are performing up to expectations. Chandra, the world's largest and most sensitive X-ray telescope, is still in its orbital check-out and calibration phase. "When I saw the first image, I knew that the dream had been realized," said Dr. Martin Weisskopf, Chandra Project Scientist, NASA's Marshall Space Flight Center, Huntsville, AL. "This observatory is ready to take its place in the history of spectacular scientific achievements." "We were astounded by these images," said Harvey Tananbaum, Director of the Smithsonian Astrophysical Observatory's Chandra X- ray Center, Cambridge, MA. "We see the collision of the debris from the exploded star with the matter around it, we see shock waves rushing into interstellar space at millions of miles per hour, and, as a real bonus, we see for the first time a tantalizing bright point near the center of the remnant that could possibly be a collapsed star associated with the outburst." Chandra's PKS 0637-752 PKS 0637-752 After the telescope's sunshade door was opened last week, one of the first images taken was of the 320-year-old supernova remnant Cassiopeia A, which astronomers believe was produced by the explosion of a massive star. Material blasted into space from the explosion crashed into surrounding material at 10 million miles per hour. This collision caused violent shock waves, like massive sonic booms, creating a vast 50-million degree bubble of X-ray emitting gas. Heavy elements in the hot gas produce X-rays of specific energies. Chandra's ability

  12. Nanoscience and Technology at the Air Force Research Laboratory (AFRL)

    DTIC Science & Technology

    2005-05-01

    AIR FORCE RESEARCH LABORATORY ( AFRL ) Dr. Richard A. Vaia Dr. Daniel Miracle Dr. Thomas Cruse Air Force Research ...Technology At The Air Force Research Laboratory ( AFRL ) 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT...98) Prescribed by ANSI Std Z39-18 AFRL NST Overview 2 AIR FORCE RESEARCH LABORATORY VISION We defend

  13. Nanoscience and Technology at the Air Force Research Laboratory (AFRL)

    DTIC Science & Technology

    2005-02-01

    AIR FORCE RESEARCH LABORATORY ( AFRL ) Dr. Richard A. Vaia Dr. Daniel Miracle Dr. Thomas Cruse Air Force Research ...Technology At The Air Force Research Laboratory ( AFRL ) 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT...98) Prescribed by ANSI Std Z39-18 AFRL NST Overview 2 AIR FORCE RESEARCH LABORATORY VISION We defend

  14. In Situ Biological Treatment Test at Kelly Air Force Base. Volume 2. Field Test Results and Cost Model

    DTIC Science & Technology

    1987-07-01

    Groundwater." Developments in Industrial Microbiology, Volume 24, pp. 225-234. Society of Industrial Microbiology, Arlington, Virginia. 18. Product ...ESL-TR-85-52 cv) VOLUME II CN IN SITU BIOLOGICAL TREATMENT TEST AT KELLY AIR FORCE BASE, VOLUME !1: FIELD TEST RESULTS AND COST MODEL R.S. WETZEL...Kelly Air Force Base, Volume II: Field Test Results and Cost Model (UNCLASSIFIED) 12 PERSONAL AUTHOR(S) Roger S. Wetzel, Connie M. Durst, Donald H

  15. A modified Pegasus rocket ignites moments after release from the B-52B, beginning the acceleration of the X-43A over the Pacific Ocean on Nov. 16, 2004

    NASA Image and Video Library

    2004-11-16

    The third X-43A hypersonic research aircraft and its modified Pegasus booster rocket accelerate after launch from NASA's B-52B launch aircraft over the Pacific Ocean on November 16, 2004. The mission originated from the NASA Dryden Flight Research Center at Edwards Air Force Base, California. Minutes later the X-43A separated from the Pegasus booster and accelerated to its intended speed of Mach 10.

  16. NASA Social Briefing on Planet-Hunting Mission Launch

    NASA Image and Video Library

    2018-04-15

    NASA and industry leaders speak to NASA Social participants about the agency's Transiting Exoplanet Survey Satellite (TESS) in the Press Site auditorium at Kennedy Space Center in Florida. Speaking to the group, from left are Tom Barclay, TESS scientist, NASA’s Goddard Space Flight Center, and Jenn Burt, Torres Postdoctoral Fellow, Massachusetts Institute of Technology. TESS is the next step in the search for planets outside of our solar system. The mission will find exoplanets that periodically block part of the light from their host stars, events called transits. The satellite will survey the nearest and brightest stars for two years to search for transiting exoplanets. TESS will launch on a SpaceX Falcon 9 rocket from Space Launch Complex 40 at Cape Canaveral Air Force Station no earlier than 6:32 p.m. EDT on Monday, April 16.

  17. NASA Social Briefing on Planet-Hunting Mission Launch

    NASA Image and Video Library

    2018-04-15

    NASA and industry leaders speak to NASA Social participants about the agency's Transiting Exoplanet Survey Satellite (TESS) in the Press Site auditorium at Kennedy Space Center in Florida. Speaking to the group from left are Tom Barclay, TESS scientist, NASA’s Goddard Space Flight Center, and Jenn Burt, Torres Postdoctoral Fellow, Massachusetts Institute of Technology. TESS is the next step in the search for planets outside of our solar system. The mission will find exoplanets that periodically block part of the light from their host stars, events called transits. The satellite will survey the nearest and brightest stars for two years to search for transiting exoplanets. TESS will launch on a SpaceX Falcon 9 rocket from Space Launch Complex 40 at Cape Canaveral Air Force Station no earlier than 6:32 p.m. EDT on Monday, April 16.

  18. NASA Social Briefing on Planet-Hunting Mission Launch

    NASA Image and Video Library

    2018-04-15

    NASA and industry leaders speak to NASA Social participants about the agency's Transiting Exoplanet Survey Satellite (TESS) in the Press Site auditorium at Kennedy Space Center in Florida. Speaking to the group, from left are Natalia Guerrero, TESS researcher, Massachusetts Institute of Technology, and Robert Lockwood, TESS Spacecraft Program Manager, Orbital ATK. TESS is the next step in the search for planets outside of our solar system. The mission will find exoplanets that periodically block part of the light from their host stars, events called transits. The satellite will survey the nearest and brightest stars for two years to search for transiting exoplanets. TESS will launch on a SpaceX Falcon 9 rocket from Space Launch Complex 40 at Cape Canaveral Air Force Station no earlier than 6:32 p.m. EDT on Monday, April 16.

  19. Air-Breathing Rocket Engine Test

    NASA Technical Reports Server (NTRS)

    2000-01-01

    This photograph depicts an air-breathing rocket engine that completed an hour or 3,600 seconds of testing at the General Applied Sciences Laboratory in Ronkonkoma, New York. Referred to as ARGO by its design team, the engine is named after the mythological Greek ship that bore Jason and the Argonauts on their epic voyage of discovery. Air-breathing engines, known as rocket based, combined-cycle engines, get their initial take-off power from specially designed rockets, called air-augmented rockets, that boost performance about 15 percent over conventional rockets. When the vehicle's velocity reaches twice the speed of sound, the rockets are turned off and the engine relies totally on oxygen in the atmosphere to burn hydrogen fuel, as opposed to a rocket that must carry its own oxygen, thus reducing weight and flight costs. Once the vehicle has accelerated to about 10 times the speed of sound, the engine converts to a conventional rocket-powered system to propel the craft into orbit or sustain it to suborbital flight speed. NASA's Advanced SpaceTransportation Program at Marshall Space Flight Center, along with several industry partners and collegiate forces, is developing this technology to make space transportation affordable for everyone from business travelers to tourists. The goal is to reduce launch costs from today's price tag of $10,000 per pound to only hundreds of dollars per pound. NASA's series of hypersonic flight demonstrators currently include three air-breathing vehicles: the X-43A, X-43B and X-43C.

  20. Analysis of Organizational Architectures for the Air Force Tuition Assistance Program

    DTIC Science & Technology

    2003-03-01

    FORCE TUITION ASSISTANCE PROGRAM THESIS Krista Zimmerman LaPietra AFIT/GOR/ENS/03-15 DEPARTMENT OF THE AIR FORCE AIR UNIVERSITY AIR...ANALYSIS OF ORGANIZATIONAL ARCHITECTURES FOR THE AIR FORCE TUITION ASSISTANCE PROGRAM THESIS Presented to the Faculty Department...ANALYSIS OF ORGANIZATIONAL ARCHITECTURES FOR THE AIR FORCE TUITION ASSISTANCE PROGRAM Krista Zimmerman LaPietra, BS

  1. NASA TESS Prelaunch News Conference

    NASA Image and Video Library

    2018-04-15

    In Kennedy Space Center's Press Site auditorium, members of the media participate in a mission briefing on NASA's Transiting Exoplanet Survey Satellite (TESS). Jeff Volosin, TESS project manager, NASA’s Goddard Space Flight Center, answers questions during the briefing. TESS is the next step in the search for planets outside of our solar system. The mission will find exoplanets that periodically block part of the light from their host stars, events called transits. The satellite will survey the nearest and brightest stars for two years to search for transiting exoplanets. TESS will launch on a SpaceX Falcon 9 rocket from Space Launch Complex 40 at Cape Canaveral Air Force Station no earlier than 6:32 p.m. EDT on Monday, April 16.

  2. NASA TESS Prelaunch News Conference

    NASA Image and Video Library

    2018-04-15

    In Kennedy Space Center's Press Site auditorium, members of the media participate in a mission briefing on NASA's Transiting Exoplanet Survey Satellite (TESS). Mike McAleenan, weather officer, 45th Weather Squadron, gives a weather update and answers questions during the briefing. TESS is the next step in the search for planets outside of our solar system. The mission will find exoplanets that periodically block part of the light from their host stars, events called transits. The satellite will survey the nearest and brightest stars for two years to search for transiting exoplanets. TESS will launch on a SpaceX Falcon 9 rocket from Space Launch Complex 40 at Cape Canaveral Air Force Station no earlier than 6:32 p.m. EDT on Monday, April 16.

  3. NASA TESS Prelaunch News Conference

    NASA Image and Video Library

    2018-04-15

    In Kennedy Space Center's Press Site auditorium, members of the media participate in a mission briefing on NASA's Transiting Exoplanet Survey Satellite (TESS). Sandra Connelly, deputy associate administrator of programs, NASA’s Science Mission Directorate, answers questions during the briefing. TESS is the next step in the search for planets outside of our solar system. The mission will find exoplanets that periodically block part of the light from their host stars, events called transits. The satellite will survey the nearest and brightest stars for two years to search for transiting exoplanets. TESS will launch on a SpaceX Falcon 9 rocket from Space Launch Complex 40 at Cape Canaveral Air Force Station no earlier than 6:32 p.m. EDT on Monday, April 16.

  4. NASA TESS Prelaunch News Conference

    NASA Image and Video Library

    2018-04-15

    In Kennedy Space Center's Press Site auditorium, members of the media participate in a mission briefing on NASA's Transiting Exoplanet Survey Satellite (TESS). Omar Baez, launch director, NASA’s Launch Services Program, answers questions during the briefing. TESS is the next step in the search for planets outside of our solar system. The mission will find exoplanets that periodically block part of the light from their host stars, events called transits. The satellite will survey the nearest and brightest stars for two years to search for transiting exoplanets. TESS will launch on a SpaceX Falcon 9 rocket from Space Launch Complex 40 at Cape Canaveral Air Force Station no earlier than 6:32 p.m. EDT on Monday, April 16.

  5. NASA TESS Prelaunch News Conference

    NASA Image and Video Library

    2018-04-15

    In Kennedy Space Center's Press Site auditorium, members of the media participate in a mission briefing on NASA's Transiting Exoplanet Survey Satellite (TESS). Robert Lockwood, TESS spacecraft program manager, Orbital ATK, answers questions during the briefing. TESS is the next step in the search for planets outside of our solar system. The mission will find exoplanets that periodically block part of the light from their host stars, events called transits. The satellite will survey the nearest and brightest stars for two years to search for transiting exoplanets. TESS will launch on a SpaceX Falcon 9 rocket from Space Launch Complex 40 at Cape Canaveral Air Force Station no earlier than 6:32 p.m. EDT on Monday, April 16.

  6. Starfleet Deferred: Project Orion in the 1962 Air Force Space Program

    NASA Astrophysics Data System (ADS)

    Ziarnick, B.

