Sample records for air injection hpai

  1. Resurgence of HPAI in birds and mechanisms of transmission

    USDA-ARS?s Scientific Manuscript database

    High pathogenicity avian influenza (HPAI) viruses typically produce a similar severe, systemic disease with high mortality in chickens and other gallinaceous birds, but either no disease or only mild disease in domestic ducks and wild birds. However with emergence of H5N1 HPAI viruses and their mai...

  2. Vaccination of domestic ducks against H5N1 HPAI

    USDA-ARS?s Scientific Manuscript database

    Domestic ducks play an important role in the epidemiology of H5N1 and H5N8 highly pathogenic avian influenza (HPAI) viruses, and therefore, successful control of HPAI in ducks is vital for the eradication of the disease in poultry. Vaccination can be used as a tool for supporting eradication by inc...

  3. Compressed air injection technique to standardize block injection pressures.

    PubMed

    Tsui, Ban C H; Li, Lisa X Y; Pillay, Jennifer J

    2006-11-01

    Presently, no standardized technique exists to monitor injection pressures during peripheral nerve blocks. Our objective was to determine if a compressed air injection technique, using an in vitro model based on Boyle's law and typical regional anesthesia equipment, could consistently maintain injection pressures below a 1293 mmHg level associated with clinically significant nerve injury. Injection pressures for 20 and 30 mL syringes with various needle sizes (18G, 20G, 21G, 22G, and 24G) were measured in a closed system. A set volume of air was aspirated into a saline-filled syringe and then compressed and maintained at various percentages while pressure was measured. The needle was inserted into the injection port of a pressure sensor, which had attached extension tubing with an injection plug clamped "off". Using linear regression with all data points, the pressure value and 99% confidence interval (CI) at 50% air compression was estimated. The linearity of Boyle's law was demonstrated with a high correlation, r = 0.99, and a slope of 0.984 (99% CI: 0.967-1.001). The net pressure generated at 50% compression was estimated as 744.8 mmHg, with the 99% CI between 729.6 and 760.0 mmHg. The various syringe/needle combinations had similar results. By creating and maintaining syringe air compression at 50% or less, injection pressures will be substantially below the 1293 mmHg threshold considered to be an associated risk factor for clinically significant nerve injury. This technique may allow simple, real-time and objective monitoring during local anesthetic injections while inherently reducing injection speed.

  4. Using cold air for reducing needle-injection pain.

    PubMed

    Al-Qarqaz, Firas; Al-Aboosi, Mustafa; Al-shiyab, Diala; Al Dabbagh, Ziad

    2012-07-01

    Pain is associated with skin injections. Reducing injection-associated pain is important especially when multiple injections are needed in difficult areas, such as the palms. We present a new safe application for cold air used in laser therapy. The main objectives of this study are to see whether cold air can reduce needle-injection pain and to evaluate the safety of this new application. Patients undergoing skin injection (n=40) were included. Assessment of pain level using visual analog scale (VAS) was done using cold air and again without cold air in the same patient. Comparison of pain scores was performed. Thirty-three patients had lower VAS scores using cold air. Five patients had worse VAS scores, and two patients did not have any change in their pain score. In the group of patients where injections were made to the palms (n=5), there was even more reduction in VAS scores. There were no significant immediate or delayed side effects. Cold air seems to be useful in reducing needle-injection pain in the majority of patients, especially in the palms. This procedure is safe, apart from immediate tolerable discomfort when used around the nose. © 2012 The International Society of Dermatology.

  5. Compressed air injection technique to standardize block injection pressures : [La technique d'injection d'air comprimé pour normaliser les pressions d'injection d'un blocage nerveux].

    PubMed

    Tsui, Ban C H; Li, Lisa X Y; Pillay, Jennifer J

    2006-11-01

    Presently, no standardized technique exists to monitor injection pressures during peripheral nerve blocks. Our objective was to determine if a compressed air injection technique, using an in vitro model based on Boyle's law and typical regional anesthesia equipment, could consistently maintain injection pressures below a 1293 mmHg level associated with clinically significant nerve injury. Injection pressures for 20 and 30 mL syringes with various needle sizes ( 18G, 20G, 21 G, 22G, and 24G) were measured in a closed system. A set volume of air was aspirated into a saline-filled syringe and then compressed and maintained at various percentages while pressure was measured. The needle was inserted into the injection port of a pressure sensor, which had attached extension tubing with an injection plug clamped "off". Using linear regression with all data points, the pressure value and 99% confidence interval (CI) at 50% air compression was estimated. The linearity of Boyle's law was demonstrated with a high correlation, r = 0.99, and a slope of 0.984 (99% CI: 0.967-1.001). The net pressure generated at 50% compression was estimated as 744.8 mmHg, with the 99% CI between 729.6 and 760.0 mmHg. The various syringe/needle combinations had similar results. By creating and maintaining syringe air compression at 50% or less, injection pressures will be substantially below the 1293 mmHg threshold considered to be an associated risk factor for clinically significant nerve injury. This technique may allow simple, real-time and objective monitoring during local anesthetic injections while inherently reducing injection speed. Présentement, aucune technique normalisée ne permet de vérifier les pressions d'injection pendant les blocages nerveux périphériques. Nous voulions vérifier si une technique d'injection d'air comprimé, utilisant un modèle in vitro fondé sur la loi de Boyle et du matériel propre à l'anesthésie régionale, pouvait maintenir avec régularité les

  6. Parametric Studies of Flow Separation using Air Injection

    NASA Technical Reports Server (NTRS)

    Zhang, Wei

    2004-01-01

    Boundary Layer separation causes the airfoil to stall and therefore imposes dramatic performance degradation on the airfoil. In recent years, flow separation control has been one of the active research areas in the field of aerodynamics due to its promising performance improvements on the lifting device. These active flow separation control techniques include steady and unsteady air injection as well as suction on the airfoil surface etc. This paper will be focusing on the steady and unsteady air injection on the airfoil. Although wind tunnel experiments revealed that the performance improvements on the airfoil using injection techniques, the details of how the key variables such as air injection slot geometry and air injection angle etc impact the effectiveness of flow separation control via air injection has not been studied. A parametric study of both steady and unsteady air injection active flow control will be the main objective for this summer. For steady injection, the key variables include the slot geometry, orientation, spacing, air injection velocity as well as the injection angle. For unsteady injection, the injection frequency will also be investigated. Key metrics such as lift coefficient, drag coefficient, total pressure loss and total injection mass will be used to measure the effectiveness of the control technique. A design of experiments using the Box-Behnken Design is set up in order to determine how each of the variables affects each of the key metrics. Design of experiment is used so that the number of experimental runs will be at minimum and still be able to predict which variables are the key contributors to the responses. The experiments will then be conducted in the 1ft by 1ft wind tunnel according to the design of experiment settings. The data obtained from the experiments will be imported into JMP, statistical software, to generate sets of response surface equations which represent the statistical empirical model for each of the metrics as

  7. Intracameral air injection for acute hydrops in keratoconus.

    PubMed

    Miyata, Kazunori; Tsuji, Hideki; Tanabe, Tatsuro; Mimura, Yoshiko; Amano, Shiro; Oshika, Tetsuro

    2002-06-01

    To evaluate the efficacy and safety of intracameral air injection in treating acute hydrops in keratoconus. Retrospective, nonrandomized, comparative trial. Thirty eyes (30 patients) with acute hydrops secondary to keratoconus. Nine eyes (nine patients) with acute hydrops in keratoconus were treated with intracameral injection of 0.1 ml filtered air. Additional 0.1 ml filtered air was injected if corneal edema persisted when air disappeared from the anterior chamber. Twenty-one eyes (21 patients) with acute hydrops that received no therapy or conventional therapy not likely to shorten the duration of hydrops served as controls. The period of persistence of corneal edema, the interval between the onset of acute hydrops, and the time when the eye could begin to wear a hard-contact lens, and best spectacle-corrected and hard-contact lens-corrected visual acuity after corneal edema subsided were used as criteria to evaluate any differences between the two groups. The average period of persistence of corneal edema was 20.1 +/- 9.0 days (+/- SD) in the intracameral air injection group and 64.7 +/- 34.6 days in the control (P =.0008). The average interval between the onset of acute hydrops and the time when the eye could begin to wear a hard-contact lens, was 33.4 +/- 5.6 days in the air injection group and 128.9 +/- 85.8 days in the control group (P =.0058). The best-corrected visual acuity after corneal edema subsided was similar between the two groups. Intracameral air injection induced no complications. The results suggest that the intracameral air injection is a safe and useful therapy to shorten the period of corneal edema in acute hydrops secondary to keratoconus.

  8. Cross-protection of newly emerging HPAI H5 viruses by neutralizing human monoclonal antibodies: A viable alternative to oseltamivir.

    PubMed

    Ren, Huanhuan; Wang, Guiqin; Wang, Shuangshuang; Chen, Honglin; Chen, Zhiwei; Hu, Hongxing; Cheng, Genhong; Zhou, Paul

    2016-01-01

    Newly emerging highly pathogenic avian influenza (HPAI) H5N2, H5N3, H5N5, H5N6, H5N8 and H5N9 viruses have been spreading in poultry and wild birds. The H5N6 viruses have also caused 10 human infections with 4 fatal cases in China. Here, we assessed the cross-neutralization and cross-protection of human and mouse monoclonal antibodies against 2 viruses: a HPAI H5N8 virus, A/chicken/Netherlands/14015526/2014 (NE14) and a HPAI H5N6 virus, A/Sichuan/26221/2014 (SC14). The former was isolated from an infected chicken in Netherlands in 2014 and the latter was isolated from an infected human patient in Sichuan, China. We show that antibodies FLA5.10, FLD21.140, 100F4 and 65C6, but not AVFluIgG01, AVFluIgG03, S139/1 and the VRC01 control, potently cross-neutralize the H5N8 NE14 and H5N6 SC14 viruses. Furthermore, we show that a single injection of >1 mg/kg of antibody 100F4 at 4 hours before, or 20 mg/kg antibody 100F4 at 72 hours after, a lethal dose of H5N8 NE14 enables mice to withstand the infection. Finally, we show that a single injection of 0.5 or 1 mg/kg antibody 100F4 prophylactically or 10 mg/kg 100F4 therapeutically outperforms a 5-day course of 10 mg/kg/day oseltamivir treatment against lethal H5N8 NE14 or H5N6 SC14 infection in mice. Our results suggest that further preclinical evaluation of human monoclonal antibodies against newly emerging H5 viruses is warranted.

  9. Cross-protection of newly emerging HPAI H5 viruses by neutralizing human monoclonal antibodies: A viable alternative to oseltamivir

    PubMed Central

    Ren, Huanhuan; Wang, Guiqin; Wang, Shuangshuang; Chen, Honglin; Chen, Zhiwei; Hu, Hongxing; Cheng, Genhong; Zhou, Paul

    2016-01-01

    ABSTRACT Newly emerging highly pathogenic avian influenza (HPAI) H5N2, H5N3, H5N5, H5N6, H5N8 and H5N9 viruses have been spreading in poultry and wild birds. The H5N6 viruses have also caused 10 human infections with 4 fatal cases in China. Here, we assessed the cross-neutralization and cross-protection of human and mouse monoclonal antibodies against 2 viruses: a HPAI H5N8 virus, A/chicken/Netherlands/14015526/2014 (NE14) and a HPAI H5N6 virus, A/Sichuan/26221/2014 (SC14). The former was isolated from an infected chicken in Netherlands in 2014 and the latter was isolated from an infected human patient in Sichuan, China. We show that antibodies FLA5.10, FLD21.140, 100F4 and 65C6, but not AVFluIgG01, AVFluIgG03, S139/1 and the VRC01 control, potently cross-neutralize the H5N8 NE14 and H5N6 SC14 viruses. Furthermore, we show that a single injection of >1 mg/kg of antibody 100F4 at 4 hours before, or 20 mg/kg antibody 100F4 at 72 hours after, a lethal dose of H5N8 NE14 enables mice to withstand the infection. Finally, we show that a single injection of 0.5 or 1 mg/kg antibody 100F4 prophylactically or 10 mg/kg 100F4 therapeutically outperforms a 5-day course of 10 mg/kg/day oseltamivir treatment against lethal H5N8 NE14 or H5N6 SC14 infection in mice. Our results suggest that further preclinical evaluation of human monoclonal antibodies against newly emerging H5 viruses is warranted. PMID:27167234

  10. Spatial distribution and risk factors of highly pathogenic avian influenza (HPAI) H5N1 in China

    USGS Publications Warehouse

    Martin, Vincent; Pfeiffer, Dirk U.; Zhou, Xiaoyan; Xiao, Xiangming; Prosser, Diann J.; Guo, Fusheng; Gilbert, Marius

    2011-01-01

    Highly pathogenic avian influenza (HPAI) H5N1 was first encountered in 1996 in Guangdong province (China) and started spreading throughout Asia and the western Palearctic in 2004–2006. Compared to several other countries where the HPAI H5N1 distribution has been studied in some detail, little is known about the environmental correlates of the HPAI H5N1 distribution in China. HPAI H5N1 clinical disease outbreaks, and HPAI virus (HPAIV) H5N1 isolated from active risk-based surveillance sampling of domestic poultry (referred to as HPAIV H5N1 surveillance positives in this manuscript) were modeled separately using seven risk variables: chicken, domestic waterfowl population density, proportion of land covered by rice or surface water, cropping intensity, elevation, and human population density. We used bootstrapped logistic regression and boosted regression trees (BRT) with cross-validation to identify the weight of each variable, to assess the predictive power of the models, and to map the distribution of HPAI H5N1 risk. HPAI H5N1 clinical disease outbreak occurrence in domestic poultry was mainly associated with chicken density, human population density, and elevation. In contrast, HPAIV H5N1 infection identified by risk-based surveillance was associated with domestic waterfowl density, human population density, and the proportion of land covered by surface water. Both models had a high explanatory power (mean AUC ranging from 0.864 to 0.967). The map of HPAIV H5N1 risk distribution based on active surveillance data emphasized areas south of the Yangtze River, while the distribution of reported outbreak risk extended further North, where the density of poultry and humans is higher. We quantified the statistical association between HPAI H5N1 outbreak, HPAIV distribution and post-vaccination levels of seropositivity (percentage of effective post-vaccination seroconversion in vaccinated birds) and found that provinces with either outbreaks or HPAIV H5N1 surveillance

  11. Spatial distribution and risk factors of highly pathogenic avian influenza (HPAI) H5N1 in China.

    PubMed

    Martin, Vincent; Pfeiffer, Dirk U; Zhou, Xiaoyan; Xiao, Xiangming; Prosser, Diann J; Guo, Fusheng; Gilbert, Marius

    2011-03-01

    Highly pathogenic avian influenza (HPAI) H5N1 was first encountered in 1996 in Guangdong province (China) and started spreading throughout Asia and the western Palearctic in 2004-2006. Compared to several other countries where the HPAI H5N1 distribution has been studied in some detail, little is known about the environmental correlates of the HPAI H5N1 distribution in China. HPAI H5N1 clinical disease outbreaks, and HPAI virus (HPAIV) H5N1 isolated from active risk-based surveillance sampling of domestic poultry (referred to as HPAIV H5N1 surveillance positives in this manuscript) were modeled separately using seven risk variables: chicken, domestic waterfowl population density, proportion of land covered by rice or surface water, cropping intensity, elevation, and human population density. We used bootstrapped logistic regression and boosted regression trees (BRT) with cross-validation to identify the weight of each variable, to assess the predictive power of the models, and to map the distribution of HPAI H5N1 risk. HPAI H5N1 clinical disease outbreak occurrence in domestic poultry was mainly associated with chicken density, human population density, and elevation. In contrast, HPAIV H5N1 infection identified by risk-based surveillance was associated with domestic waterfowl density, human population density, and the proportion of land covered by surface water. Both models had a high explanatory power (mean AUC ranging from 0.864 to 0.967). The map of HPAIV H5N1 risk distribution based on active surveillance data emphasized areas south of the Yangtze River, while the distribution of reported outbreak risk extended further North, where the density of poultry and humans is higher. We quantified the statistical association between HPAI H5N1 outbreak, HPAIV distribution and post-vaccination levels of seropositivity (percentage of effective post-vaccination seroconversion in vaccinated birds) and found that provinces with either outbreaks or HPAIV H5N1 surveillance

  12. Spatial Distribution and Risk Factors of Highly Pathogenic Avian Influenza (HPAI) H5N1 in China

    PubMed Central

    Martin, Vincent; Pfeiffer, Dirk U.; Zhou, Xiaoyan; Xiao, Xiangming; Prosser, Diann J.; Guo, Fusheng; Gilbert, Marius

    2011-01-01

    Highly pathogenic avian influenza (HPAI) H5N1 was first encountered in 1996 in Guangdong province (China) and started spreading throughout Asia and the western Palearctic in 2004–2006. Compared to several other countries where the HPAI H5N1 distribution has been studied in some detail, little is known about the environmental correlates of the HPAI H5N1 distribution in China. HPAI H5N1 clinical disease outbreaks, and HPAI virus (HPAIV) H5N1 isolated from active risk-based surveillance sampling of domestic poultry (referred to as HPAIV H5N1 surveillance positives in this manuscript) were modeled separately using seven risk variables: chicken, domestic waterfowl population density, proportion of land covered by rice or surface water, cropping intensity, elevation, and human population density. We used bootstrapped logistic regression and boosted regression trees (BRT) with cross-validation to identify the weight of each variable, to assess the predictive power of the models, and to map the distribution of HPAI H5N1 risk. HPAI H5N1 clinical disease outbreak occurrence in domestic poultry was mainly associated with chicken density, human population density, and elevation. In contrast, HPAIV H5N1 infection identified by risk-based surveillance was associated with domestic waterfowl density, human population density, and the proportion of land covered by surface water. Both models had a high explanatory power (mean AUC ranging from 0.864 to 0.967). The map of HPAIV H5N1 risk distribution based on active surveillance data emphasized areas south of the Yangtze River, while the distribution of reported outbreak risk extended further North, where the density of poultry and humans is higher. We quantified the statistical association between HPAI H5N1 outbreak, HPAIV distribution and post-vaccination levels of seropositivity (percentage of effective post-vaccination seroconversion in vaccinated birds) and found that provinces with either outbreaks or HPAIV H5N1 surveillance

  13. Economics of water injected air screw compressor systems

    NASA Astrophysics Data System (ADS)

    Venu Madhav, K.; Kovačević, A.

    2015-08-01

    There is a growing need for compressed air free of entrained oil to be used in industry. In many cases it can be supplied by oil flooded screw compressors with multi stage filtration systems, or by oil free screw compressors. However, if water injected screw compressors can be made to operate reliably, they could be more efficient and therefore cheaper to operate. Unfortunately, to date, such machines have proved to be insufficiently reliable and not cost effective. This paper describes an investigation carried out to determine the current limitations of water injected screw compressor systems and how these could be overcome in the 15-315 kW power range and delivery pressures of 6-10 bar. Modern rotor profiles and approach to sealing and cooling allow reasonably inexpensive air end design. The prototype of the water injected screw compressor air system was built and tested for performance and reliability. The water injected compressor system was compared with the oil injected and oil free compressor systems of the equivalent size including the economic analysis based on the lifecycle costs. Based on the obtained results, it was concluded that water injected screw compressor systems could be designed to deliver clean air free of oil contamination with a better user value proposition than the oil injected or oil free screw compressor systems over the considered range of operations.

  14. Linking Supply Chain Governance and Biosecurity in the Context of HPAI Control in Western Java: A Value Chain Perspective

    PubMed Central

    Indrawan, Dikky; Rich, Karl M.; van Horne, Peter; Daryanto, Arief; Hogeveen, Henk

    2018-01-01

    Despite extensive efforts to control the highly pathogenic avian influenza (HPAI), it remains endemic in Western Java, Indonesia. To understand the limited effectiveness of HPAI control measures, it is important to map the complex structure of the poultry sector. The governance of the poultry value chain in particular, could play a pivotal role, yet there is limited information on the different chain governance structures and their impacts on HPAI control. This article uses value chain analysis (VCA), focusing on an in-depth assessment of governance structures as well as transaction cost economics and quantitative estimates of the market power of different chain actors, to establish a theoretical framework to examine biosecurity and HPAI control in the Western Java poultry chain. During the research, semi-structured interviews were conducted with key value-chain stakeholders, and the economic performance of identified actors was estimated. Results indicated the co-existence of four different poultry value chains in West Java: the integrator chain, the semi-automated slaughterhouse chain, the controlled slaughter-point chain, and the private slaughter-point chain. The integrator chain was characterized by the highest levels of coordination and a tight, hierarchical governance. In contrast, the other three types of value chains were less coordinated. The market power of the different actors within the four value chains also differed. In more integrated chains, slaughterhouses held considerable market power, while in more informal value chains, market power was in the hands of traders. The economic effects of HPAI and biosecurity measures also varied for the identified actors in the different value chains. Implementation of biosecurity and HPAI control measures was strongly related to the governance structure of the chain, with interactions between different chains and governance structures accentuating the risk of HPAI. Our findings highlight that a proper

  15. Linking Supply Chain Governance and Biosecurity in the Context of HPAI Control in Western Java: A Value Chain Perspective.

    PubMed

    Indrawan, Dikky; Rich, Karl M; van Horne, Peter; Daryanto, Arief; Hogeveen, Henk

    2018-01-01

    Despite extensive efforts to control the highly pathogenic avian influenza (HPAI), it remains endemic in Western Java, Indonesia. To understand the limited effectiveness of HPAI control measures, it is important to map the complex structure of the poultry sector. The governance of the poultry value chain in particular, could play a pivotal role, yet there is limited information on the different chain governance structures and their impacts on HPAI control. This article uses value chain analysis (VCA), focusing on an in-depth assessment of governance structures as well as transaction cost economics and quantitative estimates of the market power of different chain actors, to establish a theoretical framework to examine biosecurity and HPAI control in the Western Java poultry chain. During the research, semi-structured interviews were conducted with key value-chain stakeholders, and the economic performance of identified actors was estimated. Results indicated the co-existence of four different poultry value chains in West Java: the integrator chain, the semi-automated slaughterhouse chain, the controlled slaughter-point chain, and the private slaughter-point chain. The integrator chain was characterized by the highest levels of coordination and a tight, hierarchical governance. In contrast, the other three types of value chains were less coordinated. The market power of the different actors within the four value chains also differed. In more integrated chains, slaughterhouses held considerable market power, while in more informal value chains, market power was in the hands of traders. The economic effects of HPAI and biosecurity measures also varied for the identified actors in the different value chains. Implementation of biosecurity and HPAI control measures was strongly related to the governance structure of the chain, with interactions between different chains and governance structures accentuating the risk of HPAI. Our findings highlight that a proper

  16. Experimental infection of H5N1 HPAI in BALB/c mice.

    PubMed

    Evseenko, Vasily A; Bukin, Eugeny K; Zaykovskaya, Anna V; Sharshov, Kirill A; Ternovoi, Vladimir A; Ignatyev, George M; Shestopalov, Alexander M

    2007-07-27

    In 2005 huge epizooty of H5N1 HPAI occurred in Russia. It had been clear that territory of Russia becoming endemic for H5N1 HPAI. In 2006 several outbreaks have occurred. To develop new vaccines and antiviral therapies, animal models had to be investigated. We choose highly pathogenic strain for these studies. A/duck/Tuva/01/06 belongs to Quinghai-like group viruses. Molecular markers-cleavage site, K627 in PB2 characterize this virus as highly pathogenic. This data was confirmed by direct pathogenic tests: IVPI = 3.0, MLD50 = 1,4Log10EID50. Also molecular analysis showed sensitivity of the virus to adamantanes and neuraminidase inhibitors. Serological analysis showed wide cross-reactivity of this virus with sera produced to H5N1 HPAI viruses isolated earlier in South-East Asia. Mean time to death of infected animals was 8,19+/-0,18 days. First time acute delayed hemorrhagic syndrome was observed in mice lethal model. Hypercytokinemia was determined by elevated sera levels of IFN-gamma, IL-6, IL-10. Assuming all obtained data we can conclude that basic model parameters were characterized and virus A/duck/Tuva/01/06 can be used to evaluate anti-influenza vaccines and therapeutics.

  17. Estimating the sensitivity of passive surveillance for HPAI H5N1 in Bayelsa state, Nigeria.

    PubMed

    Ojimelukwe, Agatha E; Prakarnkamanant, Apisit; Rushton, Jonathan

    2016-07-01

    This study identified characteristics of poultry farming with a focus on practices that affect the detection of HPAI; and estimated the system sensitivity of passive surveillance for HPAI H5N1 in commercial and backyard chicken farms in Bayelsa-State, Nigeria. Field studies were carried out in Yenegoa and Ogbia local government areas in Bayelsa state. Willingness to report HPAI was highest in commercial poultry farms (13/13) than in Backyard farms (8/13). Poor means of dead bird disposal was common to both commercial and backyard farms. Administering some form of treatment to sick birds without prior consultation with a professional was higher in backyard farms (8/13) than in commercial farms (4/13). Consumption of sick birds was reported in 4/13 backyard farms and sale of dead birds was recorded in one commercial farm. The sensitivity of passive surveillance for HPAI was assessed using scenario tree modelling. A scenario tree model was developed and applied to estimate the sensitivity, i.e. the probability of detecting one or more infected chicken farms in Bayelsa state at different levels of disease prevalence. The model showed a median sensitivity of 100%, 67% and 23% for detecting HPAI by passive surveillance at a disease prevalence of 0.1%, a minimum of 10 and 3 infected poultry farms respectively. Passive surveillance system sensitivity at a design prevalence of 10 infected farms is increasable up to 86% when the disease detection in backyard chicken farms is enhanced. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Surface air quality implications of volcanic injection heights

    NASA Astrophysics Data System (ADS)

    Thomas, Manu Anna; Brännström, Niklas; Persson, Christer; Grahn, Håkan; von Schoenberg, Pontus; Robertson, Lennart

    2017-10-01

    Air quality implications of volcanic eruptions have gained increased attention recently in association with the 2010 Icelandic eruption that resulted in the shut-down of European air space. The emission amount, injection height and prevailing weather conditions determine the extent of the impact through the spatio-temporal distribution of pollutants. It is often argued that in the case of a major eruption in Iceland, like Laki in 1783-1784, that pollutants injected high into the atmosphere lead to substantially increased concentrations of sulfur compounds over continental Europe via long-range transport in the jet stream and eventual large-scale subsidence in a high-pressure system. Using state-of-the-art simulations, we show that the air quality impact of Icelandic volcanoes is highly sensitive to the injection height. In particular, it is the infinitesimal injections into the lower half of the troposphere, rather than the substantial injections into the upper troposphere/lower stratosphere that contribute most to increased pollutant concentrations, resulting in atmospheric haze over mainland Europe/Scandinavia. Besides, the persistent high pressure system over continental Europe/Scandinavia traps the pollutants from dispersing, thereby prolonging the haze.

  19. Absence of clinical disease and contact transmission of North American clade 2.3.4.4 H5NX HPAI in experimentally infected pigs

    USDA-ARS?s Scientific Manuscript database

    In the fall of 2014, clade 2.3.4.4 highly pathogenic avian influenza (HPAI) subtype H5N8 were introduced into North America by migrating waterfowl from Asia where, through reassortment, novel HPAI H5N2 and H5N1 viruses emerged. We sought to assess the susceptibility of pigs to North American HPAI cl...

  20. DMEK lenticule preparation using an air dissection technique: central versus peripheral injection.

    PubMed

    Feizi, Sepehr; Javadi, Mohammad Ali

    2016-01-01

    To compare 2 sites of air injection to prepare donor lenticules for Descemet membrane (DM) endothelial keratoplasty. Fifty-one human corneoscleral buttons from donors aged 4 to 57 years were used. Corneoscleral buttons were placed endothelial side up and a 27-G needle was inserted just outside Schwalbe line and advanced immediately beneath the endothelium. Air was injected centrally inside the 8-mm zone (group 1) or peripherally approximately 1 mm in front of the limbus (group 2). Air injection was continued to extend the DM detachment as far as possible into the corneal periphery. Comparisons of central versus peripheral air injection were performed for reproducibility, the rate of usable tissue, and the type and diameter of the acquired bubble. The mean donor age was 30.0 ± 12.9 years. A big bubble was achieved following central or peripheral air injection in all cases. A usable donor lenticule (≥ 8.0 mm) was achieved in 95.7% of cases in group 1 and 89.3% of cases in group 2 (p>0.99). Both injection sites were comparable with regard to the diameter of the achieved bubbles (9.57 ± 2.11 mm versus 10.22 ± 2.34 mm, respectively, p = 0.32), the chance of complete DM detachment (39.1% versus 53.6%, respectively, p = 0.25), and the risk of bubble bursting (4.4% versus 7.1%, respectively, p = 0.41). The odds of a type 2 bubble increased by 11.86 for peripheral air injections compared to central injections (p = 0.01). Both injection sites exhibited comparable rates of usable donor lenticules. However, peripheral air injection was more likely to yield stroma-free grafts.

  1. Effect of timed secondary-air injection on automotive emissions

    NASA Technical Reports Server (NTRS)

    Coffin, K. P.

    1973-01-01

    A single cylinder of an automotive V-8 engine was fitted with an electronically timed system for the pulsed injection of secondary air. A straight-tube exhaust minimized any mixing other than that produced by secondary-air pulsing. The device was operated over a range of engine loads and speeds. Effects attributable to secondary-air pulsing were found, but emission levels were generally no better than using the engine's own injection system. Under nontypical fast-idle, no-load conditions, emission levels were reduced by roughly a factor of 2.

  2. Prevalence of avian influenza virus in wild birds before and after the HPAI H5N8 outbreak in 2014 in South Korea.

    PubMed

    Shin, Jeong-Hwa; Woo, Chanjin; Wang, Seung-Jun; Jeong, Jipseol; An, In-Jung; Hwang, Jong-Kyung; Jo, Seong-Deok; Yu, Seung Do; Choi, Kyunghee; Chung, Hyen-Mi; Suh, Jae-Hwa; Kim, Seol-Hee

    2015-07-01

    Since 2003, highly pathogenic avian influenza (HPAI) virus outbreaks have occurred five times in Korea, with four HPAI H5N1 outbreaks and one HPAI H5N8 outbreak. Migratory birds have been suggested to be the first source of HPAI in Korea. Here, we surveyed migratory wild birds for the presence of AI and compared regional AI prevalence in wild birds from September 2012 to April 2014 for birds having migratory pathways in South Korea. Finally, we investigated the prevalence of AI in migratory birds before and after HPAI H5N8 outbreaks. Overall, we captured 1617 migratory wild birds, while 18,817 feces samples and 74 dead birds were collected from major wild bird habitats. A total of 21 HPAI viruses were isolated from dead birds, and 86 low pathogenic AI (LPAI) viruses were isolated from captured birds and from feces samples. Spatiotemporal distribution analysis revealed that AI viruses were spread southward until December, but tended to shift north after January, consistent with the movement of migratory birds in South Korea. Furthermore, we found that LPAI virus prevalences within wild birds were notably higher in 2013-2014 than the previous prevalence during the northward migration season. The data from our study demonstrate the importance of the surveillance of AI in wild birds. Future studies including in-depth genetic analysis in combination with evaluation of the movement and ecology of migratory birds might help us to bridge the gaps in our knowledge and better explain, predict, and ultimately prevent future HPAI outbreaks.

  3. Occurrence of intraocular air bubbles during intravitreal injections for retinopathy of prematurity.

    PubMed

    Sukgen, Emine Alyamac; Gunay, Murat; Kocluk, Yusuf

    2017-02-01

    This study aims to present five cases with retinopathy of prematurity (ROP) who were found to have intraocular air bubbles after intravitreal injection (IVI) treatment. The medical records of 148 infants who underwent IVI for ROP were retrospectively reviewed and the ones who demonstrated post-injection intraocular air bubble formation were recruited. Of the 148 patients (31 babies received ranibizumab, 20 babies received aflibercept, 97 babies received bevacizumab), five were found to have intraocular air bubbles right after the IVI. Two infants received intravitreal ranibizumab and three received intravitreal bevacizumab injections. Although intraocular pressure increased temporarily, no intraocular sterile or infective reactions were observed in the postoperative period. The air bubble was found to resorb spontaneously within 72 h. The occurrence rate of the intravitreal air bubbles in our series was 3.37 % despite previously not been reported in the literature. Due to the intravitreal air injection risk, it is important to be more careful while preparing the intravitreal medication before treatment in premature babies.

  4. Reduced injection pressures using a compressed air injection technique (CAIT): an in vitro study.

    PubMed

    Tsui, Ban C H; Knezevich, Mark P; Pillay, Jennifer J

    2008-01-01

    High injection pressures have been associated with intraneural injection and persistent neurological injury in animals. Our objective was to test whether a reported simple compressed air injection technique (CAIT) would limit the generation of injection pressures to below a suggested 1,034 mm Hg limit in an in vitro model. After ethics board approval, 30 consenting anesthesiologists injected saline into a semiclosed system. Injection pressures using 30 mL syringes connected to a 22 gauge needle and containing 20 mL of saline were measured for 60 seconds using: (1) a typical "syringe feel" method, and (2) CAIT, thereby drawing 10 mL of air above the saline and compressing this to 5 mL prior to and during injections. All anesthesiologists performed the syringe feel method before introduction and demonstration of CAIT. Using CAIT, no anesthesiologist generated pressures above 1,034 mm Hg, while 29 of 30 produced pressures above this limit at some time using the syringe feel method. The mean pressure using CAIT was lower (636 +/- 71 vs. 1378 +/- 194 mm Hg, P = .025), and the syringe feel method resulted in higher peak pressures (1,875 +/- 206 vs. 715 +/- 104 mm Hg, P = .000). This study demonstrated that CAIT can effectively keep injection pressures under 1,034 mm Hg in this in vitro model. Animal and clinical studies will be needed to determine whether CAIT will allow objective, real-time pressure monitoring. If high pressure injections are proven to contribute to nerve injury in humans, this technique may have the potential to improve the safety of peripheral nerve blocks.

  5. Effects of air injection on a turbocharged Teledyne Continential Motors TSIO-360-C engine

    NASA Technical Reports Server (NTRS)

    Cosgrove, D. V.; Kempke, E. E.

    1979-01-01

    A turbocharged fuel injected aircraft engine was operated over a range of test conditions that included that EPA five-mode emissions cycle and fuel air ratio variations for individual modes while injecting air into the exhaust gas. Air injection resulted in a decrease of hydrocarbons and carbon monoxide while exceeding the maximum recommended turbine inlet temperature of 1650 F at the full rich mixture of the engine. Leanout tests indicated that the EPA standards could be met through the combined use of fuel management and air injection.

  6. Supplemented vaccination with tandem repeat M2e virus-like particles enhances protection against homologous and heterologous HPAI H5 viruses in chickens.

    PubMed

    Song, Byung-Min; Kang, Hyun-Mi; Lee, Eun-Kyoung; Jung, Suk Chan; Kim, Min-Chul; Lee, Yu-Na; Kang, Sang-Moo; Lee, Youn-Jeong

    2016-01-27

    Highly pathogenic avian influenza (HPAI) H5 viruses derived from A/Goose/Guangdong/1/96 have been continuously circulating globally, severely affecting the public health and poultry industries. The matrix 2 protein ectodomain (M2e) is considered a promising candidate for a universal cross-protective influenza vaccine that provides more effective control over HPAI H5 viruses harboring variant hemagglutinin (HA)-antigens. Here, we evaluated the protective efficacy of a tandem repeat construct of heterologous M2e presented on virus-like particles (M2e5x VLPs) either alone or as a supplement against HPAI H5 viruses in a chicken model. Chickens immunized with M2e5x VLPs alone induced M2e-specific antibodies but were not protected against HPAI H5. The homo- and cross-protective efficacy of M2e5x VLP-supplemented vaccination of chickens was also examined. Importantly, supplementation with M2e5x VLPs induced significantly higher levels of antibodies specific for M2e and different viruses as well as provided improved protection against homologous and heterologous HPAI H5 viruses. Considering the limited efficacy of inactivated vaccines, supplement vaccination with M2e5x VLPs may be an effective measure for preventing outbreaks of HPAI viruses that have the ability to constantly change their antigenic properties in poultry. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Comparison of Descemet stripping under continuous air flow, manual air injection and balanced salt solution for DMEK: a pilot study.

    PubMed

    Gabbay, I E; Bahar, I; Nahum, Y; Livny, E

    2017-08-01

    Descemet's membrane endothelial keratoplasty (DMEK) involves removal of the recipient's Descemet membrane (DM) prior to transplanting the donor's DM. When using balanced salt solution (BSS) or ophthalmic viscosurgical devices (OVDs), visualization of the host's DM during its stripping may be inadequate and may result in Descemet remnants and could lead to sub-optimal surgical results. Previous articles described excellent visualization when utilizing air injection but this requires repeated air injection into the anterior chamber (AC). We present a pilot study that compares different techniques under which DM stripping can be performed: with continuous automated air infusion, with manual air infusion, and with BSS. We retrospectively compared video footage of DM stripping with BSS, with continuous air and with manual injection of air into the AC to determine DM stripping duration and the number of times the surgeon had to insert and retrieve a surgical instrument from the AC. Thirty videos of 10 consecutive cases of the three DM stripping techniques were evaluated. DM stripping duration was 3.26 (±1.32), 3.92 (±1.2) and 12.9 (±3.98) minutes for BSS, continuous air flow, and manual air injection, respectively. Frequency of instrument retrieval (FIR) was 3.6 (±1.71), 1.5 (±0.71) and 15.1 (±3.28) for BSS, continuous air flow, and manual air injection, respectively. Continuous air flow and BSS were both statistically different than manual air injection into the AC (p < 0.05), but did not differ from one another statistically. DM stripping during posterior lamellar surgery is imperative for favorable post-operative results and prevention of complications. Performing this step under air in the AC contributes to better visualization and an efficient surgery.

  8. Ecology and geography of avian influenza (HPAI H5N1) transmission in the Middle East and northeastern Africa

    PubMed Central

    Williams, Richard AJ; Peterson, A Townsend

    2009-01-01

    Background The emerging highly pathogenic avian influenza strain H5N1 ("HPAI-H5N1") has spread broadly in the past decade, and is now the focus of considerable concern. We tested the hypothesis that spatial distributions of HPAI-H5N1 cases are related consistently and predictably to coarse-scale environmental features in the Middle East and northeastern Africa. We used ecological niche models to relate virus occurrences to 8 km resolution digital data layers summarizing parameters of monthly surface reflectance and landform. Predictive challenges included a variety of spatial stratification schemes in which models were challenged to predict case distributions in broadly unsampled areas. Results In almost all tests, HPAI-H5N1 cases were indeed occurring under predictable sets of environmental conditions, generally predicted absent from areas with low NDVI values and minimal seasonal variation, and present in areas with a broad range of and appreciable seasonal variation in NDVI values. Although we documented significant predictive ability of our models, even between our study region and West Africa, case occurrences in the Arabian Peninsula appear to follow a distinct environmental regime. Conclusion Overall, we documented a variable environmental "fingerprint" for areas suitable for HPAI-H5N1 transmission. PMID:19619336

  9. Effect of species, breed and route of virus inoculation on the pathogenicity of H5N1 highly pathogenic influenza (HPAI) viruses in domestic ducks

    PubMed Central

    2013-01-01

    H5N1 highly pathogenic avian influenza (HPAI) viruses continue to be a threat to poultry in many regions of the world. Domestic ducks have been recognized as one of the primary factors in the spread of H5N1 HPAI. In this study we examined the pathogenicity of H5N1 HPAI viruses in different species and breeds of domestic ducks and the effect of route of virus inoculation on the outcome of infection. We determined that the pathogenicity of H5N1 HPAI viruses varies between the two common farmed duck species, with Muscovy ducks (Cairina moschata) presenting more severe disease than various breeds of Anas platyrhynchos var. domestica ducks including Pekin, Mallard-type, Black Runners, Rouen, and Khaki Campbell ducks. We also found that Pekin and Muscovy ducks inoculated with two H5N1 HPAI viruses of different virulence, given by any one of three routes (intranasal, intracloacal, or intraocular), became infected with the viruses. Regardless of the route of inoculation, the outcome of infection was similar for each species but depended on the virulence of the virus used. Muscovy ducks showed more severe clinical signs and higher mortality than the Pekin ducks. In conclusion, domestic ducks are susceptible to H5N1 HPAI virus infection by different routes of exposure, but the presentation of the disease varied by virus strain and duck species. This information helps support the planning and implementation of H5N1 HPAI surveillance and control measures in countries with large domestic duck populations. PMID:23876184

  10. Effect of species, breed and route of virus inoculation on the pathogenicity of H5N1 highly pathogenic influenza (HPAI) viruses in domestic ducks.

    PubMed

    Pantin-Jackwood, Mary; Swayne, David E; Smith, Diane; Shepherd, Eric

    2013-07-22

    H5N1 highly pathogenic avian influenza (HPAI) viruses continue to be a threat to poultry in many regions of the world. Domestic ducks have been recognized as one of the primary factors in the spread of H5N1 HPAI. In this study we examined the pathogenicity of H5N1 HPAI viruses in different species and breeds of domestic ducks and the effect of route of virus inoculation on the outcome of infection. We determined that the pathogenicity of H5N1 HPAI viruses varies between the two common farmed duck species, with Muscovy ducks (Cairina moschata) presenting more severe disease than various breeds of Anas platyrhynchos var. domestica ducks including Pekin, Mallard-type, Black Runners, Rouen, and Khaki Campbell ducks. We also found that Pekin and Muscovy ducks inoculated with two H5N1 HPAI viruses of different virulence, given by any one of three routes (intranasal, intracloacal, or intraocular), became infected with the viruses. Regardless of the route of inoculation, the outcome of infection was similar for each species but depended on the virulence of the virus used. Muscovy ducks showed more severe clinical signs and higher mortality than the Pekin ducks. In conclusion, domestic ducks are susceptible to H5N1 HPAI virus infection by different routes of exposure, but the presentation of the disease varied by virus strain and duck species. This information helps support the planning and implementation of H5N1 HPAI surveillance and control measures in countries with large domestic duck populations.

  11. Experimental feasibility study of radial injection cooling of three-pad radial air foil bearings

    NASA Astrophysics Data System (ADS)

    Shrestha, Suman K.

    Air foil bearings use ambient air as a lubricant allowing environment-friendly operation. When they are designed, installed, and operated properly, air foil bearings are very cost effective and reliable solution to oil-free turbomachinery. Because air is used as a lubricant, there are no mechanical contacts between the rotor and bearings and when the rotor is lifted off the bearing, near frictionless quiet operation is possible. However, due to the high speed operation, thermal management is one of the very important design factors to consider. Most widely accepted practice of the cooling method is axial cooling, which uses cooling air passing through heat exchange channels formed underneath the bearing pad. Advantage is no hardware modification to implement the axial cooling because elastic foundation structure of foil bearing serves as a heat exchange channels. Disadvantage is axial temperature gradient on the journal shaft and bearing. This work presents the experimental feasibility study of alternative cooling method using radial injection of cooling air directly on the rotor shaft. The injection speeds, number of nozzles, location of nozzles, total air flow rate are important factors determining the effectiveness of the radial injection cooling method. Effectiveness of the radial injection cooling was compared with traditional axial cooling method. A previously constructed test rig was modified to accommodate a new motor with higher torque and radial injection cooling. The radial injection cooling utilizes the direct air injection to the inlet region of air film from three locations at 120° from one another with each location having three axially separated holes. In axial cooling, a certain axial pressure gradient is applied across the bearing to induce axial cooling air through bump foil channels. For the comparison of the two methods, the same amount of cooling air flow rate was used for both axial cooling and radial injection. Cooling air flow rate was

  12. Secondary air injection system and method

    DOEpatents

    Wu, Ko-Jen; Walter, Darrell J.

    2014-08-19

    According to one embodiment of the invention, a secondary air injection system includes a first conduit in fluid communication with at least one first exhaust passage of the internal combustion engine and a second conduit in fluid communication with at least one second exhaust passage of the internal combustion engine, wherein the at least one first and second exhaust passages are in fluid communication with a turbocharger. The system also includes an air supply in fluid communication with the first and second conduits and a flow control device that controls fluid communication between the air supply and the first conduit and the second conduit and thereby controls fluid communication to the first and second exhaust passages of the internal combustion engine.

  13. Reducing ultrafine particle emissions using air injection in wood-burning cookstoves

    DOE PAGES

    Rapp, Vi H.; Caubel, Julien J.; Wilson, Daniel L.; ...

    2016-06-27

    In order to address the health risks and climate impacts associated with pollution from cooking on biomass fires, researchers have focused on designing new cookstoves that improve cooking performance and reduce harmful emissions, specifically particulate matter (PM). One method for improving cooking performance and reducing emissions is using air injection to increase turbulence of unburned gases in the combustion zone. Although air injection reduces total PM mass emissions, the effect on PM size-distribution and number concentration has not been thoroughly investigated. Using two new wood-burning cookstove designs from Lawrence Berkeley National Laboratory, this research explores the effect of air injectionmore » on cooking performance, PM and gaseous emissions, and PM size distribution and number concentration. Both cookstoves were created using the Berkeley-Darfur Stove as the base platform to isolate the effects of air injection. The thermal performance, gaseous emissions, PM mass emissions, and particle concentrations (ranging from 5 nm to 10 μm in diameter) of the cookstoves were measured during multiple high-power cooking tests. Finally, the results indicate that air injection improves cookstove performance and reduces total PM mass but increases total ultrafine (less than 100 nm in diameter) PM concentration over the course of high-power cooking.« less

  14. Reducing ultrafine particle emissions using air injection in wood-burning cookstoves

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rapp, Vi H.; Caubel, Julien J.; Wilson, Daniel L.

    In order to address the health risks and climate impacts associated with pollution from cooking on biomass fires, researchers have focused on designing new cookstoves that improve cooking performance and reduce harmful emissions, specifically particulate matter (PM). One method for improving cooking performance and reducing emissions is using air injection to increase turbulence of unburned gases in the combustion zone. Although air injection reduces total PM mass emissions, the effect on PM size-distribution and number concentration has not been thoroughly investigated. Using two new wood-burning cookstove designs from Lawrence Berkeley National Laboratory, this research explores the effect of air injectionmore » on cooking performance, PM and gaseous emissions, and PM size distribution and number concentration. Both cookstoves were created using the Berkeley-Darfur Stove as the base platform to isolate the effects of air injection. The thermal performance, gaseous emissions, PM mass emissions, and particle concentrations (ranging from 5 nm to 10 μm in diameter) of the cookstoves were measured during multiple high-power cooking tests. Finally, the results indicate that air injection improves cookstove performance and reduces total PM mass but increases total ultrafine (less than 100 nm in diameter) PM concentration over the course of high-power cooking.« less

  15. Centrifugal Compressor Surge Margin Improved With Diffuser Hub Surface Air Injection

    NASA Technical Reports Server (NTRS)

    Skoch, Gary J.

    2002-01-01

    Aerodynamic stability is an important parameter in the design of compressors for aircraft gas turbine engines. Compression system instabilities can cause compressor surge, which may lead to the loss of an aircraft. As a result, engine designers include a margin of safety between the operating line of the engine and the stability limit line of the compressor. The margin of safety is typically referred to as "surge margin." Achieving the highest possible level of surge margin while meeting design point performance objectives is the goal of the compressor designer. However, performance goals often must be compromised in order to achieve adequate levels of surge margin. Techniques to improve surge margin will permit more aggressive compressor designs. Centrifugal compressor surge margin improvement was demonstrated at the NASA Glenn Research Center by injecting air into the vaned diffuser of a 4:1-pressure-ratio centrifugal compressor. Tests were performed using injector nozzles located on the diffuser hub surface of a vane-island diffuser in the vaneless region between the impeller trailing edge and the diffuser-vane leading edge. The nozzle flow path and discharge shape were designed to produce an air stream that remained tangent to the hub surface as it traveled into the diffuser passage. Injector nozzles were located near the leading edge of 23 of the 24 diffuser vanes. One passage did not contain an injector so that instrumentation located in that passage would be preserved. Several orientations of the injected stream relative to the diffuser vane leading edge were tested over a range of injected flow rates. Only steady flow (nonpulsed) air injection was tested. At 100 percent of the design speed, a 15-percent improvement in the baseline surge margin was achieved with a nozzle orientation that produced a jet that was bisected by the diffuser vane leading edge. Other orientations also improved the baseline surge margin. Tests were conducted at speeds below the

  16. Chinese farmers' willingness to accept compensation to practice safe disposal of HPAI infected chicken.

    PubMed

    Huang, Zeying; Wang, Jimin; Zuo, Alec

    2017-04-01

    Highly Pathogenic Avian Influenza (HPAI) is a high morbidity and mortality zoonotic disease, which threatens poultry and human health. An outbreak of disease in China requires strict slaughter and disposal of all chickens within a three-kilometer radius, incurring large private costs for farmers and encouraging black market transactions. A stated preference survey of 331 farmers across six provinces in China was conducted in 2015, in order to measure the responsiveness of farmers to accept various compensation prices for safely disposing of HPAI infected chicken. Findings suggest that about 25% and 40% of farmers in South and North China respectively would not adopt safe disposal at the current compensation price (10 yuan/bird) offered by the government. However, 80% of farmers would adopt safe disposal if the compensation price increased to 14.1 yuan in South China and 18.9 yuan in North China. The adoption of safe disposal by farmers was positively and significantly influenced by compensation price (p=0.000) and regular contact with epidemic prevention staff (p=0.094). However, adoption was negatively and significantly influenced by net farm income (p=0.100) and chicken production income percentage (p=0.014). Although half of (51%) of farmers were willing to receive zero compensation, a reasonable compensation scheme along with strengthened supervision, may be considered the most effective strategy to encourage safe disposal of HPAI infected chicken and reduce the risks associated with black market transactions. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Air injection test on a Kaplan turbine: prototype - model comparison

    NASA Astrophysics Data System (ADS)

    Angulo, M.; Rivetti, A.; Díaz, L.; Liscia, S.

    2016-11-01

    Air injection is a very well-known resource to reduce pressure pulsation magnitude in turbines, especially on Francis type. In the case of large Kaplan designs, even when not so usual, it could be a solution to mitigate vibrations arising when tip vortex cavitation phenomenon becomes erosive and induces structural vibrations. In order to study this alternative, aeration tests were performed on a Kaplan turbine at model and prototype scales. The research was focused on efficiency of different air flow rates injected in reducing vibrations, especially at the draft tube and the discharge ring and also in the efficiency drop magnitude. It was found that results on both scales presents the same trend in particular for vibration levels at the discharge ring. The efficiency drop was overestimated on model tests while on prototype were less than 0.2 % for all power output. On prototype, air has a beneficial effect in reducing pressure fluctuations up to 0.2 ‰ of air flow rate. On model high speed image computing helped to quantify the volume of tip vortex cavitation that is strongly correlated with the vibration level. The hydrophone measurements did not capture the cavitation intensity when air is injected, however on prototype, it was detected by a sonometer installed at the draft tube access gallery.

  18. Migration of Waterfowl in the East Asian Flyway and Spatial Relationship to HPAI H5N1 Outbreaks

    PubMed Central

    Takekawa, John Y.; Newman, Scott H.; Xiao, Xiangming; Prosser, Diann J.; Spragens, Kyle A.; Palm, Eric C.; Yan, Baoping; Li, Tianxian; Lei, Fumin; Zhao, Delong; Douglas, David C.; Muzaffar, Sabir Bin; Ji, Weitao

    2016-01-01

    SUMMARY Poyang Lake is situated within the East Asian Flyway, a migratory corridor for waterfowl that also encompasses Guangdong Province, China, the epicenter of highly pathogenic avian influenza (HPAI) H5N1. The lake is the largest freshwater body in China and a significant congregation site for waterfowl; however, surrounding rice fields and poultry grazing have created an overlap with wild waterbirds, a situation conducive to avian influenza transmission. Reports of HPAI H5N1 in healthy wild ducks at Poyang Lake have raised concerns about the potential of resilient free-ranging birds to disseminate the virus. Yet the role wild ducks play in connecting regions of HPAI H5N1 outbreak in Asia is hindered by a lack of information about their migratory ecology. During 2007–08 we marked wild ducks at Poyang Lake with satellite transmitters to examine the location and timing of spring migration and identify any spatiotemporal relationship with HPAI H5N1 outbreaks. Species included the Eurasian wigeon (Anas penelope), northern pintail (Anas acuta), common teal (Anas crecca), falcated teal (Anas falcata), Baikal teal (Anas formosa), mallard (Anas platyrhynchos), garganey (Anas querquedula), and Chinese spotbill (Anas poecilohyncha). These wild ducks (excluding the resident mallard and Chinese spotbill ducks) followed the East Asian Flyway along the coast to breeding areas in northern China, eastern Mongolia, and eastern Russia. None migrated west toward Qinghai Lake (site of the largest wild bird epizootic), thus failing to demonstrate any migratory connection to the Central Asian Flyway. A newly developed Brownian bridge spatial analysis indicated that HPAI H5N1 outbreaks reported in the flyway were related to latitude and poultry density but not to the core migration corridor or to wetland habitats. Also, we found a temporal mismatch between timing of outbreaks and wild duck movements. These analyses depend on complete or representative reporting of outbreaks, but by

  19. Migration of waterfowl in the East Asian flyway and spatial relationship to HPAI H5N1 outbreaks.

    PubMed

    Takekawa, John Y; Newman, Scott H; Xiao, Xiangming; Prosser, Diann J; Spragens, Kyle A; Palm, Eric C; Yan, Baoping; Li, Tianxian; Lei, Fumin; Zhao, Delong; Douglas, David C; Muzaffar, Sabir Bin; Ji, Weitao

    2010-03-01

    Poyang Lake is situated within the East Asian Flyway, a migratory corridor for waterfowl that also encompasses Guangdong Province, China, the epicenter of highly pathogenic avian influenza (HPAI) H5N1. The lake is the largest freshwater body in China and a significant congregation site for waterfowl; however, surrounding rice fields and poultry grazing have created an overlap with wild waterbirds, a situation conducive to avian influenza transmission. Reports of HPAI H5N1 in healthy wild ducks at Poyang Lake have raised concerns about the potential of resilient free-ranging birds to disseminate the virus. Yet the role wild ducks play in connecting regions of HPAI H5N1 outbreak in Asia is hindered by a lack of information about their migratory ecology. During 2007-08 we marked wild ducks at Poyang Lake with satellite transmitters to examine the location and timing of spring migration and identify any spatiotemporal relationship with HPAI H5N1 outbreaks. Species included the Eurasian wigeon (Anas penelope), northern pintail (Anas acuta), common teal (Anas crecca), falcated teal (Anas falcata), Baikal teal (Anas formosa), mallard (Anas platyrhynchos), garganey (Anas querquedula), and Chinese spotbill (Anas poecilohyncha). These wild ducks (excluding the resident mallard and Chinese spotbill ducks) followed the East Asian Flyway along the coast to breeding areas in northern China, eastern Mongolia, and eastern Russia. None migrated west toward Qinghai Lake (site of the largest wild bird epizootic), thus failing to demonstrate any migratory connection to the Central Asian Flyway. A newly developed Brownian bridge spatial analysis indicated that HPAI H5N1 outbreaks reported in the flyway were related to latitude and poultry density but not to the core migration corridor or to wetland habitats. Also, we found a temporal mismatch between timing of outbreaks and wild duck movements. These analyses depend on complete or representative reporting of outbreaks, but by

  20. Novel air-injection technique to locate the medial cut end of lacerated canaliculus.

    PubMed

    Liu, Bingqian; Li, Yonghao; Long, Chongde; Wang, Zhonghao; Liang, Xuanwei; Ge, Jian; Wang, Zhichong

    2013-12-01

    Locating the medial cut end of the severed canaliculus is the most difficult aspect of canalicular repair, especially in patients with more medial laceration, severe oedema, persistent errhysis and a narrow canaliculus. Irrigation is a widely used technique to identify the cut end; however, we found that air injected through the intact canaliculus with a straight needle failed to reflux when the common canaliculus or lacrimal sac was not blocked. We describe a simple, safe and efficient air-injection technique to identify the medial cut edge of a lacerated canaliculus. In this method, we initially submersed the medial canthus under normal saline, then injected filtered air through the intact canaliculus using a side port stainless steel probe with a closed round tip. The tip was designed to block the common canaliculus to form a relatively closed system. The efficiency of this novel air-injection technique was equivalent to the traditional technique but does not require the cooperation of the patient to blow air. Using this technique, the medial cut end was successfully identified by locating the air-bubble exit within minutes in 19 cases of mono-canalicular laceration without any complication.

  1. Associations between attributes of live poultry trade and HPAI H5N1 outbreaks: a descriptive and network analysis study in northern Vietnam.

    PubMed

    Soares Magalhães, Ricardo J; Ortiz-Pelaez, Angel; Thi, Kim Lan Lai; Dinh, Quoc Hoang; Otte, Joachim; Pfeiffer, Dirk U

    2010-02-22

    The structure of contact between individuals plays an important role in the incursion and spread of contagious diseases in both human and animal populations. In the case of avian influenza, the movement of live birds is a well known risk factor for the geographic dissemination of the virus among poultry flocks. Live bird markets (LBM's) contribute to the epidemiology of avian influenza due to their demographic characteristics and the presence of HPAI H5N1 virus lineages. The relationship between poultry producers and live poultry traders (LPT's) that operate in LBM's has not been adequately documented in HPAI H5N1-affected SE Asian countries. The aims of this study were to document and study the flow of live poultry in a poultry trade network in northern Vietnam, and explore its potential role in the risk for HPAI H5N1 during 2003 to 2006. Our results indicate that LPT's trading for less than a year and operating at retail markets are more likely to source poultry from flocks located in communes with a past history of HPAI H5N1 outbreaks during 2003 to 2006 than LPT's trading longer than a year and operating at wholesale markets. The results of the network analysis indicate that LPT's tend to link communes of similar infection status. Our study provides evidence which can be used for informing policies aimed at encouraging more biosecure practices of LPT's operating at authorised LBM's. The results suggest that LPT's play a role in HPAI H5N1 transmission and may contribute to perpetuating HPAI H5N1 virus circulation amongst certain groups of communes. The impact of current disease prevention and control interventions could be enhanced by disseminating information about outbreak risk and the implementation of a formal data recording scheme at LBM's for all incoming and outgoing LPT's.

  2. CONCURRENT INJECTION OF COSOLVENT AND AIR FOR ENHANCED PCE REMOVAL

    EPA Science Inventory

    The goal of this study was to use preferential flow of air to improve the dynamics of cosolvent displacement in order to enhance DNAPL displacement and dissolution. The concurrent injection of cosolvent and air was evaluated in a glass micromodel for a DNAPL remediation technolog...

  3. Spatio-Temporal Data Comparisons for Global Highly Pathogenic Avian Influenza (HPAI) H5N1 Outbreaks

    PubMed Central

    Chen, Dongmei; Chen, Yue; Wang, Lei; Zhao, Fei; Yao, Baodong

    2010-01-01

    Highly pathogenic avian influenza subtype H5N1 is a zoonotic disease and control of the disease is one of the highest priority in global health. Disease surveillance systems are valuable data sources for various researches and management projects, but the data quality has not been paid much attention in previous studies. Based on data from two commonly used databases (Office International des Epizooties (OIE) and Food and Agriculture Organization of the United Nations (FAO)) of global HPAI H5N1 outbreaks during the period of 2003–2009, we examined and compared their patterns of temporal, spatial and spatio-temporal distributions for the first time. OIE and FAO data showed similar trends in temporal and spatial distributions if they were considered separately. However, more advanced approaches detected a significant difference in joint spatio-temporal distribution. Because of incompleteness for both OIE and FAO data, an integrated dataset would provide a more complete picture of global HPAI H5N1 outbreaks. We also displayed a mismatching profile of global HPAI H5N1 outbreaks and found that the degree of mismatching was related to the epidemic severity. The ideas and approaches used here to assess spatio-temporal data on the same disease from different sources are useful for other similar studies. PMID:21187964

  4. Migration of waterfowl in the east asian flyway and spatial relationship to HPAI H5N1 outbreaks

    USGS Publications Warehouse

    Takekawa, John Y.; Newman, S.H.; Xiao, X.; Prosser, D.J.; Spragens, K.A.; Palm, E.C.; Yan, B.; Li, T.; Lei, F.; Zhao, D.; Douglas, David C.; Muzaffar, S.B.; Ji, W.

    2010-01-01

    Poyang Lake is situated within the East Asian Flyway, a migratory corridor for waterfowl that also encompasses Guangdong Province, China, the epicenter of highly pathogenic avian influenza (HPAI) H5N1. The lake is the largest freshwater body in China and a significant congregation site for waterfowl; however, surrounding rice fields and poultry grazing have created an overlap with wild waterbirds, a situation conducive to avian influenza transmission. Reports of HPAI H5N1 in healthy wild ducks at Poyang Lake have raised concerns about the potential of resilient free-ranging birds to disseminate the virus. Yet the role wild ducks play in connecting regions of HPAI H5N1 outbreak in Asia is hindered by a lack of information about their migratory ecology. During 2007-08 we marked wild ducks at Poyang Lake with satellite transmitters to examine the location and timing of spring migration and identify any spatiotemporal relationship with HPAI H5N1 outbreaks. Species included the Eurasian wigeon (Anas penelope), northern pintail (Anas acuta), common teal (Anas crecca), falcated teal (Anas falcata), Baikal teal (Anas formosa), mallard (Anas platyrhynchos), garganey (Anas querquedula), and Chinese spotbill (Anas poecilohyncha). These wild ducks (excluding the resident mallard and Chinese spotbill ducks) followed the East Asian Flyway along the coast to breeding areas in northern China, eastern Mongolia, and eastern Russia. None migrated west toward Qinghai Lake (site of the largest wild bird epizootic), thus failing to demonstrate any migratory connection to the Central Asian Flyway. A newly developed Brownian bridge spatial analysis indicated that HPAI H5N1 outbreaks reported in the flyway were related to latitude and poultry density but not to the core migration corridor or to wetland habitats. Also, we found a temporal mismatch between timing of outbreaks and wild duck movements. These analyses depend on complete or representative reporting of outbreaks, but by

  5. Knowledge and Perceptions of Highly Pathogenic Avian Influenza (HPAI) among Poultry Traders in Live Bird Markets in Bali and Lombok, Indonesia

    PubMed Central

    Kurscheid, Johanna; Millar, Joanne; Abdurrahman, Muktasam; Ambarawati, I Gusti Agung Ayu; Suadnya, Wayan; Yusuf, Ria Puspa; Fenwick, Stanley; Toribio, Jenny-Ann L. M. L

    2015-01-01

    Highly Pathogenic Avian Influenza (HPAI) has been prevalent in Indonesia since 2003 causing major losses to poultry production and human deaths. Live bird markets are considered high risk areas due to the density of large numbers of mixed poultry species of unknown disease status. Understanding trader knowledge and perceptions of HPAI and biosecurity is critical to reducing transmission risk and controlling the disease. An interview-administered survey was conducted at 17 live bird markets on the islands of Bali and Lombok in 2008 and 2009. A total of 413 live poultry traders were interviewed. Respondents were mostly male (89%) with a mean age of 45 years (range: 19–81). The main source of AI information was TV (78%), although personal communication was also identified to be an important source, particularly among female traders (60%) and respondents from Bali (43%). More than half (58%) of live poultry traders interviewed knew that infected birds can transmit HPAI viruses but were generally unaware that viruses can be introduced to markets by fomites. Cleaning cages and disposing of sick and dead birds were recognized as the most important steps to prevent the spread of disease by respondents. Two thirds (n = 277) of respondents were unwilling to report sudden or suspicious bird deaths to authorities. Bali vendors perceive biosecurity to be of higher importance than Lombok vendors and are more willing to improve biosecurity within markets than traders in Lombok. Collectors and traders selling large numbers (>214) of poultry, or selling both chickens and ducks, have better knowledge of HPAI transmission and prevention than vendors or traders selling smaller quantities or only one species of poultry. Education was strongly associated with better knowledge but did not influence positive reporting behavior. Our study reveals that most live poultry traders have limited knowledge of HPAI transmission and prevention and are generally reluctant to report bird deaths

  6. Knowledge and Perceptions of Highly Pathogenic Avian Influenza (HPAI) among Poultry Traders in Live Bird Markets in Bali and Lombok, Indonesia.

    PubMed

    Kurscheid, Johanna; Millar, Joanne; Abdurrahman, Muktasam; Ambarawati, I Gusti Agung Ayu; Suadnya, Wayan; Yusuf, Ria Puspa; Fenwick, Stanley; Toribio, Jenny-Ann L M L

    2015-01-01

    Highly Pathogenic Avian Influenza (HPAI) has been prevalent in Indonesia since 2003 causing major losses to poultry production and human deaths. Live bird markets are considered high risk areas due to the density of large numbers of mixed poultry species of unknown disease status. Understanding trader knowledge and perceptions of HPAI and biosecurity is critical to reducing transmission risk and controlling the disease. An interview-administered survey was conducted at 17 live bird markets on the islands of Bali and Lombok in 2008 and 2009. A total of 413 live poultry traders were interviewed. Respondents were mostly male (89%) with a mean age of 45 years (range: 19-81). The main source of AI information was TV (78%), although personal communication was also identified to be an important source, particularly among female traders (60%) and respondents from Bali (43%). More than half (58%) of live poultry traders interviewed knew that infected birds can transmit HPAI viruses but were generally unaware that viruses can be introduced to markets by fomites. Cleaning cages and disposing of sick and dead birds were recognized as the most important steps to prevent the spread of disease by respondents. Two thirds (n = 277) of respondents were unwilling to report sudden or suspicious bird deaths to authorities. Bali vendors perceive biosecurity to be of higher importance than Lombok vendors and are more willing to improve biosecurity within markets than traders in Lombok. Collectors and traders selling large numbers (>214) of poultry, or selling both chickens and ducks, have better knowledge of HPAI transmission and prevention than vendors or traders selling smaller quantities or only one species of poultry. Education was strongly associated with better knowledge but did not influence positive reporting behavior. Our study reveals that most live poultry traders have limited knowledge of HPAI transmission and prevention and are generally reluctant to report bird deaths

  7. Fuel-Air Injection Effects on Combustion in Cavity-Based Flameholders in a Supersonic Flow

    DTIC Science & Technology

    2005-03-01

    both fuel and air provided additional capability to tune the cavity such that a more stable decentralized flame results. The addition of air...Mark Gruber of AFRL/PRAS and Mr. Mark Hsu of Innovative Scientific Solutions Inc. for both the support and latitude provided to me in this endeavor...addition of direct air injection to cavity combustion. Direct injection of both fuel and air provided additional capability to tune the cavity such that a

  8. Associations between attributes of live poultry trade and HPAI H5N1 outbreaks: a descriptive and network analysis study in northern Vietnam

    PubMed Central

    2010-01-01

    Background The structure of contact between individuals plays an important role in the incursion and spread of contagious diseases in both human and animal populations. In the case of avian influenza, the movement of live birds is a well known risk factor for the geographic dissemination of the virus among poultry flocks. Live bird markets (LBM's) contribute to the epidemiology of avian influenza due to their demographic characteristics and the presence of HPAI H5N1 virus lineages. The relationship between poultry producers and live poultry traders (LPT's) that operate in LBM's has not been adequately documented in HPAI H5N1-affected SE Asian countries. The aims of this study were to document and study the flow of live poultry in a poultry trade network in northern Vietnam, and explore its potential role in the risk for HPAI H5N1 during 2003 to 2006. Results Our results indicate that LPT's trading for less than a year and operating at retail markets are more likely to source poultry from flocks located in communes with a past history of HPAI H5N1 outbreaks during 2003 to 2006 than LPT's trading longer than a year and operating at wholesale markets. The results of the network analysis indicate that LPT's tend to link communes of similar infection status. Conclusions Our study provides evidence which can be used for informing policies aimed at encouraging more biosecure practices of LPT's operating at authorised LBM's. The results suggest that LPT's play a role in HPAI H5N1 transmission and may contribute to perpetuating HPAI H5N1 virus circulation amongst certain groups of communes. The impact of current disease prevention and control interventions could be enhanced by disseminating information about outbreak risk and the implementation of a formal data recording scheme at LBM's for all incoming and outgoing LPT's. PMID:20175881

  9. An Egyptian HPAI H5N1 isolate from clade 2.2.1.2 is highly pathogenic in an experimentally infected domestic duck breed (Sudani duck).

