Sample records for air formed passive

  1. Uncertainties in monitoring of SVOCs in air caused by within-sampler degradation during active and passive air sampling

    NASA Astrophysics Data System (ADS)

    Melymuk, Lisa; Bohlin-Nizzetto, Pernilla; Prokeš, Roman; Kukučka, Petr; Přibylová, Petra; Vojta, Šimon; Kohoutek, Jiří; Lammel, Gerhard; Klánová, Jana

    2017-10-01

    Degradation of semivolatile organic compounds (SVOCs) occurs naturally in ambient air due to reactions with reactive trace gases (e.g., ozone, NOx). During air sampling there is also the possibility for degradation of SVOCs within the air sampler, leading to underestimates of ambient air concentrations. We investigated the possibility of this sampling artifact in commonly used active and passive air samplers for seven classes of SVOCs, including persistent organic pollutants (POPs) typically covered by air monitoring programs, as well as SVOCs of emerging concern. Two active air samplers were used, one equipped with an ozone denuder and one without, to compare relative differences in mass of collected compounds. Two sets of passive samplers were also deployed to determine the influence of degradation during longer deployment times in passive sampling. In active air samplers, comparison of the two sampling configurations suggested degradation of particle-bound polycyclic aromatic hydrocarbons (PAHs), with concentrations up to 2× higher in the denuder-equipped sampler, while halogenated POPs did not have clear evidence of degradation. In contrast, more polar, reactive compounds (e.g., organophosphate esters and current use pesticides) had evidence of losses in the sampler with denuder. This may be caused by the denuder itself, suggesting sampling bias for these compounds can be created when typical air sampling apparatuses are adapted to limit degradation. Passive air samplers recorded up to 4× higher concentrations when deployed for shorter consecutive sampling periods, suggesting that within-sampler degradation may also be relevant in passive air monitoring programs.

  2. Equivalent Air Spring Suspension Model for Quarter-Passive Model of Passenger Vehicles

    PubMed Central

    Abid, Haider J.; Chen, Jie; Nassar, Ameen A.

    2015-01-01

    This paper investigates the GENSIS air spring suspension system equivalence to a passive suspension system. The SIMULINK simulation together with the OptiY optimization is used to obtain the air spring suspension model equivalent to passive suspension system, where the car body response difference from both systems with the same road profile inputs is used as the objective function for optimization (OptiY program). The parameters of air spring system such as initial pressure, volume of bag, length of surge pipe, diameter of surge pipe, and volume of reservoir are obtained from optimization. The simulation results show that the air spring suspension equivalent system can produce responses very close to the passive suspension system. PMID:27351020

  3. Equivalent Air Spring Suspension Model for Quarter-Passive Model of Passenger Vehicles.

    PubMed

    Abid, Haider J; Chen, Jie; Nassar, Ameen A

    2015-01-01

    This paper investigates the GENSIS air spring suspension system equivalence to a passive suspension system. The SIMULINK simulation together with the OptiY optimization is used to obtain the air spring suspension model equivalent to passive suspension system, where the car body response difference from both systems with the same road profile inputs is used as the objective function for optimization (OptiY program). The parameters of air spring system such as initial pressure, volume of bag, length of surge pipe, diameter of surge pipe, and volume of reservoir are obtained from optimization. The simulation results show that the air spring suspension equivalent system can produce responses very close to the passive suspension system.

  4. Passivation of uranium towards air corrosion by N 2+ and C + ion implantation

    NASA Astrophysics Data System (ADS)

    Arkush, R.; Mintz, M. H.; Shamir, N.

    2000-10-01

    The passivation of uranium surfaces against air corrosion, by ion implantation processes was studied, using surface analysis methods. Implanting 45 keV N +2 and C + ions produces thin modified surface layers with gradual gradients of the corresponding compounds (i.e., nitrides and carbides, respectively), which avoid the formation of discontinuous interfaces typical to coatings. Such gradual interfaces impart excellent mechanical stability and adhesion to the modified layers, in spite of the large misfit between the metal substrate and the implantation on induced compounds. It turns out that these layers provide an almost absolute protection against air corrosion. A rapid initial stage of oxidation of the modified surface layers takes place, forming very thin protective oxidation zones (1-4 nm thick), which practically stop further air oxidation for years. The mechanism of the initial oxidation stage of the modified layers seems to vary with the type of surface (i.e., either nitrides or carbides). However, in any case the protection ability of the formed oxidation products is excellent, probably due to the close match between these compounds and the underlying nitrides or carbides.

  5. Air pollution in perspective: Health risks of air pollution expressed in equivalent numbers of passively smoked cigarettes.

    PubMed

    van der Zee, Saskia C; Fischer, Paul H; Hoek, Gerard

    2016-07-01

    Although the health effects of long term exposure to air pollution are well established, it is difficult to effectively communicate the health risks of this (largely invisible) risk factor to the public and policy makers. The purpose of this study is to develop a method that expresses the health effects of air pollution in an equivalent number of daily passively smoked cigarettes. Defined changes in PM2.5, nitrogen dioxide (NO2) and Black Carbon (BC) concentration were expressed into number of passively smoked cigarettes, based on equivalent health risks for four outcome measures: Low Birth Weight (<2500g at term), decreased lung function (FEV1), cardiovascular mortality and lung cancer. To describe the strength of the relationship with ETS and air pollutants, we summarized the epidemiological literature using published or new meta-analyses. Realistic increments of 10µg/m(3) in PM2.5 and NO2 concentration and a 1µg/m(3) increment in BC concentration correspond to on average (standard error in parentheses) 5.5 (1.6), 2.5 (0.6) and 4.0 (1.2) passively smoked cigarettes per day across the four health endpoints, respectively. The uncertainty reflects differences in equivalence between the health endpoints and uncertainty in the concentration response functions. The health risk of living along a major freeway in Amsterdam is, compared to a counterfactual situation with 'clean' air, equivalent to 10 daily passively smoked cigarettes.. We developed a method that expresses the health risks of air pollution and the health benefits of better air quality in a simple, appealing manner. The method can be used both at the national/regional and the local level. Evaluation of the usefulness of the method as a communication tool is needed. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  6. Evaluation of Urban Air Quality By Passive Sampling Technique

    NASA Astrophysics Data System (ADS)

    Nunes, T. V.; Miranda, A. I.; Duarte, S.; Lima, M. J.

    Aveiro is a flat small city in the centre of Portugal, close to the Atlantic coast. In the last two decades an intensive development of demographic, traffic and industry growth in the region was observed which was reflected on the air quality degrada- tion. In order to evaluate the urban air quality in Aveiro, a field-monitoring network by passive sampling with high space resolution was implemented. Twenty-four field places were distributed in a area of 3x3 Km2 and ozone and NO2 concentrations were measured. The site distribution density was higher in the centre, 250x250 m2 than in periphery where a 500x500 m2 grid was used. The selection of field places took into consideration the choice criteria recommendation by United Kingdom environmental authorities, and three tubes and a blank tube for each pollutant were used at each site. The sampling system was mounted at 3m from the ground usually profiting the street lampposts. Concerning NO2 acrylic tubes were used with 85 mm of length and an in- ternal diameter of 12mm, where in one of the extremities three steel grids impregnated with a solution of TEA were placed and fixed with a polyethylene end cup (Heal et al., 1999); PFA Teflon tube with 53 mm of length and 9 mm of internal diameter and three impregnated glass filters impregnated with DPE solution fixed by a teflon end cup was used for ozone sampling (Monn and Hargartner, 1990). The passive sampling method for ozone and nitrogen dioxide was compared with continuous measurements, but the amount of measurements wasnSt enough for an accurate calibration and validation of the method. Although this constraint the field observations (June to August 2001) for these two pollutants assign interesting information about the air quality in the urban area. A krigger method of interpolation (Surfer- Golden Software-2000) was applied to field data to obtain isolines distribution of NO2 and ozone concentration for the studied area. Even the used passive sampling method has many

  7. Passive air sampling theory for semivolatile organic compounds.

    PubMed

    Bartkow, Michael E; Booij, Kees; Kennedy, Karen E; Müller, Jochen F; Hawker, Darryl W

    2005-07-01

    The mathematical modelling underlying passive air sampling theory can be based on mass transfer coefficients or rate constants. Generally, these models have not been inter-related. Starting with basic models, the exchange of chemicals between the gaseous phase and the sampler is developed using mass transfer coefficients and rate constants. Importantly, the inter-relationships between the approaches are demonstrated by relating uptake rate constants and loss rate constants to mass transfer coefficients when either sampler-side or air-side resistance is dominating chemical exchange. The influence of sampler area and sampler volume on chemical exchange is discussed in general terms and as they relate to frequently used parameters such as sampling rates and time to equilibrium. Where air-side or sampler-side resistance dominates, an increase in the surface area of the sampler will increase sampling rates. Sampling rates are not related to the sampler/air partition coefficient (K(SV)) when air-side resistance dominates and increase with K(SV) when sampler-side resistance dominates.

  8. Passive Samplers for Investigations of Air Quality: Method Description, Implementation, and Comparison to Alternative Sampling Methods

    EPA Science Inventory

    This Paper covers the basics of passive sampler design, compares passive samplers to conventional methods of air sampling, and discusses considerations when implementing a passive sampling program. The Paper also discusses field sampling and sample analysis considerations to ensu...

  9. Use of mobile and passive badge air monitoring data for NOX and ozone air pollution spatial exposure prediction models.

    PubMed

    Xu, Wei; Riley, Erin A; Austin, Elena; Sasakura, Miyoko; Schaal, Lanae; Gould, Timothy R; Hartin, Kris; Simpson, Christopher D; Sampson, Paul D; Yost, Michael G; Larson, Timothy V; Xiu, Guangli; Vedal, Sverre

    2017-03-01

    Air pollution exposure prediction models can make use of many types of air monitoring data. Fixed location passive samples typically measure concentrations averaged over several days to weeks. Mobile monitoring data can generate near continuous concentration measurements. It is not known whether mobile monitoring data are suitable for generating well-performing exposure prediction models or how they compare with other types of monitoring data in generating exposure models. Measurements from fixed site passive samplers and mobile monitoring platform were made over a 2-week period in Baltimore in the summer and winter months in 2012. Performance of exposure prediction models for long-term nitrogen oxides (NO X ) and ozone (O 3 ) concentrations were compared using a state-of-the-art approach for model development based on land use regression (LUR) and geostatistical smoothing. Model performance was evaluated using leave-one-out cross-validation (LOOCV). Models performed well using the mobile peak traffic monitoring data for both NO X and O 3 , with LOOCV R 2 s of 0.70 and 0.71, respectively, in the summer, and 0.90 and 0.58, respectively, in the winter. Models using 2-week passive samples for NO X had LOOCV R 2 s of 0.60 and 0.65 in the summer and winter months, respectively. The passive badge sampling data were not adequate for developing models for O 3 . Mobile air monitoring data can be used to successfully build well-performing LUR exposure prediction models for NO X and O 3 and are a better source of data for these models than 2-week passive badge data.

  10. Passive inhalation of marijuana smoke: urinalysis and room air levels of delta-9-tetrahydrocannabinol

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cone, E.J.; Johnson, R.E.; Darwin, W.D.

    In two separate studies, 5 drug-free male volunteers with a history of marijuana use were passively exposed to the sidestream smoke of 4 and 16 marijuana cigarettes (2.8% delta-9-tetrahydrocannabinol (THC)) for 1 h each day for 6 consecutive days. A third study was similarly performed with 2 marijuana-naive subjects passively exposed to the smoke of 16 marijuana cigarettes. Passive smoke exposure was conducted in a small, unventilated room. Room air levels of THC and CO were monitored frequently. All urine specimens were collected and analyzed by EMIT d.a.u. assay, Abuscreen radioimmunoassay and GC/MS. The studies show that significant amounts ofmore » THC were absorbed by all subjects at the higher level of passive smoke exposure (eg., smoke from 16 marijuana cigarettes), resulting in urinary excretion of significant amounts of cannabinoid metabolites. However, it seems improbable that subjects would unknowingly tolerate the noxious smoke conditions produced by this exposure. At the lower level of passive marijuana-smoke exposure, specimens tested positive only infrequently or were negative. Room air levels of THC during passive smoke exposure appeared to be the most critical factor in determining whether a subject produced cannabinoid-positive urine specimens.« less

  11. Characterization of two passive air samplers for per- and polyfluoroalkyl substances.

    PubMed

    Ahrens, Lutz; Harner, Tom; Shoeib, Mahiba; Koblizkova, Martina; Reiner, Eric J

    2013-12-17

    Two passive air sampler (PAS) media were characterized under field conditions for the measurement of per- and polyfluoroalkyl substances (PFASs) in the atmosphere. The PASs, consisting of polyurethane foam (PUF) and sorbent-impregnated PUF (SIP) disks, were deployed for over one year in parallel with high volume active air samplers (HV-AAS) and low volume active air samplers (LV-AAS). Samples were analyzed for perfluoroalkyl carboxylic acids (PFCAs), perfluoroalkane sulfonic acids (PFSAs), fluorotelomer alcohols (FTOHs), fluorotelomer methacrylates (FTMACs), fluorotelomer acrylates (FTACs), perfluorooctane sulfonamides (FOSAs), and perfluorooctane sulfonamidoethanols (FOSEs). Sampling rates and the passive sampler medium (PSM)-air partition coefficient (KPSM-A) were calculated for individual PFASs. Sampling rates were similar for PFASs present in the gas phase and particle phase, and the linear sampling rate of 4 m(-3) d(-1) is recommended for calculating effective air sample volumes in the SIP-PAS and PUF-PAS for PFASs except for the FOSAs and FOSEs in the PUF-PAS. SIP disks showed very good performance for all tested PFASs while PUF disks were suitable only for the PFSAs and their precursors. Experiments evaluating the suitability of different isotopically labeled fluorinated depuration compounds (DCs) revealed that (13)C8-perfluorooctanoic acid (PFOA) was suitable for the calculation of site-specific sampling rates. Ambient temperature was the dominant factor influencing the seasonal trend of PFASs.

  12. [Microbial air monitoring in operating theatre: active and passive samplings].

    PubMed

    Pasquarella, C; Masia, M D; Nnanga, Nga; Sansebastiano, G E; Savino, A; Signorelli, C; Veronesi, L

    2004-01-01

    Microbial air contamination was evaluated in 11 operating theatres using active and passive samplings. SAS (Surface Air System) air sampling was used to evaluate cfu/m3 and settle plates were used to measure the index of microbial air contamination (IMA). Samplings were performed at the same time on three different days, at three different times (before, during and after the surgical activity). Two points were monitored (patient area and perimeter of the operating theatre). Moreover, the cfu/m3 were evaluated at the air inlet of the conditioner system. 74.7% of samplings performed at the air inlet and 66.7% of the samplings performed at the patient area before the beginning of the surgical activity (at rest) exceeded the 35 cfu/m3 used as threshold value. 100% of IMA values exceeded the threshold value of 5. Using both active and passive sampling, the microbial contamination was shown to increase significantly during activity. The cfu values were higher at the patient area than at the perimeter of the operating theatre. Mean values of the cfu/m3 during activity at the patient area ranged from a minimum of 61+/-41 cfu/m3 to a maximum of 242+/-136 cfu/m3; IMA values ranged from a minimum of 19+/-10 to a maximum of 129+/-60. 15.2% of samplings performed at the patient area using SAS and 75.8% of samplings performed using settle plates exceeded the threshold values of 180 cfu/m3 and 25 respectively, with a significant difference of the percentages. The highest values were found in the operating theatre with inadequate structural and managerial conditions. These findings confirm that the microbiological quality of air may be considered a mirror of the hygienic conditions of the operating theatre. Settle plates proved to be more sensitive in detecting the increase of microbial air contamination related to conditions that could compromise the quality of the air in operating theatres.

  13. A Passive Sampler for Determination of Nitrogen Dioxide in Ambient Air

    ERIC Educational Resources Information Center

    Xiao, Dan; Lin, Lianzhi; Yuan, Hongyan; Choi, Martin M. F.; Chan, Winghong

    2005-01-01

    A passive sampler that provides a convenient, simple, and fast method for nitrogen dioxide determination is proposed. The experiment can be modified for determinations of other air pollutants like formaldehyde and sulfur dioxide for hands-on experience for students studying environmental pollution problems.

  14. Evaluation of the particle infiltration efficiency of three passive samplers and the PS-1 active air sampler

    NASA Astrophysics Data System (ADS)

    Markovic, Milos Z.; Prokop, Sebastian; Staebler, Ralf M.; Liggio, John; Harner, Tom

    2015-07-01

    The particle infiltration efficiencies (PIE) of three passive and one active air samplers were evaluated under field conditions. A wide-range particle spectrometer operating in the 250-4140 nm range was used to acquire highly temporally resolved particle-number and size distributions for the different samplers compared to ambient air. Overall, three of the four evaluated samplers were able to acquire a representative sample of ambient particles with PIEs of 91.5 ± 13.7% for the GAPS Network sampler, 103 ± 15.5% for the Lancaster University sampler, and 89.6 ± 13.4% for a conventional PS-1 high-volume active air sampler (Hi-Vol). Significantly (p = 0.05) lower PIE of 54 ± 8.0% was acquired for the passive sampler used under the MONET program. These findings inform the comparability and use of passive and active samplers for measuring particle-associated priority chemicals in air.

  15. Passive micromixer using by convection and surface tension effects with air-liquid interface.

    PubMed

    Ju, Jongil; Warrick, Jay

    2013-12-01

    This article describes a passive micromixer that utilizes an air-liquid interface and surface tension effects to enhance fluid mixing via convection and Marangoni effects. Performance of the microfluidic component is tested within a passive-pumping-based device that consists of three microchannels connected in succession using passive micro-mixers. Mixing was quantified at 5 key points along the length of the device using microscope images of patterned streams of Alexa 488 fluorescent-dyed water and pure DI water flowing through the device. The passive micro-mixer mixed fluid 15-20 times more effectively than diffusion between laminar flow streams alone and is a novel micro-mixer embodiment that provides an additional strategy for removing external components from microscale devices for simpler, autonomous operation.

  16. Passive micromixer using by convection and surface tension effects with air-liquid interface

    PubMed Central

    Ju, Jongil; Warrick, Jay

    2014-01-01

    This article describes a passive micromixer that utilizes an air-liquid interface and surface tension effects to enhance fluid mixing via convection and Marangoni effects. Performance of the microfluidic component is tested within a passive-pumping-based device that consists of three microchannels connected in succession using passive micro-mixers. Mixing was quantified at 5 key points along the length of the device using microscope images of patterned streams of Alexa 488 fluorescent-dyed water and pure DI water flowing through the device. The passive micro-mixer mixed fluid 15–20 times more effectively than diffusion between laminar flow streams alone and is a novel micro-mixer embodiment that provides an additional strategy for removing external components from microscale devices for simpler, autonomous operation. PMID:25104979

  17. Assessing polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans in air across Latin American countries using polyurethane foam disk passive air samplers.

    PubMed

    Schuster, Jasmin K; Harner, Tom; Fillmann, Gilberto; Ahrens, Lutz; Altamirano, Jorgelina C; Aristizábal, Beatriz; Bastos, Wanderley; Castillo, Luisa Eugenia; Cortés, Johana; Fentanes, Oscar; Gusev, Alexey; Hernandez, Maricruz; Ibarra, Martín Villa; Lana, Nerina B; Lee, Sum Chi; Martínez, Ana Patricia; Miglioranza, Karina S B; Puerta, Andrea Padilla; Segovia, Federico; Siu, May; Tominaga, Maria Yumiko

    2015-03-17

    A passive air sampling network has been established to investigate polychlorinated dibenzo-p-dioxins (PCDDs) and polychlorinated dibenzofurans (PCDFs) at Global Atmospheric Passive Sampling (GAPS) sites and six additional sites in the Group of Latin American and Caribbean Countries (GRULAC) region. The air sampling network covers background, agricultural, rural, and urban sites. Samples have been collected over four consecutive periods of 6 months, which started in January 2011 [period 1 (January to June 2011), period 2 (July to December 2011), period 3 (January to June 2012), and period 4 (July 2012 to January 2013)]. Results show that (i) the GAPS passive samplers (PUF disk type) and analytical methodology are adequate for measuring PCDD/F burdens in air and (ii) PCDD/F concentrations in air across the GRULAC region are widely variable by almost 2 orders of magnitude. The highest concentrations in air of Σ4-8PCDD/Fs were found at the urban site São Luis (Brazil, UR) (i.e., 2560 fg/m3) followed by the sites in São Paulo (Brazil, UR), Mendoza (Argentina, RU), and Sonora (Mexico, AG) with values of 1690, 1660, and 1610 fg/m3, respectively. Very low concentrations of PCDD/Fs in air were observed at the background site Tapanti (Costa Rica, BA), 10.8 fg/m3. This variability is attributed to differences in site characteristics and potential local/regional sources as well as meteorological influences. The measurements of PCDD/Fs in air agree well with model-predicted concentrations performed using the Global EMEP Multimedia Modeling System (GLEMOS) and emission scenario constructed on the basis of the UNEP Stockholm Convention inventory of dioxin and furan emissions.

  18. The effects of rice canopy on the air-soil exchange of polycyclic aromatic hydrocarbons and organochlorine pesticides using paired passive air samplers.

    PubMed

    Wang, Yan; Wang, Shaorui; Luo, Chunling; Li, Jun; Ming, Lili; Zhang, Gan; Li, Xiangdong

    2015-05-01

    The rice canopy in paddy fields can influence the air-soil exchange of organic chemicals. We used paired passive air samplers to assess the exchange of polycyclic aromatic hydrocarbons (PAHs) and organochlorine pesticides (OCPs) in a paddy field, South China. Levels of OCPs and light PAHs were generally higher under the canopy than above it. We found that the rice canopy can physically obstruct the evaporation of most OCPs and light PAHs, and can also act as a barrier to the gaseous deposition of p,p'-DDT and heavy PAHs. Paddy fields can behave as a secondary source of OCPs and light PAHs. The homolog patterns of these two types of chemical varied slightly between the air below and above the rice canopy, implying contributions of different sources. Paired passive air samplers can be used effectively to assess the in situ air-soil exchange of PAHs and OCPs in subtropical paddy fields. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. AIR PASSIVATION OF METAL HYDRIDE BEDS FOR WASTE DISPOSAL

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Klein, J; R. H. Hsu, R

    2007-07-02

    Metal hydride beds offer compact, safe storage of tritium. After metal hydride beds have reached the end of their useful life, the beds will replaced with new beds and the old beds prepared for disposal. One acceptance criteria for hydride bed waste disposal is that the material inside the bed not be pyrophoric. To determine the pyrophoric nature of spent metal hydride beds, controlled air ingress tests were performed. A simple gas handling manifold fitted with pressure transducers and a calibrated volume were used to introduce controlled quantities of air into a metal hydride bed and the bed temperature risemore » monitored for reactivity with the air. A desorbed, 4.4 kg titanium prototype hydride storage vessel (HSV) produced a 4.4 C internal temperature rise upon the first air exposure cycle and a 0.1 C temperature rise upon a second air exposure. A total of 346 scc air was consumed by the bed (0.08 scc per gram Ti). A desorbed, 9.66 kg LaNi{sub 4.25}Al{sub 0.75} prototype storage bed experienced larger temperature rises over successive cycles of air ingress and evacuation. The cycles were performed over a period of days with the bed effectively passivated after the 12th cycle. Nine to ten STP-L of air reacted with the bed producing both oxidized metal and water.« less

  20. Air sampling procedures to evaluate microbial contamination: a comparison between active and passive methods in operating theatres.

    PubMed

    Napoli, Christian; Marcotrigiano, Vincenzo; Montagna, Maria Teresa

    2012-08-02

    Since air can play a central role as a reservoir for microorganisms, in controlled environments such as operating theatres regular microbial monitoring is useful to measure air quality and identify critical situations. The aim of this study is to assess microbial contamination levels in operating theatres using both an active and a passive sampling method and then to assess if there is a correlation between the results of the two different sampling methods. The study was performed in 32 turbulent air flow operating theatres of a University Hospital in Southern Italy. Active sampling was carried out using the Surface Air System and passive sampling with settle plates, in accordance with ISO 14698. The Total Viable Count (TVC) was evaluated at rest (in the morning before the beginning of surgical activity) and in operational (during surgery). The mean TVC at rest was 12.4 CFU/m3 and 722.5 CFU/m2/h for active and passive samplings respectively. The mean in operational TVC was 93.8 CFU/m3 (SD = 52.69; range = 22-256) and 10496.5 CFU/m2/h (SD = 7460.5; range = 1415.5-25479.7) for active and passive samplings respectively. Statistical analysis confirmed that the two methods correlate in a comparable way with the quality of air. It is possible to conclude that both methods can be used for general monitoring of air contamination, such as routine surveillance programs. However, the choice must be made between one or the other to obtain specific information.

  1. Measure Guideline: Passive Vents

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Berger, David; Neri, Robin

    2016-02-05

    This document addresses the use of passive vents as a source of outdoor air in multifamily buildings. The challenges associated with implementing passive vents and the factors affecting performance are outlined. A comprehensive design methodology and quantified performance metrics are provided. Two hypothetical design examples are provided to illustrate the process. This document is intended to be useful to designers, decision-makers, and contractors implementing passive ventilation strategies. It is also intended to be a resource for those responsible for setting high-performance building program requirements, especially pertaining to ventilation and outdoor air. To ensure good indoor air quality, a dedicated sourcemore » of outdoor air is an integral part of high-performance buildings. Presently, there is a lack of guidance pertaining to the design and installation of passive vents, resulting in poor system performance. This report details the criteria necessary for designing, constructing, and testing passive vent systems to enable them to provide consistent and reliable levels of ventilation air from outdoors.« less

  2. A field evaluation of a SO 2 passive sampler in tropical industrial and urban air

    NASA Astrophysics Data System (ADS)

    Cruz, Lícia P. S.; Campos, Vânia P.; Silva, Adriana M. C.; Tavares, Tania M.

    Passive samplers have been widely used for over 30 years in the measurement of personal exposure to vapours and gases in the workplace. These samplers have just recently been applied in the monitoring of ambient air, which presents concentrations that are normally much smaller than those found in occupational environments. The locally constructed passive sampler was based on gas molecular diffusion through static air layer. The design used minimizes particle interference and turbulent diffusion. After exposure, the SO 2 trapped in impregnated filters with Na 2CO 3 was extracted by means of an ultrasonic bath, for 15 min, using 1.0×10 -2 mol L -1 H 2O 2. It was determined as SO 4-2 by ion chromatography. The performance of the passive sampler was evaluated at different exposure periods, being applied in industrial and urban areas. Method precision as relative standard deviation for three simultaneously applied passive samplers was within 10%. Passive sampling, when compared to active monitoring methods under real conditions, used in urban and industrial areas, showed an overall accuracy of 15%. A statistical comparison with an active method was performed to demonstrate the validity of the passive method. Sampler capacity varied between 98 and 421 μg SO 2 m -3 for exposure periods of one month and one week, respectively, which allows its use in highly polluted areas.

  3. Multi-channel, passive, short-range anti-aircraft defence system

    NASA Astrophysics Data System (ADS)

    Gapiński, Daniel; Krzysztofik, Izabela; Koruba, Zbigniew

    2018-01-01

    The paper presents a novel method for tracking several air targets simultaneously. The developed concept concerns a multi-channel, passive, short-range anti-aircraft defence system based on the programmed selection of air targets and an algorithm of simultaneous synchronisation of several modified optical scanning seekers. The above system is supposed to facilitate simultaneous firing of several self-guided infrared rocket missiles at many different air targets. From the available information, it appears that, currently, there are no passive self-guided seekers that fulfil such tasks. This paper contains theoretical discussions and simulations of simultaneous detection and tracking of many air targets by mutually integrated seekers of several rocket missiles. The results of computer simulation research have been presented in a graphical form.

  4. The passive control of air pollution exposure in Dublin, Ireland: a combined measurement and modelling case study.

    PubMed

    Gallagher, J; Gill, L W; McNabola, A

    2013-08-01

    This study investigates the potential real world application of passive control systems to reduce personal pollutant exposure in an urban street canyon in Dublin, Ireland. The implementation of parked cars and/or low boundary walls as a passive control system has been shown to minimise personal exposure to pollutants on footpaths in previous investigations. However, previous research has been limited to generic numerical modelling studies. This study combines real-time traffic data, meteorological conditions and pollution concentrations, in a real world urban street canyon before and after the implementation of a passive control system. Using a combination of field measurements and numerical modelling this study assessed the potential impact of passive controls on personal exposure to nitric oxide (NO) concentrations in the street canyon in winter conditions. A calibrated numerical model of the urban street canyon was developed, taking into account the variability in traffic and meteorological conditions. The modelling system combined the computational fluid dynamic (CFD) simulations and a semi-empirical equation, and demonstrated a good agreement with measured field data collected in the street canyon. The results indicated that lane distribution, fleet composition and vehicular turbulence all affected pollutant dispersion, in addition to the canyon geometry and local meteorological conditions. The introduction of passive controls displayed mixed results for improvements in air quality on the footpaths for different wind and traffic conditions. Parked cars demonstrated the most comprehensive passive control system with average improvements in air quality of up to 15% on the footpaths. This study highlights the potential of passive controls in a real street canyon to increase dispersion and improve air quality at street level. Copyright © 2013 Elsevier B.V. All rights reserved.

  5. Air sampling procedures to evaluate microbial contamination: a comparison between active and passive methods in operating theatres

    PubMed Central

    2012-01-01

    Background Since air can play a central role as a reservoir for microorganisms, in controlled environments such as operating theatres regular microbial monitoring is useful to measure air quality and identify critical situations. The aim of this study is to assess microbial contamination levels in operating theatres using both an active and a passive sampling method and then to assess if there is a correlation between the results of the two different sampling methods. Methods The study was performed in 32 turbulent air flow operating theatres of a University Hospital in Southern Italy. Active sampling was carried out using the Surface Air System and passive sampling with settle plates, in accordance with ISO 14698. The Total Viable Count (TVC) was evaluated at rest (in the morning before the beginning of surgical activity) and in operational (during surgery). Results The mean TVC at rest was 12.4 CFU/m3 and 722.5 CFU/m2/h for active and passive samplings respectively. The mean in operational TVC was 93.8 CFU/m3 (SD = 52.69; range = 22-256) and 10496.5 CFU/m2/h (SD = 7460.5; range = 1415.5-25479.7) for active and passive samplings respectively. Statistical analysis confirmed that the two methods correlate in a comparable way with the quality of air. Conclusion It is possible to conclude that both methods can be used for general monitoring of air contamination, such as routine surveillance programs. However, the choice must be made between one or the other to obtain specific information. PMID:22853006

  6. First results from the oil sands passive air monitoring network for polycyclic aromatic compounds.

    PubMed

    Schuster, Jasmin K; Harner, Tom; Su, Ky; Mihele, Cristian; Eng, Anita

    2015-03-03

    Results are reported from an ongoing passive air monitoring study for polycyclic aromatic compounds (PACs) in the Athabasca oil sands region in Alberta, Canada. Polyurethane foam (PUF) disk passive air samplers were deployed for consecutive 2-month periods from November 2010 to June 2012 at 17 sites. Samples were analyzed for polycyclic aromatic hydrocarbons (PAHs), alkylated PAHs, dibenzothiophene and its alkylated derivatives (DBTs). Relative to parent PAHs, alkylated PAHs and DBTs are enriched in bitumen and therefore considered to be petrogenic markers. Concentrations in air were in the range 0.03-210 ng/m(3), 0.15-230 ng/m(3) and 0.01-61 ng/m(3) for ∑PAHs, ∑alkylated PAHs and ΣDBTs, respectively. An exponential decline of the PAC concentrations in air with distance from mining areas and related petrogenic sources was observed. The most significant exponential declines were for the alkylated PAHs and DBTs and attributed to their association with mining-related emissions and near-source deposition, due to their lower volatility and greater association with depositing particles. Seasonal trends in concentrations in air for PACs were not observed for any of the compound classes. However, a forest fire episode during April to July 2011 resulted in greatly elevated PAH levels at all passive sampling locations. Alkylated PAHs and DBTs were not elevated during the forest fire period, supporting their association with petrogenic sources. Based on the results of this study, an "Athabasca PAC profile" is proposed as a potential source marker for the oil sands region. The profile is characterized by ∑PAHs/∑Alkylated PAHs = ∼0.2 and ∑PAHs/∑DBTs = ∼5.

  7. Field-based evaluation of semipermeable membrane devices (SPMDs) as passive air samplers of polyaromatic hydrocarbons (PAHs)

    USGS Publications Warehouse

    Bartkow, M.E.; Huckins, J.N.; Muller, J.F.

    2004-01-01

    Semipermeable membrane devices (SPMDs) have been used as passive air samplers of semivolatile organic compounds in a range of studies. However, due to a lack of calibration data for polyaromatic hydrocarbons (PAHs), SPMD data have not been used to estimate air concentrations of target PAHs. In this study, SPMDs were deployed for 32 days at two sites in a major metropolitan area in Australia. High-volume active sampling systems (HiVol) were co-deployed at both sites. Using the HiVol air concentration data from one site, SPMD sampling rates were measured for 12 US EPA Priority Pollutant PAHs and then these values were used to determine air concentrations at the second site from SPMD concentrations. Air concentrations were also measured at the second site with co-deployed HiVols to validate the SPMD results. PAHs mostly associated with the vapour phase (Fluorene to Pyrene) dominated both the HiVol and passive air samples. Reproducibility between replicate passive samplers was satisfactory (CV<20%) for the majority of compounds. Sampling rates ranged between 0.6 and 6.1 m3 d-1. SPMD-based air concentrations were calculated at the second site for each compound using these sampling rates and the differences between SPMD-derived air concentrations and those measured using a HiVol were, on average, within a factor of 1.5. The dominant processes for the uptake of PAHs by SPMDs were also assessed. Using the SPMD method described herein, estimates of particulate sorbed airborne PAHs with five rings or greater were within 1.8-fold of HiVol measured values. ?? 2004 Elsevier Ltd. All rights reserved.

  8. Influence of La addition on the semi-conductive properties of passive films formed on Cu-Ni alloy

    NASA Astrophysics Data System (ADS)

    Leng, Xiang; Zhang, Yadong; Zhou, Qiongyu; Zhang, Yinghui; Wang, Zhigang; Wang, Hang; Yang, Bin

    2018-05-01

    The semi-conductive properties of passive films formed on Cu-Ni alloy and Cu-Ni-La alloy were investigated in 0.1 M NaOH solution, by employing electrochemical impedance spectroscopy (EIS), Mott–Schottky analysis and point defect model (PDM). Results indicate that both the passive films formed on Cu-Ni alloy and Cu-Ni-La alloy display p-type semi-conductive characteristics with cation vacancies in order of magnitude of 1020 cm3. Compared with Cu-Ni alloy, La addition could significantly improve the corrosion resistance, due to a superior barrier passive film formed Cu-Ni-La alloy with a bigger film resistance (R f), increased passive film thickness (L ss) in conjunction with decreased diffusion coefficient (D 0).

  9. Verifying Air Force Weather Passive Satellite Derived Cloud Analysis Products

    NASA Astrophysics Data System (ADS)

    Nobis, T. E.

    2017-12-01

    Air Force Weather (AFW) has developed an hourly World-Wide Merged Cloud Analysis (WWMCA) using imager data from 16 geostationary and polar-orbiting satellites. The analysis product contains information on cloud fraction, height, type and various optical properties including optical depth and integrated water path. All of these products are derived using a suite of algorithms which rely exclusively on passively sensed data from short, mid and long wave imager data. The system integrates satellites with a wide-range of capabilities, from the relatively simple two-channel OLS imager to the 16 channel ABI/AHI to create a seamless global analysis in real time. Over the last couple of years, AFW has started utilizing independent verification data from active sensed cloud measurements to better understand the performance limitations of the WWMCA. Sources utilized include space based lidars (CALIPSO, CATS) and radar (CloudSat) as well as ground based lidars from the Department of Energy ARM sites and several European cloud radars. This work will present findings from our efforts to compare active and passive sensed cloud information including comparison techniques/limitations as well as performance of the passive derived cloud information against the active.

  10. A critical assessment of passive air samplers for per- and polyfluoroalkyl substances

    NASA Astrophysics Data System (ADS)

    Karásková, Pavlína; Codling, Garry; Melymuk, Lisa; Klánová, Jana

    2018-07-01

    Since their inclusion in the Stockholm Convention, there has been a need for global monitoring of perfluorooctane sulfonate (PFOS), its salts and perfluorooctanesulfonyl fluoride (PFOSF), along with other non-listed highly fluorinated compounds. Passive air samplers (PAS) are ideal for geographic coverage of atmospheric monitoring. The most common type of PAS, using polyurethane foam (PUF) as a sorbent, was primarily developed for non-polar semivolatile organic compounds (SVOCs) and are not well-validated for polar substances such as the per- and polyfluoroalkyl substances (PFASs), however, they have been used for some PFASs, particularly PFOS. To evaluate their applicability, PAS were deployed for measurement of PFASs in outdoor and indoor air. Outdoors, two types of PAS, one consisting of PUF and one of XAD-2 resin, were deployed in an 18-week calibration study in parallel with a low-volume active air sampler (LV-AAS) in a suburban area. Indoors, PUF-PAS were similarly deployed over 12 weeks to evaluate their applicability for indoor monitoring. Samples were analysed for perfluoroalkyl carboxylic acids (PFCAs), perfluoroalkyl sulfonates (PFSAs), perfluorooctane sulfonamides (FOSAs), and perfluorooctane sulfonamidoethanols (FOSEs). In outdoor air, 17 out of the 21 PFAS were detected in more than 50% of samples, with a median ∑17PFASs of 18.0 pg m-3 while 20 compounds were detected in indoor air with a median concentration ∑20PFASs of 76.6 pg m-3 using AAS samplers. PFOS was the most common PFAS in the outdoor air while PFBA was most common indoors. Variability between PAS and AAS was observed and comparing gas phase and particle phase separately or in combination did not account for the variation observed. PUF-PAS may still have a valuable use in PFAS monitoring but more work is needed to identify the applicability of passive samplers for ionic PFAS.

  11. Field testing of a new flow-through directional passive air sampler applied to monitoring ambient nitrogen dioxide.

    PubMed

    Lin, Chun; McKenna, Paul; Timmis, Roger; Jones, Kevin C

    2010-07-08

    This paper reports the first field deployment and testing of a directional passive air sampler (DPAS) which can be used to cost-effectively identify and quantify air pollutants and their sources. The sampler was used for ambient nitrogen dioxide (NO(2)) over ten weeks from twelve directional sectors in an urban setting, and tested alongside an automatic chemiluminescent monitor. The time-integrated passive directional results were compared with the directional analysis of the active monitoring results using wind data recorded at a weather station. The DPAS discriminated air pollutant signals directionally. The attempts to derive quantitative data yielded reasonable results--usually within a factor of two of those obtained by the chemiluminescent analyser. Ultimately, whether DPAS approaches are adopted will depend on their reliability, added value and cost. It is argued that added value was obtained here from the DPAS approach applied in a routine monitoring situation, by identifying source sectors. Both the capital and running costs of DPAS were <5% of those for the automatic monitor. It is envisaged that different sorbents or sampling media will enable this rotatable DPAS design to be used for other airborne pollutants. In summary, there are reasons to be optimistic that directional passive air sampling, together with careful interpretation of results, will be of added value to air quality practitioners in future.

  12. Comparison of Lichen, Conifer Needles, Passive Air Sampling Devices, and Snowpack as Passive Sampling Media to Measure Semi-Volatile Organic Compounds in Remote Atmospheres

    PubMed Central

    SCHRLAU, JILL E.; GEISER, LINDA; HAGEMAN, KIMBERLY J.; LANDERS, DIXON H.

    2011-01-01

    A wide range of semi-volatile organic compounds (SOCs), including pesticides and polycyclic aromatic hydrocarbons (PAHs), were measured in lichen, conifer needles, snowpack and XAD-based passive air sampling devices (PASDs) collected from 19 different U.S. national parks in order to compare the magnitude and mechanism of SOC accumulation in the different passive sampling media. Lichen accumulated the highest SOC concentrations, in part because of its long (and unknown) exposure period, while PASDs accumulated the lowest concentrations. However, only the PASD SOC concentrations can be used to calculate an average atmospheric gas-phase SOC concentration because the sampling rates are known and the media is uniform. Only the lichen and snowpack SOC accumulation profiles were statistically significantly correlated (r = 0.552, p-value <0.0001) because they both accumulate SOCs present in the atmospheric particle-phase. This suggests that needles and PASDs represent a different composition of the atmosphere than lichen and snowpack and that the interpretation of atmospheric SOC composition is dependent on the type of passive sampling media used. All four passive sampling media preferentially accumulated SOCs with relatively low air-water partition coefficients, while snowpack accumulated SOCs with higher log KOA values compared to the other media. Lichen accumulated more SOCs with log KOA > 10 relative to needles and showed a greater accumulation of particle-phase PAHs. PMID:22087860

  13. Passivation Behavior of Fe-Based Amorphous Coatings Prepared by High-Velocity Air/Oxygen Fuel Processes

    NASA Astrophysics Data System (ADS)

    Ma, H. R.; Li, J. W.; Chang, C. T.; Wang, X. M.; Li, R. W.

    2017-12-01

    Corrosion resistance and passivation behavior of Fe63Cr8Mo3.5Ni5P10B4C4Si2.5 amorphous coatings prepared by the activated combustion high-velocity air fuel (AC-HVAF) and high-velocity oxygen fuel (HVOF) processes have been studied in detail by cyclic potentiodynamic polarization, electrochemical impedance spectroscopy, cathodic polarization and Mott-Schottky approach. The AC-HVAF coating shows higher corrosion resistance than the HVOF coating in 3.5 wt.% NaCl solution, as evidenced by its lower corrosion current density and passive current density. It is found that the superior corrosion resistance of the AC-HVAF coating is attributed to the enhanced formation of a dense passive film with less defective structure, higher pitting resistance and passivity stability, as well as stronger repassivity.

  14. Urban Form, Air Pollution, and Health.

    PubMed

    Hankey, Steve; Marshall, Julian D

    2017-12-01

    Urban form can impact air pollution and public health. We reviewed health-related articles that assessed (1) the relationships among urban form, air pollution, and health as well as (2) aspects of the urban environment (i.e., green space, noise, physical activity) that may modify those relationships. Simulation and empirical studies demonstrate an association between compact growth, improved regional air quality, and health. Most studies are cross-sectional and focus on connections between transportation emissions and land use. The physical and mental health impacts of green space, public spaces that promote physical activity, and noise are well-studied aspects of the urban environment and there is evidence that these factors may modify the relationship between air pollution and health. Urban form can support efforts to design clean, health-promoting cities. More work is needed to operationalize specific strategies and to elucidate the causal pathways connecting various aspects of health.

  15. New analytical solutions for chemical evolution models: characterizing the population of star-forming and passive galaxies

    NASA Astrophysics Data System (ADS)

    Spitoni, E.; Vincenzo, F.; Matteucci, F.

    2017-03-01

    Context. Analytical models of chemical evolution, including inflow and outflow of gas, are important tools for studying how the metal content in galaxies evolves as a function of time. Aims: We present new analytical solutions for the evolution of the gas mass, total mass, and metallicity of a galactic system when a decaying exponential infall rate of gas and galactic winds are assumed. We apply our model to characterize a sample of local star-forming and passive galaxies from the Sloan Digital Sky Survey data, with the aim of reproducing their observed mass-metallicity relation. Methods: We derived how the two populations of star-forming and passive galaxies differ in their particular distribution of ages, formation timescales, infall masses, and mass loading factors. Results: We find that the local passive galaxies are, on average, older and assembled on shorter typical timescales than the local star-forming galaxies; on the other hand, the star-forming galaxies with higher masses generally show older ages and longer typical formation timescales compared than star-forming galaxies with lower masses. The local star-forming galaxies experience stronger galactic winds than the passive galaxy population. Exploring the effect of assuming different initial mass functions in our model, we show that to reproduce the observed mass-metallicity relation, stronger winds are requested if the initial mass function is top-heavy. Finally, our analytical models predict the assumed sample of local galaxies to lie on a tight surface in the 3D space defined by stellar metallicity, star formation rate, and stellar mass, in agreement with the well-known fundamental relation from adopting gas-phase metallicity. Conclusions: By using a new analytical model of chemical evolution, we characterize an ensemble of SDSS galaxies in terms of their infall timescales, infall masses, and mass loading factors. Local passive galaxies are, on average, older and assembled on shorter typical

  16. Investigation of passive films formed on the surface of alloy 690 in borate buffer solution

    NASA Astrophysics Data System (ADS)

    Jinlong, Lv; Tongxiang, Liang; Chen, Wang; Wenli, Guo

    2015-10-01

    The passive film formed on the surface of the alloy 690 in borate buffer solution was studied by potentiodynamic curves and electrochemical impedance spectroscopy. With the increasing of the passivation potential, the corrosion resistance of the alloy 690 reduced. Moreover, the corrosion resistance of the passive film was the lowest in the vicinity of 0.6 VSCE. These results were supported by XPS and Mott-Schottky analyses. The corrosion resistance of the alloy 690 increased with the increasing of passivated potential in borate buffer solution with chloride ion. The chloride ion decreased corrosion resistance of the alloy 690 according to point defect model.

  17. Observations on persistent organic pollutants in indoor and outdoor air using passive polyurethane foam samplers

    NASA Astrophysics Data System (ADS)

    Bohlin, Pernilla; Jones, Kevin C.; Tovalin, Horacio; Strandberg, Bo

    Air quality data of persistent organic pollutants (POPs) indoors and outdoors are sparse or lacking in several parts of the world, often hampered by the cost and inconvenience of active sampling techniques. Cheap and easy passive air sampling techniques are therefore helpful for reconnaissance surveys. As a part of the Megacity Initiative: Local and Global Research Observations (MILAGRO) project in Mexico City Metropolitan Area in 2006, a range of POPs (polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs), organochlorine pesticides (OCPs), and polybrominated diphenyl ethers (PBDEs)) were analyzed in polyurethane foam (PUF) disks used as passive samplers in indoor and outdoor air. Results were compared to those from samplers deployed simultaneously in Gothenburg (Sweden) and Lancaster (United Kingdom). Using sampling rates suggested in the literature, the sums of 13 PAHs in the different sites were estimated to be 6.1-180 ng m -3, with phenanthrene as the predominant compound. Indoor PAH levels tended to be higher in Gothenburg and outdoor levels higher in Mexico City. The sum of PCBs ranged 59-2100 ng m -3, and seemed to be highest indoors in Gothenburg and Lancaster. PBDE levels (sum of seven) ranged 0.68-620 ng m -3, with the highest levels found in some indoor locations. OCPs (i.e. DDTs, HCHs, and chlordanes) were widely dispersed both outdoors and indoors at all three studied areas. In Gothenburg all POPs tended to be higher indoors than outdoors, while indoor and outdoor levels in Mexico City were similar. This could be due to the influence of indoor and outdoor sources, air exchange rates, and lifestyle factors. The study demonstrates how passive samplers can provide quick and cheap reconnaissance data simultaneously at many locations which can shed light on sources and other factors influencing POP levels in air, especially for the gaseous fractions.

  18. Calibration of polydimethylsiloxane and XAD-Pocket passive air samplers (PAS) for measuring gas- and particle-phase SVOCs

    NASA Astrophysics Data System (ADS)

    Okeme, Joseph O.; Saini, Amandeep; Yang, Congqiao; Zhu, Jiping; Smedes, Foppe; Klánová, Jana; Diamond, Miriam L.

    2016-10-01

    Polydimethylsiloxane (PDMS) has seen wide use as the stationary phase of gas chromatographic columns, a passive sampler in water, and recently as a personal exposure sampler, while styrene divinyl-benzene copolymer (XAD) has been used extensively as a passive air sampler outdoors and indoors. We have introduced PDMS and XAD-Pocket as new indoor passive air samplers (PASs). The XAD-Pocket was designed to maximize the surface area-to-volume ratio of XAD and to minimize obstruction of air flow by the sampler housing. Methods were developed to expedite the use of these PASs for measuring phthalates, novel brominated flame-retardants (NFRs) and polybrominated diphenyl ethers (PBDEs) indoors. Sampling rates, Rs, (m3 day-1), were measured during a 7-week calibration study. Variability within and between analyte groups was not statistically significant. As a result, generic values of 0.8 ± 0.4 and 0.5 ± 0.3 m3 day-1 dm-2 are recommended for PDMS and XAD-Pocket for a 50-day deployment time, respectively. PDMS has a higher uptake rate and is easier to use than XAD-Pocket.

  19. Using a Ventilation Controller to Optimize Residential Passive Ventilation For Energy and Indoor Air Quality

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Turner, William; Walker, Iain

    One way to reduce the energy impact of providing residential ventilation is to use passive and hybrid systems. However, these passive and hybrid (sometimes called mixed-mode) systems must still meet chronic and acute health standards for ventilation. This study uses a computer simulation approach to examine the energy and indoor air quality (IAQ) implications of passive and hybrid ventilation systems, in 16 California climate zones. Both uncontrolled and flow controlled passive stacks are assessed. A new hybrid ventilation system is outlined that uses an intelligent ventilation controller to minimise energy use, while ensuring chronic and acute IAQ standards are met.more » ASHRAE Standard 62.2-2010 – the United States standard for residential ventilation - is used as the chronic standard, and exposure limits for PM 2.5, formaldehyde and NO 2 are used as the acute standards.The results show that controlled passive ventilation and hybrid ventilation can be used in homes to provide equivalent IAQ to continuous mechanical ventilation, for less use of energy.« less

  20. Passive samplers and community science in regional air quality measurement, education and communication.

    PubMed

    DeForest Hauser, Cindy; Buckley, Alexandra; Porter, Juliana

    2015-08-01

    Charlotte, in Mecklenburg County, North Carolina, was ranked in the top ten cities with the worst air quality for ozone in the United States by the American Lung Association from 2009 to 2011. Nearby counties that may experience similar air quality do not have state or county monitors. This study utilized NOx and ozone Ogawa passive samplers and community scientists to monitor air quality in five counties surrounding Charlotte and increase public engagement in air quality issues. Community scientists deployed samplers weekly at a residential site within each county. Samples were analyzed using spectrophotometry and ion chromatography. Elevated NOx concentrations were observed in four of the five counties relative to those with existing monitors. Ozone concentrations showed little county to county variation, except Iredell and Cabarrus which had higher concentrations than Rowan. Community involvement in this work led to an increase in local dissemination of the results, thus increasing air quality awareness. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. Multistatic GNSS Receiver Array for Passive Air Surveillance

    NASA Astrophysics Data System (ADS)

    Wachtl, Stefan; Koch, Volker; Westphal, Robert; Schmidt, Lorenz-Peter

    2016-03-01

    The performance of a passive air surveillance sensor based on Global Navigation Satellite Systems (GNSS) is mainly limited by the receiver noise efficiency, the achievable signal processing gain and the radar cross section (RCS) of an airplane. For surveillance applications large detection ranges as well as a high probability of detection are crucial parameters. Due to the very low GNSS signal powers received on the earth's surface, high radar cross sections are mandatory to achieve detection ranges for airplanes at some kilometers distance. This paper will discuss a multistatic transmitter and receiver arrangement, which is indispensable to get a reasonable detection rate with respect to a hemispheric field of view. The strong performance dependency of such a sensor on the number of transmitters and receivers will be shown by means of some exemplary simulation results.

  2. Are passive smoking, air pollution and obesity a greater mortality risk than major radiation incidents?

    PubMed Central

    Smith, Jim T

    2007-01-01

    Background Following a nuclear incident, the communication and perception of radiation risk becomes a (perhaps the) major public health issue. In response to such incidents it is therefore crucial to communicate radiation health risks in the context of other more common environmental and lifestyle risk factors. This study compares the risk of mortality from past radiation exposures (to people who survived the Hiroshima and Nagasaki atomic bombs and those exposed after the Chernobyl accident) with risks arising from air pollution, obesity and passive and active smoking. Methods A comparative assessment of mortality risks from ionising radiation was carried out by estimating radiation risks for realistic exposure scenarios and assessing those risks in comparison with risks from air pollution, obesity and passive and active smoking. Results The mortality risk to populations exposed to radiation from the Chernobyl accident may be no higher than that for other more common risk factors such as air pollution or passive smoking. Radiation exposures experienced by the most exposed group of survivors of Hiroshima and Nagasaki led to an average loss of life expectancy significantly lower than that caused by severe obesity or active smoking. Conclusion Population-averaged risks from exposures following major radiation incidents are clearly significant, but may be no greater than those from other much more common environmental and lifestyle factors. This comparative analysis, whilst highlighting inevitable uncertainties in risk quantification and comparison, helps place the potential consequences of radiation exposures in the context of other public health risks. PMID:17407581

  3. Characterization of polyurethane foam (PUF) and sorbent impregnated PUF (SIP) disk passive air samplers for measuring organophosphate flame retardants.

    PubMed

    Abdollahi, Atousa; Eng, Anita; Jantunen, Liisa M; Ahrens, Lutz; Shoeib, Mahiba; Parnis, J Mark; Harner, Tom

    2017-01-01

    This study aimed to characterize the uptake of organophosphate esters (OPEs) by polyurethane foam (PUF) and sorbent-impregnated polyurethane foam (SIP) disk passive air samplers (PAS). Atmospheric OPE concentrations were monitored with high-volume active air samplers (HV-AAS) that were co-deployed with passive air samplers. Samples were analyzed for tris(2-chloroisopropyl) phosphate (TCIPP), tri(phenyl) phosphate (TPhP), tris(2-chloroethyl) phosphate (TCEP), and tris(2,3-dichloropropyl) phosphate (TDCIPP). The mean concentration of ∑OPEs in air was 2650 pg/m 3 for the HV-AAS. Sampling rates and the passive sampler medium (PSM)-air partition coefficient (K PSM-Air ) were calculated for individual OPEs. The average calculated sampling rates (R) for the four OPEs were 3.6 ± 1.2 and 4.2 ± 2.0 m 3 /day for the PUF and SIP disks, respectively, and within the range of the recommended default value of 4 ± 2 m 3 /day. Since most of the OPEs remained in the linear uptake phase during the study, COSMO-RS solvation theory and an oligomer-based model were used to estimate K PUF-Air for the OPEs. The estimated values of log K PUF-Air were 7.45 (TCIPP), 9.35 (TPhP), 8.44 (TCEP), and 9.67 (TDCIPP). Finally, four configurations of the PUF and SIP disks were tested by adjusting the distance of the gap opening between the upper and lower domes of the sampler housing: i.e. 2 cm, 1 cm, no gap and 1 cm overlap. The sampling rate did not differ significantly between these four configurations (p < 0.05). Crown Copyright © 2016. Published by Elsevier Ltd. All rights reserved.

  4. Experimental Studies of Active and Passive Flow Control Techniques Applied in a Twin Air-Intake

    PubMed Central

    Joshi, Shrey; Jindal, Aman; Maurya, Shivam P.; Jain, Anuj

    2013-01-01

    The flow control in twin air-intakes is necessary to improve the performance characteristics, since the flow traveling through curved and diffused paths becomes complex, especially after merging. The paper presents a comparison between two well-known techniques of flow control: active and passive. It presents an effective design of a vortex generator jet (VGJ) and a vane-type passive vortex generator (VG) and uses them in twin air-intake duct in different combinations to establish their effectiveness in improving the performance characteristics. The VGJ is designed to insert flow from side wall at pitch angle of 90 degrees and 45 degrees. Corotating (parallel) and counterrotating (V-shape) are the configuration of vane type VG. It is observed that VGJ has the potential to change the flow pattern drastically as compared to vane-type VG. While the VGJ is directed perpendicular to the side walls of the air-intake at a pitch angle of 90 degree, static pressure recovery is increased by 7.8% and total pressure loss is reduced by 40.7%, which is the best among all other cases tested for VGJ. For bigger-sized VG attached to the side walls of the air-intake, static pressure recovery is increased by 5.3%, but total pressure loss is reduced by only 4.5% as compared to all other cases of VG. PMID:23935422

  5. NEW APPLICATION OF PASSIVE SAMPLING DEVICES FOR ASSESSMENT OF RESPIRATORY EXPOSURE TO PESTICIDES IN INDOOR AIR

    EPA Science Inventory

    The United States Environmental Protection Agency (EPA) has long maintained an interest in potential applications of passive sampling devices (PSDs) for estimating the concentrations of various pollutants in air. Typically PSDs were designed for the workplace monitoring of vola...

  6. Tropospheric Passive Remote Sensing

    NASA Technical Reports Server (NTRS)

    Keafer, L. S., Jr. (Editor)

    1982-01-01

    The long term role of airborne/spaceborne passive remote sensing systems for tropospheric air quality research and the identification of technology advances required to improve the performance of passive remote sensing systems were discussed.

  7. Polyurethane foam (PUF) disks passive air samplers: wind effect on sampling rates.

    PubMed

    Tuduri, Ludovic; Harner, Tom; Hung, Hayley

    2006-11-01

    Different passive sampler housings were evaluated for their wind dampening ability and how this might translate to variability in sampler uptake rates. Polyurethane foam (PUF) disk samplers were used as the sampling medium and were exposed to a PCB-contaminated atmosphere in a wind tunnel. The effect of outside wind speed on PUF disk sampling rates was evaluated by exposing polyurethane foam (PUF) disks to a PCB-contaminated air stream in a wind tunnel over air velocities in the range 0 to 1.75 m s-1. PUF disk sampling rates increased gradually over the range 0-0.9 m s-1 at approximately 4.5-14.6 m3 d-1 and then increased sharply to approximately 42 m3 d-1 at approximately 1.75 m s-1 (sum of PCBs). The results indicate that for most field deployments the conventional 'flying saucer' housing adequately dampens the wind effect and will yield approximately time-weighted air concentrations.

  8. Comparison of Passive and Active Air Sampling (PAAS) Methods for PCBs – A Pilot Study in New York City Schools

    EPA Science Inventory

    PCBs were used extensively in school building materials (caulk and lighting fixture ballasts) during the approximate period of 1950-1978. Most of the schools built nationwide during this period have not had indoor air sampling conducted for PCBs. Passive air sampling holds promi...

  9. Polychlorinated naphthalenes in Great Lakes air: assessing spatial trends and combustion inputs using PUF disk passive air samplers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tom Harner; Mahiba Shoeib; Todd Gouin

    2006-09-01

    Passive air samplers made from polyurethane foam (PUF) disks housed in stainless steel chambers were deployed over four seasons during 2002-2003, at 15 sites in the Laurentian Great lakes, to assess spatial and temporal trends of polychlorinated naphthalenes (PCNs). Sampling rates, determined using depuration compounds pre-spiked into the PUF disk prior to exposure, were, on average, 2.9 {+-} 1.1 m{sup 3} d{sup -1}, consistent with previous studies employing these samplers. PCN air concentrations exhibited strong urban-rural differences - typically a few pg m{sup 3} at rural sites and an order of magnitude higher at urban sites (Toronto, 12-31 pg m{supmore » -3} and Chicago, 13-52 pg m{sup -3}). The high concentrations at urban sites were attributed to continued emissions of historically used technical PCN. Contributions from combustion-derived PCNs seemed to be more important at rural locations where congeners 24 and 50, associated with wood and coal burning, were elevated. Congener 66/67, associated with incineration and other industrial thermal processes, was elevated at two sites and explained by nearby and/or upwind sources. Probability density maps were constructed for each site and for every integration period were shown to be a useful complement to seasonally integrated passive sampling data to resolve source-receptor relationship for PCNs and other pollutants. 25 refs., 7 figs., 1 tabs.« less

  10. Calibration of two passive air samplers for monitoring phthalates and brominated flame-retardants in indoor air.

    PubMed

    Saini, Amandeep; Okeme, Joseph O; Goosey, Emma; Diamond, Miriam L

    2015-10-01

    Two passive air samplers (PAS), polyurethane foam (PUF) disks and Sorbent Impregnated PUF (SIP) disks, were characterized for uptake of phthalates and brominated flame-retardants (BFRs) indoors using fully and partially sheltered housings. Based on calibration against an active low-volume air sampler for gas- and particle-phase compounds, we recommend generic sampling rates of 3.5±0.9 and 1.0±0.4 m(3)/day for partially and fully sheltered housing, respectively, which applies to gas-phase phthalates and BFRs as well as particle-phase DEHP (the later for the partially sheltered PAS). For phthalates, partially sheltered SIPs are recommended. Further, we recommend the use of partially sheltered PAS indoors and a deployment period of one month. The sampling rate for the partially sheltered PUF and SIP of 3.5±0.9 m(3)/day is indistinguishable from that reported for fully sheltered PAS deployed outdoors, indicating the role of the housing outdoors to minimize the effect of variable wind velocities on chemical uptake, versus the partially sheltered PAS deployed indoors to maximize chemical uptake where air flow rates are low. Copyright © 2015. Published by Elsevier Ltd.

  11. Air quality assessment in Southern Kuwait using diffusive passive samplers.

    PubMed

    Ramadan, A A

    2010-01-01

    Measurements of fortnightly average concentrations of NO, NO2, SO2, H2S, NH3, and volatile organic compounds (VOCs) (aromatics=benzene, toluene, o-xylene, m+p-xylene, ethyl benzene; non-aromatics=nonane and octane) were carried out in the period from 26/10/05 to 24/11/05 at 20 points in the southern part of Kuwait as part of a baseline environmental impact assessment study requested by Kuwait National Petroleum Company. Two waves of triplicate diffusive passive samplers were used. A high volume air sampler was used to measure PM10 too. During the sampling period, the wind was observed to be mainly from the west and northwest with an average of 4.28 m/s. The consistency of the results allowed the production of spatial distribution maps of the pollutants measured and consequently the comparison between levels of air pollution at different locations. A comparison between the measured concentrations and the applicable air quality standards promulgated by Kuwait Environment Public Authority (KEPA) showed that those compounds had low concentrations compared to both industrial and residential KEPA standards. For other compounds which are not covered by KEPA standards, the results were compared with relevant limits of US Environment Protect Agency (USEPA) and US Department of Labor, Occupational Safety and Health Administration. The comparison showed that the measured compounds had low concentrations compared to the existing standards and, accordingly, no violation of air quality standards is reported.

  12. Determination of trichloroanisole and trichlorophenol in wineries' ambient air by passive sampling and thermal desorption-gas chromatography coupled to tandem mass spectrometry.

    PubMed

    Camino-Sánchez, F J; Bermúdez-Peinado, R; Zafra-Gómez, A; Ruíz-García, J; Vílchez-Quero, J L

    2015-02-06

    The present paper describes the calibration of selected passive samplers used in the quantitation of trichlorophenol and trichloroanisole in wineries' ambient air, by calculating the corresponding sampling rates. The method is based on passive sampling with sorbent tubes and involves thermal desorption-gas chromatography-triple quadrupole mass spectrometry analysis. Three commercially available sorbents were tested using sampling cartridges with a radial design instead of axial ones. The best results were found for Tenax TA™. Sampling rates (R-values) for the selected sorbents were determined. Passive sampling was also used for accurately determining the amount of compounds present in the air. Adequate correlation coefficients between the mass of the target analytes and exposure time were obtained. The proposed validated method is a useful tool for the early detection of trichloroanisole and its precursor trichlorophenol in wineries' ambient air while avoiding contamination of wine or winery facilities. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. A passive air sampler for characterizing the vertical concentration profile of gaseous phase polycyclic aromatic hydrocarbons in near soil surface air.

    PubMed

    Zhang, Yuzhong; Deng, Shuxing; Liu, Yanan; Shen, Guofeng; Li, Xiqing; Cao, Jun; Wang, Xilong; Reid, Brian; Tao, Shu

    2011-03-01

    Air-soil exchange is an important process governing the fate of polycyclic aromatic hydrocarbons (PAHs). A novel passive air sampler was designed and tested for measuring the vertical concentration profile of 4 low molecular weight PAHs in gaseous phase (PAH(LMW4)) in near soil surface air. Air at various heights from 5 to 520 mm above the ground was sampled by polyurethane foam disks held in down-faced cartridges. The samplers were tested at three sites: A: an extremely contaminated site, B: a site near A, and C: a background site on a university campus. Vertical concentration gradients were revealed for PAH(LMW4) within a thin layer close to soil surface at the three sites. PAH concentrations either decreased (Site A) or increased (Sites B and C) with height, suggesting either deposition to or evaporation from soils. The sampler is a useful tool for investigating air-soil exchange of gaseous phase semi-volatile organic chemicals. Copyright © 2010 Elsevier Ltd. All rights reserved.

  14. Use of dust fall filters as passive samplers for metal concentrations in air for communities near contaminated mine tailings

    PubMed Central

    Beamer, P.I.; Sugeng, A. J.; Kelly, M.D.; Lothrop, N.; Klimecki, W.; Wilkinson, S.T.; Loh, M.

    2014-01-01

    Mine tailings are a source of metal exposures in many rural communities. Multiple air samples are necessary to assess the extent of exposures and factors contributing to these exposures. However, air sampling equipment is costly and requires trained personnel to obtain measurements, limiting the number of samples that can be collected. Simple, low-cost methods are needed to allow for increased sample collection. The objective of our study was to assess if dust fall filters can serve as passive air samplers and be used to characterize potential exposures in a community near contaminated mine tailings. We placed filters in cylinders, concurrently with active indoor air samplers, in 10 occupied homes. We calculated an estimated flow rate by dividing the mass on each dust fall filter by the bulk air concentration and the sampling duration. The mean estimated flow rate for dust fall filters was significantly different during sampling periods with precipitation. The estimated flow rate was used to estimate metal concentration in the air of these homes, as well as in 31 additional homes in another rural community impacted by contaminated mine tailings. The estimated air concentrations had a significant linear association with the measured air concentrations for beryllium, manganese and arsenic (p<0.05), whose primary source in indoor air is resuspended soil from outdoors. In the second rural community, our estimated metal concentrations in air were comparable to active air sampling measurements taken previously. This passive air sampler is a simple low-cost method to assess potential exposures near contaminated mining sites. PMID:24469149

  15. FIELD METHOD COMPARISON BETWEEN PASSIVE AIR SAMPLERS AND CONTINUOUS MONITORS FOR VOLATILE ORGANIC COMPOUNDS AND NO2 IN EL PASO, TEXAS, USA

    EPA Science Inventory

    Passive sampling of gas-phase air toxics and criteria pollutants has become an attractive monitoring method in human exposure studies due to the relatively low sampling cost and ease of use. This study evaluates the performance of Model 3300 Ogawa(TM) Passive NO2 Samplers and 3...

  16. Evaluation of passive diffusion bag and dialysis samplers in selected wells at Hickam Air Force Base, Hawaii, July 2001

    USGS Publications Warehouse

    Vroblesky, Don A.; Pravecek, Tasha

    2002-01-01

    Field comparisons of chemical concentrations obtained from dialysis samplers, passive diffusion bag samplers, and low-flow samplers showed generally close agreement in most of the 13 wells tested during July 2001 at Hickam Air Force Base, Hawaii. The data for chloride, sulfate, iron, alkalinity, arsenic, and methane appear to show that the dialysis samplers are capable of accurately collecting a passive sample for these constituents. In general, the comparisons of volatile organic compound concentrations showed a relatively close correspondence between the two different types of diffusion samples and between the diffusion samples and the low-flow samples collected in most wells. Divergence appears to have resulted primarily from the pumping method, either producing a mixed sample or water not characteristic of aquifer water moving through the borehole under ambient conditions. The fact that alkalinity was not detected in the passive diffusion bag samplers, highly alkaline waters without volatilization loss from effervescence, which can occur when a sample is acidified for preservation. Both dialysis and passive diffusion bag samplers are relatively inexpensive and can be deployed rapidly and easily. Passive diffusion bag samplers are intended for sampling volatile organic compounds only, but dialysis samplers can be used to sample both volatile organic compounds and inorganic solutes. Regenerated cellulose dialysis samplers, however, are subject to biodegradation and probably should be deployed no sooner than 2 weeks prior to recovery. 1 U.S. Geological Survey, Columbia, South Carolina. 2 Air Florce Center for Environmental Excellence, San Antionio, Texas.

  17. Passive air cooling of liquid metal-cooled reactor with double vessel leak accommodation capability

    DOEpatents

    Hunsbedt, A.; Boardman, C.E.

    1995-04-11

    A passive and inherent shutdown heat removal method with a backup air flow path which allows decay heat removal following a postulated double vessel leak event in a liquid metal-cooled nuclear reactor is disclosed. The improved reactor design incorporates the following features: (1) isolation capability of the reactor cavity environment in the event that simultaneous leaks develop in both the reactor and containment vessels; (2) a reactor silo liner tank which insulates the concrete silo from the leaked sodium, thereby preserving the silo`s structural integrity; and (3) a second, independent air cooling flow path via tubes submerged in the leaked sodium which will maintain shutdown heat removal after the normal flow path has been isolated. 5 figures.

  18. Passive air cooling of liquid metal-cooled reactor with double vessel leak accommodation capability

    DOEpatents

    Hunsbedt, Anstein; Boardman, Charles E.

    1995-01-01

    A passive and inherent shutdown heat removal method with a backup air flow path which allows decay heat removal following a postulated double vessel leak event in a liquid metal-cooled nuclear reactor. The improved reactor design incorporates the following features: (1) isolation capability of the reactor cavity environment in the event that simultaneous leaks develop in both the reactor and containment vessels; (2) a reactor silo liner tank which insulates the concrete silo from the leaked sodium, thereby preserving the silo's structural integrity; and (3) a second, independent air cooling flow path via tubes submerged in the leaked sodium which will maintain shutdown heat removal after the normal flow path has been isolated.

  19. Field calibration of polyurethane foam (PUF) disk passive air samplers for PCBs and OC pesticides.

    PubMed

    Chaemfa, Chakra; Barber, Jonathan L; Gocht, Tilman; Harner, Tom; Holoubek, Ivan; Klanova, Jana; Jones, Kevin C

    2008-12-01

    Different passive air sampler (PAS) strategies have been developed for sampling in remote areas and for cost-effective simultaneous spatial mapping of POPs (persistent organic pollutants) over differing geographical scales. The polyurethane foam (PUF) disk-based PAS is probably the most widely used. In a PUF-based PAS, the PUF disk is generally mounted inside two stainless steel bowls to buffer the air flow to the disk and to shield it from precipitation and light. The field study described in this manuscript was conducted to: compare performance of 3 different designs of sampler; to further calibrate the sampler against the conventional active sampler; to derive more information on field-based uptake rates and equilibrium times of the samplers. Samplers were also deployed at different locations across the field site, and at different heights up a meteorological tower, to investigate the possible influence of sampler location. Samplers deployed <5m above ground, and not directly sheltered from the wind gave similar uptake rates. Small differences in dimensions between the 3 designs of passive sampler chamber had no discernable effect on accumulation rates, allowing comparison with previously published data.