    Project Orion, the Cold War American program (1957-1965) studying nuclear pulse propulsion for space applications, has long interested space enthusiasts for what it was and what it might have been, but it has long been believed that neither the United States government nor the US Air Force took the program very seriously. However, recently declassified US Air Force documents shed more light on the classified history of Project Orion. Far from being ignored by Air Force leadership, through the efforts of the Strategic Air Command, Air Force leaders like General Curtis LeMay were convinced that Project Orion should be funded as a major weapons system. The high water mark of Project Orion was the 1962 Air Force Space Program proposal by the Air Force Chief of Staff to devote almost twenty percent of the Air Force space budget from 1962-1967 to Orion development before the program was cancelled by the civilian Secretary of the Air Force under pressure from the Department of Defense. This paper details the history of Project Orion in the 1962 Air Force Space Program proposal, and concludes with a few lessons learned for use by modern interstellar advocates.

  7. Programmatic Environmental Assessment, 2007 General Plan for the Main Cantonment and the South Base Cantonment at Vandenberg Air Force Base, California

    DTIC Science & Technology

    2008-05-05

    one meter Diesel truck at 15 meters; noisy urban daytime 70 – 80 Shouting at one meter; vacuum cleaner at three meters Gas lawnmower at 30 meters 60...leaders during the Cold War. Since the National Aeronautics and Space Administration ( NASA ) was established in 1958, the civilian space program has...the Operation of Highly Technical or Scientific Facilities, specifically refers to the many active NASA and U.S. Air Force launch complexes that have

  8. X-15A-2 with full scale ablative coating (pink X-15) on NASA ramp

    NASA Technical Reports Server (NTRS)

    1967-01-01

    about 500 mph. Depending on the mission, the rocket engine provided thrust for the first 80 to 120 sec of flight. The remainder of the normal 10 to 11 min. flight was powerless and ended with a 200-mph glide landing. Generally, one of two types of X-15 flight profiles was used; a high-altitude flight plan that called for the pilot to maintain a steep rate of climb, or a speed profile that called for the pilot to push over and maintain a level altitude. The X-15 was flown over a period of nearly 10 years -- June 1959 to Oct. 1968 -- and set the world's unofficial speed and altitude records of 4,520 mph (Mach 6.7) and 354,200 ft in a program to investigate all aspects of piloted hypersonic flight. Information gained fromthe highly successful X-15 program contributed to the development of the Mercury, Gemini, and Apollo piloted spaceflight programs, and also the Space Shuttle program. The X-15s made a total of 199 flights, and were manufactured by North American Aviation. X-15-1, serial number 56-6670, is now located at the National Air and Space Museum, Washington DC. North American X-15A-2, serial number 56-6671, is at the United States Air Force Museum, Wright-Patterson AFB, Ohio. X-15-3, serial number 56-6672, crashed on 15 November 1967, resulting in the death of Maj. Michael J Adams.

  9. Promoting Sound Ethical Decisions in the Air Force: CGO Solutions to Air Force Moral and Ethical Lapses

    DTIC Science & Technology

    2014-07-01

    The second step is to create a Cross Check program—essentially franchising the Think Tank process in smaller groups across the Air Force as a forum...accessed 20 July 2014). 32  Cross Check Think Tank 14D proposes the implementation of “Cross Check” programs—essentially franchising the Think Tank...Tank Franchise , the meetings would be action-oriented, and networked together throughout the Air Force to provide lessons-learned, 33  resources

  10. Improving Energy Security for Air Force Installations

    NASA Astrophysics Data System (ADS)

    Schill, David

    Like civilian infrastructure, Air Force installations are dependent on electrical energy for daily operations. Energy shortages translate to decreased productivity, higher costs, and increased health risks. But for the United States military, energy shortages have the potential to become national security risks. Over ninety-five percent of the electrical energy used by the Air Force is supplied by the domestic grid, which is susceptible to shortages and disruptions. Many Air Force operations require a continuous source of energy, and while the Air Force has historically established redundant supplies of electrical energy, these back-ups are designed for short-term outages and may not provide sufficient supply for a longer, sustained power outage. Furthermore, it is the goal of the Department of Defense to produce or procure 25 percent of its facility energy from renewable sources by fiscal year 2025. In a government budget environment where decision makers are required to provide more capability with less money, it is becoming increasingly important for informed decisions regarding which energy supply options bear the most benefit for an installation. The analysis begins by exploring the field of energy supply options available to an Air Force installation. The supply options are assessed according to their ability to provide continuous and reliable energy, their applicability to unique requirements of Air Force installations, and their costs. Various methods of calculating energy usage by an installation are also addressed. The next step of this research develops a methodology and tool which assesses how an installation responds to various power outage scenarios. Lastly, various energy supply options are applied to the tool, and the results are reported in terms of cost and loss of installation capability. This approach will allow installation commanders and energy managers the ability to evaluate the cost and effectiveness of various energy investment options.

  11. A Discrete Event Simulation Model for Evaluating Air Force Reusable Military Launch Vehicle Prelaunch Operations

    DTIC Science & Technology

    2006-03-01

    by 2018 . The Air Force will require the HLV OS to be highly responsive, with a goal of launching a pre-integrated payload with a 24 to 48 hour...136 Vita Captain Adam T. Stiegelmeier graduated high school from Sunshine Bible

  12. Photovoltaic cell and array technology development for future unique NASA missions

    NASA Technical Reports Server (NTRS)

    Bailey, S.; Curtis, H.; Piszczor, M.; Surampudi, R.; Hamilton, T.; Rapp, D.; Stella, P.; Mardesich, N.; Mondt, J.; Bunker, R.; hide

    2002-01-01

    A technology review committee from NASA, the U.S. Department of Energy (DOE), and the Air Force Research Lab, was formed to assess solar cell and array technologies required for future NASA science missions.

  13. Repair of Corrosion in Air Supply Piping at the NASA Glenn Research Center's 1 by 1 Foot Supersonic Wind Tunnel

    NASA Technical Reports Server (NTRS)

    Henry, Michael

    2000-01-01

    During a test at the NASA Glenn Research Center's 1 x 1 Supersonic Wing Tunnel, it was discovered that particles entrained in the air flow were damaging the pressure sensitive paint on a test article. An investigation found the source of the entrained particles to be rust on the internal surfaces of the air supply piping. To remedy the situation, the air supply line components made from carbon steel were either refurbished or replaced with new stainless steel components. The refurbishment process included various combinations of chemical cleaning, bead blasting, painting and plating.

  14. NASA STS-132 Air and Space Museum

    NASA Image and Video Library

    2010-07-26

    STS -132 astronauts from left, Steve Bowen, Tony Antonelli, Garrett Reisman, Ken Ham, Piers Sellers, and Michael Good are seen with students fromthe Summer of Innovation program following a presentation by the crew at the Smithsonian National Air and Space Museum, Tuesday, July 27, 2010, in Washington. Photo Credit: (NASA/Paul E. Alers)

  15. Low-temperature forced-air drying of Appalachian hardwoods

    Treesearch

    Donald G. Cuppett; E. Paul Craft

    1975-01-01

    Low-temperature forced-air drying involves drying green lumber in heated buildings with forced-air circulation and partial control of temperature and humidity conditions. The lumber is dried to about 20 percent moisture content at dry-bulb temperatures of 70º to 110ºF and with air velocities of 300 to 600 feet per minute. Equipment, methods, and...

  16. Air Force construction automation/robotics

    NASA Technical Reports Server (NTRS)

    Nease, AL; Dusseault, Christopher

    1994-01-01

    The Air Force has several unique requirements that are being met through the development of construction robotic technology. The missions associated with these requirements place construction/repair equipment operators in potentially harmful situations. Additionally, force reductions require that human resources be leveraged to the maximum extent possible and that more stringent construction repair requirements push for increased automation. To solve these problems, the U.S. Air Force is undertaking a research and development effort at Tyndall AFB, FL to develop robotic teleoperation, telerobotics, robotic vehicle communications, automated damage assessment, vehicle navigation, mission/vehicle task control architecture, and associated computing environment. The ultimate goal is the fielding of robotic repair capability operating at the level of supervised autonomy. The authors of this paper will discuss current and planned efforts in construction/repair, explosive ordnance disposal, hazardous waste cleanup, fire fighting, and space construction.

  17. NASA Science Review of Next Planet-Hunting Mission Launch

    NASA Image and Video Library

    2018-04-15

    NASA and science investigators from MIT participate in a science briefing for the agency's Transiting Exoplanet Survey Satellite (TESS) in the Press Site auditorium at Kennedy Space Center in Florida. From left are moderator Claire Saravia, NASA Communications; Paul Hertz, Astrophysics Division director, NASA Headquarters; George Ricker, TESS principal investigator, Massachusetts Institute of Technology; Padi Boyd, TESS Guest Investigator Program lead, NASA’s Goddard Space Flight Center; Stephen Rinehart, TESS Project scientist, NASA’s Goddard Space Flight Center; and Diana Dragomir, NASA Hubble Postdoctoral Fellow, Massachusetts Institute of Technology. TESS is the next step in the search for planets outside of our solar system. The mission will find exoplanets that periodically block part of the light from their host stars, events called transits. The satellite will survey the nearest and brightest stars for two years to search for transiting exoplanets. TESS will launch on a SpaceX Falcon 9 rocket from Space Launch Complex 40 at Cape Canaveral Air Force Station no earlier than 6:32 p.m. EDT on Monday, April 16.

  18. 75 FR 32750 - US Air Force Scientific Advisory Board Notice of Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-09

    ... DEPARTMENT OF DEFENSE Department of the Air Force US Air Force Scientific Advisory Board Notice of Meeting AGENCY: Department of the Air Force, US Air Force Scientific Advisory Board. ACTION: Meeting....150, the Department of Defense announces that the United States Air Force Scientific Advisory Board...

  19. Personnel viewing AirSAR hardware while touring the outside of NASA's DC-8 during a stop-off on the AirSAR 2004 Mesoamerica campaign

    NASA Image and Video Library

    2004-03-03

    Personnel viewing AirSAR hardware while touring the outside of NASA's DC-8 during a stop-off on the AirSAR 2004 Mesoamerica campaign, L-R: Fernando Gutierrez, Costa Rican Minister of Science and Technology(MICIT); NASA Administrator Sean O'Keefe; Dr. Gahssem Asrar, NASA Associate Administrator for Earth Science Enterprises; JPL scientist Bruce Chapman; and Craig Dobson, NASA Program Manager for AirSAR. AirSAR 2004 Mesoamerica is a three-week expedition by an international team of scientists that will use an all-weather imaging tool, called the Airborne Synthetic Aperture Radar (AirSAR), in a mission ranging from the tropical rain forests of Central America to frigid Antarctica.

  20. International Affairs Programs: The Air Force Versus the Army

    DTIC Science & Technology

    2015-10-01

    individual tutoring programs . Additionally RAS personnel are offered regional enhancement studies opportunities at several facilities.48 RAS personnel...AU/ACSC/2015 AIR COMMAND AND STAFF COLLEGE AIR UNIVERSITY INTERNATIONAL AFFAIRS PROGRAMS : THE AIR FORCE VERSUS THE ARMY by Robin L...5 COMPARISON: INTERNATIONAL AFFAIRS PROGRAMS AIR FORCE VERSUS ARMY 8

  1. United States Air Force Summer Research Program -- 1993. Volume 3. Phillips Laboratory

    DTIC Science & Technology

    1993-12-01

    PHILLIPS LABORATORY KIRTLAND AIR FORCE BASE, NEW MEXICO SPONSORED BY: AIR FORCE OFFICE OF SCIENTIFIC RESEARCH ROLLING AIR FORCE BASE, WASHINGTON ,D.C...Report for. Summer Faculty Research Program at Phillips Laboratory Kirtland Air Force Base Sponsored by: Air Force Offlce of Scientific Research ...Prcgram Phillips Laboratory Kirtland

  2. X-2 on ramp with B-50 mothership and support crew

    NASA Technical Reports Server (NTRS)

    1956-01-01

    before it was lost Sept. 27, 1956. The pilot on Flight 17, Capt. Milburn Apt, had flown the aircraft to a record speed of Mach 3.2 (2,094 mph), thus becoming the first person to exceed Mach 3. During that last flight, inertial coupling occurred and the pilot was killed. The aircraft suffered little damage in the crash, resulting in proposals (never implemented) from the Langley Memorial Aeronautical Laboratory, Hampton, Virginia, to rebuild it for use in a hypersonic (Mach 5+) test program. In 1953, X-2 Number 2 was lost in an in-flight explosion while at the Bell Aircraft Company during captive flight trials and was jettisoned into Lake Ontario. The Air Force had previously flown the aircraft on three glide flights at Edwards Air Force Base, California, in 1952. Although the NACA's High-Speed Flight Station, Edwards, California, (predecessor of NASA's Dryden Flight Research Center) never actually flew the X-2 aircraft, the NACA did support the program primarily through Langley Memorial Aeronautical Laboratory wind-tunnel tests and Wallops Island, Virginia, rocket-model tests. The NACA High-Speed Flight Station also provided stability and control recording instrumentation and simulator support for the Air Force flights. In the latter regard, the NACA worked with the Air Force in using a special computer to extrapolate and predict aircraft behavior from flight data.