    PubMed

    Samir, M; Hamed, M; Abdallah, F; Kinh Nguyen, V; Hernandez-Vargas, E A; Seehusen, F; Baumgärtner, W; Hussein, A; Ali, A A H; Pessler, F

    2018-06-01

    The highly pathogenic avian influenza (HPAI) H5N1 viruses continue to cause major problems in poultry and can, although rarely, cause human infection. Being enzootic in domestic poultry, Egyptian isolates are continuously evolving, and novel clades vary in their pathogenicity in avian hosts. Considering the importance of domestic ducks as natural hosts of HPAI H5N1 viruses and their likelihood of physical contact with other avian hosts and humans, it is of utmost importance to characterize the pathogenicity of newly emerged HPAI strains in the domestic duck. The most recently identified Egyptian clade 2.2.1.2 HPAI H5N1 viruses have been isolated from naturally infected pigeons, turkeys and humans. However, essentially nothing is known about their pathogenicity in domestic ducks. We therefore characterized the pathogenicity of an Egyptian HPAI H5N1 isolate A/chicken/Faquos/amn12/2011 (clade 2.2.1.2) in Sudani duck, a domestic duck breed commonly reared in Egypt. While viral transcription (HA mRNA) was highest in lung, heart and kidney peaking between 40 and 48 hpi, lower levels were detected in brain. Weight loss of infected ducks started at 16 hpi and persisted until 120 hpi. The first severe clinical signs were noted by 32 hpi and peaked in severity at 72 and 96 hpi. Haematological analyses showed a decline in total leucocytes, granulocytes, platelets and granulocyte/lymphocyte ratio, but lymphocytosis. Upon necropsy, lesions were obvious in heart, liver, spleen and pancreas and consisted mainly of necrosis and petechial haemorrhage. Histologically, lungs were the most severely affected organs, whereas brain only showed mild neuronal degeneration and gliosis at 48 hpi despite obvious neurological clinical signs. Taken together, our results provide first evidence that this HPAI H5N1 isolate (clade 2.2.1.2) is highly pathogenic to Sudani ducks and highlight the importance of this breed as potential reservoir and disseminator of HPAI strains from this clade.

  10. Hot air injection for removal of dense, non-aqueous-phase liquid contaminants from low-permeability soils

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Payne, F.C.

    1996-08-01

    The performance of soil vapor extraction systems for the recovery of volatile and semi-volatile organic compounds is potentially enhanced by the injection of heated air to increase soil temperatures. The soil temperature increase is expected to improve soil vapor extraction (SVE) performance by increasing target compound vapor pressures and by increasing soil permeability through drying. The vapor pressure increase due to temperature rise relieves the vapor pressure limit on the feasibility of soil vapor extraction. However, the system still requires an air flow through the soil system to deliver heat and to recover mobilized contaminants. Although the soil permeability canmore » be increased through drying, very low permeability soils and low permeability soils adjacent to high permeability air flow pathways will be treated slowly, if at all. AR thermal enhancement methods face this limitation. Heated air injection offers advantages relative to other thermal techniques, including low capital and operation costs. Heated air injection is at a disadvantage relative to other thermal techniques due to the low heat capacity of air. To be effective, heated air injection requires that higher air flows be established than for steam injection or radio frequency heating. Heated air injection is not economically feasible for the stratified soil system developed as a standard test for this document. This is due to the inability to restrict heated air flow to the clay stratum when a low-resistance air flow pathway is available in the adjoining sand. However, the technology should be especially attractive, both technically and economically, for low-volatile contaminant recovery from relatively homogeneous soil formations. 16 refs., 2 tabs.« less

  11. Wintertime Air-Sea Gas Transfer Rates and Air Injection Fluxes at Station Papa in the NE Pacific

    NASA Astrophysics Data System (ADS)

    McNeil, C.; Steiner, N.; Vagle, S.

    2008-12-01

    In recent studies of air-sea fluxes of N2 and O2 in hurricanes, McNeil and D'Asaro (2007) used a simplified model formulation of air-sea gas flux to estimate simultaneous values of gas transfer rate, KT, and air injection flux, VT. The model assumes air-sea gas fluxes at high to extreme wind speeds can be explained by a combination of two processes: 1) air injection, by complete dissolution of small bubbles drawn down into the ocean boundary layer by turbulent currents, and 2) near-surface equilibration processes, such as occurs within whitecaps. This analysis technique relies on air-sea gas flux estimates for two gases, N2 and O2, to solve for the two model parameters, KT and VT. We present preliminary results of similar analysis of time series data collected during winter storms at Station Papa in the NE Pacific during 2003/2004. The data show a clear increase in KT and VT with increasing NCEP derived wind speeds and acoustically measured bubble penetration depth.

  12. Performance of a multiple venturi fuel-air preparation system. [fuel injection for gas turbines

    NASA Technical Reports Server (NTRS)

    Tacina, R. R.

    1979-01-01

    Spatial fuel-air distributions, degree of vaporization, and pressure drop were measured 16.5 cm downstream of the fuel injection plane of a multiple Venturi tube fuel injector. Tests were performed in a 12 cm tubular duct. Test conditions were: a pressure of 0.3 MPa, inlet air temperature from 400 to 800K, air velocities of 10 and 20 m/s, and fuel-air ratios of 0.010 and 0.020. The fuel was Diesel #2. Spatial fuel-air distributions were within + or - 20 percent of the mean at inlet air temperatures above 450K. At an inlet air temperature of 400K, the fuel-air distribution was measured when a 50 percent blockage plate was placed 9.2 cm upstream of the fuel injection plane to distort the inlet air velocity fuel injection plane to distort the inlet air velocity profile. Vaporization of the fuel was 50 percent complete at an inlet air temperature of 400K and the percentage increased linearly with temperature to complete vaporization at 600K. The pressure drop was 3 percent at the design point which was three times greater than the designed value and the single tube experiment value. No autoignition or flashback was observed at the conditions tested.

  13. Collective resistance to HPAI H5N1 surveillance in the Thai cockfighting community: Insights from a social anthropology study.

    PubMed

    Paul, Mathilde C; Figuié, Muriel; Kovitvadhi, Attawit; Valeix, Sophie; Wongnarkpet, Sirichai; Poolkhet, Chaithep; Kasemsuwan, Suwicha; Ducrot, Christian; Roger, François; Binot, Aurélie

    2015-06-01

    Farmers may organize themselves to collectively manage risks such as animal diseases. Our study shows some evidence of such organization among fighting cock owners in Thailand. Fighting cocks were specifically targeted by HPAI (Highly Pathogenic Avian Influenza) H5N1 surveillance and control measures in Thailand because they were thought to pose a high risk of spreading diseases. In this work, we used a social-anthropological approach to gain an inside view of the issues associated with HPAI H5N1 surveillance in the cockfighting community in Thailand. Based on a qualitative analysis of data collected through in-depth interviews and observation of cockfighters' practices, we found that fighting cock owners share a sense of belonging to the same community based on a common culture, values, interests, practices, and internal rules, including rules to manage poultry diseases. During the HPAI H5N1 outbreaks, these rules may have contributed to mitigating the potential risk associated with the intense movements of fighting cocks inside the country. Nevertheless, this community, despite the high awareness and know-how of its members regarding poultry diseases, has shown a strong reluctance to comply with HPAI surveillance programs. We suggest that this reluctance is due to important gaps between the logic and rationales underlying surveillance and those associated with cockfighting activities. Our study highlights the need for multi and trans-disciplinary research involving the social sciences to analyze interactions between stakeholders and the collective actions implemented by communities to face risks. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Efficacy of using an air arthrogram for EUA and injection of the hip joint in adults.

    PubMed

    Shahid, Mohammad; Shyamsundar, Srinivasan; Bali, Navi; McBryde, Callum; O'Hara, John; Bache, Edward

    2014-09-01

    Hip arthrography usually requires the injection of iodine based dyes which can cause complications. We wanted to determine the accuracy of using air for hip arthrography. A prospective study was undertaken including all adults who had a hip arthrogram. We initially did an air arthrogram and subsequently injected iohexol to see if we were still in the joint. Forty injections were done. Mean age 32 years. There was a 100% success rate with obtaining a positive air arthrogram. Air arthrogram of the hip offers a safe, cost free and accurate alternative to iodine based arthrograms.

  15. Rotary piston engine equipped with an improved air or fuel injection opening

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sasaki, Y.

    An improved air or fuel injection opening is described for a rotary piston engine having a trochoidal inner surface of a center housing and an eccentrically rotating polygonal rotor. The air or fuel injection opening provided in a side housing wall is confined within a region limited so as to be outside of an outer envelope of traces of a side seal and inside an outer corner seal, with the opening having a contour smaller than that of the corner seal.

  16. Optimization of air injection parameters toward optimum fuel saving effect for ships

    NASA Astrophysics Data System (ADS)

    Lee, Inwon; Park, Seong Hyeon

    2016-11-01

    Air lubrication method is the most promising commercial strategy for the frictional drag reduction of ocean going vessels. Air bubbles are injected through the array of holes or the slots installed onto the flat bottom surface of vessel and a sufficient supply of air is required to ensure the formation of stable air layer by the by the coalescence of the bubbles. The air layer drag reduction becomes economically meaningful when the power gain through the drag reduction exceeds the pumping power consumption. In this study, a model ship of 50k medium range tanker is employed to investigate air lubrication method. The experiments were conducted in the 100m long towing tank facility at the Pusan National University. To create the effective air lubrication with lower air flow rate, various configurations including the layout of injection holes, employment of side fences and static trim have been tested. In the preliminary series of model tests, the maximum 18.13%(at 15kts) of reduction of model resistance was achieved. This research was supported by the National Research Foundation of Korea (NRF) Grant funded by the Korea government (MEST) through GCRC-SOP (Grant No. 2011-0030013).

  17. Understanding the potential dispersal of HPAI H5N1 virus by migratory wildfowl

    USGS Publications Warehouse

    Gaidet, Nicolas; Cappelle, Julien; Takekawa, John Y.; Prosser, Diann J.; Iverson, Samuel A.; Douglas, David C.; Perry, William M.; Mundkur, Taej; Newman, Scott H.

    2010-01-01

    We analysed wildfowl movements between 2006-2009, including 228 birds from 19 species, part of a larger international programme (see Figure 1) coordinated by the Food and Agricultural Organisation (FAO) of the United Nations aimed at understanding if there are temporal or spatial relationships between HPAI H5N1 outbreaks and movements of migratory wildfowl, the first large scale data set available for such an analysis.

  18. Turnover of Village Chickens Undermines Vaccine Coverage to Control HPAI H5N1.

    PubMed

    Villanueva-Cabezas, J P; Campbell, P T; McCaw, J M; Durr, P A; McVernon, J

    2017-02-01

    Highly pathogenic avian influenza (HPAI) subtype H5N1 remains an enzootic disease of village chickens in Indonesia, posing ongoing risk at the animal-human interface. Previous modelling showed that the fast natural turnover of chicken populations might undermine herd immunity after vaccination, although actual details of how this effect applies to Indonesia's village chicken population have not been determined. We explored the turnover effect in Indonesia's scavenging and mixed populations of village chickens using an extended Leslie matrix model parameterized with data collected from village chicken flocks in Java region, Indonesia. Population dynamics were simulated for 208 weeks; the turnover effect was simulated for 16 weeks after vaccination in two 'best case' scenarios, where the whole population (scenario 1), or birds aged over 14 days (scenario 2), were vaccinated. We found that the scavenging and mixed populations have different productive traits. When steady-state dynamics are reached, both populations are dominated by females (54.5%), and 'growers' and 'chicks' represent the most abundant age stages with 39% and 38% in the scavenging, and 60% and 25% in the mixed population, respectively. Simulations showed that the population turnover might reduce the herd immunity below the critical threshold that prevents the re-emergence of HPAI H5N1 4-8 weeks (scavenging) and 6-9 weeks (mixed population) after vaccination in scenario 1, and 2-6 weeks (scavenging) and 4-7 weeks (mixed population) after vaccination in scenario 2. In conclusion, we found that Indonesia's village chicken population does not have a unique underlying population dynamic and therefore, different turnover effects on herd immunity may be expected after vaccination; nonetheless, our simulations carried out in best case scenarios highlight the limitations of current vaccine technologies to control HPAI H5N1. This suggests that the improvements and complementary strategies are necessary

  19. Absence of clinical disease and contact transmission of HPAI H5NX clade 2.3.4.4 from North America in experimentally infected pigs.

    PubMed

    Kaplan, Bryan S; Torchetti, Mia K; Lager, Kelly M; Webby, Richard J; Vincent, Amy L

    2017-09-01

    In the fall of 2014, highly pathogenic avian influenza (HPAI) subtype H5N8 clade 2.3.4.4 was introduced into North America by migrating waterfowl from Asia where, through reassortment, novel HPAI H5N2 and H5N1 viruses emerged. Assess the susceptibility of pigs to HPAI H5N1, H5N2, and H5N8 clade 2.3.3.3 from North America. Pigs and trachea explants were inoculated with a representative panel of H5NX clade 2.3.4.4 HPAI viruses from North America. Nasal swabs, BALF, and sera were collected to assess replication and transmission in challenged and direct contact pigs by RRT-PCR, virus isolation, hemagglutination inhibition, and ELISA. Limited virus replication was restricted to the lower respiratory tract of challenged pigs, though absent in the nasal passages and trachea cultures, as determined by RRT-PCR in all samples. Seroconversion of inoculated pigs was detected by NP ELISA but was not reliably detected by antigen-specific hemagglutination inhibition. Boost with adjuvanted virus was required for the production of neutralizing antibodies to assess cross-reactivity between wild-type avian strains. All RRT-PCR and serology tests were negative for contact animals indicating a failure of transmission from primary inoculated pigs. H5NX clade 2.3.4.4 strains can replicate in the lower respiratory tract of swine upon high titer inoculation, though appear to be incapable of replication in swine nasal epithelium in vivo or ex vivo in trachea explants in culture. Infected pigs did not produce high levels of serum antibodies following infection. Collectively, our data show HPAI H5NX clade 2.3.4.4 viruses to be poorly adapted for replication and transmission in swine. © 2017 The Authors. Influenza and Other Respiratory Viruses Published by John Wiley & Sons Ltd.

  20. [Steam and air co-injection in removing TCE in 2D-sand box].

    PubMed

    Wang, Ning; Peng, Sheng; Chen, Jia-Jun

    2014-07-01

    Steam and air co-injection is a newly developed and promising soil remediation technique for non-aqueous phase liquids (NAPLs) in vadose zone. In this study, in order to investigate the mechanism of the remediation process, trichloroethylene (TCE) removal using steam and air co-injection was carried out in a 2-dimensional sandbox with different layered sand structures. The results showed that co-injection perfectly improved the "tailing" effect compared to soil vapor extraction (SVE), and the remediation process of steam and air co-injection could be divided into SVE stage, steam strengthening stage and heat penetration stage. Removal ratio of the experiment with scattered contaminant area was higher and removal speed was faster. The removal ratios from the two experiments were 93.5% and 88.2%, and the removal periods were 83.9 min and 90.6 min, respectively. Steam strengthened the heat penetration stage. The temperature transition region was wider in the scattered NAPLs distribution experiment, which reduced the accumulation of TCE. Slight downward movement of TCE was observed in the experiment with TCE initially distributed in a fine sand zone. And such downward movement of TCE reduced the TCE removal ratio.

  1. Numerical investigation of the air injection effect on the cavitating flow in Francis hydro turbine

    NASA Astrophysics Data System (ADS)

    Chirkov, D. V.; Shcherbakov, P. K.; Cherny, S. G.; Skorospelov, V. A.; Turuk, P. A.

    2017-09-01

    At full and over load operating points, some Francis turbines experience strong self-excited pressure and power oscillations. These oscillations are occuring due to the hydrodynamic instability of the cavitating fluid flow. In many cases, the amplitude of such pulsations may be reduced substantially during the turbine operation by the air injection/ admission below the runner. Such an effect is investigated numerically in the present work. To this end, the hybrid one-three-dimensional model of the flow of the mixture "liquid-vapor" in the duct of a hydroelectric power station, which was proposed previously by the present authors, is augmented by the second gaseous component — the noncondensable air. The boundary conditions and the numerical method for solving the equations of the model are described. To check the accuracy of computing the interface "liquid-gas", the numerical method was applied at first for solving the dam break problem. The algorithm was then used for modeling the flow in a hydraulic turbine with air injection below the runner. It is shown that with increasing flow rate of the injected air, the amplitude of pressure pulsations decreases. The mechanism of the flow structure alteration in the draft tube cone has been elucidated, which leads to flow stabilization at air injection.

  2. Picosecond ballistic imaging of diesel injection in high-temperature and high-pressure air

    NASA Astrophysics Data System (ADS)

    Duran, Sean P.; Porter, Jason M.; Parker, Terence E.

    2015-04-01

    The first successful demonstration of picosecond ballistic imaging using a 15-ps-pulse-duration laser in diesel sprays at temperature and pressure is reported. This technique uses an optical Kerr effect shutter constructed from a CS2 liquid cell and a 15-ps pulse at 532 nm. The optical shutter can be adjusted to produce effective imaging pulses between 7 and 16 ps. This technique is used to image the near-orifice region (first 3 mm) of diesel sprays from a high-pressure single-hole fuel injector. Ballistic imaging of dodecane and methyl oleate sprays injected into ambient air and diesel injection at preignition engine-like conditions are reported. Dodecane was injected into air heated to 600 °C and pressurized to 20 atm. The resulting images of the near-orifice region at these conditions reveal dramatic shedding of the liquid near the nozzle, an effect that has been predicted, but to our knowledge never before imaged. These shedding structures have an approximate spatial frequency of 10 mm-1 with lengths from 50 to 200 μm. Several parameters are explored including injection pressure, liquid fuel temperature, air temperature and pressure, and fuel type. Resulting trends are summarized with accompanying images.

  3. A PIV Study of Slotted Air Injection for Jet Noise Reduction

    NASA Technical Reports Server (NTRS)

    Henderson, Brenda S.; Wernet, Mark P.

    2012-01-01

    Results from acoustic and Particle Image Velocimetry (PIV) measurements are presented for single and dual-stream jets with fluidic injection on the core stream. The fluidic injection nozzles delivered air to the jet through slots on the interior of the nozzle at the nozzle trailing edge. The investigations include subsonic and supersonic jet conditions. Reductions in broadband shock noise and low frequency mixing noise were obtained with the introduction of fluidic injection on single stream jets. Fluidic injection was found to eliminate shock cells, increase jet mixing, and reduce turbulent kinetic energy levels near the end of the potential core. For dual-stream subsonic jets, the introduction of fluidic injection reduced low frequency noise in the peak jet noise direction and enhanced jet mixing. For dual-stream jets with supersonic fan streams and subsonic core streams, the introduction of fluidic injection in the core stream impacted the jet shock cell structure but had little effect on mixing between the core and fan streams.

  4. Effect of Moderate Air Flow on the Distribution of Fuel Sprays After Injection Cut-0ff

    NASA Technical Reports Server (NTRS)

    Rothrock, A M; Spencer, R C

    1935-01-01

    High-speed motion pictures were taken of fuel sprays with the NACA spray-photographic apparatus to study the distribution of the liquid fuel from the instant of injection cut-off until about 0.05 second later. The fuel was injected into a glass-walled chamber in which the air density was varied from 1 to 13 times atmospheric air density (0.0765 to 0.99 pound per cubic foot) and in which the air was at room temperature. The air in the chamber was set in motion by means of a fan, and was directed counter to the spray at velocities up to 27 feet per second. The injection pressure was varied from 2,000 to 6,000 pounds per square inch. A 0.20-inch single-orifice nozzle, an 0.008-inch single-orifice nozzle, a multiorifice nozzle, and an impinging-jets nozzle were used. The best distribution was obtained by the use of air and a high-dispersion nozzle.

  5. Big-bubble deep anterior lamellar keratoplasty using central vs peripheral air injection: a clinical trial.

    PubMed

    Feizi, Sepehr; Daryabari, Seyed-Hashem; Najdi, Danial; Javadi, Mohammad Ali; Karimian, Farid

    2016-06-10

    To compare 2 sites of air injection to achieve Descemet membrane (DM) detachment in big-bubble deep anterior lamellar keratoplasty (DALK). In this prospective, randomized study, 48 eyes of 48 keratoconus-affected patients who underwent DALK by cornea fellows were enrolled. Each patient was randomly assigned into one of 2 groups. After trephination to approximately 80% of the corneal thickness, a 27-G needle was inserted into the stroma from the trephination site. The needle was moved radially inside the trephination site and advanced to the central or paracentral cornea in group 1. In group 2, the needle was inserted into the deep stroma from the trephination site and advanced into the peripheral cornea to approximately 1.5 mm anterior to the limbus. Air was gently injected into the deep stroma until a big bubble was formed. The rates of DM separation and complications were compared between the 2 groups. Big-bubble formation was successful in 79.2% of the eyes in the study group. A bare DM was achieved by central injection in 68.0% of group 1 and by peripheral injection in 69.6% of group 2 (p = 0.68). This rate was increased to 80.0% and 78.3% in groups 1 and 2, respectively, after the injection site was shifted when injections failed. The study groups were comparable in terms of complications including DM perforation and bubble bursting. Both injection sites were equivalent in their rates of big-bubble formation and complications. Less experienced surgeons are advised to initially inject air outside the trephination.

  6. Comparative evaluation of gas-turbine engine combustion chamber starting and stalling characteristics for mechanical and air-injection

    NASA Technical Reports Server (NTRS)

    Dyatlov, I. N.

    1983-01-01

    The effectiveness of propellant atomization with and without air injection in the combustion chamber nozzle of a gas turbine engine is studied. Test show that the startup and burning performance of these combustion chambers can be improved by using an injection during the mechanical propellant atomization process. It is shown that the operational range of combustion chambers can be extended to poorer propellant mixtures by combined air injection mechanical atomization of the propellant.

  7. PTV analysis of the entrained air into the diesel spray at high-pressure injection

    NASA Astrophysics Data System (ADS)

    Toda, Naoki; Yamashita, Hayato; Mashida, Makoto

    2014-08-01

    In order to clarify the effect of high-pressure injection on soot reduction in terms of the air entrainment into spray, the air flow surrounding the spray and set-off length indicating the distance from the nozzle tip to the flame region in diffusion diesel combustion were investigated using 300MPa injection of a multi-hole injector. The measurement of the air entrainment flow was carried out at non-evaporating condition using consecutive PTV (particle tracking velocimetry) method with a high-speed camera and a high-frequency pulse YAG laser. The set-off length was measured at highpressure and high-temperature using the combustion bomb of constant volume and optical system of shadow graph method. And the amount of air entrainment into spray until reaching set-off length in diffusion combustion was studied as a factor of soot formation.

  8. Mixing of an Airblast-atomized Fuel Spray Injected into a Crossflow of Air

    NASA Technical Reports Server (NTRS)

    Leong, May Y.; McDonell, Vincent G.; Samuelsen, G. Scott

    2000-01-01

    The injection of a spray of fuel droplets into a crossflow of air provides a means of rapidly mixing liquid fuel and air for combustion applications. Injecting the liquid as a spray reduces the mixing length needed to accommodate liquid breakup, while the transverse injection of the spray into the air stream takes advantage of the dynamic mixing induced by the jet-crossflow interaction. The structure of the spray, formed from a model plain-jet airblast atomizer, is investigated in order to determine and understand the factors leading to its dispersion. To attain this goal, the problem is divided into the following tasks which involve: (1) developing planar imaging techniques that visualize fuel and air distributions in the spray, (2) characterizing the airblast spray without a crossflow, and (3) characterizing the airblast spray upon injection into a crossflow. Geometric and operating conditions are varied in order to affect the atomization, penetration, and dispersion of the spray into the crossflow. The airblast spray is first characterized, using imaging techniques, as it issues into a quiescent environment. The spray breakup modes are classified in a liquid Reynolds number versus airblast Weber number regime chart. This work focuses on sprays formed by the "prompt" atomization mode, which induces a well-atomized and well-dispersed spray, and which also produces a two-lobed liquid distribution corresponding to the atomizing air passageways in the injector. The characterization of the spray jet injected into the crossflow reveals the different processes that control its dispersion. Correlations that describe the inner and outer boundaries of the spray jet are developed, using the definition of a two-phase momentum-flux ratio. Cross-sections of the liquid spray depict elliptically-shaped distributions, with the exception of the finely-atomized sprays which show kidney-shaped distributions reminiscent of those obtained in gaseous jet in crossflow systems. A droplet

  9. High-Reynolds-number turbulent-boundary-layer wall pressure fluctuations with skin-friction reduction by air injection.

    PubMed

    Winkel, Eric S; Elbing, Brian R; Ceccio, Steven L; Perlin, Marc; Dowling, David R

    2008-05-01

    The hydrodynamic pressure fluctuations that occur on the solid surface beneath a turbulent boundary layer are a common source of flow noise. This paper reports multipoint surface pressure fluctuation measurements in water beneath a high-Reynolds-number turbulent boundary layer with wall injection of air to reduce skin-friction drag. The experiments were conducted in the U.S. Navy's Large Cavitation Channel on a 12.9-m-long, 3.05-m-wide hydrodynamically smooth flat plate at freestream speeds up to 20 ms and downstream-distance-based Reynolds numbers exceeding 200 x 10(6). Air was injected from one of two spanwise slots through flush-mounted porous stainless steel frits (approximately 40 microm mean pore diameter) at volume flow rates from 17.8 to 142.5 l/s per meter span. The two injectors were located 1.32 and 9.78 m from the model's leading edge and spanned the center 87% of the test model. Surface pressure measurements were made with 16 flush-mounted transducers in an "L-shaped" array located 10.7 m from the plate's leading edge. When compared to no-injection conditions, the observed wall-pressure variance was reduced by as much as 87% with air injection. In addition, air injection altered the inferred convection speed of pressure fluctuation sources and the streamwise coherence of pressure fluctuations.

  10. Informal inter-island poultry movement in Indonesia: does it pose a risk to HPAI H5N1 transmission?

    PubMed

    Millar, Joanne; Abdurrahman, Muktasam; Toribio, Jenny-Ann; Ambarawati, Annie; Yusuf, Ria Puspa; Suadnya, Wayan

    2015-10-01

    Informal movement of domesticated poultry and wild birds is considered a major threat in terms of highly pathogenic avian influenza (HPAI) H5N1 transmission between birds and from birds to humans. However, the risk of transmission from informal illegal poultry movement has received little attention in Indonesia where human fatalities are the highest in the world. This research investigated the illegal movement of adult poultry between the islands of Java, Bali and Lombok to determine the potential risk of HPAI H5N1 transmission. The aim was to determine known origins and destinations of poultry, estimated quantity and types of birds, people involved and the drivers of illegal movement. Transportation and handling methods and views on how to minimise illegal movement were also investigated. In-depth interviews were carried out with 71 key informants in Bali and Lombok in 2009. East Java was the main origin of poultry entering Bali, followed by Central Java and Lombok. Interviewees estimated that over 10,000 village chickens, 500 ducks and 50 fighting cocks were brought into Bali per month from all origins. However, there were significant discrepancies with quarantine records indicating that the majority of birds imported illegally are not detected. We conclude that although informal illegal movement of poultry in Indonesia poses a potentially high risk for potential HPAI H5N1 transmission if birds are infected, much can be done to increase surveillance, encourage reporting of sick birds, educate traders about the risks and provide effective quarantine within an appropriate cultural framework.

  11. Reducing Water/Hull Drag By Injecting Air Into Grooves

    NASA Technical Reports Server (NTRS)

    Reed, Jason C.; Bushnell, Dennis M.; Weinstein, Leonard M.

    1991-01-01

    Proposed technique for reduction of friction drag on hydrodynamic body involves use of grooves and combinations of surfactants to control motion of layer on surface of such body. Surface contains many rows of side-by-side, evenly spaced, longitudinal grooves. Dimensions of grooves and sharpnesses of tips in specific case depends on conditions of flow about vessel. Requires much less air than does microbubble-injection method.

  12. Air Sparging Versus Gas Saturated Water Injection for Remediation of Volatile LNAPL in the Borden Aquifer

    NASA Astrophysics Data System (ADS)

    Barker, J.; Nelson, L.; Doughty, C.; Thomson, N.; Lambert, J.

    2009-05-01

    In the shallow, rather homogeneous, unconfined Borden sand aquifer, field trials of air sparging (Tomlinson et al., 2003) and pulsed air sparging (Lambert et al., 2009) have been conducted, the latter to remediate a residual gasoline source emplaced below the water table. As well, a supersaturated (with CO2) water injection (SWI) technology, using the inVentures inFusion system, has been trialed in two phases: 1. in the uncontaminated sand aquifer to evaluate the radius of influence, extent of lateral gas movement and gas saturation below the water table, and 2. in a sheet pile cell in the Borden aquifer to evaluate the recovery of volatile hydrocarbon components (pentane and hexane) of an LNAPL emplaced below the water table (Nelson et al., 2008). The SWI injects water supersaturated with CO2. The supersaturated injected water moves laterally away from the sparge point, releasing CO2 over a wider area than does gas sparging from a single well screen. This presentation compares these two techniques in terms of their potential for remediating volatile NAPL components occurring below the water table in a rather homogeneous sand aquifer. Air sparging created a significantly greater air saturation in the vicinity of the sparge well than did the CO2 system (60 percent versus 16 percent) in the uncontaminated Borden aquifer. However, SWI pushed water, still supersaturated with CO2, up to about 2.5 m from the injection well. This would seem to provide a considerable advantage over air sparging from a point, in that gas bubbles are generated at a much larger radius from the point of injection with SWI and so should involve additional gas pathways through a residual NAPL. Overall, air sparging created a greater area of influence, defined by measurable air saturation in the aquifer, but air sparging also injected about 12 times more gas than was injected in the SWI trials. The pulsed air sparging at Borden (Lambert et al.) removed about 20 percent (4.6 kg) of gasoline

  13. Effect of air injection under subsurface drip irrigation on yield and water use efficiency of corn in a sandy clay loam soil

    PubMed Central

    Abuarab, Mohamed; Mostafa, Ehab; Ibrahim, Mohamed

    2012-01-01

    Subsurface drip irrigation (SDI) can substantially reduce the amount of irrigation water needed for corn production. However, corn yields need to be improved to offset the initial cost of drip installation. Air-injection is at least potentially applicable to the (SDI) system. However, the vertical stream of emitted air moving above the emitter outlet directly toward the surface creates a chimney effect, which should be avoided, and to ensure that there are adequate oxygen for root respiration. A field study was conducted in 2010 and 2011, to evaluate the effect of air-injection into the irrigation stream in SDI on the performance of corn. Experimental treatments were drip irrigation (DI), SDI, and SDI with air injection. The leaf area per plant with air injected was 1.477 and 1.0045 times greater in the aerated treatment than in DI and SDI, respectively. Grain filling was faster, and terminated earlier under air-injected drip system, than in DI. Root distribution, stem diameter, plant height and number of grains per plant were noticed to be higher under air injection than DI and SDI. Air injection had the highest water use efficiency (WUE) and irrigation water use efficiency (IWUE) in both growing seasons; with values of 1.442 and 1.096 in 2010 and 1.463 and 1.112 in 2011 for WUE and IWUE respectively. In comparison with DI and SDI, the air injection treatment achieved a significantly higher productivity through the two seasons. Yield increases due to air injection were 37.78% and 12.27% greater in 2010 and 38.46% and 12.5% in 2011 compared to the DI and SDI treatments, respectively. Data from this study indicate that corn yield can be improved under SDI if the drip water is aerated. PMID:25685457

  14. Protective Efficacy of Recombinant Turkey Herpes Virus (rHVT-H5) and Inactivated H5N1 Vaccines in Commercial Mulard Ducks against the Highly Pathogenic Avian Influenza (HPAI) H5N1 Clade 2.2.1 Virus

    PubMed Central

    Kilany, Walid H.; Safwat, Marwa; Mohammed, Samy M.; Salim, Abdullah; Fasina, Folorunso Oludayo; Fasanmi, Olubunmi G.; Shalaby, Azhar G.; Dauphin, Gwenaelle; Hassan, Mohammed K.; Lubroth, Juan; Jobre, Yilma M.

    2016-01-01

    In Egypt, ducks kept for commercial purposes constitute the second highest poultry population, at 150 million ducks/year. Hence, ducks play an important role in the introduction and transmission of avian influenza (AI) in the Egyptian poultry population. Attempts to control outbreaks include the use of vaccines, which have varying levels of efficacy and failure. To date, the effects of vaccine efficacy has rarely been determined in ducks. In this study, we evaluated the protective efficacy of a live recombinant vector vaccine based on a turkey Herpes Virus (HVT) expressing the H5 gene from a clade 2.2 H5N1 HPAIV strain (A/Swan/Hungary/499/2006) (rHVT-H5) and a bivalent inactivated H5N1 vaccine prepared from clade 2.2.1 and 2.2.1.1 H5N1 seeds in Mulard ducks. A 0.3ml/dose subcutaneous injection of rHVT-H5 vaccine was administered to one-day-old ducklings (D1) and another 0.5ml/dose subcutaneous injection of the inactivated MEFLUVAC was administered at 7 days (D7). Four separate challenge experiments were conducted at Days 21, 28, 35 and 42, in which all the vaccinated ducks were challenged with 106EID50/duck of H5N1 HPAI virus (A/chicken/Egypt/128s/2012(H5N1) (clade 2.2.1) via intranasal inoculation. Maternal-derived antibody regression and post-vaccination antibody immune responses were monitored weekly. Ducks vaccinated at 21, 28, 35 and 42 days with the rHVT-H5 and MEFLUVAC vaccines were protected against mortality (80%, 80%, 90% and 90%) and (50%, 70%, 80% and 90%) respectively, against challenges with the H5N1 HPAI virus. The amount of viral shedding and shedding rates were lower in the rHVT-H5 vaccine groups than in the MEFLUVAC groups only in the first two challenge experiments. However, the non-vaccinated groups shed significantly more of the virus than the vaccinated groups. Both rHVT-H5 and MEFLUVAC provide early protection, and rHVT-H5 vaccine in particular provides protection against HPAI challenge. PMID:27304069

  15. Protective Efficacy of Recombinant Turkey Herpes Virus (rHVT-H5) and Inactivated H5N1 Vaccines in Commercial Mulard Ducks against the Highly Pathogenic Avian Influenza (HPAI) H5N1 Clade 2.2.1 Virus.

    PubMed

    Kilany, Walid H; Safwat, Marwa; Mohammed, Samy M; Salim, Abdullah; Fasina, Folorunso Oludayo; Fasanmi, Olubunmi G; Shalaby, Azhar G; Dauphin, Gwenaelle; Hassan, Mohammed K; Lubroth, Juan; Jobre, Yilma M

    2016-01-01

    In Egypt, ducks kept for commercial purposes constitute the second highest poultry population, at 150 million ducks/year. Hence, ducks play an important role in the introduction and transmission of avian influenza (AI) in the Egyptian poultry population. Attempts to control outbreaks include the use of vaccines, which have varying levels of efficacy and failure. To date, the effects of vaccine efficacy has rarely been determined in ducks. In this study, we evaluated the protective efficacy of a live recombinant vector vaccine based on a turkey Herpes Virus (HVT) expressing the H5 gene from a clade 2.2 H5N1 HPAIV strain (A/Swan/Hungary/499/2006) (rHVT-H5) and a bivalent inactivated H5N1 vaccine prepared from clade 2.2.1 and 2.2.1.1 H5N1 seeds in Mulard ducks. A 0.3ml/dose subcutaneous injection of rHVT-H5 vaccine was administered to one-day-old ducklings (D1) and another 0.5ml/dose subcutaneous injection of the inactivated MEFLUVAC was administered at 7 days (D7). Four separate challenge experiments were conducted at Days 21, 28, 35 and 42, in which all the vaccinated ducks were challenged with 106EID50/duck of H5N1 HPAI virus (A/chicken/Egypt/128s/2012(H5N1) (clade 2.2.1) via intranasal inoculation. Maternal-derived antibody regression and post-vaccination antibody immune responses were monitored weekly. Ducks vaccinated at 21, 28, 35 and 42 days with the rHVT-H5 and MEFLUVAC vaccines were protected against mortality (80%, 80%, 90% and 90%) and (50%, 70%, 80% and 90%) respectively, against challenges with the H5N1 HPAI virus. The amount of viral shedding and shedding rates were lower in the rHVT-H5 vaccine groups than in the MEFLUVAC groups only in the first two challenge experiments. However, the non-vaccinated groups shed significantly more of the virus than the vaccinated groups. Both rHVT-H5 and MEFLUVAC provide early protection, and rHVT-H5 vaccine in particular provides protection against HPAI challenge.

  16. Mitigation of tip vortex cavitation by means of air injection on a Kaplan turbine scale model

    NASA Astrophysics Data System (ADS)

    Rivetti, A.; Angulo, M.; Lucino, C.; Liscia, S.

    2014-03-01

    Kaplan turbines operating at full-load conditions may undergo excessive vibration, noise and cavitation. In such cases, damage by erosion associated to tip vortex cavitation can be observed at the discharge ring. This phenomenon involves design features such as (1) overhang of guide vanes; (2) blade profile; (3) gap increasing size with blade opening; (4) suction head; (5) operation point; and (6) discharge ring stiffness, among others. Tip vortex cavitation may cause erosion at the discharge ring and draft tube inlet following a wavy pattern, in which the number of vanes can be clearly identified. Injection of pressurized air above the runner blade centerline was tested as a mean to mitigate discharge ring cavitation damage on a scale model. Air entrance was observed by means of a high-speed camera in order to track the air trajectory toward its mergence with the tip vortex cavitation core. Post-processing of acceleration signals shows that the level of vibration and the RSI frequency amplitude decrease proportionally with air flow rate injected. These findings reveal the potential mitigating effect of air injection in preventing cavitation damage and will be useful in further tests to be performed on prototype, aiming at determining the optimum air flow rate, size and distribution of the injectors.

  17. Effect of double air injection on performance characteristics of centrifugal compressor

    NASA Astrophysics Data System (ADS)

    Hirano, Toshiyuki; Ogawa, Tatsuya; Yasui, Ryutaro; Tsujita, Hoshio

    2017-02-01

    In the operation of a centrifugal compressor of turbocharger, instability phenomena such as rotating stall and surge are induced at a lower flow rate close to the maximum pressure ratio. In this study, the compressed air at the exit of centrifugal compressor was re-circulated and injected to the impeller inlet by using two injection nozzles in order to suppress the surge phenomenon. The most effective circumferential position was examined to reduce the flow rate at the surge inception. Moreover, the influences of the injection on the fluctuating property of the flow field before and after the surge inception were investigated by examining the frequency of static pressure fluctuation on the wall surface and visualizing the compressor wall surface by oil-film visualization technique.

  18. Stimulation of waste decomposition in an old landfill by air injection.

    PubMed

    Wu, Chuanfu; Shimaoka, Takayuki; Nakayama, Hirofumi; Komiya, Teppei; Chai, Xiaoli

    2016-12-01

    Three pilot-scale lysimeters were operated for 4.5years to quantify the change in the carbon and nitrogen pool in an old landfill under various air injection conditions. The results indicate that air injection at the bottom layer facilitated homogeneous distribution of oxygen in the waste matrix. Substantial total organic carbon (TOC) decomposition and methane generation reduction were achieved. Considerable amount of nitrogen was removed, suggesting that in situ nitrogen removal via the effective simultaneous nitrification and denitrification mechanism is viable. Moreover, material mass change measurements revealed a slight mass reduction of aged MSW (by approximately 4.0%) after 4.5years of aeration. Additionally, experiments revealed that intensive aeration during the final stage of the experiment did not further stimulate the degradation of the aged MSW. Therefore, elimination of the labile fraction of aged MSW should be considered the objective of in situ aeration. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Reduction in airborne virus using modifications of simulated home slaughter of asymptomatic H5N1 HPAI virus infected chickens

    USDA-ARS?s Scientific Manuscript database

    Background: The majority of human infections with H5N1 high pathogenicity avian influenza (HPAI) virus have occurred in the village setting of developing countries with the primary exposure risk being direct contact with live or dead poultry in the household or neighborhood. In Egypt, the majority o...

  20. Effect of double air injection on performance characteristics of centrifugal compressor

    NASA Astrophysics Data System (ADS)

    Hirano, Toshiyuki; Takano, Mizuki; Tsujita, Hoshio

    2015-02-01

    In the operation of a centrifugal compressor of turbocharger, instability phenomena such as rotating stall and surge are induced at a lower flow rate close to the maximum pressure ratio. In this study, for the suppression of surge phenomenon resulting in the extension of the stable operating range of centrifugal compressor to lower flow rate, the compressed air at the compressor exit was re-circulated and injected into the impeller inlet by using the double injection nozzle system. The experiments were performed to find out the optimum circumferential position of the second nozzle relative to the fixed first one and the optimum inner diameter of the injection nozzles, which are able to most effectively reduce the flow rate of surge inception. Moreover, in order to examine the universality of these optimum values, the experiments were carried out for two types of compressors.

  1. Target location after deep cerebral biopsies using low-volume air injection in 75 patients. Results and technical note.

    PubMed

    Poca, Maria A; Martínez-Ricarte, Francisco-Ramon; Gándara, Dario F; Coscojuela, Pilar; Martínez-Sáez, Elena; Sahuquillo, Juan

    2017-10-01

    Stereotactic biopsy is a minimally invasive technique that allows brain tissue samples to be obtained with low risk. Classically, different techniques have been used to identify the biopsy site after surgery. To describe a technique to identify the precise location of the target in the postoperative CT scan using the injection of a low volume of air into the biopsy cannula. Seventy-five biopsies were performed in 65 adults and 10 children (40 males and 35 females, median age 51 years). Frame-based biopsy was performed in 46 patients, while frameless biopsy was performed in the remaining 29 patients. In both systems, after brain specimens had been collected and with the biopsy needle tip in the center of the target, a small volume of air (median 0.7 cm 3 ) was injected into the site. A follow-up CT scan was performed in all patients. Intracranial air in the selected target was present in 69 patients (92%). No air was observed in two patients (air volume administered in these 2 cases was below 0.7 cm 3 ), while in the remaining four patients blood content was observed in the target. The diagnostic yield in this series was 97.3%. No complications were found to be associated with intracranial air injection in any of the 75 patients who underwent this procedure. The air-injection maneuver proposed for use in stereotactic biopsies of intracranial mass lesions is a safe and reliable technique that allows the exact biopsy site to be located without any related complications.

  2. Nonlinear control of rotating stall and surge with axisymmetric bleed and air injection on axial flow compressors

    NASA Astrophysics Data System (ADS)

    Yeung, Chung-Hei (Simon)

    The study of compressor instabilities in gas turbine engines has received much attention in recent years. In particular, rotating stall and surge are major causes of problems ranging from component stress and lifespan reduction to engine explosion. In this thesis, modeling and control of rotating stall and surge using bleed valve and air injection is studied and validated on a low speed, single stage, axial compressor at Caltech. Bleed valve control of stall is achieved only when the compressor characteristic is actuated, due to the fast growth rate of the stall cell compared to the rate limit of the valve. Furthermore, experimental results show that the actuator rate requirement for stall control is reduced by a factor of fourteen via compressor characteristic actuation. Analytical expressions based on low order models (2--3 states) and a high fidelity simulation (37 states) tool are developed to estimate the minimum rate requirement of a bleed valve for control of stall. A comparison of the tools to experiments show a good qualitative agreement, with increasing quantitative accuracy as the complexity of the underlying model increases. Air injection control of stall and surge is also investigated. Simultaneous control of stall and surge is achieved using axisymmetric air injection. Three cases with different injector back pressure are studied. Surge control via binary air injection is achieved in all three cases. Simultaneous stall and surge control is achieved for two of the cases, but is not achieved for the lowest authority case. This is consistent with previous results for control of stall with axisymmetric air injection without a plenum attached. Non-axisymmetric air injection control of stall and surge is also studied. Three existing control algorithms found in literature are modeled and analyzed. A three-state model is obtained for each algorithm. For two cases, conditions for linear stability and bifurcation criticality on control of rotating stall are

  3. Staged fuel and air injection in combustion systems of gas turbines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hughes, Michael John; Berry, Jonathan Dwight

    A gas turbine that includes a working fluid flowpath extending aftward from a forward injector in a combustor. The combustor may include an inner radial wall, an outer radial wall, and, therebetween, a flow annulus. A staged injector may intersect the flow annulus so to attain an injection point within the working fluid flowpath by which aftward and forward annulus sections are defined. Air directing structure may include an aftward intake section that corresponds to the aftward annulus section and a forward intake section that corresponds to the forward annulus section. The air directing structure may be configured to: directmore » air entering through the aftward intake section through the aftward annulus section in a forward direction to the staged injector; and direct air entering through the forward intake section through the forward annulus section in a forward direction to the forward injector.« less

  4. Staged fuel and air injection in combustion systems of gas turbines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hughes, Michael John; Berry, Jonathan Dwight

    A gas turbine that includes a working fluid flowpath extending aftward from a forward injector in a combustor. The combustor may include an inner radial wall, an outer radial wall, and, therebetween, a flow annulus. A staged injector may intersect the flow annulus so to attain an injection point within the working fluid flowpath by which aftward and forward annulus sections are defined. Air directing structure may include an aftward intake section that corresponds to the aftward annulus section and a forward intake section that corresponds to the forward annulus section. The air directing structure may be configured to: directmore » air entering through the aftward intake section through the aftward annulus section in a forward direction to the staged injector; and direct air entering through the forward intake section through the forward annulus section in an aftward direction to the staged injector.« less

  5. Fixed dilated pupil (Urrets-Zavalia syndrome) after air/gas injection after deep lamellar keratoplasty for keratoconus.

    PubMed

    Maurino, Vincenzo; Allan, Bruce D S; Stevens, Julian D; Tuft, Stephen J

    2002-02-01

    To describe three cases of fixed dilated pupil and presumed iris ischemia (Urrets-Zavalia syndrome) after anterior chamber air/gas injection after deep lamellar keratoplasty for keratoconus. Interventional case series. Three eyes of three patients with keratoconus underwent deep lamellar keratoplasty and intraoperative or postoperative injection of air/gas in the anterior chamber to appose the host-donor lamellar graft interface. Urrets-Zavalia syndrome was diagnosed on clinical grounds in three cases and was associated with the Descemet membrane microperforation intraoperatively and introduction of air/gas into the anterior chamber intraoperatively or postoperatively. A fixed dilated pupil is an uncommon complication of penetrating keratoplasty for keratoconus that can also develop after deep lamellar keratoplasty. Leaving an air or gas bubble in the anterior chamber of a phakic eye after deep lamellar keratoplasty is a risk factor and should therefore be avoided.

  6. Mixing augmentation of transverse hydrogen jet by injection of micro air jets in supersonic crossflow

    NASA Astrophysics Data System (ADS)

    Anazadehsayed, A.; Barzegar Gerdroodbary, M.; Amini, Y.; Moradi, R.

    2017-08-01

    In this study, the influences of the micro air jet on the mixing of the sonic transverse hydrogen through micro-jets subjected to a supersonic crossflow are investigated. A three-dimensional numerical study has been performed to reveal the affects of micro air jet on mixing of the hydrogen jet in a Mach 4.0 crossflow with a global equivalence ratio of 0.5. Parametric studies were conducted on the various air jet conditions by using the Reynolds-averaged Navier-Stokes equations with Menter's Shear Stress Transport (SST) turbulence model. Complex jet interactions were found in the downstream region with a variety of flow features depending upon the angle of micro air jet. These flow features were found to have subtle effects on the mixing of hydrogen jets. Results indicate a different flow structure as air jet is presented in the downstream of the fuel jet. According to the results, without air, mixing occurs at a low rate. When the air jet is presented in the downstream of fuel jet, significant increase (up to 300%) occurs in the mixing performance of the hydrogen jet at downstream. In multi fuel jets, the mixing performance of the fuel jet is increased more than 200% when the micro air jet is injected. Consequently, an enhanced mixing zone occurs downstream of the injection slots which leads to flame-holding.

  7. Economic analysis of HPAI control in the Netherlands II: comparison of control strategies.

    PubMed

    Longworth, N; Mourits, M C M; Saatkamp, H W

    2014-06-01

    A combined epidemiological-economic modelling approach was used to analyse strategies for highly pathogenic avian influenza (HPAI) control for the Netherlands. The modelling framework used was InterSpread Plus (ISP), a spatially based, stochastic and dynamic simulation model. A total of eight control strategies were analysed, including pre-emptive depopulation and vaccination strategies. The analysis was carried out for three different regions in the Netherlands: high-, medium- and low-density areas (HDA, MDA and LDA, respectively). The analysis included the veterinary impact (e.g. number of infected premises and duration), but was particularly focused on the impact on direct costs (DC) and direct consequential costs. The efficient set of control strategies for HDA and MDA included strategies based on either pre-emptive depopulation only or combined vaccination and pre-emptive depopulation: D2 (pre-emptive depopulation within a radius of 2 km), RV3 + D1 (ring vaccination within a radius of 3 km and additional pre-emptive depopulation within a radius of 1 km) and PV + D1 (preventive vaccination in non-affected HDAs and pre-emptive depopulation within a radius of 1 km in the affected HDA). Although control solely based on depopulation in most cases showed to be effective for LDA, pre-emptive depopulation showed to have an additional advantage in these areas, that is, prevention of 'virus jumps' to other areas. The pros and cons of the efficient control strategies were discussed, for example, public perception and risk of export restrictions. It was concluded that for the Netherlands control of HPAI preferably should be carried out using strategies including pre-emptive depopulation with or without vaccination. Particularly, the short- and long-term implications on export, that is, indirect consequential costs (ICC) and aftermath costs of these strategies, should be analysed further. © 2012 Blackwell Verlag GmbH.

  8. Accessible and inexpensive tools for global HPAI surveillance: A mobile-phone based system.

    PubMed

    Lin, Yibo; Heffernan, Claire

    2011-02-01

    Highly pathogenic avian influenza (HPAI) disproportionately impacts poor livestock keepers in southern countries. Although the estimated cost of the disease in the billions, response to the epidemic remains fragmented and information channels slow. Given the continuing threat of outbreaks, and what appears to be the politicisation of outbreak reporting, new tools are needed to enforce transparency in stakeholder communication. In response to this need, we created a mobile-phone based surveillance system to aid critical information transfer among policy makers, practitioners and the poor themselves. The tool operates at the local, national and global levels and further links decision-makers to international databases. Copyright © 2010 Elsevier B.V. All rights reserved.

  9. Exogenous factors contributing to column bed heterogeneity: Part 1: Consequences of 'air' injections in liquid chromatography.

    PubMed

    Samuelsson, Jörgen; Fornstedt, Torgny; Shalliker, Andrew

    2015-08-07

    It has been shown that not only the packing homogeneity, but also factors external to the column bed, such as, frits and distributors can have important effects on the column performance. This current communication is the first in a series focusing on the impact of exogenous factors on the column bed heterogeneity. This study is based on several observations by us and others that chromatographic runs often, for technical reasons, include more or less portions of air in the injections. It is therefore extremely important to find out the impact of air on the column performance, the reliability of the results derived from analyses where air was injected, and the effect on the column homogeneity. We used a photographic approach for visualising the air transport phenomena, and found that the air transport through the column is comprised of many different types of transport phenomena, such as laminal flow, viscous fingering like flows, channels and bulbs, and pulsations. More particularly, the air clouds within the column definitely interact in the adsorption, i.e. mobile phase adsorbed to the column surface is displaced. In addition, irrespective of the type of air transport phenomena, the air does not penetrate the column homogeneously. This process is strongly flow dependent. In this work we study air transport both in an analytical scale and a semi-prep column. Copyright © 2015. Published by Elsevier B.V.

  10. Pressurized air injection in an axial hydro-turbine model for the mitigation of tip leakage cavitation

    NASA Astrophysics Data System (ADS)

    Rivetti, A.; Angulo, M.; Lucino, C.; Liscia, S.

    2015-12-01

    Tip leakage vortex cavitation in axial hydro-turbines may cause erosion, noise and vibration. Damage due to cavitation can be found at the tip of the runner blades on the low pressure side and the discharge ring. In some cases, the erosion follows an oscillatory pattern that is related to the number of guide vanes. That might suggest that a relationship exists between the flow through the guide vanes and the tip vortex cavitating core that induces this kind of erosion. On the other hand, it is known that air injection has a beneficial effect on reducing the damage by cavitation. In this paper, a methodology to identify the interaction between guide vanes and tip vortex cavitation is presented and the effect of air injection in reducing this particular kind of erosion was studied over a range of operating conditions on a Kaplan scale model. It was found that air injection, at the expense of slightly reducing the efficiency of the turbine, mitigates the erosive potential of tip leakage cavitation, attenuates the interaction between the flow through the guide vanes and the tip vortex and decreases the level of vibration of the structural components.

  11. Implementation of pressurized air injection system in a Kaplan prototype for the reduction of vibration caused by tip vortex cavitation

    NASA Astrophysics Data System (ADS)

    Rivetti, A.; Angulo, M.; Lucino, C.; Hene, M.; Capezio, O.; Liscia, S.

    2016-11-01

    Blade tip cavitation is a well-known phenomenon that affects the performance of large-diameter Kaplan turbines and induces structural vibration. Injection of pressurized air has been found to yield promising results in reducing those damaging effects. In this work, the results of an experimental test of air injection on a 9.5-m-diameter Kaplan turbine are reported. Experiments were performed for several load conditions and for two different net heads. Accelerations, pressure pulsation and noise emission were monitored for every tested condition. Results show that, at the expense of a maximum efficiency drop of 0.2%, air injection induces a decrease on the level of vibration from 57% up to 84%, depending on the load condition. Such decrease is seen to be proportional to the air flow rate, in the range from 0.06 to 0.8‰ (respect to the discharge at the best efficiency point).

  12. Premixed direct injection disk

    DOEpatents

    York, William David; Ziminsky, Willy Steve; Johnson, Thomas Edward; Lacy, Benjamin; Zuo, Baifang; Uhm, Jong Ho

    2013-04-23

    A fuel/air mixing disk for use in a fuel/air mixing combustor assembly is provided. The disk includes a first face, a second face, and at least one fuel plenum disposed therebetween. A plurality of fuel/air mixing tubes extend through the pre-mixing disk, each mixing tube including an outer tube wall extending axially along a tube axis and in fluid communication with the at least one fuel plenum. At least a portion of the plurality of fuel/air mixing tubes further includes at least one fuel injection hole have a fuel injection hole diameter extending through said outer tube wall, the fuel injection hole having an injection angle relative to the tube axis. The invention provides good fuel air mixing with low combustion generated NOx and low flow pressure loss translating to a high gas turbine efficiency, that is durable, and resistant to flame holding and flash back.

  13. Staged fuel and air injection in combustion systems of gas turbines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hughes, Michael John; Berry, Jonathan Dwight

    A gas turbine including a working fluid flowpath extending aftward from a forward injector in a combustor. The combustor may include an inner radial wall, an outer radial wall, and, therebetween, a flow annulus, and a third radial wall formed about the outer radial wall that forms an outer flow annulus. A staged injector may intersect the flow annulus so to attain an injection point within the working fluid flowpath by which aftward and forward annulus sections are defined. Air directing structure may include an aftward intake section corresponding to the aftward annulus section and a forward intake section correspondingmore » to the forward annulus section. The air directing structure may include a switchback coolant flowpath to direct air from the compressor discharge cavity to the staged injector. The switchback coolant flowpath may include an upstream section through the flow annulus, and a downstream section through the outer flow annulus.« less

  14. Parametric effect on the mixing of the combination of a hydrogen porthole with an air porthole in transverse gaseous injection flow fields

    NASA Astrophysics Data System (ADS)

    Li, Lang-quan; Huang, Wei; Yan, Li; Li, Shi-bin

    2017-10-01

    The dual transverse injection system with a front hydrogen porthole and a rear air porthole arranged in tandem is proposed, and this is a realistic approach for mixing enhancement and penetration improvement of transverse injection in a scramjet combustor. The influence of this dual transverse injection system on mixing characteristics has been evaluated numerically based on grid independency analysis and code validation. The numerical approach employed in the current study has been validated against the available experimental data in the open literature, and the predicted wall static pressure distributions show reasonable agreement with the experimental data for the cases with different jet-to-crossflow pressure ratios. The obtained results predicted by the three-dimensional Reynolds-average Navier - Stokes (RANS) equations coupled with the two equation k-ω shear stress transport (SST) turbulence model show that the air pothole has an great impact on penetration depth and mixing efficiency, and the effect of air jet on flow field varies with different values of the aspect ratio. The air porthole with larger aspect ratio can increase the fuel penetration depth. However, when the aspect ratio is relatively small, the fuel penetration depth decreases, and even smaller than that of the single injection system. At the same time, the air pothole has a highly remarkable improvement on mixing efficiency, especially in the near field. The smaller the aspect ratio of the air porthole is, the higher the mixing efficiency in the near field is. This is due to its larger circulation in the near field. The dual injection system owns more losses of stagnation pressure than the single injection system.

  15. Intracameral air injection during Ahmed glaucoma valve implantation in neovascular glaucoma for the prevention of tube obstruction with blood clot: Case Report.

    PubMed

    Hwang, Sung Ha; Yoo, Chungkwon; Kim, Yong Yeon; Lee, Dae Young; Nam, Dong Heun; Lee, Jong Yeon

    2017-12-01

    Glaucoma drainage implant surgery is a treatment option for the management of neovascular glaucoma. However, tube obstruction by blood clot after Ahmed glaucoma valve (AGV) implantation is an unpredictable clinically challenging situation. We report 4 cases using intracameral air injection for the prevention of the tube obstruction of AGV by blood clot. The first case was a 57-year-old female suffering from ocular pain because of a tube obstruction with blood clot after AGV implantation in neovascular glaucoma. Surgical blood clot removal was performed. However, intractable bleeding was noted during the removal of the blood clot, and so intracameral air injection was performed to prevent a recurrent tube obstruction. After the procedure, although blood clots formed around the tube, the tube opening where air could touch remained patent. In 3 cases of neovascular glaucoma with preoperative severe intraocular hemorrhages, intracameral air injection and AGV implantation were performed simultaneously. In all 3 cases, tube openings were patent. It appears that air impeded the blood clots formation in front of the tube opening. Intracameral air injection could be a feasible option to prevent tube obstruction of AGV implant with a blood clot in neovascular glaucoma with high risk of tube obstruction. Copyright © 2017 The Authors. Published by Wolters Kluwer Health, Inc. All rights reserved.

  16. Genetic and phylogenetic characterizations of a novel genotype of highly pathogenic avian influenza (HPAI) H5N8 viruses in 2016/2017 in South Korea.

    PubMed

    Kim, Young-Il; Park, Su-Jin; Kwon, Hyeok-Il; Kim, Eun-Ha; Si, Young-Jae; Jeong, Ju-Hwan; Lee, In-Won; Nguyen, Hiep Dinh; Kwon, Jin-Jung; Choi, Won Suk; Song, Min-Suk; Kim, Chul-Joong; Choi, Young-Ki

    2017-09-01

    During the outbreaks of highly pathogenic avian influenza (HPAI) H5N6 viruses in 2016 in South Korea, novel H5N8 viruses were also isolated from migratory birds. Phylogenetic analysis revealed that the HA gene of these H5N8 viruses belonged to clade 2.3.4.4, similarly to recent H5Nx viruses, and originated from A/Brk/Korea/Gochang1/14(H5N8), a minor lineage of H5N8 that appeared in 2014 and then disappeared. At least four reassortment events occurred with different subtypes (H5N8, H7N7, H3N8 and H10N7) and a chicken challenge study revealed that they were classified as HPAI viruses according to OIE criteria. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Functional analysis of embolism induced by air injection in Acer rubrum and Salix nigra

    PubMed Central

    Melcher, Peter J.; Zwieniecki, Maciej A.

    2013-01-01

    The goal of this study was to assess the effect of induced embolism with air injection treatments on the function of xylem in Acer rubrum L. and Salix nigra Marsh. Measurements made on mature trees of A. rubrum showed that pneumatic pressurization treatments that created a pressure gradient of 5.5 MPa across pit membranes (ΔPpit) had no effect on stomatal conductance or on branch-level sap flow. The same air injection treatments made on 3-year-old potted A. rubrum plants also had no effect on whole plant transpiration. A separate study made on mature A. rubrum trees showed that 3.0 and 5.5 MPa of ΔPpit values resulted in an immediate 100% loss in hydraulic conductance (PLC) in petioles. However, the observed change in PLC was short lived, and significant hydraulic recovery occurred within 5–10 min post air-pressurization treatments. Similar experiments conducted on S. nigra plants exposed to ΔPpit of 3 MPa resulted in a rapid decline in whole plant transpiration followed by leaf wilting and eventual plant death, showing that this species lacks the ability to recover from induced embolism. A survey that measured the effect of air-pressurization treatments on seven other species showed that some species are very sensitive to induction of embolism resulting in leaf wilting and branch death while others show minimal to no effect despite that in each case, the applied ΔPpit of 5.5 MPa significantly exceeded any native stress that these plants would experience naturally. PMID:24069025

  18. Functional analysis of embolism induced by air injection in Acer rubrum and Salix nigra.

    PubMed

    Melcher, Peter J; Zwieniecki, Maciej A

    2013-01-01

    The goal of this study was to assess the effect of induced embolism with air injection treatments on the function of xylem in Acer rubrum L. and Salix nigra Marsh. Measurements made on mature trees of A. rubrum showed that pneumatic pressurization treatments that created a pressure gradient of 5.5 MPa across pit membranes (ΔP pit) had no effect on stomatal conductance or on branch-level sap flow. The same air injection treatments made on 3-year-old potted A. rubrum plants also had no effect on whole plant transpiration. A separate study made on mature A. rubrum trees showed that 3.0 and 5.5 MPa of ΔP pit values resulted in an immediate 100% loss in hydraulic conductance (PLC) in petioles. However, the observed change in PLC was short lived, and significant hydraulic recovery occurred within 5-10 min post air-pressurization treatments. Similar experiments conducted on S. nigra plants exposed to ΔP pit of 3 MPa resulted in a rapid decline in whole plant transpiration followed by leaf wilting and eventual plant death, showing that this species lacks the ability to recover from induced embolism. A survey that measured the effect of air-pressurization treatments on seven other species showed that some species are very sensitive to induction of embolism resulting in leaf wilting and branch death while others show minimal to no effect despite that in each case, the applied ΔP pit of 5.5 MPa significantly exceeded any native stress that these plants would experience naturally.

  19. Comparative Performance of Engines Using a Carburetor, Manifold Injection, and Cylinder Injection

    NASA Technical Reports Server (NTRS)

    Schey, Oscar W; Clark, J Denny

    1939-01-01

    The comparative performance was determined of engines using three methods of mixing the fuel and the air: the use of a carburetor, manifold injection, and cylinder injection. The tests were made of a single-cylinder engine with a Wright 1820-G air-cooled cylinder. Each method of mixing the fuel and the air was investigated over a range of fuel-air ratios from 0.10 to the limit of stable operation and at engine speeds of 1,500 and 1,900 r.p.m. The comparative performance with a fuel-air ratio of 0.08 was investigated for speeds from 1,300 to 1,900 r.p.m. The results show that the power obtained with each method closely followed the volumetric efficiency; the power was therefore the highest with cylinder injection because this method had less manifold restriction. The values of minimum specific fuel consumption obtained with each method of mixing of fuel and air were the same. For the same engine and cooling conditions, the cylinder temperatures are the same regardless of the method used for mixing the fuel and the air.

  20. Coupling model of aerobic waste degradation considering temperature, initial moisture content and air injection volume.

    PubMed

    Ma, Jun; Liu, Lei; Ge, Sai; Xue, Qiang; Li, Jiangshan; Wan, Yong; Hui, Xinminnan

    2018-03-01

    A quantitative description of aerobic waste degradation is important in evaluating landfill waste stability and economic management. This research aimed to develop a coupling model to predict the degree of aerobic waste degradation. On the basis of the first-order kinetic equation and the law of conservation of mass, we first developed the coupling model of aerobic waste degradation that considered temperature, initial moisture content and air injection volume to simulate and predict the chemical oxygen demand in the leachate. Three different laboratory experiments on aerobic waste degradation were simulated to test the model applicability. Parameter sensitivity analyses were conducted to evaluate the reliability of parameters. The coupling model can simulate aerobic waste degradation, and the obtained simulation agreed with the corresponding results of the experiment. Comparison of the experiment and simulation demonstrated that the coupling model is a new approach to predict aerobic waste degradation and can be considered as the basis for selecting the economic air injection volume and appropriate management in the future.

  1. Analysis of Fuel Injection and Atomization of a Hybrid Air-Blast Atomizer.

    NASA Astrophysics Data System (ADS)

    Ma, Peter; Esclape, Lucas; Buschhagen, Timo; Naik, Sameer; Gore, Jay; Lucht, Robert; Ihme, Matthias

    2015-11-01

    Fuel injection and atomization are of direct importance to the design of injector systems in aviation gas turbine engines. Primary and secondary breakup processes have significant influence on the drop-size distribution, fuel deposition, and flame stabilization, thereby directly affecting fuel conversion, combustion stability, and emission formation. The lack of predictive modeling capabilities for the reliable characterization of primary and secondary breakup mechanisms is still one of the main issues in improving injector systems. In this study, an unstructured Volume-of-Fluid method was used in conjunction with a Lagrangian-spray framework to conduct high-fidelity simulations of the breakup and atomization processes in a realistic gas turbine hybrid air blast atomizer. Results for injection with JP-8 aviation fuel are presented and compared to available experimental data. Financial support through the FAA National Jet Fuel Combustion Program is gratefully acknowledged.

  2. Defining "Sector 3" Poultry Layer Farms in Relation to H5N1-HPAI-An Example from Java, Indonesia.

    PubMed

    Durr, Peter A; Wibowo, Michael Haryadi; Tarigan, Simson; Artanto, Sidna; Rosyid, Murni Nurhasanah; Ignjatovic, Jagoda

    2016-05-01

    To help guide surveillance and control of highly pathogenic avian influenza subtype H5N1 (H5N1-HPAI), the Food and Agriculture Organization of the United Nations in 2004 devised a poultry farm classification system based on a combination of production and biosecurity practices. Four "Sectors" were defined, and this scheme has been widely adopted within Indonesia to guide national surveillance and control strategies. Nevertheless, little detailed research into the robustness of this classification system has been conducted, particularly as it relates to independent, small to medium-sized commercial poultry farms (Sector 3). Through an analysis of questionnaire data collected as part of a survey of layer farms in western and central Java, all of which were classified as Sector 3 by local veterinarians, we provide benchmark data on what defines this sector. A multivariate analysis of the dataset, using hierarchical cluster analysis, identified three groupings of the farms, which were defined by a combination of production-and biosecurity-related variables, particularly those related to farm size and (the lack of) washing and disinfection practices. Nevertheless, the relationship between production-related variables and positive biosecurity practices was poor, and larger farms did not have an overall higher total biosecurity score than small or medium-sized ones. Further research is required to define the properties of poultry farms in Indonesia that are most closely related to effective biosecurity and the prevention of H5N1-HPAI.

  3. Radial lean direct injection burner

    DOEpatents

    Khan, Abdul Rafey; Kraemer, Gilbert Otto; Stevenson, Christian Xavier

    2012-09-04

    A burner for use in a gas turbine engine includes a burner tube having an inlet end and an outlet end; a plurality of air passages extending axially in the burner tube configured to convey air flows from the inlet end to the outlet end; a plurality of fuel passages extending axially along the burner tube and spaced around the plurality of air passage configured to convey fuel from the inlet end to the outlet end; and a radial air swirler provided at the outlet end configured to direct the air flows radially toward the outlet end and impart swirl to the air flows. The radial air swirler includes a plurality of vanes to direct and swirl the air flows and an end plate. The end plate includes a plurality of fuel injection holes to inject the fuel radially into the swirling air flows. A method of mixing air and fuel in a burner of a gas turbine is also provided. The burner includes a burner tube including an inlet end, an outlet end, a plurality of axial air passages, and a plurality of axial fuel passages. The method includes introducing an air flow into the air passages at the inlet end; introducing a fuel into fuel passages; swirling the air flow at the outlet end; and radially injecting the fuel into the swirling air flow.