  20. Tunnel oxide passivated contacts formed by ion implantation for applications in silicon solar cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reichel, Christian, E-mail: christian.reichel@ise.fraunhofer.de; National Renewable Energy Laboratory; Feldmann, Frank

    Passivated contacts (poly-Si/SiO{sub x}/c-Si) doped by shallow ion implantation are an appealing technology for high efficiency silicon solar cells, especially for interdigitated back contact (IBC) solar cells where a masked ion implantation facilitates their fabrication. This paper presents a study on tunnel oxide passivated contacts formed by low-energy ion implantation into amorphous silicon (a-Si) layers and examines the influence of the ion species (P, B, or BF{sub 2}), the ion implantation dose (5 × 10{sup 14 }cm{sup −2} to 1 × 10{sup 16 }cm{sup −2}), and the subsequent high-temperature anneal (800 °C or 900 °C) on the passivation quality and junction characteristics using double-sided contacted silicon solar cells.more » Excellent passivation quality is achieved for n-type passivated contacts by P implantations into either intrinsic (undoped) or in-situ B-doped a-Si layers with implied open-circuit voltages (iV{sub oc}) of 725 and 720 mV, respectively. For p-type passivated contacts, BF{sub 2} implantations into intrinsic a-Si yield well passivated contacts and allow for iV{sub oc} of 690 mV, whereas implanted B gives poor passivation with iV{sub oc} of only 640 mV. While solar cells featuring in-situ B-doped selective hole contacts and selective electron contacts with P implanted into intrinsic a-Si layers achieved V{sub oc} of 690 mV and fill factor (FF) of 79.1%, selective hole contacts realized by BF{sub 2} implantation into intrinsic a-Si suffer from drastically reduced FF which is caused by a non-Ohmic Schottky contact. Finally, implanting P into in-situ B-doped a-Si layers for the purpose of overcompensation (counterdoping) allowed for solar cells with V{sub oc} of 680 mV and FF of 80.4%, providing a simplified and promising fabrication process for IBC solar cells featuring passivated contacts.« less

  1. 14 CFR 330.29 - What information must air taxi operators submit on Form 330 (Final) and Form 330-C?

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 4 2010-01-01 2010-01-01 false What information must air taxi operators... COMPENSATION OF AIR CARRIERS Application Procedures § 330.29 What information must air taxi operators submit on Form 330 (Final) and Form 330-C? As an air taxi operator, you must complete Form 330 (Final) in...

  2. 14 CFR 330.29 - What information must air taxi operators submit on Form 330 (Final) and Form 330-C?

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 4 2011-01-01 2011-01-01 false What information must air taxi operators... COMPENSATION OF AIR CARRIERS Application Procedures § 330.29 What information must air taxi operators submit on Form 330 (Final) and Form 330-C? As an air taxi operator, you must complete Form 330 (Final) in...

  3. Evaluation of polyurethane foam passive air sampler (PUF) as a tool for occupational PAH measurements.

    PubMed

    Strandberg, Bo; Julander, Anneli; Sjöström, Mattias; Lewné, Marie; Koca Akdeva, Hatice; Bigert, Carolina

    2018-01-01

    Routine monitoring of workplace exposure to polycyclic aromatic hydrocarbons (PAHs) is performed mainly via active sampling. However, active samplers have several drawbacks and, in some cases, may even be unusable. Polyurethane foam (PUF) as personal passive air samplers constitute good alternatives for PAH monitoring in occupational air (8 h). However, PUFs must be further tested to reliably yield detectable levels of PAHs in short exposure times (1-3 h) and under extreme occupational conditions. Therefore, we compared the personal exposure monitoring performance of a passive PUF sampler with that of an active air sampler and determined the corresponding uptake rates (Rs). These rates were then used to estimate the occupational exposure of firefighters and police forensic specialists to 32 PAHs. The work environments studied were heavily contaminated by PAHs with (for example) benzo(a)pyrene ranging from 0.2 to 56 ng m -3 , as measured via active sampling. We show that, even after short exposure times, PUF can reliably accumulate both gaseous and particle-bound PAHs. The Rs-values are almost independent of variables such as the concentration and the wind speed. Therefore, by using the Rs-values (2.0-20 m 3 day -1 ), the air concentrations can be estimated within a factor of two for gaseous PAHs and a factor of 10 for particulate PAHs. With very short sampling times (1 h), our method can serve as a (i) simple and user-friendly semi-quantitative screening tool for estimating and tracking point sources of PAH in micro-environments and (ii) complement to the traditional active pumping methods. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  4. Surface passivation investigation on ultra-thin atomic layer deposited aluminum oxide layers for their potential application to form tunnel layer passivated contacts

    NASA Astrophysics Data System (ADS)

    Xin, Zheng; Ling, Zhi Peng; Nandakumar, Naomi; Kaur, Gurleen; Ke, Cangming; Liao, Baochen; Aberle, Armin G.; Stangl, Rolf

    2017-08-01

    The surface passivation performance of atomic layer deposited ultra-thin aluminium oxide layers with different thickness in the tunnel layer regime, i.e., ranging from one atomic cycle (∼0.13 nm) to 11 atomic cycles (∼1.5 nm) on n-type silicon wafers is studied. The effect of thickness and thermal activation on passivation performance is investigated with corona-voltage metrology to measure the interface defect density D it(E) and the total interface charge Q tot. Furthermore, the bonding configuration variation of the AlO x films under various post-deposition thermal activation conditions is analyzed by Fourier transform infrared spectroscopy. Additionally, poly(3,4-ethylenedioxythiophene) poly(styrene sulfonate) is used as capping layer on ultra-thin AlO x tunneling layers to further reduce the surface recombination current density to values as low as 42 fA/cm2. This work is a useful reference for using ultra-thin ALD AlO x layers as tunnel layers in order to form hole selective passivated contacts for silicon solar cells.

  5. The development of differential inductors using double air-bridge structure based on integrated passive device technology

    NASA Astrophysics Data System (ADS)

    Li, Yang; Yao, Zhao; Fu, Xiao-Qian; Li, Zhi-Ming; Shan, Fu-Kai; Wang, Cong

    2017-05-01

    Recently, integrated passive devices have become increasingly popular; inductor realization, in particular, offers interesting high performance for RF modules and systems. In this paper, a development of differential inductor fabricated by integrated passive devices technology using a double air-bridge structure is presented. A study of the model development of the differential inductor is first demonstrated. In this model section, a segment box analysis method is applied to provide a clear presentation of the differential inductor. Compared with other work that only shows a brief description of the process, the integrated passive devices process used to fabricate the inductor in this study is elaborated on. Finally, a characterization of differential inductors with different physical layout parameters is illustrated based on inductance and quality factors, which provides a valuable reference for realizing high performance. The proposed work provides a good solution for the design, fabrication and practical application of RF modules and systems.

  6. Field Calibration of XAD-Based Passive Air Sampler on the Tibetan Plateau: Wind Influence and Configuration Improvement.

    PubMed

    Gong, Ping; Wang, Xiaoping; Liu, Xiande; Wania, Frank

    2017-05-16

    The passive air sampler based on XAD-2 resin (XAD-PAS) has proven useful for collecting atmospheric persistent organic pollutants (POPs) in remote regions. Whereas laboratory studies have shown that, due to the open bottom of its housing, the passive sampling rate (PSR) of the XAD-PAS is susceptible to wind and other processes causing air turbulence, the sampler has not been calibrated in the field at sites experiencing high winds. In this study, the PSRs of the XAD-PAS were calibrated at three sites on the Tibetan Plateau, covering a wide range in temperature (T), pressure (P) and wind speed (v). At sites with low wind speeds (i.e., in a forest and an urban site), the PSRs are proportional to the ratio T 1.75 / P; at windy sites with an average wind speed above 3 m/s, the influence of v on PSRs cannot be ignored. Moreover, the open bottom of the XAD-PAS housing causes the PSRs to be influenced by wind angle and air turbulence caused by sloped terrain. Field calibration, wind speed measurements, and computational fluid dynamics (CFD) simulations indicate that a modified design incorporating an air spoiler consisting of 4 metal sheets dampens the turbulence caused by wind angle and sloped terrain and caps the PSR at ∼5 m 3 /day, irrespective of ambient wind. Therefore, the original XAD-PAS with an open bottom is suitable for deployment in urban areas and other less windy places, the modified design is preferable in mountain regions and other places where air circulation is complicated and strong.

  7. A preliminary investigation into the use of Red Pine (Pinus Resinosa) tree cores as historic passive samplers of POPs in outdoor air

    NASA Astrophysics Data System (ADS)

    Rauert, Cassandra; Harner, Tom

    2016-09-01

    The suitability of Red Pine trees (Pinus Resinosa) to act as passive samplers for persistent organic pollutants (POPs) in outdoor air and to provide historic information on air concentration trends was demonstrated in this preliminary investigation. Red Pine tree cores from Toronto, Canada, were tested for polycyclic aromatic hydrocarbon (PAHs), alkylated-PAHs, nitro and oxy-PAHs, polybrominated diphenyl ethers (PBDEs) and novel brominated flame retardants (novel BFRs). The PBDEs and novel BFRs demonstrated a similar relative contribution in cores representing 30 years of tree growth, to that reported in contemporary air samples. Analysis of tree ring segments of 5-15 years resulted in detectable concentrations of some PAHs and alk-PAHs and demonstrated a transition from petrogenic sources to pyrogenic sources over the period 1960-2015. A simple uptake model was developed that treats the tree rings as linear-phase passive air samplers. The bark infiltration factor, IFBARK, is a key parameter of the model that reflects the permeability of the bark to allow chemicals to be transferred from ambient air to the outer tree layer (cambium). An IFBARK of about 2% was derived for the Red Pine trees based on tree core and air monitoring data.

  8. Measurement of indoor formaldehyde concentrations with a passive sampler

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gillett, R.W.; Kreibich, H.; Ayers, G.P.

    2000-05-15

    An existing Ferm-type passive sampler technique has been further developed to measure concentrations of formaldehyde gas in indoor air. Formaldehyde forms a derivative after reaction with a filter coated with 2,4-dinitrophenylhydrazine (2,4-DNPH). The formaldehyde 2,4-dinitrophenylhydrazine derivative (formaldehyde-2,4-DNPH) is extracted from the filter, and the concentration is determined by high-performance liquid chromatography. The technique has been validated against an active sampling method, and the agreement is close when the appropriate laminar boundary layer depth is applied to the passive measurement. For this technique an exposure period of 3 days is equivalent to a limit of detection of formaldehyde of 3.4 ppbvmore » and a limit of quantification of 7.6 ppbv. To test the performance of the passive samplers ambient formaldehyde measurements were carried out inside homes and in a range of workplace environments.« less

  9. Effect of pH on Semiconducting Property of Passive Film Formed on Ultra-High-Strength Corrosion-Resistant Steel in Sulfuric Acid Solution

    NASA Astrophysics Data System (ADS)

    Sun, Min; Xiao, Kui; Dong, Chaofang; Li, Xiaogang; Zhong, Ping

    2013-10-01

    Because Cr9Ni5MoCo14 is a new ultra-high-strength corrosion-resistant steel, it is important to study its corrosion behavior in sulfuric acid solution, which is used to simulate the aggressive environment. The effect of pH on the electrochemical and semiconducting properties of passive films formed on ultra-high-strength corrosion-resistant steel in sulfuric acid solution was investigated by means of the potentiodynamic polarization technique, electrochemical impedance spectroscopy (EIS), Mott-Schottky analysis, and X-ray photoelectron spectroscopy (XPS). The results indicated that Cr9Ni5MoCo14 steel showed a passive state in acid solutions. The corrosion behavior of this Cr9Ni5MoCo14 alloy was influenced by the passive film formed on the surface, including thickness, stability, and partitioning of elements of the passive film. The passive current density decreases with increasing pH, and the corrosion resistance was enhanced by the increasing thickness and depletion of the defects within the passive film. Moreover, an enrichment of chromium (primarily the oxides of Cr) and depletion of iron in the passive film led to improved corrosion resistance. These results can provide a theoretical basis for use of this alloy and further development of ultra-high-strength corrosion-resistant steel in today's society.

  10. Effects of Passive Fuel-Air Mixing Control on Burner Emissions Via Lobed Fuel Injectors

    NASA Technical Reports Server (NTRS)

    Mitchell, M. G.; Smith, O. I.; Karagozian, A. R.

    1999-01-01

    The present experimental study examines the effects of differing levels of passive fuel-air premixing on flame structures and their associated NO(x) and CO emissions. Four alternative fuel injector geometries were explored, three of which have lobed shapes. These lobed injectors mix fuel and air and strain species inter-faces to differing extents due to streamwise vorticity generation, thus creating different local or core equivalence ratios within flow regions upstream of flame ignition and stabilization. Prior experimental studies of two of these lobed injector flowfields focused on non-reactive mixing characteristics and emissions measurements for the case where air speeds were matched above and below the fuel injector, effectively generating stronger streamwise vorticity than spanwise vorticity. The present studies examine the effects of airstream mismatch (and hence additional spanwise vorticity generation), effects of confinement of the crossflow to reduce the local equivalence ratio, and the effects of altering the geometry and position of the flameholders. NO(x) and CO emissions as well as planar laser-induced fluorescence imaging (PLIF) of seeded acetone are used to characterize injector performance and reactive flow evolution.

  11. [Investigation on remote measurement of air pollution by a method of infrared passive scanning imaging].

    PubMed

    Jiao, Yang; Xu, Liang; Gao, Min-Guang; Feng, Ming-Chun; Jin, Ling; Tong, Jing-Jing; Li, Sheng

    2012-07-01

    Passive remote sensing by Fourier-transform infrared (FTIR) spectrometry allows detection of air pollution. However, for the localization of a leak and a complete assessment of the situation in the case of the release of a hazardous cloud, information about the position and the distribution of a cloud is essential. Therefore, an imaging passive remote sensing system comprising an interferometer, a data acquisition and processing software, scan system, a video system, and a personal computer has been developed. The remote sensing of SF6 was done. The column densities of all directions in which a target compound has been identified may be retrieved by a nonlinear least squares fitting algorithm and algorithm of radiation transfer, and a false color image is displayed. The results were visualized by a video image, overlaid by false color concentration distribution image. The system has a high selectivity, and allows visualization and quantification of pollutant clouds.

  12. Passive air sampling of organochlorine pesticides in Mexico.

    PubMed

    Wong, Fiona; Alegria, Henry A; Bidleman, Terry F; Alvarado, Víctor; Angeles, Felipe; Galarza, Alfredo Avila; Bandala, Erick R; Hinojosa, Idolina de la Cerda; Estrada, Ignacio Galindo; Reyes, Guillermo Galindo; Gold-Bouchot, Gerardo; Zamora, Jose Vinicio Macías; Murguía-González, Joaquín; Espinoza, Elias Ramirez

    2009-02-01

    The spatial and temporal variation of organochlorine pesticides (OCs) in air across Mexico was investigated by deploying passive samplers at eleven stations across the country during 2005-2006. Integrated samples were taken over three-month periods and quantified for DDT compounds, endosulfans, toxaphenes, components of technical chlordane, hexachlorocyclohexanes (HCHs), and dieldrin. Enantiomers of chiral chlordanes and o,p'-DDT were determined on chiral stationary phase columns as an indicator of source and age. Results are discussed in combination with pumped air samples taken at four other stations in southern Mexico during 2002-2004. DDT and its metabolites, endosulfan and toxaphene were the most abundant OCs detected in all sampling sites. Atmospheric concentrations of SigmaDDT (p,p'-DDT + o,p'-DDT + p,p'-DDE + o,p'-DDE + p,p'-DDD + o,p'-DDD) ranged from 15 to 2360 pg m(-3) with the highest concentrations found in southern Mexico and the lowest found in northern and central Mexico. A fresher DDT residue was observed at sites with greater DDT use and in the southern part of the country, as shown from the higher FDDTe = p,p'-DDT/(p,p'-DDT + p,p'-DDE) and nearly racemic o,p'-DDT. This agrees with the former heavy use of DDT in the endemic malarious area of the country. A local hotspot of endosulfan was identified at an agricultural area in Mazatlan, Sinaloa, with a annual mean concentration of SigmaENDO (endosulfans I + II + endosulfan sulfate) = 26,800 pg m(-3). At this site, higher concentrations of SigmaENDO were recorded during the winter (November to February) and spring (February to May) periods. From back trajectory analysis, this coincides with a shift in the air mass coming from the Pacific Ocean (May to November) to the inland agricultural area (November to May). The elevated SigmaENDO observed is likely due to the local agricultural usage. HCHs, chlordanes, transnonachlors, and dieldrin were more evenly distributed across the country likely due to

  13. Highly air stable passivation of graphene based field effect devices.

    PubMed

    Sagade, Abhay A; Neumaier, Daniel; Schall, Daniel; Otto, Martin; Pesquera, Amaia; Centeno, Alba; Elorza, Amaia Zurutuza; Kurz, Heinrich

    2015-02-28

    The sensitivity of graphene based devices to surface adsorbates and charge traps at the graphene/dielectric interface requires proper device passivation in order to operate them reproducibly under ambient conditions. Here we report on the use of atomic layer deposited aluminum oxide as passivation layer on graphene field effect devices (GFETs). We show that successful passivation produce hysteresis free DC characteristics, low doping level GFETs stable over weeks though operated and stored in ambient atmosphere. This is achieved by selecting proper seed layer prior to deposition of encapsulation layer. The passivated devices are also demonstrated to be robust towards the exposure to chemicals and heat treatments, typically used during device fabrication. Additionally, the passivation of high stability and reproducible characteristics is also shown for functional devices like integrated graphene based inverters.

  14. Reduced-form air quality modeling for community-scale ...

    EPA Pesticide Factsheets

    Transportation plays an important role in modern society, but its impact on air quality has been shown to have significant adverse effects on public health. Numerous reviews (HEI, CDC, WHO) summarizing findings of hundreds of studies conducted mainly in the last decade, conclude that exposures to traffic emissions near roads are a public health concern. The Community LINE Source Model (C-LINE) is a web-based model designed to inform the community user of local air quality impacts due to roadway vehicles in their region of interest using a simplified modeling approach. Reduced-form air quality modeling is a useful tool for examining what-if scenarios of changes in emissions, such as those due to changes in traffic volume, fleet mix, or vehicle speed. Examining various scenarios of air quality impacts in this way can identify potentially at-risk populations located near roadways, and the effects that a change in traffic activity may have on them. C-LINE computes dispersion of primary mobile source pollutants using meteorological conditions for the region of interest and computes air-quality concentrations corresponding to these selected conditions. C-LINE functionality has been expanded to model emissions from port-related activities (e.g. ships, trucks, cranes, etc.) in a reduced-form modeling system for local-scale near-port air quality analysis. This presentation describes the Community modeling tools C-LINE and C-PORT that are intended to be used by local gove

  15. Performances and application of a passive sampling method for the simultaneous determination of nitrogen dioxide and sulfur dioxide in ambient air.

    PubMed

    Plaisance, H; Sagnier, I; Saison, J Y; Galloo, J C; Guillermo, R

    2002-11-01

    The performances and applicability of a diffusion tube sampler for the simultaneous measurements of NO2 and SO2 in ambient air were evaluated. SO2 and NO2 are collected by the passive sampler using triethanolamine as trapping agent and are determined as sulphate and nitrite with ion chromatography. The detection limit (2.3 microg m(-3) of NO2 and 4.2 microg m(-3) of SO2 for two weeks sampling) is adequate for the determination of concentrations in urban and industrial areas. Precision of the method as RSD is in mean 5% for NO2 and 12% for SO2 at the concentration levels in urban areas. Calibration of the method was performed in the field conditions by comparison between the responses of sampler and the concentrations measured by the continuous monitors. High degree of linearity (correlation coefficients > 0.8) is found between the passive sampler tube and the continuous monitor data for both NO2 and SO2. To reduce the wind velocity influence on passive sampling of diffusion tubes, a protective shelter was tested in this study. The overall uncertainty of one measure for the optimised method is estimated at 5 microg m(-3) for NO2 and 6 microg m(-3) for SO2. Suitability of this passive sampling method for air pollution monitoring in urban areas was demonstrated by the results shown in this paper on a campaign carried out in the French agglomeration.

  16. Passive wall cooling panel with phase change material as a cooling agent

    NASA Astrophysics Data System (ADS)

    Majid, Masni A.; Tajudin, Rasyidah Ahmad; Salleh, Norhafizah; Hamid, Noor Azlina Abd

    2017-11-01

    The study was carried out to the determine performance of passive wall cooling panels by using Phase Change Materials as a cooling agent. This passive cooling system used cooling agent as natural energy storage without using any HVAC system. Eight full scale passive wall cooling panels were developed with the size 1500 mm (L) × 500 mm (W) × 100 mm (T). The cooling agent such as glycerine were filled in the tube with horizontal and vertical arrangement. The passive wall cooling panels were casting by using foamed concrete with density between 1200 kg/m3 - 1500 kg/m3. The passive wall cooling panels were tested in a small house and the differences of indoor and outdoor temperature was recorded. Passive wall cooling panels with glycerine as cooling agent in vertical arrangement showed the best performance with dropped of indoor air temperature within 3°C compared to outdoor air temperature. The lowest indoor air temperature recorded was 25°C from passive wall cooling panels with glycerine in vertical arrangement. From this study, the passive wall cooling system could be applied as it was environmental friendly and less maintenance.

  17. The relationship between urban form and air pollution depends on seasonality and city size.

    PubMed

    Liu, Yupeng; Wu, Jianguo; Yu, Deyong; Ma, Qun

    2018-06-01

    Understanding how urban form is related to air pollution is important to urban planning and sustainability, but the urban form-air pollution relationship is currently muddled by inconsistent findings. In this study, we investigated how the compositional and configurational attributes of urban form were related to different air pollution measures (PM 2.5 , API, and exceedance) in 83 Chinese cities, with explicit consideration of city size and seasonality. Ten landscape metrics were selected to quantify urban form attributes, and Spearman's correlation was used to quantify the urban form-air pollution relationship. Our results show that the urban form and air pollution relationship was dominated by city size and moderated by seasonality. Specifically, urban air pollution levels increased consistently and substantially from small to medium, large, and megacities. The urban form-air pollution relationship depended greatly on seasonality and monsoons. That is, the relationship was more pronounced in spring and summer than fall and winter, as well as in cities affected by monsoons. Urban air pollution was correlated more strongly with landscape composition metrics than landscape configuration metrics which seemed to affect only PM 2.5 concentrations. Our study suggests that, to understand how air pollution levels are related to urban form, city size and seasonality must be explicitly considered (or controlled). Also, in order to mitigate urban air pollution problems, regional urban planning is needed to curb the spatial extent of built-up areas, reduce the degree of urban fragmentation, and increase urban compactness and contiguity, especially for large and megacities.

  18. Using a passive air sampler to monitor air-soil exchange of organochlorine pesticides in the pasture of the central Tibetan Plateau.

    PubMed

    Wang, Chuanfei; Wang, Xiaoping; Ren, Jiao; Gong, Ping; Yao, Tandong

    2017-02-15

    Air-soil exchange is a key process controlling the fate of persistent organic pollutants (POPs). However, the "sink effect" of soil for POPs in Tibetan pasture has not been clear. In NamCo, in the central Tibetan Plateau (TP) where the land is covered by grass, a modified passive air sampler (PAS) (thickness: 2cm) was tested. Using the PAS, the atmospheric gaseous phase organochlorine pesticides (OCPs) at 11 heights from close-to-surface (2cm) to 200cm above ground, in summer and in winter, were measured. Concentrations of OCPs in summer were higher than those in winter. Both in summer and winter, atmospheric concentrations of OCPs decreased with decreasing height from 200 to 2cm, indicating that OCPs were being deposited from air to soil. Air deposition of OCPs was possibly driven by wind speed. Furthermore, based on air OCPs at 0-3cm near the surface, the interface exchange of OCPs between air and soil was studied by the fugacity method. The results showed that pastural soil in the TP was a "sink" of OCPs even in summer. The mean deposition fluxes of α-HCH, γ-HCH and o,p'-DDT were 0.72, 0.24 and 0.54pg/h/m 2 , respectively, and it was estimated that the level of these pollutants in the soil will double every 24, 66 and 206years, respectively. This study will contribute to the further understanding of global cycling of POPs in different land covers. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Oil/Water Emulsion and Aqueous Film Forming Foam (AFFF) Treatment Using Air-Sparged Hydrocyclone Technology

    DTIC Science & Technology

    2003-01-01

    Aqueous Film Forming Foam ( AFFF ) Treatment Using Air-Sparged Hydrocyclone Technology January 2003 Report Documentation Page Form ApprovedOMB No. 0704...2003 to 00-00-2003 4. TITLE AND SUBTITLE Oil/Water Emulsion and Aqueous Film Forming Foam ( AFFF ) Treatment Using Air-Sparged Hydrocyclone Technology...ACRONYMS AFB Air Force Base AFFF Aqueous Film Forming Foam AFRL Air Force Research Laboratory ASH

  20. Impact of building forms on thermal performance and thermal comfort conditions in religious buildings in hot climates: a case study in Sharjah city

    NASA Astrophysics Data System (ADS)

    Mushtaha, Emad; Helmy, Omar

    2017-11-01

    The common system used for thermal regulation in mosques of United Arab Emirates (UAE) is the heating, ventilating and air-conditioning (HVAC) system. This system increases demands on energy consumption and increases CO2 emission. A passive design approach is one of the measures to reduce these problems. This study involved an analytical examination of building forms, followed by testing the impact of these forms on its thermal performance and indoor thermal comfort. The tests were conducted using energy simulations software packages. Passive parameters such as shading devices, thermal insulation and natural ventilation were applied in six cases, including the baseline case within each form. The obtained results showed a significant effect of mosque forms as well as passive design techniques on the thermal comfort within the structures. The findings confirmed that the use of passive design alone would not help achieve thermal comfort, but reduce the annual energy consumption by10%. By integrating a hybrid air-conditioning system as another supporting approach, the annual energy consumption could be reduced by 67.5%, which allows for the designing of a much smaller HVAC system.

  1. Method of passivating semiconductor surfaces

    DOEpatents

    Wanlass, Mark W.

    1990-01-01

    A method of passivating Group III-V or II-VI semiconductor compound surfaces. The method includes selecting a passivating material having a lattice constant substantially mismatched to the lattice constant of the semiconductor compound. The passivating material is then grown as an ultrathin layer of passivating material on the surface of the Group III-V or II-VI semiconductor compound. The passivating material is grown to a thickness sufficient to maintain a coherent interface between the ultrathin passivating material and the semiconductor compound. In addition, a device formed from such method is also disclosed.

  2. A passive sampler for airborne formaldehyde

    NASA Astrophysics Data System (ADS)

    Grosjean, Daniel; Williams, Edwin L.

    A simple, inexpensive passive sampler is described that is capable of reliable measurements of formaldehyde at the parts per billion (ppb) levels relevant to indoor and outdoor air quality. The passive sampler consists of a modified dual filter holder in which the upper stage serves as the diffusion barrier, the lower stage includes a 2,4-dinitrophenylhydrazine (DNPH)-coated filter which collects formaldehyde, and the space between the two stages serve as the diffusion gap. The measured sampling rate, 18.8 ± 1.8 ml min -1, was determined in experiments involving sampling of ppb levels of formaldehyde with the passive sampler and with DNPH-coated C 18 cartridges and agrees well with the value of 19.4 ± 2.0 ml min -1 calculated from theory. The measured sampling rate was independent of formaldehyde concentration (16-156 ppb) and sampling duration (1.5-72 h). The precision of the measurements for colocated passive samplers averaged 8.6% in purified and indoor air (office and museums) and 10.2% in photochemically polluted outdoor air. With a 1.2-μm pore size Teflon filter as the diffusion barrier, the detection limit is 32 ppb h, e.g. 4 ppb in an 8-h sample, 1.3 ppb in a 24-h sample, and so on. Perceived advantages and limitations of the sampler are discussed including flexibility, cost effectiveness and possible negative bias at high ambient levels of ozone.

  3. Wet-chemical passivation of InAs: toward surfaces with high stability and low toxicity.

    PubMed

    Jewett, Scott A; Ivanisevic, Albena

    2012-09-18

    In a variety of applications where the electronic and optical characteristics of traditional, siliconbased materials are inadequate, recently researchers have employed semiconductors made from combinations of group III and V elements such as InAs. InAs has a narrow band gap and very high electron mobility in the near-surface region, which makes it an attractive material for high performance transistors, optical applications, and chemical sensing. However, silicon-based materials remain the top semiconductors of choice for biological applications, in part because of their relatively low toxicity. In contrast to silicon, InAs forms an unstable oxide layer under ambient conditions, which can corrode over time and leach toxic indium and arsenic components. To make InAs more attractive for biological applications, researchers have investigated passivation, chemical and electronic stabilization, of the surface by adlayer adsorption. Because of the simplicity, low cost, and flexibility in the type of passivating molecule used, many researchers are currently exploring wet-chemical methods of passivation. This Account summarizes much of the recent work on the chemical passivation of InAs with a particular focus on the chemical stability of the surface and prevention of oxide regrowth. We review the various methods of surface preparation and discuss how crystal orientation affects the chemical properties of the surface. The correct etching of InAs is critical as researchers prepare the surface for subsequent adlayer adsorption. HCl etchants combined with a postetch annealing step allow the tuning of the chemical properties in the near-surface region to either arsenic- or indium-rich environments. Bromine etchants create indium-rich surfaces and do not require annealing after etching; however, bromine etchants are harsh and potentially destructive to the surface. The simultaneous use of NH(4)OH etchants with passivating molecules prevents contact with ambient air that can

  4. Configurations and calibration methods for passive sampling techniques.

    PubMed

    Ouyang, Gangfeng; Pawliszyn, Janusz

    2007-10-19

    Passive sampling technology has developed very quickly in the past 15 years, and is widely used for the monitoring of pollutants in different environments. The design and quantification of passive sampling devices require an appropriate calibration method. Current calibration methods that exist for passive sampling, including equilibrium extraction, linear uptake, and kinetic calibration, are presented in this review. A number of state-of-the-art passive sampling devices that can be used for aqueous and air monitoring are introduced according to their calibration methods.

  5. Life Cycle Greenhouse Gas Emissions and Energy Analysis of Passive House with Variable Construction Materials

    NASA Astrophysics Data System (ADS)

    Baďurová, Silvia; Ponechal, Radoslav; Ďurica, Pavol

    2013-11-01

    The term "passive house" refers to rigorous and voluntary standards for energy efficiency in a building, reducing its ecological footprint. There are many ways how to build a passive house successfully. These designs as well as construction techniques vary from ordinary timber constructions using packs of straw or constructions of clay. This paper aims to quantify environmental quality of external walls in a passive house, which are made of a timber frame, lightweight concrete blocks and sand-lime bricks in order to determine whether this constructional form provides improved environmental performance. Furthermore, this paper assesses potential benefit of energy savings at heating of houses in which their external walls are made of these three material alternatives. A two storey residential passive house, with floorage of 170.6 m2, was evaluated. Some measurements of air and surface temperatures were done as a calibration etalon for a method of simulation.

  6. Method of passivating semiconductor surfaces

    DOEpatents

    Wanlass, M.W.

    1990-06-19

    A method is described for passivating Group III-V or II-VI semiconductor compound surfaces. The method includes selecting a passivating material having a lattice constant substantially mismatched to the lattice constant of the semiconductor compound. The passivating material is then grown as an ultrathin layer of passivating material on the surface of the Group III-V or II-VI semiconductor compound. The passivating material is grown to a thickness sufficient to maintain a coherent interface between the ultrathin passivating material and the semiconductor compound. In addition, a device formed from such method is also disclosed.

  7. Evaluation of the polyurethane foam (PUF) disk passive air sampler: Computational modeling and experimental measurements

    NASA Astrophysics Data System (ADS)

    May, Andrew A.; Ashman, Paul; Huang, Jiaoyan; Dhaniyala, Suresh; Holsen, Thomas M.

    2011-08-01

    Computational fluid dynamics (CFD) simulations coupled with wind tunnel-experiments were used to determine the sampling rate (SR) of the widely used polyurethane foam (PUF) disk passive sampler. In the wind-tunnel experiments, water evaporation rates from a water saturated PUF disk installed in the sampler housing were determined by measuring weight loss over time. In addition, a modified passive sampler designed to collect elemental mercury (Hg 0) with gold-coated filters was used. Experiments were carried out at different wind speeds and various sampler angles. The SRs obtained from wind-tunnel experiments were compared to those obtained from the field by scaling the values by the ratios of air diffusivities. Three-dimensional (3D) CFD simulations were also used to generate SRs for both polychlorinated biphenyls (PCBs) and Hg 0. Overall, the modeled and measured SRs agree well and are consistent with the values obtained from field studies. As previously observed, the SRs increased linearly with increasing wind speed. In addition, it was determined that the SR was strongly dependent on the angle of the ambient wind. The SRs increased when the base was tilted up pointing into the wind and when the base was tilted down (i.e., such that the top of the sampler was facing the wind) the SR decreased initially and then increased. The results suggest that there may be significant uncertainty in concentrations obtained from passive sampler measurements without knowledge of wind speed and wind angle relative to the sampler.

  8. South Philadelphia Passive Sampler and Sensor Study

    EPA Science Inventory

    Starting in June 2013, the United States Environmental Protection Agency (U.S. EPA) and the City of Philadelphia Air Measurements Services began collaborative research on the use of passive samplers (PSs) and stand-alone air measurement (SAM) systems to improve information on the...

  9. Passivation Of High-Temperature Superconductors

    NASA Technical Reports Server (NTRS)

    Vasquez, Richard P.

    1991-01-01

    Surfaces of high-temperature superconductors passivated with native iodides, sulfides, or sulfates formed by chemical treatments after superconductors grown. Passivating compounds nearly insoluble in and unreactive with water and protect underlying superconductors from effects of moisture. Layers of cuprous iodide and of barium sulfate grown. Other candidate passivating surface films: iodides and sulfides of bismuth, strontium, and thallium. Other proposed techniques for formation of passivating layers include deposition and gas-phase reaction.

  10. Global evaluation and calibration of a passive air sampler for gaseous mercury

    NASA Astrophysics Data System (ADS)

    McLagan, David S.; Mitchell, Carl P. J.; Steffen, Alexandra; Hung, Hayley; Shin, Cecilia; Stupple, Geoff W.; Olson, Mark L.; Luke, Winston T.; Kelley, Paul; Howard, Dean; Edwards, Grant C.; Nelson, Peter F.; Xiao, Hang; Sheu, Guey-Rong; Dreyer, Annekatrin; Huang, Haiyong; Hussain, Batual Abdul; Lei, Ying D.; Tavshunsky, Ilana; Wania, Frank

    2018-04-01

    Passive air samplers (PASs) for gaseous mercury (Hg) were deployed for time periods between 1 month and 1 year at 20 sites across the globe with continuous atmospheric Hg monitoring using active Tekran instruments. The purpose was to evaluate the accuracy of the PAS vis-à-vis the industry standard active instruments and to determine a sampling rate (SR; the volume of air stripped of gaseous Hg per unit of time) that is applicable across a wide range of conditions. The sites spanned a wide range of latitudes, altitudes, meteorological conditions, and gaseous Hg concentrations. Precision, based on 378 replicated deployments performed by numerous personnel at multiple sites, is 3.6 ± 3.0 %1, confirming the PAS's excellent reproducibility and ease of use. Using a SR previously determined at a single site, gaseous Hg concentrations derived from the globally distributed PASs deviate from Tekran-based concentrations by 14.2 ± 10 %. A recalibration using the entire new data set yields a slightly higher SR of 0.1354 ± 0.016 m3 day-1. When concentrations are derived from the PAS using this revised SR the difference between concentrations from active and passive sampling is reduced to 8.8 ± 7.5 %. At the mean gaseous Hg concentration across the study sites of 1.54 ng m-3, this represents an ability to resolve concentrations to within 0.13 ng m-3. Adjusting the sampling rate to deployment specific temperatures and wind speeds does not decrease the difference in active-passive concentration further (8.7 ± 5.7 %), but reduces its variability by leading to better agreement in Hg concentrations measured at sites with very high and very low temperatures and very high wind speeds. This value (8.7 ± 5.7 %) represents a conservative assessment of the overall uncertainty of the PAS due to inherent uncertainties of the Tekran instruments. Going forward, the recalibrated SR adjusted for temperature and wind speed should be used, especially if conditions are highly variable or

  11. Fuel cell stack with passive air supply

    DOEpatents

    Ren, Xiaoming; Gottesfeld, Shimshon

    2006-01-17

    A fuel cell stack has a plurality of polymer electrolyte fuel cells (PEFCs) where each PEFC includes a rectangular membrane electrode assembly (MEA) having a fuel flow field along a first axis and an air flow field along a second axis perpendicular to the first axis, where the fuel flow field is long relative to the air flow field. A cathode air flow field in each PEFC has air flow channels for air flow parallel to the second axis and that directly open to atmospheric air for air diffusion within the channels into contact with the MEA.

  12. South Philadelphia Passive Sampler and Sensor Study - Interim Report

    EPA Science Inventory

    Starting in the June 2013, the U.S. EPA and the City of Philadelphia Air Measurements Services (AMS) began a collaborative research project to investigate how sensor-based, stand-alone air measurements (SAMs) and passive samplers (PSs) can help improve information on air pollutan...

  13. Passive air monitoring of PCBs and PCNs across East Asia: a comprehensive congener evaluation for source characterization.

    PubMed

    Hogarh, Jonathan Nartey; Seike, Nobuyasu; Kobara, Yuso; Habib, Ahsan; Nam, Jae-Jak; Lee, Jong-Sik; Li, Qilu; Liu, Xiang; Li, Jun; Zhang, Gan; Masunaga, Shigeki

    2012-02-01

    A comprehensive congener specific evaluation of polychlorinated biphenyls (PCBs) and polychlorinated naphthalenes (PCNs) in the atmosphere was conducted across East Asia in spring 2008, applying polyurethane foam (PUF) disk passive air sampler (PAS) as monitoring device. Mean concentrations derived for Japan, China and Korea were 184 ± 24, 1100 ± 118, and 156 ± 20 pg m(-3) for ∑(202) PCBs, and 9.5 ± 1.5, 61 ± 6, and 16 ± 2.4 pg m(-3) for ∑(63) PCNs, respectively. Relative to reported data from 2004, the present results suggest that air PCBs concentrations have not changed much in Japan and Korea, while it has increased by one order of magnitude in China. From principal component analysis, combustion emerged highly culpable in contemporary emissions of both PCBs and PCNs across the East Asian sub-region. Another factor derived as important to air PCBs was re-emissions/volatilization. Signals from PCBs formulations were also picked, but their general importance was virtually consigned to the re-emissions/volatilization tendencies. On the contrary, counterpart PCNs formulations did not appear to contribute much to air PCNs. Copyright © 2011 Elsevier Ltd. All rights reserved.

  14. Simulating and explaining passive air sampling rates for semi-volatile compounds on polyurethane foam passive samplers

    PubMed Central

    Petrich, Nicholas T.; Spak, Scott N.; Carmichael, Gregory R.; Hu, Dingfei; Martinez, Andres; Hornbuckle, Keri C.

    2013-01-01

    Passive air samplers (PAS) including polyurethane foam (PUF) are widely deployed as an inexpensive and practical way to sample semi-volatile pollutants. However, concentration estimates from PAS rely on constant empirical mass transfer rates, which add unquantified uncertainties to concentrations. Here we present a method for modeling hourly sampling rates for semi-volatile compounds from hourly meteorology using first-principle chemistry, physics, and fluid dynamics, calibrated from depuration experiments. This approach quantifies and explains observed effects of meteorology on variability in compound-specific sampling rates and analyte concentrations; simulates nonlinear PUF uptake; and recovers synthetic hourly concentrations at a reference temperature. Sampling rates are evaluated for polychlorinated biphenyl congeners at a network of Harner model samplers in Chicago, Illinois during 2008, finding simulated average sampling rates within analytical uncertainty of those determined from loss of depuration compounds, and confirming quasi-linear uptake. Results indicate hourly, daily and interannual variability in sampling rates, sensitivity to temporal resolution in meteorology, and predictable volatility-based relationships between congeners. We quantify importance of each simulated process to sampling rates and mass transfer and assess uncertainty contributed by advection, molecular diffusion, volatilization, and flow regime within the PAS, finding PAS chamber temperature contributes the greatest variability to total process uncertainty (7.3%). PMID:23837599

  15. Process Dependence of H Passivation and Doping in H-implanted ZnO

    DTIC Science & Technology

    2013-01-04

    Columbus, OH 43210, USA 2 Semiconductor Research Center, Wright State University, Dayton, OH 45432, USA 3 Sensors Directorate, Air Force Research...electrical properties. (Some figures may appear in colour only in the online journal) 1. Introduction The wide band gap semiconductor ZnO (Eg ≈ 3.4 eV) is a...theoretical studies predicted that H is likely to passivate zinc vacancy (VZn) and substitutional lithium on zinc site (LiZn) defects by forming neutral XZn–H

  16. PCDD/PCDF and dl-PCB in the ambient air of a tropical Andean city: passive and active sampling measurements near industrial and vehicular pollution sources.

    PubMed

    Cortés, J; González, C M; Morales, L; Abalos, M; Abad, E; Aristizábal, B H

    2014-09-01

    Concentration gradients were observed in gas and particulate phases of PCDD/F originating from industrial and vehicular sources in the densely populated tropical Andean city of Manizales, using passive and active air samplers. Preliminary results suggest greater concentrations of dl-PCB in the mostly gaseous fraction (using quarterly passive samplers) and greater concentrations of PCDD/F in the mostly particle fraction (using daily active samplers). Dioxin-like PCB predominance was associated with the semi-volatility property, which depends on ambient temperature. Slight variations of ambient temperature in Manizales during the sampling period (15°C-27°C) may have triggered higher concentrations in all passive samples. This was the first passive air sampling monitoring of PCDD/F conducted in an urban area of Colombia. Passive sampling revealed that PCDD/F in combination with dioxin-like PCB ranged from 16 WHO-TEQ2005/m(3) near industrial sources to 7 WHO-TEQ2005/m(3) in an intermediate zone-a reduction of 56% over 2.8 km. Active sampling of particulate phase PCDD/F and dl-PCB were analyzed in PM10 samples. PCDD/F combined with dl-PCB ranged from 46 WHO-TEQ2005/m(3) near vehicular sources to 8 WHO-TEQ2005/m(3) in the same intermediate zone, a reduction of 83% over 2.6 km. Toxic equivalent quantities in both PCDD/F and dl-PCB decreased toward an intermediate zone of the city. Variations in congener profiles were consistent with variations expected from nearby sources, such as a secondary metallurgy plant, areas of concentrated vehicular emissions and a municipal solid waste incinerator (MSWI). These variations in congener profile measurements of dioxins and dl-PCBs in passive and active samples can be partly explained by congener variations expected from the various sources. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. Effect of ultrasonic cavitation on the diffusivity of a point defect in the passive film on formed Nb in 0.5 M HCl solution.

    PubMed

    Li, D G

    2015-11-01

    This work primarily focused on the influence of ultrasonic cavitation on the transport property of the point defect in the passive film on formed Nb in 0.5M HCl solution via electrochemical techniques based on the point defect model (PDM). The influence of ultrasonic cavitation on the composition and structure of the passive film was detected by X-ray photoelectron spectroscopy (XPS) and Auger electron spectroscopy (AES). The transport property of a point defect in the passive film was characterized by the diffusivity of the point defect (D0). The influences of the ultrasonic cavitation power, passivated time and the distance between horn bottom and sample surface on D0 were analyzed. The results demonstrated that the passive film formed on Nb was an n-type semiconductor with a donor density (ND) ranging from 10(19) cm(-3) to 10(20) cm(-3) in the case of static state, while the order of ND increased one to two times by applying ultrasonic cavitation during film formation. The diffusivity of the point defect (D0) in the passive film formed on Nb at 0.5 V for 1 h in a 0.5 M HCl solution in the static state was calculated to be 9.704×10(-18) cm(2) s(-1), and it increased to 1.255×10(-16) cm(2) s(-1), 7.259×10(-16) cm(2) s(-1) and 7.296×10(-15) cm(2) s(-1) when applying the 180 W, 270 W and 450 W ultrasonic cavitation powers during film formation. D0 increased with the increment of the ultrasonic cavitation power, and decreased with the increased in formation time and distance between the horn bottom and sample surface. AES results showed the film structure and composition were changed by applying the ultrasonic cavitation. XPS results revealed that the passive film was mainly composed of Nb2O5 in the static state, and the low valence Nb-oxide (NbO) appeared in the passive film except Nb2O5 in the case of applying a 270 W ultrasonic cavitation power. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Elevated Passive Continental Margins may form much Later than the time of Rifting

    NASA Astrophysics Data System (ADS)

    Chalmers, J. A.; Japsen, P.; Green, P. F.; Bonow, J.; Lidmar-Bergstrom, K.

    2007-12-01

    Many current models of the development of elevated passive continental margins assume that they are either the remains of foot-wall uplift at the time of rifting or due to underplating by magma from a plume or other mantle source. We have studied the rift and post-rift history of such a passive margin in West and South Greenland and have concluded that the present-day elevations developed 25-60 million years after cessation of rifting and local volcanism, suggesting that additional factors need to be considered when modelling such margins. The morphology of West Greenland is similar to that of other elevated passive margins ion many parts of the world. There are high-level, large-scale, quasi-planar landscapes (planation surfaces) at altitudes of 1-2 km cut by deeply incised valleys. The gradient from the highest ground to the coast is much steeper than that away from the coast. We combined analysis of the morphology of the landscape with studies of fission tracks and the preserved stratigraphic record both on- and off-shore. Rifting and the commencement of sea-floor spreading in the Early Paleogene was accompanied by voluminous high-temperature volcanism. Kilometer-scale uplift at the time of rifting was followed shortly afterwards by kilometer-scale subsidence and possibly by transgression of marine sediments across the rift margin. The present elevated margin formed during three episodes of uplift during the Neogene, 25-60 million years after the cessation of rifting and local volcanism. The quasi-planar planation surfaces presently at 1-2 km altitude are the end-products of denudation to near sea-level in the mid- and late Cenozoic and these surfaces were uplifted to their present altitudes during the Neogene events. Rivers then incised the summit surface to form valleys that were further enlarged and deepened by glaciers. Similar elevated margins exist all around the northern North Atlantic and in many other parts of the world; eastern North America, on both

  19. Elevated Passive Continental Margins may form much Later than the time of Rifting

    NASA Astrophysics Data System (ADS)

    Chalmers, J. A.; Japsen, P.; Green, P. F.; Bonow, J.; Lidmar-Bergstrom, K.

    2004-12-01

    Many current models of the development of elevated passive continental margins assume that they are either the remains of foot-wall uplift at the time of rifting or due to underplating by magma from a plume or other mantle source. We have studied the rift and post-rift history of such a passive margin in West and South Greenland and have concluded that the present-day elevations developed 25-60 million years after cessation of rifting and local volcanism, suggesting that additional factors need to be considered when modelling such margins. The morphology of West Greenland is similar to that of other elevated passive margins ion many parts of the world. There are high-level, large-scale, quasi-planar landscapes (planation surfaces) at altitudes of 1-2 km cut by deeply incised valleys. The gradient from the highest ground to the coast is much steeper than that away from the coast. We combined analysis of the morphology of the landscape with studies of fission tracks and the preserved stratigraphic record both on- and off-shore. Rifting and the commencement of sea-floor spreading in the Early Paleogene was accompanied by voluminous high-temperature volcanism. Kilometer-scale uplift at the time of rifting was followed shortly afterwards by kilometer-scale subsidence and possibly by transgression of marine sediments across the rift margin. The present elevated margin formed during three episodes of uplift during the Neogene, 25-60 million years after the cessation of rifting and local volcanism. The quasi-planar planation surfaces presently at 1-2 km altitude are the end-products of denudation to near sea-level in the mid- and late Cenozoic and these surfaces were uplifted to their present altitudes during the Neogene events. Rivers then incised the summit surface to form valleys that were further enlarged and deepened by glaciers. Similar elevated margins exist all around the northern North Atlantic and in many other parts of the world; eastern North America, on both

  20. Development of a passive air sampler to measure airborne organophosphorus pesticides and oxygen analogs in an agricultural community.

    PubMed

    Armstrong, Jenna L; Yost, Michael G; Fenske, Richard A

    2014-09-01

    Organophosphorus pesticides are some of the most widely used insecticides in the US, and spray drift may result in human exposures. We investigate sampling methodologies using the polyurethane foam passive air sampling device to measure cumulative monthly airborne concentrations of OP pesticides chlorpyrifos, azinphos-methyl, and oxygen analogs. Passive sampling rates (m(3)d(-1)) were determined using calculations using chemical properties, loss of depuration compounds, and calibration with side-by-side active air sampling in a dynamic laboratory exposure chamber and in the field. The effects of temperature, relative humidity, and wind velocity on outdoor sampling rates were examined at 23 sites in Yakima Valley, Washington. Indoor sampling rates were significantly lower than outdoors. Outdoor rates significantly increased with average wind velocity, with high rates (>4m(3)d(-1)) observed above 8ms(-1). In exposure chamber studies, very little oxygen analog was observed on the PUF-PAS, yet substantial amounts chlorpyrifos-oxon and azinphos methyl oxon were measured in outdoor samples. PUF-PAS is a practical and useful alternative to AAS because it results in little artificial transformation to the oxygen analog during sampling, it provides cumulative exposure estimates, and the measured sampling rates were comparable to rates for other SVOCs. It is ideal for community based participatory research due to low subject burden and simple deployment in remote areas. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. EVOLUTION OF THE MASS-METALLICITY RELATIONS IN PASSIVE AND STAR-FORMING GALAXIES FROM SPH-COSMOLOGICAL SIMULATIONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Romeo Velona, A. D.; Gavignaud, I.; Meza, A.

    2013-06-20

    We present results from SPH-cosmological simulations, including self-consistent modeling of supernova feedback and chemical evolution, of galaxies belonging to two clusters and 12 groups. We reproduce the mass-metallicity (ZM) relation of galaxies classified in two samples according to their star-forming (SF) activity, as parameterized by their specific star formation rate (sSFR), across a redshift range up to z = 2. The overall ZM relation for the composite population evolves according to a redshift-dependent quadratic functional form that is consistent with other empirical estimates, provided that the highest mass bin of the brightest central galaxies is excluded. Its slope shows irrelevantmore » evolution in the passive sample, being steeper in groups than in clusters. However, the subsample of high-mass passive galaxies only is characterized by a steep increase of the slope with redshift, from which it can be inferred that the bulk of the slope evolution of the ZM relation is driven by the more massive passive objects. The scatter of the passive sample is dominated by low-mass galaxies at all redshifts and keeps constant over cosmic times. The mean metallicity is highest in cluster cores and lowest in normal groups, following the same environmental sequence as that previously found in the red sequence building. The ZM relation for the SF sample reveals an increasing scatter with redshift, indicating that it is still being built at early epochs. The SF galaxies make up a tight sequence in the SFR-M{sub *} plane at high redshift, whose scatter increases with time alongside the consolidation of the passive sequence. We also confirm the anti-correlation between sSFR and stellar mass, pointing at a key role of the former in determining the galaxy downsizing, as the most significant means of diagnostics of the star formation efficiency. Likewise, an anti-correlation between sSFR and metallicity can be established for the SF galaxies, while on the contrary more

  2. 14 CFR Appendix C to Part 330 - Forms for Air Taxi Operators

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 4 2011-01-01 2011-01-01 false Forms for Air Taxi Operators C Appendix C to Part 330 Aeronautics and Space OFFICE OF THE SECRETARY, DEPARTMENT OF TRANSPORTATION (AVIATION... Part 330—Forms for Air Taxi Operators ER20AU02.009 ER20AU02.010 ER20AU02.011 ER20AU02.012 ER20AU02.013...

  3. Effect of particulate air pollution and passive smoking on surrogate biomarkers of endothelial dysfunction in healthy children.

    PubMed

    Kelishadi, Roya; Hashemi, Mohammad; Javanmard, Shaghayegh Haghjooy; Mansourian, Marjan; Afshani, Mohammadreza; Poursafa, Parinaz; Sadeghian, Babak; Fakhri, Maryam

    2014-08-01

    This study aimed to determine the association of ambient particulate matter (PM) on surrogate markers of endothelial function and inflammation in healthy children with or without exposure to second-hand smoke. This cross-sectional study was conducted in 2011 in Isfahan, which is the second largest and second most air-polluted city in Iran. The areas of the city with lowest and highest air pollution were determined, and in each area, 25 pre-pubescent boys with or without exposure to daily tobacco smoke at home were selected, i.e. 100 children were studied in total. Serum levels of C-reactive protein (CRP) and nitric oxide (NO) were measured. Mean (SD) NO concentration was 7·87 (2·18) and 7·75 (2·04) μmol/L for participants not exposed and exposed to passive smoking, respectively, which is not statistically significant. The corresponding figures for CRP concentrations were 1·69 (0·89) and 2·13 (1·19) μg/ml (P = 0·04). Mean (SD) CRP concentration was significantly higher in children living in the highly polluted area than in those in the area of low pollution [2·11 (1·91) vs 1·60 (1·43) μg/ml, respectively, P = 0·02]. This difference was not significant for NO concentration. The regression analysis that examined the association between PM concentration (as independent variable) and CRP and NO levels (as dependent variables) in children not exposed to passive smoking demonstrated that increased PM was associated with a decrease in NO and an increase in CRP concentration. This finding shows that, regardless of passive smoking, PM10 concentration has a significant independent association with serum CRP and is inversely associated with NO levels. The findings suggest that in healthy children PM concentration has a significant independent association with biomarkers of endothelial dysfunction and inflammation.

  4. Active (air-cooled) vs. passive (phase change material) thermal management of high power lithium-ion packs: Limitation of temperature rise and uniformity of temperature distribution

    NASA Astrophysics Data System (ADS)

    Sabbah, Rami; Kizilel, R.; Selman, J. R.; Al-Hallaj, S.

    The effectiveness of passive cooling by phase change materials (PCM) is compared with that of active (forced air) cooling. Numerical simulations were performed at different discharge rates, operating temperatures and ambient temperatures of a compact Li-ion battery pack suitable for plug-in hybrid electric vehicle (PHEV) propulsion. The results were also compared with experimental results. The PCM cooling mode uses a micro-composite graphite-PCM matrix surrounding the array of cells, while the active cooling mode uses air blown through the gaps between the cells in the same array. The results show that at stressful conditions, i.e. at high discharge rates and at high operating or ambient temperatures (for example 40-45 °C), air-cooling is not a proper thermal management system to keep the temperature of the cell in the desirable operating range without expending significant fan power. On the other hand, the passive cooling system is able to meet the operating range requirements under these same stressful conditions without the need for additional fan power.

  5. PASSIVE AEROSOL SAMPLER FOR PM 10-2.5

    EPA Science Inventory

    This is an extended abstract of a presentation made at the Air and Waste Management Association's Symposium on Air Quality Measurement Methods and Technology, Durham, NC, May 9-11, 2006. The abstract describes the application of a passive aerosol sampler for coarse PM characteriz...

  6. Building America Case Study: Design Guidance for Passive Vents in New Construction Multifamily Buildings, New York, New York

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    2016-02-01

    This document addresses the use of passive vents as a source of outdoor air in multifamily buildings. The challenges associated with implementing passive vents and the factors affecting performance are outlined. A comprehensive design methodology and quantified performance metrics are provided. Two hypothetical design examples are provided to illustrate the process. This document is intended to be useful to designers, decision-makers, and contractors implementing passive ventilation strategies. It is also intended to be a resource for those responsible for setting high-performance building program requirements, especially pertaining to ventilation and outdoor air. To ensure good indoor air quality, a dedicated sourcemore » of outdoor air is an integral part of high-performance buildings. Presently, there is a lack of guidance pertaining to the design and installation of passive vents, resulting in poor system performance. This report details the criteria necessary for designing, constructing, and testing passive vent systems to enable them to provide consistent and reliable levels of ventilation air from outdoors.« less

  7. Multiple mechanisms quench passive spiral galaxies

    NASA Astrophysics Data System (ADS)

    Fraser-McKelvie, Amelia; Brown, Michael J. I.; Pimbblet, Kevin; Dolley, Tim; Bonne, Nicolas J.

    2018-02-01

    We examine the properties of a sample of 35 nearby passive spiral galaxies in order to determine their dominant quenching mechanism(s). All five low-mass (M⋆ < 1 × 1010 M⊙) passive spiral galaxies are located in the rich Virgo cluster. This is in contrast to low-mass spiral galaxies with star formation, which inhabit a range of environments. We postulate that cluster-scale gas stripping and heating mechanisms operating only in rich clusters are required to quench low-mass passive spirals, and ram-pressure stripping and strangulation are obvious candidates. For higher mass passive spirals, while trends are present, the story is less clear. The passive spiral bar fraction is high: 74 ± 15 per cent, compared with 36 ± 5 per cent for a mass, redshift and T-type matched comparison sample of star-forming spiral galaxies. The high mass passive spirals occur mostly, but not exclusively, in groups, and can be central or satellite galaxies. The passive spiral group fraction of 74 ± 15 per cent is similar to that of the comparison sample of star-forming galaxies at 61 ± 7 per cent. We find evidence for both quenching via internal structure and environment in our passive spiral sample, though some galaxies have evidence of neither. From this, we conclude no one mechanism is responsible for quenching star formation in passive spiral galaxies - rather, a mixture of mechanisms is required to produce the passive spiral distribution we see today.

  8. Calibration of polyurethane foam (PUF) disk passive air samplers for quantitative measurement of polychlorinated biphenyls (PCBs) and polybrominated diphenyl ethers (PBDEs): factors influencing sampling rates.

    PubMed

    Hazrati, Sadegh; Harrad, Stuart

    2007-03-01

    PUF disk passive air samplers are increasingly employed for monitoring of POPs in ambient air. In order to utilize them as quantitative sampling devices, a calibration experiment was conducted. Time integrated indoor air concentrations of PCBs and PBDEs were obtained from a low volume air sampler operated over a 50 d period alongside the PUF disk samplers in the same office microenvironment. Passive sampling rates for the fully-sheltered sampler design employed in our research were determined for the 51 PCB and 7 PBDE congeners detected in all calibration samples. These values varied from 0.57 to 1.55 m3 d(-1) for individual PCBs and from 1.1 to 1.9 m3 d(-1) for PBDEs. These values are appreciably lower than those reported elsewhere for different PUF disk sampler designs (e.g. partially sheltered) employed under different conditions (e.g. in outdoor air), and derived using different calibration experiment configurations. This suggests that sampling rates derived for a specific sampler configuration deployed under specific environmental conditions, should not be extrapolated to different sampler configurations. Furthermore, our observation of variable congener-specific sampling rates (consistent with other studies), implies that more research is required in order to understand fully the factors that influence sampling rates. Analysis of wipe samples taken from the inside of the sampler housing, revealed evidence that the housing surface scavenges particle bound PBDEs.

  9. Flow microcapillary plasma mass spectrometry-based investigation of new Al-Cr-Fe complex metallic alloy passivation.

    PubMed

    Ott, N; Beni, A; Ulrich, A; Ludwig, C; Schmutz, P

    2014-03-01

    Al-Cr-Fe complex metallic alloys are new intermetallic phases with low surface energy, low friction, and high corrosion resistance down to very low pH values (0-2). Flow microcapillary plasma mass spectrometry under potentiostatic control was used to characterize the dynamic aspect of passivation of an Al-Cr-Fe gamma phase in acidic electrolytes, allowing a better insight on the parameters inducing chemical stability at the oxyhydroxide-solution interface. In sulfuric acid pH 0, low element dissolution rates (in the µg cm(-2) range after 60 min) evidenced the passive state of the Al-Cr-Fe gamma phase with a preferential over-stoichiometric dissolution of Al and Fe cations. Longer air-aging was found to be beneficial for stabilizing the passive film. In chloride-containing electrolytes, ten times higher Al dissolution rates were detected at open-circuit potential (OCP), indicating that the spontaneously formed passive film becomes unstable. However, electrochemical polarization at low passive potentials induces electrical field generated oxide film modification, increasing chemical stability at the oxyhydroxide-solution interface. In the high potential passive region, localized attack is initiated with subsequent active metal dissolution. © 2013 Published by Elsevier B.V.

  10. Air Force Officer Qualifying Test Form O: Development and Standardization.

    ERIC Educational Resources Information Center

    Rogers, Deborah L.; And Others

    This report presents the rationale, development, and standardization of the Air Force Officer Qualifying Test (AFOQT) Form O. The test is used to select individuals for officer commissioning programs, and candidates for pilot and navigator training. Form O contains 380 items organized in 16 subtests. All items are administered in a single test…

  11. Development and Standardization of the Air Force Officer Qualifying Test Form L.

    ERIC Educational Resources Information Center

    Miller, Robert E.

    In accordance with the normal replacement cycle, a new form of the Air Force Officer Qualifying Test (AFOQT) was developed for implementation in Fiscal Year 1972. The new form is designated Form L. It resembles other recent forms in type of content, organization, and norming strategy. Like other forms, it yields pilot, navagation-technical,…

  12. South Philadelphia Passive Sampler and Sensor Study: Interim Report

    EPA Science Inventory

    Starting in June 2013, the United States Environmental Protection Agency (U.S. EPA) and the City of Philadelphia Air Measurements Services began collaborative research on the use of passive samplers (PSs) and stand-alone air measurement (SAM) systems to improve information on the...

  13. Passive alcohol sensors tested in 3 states for youth alcohol enforcement

    DOT National Transportation Integrated Search

    1996-05-01

    Passive alcohol sensors were tested in three states to determine their effectiveness in enforcing zero tolerance or low BAC laws for under 21 age drivers. The passive alcohol sensor was designed to sample the air immediately around the suspect for si...

  14. PCDD, PCDF, dl-PCB and organochlorine pesticides monitoring in São Paulo City using passive air sampler as part of the Global Monitoring Plan.

    PubMed

    Tominaga, M Y; Silva, C R; Melo, J P; Niwa, N A; Plascak, D; Souza, C A M; Sato, M I Z

    2016-11-15

    The persistent organic pollutants (POPs), such as organochlorine pesticides and PCBs, are ordinarily monitored in the aquatic environment or in soil in the environmental quality monitoring programs in São Paulo, Brazil. One of the core matrices proposed in the POPs Global Monitoring Plan (GMP) from the Stockholm Convention list is the ambient air, which is not a usual matrix for POPs monitoring in the country. In this study POP levels were evaluated in the air samples from an urban site in São Paulo City over five years, starting in 2010 as a capacity building project for Latin America and the Caribbean region for POP monitoring in ambient air using passive samplers. Furthermore, after the end of the Project in 2012, the monitoring continued in the same sampling site as means to improving the analytical capacity building and contribute to the GMP data. The POPs monitored were 17 congeners of 2,3,7,8 chloro-substituted PCDDs and PCDFs, dioxin-like PCBs, indicator PCBs, organochlorine pesticides and toxaphene. The results show a slight decrease in PCDD/F, dl-PCBs and indicator PCBs levels along the five years. The organochlorine pesticide endosulfan was present at its highest concentration at the beginning of the monitoring period, but it was below detection level in the last year of the monitoring. Some other organochlorine pesticides were detected close to or below quantitation limits. The compounds identified were dieldrin, chlordane, α-HCH, γ-HCH, heptachlor, heptachlor epoxide, hexachlorobenzene and DDTs. Toxaphene congeners were not detected. These results have confirmed the efficacy of passive sampling for POP monitoring and the capacity building for POP analysis and monitoring was established. However more needs to be done, including expansion of sampling sites, new POPs and studies on sampling rates to be considered in calculating the concentration of POPs in ambient air using a passive sampler. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Feasibility study of a passive aeration reactor equipped with vertical pipes for compost stabilization of cow manure.

    PubMed

    Sylla, Youssouf Boundou; Kuroda, Masao; Yamada, Masayuki; Matsumoto, Naoko

    2006-10-01

    Pilot-scale composting was carried out with cow manure to evaluate the performances of two passive aeration systems: a conventional passive aeration system equipped with horizontal pipes and an unusual passive aeration method based on air delivery by means of vertical pipes. The effects of both types of passive aeration apparatus were investigated in order to determine the degree of composting rate by continuously monitoring temperature, moisture content, organic matter, electrical conductivity, pH and C/N ratio in the piles. Temperatures in the range of thermophily (55-65 degrees C) were reached in all runs within 1-2 days then lasting for about 1 week, a span long enough for pathogen abatement. Results suggest that passive aeration carried out by vertical pipes is more effective for air delivery into compost piles than conventional passive aeration of air adduction with horizontal pipes. The variation in the number of vertical pipes was revealed to be an important parameter for the control of composting rate and temperature. Composting rates estimated from the heat balance equation were substantially in agreement with those computed through the conversion ratio of total organic matter decrement. The conversion ratios and composting rates obtained in this study using passive aeration with vertical pipes were well aligned with those found using forced air delivery systems.

  16. NASA and ESA Collaboration on Alternative to Nitric Acid Passivation: Parameter Optimization of Citric Acid Passivation for Stainless Steel Alloys

    NASA Technical Reports Server (NTRS)

    Kessel, Kurt R.

    2016-01-01

    National Aeronautics and Space Administration (NASA) Headquarters chartered the Technology Evaluation for Environmental Risk Mitigation Principal Center (TEERM) to coordinate agency activities affecting pollution prevention issues identified during system and component acquisition and sustainment processes. The primary objectives of NASA TEERM are to: Reduce or eliminate the use of hazardous materials or hazardous processes at manufacturing, remanufacturing, and sustainment locations. Avoid duplication of effort in actions required to reduce or eliminate hazardous materials through joint center cooperation and technology sharing. Corrosion is an extensive problem that affects the National Aeronautics and Space Administration (NASA) and the European Space Agency (ESA). The damaging effects of corrosion result in steep costs, asset downtime affecting mission readiness, and safety risks to personnel. Consequently, it is vital to reduce corrosion costs and risks in a sustainable manner. NASA and ESA have numerous structures and equipment that are fabricated from stainless steel. The standard practice for protection of stainless steel is a process called passivation. Passivation is defined by The American Heritage Dictionary of the English Language as to treat or coat (a metal) in order to reduce the chemical reactivity of its surface. Passivation works by forming a shielding outer (metal oxide) layer that reduces the impact of destructive environmental factors such as air or water. Consequently, this process necessitates a final product that is very clean and free of iron and other contaminants. Typical passivation procedures call for the use of nitric acid; however, there are a number of environmental, worker safety, and operational issues associated with its use. Citric acid is an alternative to nitric acid for the passivation of stainless steels. Citric acid offers a variety of benefits including increased safety for personnel, reduced environmental impact, and

  17. Passive control potentials of trees and on-street parked cars in reduction of air pollution exposure in urban street canyons.

    PubMed

    Abhijith, K V; Gokhale, Sharad

    2015-09-01

    This study investigates the passive-control-potentials of trees and on-street parked cars on pedestrian exposure to air pollutants in a street canyon using three-dimensional CFD. Since, according to some studies trees deteriorate air quality and cars parked roadside improve it, the combine as well as separate effects of trees and on-street parked cars have been examined. For this, different tree canopy layouts and parking configurations have been developed and pedestrian exposure for each has been analysed. The results showed, for example, tree crown with high porosity and low-stand density in combination with parallel or perpendicular car parking reduced the pedestrian exposure considerably. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Corrosion Behavior of Plasma-Passivated Cu

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barbour, J.C.; Braithwaite, J.W.; Son, K.A.

    1999-07-09

    A new approach is being pursued to study corrosion in Cu alloy systems by using combinatorial analysis combined with microscopic experimentation (the Combinatorial Microlab) to determine mechanisms for copper corrosion in air. Corrosion studies are inherently difficult because of complex interactions between materials and environment, forming a multidimensional phase space of corrosion variables. The Combinatorial Microlab was specifically developed to address the mechanism of Cu sulfidation, which is an important reliability issue for electronic components. This approach differs from convention by focusing on microscopic length scales, the relevant scale for corrosion. During accelerated aging, copper is exposed to a varietymore » of corrosive environments containing sulfidizing species that cause corrosion. A matrix experiment was done to determine independent and synergistic effects of initial Cu oxide thickness and point defect density. The CuO{sub x} was controlled by oxidizing Cu in an electron cyclotron resonance (ECR) O{sub 2} plasma, and the point defect density was modified by Cu ion irradiation. The matrix was exposed to 600 ppb H{sub 2}S in 65% relative humidity air atmosphere. This combination revealed the importance of oxide quality in passivating Cu and prevention of the sulfidizing reaction. A native oxide and a defect-laden ECR oxide both react at 20 C to form a thick Cu{sub 2}S layer after exposure to H{sub 2}S, while different thicknesses of as-grown ECR oxide stop the formation of Cu{sub 2}S. The species present in the ECR oxide will be compared to that of an air oxide, and the sulfide layer growth rate will be presented.« less

  19. 14 CFR Appendix C to Part 330 - Forms for Air Taxi Operators

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 4 2010-01-01 2010-01-01 false Forms for Air Taxi Operators C Appendix C to Part 330 Aeronautics and Space OFFICE OF THE SECRETARY, DEPARTMENT OF TRANSPORTATION (AVIATION PROCEEDINGS) PROCEDURAL REGULATIONS PROCEDURES FOR COMPENSATION OF AIR CARRIERS Pt. 330, App. C Appendix C to...

  20. Development and Standardization of the Air Force Officer Qualifying Test Form M.

    ERIC Educational Resources Information Center

    Miller, Robert E.

    Air Force Officer Qualifying Test (AFOQT) Form M was constructed as a replacement for AFOQT Form L in Fiscal Year 1974. The new form serves the same purposes as its predecessor and possesses basically the same characteristics. It yields Pilot, Navigator-Technical, Officer Quality, Verbal, and Quantitative composite scores. Three sets of conversion…

  1. On the construction, comparison, and variability of airsheds for interpreting semivolatile organic compounds in passively sampled air.

    PubMed

    Westgate, John N; Wania, Frank

    2011-10-15

    Air mass origin as determined by back trajectories often aids in explaining some of the short-term variability in the atmospheric concentrations of semivolatile organic contaminants. Airsheds, constructed by amalgamating large numbers of back trajectories, capture average air mass origins over longer time periods and thus have found use in interpreting air concentrations obtained by passive air samplers. To explore some of their key characteristics, airsheds for 54 locations on Earth were constructed and compared for roundness, seasonality, and interannual variability. To avoid the so-called "pole problem" and to simplify the calculation of roundness, a "geodesic grid" was used to bin the back-trajectory end points. Departures from roundness were seen to occur at all latitudes and to correlate significantly with local slope but no strong relationship between latitude and roundness was revealed. Seasonality and interannual variability vary widely enough to imply that static models of transport are not sufficient to describe the proximity of an area to potential sources of contaminants. For interpreting an air measurement an airshed should be generated specifically for the deployment time of the sampler, especially when investigating long-term trends. Samples taken in a single season may not represent the average annual atmosphere, and samples taken in linear, as opposed to round, airsheds may not represent the average atmosphere in the area. Simple methods are proposed to ascertain the significance of an airshed or individual cell. It is recommended that when establishing potential contaminant source regions only end points with departure heights of less than ∼700 m be considered.