  3. Wyoming Wildfire Spotted by NASA Spacecraft

    NASA Image and Video Library

    2016-07-28

    The blue dots in this field of galaxies, known as the COSMOS field, show galaxies that contain supermassive black holes emitting high-energy X-rays. The black holes were detected by NASA's Nuclear Spectroscopic Array, or NuSTAR, which spotted 32 such black holes in this field and has observed hundreds across the whole sky so far. The other colored dots are galaxies that host black holes emitting lower-energy X-rays, and were spotted by NASA's Chandra X-ray Observatory. Chandra data show X-rays with energies between 0.5 to 7 kiloelectron volts, while NuSTAR data show X-rays between 8 to 24 kiloelectron volts. http://photojournal.jpl.nasa.gov/catalog/PIA20865

  4. X-15 flight crew - Engle, Rushworth, McKay, Knight, Thompson, and Dana

    NASA Technical Reports Server (NTRS)

    1966-01-01

    The X-15 flight crew, left to right; Air Force Captain Joseph H. Engle, Air Force Major Robert A. Rushworth, NASA pilot John B. 'Jack' McKay, Air Force Major William J. 'Pete' Knight, NASA pilot Milton O. Thompson, and NASA pilot Bill Dana. These six pilots made 125 of the 199 total flights in the X-15. Rushworth made 34 flights (the most of any X-15 pilot); McKay flew 29 times; Engle, Knight, and Dana each flew 16 times; Thompson's total was 14. The X-15 was a rocket-powered aircraft 50 ft long with a wingspan of 22 ft. It was a missile-shaped vehicle with an unusual wedge-shaped vertical tail, thin stubby wings, and unique fairings that extended along the side of the fuselage. The X-15 weighed about 14,000 lb empty and approximately 34,000 lb at launch. The XLR-99 rocket engine, manufactured by Thiokol Chemical Corp., was pilot controlled and was capable of developing 57,000 lb of rated thrust (actual thrust reportedly climbed to 60,000 lb). North American Aviation built three X-15 aircraft for the program. The X-15 research aircraft was developed to provide in-flight information and data on aerodynamics, structures, flight controls, and the physiological aspects of high-speed, high-altitude flight. A follow-on program used the aircraft as a testbed to carry various scientific experiments beyond the Earth's atmosphere on a repeated basis. For flight in the dense air of the usable atmosphere, the X-15 used conventional aerodynamic controls such as rudder surfaces on the vertical stabilizers to control yaw and canted horizontal surfaces on the tail to control pitch when moving in synchronization or roll when moved differentially. For flight in the thin air outside of the appreciable Earth's atmosphere, the X-15 used a reaction control system. Hydrogen peroxide thrust rockets located on the nose of the aircraft provided pitch and yaw control. Those on the wings provided roll control. Because of the large fuel consumption, the X-15 was air launched from a B-52

  5. This photo shows a head-on view of NASA's SR-71B on the ramp at the Air Force's Plant 42 in Palmdale, California, shortly before delivery to DFRC

    NASA Image and Video Library

    1991-07-24

    This photo shows a head-on view of NASA's SR-71B, used for pilot proficiency and training, on the ramp at the Air Force's Plant 42 in Palmdale, California, shortly before delivery to the Ames-Dryden Flight Research Facility (later, Dryden Flight Research Center) at Edwards, California. NASA operated two of these unique aircraft, an SR-71A, for high-speed, high altitude research, and this SR- 71B pilot trainer for most of the decade of the 1990s. The "B" model is special because of its raised rear cockpit, which provided a second pilot position so a trainer and an experienced pilot could both see what was going on during flights. The SR-71 was designed and built by the Lockheed Skunk Works, now the Lockheed Martin Skunk Works. Studies have shown that less than 20 percent of the total thrust used to fly at Mach 3 is produced by the basic engine itself. The balance of the total thrust is produced by the unique design of the engine inlet and "moveable spike" system at the front of the engine nacelles, and by the ejector nozzles at the exhaust which burn air compressed in the engine bypass system. Data from the SR-71 high speed research program will be used to aid designers of future supersonic/hypersonic aircraft and propulsion systems, including a high speed civil transport.

  6. The NASA Air Traffic Management Ontology: Technical Documentation

    NASA Technical Reports Server (NTRS)

    Keller, Richard M.

    2017-01-01

    This document is intended to serve as comprehensive documentation for the NASA Air Traffic Management (ATM) Ontology. The ATM Ontology is a conceptual model that defines key classes of entities and relationships pertaining to the US National Airspace System (NAS) and the management of air traffic through that system. A wide variety of classes are represented in the ATM Ontology, including classes corresponding to flights, aircraft, manufacturers, airports, airlines, air routes, NAS facilities, air traffic control advisories, weather phenomena, and many others. The Ontology can be useful in the context of a variety of information management tasks relevant to NAS, including information exchange, data query and search, information organization, information integration, and terminology standardization.

  7. NASA STS-132 Air and Space Museum

    NASA Image and Video Library

    2010-07-26

    NASA Astrophycist Dr. John Mather, at podium, speaks Tuesday, July 27, 2010, at the Smithsonian National Air and Space Museum in Washington as museum director Gen. John R. "Jack" Dailey, U.S. Marine Corps ret. and STS-132 astronaut Piers Sellers look on. Sellers returned a replica of the Nobel Prize that is in the museum's collection and was flown aboard STS-132 Atlantis. The prize was won by Mather and University of California, Berkeley researcher George Smoot in 2006 for their work using the Cosmic Background Explorer Satellite to understand the big-bang theory of the universe.Photo Credit: (NASA/Paul E. Alers)

  8. NASA STS-132 Air and Space Museum

    NASA Image and Video Library

    2010-07-26

    A replica of the Nobel Prize that is in the museum's collection and was flown aboard STS-132 Atlantis is seen, Tuesday, July 27, 2010, at the Smithsonian National Air and Space Museum in Washington. STS-132 astronaut Piers Sellers returned the replica during a ceremony at the museum. Photo Credit: (NASA/Paul E. Alers)

  9. Environmental Assessment Proposed Demolition Plan Hill Air Force Base, Utah

    DTIC Science & Technology

    2010-04-01

    1204, Arlington VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law , no person shall be subject to a penalty...Demolition Plan Hill Air Force Base, Utah 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR( S ) 5d. PROJECT NUMBER 5e. TASK...NUMBER 5f. WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME( S ) AND ADDRESS(ES) United States Air Force - Air Force Material Command,Hill Air Force

  10. X-ray optic developments at NASA's MSFC

    NASA Astrophysics Data System (ADS)

    Atkins, C.; Ramsey, B.; Kilaru, K.; Gubarev, M.; O'Dell, S.; Elsner, R.; Swartz, D.; Gaskin, J.; Weisskopf, M.

    2013-05-01

    NASA's Marshall Space Flight Center (MSFC) has a successful history of fabricating optics for astronomical x-ray telescopes. In recent years optics have been created using electroforming replication for missions such as the balloon payload HERO (High energy replicated optics) and the rocket payload FOXSI (Focusing Optics x-ray Solar Imager). The same replication process is currently being used in the creation seven x-ray mirror modules (one module comprising of 28 nested shells) for the Russian ART-XC (Astronomical Rontgen Telescope) instrument aboard the Spectrum-Roentgen-Gamma mission and for large-diameter mirror shells for the Micro-X rocket payload. In addition to MSFC's optics fabrication, there are also several areas of research and development to create the high resolution light weight optics which are required by future x-ray telescopes. Differential deposition is one technique which aims to improve the angular resolution of lightweight optics through depositing a filler material to smooth out fabrication imperfections. Following on from proof of concept studies, two new purpose built coating chambers are being assembled to apply this deposition technique to astronomical x-ray optics. Furthermore, MSFC aims to broaden its optics fabrication through the recent acquisition of a Zeeko IRP 600 robotic polishing machine. This paper will provide a summary of the current missions and research and development being undertaken at NASA's MSFC.

  11. NASA and Canadian Snowbirds Aircrafts

    NASA Image and Video Library

    2018-05-09

    Canadian Forces Snowbirds fly in formation over NASA's Kennedy Space Center in Florida during a practice flight on May 9, 2018, between their scheduled U.S. air shows. The iconic Vehicle Assembly Building and mobile launcher are in view in the background.

  12. Challenges of Enterprise Wide AM for Air Force Sustainment

    DTIC Science & Technology

    2016-12-01

    December 2016 Naguy is chief of the Air Force Life Cycle Management Center’s Product Support Engineering Division at Wright Patterson Air Force Base in...today and into the future. To truly capitalize on the full potential of AM, the Air Force Life Cycle Management Center (AFLCMC) in close collabora...approach for material standards and quality include un- derstanding powder characteristics, developing an enterprise material characterization

  13. A lone desert Joshua tree greeted the arrival of Space Shuttle Endeavour at Edwards Air Force Base,

    NASA Technical Reports Server (NTRS)

    2001-01-01

    A lone desert Joshua tree greeted the arrival of Space Shuttle Endeavour at Edwards Air Force Base, California, May 1, 2001. A large drag chute helped slow Endeavour on the runway. After mounting the shuttle on a converted 747 airliner at NASA's Dryden Flight Research Center, Endeavour will be carried back to the Kennedy Space Center for its next mission. Weather in Florida necessitated landing in California.

  14. Inspector General, DOD, Oversight of the Air Force Audit Agency Audit of the FY 1999 Air Force General Fund Financial Statements

    DTIC Science & Technology

    2000-02-14

    Consolidated Financial Statements . Our objective was to determine the accuracy and completeness of the Air Force Audit Agency audit of the FY 1999 Air Force General Fund financial statements. See Appendix A for a discussion of the audit

  15. Returning Human Spaceflight to America on This Week @NASA - September 22, 2014

    NASA Image and Video Library

    2014-09-22

    During a September 16 news conference at Kennedy Space Center – a major announcement by NASA Administrator Charlie Bolden that Boeing and SpaceX have been chosen to transport U.S. astronauts to and from the International Space Station – effectively putting America back into the business of launching humans to space – ending our sole reliance on Russia by 2017. Final pre-launch processing of the Boeing CST-100 and the SpaceX Crew Dragon spacecraft will take place at Florida’s Kennedy Space Center with launches of the vehicles happening at nearby Cape Canaveral Air Force Station. Also, SpaceX CRS-4 mission previewed, Astronaut visits commercial partner, Next space station crews prepare, MAVEN’s arrival at Mars, and Rosetta’s landing site.

  16. VIP tour of NASA DFRC's DC-8 during the AirSAR 2004 Mesoamerica campaign

    NASA Image and Video Library

    2004-03-03

    VIP tour of NASA DFRC's DC-8 airborne laboratory during the AirSAR 2004 Mesoamerica campaign given by Craig Dobson, NASA Program Manager for AirSAR, L-R: Dr. Sonia Marta Mora, President of the Costa Rican National Rector’s Council; NASA Administrator Sean O'Keefe; Fernando Gutierrez, Costa Rican Minister of Science and Technology(MICIT); Mr. John Danilovich, US Ambassador to Costa Rica; and Dobson. AirSAR 2004 Mesoamerica is a three-week expedition by an international team of scientists that will use an all-weather imaging tool, called the Airborne Synthetic Aperture Radar (AirSAR), in a mission ranging from the tropical rain forests of Central America to frigid Antarctica.

  17. Embouchure Dysfunction in Air Force Band Brass Musicians.

    PubMed

    Storms, Patrick R; Elkins, Candice P; Strohecker, Eric M

    2016-06-01

    Occupational injuries and medical problems in musicians are well described, but relatively less attention has been paid to orofacial and embouchure-related problems in professional brass players. This study addressed embouchure-related problems in Air Force Band members, a population of musicians with an intense practice and performance schedule. A survey was developed and distributed via the Air Force Survey Office to 599 active-duty Air Force Band members and 201 Air National Guard members. The survey assessed practice patterns, practice and performance venues, and presence of symptoms suggesting embouchure dysfunction. Responses were obtained from 167 Air Force Band brass players. Of the 157 responding to the question about embouchure dysfunction, 42% reported having experienced an embouchure problem at some point in the past, and 53% of those respondents reported that they were currently experiencing an embouchure problem. Forty-one percent of those with embouchure problems cited practice venues that were not conducive to effective and efficient practice at the time their embouchure problems began, and 48% of those with embouchure problems reported having to overblow in rehearsal at the time their problems began. Embouchure disorders were reported in a large proportion of Air Force Band brass survey respondents, and specific concerns related to practice venues and the need to overblow in practice settings suggest factors suitable to remediation and preventive strategies.