  4. Contingency power for small turboshaft engines using water injection into turbine cooling air

    NASA Technical Reports Server (NTRS)

    Biesiadny, Thomas J.; Klann, Gary A.; Clark, David A.; Berger, Brett

    1987-01-01

    Because of one engine inoperative requirements, together with hot-gas reingestion and hot day, high altitude takeoff situations, power augmentation for multiengine rotorcraft has always been of critical interest. However, power augmentation using overtemperature at the turbine inlet will shorten turbine life unless a method of limiting thermal and mechanical stresses is found. A possible solution involves allowing the turbine inlet temperature to rise to augment power while injecting water into the turbine cooling air to limit hot-section metal temperatures. An experimental water injection device was installed in an engine and successfully tested. Although concern for unprotected subcomponents in the engine hot section prevented demonstration of the technique's maximum potential, it was still possible to demonstrate increases in power while maintaining nearly constant turbine rotor blade temperature.

  5. Effects of air injection during sap processing on maple syrup color, chemical composition and flavor volatiles.

    USDA-ARS?s Scientific Manuscript database

    Air injection (AI) is a maple sap processing technology reported to increase the efficiency of maple syrup production by increasing production of more economically valuable light-colored maple syrup, and reducing development of loose scale mineral precipitates in syrup, and scale deposits on evapora...

  6. Altered virulence of Highly Pathogenic Avian Influenza (HPAI) H5N8 reassortant viruses in mammalian models.

    PubMed

    Park, Su-Jin; Kim, Eun-Ha; Kwon, Hyeok-Il; Song, Min-Suk; Kim, Se Mi; Kim, Young-Il; Si, Young-Jae; Lee, In-Won; Nguyen, Hiep Dinh; Shin, Ok Sarah; Kim, Chul-Joong; Choi, Young Ki

    2018-01-01

    Recently identified highly pathogenic avian influenza (HPAI) H5N8 viruses (clade 2.3.4.4) are relatively low to moderately pathogenic in mammalian hosts compared with HPAI H5N1 viruses. In this study, we generated reassortant viruses comprised of A/MD/Korea/W452/2014(H5N8) with substitution of individual genes from A/EM/Korea/W149/2006(H5N1) to understand the contribution of each viral gene to virulence in mammals. Substituting the PB2 gene segment or the NA gene segment of the H5N8 virus by that from the H5N1 virus resulted in significantly enhanced pathogenicity compared with the parental H5N8 virus in mice. Of note, substitution of the PB2 gene segment of the H5N8 virus by that from the H5N1 virus resulted in a 1000-fold increase in virulence for mice compared with the parental virus (MLD 50 decreased from 10 5.8 to 10 2.5 EID 50 ). Further, the W452 W149PB2 virus also induced the highest virus titers in lungs at all time points and the highest levels of inflammatory cytokine responses among all viruses tested. This high virulence phenotype was also confirmed by high viral titers in the respiratory tracts of infected ferrets. Further, a mini-genome assay revealed that W452 W149PB2 has significantly increased polymerase activity (p < 0.001). Taken together, our study demonstrates that a single gene substitution from other avian influenza viruses can alter the pathogenicity of recent H5N8 viruses, and therefore emphasizes the need for intensive monitoring of reassortment events among co-circulating avian and mammalian viruses.

  7. Altered virulence of Highly Pathogenic Avian Influenza (HPAI) H5N8 reassortant viruses in mammalian models

    PubMed Central

    Park, Su-Jin; Kim, Eun-Ha; Kwon, Hyeok-Il; Song, Min-Suk; Kim, Se Mi; Kim, Young-Il; Si, Young-Jae; Lee, In-Won; Nguyen, Hiep Dinh; Shin, Ok Sarah; Kim, Chul-Joong; Choi, Young Ki

    2018-01-01

    ABSTRACT Recently identified highly pathogenic avian influenza (HPAI) H5N8 viruses (clade 2.3.4.4) are relatively low to moderately pathogenic in mammalian hosts compared with HPAI H5N1 viruses. In this study, we generated reassortant viruses comprised of A/MD/Korea/W452/2014(H5N8) with substitution of individual genes from A/EM/Korea/W149/2006(H5N1) to understand the contribution of each viral gene to virulence in mammals. Substituting the PB2 gene segment or the NA gene segment of the H5N8 virus by that from the H5N1 virus resulted in significantly enhanced pathogenicity compared with the parental H5N8 virus in mice. Of note, substitution of the PB2 gene segment of the H5N8 virus by that from the H5N1 virus resulted in a 1000-fold increase in virulence for mice compared with the parental virus (MLD50 decreased from 105.8 to 102.5 EID50). Further, the W452W149PB2 virus also induced the highest virus titers in lungs at all time points and the highest levels of inflammatory cytokine responses among all viruses tested. This high virulence phenotype was also confirmed by high viral titers in the respiratory tracts of infected ferrets. Further, a mini-genome assay revealed that W452W149PB2 has significantly increased polymerase activity (p < 0.001). Taken together, our study demonstrates that a single gene substitution from other avian influenza viruses can alter the pathogenicity of recent H5N8 viruses, and therefore emphasizes the need for intensive monitoring of reassortment events among co-circulating avian and mammalian viruses. PMID:28873012

  8. Effect of aviation fuel type and fuel injection conditions on the spray characteristics of pressure swirl and hybrid air blast fuel injectors

    NASA Astrophysics Data System (ADS)

    Feddema, Rick

    Feddema, Rick T. M.S.M.E., Purdue University, December 2013. Effect of Aviation Fuel Type and Fuel Injection Conditions on the Spray Characteristics of Pressure Swirl and Hybrid Air Blast Fuel Injectors. Major Professor: Dr. Paul E. Sojka, School of Mechanical Engineering Spray performance of pressure swirl and hybrid air blast fuel injectors are central to combustion stability, combustor heat management, and pollutant formation in aviation gas turbine engines. Next generation aviation gas turbine engines will optimize spray atomization characteristics of the fuel injector in order to achieve engine efficiency and emissions requirements. Fuel injector spray atomization performance is affected by the type of fuel injector, fuel liquid properties, fuel injection pressure, fuel injection temperature, and ambient pressure. Performance of pressure swirl atomizer and hybrid air blast nozzle type fuel injectors are compared in this study. Aviation jet fuels, JP-8, Jet A, JP-5, and JP-10 and their effect on fuel injector performance is investigated. Fuel injector set conditions involving fuel injector pressure, fuel temperature and ambient pressure are varied in order to compare each fuel type. One objective of this thesis is to contribute spray patternation measurements to the body of existing drop size data in the literature. Fuel droplet size tends to increase with decreasing fuel injection pressure, decreasing fuel injection temperature and increasing ambient injection pressure. The differences between fuel types at particular set conditions occur due to differences in liquid properties between fuels. Liquid viscosity and surface tension are identified to be fuel-specific properties that affect the drop size of the fuel. An open aspect of current research that this paper addresses is how much the type of aviation jet fuel affects spray atomization characteristics. Conventional aviation fuel specifications are becoming more important with new interest in alternative

  9. A model for 3-D sonic/supersonic transverse fuel injection into a supersonic air stream

    NASA Technical Reports Server (NTRS)

    Bussing, Thomas R. A.; Lidstone, Gary L.

    1989-01-01

    A model for sonic/supersonic transverse fuel injection into a supersonic airstream is proposed. The model replaces the hydrogen jet up to the Mach disk plane and the elliptic parts of the air flow field around the jet by an equivalent body. The main features of the model were validated on the basis of experimental data.

  10. Advanced diesel electronic fuel injection and turbocharging

    NASA Astrophysics Data System (ADS)

    Beck, N. J.; Barkhimer, R. L.; Steinmeyer, D. C.; Kelly, J. E.

    1993-12-01

    The program investigated advanced diesel air charging and fuel injection systems to improve specific power, fuel economy, noise, exhaust emissions, and cold startability. The techniques explored included variable fuel injection rate shaping, variable injection timing, full-authority electronic engine control, turbo-compound cooling, regenerative air circulation as a cold start aid, and variable geometry turbocharging. A Servojet electronic fuel injection system was designed and manufactured for the Cummins VTA-903 engine. A special Servojet twin turbocharger exhaust system was also installed. A series of high speed combustion flame photos was taken using the single cylinder optical engine at Michigan Technological University. Various fuel injection rate shapes and nozzle configurations were evaluated. Single-cylinder bench tests were performed to evaluate regenerative inlet air heating techniques as an aid to cold starting. An exhaust-driven axial cooling air fan was manufactured and tested on the VTA-903 engine.

  11. Impact of Air Injection on Jet Noise

    NASA Technical Reports Server (NTRS)

    Henderson, Brenda; Norum, Tom

    2007-01-01

    The objective of this viewgraph presentation is to review the program to determine impact of core fluidic chevrons on noise produced by dual stream jets (i.e., broadband shock noise - supersonic, and mixing noise - subsonic and supersonic). The presentation reviews the sources of jet noise. It shows designs of Generation II Fluidic Chevrons. The injection impacts shock structure and stream disturbances through enhanced mixing. This may impact constructive interference between acoustic sources. The high fan pressures may inhibit mixing produced by core injectors. A fan stream injection may be required for better noise reduction. In future the modification of Gen II nozzles to allow for some azimuthal control: will allow for higher mass flow rates and will allow for shallower injection angles A Flow field study is scheduled for spring, 2008 The conclusions are that injection can reduce well-defined shock noise and injection reduces mixing noise near peak jet noise angle

  12. Purported addition of N-glycosylation sites on the globular head of the hemagglutinin induced escape of a 2015 Mexican H7 HPAI strain from vaccinal immunity

    USDA-ARS?s Scientific Manuscript database

    In the past years, H7N3 highly pathogenic avian influenza (HPAI) has been reported in Mexico with a dramatic economic and ethical impact due to the high number of birds that have died or been culled. In the present study, one-day-old specific pathogen free (SPF) leghorn chickens were vaccinated with...

  13. Mobile ultra-clean unidirectional airflow screen reduces air contamination in a simulated setting for intra-vitreal injection.

    PubMed

    Lapid-Gortzak, Ruth; Traversari, Roberto; van der Linden, Jan Willem; Lesnik Oberstein, Sarit Y; Lapid, Oren; Schlingemann, Reinier O

    2017-02-01

    The aim of this study is to determine whether the use of a mobile ultra-clean laminar airflow screen reduces the air-borne particle counts in the setting of a simulated procedure of an intra-vitreal injection. A mobile ultra-clean unidirectional airflow (UDF) screen was tested in a simulated procedure for intra-vitreal injections in a treatment room without mechanical ventilation. One UDF was passed over the instrument tray and the surgical area. The concentration of particles was measured in the background, over the instrument table, and next to the ocular area. The degree of protection was calculated at the instrument table and at the surgical site. Use of the UDF mobile screen reduced the mean particle concentration (particles > 0.3 microns) on the instrument table by a factor of at least 100.000 (p < 0.05), and over the patient's eye by at least a factor of 436 (p < 0.05), which in clinical practice translates into significantly reduced air contamination. Mobile UDF screen reduces the mean particle concentration substantially. The mobile UDF screen may therefore allow for a safer procedural environment for ambulatory care procedures such as intra-vitreal injections in treatment rooms.

  14. Risk of Introduction in Northern Vietnam of HPAI Viruses from China: Description, Patterns and Drivers of Illegal Poultry Trade.

    PubMed

    Desvaux, S; Nguyen, C O; Vu, D T; Henriquez, C; Ky, V D; Roger, F; Fenwick, S; Goutard, F

    2016-08-01

    Poultry movement is known to contribute to the dissemination of highly pathogenic avian influenza (HPAI) viruses. In Northern Vietnam, the illegal trade of poultry from China is a source of concern and is considered as responsible for the regular introduction of new H5N1 viruses. The general objective of this study was to get a better understanding of this illegal trade (organization, volume, actors involved and drivers) to propose adequate preventive and control options. The information was also used to qualitatively evaluate the risk of exposure of susceptible poultry to HPAI H5N1 virus introduced from China by illegally traded poultry. We found that the main products imported from China are spent hens, day-old chicks (DOCs) and ducklings; spent hens being introduced in very large number. The drivers of this trade are multiple: economic (especially for spent hens) but also technical (demand for improved genetic potential for DOC and ducklings). Furthermore, these introductions also meet a high consumer demand at certain periods of the year. We also found that spatial dispersion of a batch of poultry illegally introduced from China is extensive and rapid, making any prediction of possible new outbreaks very hazardous. Finally, a risk mitigation plan should include measures to tackle the drivers of this trade or to legally organize it, to limit the threat to the local poultry sector. It is also essential for traders to be progressively better organized and biosecure and for hygienic practices to be enforced, as our study confirmed that at-risk behaviours are still very common among this profession. © 2014 Blackwell Verlag GmbH.

  15. Genetic characterisation of novel, highly pathogenic avian influenza (HPAI) H5N6 viruses isolated in birds, South Korea, November 2016

    PubMed Central

    Si, Young-Jae; Lee, In Won; Kim, Eun-Ha; Kim, Young-Il; Kwon, Hyeok-Il; Park, Su-Jin; Nguyen, Hiep Dinh; Kim, Se Mi; Kwon, Jin-Jung; Choi, Won-Suk; Beak, Yun Hee; Song, Min-Suk; Kim, Chul-Joong; Webby, Richard J.; Choi, Young-Ki

    2017-01-01

    A novel genotype of H5N6 influenza viruses was isolated from migratory birds in South Korea during November 2016. Domestic outbreaks of this virus were associated with die-offs of wild birds near reported poultry cases in Chungbuk province, central South Korea. Genetic analysis and animal studies demonstrated that the Korean H5N6 viruses are highly pathogenic avian influenza (HPAI) viruses and that these viruses are novel reassortants of at least three different subtypes (H5N6, H4N2 and H1N1). PMID:28079520

  16. Combustion in a Bomb with a Fuel-Injection System

    NASA Technical Reports Server (NTRS)

    Cohn, Mildred; Spencer, Robert C

    1935-01-01

    Fuel injected into a spherical bomb filled with air at a desired density and temperature could be ignited with a spark a few thousandths of a second after injection, an interval comparable with the ignition lag in fuel-injection engines. The effect of several variables on the extent and rate of combustion was investigated: time intervals between injection and ignition of fuel of 0.003 to 0.06 second and one of 5 minutes; initial air temperatures of 100 degrees C. to 250 degrees C.; initial air densities equivalent to 5, 10, and 15 absolute atmospheres pressure at 100 degrees C.; and air-fuel ratios of 5 to 25.

  17. Lean direct wall fuel injection method and devices

    NASA Technical Reports Server (NTRS)

    Choi, Kyung J. (Inventor); Tacina, Robert (Inventor)

    2000-01-01

    A fuel combustion chamber, and a method of and a nozzle for mixing liquid fuel and air in the fuel combustion chamber in lean direct injection combustion for advanced gas turbine engines, including aircraft engines. Liquid fuel in a form of jet is injected directly into a cylindrical combustion chamber from the combustion chamber wall surface in a direction opposite to the direction of the swirling air at an angle of from about 50.degree. to about 60.degree. with respect to a tangential line of the cylindrical combustion chamber and at a fuel-lean condition, with a liquid droplet momentum to air momentum ratio in the range of from about 0.05 to about 0.12. Advanced gas turbines benefit from lean direct wall injection combustion. The lean direct wall injection technique of the present invention provides fast, uniform, well-stirred mixing of fuel and air. In addition, in order to further improve combustion, the fuel can be injected at a venturi located in the combustion chamber at a point adjacent the air swirler.

  18. Primary zone air proportioner

    DOEpatents

    Cleary, Edward N. G.

    1982-10-12

    An air proportioner is provided for a liquid hydrocarbon fueled gas turbine of the type which is convertible to oil gas fuel and to coal gas fuel. The turbine includes a shell for enclosing the turbine, an air duct for venting air in said shell to a gasifier, and a fuel injector for injecting gasified fuel into the turbine. The air proportioner comprises a second air duct for venting air from the air duct for mixing with fuel from the gasifier. The air can be directly injected into the gas combustion basket along with the fuel from the injector or premixed with fuel from the gasifier prior to injection by the fuel injector.

  19. Water Injected Turbomachinery

    NASA Technical Reports Server (NTRS)

    Hendricks, R. C.; Shouse, D. T.; Roquemore, W. M.

    2005-01-01

    From antiquity, water has been a source of cooling, lubrication, and power for energy transfer devices. More recent applications in gas turbines demonstrate an added facet, emissions control. Fogging gas turbine inlets or direct injection of water into gas turbine combustors, decreases NOx and increases power. Herein we demonstrate that injection of water into the air upstream of the combustor reduces NOx by factors up to three in a natural gas fueled Trapped Vortex Combustor (TVC) and up to two in a liquid JP-8 fueled (TVC) for a range in water/fuel and fuel/air ratios.

  20. Steam and air co-injection in removing residual TCE in unsaturated layered sandy porous media.

    PubMed

    Peng, Sheng; Wang, Ning; Chen, Jiajun

    2013-10-01

    Steam and air co-injection is a promising technique for volatile and semi-volatile organic contaminant remediation in heterogeneous porous media. In this study, removal of trichloroethene (TCE) with steam-air co-injection was investigated through a series of 2D sandbox experiments with different layered sand structures, and through numerical simulations. The results show that a layered structure with coarse sand, in which steam and air convection are relatively rapid, resulted in a higher removal rate and a larger removal ratio than those observed in an experiment using finer sand; however, the difference was not significant, and the removal ratios from three experiments ranged from 85% to 94%. Slight downward movement of TCE was observed for Experiment 1 (TCE initially in a fine sand zone encased in a coarse sand), while no such movement was observed for Experiment 2 (TCE initially in two fine sand layers encased in a coarse sand) or 3 (TCE initially in a silty sand zone encased in a coarse sand). Simulations show accumulation of TCE at the interface of the layered sands, which indicates a capillary barrier effect in restraining the downward movement of TCE. This effect is illustrated further by a numerical experiment with homogeneous coarse sand, in which continuous downward TCE movement to the bottom of the sandbox was simulated. Another numerical experiment with higher water saturation was also conducted. The results illustrate a complicated influence of water saturation on TCE removal in a layered sand structure. Published by Elsevier B.V.

  1. Contingency power for a small turboshaft engine by using water injection into turbine cooling air

    NASA Technical Reports Server (NTRS)

    Biesiadny, Thomas J.; Klann, Gary A.

    1992-01-01

    Because of one-engine-inoperative (OEI) requirements, together with hot-gas reingestion and hot-day, high-altitude take-off situations, power augmentation for multiengine rotorcraft has always been of critical interest. However, power augmentation by using overtemperature at the turbine inlet will shorten turbine life unless a method of limiting thermal and mechanical stress is found. A possible solution involves allowing the turbine inlet temperature to rise to augment power while injecting water into the turbine cooling air to limit hot-section metal temperatures. An experimental water injection device was installed in an engine and successfully tested. Although concern for unprotected subcomponents in the engine hot section prevented demonstration of the technique's maximum potential, it was still possible to demonstrate increases in power while maintaining nearly constant turbine rotor blade temperature.

  2. Premixed direct injection nozzle for highly reactive fuels

    DOEpatents

    Ziminsky, Willy Steve; Johnson, Thomas Edward; Lacy, Benjamin Paul; York, William David; Uhm, Jong Ho; Zuo, Baifang

    2013-09-24

    A fuel/air mixing tube for use in a fuel/air mixing tube bundle is provided. The fuel/air mixing tube includes an outer tube wall extending axially along a tube axis between an inlet end and an exit end, the outer tube wall having a thickness extending between an inner tube surface having a inner diameter and an outer tube surface having an outer tube diameter. The tube further includes at least one fuel injection hole having a fuel injection hole diameter extending through the outer tube wall, the fuel injection hole having an injection angle relative to the tube axis. The invention provides good fuel air mixing with low combustion generated NOx and low flow pressure loss translating to a high gas turbine efficiency, that is durable, and resistant to flame holding and flash back.

  3. Injection System for Multi-Well Injection Using a Single Pump

    PubMed Central

    Wovkulich, Karen; Stute, Martin; Protus, Thomas J.; Mailloux, Brian J.; Chillrud, Steven N.

    2015-01-01

    Many hydrological and geochemical studies rely on data resulting from injection of tracers and chemicals into groundwater wells. The even distribution of liquids to multiple injection points can be challenging or expensive, especially when using multiple pumps. An injection system was designed using one chemical metering pump to evenly distribute the desired influent simultaneously to 15 individual injection points through an injection manifold. The system was constructed with only one metal part contacting the fluid due to the low pH of the injection solutions. The injection manifold system was used during a three-month pilot scale injection experiment at the Vineland Chemical Company Superfund site. During the two injection phases of the experiment (Phase I = 0.27 L/min total flow, Phase II = 0.56 L/min total flow), flow measurements were made 20 times over three months; an even distribution of flow to each injection well was maintained (RSD <4%). This durable system is expandable to at least 16 injection points and should be adaptable to other injection experiments that require distribution of air-stable liquids to multiple injection points with a single pump. PMID:26140014

  4. Genetic characterisation of novel, highly pathogenic avian influenza (HPAI) H5N6 viruses isolated in birds, South Korea, November 2016.

    PubMed

    Si, Young-Jae; Lee, In Won; Kim, Eun-Ha; Kim, Young-Il; Kwon, Hyeok-Il; Park, Su-Jin; Nguyen, Hiep Dinh; Kim, Se Mi; Kwon, Jin-Jung; Choi, Won-Suk; Beak, Yun Hee; Song, Min-Suk; Kim, Chul-Joong; Webby, Richard J; Choi, Young-Ki

    2017-01-05

    A novel genotype of H5N6 influenza viruses was isolated from migratory birds in South Korea during November 2016. Domestic outbreaks of this virus were associated with die-offs of wild birds near reported poultry cases in Chungbuk province, central South Korea. Genetic analysis and animal studies demonstrated that the Korean H5N6 viruses are highly pathogenic avian influenza (HPAI) viruses and that these viruses are novel reassortants of at least three different subtypes (H5N6, H4N2 and H1N1). This article is copyright of The Authors, 2017.

  5. Estimate for interstage water injection in air compressor incorporated into gas-turbine cycles and combined power plants cycles

    NASA Astrophysics Data System (ADS)

    Kler, A. M.; Zakharov, Yu. B.; Potanina, Yu. M.

    2017-05-01

    The objects of study are the gas turbine (GT) plant and combined cycle power plant (CCPP) with opportunity for injection between the stages of air compressor. The objective of this paper is technical and economy optimization calculations for these classes of plants with water interstage injection. The integrated development environment "System of machine building program" was a tool for creating the mathematic models for these classes of power plants. Optimization calculations with the criterion of minimum for specific capital investment as a function of the unit efficiency have been carried out. For a gas-turbine plant, the economic gain from water injection exists for entire range of power efficiency. For the combined cycle plant, the economic benefit was observed only for a certain range of plant's power efficiency.

  6. Commercial air travel after intraocular gas injection.

    PubMed

    Houston, Stephen; Graf, Jürgen; Sharkey, James

    2012-08-01

    Passengers with intraocular gas are at risk of profound visual loss when exposed to reduced absolute pressure within the cabin of a typical commercial airliner. Information provided on the websites of the world's 10 largest airlines offer a considerable range of opinion as to when it might be safe to fly after gas injection. Physicians responsible for clearing pseassengers as 'fit to fly' should be aware modern retinal surgical techniques increasingly employ long-acting gases as vitreous substitutes. The kinetics of long-acting intraocular gases must be considered when deciding how long after surgery it is safe to travel. It is standard practice to advise passengers not to fly in aircraft until the gas is fully resorbed. To achieve this, it may be necessary to delay travel for approximately 2 wk after intraocular injection of sulfur hexafluoride (SF6) and for 6 wk after injection of perfluoropropane (C3F8).

  7. Staged direct injection diesel engine

    DOEpatents

    Baker, Quentin A.

    1985-01-01

    A diesel engine having staged injection for using lower cetane number fuels than No. 2 diesel fuel. The engine includes a main fuel injector and a pilot fuel injector. Pilot and main fuel may be the same fuel. The pilot injector injects from five to fifteen percent of the total fuel at timings from 20.degree. to 180.degree. BTDC depending upon the quantity of pilot fuel injected, the fuel cetane number and speed and load. The pilot fuel injector is directed toward the centerline of the diesel cylinder and at an angle toward the top of the piston, avoiding the walls of the cylinder. Stratification of the early injected pilot fuel is needed to reduce the fuel-air mixing rate, prevent loss of pilot fuel to quench zones, and keep the fuel-air mixture from becoming too fuel lean to become effective. In one embodiment, the pilot fuel injector includes a single hole for injection of the fuel and is directed at approximately 48.degree. below the head of the cylinder.

  8. The Use of Air Injection Nozzles for the Forced Excitation of Axial Compressor Blades

    NASA Astrophysics Data System (ADS)

    Raubenheimer, G. A.; van der Spuy, S. J.; von Backström, T. W.

    2013-03-01

    Turbomachines are exposed to many factors which may cause failure of its components. One of these, high cycle fatigue, can be caused by blade flutter. This paper evaluates the use of an air injection nozzle as a means of exciting vibrations on the first stage rotor blades of a rotating axial compressor. Unsteady simulations of the excitation velocity perturbations were performed on the Computational Fluid Dynamics (CFD) software, Numeca FINE™/Turbo. Experimental testing on a three-stage, low Mach number axial flow compressor provided data that was used to implement boundary conditions and to verify certain aspects of the unsteady simulation results.

  9. CALIOP-based Biomass Burning Smoke Plume Injection Height

    NASA Astrophysics Data System (ADS)

    Soja, A. J.; Choi, H. D.; Fairlie, T. D.; Pouliot, G.; Baker, K. R.; Winker, D. M.; Trepte, C. R.; Szykman, J.

    2017-12-01

    Carbon and aerosols are cycled between terrestrial and atmosphere environments during fire events, and these emissions have strong feedbacks to near-field weather, air quality, and longer-term climate systems. Fire severity and burned area are under the control of weather and climate, and fire emissions have the potential to alter numerous land and atmospheric processes that, in turn, feedback to and interact with climate systems (e.g., changes in patterns of precipitation, black/brown carbon deposition on ice/snow, alteration in landscape and atmospheric/cloud albedo). If plume injection height is incorrectly estimated, then the transport and deposition of those emissions will also be incorrect. The heights to which smoke is injected governs short- or long-range transport, which influences surface pollution, cloud interaction (altered albedo), and modifies patterns of precipitation (cloud condensation nuclei). We are working with the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) science team and other stakeholder agencies, primarily the Environmental Protection Agency and regional partners, to generate a biomass burning (BB) plume injection height database using multiple platforms, sensors and models (CALIOP, MODIS, NOAA HMS, Langley Trajectory Model). These data have the capacity to provide enhanced smoke plume injection height parameterization in regional, national and international scientific and air quality models. Statistics that link fire behavior and weather to plume rise are crucial for verifying and enhancing plume rise parameterization in local-, regional- and global-scale models used for air quality, chemical transport and climate. Specifically, we will present: (1) a methodology that links BB injection height and CALIOP air parcels to specific fires; (2) the daily evolution of smoke plumes for specific fires; (3) plumes transport and deposited on the Greenland Ice Sheet; and (4) compare CALIOP-derived smoke plume injection

  10. Injectors for Multipoint Injection

    NASA Technical Reports Server (NTRS)

    Prociw, Lev Alexander (Inventor); Ryon, Jason (Inventor)

    2015-01-01

    An injector for a multipoint combustor system includes an inner air swirler which defines an interior flow passage and a plurality of swirler inlet ports in an upstream portion thereof. The inlet ports are configured and adapted to impart swirl on flow in the interior flow passage. An outer air cap is mounted outboard of the inner swirler. A fuel passage is defined between the inner air swirler and the outer air cap, and includes a discharge outlet between downstream portions of the inner air swirler and the outer air cap for issuing fuel for combustion. The outer air cap defines an outer air circuit configured for substantially unswirled injection of compressor discharge air outboard of the interior flow passage.

  11. Bioaugmentation of oil reservoir indigenous Pseudomonas aeruginosa to enhance oil recovery through in-situ biosurfactant production without air injection.

    PubMed

    Zhao, Feng; Li, Ping; Guo, Chao; Shi, Rong-Jiu; Zhang, Ying

    2018-03-01

    Considering the anoxic conditions within oil reservoirs, a new microbial enhanced oil recovery (MEOR) technology through in-situ biosurfactant production without air injection was proposed. High-throughput sequencing data revealed that Pseudomonas was one of dominant genera in Daqing oil reservoirs. Pseudomonas aeruginosa DQ3 which can anaerobically produce biosurfactant at 42 °C was isolated. Strain DQ3 was bioaugmented in an anaerobic bioreactor to approximately simulate MEOR process. During bioaugmentation process, although a new bacterial community was gradually formed, Pseudomonas was still one of dominant genera. Culture-based data showed that hydrocarbon-degrading bacteria and biosurfactant-producing bacteria were activated, while sulfate reducing bacteria were controlled. Biosurfactant was produced at simulated reservoir conditions, decreasing surface tension to 33.8 mN/m and emulsifying crude oil with EI 24  = 58%. Core flooding tests revealed that extra 5.22% of oil was displaced by in-situ biosurfactant production. Bioaugmenting indigenous biosurfactant producer P. aeruginosa without air injection is promising for in-situ MEOR applications. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Film cooling effectiveness and heat transfer with injection through holes

    NASA Technical Reports Server (NTRS)

    Eriksen, V. L.

    1971-01-01

    An experimental investigation of the local film cooling effectiveness and heat transfer downstream of injection of air through discrete holes into a turbulent boundary layer of air on a flat plate is reported. Secondary air is injected through a single hole normal to the main flow and through both a single hole and a row of holes spaced at three diameter intervals with an injection angle of 35 deg to the main flow. Two values of the mainstream Reynolds number are used; the blowing rate is varied from 0.1 to 2.0. Photographs of a carbon dioxide-water fog injected into the main flow at an angle of 90 deg are also presented to show interaction between the jet and mainstream.

  13. In vitro study of air bubble dynamics following pneumodissection of donor corneas and relationship of air bubble pattern with a peripheral paracentesis incision.

    PubMed

    Chaurasia, Sunita; Ramappa, Muralidhar

    2016-12-01

    To study various types of morphological patterns of the air bubble and their relation to a peripheral paracentesis after air injection in corneal stroma in vitro experiment. Air was injected into the donor corneas from the endothelial side and pattern was noted. Four different scenarios were created, namely (a) air injection into the deep stroma (n=11), (b) air injection into the superficial stroma (n=3), (c) air injection into the deep stroma after making a peripheral incision internal to the trabecular meshwork region that simulated an anteriorly placed paracentesis incision, with the site of air injection within a clock hour of the peripheral incision (n=7) and (d) air injection into the deep stroma after making a peripheral incision, the site of air injection being 180° away from the peripheral incision site (n=3). Air injection at deep posterior stroma resulted in the formation of type-1 and type-2 bubbles, type 2 began from the periphery and followed the type-1 bubble pattern in majority of the donor corneas. The type-1 pattern was noted as a bubble in the central part of the donor disc that did not reach the peripheral extent of the cornea. The type-2 pattern was a bubble that started at the peripheral cornea and expanded but was limited by the limbus circumferentially. With a full-thickness peripheral incision and air injection in the same clock hour of the incision, only a type-1 bubble pattern was noted with air leakage from the site of the incision. The results of the study corroborate with the clinical observations made during deep lamellar keratoplasty (DLK). The placement of the paracentesis has a bearing on the pattern of the air bubble and can be used to an advantage during DLK surgery. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.

  14. Fuel-air mixing and distribution in a direct-injection stratified-charge rotary engine

    NASA Technical Reports Server (NTRS)

    Abraham, J.; Bracco, F. V.

    1989-01-01

    A three-dimensional model for flows and combustion in reciprocating and rotary engines is applied to a direct-injection stratified-charge rotary engine to identify the main parameters that control its burning rate. It is concluded that the orientation of the six sprays of the main injector with respect to the air stream is important to enhance vaporization and the production of flammable mixture. In particular, no spray should be in the wake of any other spray. It was predicted that if such a condition is respected, the indicated efficiency would increase by some 6 percent at higher loads and 2 percent at lower loads. The computations led to the design of a new injector tip that has since yielded slightly better efficiency gains than predicted.

  15. Suicide by Intentional Air embolism.

    PubMed

    Simon, Gábor; Rácz, Evelin; Mayer, Mátyás; Heckmann, Veronika; Tóth, Dénes; Kozma, Zsolt

    2017-05-01

    Venous air embolism occurs when air enters the venous system. The main causes of venous air embolism include medical procedures, neck and head trauma, and injuries of the genitals. Self-induced suicidal (and intentional) air embolism is extremely rare. The authors report a rare case of a suicidal air embolism committed using a self-made tool composed of a plastic bottle and an infusion set, injecting nearly 2000 mL of air into the cubital vein. The toxicological analysis suggested that midazolam, together with air, was also injected into the circulation using the same bottle and infusion set. © 2016 American Academy of Forensic Sciences.

  16. Comparison of the pathogenic potential of highly pathogenic avian influenza (HPAI) H5N6, and H5N8 viruses isolated in South Korea during the 2016-2017 winter season.

    PubMed

    Kwon, Hyeok-Il; Kim, Eun-Ha; Kim, Young-Il; Park, Su-Jin; Si, Young-Jae; Lee, In-Won; Nguyen, Hiep Dinh; Yu, Kwang Min; Yu, Min-Ah; Jung, Ju Hwan; Choi, Won-Suk; Kwon, Jin Jung; Ahn, Su Jeong; Baek, Yun Hee; Van Lai, Dam; Lee, Ok-Jun; Kim, Si-Wook; Song, Min-Suk; Yoon, Sun-Woo; Kim, Chul-Joong; Webby, Richard J; Mo, In-Pil; Choi, Young Ki

    2018-03-14

    Highly pathogenic avian influenza (HPAI) A(H5N6) and A(H5N8) virus infections resulted in the culling of more than 37 million poultry in the Republic of Korea during the 2016/17 winter season. Here we characterize two representative viruses, A/Environment/Korea/W541/2016 [Em/W541(H5N6)] and A/Common Teal/Korea/W555/2017 [CT/W555(H5N8)], and evaluate their zoonotic potential in various animal models. Both Em/W541(H5N6) and CT /W555(H5N8) are novel reassortants derived from various gene pools of wild bird viruses present in migratory waterfowl arising from eastern China. Despite strong preferential binding to avian virus-type receptors, the viruses were able to grow in human respiratory tract tissues. Em/W541(H5N6) was found to be highly pathogenic in both chickens and ducks, while CT/W555(H5N8) caused lethal infections in chickens but did not induce remarkable clinical illness in ducks. In mice, both viruses appeared to be moderately pathogenic and displayed limited tissue tropism relative to HPAI H5N1 viruses. Em/W541(H5N6) replicated to moderate levels in the upper respiratory tract of ferrets and was detected in the lungs, brain, spleen, liver, and colon. Unexpectedly, two of three ferrets in direct contact with Em/W541(H5N6)-infected animals shed virus and seroconverted at 14 dpi. CT/W555(H5N8) was less pathogenic than the H5N6 virus in ferrets and no transmission was detected. Given the co-circulation of different, phenotypically distinct, subtypes of HPAI H5Nx viruses for the first time in South Korea, detailed virologic investigations are imperative given the capacity of these viruses to evolve and cause human infections.

  17. On the effect of injection timing on the ignition of lean PRF/air/EGR mixtures under direct dual fuel stratification conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Luong, Minh Bau; Sankaran, Ramanan; Yu, Gwang Hyeon

    2017-06-09

    The ignition characteristics of lean primary reference fuel (PRF)/air/exhaust gas recirculation (EGR) mixture under reactivity-controlled compression ignition (RCCI) and direct duel fuel stratification (DDFS) conditions are investigated in this paper by 2-D direct numerical simulations (DNSs) with a 116-species reduced chemistry of the PRF oxidation. The 2-D DNSs of the DDFS combustion are performed by varying the injection timing of iso-octane (i-C 8H 18) with a pseudo-iso-octane (PC 8H 18) model together with a novel compression heating model to account for the compression heating and expansion cooling effects of the piston motion in an engine cylinder. The PC 8H 18more » model is newly developed to mimic the timing, duration, and cooling effects of the direct injection of i-C 8H 18 onto a premixed background charge of PRF/air/EGR mixture with composition inhomogeneities. It is found that the RCCI combustion exhibits a very high peak heat release rate (HRR) with a short combustion duration due to the predominance of the spontaneous ignition mode of combustion. However, the DDFS combustion has much lower peak HRR and longer combustion duration regardless of the fuel injection timing compared to those of the RCCI combustion, which is primarily attributed to the sequential injection of i-C 8H 18. It is also found that the ignition delay of the DDFS combustion features a non-monotonic behavior with increasing fuel-injection timing due to the different effect of fuel evaporation on the low-, intermediate-, and high-temperature chemistry of the PRF oxidation. The budget and Damköhler number analyses verify that although a mixed combustion mode of deflagration and spontaneous ignition exists during the early phase of the DDFS combustion, the spontaneous ignition becomes predominant during the main combustion, and hence, the spread-out of heat release rate in the DDFS combustion is mainly governed by the direct injection process of i-C 8H 18. Finally, a misfire is

  18. A qualitative view of cryogenic fluid injection into high speed flows

    NASA Technical Reports Server (NTRS)

    Hendricks, R. C.; Schlumberger, J.; Proctor, M.

    1991-01-01

    The injection of supercritical pressure, subcritical temperature fluids, into a 2-D, ambient, static temperature and static pressure supersonic tunnel and free jet supersonic nitrogen flow field was observed. Observed patterns with fluid air were the same as those observed for fluid nitrogen injected into the tunnel at 90 deg to the supersonic flow. The nominal injection pressure was of 6.9 MPa and tunnel Mach number was 2.7. When injected directly into and opposing the tunnel exhaust flow, the observed patterns with fluid air were similar to those observed for fluid nitrogen but appeared more diffusive. Cryogenic injection creates a high density region within the bow shock wake but the standoff distance remains unchanged from the gaseous value. However, as the temperature reaches a critical value, the shock faded and advanced into the supersonic stream. For both fluids, nitrogen and air, the phenomena was completely reversible.

  19. Investigation of spray characteristics for flashing injection of fuels containing dissolved air and superheated fuels

    NASA Technical Reports Server (NTRS)

    Solomon, A. S. P.; Chen, L. D.; Faeth, G. M.

    1982-01-01

    The flow, atomization and spreading of flashing injector flowing liquids containing dissolved gases (jet/air) as well as superheated liquids (Freon II) were considered. The use of a two stage expansion process separated by an expansion chamber, ws found to be beneficial for flashing injection particularly for dissolved gas systems. Both locally homogeneous and separated flow models provided good predictions of injector flow properties. Conventional correlations for drop sizes from pressure atomized and airblast injectors were successfully modified, using the separated flow model to prescribe injector exit conditions, to correlate drop size measurements. Additional experimental results are provided for spray angle and combustion properties of sprays from flashing injectors.

  20. Compressor Stall Recovery Through Tip Injection Assessed

    NASA Technical Reports Server (NTRS)

    Suder, Ken L.

    2001-01-01

    Aerodynamic stability is a fundamental limit in the compressor design process. The development of robust techniques for increasing stability has several benefits: enabling higher loading and fewer blades, increasing safety throughout a mission, increasing tolerance to stage mismatch during part-speed operation and speed transients, and providing an opportunity to match stages at the compressor maximum efficiency point, thus reducing fuel burn. Mass injection upstream of the tip of a high-speed axial compressor rotor is a stability enhancement approach known to be effective in suppressing stall in tip-critical rotors if the injection is activated before stall occurs. This approach to stall suppression requires that a reliable stall warning system be available. Tests have recently been performed to assess whether steady injection can also be used to recover from fully developed stall. If mass injection is effective in recovering from stall quickly enough to avoid structural damage or loss of engine power, then a stall warning system may not be required. The stall recovery tests were performed on a transonic compressor rotor at its design tip speed of 1475 ft/sec using four injectors evenly spaced around the compressor case upstream of the rotor. The injectors were connected to an external air source. In an actual engine application, the injected air would be supplied with compressor bleed air. The injectors were isolated from the air source by a fast-acting butterfly valve. With the injectors turned off, the compressor was throttled into stall. Air injection was then activated with no change in throttle setting by opening the butterfly valve. The compressor recovered from stall at a fixed throttle setting with the aid of tip injection. The unsteady operating characteristic of the rotor was measured during these tests using high-response pressure sensors located upstream and downstream of the rotor. The figure shows the results, where the unsteady pressure and mass

  1. Air Layer Drag Reduction

    NASA Astrophysics Data System (ADS)

    Ceccio, Steven; Elbing, Brian; Winkel, Eric; Dowling, David; Perlin, Marc

    2008-11-01

    A set of experiments have been conducted at the US Navy's Large Cavitation Channel to investigate skin-friction drag reduction with the injection of air into a high Reynolds number turbulent boundary layer. Testing was performed on a 12.9 m long flat-plate test model with the surface hydraulically smooth and fully rough at downstream-distance-based Reynolds numbers to 220 million and at speeds to 20 m/s. Local skin-friction, near-wall bulk void fraction, and near-wall bubble imaging were monitored along the length of the model. The instrument suite was used to access the requirements necessary to achieve air layer drag reduction (ALDR). Injection of air over a wide range of air fluxes showed that three drag reduction regimes exist when injecting air; (1) bubble drag reduction that has poor downstream persistence, (2) a transitional regime with a steep rise in drag reduction, and (3) ALDR regime where the drag reduction plateaus at 90% ± 10% over the entire model length with large void fractions in the near-wall region. These investigations revealed several requirements for ALDR including; sufficient volumetric air fluxes that increase approximately with the square of the free-stream speed, slightly higher air fluxes are needed when the surface tension is reduced, higher air fluxes are required for rough surfaces, and the formation of ALDR is sensitive to the inlet condition.

  2. Depopulation of Caged Layer Hens with a Compressed Air Foam System.

    PubMed

    Gurung, Shailesh; Hoffman, John; Stringfellow, Kendre; Abi-Ghanem, Daad; Zhao, Dan; Caldwell, David; Lee, Jason; Styles, Darrel; Berghman, Luc; Byrd, James; Farnell, Yuhua; Archer, Gregory; Farnell, Morgan

    2018-01-11

    During the 2014-2015 US highly pathogenic avian influenza (HPAI) outbreak, 50.4 million commercial layers and turkeys were affected, resulting in economic losses of $3.3 billion. Rapid depopulation of infected poultry is vital to contain and eradicate reportable diseases like HPAI. The hypothesis of the experiment was that a compressed air foam (CAF) system may be used as an alternative to carbon dioxide (CO₂) inhalation for depopulating caged layer hens. The objective of this study was to evaluate corticosterone (CORT) and time to cessation of movement (COM) of hens subjected to CAF, CO₂ inhalation, and negative control (NEG) treatments. In Experiment 1, two independent trials were conducted using young and spent hens. Experiment 1 consisted of five treatments: NEG, CO₂ added to a chamber, a CO₂ pre-charged chamber, CAF in cages, and CAF in a chamber. In Experiment 2, only spent hens were randomly assigned to three treatments: CAF in cages, CO₂ added to a chamber, and aspirated foam. Serum CORT levels of young hens were not significantly different among the CAF in cages, CAF in a chamber, NEG control, and CO₂ inhalation treatments. However, spent hens subjected to the CAF in a chamber had significantly higher CORT levels than birds in the rest of the treatments. Times to COM of spent hens subjected to CAF in cages and aspirated foam were significantly greater than of birds exposed to the CO₂ in a chamber treatment. These data suggest that applying CAF in cages is a viable alternative for layer hen depopulation during a reportable disease outbreak.

  3. Pressures generated in vitro during Stabident intraosseous injections.

    PubMed

    Whitworth, J M; Ramlee, R A M; Meechan, J G

    2005-05-01

    To test the hypothesis that the Stabident intraosseous injection is a potentially high-pressure technique, which carries serious risks of anaesthetic cartridge failure. A standard Astra dental syringe was modified to measure the internal pressure of local anaesthetic cartridges during injection. Intra-cartridge pressures were measured at 1 s intervals during slow (approximately 15 s) and rapid (<10 s) injections of 2% Xylocaine with 1:80,000 adrenaline (0.25 cartridge volumes) into air (no tissue resistance), or into freshly prepared Stabident perforation sites in the anterior mandible of freshly culled young and old sheep (against tissue resistance). Each injection was repeated 10 times over 3 days. Absolute maximum pressures generated by each category of injection, mean pressures at 1 s intervals in each series of injections, and standard deviations were calculated. Curves of mean maximum intra-cartridge pressure development with time were plotted for slow and rapid injections, and one-way anova (P<0.05) conducted to determine significant differences between categories of injection. Pressures created when injecting into air were less than those needed to inject into tissue (P<0.001). Fast injection produced greater intra-cartridge pressures than slow delivery (P<0.05). Injection pressures rose more quickly and to higher levels in small, young sheep mandibles than in larger, old sheep mandibles. The absolute maximum intra-cartridge pressure developed during the study was 3.31 MPa which is less than that needed to fracture glass cartridges. Stabident intraosseous injection conducted in accordance with the manufacturer's instructions does not present a serious risk of dangerous pressure build-up in local anaesthetic cartridges.

  4. Flame Tube NOx Emissions Using a Lean-Direct-Wall-Injection Combustor Concept

    NASA Technical Reports Server (NTRS)

    Tacina, Robert R.; Wey, Changlie; Choi, Kyung J.

    2001-01-01

    A low-NOx emissions combustor concept has been demonstrated in flame tube tests. A lean-direct injection concept was used where the fuel is injected directly into the flame zone and the overall fuel-air mixture is lean. In this concept the air is swirled upstream of a venturi section and the fuel is injected radially inward into the air stream from the throat section using a plain-orifice injector. Configurations have two-, four-, or six-wall fuel injectors and in some cases fuel is also injected from an axially located simplex pressure atomizer. Various orifice sizes of the plain-orifice injector were evaluated for the effect on NOx. Test conditions were inlet temperatures up to 8 1 OK, inlet pressures up to 2760 kPa, and flame temperatures up to 2100 K. A correlation is developed relating the NOx emissions to inlet temperature, inlet pressure, fuel-air ratio and pressure drop. Assuming that 15 percent of the combustion air would be used for liner cooling and using an advanced engine cycle, for the best configuration, the NOx emissions using the correlation is estimated to be <75 percent of the 1996 ICAO standard.

  5. Injected Water Augments Cooling In Turboshaft Engine

    NASA Technical Reports Server (NTRS)

    Biesiadny, Thomas J.; Berger, Brett; Klann, Gary A.; Clark, David A.

    1989-01-01

    Report describes experiments in which water injected into compressor-bleed cooling air of aircraft turboshaft engine. Injection of water previously suggested as way to provide additional cooling needed to sustain operation at power levels higher than usual. Involves turbine-inlet temperatures high enough to shorten lives of first-stage high-pressure turbine blades. Latent heat of vaporization of injected water serves as additional heat sink to maintain blades at design operating temperatures during high-power operation.

  6. Air blast type coal slurry fuel injector

    DOEpatents

    Phatak, Ramkrishna G.

    1986-01-01

    A device to atomize and inject a coal slurry in the combustion chamber of an internal combustion engine, and which eliminates the use of a conventional fuel injection pump/nozzle. The injector involves the use of compressed air to atomize and inject the coal slurry and like fuels. In one embodiment, the breaking and atomization of the fuel is achieved with the help of perforated discs and compressed air. In another embodiment, a cone shaped aspirator is used to achieve the breaking and atomization of the fuel. The compressed air protects critical bearing areas of the injector.

  7. Air blast type coal slurry fuel injector

    DOEpatents

    Phatak, R.G.

    1984-08-31

    A device to atomize and inject a coal slurry in the combustion chamber of an internal combustion engine is disclosed which eliminates the use of a conventional fuel injection pump/nozzle. The injector involves the use of compressed air to atomize and inject the coal slurry and like fuels. In one embodiment, the breaking and atomization of the fuel is achieved with the help of perforated discs and compressed air. In another embodiment, a cone shaped aspirator is used to achieve the breaking and atomization of the fuel. The compressed air protects critical bearing areas of the injector.

  8. Depopulation of Caged Layer Hens with a Compressed Air Foam System

    PubMed Central

    Gurung, Shailesh; Hoffman, John; Stringfellow, Kendre; Abi-Ghanem, Daad; Zhao, Dan; Caldwell, David; Lee, Jason; Styles, Darrel; Berghman, Luc; Byrd, James; Farnell, Yuhua; Archer, Gregory

    2018-01-01

    Simple Summary Reportable diseases, such as avian influenza, spread rapidly among poultry, resulting in the death of a large number of birds. Once such a disease has been diagnosed at a farm, infected and susceptible birds are rapidly killed to prevent the spread of the disease. The methods to eliminate infected caged laying hens are limited. An experiment was conducted to study the effectiveness of foam made from compressed air, water, and soap to kill laying hens in cages. The study found that stress levels of the hens killed using compressed air foam in cages to be similar to the hens killed by carbon dioxide or the negative control. Hens exposed to carbon dioxide died earlier as compared to the foam methods. The authors conclude that application of compressed air foam in cages is an alternative to methods such as gas inhalation and ventilation shutdown to rapidly and humanely kill laying hens during epidemics. Abstract During the 2014–2015 US highly pathogenic avian influenza (HPAI) outbreak, 50.4 million commercial layers and turkeys were affected, resulting in economic losses of $3.3 billion. Rapid depopulation of infected poultry is vital to contain and eradicate reportable diseases like HPAI. The hypothesis of the experiment was that a compressed air foam (CAF) system may be used as an alternative to carbon dioxide (CO2) inhalation for depopulating caged layer hens. The objective of this study was to evaluate corticosterone (CORT) and time to cessation of movement (COM) of hens subjected to CAF, CO2 inhalation, and negative control (NEG) treatments. In Experiment 1, two independent trials were conducted using young and spent hens. Experiment 1 consisted of five treatments: NEG, CO2 added to a chamber, a CO2 pre-charged chamber, CAF in cages, and CAF in a chamber. In Experiment 2, only spent hens were randomly assigned to three treatments: CAF in cages, CO2 added to a chamber, and aspirated foam. Serum CORT levels of young hens were not significantly

  9. Flow visualization of film cooling with spanwise injection from a small array of holes and compound-angle injection from a large array

    NASA Technical Reports Server (NTRS)

    Russell, L. M.

    1978-01-01

    Film injection from discrete holes in a smooth, flat plate was studied for two configurations: (1) spanwise injection through a four hole staggered array; and (2) compound angle injection through a 49 hole staggered array. The ratio of boundary layer thicknesses to hole diameter and the Reynolds number were typical of gas turbine film cooling applications. Streaklines showing the motion of the injected air were obtained by photographing small, neutrally buoyant, helium-filled soap bubbles that followed the flow field.

  10. Injection molding ceramics to high green densities

    NASA Technical Reports Server (NTRS)

    Mangels, J. A.; Williams, R. M.

    1983-01-01

    The injection molding behavior of a concentrated suspension of Si powder in wax was studied. It was found that the injection molding behavior was a function of the processing techniques used to generate the powder. Dry ball-milled powders had the best molding behavior, while air classified and impact-milled powders demonstrated poorer injection moldability. The relative viscosity of these molding batches was studied as a function of powder properties: distribution shape, surface area, packing density, and particle morphology. The experimental behavior, in all cases, followed existing theories. The relative viscosity of an injection molding composition composed of dry ball-milled powders could be expressed using Farris' relation.

  11. Measurements of Fuel Distribution Within Sprays for Fuel-Injection Engines

    NASA Technical Reports Server (NTRS)

    Lee, Dana W

    1937-01-01

    Two methods were used to measure fuel distribution within sprays from several types of fuel-injection nozzles. A small tube inserted through the wall of an air tight chamber into which the sprays were injected could be moved about inside the chamber. When the pressure was raised to obtain air densities of 6 and 14 atmospheres, some air was forced through the tube and the fuel that was carried with it was separated by absorbent cotton and weighed. Cross sections of sprays from plain, pintle, multiple-orifice, impinging-jets, centrifugal, lip, slit, and annular-orifice nozzles were investigated, at distances of 1, 3, 5, and 7 inches from the nozzles.

  12. Experimental Investigation of Diffuser Hub Injection to Improve Centrifugal Compressor Stability

    NASA Technical Reports Server (NTRS)

    Skoch, Gary J.

    2004-01-01

    Results from a series of experiments to investigate whether centrifugal compressor stability could be improved by injecting air through the diffuser hub surface are reported. The research was conducted in a 4:1 pressure ratio centrifugal compressor configured with a vane-island diffuser. Injector nozzles were located just upstream of the leading edge of the diffuser vanes. Nozzle orientations were set to produce injected streams angled at 8, 0 and +8 degrees relative to the vane mean camber line. Several injection flow rates were tested using both an external air supply and recirculation from the diffuser exit. Compressor flow range did not improve at any injection flow rate that was tested. Compressor flow range did improve slightly at zero injection due to the flow resistance created by injector openings on the hub surface. Leading edge loading and semi-vaneless space diffusion showed trends similar to those reported earlier from shroud surface experiments that did improve compressor flow range. Opposite trends are seen for hub injection cases where compressor flow range decreased. The hub injection data further explain the range improvement provided by shroud-side injection and suggest that different hub-side techniques may produce range improvement in centrifugal compressors.

  13. A new electrode design for ambipolar injection in organic semiconductors.

    PubMed

    Kanagasekaran, Thangavel; Shimotani, Hidekazu; Shimizu, Ryota; Hitosugi, Taro; Tanigaki, Katsumi

    2017-10-17

    Organic semiconductors have attracted much attention for low-cost, flexible and human-friendly optoelectronics. However, achieving high electron-injection efficiency is difficult from air-stable electrodes and cannot be equivalent to that of holes. Here, we present a novel concept of electrode composed of a bilayer of tetratetracontane (TTC) and polycrystalline organic semiconductors (pc-OSC) covered by a metal layer. Field-effect transistors of single-crystal organic semiconductors with the new electrodes of M/pc-OSC/TTC (M: Ca or Au) show both highly efficient electron and hole injection. Contact resistance for electron injection from Au/pc-OSC/TTC and hole injection from Ca/pc-OSC/TTC are comparable to those for electron injection from Ca and hole injection from Au, respectively. Furthermore, the highest field-effect mobilities of holes (22 cm 2  V -1  s -1 ) and electrons (5.0 cm 2  V -1  s -1 ) are observed in rubrene among field-effect transistors with electrodes so far proposed by employing Ca/pc-OSC/TTC and Au/pc-OSC/TTC electrodes for electron and hole injection, respectively.One of technological challenges building organic electronics is efficient injection of electrons at metal-semiconductor interfaces compared to that of holes. The authors show an air-stable electrode design with induced gap states, which support Fermi level pinning and thus ambipolar carrier injection.

  14. REDUCTION OF COAL-BASED METAL EMISSIONS BY FURNACE SORBENT INJECTION

    EPA Science Inventory

    The ability of sorbent injection technology to reduce the potential for trace metal emissions from coal combustion was researched. Pilot scale tests of high-temperature furnace sorbent injection were accompanied by stack sampling for coal-based, metallic air toxics. Tested sorben...

  15. Coanda injection system for axially staged low emission combustors

    DOEpatents

    Evulet, Andrei Tristan [Clifton Park, NY; Varatharajan, Balachandar [Cincinnati, OH; Kraemer, Gilbert Otto [Greer, SC; ElKady, Ahmed Mostafa [Niskayuna, NY; Lacy, Benjamin Paul [Greer, SC

    2012-05-15

    The low emission combustor includes a combustor housing defining a combustion chamber having a plurality of combustion zones. A liner sleeve is disposed in the combustion housing with a gap formed between the liner sleeve and the combustor housing. A secondary nozzle is disposed along a centerline of the combustion chamber and configured to inject a first fluid comprising air, at least one diluent, fuel, or combinations thereof to a downstream side of a first combustion zone among the plurality of combustion zones. A plurality of primary fuel nozzles is disposed proximate to an upstream side of the combustion chamber and located around the secondary nozzle and configured to inject a second fluid comprising air and fuel to an upstream side of the first combustion zone. The combustor also includes a plurality of tertiary coanda nozzles. Each tertiary coanda nozzle is coupled to a respective dilution hole. The tertiary coanda nozzles are configured to inject a third fluid comprising air, at least one other diluent, fuel, or combinations thereof to one or more remaining combustion zones among the plurality of combustion zones.

  16. Enhancing the use of coals by gas reburning-sorbent injection. Volume 3, Gas reburning-sorbent injection at Edwards Unit 1, Central Illinois Light Company

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1994-10-01

    Design work has been completed for a Gas Reburning-Sorbent Injection (GR-SI) system to reduce emissions of NO{sub x}, and SO{sub 2} from a wall fired unit. A GR-SI system was designed for Central Illinois Light Company`s Edwards Station Unit 1, located in Bartonville, Illinois. The unit is rated at 117 MW(e) (net) and is front wall fired with a pulverized bituminous coal blend. The goal of the project was to reduce emissions of NO{sub x} by 60%, from the ``as found`` baseline of 0.98 lb/MBtu (420 mg/MJ), and to reduce emissions of S0{sub 2} by 50%. Since the unit currentlymore » fires a blend of high sulfur Illinois coal and low sulfur Kentucky coal to meet an S0{sub 2} limit Of 1.8 lb/MBtu (770 mg/MJ), the goal at this site was amended to meeting this limit while increasing the fraction of high sulfur coal to 57% from the current 15% level. GR-SI requires injection of natural gas into the furnace at the level of the top burner row, creating a fuel-rich zone in which NO{sub x} formed in the coal zone is reduced to N{sub 2}. The design natural gas input corresponds to 18% of the total heat input. Burnout (overfire) air is injected at a higher elevation to burn out fuel combustible matter at a normal excess air level of 18%. Recycled flue gas is used to increase the reburning fuel jet momentum, resulting in enhanced mixing. Recycled flue gas is also used to cool the top row of burners which would not be in service during GR operation. Dry hydrated lime sorbent is injected into the upper furnace to react with S0{sub 2}, forming solid CaSO{sub 4} and CaSO{sub 3}, which are collected by the ESP. The SI system design was optimized with respect to gas temperature, injection air flow rate, and sorbent dispersion. Sorbent injection air flow is equal to 3% of the combustion air. The design includes modifications of the ESP, sootblowing, and ash handling systems.« less

  17. Autoignition in a premixing-prevaporizing fuel duct using 3 different fuel injection systems at inlet air temperatures to 1250 K

    NASA Technical Reports Server (NTRS)

    Tacina, R. R.

    1983-01-01

    Conditions were determined in a continuous-flow, premixing-prevaporizing duct at which autoignition occurred. Test conditions were representative of an advanced, regenerative-cycle, automotive gas turbine. The test conditions inlet air temperatures from 600 to 1250 K (a vitiated preheater was used), pressures from 170 to 600 kPa, air velocities of 10 to 30 m/sec, equivalence ratios from 0.3 to 1.0, mixing lengths from 10 to 60 cm, and residence times of 2 to 100 ms. The fuel was diesel number 2. The duct was insulated and had an inside diameter of 12 cm. Three different fuel injection systems were used: One was a single simplex pressure atomizer, and the other two were multiple-source injectors. The data obtained with the simplex and one of the multiple-source injectors agreed satisfactorily with the references and correlated with an Arrenhius expression. The data obtained with the other multiple source injector, which used multiple cones to improve the fuel-air distribution, did not correlate well with residence time.

  18. Emergence and dissemination of clade 2.3.4.4 H5Nx influenza viruses-how is the Asian HPAI H5 lineage maintained.

    PubMed

    Claes, Filip; Morzaria, Subhash P; Donis, Ruben O

    2016-02-01

    Highly pathogenic avian influenza (HPAI) A(H5N1) viruses containing the A/goose/Guangdong/96-like (GD/96) HA genes circulated in birds from four continents in the course of 2015 (Jan to Sept). A new HA clade, termed 2.3.4.4, emerged around 2010-2011 in China and revealed a novel propensity to reassort with NA subtypes other than N1, unlike dozens of earlier clades. Two subtypes, H5N6 and H5N8, have spread to countries in Asia (H5N6), Europe and North America (H5N8). Infections by clade 2.3.4.4 viruses are characterized by low virulence in poultry and some wild birds, contributing to wide geographical dissemination of the viruses via poultry trade and wild bird migration. Copyright © 2016. Published by Elsevier B.V.

  19. Effect of Water-Alcohol Injection and Maximum Economy Spark Advance on Knock-Limited Performance and Fuel Economy of a Large Air-Cooled Cylinder

    NASA Technical Reports Server (NTRS)

    Heinicke, Orville H.; Vandeman, Jack E.

    1945-01-01

    An investigation was conducted to determine the effect of a coolant solution of 25 percent ethyl alcohol, 25 percent methyl alcohol, and 50 percent water by volume and maximum-economy spark advance on knock-limited performance and fuel economy of a large air-cooled cylinder. The knock-limited performance of the cylinder at engine speeds of 2100 and 2500 rpm was determined for coolant-fuel ratios of 0.0, 0.2, and 0.4. The effect of water-alcohol injection on fuel economy was determined in constant charge-air flow tests. The tests were conducted at a spark advance of 20 deg B.T.C. and maximum-economy spark advance.

  20. Hydrogen Gas as a Fuel in Direct Injection Diesel Engine

    NASA Astrophysics Data System (ADS)

    Dhanasekaran, Chinnathambi; Mohankumar, Gabriael

    2016-04-01

    Hydrogen is expected to be one of the most important fuels in the near future for solving the problem caused by the greenhouse gases, for protecting environment and saving conventional fuels. In this study, a dual fuel engine of hydrogen and diesel was investigated. Hydrogen was conceded through the intake port, and simultaneously air and diesel was pervaded into the cylinder. Using electronic gas injector and electronic control unit, the injection timing and duration varied. In this investigation, a single cylinder, KIRLOSKAR AV1, DI Diesel engine was used. Hydrogen injection timing was fixed at TDC and injection duration was timed for 30°, 60°, and 90° crank angles. The injection timing of diesel was fixed at 23° BTDC. When hydrogen is mixed with inlet air, emanation of HC, CO and CO2 decreased without any emission (exhaustion) of smoke while increasing the brake thermal efficiency.

  1. Premixed direct injection nozzle

    DOEpatents

    Zuo, Baifang [Simpsonville, SC; Johnson, Thomas Edward [Greer, SC; Lacy, Benjamin Paul [Greer, SC; Ziminsky, Willy Steve [Simpsonville, SC

    2011-02-15

    An injection nozzle having a main body portion with an outer peripheral wall is disclosed. The nozzle includes a plurality of fuel/air mixing tubes disposed within the main body portion and a fuel flow passage fluidly connected to the plurality of fuel/air mixing tubes. Fuel and air are partially premixed inside the plurality of the tubes. A second body portion, having an outer peripheral wall extending between a first end and an opposite second end, is connected to the main body portion. The partially premixed fuel and air mixture from the first body portion gets further mixed inside the second body portion. The second body portion converges from the first end toward said second end. The second body portion also includes cooling passages that extend along all the walls around the second body to provide thermal damage resistance for occasional flame flash back into the second body.

  2. Deformational injection rate measuring method

    NASA Astrophysics Data System (ADS)

    Marčič, Milan

    2002-09-01

    After completing the diesel engine endurance testing, we detected various traces of thermal load on the walls of combustion chambers located in the engine pistons. The engines were fitted with ω combustion chambers. The thermal load of different intensity levels occurred where the spray of fuel, fuel vapor, and air interacted with the combustion chamber wall. The uneven thermal load distribution of the combustion chamber wall results from varying injection rates in each injection nozzle hole. The most widely applied controlling methods so far for injection rate measurement, such as the Zeuch and Bosch concepts, allow measurement of only the total injection rate in multihole nozzles, without providing any indication whatsoever of the injection rate differences in individual injection nozzle holes. The new deformational measuring method described in the article allows the injection rate to be measured in each hole of the multihole nozzle. The results of the measurements using this method showed that the differences occurred in injection rates of individual injection nozzle holes. These differences may be the cause of various thermal loads on the combustion chamber walls. The criterion for injection rate is the deformation of the membrane due to an increase in the fuel quantity in the measuring space and due to the pressure waves resulting from the fuel being injected into the measuring space. The membrane deformation is measured using strain gauges, glued to the membrane and forming the Wheatstone's bridge. We devoted special attention to the temperature compensation of the Wheatstone's bridge and the membrane, heated up during the measurements.

  3. Computational Fluid Dynamics Analysis of High Injection Pressure Blended Biodiesel

    NASA Astrophysics Data System (ADS)

    Khalid, Amir; Jaat, Norrizam; Faisal Hushim, Mohd; Manshoor, Bukhari; Zaman, Izzuddin; Sapit, Azwan; Razali, Azahari

    2017-08-01

    Biodiesel have great potential for substitution with petrol fuel for the purpose of achieving clean energy production and emission reduction. Among the methods that can control the combustion properties, controlling of the fuel injection conditions is one of the successful methods. The purpose of this study is to investigate the effect of high injection pressure of biodiesel blends on spray characteristics using Computational Fluid Dynamics (CFD). Injection pressure was observed at 220 MPa, 250 MPa and 280 MPa. The ambient temperature was kept held at 1050 K and ambient pressure 8 MPa in order to simulate the effect of boost pressure or turbo charger during combustion process. Computational Fluid Dynamics were used to investigate the spray characteristics of biodiesel blends such as spray penetration length, spray angle and mixture formation of fuel-air mixing. The results shows that increases of injection pressure, wider spray angle is produced by biodiesel blends and diesel fuel. The injection pressure strongly affects the mixture formation, characteristics of fuel spray, longer spray penetration length thus promotes the fuel and air mixing.

  4. Simulated afterburner performance with hydrogen peroxide injection for thrust augmentation

    NASA Technical Reports Server (NTRS)

    Metzler, Allen J; Grobman, Jack S

    1956-01-01

    Combustion performance of three afterburner configurations was evaluated at simulated altitude flight conditions with liquid augmentation to the primary combustor. Afterburner combustion efficiency and stability were better with injection of high-strength hydrogen peroxide than with no injection or with water injection. Improvements were observed in afterburner configurations with and without flameholders and in a short-length afterburner. At a peroxide-air ratio of 0.3, combustion was stable and 85 to 90 percent efficient in all configurations tested. Calculated augmented net-thrust ratios for peroxide injection with afterburning were approximately 60 percent greater than those for water injection.

  5. Combustion engine. [for air pollution control

    NASA Technical Reports Server (NTRS)

    Houseman, J. (Inventor)

    1977-01-01

    An arrangement for an internal combustion engine is provided in which one or more of the cylinders of the engine are used for generating hydrogen rich gases from hydrocarbon fuels, which gases are then mixed with air and injected into the remaining cylinders to be used as fuel. When heavy load conditions are encountered, hydrocarbon fuel may be mixed with the hydrogen rich gases and air and the mixture is then injected into the remaining cylinders as fuel.

  6. An experimental study of wall-injected flows in a rectangular cylinder

    NASA Astrophysics Data System (ADS)

    Perrotta, A.; Romano, G. P.; Favini, B.

    2018-01-01

    An experimental investigation of the flow inside a rectangular cylinder with air injected continuously along the wall is performed. This kind of flow is a two-dimensional approximation of what happens inside a solid rocket motor, where the lateral grain burns expelling exhaust gas or in processes with air filtration or devices to attain uniform flows. We propose a brief derivation of some analytical solutions and a comparison between these solutions and experimental data, which are obtained using the particle image velocimetry technique, to provide a global reconstruction of the flowfield. The flow, which enters orthogonal to the injecting wall, turns suddenly its direction being pushed towards the exit of the chamber. Under the incompressible and inviscid flow hypothesis, two analytical solutions are reported and compared. The first one, known as Hart-McClure solution, is irrotational and the injection velocity is non-perpendicular to the injecting wall. The other one, due to Taylor and Culick, has non-zero vorticity and constant, vertical injection velocity. The comparison with laminar solutions is useful to assess whether transition to turbulence is reached and how the disturbance thrown in by the porous injection influences and modifies those solutions.