  2. Hydrodebridement of wounds: effectiveness in reducing wound bacterial contamination and potential for air bacterial contamination.

    PubMed

    Bowling, Frank L; Stickings, Daryl S; Edwards-Jones, Valerie; Armstrong, David G; Boulton, Andrew Jm

    2009-05-08

    The purpose of this study was to assess the level of air contamination with bacteria after surgical hydrodebridement and to determine the effectiveness of hydro surgery on bacterial reduction of a simulated infected wound. Four porcine samples were scored then infected with a broth culture containing a variety of organisms and incubated at 37 degrees C for 24 hours. The infected samples were then debrided with the hydro surgery tool (Versajet, Smith and Nephew, Largo, Florida, USA). Samples were taken for microbiology, histology and scanning electron microscopy pre-infection, post infection and post debridement. Air bacterial contamination was evaluated before, during and after debridement by using active and passive methods; for active sampling the SAS-Super 90 air sampler was used, for passive sampling settle plates were located at set distances around the clinic room. There was no statistically significant reduction in bacterial contamination of the porcine samples post hydrodebridement. Analysis of the passive sampling showed a significant (p < 0.001) increase in microbial counts post hydrodebridement. Levels ranging from 950 colony forming units per meter cubed (CFUs/m3) to 16780 CFUs/m3 were observed with active sampling of the air whilst using hydro surgery equipment compared with a basal count of 582 CFUs/m3. During removal of the wound dressing, a significant increase was observed relative to basal counts (p < 0.05). Microbial load of the air samples was still significantly raised 1 hour post-therapy. The results suggest a significant increase in bacterial air contamination both by active sampling and passive sampling. We believe that action might be taken to mitigate fallout in the settings in which this technique is used.

  3. Strategy for Passivating Char Efficiently at the Pilot Scale

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dunning, Timothy C

    Fast pyrolysis is a promising pathway for the commercialization of liquid transportation fuels from biomass. Fast pyrolysis is performed at moderate heat (450-600 degrees Celcius) in an oxygen-deficient environment. One of the products of fast pyrolysis is biochar, which is often used as a heat source or as a soil amendment. Biochar is a partially reacted solid that is created in the production of bio-oil during fast pyrolysis. Biochar produced at these conditions contains significant quantities of carbon that adsorb oxygen when exposed to air. Biochar adsorption of oxygen is an exothermic process that may generate sufficient heat for combustionmore » in ambient air. Biochar is also a self-insulating material which compounds the effects of heat generated internally. These factors lead to safety concerns and material handling difficulties. The Thermochemical Process Development Unit at the National Renewable Energy Laboratory operates a pilot plant that may be configured for fast pyrolysis, gasification, and will be introducing catalytic fast pyrolysis capabilities in 2018. The TCPDU designed and installed a system to introduce oxygen to collected biochar systematically for a controlled passivation. Biochar is collected and cooled in an oxygen deficient environment during fast pyrolysis. Oxygen is then introduced to the biochar on a mass flow basis. A sparger imbedded within the biochar sample near the bottom of the bed flows air diluted with nitrogen into the char bed, and excess gasses are removed from the top of the collection drum, above the char bed. Pressure within the collection drum is measured indicating adequate flow through filters. Sample weight is recorded before and after passivation. During passivation, temperature is measured at 18 points within the char bed. Oxygen content and temperature are measured leaving the char bed. Maximum temperature parameters were established to ensure operator safety during biochar passivation. Extensive passivation

  4. Handbook on passive thermal control coatings

    NASA Technical Reports Server (NTRS)

    Mookherji, T. K.; Hayes, J. D.

    1973-01-01

    A handbook of passive thermal control surfaces data pertaining to the heat transfer requirements of spacecraft is presented. Passive temperature control techniques and the selection of control surfaces are analyzed. The space environmental damage mechanisms in passive thermal control surfaces are examined. Data on the coatings for which technical information is available are presented in tabular form. Emphasis was placed on consulting only those references where the experimental simulation of the space environment appeared to be more appropriate.

  5. Electrochemical and in-situ Surface-Enhanced Raman Spectroscopic (SERS) study of passive films formed on low-carbon steel in highly alkaline environments

    NASA Astrophysics Data System (ADS)

    Mancio, Mauricio

    In reinforced concrete, a passive layer forms because of the alkaline conditions in the pores of the cement paste, where large concentrations of hydroxides create a solution with pH typically between 12 and 14. The corrosion resistance of the material depends on the characteristics and integrity of the passive film; however, currently very limited information is available about the passive films formed on carbon steel under such conditions. This work presents an electrochemical and in-situ Surface-Enhanced Raman Spectroscopic (SERS) study of passive films formed on low-carbon steel in highly alkaline environments. More specifically, the study focuses on the characterization of the films formed on ASTM A36 steel reinforcing bar exposed to aqueous solutions that aim to reproduce the chemistry of the environment typically found within the cement paste. Electrochemical techniques such as cyclic potentiodynamic polarization curves, galvanostatic cathodic polarization and linear polarization resistance were employed, in addition to in-situ Surface Enhanced Raman Spectroscopy (SERS). The experimental setup was built in a way that SERS experiments could be performed simultaneously with potentiodynamic polarization curves, enabling a detailed analysis of the formation and reduction of the surface films as a function of applied potential. Three solutions with different pH levels were used for the polarization and SERS experiments, namely 0.55M KOH + 0.16M NaOH ([OH-]=0.71), 0.08M KOH + 0.02M NaOH ([OH-]=0.10) and 0.008M KOH + 0.002M NaOH ([OH-]=0.01). Additional NaOH solutions in which the pH was varied from 13 to 9 and the ionic strength from 10 -5 to 10-1 were prepared for a pilot study using linear polarization resistance. Results show that the features observed in the cyclic potentiodynamic polarization curves correlated well with the potential arrests observed in the GCP plots as well as with the changes observed in the SERS spectra, providing valuable information about

  6. Passive anti-frosting surfaces using microscopic ice arrays

    NASA Astrophysics Data System (ADS)

    Ahmadi, Farzad; Nath, Saurabh; Iliff, Grady; Boreyko, Jonathan

    2017-11-01

    Despite exceptional advances in surface chemistry and micro/nanofabrication, no engineered surface has been able to passively suppress the in-plane growth of frost occurring in humid, subfreezing environments. Motivated by this, and inspired by the fact that ice itself can evaporate nearby liquid water droplets, we present a passive anti-frosting surface in which the majority of the surface remains dry indefinitely. We fabricated an aluminum surface exhibiting an array of small metallic fins, where a wicking micro-groove was laser-cut along the top of each fin to produce elevated water ``stripes'' that freeze into ice. As the saturation vapor pressure of ice is less than that of supercooled liquid water, the ice stripes serve as overlapping humidity sinks that siphon all nearby moisture from the air and prevent condensation and frost from forming anywhere else on the surface. Our experimental results show that regions between stripes remain dry even after 24 hours of operation under humid and supercooled conditions. We believe that the presented anti-frosting technology has the potential to help solve the world's multi-billion dollar frosting problem that adversely affects transportation, power generation, and HVAC systems.

  7. Passively cooled direct drive wind turbine

    DOEpatents

    Costin, Daniel P [Chelsea, VT

    2008-03-18

    A wind turbine is provided that passively cools an electrical generator. The wind turbine includes a plurality of fins arranged peripherally around a generator house. Each of the fins being oriented at an angle greater than zero degrees to allow parallel flow of air over the fin. The fin is further tapered to allow a constant portion of the fin to extend beyond the air stream boundary layer. Turbulence initiators on the nose cone further enhance heat transfer at the fins.

  8. [Legionella spp. contamination in indoor air: preliminary results of an Italian multicenter study].

    PubMed

    Montagna, Maria Teresa; De Giglio, Osvalda; Napoli, Christian; Cannova, Lucia; Cristina, Maria Luisa; Deriu, Maria Grazia; Delia, Santi Antonino; Giuliano, Ada; Guida, Marco; Laganà, Pasqualina; Liguori, Giorgio; Mura, Ida; Pennino, Francesca; Rossini, Angelo; Tardivo, Stefano; Torre, Ida; Torregrossa, Maria Valeria; Villafrate, Maria Rosaria; Albertini, Roberto; Pasquarella, Cesira

    2014-01-01

    To propose a standardized protocol for the evaluation of Legionella contamination in air. A bathroom having a Legionella contamination in water >1,000 cfu/l was selected in 10 different healthcare facilities. Air contamination was assessed by active (Surface Air System, SAS) and passive (Index of Microbial Air, IMA) sampling for 8 hours, about 1 m away from the floor and 50 cm from the tap water. Two hundred liters of air were sampled by SAS every 12 min, after flushing water for 2 min. The IMA value was calculated as the mean value of colony forming units/16 plates exposed during sampling (2 plates/hour). Water contamination was evaluated at T0, after 4 and 8 hours, according to the standard methods. Air contamination by Legionella was found in three healthcare facilities (one with active and two with passive sampling), showing a concomitant tap water contamination (median=40,000; range 1,100-43,000 cfu/l). The remaining seven hospitals isolated Legionella spp. exclusively from water samples (median=8,000; range 1,200-70,000 cfu/l). Our data suggest that environmental Legionella contamination cannot be assessed only through the air sampling, even in the presence of an important water contamination.

  9. Pneumatic Muscle Actuated Equipment for Continuous Passive Motion

    NASA Astrophysics Data System (ADS)

    Deaconescu, Tudor T.; Deaconescu, Andrea I.

    2009-10-01

    Applying continuous passive rehabilitation movements as part of the recovery programme of patients with post-traumatic disabilities of the bearing joints of the inferior limbs requires the development of new high performance equipment. This chapter discusses a study of the kinematics and performance of such a new, continuous passive motion based rehabilitation system actuated by pneumatic muscles. The utilized energy source is compressed air ensuring complete absorption of the end of stroke shocks, thus minimizing user discomfort.

  10. Persistent Organic Pollutants (POPs) in the atmosphere of three Chilean cities using passive air samplers.

    PubMed

    Pozo, Karla; Oyola, Germán; Estellano, Victor H; Harner, Tom; Rudolph, Anny; Prybilova, Petra; Kukucka, Petr; Audi, Ondrej; Klánová, Jana; Metzdorff, America; Focardi, Silvano

    2017-05-15

    In this study passive air samplers containing polyurethane foam (PUF) disks were deployed in three cities across Chile; Santiago (STG) (n=5, sampling sites), Concepciόn (CON) (n=6) and Temuco (TEM) (n=6) from 2008 to 2009. Polychlorinated biphenyls (PCBs) (7 indicator congeners), chlorinated pesticides hexachlorocyclohexanes (HCHs), dichlorodiphenyl trichloroethanes (DDTs) and flame retardants such as polybrominated diphenyl ethers (PBDEs) were determined by gas chromatography coupled mass spectrometry (GC/MS). A sampling rate (R) typical of urban sites (4m 3 /day) was used to estimate the atmospheric concentrations of individual compounds. PCB concentrations in the air (pg/m 3 ) ranged from ~1-10 (TEM), ~1-40 (STG) and 4-30 (CON). Higher molecular weight PCBs (PCB-153, -180) were detected at industrial sites (in Concepción). The HCHs showed a prevalence of γ-HCH across all sites, indicative of inputs from the use of lindane but a limited use of technical HCHs in Chile. DDTs were detected with a prevalence of p,p'-DDE accounting for ~50% of the total DDTs. PBDE concentrations in air (pg/m 3 ) ranged from 1 to 55 (STG), 0.5 to 20 (CON) and from 0.4 to 10 (TEM), and were generally similar to those reported for many other urban areas globally. The pattern of PBDEs was different among the three cities; however, PBDE-209 was dominant at most of the sites. These results represent one of the few assessments of air concentrations of POPs across different urban areas within the same country. These data will support Chilean commitments as a signatory to the Stockholm Convention on POPs and for reporting as a member country of the Group of Latin America and Caribbean Countries (GRULAC) region. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Preliminary assessment of using tree-tissue analysis and passive-diffusion samplers to evaluate trichloroethene contamination of ground water at Site SS-34N, McChord Air Force Base, Washington, 2001

    USGS Publications Warehouse

    Cox, S.E.

    2002-01-01

    Two low-cost innovative sampling procedures for characterizing trichloroethene (TCE) contamination in ground water were evaluated for use at McChord Air Force Base (AFB) by the U.S. Geological Survey, in cooperation with the U.S. Air Force McChord Air Force Base Installation Restoration Program, in 2001. Previous attempts to characterize the source of ground-water contamination in the heterogeneous glacial outwash aquifer at McChord site SS-34N using soil-gas surveys, direct-push exploration, and more than a dozen ground-water monitoring wells have had limited success. The procedures assessed in this study involved analysis of tree-tissue samples to map underlying ground-water contamination and deploying passive-diffusion samplers to measure TCE concentrations in existing monitoring wells. These procedures have been used successfully at other U.S. Department of Defense sites and have resulted in cost avoidance and accelerated site characterization. Despite the presence of TCE in ground water at site SS-34N, TCE was not detected in any of the 20 trees sampled at the site during either early spring or late summer sampling. The reason the tree tissue procedure was not successful at the McChord AFB site SS-34N may have been due to an inability of tree roots to extract moisture from a water table 30 feet below the land surface, or that concentrations of TCE in ground water were not large enough to be detectable in the tree tissue at the sampling point. Passive-diffusion samplers were placed near the top, middle, and bottom of screened intervals in three monitoring wells and TCE was observed in all samplers. Concentrations of TCE from the passive-diffusion samplers were generally similar to concentrations found in samples collected in the same wells using conventional pumping methods. In contrast to conventional pumping methods, the collection of ground-water samples using the passive-diffusion samples did not generate waste purge water that would require hazardous

  12. Passive cavitation imaging with ultrasound arrays

    PubMed Central

    Salgaonkar, Vasant A.; Datta, Saurabh; Holland, Christy K.; Mast, T. Douglas

    2009-01-01

    A method is presented for passive imaging of cavitational acoustic emissions using an ultrasound array, with potential application in real-time monitoring of ultrasound ablation. To create such images, microbubble emissions were passively sensed by an imaging array and dynamically focused at multiple depths. In this paper, an analytic expression for a passive image is obtained by solving the Rayleigh–Sommerfield integral, under the Fresnel approximation, and passive images were simulated. A 192-element array was used to create passive images, in real time, from 520-kHz ultrasound scattered by a 1-mm steel wire. Azimuthal positions of this target were accurately estimated from the passive images. Next, stable and inertial cavitation was passively imaged in saline solution sonicated at 520 kHz. Bubble clusters formed in the saline samples were consistently located on both passive images and B-scans. Passive images were also created using broadband emissions from bovine liver sonicated at 2.2 MHz. Agreement was found between the images and source beam shape, indicating an ability to map therapeutic ultrasound beams in situ. The relation between these broadband emissions, sonication amplitude, and exposure conditions are discussed. PMID:20000921

  13. Passive cavitation imaging with ultrasound arrays.

    PubMed

    Salgaonkar, Vasant A; Datta, Saurabh; Holland, Christy K; Mast, T Douglas

    2009-12-01

    A method is presented for passive imaging of cavitational acoustic emissions using an ultrasound array, with potential application in real-time monitoring of ultrasound ablation. To create such images, microbubble emissions were passively sensed by an imaging array and dynamically focused at multiple depths. In this paper, an analytic expression for a passive image is obtained by solving the Rayleigh-Sommerfield integral, under the Fresnel approximation, and passive images were simulated. A 192-element array was used to create passive images, in real time, from 520-kHz ultrasound scattered by a 1-mm steel wire. Azimuthal positions of this target were accurately estimated from the passive images. Next, stable and inertial cavitation was passively imaged in saline solution sonicated at 520 kHz. Bubble clusters formed in the saline samples were consistently located on both passive images and B-scans. Passive images were also created using broadband emissions from bovine liver sonicated at 2.2 MHz. Agreement was found between the images and source beam shape, indicating an ability to map therapeutic ultrasound beams in situ. The relation between these broadband emissions, sonication amplitude, and exposure conditions are discussed.

  14. Undergraduate and Masters Students' Understanding about Properties of Air and the Forms of Reasoning Used to Explain Air Phenomena

    ERIC Educational Resources Information Center

    Bulunuz, Mizrap; Jarrett, Olga S.

    2009-01-01

    The purposes of this study were to examine initial content knowledge about properties of air by three cohorts of undergraduate and master's students studying elementary education and to determine forms of reasoning used to explain air phenomena and the effect of an intervention on content knowledge. Subjects were assessed using a 14-question test…

  15. Passive solar nursing home for Northern Kentucky

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Taylor, J.G.; Ward, J.D.

    This project is a 32-bed nursing home designed as an addition to an existing facility. Passive solar strategies included direct gain room windows and clerestories which admit light to phase change salt pouches in the ceilings of patient rooms. Corridors are skykighted; and the heating, ventilating, and conditioning system is comprised of water-source heat pumps and a 5000 gallon storage tank in conjunction with an air to air heat recovery wheel.

  16. Miniature DMFCs with passive thermal-fluids management system

    NASA Astrophysics Data System (ADS)

    Guo, Zhen; Faghri, Amir

    A new miniature DMFC system that includes a fuel cell stack, a fuel tank and a passive ancillary system (termed "thermal-fluids management system" in this paper) is presented. The thermal-fluids management system utilizes passive approaches for fuel storage and delivery, air breathing, water management, CO 2 release and thermal management. With 5.1 g of neat methanol in the fuel cartridge, a prototype has successfully demonstrated 18 h of continuous operation with total power output of 1.56 Wh.

  17. Assessing levels and seasonal variations of current-use pesticides (CUPs) in the Tuscan atmosphere, Italy, using polyurethane foam disks (PUF) passive air samplers.

    PubMed

    Estellano, Victor H; Pozo, Karla; Efstathiou, Christos; Pozo, Katerine; Corsolini, Simonetta; Focardi, Silvano

    2015-10-01

    Polyurethane foam disks (PUF) passive air samplers (PAS) were deployed over 4 sampling periods of 3-5-months (≥ 1 year) at ten urban and rural locations throughout the Tuscany Region. The purpose was to assess the occurrence and seasonal variations of ten current-use pesticides (CUPs). PUF disk extracts were analyzed using GC-MS. The organophosphates insecticides; chlorpyrifos (3-580 pg m(-3)) and chlorpyrifos-methyl (below detection limit - to 570 pg m(-3)) presented the highest levels in air, and showed seasonal fluctuation coinciding with the growing seasons. The relative proportion urban/(urban + rural) ranged from 0.4 to 0.7 showing no differences between urban and rural concentrations. Air back trajectories analysis showed air masses passing over agricultural fields and potentially enhancing the drift of pesticides into the urban sites. This study represents the first information regarding CUPs in the atmosphere of Tuscany region using PAS-PUF disk. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. PASSIVE AEROSOL SAMPLER FOR CHARACTERIZATION, AMBIENT CONCENTRATION, AND PARTICLE SIZE MEASUREMENT

    EPA Science Inventory

    This is an extended abstract of a presentation made at the Air and Waste Management Association's Symposium on Air Quality Measurement Methods and Technology, Durham, NC, May 9-11, 2006. The abstract describes the theory, design, and initial testing of a passive aerosol sampler f...

  19. Measurement of BTEX (benzene, toluene, ethybenzene, and xylene) levels at urban and semirural areas of Algiers City using passive air samplers.

    PubMed

    Kerchich, Yacine; Kerbachi, Rabah

    2012-12-01

    The study presents the levels of air pollution by aromatic organic compounds BTEX (benzene, toluene, ethylbenzene, o-, m-, and p-xylenes) in the city of Algiers. The sampling was carried out using Radiello passive sampler. Three sampling campaigns were carried out in roadside, tunnel, urban background, and semirural sites in Algiers. In order to determine the diurnal mean levels of air pollution by BTEX to which people are exposed, a modified passive sampler was used for the first time. In addition, monitoring of pollution inside vehicles was also made. In the spring of 2009, more than 27 samplings were carried out. In the background and road traffic sites the Radiello sampler was exposed for 7 days, whereas the time exposure was reduced to 1 day in the case of the vehicle as well as the tunnel. The results indicate that average benzene concentrations in the roadside and inside vehicle exceed largely the limit value of 5 microg m(-3) established by the European Community (EC). On the other hand, it has been noticed that the concentration levels of other BTEX are relatively high. Also, in order to identify the origin of emission sources, ratios and correlations between the BTEX species have been highlighted. This study shows that road traffic remains the main source of many local emission in Algiers. The vehicle fleet in Algeria is growing rapidly since the 1990s following economic growth and is responsible for the increasing air pollution in large cities. Because there are no data collection of BTEX carried out by national air quality network, all environmental and transportation policies are based on European emissions standards, but national emission standards are currently not in place. This work will contribute to the analysis of real emissions of BTEX in Algiers, for the development of management and for assessment of population exposure variation depending on the location in the city of Algiers.

  20. A Long-Life Lithium-Air Battery in Ambient Air with a Polymer Electrolyte Containing a Redox Mediator.

    PubMed

    Guo, Ziyang; Li, Chao; Liu, Jingyuan; Wang, Yonggang; Xia, Yongyao

    2017-06-19

    Lithium-air batteries when operated in ambient air generally exhibit poor reversibility and cyclability, because of the Li passivation and Li 2 O 2 /LiOH/Li 2 CO 3 accumulation in the air electrode. Herein, we present a Li-air battery supported by a polymer electrolyte containing 0.05 m LiI, in which the polymer electrolyte efficiently alleviates the Li passivation induced by attacking air. Furthermore, it is demonstrated that I - /I 2 conversion in polymer electrolyte acts as a redox mediator that facilitates electrochemical decomposition of the discharge products during recharge process. As a result, the Li-air battery can be stably cycled 400 times in ambient air (relative humidity of 15 %), which is much better than previous reports. The achievement offers a hope to develop the Li-air battery that can be operated in ambient air. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Technology Solutions Case Study: Design Guidance for Passive Vents in New Construction, Multifamily Buildings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    In an effort to improve indoor air quality in high-performance, new construction, multifamily buildings, dedicated sources of outdoor air are being implemented. Passive vents are being selected by some design teams over other strategies because of their lower first costs and operating costs. The U.S. Department of Energy’s Building America research team Consortium for Advanced Residential Buildings constructed eight steps, which outline the design and commissioning required for these passive vents to perform as intended.

  2. Enlightened Use of Passive Voice in Technical Writing

    NASA Technical Reports Server (NTRS)

    Trammell, M. K.

    1981-01-01

    The passive voice as a normal, acceptable, and established syntactic form in technical writing is defended. Passive/active verb ratios, taken from sources including 'antipassivist' text books, are considered. The suitability of the passive voice in technical writing which involves unknown or irrelevant agents is explored. Three 'myths' that the passive (1) utilizes an abnormal and artificial word order, (2) is lifeless, and (3) is indirect are considered. Awkward and abnormal sounding examples encountered in text books are addressed in terms of original context. Unattractive or incoherent passive sentences are explained in terms of inappropriate conversion from active sentences having (1) short nominal or pronominal subjects or (2) verbs with restrictions on their passive use.

  3. A passive integrative sampler for mercury vapor in air and neutral mercury species in water

    USGS Publications Warehouse

    Brumbaugh, W.G.; Petty, J.D.; May, T.W.; Huckins, J.N.

    2000-01-01

    A passive integrative mercury sampler (PIMS) based on a sealed polymeric membrane was effective for the collection and preconcentration of Hg0. Because the Hg is both oxidized and stabilized in the PIMS, sampling intervals of weeks to months are possible. The effective air sampling rate for a 15 x 2.5 cm device was about 21-equivalents/day (0.002 m3/day) and the detection limit for 4-week sampling was about 2 ng/m3 for conventional ICP-MS determination without clean-room preparation. Sampling precision was ??? 5% RSD for laboratory exposures, and 5-10% RSD for field exposures. These results suggest that the PIMS could be useful for screening assessments of Hg contamination and exposure in the environment, the laboratory, and the workplace. The PIMS approach may be particularly useful for applications requiring unattended sampling for extended periods at remote locations. Preliminary results indicate that sampling for dissolved gaseous mercury (DGM) and potentially other neutral mercury species from water is also feasible. Rigorous validation of the sampler performance is currently in progress. (C) 1999 Elsevier Science Ltd.A passive integrative mercury sampler (PIMS) based on a sealed polymeric membrane was effective for the collection and preconcentration of Hg0. Because the Hg is both oxidized and stabilized in the PIMS, sampling intervals of weeks to months are possible. The effective air sampling rate for a 15??2.5 cm device was about 21-equivalents/day (0.002 m3/day) and the detection limit for 4-week sampling was about 2 ng/m3 for conventional ICP-MS determination without clean-room preparation. Sampling precision was ???5% RSD for laboratory exposures, and 5-10% RSD for field exposures. These results suggest that the PIMS could be useful for screening assessments of Hg contamination and exposure in the environment, the laboratory, and the workplace. The PIMS approach may be particularly useful for applications requiring unattended sampling for extended

  4. Measurement of gaseous PAHs with an innovative passive sampler in community exposure studies

    EPA Science Inventory

    A sensitive, simple, and cost-effective passive sampling methodology was developed to quantify gaseous polycyclic aromatic hydrocarbons (PAHs) in personal, indoor and outdoor air. A Fan-Lioy passive PAH sampler (FL-PPS) is constructed from four 80 sections of 1 cm long SPB-5 GC c...

  5. Stable surface passivation process for compound semiconductors

    DOEpatents

    Ashby, Carol I. H.

    2001-01-01

    A passivation process for a previously sulfided, selenided or tellurated III-V compound semiconductor surface. The concentration of undesired mid-gap surface states on a compound semiconductor surface is reduced by the formation of a near-monolayer of metal-(sulfur and/or selenium and/or tellurium)-semiconductor that is effective for long term passivation of the underlying semiconductor surface. Starting with the III-V compound semiconductor surface, any oxidation present thereon is substantially removed and the surface is then treated with sulfur, selenium or tellurium to form a near-monolayer of chalcogen-semiconductor of the surface in an oxygen-free atmosphere. This chalcogenated surface is then contacted with a solution of a metal that will form a low solubility chalcogenide to form a near-monolayer of metal-chalcogen-semiconductor. The resulting passivating layer provides long term protection for the underlying surface at or above the level achieved by a freshly chalcogenated compound semiconductor surface in an oxygen free atmosphere.

  6. A new multiple air beam approach for in-process form error optical measurement

    NASA Astrophysics Data System (ADS)

    Gao, Y.; Li, R.

    2018-07-01

    In-process measurement can provide feedback for the control of workpiece precision in terms of size, roughness and, in particular, mid-spatial frequency form error. Optical measurement methods are of the non-contact type and possess high precision, as required for in-process form error measurement. In precision machining, coolant is commonly used to reduce heat generation and thermal deformation on the workpiece surface. However, the use of coolant will induce an opaque coolant barrier if optical measurement methods are used. In this paper, a new multiple air beam approach is proposed. The new approach permits the displacement of coolant from any direction and with a large thickness, i.e. with a large amount of coolant. The model, the working principle, and the key features of the new approach are presented. Based on the proposed new approach, a new in-process form error optical measurement system is developed. The coolant removal capability and the performance of this new multiple air beam approach are assessed. The experimental results show that the workpiece surface y(x, z) can be measured successfully with standard deviation up to 0.3011 µm even under a large amount of coolant, such that the coolant thickness is 15 mm. This means a relative uncertainty of 2σ up to 4.35% and the workpiece surface is deeply immersed in the opaque coolant. The results also show that, in terms of coolant removal capability, air supply and air velocity, the proposed new approach improves by, respectively, 3.3, 1.3 and 5.3 times on the previous single air beam approach. The results demonstrate the significant improvements brought by the new multiple air beam method together with the developed measurement system.

  7. Evaluation of a passive method for determining particle penetration through protective clothing materials.

    PubMed

    Jaques, Peter A; Portnoff, Lee

    2017-12-01

    The risk of workers' exposure to aerosolized particles has increased with the upsurge in the production of engineered nanomaterials. Currently, a whole-body standard test method for measuring particle penetration through protective clothing ensembles is not available. Those available for respirators neglect the most common challenges to ensembles, because they use active vacuum-based filtration, designed to simulate breathing, rather than the positive forces of wind experienced by workers. Thus, a passive method that measures wind-driven particle penetration through ensemble fabric has been developed and evaluated. The apparatus includes a multidomain magnetic passive aerosol sampler housed in a shrouded penetration cell. Performance evaluation was conducted in a recirculation aerosol wind tunnel using paramagnetic Fe 3 O 4 (i.e., iron (II, III) oxide) particles for the challenge aerosol. The particles were collected on a PVC substrate and quantified using a computer-controlled scanning electron microscope. Particle penetration levels were determined by taking the ratio of the particle number collected on the substrate with a fabric (sample) to that without a fabric (control). Results for each fabric obtained by this passive method were compared to previous results from an automated vacuum-based active fractional efficiency tester (TSI 3160), which used sodium chloride particles as the challenge aerosol. Four nonwoven fabrics with a range of thicknesses, porosities, and air permeabilities were evaluated. Smoke tests and flow modeling showed the passive sampler shroud provided smooth (non-turbulent) air flow along the exterior of the sampler, such that disturbance of flow stream lines and distortion of the particle size distribution were reduced. Differences between the active and passive approaches were as high as 5.5-fold for the fabric with the lowest air permeability (0.00067 m/sec-Pa), suggesting the active method overestimated penetration in dense fabrics

  8. Air quality and urban form in U.S. urban areas: evidence from regulatory monitors.

    PubMed

    Clark, Lara P; Millet, Dylan B; Marshall, Julian D

    2011-08-15

    The layout of an urban area can impact air pollution via changes in emissions and their spatial distribution. Here, we explore relationships between air quality and urban form based on cross-sectional observations for 111 U.S. urban areas. We employ stepwise linear regression to quantify how long-term population-weighted outdoor concentrations of ozone, fine particulate matter (PM(2.5)), and other criteria pollutants measured by the U.S. Environmental Protection Agency depend on urban form, climate, transportation, city size, income, and region. Aspects of urban form evaluated here include city shape, road density, jobs-housing imbalance, population density, and population centrality. We find that population density is associated with higher population-weighted PM(2.5) concentrations (p < 0.01); population centrality is associated with lower population-weighted ozone and PM(2.5) concentrations (p < 0.01); and transit supply is associated with lower population-weighted PM(2.5) concentrations (p < 0.1). Among pollutants, interquartile range changes in urban form variables are associated with 4%-12% changes in population-weighted concentrations-amounts comparable, for example, to changes in climatic factors. Our empirical findings are consistent with prior modeling research and suggest that urban form could potentially play a modest but important role in achieving (or not achieving) long-term air quality goals.

  9. Evaluation of Passive Vents in New Construction Multifamily Buildings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maxwell, Sean; Berger, David; Zuluaga, Marc

    Exhaust ventilation and corresponding outdoor air strategies are being implemented in high-performance new construction multifamily buildings to meet program or code requirements for improved indoor air quality, but a lack of clear design guidance is resulting in poor performance of these systems despite the best intentions of the programs or standards. CARB's 2014 'Evaluation of Ventilation Strategies in New Construction Multifamily Buildings' consistently demonstrated that commonly used outdoor air strategies are not performing as expected. Of the four strategies evaluated in 2014, the exhaust ventilation system that relied on outdoor air from a pressurized corridor was ruled out as amore » potential best practice due to its conflict with meeting requirements within most fire codes. Outdoor air that is ducted directly to the apartments was a strategy determined to have the highest likelihood of success, but with higher first costs and operating costs. Outdoor air through space conditioning systems was also determined to have good performance potential, with proper design and execution. The fourth strategy, passive systems, was identified as the least expensive option for providing outdoor air directly to apartments, with respect to both first costs and operating costs. However, little is known about how they actually perform in real-world conditions or how to implement them effectively. Based on the lack of data available on the performance of these low-cost systems and their frequent use in the high-performance building programs that require a provision for outdoor air, this research project sought to further evaluate the performance of passive vents.« less

  10. Passive Multistatic Radar Imaging using an OFDM Based Signal of Opportunity

    DTIC Science & Technology

    2012-03-22

    PASSIVE MULTISTATIC RADAR IMAGING USING AN OFDM BASED SIGNAL OF OPPORTUNITY THESIS Matthew B.P. Rapson, Flight Lieutenant, Royal Australian Air Force...PASSIVE MULTISTATIC RADAR IMAGING USING AN OFDM BASED SIGNAL OF OPPORTUNITY THESIS Presented to the Faculty Department of Electrical and Computer...for use in radar ap- plications such as synthetic aperture radar (SAR). The orthogonal frequency divi- sion multiplexing ( OFDM ) specific Worldwide

  11. Passive sampler for PM10-2.5 aerosol.

    PubMed

    Leith, David; Sommerlatt, Darrell; Boundy, Maryanne G

    2007-03-01

    This study investigates the use of a small passive sampler for aerosol particles to determine particulate matter (PM)10-2.5 concentrations in outdoor air. The passive sampler collects particles by gravity, diffusion, and convective diffusion onto a glass coverslip that is then examined with an optical microscope; digital images are processed with free software and the resultant PM10-2.5 concentrations determined. Both the samplers and the analyses are relatively inexpensive. Passive samplers were collocated with Federal Reference Method (FRM) samplers in Chapel Hill, NC; Phoenix, AZ; and Birmingham, AL; for periods from 5 to 15 days. Particles consisted primarily of inorganic dusts at some sites and a mix of industrial and inorganic materials at other sites. Measured concentrations ranged from < 10 microg/m3 to approximately 40 microg/m3. Overall, PM10-2.5 concentrations measured with the passive samplers were within approximately 1 standard deviation of concentrations measured with the FRM samplers. Concentrations determined with passive samplers depend on assumptions about particle density and shape factors and may also depend somewhat on local wind speed and turbulence; accurate values for these parameters may not be known. The degree of agreement between passive and FRM concentrations measured here suggests that passive measurements may not be overly dependent on accurate knowledge of these parameters.

  12. Polyurethane foam (PUF) disk passive samplers derived polychlorinated biphenyls (PCBs) concentrations in the ambient air of Bursa-Turkey: Spatial and temporal variations and health risk assessment.

    PubMed

    Birgül, Aşkın; Kurt-Karakus, Perihan Binnur; Alegria, Henry; Gungormus, Elif; Celik, Halil; Cicek, Tugba; Güven, Emine Can

    2017-02-01

    Polyurethane foam (PUF) passive samplers were employed to assess air concentrations of polychlorinated biphenyls (PCBs) in background, agricultural, semi-urban, urban and industrial sites in Bursa, Turkey. Samplers were deployed for approximately 2-month periods from February to December 2014 in five sampling campaign. Results showed a clear rural-agricultural-semi-urban-urban-industrial PCBs concentration gradient. Considering all sampling periods, ambient air concentrations of Σ 43 PCBs ranged from 9.6 to 1240 pg/m 3 at all sites with an average of 24.1 ± 8.2, 43.8 ± 24.4, 140 ± 190, 42.8 ± 24.6, 160 ± 280, 84.1 ± 105, 170 ± 150 and 280 ± 540 pg/m 3 for Mount Uludag, Uludag University Campus, Camlica, Bursa Technical University Osmangazi Campus, Hamitler, Agakoy, Kestel Organised Industrial District and Demirtas Organised Industrial District sampling sites, respectively. The ambient air PCB concentrations increased along a gradient from background to industrial areas by a factor of 1.7-11.4. 4-Cl PCBs (31.50-81.60%) was the most dominant homologue group at all sampling sites followed by 3-Cl, 7-Cl, 6-Cl and 5-Cl homologue groups. Sampling locations and potential sources grouped in principal component analysis. Results of PCA plots highlighted a large variability of the PCB mixture in air, hence possible related sources, in Bursa area. Calculated inhalation risk levels in this study indicated no serious adverse health effects. This study is one of few efforts to characterize PCB composition in ambient air seasonally and spatially for urban and industrial areas of Turkey by using passive samplers as an alternative sampling method for concurrent monitoring at multiple sites. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. PASSIVE SMOKING AND HEIGHT GROWTH OF PREADOLESCENT CHILDREN

    EPA Science Inventory

    The attained height and height growth of 9273 children participating in a longitudinal study of the health effects of air pollutants were analyzed to assess the association between passive exposure to cigarette smoke and physical growth between 6 and 11 years of age. Children wer...

  14. A passive brain-computer interface application for the mental workload assessment on professional air traffic controllers during realistic air traffic control tasks.

    PubMed

    Aricò, P; Borghini, G; Di Flumeri, G; Colosimo, A; Pozzi, S; Babiloni, F

    2016-01-01

    In the last decades, it has been a fast-growing concept in the neuroscience field. The passive brain-computer interface (p-BCI) systems allow to improve the human-machine interaction (HMI) in operational environments, by using the covert brain activity (eg, mental workload) of the operator. However, p-BCI technology could suffer from some practical issues when used outside the laboratories. In particular, one of the most important limitations is the necessity to recalibrate the p-BCI system each time before its use, to avoid a significant reduction of its reliability in the detection of the considered mental states. The objective of the proposed study was to provide an example of p-BCIs used to evaluate the users' mental workload in a real operational environment. For this purpose, through the facilities provided by the École Nationale de l'Aviation Civile of Toulouse (France), the cerebral activity of 12 professional air traffic control officers (ATCOs) has been recorded while performing high realistic air traffic management scenarios. By the analysis of the ATCOs' brain activity (electroencephalographic signal-EEG) and the subjective workload perception (instantaneous self-assessment) provided by both the examined ATCOs and external air traffic control experts, it has been possible to estimate and evaluate the variation of the mental workload under which the controllers were operating. The results showed (i) a high significant correlation between the neurophysiological and the subjective workload assessment, and (ii) a high reliability over time (up to a month) of the proposed algorithm that was also able to maintain high discrimination accuracies by using a low number of EEG electrodes (~3 EEG channels). In conclusion, the proposed methodology demonstrated the suitability of p-BCI systems in operational environments and the advantages of the neurophysiological measures with respect to the subjective ones. © 2016 Elsevier B.V. All rights reserved.

  15. South Philadelphia passive sampler and sensor study.

    PubMed

    Thoma, Eben D; Brantley, Halley L; Oliver, Karen D; Whitaker, Donald A; Mukerjee, Shaibal; Mitchell, Bill; Wu, Tai; Squier, Bill; Escobar, Elsy; Cousett, Tamira A; Gross-Davis, Carol Ann; Schmidt, Howard; Sosna, Dennis; Weiss, Hallie

    2016-10-01

    From June 2013 to March 2015, in total 41 passive sampler deployments of 2 wk duration each were conducted at 17 sites in South Philadelphia, PA, with results for benzene discussed here. Complementary time-resolved measurements with lower cost prototype fenceline sensors and an open-path ultraviolet differential optical absorption spectrometer were also conducted. Minimum passive sampler benzene concentrations for each sampling period ranged from 0.08 ppbv to 0.65 ppbv, with a mean of 0.25 ppbv, and were negatively correlated with ambient temperature (-0.01 ppbv/°C, R(2) = 0.68). Co-deployed duplicate passive sampler pairs (N = 609) demonstrated good precision with an average and maximum percent difference of 1.5% and 34%, respectively. A group of passive samplers located within 50 m of a refinery fenceline had a study mean benzene concentration of 1.22 ppbv, whereas a group of samplers located in communities >1 km distant from facilities had a mean of 0.29 ppbv. The difference in the means of these groups was statistically significant at the 95% confidence level (p < 0.001). A decreasing gradient in benzene concentrations moving away from the facilities was observed, as was a significant period-to-period variation. The highest recorded 2-wk average benzene concentration for the fenceline group was 3.11 ppbv. During this period, time-resolved data from the prototype sensors and the open-path spectrometer detected a benzene signal from the west on one day in particular, with the highest 5-min path-averaged benzene concentration measured at 24 ppbv. Using a variation of EPA's passive sampler refinery fenceline monitoring method, coupled with time-resolved measurements, a multiyear study in South Philadelphia informed benzene concentrations near facilities and in communities. The combination of measurement strategies can assist facilities in identification and mitigation of emissions from fugitive sources and improve information on air quality complex air sheds.

  16. Surface passivation process of compound semiconductor material using UV photosulfidation

    DOEpatents

    Ashby, Carol I. H.

    1995-01-01

    A method for passivating compound semiconductor surfaces by photolytically disrupting molecular sulfur vapor with ultraviolet radiation to form reactive sulfur which then reacts with and passivates the surface of compound semiconductors.

  17. Suppressing turbulence of self-propelling rods by strongly coupled passive particles.

    PubMed

    Su, Yen-Shuo; Wang, Hao-Chen; I, Lin

    2015-03-01

    The strong turbulence suppression, mainly for large-scale modes, of two-dimensional self-propelling rods, by increasing the long-range coupling strength Γ of low-concentration passive particles, is numerically demonstrated. It is found that large-scale collective rod motion in forms of swirls or jets is mainly contributed from well-aligned dense patches, which can push small poorly aligned rod patches and uncoupled passive particles. The more efficient momentum transfer and dissipation through increasing passive particle coupling leads to the formation of a more ordered and slowed down network of passive particles, which competes with coherent dense active rod clusters. The frustration of active rod alignment ordering and coherent motion by the passive particle network, which interrupt the inverse cascading of forming large-scale swirls, is the key for suppressing collective rod motion with scales beyond the interpassive distance, even in the liquid phase of passive particles. The loosely packed active rods are weakly affected by increasing passive particle coupling due to the weak rod-particle interaction. They mainly contribute to the small-scale modes and high-speed motion.

  18. Enhancement of biocompatibility of 316LVM stainless steel by cyclic potentiodynamic passivation.

    PubMed

    Shahryari, Arash; Omanovic, Sasha; Szpunar, Jerzy A

    2009-06-15

    Passivation of stainless steel implants is a common procedure used to increase their biocompatibility. The results presented in this work demonstrate that the electrochemical cyclic potentiodynamic polarization (CPP) of a biomedical grade 316LVM stainless steel surface is a very efficient passivation method that can be used to significantly improve the material's general corrosion resistance and thus its biocompatibility. The influence of a range of experimental parameters on the passivation/corrosion protection efficiency is discussed. The passive film formed on a 316LVM surface by using the CPP method offers a significantly higher general corrosion resistance than the naturally grown passive film. The corresponding relative corrosion protection efficiency measured in saline during a 2-month period was 97% +/- 1%, which demonstrates a very high stability of the CPP-formed passive film. Its high corrosion protection efficiency was confirmed also at temperatures and chloride concentrations well above normal physiological levels. It was also shown that the CPP is a significantly more effective passivation method than some other surface-treatment methods commonly used to passivate biomedical grade stainless steels. In addition, the CPP-passivated 316LVM surface showed an enhanced biocompatibility in terms of preosteoblast (MC3T3) cells attachment. An increased thickness of the CPP-formed passive film and its enrichment with Cr(VI) and oxygen was determined to be the origin of the material's increased general corrosion resistance, whereas the increased surface roughness and surface (Volta) potential were suggested to be the origin of the enhanced preosteoblast cells attachment. Copyright 2008 Wiley Periodicals, Inc.

  19. Gaseous and Freely-Dissolved PCBs in the Lower Great Lakes Based on Passive Sampling: Spatial Trends and Air-Water Exchange.

    PubMed

    Liu, Ying; Wang, Siyao; McDonough, Carrie A; Khairy, Mohammed; Muir, Derek C G; Helm, Paul A; Lohmann, Rainer

    2016-05-17

    Polyethylene passive sampling was performed to quantify gaseous and freely dissolved polychlorinated biphenyls (PCBs) in the air and water of Lakes Erie and Ontario during 2011-2012. In view of differing physical characteristics and the impacts of historical contamination by PCBs within these lakes, spatial variation of PCB concentrations and air-water exchange across these lakes may be expected. Both lakes displayed statistically similar aqueous and atmospheric PCB concentrations. Total aqueous concentrations of 29 PCBs ranged from 1.5 pg L(-1) in the open lake of Lake Erie (site E02) in 2011 spring to 105 pg L(-1) in Niagara (site On05) in 2012 summer, while total atmospheric concentrations were 7.7-634 pg m(-3) across both lakes. A west-to-east gradient was observed for aqueous PCBs in Lake Erie. River discharge and localized influences (e.g., sediment resuspension and regional alongshore transport) likely dominated spatial trends of aqueous PCBs in both lakes. Air-water exchange fluxes of Σ7PCBs ranged from -2.4 (±1.9) ng m(-2) day(-1) (deposition) in Sheffield (site E03) to 9.0 (±3.1) ng m(-2) day(-1) (volatilization) in Niagara (site On05). Net volatilization of PCBs was the primary trend across most sites and periods. Almost half of variation in air-water exchange fluxes was attributed to the difference in aqueous concentrations of PCBs. Uncertainty analysis in fugacity ratios and mass fluxes in air-water exchange of PCBs indicated that PCBs have reached or approached equilibrium only at the eastern Lake Erie and along the Canadian shore of Lake Ontario sites, where air-water exchange fluxes dominated atmospheric concentrations.

  20. Evaluation and application of a passive air sampler for polycylic aromatic hydrocarbons (PAHs).

    PubMed

    Esen, Fatma; Evci, Yildiz M; Tasdemir, Yucel

    2017-08-24

    Sampling of 15 PAHs by the use of both passive air sampler developed (D-PAS) in our research group and PAS (C-PAS) having widespread use in the literature was conducted to compare the performances of the samplers. Sampling was carried out for 1-year period (February 2013-February 2014), in different sampling periods by employing D-PAS and C-PAS. D-PAS and C-PAS were run in parallel for 10, 20, 30, 40 and 60 days. Sampling rates were calculated for both PASs by the use of concentration values obtained from a high-volume air sampler (HVAS). It was determined that calculated sampling values are different from each other by definition of design of C-PAS and D-PAS and difference in environment as velocity of wind and temperature are having different effects upon sampling rates. Collected σ 15 PAHs amounts of 10-day periods in spring, summer, autumn and winter were obtained as 576 ± 333, 209 ± 29, 2402 ± 910 and 664 ± 246 ng for D-PAS and 1070 ± 522, 318 ± 292, 6062 ± 1501 and 6089 ± 4018 ng for C-PAS, respectively. In addition, according to seasons, when collected PAHs in two different samplers were considered, similar results were obtained for the summer time in which no combustion takes place with the aim of domestic heating, while there were differences determined for the seasons with combustion in need of domestic heating. Gas-phase σ 15 PAHs' concentrations were reported depending on seasons in the spring, summer, autumn and winter sequences as 46 ± 32, 9 ± 3, 367 ± 207 and 127 ± 93 ng m -3 for HVAS, respectively.

  1. Passive absolute age and temperature history sensor

    DOEpatents

    Robinson, Alex; Vianco, Paul T.

    2015-11-10

    A passive sensor for historic age and temperature sensing, including a first member formed of a first material, the first material being either a metal or a semiconductor material and a second member formed of a second material, the second material being either a metal or a semiconductor material. A surface of the second member is in contact with a surface of the first member such that, over time, the second material of the second member diffuses into the first material of the first member. The rate of diffusion for the second material to diffuse into the first material depends on a temperature of the passive sensor. One of the electrical conductance, the electrical capacitance, the electrical inductance, the optical transmission, the optical reflectance, or the crystalline structure of the passive sensor depends on the amount of the second material that has diffused into the first member.

  2. Passivation of high temperature superconductors

    NASA Technical Reports Server (NTRS)

    Vasquez, Richard P. (Inventor)

    1991-01-01

    The surface of high temperature superconductors such as YBa2Cu3O(7-x) are passivated by reacting the native Y, Ba and Cu metal ions with an anion such as sulfate or oxalate to form a surface film that is impervious to water and has a solubility in water of no more than 10(exp -3) M. The passivating treatment is preferably conducted by immersing the surface in dilute aqueous acid solution since more soluble species dissolve into the solution. The treatment does not degrade the superconducting properties of the bulk material.

  3. Towards a Functionally-Formed Air Traffic System-of-Systems

    NASA Technical Reports Server (NTRS)

    Conway, Sheila R.; Consiglio, Maria C.

    2005-01-01

    Incremental improvements to the national aviation infrastructure have not resulted in sufficient increases in capacity and flexibility to meet emerging demand. Unfortunately, revolutionary changes capable of substantial and rapid increases in capacity have proven elusive. Moreover, significant changes have been difficult to implement, and the operational consequences of such change, difficult to predict due to the system s complexity. Some research suggests redistributing air traffic control functions through the system, but this work has largely been dismissed out of hand, accused of being impractical. However, the case for functionally-based reorganization of form can be made from a theoretical, systems perspective. This paper investigates Air Traffic Management functions and their intrinsic biases towards centralized/distributed operations, grounded in systems engineering and information technology theories. Application of these concepts to a small airport operations design is discussed. From this groundwork, a robust, scalable system transformation plan may be made in light of uncertain demand.

  4. Design and laboratory testing of a new flow-through directional passive air sampler for ambient particulate matter.

    PubMed

    Lin, Chun; Solera Garcia, Maria Angeles; Timmis, Roger; Jones, Kevin C

    2011-03-01

    A new type of directional passive air sampler (DPAS) is described for collecting particulate matter (PM) in ambient air. The prototype sampler has a non-rotating circular sampling tray that is divided into covered angular channels, whose ends are open to winds from sectors covering the surrounding 360°. Wind-blown PM from different directions enters relevant wind-facing channels, and is retained there in collecting pools containing various sampling media. Information on source direction and type can be obtained by examining the distribution of PM between channels. Wind tunnel tests show that external wind velocities are at least halved over an extended area of the collecting pools, encouraging PM to settle from the air stream. Internal and external wind velocities are well-correlated over an external velocity range of 2.0-10.0 m s⁻¹, which suggests it may be possible to relate collected amounts of PM simply to ambient concentrations and wind velocities. Measurements of internal wind velocities in different channels show that velocities decrease from the upwind channel round to the downwind channel, so that the sampler effectively resolves wind directions. Computational fluid dynamics (CFD) analyses were performed on a computer-generated model of the sampler for a range of external wind velocities; the results of these analyses were consistent with those from the wind tunnel. Further wind tunnel tests were undertaken using different artificial particulates in order to assess the collection performance of the sampler in practice. These tests confirmed that the sampler can resolve the directions of sources, by collecting particulates preferentially in source-facing channels.

  5. Air bags: an update.

    PubMed

    Mikhail, J N; Huelke, D F

    1997-10-01

    Overwhelming evidence shows that air bags save lives and reduce morbidity associated with MVCs. The resulting benefits far outweigh the risks of air bag injury or death. Emergency nurses play a pivotal role in educating the public about active seat belt use in conjunction with passive restraint systems such as air bags. Air bags cannot be viewed as a single solution or panacea to occupant protection. Air bags are designed as supplemental devices to be used with seat belts and require the active participation of the user for maximum benefit and safety.

  6. Modelling of double air-bridged structured inductor implemented by a GaAs integrated passive device manufacturing process

    NASA Astrophysics Data System (ADS)

    Li, Yang; Yao, Zhao; Zhang, Chun-Wei; Fu, Xiao-Qian; Li, Zhi-Ming; Li, Nian-Qiang; Wang, Cong

    2017-05-01

    In order to provide excellent performance and show the development of a complicated structure in a module and system, this paper presents a double air-bridge-structured symmetrical differential inductor based on integrated passive device technology. Corresponding to the proposed complicated structure, a new manufacturing process fabricated on a high-resistivity GaAs substrate is described in detail. Frequency-independent physical models are presented with lump elements and the results of skin effect-based measurements. Finally, some key features of the inductor are compared; good agreement between the measurements and modeled circuit fully verifies the validity of the proposed modeling approach. Meanwhile, we also present a comparison of different coil turns for inductor performance. The proposed work can provide a good solution for the design, fabrication, modeling, and practical application of radio-frequency modules and systems.

  7. Examining the neural correlates of active and passive forms of verbal-spatial binding in working memory.

    PubMed

    Grot, Stéphanie; Leclerc, Marie-Eve; Luck, David

    2018-05-23

    We designed an fMRI study to pinpoint the neural correlates of active and passive binding in working memory. Participants were instructed to memorize three words and three spatial locations. In the passive binding condition, words and spatial locations were directly presented as bound. Conversely, in the active binding condition, words and spatial locations were presented as separated, and participants were directed to intentionally create associations between them. Our results showed that participants performed better on passive binding relative to active binding. FMRI analysis revealed that both binding conditions induced greater activity within the hippocampus. Additionally, our analyses divulged regions specifically engaged in passive and active binding. Altogether, these data allow us to propose the hippocampus as a central candidate for working memory binding. When needed, a frontal-parietal network can contribute to the rearrangement of information. These findings may inform theories of working memory binding. Copyright © 2018. Published by Elsevier B.V.

  8. Improved hybrid isolator with maglev actuator integrated in air spring for active-passive isolation of ship machinery vibration

    NASA Astrophysics Data System (ADS)

    Li, Yan; He, Lin; Shuai, Chang-geng; Wang, Chun-yu

    2017-10-01

    A hybrid isolator consisting of maglev actuator and air spring is proposed and developed for application in active-passive vibration isolation system of ship machinery. The dynamic characteristics of this hybrid isolator are analyzed and tested. The stability and adaptability of this hybrid isolator to shock and swing in the marine environment are improved by a compliant gap protection technique and a disengageable suspended structure. The functions of these new engineering designs are proved by analytical verification and experimental validation of the designed stiffness of such a hybrid isolator, and also by shock adaptability testing of the hybrid isolator. Finally, such hybrid isolators are installed in an engineering mounting loaded with a 200-kW ship diesel generator, and the broadband and low-frequency sinusoidal isolation performance is tested.

  9. An ultra-compact and low loss passive beam-forming network integrated on chip with off chip linear array

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lepkowski, Stefan Mark

    2015-05-01

    The work here presents a review of beam forming architectures. As an example, the author presents an 8x8 Butler Matrix passive beam forming network including the schematic, design/modeling, operation, and simulated results. The limiting factor in traditional beam formers has been the large size dictated by transmission line based couplers. By replacing these couplers with transformer-based couplers, the matrix size is reduced substantially allowing for on chip compact integration. In the example presented, the core area, including the antenna crossover, measures 0.82mm×0.39mm (0.48% the size of a branch line coupler at the same frequency). The simulated beam forming achieves amore » peak PNR of 17.1 dB and 15dB from 57 to 63GHz. At the 60GHz center frequency the average insertion loss is simulated to be 3.26dB. The 8x8 Butler Matrix feeds into an 8-element antenna array to show the array patterns with single beam and adjacent beam isolation.« less

  10. Emerging Needs for Pervasive Passive Wireless Sensor Networks on Aerospace Vehicles

    NASA Technical Reports Server (NTRS)

    Wilson, William C.; Juarez, Peter D.

    2014-01-01

    NASA is investigating passive wireless sensor technology to reduce instrumentation mass and volume in ground testing, air flight, and space exploration applications. Vehicle health monitoring systems (VHMS) are desired on all aerospace programs to ensure the safety of the crew and the vehicles. Pervasive passive wireless sensor networks facilitate VHMS on aerospace vehicles. Future wireless sensor networks on board aerospace vehicles will be heterogeneous and will require active and passive network systems. Since much has been published on active wireless sensor networks, this work will focus on the need for passive wireless sensor networks on aerospace vehicles. Several passive wireless technologies such as microelectromechanical systems MEMS, SAW, backscatter, and chipless RFID techniques, have all shown potential to meet the pervasive sensing needs for aerospace VHMS applications. A SAW VHMS application will be presented. In addition, application areas including ground testing, hypersonic aircraft and spacecraft will be explored along with some of the harsh environments found in aerospace applications.

  11. Passivating the sulfur vacancy in monolayer MoS2

    NASA Astrophysics Data System (ADS)

    Lu, Haichang; Kummel, Andrew; Robertson, John

    2018-06-01

    Various methods to passivate the sulfur vacancy in 2D MoS2 are modeled using density functional theory (DFT) to understand the passivation mechanism at an atomic scale. First, the organic super acid, bis(trifluoromethane)sulfonimide (TFSI) is a strong protonating agent, and it is experimentally found to greatly increase the photoluminescence efficiency. DFT simulations find that the effectiveness of passivation depends critically on the charge state and number of hydrogens donated by TFSI since this determines the symmetry of the defect complex. A symmetrical complex is formed by three hydrogen atoms bonding to the defect in a -1 charge state, and this gives no bandgap states and a Fermi level in the midgap. However, a charge state of +1 gives a lower symmetry complex with one state in the gap. One or two hydrogens also give complexes with gap states. Second, passivation by O2 can provide partial passivation by forming a bridge bond across the S vacancy, but it leaves a defect state in the lower bandgap. On the other hand, substitutional additions do not shift the vacancy states out of the gap.

  12. A sheet metal forming simulation of automotive outer panels considering the behavior of air in die cavity

    NASA Astrophysics Data System (ADS)

    Choi, Kwang Yong; Kim, Yun Chang; Choi, Hee Kwan; Kang, Chul Ho; Kim, Heon Young

    2013-12-01

    During a sheet metal forming process of automotive outer panels, the air trapped between a blank sheet and a die tool can become highly compressed, ultimately influencing the blank deformation and the press force. To prevent this problem, vent holes are drilled into die tools and needs several tens to hundreds according to the model size. The design and the drilling of vent holes are based on expert's experience and try-out result and thus the process can be one of reasons increasing development cycle. Therefore the study on the size, the number, and the position of vent holes is demanded for reducing development cycle, but there is no simulation technology for analyzing forming defects, making numerical sheet metal forming process simulations that incorporate the fluid dynamics of air. This study presents a sheet metal forming simulation of automotive outer panels (a roof and a body side outer) that simultaneously simulates the behavior of air in a die cavity. Through CAE results, the effect of air behavior and vent holes to blank deformation was analyzed. For this study, the commercial software PAM-STAMP{trade mark, serif} and PAM-SAFE{trade mark, serif} was used.

  13. A study of aerosol entrapment and the influence of wind speed, chamber design and foam density on polyurethane foam passive air samplers used for persistent organic pollutants.

    PubMed

    Chaemfa, Chakra; Wild, Edward; Davison, Brian; Barber, Jonathan L; Jones, Kevin C

    2009-06-01

    Polyurethane foam disks are a cheap and versatile tool for sampling persistent organic pollutants (POPs) from the air in ambient, occupational and indoor settings. This study provides important background information on the ways in which the performance of these commonly used passive air samplers may be influenced by the key environmental variables of wind speed and aerosol entrapment. Studies were performed in the field, a wind tunnel and with microscopy techniques, to investigate deployment conditions and foam density influence on gas phase sampling rates (not obtained in this study) and aerosol trapping. The study showed: wind speed inside the sampler is greater on the upper side of the sampling disk than the lower side and tethered samplers have higher wind speeds across the upper and lower surfaces of the foam disk at a wind speed > or = 4 m/s; particles are trapped on the foam surface and within the body of the foam disk; fine (<1 um) particles can form clusters of larger size inside the foam matrix. Whilst primarily designed to sample gas phase POPs, entrapment of particles ensures some 'sampling' of particle bound POPs species, such as higher molecular weight PAHs and PCDD/Fs. Further work is required to investigate how quantitative such entrapment or 'sampling' is under different ambient conditions, and with different aerosol sizes and types.

  14. N-MOSFETs Formed on Solid Phase Epitaxially Grown GeSn Film with Passivation by Oxygen Plasma Featuring High Mobility.

    PubMed

    Fang, Yung-Chin; Chen, Kuen-Yi; Hsieh, Ching-Heng; Su, Chang-Chia; Wu, Yung-Hsien

    2015-12-09

    Solid phase epitaxially grown GeSn was employed as the platform to assess the eligibility of direct O2 plasma treatment on GeSn surface for passivation of GeSn N-MOSFETs. It has been confirmed that O2 plasma treatment forms a GeSnO(x) film on the surface and the GeSnO(x) topped by in situ Al2O3 constitutes the gate stack of GeSn MOS devices. The capability of the surface passivation was evidenced by the low interface trap density (D(it)) of 1.62 × 10(11) cm(-2) eV(-1), which is primarily due to the formation of Ge-O and Sn-O bonds at the surface by high density/reactivity oxygen radicals that effectively suppress dangling bonds and decrease gap states. The good D(it) not only makes tiny frequency dispersion in the characterization of GeSn MOS capacitors, but results in GeSn N-MOSFETs with outstanding peak electron mobility as high as 518 cm(2)/(V s) which outperforms other devices reported in the literature due to reduced undesirable carrier scattering. In addition, the GeSn N-MOSFETs also exhibit promising characteristics in terms of acceptable subthreshold swing of 156 mV/dec and relatively large I(ON)/I(OFF) ratio more than 4 orders. Moreover, the robust reliability in terms small V(t) variation against high field stress attests the feasibility of using the O2 plasma-treated passivation to advanced GeSn technology.

  15. Outdoor air 1,3-butadiene monitoring: Comparison of performance of Radiello® passive samplers and active multi-sorbent bed tubes

    NASA Astrophysics Data System (ADS)

    Gallego, Eva; Teixidor, Pilar; Roca, Francisco Javier; Perales, José Francisco; Gadea, Enrique

    2018-06-01

    A comparison was made between the relative performance of active and passive sampling methods for the analysis of 1,3-butadiene in outdoor air. Active and passive sampling was conducted using multi-sorbent bed tubes (Carbotrap, Carbopack X, Carboxen 569) and RAD141 Radiello® diffusive samplers (filled with Carbopack X), respectively. Daily duplicate samples of multi-sorbent bed tubes were taken over a period of 14 days (9 + 5 days) at El Morell (Tarragona, Spain), near the petrochemical area. As 1,3-butadiene is a reactive pollutant and can be rapidly oxidized, half of the samplers were equipped with ozone scrubbers. Samples consisted in two tubes connected in series (front and back) to allow the determination of breakthrough. Quadruplicate samples of Radiello® tubes were taken over a period of 14 days (9 days and 5 days), too. During those days, ozone concentration was measured using RAD172 Radiello® samplers. In addition to this, daily duplicate samples of multi-sorbent bed tubes were taken in the city of Barcelona over a period of 8 days. Simultaneously, 4 samples of Radiello® tubes were exposed to outdoor air. Sampling was done throughout June and July 2017. Analysis was performed by thermal desorption coupled with gas chromatography/mass spectrometry. Analytical performance of the two sampling methods was evaluated by describing several quality assurance parameters, with results showing that performances are quite similar. They display low detection limits, good precision, linearity and desorption efficiency, low levels of blank values, and low breakthrough for multi-sorbent bed tubes. However, Radiello® samplers were not able to uptake episodic 1,3-butadiene high concentrations, leading to underestimation of real values. Hence, we can conclude that Radiello® samplers can be used for baseline 1,3-butadiene levels whereas multi-sorbent bed tubes would be advisable when relevant episodes are expected.

  16. Determining Passive Sampler Partition Coefficients for Dissolved-phase Organic Contaminants

    EPA Science Inventory

    Passive samplers are used for environmental and analytical purposes to measure dissolved nonionic organic contaminants (NOCs) by absorption from a contaminated medium into a clean phase, usually in the form of a synthetic organic film. Recently developed passive sampler techniqu...

  17. Germanium detector passivated with hydrogenated amorphous germanium

    DOEpatents

    Hansen, William L.; Haller, Eugene E.

    1986-01-01

    Passivation of predominantly crystalline semiconductor devices (12) is provided for by a surface coating (21) of sputtered hydrogenated amorphous semiconductor material. Passivation of a radiation detector germanium diode, for example, is realized by sputtering a coating (21) of amorphous germanium onto the etched and quenched diode surface (11) in a low pressure atmosphere of hydrogen and argon. Unlike prior germanium diode semiconductor devices (12), which must be maintained in vacuum at cryogenic temperatures to avoid deterioration, a diode processed in the described manner may be stored in air at room temperature or otherwise exposed to a variety of environmental conditions. The coating (21) compensates for pre-existing undesirable surface states as well as protecting the semiconductor device (12) against future impregnation with impurities.

  18. Passivated contact formation using ion implantation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Young, David L.; Stradins, Pauls; Nemeth, William

    2018-05-29

    Methods for forming passivated contacts include implanting compound-forming ions into a substrate to about a first depth below a surface of the substrate, and implanting dopant ions into the substrate to about a second depth below the surface. The second depth may be shallower than the first depth. The methods also include annealing the substrate.

  19. Nonlinear pressure-flow relationships for passive microfluidic valves.

    PubMed

    Seker, Erkin; Leslie, Daniel C; Haj-Hariri, Hossein; Landers, James P; Utz, Marcel; Begley, Matthew R

    2009-09-21

    An analytical solution is presented for the nonlinear pressure-flow relationship of deformable passive valves, which are formed by bonding a deformable film over etched channels separated by a weir. A fluidic pathway connecting the channels is opened when the upstream pressure creates a tunnel along a predefined narrow strip where the film is not bonded to the weir. When the width of the strip is comparable to the inlet channel width, the predicted closed-form pressure-flow rate relationship is in excellent agreement with experiments, which determine pressures by measuring film deflections for prescribed flow rates. The validated closed-form models involve no fitting parameters, and provide the foundation to design passive diodes with specific nonlinear pressure-flow characteristics.

  20. Human Factors Assessment: The Passive Final Approach Spacing Tool (pFAST) Operational Evaluation

    NASA Technical Reports Server (NTRS)

    Lee, Katharine K.; Sanford, Beverly D.

    1998-01-01

    Automation to assist air traffic controllers in the current terminal and en route air traff ic environments is being developed at Ames Research Center in conjunction with the Federal Aviation Administration. This automation, known collectively as the Center-TRACON Automation System (CTAS), provides decision- making assistance to air traffic controllers through computer-generated advisories. One of the CTAS tools developed specifically to assist terminal area air traffic controllers is the Passive Final Approach Spacing Tool (pFAST). An operational evaluation of PFAST was conducted at the Dallas/Ft. Worth, Texas, Terminal Radar Approach Control (TRACON) facility. Human factors data collected during the test describe the impact of the automation upon the air traffic controller in terms of perceived workload and acceptance. Results showed that controller self-reported workload was not significantly increased or reduced by the PFAST automation; rather, controllers reported that the levels of workload remained primarily the same. Controller coordination and communication data were analyzed, and significant differences in the nature of controller coordination were found. Controller acceptance ratings indicated that PFAST was acceptable. This report describes the human factors data and results from the 1996 Operational Field Evaluation of Passive FAST.

  1. Evaluation of the Passive Cooling Strategies for Pei Min Sport Complex

    NASA Astrophysics Data System (ADS)

    Yam, K. S.; Yem, W. L.; Lee, V. C. C.

    2017-07-01

    This paper presents a modelling study on the evaluation of the passive cooling strategies for Pei Min sport complex at Miri. The squash centre has experienced excessively high temperature during peak hours that results in complains from the users. We discussed several passive cooling mechanisms and proposed four strategies for the sport centre. Thermal energy simulations were performed on these strategies using OpenStudio to evaluate their impact on the hourly temperature profile within the building. It was found that the peak temperature during the noon was significantly reduced when conductive material was applied at the lower surface of the roof, and the top of the roof was coated with white paint. However, insulating the roof also leads to weaker heat dispersion from the building which lower the rate of temperature drop in the late afternoon. Partitioning the roof was found to have similar effect as insulating roof. Air infiltration is essential for promoting air movement and regulating the temperature within the building. It was found the complex already have sufficient opening for the full effect of air infiltration.

  2. Passive air sampling using semipermeable membrane devices at different wind-speeds in situ calibrated by performance reference compounds.

    PubMed

    Söderström, Hanna S; Bergqvist, Per-Anders

    2004-09-15

    Semipermeable membrane devices (SPMDs) are passive samplers used to measure the vapor phase of organic pollutants in air. This study tested whether extremely high wind-speeds during a 21-day sampling increased the sampling rates of polycyclic aromatic hydrocarbons (PAHs) and polychlorinated biphenyls (PCBs), and whether the release of performance reference compounds (PRCs) was related to the uptakes at different wind-speeds. Five samplers were deployed in an indoor, unheated, and dark wind tunnel with different wind-speeds at each site (6-50 m s(-1)). In addition, one sampler was deployed outside the wind tunnel and one outside the building. To test whether a sampler, designed to reduce the wind-speeds, decreased the uptake and release rates, each sampler in the wind tunnel included two SPMDs positioned inside a protective device and one unprotected SPMD outside the device. The highest amounts of PAHs and PCBs were found in the SPMDs exposed to the assumed highest wind-speeds. Thus, the SPMD sampling rates increased with increasing wind-speeds, indicating that the uptake was largely controlled by the boundary layer at the membrane-air interface. The coefficient of variance (introduced by the 21-day sampling and the chemical analysis) for the air concentrations of three PAHs and three PCBs, calculated using the PRC data, was 28-46%. Thus, the PRCs had a high ability to predict site effects of wind and assess the actual sampling situation. Comparison between protected and unprotected SPMDs showed that the sampler design reduced the wind-speed inside the devices and thereby the uptake and release rates.