  18. School children from Punta Arenas, Chile, talk with Dr. David Imel, an AirSAR scientist from NASA JPL, during AirSAR 2004

    NASA Image and Video Library

    2004-03-10

    School children from Punta Arenas, Chile, talk with Dr. David Imel, an AirSAR scientist from NASA JPL, during AirSAR 2004. AirSAR 2004 is a three-week expedition by an international team of scientists that uses an all-weather imaging tool, called the Airborne Synthetic Aperture Radar (AirSAR) which is located onboard NASA's DC-8 airborne laboratory. Scientists from many parts of the world including NASA's Jet Propulsion Laboratory are combining ground research done in several areas in Central and South America with NASA's AirSAR technology to improve and expand on the quality of research they are able to conduct. In South America and Antarctica, AirSAR collected imagery and data to help determine the contribution of Southern Hemisphere glaciers to sea level rise due to climate change. In Patagonia, researchers found this contribution had more than doubled from 1995 to 2000, compared to the previous 25 years. AirSAR data will make it possible to determine whether that trend is continuing or accelerating. AirSAR will also provide reliable information on ice shelf thickness to measure the contribution of the glaciers to sea level.

  19. Comparison of immersed liquid and air cooling of NASA's Airborne Information Management System

    NASA Technical Reports Server (NTRS)

    Hoadley, A. W.; Porter, A. J.

    1992-01-01

    The Airborne Information Management System (AIMS) is currently under development at NASA Dryden Flight Research Facility. The AIMS is designed as a modular system utilizing surface mounted integrated circuits in a high-density configuration. To maintain the temperature of the integrated circuits within manufacturer's specifications, the modules are to be filled with Fluorinert FC-72. Unlike ground based liquid cooled computers, the extreme range of the ambient pressures experienced by the AIMS requires the FC-72 be contained in a closed system. This forces the latent heat absorbed during the boiling to be released during the condensation that must take within the closed module system. Natural convection and/or pumping carries the heat to the outer surface of the AIMS module where the heat transfers to the ambient air. This paper will present an evaluation of the relative effectiveness of immersed liquid cooling and air cooling of the Airborne Information Management System.

  20. Comparison of immersed liquid and air cooling of NASA's Airborne Information Management System

    NASA Astrophysics Data System (ADS)

    Hoadley, A. W.; Porter, A. J.

    1992-07-01

    The Airborne Information Management System (AIMS) is currently under development at NASA Dryden Flight Research Facility. The AIMS is designed as a modular system utilizing surface mounted integrated circuits in a high-density configuration. To maintain the temperature of the integrated circuits within manufacturer's specifications, the modules are to be filled with Fluorinert FC-72. Unlike ground based liquid cooled computers, the extreme range of the ambient pressures experienced by the AIMS requires the FC-72 be contained in a closed system. This forces the latent heat absorbed during the boiling to be released during the condensation that must take within the closed module system. Natural convection and/or pumping carries the heat to the outer surface of the AIMS module where the heat transfers to the ambient air. This paper will present an evaluation of the relative effectiveness of immersed liquid cooling and air cooling of the Airborne Information Management System.

  1. Science and Technology: The Making of the Air Force Research Laboratory

    DTIC Science & Technology

    2000-01-01

    AFRL . . . . . . . . . . . 187 11 Air Force Research Laboratory : Before and After...United States Air Force during my tenure as chief of staff—the crea - tion of the Air Force Research Laboratory ( AFRL ). As the “high technology” service...consolidate four existing laboratories into one Air Force Research Laboratory ( AFRL ) designed to lead to a more efficient and streamlined

  2. U.S. Air Force Annual Financial Statement 2010

    DTIC Science & Technology

    2010-01-01

    certain contract financing payments that are not reported elsewhere on Air Force’s Balance Sheet. The Air Force conducts business with commercial...the reporting entity has a contractual commitment for payment is $712.8 million. The Air Force is a party in numerous individual contracts that...promulgated by the Federal Accounting Standards Advisory Board; the Office of Management and Budget (OMB) Circular No. A-136, Financial Reporting

  3. AirMSPI Level 1B2 V006 New Data for NASA/SRON ACEPOL Campaign

    Atmospheric Science Data Center

    2018-05-07

    AirMSPI Level 1B2 V006 New Data for NASA/SRON ACEPOL Campaign ACEPOL Wednesday, April 18, 2018 The NASA Langley Atmospheric Sciences Data Center (ASDC) and Jet Propulsion ... flight campaign.   AirMSPI flies in the nose of NASA's high-altitude ER-2 aircraft. The instrument was built by JPL and the ...

  4. Chilean Air Force Captain Saez and Dr. Tom Mace discuss airborne science during a DC-8 ferry flight from Santiago to Punta Arenas, Chile

    NASA Image and Video Library

    2004-03-10

    Chilean Air Force Captain Saez and Dr. Tom Mace, DFRC Director of Airborne Sciences, discuss airborne science during a DC-8 ferry flight from Santiago to Punta Arenas, Chile. AirSAR 2004 is a three-week expedition by an international team of scientists that uses an all-weather imaging tool, called the Airborne Synthetic Aperture Radar (AirSAR) which is located onboard NASA's DC-8 airborne laboratory. Scientists from many parts of the world including NASA's Jet Propulsion Laboratory are combining ground research done in several areas in Central and South America with NASA's AirSAR technology to improve and expand on the quality of research they are able to conduct. In South America and Antarctica, AirSAR collected imagery and data to help determine the contribution of Southern Hemisphere glaciers to sea level rise due to climate change. In Patagonia, researchers found this contribution had more than doubled from 1995 to 2000, compared to the previous 25 years. AirSAR data will make it possible to determine whether that trend is continuing or accelerating. AirSAR will also provide reliable information on ice shelf thickness to measure the contribution of the glaciers to sea level.

  5. NASA's Best-Observed X-Class Flare of All Time

    NASA Image and Video Library

    2014-05-07

    Zoom in on the flare in ultraviolet (SDO/AIA), X-rays (Hinode) and gamma-rays (RHESSI) -- On March 29, 2014 the sun released an X-class flare. It was observed by NASA's Interface Region Imaging Spectrograph, or IRIS; NASA's Solar Dynamics Observatory, or SDO; NASA's Reuven Ramaty High Energy Solar Spectroscopic Imager, or RHESSI; the Japanese Aerospace Exploration Agency's Hinode; and the National Solar Observatory's Dunn Solar Telescope located at Sacramento Peak in New Mexico. To have a record of such an intense flare from so many observatories is unprecedented. Such research can help scientists better understand what catalyst sets off these large explosions on the sun. Perhaps we may even some day be able to predict their onset and forewarn of the radio blackouts solar flares can cause near Earth - blackouts that can interfere with airplane, ship and military communications. Read more: 1.usa.gov/1kMDQbO Join our Google+ Hangout on May 8 at 2:30pm EST: go.nasa.gov/1mwbBEZ Credit: NASA Goddard NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  6. Army Air Forces Statistical Digest, World War II

    DTIC Science & Technology

    1945-12-01

    1,626 2,491 2,033 453 750 60- - - - - - 3 16 24 35 35 56 102 67- - - - - - 3 16 24 35 35 56 99 47- - - - - - - - - - - - 3 2018 128 1,020 594 14 4 16...YAnti- I Enem ,y Anti- I~h Ene~ Anti- Enem ;yAnti-Month Total Air- Air- ig:=s Total Air- Air- er Total Air- Air- other Total Air- Air- other Cl𔄂tt !Cl...AIRPLANE AND BY CAUSE OF LOSS: JUN 1942 TO AUG 1945 EneII;y I~nti- Enem ;rAnti_, ! 1Enem;r Anti- Enem ;rAnti- Total Air- !Air- eaOtherTotal Air- Air

  7. Army and Air Force Unmanned Air Reconnaissance: Warrior and Hydra Navigating a Maze of Strategic Hedges

    DTIC Science & Technology

    2009-06-01

    Chambliss; Colonel Michael Stickney; Colonel Eric Mathewson; Lieutenant Colonel Robert Kiebler; Lieutenant Colonel Kenneth Kilmurray; Lieutenant...16 Peter Layton , Group Captain, Royal Air Force, “Hedging Strategies, UCAVs, budgets, and improbable threats,” Armed Forces Journal...10 Colonel Eric Mathewson, US Air Force HAF/A2 DCS ISR, “Air Force ISR in a Changed World: ISR Transformation, the Importance

  8. NASA's Future X-ray Missions: From Constellation-X to Generation-X

    NASA Technical Reports Server (NTRS)

    Hornschemeier, A.

    2006-01-01

    Among the most important topics in modern astrophysics are the formation and evolution of supermassive black holes in concert with galaxy bulges, the nature of the dark energy equation of state, and the self-regulating symmetry imposed by both stellar and AGN feedback. All of these topics are readily addressed with observations at X-ray wavelengths. NASA's next major X-ray observatory is Constellation-X, which is being developed to perform spatially resolved high-resolution X-ray spectroscopy. Con-X will directly measure the physical properties of material near black holes' last stable orbits and the absolute element abundances and velocities of hot gas in clusters of galaxies. The Con-X mission will be described, as well as its successor, Generation-X (anticipated to fly approx.1 decade after Con-X). After describing these missions and their driving science areas, the talk will focus on areas in which Chandra observing programs may enable science with future X-ray observatories. These areas include a possible ultra-deep Chandra imaging survey as an early Universe pathfinder, a large program to spatially resolve the hot intracluster medium of massive clusters to aid dark energy measurements, and possible deep spectroscopic observations to aid in preparatory theoretical atomic physics work needed for interpreting Con-X spectra.

  9. X-29 in Protective Cover Being Transported by Truck to Dryden

    NASA Technical Reports Server (NTRS)

    1988-01-01

    materials in the 1970s opened a new field of aircraft construction. It also made possible the construction of the X-29's thin supercritical wing. State-of-the-art composites allowed aeroelastic tailoring which, in turn, allowed the wing some bending but limited twisting and eliminated structural divergence within the flight envelope (i.e. deformation of the wing or the wing breaking off in flight). Additionally, composite materials allowed the wing to be sufficiently rigid for safe flight without adding an unacceptable weight penalty. The X-29 project consisted of two phases plus the follow-on vortex-control phase. Phase 1 demonstrated that the forward sweep of the X-29 wings kept the wing tips unstalled at the moderate angles of attack flown in that phase (a maximum of 21 degrees). Phase I also demonstrated that the aeroelastic tailored wing prevented structural divergence of the wing within the flight envelope, and that the control laws and control-surface effectiveness were adequate to provide artificial stability for an otherwise unstable aircraft. Phase 1 further demonstrated that the X-29 configuration could fly safely and reliably, even in tight turns. During Phase 2 of the project, the X-29, flying at an angle of attack of up to 67 degrees, demonstrated much better control and maneuvering qualities than computational methods and simulation models had predicted . During 120 research flights in this phase, NASA, Air Force, and Grumman project pilots reported the X-29 aircraft had excellent control response to an angle of attack of 45 degrees and still had limited controllability at a 67-degree angle of attack. This controllability at high angles of attack can be attributed to the aircraft's unique forward-swept wing- canard design. The NASA/Air Force-designed high-gain flight control laws also contributed to the good flying qualities. During the Air Force-initiated vortex-control phase, the X-29 successfully demonstrated vortex flow control (VFC). This VFC was more

  10. 4. "ARCHITECTURAL, FLOOR PLANELEVATIONSSECTIONS, OBSERVATION BUNKERS." Specifications No. ENG (NASA)04353631; ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. "ARCHITECTURAL, FLOOR PLAN-ELEVATIONS-SECTIONS, OBSERVATION BUNKERS." Specifications No. ENG (NASA)04-353-63-1; Drawing No. 60-09-34; sheet 325. Ref. No. A-13. D.O. SERIES 1597/87. - Edwards Air Force Base, Air Force Rocket Propulsion Laboratory, Observation Bunker 1-D-3, Test Area 1-125, northwest end of Altair Boulevard, Boron, Kern County, CA

  11. Installation Restoration Program. Phase 1. Records Search, Air Force Plants Nos. 28 and 29, Everett and Lynn, MA

    DTIC Science & Technology

    1984-06-01

    APPENDIX E GLOSSARY OF TERMINOLOGY AND ABBREVIATIONS AF: Air Force. AFESC: Air Force Engineering and Services Center. 3E AFFF : Aqueous Film Forming Foam...34U - 0 ID 0 w M ol fc a, C’ 4) Em)4 Q 4)j 0 0 0 x "a x a. 13 As W a- cu I e W 4)-~ ? 4 -04.4 4.1. jl) in -U)4 0 14)~ ~~ ~~ ~ 0 0 00.4 4 ~ 4 )4 I...8 and 3 a; fC ;arit ,:On or Ccrce E rer ierat or: US.WI~ereral Electric - ’~’Yo lwi Unkrrown :.:e ;aeid by: E.ob Steele, 1,;hn Absalon, Ernie

  12. United States Air Force Summer Research Program -- 1993. Volume 13. Phillips Laboratory

    DTIC Science & Technology

    1993-12-01

    Research Kirtland Air Force Base, Albuquerque, NM August 1993 14-1 My Summer Apprenticeship At Kirtland Air Force Base, Phillips Laboratory Andrea Garcia...AFOSR Summer Research Program Phillips Laboratory Sponsored By: Air Force Office of Scientific Research Kirtland Air Force Base, Albuquerque, NM... Phillips Laboratory Sponsored by: Air

  13. Space Shuttle Atlantis/STS-98 shortly before being towed to NASA's Dryden Flight Research Center

    NASA Image and Video Library

    2001-02-20

    Space Shuttle Atlantis landed at 12:33 p.m. February 20, 2001, on the runway at Edwards Air Force Base, California, where NASA's Dryden Flight Research Center is located. The mission, which began February 7, logged 5.3 million miles as the shuttle orbited earth while delivering the Destiny science laboratory to the International Space Station. Inclement weather conditions in Florida prompted the decision to land Atlantis at Edwards. The last time a space shuttle landed at Edwards was Oct. 24, 2000.