  7. Evaluation of centrifugal compressor performance with water injection

    NASA Technical Reports Server (NTRS)

    Beede, William L; Hamrick, Joseph T; Withee, Joseph R , Jr

    1951-01-01

    The effects of water injection on a compressor are presented. To determine the effects of varying water-air ratio, the compressor was operated at a constant equivalent impeller speed over a range of water-air ratios and weight flows. Operation over a range of weight flows at one water-air ratio and two inlet air temperatures was carried out to obtain an indication of the effects of varying inlet air temperature. Beyond a water-air ratio of 0.03 there was no increase in maximum air-weight flow, a negligible rise in peak total-pressure ratio, and a decrease in peak adiabatic efficiency. An increase in inlet air temperature resulted in an increase in the magnitude of evaporation. An analysis of data indicated that the magnitude of evaporation within the compressor impeller was small.

  8. An experimental study of unsteady sprays at very high injection pressures

    NASA Astrophysics Data System (ADS)

    Reggiori, A.; Mariani, F.; Parigi, G.; Carlevaro, R.

    An experimental study of the development of fuel sprays under very high injection pressures is described. A gas gun capable of generating pressure pulses up to 10,000 bar has been employed as an injection pump. Tests have been carried out with simple cylindrical nozzles, injecting diesel oil in ambient air. The development of the jet has been visualized by means of flash shadowgraphy.

  9. 30 CFR 36.44 - Maximum allowable fuel : air ratio.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... delivered to MSHA with the fuel-injection system adjusted by the applicant and tests of the exhaust-gas... adjustment of the fuel-injection system shall be accepted. The maximum fuel : air ratio determined from the... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Maximum allowable fuel : air ratio. 36.44...

  10. 30 CFR 36.44 - Maximum allowable fuel : air ratio.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... delivered to MSHA with the fuel-injection system adjusted by the applicant and tests of the exhaust-gas... adjustment of the fuel-injection system shall be accepted. The maximum fuel : air ratio determined from the... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Maximum allowable fuel : air ratio. 36.44...

  11. 30 CFR 36.44 - Maximum allowable fuel : air ratio.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... delivered to MSHA with the fuel-injection system adjusted by the applicant and tests of the exhaust-gas... adjustment of the fuel-injection system shall be accepted. The maximum fuel : air ratio determined from the... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Maximum allowable fuel : air ratio. 36.44...

  12. 30 CFR 36.44 - Maximum allowable fuel : air ratio.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... delivered to MSHA with the fuel-injection system adjusted by the applicant and tests of the exhaust-gas... adjustment of the fuel-injection system shall be accepted. The maximum fuel : air ratio determined from the... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Maximum allowable fuel : air ratio. 36.44...

  13. Can Water-Injected Turbomachines Provide Cost-Effective Emissions and Maintenance Reductions?

    NASA Technical Reports Server (NTRS)

    Hendricks, Robert C.; Daggett, David L.; Shouse, Dale T.; Roquemore, William M.; Brankovic, Andreja; Ryder, Robert C., Jr.

    2011-01-01

    An investigation has been performed to evaluate the effect of water injection on the performance of the Air Force Research Laboratory (AFRL, Wright-Patterson Air Force Base (WPAFB)) experimental trapped vortex combustor (TVC) over a range of fuel-to-air and water-to-fuel ratios. Performance is characterized by combustor exit quantities: temperature and emissions measurements using rakes, and overall pressure drop, from upstream plenum to combustor exit. Combustor visualization is performed using gray-scale and color still photographs and high-frame-rate videos. A parallel investigation evaluated the performance of a computational fluid dynamics (CFD) tool for the prediction of the reacting flow in a liquid fueled combustor (e.g., TVC) that uses water injection for control of pollutant emissions and turbine inlet temperature. Generally, reasonable agreement is found between data and NO(x) computations. Based on a study assessing the feasibility and performance impact of using water injection on a Boeing 747-400 aircraft to reduce NO(x) emissions during takeoff, retrofitting does not appear to be cost effective; however, an operator of a newly designed engine and airframe might be able to save up to 1.0 percent in operating costs. Other challenges of water injection will be discussed.

  14. 30 CFR 36.44 - Maximum allowable fuel:air ratio.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... delivered to MSHA with the fuel-injection system adjusted by the applicant and tests of the exhaust-gas... adjustment of the fuel-injection system shall be accepted. The maximum fuel:air ratio determined from the... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Maximum allowable fuel:air ratio. 36.44 Section...

  15. Study of Injection of Helium into Supersonic Air Flow Using Rayleigh Scattering

    NASA Technical Reports Server (NTRS)

    Seaholtz, Richard G.; Buggele, Alvin E.

    1997-01-01

    A study of the transverse injection of helium into a Mach 3 crossflow is presented. Filtered Rayleigh scattering is used to measure penetration and helium mole fraction in the mixing region. The method is based on planar molecular Rayleigh scattering using an injection-seeded, frequency-doubled ND:YAG pulsed laser and a cooled CCD camera. The scattered light is filtered with an iodine absorption cell to suppress stray laser light. Preliminary data are presented for helium mole fraction and penetration. Flow visualization images obtained with a shadowgraph and wall static pressure data in the vicinity of the injection are also presented.

  16. Atomization and Dispersion of a Liquid Jet Injected Into a Crossflow of Air

    NASA Technical Reports Server (NTRS)

    Seay, J. E.; Samuelson, G. S.

    1996-01-01

    In recent years, environmental regulations have become more stringent, requiring lower emissions of mainly nitrogen oxides (NOx), as well as carbon monoxide (CO) and unburned hydrocarbons (UHC). These regulations have forced the gas turbine industry to examine non-conventional combustion strategies, such as the lean burn approach. The reasoning behind operating under lean conditions is to maintain the temperature of combustion near and below temperatures required for the formation of thermal nitric oxide (NO). To be successful, however, the lean processes require careful preparation of the fuel/air mixture to preclude formation of either locally rich reaction zones, which may give rise to NO formation, or locally lean reaction zones, which may give rise to inefficient fuel processing. As a result fuel preparation is crucial to the development and success of new aeroengine combustor technologies. A key element of the fuel preparation process is the fuel nozzle. As nozzle technologies have developed, airblast atomization has been adopted for both industrial and aircraft gas turbine applications. However, the majority of the work to date has focused on prefilming nozzles, which despite their complexity and high cost have become an industry standard for conventional combustion strategies. It is likely that the new strategies required to meet future emissions goals will utilize novel fuel injector approaches, such as radial injection. This thesis proposes and demonstrates an experiment to examine, on a mechanistic level (i.e., the physics of the action), the processes associated with the atomization, evaporation, and dispersion of a liquid jet introduced, from a radial, plain-jet airblast injector, into a crossflow of air. This understanding requires the knowledge not only of what factors influence atomization, but also the underlying mechanism associated with liquid breakup and dispersion. The experimental data acquired identify conditions and geometries for improved

  17. "Vivo para consumirla y la consumo para vivir" ["I live to inject and inject to live"]: high-risk injection behaviors in Tijuana, Mexico.

    PubMed

    Strathdee, Steffanie A; Fraga, Wendy Davila; Case, Patricia; Firestone, Michelle; Brouwer, Kimberly C; Perez, Saida Gracia; Magis, Carlos; Fraga, Miguel Angel

    2005-09-01

    Injection drug use is a growing problem on the US-Mexico border, where Tijuana is situated. We studied the context of injection drug use among injection drug users (IDUs) in Tijuana to help guide future research and interventions. Guided in-depth interviews were conducted with 10 male and 10 female current IDUs in Tijuana. Topics included types of drug used, injection settings, access to sterile needles, and environmental influences. Interviews were taped, transcribed verbatim, and translated. Content analysis was conducted to identify themes. Of the 20 IDUs, median age and age at first injection were 30 and 18. Most reported injecting at least daily: heroin ("carga", "chiva", "negra"), methamphetamine ("crico", "cri-cri"), or both drugs combined. In sharp contrast to Western US cities, almost all regularly attended shooting galleries ("yongos" or "picaderos") because of the difficulties obtaining syringes and police oppression. Almost all shared needles/paraphernalia ["cuete" (syringe), "cacharros" (cookers), cotton from sweaters/socks (filters)]. Some reported obtaining syringes from the United States. Key themes included (1) pharmacies refusing to sell or charging higher prices to IDUs, (2) ample availability of used/rented syringes from "picaderos" (e.g., charging approximately 5 pesos or "10 drops" of drug), and (3) poor HIV/AIDS knowledge, such as beliefs that exposing syringes to air "kills germs." This qualitative study suggests that IDUs in Tijuana are at high risk of HIV and other blood-borne infections. Interventions are urgently needed to expand access to sterile injection equipment and offset the potential for a widespread HIV epidemic.

  18. Numerical Simulation of Atomization in Nozzle Injection Flow

    NASA Astrophysics Data System (ADS)

    Fan, Qinyin; Guo, Chenhai; Takagi, Tosimi; Narumiya, Kikuo; Hattori, Hiroshi

    At the initial stage of injection, the injection flow has not yet broken up and in a range of small atmosphere pressure (16˜500KPa), the tip of the injection flow always forms a shape of mushroom. [1] [2] Moreover, the umbrella of the mushroom is always very big and its root is always very thin, especially when the atmosphere pressure is relatively low (88KPa, or 100mmHg). These phenomena are not known popularly and the reason of mushroom formation is not clear. In this paper, with the MARS method for simulating free surface, analysis of injection flow is practiced. The phenomena are reproduced and the reason is cleared that the formation of the mushroom is induced by the momentum exchange between the injection fuel flow with very high speed and the very complex flow of the air.

  19. Pure Air`s Bailly scrubber: A four-year retrospective

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Manavi, G.B.; Vymazal, D.C.; Sarkus, T.A.

    1997-12-31

    Pure Air`s Advanced Flue Gas Desulfurization (AFGD) Clean Coal Project has completed four highly successful years of operation at NIPSCO`s Bailly Station. As part of their program, Pure Air has concluded a six-part study of system performance. This paper summarizes the results of the demonstration program, including AFGD performance on coals ranging from 2.0--2.4% sulfur. The paper highlights novel aspects of the Bailly facility, including pulverized limestone injection, air rotary sparger for oxidation, wastewater evaporation system and the production of PowerChip{reg_sign} gypsum. Operations and maintenance which have led to the facility`s notable 99.47% availability record are also discussed. A projectmore » company, Pure Air on the Lake Limited Partnership, owns the AFGD facility. Pure Air was the turn key contractor and Air Products and Chemicals, Inc. is the operator of the AFGD system.« less

  20. Air Sparging Design Paradigm

    DTIC Science & Technology

    2002-08-12

    treatment zone increases with increasing separation. It is important to ensure a good annular air flow seal between the top of the screened interval and... seals are critical to successful air sparging operation. In their absence, the injected air will flow up along the well bore and the well will be...glass beads and model homogenous and heterogeneous subsurface hydrogeologic settings were simulated . The goal of the study was to observe how the

  1. Air-Lubricated Lead Screw

    NASA Technical Reports Server (NTRS)

    Perkins, G. S.

    1983-01-01

    Air lubricated lead screw and nut carefully machined to have closely matched closely fitting threads. Compressed air injected into two plenums encircle nut and flow through orifices to lubricate mating threads. Originally developed to position precisely interferometer retroreflector for airborne measurement of solar infrared radiation, device now has positioning accuracy of 0.25 micron.

  2. Numerical Modeling of Fuel Injection into an Accelerating, Turning Flow with a Cavity

    NASA Astrophysics Data System (ADS)

    Colcord, Ben James

    Deliberate continuation of the combustion in the turbine passages of a gas turbine engine has the potential to increase the efficiency and the specific thrust or power of current gas-turbine engines. This concept, known as a turbine-burner, must overcome many challenges before becoming a viable product. One major challenge is the injection, mixing, ignition, and burning of fuel within a short residence time in a turbine passage characterized by large three-dimensional accelerations. One method of increasing the residence time is to inject the fuel into a cavity adjacent to the turbine passage, creating a low-speed zone for mixing and combustion. This situation is simulated numerically, with the turbine passage modeled as a turning, converging channel flow of high-temperature, vitiated air adjacent to a cavity. Both two- and three-dimensional, reacting and non-reacting calculations are performed, examining the effects of channel curvature and convergence, fuel and additional air injection configurations, and inlet conditions. Two-dimensional, non-reacting calculations show that higher aspect ratio cavities improve the fluid interaction between the channel flow and the cavity, and that the cavity dimensions are important for enhancing the mixing. Two-dimensional, reacting calculations show that converging channels improve the combustion efficiency. Channel curvature can be either beneficial or detrimental to combustion efficiency, depending on the location of the cavity and the fuel and air injection configuration. Three-dimensional, reacting calculations show that injecting fuel and air so as to disrupt the natural motion of the cavity stimulates three-dimensional instability and improves the combustion efficiency.

  3. Remediation of Chlorinated Solvent Plumes Using In-Situ Air Sparging—A 2-D Laboratory Study

    PubMed Central

    Adams, Jeffrey A.; Reddy, Krishna R.; Tekola, Lue

    2011-01-01

    In-situ air sparging has evolved as an innovative technique for soil and groundwater remediation impacted with volatile organic compounds (VOCs), including chlorinated solvents. These may exist as non-aqueous phase liquid (NAPL) or dissolved in groundwater. This study assessed: (1) how air injection rate affects the mass removal of dissolved phase contamination, (2) the effect of induced groundwater flow on mass removal and air distribution during air injection, and (3) the effect of initial contaminant concentration on mass removal. Dissolved-phase chlorinated solvents can be effectively removed through the use of air sparging; however, rapid initial rates of contaminant removal are followed by a protracted period of lower removal rates, or a tailing effect. As the air flow rate increases, the rate of contaminant removal also increases, especially during the initial stages of air injection. Increased air injection rates will increase the density of air channel formation, resulting in a larger interfacial mass transfer area through which the dissolved contaminant can partition into the vapor phase. In cases of groundwater flow, increased rates of air injection lessened observed downward contaminant migration effect. The air channel network and increased air saturation reduced relative hydraulic conductivity, resulting in reduced groundwater flow and subsequent downgradient contaminant migration. Finally, when a higher initial TCE concentration was present, a slightly higher mass removal rate was observed due to higher volatilization-induced concentration gradients and subsequent diffusive flux. Once concentrations are reduced, a similar tailing effect occurs. PMID:21776228

  4. Remediation of chlorinated solvent plumes using in-situ air sparging--a 2-D laboratory study.

    PubMed

    Adams, Jeffrey A; Reddy, Krishna R; Tekola, Lue

    2011-06-01

    In-situ air sparging has evolved as an innovative technique for soil and groundwater remediation impacted with volatile organic compounds (VOCs), including chlorinated solvents. These may exist as non-aqueous phase liquid (NAPL) or dissolved in groundwater. This study assessed: (1) how air injection rate affects the mass removal of dissolved phase contamination, (2) the effect of induced groundwater flow on mass removal and air distribution during air injection, and (3) the effect of initial contaminant concentration on mass removal. Dissolved-phase chlorinated solvents can be effectively removed through the use of air sparging; however, rapid initial rates of contaminant removal are followed by a protracted period of lower removal rates, or a tailing effect. As the air flow rate increases, the rate of contaminant removal also increases, especially during the initial stages of air injection. Increased air injection rates will increase the density of air channel formation, resulting in a larger interfacial mass transfer area through which the dissolved contaminant can partition into the vapor phase. In cases of groundwater flow, increased rates of air injection lessened observed downward contaminant migration effect. The air channel network and increased air saturation reduced relative hydraulic conductivity, resulting in reduced groundwater flow and subsequent downgradient contaminant migration. Finally, when a higher initial TCE concentration was present, a slightly higher mass removal rate was observed due to higher volatilization-induced concentration gradients and subsequent diffusive flux. Once concentrations are reduced, a similar tailing effect occurs.

  5. Changes in air flow patterns using surfactants and thickeners during air sparging: bench-scale experiments.

    PubMed

    Kim, Juyoung; Kim, Heonki; Annable, Michael D

    2015-01-01

    Air injected into an aquifer during air sparging normally flows upward according to the pressure gradients and buoyancy, and the direction of air flow depends on the natural hydrogeologic setting. In this study, a new method for controlling air flow paths in the saturated zone during air sparging processes is presented. Two hydrodynamic parameters, viscosity and surface tension of the aqueous phase in the aquifer, were altered using appropriate water-soluble reagents distributed before initiating air sparging. Increased viscosity retarded the travel velocity of the air front during air sparging by modifying the viscosity ratio. Using a one-dimensional column packed with water-saturated sand, the velocity of air intrusion into the saturated region under a constant pressure gradient was inversely proportional to the viscosity of the aqueous solution. The air flow direction, and thus the air flux distribution was measured using gaseous flux meters placed at the sand surface during air sparging experiments using both two-, and three-dimensional physical models. Air flow was found to be influenced by the presence of an aqueous patch of high viscosity or suppressed surface tension in the aquifer. Air flow was selective through the low-surface tension (46.5 dyn/cm) region, whereas an aqueous patch of high viscosity (2.77 cP) was as an effective air flow barrier. Formation of a low-surface tension region in the target contaminated zone in the aquifer, before the air sparging process is inaugurated, may induce air flow through the target zone maximizing the contaminant removal efficiency of the injected air. In contrast, a region with high viscosity in the air sparging influence zone may minimize air flow through the region prohibiting the region from de-saturating. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. Develop to Term Rat Oocytes Injected with Heat-Dried Sperm Heads

    PubMed Central

    Lee, Kyung-Bon; Park, Ki-Eun; Kwon, In-Kiu; Tripurani, Swamy K.; Kim, Keun Jung; Lee, Ji Hye; Niwa, Koji; Kim, Min Kyu

    2013-01-01

    This study investigated the development of rat oocytes in vitro and in vivo following intracytoplasmic injection of heads from spermatozoa heat-dried at 50°C for 8 h and stored at 4°C in different gas phases. Sperm membrane and chromosome are damaged by the process of heat-drying. Oocyte activation and cleavage of oocytes were worse in oocytes injected with spermatozoa heat-dried and stored for 1 week than unheated, fresh spermatozoa, but in heat-dried spermatozoa, there were no differences in these abilities of oocytes between the samples stored in nitrogen gas and in air. The oocytes injected with heat-dried spermatozoa stored for 1 week could develop to the morula and blastocyst stages without difference between the samples stored in nitrogen gas and in air after artificial stimulation. Cleavage of oocytes and development of cleaved embryos were higher when heat-dried spermatozoa were stored for 3 and 6 months in nitrogen gas than in air. However, the ability of injected oocytes to develop to the morula and blastocyst stages was not inhibited even when heat-dried spermatozoa stored in both atmosphere conditions for as long as 6 months were used. When 2-cell embryos derived from oocytes injected with heads from spermatozoa heat-dried and stored for 1 week and 1 month were transferred, each 1 of 4 recipients was conceived, and the conceived recipients delivered 1 live young each. These results demonstrate that rat oocytes can be fertilized with heat-dried spermatozoa and that the fertilized oocytes can develop to term. PMID:24223784

  7. United States Air Force Summer Research Program - 1993. Volume 5B. Wright Laboratory

    DTIC Science & Technology

    1993-12-01

    31 Fuel Fuel Air LAir Air Air Fuel Fuel II 45 deg. downward injection 90 deg. radial injection 8 x 2 mm dia. holes 8x1mm di m holes la. Configuration...centerline. After some initial nonuniformities the profiles take a well known shape for a wall jet and the maximum in the mean velocity near the wall

  8. Numerical simulation of transverse fuel injection

    NASA Technical Reports Server (NTRS)

    Mao, Marlon; Riggins, David W.; Mcclinton, Charles R.

    1991-01-01

    A review of recent work at NASA Langley Research Center to compare the predictions of transverse fuel injector flow fields and mixing performance with experimental results is presented. Various cold (non-reactive) mixing studies were selected for code calibration which include the effects of boundary layer thickness and injection angle for sonic hydrogen injection into supersonic air. Angled injection of helium is also included. This study was performed using both the three-dimensional elliptic and the parabolized Navier-Stokes (PNS) versions of SPARK. Axial solution planes were passed from PNS to elliptic and elliptic to PNS in order to efficiently generate solutions. The PNS version is used both upstream and far downstream of the injector where the flow can be considered parabolic in nature. The comparisons are used to identify experimental deficiencies and computational procedures to improve agreement.

  9. Vertical gas injection into liquid cross-stream beneath horizontal surfaces

    NASA Astrophysics Data System (ADS)

    Lee, In-Ho; Makiharju, Simo; Lee, Inwon; Perlin, Marc; Ceccio, Steve

    2013-11-01

    Skin friction drag reduction on flat bottomed ships and barges can be achieved by creating an air layer immediately beneath the horizontal surface. The simplest way of introducing the gas is through circular orifices; however the dynamics of gas injection into liquid cross-streams under horizontal surfaces is not well understood. Experiments were conducted to investigate the development of the gas topology following its vertical injection through a horizontal surface. The liquid cross-flow, orifice diameter and gas flow rate were varied to investigate the effect of different ratios of momentum fluxes. The testing was performed on a 4.3 m long and 0.73 m wide barge model with air injection through a hole in the transparent bottom hull. The incoming boundary layer was measured via a pitot tube. Downstream distance based Reynolds number at the injection location was 5 × 105 through 4 × 106 . To observe the flow topology, still images and video were recorded from above the model (i.e. through the transparent hull), from beneath the bottom facing upward, and from the side at an oblique angle. The transition point of the flow topology was determined and analyzed.

  10. Effect of water injection on nitric oxide emissions of a gas turbine combustor burning natural gas fuel

    NASA Technical Reports Server (NTRS)

    Marchionna, N. R.; Diehl, L. A.; Trout, A. M.

    1973-01-01

    The effect of direct water injection on the exhaust gas emissions of a turbojet combustor burning natural gas fuel was investigated. The results are compared with the results from similar tests using ASTM Jet-A fuel. Increasing water injection decreased the emissions of oxides of nitrogen (NOX) and increased the emissions of carbon monoxide and unburned hydrocarbons. The greatest percentage decrease in NOX with increasing water injection was at the lowest inlet-air temperature tested. The effect of increasing inlet-air temperature was to decrease the effect of the water injection. The reduction in NOX due to water injection was almost identical to the results obtained with Jet-A fuel. However, the emission indices of unburned hydrocarbons, carbon monoxide, and percentage nitric oxide in NOX were not.

  11. Embedded computer controlled premixing inline injection system for air-assisted variable-rate sprayers

    USDA-ARS?s Scientific Manuscript database

    Improvements to reduce chemical waste and environmental pollution for variable-rate sprayers used in orchards and ornamental nurseries require inline injection techniques. A microprocessor controlled premixing inline injection system implementing a ceramic piston chemical metering pump and two small...

  12. Effects of Gasoline Direct Injection Engine Operating Parameters on Particle Number Emissions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    He, X.; Ratcliff, M. A.; Zigler, B. T.

    2012-04-19

    A single-cylinder, wall-guided, spark ignition direct injection engine was used to study the impact of engine operating parameters on engine-out particle number (PN) emissions. Experiments were conducted with certification gasoline and a splash blend of 20% fuel grade ethanol in gasoline (E20), at four steady-state engine operating conditions. Independent engine control parameter sweeps were conducted including start of injection, injection pressure, spark timing, exhaust cam phasing, intake cam phasing, and air-fuel ratio. The results show that fuel injection timing is the dominant factor impacting PN emissions from this wall-guided gasoline direct injection engine. The major factor causing high PN emissionsmore » is fuel liquid impingement on the piston bowl. By avoiding fuel impingement, more than an order of magnitude reduction in PN emission was observed. Increasing fuel injection pressure reduces PN emissions because of smaller fuel droplet size and faster fuel-air mixing. PN emissions are insensitive to cam phasing and spark timing, especially at high engine load. Cold engine conditions produce higher PN emissions than hot engine conditions due to slower fuel vaporization and thus less fuel-air homogeneity during the combustion process. E20 produces lower PN emissions at low and medium loads if fuel liquid impingement on piston bowl is avoided. At high load or if there is fuel liquid impingement on piston bowl and/or cylinder wall, E20 tends to produce higher PN emissions. This is probably a function of the higher heat of vaporization of ethanol, which slows the vaporization of other fuel components from surfaces and may create local fuel-rich combustion or even pool-fires.« less

  13. Active Flow Separation Control of a Stator Vane Using Surface Injection in a Multistage Compressor Experiment

    NASA Technical Reports Server (NTRS)

    Culley, Dennis E.; Bright, Michelle M.; Prahst, Patricia S.; Strazisar, Anthony J.

    2003-01-01

    Micro-flow control actuation embedded in a stator vane was used to successfully control separation and improve near stall performance in a multistage compressor rig at NASA Glenn. Using specially designed stator vanes configured with internal actuation to deliver pulsating air through slots along the suction surface, a research study was performed to identify performance benefits using this microflow control approach. Pressure profiles and unsteady pressure measurements along the blade surface and at the shroud provided a dynamic look at the compressor during microflow air injection. These pressure measurements lead to a tracking algorithm to identify the onset of separation. The testing included steady air injection at various slot locations along the vane. The research also examined the benefit of pulsed injection and actively controlled air injection along the stator vane. Two types of actuation schemes were studied, including an embedded actuator for on-blade control. Successful application of an online detection and flow control scheme will be discussed. Testing showed dramatic performance benefit for flow reattachment and subsequent improvement in diffusion through the use of pulsed controlled injection. The paper will discuss the experimental setup, the blade configurations, and preliminary CFD results which guided the slot location along the blade. The paper will also show the pressure profiles and unsteady pressure measurements used to track flow control enhancement, and will conclude with the tracking algorithm for adjusting the control.

  14. Successful displacement of a traumatic submacular hemorrhage in a 13-year-old boy treated by vitrectomy, subretinal injection of tissue plasminogen activator and intravitreal air tamponade: a case report.

    PubMed

    Doi, Shinichiro; Kimura, Shuhei; Morizane, Yuki; Shiode, Yusuke; Hosokawa, Mio; Hirano, Masayuki; Hosogi, Mika; Fujiwara, Atsushi; Miyamoto, Kazuhisa; Shiraga, Fumio

    2015-08-07

    The natural course of submacular hemorrhage resulting from traumatic choroidal rupture generally has a poor outcome unless treated. The intravitreal injection of gas only or gas with recombinant tissue plasminogen activator (rt-PA) has been reported to be effective, but has also been reported to induce severe complications such as retinal detachment and vitreous hemorrhage. Recently, we reported a safe and effective procedure for treating submacular hemorrhage due to polypoidal choroidal vasculopathy (PCV) with a low dose of rt-PA. Here we report the application of this procedure to a case of traumatic submacular hemorrhage in a 13-year-old boy, which achieved a good visual outcome. A 13-year-old Japanese boy presented with a thick submacular hemorrhage in his left eye as a result of blunt trauma from being hit by a sinker. Best-corrected visual acuity (BCVA) was assessed as only able to perceive hand motions. We carried out a vitrectomy, subretinal injection of 4,000 IU rt-PA (6.9 μg) and air tamponade. The day after surgery, most of the submacular hemorrhage had moved to the inferior periphery. One month after the surgery, we observed cataract formation, thin remnants of the submacular hemorrhage and juxtafoveal choroidal rupture. We carried out cataract surgery and injected bevacizumab intravitreally to prevent the development of choroidal neovascularization. Two months after the second surgery, the submacular hemorrhage had totally disappeared and the patient had a BCVA of 20/40. Vitrectomy, subretinal injection of rt-PA, and intravitreal air tamponade may be a promising strategy for treating traumatic submacular hemorrhage in young patients.

  15. Intrauterine air impairs embryonic postimplantation development in mice.

    PubMed

    Liu, Ruonan; Li, Yimeng; Miao, Yanping; Wei, Yanhui; Guan, Mo; Zhou, Rongyan; Li, Xiangyun

    2017-12-01

    Although most embryologists load air bubbles into the catheter along with embryos during embryo transfer, the effects of these air bubbles on embryo transfer success rate are not clear. Air bubbles were nonsurgically injected into unilateral uterine horns of mice to demonstrate the negative effects of intrauterine air bubbles on embryonic development. Our data showed that when air bubbles are nonsurgically injected into unilateral uterine horns of pregnant 4days mice the litter size is significantly decreased. Four days after the introduction of air, abnormal decidua and dead conceptuses were detected in the uterine horns receiving the air bubbles. In addition, intrauterine air also significantly impaired murine embryo transfer success rates, and induced an increase in endometrial capillary permeability and decidualization in mice on day 4 of pseudopregnancy. These results strongly indicated that the air bubbles loaded into embryo transfer catheters to bracket the embryo-containing medium may have negative effect on embryonic implantation and development. Intrauterine air impaired murine embryonic postimplantation development, and this provided some clues for improving embryo transfer techniques in human. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Factors affecting the toxicity of methylmercury injected into eggs

    USGS Publications Warehouse

    Heinz, G.H.; Hoffman, D.J.; Kondrad, S.L.; Erwin, C.A.

    2006-01-01

    We developed a standardized protocol for comparing the sensitivities of the embryos of different bird species to methylmercury when methylmercury was injected into their eggs. During the course of developing this protocol, we investigated the effects of various factors on the toxicity of the injected methylmercury. Most of our experiments were done with chicken (Gallus domesticus), mallard (Anas platyrhynchos), and ring-necked pheasant (Phasianus colchicus) eggs, all of which were purchased in large numbers from game farms. A smaller amount of work was done with double-crested cormorant (Phalacrocorax auritus) eggs collected from the wild. Several solvents were tested, and corn oil at a rate of 1 ??l/g egg contents was selected for the final standardized protocol because it had minimal toxicity to embryos and because methylmercury dissolved in corn oil yielded a dose-response curve in a range of egg concentrations that was similar to the range that causes reproductive impairment when the mother deposits methylmercury into her own eggs. The embryonic stage at which eggs were injected with corn oil altered mercury toxicity; at early stages, the corn oil itself was toxic. Therefore, in the final protocol we standardized the time of injection to occur when each species reached the morphologic equivalent of a 3-day-old chicken embryo. Although solvents can be injected directly into the albumen of an egg, high embryo mortality can occur in the solvent controls because of the formation of air bubbles in the albumen. Our final protocol used corn oil injections into the air cell, which are easier and safer than albumen injections. Most of the methylmercury, when dissolved in corn oil, injected into the air cell passes through the inner shell membrane and into the egg albumen. Most commercial incubators incubate eggs in trays with the air cell end of the egg pointing upward, but we discovered that mercury-induced mortality was too great when eggs were held in this

  17. Factors affecting the toxicity of methylmercury injected into eggs

    USGS Publications Warehouse

    Heinz, G.H.; Hoffman, D.J.; Kondrad, S.L.; Erwin, C.A.

    2006-01-01

    We developed a standardized protocol for comparing the sensitivities of the embryos of different bird species to methylmercury when methylmercury was injected into their eggs. During the course of developing this protocol, we investigated the effects of various factors on the toxicity of the injected methylmercury. Most of our experiments were done with chicken (Gallus domesticus), mallard (Anas platyrhynchos), and ring-necked pheasant (Phasianus colchicus) eggs, all of which were purchased in large numbers from game farms. A smaller amount of work was done with double-crested cormorant (Phalacrocorax auritus) eggs collected from the wild. Several solvents were tested, and corn oil at a rate of 1 :l/g egg contents was selected for the final standardized protocol because it had minimal toxicity to embryos and because methylmercury dissolved in corn oil yielded a dose?response curve in a range of egg concentrations that was similar to the range that causes reproductive impairment when the mother deposits methylmercury into her own eggs. The embryonic stage at which eggs were injected with corn oil altered mercury toxicity; at early stages, the corn oil itself was toxic. Therefore, in the final protocol we standardized the time of injection to occur when each species reached the morphologic equivalent of a 3-day-old chicken embryo. Although solvents can be injected directly into the albumen of an egg, high embryo mortality can occur in the solvent controls because of the formation of air bubbles in the albumen. Our final protocol used corn oil injections into the air cell, which are easier and safer than albumen injections. Most of the methylmercury, when dissolved in corn oil, injected into the air cell passes through the inner shell membrane and into the egg albumen. Most commercial incubators incubate eggs in trays with the air cell end of the egg pointing upward, but we discovered that mercury-induced mortality was too great when eggs were held in this orientation

  18. Improvements in powered air purifying respirator protection in an ABSL-3E facility

    USDA-ARS?s Scientific Manuscript database

    The study of and experimentation with zoonotic pathogens such as highly pathogenic avian influenza (HPAI) requires risk mitigation strategies including laboratory engineering controls and safety equipment, personal protective equipment (PPE), and proper practices and techniques. Incidences of potent...

  19. STEAM INJECTION INTO FRACTURED LIMESTONE AT LORING AIR FORCE BASE

    EPA Science Inventory

    A research project on steam injection for the remediation of spent chlorinated solvents from fractured limestone was recently undertaken at the former Loring AFB in Limestone, ME. Participants in the project include the Maine Department of Environmental Protection, EPA Region I,...

  20. Effect of the Ethanol Injection Moment During Compression Stroke on the Combustion of Ethanol - Diesel Dual Direct Injection Engine

    NASA Astrophysics Data System (ADS)

    Liang, Yu; Zhou, Liying; Huang, Haomin; Xu, Mingfei; Guo, Mei; Chen, Xin

    2018-01-01

    A set of GDI system is installed on a F188 single-cylinder, air-cooled and direct injection diesel engine, which is used for ethanol injection, with the injection time controlled by the crank angle signal collected by AVL angle encoder. The injection of ethanol amounts to half of the thermal equivalent of an original diesel fuel. A 3D combustion model is established for the ethanol - diesel dual direct injection engine. Diesel was injected from the original fuel injection system, with a fuel supply advance angle of 20°CA. The ethanol was injected into the cylinder during compression process. Diesel injection began after the completion of ethanol injection. Ethanol injection starting point of 240°CA, 260°CA, 280°CA, 300°CA and 319.4°CA were simulated and analyzed. Due to the different timing of ethanol injection, the ignition of the ethanol mixture when diesel fires, results in non-uniform ignition distribution and flame propagation rate, since the distribution and concentration gradients of the ethanol mixture in the cylinder are different, thus affecting the combustion process. The results show that, when ethanol is injected at 319.4°CA, the combustion heat release rate and the pressure rise rate during the initial stage are the highest. Also, the maximum combustion pressure, with a relatively advance phase, is the highest. In case of later initial ethanol injection, the average temperature in the cylinder during the initial combustion period will have a faster rise. In case of initial injection at 319.4°CA, the average temperature in the cylinder is the highest, followed by 240°CA ethanol injection. In the post-combustion stage, the earlier ethanol injection will result in higher average temperature in the cylinder and more complete fuel combustion. The injection of ethanol at 319.4°CA produces earlier and highest NOX emissions.

  1. Results from Geothermal Logging, Air and Core-Water Chemistry Sampling, Air Injection Testing and Tracer Testing in the Northern Ghost Dance Fault, YUCCA Mountain, Nevada, November 1996 to August 1998

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lecain, G.D.; Anna, L.O.; Fahy, M.F.

    1998-08-01

    Geothermal logging, air and core-water chemistry sampling, air-injection testing, and tracer testing were done in the northern Ghost Dance Fault at Yucca Mountain, Nevada, from November 1996 to August 1998. The study was done by the U.S. Geological Survey, in cooperation with the U.S. Department of Energy. The fault-testing drill room and test boreholes were located in the crystal-poor, middle nonlithophysal zone of the Topopah Spring Tuff, a tuff deposit of Miocene age. The drill room is located off the Yucca Mountain underground Exploratory Studies Facility at about 230 meters below ground surface. Borehole geothermal logging identified a temperature decreasemore » of 0.1 degree Celsius near the Ghost Dance Fault. The temperature decrease could indicate movement of cooler air or water, or both, down the fault, or it may be due to drilling-induced evaporative or adiabatic cooling. In-situ pneumatic pressure monitoring indicated that barometric pressure changes were transmitted from the ground surface to depth through the Ghost Dance Fault. Values of carbon dioxide and delta carbon-13 from gas samples indicated that air from the underground drill room had penetrated the tuff, supporting the concept of a well-developed fracture system. Uncorrected carbon-14-age estimates from gas samples ranged from 2,400 to 4,500 years. Tritium levels in borehole core water indicated that the fault may have been a conduit for the transport of water from the ground surface to depth during the last 100 years.« less

  2. “Vivo para consumirla y la consumo para vivir” [“I live to inject and inject to live”]: High-Risk Injection Behaviors in Tijuana, Mexico

    PubMed Central

    Strathdee, Steffanie A.; Fraga, Wendy Davila; Case, Patricia; Firestone, Michelle; Brouwer, Kimberly C.; Perez, Saida Gracia; Magis, Carlos; Fraga, Miguel Angel

    2007-01-01

    Injection drug use is a growing problem on the US–Mexico border, where Tijuana is situated. We studied the context of injection drug use among injection drug users (IDUs) in Tijuana to help guide future research and interventions. Guided in-depth interviews were conducted with 10 male and 10 female current IDUs in Tijuana. Topics included types of drug used, injection settings, access to sterile needles, and environmental influences. Interviews were taped, transcribed verbatim, and translated. Content analysis was conducted to identify themes. Of the 20 IDUs, median age and age at first injection were 30 and 18. Most reported injecting at least daily: heroin (“carga,” “chiva,” “negra”), methamphetamine (“crico,” “cri-cri”), or both drugs combined. In sharp contrast to Western US cities, almost all regularly attended shooting galleries (“yongos” or “picaderos”) because of the difficulties obtaining syringes and police oppression. Almost all shared needles/paraphernalia [“cuete” (syringe), “cacharros” (cookers), cotton from sweaters/socks (filters)]. Some reported obtaining syringes from the United States. Key themes included (1) pharmacies refusing to sell or charging higher prices to IDUs, (2) ample availability of used/rented syringes from “picaderos” (e.g., charging approximately 5 pesos or “10 drops” of drug), and (3) poor HIV/AIDS knowledge, such as beliefs that exposing syringes to air “kills germs.” This qualitative study suggests that IDUs in Tijuana are at high risk of HIV and other blood-borne infections. Interventions are urgently needed to expand access to sterile injection equipment and offset the potential for a widespread HIV epidemic. PMID:16107441

  3. Loss of control air at Browns Ferry Unit One: accident sequence analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harrington, R.M.; Hodge, S.A.

    1986-04-01

    This study describes the predicted response of the Browns Ferry Nuclear Plant to a postulated complete failure of plant control air. The failure of plant control air cascades to include the loss of drywell control air at Units 1 and 2. Nevertheless, this is a benign accident unless compounded by simultaneous failures in the turbine-driven high pressure injection systems. Accident sequence calculations are presented for Loss of Control Air sequences with assumed failure upon demand of the Reactor Core Isolation Cooling (RCIC) and the High Pressure Coolant Injection (HPCI) at Unit 1. Sequences with and without operator action are considered.more » Results show that the operators can prevent core uncovery if they take action to utilize the Control Rod Drive Hydraulic System as a backup high pressure injection system.« less

  4. Modeling and roles of meteorological factors in outbreaks of highly pathogenic avian influenza H5N1.

    PubMed

    Biswas, Paritosh K; Islam, Md Zohorul; Debnath, Nitish C; Yamage, Mat

    2014-01-01

    The highly pathogenic avian influenza A virus subtype H5N1 (HPAI H5N1) is a deadly zoonotic pathogen. Its persistence in poultry in several countries is a potential threat: a mutant or genetically reassorted progenitor might cause a human pandemic. Its world-wide eradication from poultry is important to protect public health. The global trend of outbreaks of influenza attributable to HPAI H5N1 shows a clear seasonality. Meteorological factors might be associated with such trend but have not been studied. For the first time, we analyze the role of meteorological factors in the occurrences of HPAI outbreaks in Bangladesh. We employed autoregressive integrated moving average (ARIMA) and multiplicative seasonal autoregressive integrated moving average (SARIMA) to assess the roles of different meteorological factors in outbreaks of HPAI. Outbreaks were modeled best when multiplicative seasonality was incorporated. Incorporation of any meteorological variable(s) as inputs did not improve the performance of any multivariable models, but relative humidity (RH) was a significant covariate in several ARIMA and SARIMA models with different autoregressive and moving average orders. The variable cloud cover was also a significant covariate in two SARIMA models, but air temperature along with RH might be a predictor when moving average (MA) order at lag 1 month is considered.

  5. Enhancing the use of coals by gas reburning-sorbent injection: Volume 3 -- Gas reburning-sorbent injection at Edwards Unit 1, Central Illinois Light Company. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1996-03-01

    Design work has been completed for a Gas Reburning-Sorbent Injection (GR-SI) system to reduce emissions of NO{sub x} and SO{sub 2} from a wall fired unit at Central Illinois Light Company`s Edwards Station Unit 1, located in Bartonville, Illinois. The goal of the project was to reduce emissions of NO{sub x} by 60%, from the as found baseline of 0.98 lb/MBtu and to reduce emissions of SO{sub 2} by 50%. Since the unit currently fires a blend of high sulfur Illinois coal and low sulfur Kentucky coal to meet an SO{sub 2} limit of 1.8 lb/MBtu, the goal at thismore » site was amended to meeting this limit while increasing the fraction of high sulfur coal to 57% from the current 15% level. GR-SI requires injection of natural gas into the furnace at the level of the top burner row, creating a fuel-rich zone in which NO{sub x} formed in the coal zone is reduced to N{sub 2}. Recycled flue gas is used to increase the reburning fuel jet momentum, resulting in enhanced mixing. Recycled flue gas is also used to cool the top row of burners which would not be in service during GR operation. Dry hydrated lime sorbent is injected into the upper furnace to react with SO{sub 2}, forming solid CaSO{sub 4} and CaSO{sub 3}, which are collected by the ESP. The system was designed to inject sorbent at a rate corresponding to a calcium (sorbent) to sulfur (coal) molar ratio of 2.0. The SI system design was optimized with respect to gas temperature, injection air flow rate, and sorbent dispersion. Sorbent injection air flow is equal to 3% of the combustion air. The design includes modifications of the ESP, sootblowing, and ash handling systems.« less

  6. Injection of Lightning-Produced NOx, Water Vapor, Wildfire Emissions, and Stratospheric Air to the UT/LS as Observed from DC3 Measurements

    NASA Astrophysics Data System (ADS)

    Huntrieser, H.; Lichtenstern, M.; Scheibe, M.; Aufmhoff, H.; Schlager, H.; Minikin, A.; Weinzierl, B.; Pollack, I. B.; Peischl, J.; Ryerson, T. B.; Weinheimer, A. J.; Honomichl, S.; Ridley, B. A.; Hair, J. W.; Schwartz, M. J.; Rappenglück, B.; Pickering, K. E.; Cummings, K.; Biggerstaff, M. I.; Heimerl, K.; Pucik, T.; Fütterer, D.; Ackermann, L.; Betten, D.; Butler, C. F.; Barth, M. C.

    2015-12-01

    In summer 2012 the Deep Convective Clouds and Chemistry Project (DC3) field campaign investigated a number of severe thunderstorms over the Central U.S. and their impact on the upper tropospheric (UT) - lower stratospheric (LS) composition and chemistry. In addition, during DC3 some of the largest and most destructive wildfires in New Mexico and Colorado state history were burning, influencing the air quality in the DC3 thunderstorm inflow and outflow region. Besides three instrumented aircraft platforms measuring a variety of trace species in-situ and remotely (e.g. CO, O3, SO2, NOx, VOC, CN, and black carbon), dense networks of ground-based instruments (e.g. radar and lightning) complemented the airborne measurements. Satellite measurements (e.g. GOES, MODIS, and GOME-2) and model forecasts (e.g. WRF-Chem and FLEXPART) were used to monitor the rapid development of the thunderstorms (which frequently developed huge anvils with overshooting tops) and the spread of smoke plumes in the vicinity of the storms. In-situ probing of fresh and aged (12-24 h) anvil outflows showed injection of lightning-produced NOx and wildfire emissions into the UTLS. Vertical cross sections of lidar and Doppler radar measurements supported these observations and gave detailed information on dynamical processes within and in the vicinity of the storms. Besides very strong updrafts in the storm core, surrounding downdrafts caused a direct in-mixing of O3-rich LS air masses into the boundaries of the anvil outflow. The wrapping of O3-rich LS air masses around and below the anvil outflow was also a prominent feature in several storms. The in-situ probing of the aged anvil outflow showed a pronounced influence on the UT composition and chemistry with average O3 enhancements in the range of 20-50 nmol mol-1 and evidence of new particle formation. A 10-year global climatology of H2O data from Aura-MLS confirms that the Central U.S. is a preferred region for convective injection into the LS.

  7. Injection of Lightning-Produced NOx, Water Vapor, Wildfire Emissions, and Stratospheric Air to the UT/LS as Observed from DC3 Measurements

    NASA Astrophysics Data System (ADS)

    Huntrieser, H.; Lichtenstern, M.; Scheibe, M.; Aufmhoff, H.; Schlager, H.; Minikin, A.; Weinzierl, B.; Pollack, I. B.; Peischl, J.; Ryerson, T. B.; Weinheimer, A. J.; Honomichl, S.; Ridley, B. A.; Hair, J. W.; Schwartz, M. J.; Rappenglück, B.; Pickering, K. E.; Cummings, K.; Biggerstaff, M. I.; Heimerl, K.; Pucik, T.; Fütterer, D.; Ackermann, L.; Betten, D.; Butler, C. F.; Barth, M. C.

    2014-12-01

    In summer 2012 the Deep Convective Clouds and Chemistry Project (DC3) field campaign investigated a number of severe thunderstorms over the Central U.S. and their impact on the upper tropospheric (UT) - lower stratospheric (LS) composition and chemistry. In addition, during DC3 some of the largest and most destructive wildfires in New Mexico and Colorado state history were burning, influencing the air quality in the DC3 thunderstorm inflow and outflow region. Besides three instrumented aircraft platforms measuring a variety of trace species in-situ and remotely (e.g. CO, O3, SO2, NOx, VOC, CN, and black carbon), dense networks of ground-based instruments (e.g. radar and lightning) complemented the airborne measurements. Satellite measurements (e.g. GOES, MODIS, and GOME-2) and model forecasts (e.g. WRF-Chem and FLEXPART) were used to monitor the rapid development of the thunderstorms (which frequently developed huge anvils with overshooting tops) and the spread of smoke plumes in the vicinity of the storms. In-situ probing of fresh and aged (12-24 h) anvil outflows showed injection of lightning-produced NOx and wildfire emissions into the UTLS. Vertical cross sections of lidar and Doppler radar measurements supported these observations and gave detailed information on dynamical processes within and in the vicinity of the storms. Besides very strong updrafts in the storm core, surrounding downdrafts caused a direct in-mixing of O3-rich LS air masses into the boundaries of the anvil outflow. The wrapping of O3-rich LS air masses around and below the anvil outflow was also a prominent feature in several storms. The in-situ probing of the aged anvil outflow showed a pronounced influence on the UT composition and chemistry with average O3 enhancements in the range of 20-50 nmol mol-1 and evidence of new particle formation. A 10-year global climatology of H2O data from Aura-MLS confirms that the Central U.S. is a preferred region for convective injection into the LS.

  8. A Comparison of Fuel Sprays from Several Types of Injection Nozzles

    NASA Technical Reports Server (NTRS)

    Lee, Dana W

    1936-01-01

    This report presents the tests results of a series of tests made of the sprays from 14 fuel injection nozzles of 9 different types, the sprays being injected into air at atmospheric density and at 6 and 14 times atmospheric density. High-speed spark photographs of the sprays from each nozzle at each air density were taken at the rate of 2,000 per second, and from them were obtained the dimensions of the sprays and the rates of spray-tip penetration. The sprays were also injected against plasticine targets placed at different distances from the nozzles, and the impressions made in the plasticine were used as an indication of the distribution of the fuel within the spray. Cross-sectional sketches of the different types of sprays are given showing the relative sizes of the spray cores and envelopes. The characteristics of the sprays are compared and discussed with respect to their application to various types of engines.

  9. An injection and mixing element for delivery and monitoring of inhaled nitric oxide.

    PubMed

    Martin, Andrew R; Jackson, Chris; Fromont, Samuel; Pont, Chloe; Katz, Ira M; Caillobotte, Georges

    2016-08-30

    Inhaled nitric oxide (NO) is a selective pulmonary vasodilator used primarily in the critical care setting for patients concurrently supported by invasive or noninvasive positive pressure ventilation. NO delivery devices interface with ventilator breathing circuits to inject NO in proportion with the flow of air/oxygen through the circuit, in order to maintain a constant, target concentration of inhaled NO. In the present article, a NO injection and mixing element is presented. The device borrows from the design of static elements to promote rapid mixing of injected NO-containing gas with breathing circuit gases. Bench experiments are reported to demonstrate the improved mixing afforded by the injection and mixing element, as compared with conventional breathing circuit adapters, for NO injection into breathing circuits. Computational fluid dynamics simulations are also presented to illustrate mixing patterns and nitrogen dioxide production within the element. Over the range of air flow rates and target NO concentrations investigated, mixing length, defined as the downstream distance required for NO concentration to reach within ±5 % of the target concentration, was as high as 47 cm for the conventional breathing circuit adapters, but did not exceed 7.8 cm for the injection and mixing element. The injection and mixing element has potential to improve ease of use, compatibility and safety of inhaled NO administration with mechanical ventilators and gas delivery devices.

  10. Uncertainties in Air Exchange using Continuous-Injection, Long-Term Sampling Tracer-Gas Methods

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sherman, Max H.; Walker, Iain S.; Lunden, Melissa M.

    2013-12-01

    The PerFluorocarbon Tracer (PFT) method is a low-cost approach commonly used for measuring air exchange in buildings using tracer gases. It is a specific application of the more general Continuous-Injection, Long-Term Sampling (CILTS) method. The technique is widely used but there has been little work on understanding the uncertainties (both precision and bias) associated with its use, particularly given that it is typically deployed by untrained or lightly trained people to minimize experimental costs. In this article we will conduct a first-principles error analysis to estimate the uncertainties and then compare that analysis to CILTS measurements that were over-sampled, throughmore » the use of multiple tracers and emitter and sampler distribution patterns, in three houses. We find that the CILTS method can have an overall uncertainty of 10-15percent in ideal circumstances, but that even in highly controlled field experiments done by trained experimenters expected uncertainties are about 20percent. In addition, there are many field conditions (such as open windows) where CILTS is not likely to provide any quantitative data. Even avoiding the worst situations of assumption violations CILTS should be considered as having a something like a ?factor of two? uncertainty for the broad field trials that it is typically used in. We provide guidance on how to deploy CILTS and design the experiment to minimize uncertainties.« less

  11. A Novel Thermal Management Approach for Radial Foil Air Bearings

    DTIC Science & Technology

    2010-07-01

    injection air. The tests were conducted at room temperature with the bearing operating at speeds from 20 to 50 krpm while supporting 222N. Two different...14  List of Tables Table 1. Bearing temperature results for the two injection air flows at three different operating...no further than the research stage (3, 4). However, during the last 15 years, more advanced, higher load capacity bearings and high temperature

  12. [Development of injection containers for patient and medical staff].

    PubMed

    Kawasaki, Yoichi; Sendo, Toshiaki

    2015-01-01

    Recently, there has been a transition from glass to plastic injection containers in Japan. In our previous study, we suggested that plastic containers had less impurity contamination than glass containers. However, the use of some plasticizers has been limited because of their endocrine disrupting effects. Therefore, contamination has been a concern due to chemicals in injection solution packed with plastic containers. Indeed, in our recent study, photoinitiators were detected in an injection solution coming from plastic containers. Photoinitiators mainly exist in ink. We therefore speculated that ink originating from a photoinitiator directly printing on plastic containers had migrated into the injection solutions. In a clinical setting, plastic containers are very tractable because they are lightweight and less breakable. On the other hand, from a safety view point, these containers may be hazardous because of permeation by steam, ambient air or photoinitiators. In the present symposium, we will discuss the risk of photoinitiators leaking into injection solution packed with plastic containers, and countermeasures to avoid this risk.

  13. Flow visualization study of grooved surface/surfactant/air sheet interaction

    NASA Technical Reports Server (NTRS)

    Reed, Jason C.; Weinstein, Leonard M.

    1989-01-01

    The effects of groove geometry, surfactants, and airflow rate have been ascertained by a flow-visualization study of grooved-surface models which addresses the possible conditions for skin friction-reduction in marine vehicles. It is found that the grooved surface geometry holds the injected bubble stream near the wall and, in some cases, results in a 'tube' of air which remains attached to the wall. It is noted that groove dimension and the use of surfactants can substantially affect the stability of this air tube; deeper grooves, surfactants with high contact angles, and angled air injection, are all found to increase the stability of the attached air tube, while convected disturbances and high shear increase interfacial instability.

  14. Thermodynamic analysis of steam-injected advanced gas turbine cycles

    NASA Astrophysics Data System (ADS)

    Pandey, Devendra; Bade, Mukund H.

    2017-12-01

    This paper deals with thermodynamic analysis of steam-injected gas turbine (STIGT) cycle. To analyse the thermodynamic performance of steam-injected gas turbine (STIGT) cycles, a methodology based on pinch analysis is proposed. This graphical methodology is a systematic approach proposed for a selection of gas turbine with steam injection. The developed graphs are useful for selection of steam-injected gas turbine (STIGT) for optimal operation of it and helps designer to take appropriate decision. The selection of steam-injected gas turbine (STIGT) cycle can be done either at minimum steam ratio (ratio of mass flow rate of steam to air) with maximum efficiency or at maximum steam ratio with maximum net work conditions based on the objective of plants designer. Operating the steam injection based advanced gas turbine plant at minimum steam ratio improves efficiency, resulting in reduction of pollution caused by the emission of flue gases. On the other hand, operating plant at maximum steam ratio can result in maximum work output and hence higher available power.

  15. [Naringin reduced polymethylmethacrylate-induced osteolysis in the mouse air sacs model].

    PubMed

    Li, Nian-Hu; Xu, Zhan-wang

    2015-04-01

    To evaluate the influence of naringin on PMMA-induced osteoclastic bone resorption using the mouse air sacs model. Total 48 female Balb/c mices with the age of 8 to 10 weeks were chosen in the study. Air were injected into the back in 32 mices and formed the air sacs, 6 d later, the skulls (originated from other 16 mices) were implanted to the air sacs. Thirty-two animals were divided into naringin treatment group (with 2 concentrations of 150 mg/kg and 30 mg/ kg) , DMSO group and PBS blank group, 8 animals in each group. Polymethylmethacrylate (PMMA) particles were injected into the air sacs in naringin treatment groups and DMSO group so as to irritate inflammatory reaction. Naringin with 2 concentrations of 150 mg/kg and 30 mg/kg were dissolved in DMSO of 0.2 ml, and were injected into air sacs, respectively. In PBS black group, no stimulation with PMMA particles, only injected PBS, and in DMSO group, injected DMSO without naringin. Tartrate resistant acid phosphatase (TRAP), Ca2+ release, modified Masson stain and histological analysis were performed on the 7th day after stimulation. Compared with DMSO group, naringin treatment group's cellular infiltration decreased (P < 0.01); concentration of 150 mg/kg was better than that of concentrations of 30 mg/kg (8.90 ± 1.75 vs 15.23 ± 1.86). Naringin can decrease calcium release in the lavage of the air sacs bone resorption model, especially obvious in naringin with concentration of 150 mg/kg. Naringin can ameliorate the inflammatory reaction and the subsequent bone resorption (including bone collagen loss, TRAP positive cells amount and so on) in air sacs with bone implant and PMMA particles. Naringin with concentration of 150 mg/kg appeared to be an optimal dosage to deliver the therapeutic effects. Naringin inhibits PMMA-induced osteoclastogenesis and ameliorates the PMMA-associated inflammatory reaction and the subsequent bone resorption.

  16. Deep anterior lamellar keratoplasty: dissection plane with viscoelastic and air can be different.

    PubMed

    Ross, Andrew R; Said, Dalia G; El-Amin, Abdalla; Altaan, Saif; Cabrerizo, Javier; Nubile, Mario; Hogan, Emily; Mastropasqua, Leonardo; Dua, Harminder Singh

    2018-04-03

    To investigate and define the nature of big bubbles (BB) formed by injection of viscoelastic in deep anterior lamellar keratoplasty. Intrastromal injections of 0.1 and 0.3 mL of sodium hyaluronate 1.2% and 0.6% were made into sclera-corneal discs (n = 32) at superficial (anterior-third), midstromal (middle-third) and deep (posterior-third) levels to simulate deep anterior lamellar keratoplasty. Postinjection optical coherence tomograms (OCT) were obtained with the needle in situ. The samples were sectioned and examined histologically. Twelve control samples were injected with air. With superficial injections (n=8) only intrastromal accumulation of viscoelastic was noted. With midstromal injections (n=10) intrastromal accumulation of viscoelastic (n=6) and intrastromal big bubbles (IBB) (n=4) with substantial and variable stromal tissue in the walls were noted. No type 1, type 2 or mixed BB were noted. With deep injections (n=14), type 1 BB (n=4), IBB (n=4) and mixed BB (n=6) were obtained.There was no difference in the results with the two different concentrations of viscoelastic used. With air injection (n=12), 10 type 1 and 1 type 2 BB and 1 mixed BB were obtained. No IBB was noted. BB obtained by injection of viscoelastic and air can be different. The former tends to occur at the site of injection, especially with midstromal injections, takes the form of tissue separation by stretch and tearing and does not cleave in a consistent plane like air. Surgeons should be aware of IBB created by viscodissection and not confuse it for a type1 BB. Intraoperative OCT should help identify IBB. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  17. An investigation of air solubility in Jet A fuel at high pressures

    NASA Technical Reports Server (NTRS)

    Faeth, G. M.

    1981-01-01

    Problems concerned with the supercritical injection concept are discussed. Supercritical injection involves dissolving air into a fuel prior to injection. A similar effect is obtained by preheating the fuel so that a portion of the fuel flashes when its pressure is reduced. Flashing improves atomization properties and the presence of air in the primary zone of a spray flame reduces the formation of pollutants. The investigation is divided into three phases: (1) measure the solubility and density properties of fuel/gas mixtures, including Jet A/air, at pressures and correlate these results using theory; (2) investigate the atomization properties of flashing liquids, including fuel/dissolved gas systems. Determine and correlate the effect of inlet properties and injector geometry on mass flow rates, Sauter mean diameter and spray angles; (3) examine the combustion properties of flashing injection in an open burner flame, considering flame shape and soot production.

  18. Jet plume injection and combustion system for internal combustion engines

    DOEpatents

    Oppenheim, A.K.; Maxson, J.A.; Hensinger, D.M.

    1993-12-21

    An improved combustion system for an internal combustion engine is disclosed wherein a rich air/fuel mixture is furnished at high pressure to one or more jet plume generator cavities adjacent to a cylinder and then injected through one or more orifices from the cavities into the head space of the cylinder to form one or more turbulent jet plumes in the head space of the cylinder prior to ignition of the rich air/fuel mixture in the cavity of the jet plume generator. The portion of the rich air/fuel mixture remaining in the cavity of the generator is then ignited to provide a secondary jet, comprising incomplete combustion products which are injected into the cylinder to initiate combustion in the already formed turbulent jet plume. Formation of the turbulent jet plume in the head space of the cylinder prior to ignition has been found to yield a higher maximum combustion pressure in the cylinder, as well as shortening the time period to attain such a maximum pressure. 24 figures.

  19. Jet plume injection and combustion system for internal combustion engines

    DOEpatents

    Oppenheim, Antoni K.; Maxson, James A.; Hensinger, David M.

    1993-01-01

    An improved combustion system for an internal combustion engine is disclosed wherein a rich air/fuel mixture is furnished at high pressure to one or more jet plume generator cavities adjacent to a cylinder and then injected through one or more orifices from the cavities into the head space of the cylinder to form one or more turbulent jet plumes in the head space of the cylinder prior to ignition of the rich air/fuel mixture in the cavity of the jet plume generator. The portion of the rich air/fuel mixture remaining in the cavity of the generator is then ignited to provide a secondary jet, comprising incomplete combustion products which are injected into the cylinder to initiate combustion in the already formed turbulent jet plume. Formation of the turbulent jet plume in the head space of the cylinder prior to ignition has been found to yield a higher maximum combustion pressure in the cylinder, as well as shortening the time period to attain such a maximum pressure.

  20. Development of a real-time chemical injection system for air-assisted variable-rate sprayers

    USDA-ARS?s Scientific Manuscript database

    A chemical injection system is an effective method to minimize chemical waste and reduce the environmental pollution in pesticide spray applications. A microprocessor controlled injection system implementing a ceramic piston metering pump was developed to accurately dispense chemicals to be mixed wi...

  1. Study of Forebody Injection and Mixing with Application to Hypervelocity Airbreathing Propulsion

    NASA Technical Reports Server (NTRS)

    Axdahl, Erik; Kumar, Ajay; Wilhite, Alan

    2012-01-01

    The use of premixed, shock-induced combustion in the context of a hypervelocity, airbreathing vehicle requires effective injection and mixing of hydrogen fuel and air on the vehicle forebody. Three dimensional computational simulations of fuel injection and mixing from flush-wall and modified ramp and strut injectors are reported in this study. A well-established code, VULCAN, is used to conduct nonreacting, viscous, turbulent simulations on a flat plate at conditions relevant to a Mach 12 flight vehicle forebody. In comparing results of various fuel injection strategies, it is found that strut injection provides the greatest balance of performance between mixing efficiency and stream thrust potential.

  2. Sequential variable fuel injection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weglarz, M.W.; Vincent, M.T.; Prestel, J.F.

    This patent describes a fuel injection system for an engine of an automotive vehicle including cylinders, a spark plug for each of the cylinders, a distributor electrically connected to the spark plug, a throttle body having a throttle valve connected to the engine to allow or prevent air to the cylinders, a fuel source at least one fuel line connected to the fuel source, fuel injectors connected to the fuel line for delivering fuel to the cylinders, a sensor located near the distributor for sensing predetermined states of the distributor, and an electronic control unit (ECU) electrically connected to themore » sensor, distributor and fuel injectors. It comprises calculating a desired total injector on time for current engine conditions; calculating a variable injection time (VIT) and a turn on time based on the VIT; and firing the fuel injectors at the calculated turn on time for the calculated total injector on time.« less

  3. Supercritical fuel injection system

    NASA Technical Reports Server (NTRS)

    Marek, C. J.; Cooper, L. P. (Inventor)

    1980-01-01

    a fuel injection system for gas turbines is described including a pair of high pressure pumps. The pumps provide fuel and a carrier fluid such as air at pressures above the critical pressure of the fuel. A supercritical mixing chamber mixes the fuel and carrier fluid and the mixture is sprayed into a combustion chamber. The use of fuel and a carrier fluid at supercritical pressures promotes rapid mixing of the fuel in the combustion chamber so as to reduce the formation of pollutants and promote cleaner burning.

  4. Design and Testing of Trace Contaminant Injection and Monitoring Systems

    NASA Technical Reports Server (NTRS)

    Broerman, Craig D.; Sweterlitsch, Jeff

    2009-01-01

    In support of the Carbon dioxide And Moisture Removal Amine Swing-bed (CAMRAS) testing, a contaminant injection system as well as a contaminant monitoring system has been developed by the Johnson Space Center Air Revitalization Systems (JSC-ARS) team. The contaminant injection system has been designed to provide trace level concentrations of contaminants generated by humans in a closed environment during space flight missions. The contaminant injection system continuously injects contaminants from three gas cylinders, two liquid reservoirs and three permeation ovens. The contaminant monitoring system has been designed to provide real time gas analysis with accurate flow, humidity and gas concentration measurements for collection during test. The contaminant monitoring system consists of an analytical real time gas analyzer, a carbon monoxide sensor, and an analyzer for ammonia and water vapor.

  5. Swozzle based burner tube premixer including inlet air conditioner for low emissions combustion

    DOEpatents

    Tuthill, Richard Sterling; Bechtel, II, William Theodore; Benoit, Jeffrey Arthur; Black, Stephen Hugh; Bland, Robert James; DeLeonardo, Guy Wayne; Meyer, Stefan Martin; Taura, Joseph Charles; Battaglioli, John Luigi

    2002-01-01

    A burner for use in a combustion system of a heavy-duty industrial gas turbine includes a fuel/air premixer having an air inlet, a fuel inlet, and an annular mixing passage. The fuel/air premixer mixes fuel and air into a uniform mixture for injection into a combustor reaction zone. The burner also includes an inlet flow conditioner disposed at the air inlet of the fuel/air premixer for controlling a radial and circumferential distribution of incoming air. The pattern of perforations in the inlet flow conditioner is designed such that a uniform air flow distribution is produced at the swirler inlet annulus in both the radial and circumference directions. The premixer includes a swozzle assembly having a series of preferably air foil shaped turning vanes that impart swirl to the airflow entering via the inlet flow conditioner. Each air foil contains internal fuel flow passages that introduce natural gas fuel into the air stream via fuel metering holes that pass through the walls of the air foil shaped turning vanes. By injecting fuel in this manner, an aerodynamically clean flow field is maintained throughout the premixer. By injecting fuel via two separate passages, the fuel/air mixture strength distribution can be controlled in the radial direction to obtain optimum radial concentration profiles for control of emissions, lean blow outs, and combustion driven dynamic pressure activity as machine and combustor load are varied.

  6. EZVI Injection Field Test Leads to Pilot-Scale Application

    EPA Science Inventory

    Testing and monitoring of emulsified zero-valent ironTM (EZVI) injections was conducted at Cape Canaveral Air Force Station’s Launch Complex 34, FL, in 2002 to 2005 to evaluate the technology’s efficacy in enhancing in situ dehalogenation of dense nonaqueous-phase liquid (DNAPL) ...

  7. NOx reduction in combustion with concentrated coal streams and oxygen injection

    DOEpatents

    Kobayashi, Hisashi; Bool, III, Lawrence E.; Snyder, William J.

    2004-03-02

    NOx formation in the combustion of solid hydrocarbonaceous fuel such as coal is reduced by obtaining, from the incoming feed stream of fuel solids and air, a stream having a ratio of fuel solids to air that is higher than that of the feed steam, and injecting the thus obtained stream and a small amount of oxygen to a burner where the fuel solids are combusted.

  8. The Influence of Directed Air Flow on Combustion in Spark-Ignition Engine

    NASA Technical Reports Server (NTRS)

    Rothrock, A M; Spencer, R C

    1939-01-01

    The air movement within the cylinder of the NACA combustion apparatus was regulated by using shrouded inlet valves and by fairing the inlet passage. Rates of combustion were determined at different inlet-air velocities with the engine speed maintained constant and at different engine speeds with the inlet-air velocity maintained approximately constant. The rate of combustion increased when the engine speed was doubled without changing the inlet-air velocity; the observed increase was about the same as the increase in the rate of combustion obtained by doubling the inlet-air velocity without changing the engine speed. Certain types of directed air movement gave great improvement in the reproducibility of the explosions from cycle to cycle, provided that other variables were controlled. Directing the inlet air past the injection valve during injection increased the rate of burning.

  9. Application of intracytoplasmic sperm injection (ICSI) for fertilization and development in birds.

    PubMed

    Shimada, Kiyoshi; Ono, Tamao; Mizushima, Shusei

    2014-01-15

    Intracytoplasmic sperm injection (ICSI) technology in birds has been hampered due to opacity of oocyte. We developed ICSI-assisted fertilization and gene transfer in quail. This paper reviews recent advances of our ICSI experiments. The oocyte retrieved from the oviduct and a quail sperm was injected into the oocyte under a stereomicroscope. The oocyte was cultured for 24h at 41°C under 5% CO2 in air. The fertilization and development was assessed by microscopic observation. The fertility rate ranged 12-18% and development varied from stage II to V in trials. To improve the fertility rate, phospholipase C (PLC) zeta was injected with a sperm. It was increased to 37-50%. Furthermore, injection of inositol trisphosphate increased to over 85%. Quail oocyte can be fertilized with chicken sperm and so can testicular elongated spermatid. To extend embryonic development, chicken eggshell was used as a surrogate culture at 37°C after the 24h incubation at 41°C under 5% CO2 in air. It survived up to 2days thereafter. Finally, gene transfer was attempted in quail egg. The sperm membrane was disrupted with Triton X-100 (TX-100) and was injected with PLCzeta cRNA and enhanced green fluorescent protein (EGFP) gene in oocyte. The GFP expression was evaluated at 24h incubation at 41°C under 5% CO2 in air in the embryos. While the expression was not detected in the control oocytes, the experimental treatment induced blastoderm development (44%) of the oocytes and 86% of blastoderm showed fluorescent emission. In addition, PCR analysis detected EGFP fragments in 50% of GFP-expressing blastoderm. Our ICSI method may be the first step toward the production of transgenic birds. Copyright © 2013 Elsevier Inc. All rights reserved.