  3. Columbia County Habitat for Humanity Passive Townhomes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dentz, Jordan; Alaigh, Kunal; Dadia, Devanshi

    2016-03-18

    Columbia County (New York) Habitat for Humanity built a pair of townhomes to Passive House criteria with the purpose of exploring approaches for achieving Passive House performance and to eventually develop a prototype design for future projects. The project utilized a 2x6 frame wall with a structural insulated panel curtain wall and a ventilated attic over a sealed OSB ceiling air barrier. Mechanical systems include a single head, wall mounted ductless mini-split heat pump in each unit and a heat recovery ventilator. Costs were $26,000 per unit higher for Passive House construction compared with the same home built to ENERGYmore » STAR version 3 specifications, representing about 18% of total construction cost. This report discusses the cost components, energy modeling results and lessons from construction. Two alternative ventilation systems are analyzed: a central system; and, a point-source system with small through-wall units distributed throughout the house. The report includes a design and cost analysis of these two approaches.« less

  4. Passive cannabis smoke exposure and oral fluid testing.

    PubMed

    Niedbala, Sam; Kardos, Keith; Salamone, Sal; Fritch, Dean; Bronsgeest, Matth; Cone, Edward J

    2004-10-01

    Oral fluid testing for Delta(9)-tetrahydrocannabinol (THC) provides a convenient means of detection of recent cannabis usage. In this study, the risk of positive oral fluid tests from passive cannabis smoke exposure was investigated by housing four cannabis-free volunteers in a small, unventilated, and sealed room with an approximate volume of 36 m(3). Five active cannabis smokers were also present in the room, and each smoked a single cannabis cigarette (1.75% THC). Cannabis smoking occurred over the first 20 min of the study session. All subjects remained in the room for approximately 4 h. Oral fluid specimens were collected with the Intercept DOA Oral Specimen Collection Device. Three urine specimens were collected (0, 20, and 245 min). In addition, three air samples were collected for measurement of THC content. All oral fluid specimens were screened by enzyme immunoassay (EIA) for cannabinoids (cutoff concentration = 3 ng/mL) and tested by gas chromatography-tandem mass spectrometry (GC-MS-MS) for THC (LOQ/LOD = 0.75 ng/mL). All urine specimens were screened by EIA for cannabinoids (cutoff concentration = 50 ng/mL) and tested by GC-MS-MS for THCCOOH (LOQ/LOD = 1 ng/mL). Air samples were measured for THC by GC-MS (LOD = 1 ng/L). A total of eight oral fluid specimens (collected 20 to 50 min following initiation of smoking) from the four passive subjects screened and confirmed positive for THC at concentrations ranging from 3.6 to 26.4 ng/mL. Two additional specimens from one passive subject, collected at 50 and 65 min, screened negative but contained THC in concentrations of 4.2 and 1.1 ng/mL, respectively. All subsequent specimens for passive participants tested negative by EIA and GC-MS-MS for the remainder of the 4-h session. In contrast, oral fluid specimens collected from the five cannabis smokers generally screened and confirmed positive for THC throughout the session at concentrations substantially higher than observed for passive subjects. Urine

  5. Radar Versus Stealth: Passive Radar and the Future of U.S. Military Power

    DTIC Science & Technology

    2009-01-01

    minimizing, if not nul- lifying , the advantages of the defensive.”3 Douhet did not envision the many sur- face-to-air threats that would evolve over the...is emerging, enabled by advances in networked computing and passive radar technology. Because of their potential to counter stealth-based airpower...waveforms include FM and AM radio, television, digital audio/video broadcast, and cellular phone networks .38 Today, passive radar is often configured as a

  6. Heterojunction solar cell with passivated emitter surface

    DOEpatents

    Olson, Jerry M.; Kurtz, Sarah R.

    1994-01-01

    A high-efficiency heterojunction solar cell wherein a thin emitter layer (preferably Ga.sub.0.52 In.sub.0.48 P) forms a heterojunction with a GaAs absorber layer. A passivating window layer of defined composition is disposed over the emitter layer. The conversion efficiency of the solar cell is at least 25.7%. The solar cell preferably includes a passivating layer between the substrate and the absorber layer. An anti-reflection coating is preferably disposed over the window layer.

  7. Passive beam forming and spatial diversity in meteor scatter communication systems

    NASA Astrophysics Data System (ADS)

    Akram, Ammad; Cannon, Paul S.

    1996-03-01

    The method of passive beam formation using a four-element Butler matrix to improve the signal availability of meteor scatter communication systems is investigated. Signal availability, defined as the integrated time that the signal-to-noise ratio (snr) exceeds some snr threshold, serves as an important indicator of system performance. Butler matrix signal availability is compared with the performance of a single four-element Yagi reference system using ˜6.5 hours of data from a 720 km north-south temperate latitude link. The signal availability improvement factor of the Butler matrix is found to range between 1.6-1.8 over the snr threshold range of 20-30 dB in a 300-Hz bandwidth. Experimental values of the Butler matrix signal availability improvement factor are compared with analytical predictions. The experimental values show an expected snr threshold dependency with a dramatic increase at high snr. A theoretical analysis is developed to describe this increase. The signal availability can be further improved by ˜10-20% in a system employing two four-element Butler matrices with squinted beams so as to illuminate the sky with eight high-gain beams. Space diversity is found to increase the signal availability of a single antenna system by ˜10-15%, but the technique has very little advantage in a system already employing passive beam formation.

  8. Passive Cooling of Body Armor

    NASA Astrophysics Data System (ADS)

    Holtz, Ronald; Matic, Peter; Mott, David

    2013-03-01

    Warfighter performance can be adversely affected by heat load and weight of equipment. Current tactical vest designs are good insulators and lack ventilation, thus do not provide effective management of metabolic heat generated. NRL has undertaken a systematic study of tactical vest thermal management, leading to physics-based strategies that provide improved cooling without undesirable consequences such as added weight, added electrical power requirements, or compromised protection. The approach is based on evaporative cooling of sweat produced by the wearer of the vest, in an air flow provided by ambient wind or ambulatory motion of the wearer. Using an approach including thermodynamic analysis, computational fluid dynamics modeling, air flow measurements of model ventilated vest architectures, and studies of the influence of fabric aerodynamic drag characteristics, materials and geometry were identified that optimize passive cooling of tactical vests. Specific architectural features of the vest design allow for optimal ventilation patterns, and selection of fabrics for vest construction optimize evaporation rates while reducing air flow resistance. Cooling rates consistent with the theoretical and modeling predictions were verified experimentally for 3D mockups.

  9. Gas-cell measurements for evaluating longwave-infrared passive-sensor performance

    NASA Astrophysics Data System (ADS)

    Cummings, Alan S.; Combs, Roger J.; Thomas, Mark J.; Curry, Timothy; Kroutil, Robert T.

    2006-10-01

    A longwave-infrared (LWIR) passive-spectrometer performance was evaluated with a short-pathlength gas cell. This cell was accurately positioned between the sensor and a NIST-traceable blackbody radiance source. Cell contents were varied over the Beer's Law absorbance range from the limit of detection to saturation for the gas analytes of sulfur hexafluoride and hexafluoroethane. The spectral impact of saturation on infrared absorbance was demonstrated for the passive sensor configuration. The gas-cell contents for all concentration-pathlength products was monitored with an active traditional-laboratory Fourier Transform Infrared (FTIR) spectrometer and was verified by comparison with the established PNNL/DOE vapor-phase infrared (IR) spectral database. For the passive FTIR measurements, the blackbody source employed a range of background temperatures from 5 °C to 50 °C. The passive measurements without the presence of a gas cell permitted a determination of the noise equivalent spectral noise (NESR) for each set of passive gas-cell measurements. In addition, the no-cell condition allowed the evaluation of the effect of gas cell window materials of low density poly(ethylene), potassium chloride, potassium bromide, and zinc selenide. The components of gas cell, different window materials, temperature differentials, and absorbances of target-analyte gases supplied the means of evaluating the LWIR performance of a passive FTIR spectrometer. The various LWIR-passive measurements were found to simulate those often encountered in open-air scenarios important to both industrial and environmental monitoring applications.

  10. A survey of recent results in passive sampling of water and air by semipermeable membrane devices

    USGS Publications Warehouse

    Prest, Harry F.; Huckins, James N.; Petty, Jimmie D.; Herve, Sirpa; Paasivirta, Jaakko; Heinonen, Pertti

    1995-01-01

    A survey is presented of some recent results for passive sampling of water and air for trace organic contaminants using lipid-filled semipermeable membrane devices (SPMDs). Results of water sampling for trace organochlorine compounds using simultaneously exposed SPMDs and the most universally applied biomonitor (bivalves) are discussed. In general, the total amounts of accumulated analytes available for analysis in bivalves and SPMDs were comparable. However, SPMD controls typically had negligible levels of contamination, which was not always the case for transplanted bivalves, even after prolonged depuration prior to exposure. In surveys of the spatial trends of organochlorines at a series of sites, data from bivalves and SPMDs provided the same picture of contaminant distribution and severity. An exception was ionizable contaminants such as the chlorinated phenolic compounds and their transformation products found in pulp mill effluents. In these cases the two monitoring approaches compliment each other, i.e. what is not found in bivalves appears in SPMDs and vice versa. SPMDs have also been applied in environments where biomonitoring is not feasible. SPMDs have shown their utility in studies of trace levels of polyaromatic hydrocarbons by locating and characterizing point sources. An example is given of their application to the calculation of contaminant half-lives from aqueous SPMD residues, a direct measurement of the persistence of contaminants in an environmental compartment. Similarly, results of air sampling with SPMDs in a relatively pristine coastal location are cited which reveal a tremendous enhancement in p,p′-DDE relative to open ocean values.

  11. Damage detection and isolation via autocorrelation: a step toward passive sensing

    NASA Astrophysics Data System (ADS)

    Chang, Y. S.; Yuan, F. G.

    2018-03-01

    Passive sensing technique may eliminate the need of expending power from actuators and thus provide a means of developing a compact and simple structural health monitoring system. More importantly, it may provide a solution for monitoring the aircraft subjected to environmental loading from air flow during operation. In this paper, a non-contact auto-correlation based technique is exploited as a feasibility study for passive sensing application to detect damage and isolate the damage location. Its theoretical basis bears some resemblance to reconstructing Green's function from diffusive wavefield through cross-correlation. Localized high pressure air from air compressor are randomly and continuously applied on the one side surface of the aluminum panels through the air blow gun. A laser Doppler vibrometer (LDV) was used to scan a 90 mm × 90 mm area to create a 6 × 6 2D-array signals from the opposite side of the panels. The scanned signals were auto-correlated to reconstruct a "selfimpulse response" (or Green's function). The premise for stably reconstructing the accurate Green's function requires long sensing times. For a 609.6 mm × 609.6 mm flat aluminum panel, the sensing times roughly at least four seconds is sufficient to establish converged Green's function through correlation. For the integral stiffened aluminum panel, the geometrical features of the panel expedite the formation of the diffusive wavefield and thus shorten the sensing times. The damage is simulated by gluing a magnet onto the panels. Reconstructed Green's functions (RGFs) are used for damage detection and damage isolation based on an imaging condition with mean square deviation of the RGFs from the pristine and the damaged structure and the results are shown in color maps. The auto-correlation based technique is shown to consistently detect the simulated damage, image and isolate the damage in the structure subjected to high pressure air excitation. This technique may be transformed into

  12. Passive inhalation of cocaine.

    PubMed

    Cone, E J; Yousefnejad, D; Hillsgrove, M J; Holicky, B; Darwin, W D

    1995-10-01

    Six healthy male volunteers were exposed to the vapor of 100 and 200 mg freebase cocaine heated to a temperature of 200 degrees C in an unventilated room (12,600-L volume) for a period of 1 h. No pharmacological effects were detected as a result of the exposure. Blood specimens collected immediately following exposure were negative for cocaine and metabolites. Urine specimens analyzed by gas chromatography-mass spectrometry contained peak concentrations of benzoylecgonine that ranged from 22 to 123 ng/mL. The peak excretion time for benzoylecgonine following passive exposure was approximately 5 h. The amount of cocaine inhaled by the subjects during passive exposure was estimated from room air measurements of cocaine to be approximately 0.25 mg. The total amount of cocaine (cocaine plus metabolites) excreted in urine by the six subjects ranged from 0.04 to 0.21 mg. For comparison, the six subjects also received an intravenous injection of 1 mg cocaine hydrochloride. Four of six subjects screened positive (300-ng/mL cutoff concentration) following the injection, indicating that the minimum amount of cocaine in these subjects necessary to produce positive results was approximately 1 mg. A second passive inhalation study was undertaken in which specimens were collected from research staff who assisted in a series of experimental studies with "crack" (freebase cocaine) smokers. The research staff remained in close vicinity while the crack smokers smoked three doses of freebase cocaine (12.5, 25, and 50 mg) over a period of 4 h. As a result, staff members were passively exposed to sidestream smoke from crack pipes and to breath exhalation from the crack smokers. Urine specimens from the staff members contained a maximum of 6 ng/mL benzoylecgonine. Only traces (less than 1 ng/mL) of cocaine were detected in any specimen. Overall, these studies demonstrated that individuals exposed to cocaine smoke under naturalistic or artificial conditions absorbed small amounts of

  13. Passive heat-transfer means for nuclear reactors. [LMFBR

    DOEpatents

    Burelbach, J.P.

    1982-06-10

    An improved passive cooling arrangement is disclosed for maintaining adjacent or related components of a nuclear reactor within specified temperature differences. Specifically, heat pipes are operatively interposed between the components, with the vaporizing section of the heat pipe proximate the hot component operable to cool it and the primary condensing section of the heat pipe proximate the other and cooler component operable to heat it. Each heat pipe further has a secondary condensing section that is located outwardly beyond the reactor confinement and in a secondary heat sink, such as air ambient the containment, that is cooler than the other reactor component. By having many such heat pipes, an emergency passive cooling system is defined that is operative without electrical power.

  14. Heterojunction solar cell with passivated emitter surface

    DOEpatents

    Olson, J.M.; Kurtz, S.R.

    1994-05-31

    A high-efficiency heterojunction solar cell is described wherein a thin emitter layer (preferably Ga[sub 0.52]In[sub 0.48]P) forms a heterojunction with a GaAs absorber layer. A passivating window layer of defined composition is disposed over the emitter layer. The conversion efficiency of the solar cell is at least 25.7%. The solar cell preferably includes a passivating layer between the substrate and the absorber layer. An anti-reflection coating is preferably disposed over the window layer. 1 fig.

  15. 76 FR 40774 - Proposed Collection; Comment Request for Form 8621

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-11

    ... 8621, Return by a Shareholder of a Passive Foreign Investment Company or Qualified Electing Fund. DATES... Passive Foreign Investment Company or Qualified Electing Fund. OMB Number: 1545-1002. Form Number: 8621. Abstract: Form 8621 is filed by a U.S. shareholder who owns stock in a foreign investment company. The form...

  16. A holistic passive integrative sampling approach for assessing the presence and potential impacts of waterborne environmental contaminants

    USGS Publications Warehouse

    Petty, J.D.; Huckins, J.N.; Alvarez, D.A.; Brumbaugh, W. G.; Cranor, W.L.; Gale, R.W.; Rastall, A.C.; Jones-Lepp, T. L.; Leiker, T.J.; Rostad, C. E.; Furlong, E.T.

    2004-01-01

    As an integral part of our continuing research in environmental quality assessment approaches, we have developed a variety of passive integrative sampling devices widely applicable for use in defining the presence and potential impacts of a broad array of contaminants. The semipermeable membrane device has gained widespread use for sampling hydrophobic chemicals from water and air, the polar organic chemical integrative sampler is applicable for sequestering waterborne hydrophilic organic chemicals, the stabilized liquid membrane device is used to integratively sample waterborne ionic metals, and the passive integrative mercury sampler is applicable for sampling vapor phase or dissolved neutral mercury species. This suite of integrative samplers forms the basis for a new passive sampling approach for assessing the presence and potential toxicological significance of a broad spectrum of environmental contaminants. In a proof-of-concept study, three of our four passive integrative samplers were used to assess the presence of a wide variety of contaminants in the waters of a constructed wetland, and to determine the effectiveness of the constructed wetland in removing contaminants. The wetland is used for final polishing of secondary-treatment municipal wastewater and the effluent is used as a source of water for a state wildlife area. Numerous contaminants, including organochlorine pesticides, polycyclic aromatic hydrocarbons, organophosphate pesticides, and pharmaceutical chemicals (e.g., ibuprofen, oxindole, etc.) were detected in the wastewater. Herein we summarize the results of the analysis of the field-deployed samplers and demonstrate the utility of this holistic approach.

  17. Passive Sampling for Indoor and Outdoor Exposures to Chlorpyrifos, Azinphos-Methyl, and Oxygen Analogs in a Rural Agricultural Community

    PubMed Central

    Gibbs, Jenna L.; Yost, Michael G.; Negrete, Maria; Fenske, Richard A.

    2016-01-01

    Background: Recent studies have highlighted the increased potency of oxygen analogs of organophosphorus pesticides. These pesticides and oxygen analogs have previously been identified in the atmosphere following spray applications in the states of California and Washington. Objectives: We used two passive sampling methods to measure levels of the ollowing organophosphorus pesticides: chlorpyrifos, azinphos-methyl, and their oxygen analogs at 14 farmworker and 9 non-farmworker households in an agricultural region of central Washington State in 2011. Methods: The passive methods included polyurethane foam passive air samplers deployed outdoors and indoors and polypropylene deposition plates deployed indoors. We collected cumulative monthly samples during the pesticide application seasons and during the winter season as a control. Results: Monthly outdoor air concentrations ranged from 9.2 to 199 ng/m3 for chlorpyrifos, 0.03 to 20 ng/m3 for chlorpyrifos-oxon, < LOD (limit of detection) to 7.3 ng/m3 for azinphos-methyl, and < LOD to 0.8 ng/m3 for azinphos-methyl-oxon. Samples from proximal households (≤ 250 m) had significantly higher outdoor air concentrations of chlorpyrifos, chlorpyrifos-oxon, and azinphos-methyl than did samples from nonproximal households (p ≤ 0.02). Overall, indoor air concentrations were lower than outdoors. For example, all outdoor air samples for chlorpyrifos and 97% of samples for azinphos-methyl were > LOD. Indoors, only 78% of air samples for chlorpyrifos and 35% of samples for azinphos-methyl were > LOD. Samples from farmworker households had higher indoor air concentrations of both pesticides than did samples from non-farmworker households. Mean indoor and outdoor air concentration ratios for chlorpyrifos and azinphos-methyl were 0.17 and 0.44, respectively. Conclusions: We identified higher levels in air and on surfaces at both proximal and farmworker households. Our findings further confirm the presence of pesticides and their

  18. Passive Sampling for Indoor and Outdoor Exposures to Chlorpyrifos, Azinphos-Methyl, and Oxygen Analogs in a Rural Agricultural Community.

    PubMed

    Gibbs, Jenna L; Yost, Michael G; Negrete, Maria; Fenske, Richard A

    2017-03-01

    Recent studies have highlighted the increased potency of oxygen analogs of organophosphorus pesticides. These pesticides and oxygen analogs have previously been identified in the atmosphere following spray applications in the states of California and Washington. We used two passive sampling methods to measure levels of the ollowing organophosphorus pesticides: chlorpyrifos, azinphos-methyl, and their oxygen analogs at 14 farmworker and 9 non-farmworker households in an agricultural region of central Washington State in 2011. The passive methods included polyurethane foam passive air samplers deployed outdoors and indoors and polypropylene deposition plates deployed indoors. We collected cumulative monthly samples during the pesticide application seasons and during the winter season as a control. Monthly outdoor air concentrations ranged from 9.2 to 199 ng/m 3 for chlorpyrifos, 0.03 to 20 ng/m 3 for chlorpyrifos-oxon, < LOD (limit of detection) to 7.3 ng/m 3 for azinphos-methyl, and < LOD to 0.8 ng/m 3 for azinphos-methyl-oxon. Samples from proximal households (≤ 250 m) had significantly higher outdoor air concentrations of chlorpyrifos, chlorpyrifos-oxon, and azinphos-methyl than did samples from nonproximal households ( p ≤ 0.02). Overall, indoor air concentrations were lower than outdoors. For example, all outdoor air samples for chlorpyrifos and 97% of samples for azinphos-methyl were > LOD. Indoors, only 78% of air samples for chlorpyrifos and 35% of samples for azinphos-methyl were > LOD. Samples from farmworker households had higher indoor air concentrations of both pesticides than did samples from non-farmworker households. Mean indoor and outdoor air concentration ratios for chlorpyrifos and azinphos-methyl were 0.17 and 0.44, respectively. We identified higher levels in air and on surfaces at both proximal and farmworker households. Our findings further confirm the presence of pesticides and their oxygen analogs in air and highlight their potential for

  19. Passive smoking, air pollution, and acute respiratory symptoms in a diary study of student nurses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schwartz, J.; Zeger, S.

    1990-01-01

    A cohort of approximately 100 student nurses in Los Angeles was recruited for a diary study of the acute effects of air pollution. Smoking histories and presence of asthma and other allergies were determined by questionnaire. Diaries were completed daily and collected weekly for as long as 3 yr. Air pollution was measured at a monitoring location within 2.5 miles of the school. Incidence and duration of a symptom were modeled separately. Pack-years of cigarettes were predictive of the number of episodes of coughing (p less than 0.0001) and of bringing up phlegm (p less than 0.0001). Current smoking, rathermore » than cumulative smoking, was a better predictor of the duration of a phlegm episode (p less than 0.0001). Controlling for personal smoking, a smoking roommate increased the risk of an episode of phlegm (odds ratio (OR) = 1.41, p less than 0.001), but not of cough. Excluding asthmatics (who may be medicated), increased the odds ratio for passive smoking to 1.76 (p less than 0.0001). In logistic regression models controlling for temperature and serial correlation between days, an increase of 1 SD in carbon monoxide exposure (6.5 ppm) was associated with increased risk of headache (OR = 1.09, p less than 0.001), photochemical oxidants (7.4 pphm) were associated with increased risk of chest discomfort (OR = 1.17, p less than 0.001) and eye irritation (OR = 1.20 p less than 0.001), and nitrogen dioxide (9.1 pphm) was associated with increased risk of phlegm (OR = 1.08 p less than 0.01), sore throats (OR = 1.26, p less than 0.001), and eye irritation (OR = 1.16, p less than 0.001).« less

  20. Experiments to Evaluate and Implement Passive Tracer Gas Methods to Measure Ventilation Rates in Homes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lunden, Melissa; Faulkner, David; Heredia, Elizabeth

    2012-10-01

    This report documents experiments performed in three homes to assess the methodology used to determine air exchange rates using passive tracer techniques. The experiments used four different tracer gases emitted simultaneously but implemented with different spatial coverage in the home. Two different tracer gas sampling methods were used. The results characterize the factors of the execution and analysis of the passive tracer technique that affect the uncertainty in the calculated air exchange rates. These factors include uncertainties in tracer gas emission rates, differences in measured concentrations for different tracer gases, temporal and spatial variability of the concentrations, the comparison betweenmore » different gas sampling methods, and the effect of different ventilation conditions.« less

  1. In situ passivation of GaAsP nanowires.

    PubMed

    Himwas, C; Collin, S; Rale, P; Chauvin, N; Patriarche, G; Oehler, F; Julien, F H; Travers, L; Harmand, J-C; Tchernycheva, M

    2017-12-08

    We report on the structural and optical properties of GaAsP nanowires (NWs) grown by molecular-beam epitaxy. By adjusting the alloy composition in the NWs, the transition energy was tuned to the optimal value required for tandem III-V/silicon solar cells. We discovered that an unintentional shell was also formed during the GaAsP NW growth. The NW surface was passivated by an in situ deposition of a radial Ga(As)P shell. Different shell compositions and thicknesses were investigated. We demonstrate that the optimal passivation conditions for GaAsP NWs (with a gap of 1.78 eV) are obtained with a 5 nm thick GaP shell. This passivation enhances the luminescence intensity of the NWs by 2 orders of magnitude and yields a longer luminescence decay. The luminescence dynamics changes from single exponential decay with a 4 ps characteristic time in non-passivated NWs to a bi-exponential decay with characteristic times of 85 and 540 ps in NWs with GaP shell passivation.

  2. Measurement of Air Pollutants in the Troposphere

    ERIC Educational Resources Information Center

    Clemitshaw, Kevin C.

    2011-01-01

    This article describes the principles, applications and performances of methods to measure gas-phase air pollutants that either utilise passive or active sampling with subsequent laboratory analysis or involve automated "in situ" sampling and analysis. It focuses on air pollutants that have adverse impacts on human health (nitrogen…

  3. Spatial analysis of volatile organic compounds in South Philadelphia using passive samplers

    EPA Science Inventory

    Select volatile organic compounds (VOCs) were measured in the vicinity of a petroleum refinery and related operations in South Philadelphia, Pennsylvania, USA, using passive air sampling and laboratory analysis methods. Two-week, time-integrated samplers were deployed at 17 sites...

  4. Passive propulsion in vortex wakes

    NASA Astrophysics Data System (ADS)

    Beal, D. N.; Hover, F. S.; Triantafyllou, M. S.; Liao, J. C.; Lauder, G. V.

    A dead fish is propelled upstream when its flexible body resonates with oncoming vortices formed in the wake of a bluff cylinder, despite being well outside the suction region of the cylinder. Within this passive propulsion mode, the body of the fish extracts sufficient energy from the oncoming vortices to develop thrust to overcome its own drag. In a similar turbulent wake and at roughly the same distance behind a bluff cylinder, a passively mounted high-aspect-ratio foil is also shown to propel itself upstream employing a similar flow energy extraction mechanism. In this case, mechanical energy is extracted from the flow at the same time that thrust is produced. These results prove experimentally that, under proper conditions, a body can follow at a distance or even catch up to another upstream body without expending any energy of its own. This observation is also significant in the development of low-drag energy harvesting devices, and in the energetics of fish dwelling in flowing water and swimming behind wake-forming obstacles.

  5. Passive cooling safety system for liquid metal cooled nuclear reactors

    DOEpatents

    Hunsbedt, Anstein; Boardman, Charles E.; Hui, Marvin M.; Berglund, Robert C.

    1991-01-01

    A liquid metal cooled nuclear reactor having a passive cooling system for removing residual heat resulting from fuel decay during reactor shutdown. The passive cooling system comprises a plurality of partitions surrounding the reactor vessel in spaced apart relation forming intermediate areas for circulating heat transferring fluid which remove and carry away heat from the reactor vessel. The passive cooling system includes a closed primary fluid circuit through the partitions surrounding the reactor vessel and a partially adjoining secondary open fluid circuit for carrying transferred heat out into the atmosphere.

  6. Indirect passive cooling system for liquid metal cooled nuclear reactors

    DOEpatents

    Hunsbedt, Anstein; Boardman, Charles E.

    1990-01-01

    A liquid metal cooled nuclear reactor having a passive cooling system for removing residual heat resulting from fuel decay during reactor shutdown. The passive cooling system comprises a plurality of partitions surrounding the reactor vessel in spaced apart relation forming intermediate areas for circulating heat transferring fluid which remove and carry away heat from the reactor vessel. The passive cooling system includes a closed primary fluid circuit through the partitions surrounding the reactor vessel and a partially adjoining secondary open fluid circuit for carrying transferred heat out into the atmosphere.

  7. Comparison and characterization of different tunnel layers, suitable for passivated contact formation

    NASA Astrophysics Data System (ADS)

    Ling, Zhi Peng; Xin, Zheng; Ke, Cangming; Jammaal Buatis, Kitz; Duttagupta, Shubham; Lee, Jae Sung; Lai, Archon; Hsu, Adam; Rostan, Johannes; Stangl, Rolf

    2017-08-01

    Passivated contacts for solar cells can be realized using a variety of differently formed ultra-thin tunnel oxide layers. Assessing their interface properties is important for optimization purposes. In this work, we demonstrate the ability to measure the interface defect density distribution D it(E) and the fixed interface charge density Q f for ultra-thin passivation layers operating within the tunnel regime (<2 nm). Various promising tunnel layer candidates [i.e., wet chemically formed SiO x , UV photo-oxidized SiO x , and atomic layer deposited (ALD) AlO x ] are investigated for their potential application forming electron or hole selective tunnel layer passivated contacts. In particular, ALD AlO x is identified as a promising tunnel layer candidate for hole-extracting passivated contact formation, stemming from its high (negative) fixed interface charge density in the order of -6 × 1012 cm-2. This is an order of magnitude higher compared to wet chemically or UV photo-oxidized formed silicon oxide tunnel layers, while keeping the density of interface defect states D it at a similar level (in the order of ˜2 × 1012 cm-2 eV-1). This leads to additional field effect passivation and therefore to significantly higher measured effective carrier lifetimes (˜2 orders of magnitude). A surface recombination velocity of ˜40 cm/s has been achieved for a 1.5 nm thin ALD AlO x tunnel layer prior to capping by an additional hole transport material, like p-doped poly-Si or PEDOT:PSS.

  8. A simultaneous deep micromachining and surface passivation method suitable for silicon-based devices

    NASA Astrophysics Data System (ADS)

    Babaei, E.; Gharooni, M.; Mohajerzadeh, S.; Soleimani, E. A.

    2018-07-01

    Three novel methods for simultaneous micromachining and surface passivation of silicon are reported. A thin passivation layer is achieved using continuous and sequential plasma processes based on SF6, H2 and O2 gases. Reducing the recombination by surface passivation is crucial for the realization of high-performance nanosized optoelectronic devices. The passivation of the surface as an important step, is feasible by plasma processing based on hydrogen pulses in proper time-slots or using a mixture of H2 and O2, and SF6 gases. The passivation layer which is formed in situ during the micromachining process obviates a separate passivation step needed in conventional methods. By adjusting the plasma parameters such as power, duration, and flows of gases, the process can be controlled for the best results and acceptable under-etching at the same time. Moreover, the pseudo-oxide layer which is formed during the micromachining processes will also improve the electrical characteristics of the surface, which can be used as an add-on for micro and nanowire applications. To quantify the effect of surface passivation in our method, ellipsometry, lifetime measurements, x-ray photoelectron spectroscopy, current–voltage and capacitance–voltage measurements and solar cell testing have been employed.

  9. Operation of passive membrane systems for drinking water treatment.

    PubMed

    Oka, P A; Khadem, N; Bérubé, P R

    2017-05-15

    The widespread adoption of submerged hollow fibre ultrafiltration (UF) for drinking water treatment is currently hindered by the complexity and cost of these membrane systems, especially in small/remote communities. Most of the complexity is associated with auxiliary fouling control measures, which include backwashing, air sparging and chemical cleaning. Recent studies have demonstrated that sustained operation without fouling control measures is possible, but little is known regarding the conditions under which extended operation can be sustained with minimal to no fouling control measures. The present study investigated the contribution of different auxiliary fouling control measures to the permeability that can be sustained, with the intent of minimizing the mechanical and operational complexity of submerged hollow fiber UF membrane systems while maximizing their throughput capacity. Sustained conditions could be achieved without backwashing, air sparging or chemical cleaning (i.e. passive operation), indicating that these fouling control measures can be eliminated, substantially simplifying the mechanical and operational complexity of submerged hollow fiber UF systems. The adoption of hydrostatic pressure (i.e. gravity) to provide the driving force for permeation further reduced the system complexity. Approximately 50% of the organic material in the raw water was removed during treatment. The sustained passive operation and effective removal of organic material was likely due to the microbial community that established itself on the membrane surface. The permeability that could be sustained was however only approximately 20% of that which can be maintained with fouling control measures. Retaining a small amount of air sparging (i.e. a few minutes daily) and incorporating a daily 1-h relaxation (i.e. permeate flux interruption) period prior to sparging more than doubled the permeability that could be sustained. Neither the approach used to interrupt the permeate

  10. Global Passivity in Microscopic Thermodynamics

    NASA Astrophysics Data System (ADS)

    Uzdin, Raam; Rahav, Saar

    2018-04-01

    The main thread that links classical thermodynamics and the thermodynamics of small quantum systems is the celebrated Clausius inequality form of the second law. However, its application to small quantum systems suffers from two cardinal problems. (i) The Clausius inequality does not hold when the system and environment are initially correlated—a commonly encountered scenario in microscopic setups. (ii) In some other cases, the Clausius inequality does not provide any useful information (e.g., in dephasing scenarios). We address these deficiencies by developing the notion of global passivity and employing it as a tool for deriving thermodynamic inequalities on observables. For initially uncorrelated thermal environments the global passivity framework recovers the Clausius inequality. More generally, global passivity provides an extension of the Clausius inequality that holds even in the presences of strong initial system-environment correlations. Crucially, the present framework provides additional thermodynamic bounds on expectation values. To illustrate the role of the additional bounds, we use them to detect unaccounted heat leaks and weak feedback operations ("Maxwell demons") that the Clausius inequality cannot detect. In addition, it is shown that global passivity can put practical upper and lower bounds on the buildup of system-environment correlations for dephasing interactions. Our findings are highly relevant for experiments in various systems such as ion traps, superconducting circuits, atoms in optical cavities, and more.

  11. Enhanced Charge Collection with Passivation Layers in Perovskite Solar Cells.

    PubMed

    Lee, Yong Hui; Luo, Jingshan; Son, Min-Kyu; Gao, Peng; Cho, Kyung Taek; Seo, Jiyoun; Zakeeruddin, Shaik M; Grätzel, Michael; Nazeeruddin, Mohammad Khaja

    2016-05-01

    The Al2 O3 passivation layer is beneficial for mesoporous TiO2 -based perovskite solar cells when it is deposited selectively on the compact TiO2 surface. Such a passivation layer suppressing surface recombination can be formed by thermal decomposition of the perovskite layer during post-annealing. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Surface passivation and aging of InGaAs/InP heterojunction phototransistors

    NASA Astrophysics Data System (ADS)

    Park, Min-Su; Razaei, Mohsen; Barnhart, Katie; Tan, Chee Leong; Mohseni, Hooman

    2017-06-01

    We report the effect of different surface treatment and passivation techniques on the stability of InGaAs/InP heterojunction phototransistors (HPTs). An In0.53Ga0.47As surface passivated with aqueous ammonium sulfide ((NH4)2S), aluminum oxide (Al2O3) grown by atomic layer deposition (ALD), and their combination is evaluated by using Raman spectroscopy and X-ray photoelectron spectroscopy (XPS). All samples were kept in the air ambient, and their performances were periodically measured to investigate their long-term stability. Raman spectroscopy revealed that the peak intensity of the GaAs-like longitudinal optical phonon of all passivated samples is decreased compared with that of the control sample. This is attributable to the diminution of the carriers near the passivated surfaces, which was proven by extracted surface potential (Vs). The Vs of all passivated samples was decreased to less than half of that for the control sample. XPS evaluation of As3d spectra showed that arsenic oxides (As2O3 and As2O5) on the surfaces of the samples can be removed by passivation. However, both Raman and XPS spectra show that the (NH4)2S passivated sample reverts back over time and will resemble the untreated control sample. When capped with ALD-grown Al2O3, passivated samples irrespective of the pretreatment show no degradation over the measured time of 4 weeks. Similar conclusions are made from our experimental measurement of the performance of differently passivated HPTs. The ALD-grown Al2O3 passivated devices show an improved optical gain at low optical powers and long-term stability.

  13. Plant leaves as indoor air passive samplers for volatile organic compounds (VOCs).

    PubMed

    Wetzel, Todd A; Doucette, William J

    2015-03-01

    Volatile organic compounds (VOCs) enter indoor environments through internal and external sources. Indoor air concentrations of VOCs vary greatly but are generally higher than outdoors. Plants have been promoted as indoor air purifiers for decades, but reports of their effectiveness differ. However, while air-purifying applications may be questionable, the waxy cuticle coating on leaves may provide a simple, cost-effective approach to sampling indoor air for VOCs. To investigate the potential use of plants as indoor air VOC samplers, a static headspace approach was used to examine the relationship between leaf and air concentrations, leaf lipid contents and octanol-air partition coefficients (Koa) for six VOCs and four plant species. The relationship between leaf and air concentrations was further examined in an actual residence after the introduction of several chlorinated VOC emission sources. Leaf-air concentration factors (LACFs), calculated from linear regressions of the laboratory headspace data, were found to increase as the solvent extractable leaf lipid content and Koa value of the VOC increased. In the studies conducted in the residence, leaf concentrations paralleled the changing air concentrations, indicating a relatively rapid air to leaf VOC exchange. Overall, the data from the laboratory and residential studies illustrate the potential for plant leaves to be used as cost effective, real-time indoor air VOC samplers. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Hood River Passive House, Hood River, Oregon (Fact Sheet)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None, None

    2014-02-01

    The Hood River Passive Project was developed by Root Design Build of Hood River Oregon using the Passive House Planning Package (PHPP) to meet all of the requirements for certification under the European Passive House standards. The Passive House design approach has been gaining momentum among residential designers for custom homes and BEopt modeling indicates that these designs may actually exceed the goal of the U.S. Department of Energy's (DOE) Building America program to "reduce home energy use by 30%-50%" (compared to 2009 energy codes for new homes). This report documents the short term test results of the Shift Housemore » and compares the results of PHPP and BEopt modeling of the project. The design includes high R-Value assemblies, extremely tight construction, high performance doors and windows, solar thermal DHW, heat recovery ventilation, moveable external shutters and a high performance ductless mini-split heat pump. Cost analysis indicates that many of the measures implemented in this project did not meet the BA standard for cost neutrality. The ductless mini-split heat pump, lighting and advanced air leakage control were the most cost effective measures. The future challenge will be to value engineer the performance levels indicated here in modeling using production based practices at a significantly lower cost.« less

  15. A Comparison of Active and Passive Methods for Control of Hypersonic Boundary Layers on Airbreathing Configurations

    NASA Technical Reports Server (NTRS)

    Berry, Scott A.; Nowak, Robert J.

    2003-01-01

    Active and passive methods for control of hypersonic boundary layers have been experimentally examined in NASA Langley Research Center wind tunnels on a Hyper-X model. Several configurations for forcing transition using passive discrete roughness elements and active mass addition, or blowing, methods were compared in two hypersonic facilities, the 20-Inch Mach 6 Air and the 31-Inch Mach 10 Air tunnels. Heat transfer distributions, obtained via phosphor thermography, shock system details, and surface streamline patterns were measured on a 0.333-scale model of the Hyper-X forebody. The comparisons between the active and passive methods for boundary layer control were conducted at test conditions that nearly match the nominal Mach 7 flight trajectory of an angle-of-attack of 2-deg and length Reynolds number of 5.6 million. For the passive roughness examination, the primary parametric variation was a range of trip heights within the calculated boundary layer thickness for several trip concepts. The prior passive roughness study resulted in a swept ramp configuration being selected for the Mach 7 flight vehicle that was scaled to be roughly 0.6 of the calculated boundary layer thickness. For the active jet blowing study, the blowing manifold pressure was systematically varied for each configuration, while monitoring the mass flow, to determine the jet penetration height with schlieren and transition movement with the phosphor system for comparison to the passive results. All the blowing concepts tested were adequate for providing transition onset near the trip location with manifold stagnation pressures on the order of 40 times the model static pressure or higher.

  16. a Thermally Desorbable Miniature Passive Dosimeter for Organic Vapors

    NASA Astrophysics Data System (ADS)

    Gonzalez, Jesus Antonio

    A thermally desorbable miniature passive dosimeter (MPD) for organic vapors has been developed in conformity with theoretical and practical aspects of passive dosimeter design. The device was optimized for low sample loadings resulting from short-term and/or low concentration level exposure. This was accomplished by the use of thermal desorption rather than solvent elution, which provided the GC method with significantly higher sensitivity. Laboratory evaluation of this device for factors critical to the performance of passive dosimeters using benzene as the test vapor included: desorption efficiency (97.2%), capacity (1400 ppm-min), sensitivity (7ng/sample or 0.06 ppmv for 15 minutes sampling) accuracy and precision, concentration level, environmental conditions (i.e., air face velocity, relative humidity) and sample stability during short (15 minutes) and long periods of time (15 days). This device has demonstrated that its overall accuracy meets NIOSH and OSHA requirements for a sampling and analytical method for the exposure concentration range of 0.1 to 50 ppm (v/v) and 15 minutes exposures. It was demonstrated that the MPD operates in accordance with theoretically predicted performance and should be adequate for short-term and/or low concentration exposure monitoring of organic vapors in the workplace. In addition a dynamic vapor exposure evaluation system for passive dosimeters have been validated using benzene as the test vapor. The system is capable of generating well defined short-square wave concentration profiles suitable for the evaluation of passive dosimeters for ceiling exposure monitoring.

  17. Lagrangian Transport Calculations Using UARS Data. Part I: Passive Tracers

    NASA Technical Reports Server (NTRS)

    Manney, G. L.; Lahoz, W. A.; Harwood, R. S.; Zurek, R. W.; Kumer, J. B.; Mergenthaler, J. L.; Roche, A. E.; O'Neill, A; Swinbank, R.; Waters, J. W.

    1994-01-01

    The transport of passive tracers observed by UARS has been simulated using computed trajectories of thousands of air parcels initialized on a three-dimensional stratospheric grid. These trajectories are calculated in isentropic coordinates using horizontal winds provided by the United Kingdom Meteorological Office data assimilation system and vertical (cross-isentropic) velocities computed using a fast radiation code.

  18. Concentrations, Trends, and Air-Water Exchange of PAHs and PBDEs Derived from Passive Samplers in Lake Superior in 2011.

    PubMed

    Ruge, Zoe; Muir, Derek; Helm, Paul; Lohmann, Rainer

    2015-12-01

    Polycyclic aromatic hydrocarbons (PAHs) and polybrominated diphenylethers (PBDEs) are both currently released into the environment from anthropogenic activity. Both are hence primarily associated with populated or industrial areas, although wildfires can be an important source of PAHs, as well. Polyethylene passive samplers (PEs) were simultaneously deployed in surface water and near surface atmosphere to determine spatial trends and air-water gaseous exchange of 21 PAHs and 11 PBDEs at 19 sites across Lake Superior in 2011. Surface water and atmospheric PAH concentrations were greatest at urban sites (up to 65 ng L(-1) and 140 ng m(-3), respectively, averaged from June to October). Near populated regions, PAHs displayed net air-to-water deposition, but were near equilibrium off-shore. Retene, probably depositing following major wildfires in the region, dominated dissolved PAH concentrations at most Lake Superior sites. Atmospheric and dissolved PBDEs were greatest near urban and populated sites (up to 6.8 pg L(-1) and 15 pg m(-3), respectively, averaged from June to October), dominated by BDE-47. At most coastal sites, there was net gaseous deposition of BDE-47, with less brominated congeners contributing to Sault Ste. Marie and eastern open lake fluxes. Conversely, the central open lake and Eagle Harbor sites generally displayed volatilization of PBDEs into the atmosphere, mainly BDE-47.

  19. Passive filtration of air egressing from nuclear containment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Malloy, III, John D

    2017-09-26

    A nuclear reactor includes a reactor core comprising fissile material disposed in a reactor pressure vessel. A radiological containment contains the nuclear reactor. A containment compartment contains the radiological containment. A heat sink includes a chimney configured to develop an upward-flowing draft in response to heated fluid flowing into a lower portion of the chimney. A fluid conduit is arranged to receive fluid from the containment compartment and to discharge into the chimney. A filter may be provided, with the fluid conduit including a first fluid conduit arranged to receive fluid from the containment compartment and to discharge into anmore » inlet of the filter, and a second fluid conduit arranged to receive fluid from an outlet of the filter and to discharge into the chimney. As the draft is developed passively, there is no need for a blower or pump configured to move fluid through the fluid conduit.« less

  20. Fly ash carbon passivation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    La Count, Robert B; Baltrus, John P; Kern, Douglas G

    A thermal method to passivate the carbon and/or other components in fly ash significantly decreases adsorption. The passivated carbon remains in the fly ash. Heating the fly ash to about 500 and 800 degrees C. under inert gas conditions sharply decreases the amount of surfactant adsorbed by the fly ash recovered after thermal treatment despite the fact that the carbon content remains in the fly ash. Using oxygen and inert gas mixtures, the present invention shows that a thermal treatment to about 500 degrees C. also sharply decreases the surfactant adsorption of the recovered fly ash even though most ofmore » the carbon remains intact. Also, thermal treatment to about 800 degrees C. under these same oxidative conditions shows a sharp decrease in surfactant adsorption of the recovered fly ash due to the fact that the carbon has been removed. This experiment simulates the various "carbon burnout" methods and is not a claim in this method. The present invention provides a thermal method of deactivating high carbon fly ash toward adsorption of AEAs while retaining the fly ash carbon. The fly ash can be used, for example, as a partial Portland cement replacement in air-entrained concrete, in conductive and other concretes, and for other applications.« less

  1. Reliability and efficacy of organic passivation for polycrystalline silicon solar cells at room temperature

    NASA Astrophysics Data System (ADS)

    Shinde, Onkar S.; Funde, Adinath M.; Jadkar, Sandesh R.; Dusane, Rajiv O.; Dhere, Neelkanth G.; Ghaisas, Subhash V.

    2016-09-01

    Oleylamine is used as a passivating layer instead of commercial high temperature SiNx. Oleylamine coating applied on the n-type emitter side with p-type base polycrystalline silicon solar cells at room temperature using a simple spin coating method. It has been observed that there is 16% increase in efficiency after Oleylamine coating. Further, the solar cell was subjected to standard characterization namely current-voltage measurement for electrical parameters and Fourier transform infrared spectroscopy to understand the interaction of emitter surface and passivating Oleylamine. However, the passivation layer is not stable due to the reaction between Oleylamine and ambient air content such as humidity and carbon dioxide. This degradation can be prevented with suitable overcoating.

  2. Coupling passive air sampling with emission estimates and chemical fate modeling for persistent organic pollutants (POPs): a feasibility study for Northern Europe.

    PubMed

    Gioia, Rosalinda; Sweetman, Andy J; Jones, Kevin C

    2007-04-01

    Passive air samplers (polyurethane foam disks) were deployed at 23 background locations along a broadly west-east transect in 8 northern European countries and analyzed for PCBs, PBDEs, PAHs, and a range of organochlorine pesticides (HCB, DDTs, and DDEs). PCBs and PAHs were highest at the center of the transect (Denmark) and lowest in northern Norway. HCB was relatively uniformly distributed, reflecting its persistence and high degree of mixing in air. Higher DDE and DDT levels occurred in Eastern Europe and at several sites in Central Europe. PBDE levels were generally similar at all sites, but lower for some locations in Eastern Europe and Ireland. Emissions information for PCBs, HCB, and PBDEs was used as input for a multi-media chemical fate model, to generate predicted air concentrations and compare with these measured values. Different scenarios were highlighted by this exercise: (i) country and compound combinations where the national inventory gave predicted air concentrations in close agreement with those measured (e.g., PCBs in the UK); (ii) country and compound combinations where predicted concentrations were well below those measured, but where advection of emissions from elsewhere is likely to be important (e.g., PCBs in Norway); (iii) consistent underestimation of compound concentrations by the emissions modeling (i.e., HCB); and (iv) general overestimation of ambient concentrations (i.e., PBDEs). Air mass trajectory analysis showed the likely role of long-range atmospheric transport (LRAT) on national levels. In general, advection from the south and west of Europe appeared to contribute to ambient POPs levels for countries in the center and northeast of the transect. Guidelines are presented as to how countries that want to assess their POPs source inventories can do so with this relatively cheap initial screening approach.

  3. EVALUATION OF PM 10, PM 2.5 AND PM 10-2.5 MEASUREMENTS USING A PASSIVE PARTICULATE SAMPLER

    EPA Science Inventory

    This is an extended abstract of a presentation made at the Air and Waste Management Association's Symposium on Air Quality Measurement Methods and Technology, Durham, NC, May 9-11, 2006. The abstract describes field evaluations of a passive aerosol sampler for PM2.5, P...

  4. 76 FR 34293 - Proposed Collection; Comment Request for Form 8582

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-13

    ... 8582, Passive Activity Loss Limitations. DATES: Written comments should be received on or before August... INFORMATION: Title: Passive Activity Loss Limitations. OMB Number: 1545-1008. Form Number: 8582. Abstract: Under Internal Revenue Code section 469, losses from passive activities, to the extent that they exceed...

  5. Patient-related constraints on get- and be-passive uses in English: evidence from paraphrasing

    PubMed Central

    Thompson, Dominic; Ling, S. P.; Myachykov, Andriy; Ferreira, Fernanda; Scheepers, Christoph

    2013-01-01

    In English, transitive events can be described in various ways. The main possibilities are active-voice and passive-voice, which are assumed to have distinct semantic and pragmatic functions. Within the passive, there are two further options, namely be-passive or get-passive. While these two forms are generally understood to differ, there is little agreement on precisely how and why. The passive Patient is frequently cited as playing a role, though again agreement on the specifics is rare. Here we present three paraphrasing experiments investigating Patient-related constraints on the selection of active vs. passive voice, and be- vs. get-passive, respectively. Participants either had to re-tell short stories in their own words (Experiments 1 and 2) or had to answer specific questions about the Patient in those short stories (Experiment 3). We found that a given Agent in a story promotes the use of active-voice, while a given Patient promotes be-passives specifically. Meanwhile, get-passive use increases when the Patient is marked as important. We argue that the three forms of transitive description are functionally and semantically distinct, and can be arranged along two dimensions: Patient Prominence and Patient Importance. We claim that active-voice has a near-complementary relationship with the be-passive, driven by which protagonist is given. Since both get and be are passive, they share the features of a Patient-subject and an optional Agent by-phrase; however, get specifically responds to a Patient being marked as important. Each of these descriptions has its own set of features that differentiate it from the others. PMID:24273527

  6. Laboratory Development of a Passive Sampling Device for Hydrazines in Ambient Air

    DTIC Science & Technology

    1990-05-30

    of dilution air . Conditioned house- compressed air is used as the diluent. The conditioning procedure consists of passing the house air through a...Device N4 for Hydrazines in Ambient Air P. A. TAFFE,* K. P. CROSSMAN,* S. L. ROSE-PEHRSSON, AND J. R. WYATT 0 Chemistry Dynamics and Diagnostic Branch...Ambient Air 6. AUTHOR(S) Taffe,* P. A., Crossman,* K. P., Wyatt, J. R., and Rose-Pehrsson, S. L. 7. PERFORMING ORGANIZATION NAME(S) AND ADORESS(ES) 8

  7. A problem of hospital hygiene: the presence of aspergilli in hospital wards with different air-conditioning features.

    PubMed

    Perdelli, Fernanda; Sartini, Marina; Spagnolo, Anna Maria; Dallera, Maurizio; Lombardi, Roberto; Cristina, Maria Luisa

    2006-06-01

    A total of 1,030 microbiological samples were taken in 3 hospital wards with different air-conditioning features: no conditioning system (ward A), a conditioning system equipped with minimum efficiency reporting value (MERV) filters (ward B), and a conditioning system thoroughly maintained and equipped with high-efficiency particulate air (HEPA) filters (absolute) (ward C). The air in each ward was sampled, and the bacterial and fungal concentrations were determined by active and passive methods. The concentration of fungi on surfaces was also determined. Active sampling showed positive samples in wards A and B only, with average values of 0.50 colony-forming units (CFU)/m(3) (95% CI, 0.30 to 0.70) in A and 0.16 CFU/m(3) (95% CI, 0.13 to 0.20) in B. Passive sampling was positive only in ward A (mean, 0.14 CFU/cm(2)/h; 95% CI, 0.13 to 0.15). Aspergillus was found in 27% and 22% of sampled surfaces in wards A and B, respectively, but in no samples from ward C. The most commonly found species was A. fumigatus (76% of cases in A and 34% of cases in B). The results show that the use of air-conditioning systems markedly reduces the concentration of aspergilli in the environment. Proper maintenance of these systems is clearly fundamental if their efficacy is to be ensured.

  8. Passive heat transfer means for nuclear reactors

    DOEpatents

    Burelbach, James P.

    1984-01-01

    An improved passive cooling arrangement is disclosed for maintaining adjacent or related components of a nuclear reactor within specified temperature differences. Specifically, heat pipes are operatively interposed between the components, with the vaporizing section of the heat pipe proximate the hot component operable to cool it and the primary condensing section of the heat pipe proximate the other and cooler component operable to heat it. Each heat pipe further has a secondary condensing section that is located outwardly beyond the reactor confinement and in a secondary heat sink, such as air ambient the containment, that is cooler than the other reactor component. Means such as shrouding normally isolated the secondary condensing section from effective heat transfer with the heat sink, but a sensor responds to overheat conditions of the reactor to open the shrouding, which thereby increases the cooling capacity of the heat pipe. By having many such heat pipes, an emergency passive cooling system is defined that is operative without electrical power.

  9. Passive Polarimetric Microwave Signatures Observed Over Antarctica

    USDA-ARS?s Scientific Manuscript database

    WindSat satellite-based fully polarimetric passive microwave observations, expressed in the form of the Stokes vector, were analyzed over the Antarctic ice sheet. The vertically and horizontally polarized brightness temperatures (first two Stokes components) from WindSat are shown to be consistent w...

  10. Active and Passive Microrheology: Theory and Simulation

    NASA Astrophysics Data System (ADS)

    Zia, Roseanna N.

    2018-01-01

    Microrheological study of complex fluids traces its roots to the work of the botanist Robert Brown in the early nineteenth century. Indeed, passive microrheology and Brownian motion are one and the same. Once thought to reveal a fundamental life force, the phenomenon was ultimately leveraged by Einstein in proof of the atomic nature of matter ( Haw 2006 ). His work simultaneously paved the way for modern-day passive microrheology by connecting observable particle motion—diffusion—to solvent properties—the viscosity—via the well-known Stokes-Einstein relation. Advances in microscopy techniques in the last two decades have prompted extensions of the original model to generalized forms for passive probing of complex fluids. In the last decade, active microrheology has emerged as a means by which to interrogate the nonequilibrium behavior of complex fluids, in particular, the non-Newtonian rheology of dynamically heterogeneous and microscopically small systems. Here we review theoretical and computational approaches and advances in both passive and active microrheology, with a focus on the extent to which these techniques preserve the connection between single-particle motion and flow properties, as well as the rather surprising recovery of non-Newtonian flow behavior observed in bulk rheology.

  11. Directional passive ambient air monitoring of ammonia for fugitive source attribution; a field trial with wind tunnel characteristics

    NASA Astrophysics Data System (ADS)

    Solera García, M. A.; Timmis, R. J.; Van Dijk, N.; Whyatt, J. D.; Leith, I. D.; Leeson, S. R.; Braban, C. F.; Sheppard, L. J.; Sutton, M. A.; Tang, Y. S.

    2017-10-01

    Atmospheric ammonia is a precursor for secondary particulate matter formation, which harms human health and contributes to acidification and eutrophication. Under the 2012 Gothenburg Protocol, 2005 emissions must be cut by 6% by 2020. In the UK, 83% of total emissions originate from agricultural practices such as fertilizer use and rearing of livestock, with emissions that are spatially extensive and variable in nature. Such fugitive emissions make resolving and tracking of individual site performance challenging. The Directional Passive Air quality Sampler (DPAS) was trialled at Whim Bog, an experimental site with a wind-controlled artificial release of ammonia, in combination with CEH-developed ammonia samplers. Whilst saturation issues were identified, two DPAS-MANDE (Mini Annular Denuder) systems, when deployed in parallel, displayed an average relative deviation of 15% (2-54%) across all 12 directions, with the directions exposed to the ammonia source showing ∼5% difference. The DPAS-MANDE has shown great potential for directional discrimination and can contribute to the understanding and management of fugitive ammonia sources from intensive agriculture sites.

  12. Inhalation dose due to presence of 131I in air above septic tank system of an endocrinology hospital.

    PubMed

    Mietelski, J W; Grabowska, S; Nowak, T; Bogacz, J; Gaca, P; Bartyzel, M; Budzanowski, M

    2005-01-01

    We present here measurements of the 131I concentration for both: gaseous and aerosol fraction of 131I in the air above the septic tank containing wastes from medical application of this isotope. Aerosols were collected using air filters, whereas gaseous forms of iodine were trapped in KI impregnated charcoal double layer cartridge. Besides an active method (pumping of the air through system of filters) an attempt for using a passive method (charcoal traps) for monitoring of radio-iodine is described. For better characterisation of a site the external kerma was determined by means of G-M and TLD techniques as well as the activity kept in the septic tank was measured by gamma spectrometry. Results show that the activity of the aerosol fraction can be neglected compared to that of the gaseous fraction. He measured activity of air is low, on the level of 1 Bq m(-3), even during simulated failure of the ventilation system. Estimated inhalation dose for the serviceman of septic tanks is low ( approximately 10%) compared with external dose obtained by such person due to gamma radiation from the tank (on the level approximately 500 nSv h(-1)). Therefore, the concept of passive monitoring of the iodine in air was abandoned. Also estimated is the efficiency of 131I reduction by a charcoal filter of the ventilation system and 131I input to the environment by the ventilation chimney.

  13. Four passive sampling elements (quatrefoil)--II. Film badges for monitoring radon and its progeny.

    PubMed

    Tommasino, L; Tokonami, S

    2011-05-01

    The four passive samplers (quatrefoil) already described in a parallel paper, make it possible to obtain thin radiation sources, useful for alpha and beta counting by any passive and real-time detector. In the present paper, the applications of this quatrefoil for measuring radon gas by etch-track detectors will be described. In the case of radon measurements, different solids have been identified, with radon-sorption partition coefficients related to air from 1 to 2000. Uniquely compact radon badges can be obtained by using a layer of these solids facing an alpha track-etch detector. These radon badges make it possible to overcome most of the shortcomings of existing passive monitors. Moreover, these badges show promise for studying the radon solubility of polymer films.

  14. RATE OF TCE DEGRADATION IN A PLANT MULCH PASSIVE REACTIVE BARRIER (BIOWALL)

    EPA Science Inventory

    A passive reactive barrier was installed at the OU-1 site at Altus Air Force Base, Oklahoma to treat TCE contamination in ground water from a landfill. Depth to ground water varies from 1.8 to 2.4 meters below land surface. To intercept and treat the plume of contaminated groun...

  15. New Whole-House Solutions Case Study: Hood River Passive House

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    2014-02-01

    The Hood River Passive Project was developed by Root Design Build of Hood River Oregon using the Passive House Planning Package (PHPP) to meet all of the requirements for certification under the European Passive House standards. The Passive House design approach has been gaining momentum among residential designers for custom homes and BEopt modeling indicates that these designs may actually exceed the goal of the U.S. Department of Energy's (DOE) Building America program to "reduce home energy use by 30%-50%" (compared to 2009 energy codes for new homes). This report documents the short term test results of the Shift Housemore » and compares the results of PHPP and BEopt modeling of the project. The design includes high R-Value assemblies, extremely tight construction, high performance doors and windows, solar thermal DHW, heat recovery ventilation, moveable external shutters and a high performance ductless mini-split heat pump. Cost analysis indicates that many of the measures implemented in this project did not meet the BA standard for cost neutrality. The ductless mini-split heat pump, lighting and advanced air leakage control were the most cost effective measures. The future challenge will be to value engineer the performance levels indicated here in modeling using production based practices at a significantly lower cost.« less

  16. Comparison of using polyurethane foam passive samplers and tree bark samples from Western China to determine atmospheric organochlorine pesticide.

    PubMed

    Li, Qiuxu; Lu, Yao; Jin, Jun; Li, Guangyao; Li, Peng; He, Chang; Wang, Ying

    2016-03-01

    Polyurethane foam (PUF) passive samplers were deployed and tree bark samples were collected at 15 sites across western China in 2013, and the organochlorine pesticide (OCP) concentrations in the samples were determined. Dichlorodiphenyltrichloroethane and its degradation products (collectively called DDTs), hexachlorocyclohexanes (HCHs), and hexachlorobenzene (HCB) were the dominant OCPs in the PUF samples and tree bark samples. The mean DDTs, HCHs and HCB concentrations were 33, 22 and 18ng/sample in the PUF samples, and 428, 74, and 43ng/(g lipid weight (lw)) in the tree bark, respectively. The OCP concentrations in the air, calculated using PUF-air and tree-bark-air partitioning models, were of the same order of magnitude. Both sample types showed that relatively fresh inputs of DDT and HCHs to the environment have occurred in western China. Meanwhile, PUF passive samplers were compared with the use of tree bark samples as passive samplers. The OCP compositions in the PUF and tree bark samples were different. Only the relatively stable OCPs (such as HCB, β-HCH and p,p'-dichlorodiphenyldichloro-ethylene (DDE)) were consistent in the PUF and tree bark samples. Copyright © 2015. Published by Elsevier B.V.

  17. Method for passive cooling liquid metal cooled nuclear reactors, and system thereof

    DOEpatents

    Hunsbedt, Anstein; Busboom, Herbert J.

    1991-01-01

    A liquid metal cooled nuclear reactor having a passive cooling system for removing residual heat resulting from fuel decay during reactor shutdown. The passive cooling system comprises a plurality of partitions surrounding the reactor vessel in spaced apart relation forming intermediate areas for circulating heat transferring fluid which remove and carry away heat from the reactor vessel.

  18. Revealing Nanoscale Passivation and Corrosion Mechanisms of Reactive Battery Materials in Gas Environments.

    PubMed

    Li, Yuzhang; Li, Yanbin; Sun, Yongming; Butz, Benjamin; Yan, Kai; Koh, Ai Leen; Zhao, Jie; Pei, Allen; Cui, Yi

    2017-08-09

    Lithium (Li) metal is a high-capacity anode material (3860 mAh g -1 ) that can enable high-energy batteries for electric vehicles and grid-storage applications. However, Li metal is highly reactive and repeatedly consumed when exposed to liquid electrolyte (during battery operation) or the ambient environment (throughout battery manufacturing). Studying these corrosion reactions on the nanoscale is especially difficult due to the high chemical reactivity of both Li metal and its surface corrosion films. Here, we directly generate pure Li metal inside an environmental transmission electron microscope (TEM), revealing the nanoscale passivation and corrosion process of Li metal in oxygen (O 2 ), nitrogen (N 2 ), and water vapor (H 2 O). We find that while dry O 2 and N 2 (99.9999 vol %) form uniform passivation layers on Li, trace water vapor (∼1 mol %) disrupts this passivation and forms a porous film on Li metal that allows gas to penetrate and continuously react with Li. To exploit the self-passivating behavior of Li in dry conditions, we introduce a simple dry-N 2 pretreatment of Li metal to form a protective layer of Li nitride prior to battery assembly. The fast ionic conductivity and stable interface of Li nitride results in improved battery performance with dendrite-free cycling and low voltage hysteresis. Our work reveals the detailed process of Li metal passivation/corrosion and demonstrates how this mechanistic insight can guide engineering solutions for Li metal batteries.

  19. Soil Moisture Active Passive (SMAP) Media Briefing

    NASA Image and Video Library

    2015-01-09

    Dara Entekhabi, SMAP science team lead, Massachusetts Institute of Technology, center, speaks during a briefing about the upcoming launch of the Soil Moisture Active Passive (SMAP) mission, Thursday, Jan. 08, 2015, at NASA Headquarters in Washington DC. The mission is scheduled for a Jan. 29 launch from Vandenberg Air Force Base in California, and will provide the most accurate, highest-resolution global measurements of soil moisture ever obtained from space. The data will be used to enhance scientists' understanding of the processes that link Earth's water, energy and carbon cycles. Photo Credit: (NASA/Aubrey Gemignani)

  20. Soil Moisture Active Passive (SMAP) Media Briefing

    NASA Image and Video Library

    2015-01-09

    Dara Entekhabi, SMAP science team lead, Massachusetts Institute of Technology, speaks during a briefing about the upcoming launch of the Soil Moisture Active Passive (SMAP) mission, Thursday, Jan. 08, 2015, at NASA Headquarters in Washington DC. The mission is scheduled for a Jan. 29 launch from Vandenberg Air Force Base in California, and will provide the most accurate, highest-resolution global measurements of soil moisture ever obtained from space. The data will be used to enhance scientists' understanding of the processes that link Earth's water, energy and carbon cycles. Photo Credit: (NASA/Aubrey Gemignani)

  1. Li-air batteries: Decouple to stabilize

    NASA Astrophysics Data System (ADS)

    Xu, Ji-Jing; Zhang, Xin-Bo

    2017-09-01

    The utilization of porous carbon cathodes in lithium-air batteries is hindered by their severe decomposition during battery cycling. Now, dual redox mediators are shown to decouple the complex electrochemical reactions at the cathode, avoiding cathode passivation and decomposition.

  2. Determination of sub-part-per-million levels of formaldehyde in air using active or passive sampling on 2,4-dinitrophenylhydrazine-coated glass fiber filters and high-performance liquid chromatography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Levin, J.O.; Andersson, K.; Lindahl, R.

    1985-05-01

    Formaldehyde is sampled from air with the use of a standard miniature glass fiber filter impregnated with 2,4-dinitrophenylhydrazine and phosphoric acid. The formaldehyde hydrazone is desorbed from the filter with acetonitrile and determined by high-performance liquid chromatography using UV detection at 365 nm. Recovery of gas-phase-generated formaldehyde as hydrazone from a 13-mm impregnated filter is 80-100% in the range 0.3-30 ..mu..g of formaldehyde. This corresponds to 0.1-10 mg/m/sup 3/ in a 3-L air sample. When the filter sampling system is used in the active mode, air can be sampled at a rate of up to 1 L/min, affording an overallmore » sensitivity of about 1 ..mu..g/m/sup 3/ based on a 60-L air sample. Results are given from measurements of formaldehyde in indoor air. The DNP-coated filters were also evaluated for passive sampling. In this case 37-mm standard glass fibers were used and the sampling rate was 55-65 mL/min in two types of dosimeters. The diffusion samplers are especially useful for personal exposure monitoring in the work environment. 24 references, 2 figures, 4 tables.« less

  3. Passivation layer breakdown during laser-fired contact formation for photovoltaic devices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Raghavan, A.; DebRoy, T.; Palmer, T. A.

    2014-07-14

    Low resistance laser-fired ohmic contacts (LFCs) can be formed on the backside of Si-based solar cells using microsecond pulses. However, the impact of these longer pulse durations on the dielectric passivation layer is not clear. Retention of the passivation layer during processing is critical to ensure low recombination rates of electron-hole pairs at the rear surface of the device. In this work, advanced characterization tools are used to demonstrate that although the SiO{sub 2} passivation layer melts directly below the laser, it is well preserved outside the immediate LFC region over a wide range of processing parameters. As a result,more » low recombination rates at the passivation layer/wafer interface can be expected despite higher energy densities associated with these pulse durations.« less

  4. Landfill gas distribution at the base of passive methane oxidation biosystems: Transient state analysis of several configurations.

    PubMed

    Ahoughalandari, Bahar; Cabral, Alexandre R

    2017-11-01

    The design process of passive methane oxidation biosystems needs to include design criteria that account for the effect of unsaturated hydraulic behavior on landfill gas migration, in particular, restrictions to landfill gas flow due to the capillary barrier effect, which can greatly affect methane oxidation rates. This paper reports the results of numerical simulations performed to assess the landfill gas flow behavior of several passive methane oxidation biosystems. The concepts of these biosystems were inspired by selected configurations found in the technical literature. We adopted the length of unrestricted gas migration (LUGM) as the main design criterion in this assessment. LUGM is defined as the length along the interface between the methane oxidation and gas distribution layers, where the pores of the methane oxidation layer material can be considered blocked for all practical purposes. High values of LUGM indicate that landfill gas can flow easily across this interface. Low values of LUGM indicate greater chances of having preferential upward flow and, consequently, finding hotspots on the surface. Deficient designs may result in the occurrence of hotspots. One of the designs evaluated included an alternative to a concept recently proposed where the interface between the methane oxidation and gas distribution layers was jagged (in the form of a see-saw). The idea behind this ingenious concept is to prevent blockage of air-filled pores in the upper areas of the jagged segments. The results of the simulations revealed the extent of the capability of the different scenarios to provide unrestricted and conveniently distributed upward landfill gas flow. They also stress the importance of incorporating an appropriate design criterion in the selection of the methane oxidation layer materials and the geometrical form of passive biosystems. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. The Acquisition of Passives in Serbian

    ERIC Educational Resources Information Center

    Perovic, Alexandra; Vuksanovic, Jasmina; Petrovic, Boban; Avramovic-Ilic, Irena

    2014-01-01

    This study examined the comprehension of actional and psychological verbs in both their active and passive (short and long) forms by 99 Serbian-speaking children. The children, whose age ranged between 3 years, 6 months (3;6) and 7 years, 6 months (7;6), were divided into three groups: 3;6-5 ("M" = 4.3), 5;1-6;1 ("M" = 5.6),…

  6. Evaluation and guidelines for using polyurethane foam (PUF) passive air samplers in double-dome chambers to assess semi-volatile organic compounds (SVOCs) in non-industrial indoor environments.

    PubMed

    Bohlin, Pernilla; Audy, Ondřej; Škrdlíková, Lenka; Kukučka, Petr; Vojta, Šimon; Přibylová, Petra; Prokeš, Roman; Čupr, Pavel; Klánová, Jana

    2014-11-01

    Indoor air pollution has been recognized as an important risk factor for human health, especially in areas where people tend to spend most of their time indoors. Many semi-volatile organic compounds (SVOCs) have primarily indoor sources and are present in orders of magnitude higher concentrations indoors than outdoors. Despite this, awareness of SVOCs in indoor air and assessment of the link between indoor concentrations and human health have lagged behind those of outdoor air. This is partially related to challenges associated with indoor sampling of SVOCs. Passive air samplers (PASs), which are widely accepted in established outdoor air monitoring networks, have been used to fill the knowledge gaps on indoor SVOCs distribution. However, their applicability for indoor environments and the assessment of human health risks lack sufficient experimental data. To address this issue, we performed an indoor calibration study of polyurethane foam (PUF) PAS deployed in a double-dome chamber, covering both legacy and new SVOC classes. PUF-PAS and a continuous low-volume active air sampler (AAS) were co-deployed for a calibration period of twelve weeks. Based on the results from this evaluation, PUF-PAS in a double-bowl chamber is recommended for indoor sampling and health risk assessment of gas phase SVOCs, including novel brominated flame retardants (nBFR) providing sufficient exposure time is applied. Data for particle associated SVOCs suffered from significant uncertainties caused by low level of detection and low precision in this study. A more open chamber design for indoor studies may allow for higher sampling rates (RS) and better performance for the particle associated SVOCs.