  14. Evaluation of Air Force and Navy Demand Forecasting Systems

    DTIC Science & Technology

    1994-01-01

    forecasting approach, the Air Force Material Command is questioning the adoption of the Navy’s Statistical Demand Forecasting System ( Gitman , 1994). The...Recoverable Item Process in the Requirements Data Bank System is to manage reparable spare parts ( Gitman , 1994). Although RDB will have the capability of...D062) ( Gitman , 1994). Since a comparison is made to address Air Force concerns, this research only limits its analysis to the range of Air Force

  15. NASA SMAP is Readied for Launch

    NASA Image and Video Library

    2015-01-20

    NASA Soil Moisture Active Passive spacecraft is lowered onto the Delta II payload attach structure in the Astrotech payload processing facility at Vandenberg Air Force Base, California, in preparation for launch, to take place no sooner than Jan. 29.

  16. Paint shop technicians carefully apply masking prior to painting the Orion full-scale abort flight test crew module in the Edwards Air Force Base paint hangar.

    NASA Image and Video Library

    2008-03-29

    A full-scale flight-test mockup of the Constellation program's Orion crew vehicle arrived at NASA's Dryden Flight Research Center in late March 2008 to undergo preparations for the first short-range flight test of the spacecraft's astronaut escape system later that year. Engineers and technicians at NASA's Langley Research Center fabricated the structure, which precisely represents the size, outer shape and mass characteristics of the Orion space capsule. The Orion crew module mockup was ferried to NASA Dryden on an Air Force C-17. After painting in the Edwards Air Force Base paint hangar, the conical capsule was taken to Dryden for installation of flight computers, instrumentation and other electronics prior to being sent to the U.S. Army's White Sands Missile Range in New Mexico for integration with the escape system and the first abort flight test in late 2008. The tests were designed to ensure a safe, reliable method of escape for astronauts in case of an emergency.

  17. U.S. Air Force Environmental Assessment, Steam Decentralization Project, Tinker Air Force Base, Oklahoma

    DTIC Science & Technology

    2011-08-01

    Estimated Air Pollutant Emissions for Boilers at CSPs at Tinker AFB ..................... 3-8 6 Table 3-2. Special Status Plant and Animal Species of...environment associated with the decentralization and optimization offour central steam plants (CSPs) located at Tinker Air Force Base (AFB), Oklahoma...square feet and represent approximately 48 percent of the installation’s total building area. Three of the plants (CSP 208, CSP 3001 and CSP 5802

  18. Surgically Shaping a Financial Hydra: Reprogramming United States Air Force End Strength to the Air Reserve Component

    DTIC Science & Technology

    2012-02-14

    Director of the Air National Guard20 Lt Gen Charles E. Stenner Jr., Chief of the Air Force Reserve21 Specificity about what rebalancing the force...January 2012). Sharp, Travis. Vision Meets Reality: 2010 QDR and 2011 Defense Budget. Center for a New American Security, February 2010. Stenner ...Lt Gen Charles E. Stenner Jr., commander of Air Force Reserve Command (address, Air Force Reserve Senior Leader Conference

  19. FAA/NASA Joint University Program for Air Transportation Research 1994-1995

    NASA Technical Reports Server (NTRS)

    Remer, J. H.

    1998-01-01

    The Joint University Program for Air Transportation Research (JUP) is a coordinated set of three grants co-sponsored by the Federal Aviation Administration (FAA) and the National Aeronautics and Space Administration (NASA). Under JUP, three institutions: the Massachusetts Institute of Technology, Princeton, and Ohio Universities receive research grants and collaborate with FAA and NASA in defining and performing civil aeronautics research in a multitude of areas. Some of these disciplines are artificial intelligence, control theory, atmospheric hazards, navigation, avionics, human factors, flight dynamics, air traffic management, and electronic communications.

  20. NASA N3-X with Turboelectric Distributed Propulsion

    NASA Technical Reports Server (NTRS)

    Felder, James L.

    2014-01-01

    Presentation summarizing the phase I study of the NASA N3-X turboelectric distributed propulsion power aircraft to the IMechE Disruptive Green Propulsion Technologies conference in London, UK November 16th and 17th, 2014. This presentation contains the results of a NASA internal study funded by the NASA Fixed Wing program to look at the application of turboelectric distributed propulsion to a long-range 300 seat aircraft. The reference aircraft is the Boeing 777-200LR. The N3-X reduced energy consumption by 70 compared to the 777-200LR, LTO NOx by 85 compared to the CAEP 6 limits, and noise by 32-64 EPNdB depending on engine placement compared to the stage 4 noise standards. This exceeded the N+3 metrics of reducing energy by 60, LTO NOx by 80, and noise by 52 EPNdB. Cruise NOx was not estimated, but likely meet the 80 reduction goal as well.

  1. Air Force Leadership Development: Transformation’s Constant

    DTIC Science & Technology

    2003-05-01

    AU/SCHOOL/NNN/2001-04 DEPARTMENT OF STATE SENIOR SEMINAR NATIONAL FOREIGN AFFAIRS TRAINING CENTER AIR FORCE LEADERSHIP DEVELOPMENT...valid OMB control number. 1. REPORT DATE MAY 2003 2. REPORT TYPE N/A 3. DATES COVERED - 4. TITLE AND SUBTITLE Air Force Leadership ...6 THE LEADERSHIP ESSENTIALS

  2. Environmental Assessment: Military Family Housing Privatization Maxwell Air Force Base

    DTIC Science & Technology

    2005-06-01

    Ray L. Raton Mildred J . Worthy February 9, 2005 Lt. Colonel David W. Maninez Deputy Commander, 42nd MSG 50 South LeMay Plaza (Bldg 804) Maxwell ...Environmental Assessment Military Family Housing Privatization Maxwell Air Force Base United States Air Force Air Education and Training Command... Maxwell Air Force Base, Alabama June 2005 Report Documentation Page Form ApprovedOMB No. 0704-0188 Public reporting burden for the collection of

  3. 32 CFR 644.327 - Air Force military real property.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 32 National Defense 4 2010-07-01 2010-07-01 true Air Force military real property. 644.327 Section... Force military real property. Military real property under the control of the Department of the Air Force will be placed in excess status as outlined in AFR 87-4. ...

  4. 32 CFR 806.29 - Administrative processing of Air Force FOIA requests.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... section. (c) Contacts with FOIA requesters and non-Air Force submitters of data. (1) Contacts with Air... memoranda documenting requester contacts with Air Force elements regarding a pending FOIA request in the requester's FOIA file. If the requester contacts Air Force elements telephonically about a pending FOIA...

  5. 32 CFR 806.29 - Administrative processing of Air Force FOIA requests.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... section. (c) Contacts with FOIA requesters and non-Air Force submitters of data. (1) Contacts with Air... memoranda documenting requester contacts with Air Force elements regarding a pending FOIA request in the requester's FOIA file. If the requester contacts Air Force elements telephonically about a pending FOIA...

  6. 32 CFR 806.29 - Administrative processing of Air Force FOIA requests.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... section. (c) Contacts with FOIA requesters and non-Air Force submitters of data. (1) Contacts with Air... memoranda documenting requester contacts with Air Force elements regarding a pending FOIA request in the requester's FOIA file. If the requester contacts Air Force elements telephonically about a pending FOIA...

  7. Absenteeism Among Air Force Active Duty and Civilian Personnel.

    DTIC Science & Technology

    1985-09-01

    Fitzgibbons, Dale and Michael Moch. "Employee Absenteeism : A Multivariate Analysis with Replication," Organizational Behavior and Human Performance ...AD-A161 073 ABSENTEEISM AMONG AIR FORCE ACTIVE DUTY AND CIVILIAN PERSONNEL(U) AIR FORCE INST OF TECH IRIGHT-PRTTERSON AFB OH SCHOOL OF SYSTEMS AND...8217o 7 ABSENTEEISM AMONG AIR FORCE ACTIUE DUTY AND CIUILIAN PERSONNEL THESIS William M. Getter Captain, USAF AF IT/GLM/LSB/5S-27 DT|C ELECTE SNOVI 2Q8 v

  8. SOUTHEAST AND NORTHEAST SIDES. Looking west Edwards Air Force ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    SOUTHEAST AND NORTHEAST SIDES. Looking west - Edwards Air Force Base, Air Force Rocket Propulsion Laboratory, Fuel & Water Tank, Test Area 1-115, northwest end of Saturn Boulevard, Boron, Kern County, CA

  9. NASA's DC-8 flying laboratory takes off from Juan Santamaria International Airport in San Jose, Costa Rica, on NASA's AirSAR 2004 campaign

    NASA Image and Video Library

    2004-03-03

    NASA's DC-8 flying laboratory takes off from Juan Santamaria International Airport in San Jose, Costa Rica, on NASA's AirSAR 2004 campaign. AirSAR 2004 is a three-week expedition by an international team of scientists that will use an all-weather imaging tool, called the Airborne Synthetic Aperture Radar (AirSAR), in a mission ranging from the tropical rain forests of Central America to frigid Antarctica.

  10. 2. GENERAL VIEW OF SLC3 AIR FORCE BUILDING (BLDG. 761) ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. GENERAL VIEW OF SLC-3 AIR FORCE BUILDING (BLDG. 761) FROM THE NORTHWEST - Vandenberg Air Force Base, Space Launch Complex 3, SLC-3 Air Force Building, Napa & Alden Roads, Lompoc, Santa Barbara County, CA

  11. 1. GENERAL VIEW OF SLC3 AIR FORCE BUILDING (BLDG. 761) ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. GENERAL VIEW OF SLC-3 AIR FORCE BUILDING (BLDG. 761) FROM THE SOUTHWEST - Vandenberg Air Force Base, Space Launch Complex 3, SLC-3 Air Force Building, Napa & Alden Roads, Lompoc, Santa Barbara County, CA

  12. Hazardous waste: Siting of storage facility at Kelly Air Force Base, Texas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1987-01-01

    This report provides information on whether the hazardous waste storage facility at Kelly Air Force Base meets Resource Conservation and Recovery Act, state, and Air Force siting requirements; on whether the Air Force or the Defense Reutilization and Marketing Office selected the best site available to protect the public and to preserve good public relations with the community; on whether the Air Force, Kelly Air Force Base, or the Defense Logistics Agency adjusted siting standards as a result of the adverse publicity the hazardous waste facility has generated; and on whether Kelly Air Force Base is revising its hazardous wastemore » management organization so that it is similar to the organizations at Tinker and McClellan Air Force Bases.« less

  13. X-1E on Display Stand at Dryden

    NASA Technical Reports Server (NTRS)