  10. Use of Surfactants to Decrease Air-Water Interfacial Tension During Sparging

    EPA Science Inventory

    Air sparging is a remediation procedure of injecting air into polluted ground water. The primary intention of air sparging is to promote biodegradation of volatile organic compounds (VOCs) in the groundwater passing through the treatment sector. Sparging treatment efficiency dep...

  11. Estimating the change of porosity in the saturated zone during air sparging.

    PubMed

    Tsai, Yih-jin; Kuo, Yu-chia; Chen, Tsu-chi; Chou, Feng-chih

    2006-01-01

    Air sparging is a remedial method for groundwater. The remedial region is similar to the air flow region in the saturated zone. If soil particles are transported during air sparging, the porosity distributions in the saturated zone change, which may alter the flow path of the air. To understand better the particle movement, this study performed a sandbox test to estimate the soil porosity change during air sparging. A clear fracture was formed and the phenomenon of particle movement was observed when the air injection was started. The moved sand filled the porous around the fracture and the reparked sand filled the fracture, reducing the porosity around the fracture. The results obtained from the photographs of the sandbox, the current measurements and the direct sand sample measurements were close to each other and are credible. Therefore, air injection during air sparging causes sand particle movement of sand, altering the characteristic of the sand matrix and the air distribution.

  12. Autologous Platelet-Poor Plasma Gel for Injection Laryngoplasty

    PubMed Central

    Woo, Seung Hoon; Kim, Jin Pyeong; Park, Jung Je; Chung, Phil-Sang

    2013-01-01

    Purpose To overcome the potential disadvantages of the use of foreign materials and autologous fat or collagen, we introduce here an autologous plasma gel for injection laryngoplasty. The purpose of this study was to present a new injection material, a plasma gel, and to discuss its clinical effectiveness. Materials and Methods From 2 mL of blood, the platelet poor serum layer was collected and heated at 100℃ for 12 min to form a plasma gel. The plasma gel was then injected into a targeted site; the safety and efficacy thereof were evaluated in 30 rats. We also conducted a phase I/II clinical study of plasma gel injection laryngoplasty in 11 unilateral vocal fold paralysis patients. Results The plasma gel was semi-solid and an easily injectable material. Of note, plasma gel maintains the same consistency for up to 1 year in a sealed bottle. However, exposure to room air causes the plasma gel to disappear within 1 month. In our animal study, the autologous plasma gel remained in situ for 6 months in animals with minimal inflammation. Clinical study showed that vocal cord palsy was well compensated for with the plasma gel in all patients at two months after injection with no significant complications. Jitter, shimmer, maximum, maximum phonation time (MPT) and mean voice handicap index (VHI) also improved significantly after plasma gel injection. However, because the injected plasma gel was gradually absorbed, 6 patients needed another injection, while the gel remained in place in 2 patients. Conclusion Injection laryngoplasty with autologous plasma gel may be a useful and safe treatment option for temporary vocal cord palsy. PMID:24142660

  13. The effect of water injection on nitric oxide emissions of a gas turbine combustor burning ASTM Jet-A fuel

    NASA Technical Reports Server (NTRS)

    Marchionna, N. R.; Diehl, L. A.; Trout, A. M.

    1973-01-01

    Tests were conducted to determine the effect of water injection on oxides of nitrogen (NOx) emissions of a full annular, ram induction gas turbine combustor burning ASTM Jet-A fuel. The combustor was operated at conditions simulating sea-level takeoff and cruise conditions. Water at ambient temperature was injected into the combustor primary zone at water-fuel ratios up to 2. At an inlet-air temperature of 589 K (600 F) water injection decreased the NOx emission index at a constant exponential rate: NOx = NOx (o) e to the -15 W/F power (where W/F is the water-fuel ratio and NOx(o) indicates the value with no injection). The effect of increasing combustor inlet-air temperature was to decrease the effect of the water injection. Other operating variables such as pressure and reference Mach number did not appear to significantly affect the percent reduction in NOx. Smoke emissions were found to decrease with increasing water injection.

  14. Deep lamellar keratoplasty on air with lyophilised tissue.

    PubMed Central

    Chau, G K; Dilly, S A; Sheard, C E; Rostron, C K

    1992-01-01

    Deep lamellar keratoplasty on air involves injecting air into the corneal stroma to expand it to several times its normal thickness. This method is designed to facilitate dissection of the deep stroma and reduce the risk of perforation of Descemet's membrane when carrying out deep lamellar keratoplasty. We have modified the technique by using prelathed freeze-dried donor tissue and report our results in a series of patients with corneal stromal scarring owing to a variety of corneal problems, namely, keratoconus, pterygium, and herpes zoster ophthalmicus. All patients achieved best corrected postoperative visual acuity of 6/12 or better without problems associated with graft failure or rejection. Histopathological examination of corneal tissue following air injection showed surgical emphysema within the cornea and separation of deep stromal fibres from the underlying Descemet's membrane. Images PMID:1477037

  15. Numerical study of rotating detonation engine with an array of injection holes

    NASA Astrophysics Data System (ADS)

    Yao, S.; Han, X.; Liu, Y.; Wang, J.

    2017-05-01

    This paper aims to adopt the method of injection via an array of holes in three-dimensional numerical simulations of a rotating detonation engine (RDE). The calculation is based on the Euler equations coupled with a one-step Arrhenius chemistry model. A pre-mixed stoichiometric hydrogen-air mixture is used. The present study uses a more practical fuel injection method in RDE simulations, injection via an array of holes, which is different from the previous conventional simulations where a relatively simple full injection method is usually adopted. The computational results capture some important experimental observations and a transient period after initiation. These phenomena are usually absent in conventional RDE simulations due to the use of an idealistic injection approximation. The results are compared with those obtained from other numerical studies and experiments with RDEs.

  16. Diesel Combustion and Emission Using High Boost and High Injection Pressure in a Single Cylinder Engine

    NASA Astrophysics Data System (ADS)

    Aoyagi, Yuzo; Kunishima, Eiji; Asaumi, Yasuo; Aihara, Yoshiaki; Odaka, Matsuo; Goto, Yuichi

    Heavy-duty diesel engines have adopted numerous technologies for clean emissions and low fuel consumption. Some are direct fuel injection combined with high injection pressure and adequate in-cylinder air motion, turbo-intercooler systems, and strong steel pistons. Using these technologies, diesel engines have achieved an extremely low CO2 emission as a prime mover. However, heavy-duty diesel engines with even lower NOx and PM emission levels are anticipated. This study achieved high-boost and lean diesel combustion using a single cylinder engine that provides good engine performance and clean exhaust emission. The experiment was done under conditions of intake air quantity up to five times that of a naturally aspirated (NA) engine and 200MPa injection pressure. The adopted pressure booster is an external supercharger that can control intake air temperature. In this engine, the maximum cylinder pressure was increased and new technologies were adopted, including a monotherm piston for endurance of Pmax =30MPa. Moreover, every engine part is newly designed. As the boost pressure increases, the rate of heat release resembles the injection rate and becomes sharper. The combustion and brake thermal efficiency are improved. This high boost and lean diesel combustion creates little smoke; ISCO and ISTHC without the ISNOx increase. It also yields good thermal efficiency.

  17. Analysis of Fuel Vaporization, Fuel-Air Mixing, and Combustion in Integrated Mixer-Flame Holders

    NASA Technical Reports Server (NTRS)

    Deur, J. M.; Cline, M. C.

    2004-01-01

    Requirements to limit pollutant emissions from the gas turbine engines for the future High-Speed Civil Transport (HSCT) have led to consideration of various low-emission combustor concepts. One such concept is the Integrated Mixer-Flame Holder (IMFH). This report describes a series of IMFH analyses performed with KIVA-II, a multi-dimensional CFD code for problems involving sprays, turbulence, and combustion. To meet the needs of this study, KIVA-II's boundary condition and chemistry treatments are modified. The study itself examines the relationships between fuel vaporization, fuel-air mixing, and combustion. Parameters being considered include: mixer tube diameter, mixer tube length, mixer tube geometry (converging-diverging versus straight walls), air inlet velocity, air inlet swirl angle, secondary air injection (dilution holes), fuel injection velocity, fuel injection angle, number of fuel injection ports, fuel spray cone angle, and fuel droplet size. Cases are run with and without combustion to examine the variations in fuel-air mixing and potential for flashback due to the above parameters. The degree of fuel-air mixing is judged by comparing average, minimum, and maximum fuel/air ratios at the exit of the mixer tube, while flame stability is monitored by following the location of the flame front as the solution progresses from ignition to steady state. Results indicate that fuel-air mixing can be enhanced by a variety of means, the best being a combination of air inlet swirl and a converging-diverging mixer tube geometry. With the IMFH configuration utilized in the present study, flashback becomes more common as the mixer tube diameter is increased and is instigated by disturbances associated with the dilution hole flow.

  18. Further results related to the turbulent boundary layer with slot injection of helium

    NASA Technical Reports Server (NTRS)

    Larue, J. C.; Libby, P. A.

    1978-01-01

    Data from an experiment involving the slot injection of helium into a turbulent boundary layer in air are analyzed in terms of unconditioned and conditioned Favre-averages. The conditioning is based on two levels of helium concentration so that the contributions to the unconditioned statistics from air, helium, and mixture of these two gases can be determined. The distributions of intermittency associated with the two helium levels establish the domains of influence of air, helium, and mixture.

  19. Combustion and NOx emissions in deep-air-staging combustion of char in a circulating fluidized bed

    NASA Astrophysics Data System (ADS)

    Gong, Zhiqiang; Wang, Zhentong; Wang, Lei; Du, Aixun

    2017-10-01

    Combustion and NOx emissions in deep-air-staging (with higher level secondary air (SA) injection) combustion of char have been investigated in a CFB test rig. A good fluidized condition and uniform temperature distribution can be achieved with injection of higher level SA. NOx emission decreases with injection of higher level SA and the reduction effect is more obvious at higher temperature. NOx emission decreases with combustion temperature increasing for char combustion.

  20. Domestic wastewater treatment by a submerged MBR (membrane bio-reactor) with enhanced air sparging.

    PubMed

    Chang, I S; Judd, S J

    2003-01-01

    The air sparging technique has been recognised as an effective way to control membrane fouling. However, its application to a submerged MBR (Membrane Bio-Reactor) has not yet been reported. This paper deals with the performances of air sparging on a submerged MBR for wastewater treatment. Two kinds of air sparging techniques were used respectively. First, air is injected into the membrane tube channels so that mixed liquor can circulate in the bioreactor (air-lift mode). Second, a periodic air-jet into the membrane tube is introduced (air-jet mode). Their applicability was evaluated with a series of lab-scale experiments using domestic wastewater. The flux increased from 23 to 33 l m(-2) h(-1) (43% enhancement) when air was injected for the air-lift module. But further increase of flux was not observed as the gas flow increased. The Rc/(Rc+Rf), ratio of cake resistance (Rc) to sum of Rc and Rf (internal fouling resistance), was 23%, indicating that the Rc is not the predominant resistance unlike other MBR studies. It showed that the cake layer was removed sufficiently due to the air injection. Thus, an increase of airflow could not affect the flux performance. The air-jet module suffered from a clogging problem with accumulated sludge inside the lumen. Because the air-jet module has characteristics of dead end filtration, a periodic air-jet was not enough to blast all the accumulated sludge out. But flux was greater than in the air-lift module if the clogging was prevented by an appropriate cleaning regime such as periodical backwashing.

  1. Dual nozzle single pump fuel injection system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gonzalez, C.

    1992-02-25

    This patent describes an improvement in a fuel injection system in a stratified charge hybrid internal combustion engine including a main combustion chamber, a precombustion chamber connected with the main chamber, fuel injectors in the main combustion chamber and precombustion chamber which open at higher and lower pressure levels respectively to sequentially inject fuel into the prechamber and the main chamber, timed spark ignition means in the prechamber for ignition of the fuel-air mixture therein, and an engine driven and timed fuel injection pump having a variable output capacity that varies with power level position, the injection pump is suppliedmore » by a low pressure charging pump. The improvement comprises: a shuttle valve including a bore therein; a shuttle spool means positioned within the bore defining a prechamber supply chamber on one side thereof and a spool activation chamber on the opposite side thereof the spool means having a first and second position; biasing means urging the spool towards it first position with the spool actuation chamber at its minimum volume; first conduit means connecting charging pressure to the prechamber supply camber in the first position oil the spool means; second conduit means connecting the injection pump to spool actuation chamber; third conduit means connecting the spool actuating chamber with the main injector; forth conduit means connecting the prechamber supply chamber with the prechamber injector; the initial charge from the injection pump actuates the spool means from its fir to its second position.« less

  2. Effect of primary-zone water injection on pollutants from a combustor burning liquid ASTM A-1 and vaporized propane fuels

    NASA Technical Reports Server (NTRS)

    Ingebo, R. D.; Norgren, C. T.

    1973-01-01

    A combustor segment 0.457 meter (18 in.) long with a maximum cross section of 0.153 by 0.305 meter (6 by 12 in.) was operated at inlet-air temperatures of 590 and 700 K, inlet-air pressures of 4 and 10 atmospheres, and fuel-air ratios of 0.014 and 0.018 to determine the effect of primary-zone water injection on pollutants from burning either propane or ASTM A-1 fuel. At a simulated takeoff condition of 10 atmospheres and 700 K, multiple-orifice nozzles used to inject water at 1 percent of the airflow rate reduced nitrogen oxides 75 percent with propane and 65 percent with ASTM A-1 fuel. Although carbon monoxide and unburned hydrocarbons increased with water injection, they remained relatively low; and smoke numbers were well below the visibility limit.

  3. Performance of 4600-pound-thrust centrifugal-flow-type turbojet engine with water-alcohol injection at inlet

    NASA Technical Reports Server (NTRS)

    Glasser, Philip W

    1950-01-01

    An experimental investigation of the effects of injecting a water-alcohol mixture of 2:1 at the compressor inlet of a centrifugal-flow type turbojet engine was conducted in an altitude test chamber at static sea-level conditions and at an altitude of 20,000 feet with a flight Mach number of 0.78 with an engine operating at rated speed. The net thrust was augmented by 0.16 for both flight conditions with a ratio of injected liquid to air flow of 0.05. Further increases in the liquid-air ratio did not give comparable increases in thrust.

  4. Applying short-duration pulses as a mean to enhance volatile organic compounds removal by air sparging

    NASA Astrophysics Data System (ADS)

    Ben Neriah, Asaf; Paster, Amir

    2017-10-01

    Application of short-duration pulses of high air pressure, to an air sparging system for groundwater remediation, was tested in a two-dimensional laboratory setup. It was hypothesized that this injection mode, termed boxcar, can enhance the remediation efficiency due to the larger ZOI and enhanced mixing which results from the pressure pulses. To test this hypothesis, flow and transport experiments were performed. Results confirm that cyclically applying short-duration pressure pulses may enhance contaminant cleanup. Comparing the boxcar to conventional continuous air-injection shows up to a three-fold increase in the single well radius of influence, dependent on the intensity of the short-duration pressure-pulses. The cleanup efficiency of Toluene from the water was 95% higher than that achieved under continuous injection with the same average conditions. This improvement was attributed to the larger zone of influence and higher average air permeability achieved in the boxcar mode, relative to continuous sparging. Mixing enhancement resultant from recurring pressure pulses was suggested as one of the mechanisms which enhance the contaminant cleanup. The application of a boxcar mode in an existing, multiwell, air sparging setup can be relatively straightforward: it requires the installation of an on-off valve in each of the injection-wells and a central control system. Then, turning off some of the wells, for a short-duration, result in a stepwise increase in injection pressure in the rest of the wells. It is hoped that this work will stimulate the additional required research and ultimately a field scale application of this new injection mode.

  5. Use of Surfactants to Decrease Air-Water Interfacial Tension During Sparging (OKC, OK)

    EPA Science Inventory

    Air sparging is a remediation procedure of injecting air into polluted ground water. The primary intention of air sparging is to promote biodegradation of volatile organic compounds (VOCs) in the groundwater passing through the treatment sector. Sparging treatment efficiency dep...

  6. Mechanism of UES relaxation initiated by gastric air distension

    PubMed Central

    Medda, Bidyut K.; Shaker, Reza

    2014-01-01

    The aim of this study was to determine the mechanism of initiation of transient upper esophageal sphincter relaxation (TUESR) caused by gastric air distension. Cats (n = 31) were decerebrated, EMG electrodes were placed on the cricopharyngeus, a gastric fistula was formed, and a strain gauge was sewn on the lower esophageal sphincter (n = 8). Injection of air (114 ± 13 ml) in the stomach caused TUESR (n = 18) and transient lower esophageal sphincter relaxation (TLESR, n = 6), and this effect was not significantly (P > 0.05) affected by thoracotomy. Free air or bagged air (n = 6) activated TLESR, but only free air activated TUESR. Closure of the gastroesophageal junction blocked TUESR (9/9), but not TLESR (4/4), caused by air inflation of the stomach. Venting air from distal esophagus during air inflation of the stomach prevented TUESR (n = 12) but did not prevent air escape from the stomach to the esophagus (n = 4). Rapid injection of air on the esophageal mucosa always caused TUESR (9/9) but did not always (7/9) cause an increase in esophageal pressure. The time delay between the TUESR and the rapid air pulse was significantly more variable (P < 0.05) than the time delay between the rapid air pulse and the rise in esophageal pressure. We concluded that the TUESR caused by gastric air distension is dependent on air escape from the stomach, which stimulates receptors in the esophagus, but is not dependent on distension of the stomach or esophagus, or the TLESR. Therefore, the TUESR caused by gastric air distension is initiated by stimulation of receptors in the esophageal mucosa. PMID:24970778

  7. Mechanism of UES relaxation initiated by gastric air distension.

    PubMed

    Lang, Ivan M; Medda, Bidyut K; Shaker, Reza

    2014-08-15

    The aim of this study was to determine the mechanism of initiation of transient upper esophageal sphincter relaxation (TUESR) caused by gastric air distension. Cats (n = 31) were decerebrated, EMG electrodes were placed on the cricopharyngeus, a gastric fistula was formed, and a strain gauge was sewn on the lower esophageal sphincter (n = 8). Injection of air (114 ± 13 ml) in the stomach caused TUESR (n = 18) and transient lower esophageal sphincter relaxation (TLESR, n = 6), and this effect was not significantly (P > 0.05) affected by thoracotomy. Free air or bagged air (n = 6) activated TLESR, but only free air activated TUESR. Closure of the gastroesophageal junction blocked TUESR (9/9), but not TLESR (4/4), caused by air inflation of the stomach. Venting air from distal esophagus during air inflation of the stomach prevented TUESR (n = 12) but did not prevent air escape from the stomach to the esophagus (n = 4). Rapid injection of air on the esophageal mucosa always caused TUESR (9/9) but did not always (7/9) cause an increase in esophageal pressure. The time delay between the TUESR and the rapid air pulse was significantly more variable (P < 0.05) than the time delay between the rapid air pulse and the rise in esophageal pressure. We concluded that the TUESR caused by gastric air distension is dependent on air escape from the stomach, which stimulates receptors in the esophagus, but is not dependent on distension of the stomach or esophagus, or the TLESR. Therefore, the TUESR caused by gastric air distension is initiated by stimulation of receptors in the esophageal mucosa. Copyright © 2014 the American Physiological Society.

  8. Ignition Study on a Rotary-valved Air-breathing Pulse Detonation Engine

    NASA Astrophysics Data System (ADS)

    Wu, Yuwen; Han, Qixiang; Shen, Yujia; Zhao, Wei

    2017-05-01

    In the present study, the ignition effect on detonation initiation was investigated in the air-breathing pulse detonation engine. Two kinds of fuel injection and ignition methods were applied. For one method, fuel and air was pre-mixed outside the PDE and then injected into the detonation tube. The droplet sizes of mixtures were measured. An annular cavity was used as the ignition section. For the other method, fuel-air mixtures were mixed inside the PDE, and a pre-combustor was utilized as the ignition source. At firing frequency of 20 Hz, transition to detonation was obtained. Experimental results indicated that the ignition position and initial flame acceleration had important effects on the deflagration-to-detonation transition.

  9. The Mechanism of Atomization Accompanying Solid Injection

    NASA Technical Reports Server (NTRS)

    Castleman, R A , Jr

    1933-01-01

    A brief historical and descriptive account of solid injection is followed by a detailed review of the available theoretical and experimental data that seem to throw light on the mechanism of this form of atomization. It is concluded that this evidence indicates that (1) the atomization accompanying solid injection occurs at the surface of the liquid after it issues as a solid stream from the orifice; and (2) that such atomization has a mechanism physically identical with the atomization which takes place in an air stream, both being due merely to the formation, at the gas-liquid interface, of fine ligaments under the influence of the relative motion of gas and liquid, and to their collapse, under the influence of surface tension, to form the drops in the spray.

  10. Computational study of fuel injection in a shcramjet inlet

    NASA Astrophysics Data System (ADS)

    Parent, Bernard

    The primary objective of this investigation is to present the mixing of fuel with air in the inlet of a shock-induced combustion ramjet (shcramjet). The study is limited to non-reacting hydrogen-air mixing in an external-compression inlet at a flight Mach number of 11 and at a dynamic pressure of 1400 psf (67032 Pa), using an array of cantilevered ramp injectors. A numerical method based on the Yee-Roe scheme and block-implicit approximate factorization is developed to solve the FANS equations closed by the Wilcox ko turbulence model. A new acceleration technique for streamwise-separated hypersonic flow, dubbed the "marching window", is presented. The dilatational dissipation correction is seen to affect the mixing efficiency considerably for a cantilevered ramp injector flowfield even at a vanishing convective Mach number, due to the high turbulent Mach number generated by the high cross-stream shear induced by the ramp-generated axial vortices. Due to the fuel being injected at a very high speed, fuel injection in the inlet is found to increase considerably the thrust potential, with a gain exceeding the loss by 40--120%. Losses due to skin friction are seen to play a significant role in the inlet, as they are estimated to make up as much as 50--70% of the thrust potential losses. The use of a turbulence model that can predict accurately the wall shear stress is hence crucial in assessing the losses accurately in a shcramjet inlet. Substituting the second inlet shock by a Prandtl-Meyer compression fan is encouraged as it decreases the thrust potential losses, reduces the risk of premature ignition by reducing the static temperature, while decreasing the mixing efficiency by a mere 6%. One approach that is observed herein to be successful at increasing the mixing efficiency in the inlet is by alternating the injection angle along the injector array. The use of two injection angles of 9 and 16 degrees is seen to result in a 32% increase in the mixing efficiency at

  11. Performance of a Compression-ignition Engine with a Precombustion Chamber Having High-Velocity Air Flow

    NASA Technical Reports Server (NTRS)

    Spanogle, J A; Moore, C S

    1931-01-01

    Presented here are the results of performance tests made with a single-cylinder, four stroke cycle, compression-ignition engine. These tests were made on a precombustion chamber type of cylinder head designed to have air velocity and tangential air flow in both the chamber and cylinder. The performance was investigated for variable load and engine speed, type of fuel spray, valve opening pressure, injection period and, for the spherical chamber, position of the injection spray relative to the air flow. The pressure variations between the pear-shaped precombustion chamber and the cylinder for motoring and full load conditions were determined with a Farnboro electric indicator. The combustion chamber designs tested gave good mixing of a single compact fuel spray with the air, but did not control the ensuing combustion sufficiently. Relative to each other, the velocity of air flow was too high, the spray dispersion by injection too great, and the metering effect of the cylinder head passage insufficient. The correct relation of these factors is of the utmost importance for engine performance.

  12. Applying short-duration pulses as a mean to enhance volatile organic compounds removal by air sparging.

    PubMed

    Ben Neriah, Asaf; Paster, Amir

    2017-10-01

    Application of short-duration pulses of high air pressure, to an air sparging system for groundwater remediation, was tested in a two-dimensional laboratory setup. It was hypothesized that this injection mode, termed boxcar, can enhance the remediation efficiency due to the larger ZOI and enhanced mixing which results from the pressure pulses. To test this hypothesis, flow and transport experiments were performed. Results confirm that cyclically applying short-duration pressure pulses may enhance contaminant cleanup. Comparing the boxcar to conventional continuous air-injection shows up to a three-fold increase in the single well radius of influence, dependent on the intensity of the short-duration pressure-pulses. The cleanup efficiency of Toluene from the water was 95% higher than that achieved under continuous injection with the same average conditions. This improvement was attributed to the larger zone of influence and higher average air permeability achieved in the boxcar mode, relative to continuous sparging. Mixing enhancement resultant from recurring pressure pulses was suggested as one of the mechanisms which enhance the contaminant cleanup. The application of a boxcar mode in an existing, multiwell, air sparging setup can be relatively straightforward: it requires the installation of an on-off valve in each of the injection-wells and a central control system. Then, turning off some of the wells, for a short-duration, result in a stepwise increase in injection pressure in the rest of the wells. It is hoped that this work will stimulate the additional required research and ultimately a field scale application of this new injection mode. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Nondestructive natural gas hydrate recovery driven by air and carbon dioxide.

    PubMed

    Kang, Hyery; Koh, Dong-Yeun; Lee, Huen

    2014-10-14

    Current technologies for production of natural gas hydrates (NGH), which include thermal stimulation, depressurization and inhibitor injection, have raised concerns over unintended consequences. The possibility of catastrophic slope failure and marine ecosystem damage remain serious challenges to safe NGH production. As a potential approach, this paper presents air-driven NGH recovery from permeable marine sediments induced by simultaneous mechanisms for methane liberation (NGH decomposition) and CH₄-air or CH₄-CO₂/air replacement. Air is diffused into and penetrates NGH and, on its surface, forms a boundary between the gas and solid phases. Then spontaneous melting proceeds until the chemical potentials become equal in both phases as NGH depletion continues and self-regulated CH4-air replacement occurs over an arbitrary point. We observed the existence of critical methane concentration forming the boundary between decomposition and replacement mechanisms in the NGH reservoirs. Furthermore, when CO₂ was added, we observed a very strong, stable, self-regulating process of exchange (CH₄ replaced by CO₂/air; hereafter CH₄-CO₂/air) occurring in the NGH. The proposed process will work well for most global gas hydrate reservoirs, regardless of the injection conditions or geothermal gradient.

  14. Air embolism during CT-guided transthoracic needle biopsy

    PubMed Central

    Lederer, Wolfgang; Schlimp, Christoph J; Glodny, Bernhard; Wiedermann, Franz J

    2011-01-01

    Air embolism (AE) is a potential complication during transthoracic needle biopsy (TNB). The authors report on venous and systemic AE during CT-guided TNB under general anaesthesia. During the intervention, the radiologist observed accumulation of air bubbles in the left heart chambers, in the right subclavian vein, the superior vena cava and the right atrium. This was presumably due to pressure infusion of contrast medium (CM) air entrained via a stop-cock improperly fixed to the venous cannula or via the injection valve of the cannula by Venturi forces. Prevention of AE related to CM infusion is a subject for institutional risk management. Stop-cocks and injection valves should not be used in intravenous lines supplied by pressure infusions. Adverse outcome may be avoided by placing the patient head down, increasing FiO2 to 1.0, administering antithrombotic therapy and immobilizing the patient on the intervention table until CT has proved complete remission of AE. PMID:22693299

  15. Study on effect of mixing mechanism by the transverse gaseous injection flow in scramjet engine with variable parameters

    NASA Astrophysics Data System (ADS)

    Yadav, Siddhita; Pandey, K. M.

    2018-04-01

    In scramjet engine the mixing mechanism of fuel and atmospheric air is very complicated, because the fuel have time in milliseconds for mixing with atmospheric air in combustion chamber having supersonic speed. Mixing efficiency of fuel and atmospheric air depends on mainly these parameters: Aspect ratio of injector, vibration amplitude, shock type, number of injector, jet to transverse flow momentum flux ratio, injector geometry, injection angle, molecular weight, incoming air stream angle, jet to transverse flow pressure ratio, spacing variation, mass flow rate of fuel etc. here is a very brief study of these parameters from previously done research on these parameters for the improvement of mixing efficiency. The mixing process have the significant role for the working of engine, and mixing between the atmospheric air and the jet fuel is significant factor for improving the overall thrust of the engine. The results obtained by study of papers are obtained by the 3D-Reynolds Average-Nervier-Stokes(RANS) equations along with the 2-equation k-ω shear-stress-transport (SST) turbulence model. Engine having multi air jets have 60% more mixing efficiency than single air jet, thus if the jets are increased, the mixing efficiency of engine can also be increased up to 150% by changing jet from 1 to 16. When using delta shape of injector the mixing efficiency is inversely proportional to the pressure ratio. When the fuel is injected inside the combustor from the top and bottom walls of the engine efficiency of mixing in reacting zone is higher than the single wall injection and in comparison to parallel flow, the transverse type flow is better as the atmospheric air jet can penetrate smoothly in the fuel jets and mixes well in less time. Hence this study of parameters and their effects on mixing can enhance the efficiency of mixing in engine.

  16. Some Characteristics of Fuel Sprays at Low-injection Pressures

    NASA Technical Reports Server (NTRS)

    Rothrock, A M; Waldron, C D

    1931-01-01

    This report presents the results of tests conducted at the Langley Memorial Aeronautical Laboratory, Langley Field, Va., to determine some of the characteristics of the fuel sprays obtained from an 0.008-inch and a 0.020-inch open nozzle when injection pressures from 100 to 500 pounds per square inch were used. Fuel oil and gasoline were injected into air at densities of atmospheric land 0.325 pound per cubic foot. It was found that the penetration rate at these low pressures was about the same as the rate obtained with higher pressures. Spray cone-angles were small and individual oil drops were visible in all the sprays. Gasoline and fuel oil sprays had similar characteristics.

  17. HIGH VOLUME INJECTION FOR GCMS ANALYSIS OF PARTICULATE ORGANIC SPECIES IN AMBIENT AIR

    EPA Science Inventory

    Detection of organic species in ambient particulate matter typically requires large air sample volumes, frequently achieved by grouping samples into monthly composites. Decreasing the volume of air sample required would allow shorter collection times and more convenient sample c...

  18. Pulse-actuated fuel-injection spark plug

    DOEpatents

    Murray, Ian; Tatro, Clement A.

    1978-01-01

    A replacement spark plug for reciprocating internal combustion engines that functions as a fuel injector and as a spark plug to provide a "stratified-charge" effect. The conventional carburetor is retained to supply the main fuel-air mixture which may be very lean because of the stratified charge. The replacement plug includes a cylindrical piezoelectric ceramic which contracts to act as a pump whenever an ignition pulse is applied to a central rod through the ceramic. The rod is hollow at its upper end for receiving fuel, it is tapered along its lower length to act as a pump, and it is flattened at its lower end to act as a valve for fuel injection from the pump into the cylinder. The rod also acts as the center electrode of the plug, with the spark jumping from the plug base to the lower end of the rod to thereby provide spark ignition that has inherent proper timing with the fuel injection.

  19. Injectant mole-fraction imaging in compressible mixing flows using planar laser-induced iodine fluorescence

    NASA Technical Reports Server (NTRS)

    Hartfield, Roy J., Jr.; Abbitt, John D., III; Mcdaniel, James C.

    1989-01-01

    A technique is described for imaging the injectant mole-fraction distribution in nonreacting compressible mixing flow fields. Planar fluorescence from iodine, seeded into air, is induced by a broadband argon-ion laser and collected using an intensified charge-injection-device array camera. The technique eliminates the thermodynamic dependence of the iodine fluorescence in the compressible flow field by taking the ratio of two images collected with identical thermodynamic flow conditions but different iodine seeding conditions.

  20. DNAPL REMOVAL MECHANISMS AND MASS TRANSFER CHARACTERISTICS DURING COSOLVENT-AIR FLOODING

    EPA Science Inventory

    The concurrent injection of cosolvent and air, a cosolvent-air (CA) flood was recently suggested for a dense nonaqueous phase liquid (DNAPL) remediation technology. The objectives of this study were to elucidate the DNAPL removal mechanisms of the CA flood and to quantify mass t...

  1. Measured effects of coolant injection on the performance of a film cooled turbine

    NASA Technical Reports Server (NTRS)

    Mcdonel, J. D.; Eiswerth, J. E.

    1977-01-01

    Tests have been conducted on a 20-inch diameter single-stage air-cooled turbine designed to evaluate the effects of film cooling air on turbine aerodynamic performance. The present paper reports the results of five test configurations, including two different cooling designs and three combinations of cooled and solid airfoils. A comparison is made of the experimental results with a previously published analytical method of evaluating coolant injection effects on turbine performance.

  2. Flow in a porous nozzle with massive wall injection

    NASA Technical Reports Server (NTRS)

    Kinney, R. B.

    1973-01-01

    An analytical and experimental investigation has been conducted to determine the effect of massive wall injection on the flow characteristics in a nozzle. The experiments were performed on a water table with a porous-nozzle test section. This had 45 deg and 15 deg half angles of convergence and divergence, respectively, throat radius of 2.5 inches, and throat width of 3 inches. The hydraulic analogy was employed to qualitatively extend the results to a compressible gas flow through the nozzle. An analysis of the water table flow was made using a one-dimensional flow assumption in the continuity and momentum equations. An analysis of a compressible flow in a nozzle was made in a manner analogous to that for the water flow. It is shown that the effect of blowing is to move the sonic position downstream of the geometric throat. Similar results were determined for the incompressible water table flow. Limited photographic results are presented for an injection of air, CO2, and Freon-12 into a main-stream air flow in a convergent-divergent nozzle. Schlieren photographs were used to visualize the flow.

  3. Disturbances to Air-Layer Skin-Friction Drag Reduction at High Reynolds Numbers

    NASA Astrophysics Data System (ADS)

    Dowling, David; Elbing, Brian; Makiharju, Simo; Wiggins, Andrew; Perlin, Marc; Ceccio, Steven

    2009-11-01

    Skin friction drag on a flat surface may be reduced by more than 80% when a layer of air separates the surface from a flowing liquid compared to when such an air layer is absent. Past large-scale experiments utilizing the US Navy's Large Cavitation Channel and a flat-plate test model 3 m wide and 12.9 m long have demonstrated air layer drag reduction (ALDR) on both smooth and rough surfaces at water flow speeds sufficient to reach downstream-distance-based Reynolds numbers exceeding 100 million. For these experiments, the incoming flow conditions, surface orientation, air injection geometry, and buoyancy forces all favored air layer formation. The results presented here extend this prior work to include the effects that vortex generators and free stream flow unsteadiness have on ALDR to assess its robustness for application to ocean-going ships. Measurements include skin friction, static pressure, airflow rate, video of the flow field downstream of the injector, and profiles of the flowing air-water mixture when the injected air forms bubbles, when it is in transition to an air layer, and when the air layer is fully formed. From these, and the prior measurements, ALDR's viability for full-scale applications is assessed.

  4. X-Ray Studies of Delphi Diesel Injection Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Powell, Christopher

    2017-01-01

    This CRADA explored the performance of two different models of Delphi diesel injectors. For each injector, the valve needle motion was imaged from two lines of sight at three different injection pressures to characterize its 3D motion. The needle lift was quite repeatable, and followed the expected trend of faster lift with higher injection pressure. In addition, it was observed that the maximum lift increased with injection pressure, even after the valve reached its mechanical limit, indicating that the increased fuel pressure was causing compression or bending of the needle. The off-axis motion of the needle was found to bemore » significant in both measurement planes, though it was very repeatable from one injection event to the next. The effect of ambient pressure on the needle motion was explored at an injection pressure of 400 bar, with ambient pressure up to 15 bar. No effect of the elevated ambient pressure on the needle lift was observed. High-speed x-ray imaging of the spray as it first emerges from the injector nozzle was performed in order to characterize the near-nozzle morphology and breakup of the spray. While imaging was successful at low ambient pressure, the contrast of the images was reduced at high ambient pressures, and quantitative measurements of the morphology were precluded. The near-nozzle fuel distributions were measured using time-resolved x-ray radiography for three injection pressures at an ambient pressure of 33 bar. Increasing injection pressure caused the fuel distribution to narrow, as measured by the Full Width at Half Maximum of the mass distributions. The fuel distributions were quantified for the two injectors at each measurement condition, quantifying the impact that each experimental parameter has on the near-nozzle fuel and air mixture preparation.« less

  5. Economic Implementation and Optimization of Secondary Oil Recovery

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cary D. Brock

    injected water, and high pressure air injection (HPAI) for in-situ low temperature oxidization (LTO) will be studied for optimization of the secondary recovery process.« less

  6. TREATMENT OF MACULAR FOLDS COMPLICATING RETINAL DETACHMENT SURGERY USING AIR FOR RETINAL UNFOLDING.

    PubMed

    Barale, Pierre-Olivier; Mora, Paolo; Errera, Marie-Hélène; Ores, Raphaëlle; Pâques, Michel; Sahel, José-Alain

    2018-01-01

    We discuss a modified surgical procedure for the treatment of macular folds complicating retinal reattachment surgery. To facilitate the completion of the macular redetachment and the subsequent unrolling of the fold, we propose the subretinal injection, in addition to the conventional balanced salt solution, of filtered air as an original approach. In the presence of a subretinal air bubble, the action of gravity on the perfluorocarbon liquid in the vitreous cavity combined with an active globe manipulation proved to be very effective for flattening the central retina. Short-term tamponade with gas was successful at stabilizing the result. This technique has been used to treat symptomatic macular fold after surgery for rhegmatogenous retinal detachment in 3 consecutive eyes since 2014. Flattening of the macula with progressive visual recovery was achieved in all cases by the end of follow-up. Direct injection of air into the macular fold may represent an effective strategy to enhance the surgical management of such a vision-threatening complication. Air also minimizes the risks related to the forceful injection of fluid under the macula. An overview of recently reported surgical techniques is included, along with a brief discussion.

  7. Engine Company Evaluation of Feasibility of Aircraft Retrofit Water-Injected Turbomachines

    NASA Technical Reports Server (NTRS)

    Becker, Arthur

    2006-01-01

    This study supports the NASA Glenn Research Center and the U.S. Air Force Research Laboratory in their efforts to evaluate the effect of water injection on aircraft engine performance and emissions. In this study, water is only injected during the takeoff and initial climb phase of a flight. There is no water injection during engine start or ground operations, nor during climb, cruise, descent, or landing. This study determined the maintenance benefit of water injection during takeoff and initial climb and evaluated the feasibility of retrofitting a current production engine, the PW4062 (Pratt & Whitney, East Hartford, CT), with a water injection system. Predicted NO(x) emissions based on a 1:1 water-tofuel ratio are likely to be reduced between 30 to 60 percent in Environmental Protection Agency parameter (EPAP). The maintenance cost benefit for an idealized combustor water injection system installed on a PW4062 engine in a Boeing 747-400ER aircraft (The Boeing Company, Chicago, IL) is computed to be $22 per engine flight hour (EFH). Adding water injection as a retrofit kit would cost up to $375,000 per engine because of the required modifications to the fuel system and addition of the water supply system. There would also be significant nonrecurring costs associated with the development and certification of the system that may drive the system price beyond affordability.

  8. Nondestructive natural gas hydrate recovery driven by air and carbon dioxide

    PubMed Central

    Kang, Hyery; Koh, Dong-Yeun; Lee, Huen

    2014-01-01

    Current technologies for production of natural gas hydrates (NGH), which include thermal stimulation, depressurization and inhibitor injection, have raised concerns over unintended consequences. The possibility of catastrophic slope failure and marine ecosystem damage remain serious challenges to safe NGH production. As a potential approach, this paper presents air-driven NGH recovery from permeable marine sediments induced by simultaneous mechanisms for methane liberation (NGH decomposition) and CH4-air or CH4-CO2/air replacement. Air is diffused into and penetrates NGH and, on its surface, forms a boundary between the gas and solid phases. Then spontaneous melting proceeds until the chemical potentials become equal in both phases as NGH depletion continues and self-regulated CH4-air replacement occurs over an arbitrary point. We observed the existence of critical methane concentration forming the boundary between decomposition and replacement mechanisms in the NGH reservoirs. Furthermore, when CO2 was added, we observed a very strong, stable, self-regulating process of exchange (CH4 replaced by CO2/air; hereafter CH4-CO2/air) occurring in the NGH. The proposed process will work well for most global gas hydrate reservoirs, regardless of the injection conditions or geothermal gradient. PMID:25311102

  9. Operating manual for coaxial injection combustion model. [for the space shuttle main engine

    NASA Technical Reports Server (NTRS)

    Sutton, R. D.; Schuman, M. D.; Chadwick, W. D.

    1974-01-01

    An operating manual for the coaxial injection combustion model (CICM) is presented as the final report for an eleven month effort designed to provide improvement, to verify, and to document the comprehensive computer program for analyzing the performance of thrust chamber operation with gas/liquid coaxial jet injection. The effort culminated in delivery of an operation FORTRAN IV computer program and associated documentation pertaining to the combustion conditions in the space shuttle main engine. The computer program is structured for compatibility with the standardized Joint Army-Navy-NASA-Air Force (JANNAF) performance evaluation procedure. Use of the CICM in conjunction with the JANNAF procedure allows the analysis of engine systems using coaxial gas/liquid injection.

  10. Measurement of Ambient Air Motion of D. I. Gasoline Spray by LIF-PIV

    NASA Astrophysics Data System (ADS)

    Yamakawa, Masahisa; Isshiki, Seiji; Yoshizaki, Takuo; Nishida, Keiya

    Ambient air velocity distributions in and around a D. I. gasoline spray were measured using a combination of LIF and PIV techniques. A rhodamine and water solution was injected into ambient air to disperse the fine fluorescent liquid particles used as tracers. A fuel spray was injected into the fluorescent tracer cloud and was illuminated by an Nd: YAG laser light sheet (532nm). The scattered light from the spray droplets and tracers was cut off by a high-pass filter (>560nm). As the fluorescence (>600nm) was transmitted through the high-pass filter, the tracer images were captured using a CCD camera and the ambient air velocity distribution could be obtained by PIV based on the images. This technique was applied to a D. I. gasoline spray. The ambient air flowed up around the spray and entered into the tail of the spray. Furthermore, the relative velocity between the spray and ambient air was investigated.

  11. Light extinction method on high-pressure diesel injection

    NASA Astrophysics Data System (ADS)

    Su, Tzay-Fa; El-Beshbeeshy, Mahmound S.; Corradini, Michael L.; Farrell, Patrick V.

    1995-09-01

    A two dimensional optical diagnostic technique based on light extinction was improved and demonstrated in an investigation of diesel spray characteristics at high injection pressures. Traditional light extinction methods require the spray image to be perpendicular to the light path. In the improved light extinction scheme, a tilted spray image which has an angle with the light path is still capable of being processed. This technique utilizes high speed photography and digital image analysis to obtain qualitative and quantitative information of the spray characteristics. The injection system used was an electronically controlled common rail unit injector system with injection pressures up to 100 MPa. The nozzle of the injector was a mini-sac type with six holes on the nozzle tip. Two different injection angle nozzles, 125 degree(s) and 140 degree(s), producing an in-plane tilted spray and an out of plane tilted spray were investigated. The experiments were conducted on a constant volume spray chamber with the injector mounted tilted at an angle of 62.5 degree(s)$. Only one spray plume was viewed, and other sprays were free to inject to the chamber. The spray chamber was pressurized with argon and air under room temperature to match the combustion chamber density at the start of the injection. The experimental results show that the difference in the spray tip penetration length, spray angle, and overall average Sauter mean diameter is small between the in- plane tilted spray and the out of plane tilted spray. The results also show that in-plane tilted spray has a slightly larger axial cross- section Sauter mean diameter than the out of plane tilted spray.

  12. Air/fuel ratio visualization in a diesel spray

    NASA Astrophysics Data System (ADS)

    Carabell, Kevin David

    1993-01-01

    To investigate some features of high pressure diesel spray ignition, we have applied a newly developed planar imaging system to a spray in an engine-fed combustion bomb. The bomb is designed to give flow characteristics similar to those in a direct injection diesel engine yet provide nearly unlimited optical access. A high pressure electronic unit injector system with on-line manually adjustable main and pilot injection features was used. The primary scalar of interest was the local air/fuel ratio, particularly near the spray plumes. To make this measurement quantitative, we have developed a calibration LIF technique. The development of this technique is the key contribution of this dissertation. The air/fuel ratio measurement was made using biacetyl as a seed in the air inlet to the engine. When probed by a tripled Nd:YAG laser the biacetyl fluoresces, with a signal proportional to the local biacetyl concentration. This feature of biacetyl enables the fluorescent signal to be used as as indicator of local fuel vapor concentration. The biacetyl partial pressure was carefully controlled, enabling estimates of the local concentration of air and the approximate local stoichiometry in the fuel spray. The results indicate that the image quality generated with this method is sufficient for generating air/fuel ratio contours. The processes during the ignition delay have a marked effect on ignition and the subsequent burn. These processes, vaporization and pre-flame kinetics, very much depend on the mixing of the air and fuel. This study has shown that poor mixing and over-mixing of the air and fuel will directly affect the type of ignition. An optimal mixing arrangement exists and depends on the swirl ratio in the engine, the number of holes in the fuel injector and the distribution of fuel into a pilot and main injection. If a short delay and a diffusion burn is desired, the best mixing parameters among those surveyed would be a high swirl ratio, a 4-hole nozzle and a

  13. Study of soot production for double injections of n-dodecane in CI engine-like conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moiz, Ahmed Abdul; Ameen, Muhsin M.; Lee, Seong-Young

    Soot production mechanism in multiple injections is complex since it involves its dependence on turbulent interactions of constituting injections and their combustion progress. A concise study was performed in a constant-volume combustion vessel by considering a double injection scheme of 0.3 ms pilot injection, 0.5 ms dwell time and 1.2 ms main injection (nomenclature: 0.3/0.5/12 ms) with n-dodecane as fuel and replicating the thermodynamic operating condition of a compression ignition (CI) engine. Experimental ambient temperature variations of 900 K and 800 K were performed at 15% ambient oxygen level. Simultaneous planar laser-induced fluorescence (PUP) of formaldehyde and schlieren imaging techniquesmore » were employed to analyze the ignition and flame characteristics experimentally. These studies revealed almost similar heat release rates for a double injection at 900 K and 800 K ambient gas temperatures due to combustion of a longer main injection which is enhanced by pilot combustion event A lower soot production for 800 K ambient condition over 900 K case was observed, which was concluded to be due to its higher lift-off length which would allow for a leaner combustion of fuel-air mixtures. Numerical simulations were performed using a Large Eddy Simulation (LES) approach by extensively validating the 900 K double injection condition with respect to non-reacting vapor penetration profiles of both injections, reacting jet heat release rate and spatial as well as temporal (qualitative) soot production. As part of LES work, a dwell time variation of 0.65 ms (0.3/0.65/1.2 ms) was performed to reveal the sensitivity of soot production to variations in dwell time. It was observed numerically that marginally higher quasi steady lift-off length of the 0.3/0.65/1.2 ms injection causes increased entrainment of surrounding oxygen into the flame region. This leads to combustion of slightly leaner fuel-air mixture and hence relatively less soot when compared to a 0

  14. Duct injection for SO{sub 2} control, Design Handbook, Volume 1, Process design and engineering guidelines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    PETC developed a comprehensive program of coal-related, acid-rain research and development with a major activity area centering on flue gas cleanup and control of SO{sub 2} emissions. Particular emphasis was placed on the retrofit measures for older coal-fired power plants which predate the 1971 New Source Performance Standards. Candidate emission control technologies fall into three categories, depending upon their point of application along the fuel path (i.e., pre, during, or post combustion). The post-combustion, in-duct injection of a calcium-based chemical reagent seemed promising. Preliminary studies showed that reagent injection between the existing air heater and electrostatic precipitator (ESP) could removemore » between 50-60% of the SO{sub 2} and produce an environmentally safe, dry, solid waste that is easily disposed. Although SO{sub 2} removal efficiencies were less, the estimated capital costs for duct injection technology were low making the economics of duct injection systems seem favorable when compared to conventional wet slurry scrubbers under certain circumstances. With the promulgation of the Clean Air Act Amendments of 1990 came more incentive for the development of low capital cost flue gas desulfurization (FGD) processes. A number of technical problems had to be resolved, however, before duct injection technology could be brought to a state of commercial readiness. The Duct Injection Technology Development Program was launched as a comprehensive, four-year research effort undertaken by PETC to develop this new technology. Completed in 1992, this Duct Injection Design Handbook and the three-dimensional predictive mathematical model constitute two primary end products from this development program. The aim of this design handbook and the accompanying math model is to provide utility personnel with sufficient information to evaluate duct injection technology against competing SO{sub 2} emissions reduction strategies for an existing plant.« less

  15. MEASUREMENT OF FUGITIVE EMISSIONS AT A LANDFILL PRACTICING LEACHATE RECIRCULATION AND AIR INJECTION

    EPA Science Inventory

    Recently research has begun on operating bioreactor landfills. The bioreactor process involves the injection of liquid into the waste mass to accelerate waste degradation. Arcadis and EPA conducted a fugitive emissions characterization study at the Three Rivers Solid Waste Techno...

  16. Impact of the injection dose of exhaust gases, on work parameters of combustion engine

    NASA Astrophysics Data System (ADS)

    Marek, W.; Śliwiński, K.

    2016-09-01

    This article is another one from the series in which were presented research results indicated the possible areas of application of the pneumatic injection using hot combustion gases proposed by Professor Jarnuszkiewicz. This publication present the results of the control system of exhaust gas recirculation. The main aim of this research was to determine the effect of exhaust gas recirculation to the operating parameters of the internal combustion engine on the basis of laboratory measurements. All measurements were performed at a constant engine speed. These conditions correspond to the operation of the motor operating an electrical generator. The study was conducted on the four-stroke two-cylinder engine with spark ignition. The study were specifically tested on the air injection system and therefore the selection of the rotational speed was not bound, as in conventional versions of operating parameters of the electrical machine. During the measurement there were applied criterion which used power control corresponding to the requirements of load power, at minimal values of engine speed. Recirculation value determined by the following recurrent position control valve of the injection doses inflator gas for pneumatic injection system. They were studied and recorded, the impact of dose of gases recirculation to the operating and ecological engine parameters such as power, torque, specific fuel consumption, efficiency, air fuel ratio, exhaust gas temperature and nitrogen oxides and hydrocarbons.

  17. Analysis of high injection pressure and ambient temperature on biodiesel spray characteristics using computational fluid dynamics

    NASA Astrophysics Data System (ADS)

    Hashim, Akasha; Khalid, Amir; Jaat, Norrizam; Sapit, Azwan; Razali, Azahari; Nizam, Akmal

    2017-09-01

    Efficiency of combustion engines are highly affected by the formation of air-fuel mixture prior to ignition and combustion process. This research investigate the mixture formation and spray characteristics of biodiesel blends under variant in high ambient and injection conditions using Computational Fluid Dynamics (CFD). The spray characteristics such as spray penetration length, spray angle and fluid flow were observe under various operating conditions. Results show that increase in injection pressure increases the spray penetration length for both biodiesel and diesel. Results also indicate that higher spray angle of biodiesel can be seen as the injection pressure increases. This study concludes that spray characteristics of biodiesel blend is greatly affected by the injection and ambient conditions.

  18. Fuel injection and mixing systems having piezoelectric elements and methods of using the same

    DOEpatents

    Mao, Chien-Pei [Clive, IA; Short, John [Norwalk, IA; Klemm, Jim [Des Moines, IA; Abbott, Royce [Des Moines, IA; Overman, Nick [West Des Moines, IA; Pack, Spencer [Urbandale, IA; Winebrenner, Audra [Des Moines, IA

    2011-12-13

    A fuel injection and mixing system is provided that is suitable for use with various types of fuel reformers. Preferably, the system includes a piezoelectric injector for delivering atomized fuel, a gas swirler, such as a steam swirler and/or an air swirler, a mixing chamber and a flow mixing device. The system utilizes ultrasonic vibrations to achieve fuel atomization. The fuel injection and mixing system can be used with a variety of fuel reformers and fuel cells, such as SOFC fuel cells.

  19. Importance of Air Absorption During Mechanical Integrity Testing

    NASA Astrophysics Data System (ADS)

    Arnold, Fredric C.

    1990-11-01

    Wells used for injection of liquid industrial waste into deep saline aquifers are required to be periodically tested for mechanical integrity. A generally accepted method to demonstrate mechanical integrity is to pressurize the casing-tubing annulus and monitor any decline in pressure. If air is used to pressurize the annulus, uncertainty may exist in differentiating between absorption of air into water in the annulus and loss of pressure due to the absence of mechanical integrity. An analytical model of air absorbance has been derived and used to quantify the pressure decline due to dissolving and diffusion of the air in annular water. A parameteric study was made to determine when annular pressure decline due to absorption of air is significant.

  20. Groundwater remediation engineering sparging using acetylene--study on the flow distribution of air.

    PubMed

    Zheng, Yan-Mei; Zhang, Ying; Huang, Guo-Qiang; Jiang, Bin; Li, Xin-Gang

    2005-01-01

    Air sparging (AS) is an emerging method to remove VOCs from saturated soils and groundwater. Air sparging performance highly depends on the air distribution resulting in the aquifer. In order to study gas flow characterization, a two-dimensional experimental chamber was designed and installed. In addition, the method by using acetylene as the tracer to directly image the gas distribution results of AS process has been put forward. Experiments were performed with different injected gas flow rates. The gas flow patterns were found to depend significantly on the injected gas flow rate, and the characterization of gas flow distributions in porous media was very different from the acetylene tracing study. Lower and higher gas flow rates generally yield more irregular in shape and less effective gas distributions.

  1. Effect of groundwater flow on remediation of dissolved-phase VOC contamination using air sparging.

    PubMed

    Reddy, K R; Adams, J A

    2000-02-25

    This paper presents two-dimensional laboratory experiments performed to study how groundwater flow may affect the injected air zone of influence and remedial performance, and how injected air may alter subsurface groundwater flow and contaminant migration during in situ air sparging. Tests were performed by subjecting uniform sand profiles contaminated with dissolved-phase benzene to a hydraulic gradient and two different air flow rates. The results of the tests were compared to a test subjected to a similar air flow rate but a static groundwater condition. The test results revealed that the size and shape of the zone of influence were negligibly affected by groundwater flow, and as a result, similar rates of contaminant removal were realized within the zone of influence with and without groundwater flow. The air flow, however, reduced the hydraulic conductivity within the zone of influence, reducing groundwater flow and subsequent downgradient contaminant migration. The use of a higher air flow rate further reduced the hydraulic conductivity and decreased groundwater flow and contaminant migration. Overall, this study demonstrated that air sparging may be effectively implemented to intercept and treat a migrating contaminant plume.

  2. The effectiveness of preventative mass vaccination regimes against the incidence of highly pathogenic avian influenza on Java Island, Indonesia.

    PubMed

    Bett, B; McLaws, M; Jost, C; Schoonman, L; Unger, F; Poole, J; Lapar, M L; Siregar, E S; Azhar, M; Hidayat, M M; Dunkle, S E; Mariner, J

    2015-04-01

    We conducted an operational research study involving backyard and semicommercial farms on Java Island, Indonesia, between April 2008 and September 2009 to evaluate the effectiveness of two preventive mass vaccination strategies against highly pathogenic avian influenza (HPAI). One regimen used Legok 2003 H5N1 vaccine, while the other used both Legok 2003 H5N1 and HB1 Newcastle disease (ND) vaccine. A total of 16 districts were involved in the study. The sample size was estimated using a formal power calculation technique that assumed a detectable effect of treatment as a 50% reduction in the baseline number of HPAI-compatible outbreaks. Within each district, candidate treatment blocks with village poultry populations ranging from 80 000 to 120 000 were created along subdistrict boundary lines. Subsequently, four of these blocks were randomly selected and assigned one treatment from a list that comprised control, vaccination against HPAI, vaccination against HPAI + ND. Four rounds of vaccination were administered at quarterly intervals beginning in July 2008. A vaccination campaign involved vaccinating 100 000 birds in a treatment block, followed by another 100 000 vaccinations 3 weeks later as a booster dose. Data on disease incidence and vaccination coverage were also collected at quarterly intervals using participatory epidemiological techniques. Compared with the unvaccinated (control) group, the incidence of HPAI-compatible events declined by 32% (P = 0.24) in the HPAI-vaccinated group and by 73% (P = 0.00) in the HPAI- and ND-vaccinated group. The effect of treatment did not vary with time or district. Similarly, an analysis of secondary data from the participatory disease and response (PDSR) database revealed that the incidence of HPAI declined by 12% in the HPAI-vaccinated group and by 24% in the HPAI + ND-vaccinated group. The results suggest that the HPAI + ND vaccination significantly reduced the incidence of HPAI-compatible events in mixed populations of

  3. Transverse injection of a particle-laden liquid jet in supersonic flow: A three-phase flow

    NASA Technical Reports Server (NTRS)

    Schetz, J. A.; Ogg, J. C.

    1980-01-01

    The results of a two part study of the behavior of particle laden liquid jets injected into air are presented. Water was used as the liquid carrier and either 1-37 or 13-44 microns diam. spherical glass beads with a specific gravity of 2.8-3.0 as the particles. The observations were mainly photographic. The breakup of jets injected into still air was investigated as a function of particle loading, and the results were compared to the pure liquid jet case. The jets were found to be more stable with particles present. The length to breakup was increased, and the formation of satellite droplets was suppressed. The penetration and breakup of transverse jets in a Mach 3.0 air stream was studied. The general breakup mechanism of wave formation was found to be the same as for the all liquid case. Significant separation of the phases was observed, and the penetration of the liquid phase was reduced compared to all liquid cases at the same value of the jet to free stream momentum flux ratio.

  4. HIGH SPEED GC/MS FOR AIR ANALYSIS

    EPA Science Inventory

    A high speed GC/MS system consisting of a gas chromatograph equipped with a narrow bandwidth injection accessory and using a time-of-flight mass spectrometer detector has been adapted for analysis of ambient whole air samples which have been collected in passivated canisters. ...

  5. Singing with reduced air sac volume causes uniform decrease in airflow and sound amplitude in the zebra finch.

    PubMed

    Plummer, Emily Megan; Goller, Franz

    2008-01-01

    Song of the zebra finch (Taeniopygia guttata) is a complex temporal sequence generated by a drastic change to the regular oscillations of the normal respiratory pattern. It is not known how respiratory functions, such as supply of air volume and gas exchange, are controlled during song. To understand the integration between respiration and song, we manipulated respiration during song by injecting inert dental medium into the air sacs. Increased respiratory rate after injections indicates that the reduction of air affected quiet respiration and that birds compensated for the reduced air volume. During song, air sac pressure, tracheal airflow and sound amplitude decreased substantially with each injection. This decrease was consistently present during each expiratory pulse of the song motif irrespective of the air volume used. Few changes to the temporal pattern of song were noted, such as the increased duration of a minibreath in one bird and the decrease in duration of a long syllable in another bird. Despite the drastic reduction in air sac pressure, airflow and sound amplitude, no increase in abdominal muscle activity was seen. This suggests that during song, birds do not compensate for the reduced physiological or acoustic parameters. Neither somatosensory nor auditory feedback mechanisms appear to effect a correction in expiratory effort to compensate for reduced air sac pressure and sound amplitude.

  6. Non-injection Drug Use and Injection Initiation Assistance among People Who Inject Drugs in Tijuana, Mexico.

    PubMed

    Ben Hamida, Amen; Rafful, Claudia; Jain, Sonia; Sun, Shelly; Gonzalez-Zuniga, Patricia; Rangel, Gudelia; Strathdee, Steffanie A; Werb, Dan

    2018-02-01

    Although most people who inject drugs (PWID) report receiving assistance during injection initiation events, little research has focused on risk factors among PWID for providing injection initiation assistance. We therefore sought to determine the influence of non-injection drug use among PWID on their risk to initiate others. We used generalized estimating equation (GEE) models on longitudinal data among a prospective cohort of PWID in Tijuana, Mexico (Proyecto El Cuete IV), while controlling for potential confounders. At baseline, 534 participants provided data on injection initiation assistance. Overall, 14% reported ever initiating others, with 4% reporting this behavior recently (i.e., in the past 6 months). In a multivariable GEE model, recent non-injection drug use was independently associated with providing injection initiation assistance (adjusted odds ratio [AOR] = 2.42, 95% confidence interval [CI] = 1.39-4.20). Further, in subanalyses examining specific drug types, recent non-injection use of cocaine (AOR = 9.31, 95% CI = 3.98-21.78), heroin (AOR = 4.00, 95% CI = 1.88-8.54), and methamphetamine (AOR = 2.03, 95% CI = 1.16-3.55) were all significantly associated with reporting providing injection initiation assistance. Our findings may have important implications for the development of interventional approaches to reduce injection initiation and related harms. Further research is needed to validate findings and inform future approaches to preventing entry into drug injecting.

  7. Can we trust intraocular pressure measurements in eyes with intracameral air?

    PubMed

    Jóhannesson, Gauti; Lindén, Christina; Eklund, Anders; Behndig, Anders; Hallberg, Per

    2014-10-01

    To evaluate the effect of intracameral air on intraocular pressure (IOP) measurements using Goldmann applanation tonometry (GAT) and applanation resonance tonometry (ART) in an in-vitro porcine eye model. IOP was measured on thirteen freshly enucleated eyes at three reference pressures: 20, 30, and 40 mmHg. Six measurements/method were performed in a standardized order with GAT and ART respectively. Air was injected intracamerally in the same manner as during Descemet's stripping endothelial keratoplasty (DSEK) and Descemet's membrane endothelial keratoplasty (DMEK), and the measurements were repeated. Measured IOP increased significantly for both tonometry methods after air injection: 0.7 ± 2.1 mmHg for GAT and 10.6 ± 4.9 mmHg for ART. This difference was significant at each reference pressure for ART but not for GAT. Although slightly affected, this study suggests that we can trust GAT IOP-measurements in eyes with intracameral air, such as after DSEK/DMEK operations. Ultrasound-based methods such as ART should not be used.

  8. Instability Analysis of a Low-Density Gas Jet Injected into a High-Density Gas

    NASA Technical Reports Server (NTRS)

    Lawson, Anthony Layiwola

    2001-01-01

    , Froude number, Schmidt number, and the lateral shift between the density and velocity profiles on the jet s absolute instability were determined. Comparisons of the results with previous experimental studies show good agreement when the effects of these variables are combined together. Thus, the combination of these variables determines how absolutely unstable the jet will be. Experiments were carried out to observe the qualitative differences between a round low-density gas jet injected into a high-density gas (helium jet injected into air) and a round constant density jet (air jet injected into air). Flow visualizations and velocity measurements in the near-injector region of the helium jet show more mixing and spreading of the helium jet than the air jet. The vortex structures develop and contribute to the jet spreading causing the helium jet to oscillate.

  9. A Comparison of Combustion Dynamics for Multiple 7-Point Lean Direct Injection Combustor Configurations

    NASA Technical Reports Server (NTRS)

    Tacina, K. M.; Hicks, Y. R.

    2017-01-01

    The combustion dynamics of multiple 7-point lean direct injection (LDI) combustor configurations are compared. LDI is a fuel-lean combustor concept for aero gas turbine engines in which multiple small fuel-air mixers replace one traditionally-sized fuel-air mixer. This 7-point LDI configuration has a circular cross section, with a center (pilot) fuel-air mixer surrounded by six outer (main) fuel-air mixers. Each fuel-air mixer consists of an axial air swirler followed by a converging-diverging venturi. A simplex fuel injector is inserted through the center of the air swirler, with the fuel injector tip located near the venturi throat. All 7 fuel-air mixers are identical except for the swirler blade angle, which varies with the configuration. Testing was done in a 5-atm flame tube with inlet air temperatures from 600 to 800 F and equivalence ratios from 0.4 to 0.7. Combustion dynamics were measured using a cooled PCB pressure transducer flush-mounted in the wall of the combustor test section.

  10. Clade 2.3.4.4 avian influenza A (H5N8) outbreak in commercial poultry, Iran, 2016: the first report and update data.

    PubMed

    Ghafouri, Seyed Ali; GhalyanchiLangeroudi, Arash; Maghsoudloo, Hossein; Kh Farahani, Reza; Abdollahi, Hamed; Tehrani, Farshad; Fallah, Mohammad Hossein

    2017-06-01

    In 2010, H5N8 highly pathogenic avian influenza (HPAI) viruses of the A/Goose/Guangdong/1/1996 lineage dramatically affected poultry and wild birds in Asia, Europe, and North America. In November 2016, HPAI H5N8 was detected in a commercial layer farm in Tehran province. The diagnosis was based on real-time reverse transcriptase PCR (RRT-PCR) and sequencing of haemaglutinin (HA) and neuraminidase (NA) genes from suspected samples. Genetic and phylogenetic analysis of the HA gene demonstrated that the Iranian HPAI H5N8 viruses belong to the HPAI H5 virus clade 2.3.4.4 and cluster within group B (Gochang-like). In particular, the highest similarity was found with the sequences of the HPAI H5N8 identified in Russia in 2016. To our knowledge, this clade has not been previously detected in Iran. Previous HPAI A (H5) epidemic in Iran occurred in 2015 and involved exclusively viruses of clade 2.3.2.1c. These findings indicate that Iran is at high risk of introduction of HPAI H5 of the A/Goose/Guangdong/1/1996 lineage from East Asia and highlight the need to maintain adequate monitoring activities in target wild and domestic bird species for HPAI early detection. This study is useful for better understanding the genetic and antigenic evolution of H5 HPAI viruses in the region and the world.

  11. Impact of virus strain characteristics on early detection of highly pathogenic avian influenza infection in commercial table-egg layer flocks and implications for outbreak control.

    PubMed

    Weaver, J Todd; Malladi, Sasidhar; Goldsmith, Timothy J; Hueston, Will; Hennessey, Morgan; Lee, Brendan; Voss, Shauna; Funk, Janel; Der, Christina; Bjork, Kathe E; Clouse, Timothy L; Halvorson, David A

    2012-12-01

    Early detection of highly pathogenic avian influenza (HPAI) infection in commercial poultry flocks is a critical component of outbreak control. Reducing the time to detect HPAI infection can reduce the risk of disease transmission to other flocks. The timeliness of different types of detection triggers could be dependent on clinical signs that are first observed in a flock, signs that might vary due to HPAI virus strain characteristics. We developed a stochastic disease transmission model to evaluate how transmission characteristics of various HPAI strains might effect the relative importance of increased mortality, drop in egg production, or daily real-time reverse transcriptase (RRT)-PCR testing, toward detecting HPAI infection in a commercial table-egg layer flock. On average, daily RRT-PCR testing resulted in the shortest time to detection (from 3.5 to 6.1 days) depending on the HPAI virus strain and was less variable over a range of transmission parameters compared with other triggers evaluated. Our results indicate that a trigger to detect a drop in egg production would be useful for HPAI virus strains with long infectious periods (6-8 days) and including an egg-drop detection trigger in emergency response plans would lead to earlier and consistent reporting in some cases. We discuss implications for outbreak control and risk of HPAI spread attributed to different HPAI strain characteristics where an increase in mortality or a drop in egg production or both would be among the first clinical signs observed in an infected flock.