  7. Measurement of Passive Uptake Rates for Volatile Organic Compounds on Commercial Thermal Desorption Tubes and the Effect of Ozone on Sampling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maddalena, Randy; Parra, Amanda; Russell, Marion

    Diffusive or passive sampling methods using commercially filled axial-sampling thermal desorption tubes are widely used for measuring volatile organic compounds (VOCs) in air. The passive sampling method provides a robust, cost effective way to measure air quality with time-averaged concentrations spanning up to a week or more. Sampling rates for VOCs can be calculated using tube geometry and Fick’s Law for ideal diffusion behavior or measured experimentally. There is evidence that uptake rates deviate from ideal and may not be constant over time. Therefore, experimentally measured sampling rates are preferred. In this project, a calibration chamber with a continuous stirredmore » tank reactor design and constant VOC source was combined with active sampling to generate a controlled dynamic calibration environment for passive samplers. The chamber air was augmented with a continuous source of 45 VOCs ranging from pentane to diethyl phthalate representing a variety of chemical classes and physiochemical properties. Both passive and active samples were collected on commercially filled Tenax TA thermal desorption tubes over an 11-day period and used to calculate passive sampling rates. A second experiment was designed to determine the impact of ozone on passive sampling by using the calibration chamber to passively load five terpenes on a set of Tenax tubes and then exposing the tubes to different ozone environments with and without ozone scrubbers attached to the tube inlet. During the sampling rate experiment, the measured diffusive uptake was constant for up to seven days for most of the VOCs tested but deviated from linearity for some of the more volatile compounds between seven and eleven days. In the ozone experiment, both exposed and unexposed tubes showed a similar decline in terpene mass over time indicating back diffusion when uncapped tubes were transferred to a clean environment but there was no indication of significant loss by ozone reaction.« less

  8. Structural evolution of tunneling oxide passivating contact upon thermal annealing.

    PubMed

    Choi, Sungjin; Min, Kwan Hong; Jeong, Myeong Sang; Lee, Jeong In; Kang, Min Gu; Song, Hee-Eun; Kang, Yoonmook; Lee, Hae-Seok; Kim, Donghwan; Kim, Ka-Hyun

    2017-10-16

    We report on the structural evolution of tunneling oxide passivating contact (TOPCon) for high efficient solar cells upon thermal annealing. The evolution of doped hydrogenated amorphous silicon (a-Si:H) into polycrystalline-silicon (poly-Si) by thermal annealing was accompanied with significant structural changes. Annealing at 600 °C for one minute introduced an increase in the implied open circuit voltage (V oc ) due to the hydrogen motion, but the implied V oc decreased again at 600 °C for five minutes. At annealing temperature above 800 °C, a-Si:H crystallized and formed poly-Si and thickness of tunneling oxide slightly decreased. The thickness of the interface tunneling oxide gradually decreased and the pinholes are formed through the tunneling oxide at a higher annealing temperature up to 1000 °C, which introduced the deteriorated carrier selectivity of the TOPCon structure. Our results indicate a correlation between the structural evolution of the TOPCon passivating contact and its passivation property at different stages of structural transition from the a-Si:H to the poly-Si as well as changes in the thickness profile of the tunneling oxide upon thermal annealing. Our result suggests that there is an optimum thickness of the tunneling oxide for passivating electron contact, in a range between 1.2 to 1.5 nm.

  9. Air pollution measurements from satellites

    NASA Technical Reports Server (NTRS)

    Ludwig, C. B.; Griggs, M.; Malkmus, W.; Bartle, E. R.

    1973-01-01

    A study is presented on the remote sensing of gaseous and particulate air pollutants which is an extension of a previous report. Pollutants can be observed by either active or passive remote sensing systems. Calculations discussed herein indicate that tropospheric CO, CO2, SO2, NO2, NH3, HCHO, and CH4 can be measured by means of nadir looking passive systems. Additional species such as NO, HNO3, O3, and H2O may be measured in the stratosphere through a horizon experiment. A brief theoretical overview of resonance Raman scattering and resonance fluorescence is given. It is found that radiance measurements are most promising for general global applications, and that stratospheric aerosols may be measured using a sun occultation technique. The instrumentation requirements for both active and passive systems are examined and various instruments now under development are described.

  10. [Spectroscopic study on film formation mechanism and structure of composite silanes-V-Zr passive film].

    PubMed

    Wang, Lei; Liu, Chang-sheng; Shi, Lei; An, Cheng-qiang

    2015-02-01

    A composite silanes-V-Zr passive film was overlayed on hot-dip galvanized steel. Attenuated total reflection Fourier transformed infrared spectroscopy (ATR-FTIR), X-ray photoelectron spectrometer (XPS) and radio frequency glow discharge optical emission spectrometry (rf-GD-OES) were used to characterize the molecular structure of the silanes-V-Zr passive film. The mechanism of film formation was discussed: The results show that the silane molecules are crosslinked as the main film former and inorganic inhibitor is even distributed in the film. The fitting peak of 100.7 eV in XPS single Si2p energy range spectra of the composite silanes-V-Zr passive film and the widening and strengthening of the Si--O infrared absorption peak at 1100 cm(-1) indicate that the silanes were adsorbed on the surface of zinc with chemical bond of Si--O--Zn, and the silane molecules were connected with each other by bond of Si--O--Si. Two characteristic absorption peaks of amide at 1650 and 1560 cm(-1) appear in the infrared spectroscopy of the composite silanes-V-Zr passive film, and a characteristic absorption peak of epoxy groups at 910 cm(-1) disappears in the infrared spectroscopy of the passive film. The results indicate that gamma-APT can be prepared through nucleophilic ring-opening of ethylene oxide in gamma-GPT molecule to form C--N covalent bonds. The rf-GD-OES results indicate that there is a oxygen enriched layer in 0.3 microm depth of the composite silanes-V-Zr passive film. Moreover, ZrF4, ZrO2 and some inorganic matter obtained by the reaction during the forming processof the composite silanes-V-Zr passive film are distributed evenly throughout the film. According to the film composition, the physical processes and chemical reactions during the film forming process were studied by using ATR-FTIR. Based on this, the film forming mechanism was proposed.

  11. Real-time assessment of surface interactions with titanium passivation layer by surface plasmon resonance

    PubMed Central

    Hirata, Isao; Yoshida, Yasuhiro; Nagaoka, Noriyuki; Hiasa, Kyou; Abe, Yasuhiko; Maekawa, Kenji; Kuboki, Takuo; Akagawa, Yasumasa; Suzuki, Kazuomi; Van Meerbeek, Bart; Messersmith, Phillip B.; Okazaki, Masayuki

    2011-01-01

    The high corrosion resistance and strength-to-density ratio makes titanium widely used in major industry, but also in a gamut of medical applications. Here we report for the first time on our development of a titanium passivation layer sensor that makes use of surface plasmon resonance (SPR). The deposited titanium metal layer on the sensor was passivated in air, like titanium medical devices. Our ‘Ti-SPR sensor’ enables analysis of biomolecules interactions with the passivated surface of titanium in real time. As a proof of concept, corrosion of titanium passivation layer exposed to acid was monitored in real time. Also, the Ti-SPR sensor can accurately measure the time-dependence of protein adsorption onto titanium passivation layer with a sub-nanogram per square millimeter accuracy. Besides such SPR analyses, an SPR-imaging (SPRI) enables real-time assessment of chemical surface processes that occur simultaneously at ‘multiple independent spots’ on the Ti-SPR sensor, such as acid-corrosion or adhesion of cells. Our Ti-SPR sensor will therefore be very useful to study titanium-corrosion phenomena and biomolecular titanium-surface interactions with application in a broad range of industrial and biomedical fields. PMID:22154862

  12. Using Passive Cavitation Images to Classify High-Intensity Focused Ultrasound Lesions

    PubMed Central

    Haworth, Kevin J.; Salgaonkar, Vasant A.; Corregan, Nicholas M.; Holland, Christy K.; Mast, T. Douglas

    2015-01-01

    Passive cavitation imaging provides spatially resolved monitoring of cavitation emissions. However the diffraction limit of a linear imaging array results in relatively poor range resolution. Poor range resolution has limited prior analyses of the spatial specificity and sensitivity of passive cavitation imaging for predicting thermal lesion formation. In this study, this limitation is overcome by orienting a linear array orthogonal to the HIFU propagation direction and performing passive imaging. Fourteen lesions were formed in ex vivo bovine liver samples as a result of 1.1 MHz continuous-wave ultrasound exposure. The lesions were classified as focal, “tadpole”, or pre-focal based on their shape and location. Passive cavitation images were beam-formed from emissions at the fundamental, harmonic, ultraharmonic, and inharmonic frequencies with an established algorithm. Using the area under a receiver operator characteristic curve (AUROC), fundamental, harmonic, and ultraharmonic emissions were shown to be significant predictors of lesion formation for all lesion types. For both harmonic and ultraharmonic emissions, pre-focal lesions were classified most successfully (AUROC values of 0.87 and 0.88, respectively), followed by tadpole lesions (AUROC values of 0.77 and 0.64, respectively), and focal lesions (AUROC values of 0.65 and 0.60, respectively). PMID:26051309

  13. Active and passive immunization for cancer.

    PubMed

    Baxter, David

    2014-01-01

    Vaccination started around the 10th century AD as a means of preventing smallpox. By the end of the 19th century such therapeutic vaccines were well established with both active and passive preparations being used in clinical practice. Active immunization involved administering an immunogen that might be live/ attenuated, killed/ inactivated, toxoid or subunit in origin. Passive immunization involved giving pre-formed antibodies, usually to very recently exposed individuals. At about the same time such approaches were also tried to treat a variety of cancers - proof of principle for the protective role of the immune response against malignancy was established by the observation that tumors transplanted into syngeneic hosts were rejected by the host innate and adaptive responses. The impact of these therapeutic vaccination has taken a considerable time to become established - in part because target antigens against which an adaptive response can be directed do not appear to be uniquely expressed on malignant transformed cells; and also because tumor cells are able to manipulate their environment to downregulate the host immune response. Therapeutic cancer vaccines are also divided into active and passive types - the latter being subdivided into specific and non-specific vaccines. Active immunization utilizes an immunogen to generate a host response designed to eliminate the malignant cells, whereas in passive immunization preformed antibodies or cells are administered to directly eliminate the transformed cells - examples of each are considered in this review.

  14. Active and passive immunization for cancer

    PubMed Central

    Baxter, David

    2014-01-01

    Vaccination started around the 10th century AD as a means of preventing smallpox. By the end of the 19th century such therapeutic vaccines were well established with both active and passive preparations being used in clinical practice. Active immunization involved administering an immunogen that might be live/ attenuated, killed/ inactivated, toxoid or subunit in origin. Passive immunization involved giving pre-formed antibodies, usually to very recently exposed individuals. At about the same time such approaches were also tried to treat a variety of cancers – proof of principle for the protective role of the immune response against malignancy was established by the observation that tumors transplanted into syngeneic hosts were rejected by the host innate and adaptive responses. The impact of these therapeutic vaccination has taken a considerable time to become established - in part because target antigens against which an adaptive response can be directed do not appear to be uniquely expressed on malignant transformed cells; and also because tumor cells are able to manipulate their environment to downregulate the host immune response. Therapeutic cancer vaccines are also divided into active and passive types – the latter being subdivided into specific and non-specific vaccines. Active immunization utilizes an immunogen to generate a host response designed to eliminate the malignant cells, whereas in passive immunization preformed antibodies or cells are administered to directly eliminate the transformed cells - examples of each are considered in this review. PMID:25424829

  15. Passive coherent location system simulation and evaluation

    NASA Astrophysics Data System (ADS)

    Slezák, Libor; Kvasnička, Michael; Pelant, Martin; Vávra, Jiř; Plšek, Radek

    2006-02-01

    Passive Coherent Location (PCL) is going to be important and perspective system of passive location of non cooperative and stealth targets. It works with the sources of irradiation of opportunity. PCL is intended to be a part of mobile Air Command and Control System (ACCS) as a Deployable ACCS Component (DAC). The company ERA works on PCL system parameters verification program by complete PCL simulator development since the year 2003. The Czech DoD takes financial participation on this program. The moving targets scenario, the RCS calculation by method of moment, ground clutter scattering and signal processing method (the bottle neck of the PCL) are available up to now in simulator tool. The digital signal (DSP) processing algorithms are performed both on simulated data and on real data measured at NATO C3 Agency in their Haag experiment. The Institute of Information Theory and Automation of the Academy of Sciences of the Czech Republic takes part on the implementation of the DSP algorithms in FPGA. The paper describes the simulator and signal processing structure and results both on simulated and measured data.

  16. Interlanguage Passive Construction

    ERIC Educational Resources Information Center

    Simargool, Nirada

    2008-01-01

    Because the appearance of the passive construction varies cross linguistically, differences exist in the interlanguage (IL) passives attempted by learners of English. One such difference is the widely studied IL pseudo passive, as in "*new cars must keep inside" produced by Chinese speakers. The belief that this is a reflection of L1 language…

  17. Examing the prospective of implementing passive house standards in providing sustainable schools

    NASA Astrophysics Data System (ADS)

    Suhaili, Wan Farhani; Shahrill, Masitah

    2018-04-01

    This study examines the potential of implementing the passive house standards to reduce energy consumption on school buildings in Brunei. Furthermore, it investigates whether sustainable school buildings make business sense to the government. To do this, conventional and Passive House primary school buildings are compared in terms of their performances using the Passive House Planning Package as well as the Ecotect environmental analysis tool. The findings indicated that by replacing lower U-values building fabrics brought a significantly reduction in the cooling demand of 54%. Whereas, Ecotect models have demonstrated that the heating and cooling loads have tremendously reduced to 75% by reorienting the location of the building to south elevation and by replacing the building fabrics with a lower U-values. These findings were then evaluated with a cost benefit analysis that proved to save cost energy annually from air-conditioning usage from a typical primary school with eight years of pay back period.

  18. Engineering Glass Passivation Layers -Model Results

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Skorski, Daniel C.; Ryan, Joseph V.; Strachan, Denis M.

    2011-08-08

    The immobilization of radioactive waste into glass waste forms is a baseline process of nuclear waste management not only in the United States, but worldwide. The rate of radionuclide release from these glasses is a critical measure of the quality of the waste form. Over long-term tests and using extrapolations of ancient analogues, it has been shown that well designed glasses exhibit a dissolution rate that quickly decreases to a slow residual rate for the lifetime of the glass. The mechanistic cause of this decreased corrosion rate is a subject of debate, with one of the major theories suggesting thatmore » the decrease is caused by the formation of corrosion products in such a manner as to present a diffusion barrier on the surface of the glass. Although there is much evidence of this type of mechanism, there has been no attempt to engineer the effect to maximize the passivating qualities of the corrosion products. This study represents the first attempt to engineer the creation of passivating phases on the surface of glasses. Our approach utilizes interactions between the dissolving glass and elements from the disposal environment to create impermeable capping layers. By drawing from other corrosion studies in areas where passivation layers have been successfully engineered to protect the bulk material, we present here a report on mineral phases that are likely have a morphological tendency to encrust the surface of the glass. Our modeling has focused on using the AFCI glass system in a carbonate, sulfate, and phosphate rich environment. We evaluate the minerals predicted to form to determine the likelihood of the formation of a protective layer on the surface of the glass. We have also modeled individual ions in solutions vs. pH and the addition of aluminum and silicon. These results allow us to understand the pH and ion concentration dependence of mineral formation. We have determined that iron minerals are likely to form a complete incrustation layer and

  19. Long-term performance of passive materials for removal of ozone from indoor air.

    PubMed

    Cros, C J; Morrison, G C; Siegel, J A; Corsi, R L

    2012-02-01

    The health effects associated with exposure to ozone range from respiratory irritation to increased mortality. In this paper, we explore the use of three green building materials and an activated carbon (AC) mat that remove ozone from indoor air. We studied the effects of long-term exposure of these materials to real environments on ozone removal capability and pre- and post-ozonation emissions. A field study was completed over a 6-month period, and laboratory testing was intermittently conducted on material samples retrieved from the field. The results show sustained ozone removal for all materials except recycled carpet, with greatest ozone deposition velocity for AC mat (2.5-3.8 m/h) and perlite-based ceiling tile (2.2-3.2 m/h). Carbonyl emission rates were low for AC across all field sites. Painted gypsum wallboard and perlite-based ceiling tile had similar overall emission rates over the 6-month period, while carpet had large initial emission rates of undesirable by-products that decayed rapidly but remained high compared with other materials. This study confirms that AC mats and perlite-based ceiling tile are viable surfaces for inclusion in buildings to remove ozone without generating undesirable by-products. PRACTICAL IMPLICATIONS The use of passive removal materials for ozone control could decrease the need for, or even render unnecessary, active but energy consuming control solutions. In buildings where ozone should be controlled (high outdoor ozone concentrations, sensitive populations), materials specifically designed or selected for removing ozone could be implemented, as long as ozone removal is not associated with large emissions of harmful by-products. We find that activated carbon mats and perlite-based ceiling tiles can provide substantial, long-lasting, ozone control. © 2011 John Wiley & Sons A/S.

  20. On the classification of active and passive seawater intrusion

    NASA Astrophysics Data System (ADS)

    Werner, A. D.

    2017-12-01

    Active and passive seawater intrusion (SWI) arise when the freshwater head gradient slopes downwards towards land and the sea, respectively. However, a third category exists (i.e., passive-active SWI), whereby active SWI occurs inland of a mound in piezometric surface, whereas passive SWI occurs on the seaward side of the mound. In this study, numerical modelling is used to characterize the three forms of SWI, including an overview of the transient features of active SWI. While only simple cross-sectional representations of coastal aquifer settings are considered, the analysis provides guidance on some of the key attributes of each SWI class, as an extension to previous SWI research that offers limited differentiation between the various SWI types. Threshold parameter combinations for the onset of each form of SWI are provided, as derived from sharp-interface, steady-state analytical solutions. Dispersive aspects of SWI are then explored using numerical simulation. Important differences between the various forms of SWI include the salinization of the watertable that occurs under active SWI and in the absence of recharge, and the formation of persistent freshwater lenses in aquifers experiencing active SWI but also subject to surface recharge. Attempts to characterize transient active SWI processes, in terms of buoyancy, advective and dispersive processes, using dimensionless ratios that are drawn from previous studies of steady-state SWI, highlight the complex, nonlinear relationships that govern active SWI, even for idealized circumstances.

  1. Feasibility study of a V-shaped pipe for passive aeration composting.

    PubMed

    Ogunwande, Gbolabo A

    2011-03-01

    A V-shaped (Vs) pipe was improvised for composting of chicken litter in passive aeration piles. Three piles, equipped with horizontal (Ho), vertical (Ve) and Vs pipes were set up. The three treatments were replicated thrice. The effects of the aeration pipe on the physico-chemical properties of chicken litter and air distribution within the composting piles were investigated during composting. The properties monitored were temperature, pH, electrical conductivity, moisture content, total carbon, total nitrogen, total phosphorus and carbon-to-nitrogen ratio. Moisture level in the piles was replenished fortnightly to 60% during composting. The results of the study showed that all the piles attained the optimum temperature range (40-65°C) for effective composting and satisfied the requirements for sanitation. The non-significant (p > 0.05) temperature difference within the piles with Ve and Vs pipes indicated that these pipes were effective for uniform air distribution within the pile. The aeration pipe had significant (p ≤ 0.05) effect on pile temperature, pre-replenishment moisture content, pH and total phosphorus. In conclusion, the study showed that the Vs pipe is feasible and effective for passive aeration composting.

  2. Field-to-laboratory analysis of clay wall coatings as passive removal materials for ozone in buildings.

    PubMed

    Darling, E; Corsi, R L

    2017-05-01

    Ozone reacts readily with many indoor materials, as well as with compounds in indoor air. These reactions lead to lower indoor than outdoor ozone concentrations when outdoor air is the major contributor to indoor ozone. However, the products of indoor ozone reactions may be irritating or harmful to building occupants. While active technologies exist to reduce indoor ozone concentrations (i.e, in-duct filtration using activated carbon), they can be cost-prohibitive for some and/or infeasible for dwellings that do not have heating, ventilating, and air-conditioning systems. In this study, the potential for passive reduction of indoor ozone by two different clay-based interior surface coatings was explored. These coatings were exposed to occupied residential indoor environments and tested bimonthly in environmental chambers for quantification of ozone reaction probabilities and reaction product emission rates over a 6-month period. Results indicate that clay-based coatings may be effective as passive removal materials, with relatively low by-product emission rates that decay rapidly within 2 months. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  3. PASSIVE/DIFFUSIVE SAMPLERS FOR PESTICIDES IN RESIDENTIAL INDOOR AIR

    EPA Science Inventory

    Pesticides applied indoors vaporize from treated surfaces (e.g., carpets and baseboards) resulting in elevated air concentrations that may persist for long periods after applications. Estimating long-term respiratory exposures to pesticide vapors in residential indoor environme...

  4. Galaxy And Mass Assembly (GAMA): growing up in a bad neighbourhood - how do low-mass galaxies become passive?

    NASA Astrophysics Data System (ADS)

    Davies, L. J. M.; Robotham, A. S. G.; Driver, S. P.; Alpaslan, M.; Baldry, I. K.; Bland-Hawthorn, J.; Brough, S.; Brown, M. J. I.; Cluver, M. E.; Holwerda, B. W.; Hopkins, A. M.; Lara-López, M. A.; Mahajan, S.; Moffett, A. J.; Owers, M. S.; Phillipps, S.

    2016-02-01

    Both theoretical predictions and observations of the very nearby Universe suggest that low-mass galaxies(log10[M*/M⊙] < 9.5) are likely to remain star-forming unless they are affected by their local environment. To test this premise, we compare and contrast the local environment of both passive and star-forming galaxies as a function of stellar mass, using the Galaxy and Mass Assembly survey. We find that passive fractions are higher in both interacting pair and group galaxies than the field at all stellar masses, and that this effect is most apparent in the lowest mass galaxies. We also find that essentially all passive log10[M*/M⊙] < 8.5 galaxies are found in pair/group environments, suggesting that local interactions with a more massive neighbour cause them to cease forming new stars. We find that the effects of immediate environment (local galaxy-galaxy interactions) in forming passive systems increase with decreasing stellar mass, and highlight that this is potentially due to increasing interaction time-scales giving sufficient time for the galaxy to become passive via starvation. We then present a simplistic model to test this premise, and show that given our speculative assumptions, it is consistent with our observed results.

  5. Addition of Passive Dynamics to a Flapping Airfoil to Improve Performance

    NASA Astrophysics Data System (ADS)

    Asselin, Daniel; Young, Jay; Williamson, C. H. K.

    2017-11-01

    Animals which fly or swim typically employ flapping motions of their wings and fins in order to produce thrust and to maneuver. Small, unmanned vehicles might also exploit such motions and are of considerable interest for the purposes of surveillance, environmental monitoring, and search and rescue. Flapping refers to a combination of pitch and heave and has been shown to provide good thrust and efficiency (Read, et al. 2003) when both axes are independently controlled (an Active-Active system). In this study, we examine the performance of an airfoil actuated only in the heave direction but allowed to pitch passively under the control of a torsion spring (an Active-Passive system). The presence of the spring is simulated in software using a force-feedback control system called Cyber-Physical Fluid Dynamics, or CPFD (Mackowski & Williamson 2011, 2015, 2016). Adding passive pitch to active heave provides significantly improved thrust and efficiency compared with heaving alone, especially when the torsion spring stiffness is selected so that the system operates near resonance (in an Active-Passive system). In many cases, values of thrust and efficiency are comparable to or better than those obtained with two actively controlled degrees of freedom. By using carefully-designed passive dynamics in the pitch direction, we can eliminate one of the two actuators, saving cost, complexity, and weight, while maintaining performance. This work was supported by the Air Force Office of Scientific Research Grant No. FA9550-15-1-0243, monitored by Dr. Douglas Smith.

  6. Teaching the Passive through Semantically Enhanced Input

    ERIC Educational Resources Information Center

    Little, Andrea; Fieldsend, Terry

    2018-01-01

    This article reports on a small, classroom-based study exploring the use of a task to teach the passive in an English for specific purposes context. The participants were 34 adult Japanese male learners, all security professionals, ranging in proficiency level from elementary to advanced. The task was designed to highlight the form--meaning…

  7. Aluminum anode for aluminum-air battery - Part II: Influence of In addition on the electrochemical characteristics of Al-Zn alloy in alkaline solution

    NASA Astrophysics Data System (ADS)

    Park, In-Jun; Choi, Seok-Ryul; Kim, Jung-Gu

    2017-07-01

    Effects of Zn and In additions on the aluminum anode for Al-air battery in alkaline solution are examined by the self-corrosion rate, cell voltage, current-voltage characteristics, anodic polarization, discharge performance and AC impedance measurements. The passivation behavior of Zn-added anode during anodic polarization decreases the discharge performance of Al-air battery. The addition of In to Al-Zn anode reduces the formation of Zn passivation film by repeated adsorption and desorption behavior of In ion onto anode surface. The attenuated Zn passive layer by In ion attack leads to the improvement of discharge performance of Al-air battery.

  8. Silicon surface passivation by polystyrenesulfonate thin films

    NASA Astrophysics Data System (ADS)

    Chen, Jianhui; Shen, Yanjiao; Guo, Jianxin; Chen, Bingbing; Fan, Jiandong; Li, Feng; Liu, Haixu; Xu, Ying; Mai, Yaohua

    2017-02-01

    The use of polystyrenesulfonate (PSS) thin films in a high-quality passivation scheme involving the suppression of minority carrier recombination at the silicon surface is presented. PSS has been used as a dispersant for aqueous poly-3,4-ethylenedioxythiophene. In this work, PSS is coated as a form of thin film on a Si surface. A millisecond level minority carrier lifetime on a high resistivity Si wafer is obtained. The film thickness, oxygen content, and relative humidity are found to be important factors affecting the passivation quality. While applied to low resistivity silicon wafers, which are widely used for photovoltaic cell fabrication, this scheme yields relatively shorter lifetime, for example, 2.40 ms on n-type and 2.05 ms on p-type wafers with a resistivity of 1-5 Ω.cm. However, these lifetimes are still high enough to obtain high implied open circuit voltages (Voc) of 708 mV and 697 mV for n-type and p-type wafers, respectively. The formation of oxides at the PSS/Si interface is suggested to be responsible for the passivation mechanism.

  9. Effectiveness of passivation techniques on hydrogen desorption in a tritium environment

    NASA Astrophysics Data System (ADS)

    Woodall, Steven Michael

    2009-11-01

    Tritium is a radioactive isotope of hydrogen. It is used as a fuel in fusion reactors, a booster material in nuclear weapons and as a light source in commercial applications. When tritium is used in fusion reactors, and especially when used in the manufacture of nuclear weapons, purity is critical. For U.S. Department of Energy use, tritium is recycled by Savannah River Site in South Carolina and is processed to a minimum purity of 99.5%. For use elsewhere in the country, it must be shipped and stored, while maintaining the highest purity possible. As an isotope of hydrogen it exchanges easily with the most common isotope of hydrogen, protium. Stainless steel bottles are used to transport and store tritium. Protium, present in air, becomes associated in and on the surface of stainless steel during and after the manufacture of the steel. When filled, the tritium within the bottle exchanges with the protium in and on the surface of the stainless steel, slowly contaminating the pure tritium with protium. The stainless steel is therefore passivated to minimize the protium outgrowth of the bottles into the pure tritium. This research is to determine how effective different passivation techniques are in minimizing the contamination of tritium with protium. Additionally, this research will attempt to determine a relationship between surface chemistry of passivated steels and protium contamination of tritium. The conclusions of this research found that passivated bottles by two companies which routinely provide passivated materials to the US Department of Energy provide low levels of protium outgrowth into pure tritium. A bottle passivated with a material to prevent excessive corrosion in a highly corrosive environment, and a clean and polished bottle provided outgrowth rates roughly twice those of the passivated bottles above. Beyond generally high levels of chromium, oxygen, iron and nickel in the passivated bottles, there did not appear to be a strong correlation

  10. High reduction of interfacial charge recombination in colloidal quantum dot solar cells by metal oxide surface passivation.

    PubMed

    Chang, Jin; Kuga, Yuki; Mora-Seró, Iván; Toyoda, Taro; Ogomi, Yuhei; Hayase, Shuzi; Bisquert, Juan; Shen, Qing

    2015-03-12

    Bulk heterojunction (BHJ) solar cells based on colloidal QDs and metal oxide nanowires (NWs) possess unique and outstanding advantages in enhancing light harvesting and charge collection in comparison to planar architectures. However, the high surface area of the NW structure often brings about a large amount of recombination (especially interfacial recombination) and limits the open-circuit voltage in BHJ solar cells. This problem is solved here by passivating the surface of the metal oxide component in PbS colloidal quantum dot solar cells (CQDSCs). By coating thin TiO2 layers onto ZnO-NW surfaces, the open-circuit voltage and power conversion efficiency have been improved by over 40% in PbS CQDSCs. Characterization by transient photovoltage decay and impedance spectroscopy indicated that the interfacial recombination was significantly reduced by the surface passivation strategy. An efficiency as high as 6.13% was achieved through the passivation approach and optimization for the length of the ZnO-NW arrays (device active area: 16 mm2). All solar cells were tested in air, and exhibited excellent air storage stability (without any performance decline over more than 130 days). This work highlights the significance of metal oxide passivation in achieving high performance BHJ solar cells. The charge recombination mechanism uncovered in this work could shed light on the further improvement of PbS CQDSCs and/or other types of solar cells.

  11. Soil Moisture Active Passive (SMAP) Media Briefing

    NASA Image and Video Library

    2015-01-09

    Brad Doorn, SMAP applications lead, Science Mission Directorate’s Applied Sciences Program at NASA Headquarters speaks during a briefing about the upcoming launch of the Soil Moisture Active Passive (SMAP) mission, Thursday, Jan. 08, 2015, at NASA Headquarters in Washington DC. The mission is scheduled for a Jan. 29 launch from Vandenberg Air Force Base in California, and will provide the most accurate, highest-resolution global measurements of soil moisture ever obtained from space. The data will be used to enhance scientists' understanding of the processes that link Earth's water, energy and carbon cycles. Photo Credit: (NASA/Aubrey Gemignani)

  12. Soil Moisture Active Passive (SMAP) Media Briefing

    NASA Image and Video Library

    2015-01-09

    Christine Bonniksen, SMAP program executive with the Science Mission Directorate’s Earth Science Division at NASA Headquarters speaks during a briefing about the upcoming launch of the Soil Moisture Active Passive (SMAP) mission, Thursday, Jan. 08, 2015, at NASA Headquarters in Washington DC. The mission is scheduled for a Jan. 29 launch from Vandenberg Air Force Base in California, and will provide the most accurate, highest-resolution global measurements of soil moisture ever obtained from space. The data will be used to enhance scientists' understanding of the processes that link Earth's water, energy and carbon cycles. Photo Credit: (NASA/Aubrey Gemignani)

  13. Soil Moisture Active Passive (SMAP) Media Briefing

    NASA Image and Video Library

    2015-01-09

    Kent Kellogg, SMAP project manager at NASA’s Jet Propulsion Laboratory (JPL) in Pasadena, CA, speaks during a briefing about the upcoming launch of the Soil Moisture Active Passive (SMAP) mission, Thursday, Jan. 08, 2015, at NASA Headquarters in Washington DC. The mission is scheduled for a Jan. 29 launch from Vandenberg Air Force Base in California, and will provide the most accurate, highest-resolution global measurements of soil moisture ever obtained from space. The data will be used to enhance scientists' understanding of the processes that link Earth's water, energy and carbon cycles. Photo Credit: (NASA/Aubrey Gemignani)

  14. Apparatus for passive removal of subsurface contaminants

    DOEpatents

    Pemberton, Bradley E.; May, Christopher P.; Rossabi, Joseph

    1997-01-01

    An apparatus is provided which passively removes contaminated gases from a subsurface. The apparatus includes a riser pipe extending into a subsurface which has an exterior end in fluid communication with a valve. When well pressure is greater than atmospheric pressure, the valve opens to release contaminants into the atmosphere, and when well pressure is less than atmospheric pressure, the valve closes to prevent flow of air into the well. The valve assembly of the invention comprises a lightweight ball which is lifted from its valve seat with a slight pressure drop between the well and the atmosphere.

  15. Apparatus for passive removal of subsurface contaminants

    DOEpatents

    Pemberton, B.E.; May, C.P.; Rossabi, J.

    1997-06-24

    An apparatus is provided which passively removes contaminated gases from a subsurface. The apparatus includes a riser pipe extending into a subsurface which has an exterior end in fluid communication with a valve. When well pressure is greater than atmospheric pressure, the valve opens to release contaminants into the atmosphere, and when well pressure is less than atmospheric pressure, the valve closes to prevent flow of air into the well. The valve assembly of the invention comprises a lightweight ball which is lifted from its valve seat with a slight pressure drop between the well and the atmosphere. 7 figs.

  16. Building America Case Study: Evaluation of Passive Vents in New-Construction Multifamily Buildings, New York, New York

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Exhaust ventilation and corresponding outdoor air strategies are being implemented in high-performance new construction multifamily buildings to meet program or code requirements for improved indoor air quality, but a lack of clear design guidance is resulting in poor performance of these systems despite the best intentions of the programs or standards. CARB's 2014 'Evaluation of Ventilation Strategies in New Construction Multifamily Buildings' consistently demonstrated that commonly used outdoor air strategies are not performing as expected. Of the four strategies evaluated in 2014, the exhaust ventilation system that relied on outdoor air from a pressurized corridor was ruled out as amore » potential best practice due to its conflict with meeting requirements within most fire codes. Outdoor air that is ducted directly to the apartments was a strategy determined to have the highest likelihood of success, but with higher first costs and operating costs. Outdoor air through space conditioning systems was also determined to have good performance potential, with proper design and execution. The fourth strategy, passive systems, was identified as the least expensive option for providing outdoor air directly to apartments, with respect to both first costs and operating costs. However, little is known about how they actually perform in real-world conditions or how to implement them effectively. Based on the lack of data available on the performance of these low-cost systems and their frequent use in the high-performance building programs that require a provision for outdoor air, this research project sought to further evaluate the performance of passive vents.« less

  17. Surface Passivation of CdSe Quantum Dots in All Inorganic Amorphous Solid by Forming Cd1-xZnxSe Shell.

    PubMed

    Xia, Mengling; Liu, Chao; Zhao, Zhiyong; Wang, Jing; Lin, Changgui; Xu, Yinsheng; Heo, Jong; Dai, Shixun; Han, Jianjun; Zhao, Xiujian

    2017-02-07

    CdSe quantum dots (QDs) doped glasses have been widely investigated for optical filters, LED color converter and other optical emitters. Unlike CdSe QDs in solution, it is difficult to passivate the surface defects of CdSe QDs in glass matrix, which strongly suppress its intrinsic emission. In this study, surface passivation of CdSe quantum dots (QDs) by Cd 1-x Zn x Se shell in silicate glass was reported. An increase in the Se/Cd ratio can lead to the partial passivation of the surface states and appearance of the intrinsic emission of CdSe QDs. Optimizing the heat-treatment condition promotes the incorporation of Zn into CdSe QDs and results in the quenching of the defect emission. Formation of CdSe/Cd 1-x Zn x Se core/graded shell QDs is evidenced by the experimental results of TEM and Raman spectroscopy. Realization of the surface passivation and intrinsic emission of II-VI QDs may facilitate the wide applications of QDs doped all inorganic amorphous materials.

  18. Hebrew Verbal Passives in Later Language Development: The Interface of Register and Verb Morphology

    ERIC Educational Resources Information Center

    Ravid, Dorit; Vered, Lizzy

    2017-01-01

    The current study examined the production of Hebrew verbal passives across adolescence as mediated by linguistic register and verb morphology. Participants aged eight to sixteen years and a group of adults were asked to change written active-voice sentences into corresponding passive-voice forms, divided by verb register (neutral and high),…

  19. Air Force Officer Qualifying Test Form N: Development and Standardization. Final Report for Period March 1974 - March 1978.

    ERIC Educational Resources Information Center

    Gould, R. Bruce

    The construction and norming of Form N of the Air Force Officer Qualifying Test (AFOQT) is described. The new form serves the same purpose as its predecessor and possesses basically the same characteristics. References are made to the research which provided the basis for most of the changes. Other changes were made because of the admission of…

  20. Removing CO2 and moisture from air

    NASA Technical Reports Server (NTRS)

    Tepper, E. H.

    1977-01-01

    Foamed-aluminum blocks act as passive heat exchanger to improve efficiency. Improved closed-cycle atmospheric scrubber, level of carbon dioxide, and water vapor are reduced without affecting temperature of airstream. Exchangers draw impurities from air without additional heaters of auxillary equipment.

  1. Mesoscale Elucidation of Surface Passivation in the Li-Sulfur Battery Cathode.

    PubMed

    Liu, Zhixiao; Mukherjee, Partha P

    2017-02-15

    The cathode surface passivation caused by Li 2 S precipitation adversely affects the performance of lithium-sulfur (Li-S) batteries. Li 2 S precipitation is a complicated mesoscale process involving adsorption, desorption and diffusion kinetics, which are affected profoundly by the reactant concentration and operating temperature. In this work, a mesoscale interfacial model is presented to study the growth of Li 2 S film on carbon cathode surface. Li 2 S film growth experiences nucleation, isolated Li 2 S island growth and island coalescence. The slow adsorption rate at small S 2- concentration inhibits the formation of nucleation seeds and the lateral growth of Li 2 S islands, which deters surface passivation. An appropriate operating temperature, especially in the medium-to-high temperature range, can also defer surface passivation. Fewer Li 2 S nucleation seeds form in such an operating temperature range, thereby facilitating heterogeneous growth and potentially inhibiting the lateral growth of the Li 2 S film, which may ultimately result in reduced surface passivation. The high specific surface area of the cathode microstructure is expected to mitigate the surface passivation.

  2. Field Evaluation of a Passive Sampling Device for Hydrazines in Ambient Air

    DTIC Science & Technology

    1990-04-06

    MANIDIFUIOFOBELFO Figure 2. Test gas generator schematic. Conditioned house- compressed air is used as the diluent. The conditioning procedure consists...of passing the house air through a series of demisters, a hot Hopcalite catalyst bed, a reciprocating dual-tower molecular sieve scrubber, and finally... Air P. A. TAFFE,* S. W. BROWN,** A. R. THUROW,*** J. C. TRAvIs**** *GEO-Centers Inc., **EG&G, BOC-022, KSC, FL . . F. ***Wiltech Corp., KSC, FL MAY 0

  3. Limits on passivating defects in semiconductors: the case of Si edge dislocations.

    PubMed

    Chan, Tzu-Liang; West, D; Zhang, S B

    2011-07-15

    By minimizing the free energy while constraining dopant density, we derive a universal curve that relates the formation energy (E(form)) of doping and the efficiency of defect passivation in terms of segregation of dopants at defect sites. The universal curve takes the simple form of a Fermi-Dirac distribution. Our imposed constraint defines a chemical potential that assumes the role of "Fermi energy," which sets the thermodynamic limit on the E(form) required to overcome the effect of entropy such that dopant segregation at defects in semiconductors can occur. Using Si edge dislocation as an example, we show by first-principles calculations how to map the experimentally measurable passivation efficiency to our calculated E(form) by using the universal curve for typical n- and p-type substitutional dopants. We show that n-type dopants are ineffective. Among p-type dopants, B can satisfy the thermodynamic limit while improving electronic properties.

  4. Nightfall: Machine Autonomy in Air-to-Air Combat

    DTIC Science & Technology

    2014-06-01

    without permission. If it is reproduced, the Air and Space Power Journal requests a courtesy line. Report Documentation Page Form ApprovedOMB No. 0704-0188...PAGE unclassified Standard Form 298 (Rev. 8-98) Prescribed by ANSI Std Z39-18 May–June 2014 Air & Space Power Journal | 49 Byrnes Nightfall Feature...systems. May–June 2014 Air & Space Power Journal | 50 Byrnes Nightfall Feature FQ-X Design and Features The form of a machine like FQ-X, whose purpose is to

  5. Passive, Direct-Read Monitoring System for Selective Detection and Quantification of Hydrogen Chloride

    NASA Technical Reports Server (NTRS)

    Chapman, K. B.; Mihaylov, G. M.; Kirollos, K. S.

    2000-01-01

    Monitoring the exposure of an employee to hydrogen chloride or hydrochloric acid in the presence of other acids has been a challenge to the industrial hygiene community. The capability of a device to differentiate the levels of acid vapors would allow for more accurate determinations of exposure and therefore improved occupational health. In this work, a selective direct-read colorimetric badge system was validated for Short Term Exposure Limit (STEL) monitoring of hydrogen chloride. The passive colorimetric badge system consists of a direct reading badge and a color scale. The badge has a coated indicator layer with a diffusive resistance in the shape of an exclamation mark. An exclamation mark will appear if hydrogen chloride is present in the atmosphere at concentrations at or above 2.0 ppm. By using the color scale, the intensity of the color formed on the badge can be further quantified up to 25 ppm. The system was validated according to a protocol based on the NIOSH Protocol for the Evaluation of Passive Monitors. The badge was exposed to relative humidities ranging from 11% to 92%, temperatures ranging from 7 C to 400 C and air velocities ranging from 5 cm/sec to 170 cm/sec. All experiments were conducted in a laboratory vapor generation system. Hydrofluoric acid, nitric acid, sulfuric acid, chlorine, hydrogen sulfide and organic acids showed no effect on the performance of the hydrogen chloride monitoring system. The passive badge and color scale system exceeded the accuracy requirements as defined by NIOSH. At ambient conditions, the mean coefficient of variation was 10.86 and the mean bias was 1.3%. This data was presented previously at the American Industrial Hygiene Conference and Exposition in Toronto, Canada in June 1999.

  6. An indoor air quality-pharmacokinetic simulation of passive inhalation of marijuana smoke and the resultant buildup of 11-nor-delta-9-tetrahydrocannabinol-9-carboxylic acid in urine.

    PubMed

    Giardino, N J

    1997-03-01

    In military courts of law, the good soldier defense is often used by the defendant to explain the presence of 11-nor-delta-9-tetrahydrocannabinol-9-carboxylic acid in urine (hereafter referred to as THCA) above the Department of Defense (DOD) established limit of 15 ng/mL. The defense will contend the defendant unwittingly breathed side-stream marijuana smoke, thus resulting in the presence of THCA in the defendant's urine. The purpose of this work was to link an indoor air quality model (IAQ) with a pharmacokinetic (PK) model to predict a passive marijuana smoker's resultant concentration of the major urinary metabolite THCA.

  7. Steady film flow over a substrate with rectangular trenches forming air inclusions

    NASA Astrophysics Data System (ADS)

    Varchanis, S.; Dimakopoulos, Y.; Tsamopoulos, J.

    2017-12-01

    Film flow along an inclined, solid substrate featuring periodic rectangular trenches may either completely wet the trench floor (Wenzel state) or get pinned on the entrance and exit corners of the trench (Cassie state) or assume other configurations in between these two extremes. Such intermediate configurations are examined in the present study. They are bounded by a second gas-liquid interface inside the trench, which adheres to its walls forming two three-phase contact lines, and encloses a different amount of air under different physical conditions. The Galerkin finite-element method is used to solve the Navier-Stokes equations in a physical domain, which is adaptively remeshed. Multiple steady solutions, connected by turning points and transcritical bifurcations as well as isolated solution branches, are revealed by pseudo-arc-length continuation. Two possible configurations of a single air inclusion inside the trench are examined: the inclusion either surrounds the upstream convex corner or is attached to the upstream trench wall. The penetration of the liquid inside the trench is enhanced primarily by increasing either the wettability of the substrate or capillary over viscous forces or by decreasing the flow rate. Flow hysteresis may occur when the liquid wetting of the upstream wall decreases abruptly, leading to drastically different flow patterns for the same parameter values. The interplay of inertia, viscous, gravity, and capillary forces along with substrate wettability determines the volume of the air encapsulated in the trench and the extent of deformation of the outer free surface.

  8. Numerical study of air ingress transition to natural circulation in a high temperature helium loop

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Franken, Daniel; Gould, Daniel; Jain, Prashant K.

    Here, the generation-IV high temperature gas cooled reactors (HTGRs) are designed with many passive safety features, one of which is the ability to passively remove heat under a loss of coolant accident (LOCA). However, several common reactor designs do not prevent against a large break in the coolant system and may therefore experience a depressurized LOCA. This would lead to air entering into the reactor system via several potential modes of ingress: diffusion, gravity currents, and natural circulation. At the onset of a LOCA, the initial rate of air ingress is expected to be very slow because it is governedmore » by molecular diffusion. However, after several hours, natural circulation would commence, thus, bringing the air into the reactor system at a much higher rate. As a consequence, air ingress would cause the high temperature graphite matrix to oxidize, leading to its thermal degradation and decreased passive heat (decay) removal capability. Therefore, it is essential to understand the transition of air ingress from molecular diffusion to natural circulation in an HTGR system. This paper presents results from a computational fluid dynamics (CFD) model to study the air ingress transition behavior. These results are validated against an h-shaped high temperature helium loop experiment. Details are provided to quantitatively predict the transition time from molecular diffusion to natural circulation.« less

  9. Numerical study of air ingress transition to natural circulation in a high temperature helium loop

    DOE PAGES

    Franken, Daniel; Gould, Daniel; Jain, Prashant K.; ...

    2017-09-21

    Here, the generation-IV high temperature gas cooled reactors (HTGRs) are designed with many passive safety features, one of which is the ability to passively remove heat under a loss of coolant accident (LOCA). However, several common reactor designs do not prevent against a large break in the coolant system and may therefore experience a depressurized LOCA. This would lead to air entering into the reactor system via several potential modes of ingress: diffusion, gravity currents, and natural circulation. At the onset of a LOCA, the initial rate of air ingress is expected to be very slow because it is governedmore » by molecular diffusion. However, after several hours, natural circulation would commence, thus, bringing the air into the reactor system at a much higher rate. As a consequence, air ingress would cause the high temperature graphite matrix to oxidize, leading to its thermal degradation and decreased passive heat (decay) removal capability. Therefore, it is essential to understand the transition of air ingress from molecular diffusion to natural circulation in an HTGR system. This paper presents results from a computational fluid dynamics (CFD) model to study the air ingress transition behavior. These results are validated against an h-shaped high temperature helium loop experiment. Details are provided to quantitatively predict the transition time from molecular diffusion to natural circulation.« less

  10. Antioxidant responses following active and passive smoking of tobacco and electronic cigarettes.

    PubMed

    Poulianiti, Konstantina; Karatzaferi, Christina; Flouris, Andreas D; Fatouros, Ioannis G; Koutedakis, Yiannis; Jamurtas, Athanasios Z

    2016-07-01

    It has been indicated that acute active and passive tobacco cigarette smoking may cause changes on redox status balance that may result in significant pathologies. However, no study has evaluated the effects of active and passive e-cigarette smoking on redox status of consumers. To examine the acute effects of active and passive e-cigarette and tobacco cigarette smoking on selected redox status markers. Using a randomized single-blind crossover design, 30 participants (15 smokers and 15 nonsmokers) were exposed to three different experimental conditions. Smokers underwent a control session, an active tobacco cigarette smoking session (smoked 2 cigarettes within 30-min) and an active e-cigarette smoking session (smoked a pre-determined number of puffs within 30-min using a liquid with 11 ng/ml nicotine). Similarly, nonsmokers underwent a control session, a passive tobacco cigarette smoking session (exposure of 1 h to 23 ± 1 ppm of CO in a 60 m(3) environmental chamber) and a passive e-cigarette smoking session (exposure of 1 h to air enriched with pre- determined number of puffs in a 60 m(3) environmental chamber). Total antioxidant capacity (TAC), catalase activity (CAT) and reduced glutathione (GSH) were assessed in participants' blood prior to, immediately after, and 1-h post-exposure. TAC, CAT and GSH remained similar to baseline levels immediately after and 1-h-post exposure (p > 0.05) in all trials. Tobacco and e-cigarette smoking exposure do not acutely alter the response of the antioxidant system, neither under active nor passive smoking conditions. Overall, there is not distinction between tobacco and e-cigarette active and passive smoking effects on specific redox status indices.

  11. Large-scale clustering measurements with photometric redshifts: comparing the dark matter haloes of X-ray AGN, star-forming and passive galaxies at z ≈ 1

    NASA Astrophysics Data System (ADS)

    Georgakakis, A.; Mountrichas, G.; Salvato, M.; Rosario, D.; Pérez-González, P. G.; Lutz, D.; Nandra, K.; Coil, A.; Cooper, M. C.; Newman, J. A.; Berta, S.; Magnelli, B.; Popesso, P.; Pozzi, F.

    2014-10-01

    We combine multi-wavelength data in the AEGIS-XD and C-COSMOS surveys to measure the typical dark matter halo mass of X-ray selected active galactic nuclei (AGN) [LX(2-10 keV) > 1042 erg s- 1] in comparison with far-infrared selected star-forming galaxies detected in the Herschel/PEP survey (PACS Evolutionary Probe; LIR > 1011 L⊙) and quiescent systems at z ≈ 1. We develop a novel method to measure the clustering of extragalactic populations that uses photometric redshift probability distribution functions in addition to any spectroscopy. This is advantageous in that all sources in the sample are used in the clustering analysis, not just the subset with secure spectroscopy. The method works best for large samples. The loss of accuracy because of the lack of spectroscopy is balanced by increasing the number of sources used to measure the clustering. We find that X-ray AGN, far-infrared selected star-forming galaxies and passive systems in the redshift interval 0.6 < z < 1.4 are found in haloes of similar mass, log MDMH/(M⊙ h-1) ≈ 13.0. We argue that this is because the galaxies in all three samples (AGN, star-forming, passive) have similar stellar mass distributions, approximated by the J-band luminosity. Therefore, all galaxies that can potentially host X-ray AGN, because they have stellar masses in the appropriate range, live in dark matter haloes of log MDMH/(M⊙ h-1) ≈ 13.0 independent of their star formation rates. This suggests that the stellar mass of X-ray AGN hosts is driving the observed clustering properties of this population. We also speculate that trends between AGN properties (e.g. luminosity, level of obscuration) and large-scale environment may be related to differences in the stellar mass of the host galaxies.

  12. Indoor Air Quality Building Education and Assessment Model Forms

    EPA Pesticide Factsheets

    The Indoor Air Quality Building Education and Assessment Model (I-BEAM) is a guidance tool designed for use by building professionals and others interested in indoor air quality in commercial buildings.

  13. Influence of scale interaction on the transport of a passive scalar in a turbulent boundary layer

    NASA Astrophysics Data System (ADS)

    Saxton-Fox, Theresa; Dawson, Scott; McKeon, Beverley

    2017-11-01

    A mildly heated turbulent boundary layer is experimentally studied using particle image velocimetry to measure the velocity field and a Malley probe (Malley et al., 1992; Gordeyev et al., 2014) to measure the passive scalar field. Strong gradients in the passive scalar field are observed to be correlated to the interaction of specific velocity scales, illuminating an effect of scale interaction on the passive scalar field. A resolvent analysis performed on the fluctuating velocity and passive scalar equations of motion is used to identify the most amplified velocity and scalar mode shapes at particular wavenumbers. The superposition of a small number of these modes is shown to reproduce the velocity scale interaction phenomenon observed experimentally, as well as the corresponding strong gradient in the scalar field. This work was made possible through the support of United States Air Force Grants FA9550-16-1-0361 and FA9550-16-1-0232 as well as a National Defense Science and Engineering Graduate (NDSEG) fellowship.

  14. Effects of Ambient Temperature and Forced-air Warming on Intraoperative Core Temperature: A Factorial Randomized Trial.

    PubMed

    Pei, Lijian; Huang, Yuguang; Xu, Yiyao; Zheng, Yongchang; Sang, Xinting; Zhou, Xiaoyun; Li, Shanqing; Mao, Guangmei; Mascha, Edward J; Sessler, Daniel I

    2018-05-01

    The effect of ambient temperature, with and without active warming, on intraoperative core temperature remains poorly characterized. The authors determined the effect of ambient temperature on core temperature changes with and without forced-air warming. In this unblinded three-by-two factorial trial, 292 adults were randomized to ambient temperatures 19°, 21°, or 23°C, and to passive insulation or forced-air warming. The primary outcome was core temperature change between 1 and 3 h after induction. Linear mixed-effects models assessed the effects of ambient temperature, warming method, and their interaction. A 1°C increase in ambient temperature attenuated the negative slope of core temperature change 1 to 3 h after anesthesia induction by 0.03 (98.3% CI, 0.01 to 0.06) °Ccore/(h°Cambient) (P < 0.001), for patients who received passive insulation, but not for those warmed with forced-air (-0.01 [98.3% CI, -0.03 to 0.01] °Ccore/[h°Cambient]; P = 0.40). Final core temperature at the end of surgery increased 0.13°C (98.3% CI, 0.07 to 0.20; P < 0.01) per degree increase in ambient temperature with passive insulation, but was unaffected by ambient temperature during forced-air warming (0.02 [98.3% CI, -0.04 to 0.09] °Ccore/°Cambient; P = 0.40). After an average of 3.4 h of surgery, core temperature was 36.3° ± 0.5°C in each of the forced-air groups, and ranged from 35.6° to 36.1°C in passively insulated patients. Ambient intraoperative temperature has a negligible effect on core temperature when patients are warmed with forced air. The effect is larger when patients are passively insulated, but the magnitude remains small. Ambient temperature can thus be set to comfortable levels for staff in patients who are actively warmed.

  15. Indefinitely stable iron(IV) cage complexes formed in water by air oxidation

    NASA Astrophysics Data System (ADS)

    Tomyn, Stefania; Shylin, Sergii I.; Bykov, Dmytro; Ksenofontov, Vadim; Gumienna-Kontecka, Elzbieta; Bon, Volodymyr; Fritsky, Igor O.

    2017-01-01

    In nature, iron, the fourth most abundant element of the Earth's crust, occurs in its stable forms either as the native metal or in its compounds in the +2 or +3 (low-valent) oxidation states. High-valent iron (+4, +5, +6) compounds are not formed spontaneously at ambient conditions, and the ones obtained synthetically appear to be unstable in polar organic solvents, especially aqueous solutions, and this is what limits their studies and use. Here we describe unprecedented iron(IV) hexahydrazide clathrochelate complexes that are assembled in alkaline aqueous media from iron(III) salts, oxalodihydrazide and formaldehyde in the course of a metal-templated reaction accompanied by air oxidation. The complexes can exist indefinitely at ambient conditions without any sign of decomposition in water, nonaqueous solutions and in the solid state. We anticipate that our findings may open a way to aqueous solution and polynuclear high-valent iron chemistry that remains underexplored and presents an important challenge.

  16. Indefinitely stable iron(IV) cage complexes formed in water by air oxidation.

    PubMed

    Tomyn, Stefania; Shylin, Sergii I; Bykov, Dmytro; Ksenofontov, Vadim; Gumienna-Kontecka, Elzbieta; Bon, Volodymyr; Fritsky, Igor O

    2017-01-19

    In nature, iron, the fourth most abundant element of the Earth's crust, occurs in its stable forms either as the native metal or in its compounds in the +2 or +3 (low-valent) oxidation states. High-valent iron (+4, +5, +6) compounds are not formed spontaneously at ambient conditions, and the ones obtained synthetically appear to be unstable in polar organic solvents, especially aqueous solutions, and this is what limits their studies and use. Here we describe unprecedented iron(IV) hexahydrazide clathrochelate complexes that are assembled in alkaline aqueous media from iron(III) salts, oxalodihydrazide and formaldehyde in the course of a metal-templated reaction accompanied by air oxidation. The complexes can exist indefinitely at ambient conditions without any sign of decomposition in water, nonaqueous solutions and in the solid state. We anticipate that our findings may open a way to aqueous solution and polynuclear high-valent iron chemistry that remains underexplored and presents an important challenge.

  17. Indefinitely stable iron(IV) cage complexes formed in water by air oxidation

    PubMed Central

    Tomyn, Stefania; Shylin, Sergii I.; Bykov, Dmytro; Ksenofontov, Vadim; Gumienna-Kontecka, Elzbieta; Bon, Volodymyr; Fritsky, Igor O.

    2017-01-01

    In nature, iron, the fourth most abundant element of the Earth's crust, occurs in its stable forms either as the native metal or in its compounds in the +2 or +3 (low-valent) oxidation states. High-valent iron (+4, +5, +6) compounds are not formed spontaneously at ambient conditions, and the ones obtained synthetically appear to be unstable in polar organic solvents, especially aqueous solutions, and this is what limits their studies and use. Here we describe unprecedented iron(IV) hexahydrazide clathrochelate complexes that are assembled in alkaline aqueous media from iron(III) salts, oxalodihydrazide and formaldehyde in the course of a metal-templated reaction accompanied by air oxidation. The complexes can exist indefinitely at ambient conditions without any sign of decomposition in water, nonaqueous solutions and in the solid state. We anticipate that our findings may open a way to aqueous solution and polynuclear high-valent iron chemistry that remains underexplored and presents an important challenge. PMID:28102364

  18. Passivation Behavior of Ultrafine-Grained Pure Copper Fabricated by Accumulative Roll Bonding (ARB) Process

    NASA Astrophysics Data System (ADS)

    Fattah-alhosseini, Arash; Imantalab, Omid

    2016-01-01

    In this study, passivation behavior of ultrafine-grained (UFG) pure copper fabricated by ARB process in 0.01 M borax solution has been investigated. Before any electrochemical measurements, evaluation of microstructure was obtained by transmission electron microscopy (TEM). TEM observations revealed that with increasing the number of ARB passes, the grain size of specimens decrease. Also, TEM images showed that UFGs with average size of below 100 nm appeared after 7 passes of ARB. To investigate the passivation behavior of the specimens, electrochemical impedance spectroscopy (EIS) and Mott-Schottky analysis was carried out. For this purpose, three potentials within the passive region were chosen for potentiostatic passive film growth. EIS results showed that both passive film and charge-transfer resistance increases with increasing the number of ARB passes. Moreover, Mott-Schottky analysis revealed that with increasing the number of ARB passes, the acceptor density of the passive films decreased. In conclusion, increasing the number of ARB passes offers better conditions for forming the passive films with higher protection behavior, due to the growth of a much thicker and less defective films.

  19. Performance of active and passive control of an airfoil using CPFD

    NASA Astrophysics Data System (ADS)

    Asselin, Daniel; Young, Jay; Williamson, C. H. K.

    2016-11-01

    Birds and fish employ flapping motions of their wings and fins in order to produce thrust and maneuver in flight and underwater. There is considerable interest in designing aerial and submersible systems that mimic these motions for the purposes of surveillance, environmental monitoring, and search and rescue, among other applications. Flapping motions are typically composed of combined pitch and heave and can provide good thrust and efficiency (Read, et al. 2003). In this study, we examine the performance of an airfoil actuated only in the heave direction. Using a cyber-physical fluid dynamics system (Mackowski & Williamson 2011, 2015, 2016), we simulate the presence of a torsion spring to enable the airfoil to undergo a passively controlled pitching motion. The addition of passive pitching combined with active heaving ("Active-Passive" or AP) provides significantly improved thrust and efficiency compared with heaving alone. In many cases, values of thrust and efficiency are comparable to or better than those obtained with two actively controlled degrees of freedom ("Active-Active" or AA). By using carefully-designed passive dynamics in the pitch direction, we can eliminate one of the two actuators, saving cost, complexity, and weight, while maintaining or improving performance. This work was supported by the Air Force Office of Scientific Research Grant No. FA9550-15-1-0243, monitored by Dr. Douglas Smith.

  20. Passively damped vibration welding system and method

    DOEpatents

    Tan, Chin-An; Kang, Bongsu; Cai, Wayne W.; Wu, Tao

    2013-04-02

    A vibration welding system includes a controller, welding horn, an anvil, and a passive damping mechanism (PDM). The controller generates an input signal having a calibrated frequency. The horn vibrates in a desirable first direction at the calibrated frequency in response to the input signal to form a weld in a work piece. The PDM is positioned with respect to the system, and substantially damps or attenuates vibration in an undesirable second direction. A method includes connecting the PDM having calibrated properties and a natural frequency to an anvil of an ultrasonic welding system. Then, an input signal is generated using a weld controller. The method includes vibrating a welding horn in a desirable direction in response to the input signal, and passively damping vibration in an undesirable direction using the PDM.

  1. Simple rules for passive diffusion through the nuclear pore complex

    PubMed Central

    Mironska, Roxana; Kim, Seung Joong

    2016-01-01

    Passive macromolecular diffusion through nuclear pore complexes (NPCs) is thought to decrease dramatically beyond a 30–60-kD size threshold. Using thousands of independent time-resolved fluorescence microscopy measurements in vivo, we show that the NPC lacks such a firm size threshold; instead, it forms a soft barrier to passive diffusion that intensifies gradually with increasing molecular mass in both the wild-type and mutant strains with various subsets of phenylalanine-glycine (FG) domains and different levels of baseline passive permeability. Brownian dynamics simulations replicate these findings and indicate that the soft barrier results from the highly dynamic FG repeat domains and the diffusing macromolecules mutually constraining and competing for available volume in the interior of the NPC, setting up entropic repulsion forces. We found that FG domains with exceptionally high net charge and low hydropathy near the cytoplasmic end of the central channel contribute more strongly to obstruction of passive diffusion than to facilitated transport, revealing a compartmentalized functional arrangement within the NPC. PMID:27697925

  2. HIGH SPEED GC/MS FOR AIR ANALYSIS

    EPA Science Inventory

    A high speed GC/MS system consisting of a gas chromatograph equipped with a narrow bandwidth injection accessory and using a time-of-flight mass spectrometer detector has been adapted for analysis of ambient whole air samples which have been collected in passivated canisters. ...

  3. Passive Education

    ERIC Educational Resources Information Center

    Bojesen, Emile

    2018-01-01

    This paper does not present an advocacy of a passive education as opposed to an active education nor does it propose that passive education is in any way 'better' or more important than active education. Through readings of Maurice Blanchot, Jacques Derrida and B.S. Johnson, and gentle critiques of Jacques Rancière and John Dewey, passive…

  4. Health risks of passive smoking.

    PubMed

    Papier, C M; Stellman, S D

    1986-01-01

    Passive or involuntary smoking is the inhalation of smoke which escapes directly into the air from the lit end of a burning cigarette. This unfiltered smoke contains the same toxic components of the mainstream smoke inhaled directly by the smoker, including numerous carcinogens, many in greater concentrations. It has long been known that exposure to this type of smoke leads to increased respiratory and other adverse health conditions in non-smokers, especially children. During the past five years, evidence has been accumulating that risk of lung cancer is also higher, particularly in non-smoking women whose husbands smoke. Despite uncertainties and differences in interpretation of various cancer studies, there is ample justification for public health measures now in place or proposed, such as restriction or elimination of smoking in the workplace and in public places.

  5. A Passive Magnetic Bearing Flywheel

    NASA Technical Reports Server (NTRS)

    Siebert, Mark; Ebihara, Ben; Jansen, Ralph; Fusaro, Robert L.; Morales, Wilfredo; Kascak, Albert; Kenny, Andrew

    2002-01-01

    A 100 percent passive magnetic bearing flywheel rig employing no active control components was designed, constructed, and tested. The suspension clothe rotor was provided by two sets of radial permanent magnetic bearings operating in the repulsive mode. The axial support was provided by jewel bearings on both ends of the rotor. The rig was successfully operated to speeds of 5500 rpm, which is 65 percent above the first critical speed of 3336 rpm. Operation was not continued beyond this point because of the excessive noise generated by the air impeller and because of inadequate containment in case of failure. Radial and axial stiffnesses of the permanent magnetic bearings were experimentally measured and then compared to finite element results. The natural damping of the rotor was measured and a damping coefficient was calculated.

  6. Chemo-Mechanical Characteristics of Mud Formed from Environmental Dust Particles in Humid Ambient Air

    PubMed Central

    Hassan, Ghassan; Yilbas, B. S.; Said, Syed A. M.; Al-Aqeeli, N.; Matin, Asif

    2016-01-01

    Mud formed from environmental dust particles in humid ambient air significantly influences the performance of solar harvesting devices. This study examines the characterization of environmental dust particles and the chemo-mechanics of dry mud formed from dust particles. Analytical tools, including scanning electron microscopy, atomic force microscopy, energy dispersive spectroscopy, particle sizing, and X-ray diffraction, are used to characterize dry mud and dust particles. A micro/nano tribometer is used to measure the tangential force and friction coefficient while tensile tests are carried out to assess the binding forces of dry mud pellets. After dry mud is removed, mud residuals on the glass surface are examined and the optical transmittance of the glass is measured. Dust particles include alkaline compounds, which dissolve in water condensate and form a mud solution with high pH (pH = 7.5). The mud solution forms a thin liquid film at the interface of dust particles and surface. Crystals form as the mud solution dries, thus, increasing the adhesion work required to remove dry mud from the surface. Optical transmittance of the glass is reduced after dry mud is removed due to the dry mud residue on the surface. PMID:27445272

  7. Chemo-Mechanical Characteristics of Mud Formed from Environmental Dust Particles in Humid Ambient Air.

    PubMed

    Hassan, Ghassan; Yilbas, B S; Said, Syed A M; Al-Aqeeli, N; Matin, Asif

    2016-07-22

    Mud formed from environmental dust particles in humid ambient air significantly influences the performance of solar harvesting devices. This study examines the characterization of environmental dust particles and the chemo-mechanics of dry mud formed from dust particles. Analytical tools, including scanning electron microscopy, atomic force microscopy, energy dispersive spectroscopy, particle sizing, and X-ray diffraction, are used to characterize dry mud and dust particles. A micro/nano tribometer is used to measure the tangential force and friction coefficient while tensile tests are carried out to assess the binding forces of dry mud pellets. After dry mud is removed, mud residuals on the glass surface are examined and the optical transmittance of the glass is measured. Dust particles include alkaline compounds, which dissolve in water condensate and form a mud solution with high pH (pH = 7.5). The mud solution forms a thin liquid film at the interface of dust particles and surface. Crystals form as the mud solution dries, thus, increasing the adhesion work required to remove dry mud from the surface. Optical transmittance of the glass is reduced after dry mud is removed due to the dry mud residue on the surface.

  8. Spatial and seasonal distributions of polychlorinated dibenzo-p-dioxins and dibenzofurans and polychlorinated biphenyls around a municipal solid waste incinerator, determined using polyurethane foam passive air samplers.

    PubMed

    Gao, Lirong; Zhang, Qin; Liu, Lidan; Li, Changliang; Wang, Yiwen

    2014-11-01

    Twenty-six ambient air samples were collected around a municipal solid waste incinerator (MSWI) in the summer and winter using polyurethane foam passive air samplers, and analyzed to assess the spatial and seasonal distributions of polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) and polychlorinated biphenyls (PCBs). Three stack gas samples were also collected and analyzed to determine PCDD/F (971 pg m(-3) in average) and PCB (2,671 pg m(-3) in average) emissions from the MSWI and to help identify the sources of the pollutants in the ambient air. The total PCDD/F concentrations in the ambient air samples were lower in the summer (472-1,223 fg m(-3)) than the winter (561-3913 fg m(-3)). In contrast, the atmospheric total PCB concentrations were higher in the summer (716-4,902 fg m(-3)) than the winter (489-2,298 fg m(-3)). Principal component analysis showed that, besides emissions from the MSWI, the domestic burning of coal and wood also contributed to the presence of PCDD/Fs and PCBs in the ambient air. The PCDD/F and PCB spatial distributions were analyzed using ordinary Kriging Interpolation and limited effect was found to be caused by emissions from the MSWI. Higher PCDD/F and PCB concentrations were observed downwind of the MSWI than in the other directions, but the highest concentrations were not to be found in the direction with the greatest wind frequency which might be caused by emissions from domestic coal and wood burning. We used a systemic method including sampling and data analysis method which can provide pioneering information for characterizing risks and assessing uncertainty of PCDD/Fs and PCBs in the ambient air around MSWIs in China. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Passive sampler for formaldehyde in air using 2,4-dinitrophenylhydrazine-coated glass fiber filters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Levin, J.O.; Lindahl, R.; Andersson, K.

    1986-12-01

    A method utilizing diffusive sampling of formaldehyde in air has been developed. A glass fiber filter, impregnated with 2,4-dinitrophenylhydrazine (DNPH) and phosphoric acid and mounted into a modified aerosol-sampling cassette, is used for sampling by controlled diffusion. The formaldehyde hydrazone formed is desorbed and determined by high-performance liquid chromatography with UV detection. The sampling rate of the sampler was determined to 61 mL/min, with a standard deviation of 5%. The sampling rate is independent of formaldehyde concentrations between 0.1 and 5 mg/m/sup 3/ and sampling times between 15 min and 8 h. The sensitivity of the diffusive method is approximatelymore » 0.005 mg/m/sup 3/ (5 ppm) in an 8-h sample, and the reproducibility is better than 3%.« less

  10. Hydrogenation of passivated contacts

    DOEpatents

    Nemeth, William; Yuan, Hao-Chih; LaSalvia, Vincenzo; Stradins, Pauls; Page, Matthew R.

    2018-03-06

    Methods of hydrogenation of passivated contacts using materials having hydrogen impurities are provided. An example method includes applying, to a passivated contact, a layer of a material, the material containing hydrogen impurities. The method further includes subsequently annealing the material and subsequently removing the material from the passivated contact.

  11. Mesoscale Elucidation of Surface Passivation in the Li–Sulfur Battery Cathode

    DOE PAGES

    Liu, Zhixiao; Mukherjee, Partha P.

    2017-01-23

    We report the cathode surface passivation caused by Li 2S precipitation adversely affects the performance of lithium-sulfur (Li-S) batteries. Li 2S precipitation is a complicated mesoscale process involving adsorption, desorption and diffusion kinetics, which are affected profoundly by the reactant concentration and operating temperature. In this work, a mesoscale interfacial model is presented to study the growth of Li 2S film on carbon cathode surface. Li 2S film growth experiences nucleation, isolated Li 2S island growth and island coalescence. The slow adsorption rate at small S 2- concentration inhibits the formation of nucleation seeds and the lateral growth of Limore » 2S islands, which deters surface passivation. An appropriate operating temperature, especially in the medium-to-high temperature range, can also defer surface passivation. Fewer Li 2S nucleation seeds form in such an operating temperature range, which facilitates heterogeneous growth and thereby inhibits the lateral growth of the Li 2S film, which may also result in reduced surface passivation. Finally, the high specific surface area of the cathode microstructure is expected to mitigate the surface passivation.« less

  12. Active and passive ozone samplers based on a reaction with a binary reagent.

    PubMed

    Hackney, J D; Avol, E L; Linn, W S; Anderson, K R

    1994-02-01

    Ozone is one of the most toxic common air pollutants (judging from short-term animal and human exposure studies at realistic concentrations) and one of the most difficult and expensive pollutants to control. Because of ozone's high chemical reactivity, its concentrations may vary greatly over short distances, and fixed-site air quality monitors may not accurately estimate exposures of human populations. Epidemiologic research on ozone's long-term health effects has been inconclusive, partly because of the lack of reliable personal exposure information. The objective of this project was to develop a practical personal ozone exposure monitoring technique, and to document its precision and accuracy in actual use by representatives of freely ranging, ozone-exposed populations. The project site, Los Angeles, is the nation's metropolitan area with the highest level of ozone pollution and, thus, probably the most important locale for personal exposure assessment. Our overall strategy was (1) to select the most promising laboratory technique for ozone detection from published literature and private communications; (2) to design and test personal monitors using this technique; and (3) when feasible, to evaluate concurrently alternative methodologies developed by others. As indicated below, parts 1 and 2 of our strategy yielded a limited success with respect to short-term active sampling, i.e., measuring personal ozone exposure levels during one to two hours with a monitor incorporating a battery-powered air pump of the type used in industrial hygiene investigations. The same approach was not successful in passive sampling, i.e., measuring exposure levels during multihour or multiday periods with a light-weight, diffusion-controlled "badge" sampler having no moving parts. Passive badge samplers could be calibrated reasonably well in laboratory exposures to ozone in otherwise pure air, but they greatly overestimated ozone levels in outdoor ambient air. Part 3 of our strategy

  13. Passivation and electrochemical behavior of 316L stainless steel in chlorinated simulated concrete pore solution

    NASA Astrophysics Data System (ADS)

    Luo, Hong; Su, Huaizhi; Dong, Chaofang; Li, Xiaogang

    2017-04-01

    In this paper, the passivation and electrochemical behavior of 316L stainless steel in chlorinated simulated concrete pore solutions at different pH was evaluated by potentiodynamic measurements, electrochemical impedance spectroscopy. The composition of the passive film and surface morphology were investigated by X-ray photoelectron spectroscopy (XPS), secondary ion mass spectrometry (SIMS), and scanning electron microscopy, respectively. The results reveal that metastable pitting susceptibility, stable pitting corrosion, and composition of the passive film are influenced by pH value. After long time immersion, a bilayer structure passive film can be formed in this environment. The appearance of molybdates on the outermost surface layer, further enhancing the stability of the passive film. Moreover, the good pitting corrosion resistance of 316L stainless steel in simulated concrete pore solution without carbonated is mainly due to the presence of high Cr/Fe ratio and molybdates ions within the passive film.