    1996-01-01

    The Bell Aircraft Corporation X-1E is shown in this artistic night photo taken in February 1996. This aircraft is displayed on a pedestal in front of the main building (4800) at NASA Dryden Flight Research Center, Edwards, California. There were four versions of the Bell X-1 rocket-powered research aircraft that flew at the NACA High-Speed Flight Research Station, Edwards, California. The bullet-shaped X-1 aircraft were built by Bell Aircraft Corporation, Buffalo, N.Y. for the U.S. Army Air Forces (after 1947, U.S. Air Force) and the National Advisory Committee for Aeronautics (NACA). The X-1 Program was originally designated the XS-1 for EXperimental Supersonic. The X-1's mission was to investigate the transonic speed range (speeds from just below to just above the speed of sound) and, if possible, to break the 'sound barrier.' Three different X-1s were built and designated: X-1-1, X-1-2 (later modified to become the X-1E), and X-1-3. The basic X-1 aircraft were flown by a large number of different pilots from 1946 to 1951. The X-1 Program not only proved that humans could go beyond the speed of sound, it reinforced the understanding that technological barriers could be overcome. The X-1s pioneered many structural and aerodynamic advances including extremely thin, yet extremely strong wing sections; supersonic fuselage configurations; control system requirements; powerplant compatibility; and cockpit environments. The X-1 aircraft were the first transonic-capable aircraft to use an all-moving stabilizer. The flights of the X-1s opened up a new era in aviation. The first X-1 was air-launched unpowered from a Boeing B-29 Superfortress on January 25, 1946. Powered flights began in December 1946. On October 14, 1947, the X-1-1, piloted by Air Force Captain Charles 'Chuck' Yeager, became the first aircraft to exceed the speed of sound, reaching about 700 miles per hour (Mach 1.06) and an altitude of 43,000 feet. The number 2 X-1 was modified and redesignated the X-1E

  14. Air Force Research Laboratory Sensors Directorate Leadership Legacy, 1960-2011

    DTIC Science & Technology

    2011-03-01

    AFRL -RY-WP-TM-2011-1017 AIR FORCE RESEARCH LABORATORY SENSORS DIRECTORATE LEADERSHIP LEGACY, 1960-2011 Compiled by Raymond C. Rang...Structures Divi- sion, Space Vehicles Directorate, Air Force Research Laboratory , Kirtland AFB, N.M. 7. March 1998 - July 1999, Chief, Integration and... Research Laboratory ( AFRL ), and Deputy Director of the Sensors Direc- torate, Air Force Research

  15. 10. "TEST STAND 15, AIR FORCE FLIGHT TEST CENTER." ca. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    10. "TEST STAND 1-5, AIR FORCE FLIGHT TEST CENTER." ca. 1958. Test Area 1-115. Original is a color print, showing Test Stand 1-5 from below, also showing the superstructure of TS1-4 at left. - Edwards Air Force Base, Air Force Rocket Propulsion Laboratory, Leuhman Ridge near Highways 58 & 395, Boron, Kern County, CA

  16. Giant Sunspot Erupts on October 24, 2014

    NASA Image and Video Library

    2014-10-25

    SDO AIA image of the X3.1 flare in 131 angstrom light from 21:43 UT on October 24, 2014. Credit:NASA/SDO More info: The sun emitted a significant solar flare, peaking at 5:40 p.m. EDT on Oct. 24, 2014. NASA's Solar Dynamics Observatory, which watches the sun constantly, captured images of the event. Solar flares are powerful bursts of radiation. Harmful radiation from a flare cannot pass through Earth's atmosphere to physically affect humans on the ground, however -- when intense enough -- they can disturb the atmosphere in the layer where GPS and communications signals travel. This flare is classified as an X3.1-class flare. X-class denotes the most intense flares, while the number provides more information about its strength. An X2 is twice as intense as an X1, an X3 is three times as intense, etc. The flare erupted from a particularly large active region -- labeled AR 12192 -- on the sun that is the largest in 24 years. This is the fourth substantial flare from this active region since Oct. 19. Credit: NASA's Goddard Space Flight Center NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  17. Analysis of the US Air Force Defense Meteorological Satellite Program Imagery for Global Lightning

    NASA Technical Reports Server (NTRS)

    Scharfen, Gregory R.

    1999-01-01

    The U. S. Air Force operates the Defense Meteorological Satellite Program (DMSP), a system of near-polar orbiting satellites designed for use in operational weather forecasting and other applications. DMSP satellites carry a suite of sensors that provide images of the earth and profiles of the atmosphere. The National Snow and Ice Data Center (NSIDC) at the University of Colorado has been involved with the archival of DMSP data and its use for several research projects since 1979. This report summarizes the portion of this involvement funded by NASA.

  18. 76 FR 18537 - U.S. Air Force Scientific Advisory Board; Notice of Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-04

    ... DEPARTMENT OF DEFENSE Department of the Air Force U.S. Air Force Scientific Advisory Board; Notice of Meeting AGENCY: Department of the Air Force, US Air Force Scientific Advisory Board. ACTION... 102-3.150, the Department of Defense announces that the United States Air Force Scientific Advisory...

  19. Engendering Cyber-Mindedness in the United States Air Force Cyber Officer Corps

    DTIC Science & Technology

    2011-06-01

    Transforming For Joint Operations, 4. 3 Walter McDougall , …the Heavens and the Earth : A Political History of the Space Age (New York: Basic Books, 1985...1998), 53. 5 Walter McDougall , …the Heavens and the Earth , 107. 6 David N. Spires, Beyond Horizons: A Half Century of Air Force Space...reputation as a political mastermind and 24 Walter McDougall , …the Heavens and the Earth , 143. 25

  20. The United States Air Force in Korea: A Chronology, 1950-1953

    DTIC Science & Technology

    2000-01-01

    War , the U.S. Air Force (USAF) Historian commissioned the Research Division, Air Force His- torical Research Agency (AFHRA), Maxwell Air Force Base...and aces. Finally, it attempts to summarize those USAF events in Korea that best illustrate the air war and the application of air power in the...sources, usually to confirm the most signifi- cant events of the air war in Korea. AFHRA historians or archivists who researched and wrote the monthly and

  1. Forced convection heat transfer to air/water vapor mixtures

    NASA Technical Reports Server (NTRS)

    Richards, D. R.; Florschuetz, L. W.

    1984-01-01

    Heat transfer coefficients were measured using both dry and humid air in the same forced convection cooling scheme and were compared using appropriate nondimensional parameters (Nusselt, Prandtl and Reynolds numbers). A forced convection scheme with a complex flow field, two dimensional arrays of circular jets with crossflow, was utilized with humidity ratios (mass ratio of water vapor to air) up to 0.23. The dynamic viscosity, thermal conductivity and specific heat of air, steam and air/steam mixtures are examined. Methods for determining gaseous mixture properties from the properties of their pure components are reviewed as well as methods for determining these properties with good confidence. The need for more experimentally determined property data for humid air is discussed. It is concluded that dimensionless forms of forced convection heat transfer data and empirical correlations based on measurements with dry air may be applied to conditions involving humid air with the same confidence as for the dry air case itself, provided that the thermophysical properties of the humid air mixtures are known with the same confidence as their dry air counterparts.

  2. NASA Earth Observation Systems and Applications for Health and Air Quality

    NASA Technical Reports Server (NTRS)

    Omar, Ali H.

    2015-01-01

    There is a growing body of evidence that the environment can affect human health in ways that are both complex and global in scope. To address some of these complexities, NASA maintains a diverse constellation of Earth observing research satellites, and sponsors research in developing satellite data applications across a wide spectrum of areas. These include environmental health; infectious disease; air quality standards, policies, and regulations; and the impact of climate change on health and air quality in a number of interrelated efforts. The Health and Air Quality Applications fosters the use of observations, modeling systems, forecast development, application integration, and the research to operations transition process to address environmental health effects. NASA has been a primary partner with Federal operational agencies over the past nine years in these areas. This talk presents the background of the Health and Air Quality Applications program, recent accomplishments, and a plan for the future.

  3. 76 FR 65187 - U.S. Air Force Scientific Advisory Board Notice of Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-20

    ... DEPARTMENT OF DEFENSE Department of the Air Force U.S. Air Force Scientific Advisory Board Notice of Meeting AGENCY: US Air Force Scientific Advisory Board, Department of the Air Force, DoD. ACTION: Meeting Cancellation Notice. SUMMARY: Due to difficulties, beyond the control of the U.S. Air Force...

  4. Air Force Journal of Logistics. Volume 29, Number 1, Spring 2005

    DTIC Science & Technology

    2005-01-01

    Air Force, is necessary in the transaction of the public business as required by the law of the department. The Secretary of the Air Force approved the...reengineer Air Force Materiel Command (AFMC) progress and introduce a supplier scorecard. sustainment business processes. This transformation effort, AFMC...empowerment." company. I think one of the things we’re seeing in American However, the business side of the Air Force consistently has business is a resurgence

  5. NASA Dryden's Lori Losey was named NASA's 2004 Videographer of the Year in part for her camera work during NASA's AirSAR 2004 science mission in Chile.

    NASA Image and Video Library

    2004-03-11

    Lori Losey, an employee of Arcata Associates at Dryden, was honored with NASA's 2004 Videographer of the Year award for her work in two of the three categories in the NASA video competition, public affairs and documentation. In the public affairs category, Losey received a first-place citation for her footage of an Earth Science mission that was flown aboard NASA's DC-8 Flying Laboratory in South America last year. Her footage not only depicted the work of the scientists aboard the aircraft and on the ground, but she also obtained spectacular footage of flora and fauna in the mission's target area that helped communicate the environmental research goals of the project. Losey also took first place in the documentation category for her acquisition of technical videography of the X-45A Unmanned Combat Air Vehicle flight tests. The video, shot with a hand-held camera from the rear seat of a NASA F/A-18 mission support aircraft, demonstrated her capabilities in recording precise technical visual data in a very challenging airborne environment. The award was presented to Losey during a NASA reception at the National Association of Broadcasters convention in Las Vegas April 19. A three-judge panel evaluated entries for public affairs, documentation and production videography on professional excellence, technical quality, originality, creativity within restrictions of the project, and applicability to NASA and its mission. Entries consisted of a continuous video sequence or three views of the same subject for a maximum of three minutes duration. Linda Peters, Arcata Associates' Video Systems Supervisor at NASA Dryden, noted, "Lori is a talented videographer who has demonstrated extraordinary abilities with the many opportunities she has received in her career at NASA." Losey's award was the second major NASA video award won by members of the Dryden video team in two years. Steve Parcel took first place in the documentation category last year for his camera and editing

  6. 4. BUILDING 8767, INTERIOR. Looking west. Edwards Air Force ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. BUILDING 8767, INTERIOR. Looking west. - Edwards Air Force Base, Air Force Rocket Propulsion Laboratory, Observation Bunkers for Test Stand 1-A, Test Area 1-120, north end of Jupiter Boulevard, Boron, Kern County, CA

  7. Fixing the Mobility Air Forces New Way

    DTIC Science & Technology

    2013-03-01

    Stenner explains, “Our units and people make outstanding contributions to the national defense. Every day, we leverage a portion of the strategic...calculate the ARC’s contribution to the military’s global reach.78 The cost effectiveness that General Stenner refers to is only one of at least three...Department of the Air Force, Mobilization Planning, 18. 60 Ibid. 61 U.S. Department of the Air Force, Mobilization Planning, 9. 62 Charles E. Stenner

  8. 76 FR 28215 - U.S. Air Force Scientific Advisory Board Notice of Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-16

    ... DEPARTMENT OF DEFENSE Department of the Air Force U.S. Air Force Scientific Advisory Board Notice of Meeting AGENCY: Department of the Air Force, U.S. Air Force Scientific Advisory Board, DoD. ACTION... 102-3.150, the Department of Defense announces that the United States Air Force Scientific Advisory...

  9. 2007 NASA Seal/Secondary Air System Workshop. Volume 1

    NASA Technical Reports Server (NTRS)

    Steinetz, Bruce M.; Hendricks, Robert C.; Delgado, Irebert

    2008-01-01

    The 2007 NASA Seal/Secondary Air System workshop covered the following topics: (i) Overview of NASA's new Orion project aimed at developing a new spacecraft that will fare astronauts to the International Space Station, the Moon, Mars, and beyond; (ii) Overview of NASA's fundamental aeronautics technology project; (iii) Overview of NASA Glenn s seal project aimed at developing advanced seals for NASA's turbomachinery, space, and reentry vehicle needs; (iv) Reviews of NASA prime contractor, vendor, and university advanced sealing concepts, test results, experimental facilities, and numerical predictions; and (v) Reviews of material development programs relevant to advanced seals development. Turbine engine studies have shown that reducing seal leakage as well as high-pressure turbine (HPT) blade tip clearances will reduce fuel burn, lower emissions, retain exhaust gas temperature margin, and increase range. Turbine seal development topics covered include a method for fast-acting HPT blade tip clearance control, noncontacting low-leakage seals, intershaft seals, and a review of engine seal performance requirements for current and future Army engine platforms.