  12. Effect of sodium aurothiomalate on carrageenan induced inflammation of the air pouch in mice.

    PubMed Central

    Sin, Y M; Wong, M K

    1992-01-01

    Acute inflammation was induced by injecting carrageenan into a 6 day old air pouch in mice. Sodium aurothiomalate was then given twice to each of three groups of mice via different routes. It was found that the mice injected intravenously with sodium aurothiomalate showed the most striking reduction in the number of exudate leucocytes in the inflammatory cavity, although the amount of gold found in their inflamed pouch lining tissue was the least. The amount of gold in plasma was highest in the mice injected intravenously with sodium aurothiomalate and the least amount of gold was found in the mice injected directly into the air pouch with sodium aurothiomalate. The amount of gold in the inflamed pouch lining tissue reached its peak at 24 hours after injection and a significant decrease of exudate leucocytes was only seen 24 and 72 hours after injection. The amount of gold in the exudate fluid was negligible at all the times studied. No significant difference was noted in the degree of inflammatory suppression when increasing doses of sodium aurothiomalate were injected into the air pouch. These findings show that there is no direct correlation between the gold concentration in the inflamed tissue and suppression of the inflammatory reactions in the cavity. Chemotactic and phagocytic analysis of leucocytes in the exudate showed that there was a significant suppression of the neutrophil activities in all the mice treated with sodium aurothiomalate. It is therefore concluded that the significant reduction in the number of exudate leucocytes at the carrageenan induced inflammatory site after treatment with sodium aurothiomalate is most likely due to the direct action of gold on the functional activities of circulating neutrophils. Images PMID:1540014

  13. Trypan blue staining of the anterior capsule under an air bubble with a modified cannula.

    PubMed

    Toprak, Ahmet Baris; Erkin, Esin Fatma; Guler, Cenap

    2003-01-01

    To attain good visibility of the anterior capsule in the advanced or white cataract, trypan blue 0.1% is used to stain the anterior capsule. The dye is usually injected under an air bubble. However, it is difficult to inject the dye properly due to capillary forces. An ordinary anterior chamber cannula was modified and its coverage area increased to facilitate the staining of the anterior capsule under an air bubble. The anterior capsule was stained properly by using the modified cannula in all of the cases.

  14. Enhanced electron injection into inverted polymer light-emitting diodes by combined solution-processed zinc oxide/polyethylenimine interlayers.

    PubMed

    Höfle, Stefan; Schienle, Alexander; Bruns, Michael; Lemmer, Uli; Colsmann, Alexander

    2014-05-01

    Inverted device architectures for organic light-emitting diodes (OLEDs) require suitable interfaces or buffer layers to enhance electron injection from highwork-function transparent electrodes. A solution-processable combination of ZnO and PEI is reported, that facilitates electron injection and enables efficient and air-stable inverted devices. Replacing the metal anode by highly conductive polymers enables transparent OLEDs. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Granisetron Injection

    MedlinePlus

    ... and vomiting that may occur after surgery. Granisetron extended-release (long-acting) injection is used with other ... be injected intravenously (into a vein) and granisetron extended-release injection comes as a liquid to be ...

  16. Deltoid Injections of Risperidone Long-acting Injectable in Patients with Schizophrenia

    PubMed Central

    Quiroz, Jorge A.; Rusch, Sarah; Thyssen, An; Kushner, Stuart

    2011-01-01

    Background Risperidone long-acting injectable was previously approved for treatment of schizophrenia as biweekly injections in the gluteal muscle only. We present data on local injection-site tolerability and safety of risperidone long-acting injectable and comparability of systemic exposure of deltoid versus gluteal injections. Methods Risperidone long-acting injectable was administered in an open-label, single-dose, two-way crossover study, with patients randomized to receive either 25mg gluteal/37.5mg deltoid crossover in two treatment periods or 50mg gluteal/50mg deltoid injections crossover; each treatment period was separated by an 85-day observation period (Study 1) and an open-label, multiple-dose study (4 sequential 37.5mg or 50mg deltoid injections every 2 weeks) (Study 2). The pharmacokinetic results from both the studies have already been published. Results In Study 1 (n=170), the majority of patients had no local injection-site findings, based on investigator and patient-rated evaluations. In Study 2 (n=53), seven of the 51 patients who received at least two deltoid injections discontinued (primary endpoint). However, none of the discontinuations were due to injection-site related reasons. The 90-percent upper confidence limit of the true proportion of injection-site issue withdrawals was 5.7 percent. No moderate or severe injection-site reactions were reported. Conclusion Intramuscular injections via the deltoid and gluteal sites are equivalent routes of administration of risperidone long-acting injectable with respect to local injection-site tolerability. The overall safety and tolerability profile of risperidone long-acting injectable was comparable when administered as an intramuscular injection in the deltoid (37.5mg and 50mg) and gluteal (25mg and 50mg) sites. PMID:21779538

  17. Fuel injection staged sectoral combustor for burning low-BTU fuel gas

    DOEpatents

    Vogt, Robert L.

    1981-01-01

    A high-temperature combustor for burning low-BTU coal gas in a gas turbine is described. The combustor comprises a plurality of individual combustor chambers. Each combustor chamber has a main burning zone and a pilot burning zone. A pipe for the low-BTU coal gas is connected to the upstream end of the pilot burning zone; this pipe surrounds a liquid fuel source and is in turn surrounded by an air supply pipe; swirling means are provided between the liquid fuel source and the coal gas pipe and between the gas pipe and the air pipe. Additional preheated air is provided by counter-current coolant air in passages formed by a double wall arrangement of the walls of the main burning zone communicating with passages of a double wall arrangement of the pilot burning zone; this preheated air is turned at the upstream end of the pilot burning zone through swirlers to mix with the original gas and air input (and the liquid fuel input when used) to provide more efficient combustion. One or more fuel injection stages (second stages) are provided for direct input of coal gas into the main burning zone. The countercurrent air coolant passages are connected to swirlers surrounding the input from each second stage to provide additional oxidant.

  18. Fuel injection staged sectoral combustor for burning low-BTU fuel gas

    DOEpatents

    Vogt, Robert L.

    1985-02-12

    A high-temperature combustor for burning low-BTU coal gas in a gas turbine is described. The combustor comprises a plurality of individual combustor chambers. Each combustor chamber has a main burning zone and a pilot burning zone. A pipe for the low-BTU coal gas is connected to the upstream end of the pilot burning zone: this pipe surrounds a liquid fuel source and is in turn surrounded by an air supply pipe: swirling means are provided between the liquid fuel source and the coal gas pipe and between the gas pipe and the air pipe. Additional preheated air is provided by counter-current coolant air in passages formed by a double wall arrangement of the walls of the main burning zone communicating with passages of a double wall arrangement of the pilot burning zone: this preheated air is turned at the upstream end of the pilot burning zone through swirlers to mix with the original gas and air input (and the liquid fuel input when used) to provide more efficient combustion. One or more fuel injection stages (second stages) are provided for direct input of coal gas into the main burning zone. The countercurrent air coolant passages are connected to swirlers surrounding the input from each second stage to provide additional oxidant.

  19. Pathogenicity and Transmission of H5 and H7 Highly Pathogenic Avian Influenza Viruses in Mallards

    PubMed Central

    Costa-Hurtado, Mar; Shepherd, Eric; DeJesus, Eric; Smith, Diane; Spackman, Erica; Kapczynski, Darrell R.; Suarez, David L.; Stallknecht, David E.; Swayne, David E.

    2016-01-01

    ABSTRACT Wild aquatic birds have been associated with the intercontinental spread of H5 subtype highly pathogenic avian influenza (HPAI) viruses of the A/goose/Guangdong/1/96 (Gs/GD) lineage during 2005, 2010, and 2014, but dispersion by wild waterfowl has not been implicated with spread of other HPAI viruses. To better understand why Gs/GD H5 HPAI viruses infect and transmit more efficiently in waterfowl than other HPAI viruses, groups of mallard ducks were challenged with one of 14 different H5 and H7 HPAI viruses, including a Gs/GD lineage H5N1 (clade 2.2) virus from Mongolia, part of the 2005 dispersion, and the H5N8 and H5N2 index HPAI viruses (clade 2.3.4.4) from the United States, part of the 2014 dispersion. All virus-inoculated ducks and contact exposed ducks became infected and shed moderate to high titers of the viruses, with the exception that mallards were resistant to Ck/Pennsylvania/83 and Ck/Queretaro/95 H5N2 HPAI virus infection. Clinical signs were only observed in ducks challenged with the H5N1 2005 virus, which all died, and with the H5N8 and H5N2 2014 viruses, which had decreased weight gain and fever. These three viruses were also shed in higher titers by the ducks, which could facilitate virus transmission and spread. This study highlights the possible role of wild waterfowl in the spread of HPAI viruses. IMPORTANCE The spread of H5 subtype highly pathogenic avian influenza (HPAI) viruses of the Gs/GD lineage by migratory waterfowl is a serious concern for animal and public health. H5 and H7 HPAI viruses are considered to be adapted to gallinaceous species (chickens, turkeys, quail, etc.) and less likely to infect and transmit in wild ducks. In order to understand why this is different with certain Gs/GD lineage H5 HPAI viruses, we compared the pathogenicity and transmission of several H5 and H7 HPAI viruses from previous poultry outbreaks to Gs/GD lineage H5 viruses, including H5N1 (clade 2.2), H5N8 and H5N2 (clade 2.3.4.4) viruses, in

  20. Ducts Sealing Using Injected Spray Sealant, Raleigh, North Carolina (Fact Sheet)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None, None

    2014-03-01

    In multifamily and attached buildings, traditional duct sealing methods are often impractical or costly and disruptive because of the difficulty in accessing leakage sites. In this project, two retrofit duct sealing techniques - manually-applied sealants and injecting a spray sealant, were implemented in several low-rise multi-unit buildings. An analysis on the cost and performance of the two methods are presented. Each method was used in twenty housing units: approximately half of each group of units are single story and the remainder two-story. Results show that duct leakage to the outside was reduced by an average of 59% through the usemore » of manual methods, and by 90% in the units where the injected spray sealant was used. It was found that 73% of the leakage reduction in homes that were treated with injected spray sealant was attributable to the manual sealing done at boots, returns and the air handler. The cost of manually-applying sealant ranged from $275 to $511 per unit and for the injected spray sealant the cost was $700 per unit. Modeling suggests a simple payback of 2.2 years for manual sealing and 4.7 years for the injected spray sealant system. Utility bills were collected for one year before and after the retrofits. Utility bill analysis shows 14% and 16% energy savings using injected spray sealant system and hand sealing procedure respectively in heating season whereas in cooling season, energy savings using injected spray sealant system and hand sealing were both 16%.« less

  1. Nusinersen Injection

    MedlinePlus

    Nusinersen injection comes as a solution (liquid) to inject intrathecally (into the fluid-filled space of the spinal canal). Nusinersen injection is given by a doctor in a medical office or clinic. It is usually given as ...

  2. Influence of ambient air pressure on effervescent atomization

    NASA Technical Reports Server (NTRS)

    Chen, S. K.; Lefebvre, A. H.; Rollbuhler, J.

    1993-01-01

    The influence of ambient air pressure on the drop-size distributions produced in effervescent atomization is examined in this article. Also investigated are the effects on spray characteristics of variations in air/liquid mass ratio, liquid-injection pressure, and atomizer discharge-orifice diameter at different levels of ambient air pressure. It is found that continuous increase in air pressure above the normal atmospheric value causes the mean drop-size to first increase up to a maximum value and then decline. An explanation for this characteristic is provided in terms of the various contributing factors to the overall atomization process. It is also observed that changes in atomizer geometry and operating conditions have little effect on the distribution of drop-sizes in the spray.

  3. Effect of Intake Air Filter Condition on Light-Duty Gasoline Vehicles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thomas, John F; Huff, Shean P; West, Brian H

    2012-01-01

    Proper maintenance can help vehicles perform as designed, positively affecting fuel economy, emissions, and the overall drivability. This effort investigates the effect of one maintenance factor, intake air filter replacement, with primary focus on vehicle fuel economy, but also examining emissions and performance. Older studies, dealing with carbureted gasoline vehicles, have indicated that replacing a clogged or dirty air filter can improve vehicle fuel economy and conversely that a dirty air filter can be significantly detrimental to fuel economy. The effect of clogged air filters on the fuel economy, acceleration and emissions of five gasoline fueled vehicles is examined. Fourmore » of these were modern vehicles, featuring closed-loop control and ranging in model year from 2003 to 2007. Three vehicles were powered by naturally aspirated, port fuel injection (PFI) engines of differing size and cylinder configuration: an inline 4, a V6 and a V8. A turbocharged inline 4-cylinder gasoline direct injection (GDI) engine powered vehicle was the fourth modern gasoline vehicle tested. A vintage 1972 vehicle equipped with a carburetor (open-loop control) was also examined. Results reveal insignificant fuel economy and emissions sensitivity of modern vehicles to air filter condition, but measureable effects on the 1972 vehicle. All vehicles experienced a measured acceleration performance penalty with clogged intake air filters.« less

  4. Development of an Impinging-jet Fuel-injection Valve Nozzle

    NASA Technical Reports Server (NTRS)

    Spanogle, J A; Hemmeter, G H

    1931-01-01

    During an investigation to determine the possibilities and limitations of a two-stroke-cycle engine and ignition, it was necessary to develop a fuel injection valve nozzle to produce a disk-shaped, well dispersed spray. Preliminary tests showed that two smooth jets impinging upon each other at an angle of 74 degrees gave a spray with the desired characteristics. Nozzles were built on this basis and, when used in fuel-injection valves, produced a spray that fulfilled the original requirements. The spray is so well dispersed that it can be carried along with an air stream of comparatively low velocity or entrained with the fuel jet from a round-hole orifice. The characteristics of the spray from an impinging-jet nozzle limits its application to situations where wide dispersion is required by the conditions in the engine cylinder and the combustion chamber.

  5. 1981 AFOSR Contractors Meeting on Air Breathing Combustion Dynamics and Explosion Research, 16-20 November 1981, Clearwater Beach, Florida

    DTIC Science & Technology

    1981-09-01

    Atomi:Mation, Ignition and Combustion of Liquid and Multiphase Fuels in High -Speed Air StreamsIi J. Schetz VPI and State University 9:00 Turbulent Mixing and...Aeronautical Laboratories (AFWAL) 8:35 Injection, Atomt:ation, Ignition and Combustion of Liquid and Multiphase Fuels in High -Speed Air Streams J...State University Transverse injection of liquid and/or liquid -slurry jets into high speed airstreams finds application in several propulsion-related

  6. U.S. Geological Survey science strategy for highly pathogenic avian influenza in wildlife and the environment (2016–2020)

    USGS Publications Warehouse

    Harris, M. Camille; Pearce, John M.; Prosser, Diann J.; White, C. LeAnn; Miles, A. Keith; Sleeman, Jonathan M.; Brand, Christopher J.; Cronin, James P.; De La Cruz, Susan; Densmore, Christine L.; Doyle, Thomas W.; Dusek, Robert J.; Fleskes, Joseph P.; Flint, Paul L.; Guala, Gerald F.; Hall, Jeffrey S.; Hubbard, Laura E.; Hunt, Randall J.; Ip, Hon S.; Katz, Rachel A.; Laurent, Kevin W.; Miller, Mark P.; Munn, Mark D.; Ramey, Andy M.; Richards, Kevin D.; Russell, Robin E.; Stokdyk, Joel P.; Takekawa, John Y.; Walsh, Daniel P.

    2016-08-18

    IntroductionThrough the Science Strategy for Highly Pathogenic Avian Influenza (HPAI) in Wildlife and the Environment, the USGS will assess avian influenza (AI) dynamics in an ecological context to inform decisions made by resource managers and policymakers from the local to national level. Through collection of unbiased scientific information on the ecology of AI viruses and wildlife hosts in a changing world, the U.S. Geological Survey (USGS) will enhance the development of AI forecasting tools and ensure this information is integrated with a quality decision process for managing HPAI.The overall goal of this USGS Science Strategy for HPAI in Wildlife and the Environment goes beyond document­ing the occurrence and distribution of AI viruses in wild birds. The USGS aims to understand the epidemiological processes and environmental factors that influence HPAI distribution and describe the mechanisms of transmission between wild birds and poultry. USGS scientists developed a conceptual model describing the process linking HPAI dispersal in wild waterfowl to the outbreaks in poul­try. This strategy focuses on five long-term science goals, which include:Science Goal 1—Augment the National HPAI Surveillance Plan;Science Goal 2—Determine mechanisms of HPAI disease spread in wildlife and the environment;Science Goal 3—Characterize HPAI viruses circulating in wildlife;Science Goal 4—Understand implications of avian ecol­ogy on HPAI spread; andScience Goal 5—Develop HPAI forecasting and decision-making tools.These goals will help define and describe the processes outlined in the conceptual model with the ultimate goal of facilitating biosecurity and minimizing transfer of diseases across the wildlife-poultry interface. The first four science goals are focused on scientific discovery and the fifth goal is application-based. Decision analyses in the fifth goal will guide prioritization of proposed actions in the first four goals.

  7. Fuel-injection control of S.I. engines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Choi, S.B.; Won, M.; Hedrick, J.K.

    1994-12-31

    It is known that about 50% of air pollutants comes from automotive engine exhaust, and mostly in a transient state operation. However, the wide operating range, the inherent nonlinearities of the induction process and the large modeling uncertainties make the design of the fuel-injection controller very difficult. Also, the unavoidable large time-delay between control action and measurement causes the problem of chattering. In this paper, an observer-based control algorithm based on sliding mode control technique is suggested for fast response and small amplitude chattering of the air-to-fuel ratio. A direct adaptive control using Gaussian networks is applied to the compensationmore » of transient fueling dynamics. The proposed controller is simple enough for on-line computation and is implemented on an automotive engine using a PC-386. The simulation and the experimental results show that this algorithm reduces the chattering magnitude considerably and is robust to modeling errors.« less

  8. Bubble technique for Descemet membrane endothelial keratoplasty tissue preparation in an eye bank: air or liquid?

    PubMed

    Ruzza, Alessandro; Parekh, Mohit; Salvalaio, Gianni; Ferrari, Stefano; Camposampiero, Davide; Amoureux, Marie-Claude; Busin, Massimo; Ponzin, Diego

    2015-03-01

    To compare the big-bubble method using air and liquid as medium of separation for Descemet membrane endothelial keratoplasty (DMEK) lenticule preparation in an eye bank. Donor corneas (n=20) were immersed in liquid [tissue culture medium (TCM)]. Air and liquid was injected using a 25-gauge needle in the posterior stroma or as near to the stroma-Descemet membrane (DM) phase as possible to create a complete bubble of larger diameter. The endothelial cell density and mortality were checked pre- and postbubble after deflating the tissue. Four pairs of tissues were used to analyse the intracellular tight junctions and three pairs for histological examination and DNA integrity studies, respectively. The yield obtained using air was 80%, whereas that with liquid was 100%. Single injection was required in six cases; twice in two cases; three and four times in one case each with air bubble, whereas seven cases required single injection; twice in two cases; and thrice in just one case with liquid bubble. The average diameter of the final lenticule was 9.12 (±1.71) mm for air bubble and 9.78 (±1.75) mm for liquid bubble with p=0.4362 (no statistical significance). Endothelial cell mortality postbubble preparation was 8.9 (±12.38)% for air and 6.25 (±9.57)% for liquid (p=0.6268). DM and endothelium could be separated exclusively using air or liquid bubble. However, liquid bubble seems to have certain advantages over air such as the generation of yield, larger diameter and higher maintenance of endothelial cell density and integrity. © 2014 Acta Ophthalmologica Scandinavica Foundation. Published by John Wiley & Sons Ltd.

  9. IACP (INTEGRATED AIR CANCER PROJECT) EMISSIONS: TRANSFORMATIONS AND FATE

    EPA Science Inventory

    As part of the Integrated Air Cancer Project (IACP), diluted emissions from wood stoves and automobiles were injected into a Teflon smog chamber and irradiated to simulate their photochemical transformation in the atmosphere. Changes in the chemical composition and physical prope...

  10. Measuring tissue back-pressure--in vivo injection forces during subcutaneous injection.

    PubMed

    Allmendinger, Andrea; Mueller, Robert; Schwarb, Edward; Chipperfield, Mark; Huwyler, Joerg; Mahler, Hanns-Christian; Fischer, Stefan

    2015-07-01

    Limited information is available on injection forces of parenterals representing the in vivo situation. Scope of the present study was to investigate the contribution of the subcutaneous (sc) tissue layer to injection forces during in vivo injection. Göttingen minipigs received injections of isotonic dextran solutions (1-100 mPas) into the plica inguinalis using different injection rates and volumes (0.025-0.2 mL/s and 2.5 vs. 4.5 mL). The contribution of the sc back-pressure to injection forces was found to increase linearly with viscosity and injection rate ranging from 0.6 ± 0.5 N to 1.0 ± 0.4 N (1 mPas), 0.7 ± 0.2 N to 2.4 ± 1.9 N (10 mPas), and 1.8 ± 0.6 N to 4.7 ± 3.3 N (20 mPas) for injection rates of 0.025 to 0.2 mL/s, respectively. Variability increased with viscosity and injection rate. Values are average values from 10 randomized injections. A maximum of 12.9 N was reached for 20 mPas at 0.2 mL/s; 6.9 ± 0.3 N was determined for 100 mPas at 0.025 mL/s. No difference was found between injection volumes of 2.5 and 4.5 mL. The contribution of the tissue was differentiated from the contribution of the injection device and a local temperature effect. This effect was leading to warming of the (equilibrated) sample in the needle, therefore smaller injection forces than expected compensating tissue resistance to some parts. When estimating injection forces representative for the in vivo situation, the contribution of the tissue has to be considered as well as local warming of the sample in the needle during injection.

  11. Effect of deep injection on field-scale emissions of 1,3-dichloropropene and chloropicrin from bare soil

    NASA Astrophysics Data System (ADS)

    Yates, S. R.; Ashworth, D. J.; Zheng, W.; Knuteson, J.; van Wesenbeeck, I. J.

    2016-07-01

    Fumigating soil is important for the production of many high-value vegetable, fruit, and tree crops, but fumigants are toxic pesticides with relatively high volatility, which can lead to significant atmospheric emissions. A field experiment was conducted to measure emissions and subsurface diffusion of a mixture of 1,3-dichloropropene (1,3-D) and chloropicrin after shank injection to bare soil at 61 cm depth (i.e., deep injection). Three on-field methods, the aerodynamic (ADM), integrated horizontal flux (IHF), and theoretical profile shape (TPS) methods, were used to obtain fumigant flux density and cumulative emission values. Two air dispersion models (CALPUFF and ISCST3) were also used to back-calculate the flux density using air concentration measurements surrounding the fumigated field. Emissions were continuously measured for 16 days and the daily peak emission rates for the five methods ranged from 13 to 33 μg m-2 s-1 for 1,3-D and 0.22-3.2 μg m-2 s-1 for chloropicrin. Total 1,3-D mass lost to the atmosphere was approximately 23-41 kg ha-1, or 15-27% of the applied active ingredient and total mass loss of chloropicrin was <2%. Based on the five methods, deep injection reduced total emissions by approximately 2-24% compared to standard fumigation practices where fumigant injection is at 46 cm depth. Given the relatively wide range in emission-reduction percentages, a fumigant diffusion model was used to predict the percentage reduction in emissions by injecting at 61 cm, which yielded a 21% reduction in emissions. Significant reductions in emissions of 1,3-D and chloropicrin are possible by injecting soil fumigants deeper in soil.

  12. Ejector device for direct injection fuel jet

    DOEpatents

    Upatnieks, Ansis [Livermore, CA

    2006-05-30

    Disclosed is a device for increasing entrainment and mixing in an air/fuel zone of a direct fuel injection system. The device comprises an ejector nozzle in the form of an inverted funnel whose central axis is aligned along the central axis of a fuel injector jet and whose narrow end is placed just above the jet outlet. It is found that effective ejector performance is achieved when the ejector geometry is adjusted such that it comprises a funnel whose interior surface diverges about 7.degree. to about 9.degree. away from the funnel central axis, wherein the funnel inlet diameter is about 2 to about 3 times the diameter of the injected fuel plume as the fuel plume reaches the ejector inlet, and wherein the funnel length equal to about 1 to about 4 times the ejector inlet diameter. Moreover, the ejector is most effectively disposed at a separation distance away from the fuel jet equal to about 1 to about 2 time the ejector inlet diameter.

  13. Control strategies against avian influenza

    USDA-ARS?s Scientific Manuscript database

    Since 1959, 40 epizootics of high pathogenicity avian influenza (HPAI) have occurred (Figure 1). Thirty-five of these epizootic HPAI viruses were geographically-limited (mostly to single countries), involved farm-to-farm spread and were eradicated from poultry by stamping-out programs; i.e. the HPAI...

  14. Coaxial fuel and air premixer for a gas turbine combustor

    DOEpatents

    York, William D; Ziminsky, Willy S; Lacy, Benjamin P

    2013-05-21

    An air/fuel premixer comprising a peripheral wall defining a mixing chamber, a nozzle disposed at least partially within the peripheral wall comprising an outer annular wall spaced from the peripheral wall so as to define an outer air passage between the peripheral wall and the outer annular wall, an inner annular wall disposed at least partially within and spaced from the outer annular wall, so as to define an inner air passage, and at least one fuel gas annulus between the outer annular wall and the inner annular wall, the at least one fuel gas annulus defining at least one fuel gas passage, at least one air inlet for introducing air through the inner air passage and the outer air passage to the mixing chamber, and at least one fuel inlet for injecting fuel through the fuel gas passage to the mixing chamber to form an air/fuel mixture.

  15. Fuel Spray and Flame Formation in a Compression-Ignition Engine Employing Air Flow

    NASA Technical Reports Server (NTRS)

    Rothrock, A M; Waldron, C D

    1937-01-01

    The effects of air flow on fuel spray and flame formation in a high-speed compression-ignition engine have been investigated by means of the NACA combustion apparatus. The process was studied by examining high-speed motion pictures taken at the rate of 2,200 frames a second. The combustion chamber was of the flat-disk type used in previous experiments with this apparatus. The air flow was produced by a rectangular displacer mounted on top of the engine piston. Three fuel-injection nozzles were tested: a 0.020-inch single-orifice nozzle, a 6-orifice nozzle, and a slit nozzle. The air velocity within the combustion chamber was estimated to reach a value of 425 feet a second. The results show that in no case was the form of the fuel spray completely destroyed by the air jet although in some cases the direction of the spray was changed and the spray envelope was carried away by the moving air. The distribution of the fuel in the combustion chamber of a compression-ignition engine can be regulated to some extent by the design of the combustion chamber, by the design of the fuel-injection nozzle, and by the use of air flow.

  16. Generation of nanobubbles by ceramic membrane filters: The dependence of bubble size and zeta potential on surface coating, pore size and injected gas pressure.

    PubMed

    Ahmed, Ahmed Khaled Abdella; Sun, Cuizhen; Hua, Likun; Zhang, Zhibin; Zhang, Yanhao; Zhang, Wen; Marhaba, Taha

    2018-07-01

    Generation of gaseous nanobubbles (NBs) by simple, efficient, and scalable methods is critical for industrialization and applications of nanobubbles. Traditional generation methods mainly rely on hydrodynamic, acoustic, particle, and optical cavitation. These generation processes render issues such as high energy consumption, non-flexibility, and complexity. This research investigated the use of tubular ceramic nanofiltration membranes to generate NBs in water with air, nitrogen and oxygen gases. This system injects pressurized gases through a tubular ceramic membrane with nanopores to create NBs. The effects of membrane pores size, surface energy, and the injected gas pressures on the bubble size and zeta potential were examined. The results show that the gas injection pressure had considerable effects on the bubble size, zeta potential, pH, and dissolved oxygen of the produced NBs. For example, increasing the injection air pressure from 69 kPa to 414 kPa, the air bubble size was reduced from 600 to 340 nm respectively. Membrane pores size and surface energy also had significant effects on sizes and zeta potentials of NBs. The results presented here aim to fill out the gaps of fundamental knowledge about NBs and development of efficient generation methods. Copyright © 2018 Elsevier Ltd. All rights reserved.

  17. Right-to-left shunt detection sensitivity with air-saline and air-succinil gelatin transcranial Doppler.

    PubMed

    Puledda, Francesca; Toscano, Massimiliano; Pieroni, Alessio; Veneroso, Gabriele; Di Piero, Vittorio; Vicenzini, Edoardo

    2016-02-01

    Air-saline transcranial Doppler is nowadays the first-choice examination to identify right-to-left shunt. To increase right-to-left shunt detection in echocardiography, cardiologists also use air-gelatin mixtures, which are more stable, more echogenic, and easier to be prepared. We assessed the sensitivity of air-gelatin compared with air-saline for transcranial Doppler right-to-left shunt detection. Air-saline transcranial Doppler, during unilateral middle cerebral artery monitoring at rest and after Valsalva maneuver, was performed in patients referred to our neurosonology laboratory for right-to-left shunt detection. The same transcranial Doppler protocol was repeated with air-gelatin. To consider transcranial Doppler positive for cardiac right-to-left shunt, at least one embolic signal had to be detected within 20″ from contrast injection. Later signals were interpreted of pulmonary origin. Trans-thoracic echocardiography was repeated with both air-saline and air-gelatin. A total of 97 patients were enrolled; 46 had negative transcranial Doppler for cardiac right-to-left shunt with both air-saline and air-gelatin; out of these, four patients with air-saline plus two more patients with air-gelatin presented late, isolated microemboli, slightly more numerous with air-gelatin: these were interpreted as pulmonary shunts and confirmed with trans-thoracic echocardiography. In 28 patients with already early positive air-saline transcranial Doppler at rest, air-gelatin induced a marked right-to-left shunt increase, facilitating its visualization at trans-thoracic echocardiography. In 23 patients in whom air-saline transcranial Doppler was negative at rest and positive for cardiac right-to-left shunt only after Valsalva maneuver, air-gelatin was able to reveal shunt also at rest. Air-gelatin increases right-to-left shunt detection sensitivity with transcranial Doppler in particular at rest, even in patients in whom air-saline mixture fails to identify the shunt. The

  18. Risk Reduction Modeling of High Pathogenicity Avian Influenza Virus Titers in Nonpasteurized Liquid Egg Obtained from Infected but Undetected Chicken Flocks.

    PubMed

    Weaver, J Todd; Malladi, Sasidhar; Spackman, Erica; Swayne, David E

    2015-11-01

    Control of highly pathogenic avian influenza (HPAI) outbreaks in poultry has traditionally involved the establishment of disease containment zones, where poultry products are only permitted to move from within a zone under permit. Nonpasteurized liquid egg (NPLE) is one such commodity for which movements may be permitted, considering inactivation of HPAI virus via pasteurization. Active surveillance testing at the flock level, using targeted matrix gene real-time reversed transcriptase-polymerase chain reaction testing (RRT-PCR) has been incorporated into HPAI emergency response plans as the primary on-farm diagnostic test procedure to detect HPAI in poultry and is considered to be a key risk mitigation measure. To inform decisions regarding the potential movement of NPLE to a pasteurization facility, average HPAI virus concentrations in NPLE produced from a HPAI virus infected, but undetected, commercial table-egg-layer flock were estimated for three HPAI virus strains using quantitative simulation models. Pasteurization under newly proposed international design standards (5 log10 reduction) is predicted to inactivate HPAI virus in NPLE to a very low concentration of less than 1 embryo infectious dose (EID)50 /mL, considering the predicted virus titers in NPLE from a table-egg flock under active surveillance. Dilution of HPAI virus from contaminated eggs in eggs from the same flock, and in a 40,000 lb tanker-truck load of NPLE containing eggs from disease-free flocks was also considered. Risk assessment can be useful in the evaluation of commodity-specific risk mitigation measures to facilitate safe trade in animal products from countries experiencing outbreaks of highly transmissible animal diseases. © 2015 Society for Risk Analysis.

  19. "Injection first": a unique group of injection drug users in Tijuana, Mexico.

    PubMed

    Morris, Meghan D; Brouwer, Kimberly C; Lozada, Remedios M; Gallardo, Manuel; Vera, Alicia; Strathdee, Steffanie A

    2012-01-01

    Using baseline data from a study of injection drug users (IDUs) in Tijuana, Mexico (N = 1,052), we identified social and behavioral factors associated with injecting at the same age or earlier than other administration routes of illicit drug use (eg, "injection first") and examined whether this IDU subgroup had riskier drug using and sexual behaviors than other IDUs. Twelve-percent "injected first." Characteristics independently associated with a higher odds of "injection first" included being younger at first injection, injecting heroin as their first drug, being alone at the first injection episode, and having a sexual debut at the same age or earlier as when they initiated drug use; family members' illicit drug use was associated with lower odds of injecting first. When adjusting for age at first injection and number of years injecting, "injection first" IDUs had lower odds of ever overdosing, and ever trading sex. On the other hand, they were less likely to have ever been enrolled in drug treatment, and more commonly obtained their syringes from potentially unsafe sources. In conclusion, a sizable proportion of IDUs in Tijuana injected as their first drug using experience, although evidence that this was a riskier subgroup of IDUs was inconclusive.  Copyright © American Academy of Addiction Psychiatry.

  20. Prevalence and characteristics of femoral injection among Seattle-area injection drug users.

    PubMed

    Coffin, Phillip O; Coffin, Lara S; Murphy, Shilo; Jenkins, Lindsay M; Golden, Matthew R

    2012-04-01

    Injection drug use (IDU) into central veins, most common among long-term IDUs with no other options, can lead to severe infectious, vascular, and traumatic medical consequences. To follow-up on anecdotal reports of femoral vein injection and related medical problems in Seattle, we analyzed data from the annual survey of a community-based syringe exchange program. A total of 276 (81%) of 343 program attendees completed the survey in August 2010. Among 248 IDUs, 66% were male, 78% white, and 86% primarily injected opiates. One hundred respondents (40%) had injected into the femoral vein, 55% of whom were actively doing so, and 58% of whom reported medical complications that they attributed to the practice. Most (66%) used the femoral vein due to difficulty accessing other veins, although 61% reported other veins they could access and 67% reporting using other sites since initiating femoral injection. While injecting into muscle was more frequent among older IDUs with longer injection careers, the prevalence of femoral injection was highest among respondents in their late twenties with 2.5-6 years of injecting drugs. Multivariate analysis demonstrated an increased risk of initiating femoral injection each calendar year after 2007. Injecting into the femoral vein was also associated with white versus other race (odds ratio [OR] 2.7, 95% CI 1.3-5.4) and injection of primarily opiates versus other drugs (OR 6.3, 95% CI 1.2-32.9) and not associated with age, length of IDU career, or a history of injecting into muscle. These findings suggest a secular trend of increasing femoral injection among Seattle-area IDUs with a high rate of related medical problems. Interventions, such as education regarding the hazards of central venous injection and guidance on safe injection into peripheral veins, are needed to minimize the health consequences of femoral injection.

  1. Effect of Jet Injection Angle and Number of Jets on Mixing and Emissions From a Reacting Crossflow at Atmospheric Pressure

    NASA Technical Reports Server (NTRS)

    St.John, D.; Samuelsen, G. S.

    2000-01-01

    The mixing of air jets into hot, fuel-rich products of a gas turbine primary zone is an important step in staged combustion. Often referred to as "quick quench," the mixing occurs with chemical conversion and substantial heat release. An experiment has been designed to simulate and study this process, and the effect of varying the entry angle (0 deg, 22.5 deg and 45 deg from normal) and number of the air jets (7, 9, and 11) into the main flow, while holding the jet-to-crossflow mass-low ratio, MR, and momentum-flux ratio, J, constant (MR = 2.5;J = 25). The geometry is a crossflow confined in a cylindrical duct with side-wall injection of jets issuing from orifices equally spaced around the perimeter. A specially designed reactor, operating on propane, presents a uniform mixture to a module containing air jet injection tubes that can be changed to vary orifice geometry. Species concentrations of O2, CO, CO2, NO(x) and HC were obtained one duct diameter upstream (in the rich zone), and primarily one duct radius downstream. From this information, penetration of the jet, the spatial extent of chemical reaction, mixing, and the optimum jet injection angle and number of jets can be deduced.

  2. Infectivity and transmissibility of highly pathogenic avian influenza viruses in mallards

    USDA-ARS?s Scientific Manuscript database

    Wild aquatic birds have been associated with the intercontinental spread of H5 subtype highly pathogenic avian influenza (HPAI) viruses, but wild waterfowl have not been implicated in the spread of other HPAI viruses. In a previous study we demonstrated that many H5 and H7 HPAI viruses could infect...

  3. Flow in a discrete slotted nozzle with massive injection. [water table tests

    NASA Technical Reports Server (NTRS)

    Perkins, H. C.

    1974-01-01

    An experimental investigation has been conducted to determine the effect of massive wall injection on the flow characteristics in a slotted nozzle. Some of the experiments were performed on a water table with a slotted-nozzle test section. This has 45 deg and 15 deg half angles of convergence and divergence, respectively, throat radius of 2.5 inches, and throat width of 3 inches. The hydraulic analogy was employed to qualitatively extend the results to a compressible gas flow through the nozzle. Experimental results from the water table include contours of constant Froude and Mach number with and without injection. Photographic results are also presented for the injection through slots of CO2 and Freon-12 into a main-stream air flow in a convergent-divergent nozzle in a wind tunnel. Schlieren photographs were used to visualize the flow, and qualititative agreement between the results from the gas tunnel and water table is good.

  4. Injection system used into SI engines for complete combustion and reduction of exhaust emissions in the case of alcohol and petrol alcohol mixtures feed

    NASA Astrophysics Data System (ADS)

    Ispas, N.; Cofaru, C.; Aleonte, M.

    2017-10-01

    Internal combustion engines still play a major role in today transportation but increasing the fuel efficiency and decreasing chemical emissions remain a great goal of the researchers. Direct injection and air assisted injection system can improve combustion and can reduce the concentration of the exhaust gas pollutes. Advanced air-to-fuel and combustion air-to-fuel injection system for mixtures, derivatives and alcohol gasoline blends represent a major asset in reducing pollutant emissions and controlling combustion processes in spark-ignition engines. The use of these biofuel and biofuel blending systems for gasoline results in better control of spark ignition engine processes, making combustion as complete as possible, as well as lower levels of concentrations of pollutants in exhaust gases. The main purpose of this paper was to provide most suitable tools for ensure the proven increase in the efficiency of spark ignition engines, making them more environmentally friendly. The conclusions of the paper allow to highlight the paths leading to a better use of alcohols (biofuels) in internal combustion engines of modern transport units.

  5. [Antagonistic effect of the insertion/deletion (HpaI) polymorphism in the regulatory part of the gene for apolipoprotein CI in children with high and low levels of cholesterol].

    PubMed

    Hubácek, J A; Pistulková, H; Skodová, Z; Lánská, V; Poledne, R

    2004-01-01

    High plasma lipids are one of the risk factor of atherosclerosis. Both environmental (diet, physic activity) and genetic factors have been implicated in the development of hyperlipidaemia. Apolipoprotein (apo) CI plays an important role in plasma cholesterol and triglycerides transport by VLDL particles. The aim of the study was to establish the role of the insertion/deletion polymorphism in apoCI gene in the determination of plasma lipids in children. Using PCR and restriction analysis (HpaI) we have measured I/D polymorphism in APOCI gene in two groups of children selected from opposite ends of the cholesterol distribution curve of 2000 children. Eighty-two children in high-(HCG) and eighty-six children in low-(LCG) cholesterolemic groups participated on the study. No significant difference was found in the frequencies of the APOCI genotypes or alleles between HCG vs. LCG. Association between LDL cholesterol and genotypes within the LCG was found--the D/D homozygotes have higher lipid level compared to the others (p < 0.05). In LCG opposite, but insignificant (p = 0.09) trend was observed. The widespread I/D polymorphism in the gene for APOCI determines the plasma lipid levels in childhood and it could become another important genetic marker that plays a role in the genetic determination of cholesterolemia.

  6. Epidural spread of iohexol following the use of air or saline in the 'loss of resistance' test.

    PubMed

    Iseri, Toshie; Nishimura, Ryohei; Nagahama, Shotaro; Mochizuki, Manabu; Nakagawa, Takayuki; Fujimoto, Yuka; Zhang, Di; Sasaki, Nobuo

    2010-11-01

    To compare, using CT epidurography, the cranial distribution of contrast after epidural injection when saline or air is used for the loss of resistance (LOR) technique in identifying the epidural space. Prospective, randomized, cross-over experimental study. Nine healthy adult Beagle dogs. Under general anaesthesia, a spinal needle (22-gauge, 70 mm) was inserted through the lumbosacral space, and the position in the epidural space confirmed using the LOR technique employing either 0.3 mL per dog of saline or of air. Epidurography using CT was performed before and 5, 10 and 20 minutes after epidural injection of 0.2 mL kg(-1) of iohexol. The cranial distribution of iohexol was recorded as the number of vertebral segments reached from the seventh lumbar vertebrae. The median values in vertebral segments of the cranial distribution at 5, 10 and 20 minutes after epidural injection were 19.5, 20.5 and 21.0 respectively with the saline treatment, and 12.0, 15.0 and 16.0 respectively in the air treatment. At all time points spread of contrast was significantly less with the air treatment. All dogs after air treatment had some air bubbles in the epidural space, and in seven, the spinal cord was moderately compressed by the air. No neurological complications were observed after recovery. The use of air for the LOR technique is associated with significantly less spread, uneven cranial distribution of the contrast medium and compression of the spinal cord. It is recommended that saline, and not air, should be used to identify the epidural space by this method. © 2010 The Authors. Veterinary Anaesthesia and Analgesia © 2010 Association of Veterinary Anaesthetists and the American College of Veterinary Anesthesiologists.

  7. 40 CFR 60.1820 - How do I monitor the injection rate of activated carbon?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 7 2013-07-01 2013-07-01 false How do I monitor the injection rate of activated carbon? 60.1820 Section 60.1820 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) STANDARDS OF PERFORMANCE FOR NEW STATIONARY SOURCES Emission Guidelines and Compliance Times for Small Municipal...

  8. 40 CFR 60.1330 - How do I monitor the injection rate of activated carbon?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 7 2013-07-01 2013-07-01 false How do I monitor the injection rate of activated carbon? 60.1330 Section 60.1330 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) STANDARDS OF PERFORMANCE FOR NEW STATIONARY SOURCES Standards of Performance for Small Municipal Waste Combustio...

  9. 40 CFR 60.1820 - How do I monitor the injection rate of activated carbon?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 7 2014-07-01 2014-07-01 false How do I monitor the injection rate of activated carbon? 60.1820 Section 60.1820 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) STANDARDS OF PERFORMANCE FOR NEW STATIONARY SOURCES Emission Guidelines and Compliance Times for Small Municipal...

  10. 40 CFR 62.15275 - How do I monitor the injection rate of activated carbon?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 9 2012-07-01 2012-07-01 false How do I monitor the injection rate of activated carbon? 62.15275 Section 62.15275 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) APPROVAL AND PROMULGATION OF STATE PLANS FOR DESIGNATED FACILITIES AND POLLUTANTS Federal Plan Requirements fo...

  11. 40 CFR 62.15275 - How do I monitor the injection rate of activated carbon?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 9 2014-07-01 2014-07-01 false How do I monitor the injection rate of activated carbon? 62.15275 Section 62.15275 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) APPROVAL AND PROMULGATION OF STATE PLANS FOR DESIGNATED FACILITIES AND POLLUTANTS Federal Plan Requirements fo...

  12. 40 CFR 60.1330 - How do I monitor the injection rate of activated carbon?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 7 2014-07-01 2014-07-01 false How do I monitor the injection rate of activated carbon? 60.1330 Section 60.1330 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) STANDARDS OF PERFORMANCE FOR NEW STATIONARY SOURCES Standards of Performance for Small Municipal Waste Combustio...

  13. 40 CFR 60.1820 - How do I monitor the injection rate of activated carbon?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 7 2012-07-01 2012-07-01 false How do I monitor the injection rate of activated carbon? 60.1820 Section 60.1820 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) STANDARDS OF PERFORMANCE FOR NEW STATIONARY SOURCES Emission Guidelines and Compliance Times for Small Municipal...

  14. 40 CFR 60.1330 - How do I monitor the injection rate of activated carbon?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 7 2012-07-01 2012-07-01 false How do I monitor the injection rate of activated carbon? 60.1330 Section 60.1330 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) STANDARDS OF PERFORMANCE FOR NEW STATIONARY SOURCES Standards of Performance for Small Municipal Waste Combustio...

  15. 40 CFR 60.1820 - How do I monitor the injection rate of activated carbon?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 6 2011-07-01 2011-07-01 false How do I monitor the injection rate of activated carbon? 60.1820 Section 60.1820 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) STANDARDS OF PERFORMANCE FOR NEW STATIONARY SOURCES Emission Guidelines and Compliance Times for Small Municipal...

  16. 40 CFR 62.15275 - How do I monitor the injection rate of activated carbon?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 8 2011-07-01 2011-07-01 false How do I monitor the injection rate of activated carbon? 62.15275 Section 62.15275 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) APPROVAL AND PROMULGATION OF STATE PLANS FOR DESIGNATED FACILITIES AND POLLUTANTS Federal Plan Requirements fo...

  17. 40 CFR 60.1330 - How do I monitor the injection rate of activated carbon?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 6 2011-07-01 2011-07-01 false How do I monitor the injection rate of activated carbon? 60.1330 Section 60.1330 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) STANDARDS OF PERFORMANCE FOR NEW STATIONARY SOURCES Standards of Performance for Small Municipal Waste Combustio...

  18. Computation of H2/air reacting flowfields in drag-reduction external combustion

    NASA Technical Reports Server (NTRS)

    Lai, H. T.

    1992-01-01

    Numerical simulation and analysis of the solution are presented for a laminar reacting flowfield of air and hydrogen in the case of external combustion employed to reduce base drag in hypersonic vehicles operating at transonic speeds. The flowfield consists of a transonic air stream at a Mach number of 1.26 and a sonic transverse hydrogen injection along a row of 26 orifices. Self-sustained combustion is computed over an expansion ramp downstream of the injection and a flameholder, using the recently developed RPLUS code. Measured data is available only for surface pressure distributions and is used for validation of the code in practical 3D reacting flowfields. Pressure comparison shows generally good agreements, and the main effects of combustion are also qualitatively consistent with experiment.

  19. Method and apparatus for injecting particulate media into the ground

    DOEpatents

    Dwyer, Brian P.; Dwyer, Stephen F.; Vigil, Francine S.; Stewart, Willis E.

    2004-12-28

    An improved method and apparatus for injecting particulate media into the ground for constructing underground permeable reactive barriers, which are used for environmental remediation of subsurface contaminated soil and water. A media injector sub-assembly attached to a triple wall drill string pipe sprays a mixture of active particulate media suspended in a carrier fluid radially outwards from the sub-assembly, at the same time that a mixing fluid is sprayed radially outwards. The media spray intersects the mixing spray at a relatively close distance from the point of injection, which entrains the particulate media into the mixing spray and ensures a uniform and deep dispersion of the active media in the surrounding soil. The media injector sub-assembly can optionally include channels for supplying compressed air to an attached down-the-hole hammer drive assembly for use during drilling.

  20. Modelling the impact of co-circulating low pathogenic avian influenza viruses on epidemics of highly pathogenic avian influenza in poultry.

    PubMed

    Nickbakhsh, Sema; Hall, Matthew D; Dorigatti, Ilaria; Lycett, Samantha J; Mulatti, Paolo; Monne, Isabella; Fusaro, Alice; Woolhouse, Mark E J; Rambaut, Andrew; Kao, Rowland R

    2016-12-01

    It is well known that highly pathogenic avian influenza (HPAI) viruses emerge through mutation of precursor low pathogenic avian influenza (LPAI) viruses in domestic poultry populations. The potential for immunological cross-protection between these pathogenic variants is recognised but the epidemiological impact during co-circulation is not well understood. Here we use mathematical models to investigate whether altered flock infection parameters consequent to primary LPAI infections can impact on the spread of HPAI at the population level. First we used mechanistic models reflecting the co-circulatory dynamics of LPAI and HPAI within a single commercial poultry flock. We found that primary infections with LPAI led to HPAI prevalence being maximised under a scenario of high but partial cross-protection. We then tested the population impact in spatially-explicit simulations motivated by a major avian influenza A(H7N1) epidemic that afflicted the Italian poultry industry in 1999-2001. We found that partial cross-protection can lead to a prolongation of HPAI epidemic duration. Our findings have implications for the control of HPAI in poultry particularly for settings in which LPAI and HPAI frequently co-circulate. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  1. Simulation of mercury capture by sorbent injection using a simplified model.

    PubMed

    Zhao, Bingtao; Zhang, Zhongxiao; Jin, Jing; Pan, Wei-Ping

    2009-10-30

    Mercury pollution by fossil fuel combustion or solid waste incineration is becoming the worldwide environmental concern. As an effective control technology, powdered sorbent injection (PSI) has been successfully used for mercury capture from flue gas with advantages of low cost and easy operation. In order to predict the mercury capture efficiency for PSI more conveniently, a simplified model, which is based on the theory of mass transfer, isothermal adsorption and mass balance, is developed in this paper. The comparisons between theoretical results of this model and experimental results by Meserole et al. [F.B. Meserole, R. Chang, T.R. Carrey, J. Machac, C.F.J. Richardson, Modeling mercury removal by sorbent injection, J. Air Waste Manage. Assoc. 49 (1999) 694-704] demonstrate that the simplified model is able to provide good predictive accuracy. Moreover, the effects of key parameters including the mass transfer coefficient, sorbent concentration, sorbent physical property and sorbent adsorption capacity on mercury adsorption efficiency are compared and evaluated. Finally, the sensitive analysis of impact factor indicates that the injected sorbent concentration plays most important role for mercury capture efficiency.

  2. Investigation of Ignition and Combustion Processes of Diesel Engines Operating with Turbulence and Air-storage Chambers

    NASA Technical Reports Server (NTRS)

    Petersen, Hans

    1938-01-01

    The flame photographs obtained with combustion-chamber models of engines operating respectively, with turbulence chamber and air-storage chambers or cells, provide an insight into the air and fuel movements that take place before and during combustion in the combustion chamber. The relation between air velocity, start of injection, and time of combustion was determined for the combustion process employing a turbulence chamber.

  3. Numerical Investigation of Hydrogen and Kerosene Combustion in Supersonic Air Streams

    NASA Technical Reports Server (NTRS)

    Taha, A. A.; Tiwari, S. N.; Mohieldin, T. O.

    1999-01-01

    The effect of mixing schemes on the combustion of both gaseous hydrogen and liquid kerosene is investigated. Injecting pilot gaseous hydrogen parallel to the supersonic incoming air tends to maintain the stabilization of the main liquid kerosene, which is normally injected. Also the maximum kerosene equivalence ratio that can maintain stable flame can be increased by increasing the pilot energy level. The wedge flame holding contributes to an increased kerosene combustion efficiency by the generation of shock-jet interaction.

  4. The application of GIS and RS for epidemics: a case study of the spread of highly pathogenic avian influenza in China in 2004-2005

    NASA Astrophysics Data System (ADS)

    Zhong, Shaobo; Lan, Guiwen; Zhu, Haiguo; Wen, Renqiang; Zhao, Qiansheng; Huang, Quanyi

    2008-12-01

    Because of their inherent advantages, Geographic Information System (GIS) and Remote Sensing (RS) are extremely useful for dealing with geographically referenced information. In the study of epidemics, most data are geographically referenced, which makes GIS and RS the perfect even necessary tools for processing, analysis, representation of epidemic data. Comprehensively considering the data requirements in the study of highly pathogenic avian influenza (HPAI) coupled with the quality of the existing remotely sensed data in terms of the resolution of space, time and spectra, the data sensed by MODIS are chosen and the relevant methods and procedures of data processing from RS and GIS for some environmental factors are proposed. Through using spatial analysis functions and Exploratory Spatial Data Analysis (ESDA) of GIS, some results of relationship between HPAI occurrences and these potential factors are presented. The role played by bird migration is also preliminarily illustrated with some operations such as visualization, overlapping etc. provided by GIS. Through the work of this paper, we conclude: Firstly, the migration of birds causes the spread of HPAI all over the country in 2004-2005. Secondly, the migration of birds is the reason why the spread of HPAI is perturbed. That is, for some classic communicable diseases, their spread exhibits obvious spatial diffusion process. However, the spread of HPAI breaks this general rule. We think leap diffusion and time lag are the probable reasons for this kind of phenomena. Potential distribution of HPAI viruses (corresponding to the distribution of flyways and putative risk sources) is not completely consistent with the occurrences of HPAI. For this phenomenon, we think, in addition to the flyways of birds, all kinds of geographical, climatic factors also have important effect on the occurrences of HPAI. Through the case study of HPAI, we can see that GIS and RS can play very important roles in the study of epidemics.

  5. Socio-economic impacts of avian influenza outbreaks on small-scale producers in Indonesia.

    PubMed

    Basuno, E; Yusdja, Y; Ilham, N

    2010-04-01

    Since its first introduction in 2003 until January 2009 highly pathogenic avian influenza (HPAI) was reported in 31 of 33 provinces of Indonesia. In addition, 115 fatal human cases have been reported in the same period and about 11 million chickens had died or been culled. In 2005 alone, about 60% of farms stopped their operations. The objective of this paper is to describe the socio-economic impact of HPAI on small producers in Indonesia. Simultaneous surveys were conducted in three provinces representing low, medium and high incidence areas, with total respondents of 720 farms. Socio-economic information before, during and after the HPAI outbreak were collected. Results indicated that poultry-raising decreased due to HPAI by 25-80% for broiler, 7-93% for layer and 48% for ducks. Overall, the number of farms stopping operations was 30% and in the high incidence area nearly 70%. The proportion of income from poultry for daily household expenditure decreased from 75-91% before to 38-82% after the HPAI outbreak. We observed more loan requests and less saving in the HPAI-infected farms. Direct impact of HPAI was also seen by decrease in expenditures for education and daily consumption in particular in the high incidence farms. The high proportion of income in pre-HPAI infection indicated the poultry enterprise as the main source of income. HPAI caused significant losses in all study areas through high mortality, lower production and lower demand for poultry products. However, levels of social relationship, social networking, social trust, social organization and decision making remained unchanged. To re-establish the poultry enterprise, the best target are low incidence areas that are less densely populated with humans and poultry.

  6. Experimental Studies of Pylon-Aided Fuel Injection into a Supersonic Crossflow

    DTIC Science & Technology

    2008-05-01

    stagnation conditions up to 922K and 2.8MPa and a total maximum flow rate of 13:6 kg=s. A backpressure control valve positioned in the facility exhaust ... combustion , especially when using hydrocarbon fuels. Various fuel- injection techniques, from different arrangements and shapes of flush-wall injectors to...larger the disruption a fuel injector generates in the supersonic flow, the more effective the mixing of fuel and air. However, disruptions to the

  7. Streakline flow visualization of discrete-hole film cooling with normal, slanted, and compound angle injection

    NASA Technical Reports Server (NTRS)

    Colladay, R. S.; Russell, L. M.

    1976-01-01

    Film injection from discrete holes in a three-row, staggered array with five-diameter spacing was studied for three hole angles: (1) normal, (2) slanted 30 deg to the surface in the direction of the main stream, and (3) slanted 30 deg to the surface and 45 deg laterally to the main stream. The ratio of the boundary layer thickness-to-hole diameter and Reynolds number were typical of gas-turbine film-cooling applications. Detailed streaklines showing the turbulent motion of the injected air were obtained by photographing very small neutrally buoyant, helium-filled soap bubbles which follow the flow field.

  8. Effects of Injection Scheme on Rotating Detonation Engine Operation

    NASA Astrophysics Data System (ADS)

    Chacon, Fabian; Duvall, James; Gamba, Mirko

    2017-11-01

    In this work, we experimentally investigate the operation and performance characteristics of a rotating detonation engine (RDE) operated with different fuel injection schemes and operating conditions. In particular, we investigate the detonation and operation characteristics produced with an axial flow injector configuration and semi-impinging injector configurations. These are compared to the characteristics produced with a canonical radial injection system (AFRL injector). Each type produces a different flowfield and mixture distribution, leading to a different detonation initiation, injector dynamic response, and combustor pressure rise. By using a combination of diagnostics, we quantify the pressure loses and gains in the system, the ability to maintain detonation over a range of operating points, and the coupling between the detonation and the air/fuel feed lines. We particularly focus on how this coupling affects both the stability and the performance of the detonation wave. This work is supported by the DOE/UTSR program under project DE-FE0025315.

  9. Analysis of spatial distribution and transmission characters for highly pathogenic avian influenza in Chinese mainland in 2004

    NASA Astrophysics Data System (ADS)

    Liu, Y. L.; Wei, C. J.; Yan, L.; Chi, T. H.; Wu, X. B.; Xiao, C. S.

    2006-03-01

    After the outbreak of highly pathogenic Avian Influenza (HPAI) in South Korea in the end of year 2003, estimates of the impact of HPAI in affected countries vary greatly, the total direct losses are about 3 billion US dollars, and it caused 15 million birds and poultry flocks death. It is significant to understand the spatial distribution and transmission characters of HPAI for its prevention and control. According to 50 outbreak cases for HPAI in Chinese mainland during 2004, this paper introduces the approach of spatial distribution and transmission characters for HPAI and its results. Its approach is based on remote sensing and GIS techniques. Its supporting data set involves normalized difference vegetation index (NDVI) and land surface temperature (Ts) derived from a time-series of remote sensing data of 1 kilometer-resolution NOAA/AVHRR, birds' migration routes, topology geographic map, lake and wetland maps, and meteorological observation data. In order to analyze synthetically using these data, a supporting platform for analysis Avian Influenza epidemic situation (SPAS/AI) was developed. Supporting by SPAS/AI, the integrated information from multi-sources can be easily used to the analysis of the spatial distribution and transmission character of HPAI. The results show that the range of spatial distribution and transmission of HPAI in China during 2004 connected to environment factors NDVI, Ts and the distributions of lake and wetland, and especially to bird migration routes. To some extent, the results provide some suggestions for the macro-decision making for the prevention and control of HPAI in the areas of potential risk and reoccurrence.

  10. Prevalence and correlates of neck injection among people who inject drugs in Tijuana, Mexico.

    PubMed

    Rafful, Claudia; Wagner, Karla D; Werb, Dan; González-Zúñiga, Patricia E; Verdugo, Silvia; Rangel, Gudelia; Strathdee, Steffanie A

    2015-11-01

    Injecting drugs in the neck has been related to adverse health conditions such as jugular vein thrombosis, deep neck infections, aneurysm, haematomas, airway obstruction, vocal cord paralysis and wound botulism, among others. We identified prevalence and correlates of neck injection among people who inject drugs (PWID) in Tijuana, Mexico. Beginning in 2011, PWID aged ≥18 years who injected drugs within the last month were recruited into a prospective cohort. At baseline and semi-annually, PWID completed interviewer-administered surveys soliciting data on drug-injecting practices. Logistic regression was used to identify predictors of injecting in the neck as the most frequent injection site at a single visit. Of 380 PWID, 35.3% injected in the neck at least once in the past 6 months, among whom 71.6% reported it as their most common injection site, the most common injecting site after the arms (47%). Controlling for age, years injecting and injecting frequency, injecting heroin and methamphetamine two or more times per day and having sought injection assistance were associated with injecting in the neck [adjusted odds ratios (AOR): 2.12; 95% confidence intervals (CI): 1.27-3.53 and AOR: 2.65; 95% CI: 1.52-4.53 respectively]. Injecting in the neck was very common among PWID in Tijuana and was associated with polydrug use and seeking injection assistance. Tailoring harm reduction education interventions for individuals who provide injection assistance ('hit doctors') may allow for the dissemination of safe injecting knowledge to reduce injection-related morbidity and mortality. © 2015 Australasian Professional Society on Alcohol and other Drugs.

  11. Air elimination capability in rapid infusion systems.

    PubMed

    Zoremba, N; Gruenewald, C; Zoremba, M; Rossaint, R; Schaelte, G

    2011-11-01

    Pressure infusion devices are used in clinical practice to apply large volumes of fluid over a short period of time. Although air infusion is a major complication, they have limited capability to detect and remove air during pressure infusion. In this investigation, we tested the air elimination capabilities of the Fluido(®) (The Surgical Company), Level 1(®) (Level 1 Technologies Inc.) and Ranger(®) (Augustine Medical GmbH) pressure infusion devices. Measurements were undertaken with a crystalloid solution during an infusion flow of 100, 200, 400 and 800 ml.min(-1). Four different volumes of air (25, 50, 100 and 200 ml) were injected as boluses in one experimental setting, or infused continuously over the time needed to perfuse 2 l saline in the other setting. The perfusion fluid was collected in an airtight infusion bag and the amount of air obtained in the bag was measured. The delivered air volume was negligible and would not cause any significant air embolism in all experiments. In our experimental setting, we found, during high flow, an increased amount of uneliminated air in all used devices compared with lower perfusion flows. All tested devices had a good air elimination capability. The use of ultrasonic air detection coupled with an automatic shutoff is a significant safety improvement and can reliably prevent accidental air embolism at rapid flows. © 2011 The Authors. Anaesthesia © 2011 The Association of Anaesthetists of Great Britain and Ireland.

  12. Small-Volume Injections: Evaluation of Volume Administration Deviation From Intended Injection Volumes.

    PubMed

    Muffly, Matthew K; Chen, Michael I; Claure, Rebecca E; Drover, David R; Efron, Bradley; Fitch, William L; Hammer, Gregory B

    2017-10-01

    In the perioperative period, anesthesiologists and postanesthesia care unit (PACU) nurses routinely prepare and administer small-volume IV injections, yet the accuracy of delivered medication volumes in this setting has not been described. In this ex vivo study, we sought to characterize the degree to which small-volume injections (≤0.5 mL) deviated from the intended injection volumes among a group of pediatric anesthesiologists and pediatric postanesthesia care unit (PACU) nurses. We hypothesized that as the intended injection volumes decreased, the deviation from those intended injection volumes would increase. Ten attending pediatric anesthesiologists and 10 pediatric PACU nurses each performed a series of 10 injections into a simulated patient IV setup. Practitioners used separate 1-mL tuberculin syringes with removable 18-gauge needles (Becton-Dickinson & Company, Franklin Lakes, NJ) to aspirate 5 different volumes (0.025, 0.05, 0.1, 0.25, and 0.5 mL) of 0.25 mM Lucifer Yellow (LY) fluorescent dye constituted in saline (Sigma Aldrich, St. Louis, MO) from a rubber-stoppered vial. Each participant then injected the specified volume of LY fluorescent dye via a 3-way stopcock into IV tubing with free-flowing 0.9% sodium chloride (10 mL/min). The injected volume of LY fluorescent dye and 0.9% sodium chloride then drained into a collection vial for laboratory analysis. Microplate fluorescence wavelength detection (Infinite M1000; Tecan, Mannedorf, Switzerland) was used to measure the fluorescence of the collected fluid. Administered injection volumes were calculated based on the fluorescence of the collected fluid using a calibration curve of known LY volumes and associated fluorescence.To determine whether deviation of the administered volumes from the intended injection volumes increased at lower injection volumes, we compared the proportional injection volume error (loge [administered volume/intended volume]) for each of the 5 injection volumes using a linear

  13. Infrared Signature Masking by Air Plasma Radiation

    NASA Technical Reports Server (NTRS)

    Kruger, Charles H.; Laux, C. O.

    2001-01-01

    This report summarizes the results obtained during a research program on the infrared radiation of air plasmas conducted in the High Temperature Gasdynamics Laboratory at Stanford University under the direction of Professor Charles H. Kruger, with Dr. Christophe O. Laux as Associate Investigator. The goal of this research was to investigate the masking of infrared signatures by the air plasma formed behind the bow shock of high velocity missiles. To this end, spectral measurements and modeling were made of the radiation emitted between 2.4 and 5.5 micrometers by an atmospheric pressure air plasma in chemical and thermal equilibrium at a temperature of approximately 3000 K. The objective was to examine the spectral emission of air species including nitric oxide, atomic oxygen and nitrogen lines, molecular and atomic continua, as well as secondary species such as water vapor or carbon dioxide. The cold air stream injected in the plasma torch contained approximately 330 parts per million of CO2, which is the natural CO2 concentration in atmospheric air at room temperatures, and a small amount of water vapor with an estimated mole fraction of 3.8x10(exp -4).

  14. Microembolism and catheter ablation II: effects of cerebral microemboli injection in a canine model.

    PubMed

    Haines, David E; Stewart, Mark T; Barka, Noah D; Kirchhof, Nicole; Lentz, Linnea R; Reinking, Nicki M; Urban, Jon F; Halimi, Franck; Deneke, Thomas; Kanal, Emanuel

    2013-02-01

    Asymptomatic cerebral lesions have been observed on diffusion weighted MRI (DWI) scans shortly after catheter ablation of atrial fibrillation, but the pathogenesis of these lesions is incompletely understood. Twelve dogs underwent selective catheterization of the internal carotid or vertebral arteries. Either a microbubbled mixture of air (1.0-4.0 mL), blood, contrast, and saline (n=5), or heat-dried pulverized blood (particle size <600 μm) mixed with saline and contrast (n=6) was injected. One sham control experiment was performed. MRI scans were performed preinjection, and at 1, 2, and 4 days postinjection. Neurological tests were performed daily. Gross pathology and histopathology were performed on the brains after being euthanized on day 4. Three animals died <24 hours after injection. Hyperintense lesions were observed on DWI (median maximum diameter 3.1 mm) in 2 of 4 animals after air embolism and in 3 of 5 animals after particulate embolism. No DWI lesions were detected in the remaining 5 animals (including the sham control). Lesions seen on DWI and confirmed on the fluid attenuating inversion recovery sequence correlated well with anatomic lesions on histopathology. Cerebral embolization of air microbubbles or microparticulate debris that approximate the embolic sources from catheter ablation can create hyperintense DWI punctate lesions in a canine model. The location and size of the DWI/fluid attenuating inversion recovery lesions correlate with pathological findings.

  15. Modeling and investigation of refrigeration system performance with two-phase fluid injection in a scroll compressor

    NASA Astrophysics Data System (ADS)

    Gu, Rui

    Vapor compression cycles are widely used in heating, refrigerating and air-conditioning. A slight performance improvement in the components of a vapor compression cycle, such as the compressor, can play a significant role in saving energy use. However, the complexity and cost of these improvements can block their application in the market. Modifying the conventional cycle configuration can offer a less complex and less costly alternative approach. Economizing is a common modification for improving the performance of the refrigeration cycle, resulting in decreasing the work required to compress the gas per unit mass. Traditionally, economizing requires multi-stage compressors, the cost of which has restrained the scope for practical implementation. Compressors with injection ports, which can be used to inject economized refrigerant during the compression process, introduce new possibilities for economization with less cost. This work focuses on computationally investigating a refrigeration system performance with two-phase fluid injection, developing a better understanding of the impact of injected refrigerant quality on refrigeration system performance as well as evaluating the potential COP improvement that injection provides based on refrigeration system performance provided by Copeland.

  16. Rich catalytic injection

    DOEpatents

    Veninger, Albert [Coventry, CT

    2008-12-30

    A gas turbine engine includes a compressor, a rich catalytic injector, a combustor, and a turbine. The rich catalytic injector includes a rich catalytic device, a mixing zone, and an injection assembly. The injection assembly provides an interface between the mixing zone and the combustor. The injection assembly can inject diffusion fuel into the combustor, provides flame aerodynamic stabilization in the combustor, and may include an ignition device.

  17. Anesthetic efficacy of a repeated intraosseous injection following a primary intraosseous injection.

    PubMed

    Jensen, Joanne; Nusstein, John; Drum, Melissa; Reader, Al; Beck, Mike

    2008-02-01

    The purpose of this prospective, randomized, single-blinded study was to determine the anesthetic efficacy of a repeated intraosseous injection given 30 minutes after a primary intraosseous injection. Using a crossover design, 55 subjects randomly received a primary X-tip intraosseous injection (Dentsply Inc, York, PA) of 1.4 mL of 2% lidocaine with epinephrine (using the Wand; Milestone Scientific, Deerfield, IL) and a repeated intraosseous or mock injection at 30 minutes in two appointments. The first molar and adjacent teeth were pulp tested every 2 minutes for a total of 120 minutes. Success was defined as obtaining two consecutive 80 readings with the electric pulp tester. Success of the initial intraosseous injection was 100% for the first molar. The repeated intraosseous injection mimicked the initial intraosseous injection in terms of pulpal anesthesia and statistically provided another 15 minutes of pulpal anesthesia. In conclusion, using the methodology presented, repeating the intraosseous injection 30 minutes after an initial intraosseous injection will provide an additional 15 minutes of pulpal anesthesia.

  18. Prevalence and correlates of neck injection among people who inject drugs in Tijuana, Mexico

    PubMed Central

    RAFFUL, CLAUDIA; WAGNER, KARLA D.; WERB, DAN; GONZÁLEZ-ZÚÑIGA, PATRICIA E.; VERDUGO, SILVIA; RANGEL, GUDELIA; STRATHDEE, STEFFANIE A.