  14. Investigation of passive films on nickel Alloy 690 in lead-containing environments

    NASA Astrophysics Data System (ADS)

    Peng, B.; Lu, B. T.; Luo, J. L.; Lu, Y. C.; Ma, H. Y.

    2008-09-01

    Passive films formed on Alloy UNS N06690 were investigated in simulated crevice chemistries. It was found the role of lead in corrosion processes is strongly dependent on the pH value of the testing solutions. At pH 1.5 the effect of lead is narrowly noticeable; while at pH 12.7, lead has a significant influence on the electrochemical performance of alloy UNS N06690. The lead alters the surface morphologies at both pH and account for higher hydroxide content in the surface film at pH 12.7. The lead incorporation hinders the formation of spinel oxides during the passivation in alkaline solution. Nanoindentation tests indicate a significant lead-induced degradation in the mechanical properties of passive films. The passivation degradation is attributed to detrimental effects of lead via interrupting the dehydration process and hindering the formation of protective layers on the alloy surface.

  15. Outdoor chamber measurements of biological aerosols with a passive FTIR spectrometer

    NASA Astrophysics Data System (ADS)

    D'Amico, Francis M.; Emge, Darren K.; Roelant, Geoffrey J.

    2004-02-01

    Outdoor measurements of dry bacillus subtilis (BG) spores were conducted with a passive Fourier transform infrared (FTIR) spectrometer using two types of chambers. One was a large open-ended cell, and the other was a canyon of similar dimensions. The canyon exposes the aerosol plume to downwelling sky radiance, while the open-ended cell does not. The goal of the experiments was to develop a suitable test methodology for evaluation of passive standoff detectors for open-air aerosol measurements. Dry BG aerosol particles were dispersed with a blower through an opening in the side of the chamber to create a pseudo-stationary plume, wind conditions permitting. Numerous trials were performed with the FTIR spectrometer positioned to view mountain, sky and mixed mountain-sky backgrounds. This paper will discuss the results of the FTIR measurements for BG and Kaolin dust releases.

  16. Air Pollution

    MedlinePlus

    Air pollution is a mixture of solid particles and gases in the air. Car emissions, chemicals from factories, ... Ozone, a gas, is a major part of air pollution in cities. When ozone forms air pollution, it's ...

  17. Background culturable bacteria aerosol in two large public buildings using HVAC filters as long term, passive, high-volume air samplers.

    PubMed

    Stanley, Nicholas J; Kuehn, Thomas H; Kim, Seung Won; Raynor, Peter C; Anantharaman, Senthilvelan; Ramakrishnan, M A; Goyal, Sagar M

    2008-04-01

    Background culturable bacteria aerosols were collected and identified in two large public buildings located in Minneapolis, Minnesota and Seattle, Washington over a period of 5 months and 3 months, respectively. The installed particulate air filters in the ventilation systems were used as the aerosol sampling devices at each location. Both pre and final filters were collected from four air handing units at each site to determine the influence of location within the building, time of year, geographical location and difference between indoor and outdoor air. Sections of each loaded filter were eluted with 10 ml of phosphate buffered saline (PBS). The resulting solutions were cultured on blood agar plates and incubated for 24 h at 36 degrees C. Various types of growth media were then used for subculturing, followed by categorization using a BioLog MicroStation (Biolog, Hayward, CA, USA) and manual observation. Environmental parameters were gathered near each filter by the embedded on-site environmental monitoring systems to determine the effect of temperature, humidity and air flow. Thirty nine different species of bacteria were identified, 17 found only in Minneapolis and 5 only in Seattle. The hardy spore-forming genus Bacillus was the most commonly identified and showed the highest concentrations. A significant decrease in the number of species and their concentration occurred in the Minneapolis air handling unit supplying 100% outdoor air in winter, however no significant correlations between bacteria concentration and environmental parameters were found.

  18. Use of criteria pollutants, active and passive mercury sampling, and receptor modeling to understand the chemical forms of gaseous oxidized mercury in Florida

    NASA Astrophysics Data System (ADS)

    Huang, J.; Miller, M. B.; Edgerton, E.; Gustin, M. S.

    2015-04-01

    The highest mercury (Hg) wet deposition in the United States (US) occurs along the Gulf of Mexico, and in the southern and central Mississippi River Valley. Gaseous oxidized Hg (GOM) is thought to be a major contributor due to its high water solubility and reactivity. Therefore, it is critical to understand the concentrations, potential for wet and dry deposition, and GOM compounds present in the air. Concentrations and dry deposition fluxes of GOM were measured at Outlying Landing Field (OLF), Florida, using a Tekran® 2537/1130/1135, and active and passive samplers using cation-exchange and nylon membranes. Relationships with Tekran® derived data must be interpreted with caution, since GOM concentrations can be biased low depending on the chemical compounds in air, and interferences with water vapor and ozone. Only gaseous elemental Hg and GOM are discussed here since the PBM measurement uncertainties are higher. Criteria air pollutants were concurrently measured and Tekran® data were assessed along with these using Principal Component Analysis to identify associations among air pollutants. Based on the diel pattern, high GOM concentrations at this site were associated with fossil fuel combustion and gas phase oxidation during the day, and gas phase oxidation and transport in the free troposphere. The ratio of GEM/CO at OLF (0.008 ng m-3 ppbv-1) was much higher than the numbers reported for the Western United States and central New York for domestic emissions or biomass burning (0.001 ng m-3 ppbv-1), which we suggest is indicative of a marine boundary layer source. Results from nylon membranes with thermal desorption analyses suggest five potential GOM compounds exist in this area, including HgBr2, HgO, Hg(NO3)2, HgSO4, and an unknown compound. This indicates that the site is influenced by different gaseous phase reactions and sources. A~high GOM event related to high CO but average SO2 suggests the air parcels moved from the free troposphere and

  19. A search for passive protoplanetary discs in the Taurus-Auriga star-forming region

    NASA Astrophysics Data System (ADS)

    Duchêne, Gaspard; Becker, Adam; Yang, Yizhe; Bouy, Hervé; De Rosa, Robert J.; Patience, Jennifer; Girard, Julien H.

    2017-08-01

    We conducted a 12-month monitoring campaign of 33 T Tauri stars (TTS) in Taurus. Our goal was to monitor objects that possess a disc but have a weak H α line, a common accretion tracer for young stars, in order to determine whether they host a passive circumstellar disc. We used medium-resolution optical spectroscopy to assess the accretion status of the objects and to measure the H α line. We found no convincing examples of passive discs: only transition disc and debris disc systems in our sample are non-accreting. Among accretors, we found no example of flickering accretion, leading to an upper limit of 2.2 per cent on the duty cycle of accretion gaps, assuming that all accreting TTS experience such events. When combining literature results with our observations, we found that the reliability of traditional H α-based criteria to test for accretion is high but imperfect, particularly for low-mass TTS. We found a significant correlation between stellar mass and the full width at 10 per cent of the peak (W10) of the H α line that does not seem to be related to variations in free-fall velocity. Finally, our data revealed a positive correlation between the H α equivalent width and its W10, indicative of a systematic modulation in the line profile whereby the high-velocity wings of the line are proportionally more enhanced than its core when the line luminosity increases. We argue that this supports the hypothesis that the mass accretion rate on the central star is correlated with the H α W10 through a common physical mechanism.

  20. A passive microfluidic hydrogen-air fuel cell with exceptional stability and high performance.

    PubMed

    Mitrovski, Svetlana M; Nuzzo, Ralph G

    2006-03-01

    We describe an advanced microfluidic hydrogen-air fuel cell (FC) that exhibits exceptional durability and high performance, most notably yielding stable output power (>100 days) without the use of an anode-cathode separator membrane. This FC embraces an entirely passive device architecture and, unlike conventional microfluidic designs that exploit laminar hydrodynamics, no external pumps are used to sustain or localize the reagent flow fields. The devices incorporate high surface area/porous metal and metal alloy electrodes that are embedded and fully immersed in liquid electrolyte confined in the channels of a poly(dimethylsiloxane) (PDMS)-based microfluidic network. The polymeric network also serves as a self-supporting membrane through which oxygen and hydrogen are supplied to the cathode and alloy anode, respectively, by permeation. The operational stability of the device and its performance is strongly dependent on the nature of the electrolyte used (5 M H2SO4 or 2.5 M NaOH) and composition of the anode material. The latter choice is optimized to decrease the sensitivity of the system to oxygen cross-over while still maintaining high activity towards the hydrogen oxidation reaction (HOR). Three types of high surface area anodes were tested in this work. These include: high-surface area electrodeposited Pt (Pt); high-surface area electrodeposited Pd (Pd); and thin palladium adlayers supported on a "porous" Pt electrode (Pd/Pt). The FCs display their best performance in 5 M H2SO4 using the Pd/Pt anode. This exceptional stability and performance was ascribed to several factors, namely: the high permeabilities of O2, H2, and CO2 in PDMS; the inhibition of the formation of insoluble carbonate species due to the presence of a highly acidic electrolyte; and the selectivity of the Pd/Pt anode toward the HOR. The stability of the device for long-term operation was modeled using a stack of three FCs as a power supply for a portable display that otherwise uses a 3 V

  1. A XPS Study of the Passivity of Stainless Steels Influenced by Sulfate-Reducing Bacteria.

    NASA Astrophysics Data System (ADS)

    Chen, Guocun

    The influence of sulfate-reducing bacteria (SRB) on the passivity of type 304 and 317L stainless steels (SS) was investigated by x-ray photoelectron spectroscopy (XPS), microbiological and electrochemical techniques. Samples were exposed to SRB, and then the resultant surfaces were analyzed by XPS, and the corrosion resistance by potentiodynamic polarization in deaerated 0.1 M HCl. To further understand their passivity, the SRB-exposed samples were analyzed by XPS after potentiostatic polarization at a passive potential in the hydrochloric solution. The characterization was performed under two surface conditions: unrinsed and rinsed by deaerated alcohol and deionized water. Comparisons were made with control samples immersed in uninoculated medium. SRB caused a severe loss of the passivity of 304 SS through sulfide formation and possible additional activation to form hexavalent chromium. The sulfides included FeS, FeS_2, Cr_2S _3, NiS and possibly Fe_ {rm 1-x}S. The interaction took place nonuniformly, resulting in undercutting of the passive film and preferential hydration of inner surface layers. The bacterial activation of the Cr^{6+ }^ecies was magnified by subsequent potentiostatic polarization. In contrast, 317L SS exhibited a limited passivity. The sulfides were formed mainly in the outer layers. Although Cr^{6+}^ecies were observed after the exposure, they were dissolved upon polarization. Since 317L SS has a higher Mo content, its higher passivity was ascribed to Mo existing as molybdate on the surface and Mo^{5+} species in the biofilm. Consequently, the interaction of SRB with Mo was studied. It was observed that molybdate could be retained on the surfaces of Mo coupons by corrosion products. In the presence of SRB, however, a considerable portion of the molybdate interacted with intermediate sulfur -containing proteins, forming Mo(V)-S complexes and reducing bacterial growth and sulfate reduction. The limited insolubility of the Mo(V)-S complexes in 0

  2. Atmospheric Infrared Sounder (AIRS) thermal test program

    NASA Astrophysics Data System (ADS)

    Coda, Roger C.; Green, Kenneth E.; McKay, Thomas; Overoye, Kenneth; Wickman-Boisvert, Heather A.

    1999-12-01

    The Atmospheric Infrared Sounder (AIRS) has been developed for the NASA Earth Observing System (EOS) program with a scheduled launch on the first post meridian (PM-1) platform in December 2000. AIRS is designed to provide both new and more accurate data about the atmosphere, land and oceans for application to climate studies and weather predictions. Among the important parameters to be derived from AIRS observations are atmospheric temperature profiles with an average accuracy of 1 K in 1 kilometer (km) layers in the troposphere and surface temperatures with an average accuracy of 0.5 K. The AIRS measurement technique is based on passive infrared remote sensing using a precisely calibrated, high spectral resolution grating spectrometer providing high sensitivity operation over the 3.7 micrometer - 15.4 micrometer region. To meet the challenge of high performance over this broad wavelength range, the spectrometer is cooled to 155 K using a passive two-stage radiative cooler and the HgCdTe focal plane is cooled to 58 K using a state-of-the-art long life, low vibration Stirling/pulse tube cryocooler. Electronics waste heat is removed through a spacecraft provided heat rejection system based on heat pipe technology. All of these functions combine to make AIRS thermal management a key aspect of the overall instrument design. Additionally, the thermal operating constraints place challenging requirements on the test program in terms of proper simulation of the space environment and the logistic issues attendant with testing cryogenic instruments. The AIRS instrument has been fully integrated and thermal vacuum performance testing is underway. This paper provides an overview of the AIRS thermal system design, the test methodologies and the key results from the thermal vacuum tests, which have been completed at the time of this publication.

  3. Urban-air-toxics Monitoring Program, 1990

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1991-06-01

    From March 1990 through February 1991 samples of ambient air were collected at 12 sites in the eastern part of the U.S. Every 12 days, air was integrated over 24-hour periods into passivated stainless steel canisters. Simultaneously, air was drawn through cartridges containing dinitrophenylhydrazine to collect carbonyl compounds. The samples were analyzed at a central laboratory for a total of 37 halogenated and aromatic hydrocarbons, formaldehyde, acetaldehyde, and other oxygenated species. The hydrocarbon species were analyzed by gas chromatography/multiple detectors and gas chromatography/mass spectrometry, while the carbonyl species were analyzed by liquid chromatography. Complete data for all the hydrocarbon samplesmore » are presented in the report.« less

  4. Carbon Nanotubes, Nanocrystal Forms, and Complex Nanoparticle Aggregates in common fuel-gas combustion sources and the ambient air

    NASA Astrophysics Data System (ADS)

    Murr, L. E.; Bang, J. J.; Esquivel, E. V.; Guerrero, P. A.; Lopez, D. A.

    2004-06-01

    Aggregated multiwall carbon nanotubes (with diameters ranging from ˜3 to 30nm) and related carbon nanocrystal forms ranging in size from 0.4 to 2 μm (average diameter) have been collected in the combustion streams for methane/air, natural gas/air, and propane gas/air flames using a thermal precipitator. Individual particle aggregates were collected on carbon/formvar-coated 3mm nickel grids and examined in a transmission electron microscope, utilizing bright-field imaging, selected-area electron diffraction analysis, and energy-dispersive X-ray spectrometry techniques. The natural gas and propane gas sources were domestic (kitchen) stoves, and similar particle aggregates collected in the outdoor air were correspondingly identified as carbon nanocrystal aggregates and sometimes more complex aggregates of silica nanocrystals intermixed with the carbon nanotubes and other carbon nanocrystals. Finally, and in light of the potential for methane-series gas burning as major sources of carbon nanocrystal aggregates in both the indoor and outdoor air, data for natural gas consumption and corresponding asthma deaths and incidence are examined with a degree of speculation regarding any significance in the correlations.

  5. Effective passivation of silicon surfaces by ultrathin atomic-layer deposited niobium oxide

    NASA Astrophysics Data System (ADS)

    Macco, B.; Bivour, M.; Deijkers, J. H.; Basuvalingam, S. B.; Black, L. E.; Melskens, J.; van de Loo, B. W. H.; Berghuis, W. J. H.; Hermle, M.; Kessels, W. M. M. Erwin

    2018-06-01

    This letter reports on effective surface passivation of n-type crystalline silicon by ultrathin niobium oxide (Nb2O5) films prepared by atomic layer deposition (ALD) and subjected to a forming gas anneal at 300 °C. A champion recombination parameter J0 of 20 fA/cm2 and a surface recombination velocity Seff of 4.8 cm/s have been achieved for ultrathin films of 1 nm. The surface pretreatment was found to have a strong impact on the passivation. Good passivation can be achieved on both HF-treated c-Si surfaces and c-Si surfaces with a wet-chemically grown interfacial silicon oxide layer. On HF-treated surfaces, a minimum film thickness of 3 nm is required to achieve a high level of surface passivation, whereas the use of a wet chemically-grown interfacial oxide enables excellent passivation even for Nb2O5 films of only 1 nm. This discrepancy in passivation between both surface types is attributed to differences in the formation and stoichiometry of interfacial silicon oxide, resulting in different levels of chemical passivation. On both surface types, the high level of passivation of ALD Nb2O5 is aided by field-effect passivation originating from a high fixed negative charge density of 1-2 × 1012 cm-3. Furthermore, it is demonstrated that the passivation level provided by 1 nm of Nb2O5 can be further enhanced through light-soaking. Finally, initial explorations show that a low contact resistivity can be obtained using Nb2O5-based contacts. Together, these properties make ALD Nb2O5 a highly interesting building block for high-efficiency c-Si solar cells.

  6. Comparison between active (pumped) and passive (diffusive) sampling methods for formaldehyde in pathology and histology laboratories.

    PubMed

    Lee, Eun Gyung; Magrm, Rana; Kusti, Mohannad; Kashon, Michael L; Guffey, Steven; Costas, Michelle M; Boykin, Carie J; Harper, Martin

    2017-01-01

    This study was to determine occupational exposures to formaldehyde and to compare concentrations of formaldehyde obtained by active and passive sampling methods. In one pathology and one histology laboratories, exposure measurements were collected with sets of active air samplers (Supelco LpDNPH tubes) and passive badges (ChemDisk Aldehyde Monitor 571). Sixty-six sample pairs (49 personal and 17 area) were collected and analyzed by NIOSH NMAM 2016 for active samples and OSHA Method 1007 (using the manufacturer's updated uptake rate) for passive samples. All active and passive 8-hr time-weighted average (TWA) measurements showed compliance with the OSHA permissible exposure limit (PEL-0.75 ppm) except for one passive measurement, whereas 78% for the active and 88% for the passive samples exceeded the NIOSH recommended exposure limit (REL-0.016 ppm). Overall, 73% of the passive samples showed higher concentrations than the active samples and a statistical test indicated disagreement between two methods for all data and for data without outliers. The OSHA Method cautions that passive samplers should not be used for sampling situations involving formalin solutions because of low concentration estimates in the presence of reaction products of formaldehyde and methanol (a formalin additive). However, this situation was not observed, perhaps because the formalin solutions used in these laboratories included much less methanol (3%) than those tested in the OSHA Method (up to 15%). The passive samplers in general overestimated concentrations compared to the active method, which is prudent for demonstrating compliance with an occupational exposure limit, but occasional large differences may be a result of collecting aerosolized droplets or splashes on the face of the samplers. In the situations examined in this study the passive sampler generally produces higher results than the active sampler so that a body of results from passive samplers demonstrating compliance with the

  7. Surface Passivation for 3-5 Semiconductor Processing: Stable Gallium Sulphide Films by MOCVD

    NASA Technical Reports Server (NTRS)

    Macinnes, Andrew N.; Jenkins, Phillip P.; Power, Michael B.; Kang, Soon; Barron, Andrew R.; Hepp, Aloysius F.; Tabib-Azar, Massood

    1994-01-01

    Gallium sulphide (GaS) has been deposited on GaAs to form stable, insulating, passivating layers. Spectrally resolved photoluminescence and surface recombination velocity measurements indicate that the GaS itself can contribute a significant fraction of the photoluminescence in GaS/GaAs structures. Determination of surface recombination velocity by photoluminescence is therefore difficult. By using C-V analysis of metal-insulator-semiconductor structures, passivation of the GaAs with GaS films is quantified.

  8. Large-scale monitoring of air pollution in remote and ecologically important areas

    Treesearch

    Andrzej Bytnerowicz; Witold Fraczek

    2013-01-01

    New advances in air quality monitoring techniques, such as passive samplers for nitrogenous (N) or sulphurous (S) pollutants and ozone (O3), have allowed for an improved understanding of concentrations of these pollutants in remote areas. Mountains create special problems with regard to the feasibility of establishing and maintaining air pollution monitoring networks,...

  9. Cation profiling of passive films on stainless steel formed in sulphuric and acetic acid by deconvolution of angle-resolved X-ray photoelectron spectra

    NASA Astrophysics Data System (ADS)

    Högström, Jonas; Fredriksson, Wendy; Edstrom, Kristina; Björefors, Fredrik; Nyholm, Leif; Olsson, Claes-Olof A.

    2013-11-01

    An approach for determining depth gradients of metal-ion concentrations in passive films on stainless steel using angle-resolved X-ray photoelectron spectroscopy (ARXPS) is described. The iterative method, which is based on analyses of the oxidised metal peaks, provides increased precision and hence allows faster ARXPS measurements to be carried out. The method was used to determine the concentration depth profiles for molybdenum, iron and chromium in passive films on 316L/EN 1.4432 stainless steel samples oxidised in 0.5 M H2SO4 and acetic acid diluted with 0.02 M Na2B4O7 · 10H2O and 1 M H2O, respectively. The molybdenum concentration in the film is pin-pointed to the oxide/metal interface and the films also contained an iron-ion-enriched surface layer and a chromium-ion-dominated middle layer. Although films of similar composition and thickness (i.e., about 2 nm) were formed in the two electrolytes, the corrosion currents were found to be three orders of magnitude larger in the acetic acid solution. The differences in the layer composition, found for the two electrolytes as well as different oxidation conditions, can be explained based on the oxidation potentials of the metals and the dissolution rates of the different metal ions.

  10. Emergent scar lines in chaotic advection of passive directors

    NASA Astrophysics Data System (ADS)

    Hejazi, Bardia; Mehlig, Bernhard; Voth, Greg A.

    2017-12-01

    We examine the spatial field of orientations of slender fibers that are advected by a two-dimensional fluid flow. The orientation field of these passive directors are important in a wide range of industrial and geophysical flows. We introduce emergent scar lines as the dominant coherent structures in the orientation field of passive directors in chaotic flows. Previous work has identified the existence of scar lines where the orientation rotates by π over short distances, but the lines that were identified disappeared as time progressed. As a result, earlier work focused on topological singularities in the orientation field, which we find to play a negligible role at long times. We use the standard map as a simple time-periodic two-dimensional flow that produces Lagrangian chaos. This class of flows produces persistent patterns in passive scalar advection and we find that a different kind of persistent pattern develops in the passive director orientation field. We identify the mechanism by which emergent scar lines grow to dominate these patterns at long times in complex flows. Emergent scar lines form where the recent stretching of the fluid element is perpendicular to earlier stretching. Thus these scar lines can be labeled by their age, defined as the time since their stretching reached a maximum.

  11. The surface characterization and passive behavior of Type 316L stainless steel in H2S-containing conditions

    NASA Astrophysics Data System (ADS)

    Wang, Zhu; Zhang, Lei; Tang, Xian; Zhang, Ziru; Lu, Minxu

    2017-11-01

    The protectiveness and characterization of passive films formed at various potentials in H2S-containing environments were studied using electrochemical measurements and surface analysis method. The corrosion resistance of 316L in H2S-containing environment decreases with the applied potential. The Auger electron spectroscopy (AES) and X-ray photoelectron spectroscopy (XPS) results indicate that Ni participates in the film formation, which results in the corresponding enrichment in the passive film. The oxidization degree analysis indicates that metallic elements are present in the passive film. Sulfide ions are significantly favored in the passive film at higher potentials, which is responsible for the breakdown of passive film.

  12. Commentary on "Capturing the Evasive Passive"

    ERIC Educational Resources Information Center

    Lillo-Martin, Diane; Snyder, William

    2009-01-01

    Passives has been the focus of much research in language acquisition since the 1970s. It has been clear from this research that young children seldom produce passives spontaneously, particularly "long" or "full" passives with a by-phrase; and they usually perform poorly on experimental tests of the comprehension of passives, especially passives of…

  13. Running Memory for Clinical Handoffs: A Look at Active and Passive Processing.

    PubMed

    Anderson-Montoya, Brittany L; Scerbo, Mark W; Ramirez, Dana E; Hubbard, Thomas W

    2017-05-01

    The goal of the present study was to examine the effects of domain-relevant expertise on running memory and the ability to process handoffs of information. In addition, the role of active or passive processing was examined. Currently, there is little research that addresses how individuals with different levels of expertise process information in running memory when the information is needed to perform a real-world task. Three groups of participants differing in their level of clinical expertise (novice, intermediate, and expert) performed an abstract running memory span task and two tasks resembling real-world activities, a clinical handoff task and an air traffic control (ATC) handoff task. For all tasks, list length and the amount of information to be recalled were manipulated. Regarding processing strategy, all participants used passive processing for the running memory span and ATC tasks. The novices also used passive processing for the clinical task. The experts, however, appeared to use more active processing, and the intermediates fell in between. Overall, the results indicated that individuals with clinical expertise and a developed mental model rely more on active processing of incoming information for the clinical task while individuals with little or no knowledge rely on passive processing. The results have implications about how training should be developed to aid less experienced personnel identify what information should be included in a handoff and what should not.

  14. Passive sampling for the isotopic fingerprinting of atmospheric mercury

    NASA Astrophysics Data System (ADS)

    Bergquist, B. A.; MacLagan, D.; Spoznar, N.; Kaplan, R.; Chandan, P.; Stupple, G.; Zimmerman, L.; Wania, F.; Mitchell, C. P. J.; Steffen, A.; Monaci, F.; Derry, L. A.

    2017-12-01

    Recent studies show that there are variations in the mercury (Hg) isotopic signature of atmospheric Hg, which demonstrates the potential for source tracing and improved understanding of atmospheric cycling of Hg. However, current methods for both measuring atmospheric Hg and collecting enough atmospheric Hg for isotopic analyses require expensive instruments that need power and expertise. Additionally, methods for collecting enough atmospheric Hg for isotopic analysis require pumping air through traps for long periods (weeks and longer). Combining a new passive atmospheric sampler for mercury (Hg) with novel Hg isotopic analyses will allow for the application of stable Hg isotopes to atmospheric studies of Hg. Our group has been testing a new passive sampler for gaseous Hg that relies on the diffusion of Hg through a diffusive barrier and adsorption onto a sulphur-impregnated activated carbon sorbent. The benefit of this passive sampler is that it is low cost, requires no power, and collects gaseous Hg for up to one year with linear, well-defined uptake, which allows for reproducible and accurate measurements of atmospheric gaseous Hg concentrations ( 8% uncertainty). As little as one month of sampling is often adequate to collect sufficient Hg for isotopic analysis at typical background concentrations. Experiments comparing the isotopic Hg signature in activated carbon samples using different approaches (i.e. by passive diffusion, by passive diffusion through diffusive barriers of different thickness, by active pumping) and at different temperatures confirm that the sampling process itself does not impose mass-independent fractionation (MIF). However, sampling does result in a consistent and thus correctable mass-dependent fractionation (MDF) effect. Therefore, the sampler preserves Hg MIF with very high accuracy and precision, which is necessary for atmospheric source tracing, and reasonable MDF can be estimated with some increase in error. In addition to

  15. Non-chromate Passivation for LHE ZnNi

    DTIC Science & Technology

    2017-03-01

    control of coatings and processes. Development of an alternative methodology that is simple, repeatable, non -destructive, and capable of scanning across...FINAL REPORT Non -chromate Passivation for LHE ZnNi SERDP Project WP-2527 JANUARY 2017 Matt O’Keefe Missouri S&T...valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS. 1. REPORT DATE (DD-MM-YYYY) 2. REPORT TYPE 3. DATES COVERED (From

  16. Effect of temperature on the passivation behavior of steel rebar

    NASA Astrophysics Data System (ADS)

    Chen, Shan-meng; Cao, Bei; Wu, Yin-shun; Ma, Ke

    2014-05-01

    Steel rebar normally forms an oxide or rusty skin before it is embedded into concrete and the passivation properties of this skin will be heavily influenced by temperature. To study the effect of temperature on the passivation properties of steel rebar under different surface conditions, we conducted scanning electron microscopy (SEM) observations and electrochemical measurements, such as measurements of the free corrosion potential and polarization curves of HPB235 steel rebar. These measurements identified three kinds of surfaces: polished, oxide skin, and rusty skin. Our results show that the passivation properties of all the surface types decrease with the increase of temperature. Temperature has the greatest effect on the rusty-skin rebar and least effect on the polished steel rebar, because of cracks and crevices on the mill scale on the steel rebar's surface. The rusty-skin rebar exhibits the highest corrosion rate because crevice corrosion can accelerate the corrosion of the steel rebar, particularly at high temperature. The results also indicate that the threshold temperatures of passivation for the oxide-skin rebar and the rusty-skin rebar are 37°C and 20°C, respectively.

  17. Surface Passivation in Empirical Tight Binding

    NASA Astrophysics Data System (ADS)

    He, Yu; Tan, Yaohua; Jiang, Zhengping; Povolotskyi, Michael; Klimeck, Gerhard; Kubis, Tillmann

    2016-03-01

    Empirical Tight Binding (TB) methods are widely used in atomistic device simulations. Existing TB methods to passivate dangling bonds fall into two categories: 1) Method that explicitly includes passivation atoms is limited to passivation with atoms and small molecules only. 2) Method that implicitly incorporates passivation does not distinguish passivation atom types. This work introduces an implicit passivation method that is applicable to any passivation scenario with appropriate parameters. This method is applied to a Si quantum well and a Si ultra-thin body transistor oxidized with SiO2 in several oxidation configurations. Comparison with ab-initio results and experiments verifies the presented method. Oxidation configurations that severely hamper the transistor performance are identified. It is also shown that the commonly used implicit H atom passivation overestimates the transistor performance.

  18. Development of a Bio-inspired Microflap Array for Passive Control of Flow Separation

    NASA Astrophysics Data System (ADS)

    Devey, Sean; Morris, Jackson; Hubner, Paul; Lang, Amy

    2017-11-01

    The shortfin mako shark benefits from its flexible microscopic scales, or denticles; which can passively limit flow separation in water. These denticles can be passively actuated by incipient reversing flow in the lower 5% of the boundary layer, thereby impeding further flow reversal and promoting increased momentum exchange. In air, an array of flow actuated microflaps has the potential to provide similar benefits to man-made systems. Multiple iterations of microflap arrays have been developed and tested in the University of Alabama's Boundary Layer Tunnel. A variety of 3D-printed flaps derived from mako denticle geometries were arranged in rows with freedom to rotate, like mako denticles, to angles up to 50 degrees. Placing the microflap array in separated flow regions allowed for direct observation of the microflap response. Like mako denticles, microflaps with lengths of about 4 mm have been shown to actuate in response to reversing surface flows. This presentation will focus on the development and implementation of passive microflap arrays. This research was supported by Boeing, the US Army, and the National Science Foundation REU program.

  19. Adaptive Automation Triggered by EEG-Based Mental Workload Index: A Passive Brain-Computer Interface Application in Realistic Air Traffic Control Environment.

    PubMed

    Aricò, Pietro; Borghini, Gianluca; Di Flumeri, Gianluca; Colosimo, Alfredo; Bonelli, Stefano; Golfetti, Alessia; Pozzi, Simone; Imbert, Jean-Paul; Granger, Géraud; Benhacene, Raïlane; Babiloni, Fabio

    2016-01-01

    Adaptive Automation (AA) is a promising approach to keep the task workload demand within appropriate levels in order to avoid both the under - and over-load conditions, hence enhancing the overall performance and safety of the human-machine system. The main issue on the use of AA is how to trigger the AA solutions without affecting the operative task. In this regard, passive Brain-Computer Interface (pBCI) systems are a good candidate to activate automation, since they are able to gather information about the covert behavior (e.g., mental workload) of a subject by analyzing its neurophysiological signals (i.e., brain activity), and without interfering with the ongoing operational activity. We proposed a pBCI system able to trigger AA solutions integrated in a realistic Air Traffic Management (ATM) research simulator developed and hosted at ENAC (É cole Nationale de l'Aviation Civile of Toulouse, France). Twelve Air Traffic Controller (ATCO) students have been involved in the experiment and they have been asked to perform ATM scenarios with and without the support of the AA solutions. Results demonstrated the effectiveness of the proposed pBCI system, since it enabled the AA mostly during the high-demanding conditions (i.e., overload situations) inducing a reduction of the mental workload under which the ATCOs were operating. On the contrary, as desired, the AA was not activated when workload level was under the threshold, to prevent too low demanding conditions that could bring the operator's workload level toward potentially dangerous conditions of underload.

  20. Adaptive Automation Triggered by EEG-Based Mental Workload Index: A Passive Brain-Computer Interface Application in Realistic Air Traffic Control Environment

    PubMed Central

    Aricò, Pietro; Borghini, Gianluca; Di Flumeri, Gianluca; Colosimo, Alfredo; Bonelli, Stefano; Golfetti, Alessia; Pozzi, Simone; Imbert, Jean-Paul; Granger, Géraud; Benhacene, Raïlane; Babiloni, Fabio

    2016-01-01

    Adaptive Automation (AA) is a promising approach to keep the task workload demand within appropriate levels in order to avoid both the under- and over-load conditions, hence enhancing the overall performance and safety of the human-machine system. The main issue on the use of AA is how to trigger the AA solutions without affecting the operative task. In this regard, passive Brain-Computer Interface (pBCI) systems are a good candidate to activate automation, since they are able to gather information about the covert behavior (e.g., mental workload) of a subject by analyzing its neurophysiological signals (i.e., brain activity), and without interfering with the ongoing operational activity. We proposed a pBCI system able to trigger AA solutions integrated in a realistic Air Traffic Management (ATM) research simulator developed and hosted at ENAC (École Nationale de l'Aviation Civile of Toulouse, France). Twelve Air Traffic Controller (ATCO) students have been involved in the experiment and they have been asked to perform ATM scenarios with and without the support of the AA solutions. Results demonstrated the effectiveness of the proposed pBCI system, since it enabled the AA mostly during the high-demanding conditions (i.e., overload situations) inducing a reduction of the mental workload under which the ATCOs were operating. On the contrary, as desired, the AA was not activated when workload level was under the threshold, to prevent too low demanding conditions that could bring the operator's workload level toward potentially dangerous conditions of underload. PMID:27833542

  1. New Passivation Methods of GaAs.

    DTIC Science & Technology

    1980-01-01

    Fabrication of Thin Nitride Layers on GaAs 33 - 35 CHAPTER 7 Passivation of InGaAsP 36 - 37 CHAPTER 8 Emulsions on GaAs Surfaces 38 - 42 APPENDIX...not yet given any useful results. The deposition of SiO2 by using emulsions is pursued and first results on the possibility of GaAs doping are...glycol-tartaric acid based aqueous solution was used in order to anodically oxidise the gate notch after the source and drain ohmic contacts were formed

  2. APPLICATION OF SEMIPERMEABLE MEMBRANE DEVICES TO INDOOR AIR SAMPLING

    EPA Science Inventory

    Semipermeable membrane devices (SPMDs) are a relatively new passive sampling technique for nonpolar organic compounds that have been extensively used for surface water sampling. A small body of literature indicates that SPMDs are also useful for air sampling. Because SPMDs ha...

  3. Robotic air vehicle. Blending artificial intelligence with conventional software

    NASA Technical Reports Server (NTRS)

    Mcnulty, Christa; Graham, Joyce; Roewer, Paul

    1987-01-01

    The Robotic Air Vehicle (RAV) system is described. The program's objectives were to design, implement, and demonstrate cooperating expert systems for piloting robotic air vehicles. The development of this system merges conventional programming used in passive navigation with Artificial Intelligence techniques such as voice recognition, spatial reasoning, and expert systems. The individual components of the RAV system are discussed as well as their interactions with each other and how they operate as a system.

  4. Enhanced photoelectrochemical water splitting performance of anodic TiO(2) nanotube arrays by surface passivation.

    PubMed

    Gui, Qunfang; Xu, Zhen; Zhang, Haifeng; Cheng, Chuanwei; Zhu, Xufei; Yin, Min; Song, Ye; Lu, Linfeng; Chen, Xiaoyuan; Li, Dongdong

    2014-10-08

    One-dimensional anodic titanium oxide nanotube (TONT) arrays provide a direct pathway for charge transport, and thus hold great potential as working electrodes for electrochemical energy conversion and storage devices. However, the prominent surface recombination due to the large amount surface defects hinders the performance improvement. In this work, the surface states of TONTs were passivated by conformal coating of high-quality Al2O3 onto the tubular structures using atomic layer deposition (ALD). The modified TONT films were subsequently employed as anodes for photoelectrochemical (PEC) water splitting. The photocurrent (0.5 V vs Ag/AgCl) recorded under air mass 1.5 global illumination presented 0.8 times enhancement on the electrode with passivation coating. The reduction of surface recombination rate is responsible for the substantially improved performance, which is proposed to have originated from a decreased interface defect density in combination with a field-effect passivation induced by a negative fixed charge in the Al2O3 shells. These results not only provide a physical insight into the passivation effect, but also can be utilized as a guideline to design other energy conversion devices.

  5. Techniques for active passivation

    DOEpatents

    Roscioli, Joseph R.; Herndon, Scott C.; Nelson, Jr., David D.

    2016-12-20

    In one embodiment, active (continuous or intermittent) passivation may be employed to prevent interaction of sticky molecules with interfaces inside of an instrument (e.g., an infrared absorption spectrometer) and thereby improve response time. A passivation species may be continuously or intermittently applied to an inlet of the instrument while a sample gas stream is being applied. The passivation species may have a highly polar functional group that strongly binds to either water or polar groups of the interfaces, and once bound presents a non-polar group to the gas phase in order to prevent further binding of polar molecules. The instrument may be actively used to detect the sticky molecules while the passivation species is being applied.

  6. Does e-cigarette consumption cause passive vaping?

    PubMed

    Schripp, T; Markewitz, D; Uhde, E; Salthammer, T

    2013-02-01

    Electronic cigarette consumption ('vaping') is marketed as an alternative to conventional tobacco smoking. Technically, a mixture of chemicals containing carrier liquids, flavors, and optionally nicotine is vaporized and inhaled. The present study aims at the determination of the release of volatile organic compounds (VOC) and (ultra)fine particles (FP/UFP) from an e-cigarette under near-to-real-use conditions in an 8-m(3) emission test chamber. Furthermore, the inhaled mixture is analyzed in small chambers. An increase in FP/UFP and VOC could be determined after the use of the e-cigarette. Prominent components in the gas-phase are 1,2-propanediol, 1,2,3-propanetriol, diacetin, flavorings, and traces of nicotine. As a consequence, 'passive vaping' must be expected from the consumption of e-cigarettes. Furthermore, the inhaled aerosol undergoes changes in the human lung that is assumed to be attributed to deposition and evaporation. The consumption of e-cigarettes marks a new source for chemical and aerosol exposure in the indoor environment. To evaluate the impact of e-cigarettes on indoor air quality and to estimate the possible effect of passive vaping, information about the chemical characteristics of the released vapor is needed. © 2012 John Wiley & Sons A/S.

  7. Air-sea interaction with SSM/I and altimeter

    NASA Technical Reports Server (NTRS)

    1985-01-01

    A number of important developments in satellite remote sensing techniques have occurred recently which offer the possibility of studying over vast areas of the ocean the temporally evolving energy exchange between the ocean and the atmosphere. Commencing in spring of 1985, passive and active microwave sensors that can provide valuable data for scientific utilization will start to become operational on Department of Defense (DOD) missions. The passive microwave radiometer can be used to estimate surface wind speed, total air column humidity, and rain rate. The active radar, or altimeter, senses surface gravity wave height and surface wind speed.

  8. A photometrically and spectroscopically confirmed population of passive spiral galaxies

    NASA Astrophysics Data System (ADS)

    Fraser-McKelvie, Amelia; Brown, Michael J. I.; Pimbblet, Kevin A.; Dolley, Tim; Crossett, Jacob P.; Bonne, Nicolas J.

    2016-10-01

    We have identified a population of passive spiral galaxies from photometry and integral field spectroscopy. We selected z < 0.035 spiral galaxies that have WISE colours consistent with little mid-infrared emission from warm dust. Matched aperture photometry of 51 spiral galaxies in ultraviolet, optical and mid-infrared show these galaxies have colours consistent with passive galaxies. Six galaxies form a spectroscopic pilot study and were observed using the Wide-Field Spectrograph to check for signs of nebular emission from star formation. We see no evidence of substantial nebular emission found in previous red spiral samples. These six galaxies possess absorption-line spectra with 4000 Å breaks consistent with an average luminosity-weighted age of 2.3 Gyr. Our photometric and integral field spectroscopic observations confirm the existence of a population of local passive spiral galaxies, implying that transformation into early-type morphologies is not required for the quenching of star formation.

  9. Field-testing a new directional passive air sampler for fugitive dust in a complex industrial source environment.

    PubMed

    Ferranti, E J S; Fryer, M; Sweetman, A J; Garcia, M A Solera; Timmis, R J

    2014-01-01

    Quantifying the sources of fugitive dusts on complex industrial sites is essential for regulation and effective dust management. This study applied two recently-patented Directional Passive Air Samplers (DPAS) to measure the fugitive dust contribution from a Metal Recovery Plant (MRP) located on the periphery of a major steelworks site. The DPAS can collect separate samples for winds from different directions (12 × 30° sectors), and the collected dust may be quantified using several different measurement methods. The DPASs were located up and down-prevailing-wind of the MRP processing area to (i) identify and measure the contribution made by the MRP processing operation; (ii) monitor this contribution during the processing of a particularly dusty material; and (iii) detect any changes to this contribution following new dust-control measures. Sampling took place over a 12-month period and the amount of dust was quantified using photographic, magnetic and mass-loading measurement methods. The DPASs are able to effectively resolve the incoming dust signal from the wider steelworks complex, and also different sources of fugitive dust from the MRP processing area. There was no confirmable increase in the dust contribution from the MRP during the processing of a particularly dusty material, but dust levels significantly reduced following the introduction of new dust-control measures. This research was undertaken in a regulatory context, and the results provide a unique evidence-base for current and future operational or regulatory decisions.

  10. NHEXAS PHASE I ARIZONA STUDY--STANDARD OPERATING PROCEDURE FOR ANALYSIS OF PASSIVE FORMALDEHYDE SAMPLERS (BCO-L-16.0)

    EPA Science Inventory

    The purpose of this SOP is to describe the methodology used by Air Quality Research (Research Triangle Park, NC) for the analysis of the PF-1 passive formaldehyde samplers using a colorimetric method and chromotropic acid. This procedure was followed to ensure consistent data re...

  11. Urban Air Toxics Monitoring Program, 1989

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McAllister, R.A.; Moore, W.H.; Rice, J.

    1990-10-01

    From January 1989 through January 1990 samples of ambient air were collected at 14 sites in the eastern part of the U.S. Every 12 days, air was integrated over 24-hour periods into passivated stainless steel canisters. Simultaneously, air was drawn through cartridges containing dinitrophenylhydrazine to collect carbonyl compounds. The samples were analyzed at a central laboratory for a total of 37 halogenated and aromatic hydrocarbons, formaldehyde, acetaldehyde, and other oxygenated species. The hydrocarbon species were analyzed by gas chromatography/multiple detectors and gas chromatography/mass spectrometry, while the carbonyl species were analyzed by liquid chromatography. An extensive quality assurance program was carriedmore » on to secure high quality data. Complete data for all the carbonyl samples are presented in the report.« less

  12. Active-passive bistatic surveillance for long range air defense

    NASA Astrophysics Data System (ADS)

    Wardrop, B.; Molyneux-Berry, M. R. B.

    1992-06-01

    A hypothetical mobile support receiver capable of working within existing and future air defense networks as a means to maintain essential surveillance functions is considered. It is shown how multibeam receiver architecture supported by digital signal processing can substantially improve surveillance performance against chaff and jamming threats. A dual-mode support receiver concept is proposed which is based on the state-of-the-art phased-array technology, modular processing in industry standard hardware and existing networks.

  13. Compositions of surface layers formed on amalgams in air, water, and saline.

    PubMed

    Hanawa, T; Gnade, B E; Ferracane, J L; Okabe, T; Watari, F

    1993-12-01

    The surface layers formed on both a zinc-free and a zinc-containing dental amalgam after polishing and aging in air, water, or saline, were characterized using x-ray photoelectron spectroscopy (XPS) to determine the compositions of the surface layers which might govern the release of mercury from amalgam. The XPS data revealed that the formation of the surface layer on the zinc-containing amalgam was affected by the environment in which the amalgam was polished and aged, whereas that on the zinc-free amalgam was not affected. In addition, among the elements contained in amalgam, zinc was the most reactive with the environment, and was preferentially dissolved from amalgam into water or saline. Mercury atoms existed in the metallic state in the surface layer.

  14. Measurement of polyurethane foam - air partition coefficients for semivolatile organic compounds as a function of temperature: Application to passive air sampler monitoring.

    PubMed

    Francisco, Ana Paula; Harner, Tom; Eng, Anita

    2017-05-01

    Polyurethane foam - air partition coefficients (K PUF-air ) for 9 polycyclic aromatic hydrocarbons (PAHs), 10 alkyl-substituted PAHs, 4 organochlorine pesticides (OCPs) and dibenzothiophene were measured as a function of temperature over the range 5 °C-35 °C, using a generator column approach. Enthalpies of PUF-to-air transfer (ΔH PUF-air , kJ/mol) were determined from the slopes of log K PUF-air versus 1000/T (K), and have an average value of 81.2 ± 7.03 kJ/mol. The log K PUF-air values at 22 °C ranged from 4.99 to 7.25. A relationship for log K PUF-air versus log K OA was shown to agree with a previous relationship based on only polychlorinated biphenyls (PCBs) and derived from long-term indoor uptake study experiments. The results also confirm that the existing K OA -based model for predicting log K PUF-air values is accurate. This new information is important in the derivation of uptake profiles and effective air sampling volumes for PUF disk samplers so that results can be reported in units of concentration in air. Crown Copyright © 2017. Published by Elsevier Ltd. All rights reserved.

  15. Passivation and alloying element retention in gas atomized powders

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heidloff, Andrew J.; Rieken, Joel R.; Anderson, Iver E.

    A method for gas atomization of a titanium alloy, nickel alloy, or other alumina (Al.sub.2O.sub.3)-forming alloy wherein the atomized particles are exposed as they solidify and cool in a very short time to multiple gaseous reactive agents for the in-situ formation of a passivation reaction film on the atomized particles wherein the reaction film retains a precursor halogen alloying element that is subsequently introduced into a microstructure formed by subsequent thermally processing of the atomized particles to improve oxidation resistance.

  16. Evaluation of passive diffusion bag samplers, dialysis samplers, and nylon-screen samplers in selected wells at Andersen Air Force Base, Guam, March-April 2002

    USGS Publications Warehouse

    Vroblesky, Don A.; Joshi, Manish; Morrell, Jeff; Peterson, J.E.

    2003-01-01

    During March-April 2002, the U.S. Geological Survey, Earth Tech, and EA Engineering, Science, and Technology, Inc., in cooperation with the Air Force Center for Environmental Excellence, tested diffusion samplers at Andersen Air Force Base, Guam. Samplers were deployed in three wells at the Main Base and two wells at Marianas Bonins (MARBO) Annex as potential ground-water monitoring alternatives. Prior to sampler deployment, the wells were tested using a borehole flowmeter to characterize vertical flow within each well. Three types of diffusion samplers were tested: passive diffusion bag (PDB) samplers, dialysis samplers, and nylon-screen samplers. The primary volatile organic compounds (VOCs) tested in ground water at Andersen Air Force Base were trichloroethene and tetrachloroethene. In most comparisons, trichloroethene and tetrachloroethene concentrations in PDB samples closely matched concentrations in pumped samples. Exceptions were in wells where the pumping or ambient flow produced vertical translocation of water in a chemically stratified aquifer. In these wells, PDB samplers probably would be a viable alternative sampling method if they were placed at appropriate depths. In the remaining three test wells, the trichloroethene or tetrachloroethene concentrations obtained with the diffusion samplers closely matched the result from pumped sampling. Chloride concentrations in nylon-screen samplers were compared with chloride concentrations in dialysis and pumped samples to test inorganic-solute diffusion into the samplers across a range of concentrations. The test showed that the results from nylon-screen samplers might have underestimated chloride concentrations at depths with elevated chloride concentrations. The reason for the discrepancy in this investigation is unknown, but may be related to nylon-screen-mesh size, which was smaller than that used in previous investigations.

  17. Passive and active adaptive management: Approaches and an example

    USGS Publications Warehouse

    Williams, B.K.

    2011-01-01

    Adaptive management is a framework for resource conservation that promotes iterative learning-based decision making. Yet there remains considerable confusion about what adaptive management entails, and how to actually make resource decisions adaptively. A key but somewhat ambiguous distinction in adaptive management is between active and passive forms of adaptive decision making. The objective of this paper is to illustrate some approaches to active and passive adaptive management with a simple example involving the drawdown of water impoundments on a wildlife refuge. The approaches are illustrated for the drawdown example, and contrasted in terms of objectives, costs, and potential learning rates. Some key challenges to the actual practice of AM are discussed, and tradeoffs between implementation costs and long-term benefits are highlighted. ?? 2010 Elsevier Ltd.

  18. Surface texture can bias tactile form perception.

    PubMed

    Nakatani, Masashi; Howe, Robert D; Tachi, Susumu

    2011-01-01

    The sense of touch is believed to provide a reliable perception of the object's properties; however, our tactile perceptions could be illusory at times. A recently reported tactile illusion shows that a raised form can be perceived as indented when it is surrounded by textured areas. This phenomenon suggests that the form perception can be influenced by the surface textures in its adjacent areas. As perception of texture and that of form have been studied independently of each other, the present study examined whether textures, in addition to the geometric edges, contribute to the tactile form perception. We examined the perception of the flat and raised contact surface (3.0 mm width) with various heights (0.1, 0.2, 0.3 mm), which had either textured or non-textured adjacent areas, under the static, passive and active touch conditions. Our results showed that texture decreased the raised perception of the surface with a small height (0.1 mm) and decreased the flat perception of the physically flat surface under the passive and active touch conditions. We discuss a possible mechanism underlying the effect of the textures on the form perception based on previous neurophysiological findings.

  19. Polybrominated diphenyl ether (PBDE) concentrations and resulting exposure in homes in California: relationships among passive air, surface wipe and dust concentrations, and temporal variability

    PubMed Central

    Bennett, D. H.; Moran, R. E.; Wu, X. (May); Tulve, N. S.; Clifton, M. S.; Colón, M.; Weathers, W.; Sjödin, A.; Jones, R.; Hertz-Picciotto, I.

    2016-01-01

    Polybrominated diphenyl ethers (PBDEs) are used as flame retardants in furniture foam, electronics, and other home furnishings. A field study was conducted that enrolled 139 households from California, which has had more stringent flame retardant requirements than other countries and areas. The study collected passive air, floor and indoor window surface wipes, and dust samples (investigator collected using an HVS3 and vacuum cleaner) in each home. PentaBDE and BDE209 were detected in the majority of the dust samples and many floor wipe samples, but the detection in air and window wipe samples was relatively low. Concentrations of each PBDE congener in different indoor environmental media were moderately correlated, with correlation coefficients ranging between 0.42 and 0.68. Correlation coefficients with blood levels were up to 0.65 and varied between environmental media and age group. Both investigator-collected dust and floor wipes were correlated with serum levels for a wide range of congeners. These two sample types also had a relatively high fraction of samples with adequate mass for reliable quantification. In 42 homes, PBDE levels measured in the same environmental media in the same home 1 year apart were statistically correlated (correlation coefficients: 0.57–0.90), with the exception of BDE209 which was not well correlated longitudinally. PMID:24832910

  20. Polybrominated diphenyl ether (PBDE) concentrations and resulting exposure in homes in California: relationships among passive air, surface wipe and dust concentrations, and temporal variability.

    PubMed

    Bennett, D H; Moran, R E; Wu, X May; Tulve, N S; Clifton, M S; Colón, M; Weathers, W; Sjödin, A; Jones, R; Hertz-Picciotto, I

    2015-04-01

    Polybrominated diphenyl ethers (PBDEs) are used as flame retardants in furniture foam, electronics, and other home furnishings. A field study was conducted that enrolled 139 households from California, which has had more stringent flame retardant requirements than other countries and areas. The study collected passive air, floor and indoor window surface wipes, and dust samples (investigator collected using an HVS3 and vacuum cleaner) in each home. PentaBDE and BDE209 were detected in the majority of the dust samples and many floor wipe samples, but the detection in air and window wipe samples was relatively low. Concentrations of each PBDE congener in different indoor environmental media were moderately correlated, with correlation coefficients ranging between 0.42 and 0.68. Correlation coefficients with blood levels were up to 0.65 and varied between environmental media and age group. Both investigator-collected dust and floor wipes were correlated with serum levels for a wide range of congeners. These two sample types also had a relatively high fraction of samples with adequate mass for reliable quantification. In 42 homes, PBDE levels measured in the same environmental media in the same home 1 year apart were statistically correlated (correlation coefficients: 0.57-0.90), with the exception of BDE209 which was not well correlated longitudinally. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  1. Integration of quantum cascade lasers and passive waveguides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Montoya, Juan, E-mail: juan.montoya@ll.mit.edu; Wang, Christine; Goyal, Anish

    2015-07-20

    We report on monolithic integration of active quantum cascade laser (QCL) materials with passive waveguides formed by using proton implantation. Proton implantation reduces the electron concentration in the QCL layers by creating deep levels that trap carriers. This strongly reduces the intersubband absorption and the free-carrier absorption in the gain region and surrounding layers, thus significantly reducing optical loss. We have measured loss as low as α = 0.33 cm{sup −1} in λ = 9.6 μm wavelength proton-implanted QCL material. We have also demonstrated lasing in active-passive integrated waveguides. This simple integration technique is anticipated to enable low-cost fabrication in infrared photonic integrated circuits in themore » mid-infrared (λ ∼ 3–16 μm)« less

  2. 78 FR 61448 - Proposed Collection; Comment Request for Form 8834

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-10-03

    ... 8834, Qualified Electric Vehicle Credit. DATES: Written comments should be received on or before...: Qualified Electric Vehicle Credit. OMB Number: 1545-1374. Form Number: Form 8834. Abstract: Form 8834 is used to claim any qualified electric vehicle passive activity credit allowed for the current tax year...

  3. Building America Case Study: Columbia County Habitat for Humanity Passive Townhomes, Hudson, New York

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    2016-04-01

    Columbia County (New York) Habitat for Humanity built a pair of townhomes to Passive House criteria with the purpose of exploring approaches for achieving Passive House performance and to eventually develop a prototype design for future projects. The project utilized a 2x6 frame wall with a structural insulated panel curtain wall and a ventilated attic over a sealed OSB ceiling air barrier. Mechanical systems include a single head, wall mounted ductless mini-split heat pump in each unit and a heat recovery ventilator. Costs were $26,000 per unit higher for Passive House construction compared with the same home built to ENERGYmore » STAR version 3 specifications, representing about 18 percent of total construction cost. This report discusses the cost components, energy modeling results and lessons from construction. Two alternative ventilation systems are analyzed: a central system; and, a point-source system with small through-wall units distributed throughout the house. The report includes a design and cost analysis of these two approaches.« less

  4. Photo-stability and time-resolved photoluminescence study of colloidal CdSe/ZnS quantum dots passivated in Al{sub 2}O{sub 3} using atomic layer deposition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cheng, Chih-Yi; Mao, Ming-Hua, E-mail: mhmao@ntu.edu.tw; Graduate Institute of Electronics Engineering, National Taiwan University, Taipei 10617, Taiwan

    2016-08-28

    We report photo-stability enhancement of colloidal CdSe/ZnS quantum dots (QDs) passivated in Al{sub 2}O{sub 3} thin film using the atomic layer deposition (ALD) technique. 62% of the original peak photoluminescence (PL) intensity remained after ALD. The photo-oxidation and photo-induced fluorescence enhancement effects of both the unpassivated and passivated QDs were studied under various conditions, including different excitation sources, power densities, and environment. The unpassivated QDs showed rapid PL degradation under high excitation due to strong photo-oxidation in air while the PL intensity of Al{sub 2}O{sub 3} passivated QDs was found to remain stable. Furthermore, recombination dynamics of the unpassivated andmore » passivated QDs were investigated by time-resolved measurements. The average lifetime of the unpassivated QDs decreases with laser irradiation time due to photo-oxidation. Photo-oxidation creates surface defects which reduces the QD emission intensity and enhances the non-radiative recombination rate. From the comparison of PL decay profiles of the unpassivated and passivated QDs, photo-oxidation-induced surface defects unexpectedly also reduce the radiative recombination rate. The ALD passivation of Al{sub 2}O{sub 3} protects QDs from photo-oxidation and therefore avoids the reduction of radiative recombination rate. Our experimental results demonstrated that passivation of colloidal QDs by ALD is a promising method to well encapsulate QDs to prevent gas permeation and to enhance photo-stability, including the PL intensity and carrier lifetime in air. This is essential for the applications of colloidal QDs in light-emitting devices.« less

  5. Outdoor passive air monitoring of semi volatile organic compounds (SVOCs): a critical evaluation of performance and limitations of polyurethane foam (PUF) disks.

    PubMed

    Bohlin, P; Audy, O; Škrdlíková, L; Kukučka, P; Přibylová, P; Prokeš, R; Vojta, Š; Klánová, J

    2014-03-01

    The most commonly used passive air sampler (PAS) (i.e. polyurethane foam (PUF) disk) is cheap, versatile, and capable of accumulating compounds present both in gas and particle phases. Its performance for particle associated compounds is however disputable. In this study, twelve sets of triplicate PUF-PAS were deployed outdoors for exposure periods of 1-12 weeks together with continuously operated active samplers, to characterize sampling efficiency and derive sampling rates (RS) for compounds belonging to 7 SVOC classes (including particle associated compounds). PUF-PAS efficiently and consistently sampled polychlorinated biphenyls (PCBs), organochlorine pesticides (OCPs), polycyclic aromatic hydrocarbons (PAHs), and eight novel brominated flame retardant (nBFR) compounds. Low accuracy and lack of sensitivity was observed for most polychlorinated dibenzo-p-dioxins/furans PCDD/Fs and polybrominated diphenyl ethers (PBDEs) (under the conditions of this study), with the exception of some congeners which may be used as qualitative markers for their respective classes. Application of compound specific RS was found crucial for all compounds except PCBs. Sampling efficiency of the particle associated compounds was often low.

  6. Transparent air filter for high-efficiency PM2.5 capture.

    PubMed

    Liu, Chong; Hsu, Po-Chun; Lee, Hyun-Wook; Ye, Meng; Zheng, Guangyuan; Liu, Nian; Li, Weiyang; Cui, Yi

    2015-02-16

    Particulate matter (PM) pollution has raised serious concerns for public health. Although outdoor individual protection could be achieved by facial masks, indoor air usually relies on expensive and energy-intensive air-filtering devices. Here, we introduce a transparent air filter for indoor air protection through windows that uses natural passive ventilation to effectively protect the indoor air quality. By controlling the surface chemistry to enable strong PM adhesion and also the microstructure of the air filters to increase the capture possibilities, we achieve transparent, high air flow and highly effective air filters of ~90% transparency with >95.00% removal of PM2.5 under extreme hazardous air-quality conditions (PM2.5 mass concentration >250 μg m(-3)). A field test in Beijing shows that the polyacrylonitrile transparent air filter has the best PM2.5 removal efficiency of 98.69% at high transmittance of ~77% during haze occurrence.

  7. Transparent air filter for high-efficiency PM2.5 capture

    NASA Astrophysics Data System (ADS)

    Liu, Chong; Hsu, Po-Chun; Lee, Hyun-Wook; Ye, Meng; Zheng, Guangyuan; Liu, Nian; Li, Weiyang; Cui, Yi

    2015-02-01

    Particulate matter (PM) pollution has raised serious concerns for public health. Although outdoor individual protection could be achieved by facial masks, indoor air usually relies on expensive and energy-intensive air-filtering devices. Here, we introduce a transparent air filter for indoor air protection through windows that uses natural passive ventilation to effectively protect the indoor air quality. By controlling the surface chemistry to enable strong PM adhesion and also the microstructure of the air filters to increase the capture possibilities, we achieve transparent, high air flow and highly effective air filters of ~90% transparency with >95.00% removal of PM2.5 under extreme hazardous air-quality conditions (PM2.5 mass concentration >250 μg m-3). A field test in Beijing shows that the polyacrylonitrile transparent air filter has the best PM2.5 removal efficiency of 98.69% at high transmittance of ~77% during haze occurrence.

  8. Evaluating the Relationship between Equilibrium Passive ...

    EPA Pesticide Factsheets

    This review evaluates passive sampler uptake of hydrophobic organic contaminants (HOCs) as it relates to organism bioaccumulation in the water column and interstitial water. Fifty-five studies were found where both passive samplers and organism bioaccumulation were used to measured water quality. Of these investigations, 19 provided direct comparisons relating passive sampler concentrations and organism bioaccumulation. Passive sampling polymers included in the review were: low density polyethylene (LDPE); polyoxymethylene (POM); and polydimethylsiloxane (PDMS), and organisms ranged from polychaetes and oligochaetes to bivalves, aquatic insects, and gastropods. Log-linear regressions correlating bioaccumulation (CL) and passive sampler concentration (CPS) were used to assess the strength of observed relationships. In general, the passive sampler concentrations resulted in statistically-significant, logarithmic, predictive relationships, most of which were within one to two orders of magnitude of measured bioaccumulation. Overall, bioaccumulation values were greater than passive sampler concentrations. A mean ratio of CL to CPS was 10.8 ± 18.4 (n = 609) for available data. Given that all studies presented resulted in a strong CL versus CPS relationship suggests that using passive sampling as a surrogate for organism bioaccumulation is viable when biomonitoring organisms are not available. Passive sampling based measurements can provide useful information for ma

  9. Passivation dynamics in the anisotropic deposition and stripping of bulk magnesium electrodes during electrochemical cycling

    DOE PAGES

    Wetzel, David J.; Malone, Marvin A.; Haasch, Richard T.; ...

    2015-08-10

    Rechargeable magnesium (Mg) batteries show promise for use as a next generation technology for high-density energy storage, though little is known about the Mg anode solid electrolyte interphase and its implications for the performance and durability of a Mg-based battery. We explore in this report passivation effects engendered during the electrochemical cycling of a bulk Mg anode, characterizing their influences during metal deposition and dissolution in a simple, nonaqueous, Grignard electrolyte solution (ethylmagnesium bromide, EtMgBr, in tetrahydrofuran). Scanning electron microscopy images of Mg foil working electrodes after electrochemical polarization to dissolution potentials show the formation of corrosion pits. The pitmore » densities so evidenced are markedly potential-dependent. When the Mg working electrode is cycled both potentiostatically and galvanostatically in EtMgBr these pits, formed due to passive layer breakdown, act as the foci for subsequent electrochemical activity. Detailed microscopy, diffraction, and spectroscopic data show that further passivation and corrosion results in the anisotropic stripping of the Mg {0001} plane, leaving thin oxide-comprising passivated side wall structures that demark the {0001} fiber texture of the etched Mg grains. Upon long-term cycling, oxide side walls formed due to the pronounced crystallographic anisotropy of the anodic stripping processes, leading to complex overlay anisotropic, columnar structures, exceeding 50 μm in height. Finally, the passive responses mediating the growth of these structures appear to be an intrinsic feature of the electrochemical growth and dissolution of Mg using this electrolyte.« less

  10. Passivation dynamics in the anisotropic deposition and stripping of bulk magnesium electrodes during electrochemical cycling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wetzel, David J.; Malone, Marvin A.; Haasch, Richard T.

    Rechargeable magnesium (Mg) batteries show promise for use as a next generation technology for high-density energy storage, though little is known about the Mg anode solid electrolyte interphase and its implications for the performance and durability of a Mg-based battery. We explore in this report passivation effects engendered during the electrochemical cycling of a bulk Mg anode, characterizing their influences during metal deposition and dissolution in a simple, nonaqueous, Grignard electrolyte solution (ethylmagnesium bromide, EtMgBr, in tetrahydrofuran). Scanning electron microscopy images of Mg foil working electrodes after electrochemical polarization to dissolution potentials show the formation of corrosion pits. The pitmore » densities so evidenced are markedly potential-dependent. When the Mg working electrode is cycled both potentiostatically and galvanostatically in EtMgBr these pits, formed due to passive layer breakdown, act as the foci for subsequent electrochemical activity. Detailed microscopy, diffraction, and spectroscopic data show that further passivation and corrosion results in the anisotropic stripping of the Mg {0001} plane, leaving thin oxide-comprising passivated side wall structures that demark the {0001} fiber texture of the etched Mg grains. Upon long-term cycling, oxide side walls formed due to the pronounced crystallographic anisotropy of the anodic stripping processes, leading to complex overlay anisotropic, columnar structures, exceeding 50 μm in height. Finally, the passive responses mediating the growth of these structures appear to be an intrinsic feature of the electrochemical growth and dissolution of Mg using this electrolyte.« less

  11. Passivation Dynamics in the Anisotropic Deposition and Stripping of Bulk Magnesium Electrodes During Electrochemical Cycling.

    PubMed

    Wetzel, David J; Malone, Marvin A; Haasch, Richard T; Meng, Yifei; Vieker, Henning; Hahn, Nathan T; Gölzhäuser, Armin; Zuo, Jian-Min; Zavadil, Kevin R; Gewirth, Andrew A; Nuzzo, Ralph G

    2015-08-26

    Although rechargeable magnesium (Mg) batteries show promise for use as a next generation technology for high-density energy storage, little is known about the Mg anode solid electrolyte interphase and its implications for the performance and durability of a Mg-based battery. We explore in this report passivation effects engendered during the electrochemical cycling of a bulk Mg anode, characterizing their influences during metal deposition and dissolution in a simple, nonaqueous, Grignard electrolyte solution (ethylmagnesium bromide, EtMgBr, in tetrahydrofuran). Scanning electron microscopy images of Mg foil working electrodes after electrochemical polarization to dissolution potentials show the formation of corrosion pits. The pit densities so evidenced are markedly potential-dependent. When the Mg working electrode is cycled both potentiostatically and galvanostatically in EtMgBr these pits, formed due to passive layer breakdown, act as the foci for subsequent electrochemical activity. Detailed microscopy, diffraction, and spectroscopic data show that further passivation and corrosion results in the anisotropic stripping of the Mg {0001} plane, leaving thin oxide-comprising passivated side wall structures that demark the {0001} fiber texture of the etched Mg grains. Upon long-term cycling, oxide side walls formed due to the pronounced crystallographic anisotropy of the anodic stripping processes, leading to complex overlay anisotropic, columnar structures, exceeding 50 μm in height. The passive responses mediating the growth of these structures appear to be an intrinsic feature of the electrochemical growth and dissolution of Mg using this electrolyte.

  12. [A cross sectional study of passive smoking of non-smoking women and analysis of influence factors on women passive smoking].

    PubMed

    Han, Jing-Xiu; Ma, Ling; Zhang, Hong-Wei; Liu, Xi; Zheng, Su-hua; Gan, De-kun; Fang, Jun

    2006-09-01

    To fund out the state of passive smoking of non-smoking women and search for measures of controlling women passive smoking. 3500 non-smoking women in Beijing, Shanghai, Chengdu city were interviewed. Analyses were performed by chi2 test Fisher test and ANOVA test. 92.7% passive smoking women exposure to ETS at home, 40.8% at workplace. 38.9% exposed to ETS from birthday, and 42.3% from 18 - 30 age. The average exposure time of passive smoking is (1.17 +/- 1.10) hours per day. The proportion of passive-smoking time over 2 hours at home is higher than work place. In passive-smoking group, the proportion of 30 - 50 age group, secondary education, married, merchant/service, principal of units, and manufacture/transport workers were higher than non-smoking group. 97.5% think that passive smoking is harmful to health, and the proportion of thinking passive smoking has severe harm to health in non-passive-smoking group is higher than passive-smoking group. 70.0% open windows when someone smokes around her, but only 16.9% ask the smokers do not smoke around her forwardly. Suppose that someone were smoking around yourself, the consciousness of avoiding passive smoking forwardly in non-passive-smoking group is stronger than passive-smoking group. 95.1% believe the content of smoking-harm propagandized by medium. The main places of controlling passive smoking are the home and the department, commerce, service, and manufacture/ transport workplace. The rate of passive smoking was influenced by the consciousness of the serious level of harms by passive smoking. Propagandizing the serious harm of passive smoking by medium and strengthening the consciousness of avoiding passive smoking were one of feasible measures to lower the rate of smoking and passive smoking.

  13. Passive long range acousto-optic sensor

    NASA Astrophysics Data System (ADS)

    Slater, Dan

    2006-08-01

    Alexander Graham Bell's photophone of 1880 was a simple free space optical communication device that used the sun to illuminate a reflective acoustic diaphragm. A selenium photocell located 213 m (700 ft) away converted the acoustically modulated light beam back into sound. A variation of the photophone is presented here that uses naturally formed free space acousto-optic communications links to provide passive multichannel long range acoustic sensing. This system, called RAS (remote acoustic sensor), functions as a long range microphone with a demonstrated range in excess of 40 km (25 miles).

  14. Comparison of epicardial deformation in passive and active isolated rabbit hearts

    NASA Astrophysics Data System (ADS)

    Ho, Andrew; Tang, Liang; Chiang, Fu-Pen; Lin, Shien-Fong

    2007-02-01

    Mechanical deformation of isolated rabbit hearts through passive inflation techniques have been a viable form of replicating heart motion, but its relation to the heart's natural active contractions remain unclear. The mechanical properties of the myocardium may show diverse characteristics while in tension and compression. In this study, epicardial strain was measured with the assistance of computer-aided speckle interferometry (CASI)1. CASI tracks the movement of clusters of particles for measuring epicardial deformation. The heart was cannulated and perfused with Tyrode's solution. Silicon carbide particles were applied onto the myocardium to form random speckle pattern images while the heart was allowed to actively contract and stabilize. High resolution videos (1000x1000 pixels) of the left ventricle were taken with a complementary metal oxide semiconductor (CMOS) camera as the heart was actively contracting through electrical pacing at various cycle lengths between 250-800 ms. A latex balloon was then inserted into the left ventricle via left atrium and videos were taken as the balloon was repeatedly inflated and deflated at controlled volumes (1-3 ml/cycle). The videos were broken down into frames and analyzed through CASI. Active contractions resulted in non-uniform circular epicardial and uniaxial contractions at different stages of the motion. In contrast, the passive heart demonstrated very uniform expansion and contraction originating from the source of the latex balloon. The motion of the active heart caused variations in deformation, but in comparison to the passive heart, had a more enigmatic displacement field. The active heart demonstrated areas of large displacement and others with relatively no displacement. Application of CASI was able to successfully distinguish the motions between the active and passive hearts.