  10. Air Force Officer Specialty Structure. Reviewing the Fundamentals

    DTIC Science & Technology

    2009-01-01

    Corporation, is the U.S. Air Force’s federally funded research and development center for studies and analyses. PAF pro - vides the Air Force with...Shirlene LeBleu for sharing their database and insights about job con - tent and specialty analyses. At the Air Force Manpower Agency, we thank Col...processes. Also, we thank Maj Ernest Wearren (AF/ A1MZ) and Gary Stockinger (AF/A1MX) for sharing their knowledge of the Manpower Pro - gramming Execution

  11. Environmental Assessment for the Use of White Phosphorus Rockets at Melrose Air Force Range, New Mexico

    DTIC Science & Technology

    2003-08-01

    including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing...Tactical Air Controller GIS Geographic Information System H2S hydrogen sulfide H3PO4 orthophosphoric acid H4P2O7 pyrophosphoric acid H5P3O10... Data .............................................................. 3-24 Final EA for White Phosphorus Rocket Use at Melrose Air Force Range, New

  12. Space Nuclear Thermal Propulsion (SNTP) Air Force facility

    NASA Technical Reports Server (NTRS)

    Beck, David F.

    1993-01-01

    The Space Nuclear Thermal Propulsion (SNTP) Program is an initiative within the US Air Force to acquire and validate advanced technologies that could be used to sustain superior capabilities in the area or space nuclear propulsion. The SNTP Program has a specific objective of demonstrating the feasibility of the particle bed reactor (PBR) concept. The term PIPET refers to a project within the SNTP Program responsible for the design, development, construction, and operation of a test reactor facility, including all support systems, that is intended to resolve program technology issues and test goals. A nuclear test facility has been designed that meets SNTP Facility requirements. The design approach taken to meet SNTP requirements has resulted in a nuclear test facility that should encompass a wide range of nuclear thermal propulsion (NTP) test requirements that may be generated within other programs. The SNTP PIPET project is actively working with DOE and NASA to assess this possibility.

  13. GRACE-FO Satellites in a Clean Room at Vandenberg Air Force Base

    NASA Image and Video Library

    2018-03-12

    One of the two Gravity Recovery and Climate Experiment Follow-On (GRACE-FO) satellites and its turntable fixture at the Astrotech Space Operations processing facility at Vandenberg Air Force Base, California. GRACE-FO will extend GRACE's legacy of scientific achievements, which range from tracking mass changes of Earth's polar ice sheets and estimating global groundwater changes, to measuring the mass changes of large earthquakes and inferring changes in deep ocean currents, a driving force in climate. To date, GRACE observations have been used in more than 4,300 research publications. Its measurements provide a unique view of the Earth system and have far-reaching benefits to society, such as providing insights into where global groundwater resources may be shrinking or growing and where dry soils are contributing to drought. GRACE-FO is planned to fly at least five years. https://photojournal.jpl.nasa.gov/catalog/PIA22339

  14. GRACE-FO Satellites in a Clean Room at Vandenberg Air Force Base

    NASA Image and Video Library

    2018-03-12

    The Gravity Recovery and Climate Experiment Follow-On (GRACE-FO) twin satellites, attached to turntable fixtures, at the Astrotech Space Operations processing facility at Vandenberg Air Force Base, California. GRACE-FO will extend GRACE's legacy of scientific achievements, which range from tracking mass changes of Earth's polar ice sheets and estimating global groundwater changes, to measuring the mass changes of large earthquakes and inferring changes in deep ocean currents, a driving force in climate. To date, GRACE observations have been used in more than 4,300 research publications. Its measurements provide a unique view of the Earth system and have far-reaching benefits to society, such as providing insights into where global groundwater resources may be shrinking or growing and where dry soils are contributing to drought. GRACE-FO is planned to fly at least five years. https://photojournal.jpl.nasa.gov/catalog/PIA22341

  15. GRACE-FO Satellites in a Clean Room at Vandenberg Air Force Base

    NASA Image and Video Library

    2018-03-12

    The Gravity Recovery and Climate Experiment Follow-On (GRACE-FO) twin satellites, attached to turntable fixtures, at the Astrotech Space Operations processing facility at Vandenberg Air Force Base, California. GRACE-FO will extend GRACE's legacy of scientific achievements, which range from tracking mass changes of Earth's polar ice sheets and estimating global groundwater changes, to measuring the mass changes of large earthquakes and inferring changes in deep ocean currents, a driving force in climate. To date, GRACE observations have been used in more than 4,300 research publications. Its measurements provide a unique view of the Earth system and have far-reaching benefits to society, such as providing insights into where global groundwater resources may be shrinking or growing and where dry soils are contributing to drought. GRACE-FO is planned to fly at least five years. https://photojournal.jpl.nasa.gov/catalog/PIA22338

  16. GRACE-FO Satellites in a Clean Room at Vandenberg Air Force Base

    NASA Image and Video Library

    2018-03-12

    The Gravity Recovery and Climate Experiment Follow-On (GRACE-FO) twin satellites, attached to turntable fixtures, at the Astrotech Space Operations processing facility at Vandenberg Air Force Base, California. GRACE-FO will extend GRACE's legacy of scientific achievements, which range from tracking mass changes of Earth's polar ice sheets and estimating global groundwater changes, to measuring the mass changes of large earthquakes and inferring changes in deep ocean currents, a driving force in climate. To date, GRACE observations have been used in more than 4,300 research publications. Its measurements provide a unique view of the Earth system and have far-reaching benefits to society, such as providing insights into where global groundwater resources may be shrinking or growing and where dry soils are contributing to drought. GRACE-FO is planned to fly at least five years. https://photojournal.jpl.nasa.gov/catalog/PIA22340

  17. Air Force Health Study. An Epidemiologic Investigation of Health Effects in Air Force Personnel Following Exposure to Herbicides. Volume 1

    DTIC Science & Technology

    1991-03-01

    found to be significantly associated with coordination and a central nervous system index, but cranial nerve function and peripheral nerve status...AD-A237 516 Air Force Health Study A An Epidemiologic In vestigation of Health Effects in Air Force Personnel Following Exposure to Herbicides SAIC...Smeda SCIENCE APPLICATIONS EPIDEMIOLOGY RESEARCH DIVISION INTERNATIONAL CORPORATION ARMSTRONG LABORATORY 8400 Westpark Drive HUMAN SYSTEMS DIVISION

  18. 77 FR 22770 - U.S. Air Force Scientific Advisory Board; Notice of Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-17

    ... extended use of Air Force Space Command space-based sensors. In accordance with 5 U.S.C. 552b, as amended... DEPARTMENT OF DEFENSE Department of the Air Force U.S. Air Force Scientific Advisory Board; Notice of Meeting AGENCY: Department of the Air Force, U.S. Air Force Scientific Advisory Board. ACTION...

  19. Bill Dana in front of HL-10 after flight H-24-37

    NASA Image and Video Library

    1969-09-03

    NASA research pilot Bill Dana after his fourth free flight (1 glide and 3 powered) in the HL-10. This particular flight reached a maximum speed of Mach 1.45. Dana made a total of nine HL-10 flights (1 glide and 8 powered), and his lifting body experience as a whole included several car tow and 1 air tow flights in the M2-F1; 4 glide and 15 powered flights in the M2-F3; and 2 powered flights in the X-24B. He is wearing a pressure suit for protection against the cockpit depressurizing at high altitudes. The air conditioner box held by the ground crewman provides cool air to prevent overheating.

  20. United States Air Force Graduate Student Research Program. 1989 Program Management Report

    DTIC Science & Technology

    1989-12-01

    research at Air Force laboratories /centers. Each assignment is in a subject area and at an Air Force facility mutually agreed upon by the...housing difficult to find, c) 10 weeks too short for research period. June 20, 1989 Astronautics Laboratory Edwards Air Force Base, California June 21...1989 HRL: Operations Training Division Williams Air Force Base, Arizona June 22, 1989 Weapons Laboratory Kirtland Air

  1. TESS SpaceX Rollout

    NASA Image and Video Library

    2018-04-15

    The SpaceX Falcon 9 rocket is rolled out to Space Launch Complex 40 at Cape Canaveral Air Force Station in Florida, with NASA's Transiting Exoplanet Survey Satellite (TESS) secured in its payload fairing. TESS will launch on the Falcon 9 no earlier than 6:51 p.m. EDT on April 18. TESS will search for planets outside of our solar system. The mission will find exoplanets that periodically block part of the light from their host stars, events called transits. The satellite will survey the nearest and brightest stars for two years to search for transiting exoplanets.

  2. Mindfulness over matter > U.S. Air Force > Article Display

    Science.gov Websites

    Speeches Archive Former AF Top 3 Viewpoints and Speeches Air Force Warrior Games 2017 Events 2018 Air Force Strategic Documents Desert Storm 25th Anniversary Observances DoD Warrior Games Portraits in Courage

  3. How To Cover NASA's Chandra X-ray Observatory

    NASA Astrophysics Data System (ADS)

    1999-07-01

    NASA's newest space telescope, the Chandra X-ray Observatory, is scheduled for launch not earlier than July 20, 1999, aboard Space Shuttle mission STS-93. The world's most powerful X-ray observatory, Chandra will join the Hubble Space Telescope and NASA's other great observatories in an unprecedented study of our universe. With its capability to "see" an otherwise invisible but violent, vibrant and ever-changing universe, Chandra will provide insights into the universe's structure and evolution. The following information is designed to assist news media representatives cover launch and activation of the Chandra X-ray Observatory. Covering from the Chandra Control Center NASA will establish a news center at the Chandra X-ray Observatory Operations Control Center in Cambridge, Mass., during the critical period of launch and early activation. The news center will be open from approximately two days prior to launch until the observatory is established in its operating orbit approximately 11 days after launch. The telephone numbers for the news center are: (617) 496-4454 (617) 496-4462 (617) 496-4484 The news center will be staffed around the clock during the Shuttle mission by media relations officers knowledgeable about the Chandra mission and its status. Media covering from the news center will be provided work space and have opportunities for face-to-face interviews with Chandra management, control team members and Chandra scientists. They will be able to participate in daily Chandra status briefings and have access to a special control room viewing area. Additionally, media covering from Cambridge will receive periodic status reports on Chandra and the STS-93 mission, and will be able to participate in interactive televised briefings on the STS-93 mission originating from other NASA centers. While advance accreditation is not required, media interested in covering Chandra from the Operations Control Center should contact Dave Drachlis by telephone at (256) 544

  4. Report on Operations of the Air Force Geophysics Laboratory Infrared Array Spectrometer

    DTIC Science & Technology

    1993-01-25

    AIR FORCE GEOPHYSICS LABORATORY INFRARED ARRAY... LABORATORY Directorate of Geophysics AIR FORCE MATERIEL COMMAND HANSCOM AIR FORCE BASE, MA 01731-3010 93-27655IEEE|EIIE1ENI This technical report has...ACKNOWLEDGMENT We are grateful to the Air Force Office of Scientific Research , especially Henry Radowski. for their financial corn- mitment to this project.

  5. Air Force Support of Army Ground Operations Lessons Learned during World War II, Korea, and Vietnam

    DTIC Science & Technology

    1989-03-06

    Th ;e 8epre--cdin this paper .rv thoe. of ’:ceauhor IDep 2rtmt-nt of Diefense rayo t gr: s hsPcC % FOC, O P 0- C GOUND OP!-txA’TONS ’A NS tTAI.D 11...NOTE S T edder, Wi.th Preudice: The War Memoirs . - y Air Force. Lord Tedaer. rr- 40-43. 2.".~ : X :"~ , M~.c, ’ = A r Power in Three Wars WW 7:, Kora...that FEAF assume operational control over land based Marine air units and over carri.er bjdsed aviation operating over Korea effective as soon as X

  6. Key NASA, USAF and federal officials sign a Memorandum of Agreement on groundwater cleanup

    NASA Technical Reports Server (NTRS)

    1999-01-01

    On the site of Launch Complex 34, key participants sign a Memorandum of Agreement, formalizing cooperative efforts of NASA, the U.S. Air Force, and federal agencies in ground-water cleanup initiatives. Seated at the table, from left to right, are Timothy Oppelt, director, National Risk Management Research Laboratory, U.S. Environmental Protection Agency; Tom Heenan, assistant manager of environmental management, Savannah River Site, U.S. Department of Energy; Col. James Heald, Vice Commander, Air Force Research Laboratory, U.S. Air Force; Gerald Boyd, acting deputy assistant secretary, Office of Science and Technology, U.S. Department of Energy; James Fiore, acting deputy assistant secretary, Office of Environmental Restoration, Department of Energy; Brig. Gen. Randall R. Starbuck, Commander 45th Space Wing, U.S. Air Force; Roy Bridges Jr., director of John F. Kennedy Space Center; Walter Kovalick Jr., Ph.D., director, Technology Innovation Office, U.S. Environmental Protection Agency. NASA, the U.S. Air Force and the agencies have formed a consortium and are participating in a comparative study of three innovative techniques to be used in cleaning a contaminated area of Launch Complex 34. The study will be used to help improve groundwater cleanup processes nationally.