    2016-01-01

    Introduction and Aims Injecting drugs in the neck has been related to adverse health conditions such as jugular vein thrombosis, deep neck infections, aneurysm, haematomas, airway obstruction, vocal cord paralysis and wound botulism, among others. We identified prevalence and correlates of neck injection among people who inject drugs (PWID) in Tijuana, Mexico. Design and Methods Beginning in 2011, PWID aged ≥18 years who injected drugs within the last month were recruited into a prospective cohort. At baseline and semi-annually, PWID completed interviewer-administered surveys soliciting data on drug-injecting practices. Logistic regression was used to identify predictors of injecting in the neck as the most frequent injection site at a single visit. Results Of 380 PWID, 35.3% injected in the neck at least once in the past 6 months, among whom 71.6% reported it as their most common injection site, the most common injecting site after the arms (47%). Controlling for age, years injecting and injecting frequency, injecting heroin and methamphetamine two or more times per day and having sought injection assistance were associated with injecting in the neck [adjusted odds ratios (AOR): 2.12; 95% confidence intervals (CI): 1.27–3.53 and AOR: 2.65; 95% CI: 1.52–4.53 respectively]. Discussion and Conclusions Injecting in the neck was very common among PWID in Tijuana and was associated with polydrug use and seeking injection assistance. Tailoring harm reduction education interventions for individuals who provide injection assistance (‘hit doctors’) may allow for the dissemination of safe injecting knowledge to reduce injection-related morbidity and mortality. PMID:25867795

  19. Mechanical Weakening during Fluid Injection in Critically Stressed Sandstones with Acoustic Monitoring

    NASA Astrophysics Data System (ADS)

    David, C.; Dautriat, J. D.; Sarout, J.; Macault, R.; Bertauld, D.

    2014-12-01

    Water weakening is a well-known phenomenon which can lead to subsidence during the production of hydrocarbon reservoirs. The example of the Ekofisk oil field in the North Sea has been well documented for years. In order to assess water weakening effects in reservoir rocks, previous studies have focused on changes in the failure envelopes derived from mechanical tests conducted on rocks saturated either with water or with inert fluids. However, little attention has been paid so far on the mechanical behaviour during the fluid injection stage, like in enhanced oil recovery operations. We studied the effect of fluid injection on the mechanical behaviour of Sherwood sandstone, a weakly-consolidated sandstone sampled at Ladram Bay in UK. In order to highlight possible weakening effects, water and inert oil have been injected into critically-loaded samples to assess their effect on strength and elastic properties and to derive the acoustic signature of the saturation front for each fluid. The specimens were instrumented with 16 ultrasonic P-wave transducers for both passive and active acoustic monitoring during fluid injection and loading. After conducting standard triaxial tests on three samples saturated with air, water and oil respectively, mechanical creep tests were conducted on dry samples loaded at 80% of the compressive strength of the dry rock. While these conditions are kept constant, a fluid is injected at the bottom end of the sample with a low back pressure (0.5 MPa) to minimize effective stress variations during injection. Both water and oil were used as the injected pore fluid in two experiments. As soon as the fluids start to flow into the samples, creep is taking place with a much higher strain rate for water injection compared to oil injection. A transition from secondary creep to tertiary creep is observed in the water injection test whereas in the oil injection test no significant creep acceleration is observed after one pore volume of oil was

  20. Fuel-air mixing and combustion in a two-dimensional Wankel engine

    NASA Technical Reports Server (NTRS)

    Shih, T. I.-P.; Schock, H. J.; Ramos, J. I.

    1987-01-01

    A two-equation turbulence model, an algebraic grid generalization method, and an approximate factorization time-linearized numerical technique are used to study the effects of mixture stratification at the intake port and gaseous fuel injection on the flow field and fuel-air mixing in a two-dimensional rotary engine model. The fuel distribution in the combustion chamber is found to be a function of the air-fuel mixture fluctuations at the intake port. It is shown that the fuel is advected by the flow field induced by the rotor and is concentrated near the leading apex during the intake stroke, while during compression, the fuel concentration is highest near the trailing apex and is lowest near the rotor. It is also found that the fuel concentration near the trailing apex and rotor is small except at high injection velocities.

  1. Characteristics of transverse hydrogen jet in presence of multi air jets within scramjet combustor

    NASA Astrophysics Data System (ADS)

    Barzegar Gerdroodbary, M.; Fallah, Keivan; Pourmirzaagha, H.

    2017-03-01

    In this article, three-dimensional simulation is performed to investigate the effects of micro air jets on mixing performances of cascaded hydrogen jets within a scramjet combustor. In order to compare the efficiency of this technique, constant total fuel rate is injected through one, four, eight and sixteen arrays of portholes in a Mach 4.0 crossflow with a fuel global equivalence ratio of 0.5. In this method, micro air jets are released within fuel portholes to augment the penetration in upward direction. Extensive studies were performed by using the Reynolds-averaged Navier-Stokes equations with Menter's Shear Stress Transport (SST) turbulence model. Numerical studies on various air and fuel arrangements are done and the mixing rate and penetration are comprehensively investigated. Also, the flow feature of the fuel and air jets for different configuration is revealed. According to the obtained results, the influence of the micro air jets is significant and the presence of micro air jets increases the mixing rate about 116%, 77%, 56% and 41% for single, 4, 8 and 16 multi fuel jets, respectively. The maximum mixing rate of the hydrogen jet is obtained when the air jets are injected within the sixteen multi fuel jets. According to the circulation analysis of the flow for different air and fuel arrangements, it was found that the effects of air jets on flow structure are varied in various conditions and the presence of the micro jet highly intensifies the circulation in the case of 8 and 16 multi fuel jets.

  2. Influence of pre-injection control parameters on main-injection fuel quantity for an electronically controlled double-valve fuel injection system of diesel engine

    NASA Astrophysics Data System (ADS)

    Song, Enzhe; Fan, Liyun; Chen, Chao; Dong, Quan; Ma, Xiuzhen; Bai, Yun

    2013-09-01

    A simulation model of an electronically controlled two solenoid valve fuel injection system for a diesel engine is established in the AMESim environment. The accuracy of the model is validated through comparison with experimental data. The influence of pre-injection control parameters on main-injection quantity under different control modes is analyzed. In the spill control valve mode, main-injection fuel quantity decreases gradually and then reaches a stable level because of the increase in multi-injection dwell time. In the needle control valve mode, main-injection fuel quantity increases with rising multi-injection dwell time; this effect becomes more obvious at high-speed revolutions and large main-injection pulse widths. Pre-injection pulse width has no obvious influence on main-injection quantity under the two control modes; the variation in main-injection quantity is in the range of 1 mm3.

  3. RimabotulinumtoxinB Injection

    MedlinePlus

    ... tightening of the neck muscles that may cause neck pain and abnormal head positions). RimabotulinumtoxinB injection is in ... cannot be substituted for another.RimabotulinumtoxinB injection controls ... longer before you feel the full benefit of rimabotulinumtoxinB injection.

  4. Lacosamide Injection

    MedlinePlus

    Lacosamide injection is used in combination with other medications to control certain types of seizures in people who cannot take oral medications. Lacosamide injection is in a class of medications called ...

  5. Static Flow Characteristics of a Mass Flow Injecting Valve

    NASA Technical Reports Server (NTRS)

    Mattern, Duane; Paxson, Dan

    1995-01-01

    A sleeve valve is under development for ground-based forced response testing of air compression systems. This valve will be used to inject air and to impart momentum to the flow inside the first stage of a multi-stage compressor. The valve was designed to deliver a maximum mass flow of 0.22 lbm/s (0.1 kg/s) with a maximum valve throat area of 0.12 sq. in (80 sq. mm), a 100 psid (689 KPA) pressure difference across the valve and a 68 F, (20 C) air supply. It was assumed that the valve mass flow rate would be proportional to the valve orifice area. A static flow calibration revealed a nonlinear valve orifice area to mass flow relationship which limits the maximum flow rate that the valve can deliver. This nonlinearity was found to be caused by multiple choking points in the flow path. A simple model was used to explain this nonlinearity and the model was compared to the static flow calibration data. Only steady flow data is presented here. In this report, the static flow characteristics of a proportionally controlled sleeve valve are modelled and validated against experimental data.

  6. Analysis of gas turbine engines using water and oxygen injection to achieve high Mach numbers and high thrust

    NASA Technical Reports Server (NTRS)

    Henneberry, Hugh M.; Snyder, Christopher A.

    1993-01-01

    An analysis of gas turbine engines using water and oxygen injection to enhance performance by increasing Mach number capability and by increasing thrust is described. The liquids are injected, either separately or together, into the subsonic diffuser ahead of the engine compressor. A turbojet engine and a mixed-flow turbofan engine (MFTF) are examined, and in pursuit of maximum thrust, both engines are fitted with afterburners. The results indicate that water injection alone can extend the performance envelope of both engine types by one and one-half Mach numbers at which point water-air ratios reach 17 or 18 percent and liquid specific impulse is reduced to some 390 to 470 seconds, a level about equal to the impulse of a high energy rocket engine. The envelope can be further extended, but only with increasing sacrifices in liquid specific impulse. Oxygen-airflow ratios as high as 15 percent were investigated for increasing thrust. Using 15 percent oxygen in combination with water injection at high supersonic Mach numbers resulted in thrust augmentation as high as 76 percent without any significant decrease in liquid specific impulse. The stoichiometric afterburner exit temperature increased with increasing oxygen flow, reaching 4822 deg R in the turbojet engine at a Mach number of 3.5. At the transonic Mach number of 0.95 where no water injection is needed, an oxygen-air ratio of 15 percent increased thrust by some 55 percent in both engines, along with a decrease in liquid specific impulse of 62 percent. Afterburner temperature was approximately 4700 deg R at this high thrust condition. Water and/or oxygen injection are simple and straightforward strategies to improve engine performance and they will add little to engine weight. However, if large Mach number and thrust increases are required, liquid flows become significant, so that operation at these conditions will necessarily be of short duration.

  7. Air Distribution Retrofit Strategies for Affordable Housing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dentz, Jordan; Conlin, Francis; Holloway, Parker

    2014-03-01

    In multifamily and attached buildings, traditional duct sealing methods are often impractical or costly and disruptive because of the difficulty in accessing leakage sites. In this project, two retrofit duct sealing techniques -- manually-applied sealants and injecting a spray sealant, were implemented in several low-rise multi-unit buildings. An analysis on the cost and performance of the two methods are presented. Each method was used in twenty housing units: approximately half of each group of units are single story and the remainder two-story. Results show that duct leakage to the outside was reduced by an average of 59% through the usemore » of manual methods, and by 90% in the units where the injected spray sealant was used. It was found that 73% of the leakage reduction in homes that were treated with injected spray sealant was attributable to the manual sealing done at boots, returns and the air handler. The cost of manually-applying sealant ranged from $275 to $511 per unit and for the injected spray sealant the cost was $700 per unit. Modeling suggests a simple payback of 2.2 years for manual sealing and 4.7 years for the injected spray sealant system. Utility bills were collected for one year before and after the retrofits. Utility bill analysis shows 14% and 16% energy savings using injected spray sealant system and hand sealing procedure respectively in heating season whereas in cooling season, energy savings using injected spray sealant system and hand sealing were both 16%.« less

  8. Air Distribution Retrofit Strategies for Affordable Housing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dentz, J.; Conlin, F.; Holloway, Parker

    2014-03-01

    In multifamily and attached buildings, traditional duct sealing methods are often impractical or costly and disruptive because of the difficulty in accessing leakage sites. In this project, two retrofit duct sealing techniques, manually-applied sealants and injecting a spray sealant, were implemented in several low-rise multiunit buildings. An analysis on the cost and performance of the two methods are presented. Each method was used in twenty housing units: approximately half of each group of units are single story and the remainder are two story. Results show that duct leakage to the outside was reduced by an average of 59% through themore » use of manual methods, and by 90% in the units where the injected spray sealant was used. It was found that 73% of the leakage reduction in homes that were treated with injected spray sealant was attributable to the manual sealing done at boots, returns and the air handler. The cost of manually-applying sealant ranged from $275 to $511 per unit and for the injected spray sealant the cost was $700 per unit. Modeling suggests a simple payback of 2.2 years for manual sealing and 4.7 years for the injected spray sealant system. Utility bills were collected for one year before and after the retrofits. Utility bill analysis shows 14% and 16% energy savings using injected spray sealant system and hand sealing procedure respectively in heating season whereas in cooling season, energy savings using injected spray sealant system and hand sealing were both 16%.« less

  9. Impact of air conditioning system operation on increasing gases emissions from automobile

    NASA Astrophysics Data System (ADS)

    Burciu, S. M.; Coman, G.

    2016-08-01

    The paper presents a study concerning the influence of air conditioning system operation on the increase of gases emissions from cars. The study focuses on urban operating regimes of the automobile, regimes when the engines have low loads or are operating at idling. Are presented graphically the variations of pollution emissions (CO, CO2, HC) depending of engine speed and the load on air conditioning system. Additionally are presented, injection duration, throttle position, the mechanical power required by the compressor of air conditioning system and the refrigerant pressure variation on the discharge path, according to the stage of charging of the air conditioning system.

  10. Two stroke homogenous charge compression ignition engine with pulsed air supplier

    DOEpatents

    Clarke, John M.

    2003-08-05

    A two stroke homogenous charge compression ignition engine includes a volume pulsed air supplier, such as a piston driven pump, for efficient scavenging. The usage of a homogenous charge tends to decrease emissions. The use of a volume pulsed air supplier in conjunction with conventional poppet type intake and exhaust valves results in a relatively efficient scavenging mode for the engine. The engine preferably includes features that permit valving event timing, air pulse event timing and injection event timing to be varied relative to engine crankshaft angle. The principle use of the invention lies in improving diesel engines.

  11. Colistimethate Injection

    MedlinePlus

    ... is used to treat certain infections caused by bacteria. Colistimethate injection is in a class of medications called antibiotics. It works by killing bacteria.Antibiotics such as colistimethate injection will not work ...

  12. MICROBIAL RESPONSES TO IN SITU CHEMICAL OXIDATION, SIX-PHASE HEATING, AND STEAM INJECTION REMEDIATION TECHNOLOGIES IN GROUND WATER

    EPA Science Inventory

    The evaluation of microbial responses to three in situ source removal remedial technologies including permanganate-based in-situ chemical oxidation (ISCO), six-phase heating (SPH), and steam injection (SI) was performed at Cape Canaveral Air Station in Florida. The investigatio...

  13. Hydrocortisone Injection

    MedlinePlus

    Hydrocortisone injection is used to treat symptoms of low corticosteroid levels (lack of certain substances that are ... is also used to treat severe allergic reactions. Hydrocortisone injection is used in the management of multiple ...

  14. Teduglutide Injection

    MedlinePlus

    ... the medication should read the manufacturer's directions for mixing and injecting the medication before you use it ... Teduglutide must be used within 3 hours after mixing teduglutide powder with the diluent.You can inject ...

  15. Doxycycline Injection

    MedlinePlus

    Doxycycline injection is used to treat or prevent bacterial infections, including pneumonia and other respiratory tract infections. ... certain skin, genital, intestine, and urinary system infections. Doxycycline injection may be used to treat or prevent ...

  16. Dupilumab Injection

    MedlinePlus

    ... injection is used to treat the symptoms of eczema (atopic dermatitis; a skin disease that causes the ... use other medications for their condition or whose eczema has not responded to other medications. Dupilumab injection ...

  17. Naltrexone Injection

    MedlinePlus

    Naltrexone injection is used along with counseling and social support to help people who have stopped drinking ... injection is also used along with counseling and social support to help people who have stopped abusing ...

  18. Doripenem Injection

    MedlinePlus

    ... tract, kidney, and abdomen that are caused by bacteria. Doripenem injection is not approved by the Food ... medications called carbapenem antibiotics. It works by killing bacteria.Antibiotics such as doripenem injection will not work ...

  19. Chloramphenicol Injection

    MedlinePlus

    ... treat certain types of serious infections caused by bacteria when other antibiotics cannot be used. Chloramphenicol injection ... antibiotics. It works by stopping the growth of bacteria..Antibiotics such as chloramphenicol injection will not work ...

  20. Cefoxitin Injection

    MedlinePlus

    ... injection is used to treat infections caused by bacteria including pneumonia and other lower respiratory tract (lung) ... medications called cephamycin antibiotics. It works by killing bacteria.Antibiotics such as cefoxitin injection will not work ...

  1. Tocilizumab Injection

    MedlinePlus

    ... of age or older after receiving certain immunotherapy infusions. Tocilizumab injection is in a class of medications ... you miss an appointment to receive a tocilizumab infusion, call your doctor.If you forget to inject ...

  2. Aripiprazole Injection

    MedlinePlus

    ... a mental illness that causes disturbed or unusual thinking, loss of interest in life, and strong or ... aripiprazole injection and aripiprazole extended-release injection developed gambling problems or other intense urges or behaviors that ...

  3. Mipomersen Injection

    MedlinePlus

    Mipomersen injection is used to decrease levels of cholesterol and other fatty substances in the blood in ... procedure that removes LDL from the blood), but mipomersen injection should not be used along with this ...

  4. Paclitaxel Injection

    MedlinePlus

    ... other medications. Paclitaxel injection manufactured with polyoxyethylated castor oil is used to treat ovarian cancer (cancer that ... and lung cancer. Paclitaxel injection with polyoxyethylated castor oil is also used to treat Kaposi's sarcoma (a ...

  5. Epidural steroid injections: update on efficacy, safety, and newer medications for injection.

    PubMed

    Kozlov, N; Benzon, H T; Malik, K

    2015-08-01

    The best evidence for epidural injection appears to be in the setting of radicular pain with epidural steroid and non-steroid injections more efficacious than non-epidural injections. Studies showed the efficacy of non-particulate steroid to approach the efficacy of particulate steroid and very limited comparisons demonstrated no significant difference between epidural steroid and epidural non-steroid (local anesthetic) injection. Preliminary studies evaluating epidural injection of disease modifying anti-rheumatic drugs such etanercept and tocilizumab showed conflicting results and had significant limitations. Randomized studies support better efficacy of transforaminal injection due to greater incidence of ventral epidural spread of injectate when compared to interlaminar injection. Thus, the transforaminal approach is recommended when unilateral radicular pain is limited to one nerve root. However, the transforaminal approach is associated with greater incidence of central nervous system injury, including paraplegia, attributed to embolization of the particulate steroid. Recent studies showed that non-particulate steroids potentially last as long as particulate steroids. Therefore non-particulate steroid should be used in initial transforaminal epidural injection. Future studies should look into the role of adjunct diagnostic aids, including digital subtraction angiography, in detecting intravascular injection and the ideal site of needle placement, whether it is the safe triangle or the triangle of Kambin. Finally, the role of epidural disease -modifying antirheumatic drugs in the management of back pain needs to be better elucidated.

  6. Intra-articular corticosteroid preparations: different characteristics and their effect during inflammation induced by monosodium urate crystals in the rat subcutaneous air pouch.

    PubMed

    Rull, M; Clayburne, G; Sieck, M; Schumacher, H R

    2003-09-01

    To examine the effects of three commonly used intra-articular depot corticosteroid preparations tested in a rat air pouch model and their effect against monosodium urate (MSU) crystal-induced inflammation. Rheumatologists use intra-articular corticosteroid preparations to relieve pain and inflammation of acute monoarthritis without really knowing their effects on the synovial fluid and membrane or the differences between distinct preparations. This work compares the effect of three commonly used corticosteroid preparations in vivo, showing that they behave differently. A subcutaneous air pouch was formed in male Sprague-Dawley rats. A first group of 6-day-old air pouches were injected with 10 ml of 6 mg/ml normal saline solution, 6 mg/ml betamethasone containing both depot betamethasone acetate and soluble betamethasone phosphate (Celestone) in 9 ml of normal saline solution, 20 mg/ml of prednisolone tebutate (Hydeltra) in 9 ml of normal saline solution or 20 mg/ml of triamcinolone hexacetonide (Aristospan) in 9 ml of normal saline solution. A second group (group 2) of air pouches were injected with 15 mg of synthetic MSU crystals and 24 h later they were reinjected with 1 ml of the same three corticosteroid suspensions. For each condition four rats were killed at 6, 24, 48 h and 7 days. Pouch fluid and tissue were analysed. In the first 6 h after normal saline solution or corticosteroid injection into the air pouch there were mildly increased leucocyte counts in the air pouch fluid. Betamethasone-injected pouches showed no cells in the fluid after 6 h and no crystals after 24 h, triamcinolone-injected pouches still showed rare cells at 7 days. Both triamcinolone and prednisolone crystals persisted in higher numbers and lasted longer in the fluid than did betamethasone (P<0.05). In group 2 MSU crystal phagocytosis in the fluid was decreased in the betamethasone- (P<0.01), prednisolone- (P<0.003) and triamcinolone- (P<0.006) injected pouches when compared with the

  7. Pramlintide Injection

    MedlinePlus

    ... eye problems. Using medication(s), making lifestyle changes (e.g., diet, exercise, quitting smoking), and regularly checking your ... inject pramlintide into your arm. Choose a different spot to inject pramlintide every day. Be sure that ...

  8. Indicator providing continuous indication of the presence of a specific pollutant in air

    NASA Technical Reports Server (NTRS)

    Miller, C. G.; Bartera, R. E. (Inventor)

    1976-01-01

    A continuous HCl in-air indicator was developed which consists of a tube-like element with an inlet end through which a continuous stream of air containing HCl enters. The air flows downstream from the inlet end and exits the element's outlet end. Positioned between the element's inlet and outlet ends are first and second spaced apart photoelectric units, which are preferably positioned adjacent the inlet and outlet ends, respectively. Ammonia gas is injected into the air, flowing through the element, at a position between the two photoelectric units. The ammonia gas reacts with the HCl in the air to form ammonium chloride particles. The difference between the outputs of the two photoelectric units is an indication of the amount of HCl in the air stream.

  9. Medroxyprogesterone Injection

    MedlinePlus

    ... Medroxyprogesterone injection is a very effective method of birth control but does not prevent the spread of human ... you have been using a different method of birth control and are switching to medroxyprogesterone injection, your doctor ...

  10. Triptorelin Injection

    MedlinePlus

    ... used to treat the symptoms associated with advanced prostate cancer. Triptorelin injection (Triptodur) is used to treat central ... a medical office or clinic. When used for prostate cancer, an injection of 3.75 mg of triptorelin ( ...

  11. Adalimumab Injection

    MedlinePlus

    ... causes pain, swelling, and damage) including the following: rheumatoid arthritis (a condition in which the body attacks its ... If you are using adalimumab injection to treat rheumatoid arthritis, your doctor may tell you to inject the ...

  12. Buprenorphine Injection

    MedlinePlus

    Buprenorphine extended-release injection is used to treat opioid dependence (addiction to opioid drugs, including heroin and narcotic painkillers) ... sublingual buprenorphine for at least 7 days. Buprenorphine extended-release injection is in a class of medications ...

  13. Golimumab Injection

    MedlinePlus

    ... body and causes pain, swelling, and damage) including: rheumatoid arthritis (condition in which the body attacks its own ... doctor.If golimumab injection is used to treat rheumatoid arthritis, it may also be injected intravenously (into a ...

  14. Distribution and dynamics of risk factors associated with highly pathogenic avian influenza H5N1.

    PubMed

    Zhang, L; Guo, Z W; Bridge, E S; Li, Y M; Xiao, X M

    2013-11-01

    Within China's Poyang Lake region, close interactions between wild migratory birds and domestic poultry are common and provide an opportunity for the transmission and subsequent outbreaks of highly pathogenic avian influenza (HPAI) virus. We overlaid a series of ecological factors associated with HPAI to map the risk of HPAI in relation to natural and anthropogenic variables, and we identified two hotspots for potential HPAI outbreaks in the Poyang Lake region as well as three corridors connecting the two hotspot areas. In hotspot I, there is potential for migratory birds to bring new avian influenza (AI) strains that can reassort with existing strains to form new AI viruses. Hotspot II features high-density poultry production where outbreaks of endemic AI viruses are likely. The three communication corridors that link the two hotspots further promote HPAI H5N1 transmission and outbreaks and lead to the persistence of AI viruses in the Poyang Lake region. We speculate that the region's unevenly distributed poultry supply-and-demand system might be a key factor inducing HPAI H5N1 transmission and outbreaks in the Poyang Lake region.

  15. Evolocumab Injection

    MedlinePlus

    ... coronary artery bypass (CABG) surgery in people with cardiovascular disease. Evolocumab injection is also used along with diet ... evolocumab injection is used to treat HeFH or cardiovascular disease or to reduce the risk of a stroke, ...

  16. Data from pumping and injection tests and chemical sampling in the geothermal aquifer at Klamath Falls, Oregon

    USGS Publications Warehouse

    Benson, S.M.; Janik, C.J.; Long, D.C.; Solbau, R.D.; Lienau, P.J.

    1984-01-01

    A seven-week pumping and injection tests in the geothermal aquifer at Klamath Falls, Oregon, in 1983 provided new information on hydraulic properties of the aquifer. The Open-File Data Report on the tests includes graphs of water levels measured in 50 wells, temperature measurement in 17 wells , daily air-temperatures in relation to discharge of thermal water from more than 70 pumped and artesian wells, tables of monthly mean air temperatures and estimates of discharges of thermal water during a normal year, and tables of chemical and isotopic analyses on samples from 12 wells. The water-level measurements reflect the effects of pumping, injection, and recovery over about 1.7 square miles of the hot-well area of Klamath Falls. The pumped well, City Well No 1, and the injection well at the Klamath County Museum are components of a proposed District Heating Plan. The study was funded principally under contracts from the U.S. Department of Energy to the Lawrence Berkeley Laboratory, Stanford University, and the Oregon Institute of Technology, with coordination and chemical sampling provided under the Geothermal Research Program, U.S. Geological Survey. Support was received from the City of Klamath Falls, Klamath County Chamber of Commerce, Citizens for Responsible Geothermal Development, and many citizen volunteers. (USGS)

  17. Free-grazing Ducks and Highly Pathogenic Avian Influenza, Thailand

    PubMed Central

    Chaitaweesub, Prasit; Parakamawongsa, Tippawon; Premashthira, Sith; Tiensin, Thanawat; Kalpravidh, Wantanee; Wagner, Hans; Slingenbergh, Jan

    2006-01-01

    Thailand has recently had 3 epidemic waves of highly pathogenic avian influenza (HPAI); virus was again detected in July 2005. Risk factors need to be identified to better understand disease ecology and assist HPAI surveillance and detection. This study analyzed the spatial distribution of HPAI outbreaks in relation to poultry, land use, and other anthropogenic variables from the start of the second epidemic wave (July 2004–May 2005). Results demonstrate a strong association between H5N1 virus in Thailand and abundance of free-grazing ducks and, to a lesser extent, native chickens, cocks, wetlands, and humans. Wetlands used for double-crop rice production, where free-grazing duck feed year round in rice paddies, appear to be a critical factor in HPAI persistence and spread. This finding could be important for other duck-producing regions in eastern and southeastern Asian countries affected by HPAI. PMID:16494747

  18. MICROSCOPIC OBSERVATION AND QUANTIFICATION OF ENHANCED DNAPL REMOVAL BY COSOLVENT-AIR FLOODING

    EPA Science Inventory

    The simultaneous injection of cosolvent and air has been suggested to improve sweep efficiency of cosolvent flooding for dense nonaqueous phase liquid (DNAPL) remediation. Glass micromodel experiments were conducted to investigate the factors that influence perchloroethylene (PCE...

  19. Levoleucovorin Injection

    MedlinePlus

    ... injection is used to prevent harmful effects of methotrexate (Rheumatrex, Trexall) when methotrexate is used to to treat certain types of ... people who have accidentally received an overdose of methotrexate or similar medications. Levoleucovorin injection is in a ...

  20. Low Virulence and Lack of Airborne Transmission of the Dutch Highly Pathogenic Avian Influenza Virus H5N8 in Ferrets

    PubMed Central

    van den Brand, Judith M. A.; Lexmond, Pascal; Bestebroer, Theo M.; Rimmelzwaan, Guus F.; Koopmans, Marion; Kuiken, Thijs; Fouchier, Ron A. M.

    2015-01-01

    Highly pathogenic avian influenza (HPAI) H5N8 viruses that emerged in poultry in East Asia spread to Europe and North America by late 2014. Here we show that the European HPAI H5N8 viruses differ from the Korean and Japanese HPAI H5N8 viruses by several amino acids and that a Dutch HPAI H5N8 virus had low virulence and was not transmitted via the airborne route in ferrets. The virus did not cross-react with sera raised against pre-pandemic H5 vaccine strains. This data is useful for public health risk assessments. PMID:26090682

  1. CFD Modeling of Swirl and Nonswirl Gas Injections into Liquid Baths Using Top Submerged Lances

    NASA Astrophysics Data System (ADS)

    Huda, Nazmul; Naser, J.; Brooks, G.; Reuter, M. A.; Matusewicz, R. W.

    2010-02-01

    Fluid flow phenomena in a cylindrical bath stirred by a top submerged lance (TSL) gas injection was investigated by using the computational fluid dynamic (CFD) modeling technique for an isothermal air-water system. The multiphase flow simulation, based on the Euler-Euler approach, elucidated the effect of swirl and nonswirl flow inside the bath. The effects of the lance submergence level and the air flow rate also were investigated. The simulation results for the velocity fields and the generation of turbulence in the bath were validated against existing experimental data from the previous water model experimental study by Morsi et al.[1] The model was extended to measure the degree of the splash generation for different liquid densities at certain heights above the free surface. The simulation results showed that the two-thirds lance submergence level provided better mixing and high liquid velocities for the generation of turbulence inside the water bath. However, it is also responsible for generating more splashes in the bath compared with the one-third lance submergence level. An approach generally used by heating, ventilation, and air conditioning (HVAC) system simulations was applied to predict the convective mixing phenomena. The simulation results for the air-water system showed that mean convective mixing for swirl flow is more than twice than that of nonswirl in close proximity to the lance. A semiempirical equation was proposed from the results of the present simulation to measure the vertical penetration distance of the air jet injected through the annulus of the lance in the cylindrical vessel of the model, which can be expressed as L_{va} = 0.275( {do - di } )Frm^{0.4745} . More work still needs to be done to predict the detail process kinetics in a real furnace by considering nonisothermal high-temperature systems with chemical reactions.

  2. An experimental study of geyser-like flows induced by a pressurized air pocket

    NASA Astrophysics Data System (ADS)

    Elayeb, I. S.; Leon, A.; Choi, Y.; Alnahit, A. O.

    2015-12-01

    Previous studies argues that the entrapment of pressurized air pockets within combined sewer systems can produce geyser flows, which is an oscillating jetting of a mixture of gas-liquid flows. To verify that pressurized air pockets can effectively produce geysers, laboratory experiments were conducted. However, past experiments were conducted in relatively small-scale apparatus (i.e. maximum φ2" vertical shaft). This study conducted a set of experiments in a larger apparatus. The experimental setup consists of an upstream head tank, a downstream head tank, a horizontal pipe (46.5ft long, φ6") and a vertical pipe (10ft long, φ6"). The initial condition for the experiments is constant flow discharge through the horizontal pipe. The experiments are initiated by injecting an air pocket with pre-determined volume and pressure at the upstream end of the horizontal pipe. The air pocket propagates through the horizontal pipe until it arrives to the vertical shaft, where it is released producing a geyser-like flow. Three flow rates in the horizontal pipe and three injected air pressures were tested. The variables measured were pressure at two locations in the horizontal pipe and two locations in the vertical pipe. High resolution videos at two regions in the vertical shaft were also recorded. To gain further insights in the physics of air-water interaction, the laboratory experiments were complemented with numerical simulations conducted using a commercial 3D CFD model, previously validated with experiments.

  3. Sector Tests of a Low-NO(sub x), Lean, Direct- Injection, Multipoint Integrated Module Combustor Concept Conducted

    NASA Technical Reports Server (NTRS)

    Tacina, Robert R.; Wey, Chang-Lie; Laing, Peter; Mansour, Adel

    2002-01-01

    The low-emissions combustor development described is directed toward advanced high pressure aircraft gas-turbine applications. The emphasis of this research is to reduce nitrogen oxides (NOx) at high-power conditions and to maintain carbon monoxide and unburned hydrocarbons at their current low levels at low power conditions. Low-NOx combustors can be classified into rich-burn and lean-burn concepts. Lean-burn combustors can be further classified into lean-premixed-prevaporized (LPP) and lean direct injection (LDI) concepts. In both concepts, all the combustor air, except for liner cooling flow, enters through the combustor dome so that the combustion occurs at the lowest possible flame temperature. The LPP concept has been shown to have the lowest NOx emissions, but for advanced high-pressure-ratio engines, the possibility of autoignition or flashback precludes its use. LDI differs from LPP in that the fuel is injected directly into the flame zone, and thus, it does not have the potential for autoignition or flashback and should have greater stability. However, since it is not premixed and prevaporized, good atomization is necessary and the fuel must be mixed quickly and uniformly so that flame temperatures are low and NOx formation levels are comparable to those of LPP. The LDI concept described is a multipoint fuel injection/multiburning zone concept. Each of the multiple fuel injectors has an air swirler associated with it to provide quick mixing and a small recirculation zone for burning. The multipoint fuel injection provides quick, uniform mixing and the small multiburning zones provide for reduced burning residence time, resulting in low NOx formation. An integrated-module approach was used for the construction where chemically etched laminates, diffusion bonded together, combine the fuel injectors, air swirlers, and fuel manifold into a single element. The multipoint concept combustor was demonstrated in a 15 sector test. The configuration tested had 36

  4. Prevalence of injections and knowledge of safe injections among rural residents in Central China.

    PubMed

    Yan, Y W; Yan, J; Zhang, G P; Gao, Z L; Jian, H X

    2007-08-01

    Abuse of the injection services, namely unnecessary injections and unsafe injections, exists extensively in developing countries. Unsafe injection practices contribute to the transmission of blood-borne pathogens. The aims of this study were to survey the prevalence of injections and knowledge of injection safety among the rural residents in Jingzhou district, Hubei, China and to provide scientific data for developing a health educational programme. A retrospective cross-sectional study was conducted in 12 villages, which were selected from the Jingzhou district by the random sampling method. 50 rural residents were interviewed per village using a questionnaire. Among the 595 residents studied, 192 had received at least one injection in the past three months, with an injection prevalence of 32.3 percent and an average of 0.93 injections. 90.3 percent of the rural residents knew that unsafe injections could transmit the following blood-borne pathogens: human immunodeficiency virus (74.4 percent), hepatitis B virus (55.8 percent) and hepatitis C virus (22.9 percent). Logistic regression analysis showed that the residents' age, educational level and residential area were important factors in influencing their knowledge about injection safety. The results indicated that the injection prevalence was high among rural residents in the study area, and their knowledge regarding injection safety should be further improved.

  5. An Innovative Needle-free Injection System: Comparison to 1 ml Standard Subcutaneous Injection.

    PubMed

    Kojic, Nikola; Goyal, Pragun; Lou, Cheryl Hamer; Corwin, Michael J

    2017-11-01

    A needle-free delivery system may lead to improved satisfaction and compliance, as well as reduced anxiety among patients requiring frequent or ongoing injections. This report describes a first-in-man assessment comparing Portal Instruments' innovative needle-free injection system with subcutaneous injections using a 27G needle. Forty healthy volunteer participants each received a total of four injections of 1.0 mL sterile saline solution, two with a standard subcutaneous injection using a 27G needle, and two using the Portal injection system. Perception of pain was measured using a 100-mm visual analog scale (VAS). Injection site reactions were assessed at 2 min and at 20-30 min after each injection. Follow-up contact was made 24-48 h after the injections. Subject preference regarding injection type was also assessed. VAS pain scores at Portal injection sites met the criteria to be considered non-inferior to the pain reported at 27G needle injection sites (i.e., upper 95% confidence bound less than +5 mm). Based on a mixed effects model, at time 0, accounting for potential confounding variables, the adjusted difference in VAS scores indicated that Portal injections were 6.5 mm lower than the 27G needle injections (95% CI -10.5, -2.5). No clinically important adverse events were noted. Portal injections were preferred by 24 (60%) of the subjects (P = 0.0015). As an early step in the development of this new needle-free delivery system, the current study has shown that a 1.0-mL saline injection can be given with less pain reported than a standard subcutaneous injection using a 27G needle.

  6. Injection-controlled laser resonator

    DOEpatents

    Chang, J.J.

    1995-07-18

    A new injection-controlled laser resonator incorporates self-filtering and self-imaging characteristics with an efficient injection scheme. A low-divergence laser signal is injected into the resonator, which enables the injection signal to be converted to the desired resonator modes before the main laser pulse starts. This injection technique and resonator design enable the laser cavity to improve the quality of the injection signal through self-filtering before the main laser pulse starts. The self-imaging property of the present resonator reduces the cavity induced diffraction effects and, in turn, improves the laser beam quality. 5 figs.

  7. Injection-controlled laser resonator

    DOEpatents

    Chang, Jim J.

    1995-07-18

    A new injection-controlled laser resonator incorporates self-filtering and self-imaging characteristics with an efficient injection scheme. A low-divergence laser signal is injected into the resonator, which enables the injection signal to be converted to the desired resonator modes before the main laser pulse starts. This injection technique and resonator design enable the laser cavity to improve the quality of the injection signal through self-filtering before the main laser pulse starts. The self-imaging property of the present resonator reduces the cavity induced diffraction effects and, in turn, improves the laser beam quality.

  8. Infectivity, transmission and pathogenicity of H5 highly pathogenic avian influenza clade 2.3.4.4 (H5N8 and H5N2) United States index viruses in Pekin ducks and Chinese geese

    USDA-ARS?s Scientific Manuscript database

    In late 2014, a H5N8 highly pathogenic avian influenza (HPAI) virus, clade 2.3.4.4, spread by migratory birds into North America mixing with low pathogenicity AI viruses to produce a H5N2 HPAI virus. The H5N8 and H5N2 HPAI viruses were detected initially in wild waterfowl and backyard birds, and lat...

  9. Measurements of Skin Friction of the Compressible Turbulent Boundary Layer on a Cone with Foreign Gas Injection

    NASA Technical Reports Server (NTRS)

    Pappas, Constantine C.; Ukuno, Arthur F.

    1960-01-01

    Measurements of average skin friction of the turbulent boundary layer have been made on a 15deg total included angle cone with foreign gas injection. Measurements of total skin-friction drag were obtained at free-stream Mach numbers of 0.3, 0.7, 3.5, and 4.7 and within a Reynolds number range from 0.9 x 10(exp 6) to 5.9 x 10(exp 6) with injection of helium, air, and Freon-12 (CCl2F2) through the porous wall. Substantial reductions in skin friction are realized with gas injection within the range of Mach numbers of this test. The relative reduction in skin friction is in accordance with theory-that is, the light gases are most effective when compared on a mass flow basis. There is a marked effect of Mach number on the reduction of average skin friction; this effect is not shown by the available theories. Limited transition location measurements indicate that the boundary layer does not fully trip with gas injection but that the transition point approaches a forward limit with increasing injection. The variation of the skin-friction coefficient, for the lower injection rates with natural transition, is dependent on the flow Reynolds number and type of injected gas; and at the high injection rates the skin friction is in fair agreement with the turbulent boundary layer results.

  10. Degarelix Injection

    MedlinePlus

    ... injection is used to treat advanced prostate cancer (cancer that begins in the prostate [a male reproductive gland]). Degarelix injection is in a class of medications called gonadotropin-releasing hormone (GnRH) receptor antagonists. It works by decreasing the amount of ...

  11. USGS role and response to highly pathogenic avian influenza

    USGS Publications Warehouse

    Harris, M. Camille; Miles, A. Keith; Pearce, John M.; Prosser, Diann J.; Sleeman, Jonathan M.; Whalen, Mary E.

    2015-09-09

    Avian influenza viruses are naturally occurring in wild birds such as ducks, geese, swans, and gulls. These viruses generally do not cause illness in wild birds, however, when spread to poultry they can be highly pathogenic and cause illness and death in backyard and commercial farms. Outbreaks may cause devastating agricultural economic losses and some viral strains have the potential to infect people directly. Furthermore, the combination of avian influenza viruses with mammalian viruses can result in strains with the ability to transmit from person to person, possibly leading to viruses with pandemic potential. All known pandemic influenza viruses have had some genetic material of avian origin. Since 1996, a strain of highly pathogenic avian influenza (HPAI) virus, H5N1, has caused infection in wild birds, losses to poultry farms in Eurasia and North Africa, and led to the deaths of several hundred people. Spread of the H5N1 virus and other influenza strains from China was likely facilitated by migratory birds. In December 2014, HPAI was detected in poultry in Canada and migratory birds in the United States. Since then, HPAI viruses have spread to large parts of the United States and will likely continue to spread through migratory bird flyways and other mechanisms throughout North America. In the United States, HPAI viruses have severely affected the poultry industry with millions of domestic birds dead or culled. These strains of HPAI are not known to cause disease in humans; however, the Centers for Disease Control and Prevention (CDC) advise caution when in close contact with infected birds. Experts agree that HPAI strains currently circulating in wild birds of North America will likely persist for the next few years. This unprecedented situation presents risks to the poultry industry, natural resource management, and potentially human health. Scientific knowledge and decision support tools are urgently needed to understand factors affecting the persistence

  12. USGS highly pathogenic avian influenza research strategy

    USGS Publications Warehouse

    Harris, M. Camille; Miles, A. Keith; Pearce, John M.; Prosser, Diann J.; Sleeman, Jonathan M.; Whalen, Mary E.

    2015-09-09

    Avian influenza viruses are naturally occurring in wild birds such as ducks, geese, swans, and gulls. These viruses generally do not cause illness in wild birds, however, when spread to poultry they can be highly pathogenic and cause illness and death in backyard and commercial farms. Outbreaks may cause devastating agricultural economic losses and some viral strains have the potential to infect people directly. Furthermore, the combination of avian influenza viruses with mammalian viruses can result in strains with the ability to transmit from person to person, possibly leading to viruses with pandemic potential. All known pandemic influenza viruses have had some genetic material of avian origin. Since 1996, a strain of highly pathogenic avian influenza (HPAI) virus, H5N1, has caused infection in wild birds, losses to poultry farms in Eurasia and North Africa, and led to the deaths of several hundred people. Spread of the H5N1 virus and other influenza strains from China was likely facilitated by migratory birds. In December 2014, HPAI was detected in poultry in Canada and migratory birds in the United States. Since then, HPAI viruses have spread to large parts of the United States and will likely continue to spread through migratory bird flyways and other mechanisms throughout North America. In the United States, HPAI viruses have severely affected the poultry industry with millions of domestic birds dead or culled. These strains of HPAI are not known to cause disease in humans; however, the Centers for Disease Control and Prevention (CDC) advise caution when in close contact with infected birds. Experts agree that HPAI strains currently circulating in wild birds of North America will likely persist for the next few years. This unprecedented situation presents risks to the poultry industry, natural resource management, and potentially human health. Scientific knowledge and decision support tools are urgently needed to understand factors affecting the persistence

  13. Ignition and Flame Development in the Case of Diesel Fuel Injection

    NASA Technical Reports Server (NTRS)

    Holfelder, Otto

    1936-01-01

    To investigate the process of ignition and combustion in the case of spray injection into heated air, a new form of apparatus is developed and the tests carried out with it described. Photographs of the spray before and after ignition are obtained at frequencies of 500 pictures per second. Pressures and temperatures are simultaneously recorded on oscillograms. Information on the initial conditions, ignition time lag, period of complete combustion, place where ignition starts, and general course of the combustion is obtained.

  14. Indian Injection Technique Study: Injecting Complications, Education, and the Health Care Professional.

    PubMed

    Kalra, Sanjay; Mithal, Ambrish; Sahay, Rakesh; John, Mathew; Unnikrishnan, A G; Saboo, Banshi; Ghosh, Sujoy; Sanyal, Debmalya; Hirsch, Laurence J; Gupta, Vandita; Strauss, Kenneth W

    2017-06-01

    Using the Indian and rest of world (ROW) injection technique questionnaire (ITQ) data, we address key insulin injection complications. In 2015 we conducted an ITQ survey throughout India involving 1011 patients. Indian values were compared with those from 41 other countries participating in the ITQ, known here as ROW. More than a quarter of Indian insulin users described lesions consistent with lipohypertrophy (LH) at their injection sites and approximately 1 in 5 were found to have LH by the examining nurse (using visual inspection and palpation). Just over half of Indian injectors report having pain on injection. Of these, 4 out of 5 report having painful injections only several times a month or year (i.e., not with every injection). Doctors and diabetes educators in India (as opposed to nurses) have a larger role in teaching patients how to inject than they do in ROW. Despite this specialized approach, a very high percentage of patients report that they have not been trained (at least cannot remember being trained) in a wide range of essential injection topics. Only about 30% of Indian injectors get their sites checked at least annually, with nearly a third only having sites checked when they specifically complained and nearly 4 out of 10 never having had their sites checked. Indian HCPs can clearly do a better job covering all the vital topics essential to proper injection habits.

  15. Flying over an infected landscape: Distribution of highly pathogenic avian influenza H5N1 risk in South Asia and satellite tracking of wild waterfowl

    USGS Publications Warehouse

    Gilbert, Marius; Newman, Scott H.; Takekawa, John Y.; Loth, Leo; Biradar, Chandrashekhar; Prosser, Diann J.; Balachandran, Sivananinthaperumal; Rao, Mandava Venkata Subba; Mundkur, Taej; Yan, Baoping; Xing, Zhi; Hou, Yuansheng; Batbayar, Nyambayar; Tseveenmayadag, Natsagdorj; Hogerwerf, Lenny; Slingenbergh, Jan; Xiao, Xiangming

    2010-01-01

    Highly pathogenic avian influenza (HPAI) H5N1 virus persists in Asia, posing a threat to poultry, wild birds, and humans. Previous work in Southeast Asia demonstrated that HPAI H5N1 risk is related to domestic ducks and people. Other studies discussed the role of migratory birds in the long distance spread of HPAI H5N1. However, the interplay between local persistence and long-distance dispersal has never been studied. We expand previous geospatial risk analysis to include South and Southeast Asia, and integrate the analysis with migration data of satellite-tracked wild waterfowl along the Central Asia flyway. We find that the population of domestic duck is the main factor delineating areas at risk of HPAI H5N1 spread in domestic poultry in South Asia, and that other risk factors, such as human population and chicken density, are associated with HPAI H5N1 risk within those areas. We also find that satellite tracked birds (Ruddy Shelduck and two Bar-headed Geese) reveal a direct spatio-temporal link between the HPAI H5N1 hot-spots identified in India and Bangladesh through our risk model, and the wild bird outbreaks in May,June,July 2009 in China(Qinghai Lake), Mongolia, and Russia. This suggests that the continental-scale dynamics of HPAI H5N1 are structured as a number of persistence areas delineated by domestic ducks, connected by rare transmission through migratory waterfowl.

  16. Genesis and Spread of Newly Emerged Highly Pathogenic H7N9 Avian Viruses in Mainland China

    PubMed Central

    Yang, Lei; Zhu, Wenfei; Li, Xiyan; Chen, Minmei; Wu, Jie; Yu, Pengbo; Qi, Shunxiang; Huang, Yiwei; Shi, Weixian; Dong, Jie; Zhao, Xiang; Huang, Weijuan; Li, Zi; Zeng, Xiaoxu; Bo, Hong; Chen, Tao; Chen, Wenbing; Liu, Jia; Zhang, Ye; Liang, Zhenli; Shi, Wei

    2017-01-01

    ABSTRACT The novel low-pathogenic avian influenza A H7N9 viruses (LPAI H7N9 viruses) have been a threat to public health since their emergence in 2013 because of the high rates of mortality and morbidity that they cause. Recently, highly pathogenic variants of these avian influenza A H7N9 viruses (HPAI H7N9 viruses) have emerged and caused human infections and outbreaks among poultry in mainland China. However, it is still unclear how the HPAI H7N9 virus was generated and how it evolved and spread in China. Here, we show that the ancestor virus of the HPAI H7N9 viruses originated in the Yangtze River Delta region and spread southward to the Pearl River Delta region, possibly through live poultry trade. After introduction into the Pearl River Delta region, the origin LPAI H7N9 virus acquired four amino acid insertions in the hemagglutinin (HA) protein cleavage site and mutated into the HPAI H7N9 virus in late May 2016. Afterward, the HPAI H7N9 viruses further reassorted with LPAI H7N9 or H9N2 viruses locally and generated multiple different genotypes. As of 14 July 2017, the HPAI H7N9 viruses had spread from Guangdong Province to at least 12 other provinces. The rapid geographical expansion and genetic evolution of the HPAI H7N9 viruses pose a great challenge not only to public health but also to poultry production. Effective control measures, including enhanced surveillance, are therefore urgently needed. IMPORTANCE The LPAI H7N9 virus has caused five outbreak waves in humans and was recently reported to have mutated into highly pathogenic variants. It is unknown how the HPAI H7N9 virus originated, evolved, and disseminated in China. In this study, we comprehensively analyzed the sequences of HPAI H7N9 viruses from 28 human and 21 environmental samples covering eight provinces in China that were taken from November 2016 to June 2017. The results show that the ancestor virus of the HPAI H7N9 viruses originated in the Yangtze River Delta region. However, the

  17. Treatment of Stress Velopharyngeal Incompetence With Injection of Hyaluronic Acid.

    PubMed

    Koprowski, Steven; VanLue, Michael J; McCormick, Michael E

    2018-04-01

    Stress velopharyngeal incompetence (VPI) is a challenging clinical entity that can be managed by a variety of surgical and nonsurgical approaches. We describe the case of a clarinetist who presented with nasal air escape while playing. She had successful improvement in her symptoms after targeted injection of a hyaluronic acid compound to her posterior pharyngeal wall. Our objective is to describe the safety and efficacy of this technique, to emphasize the multidisciplinary management of patients with stress VPI, and to review the importance of both nasopharyngoscopy and videofluoroscopy in their evaluation.

  18. Ixekizumab Injection

    MedlinePlus

    ... or runny nose redness or pain at the injection site abdominal pain diarrhea (with or without blood) weight loss Some side effects can be serious. If you experience any of these symptoms ... ixekizumab injection and call your doctor immediately or get emergency ...

  19. Zidovudine Injection

    MedlinePlus

    ... immunodeficiency virus (HIV) infection. Zidovudine is given to HIV-positive pregnant women to reduce the chance of passing the infection to the baby. Zidovudine injection is in a class of medications ... the amount of HIV in the blood. Although zidovudine injection does not ...

  20. Effects of injection pressure variation on mixing in a cold supersonic combustor with kerosene fuel

    NASA Astrophysics Data System (ADS)

    Liu, Wei-Lai; Zhu, Lin; Qi, Yin-Yin; Ge, Jia-Ru; Luo, Feng; Zou, Hao-Ran; Wei, Min; Jen, Tien-Chien

    2017-10-01

    Spray jet in cold kerosene-fueled supersonic flow has been characterized under different injection pressures to assess the effects of the pressure variation on the mixing between incident shock wave and transverse cavity injection. Based on the real scramjet combustor, a detailed computational fluid dynamics model is developed. The injection pressures are specified as 0.5, 1.0, 2.0, 3.0 and 4.0 MPa, respectively, with the other constant operation parameters (such as the injection diameter, angle and velocity). A three dimensional Couple Level Set & Volume of Fluids approach incorporating an improved Kelvin-Helmholtz & Rayleigh-Taylor model is used to investigate the interaction between kerosene and supersonic air. The numerical simulations primarily concentrate on penetration depth, span expansion area, angle of shock wave and sauter mean diameter distribution of the kerosene droplets with/without evaporation. Validation has been implemented by comparing the calculated against the measured in literature with good qualitative agreement. Results show that the penetration depth, span-wise angle and expansion area of the transverse cavity jet are all increased with the injection pressure. However, when the injection pressure is further increased, the value in either penetration depth or expansion area increases appreciably. This study demonstrates the feasibility and effectiveness of the combination of Couple Level Set & Volume of Fluids approach and an improved Kelvin-Helmholtz & Rayleigh-Taylor model, in turn providing insights into scramjet design improvement.

  1. Effect of gas injection on drag and surface heat transfer rates for a 30° semi-apex angle blunt body flying at Mach 5.75

    NASA Astrophysics Data System (ADS)

    Sahoo, N.; Kulkarni, V.; Jagadeesh, G.; Reddy, K. P. J.

    Effect of coolant gas injection in the stagnation region on the surface heat transfer rates and aerodynamic drag for a large angle blunt body flying at hypersonic Mach number is reported for two stagnation enthalpies. A 60° apex-angle blunt cone model is employed for this purpose with air injection at the nose through a hole of 2mm diameter. The convective surface heating rates and aerodynamic drag are measured simultaneously using surface mounted platinum thin film sensors and internally mounted accelerometer balance system, respectively. About 35-40% reduction in surface heating rates is observed in the vicinity of stagnation region whereas 15-25% reduction in surface heating rates is felt beyond the stagnation region at stagnation enthalpy of 1.6MJ/kg. The aerodynamic drag expressed in terms of drag coefficient is found to increase by 20% due to the air injection.

  2. Sonographically guided deep plantar fascia injections: where does the injectate go?

    PubMed

    Maida, Eugene; Presley, James C; Murthy, Naveen; Pawlina, Wojciech; Smith, Jay

    2013-08-01

    To determine the distribution of sonographically guided deep plantar fascia injections in an unembalmed cadaveric model. A single experienced operator completed 10 sonographically guided deep plantar fascia injections in 10 unembalmed cadaveric specimens (5 right and 5 left) obtained from 6 donors (2 male and 4 female) aged 49 to 95 years (mean, 77.5 years) with a mean body mass index of 23.2 kg/m(2) (range, 18.4-26.3 kg/m(2)). A 12-3-MHz linear array transducer was used to direct a 22-gauge, 38-mm stainless steel needle deep to the plantar fascia at the anterior aspect of the calcaneus using an in-plane, medial-to-lateral approach. In each case, 1.5 mL of 50% diluted colored latex was injected deep to the plantar fascia. After a minimum of 72 hours, study coinvestigators dissected each specimen to assess injectate placement. All 10 injections accurately placed latex adjacent to the deep side of the plantar fascia at the anterior calcaneus. However, the flexor digitorum brevis (FDB) origin from the plantar fascia variably limited direct latex contact with the plantar fascia, and small amounts of latex interdigitated with the FDB origin in 90% (9 of 10). In all 10 specimens, latex also covered the traversing first branch of the lateral plantar nerve (FBLPN, ie, Baxter nerve) between the FDB and quadratus plantae muscles. No latex was found in the plantar fat pad or plantar fascia in any specimen. Sonographically guided deep plantar fascia injections reliably deliver latex deep to the plantar fascia while avoiding intrafascial injection. However, the extent of direct plantar fascia contact is variable due to the intervening FDB. On the contrary, the traversing FBLPN is reliably covered by the injection. Deep plantar fascia injections may have a role in the management of refractory plantar fasciitis, particularly following failed superficial perifascial or intrafascial injections, in cases of preferential deep plantar fascia involvement, or when entrapment

  3. Characterization of Clade 2.3.2.1 H5N1 Highly Pathogenic Avian Influenza Viruses Isolated from Wild Birds (Mandarin Duck and Eurasian Eagle Owl) in 2010 in Korea

    PubMed Central

    Choi, Jun-Gu; Kang, Hyun-Mi; Jeon, Woo-Jin; Choi, Kang-Seuk; Kim, Kwang-Il; Song, Byung Min; Lee, Hee-Soo; Kim, Jae-Hong; Lee, Youn-Jeong

    2013-01-01

    Starting in late November 2010, the H5N1 highly pathogenic avian influenza (HPAI) virus was isolated from many types of wild ducks and raptors and was subsequently isolated from poultry in Korea. We assessed the genetic and pathogenic properties of the HPAI viruses isolated from a fecal sample from a mandarin duck and a dead Eurasian eagle owl, the most affected wild bird species during the 2010/2011 HPAI outbreak in Korea. These viruses have similar genetic backgrounds and exhibited the highest genetic similarity with recent Eurasian clade 2.3.2.1 HPAI viruses. In animal inoculation experiments, regardless of their originating hosts, the two Korean isolates produced highly pathogenic characteristics in chickens, ducks and mice without pre-adaptation. These results raise concerns about veterinary and public health. Surveillance of wild birds could provide a good early warning signal for possible HPAI infection in poultry as well as in humans. PMID:23611846

  4. Pathologic Changes in Wild Birds Infected with Highly Pathogenic Avian Influenza A(H5N8) Viruses, South Korea, 2014.

    PubMed

    Kim, Hye-Ryoung; Kwon, Yong-Kuk; Jang, Il; Lee, Youn-Jeong; Kang, Hyun-Mi; Lee, Eun-Kyoung; Song, Byung-Min; Lee, Hee-Soo; Joo, Yi-Seok; Lee, Kyung-Hyun; Lee, Hyun-Kyoung; Baek, Kang-Hyun; Bae, You-Chan

    2015-05-01

    In January 2014, an outbreak of infection with highly pathogenic avian influenza (HPAI) A(H5N8) virus began on a duck farm in South Korea and spread to other poultry farms nearby. During this outbreak, many sick or dead wild birds were found around habitats frequented by migratory birds. To determine the causes of death, we examined 771 wild bird carcasses and identified HPAI A(H5N8) virus in 167. Gross and histologic lesions were observed in pancreas, lung, brain, and kidney of Baikal teals, bean geese, and whooper swans but not mallard ducks. Such lesions are consistent with lethal HPAI A(H5N8) virus infection. However, some HPAI-positive birds had died of gunshot wounds, peritonitis, or agrochemical poisoning rather than virus infection. These findings suggest that susceptibility to HPAI A(H5N8) virus varies among species of migratory birds and that asymptomatic migratory birds could be carriers of this virus.

  5. Triplet pregnancy after intracytoplasmic sperm injection of cryopreserved oocytes: case report.

    PubMed

    Young, E; Kenny, A; Puigdomenech, E; Van Thillo, G; Tiverón, M; Piazza, A

    1998-08-01

    To report a triplet pregnancy that occurred after intracytoplasmic injection of sperm into cryopreserved oocytes. Case report. Instituto de Ginecología y Fertilidad (IFER), Buenos Aires, Argentina. A 36-year-old infertile patient with premature ovarian failure and a previous term pregnancy with fresh donated oocytes. We administered leuprolide acetate for pituitary down-regulation followed by E2 valerianate in incremental doses until an endometrial lining of >8 mm was observed by ultrasound. Thawing of frozen donated oocytes, intracytoplasmic sperm injection (ICSI), and translaparoscopic fallopian tube ET also were performed. Natural micronized progesterone was administered intravaginally (600 mg/d) before ET. Ultrasound at the 8th week of gestation revealed a triplet pregnancy with active fetal heartbeats. A triple intrauterine gestation was achieved with the use of microinjection into cryopreserved oocytes. This case illustrates the feasibility of oocyte cryopreservation for clinical use in the era of ICSI.

  6. Intensification process of air-hydrogen mixture burning in the variable cross section channel by means of the air jet

    NASA Astrophysics Data System (ADS)

    Zamuraev, V. P.; Kalinina, A. P.

    2018-03-01

    The paper presents the results of numerical modeling of a transonic region formation in the flat channel. Hydrogen flows into the channel through the holes in the wall. The jet of compressed air is localized downstream the holes. The transonic region formation is formed by the burning of heterogeneous hydrogen-air mixture. It was considered in the framework of the simplified chemical kinetics. The interesting feature of the regime obtained is the following: the distribution of the Mach numbers is qualitatively similar to the case of pulse-periodic energy sources. This mode is a favorable prerequisite for the effective fuel combustion in the expanding part of the channel when injecting fuel into this part.

  7. Avian influenza surveillance in wild birds in the European Union in 2006.

    PubMed

    Hesterberg, Uta; Harris, Kate; Stroud, David; Guberti, Vittorio; Busani, Luca; Pittman, Maria; Piazza, Valentina; Cook, Alasdair; Brown, Ian

    2009-01-01

    Infections of wild birds with highly pathogenic avian influenza (AI) subtype H5N1 virus were reported for the first time in the European Union in 2006. To capture epidemiological information on H5N1 HPAI in wild bird populations through large-scale surveillance and extensive data collection. Records were analysed at bird level to explore the epidemiology of AI with regard to species of wild birds involved, timing and location of infections as well as the applicability of different surveillance types for the detection of infections. In total, 120,706 records of birds were sent to the Community Reference Laboratory for analysis. Incidents of H5N1 HPAI in wild birds were detected in 14 EU Member States during 2006. All of these incidents occurred between February and May, with the exception of two single cases during the summer months in Germany and Spain. For the detection of H5N1 HPAI virus, passive surveillance of dead or diseased birds appeared the most effective approach, whilst active surveillance offered better detection of low pathogenic avian influenza (LPAI) viruses. No carrier species for H5N1 HPAI virus could be identified and almost all birds infected with H5N1 HPAI virus were either dead or showed clinical signs. A very large number of Mallards (Anas platyrhynchos) were tested in 2006 and while a high proportion of LPAI infections were found in this species, H5N1 HPAI virus was rarely identified in these birds. Orders of species that appeared to be very clinically susceptible to H5N1 HPAI virus were swans, diving ducks, mergansers and grebes, supporting experimental evidence. Surveillance results indicate that H5N1 HPAI virus did not establish itself successfully in the EU wild bird population in 2006.

  8. Avian influenza shedding patterns in waterfowl: implications for surveillance, environmental transmission, and disease spread

    USGS Publications Warehouse

    Henaux, Viviane; Samuel, Michael D.

    2011-01-01

    Despite the recognized importance of fecal/oral transmission of low pathogenic avian influenza (LPAI) via contaminated wetlands, little is known about the length, quantity, or route of AI virus shed by wild waterfowl. We used published laboratory challenge studies to evaluate the length and quantity of low pathogenic (LP) and highly pathogenic (HP) virus shed via oral and cloacal routes by AI-infected ducks and geese, and how these factors might influence AI epidemiology and virus detection. We used survival analysis to estimate the duration of infection (from virus inoculation to the last day virus was shed) and nonlinear models to evaluate temporal patterns in virus shedding. We found higher mean virus titer and longer median infectious period for LPAI-infected ducks (10–11.5 days in oral and cloacal swabs) than HPAI-infected ducks (5 days) and geese (7.5 days). Based on the median bird infectious dose, we found that environmental contamination is two times higher for LPAI- than HPAI-infectious ducks, which implies that susceptible birds may have a higher probability of infection during LPAI than HPAI outbreaks. Less environmental contamination during the course of infection and previously documented shorter environmental persistence for HPAI than LPAI suggest that the environment is a less favorable reservoir for HPAI. The longer infectious period, higher virus titers, and subclinical infections with LPAI viruses favor the spread of these viruses by migratory birds in comparison to HPAI. Given the lack of detection of HPAI viruses through worldwide surveillance, we suggest monitoring for AI should aim at improving our understanding of AI dynamics (in particular, the role of the environment and immunity) using long-term comprehensive live bird, serologic, and environmental sampling at targeted areas. Our findings on LPAI and HPAI shedding patterns over time provide essential information to parameterize environmental transmission and virus spread in predictive

  9. Heat transfer to two-phase air/water mixtures flowing in small tubes with inlet disequilibrium

    NASA Technical Reports Server (NTRS)

    Janssen, J. M.; Florschuetz, L. W.; Fiszdon, J. P.

    1986-01-01

    The cooling of gas turbine components was the subject of considerable research. The problem is difficult because the available coolant, compressor bleed air, is itself quite hot and has relatively poor thermophysical properties for a coolant. Injecting liquid water to evaporatively cool the air prior to its contact with the hot components was proposed and studied, particularly as a method of cooling for contingency power applications. Injection of a small quantity of cold liquid water into a relatively hot coolant air stream such that evaporation of the liquid is still in process when the coolant contacts the hot component was studied. No approach was found whereby heat transfer characteristics could be confidently predicted for such a case based solely on prior studies. It was not clear whether disequilibrium between phases at the inlet to the hot component section would improve cooling relative to that obtained where equilibrium was established prior to contact with the hot surface.

  10. Air-Induced Drag Reduction at High Reynolds Numbers: Velocity and Void Fraction Profiles

    NASA Astrophysics Data System (ADS)

    Elbing, Brian; Mäkiharju, Simo; Wiggins, Andrew; Dowling, David; Perlin, Marc; Ceccio, Steven

    2010-11-01

    The injection of air into a turbulent boundary layer forming over a flat plate can reduce the skin friction. With sufficient volumetric fluxes an air layer can separate the solid surface from the flowing liquid, which can produce drag reduction in excess of 80%. Several large scale experiments have been conducted at the US Navy's Large Cavitation Channel on a 12.9 m long flat plate model investigating bubble drag reduction (BDR), air layer drag reduction (ALDR) and the transition between BDR and ALDR. The most recent experiment acquired phase velocities and void fraction profiles at three downstream locations (3.6, 5.9 and 10.6 m downstream from the model leading edge) for a single flow speed (˜6.4 m/s). The profiles were acquired with a combination of electrode point probes, time-of-flight sensors, Pitot tubes and an LDV system. Additional diagnostics included skin-friction sensors and flow-field image visualization. During this experiment the inlet flow was perturbed with vortex generators immediately upstream of the injection location to assess the robustness of the air layer. From these, and prior measurements, computational models can be refined to help assess the viability of ALDR for full-scale ship applications.

  11. A Comparison of Combustion Dynamics for Multiple 7-Point Lean Direct Injection Combustor Configurations

    NASA Technical Reports Server (NTRS)

    Tacina, Kathleen M.; Hicks, Yolanda R.

    2017-01-01

    The combustion dynamics of two 7-point lean direct injection (LDI) combustor configurations are compared. This 7-point LDI configuration has a circular cross section, with a center ("pilot") fuel-air mixer surrounded by six outer ("main") fuel-air mixers. Each fuel-air mixer consists of an axial air swirler followed by a converging-diverging venturi. A simplex fuel injector is inserted through the center of the air swirler, with the fuel injector tip located near the venturi throat. All 7 fuel-air mixers are identical except for the swirler blade angle. In the 'all-60' configuration, the swirler blade angle was 60 deg for all fuel-air mixers. In the '45-60' configuration, the swirler blade angle was 60 deg on the center and 45 deg on the outer fuel-air mixers. Testing was done in a 5-atm flame tube with inlet air temperatures from 630 to 830 F and equivalence ratios from 0.2 to 0.7. Combustion dynamics were measured using a cooled PCB pressure transducer flush-mounted in the wall of the combustor test section. Both configurations had large pressure fluctuations (greater than 2 psi peak-peak) near 730 Hz, the quarter-wave frequency. The all-60 configuration also had large pressure fluctuations near 1170 Hz; the 45-60 configuration did not. The 45-60 configuration had large pressure fluctuations near 480 Hz; the all-60 configuration did not.

  12. H5N8 Highly Pathogenic Avian Influenza in the Republic of Korea: Epidemiology During the First Wave, from January Through July 2014.

    PubMed

    Yoon, Hachung; Moon, Oun-Kyong; Jeong, Wooseog; Choi, Jida; Kang, Young-Myong; Ahn, Hyo-Young; Kim, Jee-Hye; Yoo, Dae-Sung; Kwon, Young-Jin; Chang, Woo-Seok; Kim, Myeong-Soo; Kim, Do-Soon; Kim, Yong-Sang; Joo, Yi-Seok

    2015-04-01

    This study describes the outbreaks of H5N8 highly pathogenic avian influenza (HPAI) in Korea during the first wave, from January 16, 2014 through July 25, 2014. Its purpose is to provide a better understanding of the epidemiology of H5N8 HPAI. Information on the outbreak farms and HPAI positive wild birds was provided by the Animal and Plant Quarantine Agency. The epidemiological investigation sheets for the outbreak farms were examined. During the 7-month outbreak period (January-July 2014), H5N8 HPAI was confirmed in 212 poultry farms, 38 specimens from wild birds (stools, birds found dead or captured). Ducks were the most frequently infected poultry species (159 outbreak farms, 75.0%), and poultry in 67 (31.6%) outbreak farms was asymptomatic. As in the previous four H5N1 epidemics of HPAI that occurred in Korea, this epidemic of H5N8 proved to be associated with migratory birds. Poultry farms in Korea can hardly be free from the risk of HPAI introduced via migratory birds. The best way to overcome this geographical factor is to reinforce biosecurity to prevent exposure of farms, related people, and poultry to the pathogen.