  15. Chinese Passives: Transformational or Lexical?

    ERIC Educational Resources Information Center

    Zhang, Jiuwu; Wen, Xiaohong

    Analysis of Chinese passive constructions indicates two types. The first is a verbal or syntactic passive because it is derived through a transformational rule. The second is a lexical passive that has certain properties in common with the predicate adjectives in both Chinese and English and is derived through the semantic function and in lexical…

  16. Architecture for an integrated real-time air combat and sensor network simulation

    NASA Astrophysics Data System (ADS)

    Criswell, Evans A.; Rushing, John; Lin, Hong; Graves, Sara

    2007-04-01

    An architecture for an integrated air combat and sensor network simulation is presented. The architecture integrates two components: a parallel real-time sensor fusion and target tracking simulation, and an air combat simulation. By integrating these two simulations, it becomes possible to experiment with scenarios in which one or both sides in a battle have very large numbers of primitive passive sensors, and to assess the likely effects of those sensors on the outcome of the battle. Modern Air Power is a real-time theater-level air combat simulation that is currently being used as a part of the USAF Air and Space Basic Course (ASBC). The simulation includes a variety of scenarios from the Vietnam war to the present day, and also includes several hypothetical future scenarios. Modern Air Power includes a scenario editor, an order of battle editor, and full AI customization features that make it possible to quickly construct scenarios for any conflict of interest. The scenario editor makes it possible to place a wide variety of sensors including both high fidelity sensors such as radars, and primitive passive sensors that provide only very limited information. The parallel real-time sensor network simulation is capable of handling very large numbers of sensors on a computing cluster of modest size. It can fuse information provided by disparate sensors to detect and track targets, and produce target tracks.

  17. Thick-Filament Strain and Interfilament Spacing in Passive Muscle: Effect of Titin-Based Passive Tension

    PubMed Central

    Irving, Thomas; Wu, Yiming; Bekyarova, Tanya; Farman, Gerrie P.; Fukuda, Norio; Granzier, Henk

    2011-01-01

    We studied the effect of titin-based passive tension on sarcomere structure by simultaneously measuring passive tension and low-angle x-ray diffraction patterns on passive fiber bundles from rabbit skinned psoas muscle. We used a stretch-hold-release protocol with measurement of x-ray diffraction patterns at various passive tension levels during the hold phase before and after passive stress relaxation. Measurements were performed in relaxing solution without and with dextran T-500 to compress the lattice toward physiological levels. The myofilament lattice spacing was measured in the A-band (d1,0) and Z-disk (dZ) regions of the sarcomere. The axial spacing of the thick-filament backbone was determined from the sixth myosin meridional reflection (M6) and the equilibrium positions of myosin heads from the fourth myosin layer line peak position and the I1,1/I1,0 intensity ratio. Total passive tension was measured during the x-ray experiments, and a differential extraction technique was used to determine the relations between collagen- and titin-based passive tension and sarcomere length. Within the employed range of sarcomere lengths (∼2.2–3.4 μm), titin accounted for >80% of passive tension. X-ray results indicate that titin compresses both the A-band and Z-disk lattice spacing with viscoelastic behavior when fibers are swollen after skinning, and elastic behavior when the lattice is reduced with dextran. Titin also increases the axial thick-filament spacing, M6, in an elastic manner in both the presence and absence of dextran. No changes were detected in either I1,1/I1,0 or the position of peaks on the fourth myosin layer line during passive stress relaxation. Passive tension and M6 measurements were converted to thick-filament compliance, yielding a value of ∼85 m/N, which is several-fold larger than the thick-filament compliance determined by others during the tetanic tension plateau of activated intact muscle. This difference can be explained by the fact

  18. Air sampling methods to evaluate microbial contamination in operating theatres: results of a comparative study in an orthopaedics department.

    PubMed

    Napoli, C; Tafuri, S; Montenegro, L; Cassano, M; Notarnicola, A; Lattarulo, S; Montagna, M T; Moretti, B

    2012-02-01

    To evaluate the level of microbial contamination of air in operating theatres using active [i.e. surface air system (SAS)] and passive [i.e. index of microbial air contamination (IMA) and nitrocellulose membranes positioned near the wound] sampling systems. Sampling was performed between January 2010 and January 2011 in the operating theatre of the orthopaedics department in a university hospital in Southern Italy. During surgery, the mean bacterial loads recorded were 2232.9 colony-forming units (cfu)/m(2)/h with the IMA method, 123.2 cfu/m(3) with the SAS method and 2768.2 cfu/m(2)/h with the nitrocellulose membranes. Correlation was found between the results of the three methods. Staphylococcus aureus was detected in 12 of 60 operations (20%) with the membranes, five (8.3%) operations with the SAS method, and three operations (5%) with the IMA method. Use of nitrocellulose membranes placed near a wound is a valid method for measuring the microbial contamination of air. This method was more sensitive than the IMA method and was not subject to any calibration bias, unlike active air monitoring systems. Copyright © 2011 The Healthcare Infection Society. Published by Elsevier Ltd. All rights reserved.

  19. 26 CFR 1.1398-1 - Treatment of passive activity losses and passive activity credits in individuals' title 11 cases.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 26 Internal Revenue 11 2010-04-01 2010-04-01 true Treatment of passive activity losses and passive... to Individuals' Title 11 Cases § 1.1398-1 Treatment of passive activity losses and passive activity... and rules of general application. For purposes of this section— (1) Passive activity and former...

  20. Photocatalytic air purifiers for indoor air: European standard and pilot room experiments.

    PubMed

    Costarramone, N; Cantau, C; Desauziers, V; Pécheyran, C; Pigot, T; Lacombe, S

    2017-05-01

    At the European level (CEN/TC386), some efforts are currently devoted to new standards for comparing the efficiency of commercial photocatalytic material/devices in various application fields. Concerning prototype or commercial indoor photocatalytic air purifiers designed for volatile organic compounds (VOC) abatement, the methodology is based on a laboratory airtight chamber. The photocatalytic function is demonstrated by the mineralization of a mixture of five VOCs. Experimental data were obtained for four selected commercial devices and three commercial materials: drop of VOC concentration, but also identification of secondary species (with special attention to formaldehyde), mineralization rates, and Clean Air Delivery Rate (CADR). With two efficient air purifiers, these laboratory experiments were compared to the results in two experimental rooms (35-40 m 3 ) where air pollution was introduced through wooden floor and furniture. The systems' ageing was also studied. The safety of the commercial products was also assessed by the determination of nanoparticle release. Standardized tests are useful to rank photocatalytic air purifiers and passive materials and to discard inefficient ones. A good correlation between the standard experiments and the experimental room experiments was found, even if in the latter case, the concentration of lower weight VOCs drops less quickly than that of heavier VOCs.

  1. Optimization of combined microwave-hot air roasting of malt based on energy consumption and neo-formed contaminants content.

    PubMed

    Akkarachaneeyakorn, S; Laguerre, J C; Tattiyakul, J; Neugnot, B; Boivin, P; Morales, F J; Birlouez-Aragon, I

    2010-05-01

    To produce specialty malt, malts were roasted by combined microwave-hot air at various specific microwave powers (SP = 2.5 to 3 W/g), microwave heating times (t(mw) = 3.3 to 3.5 min), oven temperatures (T(oven) = 180 to 220 degrees C), and oven heating times (t(oven) = 60 to 150 min). The response variables, color, energy consumption by microwave (E(mw)) and oven (E(oven)), total energy consumption (E(tot)), quantity of neo-formed contaminants (NFCs), which include hydroxymethylfurfural, furfural, furan, and acrylamide were determined. Response surface methodology (RSM) was performed to analyze and predict the optimum conditions for the specialty malt. Production using combined microwave-hot air roasting process based on minimum energy consumption and level of NFCs. At 95% confident level, SP, T(oven), and t(oven) were the most influencing effects with regard to E(tot), whereas t(mw) did not affect E(tot). T(oven) and t(oven) significantly affected malt color. Only T(oven) significantly influenced the NFCs content. The optimum parameters were: SP = 2.68 W/g for 3.44 min, T(oven) = 206 degrees C for 136 min for coffee malt, SP = 2.5 W/g for 3.48 min, T(oven) = 214 degrees C for 136 min for chocolate malt, and SP = 2.5 W/g for 3.48 min, T(oven) = 211 degrees C for 150 min for black malt. Comparing with conventional process, combined microwave-hot air reduced E(tot) by approximately 40%, 26%, and 26% for coffee, chocolate, and black malts, respectively, and reduced HMF, furfural, furan, and acrylamide contents by 40%, 18%, 23%, and 95%, respectively, for black malt. An important goal for research institutions and the brewery industry is to produce colored malt by combining microwave and hot air roasting, while saving energy, getting desirable color, and avoiding the formation of carcinogenic and toxic neo-formed contaminants (NFCs). Therefore, one objective of this study was to compare energy consumption and content of NFCs during roasting of malt by hot air-only and

  2. In planta passive sampling devices for assessing subsurface chlorinated solvents.

    PubMed

    Shetty, Mikhil K; Limmer, Matt A; Waltermire, Kendra; Morrison, Glenn C; Burken, Joel G

    2014-06-01

    Contaminant concentrations in trees have been used to delineate groundwater contaminant plumes (i.e., phytoscreening); however, variability in tree composition hinders accurate measurement of contaminant concentrations in planta, particularly for long-term monitoring. This study investigated in planta passive sampling devices (PSDs), termed solid phase samplers (SPSs) to be used as a surrogate tree core. Characteristics studied for five materials included material-air partitioning coefficients (Kma) for chlorinated solvents, sampler equilibration time and field suitability. The materials investigated were polydimethylsiloxane (PDMS), low-density polyethylene (LDPE), linear low-density polyethylene (LLDPE), polyoxymethylene (POM) and plasticized polyvinyl chloride (PVC). Both PDMS and LLDPE samplers demonstrated high partitioning coefficients and diffusivities and were further tested in greenhouse experiments and field trials. While most of the materials could be used for passive sampling, the PDMS SPSs performed best as an in planta sampler. Such a sampler was able to accurately measure trichloroethylene (TCE) and tetrachloroethylene (PCE) concentrations while simultaneously incorporating simple operation and minimal impact to the surrounding property and environment. Copyright © 2013 Elsevier Ltd. All rights reserved.

  3. Unusual Passivation Ability of Superconcentrated Electrolytes toward Hard Carbon Negative Electrodes in Sodium-Ion Batteries.

    PubMed

    Takada, Koji; Yamada, Yuki; Watanabe, Eriko; Wang, Jianhui; Sodeyama, Keitaro; Tateyama, Yoshitaka; Hirata, Kazuhisa; Kawase, Takeo; Yamada, Atsuo

    2017-10-04

    The passivation of negative electrodes is key to achieving prolonged charge-discharge cycling with Na-ion batteries. Here, we report the unusual passivation ability of superconcentrated Na-salt electrolytes. For example, a 50 mol % sodium bis(fluorosulfonyl)amide (NaFSA)/succinonitrile (SN) electrolyte enables highly reversible Na + insertion into a hard carbon negative electrode without any electrolyte additive, functional binder, or electrode pretreatment. Importantly, an anion-derived passivation film is formed via preferential reduction of the anion upon charging, which can effectively suppress further electrolyte reduction. As a structural characteristic of the electrolyte, most anions are coordinated to multiple Na + cations at high concentration, which shifts the lowest unoccupied molecular orbitals of the anions downward, resulting in preferential anion reduction. The present work provides a new understanding of the passivation mechanism with respect to the coordination state of the anion.

  4. Application of passive sorbent tube and canister samplers for volatile organic compounds at refinery fenceline locations in Whiting, Indiana

    EPA Science Inventory

    Select volatile organic compounds (VOCs) in ambient air were measured at four fenceline sites at a petroleum refinery in Whiting, Indiana, USA using modified EPA Method 325 A/B with passive tubes and EPA Compendium Method TO-15 with canister samplers. One-week, time-integrated s...

  5. Passive interior noise reduction analysis of King Air 350 turboprop aircraft using boundary element method/finite element method (BEM/FEM)

    NASA Astrophysics Data System (ADS)

    Dandaroy, Indranil; Vondracek, Joseph; Hund, Ron; Hartley, Dayton

    2005-09-01

    The objective of this study was to develop a vibro-acoustic computational model of the Raytheon King Air 350 turboprop aircraft with an intent to reduce propfan noise in the cabin. To develop the baseline analysis, an acoustic cavity model of the aircraft interior and a structural dynamics model of the aircraft fuselage were created. The acoustic model was an indirect boundary element method representation using SYSNOISE, while the structural model was a finite-element method normal modes representation in NASTRAN and subsequently imported to SYSNOISE. In the acoustic model, the fan excitation sources were represented employing the Ffowcs Williams-Hawkings equation. The acoustic and the structural models were fully coupled in SYSNOISE and solved to yield the baseline response of acoustic pressure in the aircraft interior and vibration on the aircraft structure due to fan noise. Various vibration absorbers, tuned to fundamental blade passage tone (100 Hz) and its first harmonic (200 Hz), were applied to the structural model to study their effect on cabin noise reduction. Parametric studies were performed to optimize the number and location of these passive devices. Effects of synchrophasing and absorptive noise treatments applied to the aircraft interior were also investigated for noise reduction.

  6. Screening of atmospheric short- and medium-chain chlorinated paraffins in India and Pakistan using polyurethane foam based passive air sampler.

    PubMed

    Chaemfa, Chakra; Xu, Yue; Li, Jun; Chakraborty, Paromita; Hussain Syed, Jabir; Naseem Malik, Riffat; Wang, Yan; Tian, Chongguo; Zhang, Gan; Jones, Kevin C

    2014-05-06

    Production and use of chlorinated paraffins (CPs) have been increasing in India. Distribution of CPs in the area and vicinity have become a great concern due to their persistency and toxicity. Polyurethane foam based passive air samplers (PUF-PAS) was deployed in order to screen the presence of short- and medium- chain chlorinated paraffins (SCCPs and MCCPs) in the outdoor atmosphere at many sites in India (in winter 2006) and Pakistan (in winter 2011). Concentrations of SCCPs and MCCPs ranged from not detected (ND) to 47.4 and 0 to 38.2 ng m(-3) with means of 8.11 and 4.83 ng m(-3), respectively. Indian concentrations showed higher average levels of both SCCPs and MCCPs India (10.2 ng m(-3) and 3.62 ng m(-3)than the samples from Pakistan (5.13 ng m(-3) and 4.21 ng m(-3)). Relative abundance patterns of carbon number are C10 > C11 > C12 ∼ C13 for SCCPs and C14 > C15 > C16 C17 for MCCP with similarity to the profiles of samples from China, the biggest CPs producer in the world. Principal Component Analysis suggested that detected SCCPs and MCCPs in this study originated from the same emission source.

  7. Applications of measures of cumulative exposure to assessing air pollution health effects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abbey, D.E.; Euler, G.L.; Magie, A.R.

    A method for assessing the health effects of long-term cumulative exposures to air pollutants or other environmental exposures is proposed and illustrated using self-reported symptoms of chronic obstructive pulmonary disease (COPD) for a population of 7,343 non-smokers. Using zip code by month, residence histories, and interpolated exposure estimates from the network of California air monitoring stations, two alternative exposure indices were calculated to estimate cumulative exposure over an 11-yr period above different threshold levels for each of four pollutants. The indices were used with multiple logistic regression models to form dose-response curves for relative risks adjusting for covariates. Statistically significantmore » effects were noted for total suspended particulates, total oxidants, sulfur dioxide, and passive smoking. A description is also given of how the indices are currently being used in a 10-yr follow-up of the study population. This follow-up study is utilizing data collected by the National Cancer Institute-funded Adventist Health Study and has mortality, cancer incidence, heart disease incidence, and change in self-reported COPD symptoms as outcomes.« less

  8. Antireflection/Passivation Step For Silicon Cell

    NASA Technical Reports Server (NTRS)

    Crotty, Gerald T.; Kachare, Akaram H.; Daud, Taher

    1988-01-01

    New process excludes usual silicon oxide passivation. Changes in principal electrical parameters during two kinds of processing suggest antireflection treatment almost as effective as oxide treatment in passivating cells. Does so without disadvantages of SiOx passivation.

  9. Evaluating the Relationship between Equilibrium Passive ...

    EPA Pesticide Factsheets

    This Critcal Review evaluates passive sampler uptake of hydrophobic organic contaminants (HOCs) in water column and interstitial water exposures as a surrogate for organism bioaccumulation. Fifty-seven studies were found where both passive sampler uptake and organism bioaccumulation were measured and 19 of these investigations provided direct comparisons relating passive sampler uptake and organism bioaccumulation. Polymers compared included low-density polyethylene (LDPE), polyoxymethylene (POM), and polydimethylsiloxane (PDMS), and organisms ranged from polychaetes and oligochaetes to bivalves, aquatic insects, and gastropods. Regression equations correlating bioaccumulation (CL) and passive sampler uptake (CPS) were used to assess the strength of observed relationships. Passive sampling based concentrations resulted in log–log predictive relationships, most of which were within one to 2 orders of magnitude of measured bioaccumulation. Mean coefficients of determination (r2) for LDPE, PDMS, and POM were 0.68, 0.76, and 0.58, respectively. For the available raw, untransformed data, the mean ratio of CL and CPS was 10.8 ± 18.4 (n = 609). Using passive sampling as a surrogate for organism bioaccumulation is viable when biomonitoring organisms are not available. Passive sampling based estimates of bioaccumulation provide useful information for making informed decisions about the bioavailability of HOCs. This review evaluates passive sampler uptake of hydrophobi

  10. Interior design for passive solar homes

    NASA Astrophysics Data System (ADS)

    Breen, J. C.

    1981-07-01

    The increasing emphasis on refinement of passive solar systems brought recognition to interior design as an integral part of passive solar architecture. Interior design can be used as a finetuning tool minimizing many of the problems associated with passive solar energy use in residential buildings. In addition, treatment of interior space in solar model homes may be a prime factor in determining sales success. A new style of interior design is evolving in response to changes in building from incorporating passive solar design features. The psychology behind passive solar architecture is reflected in interiors, and selection of interior components increasingly depends on the functional suitably of various interior elements.

  11. Energy efficiency evaluation of tree-topology 10 gigabit ethernet passive optical network and ring-topology time- and wavelength-division-multiplexed passive optical network

    NASA Astrophysics Data System (ADS)

    Song, Jingjing; Yang, Chuanchuan; Zhang, Qingxiang; Ma, Zhuang; Huang, Xingang; Geng, Dan; Wang, Ziyu

    2015-09-01

    Higher capacity and larger scales have always been the top targets for the evolution of optical access networks, driven by the ever-increasing demand from the end users. One thing that started to attract wide attention not long ago, but with at least equal importance as capacity and scale, is energy efficiency, a metric essential nowadays as human beings are confronted with severe environmental issues like global warming, air pollution, and so on. Here, different from the conventional energy consumption analysis of tree-topology networks, we propose an effective energy consumption calculation method to compare the energy efficiency of the tree-topology 10 gigabit ethernet passive optical network (10G-EPON) and ring-topology time- and wavelength-division-multiplexed passive optical network (TWDM-PON), two experimental networks deployed in China. Numerical results show that the ring-topology TWDM-PON networks with 2, 4, 8, and 16 wavelengths are more energy efficient than the tree-topology 10G-EPON, although 10G-EPON consumes less energy. Also, TWDM-PON with four wavelengths is the most energy-efficient network candidate and saves 58.7% more energy than 10G-EPON when fully loaded.

  12. Local Fine Structural Insight into Mechanism of Electrochemical Passivation of Titanium.

    PubMed

    Wang, Lu; Yu, Hongying; Wang, Ke; Xu, Haisong; Wang, Shaoyang; Sun, Dongbai

    2016-07-20

    Electrochemically formed passive film on titanium in 1.0 M H2SO4 solution and its thickness, composition, chemical state, and local fine structure are examined by Auger electron spectroscopy (AES), X-ray photoelectron spectroscopy (XPS), and X-ray absorption fine structure. AES analysis reveals that the thickness and composition of oxide film are proportional to the reciprocal of current density in potentiodynamic polarization. XPS depth profiles of the chemical states of titanium exhibit the coexistence of various valences cations in the surface. Quantitative X-ray absorption near edge structure analysis of the local electronic structure of the topmost surface (∼5.0 nm) shows that the ratio of [TiO2]/[Ti2O3] is consistent with that of passivation/dissolution of electrochemical activity. Theoretical calculation and analysis of extended X-ray absorption fine structure spectra at Ti K-edge indicate that both the structures of passivation and dissolution are distorted caused by the appearance of two different sites of Ti-O and Ti-Ti. And the bound water in the topmost surface plays a vital role in structural disorder confirmed by XPS. Overall, the increase of average Ti-O coordination causes the electrochemical passivation, and the dissolution is due to the decrease of average Ti-Ti coordination. The structural variations of passivation in coordination number and interatomic distance are in good agreement with the prediction of point defect model.

  13. The role of surface passivation in controlling Ge nanowire faceting

    DOE PAGES

    Gamalski, A. D.; Tersoff, J.; Kodambaka, S.; ...

    2015-11-05

    In situ transmission electron microscopy observations of nanowire morphologies indicate that during Au-catalyzed Ge nanowire growth, Ge facets can rapidly form along the nanowire sidewalls when the source gas (here, digermane) flux is decreased or the temperature is increased. This sidewall faceting is accompanied by continuous catalyst loss as Au diffuses from the droplet to the wire surface. We suggest that high digermane flux and low temperatures promote effective surface passivation of Ge nanowires with H or other digermane fragments inhibiting diffusion and attachment of Au and Ge on the sidewalls. Furthermore, these results illustrate the essential roles of themore » precursor gas and substrate temperature in maintaining nanowire sidewall passivation, necessary to ensure the growth of straight, untapered, <111>-oriented nanowires.« less

  14. The Role of Surface Passivation in Controlling Ge Nanowire Faceting.

    PubMed

    Gamalski, A D; Tersoff, J; Kodambaka, S; Zakharov, D N; Ross, F M; Stach, E A

    2015-12-09

    In situ transmission electron microscopy observations of nanowire morphologies indicate that during Au-catalyzed Ge nanowire growth, Ge facets can rapidly form along the nanowire sidewalls when the source gas (here, digermane) flux is decreased or the temperature is increased. This sidewall faceting is accompanied by continuous catalyst loss as Au diffuses from the droplet to the wire surface. We suggest that high digermane flux and low temperatures promote effective surface passivation of Ge nanowires with H or other digermane fragments inhibiting diffusion and attachment of Au and Ge on the sidewalls. These results illustrate the essential roles of the precursor gas and substrate temperature in maintaining nanowire sidewall passivation, necessary to ensure the growth of straight, untapered, ⟨111⟩-oriented nanowires.

  15. Use of passive samplers and surrogate surfaces to investigate sources of mercury deposited to the western United States

    NASA Astrophysics Data System (ADS)

    Wright, G.; Gustin, M. S.; Weiss-Penzias, P. S.

    2012-12-01

    The Western Airborne Contaminants Assessment Project (WACAP) showed that fish in eight National Parks of the western U.S. had mercury(Hg) concentrations that exceeded the threshold for fish eating wildlife (www.nature.nps.gov/air/Studies/air_toxics/wacap.cfm). These observations led to the development of this study focused on investigating air gaseous oxidized mercury (GOM) concentrations and potential dry deposition using developed passive samplers and surrogate surfaces. The primary question was whether local, regional or global sources are responsible for the mercury measured in fish in these Western parks. To investigate this, passive samplers and surrogate surface samplers were deployed from the coast of California to the eastern edge of Nevada. Sampling sites were located from west to east at Point Reyes National Seashore, CA; Elkhorn Slough, CA, Lick Observatory, CA; Chews Ridge, CA; Chalk Mountain, CA; Yosemite National Park, CA; Sequoia & Kings Canyon National Park, CA; and Great Basin National Park, NV. Ancillary data (meteorology and ozone concentrations) collected by the parks will be applied to better understand potential sources. Air mercury concentrations were also measured at select locations using a Tekran® 2537a/1130mercury air measurement system for 4-6 weeks. Air GOM concentrations and potential deposition were measured simultaneously as a function of elevation at Yosemite and Great Basin National Park, using the passive samplers and surrogate surfaces during sampling intensives, allowing us to better understand potential sources of mercury to park ecosystems. Data collection began in August of 2010 and was completed in June 2012. Analyses of the data thus far has shown the lowest relative concentrations and potential GOM deposition were observed at the low elevation coastal sites, Elkhorn Slough and Point Reyes National Seashore. Highest values of potential deposition were recorded at Lick Observatory, a high elevation coastal site, while

  16. Characterisation of Pellicles Formed by Acinetobacter baumannii at the Air-Liquid Interface

    PubMed Central

    Nait Chabane, Yassine; Marti, Sara; Rihouey, Christophe; Alexandre, Stéphane; Hardouin, Julie; Lesouhaitier, Olivier; Vila, Jordi; Kaplan, Jeffrey B.; Jouenne, Thierry; Dé, Emmanuelle

    2014-01-01

    The clinical importance of Acinetobacter baumannii is partly due to its natural ability to survive in the hospital environment. This persistence may be explained by its capacity to form biofilms and, interestingly, A. baumannii can form pellicles at the air-liquid interface more readily than other less pathogenic Acinetobacter species. Pellicles from twenty-six strains were morphologically classified into three groups: I) egg-shaped (27%); II) ball-shaped (50%); and III) irregular pellicles (23%). One strain representative of each group was further analysed by Brewster’s Angle Microscopy to follow pellicle development, demonstrating that their formation did not require anchoring to a solid surface. Total carbohydrate analysis of the matrix showed three main components: Glucose, GlcNAc and Kdo. Dispersin B, an enzyme that hydrolyzes poly-N-acetylglucosamine (PNAG) polysaccharide, inhibited A. baumannii pellicle formation, suggesting that this exopolysaccharide contributes to pellicle formation. Also associated with the pellicle matrix were three subunits of pili assembled by chaperon-usher systems: the major CsuA/B, A1S_1510 (presented 45% of identity with the main pilin F17-A from enterotoxigenic Escherichia coli pili) and A1S_2091. The presence of both PNAG polysaccharide and pili systems in matrix of pellicles might contribute to the virulence of this emerging pathogen. PMID:25360550

  17. Results of a Demonstration Assessment of Passive System Reliability Utilizing the Reliability Method for Passive Systems (RMPS)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bucknor, Matthew; Grabaskas, David; Brunett, Acacia

    2015-04-26

    Advanced small modular reactor designs include many advantageous design features such as passively driven safety systems that are arguably more reliable and cost effective relative to conventional active systems. Despite their attractiveness, a reliability assessment of passive systems can be difficult using conventional reliability methods due to the nature of passive systems. Simple deviations in boundary conditions can induce functional failures in a passive system, and intermediate or unexpected operating modes can also occur. As part of an ongoing project, Argonne National Laboratory is investigating various methodologies to address passive system reliability. The Reliability Method for Passive Systems (RMPS), amore » systematic approach for examining reliability, is one technique chosen for this analysis. This methodology is combined with the Risk-Informed Safety Margin Characterization (RISMC) approach to assess the reliability of a passive system and the impact of its associated uncertainties. For this demonstration problem, an integrated plant model of an advanced small modular pool-type sodium fast reactor with a passive reactor cavity cooling system is subjected to a station blackout using RELAP5-3D. This paper discusses important aspects of the reliability assessment, including deployment of the methodology, the uncertainty identification and quantification process, and identification of key risk metrics.« less

  18. Alternative Methods for Assessing Contaminant Transport from the Vadose Zone to Indoor Air

    NASA Astrophysics Data System (ADS)

    Baylor, K. J.; Lee, A.; Reddy, P.; Plate, M.

    2010-12-01

    Vapor intrusion, which is the transport of contaminant vapors from groundwater and the vadose zone to indoor air, has emerged as a significant human health risk near hazardous waste sites. Volatile organic compounds (VOCs) such as trichloroethylene (TCE) and tetrachloroethylene (PCE) can volatilize from groundwater and from residual sources in the vadose zone and enter homes and commercial buildings through cracks in the slab, plumbing conduits, or other preferential pathways. Assessment of the vapor intrusion pathway typically requires collection of groundwater, soil gas, and indoor air samples, a process which can be expensive and time-consuming. We evaluated three alternative vapor intrusion assessment methods, including 1) use of radon as a surrogate for vapor intrusion, 2) use of pressure differential measurements between indoor/outdoor and indoor/subslab to assess the potential for vapor intrusion, and 3) use of passive, longer-duration sorbent methods to measure indoor air VOC concentrations. The primary test site, located approximately 30 miles south of San Francisco, was selected due to the presence of TCE (10 - 300 ug/L) in shallow groundwater (5 to 10 feet bgs). At this test site, we found that radon was not a suitable surrogate to asses vapor intrusion and that pressure differential measurements are challenging to implement and equipment-intensive. More significantly, we found that the passive, longer-duration sorbent methods are easy to deploy and compared well quantitatively with standard indoor air sampling methods. The sorbent technique is less than half the cost of typical indoor air methods, and also provides a longer duration sample, typically 3 to 14 days rather than 8 to 24 hours for standard methods. The passive sorbent methods can be a reliable, cost-effective, and easy way to sample for TCE, PCE and other VOCs as part of a vapor intrusion investigation.

  19. Coupled electrochemical and heat/mass transport characteristics in passive direct methanol fuel cells

    NASA Astrophysics Data System (ADS)

    Chen, Rong

    indicated that the thermal management is a key factor for improving the performance of the passive DMFC. To enhance oxygen transport on the air-breathing cathode and to reduce the heat loss from the cathode, a porous current collector for the passive DMFC was proposed to replace conventional perforated-plate current collectors. Because of its high specific area of transport and effectiveness in removing the liquid water as a result of the capillary action in the porous structure, the porous current collector enables a significant enhancement of oxygen supply to the fuel cell. In addition, because of the lower effective thermal conductivity of the porous structure, the heat loss from the fuel cell to ambient air can be reduced. The experimental results showed that the passive DMFC having the porous current collector yielded much higher and much more stable performance than did the cell having the conventional perforated-plate current collector with high methanol concentration operation. As a following up to oxygen transport enhancement, a new design of membrane electrode assembly (MEA) was proposed, in which the conventional cathode gas diffusion layer (CGDL) is eliminated while utilizing a porous metal structure for transporting oxygen and collecting current. We show theoretically that the new MEA enables a higher mass transfer rate of oxygen and thus better performance. Moreover, the measured polarization and constant-current discharging behavior showed that the passive DMFC with the new MEA yielded higher and much more stable performance than did the cell having the conventional MEA. Besides the experimental investigations, to further theoretically study the thermal effect on the cell performance, a one-dimension single-phase model is developed by considering inherently coupled heat and mass transport along with the electrochemical reactions occurring in passive DMFCs. The analytical solutions predicting the performance of this type of fuel cell operating with different

  20. An economic passive sampling method to detect particulate pollutants using magnetic measurements.

    PubMed

    Cao, Liwan; Appel, Erwin; Hu, Shouyun; Ma, Mingming

    2015-10-01

    Identifying particulate matter (PM) emitted from industrial processes into the atmosphere is an important issue in environmental research. This paper presents a passive sampling method using simple artificial samplers that maintains the advantage of bio-monitoring, but overcomes some of its disadvantages. The samplers were tested in a heavily polluted area (Linfen, China) and compared to results from leaf samples. Spatial variations of magnetic susceptibility from artificial passive samplers and leaf samples show very similar patterns. Scanning electron microscopy suggests that the collected PM are mostly in the range of 2-25 μm; frequent occurrence of spherical shape indicates industrial combustion dominates PM emission. Magnetic properties around power plants show different features than other plants. This sampling method provides a suitable and economic tool for semi-quantifying temporal and spatial distribution of air quality; they can be installed in a regular grid and calibrate the weight of PM. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Influential role of black carbon in the soil-air partitioning of polychlorinated biphenyls (PCBs) in the Indus River Basin, Pakistan.

    PubMed

    Ali, Usman; Syed, Jabir Hussain; Mahmood, Adeel; Li, Jun; Zhang, Gan; Jones, Kevin C; Malik, Riffat Naseem

    2015-09-01

    Levels of polychlorinated biphenyls (PCBs) were assessed in surface soils and passive air samples from the Indus River Basin, and the influential role of black carbon (BC) in the soil-air partitioning process was examined. ∑26-PCBs ranged between 0.002-3.03 pg m(-3) and 0.26-1.89 ng g(-1) for passive air and soil samples, respectively. Lower chlorinated (tri- and tetra-) PCBs were abundant in both air (83.9%) and soil (92.1%) samples. Soil-air partitioning of PCBs was investigated through octanol-air partition coefficients (KOA) and black carbon-air partition coefficients (KBC-A). The results of the paired-t test revealed that both models showed statistically significant agreement between measured and predicted model values for the PCB congeners. Ratios of fBCKBC-AδOCT/fOMKOA>5 explicitly suggested the influential role of black carbon in the retention and soil-air partitioning of PCBs. Lower chlorinated PCBs were strongly adsorbed and retained by black carbon during soil-air partitioning because of their dominance at the sampling sites and planarity effect. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Passive and active floating torque during swimming.

    PubMed

    Kjendlie, Per-Ludvik; Stallman, Robert Keig; Stray-Gundersen, James

    2004-10-01

    The purpose of this study was to examine the effect of passive underwater torque on active body angle with the horizontal during front crawl swimming and to assess the effect of body size on passive torque and active body angle. Additionally, the effects of passive torque, body angle and hydrostatic lift on maximal sprinting performance were addressed. Ten boys [aged 11.7 (0.8) years] and 12 male adult [aged 21.4 (3.7) years] swimmers volunteered to participate. Their body angle with the horizontal was measured at maximal velocity, and at two submaximal velocities using an underwater video camera system. Passive torque and hydrostatic lift were measured during an underwater weighing procedure, and the center of mass and center of volume were determined. The results showed that passive torque correlated significantly with the body angle at a velocity 63% of v(max) ( alpha(63) r=-0.57), and that size-normalized passive torque correlated significantly with the alpha(63) and alpha(77) (77% of v(max)) with r=-0.59 and r=-0.54 respectively. Hydrostatic lift correlated with alpha(63) with r=-0.45. The negative correlation coefficients are suggested to be due to the adults having learned to overcome passive torque when swimming at submaximal velocities by correcting their body angle. It is concluded that at higher velocities the passive torque and hydrostatic lift do not influence body angle during swimming. At a velocity of 63% of v(max), hydrostatic lift and passive torque influences body angle. Passive torque and size-normalized passive torque increases with body size. When corrected for body size, hydrostatic lift and passive torque did not influence the maximal sprinting velocity.

  3. Electronic properties of Al xGa 1- xAs surface passivated by ultrathin silicon interface control layer

    NASA Astrophysics Data System (ADS)

    Adamowicz, B.; Miczek, M.; Ikeya, K.; Mutoh, M.; Saitoh, T.; Fujikura, H.; Hasegawa, H.

    1999-03-01

    The photoluminescence surface state spectroscopy (PLS 3) method was applied to a study of the surface state distribution ( NSS), effective surface recombination velocity ( Seff), electron ( EFn) and hole ( EFp) quasi-Fermi levels and band bending ( VS) on the Al 0.33Ga 0.67As surface air-exposed and passivated by the Si interface control layer (ICL) technique. Using the detailed measurements of the PL quantum efficiency for different excitation intensities, combined with the rigorous computer simulations of the bulk and surface recombination processes, the behavior and correlation among the surface characteristics under photo-excitation was determined. The present analysis indicated that forming of a Si 3N 4/Si ICL double layer (with a monolayer level control) on AlGaAs surface reduces the minimum interface state density down to 10 10 cm -2 eV -1 and surface recombination velocity to the range of 10 4 cm/s under low excitations.

  4. The link between exercise and titin passive stiffness.

    PubMed

    Lalande, Sophie; Mueller, Patrick J; Chung, Charles S

    2017-09-01

    What is the topic of this review? This review focuses on how in vivo and molecular measurements of cardiac passive stiffness can predict exercise tolerance and how exercise training can reduce cardiac passive stiffness. What advances does it highlight? This review highlights advances in understanding the relationship between molecular (titin-based) and in vivo (left ventricular) passive stiffness, how passive stiffness modifies exercise tolerance, and how exercise training may be therapeutic for cardiac diseases with increased passive stiffness. Exercise can help alleviate the negative effects of cardiovascular disease and cardiovascular co-morbidities associated with sedentary behaviour; this may be especially true in diseases that are associated with increased left ventricular passive stiffness. In this review, we discuss the inverse relationship between exercise tolerance and cardiac passive stiffness. Passive stiffness is the physical property of cardiac muscle to produce a resistive force when stretched, which, in vivo, is measured using the left ventricular end diastolic pressure-volume relationship or is estimated using echocardiography. The giant elastic protein titin is the major contributor to passive stiffness at physiological muscle (sarcomere) lengths. Passive stiffness can be modified by altering titin isoform size or by post-translational modifications. In both human and animal models, increased left ventricular passive stiffness is associated with reduced exercise tolerance due to impaired diastolic filling, suggesting that increased passive stiffness predicts reduced exercise tolerance. At the same time, exercise training itself may induce both short- and long-term changes in titin-based passive stiffness, suggesting that exercise may be a treatment for diseases associated with increased passive stiffness. Direct modification of passive stiffness to improve exercise tolerance is a potential therapeutic approach. Titin passive stiffness itself may

  5. Passive cigarette smoke, coal heating, and respiratory symptoms of nonsmoking women in China

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pope, C.A. III; Xu, X.

    1993-09-01

    In this study the authors evaluated data from a sample of 973 never-smoking women, ages 20-40, who worked in three similar textile mills in Anhui Province, China. They compared prevalence rates of respiratory symptoms across homes with and without coal heating and homes with different numbers of smokers. Multiple logistic regression models that controlled for age, job title, and mill of employment were also estimated. Respiratory symptoms were associated with combined exposure to passive cigarette smoke and coal heating. Effects of passive cigarette smoke and coal heating on respiratory symptoms appeared to be nearly additive, suggesting a dose-response relationship betweenmore » respiratory symptoms and home indoor air pollution from these two sources. The prevalence of chest illness, cough, phlegm, and shortness of breath (but not wheeze) was significantly elevated for women living in homes with both smokers and coal heating.« less

  6. Adaptive fuzzy control of a class of nonaffine nonlinear system with input saturation based on passivity theorem.

    PubMed

    Molavi, Ali; Jalali, Aliakbar; Ghasemi Naraghi, Mahdi

    2017-07-01

    In this paper, based on the passivity theorem, an adaptive fuzzy controller is designed for a class of unknown nonaffine nonlinear systems with arbitrary relative degree and saturation input nonlinearity to track the desired trajectory. The system equations are in normal form and its unforced dynamic may be unstable. As relative degree one is a structural obstacle in system passivation approach, in this paper, backstepping method is used to circumvent this obstacle and passivate the system step by step. Because of the existence of uncertainty and disturbance in the system, exact passivation and reference tracking cannot be tackled, so the approximate passivation or passivation with respect to a set is obtained to hold the tracking error in a neighborhood around zero. Furthermore, in order to overcome the non-smoothness of the saturation input nonlinearity, a parametric smooth nonlinear function with arbitrary approximation error is used to approximate the input saturation. Finally, the simulation results for the theoretical and practical examples are given to validate the proposed controller. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

  7. Most energetic passive states.

    PubMed

    Perarnau-Llobet, Martí; Hovhannisyan, Karen V; Huber, Marcus; Skrzypczyk, Paul; Tura, Jordi; Acín, Antonio

    2015-10-01

    Passive states are defined as those states that do not allow for work extraction in a cyclic (unitary) process. Within the set of passive states, thermal states are the most stable ones: they maximize the entropy for a given energy, and similarly they minimize the energy for a given entropy. Here we find the passive states lying in the other extreme, i.e., those that maximize the energy for a given entropy, which we show also minimize the entropy when the energy is fixed. These extremal properties make these states useful to obtain fundamental bounds for the thermodynamics of finite-dimensional quantum systems, which we show in several scenarios.

  8. Influence of square wave anodization on the electronic properties and structures of the passive films on Ti in sulfuric acid solution

    NASA Astrophysics Data System (ADS)

    Long, Y.; Li, D. G.; Chen, D. R.

    2017-12-01

    Two types of square wave anodization (type 1 and type 2) were employed in this work to form a passive film on Ti in a 0.5 M H2SO4 solution. The influences of the anodization potential and duration on the electronic properties and structures of the passive films were studied by Mott-Schottky plots, auger electron spectroscopy (AES) and X-ray photoelectron spectroscopy (XPS). The results showed that the donor density, ND, of the passive film decreased and the flat band potential, EFB, shifted to the positive direction with the increase of the anodization duration and high anodization potential irrespective of whether type 1 or type 2 was used. Moreover, the passive film that formed on Ti using type 1 had a lower donor density and a more positive flat band potential than that on Ti using type 2 at one fixed anodization duration (only exchanging the anodization order of 1 V and the high potential). XPS analysis revealed that the outmost passive film was only composed of TiO2, the inner passive film was mainly composed of TiO2 with some amount of TiO and Ti2O3, and the TiO2 concentration in the outermost passive film increased with the increase of the anodization duration and the high potential in the case of using type 1 or type 2, implying an increased degree of crystallinity. The AES results showed that the O/Ti atomic ratio of the passive film obviously increased with the increasing anodization duration and high potential, demonstrating the increased homogeneous characteristic of the passive film; this was in agreement with the Mott-Schottky and XPS results.

  9. Passively mode-locking induced by gold nanorods in erbium-doped fiber lasers

    NASA Astrophysics Data System (ADS)

    Kang, Zhe; Xu, Yang; Zhang, Lei; Jia, Zhixu; Liu, Lai; Zhao, Dan; Feng, Yan; Qin, Guanshi; Qin, Weiping

    2013-07-01

    We demonstrated a passively mode-locked erbium-doped fiber laser by using gold nanorods as a saturable absorber. The gold nanorods (GNRs) were mixed with sodium carboxymethylcellulose (NaCMC) to form GNRs-NaCMC films. By inserting one of the GNRs-NaCMC films into an EDFL cavity pumped by a 980 nm laser diode, stable passively mode-locking was achieved with a threshold pump power of ˜54 mW, and 12 ps pulses at 1561 nm with a repetition rate of 34.7 MHz and a maximum average power of ˜2.05 mW were obtained for a pump power of ˜62 mW.

  10. Active and Passive Spatial Learning in Human Navigation: Acquisition of Graph Knowledge

    ERIC Educational Resources Information Center

    Chrastil, Elizabeth R.; Warren, William H.

    2015-01-01

    It is known that active exploration of a new environment leads to better spatial learning than does passive visual exposure. We ask whether specific components of active learning differentially contribute to particular forms of spatial knowledge--the "exploration-specific learning hypothesis". Previously, we found that idiothetic…

  11. Passivity-based Robust Control of Aerospace Systems

    NASA Technical Reports Server (NTRS)

    Kelkar, Atul G.; Joshi, Suresh M. (Technical Monitor)

    2000-01-01

    This report provides a brief summary of the research work performed over the duration of the cooperative research agreement between NASA Langley Research Center and Kansas State University. The cooperative agreement which was originally for the duration the three years was extended by another year through no-cost extension in order to accomplish the goals of the project. The main objective of the research was to develop passivity-based robust control methodology for passive and non-passive aerospace systems. The focus of the first-year's research was limited to the investigation of passivity-based methods for the robust control of Linear Time-Invariant (LTI) single-input single-output (SISO), open-loop stable, minimum-phase non-passive systems. The second year's focus was mainly on extending the passivity-based methodology to a larger class of non-passive LTI systems which includes unstable and nonminimum phase SISO systems. For LTI non-passive systems, five different passification. methods were developed. The primary effort during the years three and four was on the development of passification methodology for MIMO systems, development of methods for checking robustness of passification, and developing synthesis techniques for passifying compensators. For passive LTI systems optimal synthesis procedure was also developed for the design of constant-gain positive real controllers. For nonlinear passive systems, numerical optimization-based technique was developed for the synthesis of constant as well as time-varying gain positive-real controllers. The passivity-based control design methodology developed during the duration of this project was demonstrated by its application to various benchmark examples. These example systems included longitudinal model of an F-18 High Alpha Research Vehicle (HARV) for pitch axis control, NASA's supersonic transport wind tunnel model, ACC benchmark model, 1-D acoustic duct model, piezo-actuated flexible link model, and NASA

  12. Oxygen-Rich Lithium Oxide Phases Formed at High Pressure for Potential Lithium-Air Battery Electrode.

    PubMed

    Yang, Wenge; Kim, Duck Young; Yang, Liuxiang; Li, Nana; Tang, Lingyun; Amine, Khalil; Mao, Ho-Kwang

    2017-09-01

    The lithium-air battery has great potential of achieving specific energy density comparable to that of gasoline. Several lithium oxide phases involved in the charge-discharge process greatly affect the overall performance of lithium-air batteries. One of the key issues is linked to the environmental oxygen-rich conditions during battery cycling. Here, the theoretical prediction and experimental confirmation of new stable oxygen-rich lithium oxides under high pressure conditions are reported. Three new high pressure oxide phases that form at high temperature and pressure are identified: Li 2 O 3 , LiO 2 , and LiO 4 . The LiO 2 and LiO 4 consist of a lithium layer sandwiched by an oxygen ring structure inherited from high pressure ε-O 8 phase, while Li 2 O 3 inherits the local arrangements from ambient LiO 2 and Li 2 O 2 phases. These novel lithium oxides beyond the ambient Li 2 O, Li 2 O 2 , and LiO 2 phases show great potential in improving battery design and performance in large battery applications under extreme conditions.

  13. Passive-solar homes for Texas

    NASA Astrophysics Data System (ADS)

    Garrison, M. L.

    1982-06-01

    Acceptance of passive solar technologies has been slow within the conventional building trades in Texas because it is a common misconception that solar is expensive, and data on local applications is severely limited or nonexistent. It is the purpose of this solar development to move passive solar design into the mainstream of public acceptance by helping to overcome and eliminate these barriers. Specifically, the goal is to develop a set of regional climatic building standards to help guide the conventional building trade toward the utilization of soft energy systems which will reduce overall consumption at a price and convenience most Texans can afford. To meet this objective, eight sample passive design structures are presented. These designs represent state of the art regional applications of passive solar space conditioning. The methodology used in the passive solar design process included: analysis of regional climatic data; analysis of historical regional building prototypes; determination of regional climatic design priorities and assets; prototypical design models for the discretionary housing market; quantitative thermal analysis of prototypical designs; and construction drawings of building prototypes.

  14. The corrosivity and passivity of sputtered Mg-Ti alloys

    DOE PAGES

    Song, Guang -Ling; Unocic, Kinga A.; Meyer, III, Harry M.; ...

    2015-11-30

    Our study explored the possibility of forming a “stainless” Mg–Ti alloy. The electrochemical behavior of magnetron-sputtered Mg–Ti alloys was measured in a NaCl solution, and the surface films on the alloys were examined by XPS, SEM and TEM. Increased corrosion resistance was observed with increased Ti content in the sputtered Mg–Ti alloys, but passive-like behavior was not reached until the Ti level (atomic %) was higher than the Mg level. Moreover, the surface film that formed on sputtered Mg–Ti based alloys in NaCl solution was thick, discontinuous and non-protective, whereas a thin, continuous and protective Mg and Ti oxide filmmore » was formed on a sputtered Ti–Mg based alloy.« less

  15. Evaluating the Relationship between Equilibrium Passive ...

    EPA Pesticide Factsheets

    Objectives. This review evaluates passive sampler uptake of hydrophobic organic contaminants (HOCs) in water column and interstitial water exposures as a surrogate for organism bioaccumulation. Approach/Activities. Fifty-five studies were found where both passive sampler uptake and organism bioaccumulation were measured and 19 of these investigations provided direct comparisons relating passive sampler uptake and organism bioaccumulation. Polymers compared included low density polyethylene (LDPE), polyoxymethylene (POM), and polydimethylsiloxane (PDMS), and organisms ranged from polychaetes and oligochaetes to bivalves, aquatic insects, and gastropods. Regression equations correlating bioaccumulation (CL) and passive sampler uptake (CPS) were used to assess the strength of observed relationships. Results/Lessons Learned. Passive sampling based concentrations resulted in strong logarithmic regression relationships, most of which were within one to two orders of magnitude of measured bioaccumulation. Mean coefficients of determination (r2) for LDPE, PDMS and POM were 0.68, 0.76 and 0.58, respectively. For the available raw data, the mean ratio of CL and CPS was 10.8 ± 18.4 (n = 609). Passive sampler uptake and bioaccumulation were not found to be identical (i.e., CPS ≠ CL) but the logarithmic-based relationships between these values were consistently linear and predictive. This review concludes that in many applications passive sampling may serve as a

  16. Evaluating the Relationship between Equilibrium Passive ...

    EPA Pesticide Factsheets

    This review evaluates passive sampler uptake of hydrophobic organic contaminants (HOCs) in water column and interstitial water exposures as a surrogate for organism bioaccumulation. Fifty-four studies were found where both passive sampler uptake and organism bioaccumulation were measured and 19 of these investigations provided direct comparisons relating passive sampler uptake and organism bioaccumulation. Polymers compared included low density polyethylene (LDPE), polyoxymethylene (POM), and polydimethylsiloxane (PDMS), and organisms ranged from polychaetes and oligochaetes to bivalves, aquatic insects, and gastropods. Regression equations correlating bioaccumulation (CL) and passive sampler uptake (CPS) were used to assess the strength of observed relationships. Passive sampling based concentrations resulted in logarithmic predictive relationships, most of which were within one to two orders of magnitude of measured bioaccumulation. Mean coefficients of determination (r2) for LDPE, PDMS and POM were 0.68, 0.76 and 0.58, respectively. For the available raw data, the mean ratio of CL and CPS was 10.8 ± 18.4 (n = 609). This review concludes that in many applications passive sampling may serve as a reliable surrogate for biomonitoring organisms when biomonitoring organisms are not available. When applied properly, passive sampling based estimates of bioaccumulation provide useful information for making informed decisions about the bioavailability of HOCs

  17. Partitioning of fluoranthene between free and bound forms in stormwater runoff and other urban discharges using passive dosing.

    PubMed

    Birch, Heidi; Mayer, Philipp; Lützhøft, Hans-Christian Holten; Mikkelsen, Peter Steen

    2012-11-15

    Partitioning of fluoranthene in stormwater runoff and other urban discharges was measured by a new analytical method based on passive dosing. Samples were collected at the inlet (n = 11) and outlet (n = 8) from a stormwater retention pond in Albertslund (Denmark), and for comparison samples were also obtained at a municipal wastewater treatment plant, a power plant, a contaminated site and a waste deposit in Copenhagen (n = 1 at each site). The freely dissolved concentration of (14)C-fluoranthene in the samples was controlled by equilibrium partitioning from a pre-loaded polymer and the total sample concentration measured. The measurements yielded free fractions of fluoranthene in stormwater in the range 0.04-0.15 in the inlet during the first part of the runoff events increasing to 0.3-0.5 at the end of the events and in the outlet from the retention pond. The enhanced capacity of the different stormwater samples for carrying fluoranthene was 2-23 relative to pure water and decreasing during rain events. The enhanced capacity of stormwater showed a different relationship with suspended solid concentrations than the other types of urban discharges. Partitioning of fluoranthene to dissolved organic carbon was lower than partitioning to particulate organic carbon. Partitioning of fluoranthene to particulate organic matter in the 19 stormwater samples yielded a log K(POM) of 5.18. The presented results can be used in stormwater quality modeling and assessment of efficiency of stormwater treatment systems. This work also shows the potential of the passive dosing method to obtain conversion factors between total concentrations, which are needed for comparison with water quality criteria, and freely dissolved concentrations, which are more related to toxicity and obtained by the use of most passive samplers. Copyright © 2012 Elsevier Ltd. All rights reserved.

  18. Barriers and opportunities for passive removal of indoor ozone

    NASA Astrophysics Data System (ADS)

    Gall, Elliott T.; Corsi, Richard L.; Siegel, Jeffrey A.

    2011-06-01

    This paper presents a Monte Carlo simulation to assess passive removal materials (PRMs) that remove ozone with no additional energy input and minimal byproduct formation. Distributions for air exchange rate in a subset of homes in Houston, Texas, were taken from the literature and combined with background ozone removal rates in typical houses and previous experimentally determined ozone deposition velocities to activated carbon cloth and gypsum wallboard PRMs. The median ratio of indoor to outdoor ozone was predicted to be 0.16 for homes with no PRMs installed and ranged from 0.047 to 0.12 for homes with PRMs. Median values of ozone removal effectiveness in these homes ranged from 22% to 68% for the conditions investigated. Achieving an ozone removal effectiveness above 50% in half of the homes would require installing a large area of PRMs and providing enhanced air speed to transport pollutants to PRM surfaces. Challenges associated with achieving this removal include optimizing indoor transport and aesthetic implications of large surface areas of PRM materials.

  19. Pattern recognition for passive polarimetric data using nonparametric classifiers

    NASA Astrophysics Data System (ADS)

    Thilak, Vimal; Saini, Jatinder; Voelz, David G.; Creusere, Charles D.

    2005-08-01

    Passive polarization based imaging is a useful tool in computer vision and pattern recognition. A passive polarization imaging system forms a polarimetric image from the reflection of ambient light that contains useful information for computer vision tasks such as object detection (classification) and recognition. Applications of polarization based pattern recognition include material classification and automatic shape recognition. In this paper, we present two target detection algorithms for images captured by a passive polarimetric imaging system. The proposed detection algorithms are based on Bayesian decision theory. In these approaches, an object can belong to one of any given number classes and classification involves making decisions that minimize the average probability of making incorrect decisions. This minimum is achieved by assigning an object to the class that maximizes the a posteriori probability. Computing a posteriori probabilities requires estimates of class conditional probability density functions (likelihoods) and prior probabilities. A Probabilistic neural network (PNN), which is a nonparametric method that can compute Bayes optimal boundaries, and a -nearest neighbor (KNN) classifier, is used for density estimation and classification. The proposed algorithms are applied to polarimetric image data gathered in the laboratory with a liquid crystal-based system. The experimental results validate the effectiveness of the above algorithms for target detection from polarimetric data.

  20. The Effect of Processing Instruction and Dictogloss Tasks on Acquisition of the English Passive Voice

    ERIC Educational Resources Information Center

    Qin, Jingjing

    2008-01-01

    This study was intended to compare processing instruction (VanPatten, 1993, 1996, 2000), an input-based focus on form technique, to dictogloss tasks, an output-oriented focus-on-form type of instruction to assess their effects in helping beginning-EFL (English as a Foreign Language) learners acquire the simple English passive voice. Two intact…

  1. LWIR passive perception system for stealthy unmanned ground vehicle night operations

    NASA Astrophysics Data System (ADS)

    Lee, Daren; Rankin, Arturo; Huertas, Andres; Nash, Jeremy; Ahuja, Gaurav; Matthies, Larry

    2016-05-01

    Resupplying forward-deployed units in rugged terrain in the presence of hostile forces creates a high threat to manned air and ground vehicles. An autonomous unmanned ground vehicle (UGV) capable of navigating stealthily at night in off-road and on-road terrain could significantly increase the safety and success rate of such resupply missions for warfighters. Passive night-time perception of terrain and obstacle features is a vital requirement for such missions. As part of the ONR 30 Autonomy Team, the Jet Propulsion Laboratory developed a passive, low-cost night-time perception system under the ONR Expeditionary Maneuver Warfare and Combating Terrorism Applied Research program. Using a stereo pair of forward looking LWIR uncooled microbolometer cameras, the perception system generates disparity maps using a local window-based stereo correlator to achieve real-time performance while maintaining low power consumption. To overcome the lower signal-to-noise ratio and spatial resolution of LWIR thermal imaging technologies, a series of pre-filters were applied to the input images to increase the image contrast and stereo correlator enhancements were applied to increase the disparity density. To overcome false positives generated by mixed pixels, noisy disparities from repeated textures, and uncertainty in far range measurements, a series of consistency, multi-resolution, and temporal based post-filters were employed to improve the fidelity of the output range measurements. The stereo processing leverages multi-core processors and runs under the Robot Operating System (ROS). The night-time passive perception system was tested and evaluated on fully autonomous testbed ground vehicles at SPAWAR Systems Center Pacific (SSC Pacific) and Marine Corps Base Camp Pendleton, California. This paper describes the challenges, techniques, and experimental results of developing a passive, low-cost perception system for night-time autonomous navigation.

  2. On the Use of the Passive and Active Voice in Astrophysics Journal Papers: With Extensions to Other Languages and Other Fields.

    ERIC Educational Resources Information Center

    Tarone, Elaine; Dwyer, Sharon; Gillette, Susan; Icke, Vincent.

    1998-01-01

    A study examined frequency of active, passive verb forms in two astrophysics journal articles, finding "we" plus an active voice occurs at least as frequently as the passive. This pattern typifies a previously unidentified type of research article, the logical argument scientific paper, whose characteristics are detailed. Similar pattern…

  3. High-throughput countercurrent microextraction in passive mode.

    PubMed

    Xie, Tingliang; Xu, Cong

    2018-05-15

    Although microextraction is much more efficient than conventional macroextraction, its practical application has been limited by low throughputs and difficulties in constructing robust countercurrent microextraction (CCME) systems. In this work, a robust CCME process was established based on a novel passive microextractor with four units without any moving parts. The passive microextractor has internal recirculation and can efficiently mix two immiscible liquids. The hydraulic characteristics as well as the extraction and back-extraction performance of the passive CCME were investigated experimentally. The recovery efficiencies of the passive CCME were 1.43-1.68 times larger than the best values achieved using cocurrent extraction. Furthermore, the total throughput of the passive CCME developed in this work was about one to three orders of magnitude higher than that of other passive CCME systems reported in the literature. Therefore, a robust CCME process with high throughputs has been successfully constructed, which may promote the application of passive CCME in a wide variety of fields.

  4. Internal passivation of Al-based microchannel devices by electrochemical anodization

    NASA Astrophysics Data System (ADS)

    Hymel, Paul J.; Guan, D. S.; Mu, Yang; Meng, W. J.; Meng, Andrew C.

    2015-02-01

    Metal-based microchannel devices have wide-ranging applications. We report here a method to electrochemically anodize the internal surfaces of Al microchannels, with the purpose of forming a uniform and dense anodic aluminum oxide (AAO) layer on microchannel internal surfaces for chemical passivation and corrosion resistance. A pulsed electrolyte flow was utilized to emulate conventional anodization processes while replenishing depleted ionic species within Al microtubes and microchannels. After anodization, the AAO film was sealed in hot water to close the nanopores. Focused ion beam (FIB) sectioning, scanning electron microscopy (SEM), and energy dispersive spectroscopy (EDS) were utilized to characterize the AAO morphology and composition. Potentiodynamic polarization corrosion testing of anodized Al microtube half-sections in a NaCl solution showed an order of magnitude decrease in anodic corrosion current when compared to an unanodized tube. The surface passivation process was repeated for Al-based microchannel heat exchangers. A corrosion testing method based on the anodization process showed higher resistance to ion transport through the anodized specimens than unanodized specimens, thus verifying the internal anodization and sealing process as a viable method for surface passivation of Al microchannel devices.

  5. A Novel Passive Tracking Scheme Exploiting Geometric and Intercept Theorems

    PubMed Central

    Zhou, Biao; Sun, Chao; Ahn, Deockhyeon; Kim, Youngok

    2018-01-01

    Passive tracking aims to track targets without assistant devices, that is, device-free targets. Passive tracking based on Radio Frequency (RF) Tomography in wireless sensor networks has recently been addressed as an emerging field. The passive tracking scheme using geometric theorems (GTs) is one of the most popular RF Tomography schemes, because the GT-based method can effectively mitigate the demand for a high density of wireless nodes. In the GT-based tracking scheme, the tracking scenario is considered as a two-dimensional geometric topology and then geometric theorems are applied to estimate crossing points (CPs) of the device-free target on line-of-sight links (LOSLs), which reveal the target’s trajectory information in a discrete form. In this paper, we review existing GT-based tracking schemes, and then propose a novel passive tracking scheme by exploiting the Intercept Theorem (IT). To create an IT-based CP estimation scheme available in the noisy non-parallel LOSL situation, we develop the equal-ratio traverse (ERT) method. Finally, we analyze properties of three GT-based tracking algorithms and the performance of these schemes is evaluated experimentally under various trajectories, node densities, and noisy topologies. Analysis of experimental results shows that tracking schemes exploiting geometric theorems can achieve remarkable positioning accuracy even under rather a low density of wireless nodes. Moreover, the proposed IT scheme can provide generally finer tracking accuracy under even lower node density and noisier topologies, in comparison to other schemes. PMID:29562621

  6. Passive Sensor Materials Based on Liquid Crystals

    DTIC Science & Technology

    2011-03-12

    REPORT Passive Sensor Materials based on Liquid Crystals 14. ABSTRACT 16. SECURITY CLASSIFICATION OF: Research supported by this grant entitled “Passive...Sensor Materials Based on Liquid Crystals” revolved around an investigation of liquid crystalline materials for use in passive sensors for chemical... based on Liquid Crystals Report Title ABSTRACT Research supported by this grant entitled “Passive Sensor Materials Based on Liquid Crystals” revolved

  7. Passivating Li-Ion Batteries in Orbit at the End of the Spacecraft's Life

    NASA Astrophysics Data System (ADS)

    Alcindor, Peter; Kimber, Rick; Remy, Stephane; Prevot, Didier

    2014-08-01

    International focus on the "Clean Space Initiative", as discussed at the ESA workshop "EoL Electrical Passivation" held on October 11th 2013 identified new legislation (REACh, RoHS and LOS). This paper concerns itself with the prevention of Li-ion battery explosion post end of mission as the spacecraft systems remain active well beyond the initial design expectations and beyond classical reliability design predictions. The main risks to Li-ion energy storage battery systems is the prevention of over charging and over discharging, both these scenarios result in the build up of internal pressure ultimately resulting in venting of high pressure gas. To warrant against such risk legislation requires that batteries are "Passivated" within the predictable life of the spacecraft systems. This paper proposes a simple method for the passivation of Li-ion batteries that relies only on the normal systems that form part of most present day spacecraft heritage.

  8. Two reduced form air quality modeling techniques for rapidly calculating pollutant mitigation potential across many sources, locations and precursor emission types

    EPA Science Inventory

    Due to the computational cost of running regional-scale numerical air quality models, reduced form models (RFM) have been proposed as computationally efficient simulation tools for characterizing the pollutant response to many different types of emission reductions. The U.S. Envi...

  9. Visuomotor learning by passive motor experience

    PubMed Central

    Sakamoto, Takashi; Kondo, Toshiyuki

    2015-01-01

    Humans can adapt to unfamiliar dynamic and/or kinematic transformations through the active motor experience. Recent studies of neurorehabilitation using robots or brain-computer interface (BCI) technology suggest that passive motor experience would play a measurable role in motor recovery, however our knowledge of passive motor learning is limited. To clarify the effects of passive motor experience on human motor learning, we performed arm reaching experiments guided by a robotic manipulandum. The results showed that the passive motor experience had an anterograde transfer effect on the subsequent motor execution, whereas no retrograde interference was confirmed in the ABA paradigm experiment. This suggests that the passive experience of the error between visual and proprioceptive sensations leads to the limited but actual compensation of behavior, although it is fragile and cannot be consolidated as a persistent motor memory. PMID:26029091

  10. Recent Progress on Stability and Passivation of Black Phosphorus.

    PubMed

    Abate, Yohannes; Akinwande, Deji; Gamage, Sampath; Wang, Han; Snure, Michael; Poudel, Nirakar; Cronin, Stephen B

    2018-05-11

    From a fundamental science perspective, black phosphorus (BP) is a canonical example of a material that possesses fascinating surface and electronic properties. It has extraordinary in-plane anisotropic electrical, optical, and vibrational states, as well as a tunable band gap. However, instability of the surface due to chemical degradation in ambient conditions remains a major impediment to its prospective applications. Early studies were limited by the degradation of black phosphorous surfaces in air. Recently, several robust strategies have been developed to mitigate these issues, and these novel developments can potentially allow researchers to exploit the extraordinary properties of this material and devices made out of it. Here, the fundamental chemistry of BP degradation and the tremendous progress made to address this issue are extensively reviewed. Device performances of encapsulated BP are also compared with nonencapsulated BP. In addition, BP possesses sensitive anisotropic photophysical surface properties such as excitons, surface plasmons/phonons, and topologically protected and Dirac semi-metallic surface states. Ambient degradation as well as any passivation method used to protect the surface could affect the intrinsic surface properties of BP. These properties and the extent of their modifications by both the degradation and passivation are reviewed. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Design and validation of a passive deposition sampler.

    PubMed

    Einstein, Stephanie A; Yu, Chang-Ho; Mainelis, Gediminas; Chen, Lung Chi; Weisel, Clifford P; Lioy, Paul J

    2012-09-01

    A new, passive particle deposition air sampler, called the Einstein-Lioy Deposition Sampler (ELDS), has been developed to fill a gap in passive sampling for near-field particle emissions. The sampler can be configured in several ways: with a protective hood for outdoor sampling, without a protective hood, and as a dust plate. In addition, there is an XRF-ready option that allows for direct sampling onto a filter-mounted XRF cartridge which can be used in conjunction with all configurations. A wind tunnel was designed and constructed to test the performance of different sampler configurations using a test dust with a known particle size distribution. The sampler configurations were also tested versus each other to evaluate whether or not the protective hood would affect the collected particle size distribution. A field study was conducted to test the sampler under actual environmental conditions and to evaluate its ability to collect samples for chemical analysis. Individual experiments for each configuration demonstrated precision of the sampler. The field experiment demonstrated the ability of the sampler to both collect mass and allow for the measurement of an environmental contaminant i.e. Cr(6+). The ELDS was demonstrated to be statistically not different for Hooded and Non-Hooded models, compared to each other and the test dust; thus, it can be used indoors and outdoors in a variety of configurations to suit the user's needs.

  12. Forming high efficiency silicon solar cells using density-graded anti-reflection surfaces

    DOEpatents

    Yuan, Hao-Chih; Branz, Howard M.; Page, Matthew R.

    2014-09-09

    A method (50) is provided for processing a graded-density AR silicon surface (14) to provide effective surface passivation. The method (50) includes positioning a substrate or wafer (12) with a silicon surface (14) in a reaction or processing chamber (42). The silicon surface (14) has been processed (52) to be an AR surface with a density gradient or region of black silicon. The method (50) continues with heating (54) the chamber (42) to a high temperature for both doping and surface passivation. The method (50) includes forming (58), with a dopant-containing precursor in contact with the silicon surface (14) of the substrate (12), an emitter junction (16) proximate to the silicon surface (14) by doping the substrate (12). The method (50) further includes, while the chamber is maintained at the high or raised temperature, forming (62) a passivation layer (19) on the graded-density silicon anti-reflection surface (14).

  13. Forming high-efficiency silicon solar cells using density-graded anti-reflection surfaces

    DOEpatents

    Yuan, Hao-Chih; Branz, Howard M.; Page, Matthew R.

    2015-07-07

    A method (50) is provided for processing a graded-density AR silicon surface (14) to provide effective surface passivation. The method (50) includes positioning a substrate or wafer (12) with a silicon surface (14) in a reaction or processing chamber (42). The silicon surface (14) has been processed (52) to be an AR surface with a density gradient or region of black silicon. The method (50) continues with heating (54) the chamber (42) to a high temperature for both doping and surface passivation. The method (50) includes forming (58), with a dopant-containing precursor in contact with the silicon surface (14) of the substrate (12), an emitter junction (16) proximate to the silicon surface (14) by doping the substrate (12). The method (50) further includes, while the chamber is maintained at the high or raised temperature, forming (62) a passivation layer (19) on the graded-density silicon anti-reflection surface (14).

  14. Using passive cavitation images to classify high-intensity focused ultrasound lesions.

    PubMed

    Haworth, Kevin J; Salgaonkar, Vasant A; Corregan, Nicholas M; Holland, Christy K; Mast, T Douglas

    2015-09-01

    Passive cavitation imaging provides spatially resolved monitoring of cavitation emissions. However, the diffraction limit of a linear imaging array results in relatively poor range resolution. Poor range resolution has limited prior analyses of the spatial specificity and sensitivity of passive cavitation imaging in predicting thermal lesion formation. In this study, this limitation is overcome by orienting a linear array orthogonal to the high-intensity focused ultrasound propagation direction and performing passive imaging. Fourteen lesions were formed in ex vivo bovine liver samples as a result of 1.1-MHz continuous-wave ultrasound exposure. The lesions were classified as focal, "tadpole" or pre-focal based on their shape and location. Passive cavitation images were beamformed from emissions at the fundamental, harmonic, ultraharmonic and inharmonic frequencies with an established algorithm. Using the area under a receiver operating characteristic curve (AUROC), fundamental, harmonic and ultraharmonic emissions were found to be significant predictors of lesion formation for all lesion types. For both harmonic and ultraharmonic emissions, pre-focal lesions were classified most successfully (AUROC values of 0.87 and 0.88, respectively), followed by tadpole lesions (AUROC values of 0.77 and 0.64, respectively) and focal lesions (AUROC values of 0.65 and 0.60, respectively). Copyright © 2015 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  15. Occurrence and seasonal distribution of polycyclic aromatic hydrocarbons and legacy and current-use pesticides in air from a Mediterranean coastal lagoon (Mar Menor, SE Spain).