  7. Key NASA, USAF and federal officials sign a Memorandum of Agreement on groundwater cleanup

    NASA Technical Reports Server (NTRS)

    1999-01-01

    On the site of Launch Complex 34, key participants sign a Memorandum of Agreement, formalizing cooperative efforts of NASA, the U.S. Air Force, and federal agencies in ground-water cleanup initiatives. Seated from left to right are Timothy Oppelt, director, National Risk Management Research Laboratory, U.S. Environmental Protection Agency; Tom Heenan, assistant manager of environmental management, Savannah River Site, U.S. Department of Energy; Col. James Heald, Vice Commander, Air Force Research Laboratory, U.S. Air Force; Gerald Boyd, acting deputy assistant secretary, Office of Science and Technology, U.S. Department of Energy; James Fiore, acting deputy assistant secretary, Office of Environmental Restoration, Department of Energy; Brig. Gen. Randall R. Starbuck, Commander 45th Space Wing, U.S. Air Force; Roy Bridges Jr., director of John F. Kennedy Space Center; Walter Kovalick Jr., Ph.D., director, Technology Innovation Office, U.S. Environmental Protection Agency. NASA, the U.S. Air Force and the agencies have formed a consortium and are participating in a comparative study of three innovative techniques to be used in cleaning a contaminated area of Launch Complex 34. The study will be used to help improve groundwater cleanup processes nationally.

  8. Fifth Report of the NASA Advisory Council Task Force on the Shuttle-Mir Rendezvous and Docking Missions

    NASA Technical Reports Server (NTRS)

    1995-01-01

    The NASA Advisory Council Task Force on the Shuttle-Mir rendezvous and docking missions examine a number of specific issues related to the Shuttle-Mir program. Three teams composed of Task Force members and technical advisors were formed to address the follow issues: preliminary results from STS-71 and the status of preparations for STS-74; NASA's presence in Russia; and NASA's automated data processing and telecommunications (ADP/T) infrastructure in Russia. The three review team reports have been included in the fifth report of the Task Force.

  9. 3. SOUTH TEST STAND WITH X15 IN PLACE. A color ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. SOUTH TEST STAND WITH X-15 IN PLACE. A color photograph taken from a lift boom or from atop a truck, looking northwest to NASA hangars in the far distance. Also shows the shop building at left, and two observation bunkers with hatches open; one at right (Bldg. 1933) and the other in front of Liquid Oxygen tank truck at left (Bldg. 1934). - Edwards Air Force Base, X-15 Engine Test Complex, Rogers Dry Lake, east of runway between North Base & South Base, Boron, Kern County, CA

  10. Air Force construction automation/robotics

    NASA Technical Reports Server (NTRS)

    Nease, A. D.; Alexander, E. F.

    1993-01-01

    The Air Force has several missions which generate unique requirements that are being met through the development of construction robotic technology. One especially important mission will be the conduct of Department of Defense (DOD) space activities. Space operations and other missions place construction/repair equipment operators in dangerous environments and potentially harmful situations. Additionally, force reductions require that human resources be leveraged to the maximum extent possible, and more stringent construction repair requirements push for increased automation. To solve these problems, the U.S. Air Force is undertaking a research and development effort at Tyndall AFB, FL, to develop robotic construction/repair equipment. This development effort involves the following technologies: teleoperation, telerobotics, construction operations (excavation, grading, leveling, tool change), robotic vehicle communications, vehicle navigation, mission/vehicle task control architecture, and associated computing environment. The ultimate goal is the fielding of a robotic repair capability operating at the level of supervised autonomy. This paper will discuss current and planned efforts in space construction/repair, explosive ordnance disposal, hazardous waste cleanup, and fire fighting.

  11. SpaceX CRS-14 Prelaunch News Conference

    NASA Image and Video Library

    2018-04-01

    In the Kennedy Space Center’s Press Site auditorium, NASA and industry leaders speak to members of the media during a prelaunch news conference for the SpaceX CRS-14 commercial resupply services mission to the International Space Station. Mike McAleenan, weather officer, 45th Weather Squadron, participates in the news conference. A Dragon spacecraft is scheduled to be launched from Space Launch Complex 40 at Cape Canaveral Air Force Station at 4:30 p.m. EST, on April 2, 2018. The SpaceX Falcon 9 rocket will lift off on the company's 14th Commercial Resupply Services mission to the space station.

  12. NASA Dryden test pilot Michael J. Adams

    NASA Image and Video Library

    1967-03-22

    Air Force test pilot Maj. Michael J. Adams stands beside X-15 ship number one. Adams was selected for the X-15 program in 1966 and made his first flight on Oct. 6, 1966. On Nov. 15, 1967, Adams made his seventh and final X-15 flight. The X-15 launched from the B-52, but during the ascent an electrical problem affected the X-15's control system. The aircraft crashed northwest of Cuddeback Lake, California, causing the death of Adams. He was posthumously awarded Air Force astronaut wings because his final flight exceeded 50 miles in altitude. Adams was the only pilot lost in the 199-flight X-15 program.

  13. 77 FR 5781 - Record of Decision for the Air Space Training Initiative Shaw Air Force Base, South Carolina...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-06

    ... DEPARTMENT OF DEFENSE Department of the Air Force Record of Decision for the Air Space Training Initiative Shaw Air Force Base, South Carolina Final Environmental Impact Statement ACTION: Notice of Availability (NOA) of a Record of Decision (ROD). SUMMARY: On December 9, 2011, the United States Air Force...

  14. Creating Joint Leaders Today for a Successful Air Force Tomorrow (1REV)

    DTIC Science & Technology

    2016-04-01

    armed force in the same grade and competitive category who are serving on, or have served on, the HQ staff of their armed force; and 2. Officers in the...period from the release of the promotion results and the pin-on date. 5 Department of the Air Force, HQ Air Force Personnel Center, Demographics and...2009), Section 619a. 9 ibid, Section 619a. 10 Department of the Air Force, HQ Air Force Personnel Center, A-1 Manpower Division. 11 Phone

  15. Test Capability Enhancements to the NASA Langley 8-Foot High Temperature Tunnel

    NASA Technical Reports Server (NTRS)

    Harvin, S. F.; Cabell, K. F.; Gallimore, S. D.; Mekkes, G. L.

    2006-01-01

    The NASA Langley 8-Foot High Temperature Tunnel produces true enthalpy environments simulating flight from Mach 4 to Mach 7, primarily for airbreathing propulsion and aerothermal/thermo-structural testing. Flow conditions are achieved through a methane-air heater and nozzles producing aerodynamic Mach numbers of 4, 5 or 7 and have exit diameters of 8 feet or 4.5 feet. The 12-ft long free-jet test section, housed inside a 26-ft vacuum sphere, accommodates large test articles. Recently, the facility underwent significant upgrades to support hydrocarbon fueled scramjet engine testing and to expand flight simulation capability. The upgrades were required to meet engine system development and flight clearance verification requirements originally defined by the joint NASA-Air Force X-43C Hypersonic Flight Demonstrator Project and now the Air Force X-51A Program. Enhancements to the 8-Ft. HTT were made in four areas: 1) hydrocarbon fuel delivery; 2) flight simulation capability; 3) controls and communication; and 4) data acquisition/processing. The upgrades include the addition of systems to supply ethylene and liquid JP-7 to test articles; a Mach 5 nozzle with dynamic pressure simulation capability up to 3200 psf, the addition of a real-time model angle-of-attack system; a new programmable logic controller sub-system to improve process controls and communication with model controls; the addition of MIL-STD-1553B and high speed data acquisition systems and a classified data processing environment. These additions represent a significant increase to the already unique test capability and flexibility of the facility, and complement the existing array of test support hardware such as a model injection system, radiant heaters, six-component force measurement system, and optical flow field visualization hardware. The new systems support complex test programs that require sophisticated test sequences and precise management of process fluids. Furthermore, the new systems, such

  16. The United States Air Force Academy: A Bibliography 1954 - 1964

    DTIC Science & Technology

    1966-01-01

    August 1958. 498 Stringer, Roger. " Pro Nobis Astra" (Class of 󈨁 selects its ring), Talon 5;5, May 1960. 499 Trotogott, Pete. Cadet...relate to establishing an air academy. These are not included since they have no specific bearing on the Academy as it now exists. The Library staff...Newsletter AF Times - Air Force Times Air Cond Heat & Ven - Air Conditioning, Heating, and Venti- lating Air Force Airman Air Power Historian

  17. Analysis of Air Force Secondary Power Logistics Solution Contract

    DTIC Science & Technology

    2010-05-21

    IL 62225 SUBJECT: Audit. Analysis of Air Force Secondary Power Logistics Solution Contract, 748th Supply Chain Management Group, Hill Air Fon:r... Power Logis.tics Solution Contnict. 748111 Supply Ch.,in Management Group. !-lill Air FOfC! BII.SI!, UT (Project 02009· DOOOCH·0213.000) I. AUlIctlcd...00-00-2010 to 00-00-2010 4. TITLE AND SUBTITLE Analysis of Air Force Secondary Power Logistics Solution Contract 5a. CONTRACT NUMBER 5b. GRANT

  18. The second X-43A hypersonic research aircraft, shown here in its protective shipping jig, arrives at NASA's Dryden Flight Research Center

    NASA Image and Video Library

    2001-01-31

    The second of three X-43A hypersonic research aircraft, shown here in its protective shipping jig, arrived at NASA's Dryden Flight Research Center, Edwards, California, on January 31, 2001. The arrival of the second X-43A from its manufacturer, MicroCraft, Inc., of Tullahoma, Tenn., followed by only a few days the mating of the first X-43A and its specially-designed adapter to the first stage of a modified Pegasus® booster rocket. The booster, built by Orbital Sciences Corp., Dulles, Va., will accelerate the 12-foot-long, unpiloted research aircraft to a predetermined altitude and speed after the X-43A/booster "stack" is air-launched from NASA's venerable NB-52 mothership. The X-43A will then separate from the rocket and fly a pre-programmed trajectory, conducting aerodynamic and propulsion experiments until it impacts into the Pacific Ocean. Three research flights are planned, two at Mach 7 and one at Mach 10 (seven and 10 times the speed of sound respectively) with the first tentatively scheduled for early summer, 2001. The X-43A is powered by a revolutionary supersonic-combustion ramjet ("scramjet") engine, and will use the underbody of the aircraft to form critical elements of the engine. The forebody shape helps compress the intake airflow, while the aft section acts as a nozzle to direct thrust. The X-43A flights will be the first actual flight tests of an aircraft powered by an air-breathing scramjet engine.

  19. Management and Oversight of Services Acquisition Within the United States Air Force

    DTIC Science & Technology

    2008-12-01

    Air Mobility Command AFDW Air Force District of Washington AFSPC Air Force Space Command AT&L Acquisition Technologies and Logistics CPM ...were commonly performed in industry. The types of services included advertising for Navy recruitment, custodial services on Air Force bases, and on

  20. Ares I-X Range Safety Simulation and Analysis IV and V

    NASA Technical Reports Server (NTRS)

    Merry, Carl M.; Brewer, Joan D.; Dulski, Matt B.; Gimenez, Adrian; Barron, Kyle; Tarpley, Ashley F.; Craig, A. Scott; Beaty, Jim R.; Starr, Brett R.

    2011-01-01

    NASA s Ares I-X vehicle launched on a suborbital test flight from the Eastern Range in Florida on October 28, 2009. NASA generated a Range Safety (RS) product data package to meet the RS trajectory data requirements defined in the Air Force Space Command Manual (AFSPCMAN) 91-710. Some products included were a nominal ascent trajectory, ascent flight envelopes, and malfunction turn data. These products are used by the Air Force s 45th Space Wing (45SW) to ensure public safety and to make flight termination decisions on launch day. Due to the criticality of the RS data, an independent validation and verification (IV&V) effort was undertaken to accompany the data generation analyses to ensure utmost data quality and correct adherence to requirements. As a result of the IV&V efforts, the RS product package was delivered with confidence that two independent organizations using separate simulation software generated data to meet the range requirements and yielded similar results. This document captures the Ares I-X RS product IV&V analysis, including the methodology used to verify inputs, simulation, and output data for certain RS products. Additionally a discussion of lessons learned is presented to capture advantages and disadvantages to the IV&V processes used.