  13. CALCULATION OF COOLING TOWERS AND INJECTION COOLERS BY MEANS OF AN EVAPORATION METHOD (in German)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Spangemacher, K.

    1958-05-01

    Calculation and evaluation of cooling towers, as recommended by Merkel, are critically examined. The usual methods of practical calculation are explained as well as a new procedure which combines great accuracy with brevity. Merkel's method is extended to injection coolers for gas and compressed air. It was discussed whether the dimensionless ''evaporation coefficient'' should be called the''Merkel coefficient.'' (tr-auth)

  14. A sensitive method using SPME pre-concentration for the quantification of aromatic amines in indoor air.

    PubMed

    Lucaire, Vincent; Schwartz, Jean-Jacques; Delhomme, Olivier; Ocampo-Torres, Ruben; Millet, Maurice

    2018-03-01

    Monitoring the levels of aliphatic and aromatic amines (AA) in indoor air is important to protect human health because of exposure to these compounds through diet and inhalation. A sampling and analytical method using XAD-2 cartridges and gas chromatography coupled to mass spectrometry used for assessing 25 AA in different smoking and non-smoking indoor environment was developed. After sampling and delivering 1 m 3 of air (6-8 h sampling), an adsorbent was ultrasonically extracted with acetonitrile, concentrated to 1 mL and diluted in 25 mL of water (pH = 9; 5% NaCl), and then extracted for 40 min at 80 °C using a divinylbenzene/carboxen/polydimethylsiloxane (DVB/CAR/PDMS) fiber and injected in a GC/MS system. With this method, 22 of the 25 AA can be analyzed with detection limits up to five times lower than that of classic liquid injection. Benzylamine, 3-aminophenol, and 4-aminophenol were not detected with the solid-phase micro-extraction (SPME) method. It can be assumed that aminophenols required a derivatization step for their analysis by GC as these molecules were not detected regardless of the injection mode used. Graphical abstract Analysis of aromatic amines in indoor air by SPME-GC/MS.

  15. Injectable Drug Eluting Elastomeric Polymer: A Novel Submucosal Injection Material

    PubMed Central

    Tran, Richard T.; Palmer, Michael; Tang, Shou-Jiang; Abell, Thomas L.; Yang, Jian

    2011-01-01

    Background Biodegradable hydrogels can deliver therapeutic payloads with great potentials in endoscopic mucosal resection (EMR) and endoscopic submucosal dissection (ESD) to yield improvements in efficacy and foster mucosal regeneration. Objective To assess the efficacy of an injectable drug eluting elastomeric polymer (iDEEP) as a submucosal injection material. Design Comparative study among 3 different solutions using material characterization tests, ex vivo and in vivo porcine models. Setting Academic hospital. Interventions 30 gastric submucosal cushions were achieved with saline (0.9%), sodium hyaluronate (0.4%), and iDEEP (n = 10) in ex vivo porcine stomachs. Four porcine gastric submucosal cushions were then performed in vivo using iDEEP. Main outcome measurements Maximum injection pressure, Rebamipide release rate, submucosal elevation duration, and assessment of in vivo efficacy by en bloc resection. Results No significant difference in injection pressures between iDEEP (28.9 ± 0.3 PSI) and sodium hyaluronate (29.5 ± 0.4 PSI, P > .05) was observed. iDEEP gels displayed a controlled release of Rebamipide up to 2 weeks in vitro. The elevation height of iDEEP (5.7 ± 0.5 mm) was higher than saline (2.8 ± 0.2 mm, P < .01) and SH (4.2 ± 0.2 mm, P < .05). All EMR procedures were successfully performed after injection of iDEEP, and a large gel cushion was noted after the resection procedure. Limitations Benchtop, ex vivo, and non-survival pig study. Conclusions A novel injection solution was evaluated for endoscopic resection. These results suggest that iDEEP may provide a significant step towards the realization of an ideal EMR and ESD injection material. PMID:22301346

  16. The longitudinal association between homelessness, injection drug use, and injection-related risk behavior among persons with a history of injection drug use in Baltimore, MD.

    PubMed

    Linton, Sabriya L; Celentano, David D; Kirk, Gregory D; Mehta, Shruti H

    2013-10-01

    Few studies have assessed the temporal association between homelessness and injection drug use, and injection-related risk behavior. Among a cohort of 1405 current and former injection drug users in follow-up from 2005 to 2009, we used random intercept models to assess the temporal association between homelessness and subsequent injection drug use, and to determine whether the association between homelessness and sustained injection drug use among active injectors differed from the association between homelessness and relapse among those who stopped injecting. We also assessed the association between homelessness and subsequent injection-related risk behavior among participants who injected drugs consecutively across two visits. Homelessness was categorized by duration: none, <1 month, and ≥1 month. Homelessness was reported on at least one occasion by 532 (38%) participants. The relationship between homelessness and subsequent injection drug use was different for active injectors and those who stopped injecting. Among those who stopped injecting, homelessness was associated with relapse [<1 month: AOR=1.67, 95% CI (1.01, 2.74); ≥1 month: AOR=1.34 95% CI (0.77, 2.33)]. Among active injectors, homelessness was not associated with sustained injection drug use [<1 month: AOR=1.03, 95% CI (0.71, 1.49); ≥1 month: AOR=0.81 95% CI (0.56, 1.17)]. Among those injecting drugs across two consecutive visits, homelessness ≥1 month was associated with subsequent injection-related risk behavior [AOR=1.61, 95% CI (1.06, 2.45)]. Homelessness appears to be associated with relapse and injection-related risk behavior. Strengthening policies and interventions that prevent homelessness may reduce injection drug use and injection-related risk behaviors. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  17. Experiment Research of Microbial Flooding Injected Capacity and Injected Volume

    NASA Astrophysics Data System (ADS)

    Shi, Fang; Zhao, Yang; Tang, Qinghua; Xie, Ximing

    2018-01-01

    Strains of microbial enhanced oil recovery technology is the use of crude oil directly in growth and the same time the metabolites of itself, so as to enhance oil recovery. Experimental study on paper through a number of data analysis. The growth and metabolism of three kinds of oil producing bacteria in the core are determined, and the corresponding growth curve is obtained. The parameter sensitivity analysis of the microorganism flooding process by homogeneous core is studied, and the influence of injection capacity and injection volume on the oil displacement effect is studied. The same permeability, water, temperature and other conditions, microbial injection pressure has a certain degree of increase than water flooding. Injection volume depends on the actual input-output ratio, quantity is 0.3PV is more reasonable.

  18. The modulation role of serotonin in Pacific oyster Crassostrea gigas in response to air exposure.

    PubMed

    Dong, Wenjing; Liu, Zhaoqun; Qiu, Limei; Wang, Weilin; Song, Xiaorui; Wang, Xiudan; Li, Yiqun; Xin, Lusheng; Wang, Lingling; Song, Linsheng

    2017-03-01

    Serotonin, also known as 5-hydroxytryptamine (5-HT), is a critical neurotransmitter in the neuroendocrine-immune regulatory network and involved in regulation of the stress response in vertebrates and invertebrates. In the present study, serotonin was found to be widely distributed in the tissues of Pacific oyster Crassostrea gigas, including haemolymph, gonad, visceral ganglion, mantle, gill, labial palps and hepatopancreas, and its concentration increased significantly in haemolymph and mantle after the oysters were exposed to air for 1 d. The apoptosis rate of haemocytes was significantly declined after the oysters received an injection of extra serotonin, while the activity of superoxide dismutase (SOD) in haemolymph increased significantly. After the stimulation of serotonin during air exposure, the apoptosis rate of oyster haemocytes and the concentration of H 2 O 2 in haemolymph were significantly decreased, while the SOD activity was significantly elevated. Furthermore, the survival rate of oysters from 4 th to 6 th d after injection of serotonin was higher than that of FSSW group and air exposure group. The results clearly indicated that serotonin could modulate apoptotic effect and redox during air exposure to protect oysters from stress. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. ENHANCED CONTACT OF COSOLVENT AND DNAPL IN POROUS MEDIA BY CONCURRENT INJECTION OF COSOLVENT AND AIR

    EPA Science Inventory

    Remediation of sites contaminated by dense nonaqueous phase liquids (DNAPLS) is a major
    environmental problem and cosolvent flooding is proposed as a remedial alternative. The
    efficacy of cosolvent flooding is a function of the degree of mixing between the injected
    remed...

  20. Local mechanical properties of LFT injection molded parts: Numerical simulations versus experiments

    NASA Astrophysics Data System (ADS)

    Desplentere, F.; Soete, K.; Bonte, H.; Debrabandere, E.

    2014-05-01

    In predictive engineering for polymer processes, the proper prediction of material microstructure from known processing conditions and constituent material properties is a critical step forward properly predicting bulk properties in the finished composite. Operating within the context of long-fiber thermoplastics (LFT, length < 15mm) this investigation concentrates on the prediction of the local mechanical properties of an injection molded part. To realize this, the Autodesk Simulation Moldflow Insight 2014 software has been used. In this software, a fiber breakage algorithm for the polymer flow inside the mold is available. Using well known micro mechanic formulas allow to combine the local fiber length with the local orientation into local mechanical properties. Different experiments were performed using a commercially available glass fiber filled compound to compare the measured data with the numerical simulation results. In this investigation, tensile tests and 3 point bending tests are considered. To characterize the fiber length distribution of the polymer melt entering the mold (necessary for the numerical simulations), air shots were performed. For those air shots, similar homogenization conditions were used as during the injection molding tests. The fiber length distribution is characterized using automated optical method on samples for which the matrix material is burned away. Using the appropriate settings for the different experiments, good predictions of the local mechanical properties are obtained.

  1. Relationship Between the Provision of Injection Services in Ambulatory Physician Offices and Prescribing Injectable Medicines.

    PubMed

    Yousefi, Naeimeh; Rashidian, Arash; Soleymani, Fatemeh; Kebriaeezade, Abbas

    2017-01-01

    Overuse of injections is a common problem in many low-income and middle income countries. While cultural factors and attitudes of both physicians and patients are important factors, physicians› financial intensives may play an important role in overprescribing of injections. This study was designed to assess the effects of providing injection- services in physicians› ambulatory offices on prescribing injectable medicines. This cross-sectional study was conducted in Tehran in 2012 -2013and included a random sample of general physicians, pediatricians and infectious disease specialists. We collected data on the provision of injection services in or in proximity of physician offices, and obtained data from physicians› prescriptions in the previous three-month period. We analyzed the data using ANOVA, Student›s t-test and linear regression methods. We obtained complete data from 465 of 600 sampled physicians. Overall 41.9% of prescriptions contained injectable medicines. 75% of physicians offered injection services in their offices. Male physicians and general physicians were more likely to offer the services, and more likely to prescribe injectables. We observed a clear linear relationship between the injection service working hours and the proportion of prescriptions containing injectables (p-value<0.001). Providing injection service in the office was directly linked with the proportion of prescriptions containing injectables. While provision of injection services may provide a direct financial benefit to physicians, it is unlikely to be able to substantially reduce injectable medicines› prescription without addressing the issue.

  2. Experimental study of the effects of secondary air on the emissions and stability of a lean premixed combustor

    NASA Technical Reports Server (NTRS)

    Roffe, G.; Raman, R. S. V.; Marek, C. J.

    1982-01-01

    A study of the effects of secondary air addition on the stability and emissions of a gas turbine combustor has been performed. Tests were conducted with two types of flameholders and varying amounts of dilution air addition. Results indicate that NO(x) decreases with increasing dilution air injection, whereas CO is independent of the amount of dilution air and is related to the gas temperature near the walls. The axial location of the dilution air addition has no effect on the performance or stability. Results also indicate that the amount of secondary air entrained by the flameholder recirculation zone is dependent on the amount of dilution air and flameholder geometry.

  3. Characterizing wild bird contact and seropositivity to highly pathogenic avian influenza A (H5N1) virus in Alaskan residents

    PubMed Central

    Reed, Carrie; Bruden, Dana; Byrd, Kathy K; Veguilla, Vic; Bruce, Michael; Hurlburt, Debby; Wang, David; Holiday, Crystal; Hancock, Kathy; Ortiz, Justin R; Klejka, Joe; Katz, Jacqueline M; Uyeki, Timothy M

    2014-01-01

    Background Highly pathogenic avian influenza A (HPAI) H5N1 viruses have infected poultry and wild birds on three continents with more than 600 reported human cases (59% mortality) since 2003. Wild aquatic birds are the natural reservoir for avian influenza A viruses, and migratory birds have been documented with HPAI H5N1 virus infection. Since 2005, clade 2.2 HPAI H5N1 viruses have spread from Asia to many countries. Objectives We conducted a cross-sectional seroepidemiological survey in Anchorage and western Alaska to identify possible behaviors associated with migratory bird exposure and measure seropositivity to HPAI H5N1. Methods We enrolled rural subsistence bird hunters and their families, urban sport hunters, wildlife biologists, and a comparison group without bird contact. We interviewed participants regarding their exposures to wild birds and collected blood to perform serologic testing for antibodies against a clade 2.2 HPAI H5N1 virus strain. Results Hunters and wildlife biologists reported exposures to wild migratory birds that may confer risk of infection with avian influenza A viruses, although none of the 916 participants had evidence of seropositivity to HPAI H5N1. Conclusions We characterized wild bird contact among Alaskans and behaviors that may influence risk of infection with avian influenza A viruses. Such knowledge can inform surveillance and risk communication surrounding HPAI H5N1 and other influenza viruses in a population with exposure to wild birds at a crossroads of intercontinental migratory flyways. PMID:24828535

  4. Characterizing wild bird contact and seropositivity to highly pathogenic avian influenza A (H5N1) virus in Alaskan residents.

    PubMed

    Reed, Carrie; Bruden, Dana; Byrd, Kathy K; Veguilla, Vic; Bruce, Michael; Hurlburt, Debby; Wang, David; Holiday, Crystal; Hancock, Kathy; Ortiz, Justin R; Klejka, Joe; Katz, Jacqueline M; Uyeki, Timothy M

    2014-09-01

    Highly pathogenic avian influenza A (HPAI) H5N1 viruses have infected poultry and wild birds on three continents with more than 600 reported human cases (59% mortality) since 2003. Wild aquatic birds are the natural reservoir for avian influenza A viruses, and migratory birds have been documented with HPAI H5N1 virus infection. Since 2005, clade 2.2 HPAI H5N1 viruses have spread from Asia to many countries. We conducted a cross-sectional seroepidemiological survey in Anchorage and western Alaska to identify possible behaviors associated with migratory bird exposure and measure seropositivity to HPAI H5N1. We enrolled rural subsistence bird hunters and their families, urban sport hunters, wildlife biologists, and a comparison group without bird contact. We interviewed participants regarding their exposures to wild birds and collected blood to perform serologic testing for antibodies against a clade 2.2 HPAI H5N1 virus strain. Hunters and wildlife biologists reported exposures to wild migratory birds that may confer risk of infection with avian influenza A viruses, although none of the 916 participants had evidence of seropositivity to HPAI H5N1. We characterized wild bird contact among Alaskans and behaviors that may influence risk of infection with avian influenza A viruses. Such knowledge can inform surveillance and risk communication surrounding HPAI H5N1 and other influenza viruses in a population with exposure to wild birds at a crossroads of intercontinental migratory flyways. © 2014 The Authors. Influenza and Other Respiratory Viruses Published by John Wiley & Sons Ltd.

  5. Heat transfer to a full-coverage film-cooled surface with 30 degree slant-hole injection

    NASA Technical Reports Server (NTRS)

    Crawford, M. E.; Kays, W. M.; Moffat, R. J.

    1976-01-01

    Heat transfer behavior was studied in a turbulent boundary layer with full coverage film cooling through an array of discrete holes and with injection 30 deg to the wall surface in the downstream direction. Stanton numbers were measured for a staggered hole pattern with pitch-to-diameter ratios of 5 and 10, an injection mass flux ratio range of 0.1 to 1.3, and a range of Reynolds number Re sub x of 150,000 to 5 million. Air was used as the working fluid, and the mainstream velocity varied from 9.8 to 34.2 m/sec (32 to 112 ft/sec). The data were taken for secondary injection temperature equal to the wall temperature and also equal to the mainstream temperature. The data may be used to obtain Stanton number as a continuous function of the injectant temperature by use of linear superposition theory. The heat transfer coefficient is defined on the basis of a mainstream-to-wall temperature difference. This definition permits direct comparison of performance between film cooling and transpiration cooling. A differential prediction method was developed to predict the film cooling data base. The method utilizes a two-dimensional boundary layer program with routines to model the injection process and turbulence augmentation. The program marches in the streamwise direction, and when a row of holes is encountered, it stops and injects fluid into the boundary layer. The turbulence level is modeled by algebraically augmenting the mixing length, with the augmentation keyed to a penetration distance for the injected fluid.

  6. Calculation method of water injection forward modeling and inversion process in oilfield water injection network

    NASA Astrophysics Data System (ADS)

    Liu, Long; Liu, Wei

    2018-04-01

    A forward modeling and inversion algorithm is adopted in order to determine the water injection plan in the oilfield water injection network. The main idea of the algorithm is shown as follows: firstly, the oilfield water injection network is inversely calculated. The pumping station demand flow is calculated. Then, forward modeling calculation is carried out for judging whether all water injection wells meet the requirements of injection allocation or not. If all water injection wells meet the requirements of injection allocation, calculation is stopped, otherwise the demand injection allocation flow rate of certain step size is reduced aiming at water injection wells which do not meet requirements, and next iterative operation is started. It is not necessary to list the algorithm into water injection network system algorithm, which can be realized easily. Iterative method is used, which is suitable for computer programming. Experimental result shows that the algorithm is fast and accurate.

  7. Turbulent boundary layer on a full-coverage film-cooled surface: An experimental heat transfer study with normal injection

    NASA Technical Reports Server (NTRS)

    Choe, H.; Kays, W. M.; Moffat, R. J.

    1976-01-01

    Heat transfer behavior was studied in a turbulent boundary layer with full-coverage film cooling through an array of discrete holes and with injection normal to the wall surface. Stanton numbers were measured for a staggered hole pattern with pitch-to-diameter ratios of 5 and 10, an injection mass flux ratio range of 0.1 to 1.0, and a range of Reynolds number 170 thousand to 5 million. Air was used as the working fluid with the mainstream velocity varied from .14 to 33.5 m/sec (30 to 110 ft/sec). The data were taken for secondary injection temperatures equal to the wall temperature and also equal to the mainstream temperature. By use of linear superposition theory, the data may be used to obtain Stanton number as a continuous function of the injectant temperature. The heat transfer coefficient is defined on the basis of a mainstream-to-wall temperature difference. This difinition permits direct comparison of performance between film cooling and transpiration cooling.

  8. Variable oxygen/nitrogen enriched intake air system for internal combustion engine applications

    DOEpatents

    Poola, Ramesh B.; Sekar, Ramanujam R.; Cole, Roger L.

    1997-01-01

    An air supply control system for selectively supplying ambient air, oxygen enriched air and nitrogen enriched air to an intake of an internal combustion engine includes an air mixing chamber that is in fluid communication with the air intake. At least a portion of the ambient air flowing to the mixing chamber is selectively diverted through a secondary path that includes a selectively permeable air separating membrane device due a differential pressure established across the air separating membrane. The permeable membrane device separates a portion of the nitrogen in the ambient air so that oxygen enriched air (permeate) and nitrogen enriched air (retentate) are produced. The oxygen enriched air and the nitrogen enriched air can be selectively supplied to the mixing chamber or expelled to atmosphere. Alternatively, a portion of the nitrogen enriched air can be supplied through another control valve to a monatomic-nitrogen plasma generator device so that atomic nitrogen produced from the nitrogen enriched air can be then injected into the exhaust of the engine. The oxygen enriched air or the nitrogen enriched air becomes mixed with the ambient air in the mixing chamber and then the mixed air is supplied to the intake of the engine. As a result, the air being supplied to the intake of the engine can be regulated with respect to the concentration of oxygen and/or nitrogen.

  9. Relationships between Induced Seismicity and Fluid Injection: Development of Strategies to Manage Injection

    NASA Astrophysics Data System (ADS)

    Eichhubl, Peter; Frohlich, Cliff; Gale, Julia; Olson, Jon; Fan, Zhiqiang; Gono, Valerie

    2014-05-01

    Induced seismicity during or following the subsurface injection of waste fluids such as well stimulation flow back and production fluids has recently received heightened public and industry attention. It is understood that induced seismicity occurs by reactivation of existing faults that are generally present in the injection intervals. We seek to address the question why fluid injection triggers earthquakes in some areas and not in others, with the aim toward improved injection methods that optimize injection volume and cost while avoiding induced seismicity. A GIS database has been built of natural and induced earthquakes in four hydrocarbon-producing basins: the Fort Worth Basin, South Texas, East Texas/Louisiana, and the Williston Basin. These areas are associated with disposal from the Barnett, Eagle Ford, Bakken, and Haynesville Shales respectively. In each region we analyzed data that were been collected using temporary seismographs of the National Science Foundation's USArray Transportable Array. Injection well locations, formations, histories, and volumes are also mapped using public and licensed datasets. Faults are mapped at a range of scales for selected areas that show different levels of seismic activity, and scaling relationships used to extrapolate between the seismic and wellbore scale. Reactivation potential of these faults is assessed using fault occurrence, and in-situ stress conditions, identifying areas of high and low fault reactivation potential. A correlation analysis between fault reactivation potential, induced seismicity, and fluid injection will use spatial statistics to quantify the probability of seismic fault reactivation for a given injection pressure in the studied reservoirs. The limiting conditions inducing fault reactivation will be compared to actual injection parameters (volume, rate, injection duration and frequency) where available. The objective of this project is a statistical reservoir- to basin-scale assessment of fault

  10. Strategies for safe injections.

    PubMed Central

    Battersby, A.; Feilden, R.; Stoeckel, P.; Da Silva, A.; Nelson, C.; Bass, A.

    1999-01-01

    In 1998, faced with growing international concern, WHO set out an approach for achieving injection safety that encompassed all elements from patients' expectations and doctors' prescribing habits to waste disposal. This article follows that lead and describes the implications of the approach for two injection technologies: sterilizable and disposable. It argues that focusing on any single technology diverts attention from the more fundamental need for health services to develop their own comprehensive strategies for safe injections. National health authorities will only be able to ensure that injections are administered safely if they take an approach that encompasses the whole system, and choose injection technologies that fit their circumstances. PMID:10680247

  11. Distribution and regularity of injection from a multicylinder fuel-injection pump

    NASA Technical Reports Server (NTRS)

    Rothrock, A M; Marsh, E T

    1936-01-01

    This report presents the results of performance test conducted on a six-cylinder commercial fuel-injection pump that was adjusted to give uniform fuel distribution among the cylinders at a throttle setting of 0.00038 pound per injection and a pump speed of 750 revolutions per minute. The throttle setting and pump speed were then varied through the operating range to determine the uniformity of distribution and regularity of injection.

  12. Penicillin G Procaine Injection

    MedlinePlus

    Penicillin G procaine injection is used to treat certain infections caused by bacteria. Penicillin G procaine injection should not be used to ... early in the treatment of certain serious infections. Penicillin G procaine injection is in a class of ...

  13. Mitigation strategies to reduce the generation and transmission of airborne highly pathogenic avian influenza virus particles during processing of infected poultry.

    PubMed

    Bertran, Kateri; Clark, Andrew; Swayne, David E

    2018-06-08

    Airborne transmission of H5N1 highly pathogenic avian influenza (HPAI) viruses has occurred among poultry and from poultry to humans during home or live-poultry market slaughter of infected poultry, and such transmission has been experimentally reproduced. In this study, we investigated simple, practical changes in the processing of H5N1 virus-infected chickens to reduce infectious airborne particles and their transmission. Our findings suggest that containing the birds during the killing and bleeding first step by using a disposable plastic bag, a commonly available cooking pot widely used in Egypt (halla), or a bucket significantly reduces generation of infectious airborne particles and transmission to ferrets. Similarly, lack of infectious airborne particles was observed when processing vaccinated chickens that had been challenged with HPAI virus. Moreover, the use of a mechanical defeatherer significantly increased total number of particles in the air compared to manual defeathering. This study confirms that simple changes in poultry processing can efficiently mitigate generation of infectious airborne particles and their transmission to humans. Published by Elsevier GmbH.

  14. Spectrally narrowed lasing of a self-injection KrF excimer laser

    NASA Astrophysics Data System (ADS)

    Shimada, Yasuhiro; Wani, Koichi; Miki, Tadaaki; Kawahara, Hidehito; Mimasu, Mutsumi; Ogata, Yoshiro

    1990-08-01

    Spectrally nantwed lasing of a KrF excimer laser has teen ahieved by a self-injection technique using abeam splitter for power extraction aixi intravity etalons for spectral-narrowing. The laser cavity is divithi into an amplifying branch aix! a spectralnarrowing branch. The spectral bandwidth was narrowed to <3pm FWHM with air-sed etalons placed in the spectral-narrowing branch. A laser propagation model was intrOdUced for describing the laser intensity traveling in the laser cavity. The calculated intensityincident onthe intracavityetalons wassmaller thanthat in theconventional Fabry-Perotcavity withplane-parallel mirrors.

  15. Supersonic Pulsed Injection

    NASA Technical Reports Server (NTRS)

    Cutler, A. D.; Harding, G. C.; Diskin, G. S.

    2001-01-01

    An injector has been developed to provide high-speed high-frequency (order 10 kHz) pulsed a supersonic crossflow. The injector nozzle is formed between the fixed internal surface of the nozzle and a freely rotating three- or four-sided wheel embedded within the device. Flow-induced rotation of the wheel causes the nozzle throat to open and close at a frequency proportional to the speed of sound of the injected gas. Measurements of frequency and mass flow rate as a function of supply pressure are discussed for various injector designs. Preliminary results are presented for wall-normal injection of helium into a Mach-2 ducted airflow. The data include schlieren images in the injectant plume in a plane normal to the flow, downstream of injection.

  16. Aerodynamic effect of combustor inlet-air pressure on fuel jet atomization

    NASA Technical Reports Server (NTRS)

    Ingebo, R. D.

    1984-01-01

    Mean drop diameters were measured with a recently developed scanning radiometer in a study of the atomization of liquid jets injected cross stream in high velocity and high pressure airflows. At constant inlet air pressure, reciprocal mean drop diameter, was correlated with airflow mass velocity. Over a combustor inlet-air pressure range of 1 to 21 atmospheres, the ratio of orifice to mean drop diameter, D(O)/D(M), was correlated with the product of Weber and Reynolds number, WeRe, and with the molecular scale momentum transfer ratio of gravitational to inertial forces.

  17. Calcitonin Salmon Injection

    MedlinePlus

    Calcitonin salmon injection is used to treat osteoporosis in postmenopausal women. Osteoporosis is a disease that causes bones to weaken and break more easily. Calcitonin salmon injection is also used to ...

  18. Effect of Air Swirler Configuration on Lean Direct Injector Flow Structure and Combustion Performance with a 7-Point Lean Direct Injector Array

    NASA Technical Reports Server (NTRS)

    Hicks, Yolanda R.; Tacina, Kathleen M.; Anderson, Robert C.

    2017-01-01

    This paper examines the fundamentals of fuel-air mixing in a lean direct injection concept. Results are presented to investigate the effects of air swirler angle, element spacing, and center element offset on recirculation zone formation, flame stability and gaseous emissions.

  19. Dependence of injection locking of a TEA CO2 laser on intensity of injected radiation

    NASA Technical Reports Server (NTRS)

    Oppenheim, U. P.; Menzies, R. T.; Kavaya, M. J.

    1982-01-01

    The results of an experimental study to determine the minimum required injected power to control the output frequency of a TEA CO2 laser are reported. A CW CO2 waveguide laser was used as the injection oscillator. Both the power and the frequency of the injected radiation were varied, while the TEA resonator cavity length was adjusted to match the frequency of the injected signal. Single-longitudinal mode (SLM) TEA laser radiation was produced for injected power levels which are several orders of magnitude below those previously reported. The ratio of SLM output power to injection power exceeded 10 to the 12th at the lowest levels of injected intensity.

  20. Unsteady boundary-layer injection

    NASA Technical Reports Server (NTRS)

    Telionis, D. P.; Jones, G. S.

    1981-01-01

    The boundary-layer equations for two-dimensional incompressible flow are integrated numerically for the flow over a flat plate and a Howarth body. Injection is introduced either impulsively or periodically along a narrow strip. Results indicate that injection perpendicular to the wall is transmitted instantly across the boundary layer and has little effect on the velocity profile parallel to the wall. The effect is a little more noticeable for flows with adverse pressure gradients. Injection parallel to the wall results in fuller velocity profiles. Parallel and oscillatory injection appears to influence the mean. The amplitude of oscillation decreases with distance from the injection strip but further downstream it increases again in a manner reminiscent of an unstable process.

  1. First injection of ketamine among young injection drug users (IDUs) in three U.S. cities

    PubMed Central

    Lankenau, Stephen E.; Sanders, Bill; Bloom, Jennifer Jackson; Hathazi, Dodi; Alarcon, Erica; Tortu, Stephanie; Clatts, Michael C.

    2007-01-01

    Ketamine, a dissociative anesthetic, has emerged as an increasingly common drug among subgroups of young injection drug users (IDUs) in cities across the United States. In-depth qualitative interviews were conducted with 213 young IDUs aged 16–28 years recruited in New York, New Orleans, and Los Angeles between 2004 and 2006. While some initiated injection drug use with ketamine, the drug was more frequently injected by IDUs with extensive polydrug using histories. IDUs initiating with ketamine commonly self-injected via an intramuscular mode of administration. The injection group provided crucial knowledge and material resources that enabled the injection event to occur, including ketamine, syringes, and injection skills. Injection paraphernalia was commonly shared during the first injection of ketamine, particularly vials of pharmaceutically-packaged liquid ketamine. Injection events infrequently occurred in a rave or club and more typically in a private home, which challenges ketamine’s designation as a ‘club’ drug. The first injection of ketamine was a noteworthy event since it introduced a novel drug or new mode of administration to be further explored by some, or exposed others to a drug to be avoided in the future. Risk reduction messages directed towards young IDUs should be expanded to include ketamine. PMID:16979848

  2. MEDICAL INJECTION

    NASA Image and Video Library

    1963-06-10

    S62-08371 (1962) --- The automatic medical injectors carried on the Mercury-Atlas 9 flight. The injectors provide the astronaut with injection tubes of Tigan, for preventing motion sickness and Demerol, for relieving pain. The tubes encased in the block are stowed in the astronauts survival kit. The single injection tubes are placed in a pocket of the astronauts spacesuit. Photo credit: NASA

  3. 78 FR 42776 - Underground Injection Control Program; Hazardous Waste Injection Restrictions; Petition for...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-17

    ... ENVIRONMENTAL PROTECTION AGENCY [FRL9834-8] Underground Injection Control Program; Hazardous Waste Injection Restrictions; Petition for Exemption--Class I Hazardous Waste Injection; Blanchard Refining... migration petition reissuance. SUMMARY: Notice is hereby given that a reissuance of an exemption to the land...

  4. Lack of chicken adaptation of newly emergent Eurasian H5N8 and reassortant H5N2 high pathogenicity avian influenza viruses in the U.S. is consistent with restricted poultry outbreaks in the Pacific flyway during 2014-2015.

    PubMed

    Bertran, Kateri; Swayne, David E; Pantin-Jackwood, Mary J; Kapczynski, Darrell R; Spackman, Erica; Suarez, David L

    2016-07-01

    In 2014-2015, the U.S. experienced an unprecedented outbreak of Eurasian clade 2.3.4.4 H5 highly pathogenic avian influenza (HPAI) virus, initially affecting mainly wild birds and few backyard and commercial poultry premises. To better model the outbreak, the pathogenesis and transmission dynamics of representative Eurasian H5N8 and reassortant H5N2 clade 2.3.4.4 HPAI viruses detected early in the North American outbreak were investigated in chickens. High mean chicken infectious doses and lack of seroconversion in survivors indicated the viruses were poorly chicken adapted. Pathobiological features were consistent with HPAI virus infection, although the delayed appearance of lesions, longer mean death times, and reduced replication in endothelial cells differed from features of most other Eurasian H5N1 HPAI viruses. Although these initial U.S. H5 HPAI viruses had reduced adaptation and transmissibility in chickens, multi-generational passage in poultry could generate poultry adapted viruses with higher infectivity and transmissibility. Copyright © 2016. Published by Elsevier Inc.

  5. Slit injection device

    DOEpatents

    Alger, Terry W.; Schlitt, Leland G.; Bradley, Laird P.

    1976-06-15

    A laser cavity electron beam injection device provided with a single elongated slit window for passing a suitably shaped electron beam and means for varying the current density of the injected electron beam.

  6. Adaptive engine injection for emissions reduction

    DOEpatents

    Reitz, Rolf D. : Sun, Yong

    2008-12-16

    NOx and soot emissions from internal combustion engines, and in particular compression ignition (diesel) engines, are reduced by varying fuel injection timing, fuel injection pressure, and injected fuel volume between low and greater engine loads. At low loads, fuel is injected during one or more low-pressure injections occurring at low injection pressures between the start of the intake stroke and approximately 40 degrees before top dead center during the compression stroke. At higher loads, similar injections are used early in each combustion cycle, in addition to later injections which preferably occur between about 90 degrees before top dead center during the compression stroke, and about 90 degrees after top dead center during the expansion stroke (and which most preferably begin at or closely adjacent the end of the compression stroke). These later injections have higher injection pressure, and also lower injected fuel volume, than the earlier injections.

  7. Physics of the current injection process during localized helicity injection

    NASA Astrophysics Data System (ADS)

    Hinson, Edward Thomas

    An impedance model has been developed for the arc-plasma cathode electron current source used in localized helicity injection tokamak startup. According to this model, a potential double layer (DL) is established between the high-density arc plasma (narc ˜ 1021 m-3) in the electron source, and the less-dense external tokamak edge plasma (nedge ˜ 10 18 m-3) into which current is injected. The DL launches an electron beam at the applied voltage with cross-sectional area close to that of the source aperture: Ainj ≈ 2 cm 2. The injected current, Iinj, increases with applied voltage, Vinj, according to the standard DL scaling, Iinj ˜ V(3/2/ inj), until the more restrictive of two limits to beam density nb arises, producing Iinj ˜ V(1/2/inj), a scaling with beam drift velocity. For low external tokamak edge density nedge, space-charge neutralization of the intense electron beam restricts the injected beam density to nb ˜ nedge. At high Jinj and sufficient edge density, the injected current is limited by expansion of the DL sheath, which leads to nb ˜ narc. Measurements of narc, Iinj , nedge, Vinj, support these predicted scalings, and suggest narc as a viable control actuator for the source impedance. Magnetic probe signals ≈ 300 degrees toroidally from the injection location are consistent with expectations for a gyrating, coherent electron beam with a compact areal cross-section. Technological development of the source has allowed an extension of the favorable Iinj ˜ V(1/2/inj) to higher power without electrical breakdown.

  8. Parametric study of injection rates with solenoid injectors in an injection quantity and rate measuring device

    DOE PAGES

    Busch, Stephen; Miles, Paul C.

    2015-03-31

    A Moehwald HDA (HDA is a German acronym: Hydraulischer Druckanstieg: hydraulic pressure increase) injection quantity and rate measuring unit is used to investigate injection rates obtained with a fast-acting, preproduction diesel solenoid injector. Experimental parametric variations are performed to determine their impact on measured injection rate traces. A pilot–main injection strategy is investigated for various dwell times; these preproduction injectors can operate with very short dwell times with distinct pilot and main injection events. Dwell influences the main injection rate shape. Furthermore, a comparison between a diesel-like fuel and a gasoline-like fuel shows that injection rates are comparable for amore » single injection but dramatically different for multiple injections with short dwells.« less

  9. 75 FR 60457 - Underground Injection Control Program Hazardous Waste Injection Restrictions; Petition for...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-30

    ... ENVIRONMENTAL PROTECTION AGENCY [FRL-9208-4] Underground Injection Control Program Hazardous Waste Injection Restrictions; Petition for Exemption--Class I Hazardous Waste Injection Dow Chemical Company (DOW... Petition. SUMMARY: Notice is hereby given that an exemption to the land disposal restrictions under the...

  10. Brentuximab Vedotin Injection

    MedlinePlus

    ... with healthy bone marrow) or at least two treatment periods of chemotherapy. Brentuximab vedotin injection is also ... Hodgkin lymphoma) who did not respond to another treatment period of chemotherapy. Brentuximab vedotin injection is in ...

  11. Parathyroid Hormone Injection

    MedlinePlus

    ... injection is used along with calcium and vitamin D to treat low levels of calcium in the ... condition can be controlled by calcium and vitamin D alone. Parathyroid hormone injection is in a class ...

  12. Multiple jet study data correlations. [data correlation for jet mixing flow of air jets

    NASA Technical Reports Server (NTRS)

    Walker, R. E.; Eberhardt, R. G.

    1975-01-01

    Correlations are presented which allow determination of penetration and mixing of multiple cold air jets injected normal to a ducted subsonic heated primary air stream. Correlations were obtained over jet-to-primary stream momentum flux ratios of 6 to 60 for locations from 1 to 30 jet diameters downstream of the injection plane. The range of geometric and operating variables makes the correlations relevant to gas turbine combustors. Correlations were obtained for the mixing efficiency between jets and primary stream using an energy exchange parameter. Also jet centerplane velocity and temperature trajectories were correlated and centerplane dimensionless temperature distributions defined. An assumption of a Gaussian vertical temperature distribution at all stations is shown to result in a reasonable temperature field model. Data are presented which allow comparison of predicted and measured values over the range of conditions specified above.

  13. Antigen injection (image)

    MedlinePlus

    Leprosy is caused by the organism Mycobacterium leprae . The leprosy test involves injection of an antigen just under ... if your body has a current or recent leprosy infection. The injection site is labeled and examined ...

  14. Gas-producing cellulitis from injection of spot remover fluid (n-Hexane).

    PubMed

    Omori, Naoko; Mitsukawa, Nobuyuki; Kubota, Yoshitaka; Satoh, Kaneshige

    2013-02-01

    Subcutaneous administration of hydrocarbons, categorized according to their toxicological profiles, is rare compared to oral, inhalational, and cutaneous routes of exposure. Furthermore, injection of n-hexane in humans has not been described. This report demonstrates a singular case of subcutaneous administration of n-hexane. A 21-year-old man presented to the Emergency Department (ED) 7 h after injecting his left antecubital fossa with approximately 5 cc of spot remover fluid, which contained more than 95% n-hexane, in a suicide attempt. There was redness in the left forearm, but no apparent swelling was observed. He was administered tetanus prophylaxis and discharged with follow-up. However, the patient returned to the ED 14 h later, complaining of progression of the swelling around the injection site extending to the axilla. Significant volume of air in the soft tissue of the affected extremity was noted on both the radiograph and computed tomography scan; therefore, an immediate extensive incision and debridement of the diseased limb was performed. The postoperative course was uneventful, and a complete resolution of emphysema without any functional deficits was obtained for 5 months of follow-up. In patients suffering from n-hexane injection, initial physical examination findings may not be apparent. Thus, the patient must be monitored closely for evidence of a spread of subcutaneous gas with elevation and immobilization. If increase in tissue pressure or spread of gas is not prevented, as in our case, immediate incision and removal of the toxic substances should be planned. Copyright © 2013 Elsevier Inc. All rights reserved.

  15. 76 FR 55908 - Underground Injection Control Program; Hazardous Waste Injection Restrictions; Petition for...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-09

    ... of an exemption to the land disposal restrictions, under the 1984 Hazardous and Solid Waste... Waste Injection Restrictions; Petition for Exemption--Class I Hazardous Waste Injection; Great Lakes... from the injection zone for as long as the waste remains hazardous. This final decision allows the...

  16. 78 FR 23246 - Underground Injection Control Program; Hazardous Waste Injection Restrictions; Petition for...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-18

    ... exemption to the land disposal Restrictions, under the 1984 Hazardous and Solid Waste [[Page 23247... Waste Injection Restrictions; Petition for Exemption--Class I Hazardous Waste Injection; BASF... from the injection zone for as long as the waste remains hazardous. This final decision allows the...

  17. 77 FR 26755 - Underground Injection Control Program; Hazardous Waste Injection Restrictions; Petition for...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-07

    ... reissuance of an exemption to the land disposal Restrictions, under the 1984 Hazardous and Solid Waste... Waste Injection Restrictions; Petition for Exemption--Class I Hazardous Waste Injection; Diamond... from the injection zone for as long as the waste remains hazardous. This final decision allows the...

  18. Fuel-air mixing apparatus for reducing gas turbine combustor exhaust emissions

    NASA Technical Reports Server (NTRS)

    Zupanc, Frank J. (Inventor); Yankowich, Paul R. (Inventor)

    2006-01-01

    A fuel-air mixer for use in a combustion chamber of a gas turbine engine is provided. The fuel air mixing apparatus comprises an annular fuel injector having a plurality of discrete plain jet orifices, a first swirler wherein the first swirler is located upstream from the fuel injector and a second swirler wherein the second swirler is located downstream from the fuel injector. The plurality of discrete plain jet orifices are situated between the highly swirling airstreams generated by the two radial swirlers. The distributed injection of the fuel between two highly swirling airstreams results in rapid and effective mixing to the desired fuel-air ratio and prevents the formation of local hot spots in the combustor primary zone. A combustor and a gas turbine engine comprising the fuel-air mixer of the present invention are also provided as well as a method using the fuel-air mixer of the present invention.

  19. Use of borehole radar tomography to monitor steam injection in fractured limestone

    USGS Publications Warehouse

    Gregoire, C.; Joesten, P.K.

    2006-01-01

    Borehole radar tomography was used as part of a pilot study to monitor steam-enhanced remediation of a fractured limestone contaminated with volatile organic compounds at the former Loring Air Force Base, Maine, USA. Radar tomography data were collected using 100-MHz electric-dipole antennae before and during steam injection to evaluate whether cross-hole radar methods could detect changes in medium properties resulting from the steam injection. Cross-hole levelrun profiles, in which transmitting and receiving antennae are positioned at a common depth, were made before and after the collection of each full tomography data set to check the stability of the radar instruments. Before tomographic inversion, the levelrun profiles were used to calibrate the radar tomography data to compensate for changes in traveltime and antenna power caused by instrument drift. Observed changes in cross-hole radar traveltime and attenuation before and during steam injection were small. Slowness- and attenuation-difference tomograms indicate small increases in radar slowness and attenuation at depths greater than about 22 m below the surface, consistent with increases in water temperature observed in the boreholes used for the tomography. Based on theoretical modelling results, increases in slowness and attenuation are interpreted as delineating zones where steam injection heating increased the electrical conductivity of the limestone matrix and fluid. The results of this study show the potential of cross-hole radar tomography methods to monitor the effects of steam-induced heating in fractured rock environments. ?? 2006 European Association of Geoscientists & Engineers.

  20. Corticotropin, Repository Injection

    MedlinePlus

    Corticotropin repository injection is used to treat the following conditions:infantile spasms (seizures that usually begin during the first ... of the arms, hands, feet, and legs). Corticotropin repository injection is in a class of medications called ...

  1. Epoetin Alfa Injection

    MedlinePlus

    Epoetin alfa injection is used to treat anemia (a lower than normal number of red blood cells) in people ... stop working over a period of time). Epoetin alfa injection is also used to treat anemia caused ...

  2. Darbepoetin Alfa Injection

    MedlinePlus

    Darbepoetin alfa injection is used to treat anemia (a lower than normal number of red blood cells) in people ... stop working over a period of time). Darbepoetin alfa injection is also used to treat anemia caused ...

  3. Iron Dextran Injection

    MedlinePlus

    Iron dextran injection is used to treat iron-deficiency anemia (a lower than normal number of red blood cells ... treated with iron supplements taken by mouth. Iron dextran injection is in a class of medications called ...

  4. Wild ducks excrete highly pathogenic avian influenza virus H5N8 (2014-2015) without clinical or pathological evidence of disease.

    PubMed

    van den Brand, Judith M A; Verhagen, Josanne H; Veldhuis Kroeze, Edwin J B; van de Bildt, Marco W G; Bodewes, Rogier; Herfst, Sander; Richard, Mathilde; Lexmond, Pascal; Bestebroer, Theo M; Fouchier, Ron A M; Kuiken, Thijs

    2018-04-18

    Highly pathogenic avian influenza (HPAI) is essentially a poultry disease. Wild birds have traditionally not been involved in its spread, but the epidemiology of HPAI has changed in recent years. After its emergence in southeastern Asia in 1996, H5 HPAI virus of the Goose/Guangdong lineage has evolved into several sub-lineages, some of which have spread over thousands of kilometers via long-distance migration of wild waterbirds. In order to determine whether the virus is adapting to wild waterbirds, we experimentally inoculated the HPAI H5N8 virus clade 2.3.4.4 group A from 2014 into four key waterbird species-Eurasian wigeon (Anas penelope), common teal (Anas crecca), mallard (Anas platyrhynchos), and common pochard (Aythya ferina)-and compared virus excretion and disease severity with historical data of the HPAI H5N1 virus infection from 2005 in the same four species. Our results showed that excretion was highest in Eurasian wigeons for the 2014 virus, whereas excretion was highest in common pochards and mallards for the 2005 virus. The 2014 virus infection was subclinical in all four waterbird species, while the 2005 virus caused clinical disease and pathological changes in over 50% of the common pochards. In chickens, the 2014 virus infection caused systemic disease and high mortality, similar to the 2005 virus. In conclusion, the evidence was strongest for Eurasian wigeons as long-distance vectors for HPAI H5N8 virus from 2014. The implications of the switch in species-specific virus excretion and decreased disease severity may be that the HPAI H5 virus more easily spreads in the wild-waterbird population.

  5. Demographic and clinical predictors of mortality from highly pathogenic avian influenza A (H5N1) virus infection: CART analysis of international cases.

    PubMed

    Patel, Rita B; Mathur, Maya B; Gould, Michael; Uyeki, Timothy M; Bhattacharya, Jay; Xiao, Yang; Khazeni, Nayer

    2014-01-01

    Human infections with highly pathogenic avian influenza (HPAI) A (H5N1) viruses have occurred in 15 countries, with high mortality to date. Determining risk factors for morbidity and mortality from HPAI H5N1 can inform preventive and therapeutic interventions. We included all cases of human HPAI H5N1 reported in World Health Organization Global Alert and Response updates and those identified through a systematic search of multiple databases (PubMed, Scopus, and Google Scholar), including articles in all languages. We abstracted predefined clinical and demographic predictors and mortality and used bivariate logistic regression analyses to examine the relationship of each candidate predictor with mortality. We developed and pruned a decision tree using nonparametric Classification and Regression Tree methods to create risk strata for mortality. We identified 617 human cases of HPAI H5N1 occurring between December 1997 and April 2013. The median age of subjects was 18 years (interquartile range 6-29 years) and 54% were female. HPAI H5N1 case-fatality proportion was 59%. The final decision tree for mortality included age, country, per capita government health expenditure, and delay from symptom onset to hospitalization, with an area under the receiver operator characteristic (ROC) curve of 0.81 (95% CI: 0.76-0.86). A model defined by four clinical and demographic predictors successfully estimated the probability of mortality from HPAI H5N1 illness. These parameters highlight the importance of early diagnosis and treatment and may enable early, targeted pharmaceutical therapy and supportive care for symptomatic patients with HPAI H5N1 virus infection.

  6. Persistence of highly pathogenic avian influenza H5N1 virus defined by agro-ecological niche

    USGS Publications Warehouse

    Hogerwerf, Lenny; Wallace, Rob G.; Ottaviani, Daniela; Slingenbergh, Jan; Prosser, Diann; Bergmann, Luc; Gilbert, Marius

    2010-01-01

    The highly pathogenic avian influenza (HPAI) H5N1 virus has spread across Eurasia and into Africa. Its persistence in a number of countries continues to disrupt poultry production, impairs smallholder livelihoods, and raises the risk a genotype adapted to human-to-human transmission may emerge. While previous studies identified domestic duck reservoirs as a primary risk factor associated with HPAI H5N1 persistence in poultry in Southeast Asia, little is known of such factors in countries with different agro-ecological conditions, and no study has investigated the impact of such conditions on HPAI H5N1 epidemiology at the global scale. This study explores the patterns of HPAI H5N1 persistence worldwide, and for China, Indonesia, and India includes individual provinces that have reported HPAI H5N1 presence during the 2004–2008 period. Multivariate analysis of a set of 14 agricultural, environmental, climatic, and socio-economic factors demonstrates in quantitative terms that a combination of six variables discriminates the areas with human cases and persistence: agricultural population density, duck density, duck by chicken density, chicken density, the product of agricultural population density and chicken output/input ratio, and purchasing power per capita. The analysis identifies five agro-ecological clusters, or niches, representing varying degrees of disease persistence. The agro-ecological distances of all study areas to the medoid of the niche with the greatest number of human cases are used to map HPAI H5N1 risk globally. The results indicate that few countries remain where HPAI H5N1 would likely persist should it be introduced.

  7. Surgical versus injection treatment for injection-confirmed chronic sacroiliac joint pain

    PubMed Central

    Spiker, William Ryan; Lawrence, Brandon D.; Raich, Annie L.; Skelly, Andrea C.; Brodke, Darrel S.

    2012-01-01

    Study design: Systematic review. Study rationale: Chronic sacroiliac joint pain (CSJP) is a common clinical entity with highly controversial treatment options. A recent systematic review compared surgery with denervation, but the current systematic review compares outcomes of surgical intervention with therapeutic injection for the treatment of CSJP and serves as the next step for evaluating current evidence on the comparative effectiveness of treatments for non-traumatic sacroiliac joint pain. Objective or clinical question: In adult patients with injection-confirmed CSJP, does surgical treatment lead to better outcomes and fewer complications than injection therapy? Methods: A systematic review of the English-language literature was undertaken for articles published between 1970 and June 2012. Electronic databases and reference lists of key articles were searched to identify studies evaluating surgery or injection treatment for injection-confirmed CSJP. Studies involving traumatic onset or non-injection–confirmed CSJP were excluded. Two independent reviewers assessed the level of evidence quality using the grading of recommendations assessment, development and evaluation (GRADE) system, and disagreements were resolved by consensus. Results: We identified twelve articles (seven surgical and five injection treatment) meeting our inclusion criteria. Regardless of the type of treatment, most studies reported over 40% improvement in pain as measured by Visual Analog Scale or Numeric rating Scale score. Regardless of the type of treatment, most studies reported over 20% improvement in functionality. Most complications were reported in the surgical studies. Conclusion: Surgical fusion and therapeutic injections can likely provide pain relief, improve quality of life, and improve work status. The comparative effectiveness of these interventions cannot be evaluated with the current literature. PMID:23526911

  8. End-of-injection fuel dribble of multi-hole diesel injector: Comprehensive investigation of phenomenon and discussion on control strategy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moon, Seoksu; Huang, Weidi; Li, Zhilong

    The needle shutdown of fuel injectors leads to an undesired fuel dribble that forms unburned hydrocarbons and decreases the engine thermal efficiency in modern engines. Understanding of the fuel dribbling process is of great importance to establish its minimization strategy for optimal use of conventional fuels. However, the detailed needle dynamics and in- and near-nozzle flow characteristics governing the fuel dribble process have not been thoroughly understood. In this study, the needle dynamics, in- and near-nozzle flow characteristics and fuel dribble of a mini-sac type three-hole diesel injector were investigated using a highspeed X-ray phase-contrast imaging technique at different injectionmore » pressures. The results showed that an increase in injection pressure increased the flow evacuation velocity at the needle close that induced a more intense fuel cavitation and air ingestion inside the nozzle. The fuel dribbling process showed a high shot-toshot deviation. A statistical analysis of 50-shot results exhibited two breakup modes of fuel dribble determined by the flow evacuation velocity at the needle close and presence of air ingestion. In the first mode, the fast breakup with a short residence time of fuel dribble occurred. Meanwhile, the dripping of undisturbed liquid column with a long residence time of fuel dribble occurred in the second mode. An increase in injection pressure increased the population of the first mode due to more intense air ingestion that primarily caused by an increase in needle closing speed other than an increase in peak injection velocity. Based on the results, the formation mechanism and control strategies of the fuel dribble from modern diesel injectors were discussed.« less

  9. [Simulation on remediation of benzene contaminated groundwater by air sparging].

    PubMed

    Fan, Yan-Ling; Jiang, Lin; Zhang, Dan; Zhong, Mao-Sheng; Jia, Xiao-Yang

    2012-11-01

    Air sparging (AS) is one of the in situ remedial technologies which are used in groundwater remediation for pollutions with volatile organic compounds (VOCs). At present, the field design of air sparging system was mainly based on experience due to the lack of field data. In order to obtain rational design parameters, the TMVOC module in the Petrasim software package, combined with field test results on a coking plant in Beijing, is used to optimize the design parameters and simulate the remediation process. The pilot test showed that the optimal injection rate was 23.2 m3 x h(-1), while the optimal radius of influence (ROI) was 5 m. The simulation results revealed that the pressure response simulated by the model matched well with the field test results, which indicated a good representation of the simulation. The optimization results indicated that the optimal injection location was at the bottom of the aquifer. Furthermore, simulated at the optimized injection location, the optimal injection rate was 20 m3 x h(-1), which was in accordance with the field test result. Besides, 3 m was the optimal ROI, less than the field test results, and the main reason was that field test reflected the flow behavior at the upper space of groundwater and unsaturated area, in which the width of flow increased rapidly, and became bigger than the actual one. With the above optimized operation parameters, in addition to the hydro-geological parameters measured on site, the model simulation result revealed that 90 days were needed to remediate the benzene from 371 000 microg x L(-1) to 1 microg x L(-1) for the site, and that the opeation model in which the injection wells were progressively turned off once the groundwater around them was "clean" was better than the one in which all the wells were kept operating throughout the remediation process.

  10. Pooled effect of injection pressure and turbulence inducer piston on performance, combustion, and emission characteristics of a DI diesel engine powered with biodiesel blend.

    PubMed

    Isaac JoshuaRamesh Lalvani, J; Parthasarathy, M; Dhinesh, B; Annamalai, K

    2016-12-01

    In this study, the effect of injection pressure on combustion, performance, and emission characteristics of a diesel engine powered with turbulence inducer piston was studied. Engine tests were executed using conventional diesel and 20% blend of adelfa biodiesel [A20]. The results acquired from renewable fuel A20 in the conventional engine showed reduction in brake thermal efficiency being the result of poor air fuel mixing characteristics and the higher viscosity of the tested fuel. This prompted further research aiming at the improvement of turbulence for better air fuel mixing by a novel turbulence inducer piston [TIP]. The investigation was carried out to study the combined effect of injection pressure and turbulence inducer piston. Considerable improvement in the emission characteristics like hydrocarbon, carbon monoxide, smoke was acheived as a result of optimised injection pressure. Nevertheless, the nitrogen oxide emissions were slightly higher than those of the conventional unmodified engine. The engine with turbulence inducer piston shows the scope for reducing the major pollution and thus ensures environmental safety. Copyright © 2015 Elsevier Inc. All rights reserved.

  11. Repeated onabotulinumtoxin-a injections provide better results than single injection in treatment of painful bladder syndrome.

    PubMed

    Kuo, Hann-Chorng

    2013-01-01

    Onabotulinumtoxin-A (BoNT-A) is effective for the treatment of interstitial cystitis/painful bladder syndrome (IC/PBS). However, long-term follow-up does not show successful outcome after a single injection. To evaluate the efficacy and safety of repeated intravesical BoNT-A injections for treatment of IC/PBS and compare the success rates among patient groups receiving different injection numbers. Prospective interventional study. Tertiary medical center. Intravesical injection of 100 U of BoNT-A was performed in 81 patients every 6 months for up to 4 times or until patients' symptoms significantly improved. Patients who received a single injection served as active controls. Measured parameters included O'Leary-Sant symptom indexes (ICSI) and problem indexes (ICPI), visual analogue score (VAS) for pain, voiding diary variables, urodynamic parameters, maximal bladder capacity under anesthesia, glomerulation grade, and global response assessment. Multiple measurements and Kaplan-Meier analysis were used for comparison of consecutive data and success rates among groups. Among 81 patients, 20 received single injections, 19 received 2 injections, 12 received 3 injections, and 30 received 4 injections. The mean (± standard deviation) of ICSI, ICPI, total scores, VAS, functional bladder capacity, and daytime frequency all showed significant improvement after repeated BoNT-A treatment with different injections. Significantly better success rates were noted in patients who received 4 repeated injections (P = 0.0242) and 3 injections (P = 0.050), compared to those who received a single injection. However, there was no significant difference of long-term success rates among patients who received 2, 3, and 4 injections. Lack of placebo control group is the main limitation. Repeated intravesical BoNT-A injections were safe and effective for pain relief and they increased bladder capacity and provided a better long-term success rate than a single injection did for treatment of

  12. Paradoxical risk perception and behaviours related to Avian Flu outbreak and education campaign, Laos.

    PubMed

    Barennes, Hubert; Harimanana, Aina N; Lorvongseng, Somchay; Ongkhammy, Somvay; Chu, Cindy

    2010-10-12

    In Laos, small backyard poultry systems predominate (90%). The first lethal human cases of highly pathogenic avian influenza (HPAI) occurred in 2007. Few studies have addressed the impact of outbreaks and education campaigns on a smallholder producer system. We evaluated awareness and behaviours related to educational campaigns and the 2007 HPAI outbreaks. During a national 2-stage cross-sectional randomised survey we interviewed 1098 households using a pre-tested questionnaire in five provinces representative of the Southern to Northern strata of Laos. We used multivariate analysis (Stata, version 8; Stata Corporation, College Station, TX, USA) to analyse factors affecting recollection of HPAI educational messages, awareness of HPAI, and behaviour change. Of the 1098 participants, 303 (27.6%) received training on HPAI. The level of awareness was similar to that in 2006. The urban population considered risk to be decreased, yet unsafe behaviours persisted or increased. This contrasted with an increase in awareness and safe behaviour practices in rural areas. Reported behaviour changes in rural areas included higher rates of cessation of poultry consumption and dead poultry burial when compared to 2006. No participants reported poultry deaths to the authorities. Overall, 70% could recall an educational message but the content and accuracy differed widely depending on training exposure. Washing hands and other hygiene advice, messages given during the HPAI educational campaign, were not recalled. Trained persons were able to recall only one message while untrained participants recalled a broader range of messages. Factors associated with an awareness of a threat of AI in Laos were: having received HPAI training, literacy level, access to TV, recent information, living in rural areas. We report a paradoxical relationship between unsafe behaviours and risk perception in urban areas, as well as exposure to HPAI training and message misinterpretation. Future educational

  13. Transitions from injecting to non-injecting drug use: potential protection against HCV infection

    PubMed Central

    Des Jarlais, Don C.; McKnight, Courtney; Arasteh, Kamyar; Feelemyer, Jonathan; Perlman, David C.; Hagan, Holly; Cooper, Hannah L. F.

    2013-01-01

    Transitions from injecting to non-injecting drug use have been reported from many different areas, particularly in areas with large human immunodeficiency virus (HIV) epidemics. The extent to which such transitions actually protect against HIV and HCV has not been determined. A cross-sectional survey with HIV and hepatitis C (HCV) testing was conducted with 322 former injectors (persons who had injected illicit drugs but permanently transitioned to non-injecting use) and 801 current injectors recruited in New York City between 2007 and 2012. There were no differences in HIV prevalence, while HCV prevalence was significantly lower among former injectors compared to current injectors. Years injecting functioned as a mediating variable linking former injector status to lower HCV prevalence. Transitions have continued well beyond the reduction in the threat of AIDS to injectors in the city. New interventions to support transitions to non-injecting drug use should be developed and supported by both drug treatment and syringe exchange programs. PMID:24161262

  14. Baseline performance and emissions data for a single-cylinder, direct-injected diesel engine

    NASA Technical Reports Server (NTRS)

    Dezelick, R. A.; Mcfadden, J. J.; Ream, L. W.; Barrows, R. F.

    1983-01-01

    Comprehensive fuel consumption, mean effective cylinder pressure, and emission test results for a supercharged, single-cylinder, direct-injected, four-stroke-cycle, diesel test engine are documented. Inlet air-to-exhaust pressure ratios were varied from 1.25 to 3.35 in order to establish the potential effects of turbocharging techniques on engine performance. Inlet air temperatures and pressures were adjusted from 34 to 107 C and from 193 to 414 kPa to determine the effects on engine performance and emissions. Engine output ranged from 300 to 2100 kPa (brake mean effective pressure) in the speed range of 1000 to 3000 rpm. Gaseous and particulate emission rates were measured. Real-time values of engine friction and pumping loop losses were measured independently and compared with motored engine values.

  15. Methodology for the Randomised Injecting Opioid Treatment Trial (RIOTT): evaluating injectable methadone and injectable heroin treatment versus optimised oral methadone treatment in the UK

    PubMed Central

    Lintzeris, Nicholas; Strang, John; Metrebian, Nicola; Byford, Sarah; Hallam, Christopher; Lee, Sally; Zador, Deborah

    2006-01-01

    Whilst unsupervised injectable methadone and diamorphine treatment has been part of the British treatment system for decades, the numbers receiving injectable opioid treatment (IOT) has been steadily diminishing in recent years. In contrast, there has been a recent expansion of supervised injectable diamorphine programs under trial conditions in a number of European and North American cities, although the evidence regarding the safety, efficacy and cost effectiveness of this treatment approach remains equivocal. Recent British clinical guidance indicates that IOT should be a second-line treatment for those patients in high-quality oral methadone treatment who continue to regularly inject heroin, and that treatment be initiated in newly-developed supervised injecting clinics. The Randomised Injectable Opioid Treatment Trial (RIOTT) is a multisite, prospective open-label randomised controlled trial (RCT) examining the role of treatment with injected opioids (methadone and heroin) for the management of heroin dependence in patients not responding to conventional substitution treatment. Specifically, the study examines whether efforts should be made to optimise methadone treatment for such patients (e.g. regular attendance, supervised dosing, high oral doses, access to psychosocial services), or whether such patients should be treated with injected methadone or heroin. Eligible patients (in oral substitution treatment and injecting illicit heroin on a regular basis) are randomised to one of three conditions: (1) optimized oral methadone treatment (Control group); (2) injected methadone treatment; or (3) injected heroin treatment (with access to oral methadone doses). Subjects are followed up for 6-months, with between-group comparisons on an intention-to-treat basis across a range of outcome measures. The primary outcome is the proportion of patients who discontinue regular illicit heroin use (operationalised as providing >50% urine drug screens negative for markers of

  16. Syringe injectable electronics

    PubMed Central

    Hong, Guosong; Zhou, Tao; Jin, Lihua; Duvvuri, Madhavi; Jiang, Zhe; Kruskal, Peter; Xie, Chong; Suo, Zhigang; Fang, Ying; Lieber, Charles M.

    2015-01-01

    Seamless and minimally-invasive three-dimensional (3D) interpenetration of electronics within artificial or natural structures could allow for continuous monitoring and manipulation of their properties. Flexible electronics provide a means for conforming electronics to non-planar surfaces, yet targeted delivery of flexible electronics to internal regions remains difficult. Here, we overcome this challenge by demonstrating syringe injection and subsequent unfolding of submicrometer-thick, centimeter-scale macroporous mesh electronics through needles with a diameter as small as 100 micrometers. Our results show that electronic components can be injected into man-made and biological cavities, as well as dense gels and tissue, with > 90% device yield. We demonstrate several applications of syringe injectable electronics as a general approach for interpenetrating flexible electronics with 3D structures, including (i) monitoring of internal mechanical strains in polymer cavities, (ii) tight integration and low chronic immunoreactivity with several distinct regions of the brain, and (iii) in vivo multiplexed neural recording. Moreover, syringe injection enables delivery of flexible electronics through a rigid shell, delivery of large volume flexible electronics that can fill internal cavities and co-injection of electronics with other materials into host structures, opening up unique applications for flexible electronics. PMID:26053995

  17. Control of spontaneous combustion of coal in goaf at high geotemperatureby injecting liquid carbon dioxide: inertand cooling characteristics of coal

    NASA Astrophysics Data System (ADS)

    Liu, Zhenling; Wen, Hu; Yu, Zhijin; Wang, Chao; Ma, Li

    2018-02-01

    The spontaneous combustion of coal in goaf at high geo temperatures is threatening safety production in coalmine. The TG-DSC is employed to study the variation of mass and energy at 4 atmospheres (mixed gases of N2, O2 and CO2) and heating rates (10°C/min) during oxidation of coal samples. The apparent activation energy and pre-exponential factor of coal oxidation decrease rapidly with increasing theCO2 concentration. Furthermore, its reaction rate is slow, its heat released reduces. Based on the conditions of 1301 face in the Longgucoalmine, a three-dimensional geometry model is developed to simulate the distributions stream field and temperature field and the variation characteristics ofCO2 concentration field after injecting liquidCO2. The results indicate that oxygen reached to depths of˜120m in goaf, 100m in the side of inlet air, and 10m in the side of outlet air before injecting liquidCO2. After injecting liquidCO2for 28.8min, the width of oxidation and heat accumulation zone is shortened by 20m, and the distance is 80m in the side of working face and 40˜60m in goafin the direction of dip affected by temperature.

  18. Endoscopic injection therapy.

    PubMed

    Kim, Sang Woon; Lee, Yong Seung; Han, Sang Won

    2017-06-01

    Since the U.S. Food and Drug Administration approved dextranomer/hyaluronic acid copolymer (Deflux) for the treatment of vesicoureteral reflux, endoscopic injection therapy using Deflux has become a popular alternative to open surgery and continuous antibiotic prophylaxis. Endoscopic correction with Deflux is minimally invasive, well tolerated, and provides cure rates approaching those of open surgery (i.e., approximately 80% in several studies). However, in recent years a less stringent approach to evaluating urinary tract infections (UTIs) and concerns about long-term efficacy and complications associated with endoscopic injection have limited the use of this therapy. In addition, there is little evidence supporting the efficacy of endoscopic injection therapy in preventing UTIs and vesicoureteral reflux-related renal scarring. In this report, we reviewed the current literature regarding endoscopic injection therapy and provided an updated overview of this topic.

  19. Extraforaminal needle tip position reduces risk of intravascular injection in CT-fluoroscopic lumbar transforaminal epidural steroid injections

    PubMed Central

    Yu, Robinson K.; Ghodadra, Anish; Agarwal, Vikas

    2016-01-01

    Background Lumbar transforaminal epidural steroid injection is a common and effective tool for managing lumbar radicular pain, although accidental intravascular injection can rarely result in paralysis. The purpose of this study is to determine the safest needle tip position for computed tomography (CT)-guided lumbar transforaminal epidural steroid injections as determined by incidence of intravascular injection. Methods Three radiologists, in consensus, reviewed procedural imaging for consecutive CT-fluoroscopic lumbar transforaminal epidural steroid injections performed during a 16-month period. Intravascular injections were identified and categorized by needle tip position, vessel type injected, intravascular injection volume and procedural phase containing the intravascular injection. Pearson chi-square and logistic regression testing were used to assess differences between groups, as appropriate. Results Intravascular injections occurred in 9% (52/606) of injections. The intravascular injection rate was significantly lower (P<0.001) for extraforaminal needle position (0%, 0/109) compared to junctional (8%, 27/319) and foraminal (14%, 25/178) needle tip positions. Of the intravascular injections, 4% (2/52) were likely arterial, 35% (18/52) were likely venous, and 62% (32/52) were indeterminate for vessel type injected. 46% (24/52) of intravascular injections were large volume, 33% (17/52) were small volume, and 21% (11/52) were trace volume. 56% (29/52) of intravascular injections occurred with the contrast trial dose, 29% (15/52) with the steroid/analgesic cocktail, and 15% (8/52) with both. Conclusions An extraforaminal needle position for CT-fluoroscopic lumbar transforaminal epidural steroid injections decreases the risk of intravascular injection and therefore may be safer than other needle tip positions. PMID:28097241

  20. Response of sugarcane to carbon dioxide enrichment and elevated air temperature

    USDA-ARS?s Scientific Manuscript database

    Four sugarcane cultivars (CP 72-2086, CP 73-1547, CP 88-1508, and CP 80-1827) were grown in elongated temperature-gradient greenhouses (TGG) at ambient or elevated carbon dioxide (CO2) of 360 or 720 µmol CO2 mol-1 air (ppm, mole fraction basis), respectively. Elevated CO2 was maintained by injection...