    PubMed

    Carratalá, A; Moreno-González, R; León, V M

    2017-01-01

    The occurrence and seasonal distribution of polycyclic aromatic hydrocarbons (PAHs) and legacy and current-use pesticides (CUPs) in air were characterized around the Mar Menor lagoon using both active and passive sampling devices. The seasonal distribution of these pollutants was determined at 6 points using passive samplers. Passive sampler sampling rates were estimated for all detected analytes using an active sampler, considering preferentially winter data, due to probable losses in active sampling during summer (high temperatures and solar irradiation). The presence of 28 compounds (14 CUPs, 11 PAHs and 3 organochlorinated pesticides) were detected in air by polyurethane passive sampling. The most commonly detected contaminants (>95% of samples) in air were chlorpyrifos, chlorpyrifos-methyl and phenanthrene. The maximum concentrations corresponded to phenanthrene (6000 pg m -3 ) and chlorpyrifos (4900 pg m -3 ). The distribution of contaminants was spatially and seasonally heterogeneous. The highest concentrations of PAHs were found close to the airport, while the highest concentrations of pesticides were found in the influence area of agricultural fields (western stations). PAH and herbicide concentrations were higher in winter than in the other seasons, although some insecticides such as chlorpyrifos were more abundant in autumn. The presence of PAHs and legacy and current-use pesticides in air confirmed their transference potential to marine coastal areas such as the Mar Menor lagoon. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Development of wind operated passive evaporative cooling structures for storage of tomatoes

    USDA-ARS?s Scientific Manuscript database

    A wind operated passive evaporative cooler was developed. Two cooling chambers were made with clay containers (cylindrical and square shapes). These two containers were separately inserted inside bigger clay pot inter- spaced with clay soil of 7 cm (to form pot-in-pot and wall-in wall) with the outs...

  17. Climate-Specific Passive Building Standards

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wright, Graham S.; Klingenberg, Katrin

    2015-07-29

    In 2012, the U.S. Department of Energy (DOE) recognized the value of performance-based passive building standards when it joined with Passive House Institute US (PHIUS) to promote DOE’s Challenge Home program in tandem with the PHIUS+ Certification program. Since then, the number of passive building projects that have been certified under the partnership has grown exponentially because of some synergy. Passive building represents a well-developed approach to arrive at the envelope basis for zero energy and energy-positive projects by employing performance-based criteria and maximizing cost-effective savings from conservation before implementing renewable energy technologies. The Challenge Home program evolved into themore » Zero Energy Ready Home (ZERH) program in a move toward 1) attaining zero energy and 2) including active renewable energy generation such as photovoltaics (PV)—toward the zero energy goal.« less

  18. Influence of granulometry in the Hurst exponent of air liquid interfaces formed during capillary rising in a granular media

    NASA Astrophysics Data System (ADS)

    Gontijo, Guilherme L.; Souza, Flávia B.; Braga, Rafael M. L.; Silva, Pedro H. E.; Correia, Maury D.; Atman, A. P. F.

    2017-06-01

    We report results concerning the fractal dimension of a air/fluid interface formed during the capillary rising of a fluid into a dense granular media. The system consists in a modified Hele-Shaw cell filled with grains at different granulometries and confined in a narrow gap between the glass plates. The system is then placed onto a water reservoir, and the liquid penetrates the medium due to capillary forces. We measure the Hurst exponent of the liquid/air interface with help of image processing, and follow the temporal evolution of the profiles. We observe that the Hurst exponent can be related with the granulometry, but the range of values are odd to the predicted values from models or theory.

  19. The Passive Film Growth Mechanism of New Corrosion-Resistant Steel Rebar in Simulated Concrete Pore Solution: Nanometer Structure and Electrochemical Study

    PubMed Central

    Jiang, Jin-yang; Wang, Danqian; Chu, Hong-yan; Ma, Han; Liu, Yao; Gao, Yun; Shi, Jinjie; Sun, Wei

    2017-01-01

    An elaborative study was carried out on the growth mechanism and properties of the passive film for a new kind of alloyed corrosion-resistant steel (CR steel). The passive film naturally formed in simulated concrete pore solutions (pH = 13.3). The corrosion resistance was evaluated by various methods including open circuit potential (OCP), linear polarization resistance (LPR) measurements, and electrochemical impedance spectroscopy (EIS). Meanwhile, the 2205 duplex stainless steel (SS steel) was evaluated for comparison. Moreover, the passive film with CR steel was studied by means of X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), Atomic Force Microscope (AFM), and the Mott‑Schottky approach. The results showed that the excellent passivity of CR steel could be detected in a high alkaline environment. The grain boundaries between the fine passive film particles lead to increasing Cr oxide content in the later passivation stage. The filling of cation vacancies in the later passivation stage as well as the orderly crystalized inner layer contributed to the excellent corrosion resistance of CR steel. A passive film growth model for CR steel was proposed. PMID:28772772

  20. The Passive Film Growth Mechanism of New Corrosion-Resistant Steel Rebar in Simulated Concrete Pore Solution: Nanometer Structure and Electrochemical Study.

    PubMed

    Jiang, Jin-Yang; Wang, Danqian; Chu, Hong-Yan; Ma, Han; Liu, Yao; Gao, Yun; Shi, Jinjie; Sun, Wei

    2017-04-14

    An elaborative study was carried out on the growth mechanism and properties of the passive film for a new kind of alloyed corrosion-resistant steel (CR steel). The passive film naturally formed in simulated concrete pore solutions (pH = 13.3). The corrosion resistance was evaluated by various methods including open circuit potential (OCP), linear polarization resistance (LPR) measurements, and electrochemical impedance spectroscopy (EIS). Meanwhile, the 2205 duplex stainless steel (SS steel) was evaluated for comparison. Moreover, the passive film with CR steel was studied by means of X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), Atomic Force Microscope (AFM), and the Mott‑Schottky approach. The results showed that the excellent passivity of CR steel could be detected in a high alkaline environment. The grain boundaries between the fine passive film particles lead to increasing Cr oxide content in the later passivation stage. The filling of cation vacancies in the later passivation stage as well as the orderly crystalized inner layer contributed to the excellent corrosion resistance of CR steel. A passive film growth model for CR steel was proposed.

  1. Atomic Scale Understanding of Poly-Si/SiO2/c-Si Passivated Contacts: Passivation Degradation Due to Metallization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aguiar, Jeffery A.; Young, David; Lee, Benjamin

    2016-11-21

    The key attributes for achieving high efficiency crystalline silicon solar cells include class leading developments in the ability to approach the theoretical limits of silicon solar technology (29.4% efficiency). The push for high efficiency devices is further compounded with the clear need for passivation to reduce recombination at the metal contacts. At the same time there is stringent requirement to retain the same material device quality, surface passivation, and performance characteristics following subsequent processing. The development of passivated silicon cell structures that retain active front and rear surface passivation and overall material cell quality is therefore a relevant and activemore » area of development. To address the potential outcomes of metallization on passivated silicon stack, we report on some common microstructural features of degradation due to metallization for a series of silicon device stacks. A fundamental materials understanding of the metallization process on retaining high-efficiency passivated Si devices is therefore gained over these series of results.« less

  2. Formation mechanism of a basin of attraction for passive dynamic walking induced by intrinsic hyperbolicity

    PubMed Central

    Aoi, Shinya; Tsuchiya, Kazuo; Kokubu, Hiroshi

    2016-01-01

    Passive dynamic walking is a useful model for investigating the mechanical functions of the body that produce energy-efficient walking. The basin of attraction is very small and thin, and it has a fractal-like shape; this explains the difficulty in producing stable passive dynamic walking. The underlying mechanism that produces these geometric characteristics was not known. In this paper, we consider this from the viewpoint of dynamical systems theory, and we use the simplest walking model to clarify the mechanism that forms the basin of attraction for passive dynamic walking. We show that the intrinsic saddle-type hyperbolicity of the upright equilibrium point in the governing dynamics plays an important role in the geometrical characteristics of the basin of attraction; this contributes to our understanding of the stability mechanism of bipedal walking. PMID:27436971

  3. Displacement method and apparatus for reducing passivated metal powders and metal oxides

    DOEpatents

    Morrell,; Jonathan S. , Ripley; Edward, B [Knoxville, TN

    2009-05-05

    A method of reducing target metal oxides and passivated metals to their metallic state. A reduction reaction is used, often combined with a flux agent to enhance separation of the reaction products. Thermal energy in the form of conventional furnace, infrared, or microwave heating may be applied in combination with the reduction reaction.

  4. Polycyclic aromatic hydrocarbon (PAH) and oxygenated PAH (OPAH) air-water exchange during the deepwater horizon oil spill.

    PubMed

    Tidwell, Lane G; Allan, Sarah E; O'Connell, Steven G; Hobbie, Kevin A; Smith, Brian W; Anderson, Kim A

    2015-01-06

    Passive sampling devices were used to measure air vapor and water dissolved phase concentrations of 33 polycyclic aromatic hydrocarbons (PAHs) and 22 oxygenated PAHs (OPAHs) at four Gulf of Mexico coastal sites prior to, during, and after shoreline oiling from the Deepwater Horizon oil spill (DWH). Measurements were taken at each site over a 13 month period, and flux across the water-air boundary was determined. This is the first report of vapor phase and flux of both PAHs and OPAHs during the DWH. Vapor phase sum PAH and OPAH concentrations ranged between 1 and 24 ng/m(3) and 0.3 and 27 ng/m(3), respectively. PAH and OPAH concentrations in air exhibited different spatial and temporal trends than in water, and air-water flux of 13 individual PAHs were strongly associated with the DWH incident. The largest PAH volatilizations occurred at the sites in Alabama and Mississippi in the summer, each nominally 10,000 ng/m(2)/day. Acenaphthene was the PAH with the highest observed volatilization rate of 6800 ng/m(2)/day in September 2010. This work represents additional evidence of the DWH incident contributing to air contamination, and provides one of the first quantitative air-water chemical flux determinations with passive sampling technology.

  5. Passive magnetic bearing configurations

    DOEpatents

    Post, Richard F [Walnut Creek, CA

    2011-01-25

    A journal bearing provides vertical and radial stability to a rotor of a passive magnetic bearing system when the rotor is not rotating and when it is rotating. In the passive magnetic bearing system, the rotor has a vertical axis of rotation. Without the journal bearing, the rotor is vertically and radially unstable when stationary, and is vertically stable and radially unstable when rotating.

  6. Lipid-Based Passivation in Nanofluidics

    PubMed Central

    2012-01-01

    Stretching DNA in nanochannels is a useful tool for direct, visual studies of genomic DNA at the single molecule level. To facilitate the study of the interaction of linear DNA with proteins in nanochannels, we have implemented a highly effective passivation scheme based on lipid bilayers. We demonstrate virtually complete long-term passivation of nanochannel surfaces to a range of relevant reagents, including streptavidin-coated quantum dots, RecA proteins, and RecA–DNA complexes. We show that the performance of the lipid bilayer is significantly better than that of standard bovine serum albumin-based passivation. Finally, we show how the passivated devices allow us to monitor single DNA cleavage events during enzymatic degradation by DNase I. We expect that our approach will open up for detailed, systematic studies of a wide range of protein–DNA interactions with high spatial and temporal resolution. PMID:22432814

  7. Citric Acid Passivation of Stainless Steel

    NASA Technical Reports Server (NTRS)

    Yasensky, David; Reali, John; Larson, Chris; Carl, Chad

    2009-01-01

    Passivation is a process for cleaning and providing corrosion protection for stainless steel. Currently, on Kennedy Space Center (KSC), only parts passivated with nitric acid are acceptable for use. KSC disposes of approximately 125gal of concentrated nitric acid per year, and receives many parts from vendors who must also dispose of used nitric acid. Unfortunately, nitric acid presents health and environmental hazards. As a result, several recent industry studies have examined citric acid as an alternative. Implementing a citric acid-based passivation procedure would improve the health and environmental safety aspects of passivation process. However although there is a lack of published studies that conclusively prove citric acid is a technically sound passivation agent. In 2007, NASA's KSC Materials Advisory Working Group requested the evaluation of citric acid in place of nitric acid for passivation of parts at KSC. United Space Alliance Materials & Processes engineers have developed a three-phase test plan to evaluate citric acid as an alternative to nitric acid on three stainless steels commonly used at KSC: UNS S30400, S41000, and S17400. Phases 1 and 2 will produce an optimized citric acid treatment based on results from atmospheric exposure at NASA's Beach Corrosion Facility. Phase 3 will compare the optimized solution(s) with nitric acid treatments. If the results indicate that citric acid passivates as well or better than nitric acid, NASA intends to approve this method for parts used at the Kennedy Space Center.

  8. Interpretation of the Seattle uplift, Washington, as a passive-roof duplex

    USGS Publications Warehouse

    Brocher, T.M.; Blakely, R.J.; Wells, R.E.

    2004-01-01

    We interpret seismic lines and a wide variety of other geological and geophysical data to suggest that the Seattle uplift is a passive-roof duplex. A passive-roof duplex is bounded top and bottom by thrust faults with opposite senses of vergence that form a triangle zone at the leading edge of the advancing thrust sheet. In passive-roof duplexes the roof thrust slips only when the floor thrust ruptures. The Seattle fault is a south-dipping reverse fault forming the leading edge of the Seattle uplift, a 40-km-wide fold-and-thrust belt. The recently discovered, north-dipping Tacoma reverse fault is interpreted as a back thrust on the trailing edge of the belt, making the belt doubly vergent. Floor thrusts in the Seattle and Tacoma fault zones, imaged as discontinuous reflections, are interpreted as blind faults that flatten updip into bedding plane thrusts. Shallow monoclines in both the Seattle and Tacoma basins are interpreted to overlie the leading edges of thrust-bounded wedge tips advancing into the basins. Across the Seattle uplift, seismic lines image several shallow, short-wavelength folds exhibiting Quaternary or late Quaternary growth. From reflector truncation, several north-dipping thrust faults (splay thrusts) are inferred to core these shallow folds and to splay upward from a shallow roof thrust. Some of these shallow splay thrusts ruptured to the surface in the late Holocene. Ages from offset soils in trenches across the fault scarps and from abruptly raised shorelines indicate that the splay, roof, and floor thrusts of the Seattle and Tacoma faults ruptured about 1100 years ago.

  9. Install active/passive neutron examination and assay (APNEA)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1996-04-01

    This document describes activities pertinent to the installation of the prototype Active/Passive Neutron Examination and Assay (APNEA) system built in Area 336 into its specially designed trailer. It also documents the basic theory of operation, design and protective features, basic personnel training, and the proposed characterization site location at Lockheed Martin Specialty Components, Inc., (Specialty Components) with the estimated 10 mrem/year boundary. Additionally, the document includes the Preventive Change Analysis (PCA) form, and a checklist of items for verification prior to unrestricted system use.

  10. Active and Passive Fatigue in Simulated Driving: Discriminating Styles of Workload Regulation and Their Safety Impacts

    PubMed Central

    Saxby, Dyani J.; Matthews, Gerald; Warm, Joel S.; Hitchcock, Edward M.; Neubauer, Catherine

    2015-01-01

    Despite the known dangers of driver fatigue, it is a difficult construct to study empirically. Different forms of task-induced fatigue may differ in their effects on driver performance and safety. Desmond and Hancock (2001) defined active and passive fatigue states that reflect different styles of workload regulation. In 2 driving simulator studies we investigated the multidimensional subjective states and safety outcomes associated with active and passive fatigue. Wind gusts were used to induce active fatigue, and full vehicle automation to induce passive fatigue. Drive duration was independently manipulated to track the development of fatigue states over time. Participants were undergraduate students. Study 1 (N = 108) focused on subjective response and associated cognitive stress processes, while Study 2 (N = 168) tested fatigue effects on vehicle control and alertness. In both studies the 2 fatigue manipulations produced different patterns of subjective response reflecting different styles of workload regulation, appraisal, and coping. Active fatigue was associated with distress, overload, and heightened coping efforts, whereas passive fatigue corresponded to large-magnitude declines in task engagement, cognitive underload, and reduced challenge appraisal. Study 2 showed that only passive fatigue reduced alertness, operationalized as speed of braking and steering responses to an emergency event. Passive fatigue also increased crash probability, but did not affect a measure of vehicle control. Findings support theories that see fatigue as an outcome of strategies for managing workload. The distinction between active and passive fatigue is important for assessment of fatigue and for evaluating automated driving systems which may induce dangerous levels of passive fatigue. PMID:24041288

  11. The Effects of Urban Form on Ambient Air Pollution and Public Health Risk: A Case Study in Raleigh, North Carolina

    PubMed Central

    Rodriguez, Daniel A.; Huegy, Joseph; Gibson, Jacqueline MacDonald

    2014-01-01

    Since motor vehicles are a major air pollution source, urban designs that decrease private automobile use could improve air quality and decrease air pollution health risks. Yet, the relationships among urban form, air quality, and health are complex and not fully understood. To explore these relationships, we model the effects of three alternative development scenarios on annual average fine particulate matter (PM2.5) concentrations in ambient air and associated health risks from PM2.5 exposure in North Carolina’s Raleigh-Durham-Chapel Hill area. We integrate transportation demand, land-use regression, and health risk assessment models to predict air quality and health impacts for three development scenarios: current conditions, compact development, and sprawling development. Compact development slightly decreases (−0.2%) point estimates of regional annual average PM2.5 concentrations, while sprawling development slightly increases (+1%) concentrations. However, point estimates of health impacts are in opposite directions: compact development increases (+39%) and sprawling development decreases (−33%) PM2.5-attributable mortality. Further, compactness increases local variation in PM2.5 concentrations and increases the severity of local air pollution hotspots. Hence, this research suggests that while compact development may improve air quality from a regional perspective, it may also increase the concentration of PM2.5 in local hotspots and increase population exposure to PM2.5. Health effects may be magnified if compact neighborhoods and PM2.5 hotspots are spatially co-located. We conclude that compactness alone is an insufficient means of reducing the public health impacts of transportation emissions in automobile-dependent regions. Rather, additional measures are needed to decrease automobile dependence and the health risks of transportation emissions. PMID:25490890

  12. An Isotope Study of Hydrogenation of poly-Si/SiOx Passivated Contacts for Si Solar Cells: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schnabel, Manuel; Nemeth, William; van de Loo, Bas, W.H.

    2017-06-26

    For many years, the record Si solar cell efficiency stood at 25.0%. Only recently have several companies and institutes managed to produce more efficient cells, using passivated contacts of made doped poly-Si or a-Si:H and a passivating intrinsic interlayer in all cases. Common to these designs is the need to passivate the layer stack with hydrogen. In this contribution, we perform a systematic study of passivated contact passivation by hydrogen, using poly-Si/SiOx passivated contacts on n-Cz-Si, and ALD Al2O3 followed by a forming gas anneal (FGA) as the hydrogen source. We study p-type and n-type passivated contacts with implied Vocmore » exceeding 690 and 720 mV, respectively, and perform either the ALD step or the FGA with deuterium instead of hydrogen in order to separate the two processes via SIMS. By examining the deuterium concentration at the SiOx in both types of samples, we demonstrate that the FGA supplies negligible hydrogen species to the SiOx, regardless of whether the FGA is hydrogenated or deuterated. Instead, it supplies the thermal energy needed for hydrogen species in the Al2O3 to diffuse there. Furthermore, the concentration of hydrogen species at the SiOx can saturate while implied Voc continues to increase, showing that the energy from the FGA is also required for hydrogen species already at the SiOx to find recombination-active defects to passivate.« less

  13. Technical - Economic Research for Passive Buildings

    NASA Astrophysics Data System (ADS)

    Miniotaite, Ruta

    2017-10-01

    A newly constructed passive house must save 80 % of heat resources; otherwise it is not a passive house. The heating energy demand of a passive building is less than 15 kWh/m2 per year. However, a passive house is something more than just an energy-saving house. This concept involves sustainable, high-quality, valuable, healthy and durable construction. Features of a passive house: high insulation of envelope components, high-quality windows, good tightness of the building, regenerative ventilation system and elimination of thermal bridges. The Energy Performance of Buildings Directive (EPBD) 61 requires all new public buildings to become near-zero energy buildings by 2019 and will be extended to all new buildings by 2021. This concept involves sustainable, high-quality, valuable, healthy and durable construction. Foundation, walls and roofs are the most essential elements of a house. The type of foundation for a private house is selected considering many factors. The article examines technological and structural solutions for passive buildings foundation, walls and roofs. The technical-economic comparison of the main structures of a passive house revealed that it is cheaper to install an adequately designed concrete slab foundation than to build strip or pile foundation and the floor separately. Timber stud walls are the cheapest wall option for a passive house and 45-51% cheaper compared to other options. The comparison of roofs and ceilings showed that insulation of the ceiling is 25% more efficient than insulation of the roof. The comparison of the main envelope elements efficiency by multiple-criteria evaluation methods showed that it is economically feasible to install concrete slab on ground foundation, stud walls with sheet cladding and a pitched roof with insulated ceiling.

  14. Passive Transport Disrupts Grid Signals in the Parahippocampal Cortex

    PubMed Central

    Winter, Shawn S.; Mehlman, Max L.; Clark, Benjamin J.; Taube, Jeffrey S.

    2015-01-01

    Summary Navigation is usually thought of relative to landmarks, but neural signals representing space also use information generated by an animal’s movements. These signals include grid cells, which fire at multiple locations forming a repeating grid pattern. Grid cell generation depends upon theta rhythm, a 6-10 Hz EEG oscillation that is modulated by the animals’ movement velocity. We passively moved rats in a clear cart to eliminate motor related self-movement cues that drive moment-to-moment changes in theta rhythmicity. We found that passive movement maintained theta power and frequency at levels equivalent to low active movement velocity, spared overall HD cell characteristics, and abolished velocity modulation of theta rhythmicity and grid cell firing patterns. These results indicate that self-movement motor cues are necessary for generating grid-specific firing patterns, possibly by driving velocity modulation of theta rhythmicity. Velocity modulation of theta may be used as a speed signal to generate the repeating pattern of grid cells. PMID:26387719

  15. End-of-Mission Passivation: Successes and Challenges

    NASA Technical Reports Server (NTRS)

    Johnson, Nicholas; Matney, Mark

    2012-01-01

    The passivation of spacecraft and launch vehicle orbital stages at end-of-mission has been a principal space debris mitigation measure world-wide since the 1980 s. Space vehicle passivation includes the removal of stored energies, especially those associated with propulsion and electrical power systems. Prior to 2007 the breakup of non-functioning, non-passivated space vehicles was the major source of hazardous debris in Earth orbit. The United Nations and the Inter-Agency Space Debris Coordination Committee have both included passivation in their formal space debris mitigation guidelines. This often simple countermeasure has been adopted by many spacefaring countries and organizations and has undoubtedly prevented numerous major satellite breakups. For some existing space vehicle designs, passivation requires changes in hardware, software, and/or operational procedures. Questions about the permissible degree of passivation for both current and future space vehicles have arisen and are addressed herein. An important element to be considered is the potentially long period in which the space vehicle will remain in orbit, i.e., up to 25 years after mission termination in LEO and for centuries in orbits above LEO. Finally, the issue of passivation of space vehicles which have failed prematurely is addressed.

  16. An Event-Structural Account of Passive Acquisition in Korean

    ERIC Educational Resources Information Center

    Lee, Kwee-Ock; Lee, Youngjoo

    2008-01-01

    Some peculiar properties of children's passives have long been observed in various languages such as an asymmetry between actional passives and nonactional passives. These peculiarities have been accounted for under the hypothesis that children's early passives are adjectival, and as such exhibit properties of adjectival passives in adult grammar.…

  17. Innovative flow controller for time integrated passive sampling using SUMMA canisters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Simon, P.; Farant, J.P.; Cole, H.

    1996-12-31

    To restrict the entry of gaseous contaminants inside evacuated vessels such as SUMMA canisters, mechanical flow controllers are used to collect integrated atmospheric samples. From the passive force generated by the pressure gradient, the motion of gas can be controlled to obtain a constant flow rate. Presently, devices based on the principle of critical orifices are used and they are all limited to an upper integrated sampling time. A novel flow controller which can be designed to achieve any desired sampling time when used on evacuated vessels was recently developed. It can extend the sampling time for hours, days, weeksmore » or even months for the benefits of environmental, engineering and toxicological professionals. The design of the controller is obtained from computer simulations done with an original set of equations derived from fluid mechanic and gas kinetic laws. To date, the experimental results have shown excellent agreement, with predictions obtained from the mathematical model. This new controller has already found numerous applications. Units able to deliver a constant sampling rate between vacuum and approximately -10 inches Hg during continuous long term duration have been used with SUMMA canisters of different volumes (500 ml, 1 litre and 61). Essentially, any combination of sampling time and sampler volume is possible. The innovative flow controller has contributed to an air quality assessment around a sanitary landfill (indoor/outdoor), and inside domestic wastewater and pulpmill sludge treatment facilities. It is presently being used as an alternative methodology for atmospheric sampling in the Russian orbital station Mir. This device affords true long term passive monitoring of selected gaseous air pollutants for environmental studies. 14 refs., 3 figs.« less

  18. Passive Ventricular Mechanics Modelling Using MRI of Structure and Function

    PubMed Central

    Wang, V.Y.; Lam, H.I.; Ennis, D.B.; Young, A.A.; Nash, M.P.

    2009-01-01

    Patients suffering from dilated cardiomyopathy or myocardial infarction can develop left ventricular (LV) diastolic impairment. The LV remodels its structure and function to adapt to pathophysiological changes in geometry and loading conditions and this remodeling process can alter the passive ventricular mechanics. In order to better understand passive ventricular mechanics, a LV finite element model was developed to incorporate physiological and mechanical information derived from in vivo magnetic resonance imaging (MRI) tissue tagging, in vivo LV cavity pressure recording and ex vivo diffusion tensor MRI (DTMRI) of a canine heart. MRI tissue tagging enables quantitative evaluation of cardiac mechanical function with high spatial and temporal resolution, whilst the direction of maximum water diffusion (the primary eigenvector) in each voxel of a DTMRI directly correlates with the myocardial fibre orientation. This model was customized to the geometry of the canine LV during diastasis by fitting the segmented epicardial and endocardial surface data from tagged MRI using nonlinear finite element fitting techniques. Myofibre orientations, extracted from DTMRI of the same heart, were incorporated into this geometric model using a free form deformation methodology. Pressure recordings, temporally synchronized to the tissue tagging MRI data, were used to simulate the LV deformation during diastole. Simulation of the diastolic LV mechanics allowed us to estimate the stiffness of the passive LV myocardium based on kinematic data obtained from tagged MRI. This integrated physiological model will allow more insight into the regional passive diastolic mechanics of the LV on an individualized basis, thereby improving our understanding of the underlying structural basis of mechanical dysfunction in pathological conditions. PMID:18982680

  19. Passive ventricular mechanics modelling using MRI of structure and function.

    PubMed

    Wang, V Y; Lam, H I; Ennis, D B; Young, A A; Nash, M P

    2008-01-01

    Patients suffering from dilated cardiomyopathy or myocardial infarction can develop left ventricular (LV) diastolic impairment. The LV remodels its structure and function to adapt to pathophysiological changes in geometry and loading conditions and this remodeling process can alter the passive ventricular mechanics. In order to better understand passive ventricular mechanics, a LV finite element model was developed to incorporate physiological and mechanical information derived from in vivo magnetic resonance imaging (MRI) tissue tagging, in vivo LV cavity pressure recording and ex vivo diffusion tensor MRI (DTMRI) of a canine heart. MRI tissue tagging enables quantitative evaluation of cardiac mechanical function with high spatial and temporal resolution, whilst the direction of maximum water diffusion (the primary eigenvector) in each voxel of a DTMRI directly correlates with the myocardial fibre orientation. This model was customized to the geometry of the canine LV during diastasis by fitting the segmented epicardial and endocardial surface data from tagged MRI using nonlinear finite element fitting techniques. Myofibre orientations, extracted from DTMRI of the same heart, were incorporated into this geometric model using a free form deformation methodology. Pressure recordings, temporally synchronized to the tissue tagging MRI data, were used to simulate the LV deformation during diastole. Simulation of the diastolic LV mechanics allowed us to estimate the stiffness of the passive LV myocardium based on kinematic data obtained from tagged MRI. This integrated physiological model will allow more insight into the regional passive diastolic mechanics of the LV on an individualized basis, thereby improving our understanding of the underlying structural basis of mechanical dysfunction in pathological conditions.

  20. Estimation of uncertainty in tracer gas measurement of air change rates.

    PubMed

    Iizuka, Atsushi; Okuizumi, Yumiko; Yanagisawa, Yukio

    2010-12-01

    Simple and economical measurement of air change rates can be achieved with a passive-type tracer gas doser and sampler. However, this is made more complex by the fact many buildings are not a single fully mixed zone. This means many measurements are required to obtain information on ventilation conditions. In this study, we evaluated the uncertainty of tracer gas measurement of air change rate in n completely mixed zones. A single measurement with one tracer gas could be used to simply estimate the air change rate when n = 2. Accurate air change rates could not be obtained for n ≥ 2 due to a lack of information. However, the proposed method can be used to estimate an air change rate with an accuracy of <33%. Using this method, overestimation of air change rate can be avoided. The proposed estimation method will be useful in practical ventilation measurements.

  1. Online Soil Science Lesson 3: Soil Forming Factors

    USDA-ARS?s Scientific Manuscript database

    This lesson explores the five major factors of soil formation, namely: 1) climate; 2) organisms; 3) time; 4) topography; and 5) parent material and their influence in forming soil. The distinction between active and passive factors, moisture and temperature regimes, organism and topographic influen...

  2. Improved passivation effect in multicrystalline black silicon by chemical solution pre-treatment

    NASA Astrophysics Data System (ADS)

    Jiang, Ye; Shen, Honglie; Pu, Tian; Zheng, Chaofan

    2018-04-01

    Though black silicon has excellent anti-reflectance property, its passivation is one of the main technical bottlenecks due to its large specific surface area. In this paper, multicrystalline black silicon is fabricated by metal assisted chemical etching, and is rebuilt in low concentration alkali solution. Different solution pre-treatment is followed to make surface modification on black silicon before Al2O3 passivation by atomic layer deposition. HNO3 and H2SO4 + H2O2 solution pre-treatment makes the silicon surface become hydrophilic, with contact angle decrease from 117.28° to about 30°. It is demonstrated that when the pre-treatment solution is nitric acid, formed ultrathin SiO x layer between Al2O3 layer and black silicon is found to increase effective carrier lifetime to 72.64 µs, which is obviously higher than that of the unpassivated black silicon. The passivation stacks of SiO x /Al2O3 are proved to be effective double layers for nanoscaled multicrystalline silicon surface.

  3. Characterization of Passive Flow-Actuated Microflaps Inspired by Shark Skin for Separation Control

    NASA Astrophysics Data System (ADS)

    Morris, Jackson; Devey, Sean; Lang, Amy; Hubner, Paul

    2017-11-01

    Thanks to millions of years of natural selection, sharks have evolved into quick apex predators. Previous research has proven shark skin to reduce flow separation, which would result in lower pressure drag. Mako shark skin is made up of microscopic scales on the order of 0.2 mm in size. These scales are hypothesized to be a flow control mechanism, capable of being passively actuated by reversed flow. We believe shark scales are strategically sized to interact with the lower 5 percent of the boundary layer, where reversed flow occurs near the wall. Previous wind tunnel research has shown that it is possible to passively actuate 2D flaps in the lower regions of the boundary layer. This research aims to identify reverse flow conditions that will cause small 3D flaps to actuate. Several sets of microflaps (about 4 mm in length) geometrically similar to shark scales were 3D printed. These microflaps were tested in a low-speed wind tunnel in various reverse flow conditions. Microflaps were observed to be actuated by the reversing flow and flow conditions were characterized using a hot-wire probe. These microflaps have the potential to mimic the mako shark type of flow control in air, passively actuated by reverse flow conditions. This research was supported by Boeing, the US Army, and the National Science Foundation REU program.

  4. Absorption of nicotine and carbon monoxide from passive smoking under natural conditions of exposure.

    PubMed Central

    Jarvis, M J; Russell, M A; Feyerabend, C

    1983-01-01

    Seven non-smokers were exposed to tobacco smoke under natural conditions for two hours in a public house. Measures of nicotine and cotinine in plasma, saliva, and urine and expired air carbon monoxide all showed reliable increases. The concentrations of carbon monoxide and nicotine after exposure averaged 15.7% and 7.5% respectively of the values found in heavy smokers. Although the increase in expired air carbon monoxide of 5.9 ppm was similar to increases in smokers after a single cigarette, the amount of nicotine absorbed was between a tenth and a third of the amount taken in from one cigarette. Since this represented a relatively extreme acute natural exposure, any health risks of passive smoking probably depend less on quantitative factors than on qualitative differences between sidestream and mainstream smoke. PMID:6648864

  5. Asymptotic Stability of Interconnected Passive Non-Linear Systems

    NASA Technical Reports Server (NTRS)

    Isidori, A.; Joshi, S. M.; Kelkar, A. G.

    1999-01-01

    This paper addresses the problem of stabilization of a class of internally passive non-linear time-invariant dynamic systems. A class of non-linear marginally strictly passive (MSP) systems is defined, which is less restrictive than input-strictly passive systems. It is shown that the interconnection of a non-linear passive system and a non-linear MSP system is globally asymptotically stable. The result generalizes and weakens the conditions of the passivity theorem, which requires one of the systems to be input-strictly passive. In the case of linear time-invariant systems, it is shown that the MSP property is equivalent to the marginally strictly positive real (MSPR) property, which is much simpler to check.

  6. Soil Moisture Active Passive (SMAP) Media Briefing

    NASA Image and Video Library

    2015-01-09

    Christine Bonniksen, SMAP program executive with the Science Mission Directorate’s Earth Science Division, NASA Headquarters, left, Kent Kellogg, SMAP project manager, NASA Jet Propulsion Laboratory (JPL), second from left, Dara Entekhabi, SMAP science team lead, Massachusetts Institute of Technology, second from right, and Brad Doorn, SMAP applications lead, Science Mission Directorate’s Applied Sciences Program, NASA Headquarters, right, are seen during a briefing about the upcoming launch of the Soil Moisture Active Passive (SMAP) mission, Thursday, Jan. 08, 2015, at NASA Headquarters in Washington DC. The mission is scheduled for a Jan. 29 launch from Vandenberg Air Force Base in California, and will provide the most accurate, highest-resolution global measurements of soil moisture ever obtained from space. The data will be used to enhance scientists' understanding of the processes that link Earth's water, energy and carbon cycles. Photo Credit: (NASA/Aubrey Gemignani)

  7. Air Quality Analysis

    EPA Pesticide Factsheets

    This site provides information for air quality data analysts inside and outside EPA. Much of the information is in the form of documented analyses that support the review of the national air qualiyt standards.

  8. Air riding seal with purge cavity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sexton, Thomas D; Mills, Jacob A

    An air riding seal for a turbine in a gas turbine engine, where an annular piston is axial moveable within an annular piston chamber formed in a stator of the turbine and forms a seal with a surface on the rotor using pressurized air that forms a cushion in a pocket of the annular piston. A purge cavity is formed on the annular piston and is connected to a purge hole that extends through the annular piston to a lower pressure region around the annular piston or through the rotor to an opposite side. The annular piston is sealed alsomore » with inner and outer seals that can be a labyrinth seal to form an additional seal than the cushion of air in the pocket to prevent the face of the air riding seal from overheating.« less

  9. 26 CFR 1.469-2 - Passive activity loss.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 26 Internal Revenue 6 2011-04-01 2011-04-01 false Passive activity loss. 1.469-2 Section 1.469-2...) INCOME TAXES (CONTINUED) Taxable Year for Which Deductions Taken § 1.469-2 Passive activity loss. (a)-(c... passive activity unless the interest in property was used in a passive activity for either— (1) 20 percent...

  10. Sizing criteria for a low footprint passive mine water treatment system.

    PubMed

    Sapsford, D J; Williams, K P

    2009-02-01

    The objective of this paper is to present data from a novel vertical flow mine water treatment system, demonstrate how these data can be used to generate sizing formulae for this technology, and present a comparison between the size of system based on these formulae and those of conventionally designed passive systems. The paper focuses on passive treatment of circum-neutral ferruginous mine waters bearing up to 50 mgl(-1) of iron in either ferrous or ferric form. The Vertical Flow Reactor (VFR) operates by passing mine water down through an accreting bed of ochre, the ochre bed being responsible for the intensification of iron removal by self-filtration and/or autocatalytic iron oxidation and precipitation. Key to the design and operation of the VFR system is the decrease in permeability in this ochre bed over time. The paper demonstrates that the VFR system can remove iron at many times the 10 g/m2/day removal rate - an often employed figure for the sizing of aerobic settling ponds and wetlands. The paper demonstrates that VFRs are viable and novel passive treatment system for mine waters with a smaller footprint than conventional systems.

  11. Molecular Gas Contents and Scaling Relations for Massive, Passive Galaxies at Intermediate Redshifts from the LEGA-C Survey

    NASA Astrophysics Data System (ADS)

    Spilker, Justin; Bezanson, Rachel; Barišić, Ivana; Bell, Eric; Lagos, Claudia del P.; Maseda, Michael; Muzzin, Adam; Pacifici, Camilla; Sobral, David; Straatman, Caroline; van der Wel, Arjen; van Dokkum, Pieter; Weiner, Benjamin; Whitaker, Katherine; Williams, Christina C.; Wu, Po-Feng

    2018-06-01

    A decade of study has established that the molecular gas properties of star-forming galaxies follow coherent scaling relations out to z ∼ 3, suggesting remarkable regularity of the interplay between molecular gas, star formation, and stellar growth. Passive galaxies, however, are expected to be gas-poor and therefore faint, and thus little is known about molecular gas in passive galaxies beyond the local universe. Here we present deep Atacama Large Millimeter/submillimeter Array observations of CO(2–1) emission in eight massive (M star ∼ 1011 M ⊙) galaxies at z ∼ 0.7 selected to lie a factor of 3–10 below the star-forming sequence at this redshift, drawn from the Large Early Galaxy Astrophysics Census survey. We significantly detect half the sample, finding molecular gas fractions ≲0.1. We show that the molecular and stellar rotational axes are broadly consistent, arguing that the molecular gas was not accreted after the galaxies became quiescent. We find that scaling relations extrapolated from the star-forming population overpredict both the gas fraction and gas depletion time for passive objects, suggesting the existence of either a break or large increase in scatter in these relations at low specific star formation rate. Finally, we show that the gas fractions of the passive galaxies we have observed at intermediate redshifts are naturally consistent with evolution into local, massive early-type galaxies by continued low-level star formation, with no need for further gas accretion or dynamical stabilization of the gas reservoirs in the intervening 6 billion years.

  12. Air concentrations of volatile compounds near oil and gas production: a community-based exploratory study.

    PubMed

    Macey, Gregg P; Breech, Ruth; Chernaik, Mark; Cox, Caroline; Larson, Denny; Thomas, Deb; Carpenter, David O

    2014-10-30

    Horizontal drilling, hydraulic fracturing, and other drilling and well stimulation technologies are now used widely in the United States and increasingly in other countries. They enable increases in oil and gas production, but there has been inadequate attention to human health impacts. Air quality near oil and gas operations is an underexplored human health concern for five reasons: (1) prior focus on threats to water quality; (2) an evolving understanding of contributions of certain oil and gas production processes to air quality; (3) limited state air quality monitoring networks; (4) significant variability in air emissions and concentrations; and (5) air quality research that misses impacts important to residents. Preliminary research suggests that volatile compounds, including hazardous air pollutants, are of potential concern. This study differs from prior research in its use of a community-based process to identify sampling locations. Through this approach, we determine concentrations of volatile compounds in air near operations that reflect community concerns and point to the need for more fine-grained and frequent monitoring at points along the production life cycle. Grab and passive air samples were collected by trained volunteers at locations identified through systematic observation of industrial operations and air impacts over the course of resident daily routines. A total of 75 volatile organics were measured using EPA Method TO-15 or TO-3 by gas chromatography/mass spectrometry. Formaldehyde levels were determined using UMEx 100 Passive Samplers. Levels of eight volatile chemicals exceeded federal guidelines under several operational circumstances. Benzene, formaldehyde, and hydrogen sulfide were the most common compounds to exceed acute and other health-based risk levels. Air concentrations of potentially dangerous compounds and chemical mixtures are frequently present near oil and gas production sites. Community-based research can provide an

  13. Bayesian Analysis of a Reduced-Form Air Quality Model

    EPA Science Inventory

    Numerical air quality models are being used for assessing emission control strategies for improving ambient pollution levels across the globe. This paper applies probabilistic modeling to evaluate the effectiveness of emission reduction scenarios aimed at lowering ground-level oz...

  14. 21 CFR 888.3025 - Passive tendon prosthesis.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Passive tendon prosthesis. 888.3025 Section 888...) MEDICAL DEVICES ORTHOPEDIC DEVICES Prosthetic Devices § 888.3025 Passive tendon prosthesis. (a) Identification. A passive tendon prosthesis is a device intended to be implanted made of silicon elastomer or a...

  15. 21 CFR 888.3025 - Passive tendon prosthesis.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Passive tendon prosthesis. 888.3025 Section 888...) MEDICAL DEVICES ORTHOPEDIC DEVICES Prosthetic Devices § 888.3025 Passive tendon prosthesis. (a) Identification. A passive tendon prosthesis is a device intended to be implanted made of silicon elastomer or a...

  16. Passive Participle Marking by African American English-Speaking Children Reared in Poverty

    ERIC Educational Resources Information Center

    Pruitt, Sonja L.; Oetting, Janna B.; Hegarty, Michael

    2011-01-01

    Purpose: In this study, the authors examined the linguistic profile of African American English (AAE)-speaking children reared in poverty by focusing on their marking of passive participles and by comparing the results with the authors' previous study of homophonous forms of past tense (S. Pruitt & J. Oetting, 2009). Method: The data were from 45…

  17. Oxygen-reducing biocathodes operating with passive oxygen transfer in microbial fuel cells.

    PubMed

    Xia, Xue; Tokash, Justin C; Zhang, Fang; Liang, Peng; Huang, Xia; Logan, Bruce E

    2013-02-19

    Oxygen-reducing biocathodes previously developed for microbial fuel cells (MFCs) have required energy-intensive aeration of the catholyte. To avoid the need for aeration, the ability of biocathodes to function with passive oxygen transfer was examined here using air cathode MFCs. Two-chamber, air cathode MFCs with biocathodes produced a maximum power density of 554 ± 0 mW/m(2), which was comparable to that obtained with a Pt cathode (576 ± 16 mW/m(2)), and 38 times higher than that produced without a catalyst (14 ± 3 mW/m(2)). The maximum current density with biocathodes in this air-cathode MFC was 1.0 A/m(2), compared to 0.49 A/m(2) originally produced in a two-chamber MFC with an aqueous cathode (with cathode chamber aeration). Single-chamber, air-cathode MFCs with the same biocathodes initially produced higher voltages than those with Pt cathodes, but after several cycles the catalytic activity of the biocathodes was lost. This change in cathode performance resulted from direct exposure of the cathodes to solutions containing high concentrations of organic matter in the single-chamber configuration. Biocathode performance was not impaired in two-chamber designs where the cathode was kept separated from the anode solution. These results demonstrate that direct-air biocathodes can work very well, but only under conditions that minimize heterotrophic growth of microorganisms on the cathodes.

  18. Spatial trends, sources, and air-water exchange of organochlorine pesticides in the Great Lakes basin using low density polyethylene passive samplers.

    PubMed

    Khairy, Mohammed; Muir, Derek; Teixeira, Camilla; Lohmann, Rainer

    2014-08-19

    Polyethylene passive samplers were deployed during summer and fall of 2011 in the lower Great Lakes to assess the spatial distribution and sources of gaseous and freely dissolved organochlorine pesticides (OCPs) and their air-water exchange. Average gaseous OCP concentrations ranged from nondetect to 133 pg/m(3). Gaseous concentrations of hexachlorobenzene, dieldrin, and chlordanes were significantly greater (Mann-Whitney test, p < 0.05) at Lake Erie than Lake Ontario. A multiple linear regression implied that both cropland and urban areas within 50 and 10 km buffer zones, respectively, were critical parameters to explain the total variability in atmospheric concentrations. Freely dissolved OCP concentrations (nondetect to 114 pg/L) were lower than previously reported. Aqueous half-lives generally ranged from 1.7 to 6.7 years. Nonetheless, concentrations of p,p'-DDE and chlordanes were higher than New York State Ambient Water Quality Standards for the protection of human health from the consumption of fish. Spatial distributions of freely dissolved OCPs in both lakes were influenced by loadings from areas of concern and the water circulation patterns. Flux calculations indicated net deposition of γ-hexachlorocyclohexane, heptachlor-epoxide, and α- and β-endosulfan (-0.02 to -33 ng/m(2)/day) and net volatilization of heptachlor, aldrin, trans-chlordane, and trans-nonachlor (0.0 to 9.0 ng/m(2)/day) in most samples.

  19. Sulfur passivation techniques for III-V wafer bonding

    NASA Astrophysics Data System (ADS)

    Jackson, Michael James

    The use of direct wafer bonding in a multijunction III-V solar cell structure requires the formation of a low resistance bonded interface with minimal thermal treatment. A wafer bonded interface behaves as two independent surfaces in close proximity, hence a major source of resistance is Fermi level pinning common in III-V surfaces. This study demonstrates the use of sulfur passivation in III-V wafer bonding to reduce the energy barrier at the interface. Two different sulfur passivation processes are addressed. A dry sulfur passivation method that utilizes elemental sulfur vapor activated by ultraviolet light in vacuum is compared with aqueous sulfide and native oxide etch treatments. Through the addition of a sulfur desorption step in vacuum, the UV-S treatment achieves bondable surfaces free of particles contamination or surface roughening. X-ray photoelectron spectroscopy measurements of the sulfur treated GaAs surfaces find lower levels of oxide and the appearance of sulfide species. After 4 hrs of air exposure, the UV-S treated GaAs actually showed an increase in the amount of sulfide bonded to the semiconductor, resulting in less oxidation compared to the aqueous sulfide treatment. Large area bonding is achieved for sulfur treated GaAs / GaAs and InP / InP with bulk fracture strength achieved after annealing at 400 °C and 300 °C respectively, without large compressive forces. The electrical conductivity across a sulfur treated 400 °C bonded n-GaAs/n-GaAs interface significantly increased with a short anneal (1-2 minutes) at elevated temperatures (50--600 °C). Interfaces treated with the NH4OH oxide etch, on the other hand, exhibited only mild improvement in accordance with previously published studies in this area. TEM and STEM images revealed similar interfacial microstructure changes with annealing for both sulfur treated and NH4OH interfaces, whereby some areas have direct semiconductor-semiconductor contact without any interfacial layer. Fitting the

  20. Combined facial heating and inhalation of hot air do not alter thermoeffector responses in humans.

    PubMed

    Wingo, Jonathan E; Low, David A; Keller, David M; Kimura, Kenichi; Crandall, Craig G

    2015-09-01

    The influence of thermoreceptors in human facial skin on thermoeffector responses is equivocal; furthermore, the presence of thermoreceptors in the respiratory tract and their involvement in thermal homeostasis has not been elucidated. This study tested the hypothesis that hot air directed on the face and inhaled during whole body passive heat stress elicits an earlier onset and greater sensitivity of cutaneous vasodilation and sweating than that directed on an equal skin surface area away from the face. Six men and two women completed two trials separated by ∼1 wk. Participants were passively heated (water-perfused suit; core temperature increase ∼0.9°C) while hot air was directed on either the face or on the lower leg (counterbalanced). Skin blood flux (laser-Doppler flowmetry) and local sweat rate (capacitance hygrometry) were measured at the chest and one forearm. During hot-air heating, local temperatures of the cheek and leg were 38.4 ± 0.8°C and 38.8 ± 0.6°C, respectively (P = 0.18). Breathing hot air combined with facial heating did not affect mean body temperature onsets (P = 0.97 and 0.27 for arm and chest sites, respectively) or slopes of cutaneous vasodilation (P = 0.49 and 0.43 for arm and chest sites, respectively), or the onsets (P = 0.89 and 0.94 for arm and chest sites, respectively), or slopes of sweating (P = 0.48 and 0.65 for arm and chest sites, respectively). Based on these findings, respiratory tract thermoreceptors, if present in humans, and selective facial skin heating do not modulate thermoeffector responses during passive heat stress. Copyright © 2015 the American Physiological Society.

  1. Post Hoc Analysis of Passive Cavitation Imaging for Classification of Histotripsy-Induced Liquefaction in Vitro.

    PubMed

    Bader, Kenneth B; Haworth, Kevin J; Maxwell, Adam D; Holland, Christy K

    2018-01-01

    Histotripsy utilizes focused ultrasound to generate bubble clouds for transcutaneous tissue liquefaction. Bubble activity maps are under development to provide image guidance and monitor treatment progress. The aim of this paper was to investigate the feasibility of using plane wave B-mode and passive cavitation images to be used as binary classifiers of histotripsy-induced liquefaction. Prostate tissue phantoms were exposed to histotripsy pulses over a range of pulse durations (5- ) and peak negative pressures (12-23 MPa). Acoustic emissions were recorded during the insonation and beamformed to form passive cavitation images. Plane wave B-mode images were acquired following the insonation to detect the hyperechoic bubble cloud. Phantom samples were sectioned and stained to delineate the liquefaction zone. Correlation between passive cavitation and plane wave B-mode images and the liquefaction zone was assessed using receiver operating characteristic (ROC) curve analysis. Liquefaction of the phantom was observed for all the insonation conditions. The area under the ROC (0.94 versus 0.82), accuracy (0.90 versus 0.83), and sensitivity (0.81 versus 0.49) was greater for passive cavitation images relative to B-mode images ( ) along the azimuth of the liquefaction zone. The specificity was greater than 0.9 for both imaging modalities. These results demonstrate a stronger correlation between histotripsy-induced liquefaction and passive cavitation imaging compared with the plane wave B-mode imaging, albeit with limited passive cavitation image range resolution.

  2. TOMO-ETNA Experiment -Etna volcano, Sicily, investigated with active and passive seismic methods

    NASA Astrophysics Data System (ADS)

    Luehr, Birger-G.; Ibanez, Jesus M.; Díaz-Moreno, Alejandro; Prudencio, Janire; Patane, Domenico; Zieger, Toni; Cocina, Ornella; Zuccarello, Luciano; Koulakov, Ivan; Roessler, Dirk; Dahm, Torsten

    2017-04-01

    The TOMO-ETNA experiment, as part of the European Union project "MEDiterranean SUpersite Volcanoes (MED-SUV)", was devised to image the crustal structure beneath Etna by using state of the art passive and active seismic methods. Activities on-land and offshore are aiming to obtain new high-resolution seismic images to improve the knowledge of crustal structures existing beneath the Etna volcano and northeast Sicily up to the Aeolian Islands. In a first phase (June 15 - July 24, 2014) at Etna volcano and surrounding areas two removable seismic networks were installed composed by 80 Short Period and 20 Broadband stations, additionally to the existing network belonging to the "Istituto Nazionale di Geofisica e Vulcanologia" (INGV). So in total air-gun shots could be recorded by 168 stations onshore plus 27 ocean bottom instruments offshore in the Tyrrhenian and Ionian Seas. Offshore activities were performed by Spanish and Italian research vessels. In a second phase the broadband seismic network remained operative until October 28, 2014, as well as offshore surveys during November 19 -27, 2014. Active seismic sources were generated by an array of air-guns mounted in the Spanish Oceanographic vessel "Sarmiento de Gamboa" with a power capacity of up to 5.200 cubic inches. In total more than 26.000 shots were fired and more than 450 local and regional earthquakes could be recorded and will be analyzed. For resolving a volcanic structure the investigation of attenuation and scattering of seismic waves is important. In contrast to existing studies that are almost exclusively based on S-wave signals emitted by local earthquakes, here air-gun signals were investigated by applying a new methodology based on the coda energy ratio defined as the ratio between the energy of the direct P-wave and the energy in a later coda window. It is based on the assumption that scattering caused by heterogeneities removes energy from direct P-waves that constitutes the earliest possible

  3. Active and passive fatigue in simulated driving: discriminating styles of workload regulation and their safety impacts.

    PubMed

    Saxby, Dyani J; Matthews, Gerald; Warm, Joel S; Hitchcock, Edward M; Neubauer, Catherine

    2013-12-01

    Despite the known dangers of driver fatigue, it is a difficult construct to study empirically. Different forms of task-induced fatigue may differ in their effects on driver performance and safety. Desmond and Hancock (2001) defined active and passive fatigue states that reflect different styles of workload regulation. In 2 driving simulator studies we investigated the multidimensional subjective states and safety outcomes associated with active and passive fatigue. Wind gusts were used to induce active fatigue, and full vehicle automation to induce passive fatigue. Drive duration was independently manipulated to track the development of fatigue states over time. Participants were undergraduate students. Study 1 (N = 108) focused on subjective response and associated cognitive stress processes, while Study 2 (N = 168) tested fatigue effects on vehicle control and alertness. In both studies the 2 fatigue manipulations produced different patterns of subjective response reflecting different styles of workload regulation, appraisal, and coping. Active fatigue was associated with distress, overload, and heightened coping efforts, whereas passive fatigue corresponded to large-magnitude declines in task engagement, cognitive underload, and reduced challenge appraisal. Study 2 showed that only passive fatigue reduced alertness, operationalized as speed of braking and steering responses to an emergency event. Passive fatigue also increased crash probability, but did not affect a measure of vehicle control. Findings support theories that see fatigue as an outcome of strategies for managing workload. The distinction between active and passive fatigue is important for assessment of fatigue and for evaluating automated driving systems which may induce dangerous levels of passive fatigue. PsycINFO Database Record (c) 2013 APA, all rights reserved.

  4. A Passive Cavity Concept for Improving the Off-Design Performance of Fixed-Geometry Exhaust Nozzles

    NASA Technical Reports Server (NTRS)

    Asbury, Scott C.; Gunther, Christopher L.; Hunter, Craig A.

    1996-01-01

    An investigation was conducted in the model preparation area of the Langley 16-Foot Transonic Tunnel to study a passive cavity concept for improving the off-design performance of fixed-geometry exhaust nozzles. Passive cavity ventilation (through a porous surface) was applied to divergent flap surfaces and tested at static conditions in a sub-scale, nonaxisymmetric, convergent-divergent nozzle. As part of a comprehensive investigation, force, moment and pressure measurements were taken and focusing schlieren flow visualization was obtained for a baseline configuration and D passive cavity configurations. All tests were conducted with no external flow and high-pressure air was used to simulate jet-exhaust flow at nozzle pressure ratios from 1.25 to approximately 9.50. Results indicate that baseline nozzle performance was dominated by unstable shock-induced boundary-layer separation at off-design conditions, which came about through the natural tendency of overexpanded exhaust flow to satisfy conservation requirements by detaching from the nozzle divergent flaps. Passive cavity ventilation added the ability to control off-design separation in the nozzle by either alleviating separation or encouraging stable separation of the exhaust flow. Separation alleviation offers potential for installed nozzle performance benefits by reducing drag at forward flight speeds, even though it may reduce off-design static thrust efficiency as much as 3.2 percent. Encouraging stable separation of the exhaust flow offers significant performance improvements at static, low NPR and low Mach number flight conditions by improving off-design static thrust efficiency as much as 2.8 percent. By designing a fixed-geometry nozzle with fully porous divergent flaps, where both cavity location and percent open porosity of the flaps could be varied, passive flow control would make it possible to improve off-design nozzle performance across a wide operating range. In addition, the ability to

  5. Reduced-form air quality modeling for community-scale applications

    EPA Science Inventory

    Transportation plays an important role in modern society, but its impact on air quality has been shown to have significant adverse effects on public health. Numerous reviews (HEI, CDC, WHO) summarizing findings of hundreds of studies conducted mainly in the last decade, conclude ...

  6. Development of Verbal Passive in Williams Syndrome

    ERIC Educational Resources Information Center

    Perovic, Alexandra; Wexler, Kenneth

    2010-01-01

    Purpose: To experimentally investigate knowledge of passives of actional ("hold") and psychological ("love") verbs in children with Williams syndrome (WS). Passives are usually reported to be in line with mental age in WS. However, studies usually focus on passives of actional verbs only. Method: Twenty-six children with WS, ages 6-16, and 3…

  7. Demonstration of Passive Fuel Cell Thermal Management Technology

    NASA Technical Reports Server (NTRS)

    Burke, Kenneth A.; Jakupca, Ian; Colozza, Anthony; Wynne, Robert; Miller, Michael; Meyer, Al; Smith, William

    2012-01-01

    The NASA Glenn Research Center is developing advanced passive thermal management technology to reduce the mass and improve the reliability of space fuel cell systems for the NASA Exploration program. The passive thermal management system relies on heat conduction within highly thermally conductive cooling plates to move the heat from the central portion of the cell stack out to the edges of the fuel cell stack. Using the passive approach eliminates the need for a coolant pump and other cooling loop components within the fuel cell system which reduces mass and improves overall system reliability. Previous development demonstrated the performance of suitable highly thermally conductive cooling plates and integrated heat exchanger technology to collect the heat from the cooling plates (Ref. 1). The next step in the development of this passive thermal approach was the demonstration of the control of the heat removal process and the demonstration of the passive thermal control technology in actual fuel cell stacks. Tests were run with a simulated fuel cell stack passive thermal management system outfitted with passive cooling plates, an integrated heat exchanger and two types of cooling flow control valves. The tests were run to demonstrate the controllability of the passive thermal control approach. Finally, successful demonstrations of passive thermal control technology were conducted with fuel cell stacks from two fuel cell stack vendors.

  8. Air Force Research Laboratory, Edwards Air Force Base, CA

    DTIC Science & Technology

    2011-06-27

    Air Force Research Laboratory (AFMC) AFRL /RZS 1 Ara Road Edwards AFB CA 93524-7013 AFRL -RZ-ED-VG-2011-269 9...SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S) Air Force Research Laboratory (AFMC) AFRL /RZS 11. SPONSOR...Form 298 (Rev. 8-98) Prescribed by ANSI Std. 239.18 Air Force Research Laboratory Ed d Ai F B CA Col Mike Platt war s r orce

  9. 26 CFR 1.1398-1 - Treatment of passive activity losses and passive activity credits in individuals' title 11 cases.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 26 Internal Revenue 11 2011-04-01 2011-04-01 false Treatment of passive activity losses and passive activity credits in individuals' title 11 cases. 1.1398-1 Section 1.1398-1 Internal Revenue... (CONTINUED) Rules Relating to Individuals' Title 11 Cases § 1.1398-1 Treatment of passive activity losses and...

  10. The VIMOS Public Extragalactic Redshift Survey (VIPERS). Star formation history of passive red galaxies

    NASA Astrophysics Data System (ADS)

    Siudek, M.; Małek, K.; Scodeggio, M.; Garilli, B.; Pollo, A.; Haines, C. P.; Fritz, A.; Bolzonella, M.; de la Torre, S.; Granett, B. R.; Guzzo, L.; Abbas, U.; Adami, C.; Bottini, D.; Cappi, A.; Cucciati, O.; De Lucia, G.; Davidzon, I.; Franzetti, P.; Iovino, A.; Krywult, J.; Le Brun, V.; Le Fèvre, O.; Maccagni, D.; Marchetti, A.; Marulli, F.; Polletta, M.; Tasca, L. A. M.; Tojeiro, R.; Vergani, D.; Zanichelli, A.; Arnouts, S.; Bel, J.; Branchini, E.; Ilbert, O.; Gargiulo, A.; Moscardini, L.; Takeuchi, T. T.; Zamorani, G.

    2017-01-01

    Aims: We trace the evolution and the star formation history of passive red galaxies, using a subset of the VIMOS Public Extragalactic Redshift Survey (VIPERS). The detailed spectral analysis of stellar populations of intermediate-redshift passive red galaxies allows the build up of their stellar content to be followed over the last 8 billion years. Methods: We extracted a sample of passive red galaxies in the redshift range 0.4 passive red galaxies were stacked in narrow bins of stellar mass and redshift. We use the stacked spectra to measure the 4000 Å break (D4000) and the Hδ Lick index (HδA) with high precision. These spectral features are used as indicators of the star formation history of passive red galaxies. We compare the results with a grid of synthetic spectra to constrain the star formation epochs of these galaxies. We characterize the formation redshift-stellar mass relation for intermediate-redshift passive red galaxies. Results: We find that at z 1 stellar populations in low-mass passive red galaxies are younger than in high-mass passive red galaxies, similar to what is observed at the present epoch. Over the full analyzed redshift range 0.4 < z < 1.0 and stellar mass range 10 < log (Mstar/M⊙) < 12, the D4000 index increases with redshift, while HδA gets lower. This implies that the stellar populations are getting older with increasing stellar mass. Comparison to the spectra of passive red galaxies in the SDSS survey (z 0.2) shows that the shape of the relations of D4000 and HδA with stellar mass has not changed significantly with redshift. Assuming a single burst formation, this implies that high-mass passive red galaxies formed their stars at zform 1.7, while low-mass galaxies formed their main stellar populations

  11. Preliminary Results on the Use of Leather Chrome Shavings for Air Passive Sampling

    PubMed Central

    Sanjuán-Herráez, D.; Chabaane, L.; Tahiri, S.; Pastor, A.; de la Guardia, M.

    2012-01-01

    A new passive sampler based on low-density polyethylene (LDPE) layflat tube filled with chrome shavings from tannery waste residues was evaluated to determine volatile organic compounds (VOCs) in indoor and outdoor areas. VOCs were directly determined by head space-gas chromatography-mass spectrometry (HS-GC-MS) without any pretreatment of the sampler and avoiding the use of solvents. Limit of detection values ranging from 20 to 75 ng sampler−1 and good repeatability values were obtained for VOCs under study with relative standard deviation values from 2.8 to 9.6% except for carbon disulfide for which it was 22.5%. The effect of the amount of chrome shavings per sampler was studied and results were compared with those obtained using empty LDPE tubes, to demonstrate the capacity of chrome shavings to adsorb VOCs. PMID:22900233

  12. Influence of Temperature and Chloride Concentration on Passivation Mechanism and Corrosion of a DSS2209 Welded Joint

    NASA Astrophysics Data System (ADS)

    Hachemi, Hania; Azzaz, Mohamed; Djeghlal, Mohamed Elamine

    2016-10-01

    The passivity behavior of a 2209 duplex stainless steel welded joint was investigated using potentiodynamic polarization, Mott-Schottky analysis and EIS measurements. In order to evaluate the contribution of temperature, chloride concentration and microstructure, a sequence of polarization tests were carried out in aerated NaCl solutions selected according to robust design of a three level-three factors Taguchi L9 orthogonal array. Analysis of signal-to-noise ratio and ANOVA were achieved on all measured data, and the contribution of every control factor was estimated. The results showed that the corrosion resistance of 2209 duplex stainless steel welded joint is related to the evolution of the passive film formed on the surface. It was found that the passive film on the welded zone possessed n- and p-type semiconductor characteristics. With the increase of solution temperature and chlorides concentration, the corrosion resistance of the passive film is more affected in the weldment than in the base metal.

  13. Energy extraction from a semi-passive flapping-foil turbine with active heave and passive pitch

    NASA Astrophysics Data System (ADS)

    Boudreau, Matthieu; Dumas, Guy; Gunther, Kevin; CFD Laboratory LMFN Team

    2017-11-01

    Due to the inherent complexity of the mechanisms needed to prescribe the heaving and the pitching motions of optimal flapping-foil turbines, several research groups are now investigating the potential of using unconstrained passive motions. The amplitude, the phase and the frequency of such free motions are thus the result of the interaction of the blade with the flow and its elastic supports, namely springs and dampers. In parallel with our current study on fully-passive flapping-foil turbines, we investigate in this work the possibility of using a semi-passive turbine. Unlike previous semi-passive turbines studied in the literature, we propose a turbine with a passive pitching motion and an active heaving motion constrained to be a sine wave with desired amplitude and frequency. As most of the energy extracted by flapping-foil turbines comes from the heaving motion, it is natural to connect an electric generator to this degree of freedom, thereby allowing one to constrain this motion. It is found that large-amplitude pitching motions leading to a considerable energy extraction can arise under different circumstances and mechanisms, either forced by the heaving motion or driven by an instability of the pitching motion itself. The authors gratefully acknowledge the support from the Natural Sciences and Engineering Research Council of Canada (NSERC), the Tyler Lewis Clean Energy Research Foundation, Calcul Québec and Compute Canada.

  14. Silicon surface passivation by silicon nitride deposition

    NASA Technical Reports Server (NTRS)

    Olsen, L. C.

    1984-01-01

    Silicon nitride deposition was studied as a method of passivation for silicon solar cell surfaces. The following three objectives were the thrust of the research: (1) the use of pecvd silicon nitride for passivation of silicon surfaces; (2) measurement techniques for surface recombination velocity; and (3) the importance of surface passivation to high efficiency solar cells.

  15. Air pollution and watershed research in the central Sierra Nevada of California: nitrogen and ozone.

    PubMed

    Hunsaker, Carolyn; Bytnerowicz, Andrzej; Auman, Jessica; Cisneros, Ricardo

    2007-03-21

    Maintaining healthy forests is the major objective for the Forest Service scientists and managers working for the U.S. Department of Agriculture. Air pollution, specifically ozone (O3) and nitrogenous (N) air pollutants, may severely affect the health of forest ecosystems in the western U.S. Thus, the monitoring of air pollution concentration and deposition levels, as well as studies focused on understanding effects mechanisms, are essential for evaluation of risks associated with their presence. Such information is essential for development of proper management strategies for maintaining clean air, clean water, and healthy ecosystems on land managed by the Forest Service. We report on two years of research in the central Sierra Nevada of California, a semi-arid forest at elevations of 1100-2700 m. Information on O3 and N air pollutants is obtained from a network of 18 passive samplers. We relate the atmospheric N concentration to N concentrations in streams, shallow soil water, and bulk deposition collectors within the Kings River Experimental Watershed. This watershed also contains an intensive site that is part of a recent Forest Service effort to calculate critical loads for N, sulfur, and acidity to forest ecosystems. The passive sampler design allows for extensive spatial measurements while the watershed experiment provides intensive spatial data for future analysis of ecosystem processes.

  16. 78 FR 79650 - Definitions and Reporting Requirements for Shareholders of Passive Foreign Investment Companies

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-31

    ...In the Rules and Regulations section of this issue of the Federal Register, the IRS and the Department of the Treasury (Treasury Department) are issuing temporary regulations that provide guidance on determining the ownership of a passive foreign investment company (PFIC), the annual filing requirements for shareholders of PFICs, and an exclusion from certain filing requirement for shareholders that constructively own interests in certain foreign corporations. The temporary regulations primarily affect shareholders of PFICs that do not currently file Form 8621, ``Information Return by a Shareholder of a Passive Foreign Investment Company or Qualified Electing Fund'', with respect to their PFIC interests. The temporary regulations also affect certain shareholders that rely on a constructive ownership exception to the requirement to file Form 5471, ``Information Return of U.S. Persons with Respect to Certain Foreign Corporations.'' The text of those temporary regulations published in this issue of the Federal Register also serves as the text of these proposed regulations.

  17. The active and passive sampling of benzene, toluene, ethyl benzene and xylenes compounds using the inside needle capillary adsorption trap device.

    PubMed

    Shojania, S; Oleschuk, R D; McComb, M E; Gesser, H D; Chow, A

    1999-08-23

    A new and simple method of solventless extraction of volatile organic compounds (VOCs) from air is presented. The sampling device has an adsorbing carbon coating on the interior surface of a hollow needle, and is called the inside needle capillary adsorption trap (INCAT). This paper describes a study of the reproducibility in the preparation and sampling of the INCAT device. In addition, this paper examines the effects of sample volume in active sampling and exposure time in passive sampling on the analyte adsorption. Analysis was achieved by sampling the air from an environmental chamber doped with benzene, toluene, ethyl benzene and xylenes (BTEX) compounds. Initial rates of adsorption were found to vary among the different compounds, but ranged from 0.0099 to 0.016 nmol h(-1) for passive sampling and from 2.2 to 10 nmol h(-1) for active sampling. Analysis was done by thermal desorption of the adsorbed compounds directly into a gas chromatograph injection port. Quantification of the analysis was done by comparison to actively sampled activated carbon solid phase extraction (SPE) measurements.

  18. Finding of No Significant Impact: First Air Force Air Operations Center, First Air Force Headquarters/Air Force Forces Center, and Highway 98 Overpass at Tyndall Air Force Base, Florida

    DTIC Science & Technology

    2004-11-10

    found at the following web address: <http://dep.state.fl.us/air/forms/asbestos.htm#asbestos>. The Air Force is advised to contact Sandra Veazey at...advised to contact Sandra Veazey at (850) 595·8300 for additional information on asbestos issues. http://tlhora6.dep.state.fl.us/clearinghouse/agency

  19. Discreet passive explosive detection through 2-sided waveguided fluorescence

    DOEpatents

    Harper, Ross James [Stillwater, OK; la Grone, Marcus [Cushing, OK; Fisher, Mark [Stillwater, OK

    2011-10-18

    The current invention provides a passive sampling device suitable for collecting and detecting the presence of target analytes. In particular, the passive sampling device is suitable for detecting nitro-aromatic compounds. The current invention further provides a passive sampling device reader suitable for determining the collection of target analytes. Additionally, the current invention provides methods for detecting target analytes using the passive sampling device and the passive sampling device reader.

  20. Assessment of POPs in air from Spain using passive sampling from 2008 to 2015. Part II: Spatial and temporal observations of PCDD/Fs and dl-PCBs.

    PubMed

    Muñoz-Arnanz, Juan; Roscales, Jose L; Vicente, Alba; Ros, María; Barrios, Laura; Morales, Laura; Abad, Esteban; Jiménez, Begoña

    2018-09-01

    Time series (2008-2015) of polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) and dioxin-like polychlorinated biphenyls (dl-PCBs) in ambient air from the Spanish Monitoring Program were analyzed. A total of 321 samples were collected seasonally each year in 5 urban and 7 background sites by means of passive air sampling. Air concentrations were higher at urban than background sites (urban vs. background concentration ranges): PCDD/Fs (26.9-1010 vs. 20.0-357 fg/m 3 ), non-ortho PCBs (0.113-3.14 vs. 0.042-2.00 pg/m 3 ) and mono-ortho PCBs (0.644-41.3 vs. 0.500-32.8 pg/m 3 ). Results showed significant decreases from 2009 for non-ortho PCBs and PCDD/Fs as well as for WHO 2006 -TEQs. These declines were sharper, and sometimes only significant, in urban places resulting in converging levels at urban and background sites for these pollutants at the end of the study period. In contrast, mono-ortho PCBs did not show any significant variation but a steady flat temporal behavior in their concentrations, suggesting the existence of different sources between mono-ortho and non-ortho PCBs. Seasonality was observed for air burdens of all these POPs. PCDD/Fs were mostly measured at higher concentrations in colder than in hot seasons, and the opposite was true for dl-PCBs. Seasonal variations for PCDD/Fs appeared to be related to changes in their sources (e.g. domestic heating, open burning) rather than to temperature per se. In contrast, environmental temperature dependent factors (e.g. increased partitioning into the gas phase) drove seasonal variations in dl-PCBs instead of seasonal changes in their sources. Regarding spatial patterns, significant greater levels of PCDD/Fs and dl-PCBs were generally found in cities compared to background areas, pointing out the role of densely populated areas as sources for these pollutants in Spain. As proven by our results, long-term monitoring activities are essential to assess and understand temporal behaviors for these